The Marginal User Principle for Resource Allocation in Wireless Networks

Asuman Ozdaglar

Joint work with Daron Acemoglu and R. Srikant

December 2004

Resource and Traffic Management in Communication Networks

- Traditional Network Optimization: Focus on a central objective, devise synchronous/asynchronous, centralized/distributed algorithms.
 - Assumes all users are homogeneous with no self interest
 - Relies on communication between central controller and agents (generally slow with high informational requirements)
- New Paradigm: Analysis of resource allocation among heterogeneous self-interested agents with decentralized information.
 - Suggests using game theory and economic market mechanisms.
 - Utility-based framework of economics used to represent user preferences.

Related Work

- Existing literature focuses on:
 - resource allocation among competing heterogeneous users
 - social welfare (aggregate utility) maximization [Kelly]
- Pricing used as a means of regulating selfish user behavior and achieving social optimum in a distributed manner.
- Our work takes a different viewpoint:
 - Networks operated by for-profit service providers.
 - Pricing used to make profits or for service differentiation.
 - Combined study of pricing and resource allocation essential.
- With a few exceptions [Walrand, Basar, Mitra], this game theoretic interaction neglected.
- This talk presents a new approach to resource allocation under flat fee pricing.

Resource Allocation in Wireless Networks

- Motivating Model: Downlink power control and pricing in a cellular wireless system
 - Model and results more generally applicable for resource allocation with interference/congestion effects.
- Existing research focus: Power (resource) allocation schemes that maximize aggregate utility, or satisfy various fairness objectives [Shroff, Mazumdar, Saraydar, Mandayam, Goodman]
 - At each time period, base station measures the channel gains and allocates the resources (ex: in a proportionally fair manner).
- Problem: Unmotivated from the point of view of SP or equilibrium.
 - Interested in considering the effects of SP incentives in resource allocation.

Towards a New Approach

- SP sets the entry price and chooses a rule for power (transmission rate) allocation as a function of users' channel conditions.
- SP's goal: Design prices and power allocation policy to maximize profits, recognizing the effects of his decision on the choice of users to participate and pay.
- Formally, analyze a two stage game and consider the subgame perfect equilibrium
- Difference from existing models:
 - Use of fixed access prices
 - SP also chooses allocation policies
- Compare with currently used ad hoc mechanisms and potential social optimum.

Model

- Focus on a single base station with potential users, $i \in \mathcal{N} = \{1, \dots, N\}$, with utility function $u_i(x)$.
- $u_i(x)$ measures both willingness to pay and also potentially the demand for immediacy, related to concavity.
- Total power constraint on the base station

$$\sum_{i=1}^{N} p_i \le P_T,$$

where p_i is the transmission power allocated by the base station to user i.

• Reliable transmission rate to user *i* is given by $x_i = \frac{1}{2} \log \left\{ 1 + \frac{h_i p_i}{\sigma^2} \right\},$

where h_i is the channel gain of user *i*, and σ^2 is the background noise.

Allocation Rules

- The channel gain h_i is a random variable that depends on the location of the user in the cell and shadowing.
- We assume that the channel gains of potential users is characterized by a permutation invariant cumulative dist.
 - Implies anonymity, where the SP cannot discriminate among users, except on the basis of their channel gains.
- With M part. users, let H_M be a largest cardinality set in \Re^M st if $\mathbf{h}, \ \mathbf{\tilde{h}} \in H_M$, \mathbf{h} and $\mathbf{\tilde{h}}$ are not permutations of each other.
- Let $F(\mathbf{h}_M, M)$ be the distribution function over $\mathbf{h}_M \in H_M$.
- Allocation rule with M users:

$$x_M: \Re \times H_{M-1} \mapsto \Re$$

 Identity of the user and ordering of channel gains of other users irrelevant.

User Equilibrium

- Given M participating users and an allocation rule $x_m(\cdot)$, user preferences are represented by the expected utility function $U_i(x_m(\cdot), M) = E_{\mathbf{h}_M} [u_i(x_M(\mathbf{h}_M))].$
- For a given price q, the net utility of user i is $e_i(U_i(x_m(\cdot), M) - q),$ where $e_i \in \{0, 1\}$ is a participation decision variable.
- Given a price q and a class of allocation rules $\{x_M(\cdot)\}_{M \in \mathcal{N}}$, a vector $[\{e_i\}_{i \in \mathcal{N}}, M]$ is a user equilibrium if

$$M = \max_{m \in \mathcal{N}} \left\{ \sum_{i \in \mathcal{N}} e_i \mid e_i = 1 \text{ only if } U_i(x_m(\cdot), m) \ge q \right\}.$$

