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Introduction

• Central Question in Today’s and Future Networks: Systematic analysis and

design of network architectures and development of network control schemes

• Traditional Network Optimization: Single administrative domain with a single

control objective and obedient users.

• New Challenges:

– Large-scale and interconnection of heterogeneous autonomous entities

∗ Control in the presence of selfish incentives and private information of users

– Continuous upgrades and investments in new technologies

∗ Economic incentives of service and content providers more paramount

– New situation-aware wireless technologies to deal with inherent dynamics

∗ Autonomous decisions based on current network conditions

– Analysis of social and economic networks

∗ Learning, information aggregation, control, endogenous network formation

• These challenges make game theory and economic market mechanisms

natural tools for the analysis of large-scale networked systems
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Issues in Network Games

• Game theory has traditionally been used in economics and social sciences with

focus on fully rational interactions

– Theory developed for small scale sophisticated interactions

– Strong assumptions: common knowledge, common prior, forward-looking

behavior

• In (engineering or social) networked systems, not necessarily a good framework

for two reasons:

– Large-scale systems consisting of individuals with partial information

– Most focus on dynamic interactions and in particular learning dynamics
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Learning Dynamics in Games

• Bayesian Learning:

– Update beliefs (about an underlying state or opponent strategies) based on

new information optimally (i.e., in a Bayesian manner)

• Adaptive Learning:

– Myopic, simple and rule-of-thumb

– Example: Fictitious play

∗ Play optimally against the empirical distribution of past play of opponent

• Evolutionary Dynamics:

– Selection of strategies according to performance against aggregates and

random mutations

Rationality

Evolutionary

dynamics

Adaptive

learning

Bayesian

learning

This talk
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This Tutorial

• Strategic form games and Nash equilibrium

• Adaptive learning in games

– Fictitious play and shortcomings

• Special classes of games:

– Supermodular games and dynamics

– Potential and congestion games and dynamics

• Bayesian learning in games

– Information aggregation in social networks
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Strategic Form Games

• A strategic (form) game is a model for a game in which all of the participants

act simultaneously and without knowledge of other players’ actions.

Definition (Strategic Game): A strategic game is a triplet 〈I, (Si)i∈I , (ui)i∈I〉:
• I is a finite set of players, I = {1, . . . , I}.
• Si is the set of available actions for player i

– si ∈ Si is an action for player i

– s−i = [sj ]j 6=i is a vector of actions for all players except i.

– (si, s−i) ∈ S is an action profile, or outcome.

– S =
∏

i Si is the set of all action profiles

– S−i =
∏

j 6=i Sj is the set of all action profiles for all players except i

• ui : S → R is the payoff (utility) function of player i

• We will use the terms action and pure strategy interchangeably.
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Example

• Example: Cournot competition.

– Two firms producing the same good.

– The action of a player i is a quantity, si ∈ [0,∞] (amount of good he

produces).

– The utility for each player is its total revenue minus its total cost,

ui(s1, s2) = sip(s1 + s2)− csi

where p(q) is the price of the good (as a function of the total amount), and c

is unit cost (same for both firms).

• Assume for simplicity that c = 1 and p(q) = max{0, 2− q}
• Consider the best-response correspondences for each of the firms, i.e., for each i,

the mapping Bi(s−i) : S−i → Si such that

Bi(s−i) ∈ argmaxsi∈Si
ui(si, s−i).
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Example–Continued

• By using the first order optimality conditions,

we have

Bi(s−i) = argmaxsi≥0(si(2− si − s−i)− si)

=





1−s−i

2
if s−i ≤ 1,

0 otherwise.

• The figure illustrates the best response func-

tions as a function of s1 and s2.

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2

• Assuming that players are rational and fully knowledgable about the structure of

the game and each other’s rationality, what should the outcome of the game be?
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Pure and Mixed Strategy Nash Equilibrium

Definition (Nash equilibrium): A (pure strategy) Nash Equilibrium of a strategic

game 〈I, (Si)i∈I , (ui)i∈I〉 is a strategy profile s∗ ∈ S such that for all i ∈ I
ui(s

∗
i , s∗−i) ≥ ui(si, s

∗
−i) for all si ∈ Si.

