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Introduction

e Central Question in Today’s and Future Networks: Systematic analysis and

design of network architectures and development of network control schemes

e Traditional Network Optimization: Single administrative domain with a single
control objective and obedient users.
e New Challenges:

— Large-scale and interconnection of heterogeneous autonomous entities

« Control in the presence of selfish incentives and private information of users

— Continuous upgrades and investments in new technologies

*x Economic incentives of service and content providers more paramount

— New situation-aware wireless technologies to deal with inherent dynamics

* Autonomous decisions based on current network conditions

— Analysis of social and economic networks

* Learning, information aggregation, control, endogenous network formation

e These challenges make game theory and economic market mechanisms
natural tools for the analysis of large-scale networked systems



Issues in Network Games

e Game theory has traditionally been used in economics and social sciences with

focus on fully rational interactions
— Theory developed for small scale sophisticated interactions
— Strong assumptions: common knowledge, common prior, forward-looking
behavior
e In (engineering or social) networked systems, not necessarily a good framework
for two reasons:
— Large-scale systems consisting of individuals with partial information

— Most focus on dynamic interactions and in particular learning dynamics



Learning Dynamics in Games

e Bayesian Learning:
— Update beliefs (about an underlying state or opponent strategies) based on
new information optimally (i.e., in a Bayesian manner)
e Adaptive Learning:
— Myopic, simple and rule-of-thumb
— Example: Fictitious play
x Play optimally against the empirical distribution of past play of opponent
e Evolutionary Dynamics:

— Selection of strategies according to performance against aggregates and
random mutations

Rationality
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This Tutonal

Strategic form games and Nash equilibrium

Adaptive learning in games

— Fictitious play and shortcomings

Special classes of games:
— Supermodular games and dynamics

— Potential and congestion games and dynamics

Bayesian learning in games

— Information aggregation in social networks



Strategic Form Games

e A strategic (form) game is a model for a game in which all of the participants

act simultaneously and without knowledge of other players’ actions.
Definition (Strategic Game): A strategic game is a triplet (Z, (S:)icz, (ui)icz):
e T is a finite set of players, Z = {1,...,1}.

e S, is the set of available actions for player ¢
— s; € S; is an action for player 7
— s_; = [s;];2: is a vector of actions for all players except .
— (si,s—i) € S is an action profile, or outcome.
— S =], Si is the set of all action profiles

- S = H#i S; is the set of all action profiles for all players except i

e u;: S — R is the payoff (utility) function of player i

e We will use the terms action and pure strategy interchangeably.



Example

e Example: Cournot competition.
— Two firms producing the same good.

— The action of a player i is a quantity, s; € [0, 0c0] (amount of good he
produces).

— The utility for each player is its total revenue minus its total cost,
ui(s1,s2) = sip(s1 + s2) — cs;

where p(q) is the price of the good (as a function of the total amount), and ¢
is unit cost (same for both firms).

e Assume for simplicity that ¢ = 1 and p(q) = max{0,2 — ¢}

e Consider the best-response correspondences for each of the firms, i.e., for each 7,
the mapping B;(s—;) : S_; — S; such that

Bi(s_i) € argmax, .. ui(Si, S—i).



Example—Continued

e By using the first order optimality conditions, S2 11
we have
Bi(s—i) = argmax, >(si(2—si—5-i) — $;)
| 1/2
1754 if s_; < 1, /

2

0 otherwise.

e The figure illustrates the best response func-

tions as a function of s; and sso.

e Assuming that players are rational and fully knowledgable about the structure of
the game and each other’s rationality, what should the outcome of the game be?



