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/ Introduction \

minimize fo(x)

subject to re X, flr)=(fi(x),..., fm(z)) <0

Dual Problem: max ,ermq(p) = infrex{fo(z) + p' f(x)}
Penalized problem: Solve a sequence of problems
q(ck) = infeex{fo(z) + cx P(f(2))} , as cx — oco.
e Key Idea Common to Duality and Penalty
— Relaxing the inequality constraints and augmenting the objective
with some “constraint violation cost function”
e Key Issue Common to Duality and Penalty
— Zero-gap between the optimal value of the original constrained
problem and the dual/penalized problem.
e However, in the existing literature
— They are treated separately
\ — Zero-gap results under compactness and convexity assumptions./
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Our Work

e Our objective is to develop a unifying framework

— For the analysis of both duality schemes and penalty methods

— Applicable to a wide

e Main Results:

class of nonconvex problems

— A geometric framework defined in terms of augmenting functions

— Separation results for

nonconvex sets via general concave surfaces

— Establishing necessary and sufficient conditions for zero duality

gap in the geometric framework

— Application of results

to optimization duality and penalty

methods using the primal function of the constrained

optimization problem

/
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/ Main Idea \
Traditional duality relies on support- &m’ / \%@

ing the epigraph of the primal func-

tion using hyperplanes.

/ p) /4 p/
For nonconvex problems, support the R \Q %l w
epigraph using nonlinear surfaces, / /

defined by augmenting functions @ @

e Related Literature:

— Rockafellar and Wets [98] use convex, nonnegative, and
level-bounded augmenting functions and show zero-gap under
coercivity assumptions.

— Rubinov, Huang, Yang [02] study dual problems constructed by a
\ family of augmenting functions satisfying peak at zero property/
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Geometric Framework

e Geometric Primal Problem: Given a nonempty (nonconvex) set
V C R™ x R intersecting the w-axis, find the minimum value

intercept of V and the w-axis, i.e.,

* .
w = inf w.
(0,w)eVv

e Geometric Dual Problem: Defined by an augmenting function

Definition: A function o : R™ — (—o00, 00| is called an augmenting

function if it is convex, not identically equal to 0, and o(0) = 0.

e (Given an augmenting function o, geometric dual problem considers
concave surfaces {(u, ¢c,,(u)) | w € R™} that lie below the set V,

where
beu(u) = —co(u) — p'u+ €.
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Geometric Dual Problem

e This surface is below V if and only if

w+co(u) + p'u> € for all (u,w) € V.

The maximum intercept of such sur-
face with the w-axis is given by

dle,p) = inf {w+co(u)+ k. \

The geometric dual problem consists
of determining the maximum inter-
cept of such surfaces over ¢ > 0 and
uweR™ ie.,

d°= sup d(c,p).
c>0, peRm
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Zero Duality Gap
We are interested in conditions under which d* = w™, i.e., there is
zero duality gap.

Proposition (Weak Duality): The dual optimal value does not

exceed the primal optimal value, d* < w”*.

To establish zero duality gap:

— We study conditions on the set V' and the augmenting function o

under which we can separate V from a vector (0, wo) that does
not belong to cl(V).

We say that the augmenting function o strongly separates the set V'

and the vector (0,wo) & cl(V') when for some ¢ > 0 and £ € R,

w+ co(u) > & >we for all (u,w) € V.

~
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Notation and Terminology

For a function f : R" — [—o00, 0| and any scalar -, we denote the

(lower) ~-level set of f by L¢(7v), i.e.,

Li(y) ={z e R" | f(z) <~}

We say that the function f is level-bounded when the set L (7) is

bounded for every scalar ~.

For a given nonempty set X, the cone generated by the set X is

denoted by cone(X) and is given by

cone(X) ={y | y = Az for some z € X and A > 0}.

The asymptotic cone V°° of a nonempty set V is given by

V> ={d| Mexr — d for some {xx} C V and {\x} C R with Ay | 0}.