• No player can profitably deviate given the strategies of the other players

• An action profile s∗ is a Nash equilibrium if and only if

s∗i ∈ Bi(s
∗
−i) for all i ∈ I,

• Let Σi denote the set of probability measures over the pure strategy set Si.

• We use σi ∈ Σi to denote the mixed strategy of player i, and σ ∈ Σ =
∏

i∈I Σi

to denote a mixed strategy profile (similarly define σ−i ∈ Σ−i =
∏

j 6=i Σj)

• Following Von Neumann-Morgenstern expected utility theory, we extend the

payoff functions ui from S to Σ by

ui(σ) =

∫

S

ui(s)dσ(s).

Definition (Mixed Nash Equilibrium): A mixed strategy profile σ∗ is a (mixed

strategy) Nash Equilibrium if for each player i,

ui(σ
∗
i , σ∗−i) ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi.
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Existence of Nash Equilibria

Theorem: [Nash 50] Every finite game has a mixed strategy Nash equilibrium.

Proof Outline:

• σ∗ mixed Nash equilibrium if and only if σ∗i ∈ Bi(σ
∗
−i) for all i ∈ I, where

Bi(σ
∗
−i) ∈ arg max

σi∈Σi

ui(σi, σ
∗
−i).

• This can be written compactly as σ∗ ∈ B(σ∗), where B(σ) = [Bi(σ−i)]i∈I , i.e.,

σ∗ is a fixed point of the best-response correspondence.

• Use Kakutani’s fixed point theorem to establish the existence of a fixed point.

Linearity of expectation in probabilities play a key role; extends to (quasi)-concave

payoffs in infinite games

Theorem: [Debreu, Glicksberg, Fan 52] Assume that the Si are nonempty compact

convex subsets of an Euclidean space. Assume that the payoff functions ui(si, s−i)

are quasi-concave in si and continuous in s, then there exists a pure strategy Nash

equilibrium.

• Existence of mixed strategy equilibria for continuous games [Glicksberg 52] and

some discontinuous games [Dasgupta and Maskin 86]
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Adaptive Learning in Finite Games

• Most economic theory relies on equilibrium analysis based on Nash equilibrium or

its refinements.

• Traditional explanation for when and why equilibrium arises:

– Results from analysis and introspection by sophisticated players when the

structure of the game and the rationality of the players are all common

knowledge.

• Alternative justification more relevant for networked-systems:

– Arises as the limit point of a repeated play in which less than fully rational

players myopically update their behavior

– Agents behave as if facing a stationary, but unknown, distribution of

opponents’ strategies
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Fictitious Play

• A natural and widely used model of learning is fictitious play [Brown 51]

– Players form beliefs about opponent play and myopically optimize their

action with respect to these beliefs

• Agent i forms the empirical frequency distribution of his opponent j’s past play

according to

µt
j(s̃j) =

1

t

t−1∑
τ=0

I(st
j = s̃j),

let µt
−i =

∏
j 6=i µt

j for all t.

• He then chooses his action at time t to maximize his payoff, i.e.,

st
i ∈ arg max

si∈Si

ui(si, µ
t
−i).

– This choice is myopic, i.e., players are trying to maximize current payoff

without considering their future payoffs.

– Players only need to know their own utility function.
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Basic Properties of Fictitious Play

• Let {st} be a sequence of strategy profiles generated by fictitious play.

• We say that {st} converges to σ ∈ Σ in the time-average sense if the empirical

frequencies converge to σ, i.e., µt
i → σi for all i.

Proposition: Suppose a fictitious play sequence {st} converges to σ in the

time-average sense. Then σ is a Nash equilibrium of the stage game.