Pure and Mixed Strategy Nash Equilibrium

Definition (Nash equilibrium): A (pure strategy) Nash Equilibrium of a strategic
game (Z,(Si)iez, (ui)iez) is a strategy profile s* € S such that for all i € Z

*k

ui(s;,8-3) > wi(si,s-;) for all s; € S;.
e No player can profitably deviate given the strategies of the other players
e An action profile s* is a Nash equilibrium if and only if
s; € Bi(s™;) for all 4 € 7,
e Let X; denote the set of probability measures over the pure strategy set .5;.

e We use o; € X; to denote the mixed strategy of player i, and 0 € ¥ =[], X
to denote a mixed strategy profile (similarly define o_; € ¥_; =[], &)

e Following Von Neumann-Morgenstern expected utility theory, we extend the
payoff functions u; from S to X by

wi(0) = /5 wi(s)do(s).

Definition (Mixed Nash Equilibrium): A mixed strategy profile ¢* is a (mixed
strategy) Nash Equilibrium if for each player 1,

ui(o;,0°;) > ui(oi,0;) for all o; € Y;.



Existence of Nash Equilibria

Theorem: [Nash 50| Every finite game has a mixed strategy Nash equilibrium.

Proof Outline:

e 0" mixed Nash equilibrium if and only if o; € B;(c”;) for all i € Z, where

Bi(c”;) € arg max u;(0,0";).
O’iezi

e This can be written compactly as 0™ € B(c"), where B(c) = [Bi(0—i)]iez, i.€.,
o” is a fixed point of the best-response correspondence.

e Use Kakutani's fixed point theorem to establish the existence of a fixed point.

Linearity of expectation in probabilities play a key role; extends to (quasi)-concave
payoffs in infinite games
Theorem: [Debreu, Glicksberg, Fan 52] Assume that the S; are nonempty compact

convex subsets of an Euclidean space. Assume that the payoff functions w;(s;, s—;)
are quasi-concave in s; and continuous in s, then there exists a pure strategy Nash

equilibrium.

e Existence of mixed strategy equilibria for continuous games [Glicksberg 52| and

some discontinuous games [Dasgupta and Maskin 86|
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Adaptive Learning in Finite Games

e Most economic theory relies on equilibrium analysis based on Nash equilibrium or

its refinements.

e Traditional explanation for when and why equilibrium arises:

— Results from analysis and introspection by sophisticated players when the
structure of the game and the rationality of the players are all common

knowledge.

e Alternative justification more relevant for networked-systems:

— Arises as the limit point of a repeated play in which less than fully rational

players myopically update their behavior

— Agents behave as if facing a stationary, but unknown, distribution of

opponents’ strategies

11



Fictitious Play

e A natural and widely used model of learning is fictitious play [Brown 51]

— Players form beliefs about opponent play and myopically optimize their
action with respect to these beliefs

e Agent ¢ forms the empirical frequency distribution of his opponent j's past play
according to

let p’; = [, p; for all ¢.

e He then chooses his action at time ¢ to maximize his payoff, i.e.,

' '
s; € arg max u;(S;, u_;).

$;€05

— This choice is myopic, i.e., players are trying to maximize current payoff
without considering their future payoffs.

— Players only need to know their own utility function.

12



Basic Properties of Fictitious Play

o Let {s'} be a sequence of strategy profiles generated by fictitious play.

e We say that {s"} converges to o € ¥ in the time-average sense if the empirical

frequencies converge to o, i.e., ,uf — o; for all 1.

Proposition: Suppose a fictitious play sequence {s'} converges to o in the
time-average sense. Then ¢ is a Nash equilibrium of the stage game.

e |s convergence in the time-average sense a natural notion of convergence?

13



Shortcomings of Fictitious Play
Mis-coordination example [Fudenberg, Kreps 88]: Consider the FP of the game:

A B
A | 1,1 ]00
B |00 | 1,1

Note that this game had a unique mixed Nash equilibrium ((1/2, 1/2),(1/2, 1/2)).