~
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/ Properties of the set V \

e Definition: We say that a set V. C R™ X R is extending upward in
w-space (or u-space) if for every vector (u,w) € V, the half-line
{(@,w) | w > w} (or the cone {(u,w) | v > u} ) is contained in V.

— Both satisfied when V' epigraph of a nonincreasing function.

e Lemma: Assume that (0, —1) is not an asymptotic direc of V, i.e.,
(0,—1) ¢ V=°. Let (0,wo) ¢ cl(V). For a given € > 0, consider the
set V given by

V={(u,w) | (u,w—e¢) eV} (1)

and the cone generated by V', denoted by K. Then,
(O, ’wo) Q/ CI(K)
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/ Separation Properties of Augmenting Function\

e Key Lemma: Let o : R™ +— (—00, 00] be a nonnegative augmenting
function. Let C' C R™ x R be a nonempty cone, and let w be a
scalar with w < 0. Furthermore, let v > 0 be a scalar such that

{(u, @) |u € Ls(y)}NC = 0.
Then, the set X defined by

X:{(u,w)ERmxR|w§—|:—|a(u)+zD}

has no vector in common with the cone C.




Geometric Framework for Duality and Penalty

/ Separation Theorem \

e Assumption 1: (a) w™ = inf( w)ey w is finite.

(b) The set V' extends upward in u-space and w-space.
(¢) (0,-1) V™.

e Assumption 2: (a) The function o is nonnegative, o(u) > 0 for all w.

(b) Given a sequence {ux} C R™,

olug) =0 = ul —0,
where u™ = (max{0,u1}, ..., max{0, um})".

o BEx: o(u) = max{0,u1, ..., um}, o(u) = > (max{0,u;})”’, 8> 0.

e Assumption 2(b) is equivalent to the following: for all § > 0, there

holds

inf o(u) > 0.
{u | dist(u,R™)>6}

— Related to the peak at zero condition studied by Rubinov et. al.
— Satisfied by augmenting functions studied by Rockafellar-Wets

\ and Huang-Yang. /
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/ Separation Theorem \

e Theorem: Let Assumptions 1 and 2 hold. Then, the set V and a
vector (0,wo) ¢ cl(V') can be strongly separated by the function o,

i.e., there exist scalars ¢ > 0 and £ such that
w+co(u) > & >we for all (u,w) € V.

Proof: Let K be the cone generated by upward translation of set V'

— Using Assumption 2(b) and the “northeast” extension property

of set V', we show that there exists some v s.t.
{(u,w0/2) | u € Lo ()} Nel(K) = 0.

— Using Key Lemma, we obtain X Ncl(K) = (), where

X:{(u,w)ERmXR|w§—%a(u)—l—% :
— This implies that
w + [wol o(u) > 20 for all (u, w) € cl(K).

\_ S /
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Necessary and Sufficient Conditions for

Geometric Zero Duality Gap

e Proposition (Necessary Conditions): Let o be an augmenting
function that is continuous at the origin. Assume that there is zero
duality gap, i.e., d* = w™. Then, for any sequence {(ux,wr)} C V
with ur — 0, we have

liminf wy > w™.
k— o0

e Proposition (Sufficient Conditions): Let Assumptions 1 and 2 hold.
Assume that for any sequence {(ux,wg)} C V with ux — 0, we have
lim inf wy > w™.

k— oo

Then, there is zero duality gap, i.e., d* = w™.

\_ /
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Constrained Optimization Duality \

e We consider the following primal problem

f*=mingern  fo(z)

st. ze€X, f(x)=(fi(x),..., fm(z)) <O

e We define a dualizing parametrization function f as

Flou) = fo(z) if f(z) <wu,

+00 otherwise.

e (Given an augmenting function o, we define the the augmented dual

function as

q(c,p) = inf l(x,c,pu) = inf {f(z,u) + co(u) + p'ul.

reX ugeRmM

e The augmented dual problem is given by

q¢" =max q(c, )

st. ¢>0, ueR™. /
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infyex fo(x) > —o0 .
\_ /