• Is convergence in the time-average sense a natural notion of convergence?
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Shortcomings of Fictitious Play

Mis-coordination example [Fudenberg, Kreps 88]: Consider the FP of the game:

A B

A 1, 1 0, 0

B 0, 0 1, 1

Note that this game had a unique mixed Nash equilibrium
(
(1/2, 1/2), (1/2, 1/2)

)
.

Consider the following sequence of play:

ηt
1 ηt

2 Play

0 (0,1/2) (1/2,0) (A,B)

1 (1,1/2) (1/2,1) (B,A)

2 (1,3/2) (3/2,1) (A,B)

3 · · · · · · (B,A)

• Play continues as (A,B), (B,A), . . . - a deterministic cycle.

• The time average converges to
(
(1/2, 1/2), (1/2, 1/2)

)
, which is a mixed

strategy equilibrium of the game.

• But players never successfully coordinate!
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Alternative Focus

• Various convergence problems present for adaptive learning rules

– Uncoupled dynamics do not lead to Nash equilibrium! [Hart, Mas-Colell 03]

• Rather than seeking learning dynamics that converge to reasonable behavior in all

games, focus on relevant classes games that arise in engineering and economics

• In particular, this talk:

– Supermodular Games

– Potential Games

• Advantages:

– Tractable and elegant characterization of equilibria, sensitivity analysis

– Most reasonable adaptive learning rules converge to Nash equilibria
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Supermodular Games

• Supermodular games are those characterized by strategic complementarities

• Informally, this means that the marginal utility of increasing a player’s

strategy raises with increases in the other players’ strategies.

• Why interesting?

– They arise in many models.

– Existence of a pure strategy equilibrium without requiring the quasi-concavity

of the payoff functions.

– Many solution concepts yield the same predictions.

– The equilibrium set has a smallest and a largest element.

– They have nice sensitivity (or comparative statics) properties and behave well

under a variety of distributed dynamic rules.

• The machinery needed to study supermodular games is lattice theory and

monotonicity results in lattice programming

– Methods used are non-topological and they exploit order properties
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Increasing Differences

• We first study the monotonicity properties of optimal solutions of parametric

optimization problems:

x(t) ∈ arg max
x∈X

f(x, t),

where f : X × T → R, X ⊂ R, and T is some partially ordered set.

Definition: Let X ⊆ R and T be some partially ordered set. A function

f : X × T → R has increasing differences in (x, t) if for all x′ ≥ x and t′ ≥ t, we

have

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

• incremental gain to choosing a higher x (i.e., x′ rather than x) is greater when t

is higher, i.e., f(x′, t)− f(x, t) is nondecreasing in t.

Lemma: Let X ⊆ R and T ⊂ Rk for some k, a partially ordered set with the usual

vector order. Let f : X × T → R be a twice continuously differentiable function.

Then, the following statements are equivalent:

(a) The function f has increasing differences in (x, t).

(b) For all x ∈ X, t ∈ T , and all i = 1, . . . , k, we have

∂2f(x, t)

∂x∂ti
≥ 0.
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Examples–I

Example: Network effects (positive externalities).

• A set I of users can use one of two technologies X and Y (e.g., Blu-ray and HD

DVD)

• Bi(J, k) denotes payoff to i when a subset J of users use technology k and i ∈ J

• There exists a network effect or positive externality if

Bi(J, k) ≤ Bi(J
′, k), when J ⊂ J ′,

i.e., player i better off if more users use the same technology as him.

• Leads naturally to a strategic form game with actions Si = {X, Y }
• Define the order Y º X, which induces a lattice structure

• Given s ∈ S, let X(s) = {i ∈ I | si = X}, Y (s) = {i ∈ I | si = Y }.
• Define the payoffs as

ui(si, s−i) =





Bi(X(s), X) if si = X,

Bi(Y (s), Y ) if si = Y

• Show that the payoff functions of this game feature increasing differences.
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Examples –II

Example: Cournot duopoly model.

• Two firms choose the quantity they produce qi ∈ [0,∞).

• Let P (Q) with Q = qi + qj denote the inverse demand (price) function. Payoff

function of each firm is ui(qi, qj) = qiP (qi + qj)− cqi.