Consider the following sequence of play:

Ul 2 Play
0| (0,1/2) | (1/2,0) | (A,B)
1| (11/2) | (1/2,1) | (B,A)
2 | (1,3/2) | (3/2,1) | (A,B)
3 - (B,A)
e Play continues as (A,B), (B,A), ... - a deterministic cycle.

e The time average converges to ((1/2, 1/2),(1/2, 1/2)), which is a mixed
strategy equilibrium of the game.

e But players never successfully coordinate!



Alternative Focus

Various convergence problems present for adaptive learning rules

— Uncoupled dynamics do not lead to Nash equilibrium! [Hart, Mas-Colell 03]

Rather than seeking learning dynamics that converge to reasonable behavior in all

games, focus on relevant classes games that arise in engineering and economics

In particular, this talk:
— Supermodular Games

— Potential Games

Advantages:
— Tractable and elegant characterization of equilibria, sensitivity analysis

— Most reasonable adaptive learning rules converge to Nash equilibria

15



Supermodular Games

e Supermodular games are those characterized by strategic complementarities

e Informally, this means that the marginal utility of increasing a player’s

strategy raises with increases in the other players’ strategies.

e Why interesting?

They arise in many models.

Existence of a pure strategy equilibrium without requiring the quasi-concavity
of the payoff functions.

Many solution concepts yield the same predictions.
The equilibrium set has a smallest and a largest element.

They have nice sensitivity (or comparative statics) properties and behave well
under a variety of distributed dynamic rules.

e The machinery needed to study supermodular games is lattice theory and

monotonicity results in lattice programming

Methods used are non-topological and they exploit order properties
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Increasing Differences

e We first study the monotonicity properties of optimal solutions of parametric
optimization problems:

#(t) € argmax [(z,1)

where f: X XT — R, X CR, and T is some partially ordered set.

Definition: Let X C R and 71" be some partially ordered set. A function
f: X x T — R has increasing differences in (z,t) if for all z’ > z and t' > t, we
have
fa',t) = flz,t) > f(2',t) — f(z,1).
e incremental gain to choosing a higher x (i.e., 2’ rather than z) is greater when ¢
is higher, i.e., f(2',t) — f(z,t) is nondecreasing in t.

Lemma: Let X CR and T C R”* for some k, a partially ordered set with the usual
vector order. Let f: X X T — R be a twice continuously differentiable function.
Then, the following statements are equivalent:

(a) The function f has increasing differences in (z,1).

(b) Forallz € X,te€ T, and alli=1,...,k, we have

& f(x,t)
> ().
oxot; — 0

17



Examples—I

Example: Network effects (positive externalities).

e A set 7 of users can use one of two technologies X and Y (e.g., Blu-ray and HD
DVD)

e B,;(J, k) denotes payoff to 7 when a subset J of users use technology k£ and i € J

e There exists a network effect or positive externality if
Bi(J, k) < Bi(J', k), when J C J',

I.e., player ¢ better off if more users use the same technology as him.
e Leads naturally to a strategic form game with actions S; = {X, Y}
e Define the order Y > X, which induces a lattice structure
e Givense S, let X(s)={ieZ|si=X},Y(s)={ie€Zl]|si=Y}.
e Define the payoffs as
Bi(X(s),X) ifs;, =X,

Ui(8i,8—i) = Bi(Y(s),Y) ifs;,=Y

e Show that the payoff functions of this game feature increasing differences.
18



Examples Il

Example: Cournot duopoly model.

Two firms choose the quantity they produce ¢; € [0, 00).

Let P(Q) with @ = ¢q; + q,; denote the inverse demand (price) function. Payoff
function of each firm is u;(qi,q;) = ¢: P(qi + q;) — cqi.

Assume P'(Q) + ¢ P"(Q) < 0 (firm i's marginal revenue decreasing in ¢;).

Show that the payoff functions of the transformed game defined by s; = ¢,

s2 = —q2 has increasing differences in (s1, s2).

