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Motivation

• Objective: understand information aggregation in social networks.

• Model:

– Dynamic game with unknown state of the world

– Sequential decisions based on private signals and observation of past actions

– Payoff conditional on underlying state (same for all agents)

• Question: Under what conditions do individuals make correct decisions (or learn

the state) as the social network grows bigger ?



A Simple Motivating Model

• Model for Bayesian learning on a line [Bikchandani, Hirschleifer, Welch (92),

Banerjee (92)]

• Two possible states of the world θ ∈ {0, 1}, both equally likely

• A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}
• Agent n obtains utility 1 if xn = θ and utility 0 otherwise

• Each agent has an iid private binary signals sn, where sn = θ with probability

> 1/2

• Agent n knows his signal sn and the decisions of previous agents x1, x2, ..., xn−1

• Agent n chooses action 1 if

P (θ = 1|sn, x1, x2, ..., xn−1) > P (θ = 0|sn, x1, x2, ..., xn−1)

• If s1 = s2 6= θ, then all agents herd and xn 6= θ for all agents,

lim
n→∞

P(xn = θ) < 1



Asymptotic Learning on a Line

• More general model studied by [Smith and Sorensen (00)]

• General signals sn

• Private beliefs bounded if the resulting likelihood ratio is bounded away from 0

and ∞
• Private beliefs unbounded otherwise

• On the line there is asymptotic learning, limn→∞ P(xn = θ) = 1, if private

beliefs are unbounded

• No asymptotic learning if private beliefs are bounded



Social Networks

• Previous work considers situations where each individual observes all past

actions. Thus no study of network topology

• In practice, most information obtained from an individual’s social network;

friends, neighbors, co-workers...

• How does network structure affect learning?

• How to model learning over networks?



Our Model

• Two possible states of the world θ ∈ {0, 1}, both equally likely

• A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}. Agent n

obtains utility 1 if xn = θ and utility 0 otherwise

• Each agent has an iid private signal sn in S. The signal is generated according

to distribution Fθ, F0 and F1 absolutely continuous with respect to each other

• (F0,F1) is the signal structure

• Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n− 1} and observes the decisions

xk for all k ∈ B(n). The set B(n) is private information.

• The neighborhood B(n) is generated according to an arbitrary distribution Qn

• {Qn}n∈N is the network topology and is common knowledge

• A social network consists of the signal structure and network topology

• Asymptotic Learning: Under what conditions does limn→∞ P(xn = θ) = 1 ?



Network Topologies

• {Qn}n∈N assigns probability 1 to neighborhood {1, 2..., n− 1} for each

n ∈ N—line

• {Qn}n∈N assigns probability 1/n− 1 to each one of the subsets of size 1 of

{1, 2..., n− 1} for each n ∈ N—random sampling

• {Qn}n∈N assigns probability 1 to neighborhood {n− 1} for each n ∈ N
• {Qn}n∈N assigns probability 1 to neighborhoods that are subsets of {1, 2, ..., K}

for each n ∈ N for some K ∈ N—example of excessively influential agents



Example Network Topology
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Our Contributions

• We study sequential decision-making and information aggregation in social

networks

• We establish decision rules used in perfect Bayesian equilibria

• When the signals lead to unbounded private beliefs:

– We fully characterize the set of network topologies that lead to learning

• When the signals lead to bounded private beliefs:

– We show most ‘reasonable’ networks do not lead to learning

– We show learning is possible with stochastic network topologies



Perfect Bayesian Equilibria

• Agent n’s information set is In = {sn, B(n), xk for all k ∈ B(n)}
• A strategy for individual n is σn : In → {0, 1}
• A strategy profile is a sequence of strategies σ = {σn}n∈N.

– A strategy profile σ induces a probability measure Pσ over {xn}n∈N.

Definition: A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium if

for each n ∈ N
σ∗n(In) ∈ argmaxy∈{0,1}P(y,σ∗−n)(y = θ | In)

• A pure strategy PBE exists. Denote the set of PBEs by Σ∗.

Definition: Given a signal structure (F0,F1) and a network topology {Qn}n∈N, we

say that asymptotic learning occurs in equilibrium σ if xn converges to θ in

probability (according to measure Pσ), that is,

lim
n→∞

Pσ(xn = θ) = 1



Equilibrium Decision Rule

Lemma: The decision of agent n, xn = σ(In), satisfies

xn =





1, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

• The belief about the state decomposes into two parts:

– the Private Belief: Pσ(θ = 1 | sn);

– the Social Belief: Pσ(θ = 1 | B(n), xk for all k ∈ B(n)).