~

Consider the primal function p : R™ — [—o00, o] of the optimization

Zero Duality Gap

problem,

= inf :
pw)= __inf _ fola)

Let V be the epigraph of the primal function, V = epi(p).
w” =p(0) = f7,

d(c, ) = inf w ~+ co(u) + p'ul = q(e, p).
(em) = onf o (u) + puy = qlc,p)

Proposition (Zero Duality Gap): Assume that f* is finite and that
(0, —1) ¢ (epi(p))>°. Let o satisfy Assumption 2. Assume further

that p(u) is lower semicontinuous at u = 0.

Then, there is zero duality gap, i.e., ¢* = f~.

The condition (0, —1) ¢ (epi(p))> is satisfied, for example, when
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Penalty Methods

We consider the constrained optimization problem

f*=mingern  fo(z)

st. ze€X, f(x)=(fi(x),..., fm(z)) <O

We are interested in penalty methods of the form

fle) =min  {fo(z)+ co(f(x))}
s.t. xe X,

where ¢ > 0 is a penalty parameter that will ultimately increase to

+00.
Use the geometric framework with V' = epi(p) and u = 0.

Proposition (Sufficient Conditions for Penalty Convergence): Let the

assumptions of zero duality gap proposition hold. Assume further
that the augmenting function o(u) is nondecreasing in u. Then,

~

lim f(c) = f~.

cC— 0O

~
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Extensions to Negative and Unbounded

Augmenting Functions

e In recent work, we extended the geometric framework to:

— Bounded-below augmenting functions; e.g. o(u) = a(e* — 1)

— Unbounded augmenting functions; e.g. o(u) = —log(1 — u)
— Asymptotic augmenting functions; e.g. o(u) = —log(1 — u)
a(u)
o(u)
u u
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/ Geometric Framework for General Augmenting\
Functions

e It is immediate from the geometry that linear scaling by the penalty

parameter ¢ not sufficient for negative augmenting functions:

w

Separating the point (0, wp), with
wo < 0, from the set V' using con-

cave surfaces of the form
_C’i(eu o 1) =+ gv

with co > c;.

e We consider separation using concave surfaces defined by
1

Geu(u) = ——o(cu) +&.
\ C -
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/ Separation Theorem for Bounded Augmenting\
Functions

e Assumption:
(a) The function o is bounded-below, i.e., o(u) > 0.

(b) For any sequence {ux} C R™ and any positive scalar sequence
{ck} with ¢ — o0,

, o(cru
hmsupw <oo = up —0.

k— oo Ck

o Example: o(u) =>." a;(e"" —1), u € R™, a; > 0. (Tseng and
Bertsekas [93]).

e Theorem: Under the preceding assumptions, the set V and a vector
(0, wo) that does not belong to the closure of V' can be strongly
separated by the function o, i.e., there exist scalars co > 0 and &g
such that for all ¢ > cg,

w + 1 o(cu) > & > wo for all (u,w) € V.

\_ c /
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Conclusions
A unifying geometric framework for the analysis of general duality
schemes and penalty methods.
Separation results for general nonconvex sets using concave surfaces.
Extensions to nonconvex augmenting functions.

Conditions on the objective and constraint functions that guarantee

O

the key assumption (0, —1) ¢ (epi(p))°*.

Zero duality gap results potentially useful for the development of
dual algorithms for solving nonconvex constrained optimization

problems.

/




Geometric Framework for Duality and Penalty

4 N

References

e Nedi¢ and Ozdaglar, “A Geometric Framework for Nonconvex
Optimization Duality using Augmented Lagrangian Functions,” to

appear in Journal of Global Optimization, 2006.

e Nedi¢ and Ozdaglar, “Separation of Nonconvex Sets with General

Augmenting Functions,” submitted for publication, 2006.

e Nedi¢, Ozdaglar, and Rubinov, “Abstract Convexity for Nonconvex

Optimization Duality,” submitted for publication, 2006.

\_ /