19



Monotonicity of Optimal Solutions

Theorem: [Topkis 79] Let X C R be a compact set and T' be some partially ordered
set. Assume that the function f : X X T — R is upper semicontinuous in x for all
t € T and has increasing differences in (z,t). Define z(t) = argmaxzex f(z,1).

Then, we have:

1. Forallt € T, x(t) is nonempty and has a greatest and least element, denoted by
Z(t) and x(t) respectively.

2. For all t' > t, we have Z(t') > z(t) and x(t') > x(t).

e If f has increasing differences, the set of optimal solutions z(t) is non-decreasing
in the sense that the largest and the smallest selections are non-decreasing.

20



Supermodular Games

Definition: The strategic game (Z, (S;), (u;)) is a supermodular game if for all i:
1. S; is a compact subset of R (or more generally S; is a complete lattice in R™?),
2. u; 1s upper semicontinuous in s;, continuous in s_;,

3. wu; has increasing differences in (s;,s_;) [or more generally u; is supermodular in
(si, S—i), which is an extension of the property of increasing differences to games

with multi-dimensional strategy spaces].
e Apply Topkis' Theorem to best response correspondences

Corollary: Assume (Z, (S;), (ui)) is a supermodular game. Let

Bi(s—i) = arg max u;(si, S—i).
S; €S

Then:
1. Bi(s_;) has a greatest and least element, denoted by B;(s_;) and B,(s—:).

2. If s, > s_;, then B;(s" ;) > Bi(s—;) and B,(s" ;) > B,(s_:).

- =
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Existence of a Pure Nash Equilibrium

e Follows from Tarski's fixed point theorem

Theorem: [Tarski 55] Let S be a compact sublattice of R¥ and f: S — S be an
increasing function (i.e., f(x) < f(y) if x < y). Then, the set of fixed points of f,
denoted by FE, is nonempty.

11s) +(s)

v
v

e Apply Tarski's fixed point theorem to best response correspondences

e Nash equilibrium set has a largest and a smallest element, and easy sensitivity

results (e.g., quantity supplied increases with demand in Cournot game)
22



Dynamics in Supermodular Games

Theorem: [Milgrom, Roberts 90| Let G = (Z, (S;), (u;)) be a supermodular game.
Let {s*} be a sequence of strategy profiles generated by reasonable adaptive
learning rules. Then,

. . t . t —
liminfs* >s and limsups < s,
t—o0 t— o0

where s and s are smallest and largest Nash equilibria of G.
Reasonable adaptive learning rules: Best-response, fictitious play ...

Remarks:
e Implies convergence for games with unique Nash equilibrium.

e Fictitious play converges for general supermodular games [Krishna 92|, [Berger
03, 07], [Hahn 08]

Example: Apply best-response dynamics to Cournot game



Wireless Power Control Game
e Power control in cellular CDMA wireless networks [Alpcan, Basar, Srikant,
Altman 02], [Gunturi, Paganini 03]

e |t has been recognized that in the presence of interference, the strategic
interactions between the users is that of strategic complementarities [Saraydar,
Mandayam, Goodman 02], [Altman and Altman 03]

Model:

o Let L =1{1,2,...,n} denote the set of users (nodes) and P = H,L.GL[Pimi", P

denote the set of power vectors p = [p1,...,pn].

e Each user is endowed with a utility function f;(;) as a function of its SINR ~;.
— fi(7i) depends on details of transmission: modulation, coding, packet size

— In most practical cases, f(7) is strictly increasing and has a sigmoidal shape.

e The payoff function of each user represents a tradeoff between the payoff
obtained by the received SINR and the power expenditure, and takes the form

wi(pi, p—i) = fi(vi) — cpi.

24



Increasing Differences

e Assume that each utility function satisfies the following assumption regarding its

coefficient of relative risk aversion:

(A
%,‘fz (%) > 1, for all ~v; > 0.
I (i)
1—«

— Satisfied by a-fair functions f(y) = T—, a > 1 [Mo, Walrand 00], and the

efficiency functions introduced earlier

e Show that for all ¢, the function w;(p;, p—i) has increasing differences in (p;, p—;).