• Assume P ′(Q) + qiP
′′(Q) ≤ 0 (firm i’s marginal revenue decreasing in qj).

• Show that the payoff functions of the transformed game defined by s1 = q1,

s2 = −q2 has increasing differences in (s1, s2).
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Monotonicity of Optimal Solutions

Theorem: [Topkis 79] Let X ⊂ R be a compact set and T be some partially ordered

set. Assume that the function f : X × T → R is upper semicontinuous in x for all

t ∈ T and has increasing differences in (x, t). Define x(t) = arg maxx∈X f(x, t).

Then, we have:

1. For all t ∈ T , x(t) is nonempty and has a greatest and least element, denoted by

x̄(t) and x(t) respectively.

2. For all t′ ≥ t, we have x̄(t′) ≥ x̄(t) and x(t′) ≥ x(t).

• If f has increasing differences, the set of optimal solutions x(t) is non-decreasing

in the sense that the largest and the smallest selections are non-decreasing.
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Supermodular Games

Definition: The strategic game 〈I, (Si), (ui)〉 is a supermodular game if for all i:

1. Si is a compact subset of R (or more generally Si is a complete lattice in Rmi),

2. ui is upper semicontinuous in si, continuous in s−i,

3. ui has increasing differences in (si, s−i) [or more generally ui is supermodular in

(si, s−i), which is an extension of the property of increasing differences to games

with multi-dimensional strategy spaces].

• Apply Topkis’ Theorem to best response correspondences

Corollary: Assume 〈I, (Si), (ui)〉 is a supermodular game. Let

Bi(s−i) = arg max
si∈Si

ui(si, s−i).

Then:

1. Bi(s−i) has a greatest and least element, denoted by B̄i(s−i) and Bi(s−i).

2. If s′−i ≥ s−i, then B̄i(s
′
−i) ≥ B̄i(s−i) and Bi(s

′
−i) ≥ Bi(s−i).
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Existence of a Pure Nash Equilibrium

• Follows from Tarski’s fixed point theorem

Theorem: [Tarski 55] Let S be a compact sublattice of Rk and f : S → S be an

increasing function (i.e., f(x) ≤ f(y) if x ≤ y). Then, the set of fixed points of f ,

denoted by E, is nonempty.

s

f(s)

s

f(s)

• Apply Tarski’s fixed point theorem to best response correspondences

• Nash equilibrium set has a largest and a smallest element, and easy sensitivity

results (e.g., quantity supplied increases with demand in Cournot game)
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Dynamics in Supermodular Games

Theorem: [Milgrom, Roberts 90] Let G = 〈I, (Si), (ui)〉 be a supermodular game.

Let {st} be a sequence of strategy profiles generated by reasonable adaptive

learning rules. Then,

lim inf
t→∞

st ≥ s and lim sup
t→∞

st ≤ s̄,

where s and s̄ are smallest and largest Nash equilibria of G.

Reasonable adaptive learning rules: Best-response, fictitious play ...

Remarks:

• Implies convergence for games with unique Nash equilibrium.

• Fictitious play converges for general supermodular games [Krishna 92], [Berger

03, 07], [Hahn 08]

Example: Apply best-response dynamics to Cournot game
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Wireless Power Control Game

• Power control in cellular CDMA wireless networks [Alpcan, Basar, Srikant,

Altman 02], [Gunturi, Paganini 03]

• It has been recognized that in the presence of interference, the strategic

interactions between the users is that of strategic complementarities [Saraydar,

Mandayam, Goodman 02], [Altman and Altman 03]

Model:

• Let L = {1, 2, ..., n} denote the set of users (nodes) and P =
∏

i∈L[P min
i , P max

i ]

denote the set of power vectors p = [p1, . . . , pn].

• Each user is endowed with a utility function fi(γi) as a function of its SINR γi.

– fi(γi) depends on details of transmission: modulation, coding, packet size

– In most practical cases, f(γ) is strictly increasing and has a sigmoidal shape.