Private Beliefs

Lemma: The private belief of agent n is

pn(sn) = Pσ(θ = 1|sn) =

(
1 +

dF0(sn)

dF1(sn)

)−1

.

Definition: The signal structure has bounded private beliefs if there exists some

0 < m, M < ∞ such that the Radon-Nikodym derivate dF0/dF1 satisfies

m <
dF0

dF1
(s) < M,

for almost all s ∈ S under measure (F0 + F1)/2. The signal structure has unbounded

private beliefs if

inf
s∈S

dF0

dF1
(s) = 0 and sup

s∈S

dF0

dF1
(s) = ∞.

• Bounded private beliefs ⇔ bounded likelihood ratio

• If the private beliefs are unbounded, then there exist some agents with beliefs

arbitrarily close to 0 and other agents with beliefs arbitrarily close to 1.



Social Beliefs Need Not Be Monotone
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• There exist signal structures (F0,F1) such that for all equilibria σ,

Pσ (θ = 1|x1 = . . . = x4 = 0, x5 = . . . = x7 = 1) >

Pσ (θ = 1|x2 = . . . = x4 = 0, x1 = x5 = . . . = x7 = 1)

• Need a strategy of analysis not relying on monotonicity



Properties of Network Topology

Definition: A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

(
max

b∈B(n)
b < K

)
= 0.

Otherwise, it has nonexpanding observations

• Expanding observations do not imply connected graph

• Nonexpanding observations equivalently : There exists some K, ε > 0 and an

infinite subset N ∈ N such that

Qn

(
max

b∈B(n)
b < K

)
≥ ε for all n ∈ N .

• A finite group of agents is excessively influential if there exists an infinite

number of agents who, with probability uniformly bounded away from 0, observe

only the actions of a subset of this group.

– For example, a group is excessively influential if it is the source of all

information for an infinitely large component of the network

• Nonexpanding observations ⇔ excessively influential agents



Main Results

Theorem 1: Assume that the network topology {Qn}n∈N has nonexpanding

observations. Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic learning.

Theorem 2: Assume that the signal structure (F0,F1) has unbounded private beliefs

and the network topology {Qn}n∈N has expanding observations. Then, asymptotic

learning occurs in every equilibrium σ ∈ Σ∗.



Deterministic Topologies

• In a deterministic network, π is an information path of agent n if for each i,

πi ∈ B(πi+1) and the last element of π is n. The information depth L(n) is the

number of elements in the maximal π(n).

Corollary: Assume that the signal structure (F0,F1) has unbounded private beliefs

and that the network topology is deterministic. Then, asymptotic learning occurs for

all equilibria if and only if {L(n)}n∈N goes to infinity.



Proof Idea of Theorem 1

• Since nonexpanding observations, there exists some K, ε > 0 and an infinite

subset N ⊂ N such that

Qn

(
max

b∈B(n)
b < K

)
≥ ε for all n ∈ N .

• Then, for any n ∈ N and any equilibrium σ,

Pσ(xn = θ) = Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
Qn

(
max

b∈B(n)
b < K

)

+ Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b ≥ K

)
Qn

(
max

b∈B(n)
b ≥ K

)

≤ 1− ε + εPσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)

• Let f give the best estimate of the state given a finite set of iid signals

Pσ

(
xn = θ

∣∣∣∣ max
b∈B(n)

b < K

)
≤ P (f(s1, s2, ..., sK−1, sn) = θ) < 1

• The result follows



Proof of Theorem 2: Roadmap

• Characterization of equilibrium strategies when observing a single agent

• Strong improvement principle when observing one agent

• Generalized strong improvement principle

• Asymptotic learning with unbounded private beliefs and expanding observations



Observing a Single Decision

• Given σ and n, let us define Y σ
n and Nσ

n as

Y σ
n = Pσ(xn = 1 | θ = 1), Nσ

n = Pσ(xn = 0 | θ = 0).

• The unconditional probability of a correct decision is

1

2
(Y σ

n + Nσ
n ) = Pσ(xn = θ)

• We also define the thresholds Lσ
n and Uσ

n in terms of these probabilities:

Lσ
n =

1−Nσ
n

1−Nσ
n + Y σ

n

, Uσ
n =

Nσ
n

Nσ
n + 1− Y σ

n

.