Implications:
e Power control game has a pure Nash equilibrium.

e The Nash equilibrium set has a largest and a smallest element, and there are

distributed algorithms that will converge to any of these equilibria.

e These algorithms involve each user updating their power level locally (based on

total received power at the base station).

25



Potential Games

Definition [Monderer and Shapley 96]:

(i) A function ® : S — R is called an ordinal potential function for the game G if
for all 2 and all s_; € S_;,

ui(r,s—i) —ui(z,s—;) >0 iff &(x,s_;) — P(z,5-;) >0, forall xz,z€S;.

(ii)) A function ® : S — R is called a potential function for the game G if for all 4
and all s_; € S_;,

wi(x,s—;) —ui(z,s—:) = ®(xr,s_;) — P(2,s_;), forall x,ze€S,.

GG is called an ordinal (exact) potential game if it admits an ordinal (exact) potential.

26



Properties of Potential Games

e A global maximum of an ordinal potential function is a pure Nash equilibrium
(there may be other pure NE, which are local maxima)

— Every finite ordinal potential game has a pure Nash equilibrium.

e Many adaptive learning dynamics “converge” to a pure Nash equilibrium

[Monderer and Shapley 96], [Young 98, 05], [Hart, Mas-Colell 00,03], [Marden,
Arslan, Shamma 06, 07]

— Examples: Fictitious play, better reply with inertia, spatial adaptive play,
regret matching (for 2 player potential games)

27



Congestion Games
e Congestion games arise when users need to share resources in order to complete
certain tasks
— For example, drivers share roads, each seeking a minimal cost path.

— The cost of each road segment adversely affected by the number of other
drivers using it.

e Congestion Model: C' = (N, M, (S:)ien, (¢’)jen) where
— N ={1,2,--- ,n} is the set of players,
- M ={1,2,--- ,m} is the set of resources,
— S, consists of sets of resources (e.g., paths) that player 7 can take.

— (k) is the cost to each user who uses resource j if k users are using it.

e Define congestion game (N, (55), (us)) with utilities u;i(si,s—i) = > _ ., ¢ (kj),
where k; is the number of users of resource ;7 under strategies s.

Theorem: [Rosenthal 73] Every congestion game is a potential game.
Proof idea: Verify that the following is a potential function for the congestion game:

o(s)= Y (E_jjcjue))

jGUSi k=

28



Network Design

e Sharing the cost of a designed network among participants [Anshelevich et al. 05]

Model:

e Directed graph N = (V, E) with edge cost

ce > 0, k players 1712/ e\ K
e Each player ¢ has a set of nodes T’; he wants @)

to connect N >

e A strategy of player i set of edges S; C E O
such that S; connects to all nodes in T;

Optimum cost: 1+¢

Unique NE cost: %, 1/i = H(k)

e Cost sharing mechanism: All players using an edge split the cost equally

e Given a vector of player’s strategies S = (S1,...,Sk), the cost to agent i is
Ci(S) = > _.cs, (ce/ze), where xc is the number of agents whose strategy

contains edge €

This game is a congestion game, implying existence of a pure Nash equilibrium and

convergence of learning dynamics.
29



Other Examples

Game Theory for Nonconvex Distributed Optimization:

e Distributed Power Control for Wireless Adhoc Networks [Huang,Berry,Honig 05]
— Two models: Single channel spread spectrum, Multi-channel orthogonal
frequency division multiplexing
— Asynchronous distributed algorithm for optimizing total network performance

— Convergence analysis in the presence of nonconvexities using supermodular
game theory

e Distributed Cooperative Control-"Constrained Consensus” [Marden, Arslan,
Shamma 07]

— Distributed algorithms to reach consensus in the “values of multiple agents”
(e.g. averaging and rendezvous problems)