• The payoff function of each user represents a tradeoff between the payoff

obtained by the received SINR and the power expenditure, and takes the form

ui(pi, p−i) = fi(γi)− cpi.
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Increasing Differences

• Assume that each utility function satisfies the following assumption regarding its

coefficient of relative risk aversion:

−γif
′′
i (γi)

f ′i(γi)
≥ 1, for all γi ≥ 0.

– Satisfied by α-fair functions f(γ) = γ1−α

1−α
, α > 1 [Mo, Walrand 00], and the

efficiency functions introduced earlier

• Show that for all i, the function ui(pi, p−i) has increasing differences in (pi, p−i).

Implications:

• Power control game has a pure Nash equilibrium.

• The Nash equilibrium set has a largest and a smallest element, and there are

distributed algorithms that will converge to any of these equilibria.

• These algorithms involve each user updating their power level locally (based on

total received power at the base station).
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Potential Games

Definition [Monderer and Shapley 96]:

(i) A function Φ : S → R is called an ordinal potential function for the game G if

for all i and all s−i ∈ S−i,

ui(x, s−i)− ui(z, s−i) > 0 iff Φ(x, s−i)− Φ(z, s−i) > 0, for all x, z ∈ Si.

(ii) A function Φ : S → R is called a potential function for the game G if for all i

and all s−i ∈ S−i,

ui(x, s−i)− ui(z, s−i) = Φ(x, s−i)− Φ(z, s−i), for all x, z ∈ Si.

G is called an ordinal (exact) potential game if it admits an ordinal (exact) potential.
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Properties of Potential Games

• A global maximum of an ordinal potential function is a pure Nash equilibrium

(there may be other pure NE, which are local maxima)

– Every finite ordinal potential game has a pure Nash equilibrium.

• Many adaptive learning dynamics “converge” to a pure Nash equilibrium

[Monderer and Shapley 96], [Young 98, 05], [Hart, Mas-Colell 00,03], [Marden,

Arslan, Shamma 06, 07]

– Examples: Fictitious play, better reply with inertia, spatial adaptive play,

regret matching (for 2 player potential games)
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Congestion Games

• Congestion games arise when users need to share resources in order to complete

certain tasks

– For example, drivers share roads, each seeking a minimal cost path.

– The cost of each road segment adversely affected by the number of other

drivers using it.

• Congestion Model: C = 〈N, M, (Si)i∈N , (cj)j∈M 〉 where

– N = {1, 2, · · · , n} is the set of players,

– M = {1, 2, · · · , m} is the set of resources,

– Si consists of sets of resources (e.g., paths) that player i can take.

– cj(k) is the cost to each user who uses resource j if k users are using it.

• Define congestion game 〈N, (Si), (ui)〉 with utilities ui(si, s−i) =
∑

j∈si
cj(kj),

where kj is the number of users of resource j under strategies s.

Theorem: [Rosenthal 73] Every congestion game is a potential game.

Proof idea: Verify that the following is a potential function for the congestion game:

Φ(s) =
∑

j∈∪si

( kj∑

k=1

cj(k)
)
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Network Design

• Sharing the cost of a designed network among participants [Anshelevich et al. 05]

Model:

• Directed graph N = (V, E) with edge cost

ce ≥ 0, k players

• Each player i has a set of nodes Ti he wants

to connect

• A strategy of player i set of edges Si ⊂ E

such that Si connects to all nodes in Ti

s

t1 t2 tk-1 tk…

1 1/2 1/(k-1) 1/k

1+

0 0 0 0

Optimum cost:  1+

Unique NE cost:

• Cost sharing mechanism: All players using an edge split the cost equally

• Given a vector of player’s strategies S = (S1, . . . , Sk), the cost to agent i is

Ci(S) =
∑

e∈Si
(ce/xe), where xe is the number of agents whose strategy

contains edge e

This game is a congestion game, implying existence of a pure Nash equilibrium and

convergence of learning dynamics.
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Other Examples