Proposition: Let B(n) = {b} for agent n. Agent n’s decision xn in σ ∈ Σ∗ satisfies

xn =





0, if pn < Lσ
b

xb, if pn ∈ (Lσ
b , Uσ

b )

1, if pn > Uσ
b .



Observing a Single Decision (continued)

• Let the conditional distribution of private belief p be

Gj(r) = P(p ≤ r | θ = j)

• Let β and β be the lower and upper support of private beliefs

• Equilibrium decisions:



Strong Improvement Principle

• Agent n has the option of copying the action of any agent in his neighborhood:

Pσ(xn = θ | B(n) = B) ≥ max
b∈B

Pσ(xb = θ).

– Similar to the welfare improvement principle in Banerjee and Fudenberg (04)

and Smith and Sorensen (98), and imitation principle in Gale and Kariv (03)

• Using the equilibrium decision rule and the properties of private beliefs, we

establish a strict gain of agent n over agent b.

Proposition: (Strong Improvement Principle) Let B(n) = {b} for some n and

σ ∈ Σ∗ be an equilibrium. There exists a continuous, increasing function

Z : [1/2, 1] → [1/2, 1] with Z(α) ≥ α such that

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) .

If the private beliefs are unbounded, then:

• Z(α) > α for all α < 1

• α = 1 is the unique fixed point of Z(α)



Generalized Strong Improvement Principle

• When multiple agents in the neighborhood, learning no worse than observing just

one of them:

Proposition (Generalized Strong Improvement Principle) For any n ∈ N, any set

B ⊆ {1, ..., n− 1} and any equilibrium σ ∈ S, we have

Pσ (xn = θ | B(n) = B) ≥ Z
(

max
b∈B

Pσ(xb = θ)

)
.

Proof of Theorem 2

• Under expanding observations, one can construct a sequence of agents along

which the generalized strong improvement principle applies

• Unbounded private beliefs imply that along this sequence Z(α) strictly increases

• Until unique fixed point α = 1, corresponding to asymptotic learning



No Learning under Bounded Beliefs

Theorem 3: If the private beliefs are bounded and the network topology satisfies one

of the following conditions,

(a) B(n) = {1, ..., n− 1} for all n,

(b) |B(n)| ≤ 1 for all n,

(c) there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b = ∞ with probability 1,

then asymptotic learning does not occur.

• Implication: No learning with random sampling and bounded beliefs

Proof Idea - Theorem 3(c):

• Asymptotic learning implies social beliefs converge to 0 or 1 almost surely

• But with bounded beliefs, this implies individuals decide on the basis of social

belief alone

• Then, positive probability of mistake–contradiction



Learning under Bounded Beliefs

Theorem 4: There exist network topologies where asymptotic learning occurs for any

signal structure (F0,F1).

• In the paper, characterization of a class of network topologies for which

asymptotic learning occurs with bounded beliefs

Example: For all n,

B(n) =





{1, ..., n− 1}, with probability 1− r(n);

∅, with probability r(n),

for some sequence {r(n)} where limn→∞ r(n) = 0 and
∑∞

n=1 r(n) = ∞.

In this case, asymptotic learning occurs for an arbitrary signal structure (F0,F1) and

at any equilibrium.



Proof Idea

• Individuals with empty neighborhood must act according to their private beliefs

• If they are identified by a marker, then simply apply weak law of large numbers

• For the stochastic network topology, we prove that eventually all agents with

B(n) = {1, ..., n− 1} converge on a decision using martingale convergence.

• Eventually, everyone can identify the agents with B(n) = ∅ and extract true

state from them using weak law of large numbers.



Summary

• When does asymptotic learning occur ?

Unbounded Beliefs Bounded Beliefs

Expanding YES USUALLY NO,

Observations SOMETIMES YES

Other Topologies NO NO

• No asymptotic learning with unbounded beliefs due to excessively influential

agents

• If there is a group of agents who are “influential”, but not excessively so (for

example, overrepresented in the information sets of others), this does not prevent

asymptotic learning with unbounded beliefs ⇒ contrast with myopic learning



Future Directions

• How does the rate of learning with unbounded beliefs depend on network

topology?

• With bounded beliefs, how does the structure of the social network affect

probability of wrong asymptotic beliefs?

• Learning in social networks with repeated actions and observations

• How does network structure interact with learning when underlying state is

changing?

• Heterogeneous preferences