— Nonconvex constraints in agent values

— Design a game (i.e., utility functions of players) such that

x The resulting game is a potential game and the Nash equilibrium
“coincides” with the social optimum
x Use learning dynamics for potential games to design distributed algorithms

with favorable convergence properties
30



Bayesian Learning in Games

e So far focus on adaptive learning

e Individuals do not update their model even tough they repeatedly observe the

strategies of their opponents changing dynamically

e Alternative paradigm: Individuals engage in Bayesian updating with (some)
understanding of the strategy profiles of others

— Similar to Bayesian learning in decision-theoretic problems, though richer
because of strategic interactions

31



Model of Bayesian Learning
[[lustrate main issues with a simple model in which learning is about payoff
relevant state of the world
Relevance to networks: Model society, information flows as a social network

Dynamic game with sequential decisions based on private signals and observation

of past actions
Payoffs conditional on the (unknown) state of the world

Measure of information aggregation: whether there will be convergence to

correct beliefs and decisions in large networks—asymptotic learning

Question: Under what conditions—structure of signals, network /communication
structure, heterogeneity of preferences—do individuals learn the state as the

social network grows bigger?
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Difficulties of Bayesian Learning in Games
Model for Bayesian learning on a line [Bikchandani, Hirschleifer, Welch (92),
Banerjee (92)]
Two possible states of the world 6 € {0, 1}, both equally likely
A sequence of agents (n = 1, 2,...) making decisions z,, € {0,1}
Agent n obtains utility 1 if x,, = 6 and utility 0 otherwise
Each agent has iid private binary signals s,,, where s,, = 6 with probability > 1/2
Agent n knows his signal s,, and the decisions of previous agents x1,x2, ..., Tn—1

Agent n chooses action 1 if

PO =1|sn,x1,22,..., Tn—1) > P (0 =0|sn, x1,T2, ..., Trn_1)

If s1 = so # 6, then all agents herd and x,, # 6 for all agents,

lim P(z, =0) <1

n—oo
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Bayesian Learning in Networks

Model of learning on networks [Acemoglu, Dahleh, Lobel, Ozdaglar 08]
Two possible states of the world 6 € {0, 1}, both equally likely,

A sequence of agents (n = 1,2, ...) making decisions x,, € {0, 1}.
Agent n obtains utility 1 if x,, = 6 and utility 0 otherwise

Each agent has an iid private signal s, in S. The signal is generated according

to distribution Fg, IFg and [F; absolutely continuous with respect to each other
(Fo,F1) is the signal structure

Agent n has a neighborhood B(n) C {1,2,...,n — 1} and observes the decisions
xi for all k € B(n). The set B(n) is private information.

The neighborhood B(n) is generated according to an arbitrary distribution Q,
{Qn }nen is the network topology and is common knowledge

A social network consists of the signal structure and network topology
Asymptotic Learning: Under what conditions does lim,,_,oc P(z,, =0) =17
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Perfect Bayesian Equilibria

e Agent n's information set is Z,, = {sy, B(n),xy for all k € B(n)}
e A strategy for individual n is oy, : Z,, — {0, 1}

e A strategy profile is a sequence of strategies 0 = {0, }nen.

— A strategy profile o induces a probability measure P, over {x, }nen.

Definition: A strategy profile o™ is a pure-strategy Perfect Bayesian Equilibrium if
for each n € N

« y(y =0 |Tn)

—n

on(In) € argmax, c 1o 13 P(y,o
e A pure strategy PBE exists. Denote the set of PBEs by ™.