Service Provider Problem

• The service provider sets the prices and the allocation rules to maximize his profits

$$\begin{aligned} \text{maximize}_{q,\{x_M(\cdot)\}} & q \sum_{i=1}^{N} e_i \\ \text{subject to} & g_M(k) \leq P_T, \quad \forall M, \ \forall k \in H_M, \end{aligned}$$
$$\text{where } g_M(k) = \sum_i \frac{\sigma^2}{k_i} \left(e^{x_M(h=k_i, \hat{\mathbf{h}}=\mathbf{k}_{-i})} - 1 \right). \end{aligned}$$

- The model outlined corresponds to a dynamic game with the following timing of events:
 - The SP announces an admission price q and a class of allocation rules $\{x_M(\cdot)\}_{M \in \mathcal{N}}$.
 - Users simult. decide whether or not to enter the network.
 - The channel gains of all participating users, \mathbf{h}_M is realized and power allocated according to $x_M(\mathbf{h}_M)$.

SP Equilibrium

- Characterizing the optimal prices and the allocation rule corresponds to finding the subgame perfect equilibrium(SPE) of the game [every $(q, \{x_M(\cdot)\})$ defines a different subgame].
- For our purposes, we represent the SPE as a tuple $(q^*, x^*_{M^*}(\cdot), \{e_i\}_{i \in \mathcal{N}}, M^*)$ that maximizes

maximize_{q,x_M(·,{e_i},M)}
$$q \sum_{i=1}^{N} e_i$$

subject to $g_M(\mathbf{k}) \le P_T, \quad \forall \mathbf{k} \in H_M,$
 $e_i = 1 \text{ only if } U_i(x_M(\cdot),M) \ge q$
 $\sum_{i=1}^{N} e_i = M.$

• We refer to $(q^*, x^*_{M^*}(\cdot), M^*)$ as an SP equilibrium.

Analysis

• We consider the special case where the utility functions of the users satisfy

$$u_1(x) \ge \ldots \ge u_N(x), \quad \forall x \in [0, \infty).$$

• In view of the permutation invariant assumption on the distribution function, the expected utility function for user *i* given *M* participating users can be expressed as

$$U_i(x_M(\cdot), M) = \int_{H_M} \left[\frac{1}{M} \sum_{i=1}^M u_i(x(h=k_i, \hat{\mathbf{h}} = \mathbf{k}_{-\mathbf{i}})) \right] dF(\mathbf{k}, M),$$

where $\mathbf{k} = (k_i, \mathbf{k}_{-\mathbf{i}}) \in H_M$.

Analysis

Proposition: Let (q^{*}, x^{*}_{M^{*}}(·), M^{*}) be an SPE. Then x^{*}_{M^{*}} can be obtained pointwise, i.e., for each k ∈ H_{M^{*}}, the M^{*} values, x^{*}_{M^{*}}(h = k_i, ĥ = k_{-i}), i = 1, ..., M^{*}, are found by solving the M^{*}-dimensional problem

maximize
$$\frac{1}{M^*} \sum_{i=1}^{M^*} u_{M^*} \left(x_{M^*} (h = k_i, \mathbf{\hat{h}} = \mathbf{k}_{-\mathbf{i}}) \right)$$
subject to
$$g_{M^*}(\mathbf{k}) \le P_T,$$

and $q^* = U_{M^*}(x^*_{M^*}(\cdot), M^*).$

• Intuition: In view of the ordered structure of the utility functions, it can be seen that at the SPE:

- The set of participating users will be $\{1, \ldots, M^*\}$.

• We refer to M^* as the equilibrium marginal user (M^* is indifferent between joining the network or not.)

Optimal Power Allocation Policy

- Marginal User Principle: The SP allocates the power levels such that the utility of the marginal user is maximized, where a marginal user refers to the user that is indifferent between joining the network or not.
- Implication 1: If marginal user has log utility, profit maximizing policy is proportional fairness.
- Implication 2: Equilibrium allocation differs from maximizing sum of the utilities. Two sources of distortion relative to social optimum:
 - Admission control
 - SP maximizes utility of marginal user, not all users
- While motivation drawn from power allocation, the marginal user principle generalizes to other resource allocation problems.

Conclusions and Extensions

- Extend flat pricing model
 - Nonlinear pricing schemes
 - Different entry fees for different levels of service
- Consider competition between multiple providers
- Resource allocation for multi-hop wireline networks