Game Theory for Nonconvex Distributed Optimization:

• Distributed Power Control for Wireless Adhoc Networks [Huang,Berry,Honig 05]

– Two models: Single channel spread spectrum, Multi-channel orthogonal

frequency division multiplexing

– Asynchronous distributed algorithm for optimizing total network performance

– Convergence analysis in the presence of nonconvexities using supermodular

game theory

• Distributed Cooperative Control–“Constrained Consensus” [Marden, Arslan,

Shamma 07]

– Distributed algorithms to reach consensus in the “values of multiple agents”

(e.g. averaging and rendezvous problems)

– Nonconvex constraints in agent values

– Design a game (i.e., utility functions of players) such that

∗ The resulting game is a potential game and the Nash equilibrium

“coincides” with the social optimum

∗ Use learning dynamics for potential games to design distributed algorithms

with favorable convergence properties
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Bayesian Learning in Games

• So far focus on adaptive learning

• Individuals do not update their model even tough they repeatedly observe the

strategies of their opponents changing dynamically

• Alternative paradigm: Individuals engage in Bayesian updating with (some)

understanding of the strategy profiles of others

– Similar to Bayesian learning in decision-theoretic problems, though richer

because of strategic interactions
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Model of Bayesian Learning

• Illustrate main issues with a simple model in which learning is about payoff

relevant state of the world

• Relevance to networks: Model society, information flows as a social network

• Dynamic game with sequential decisions based on private signals and observation

of past actions

• Payoffs conditional on the (unknown) state of the world

• Measure of information aggregation: whether there will be convergence to

correct beliefs and decisions in large networks—asymptotic learning

• Question: Under what conditions—structure of signals, network/communication

structure, heterogeneity of preferences—do individuals learn the state as the

social network grows bigger?
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Difficulties of Bayesian Learning in Games

• Model for Bayesian learning on a line [Bikchandani, Hirschleifer, Welch (92),

Banerjee (92)]

• Two possible states of the world θ ∈ {0, 1}, both equally likely

• A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}
• Agent n obtains utility 1 if xn = θ and utility 0 otherwise

• Each agent has iid private binary signals sn, where sn = θ with probability > 1/2

• Agent n knows his signal sn and the decisions of previous agents x1, x2, ..., xn−1

• Agent n chooses action 1 if

P (θ = 1|sn, x1, x2, ..., xn−1) > P (θ = 0|sn, x1, x2, ..., xn−1)

• If s1 = s2 6= θ, then all agents herd and xn 6= θ for all agents,

lim
n→∞

P(xn = θ) < 1
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Bayesian Learning in Networks

• Model of learning on networks [Acemoglu, Dahleh, Lobel, Ozdaglar 08]

• Two possible states of the world θ ∈ {0, 1}, both equally likely,

• A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}.
• Agent n obtains utility 1 if xn = θ and utility 0 otherwise

• Each agent has an iid private signal sn in S. The signal is generated according

to distribution Fθ, F0 and F1 absolutely continuous with respect to each other

• (F0,F1) is the signal structure

• Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n− 1} and observes the decisions

xk for all k ∈ B(n). The set B(n) is private information.

• The neighborhood B(n) is generated according to an arbitrary distribution Qn

• {Qn}n∈N is the network topology and is common knowledge

• A social network consists of the signal structure and network topology

• Asymptotic Learning: Under what conditions does limn→∞ P(xn = θ) = 1 ?
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Perfect Bayesian Equilibria

• Agent n’s information set is In = {sn, B(n), xk for all k ∈ B(n)}
• A strategy for individual n is σn : In → {0, 1}
• A strategy profile is a sequence of strategies σ = {σn}n∈N.

– A strategy profile σ induces a probability measure Pσ over {xn}n∈N.

Definition: A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium if

for each n ∈ N
σ∗n(In) ∈ argmaxy∈{0,1}P(y,σ∗−n)(y = θ |In)

• A pure strategy PBE exists. Denote the set of PBEs by Σ∗.