Definition: Given a signal structure (Fo,F1) and a network topology {Qn }nen, we
say that asymptotic learning occurs in equilibrium o if x,, converges to 6 in

probability (according to measure P, ), that is,

lim P,(z, =0)=1

n—0o0
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Equilibrium Decision Rule

Lemma: The decision of agent n, x, = o(Z,,), satisfies

1, if Po(0=1]sn)+Ps(0=1]DB(n),z forall k € B(n)) > 1,
0, if Po(@=1]|sn)+Ps(0=1|B(n),z forall k € B(n)) <1,

LTn —

and x,, € {0, 1} otherwise.
e Implication: The belief about the state decomposes into two parts:
— the Private Belief: P, (0 =1 | s,);
— the Social Belief: P,(0 =1 | B(n),zy for all k € wy,).

36



Private Beliefs

Lemma: The private belief of agent n is

o))

Pn(sn) =Ps(0 = 1|s,) = <1 + dF (s0)

Definition: The signal structure has bounded private beliefs if there exists some
0 < m, M < oo such that the Radon-Nikodym derivate dFy/dF; satisfies

dFo
— M
m < I, (s) < M,

for almost all s € S under measure (Fo + F1)/2. The signal structure has unbounded

private beliefs if

. dFo dFo, .
slrelg dTFl(s) =0 and ilelg dTFl(s) = 0.

e Bounded private beliefs < bounded likelihood ratio

e |f the private beliefs are unbounded, then there exist some agents with beliefs
arbitrarily close to 0 and other agents with beliefs arbitrarily close to 1.
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Properties of Network Topology

Definition: A network topology {Q,, }nen has expanding observations if for all K,

lim Qn<max b<K>:O.

n— 00 beB(n)

Otherwise, it has nonexpanding observations

Expanding observations do not imply connected graph

Nonexpanding observations equivalently : There exists some K, ¢ > 0 and an
infinite subset NV € N such that

Qn<max b<K> >¢e forall neN.

beB(n)

A finite group of agents is excessively influential if there exists an infinite
number of agents who, with probability uniformly bounded away from 0, observe

only the actions of a subset of this group.
— For example, a group is excessively influential if it is the source of all

information for an infinitely large component of the network

Nonexpanding observations < excessively influential agents
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Main Results - |

Theorem 1: Assume that the network topology {Q. }nen has nonexpanding
observations. Then, there exists no equilibrium o € ¥* with asymptotic learning.

Theorem 2: Assume that the signal structure (IFo,F1) has unbounded private beliefs
and the network topology {Q, }nen has expanding observations. Then, asymptotic

learning occurs in every equilibrium o € X7,

e Implication: Influential, but not excessively influential, individuals (observed by

disproportionately more agents in the future) do not prevent learning.
e This contrasts with results in models of myopic learning

e Intuition: because the weight given to the information of influential individuals
is reduced according to Bayesian updating.
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Main Results - |l

Theorem 3: If the private beliefs are bounded and the network topology satisfies one
of the following conditions,

(a) B(n)={1,....,n—1} forall n or |[B(n)| <1 for all n,
(b) there exists some constant M such that |B(n)| < M for all n and

lim max b = oo with probability 1,
n—oo beB(n)

then asymptotic learning does not occur.
e Implication: No learning with random sampling and bounded beliefs

Theorem 4: There exist network topologies where asymptotic learning occurs for any
signal structure (Fo, Fy).

Example: For all n,

1,....,n—1}, with probability 1 — :
B(n) = ; n — 1}, with probability r(n)

: with probability r(n),
for some sequence {r(n)} where lim, .o 7(n) =0 and > >7  r(n) = oco.

In this case, asymptotic learning occurs for an arbitrary signal structure (Fo,F;) and

at any equilibrium.
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Concluding Remarks

e Game theory increasingly used for the analysis and control of networked systems

e Many applications:
— Sensor networks, mobile ad hoc networks
— Large-scale data networks, Internet
— Social and economic networks

— Electricity and energy markets

e Future Challenges
— Models for understanding when equilibrium behavior yields efficient outcomes
— Dynamics of agent interactions over large-scale networks
— Endogenous network formation: dynamics of decisions and graphs

— Interactions of heterogeneous interlayered networks (e.g., social and

communication networks)
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