Definition: Given a signal structure (F0,F1) and a network topology {Qn}n∈N, we

say that asymptotic learning occurs in equilibrium σ if xn converges to θ in

probability (according to measure Pσ), that is,

lim
n→∞

Pσ(xn = θ) = 1
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Equilibrium Decision Rule

Lemma: The decision of agent n, xn = σ(In), satisfies

xn =





1, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

• Implication: The belief about the state decomposes into two parts:

– the Private Belief: Pσ(θ = 1 | sn);

– the Social Belief: Pσ(θ = 1 | B(n), xk for all k ∈ ωn).
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Private Beliefs

Lemma: The private belief of agent n is

pn(sn) = Pσ(θ = 1|sn) =

(
1 +

dF0(sn)

dF1(sn)

)−1

.

Definition: The signal structure has bounded private beliefs if there exists some

0 < m, M < ∞ such that the Radon-Nikodym derivate dF0/dF1 satisfies

m <
dF0

dF1
(s) < M,

for almost all s ∈ S under measure (F0 + F1)/2. The signal structure has unbounded

private beliefs if

inf
s∈S

dF0

dF1
(s) = 0 and sup

s∈S

dF0

dF1
(s) = ∞.

• Bounded private beliefs ⇔ bounded likelihood ratio

• If the private beliefs are unbounded, then there exist some agents with beliefs

arbitrarily close to 0 and other agents with beliefs arbitrarily close to 1.
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Properties of Network Topology

Definition: A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

(
max

b∈B(n)
b < K

)
= 0.

Otherwise, it has nonexpanding observations

• Expanding observations do not imply connected graph

• Nonexpanding observations equivalently : There exists some K, ε > 0 and an

infinite subset N ∈ N such that

Qn

(
max

b∈B(n)
b < K

)
≥ ε for all n ∈ N .

• A finite group of agents is excessively influential if there exists an infinite

number of agents who, with probability uniformly bounded away from 0, observe

only the actions of a subset of this group.

– For example, a group is excessively influential if it is the source of all

information for an infinitely large component of the network

• Nonexpanding observations ⇔ excessively influential agents
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Main Results - I

Theorem 1: Assume that the network topology {Qn}n∈N has nonexpanding

observations. Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic learning.

Theorem 2: Assume that the signal structure (F0,F1) has unbounded private beliefs

and the network topology {Qn}n∈N has expanding observations. Then, asymptotic

learning occurs in every equilibrium σ ∈ Σ∗.

• Implication: Influential, but not excessively influential, individuals (observed by

disproportionately more agents in the future) do not prevent learning.

• This contrasts with results in models of myopic learning

• Intuition: because the weight given to the information of influential individuals

is reduced according to Bayesian updating.
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Main Results - II

Theorem 3: If the private beliefs are bounded and the network topology satisfies one

of the following conditions,

(a) B(n) = {1, ..., n− 1} for all n or |B(n)| ≤ 1 for all n,

(b) there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b = ∞ with probability 1,

then asymptotic learning does not occur.

• Implication: No learning with random sampling and bounded beliefs

Theorem 4: There exist network topologies where asymptotic learning occurs for any

signal structure (F0,F1).

Example: For all n,

B(n) =





{1, ..., n− 1}, with probability 1− r(n);

∅, with probability r(n),

for some sequence {r(n)} where limn→∞ r(n) = 0 and
∑∞

n=1 r(n) = ∞.

In this case, asymptotic learning occurs for an arbitrary signal structure (F0,F1) and

at any equilibrium.
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Concluding Remarks

• Game theory increasingly used for the analysis and control of networked systems

• Many applications:

– Sensor networks, mobile ad hoc networks

– Large-scale data networks, Internet

– Social and economic networks

– Electricity and energy markets

• Future Challenges

– Models for understanding when equilibrium behavior yields efficient outcomes

– Dynamics of agent interactions over large-scale networks

– Endogenous network formation: dynamics of decisions and graphs

– Interactions of heterogeneous interlayered networks (e.g., social and

communication networks)
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