Consensus Problem in Multi-Agent Systems

Consensus Problem in Multi-Agent Systems

Asu Ozdaglar

Joint work with Angelia Nedić UIUC, USA

Joint EUROPT-OMS Conference July 2007

Department of Electrical Engineering & Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY, USA

Motivation

- Increasing interest in distributed control and coordination of networks consisting of multiple autonomous (potentially mobile) agents
- Motivated by many emerging networking applications, such as ad hoc wireless communication networks and sensor networks, characterized by:
 - Lack of centralized control and access to information
 - Time-varying connectivity
- Control algorithms deployed in such networks should be:
 - Completely distributed relying on local information
 - Robust against changes in the network topology
 - Easily implementable

Consensus Problem

- Canonical problem that appears in the coordination of multi-agent systems is the consensus problem
- Goal: Given initial values (scalar or vector) of agents, establish conditions under which through local interactions and computations, agents asymptotically agree upon a common value, i.e., reach a consensus
- Examples:
 - Control of moving vehicles (UAVs): alignment of the heading angles
 - Information processing in sensor networks: computing averages of initial local observations (i.e., consensus on a particular value)
 - Design of distributed optimization algorithms: need a mechanism to align estimates of decision variables maintained by different agents/processors

Our Work

- We study consensus problem for multi-agent systems
- Main Results:
 - General distributed asynchronous computational model for reaching consensus
 - Convergence analysis and convergence rate estimates for time-varying topologies under general connectivity assumptions
- This talk has two parts:
 - Analysis with no communication delay (i.e., there is no delay in locally delivering information from one agent to another)
 - Analysis with communication delay
- Part of the work not discussed here:
 - Simultaneous optimization and consensus:
 - * See talk by Nedić in EURO XXII on Monday

Related Literature

- Parallel and Distributed Algorithms:
 - General computational model for dist asynchronous optimization
 - $\ast\,$ Tsitsiklis 84, Bertsekas and Tsitsiklis 95
- Consensus and Cooperative Control:
 - Analysis of group behavior (flocking) in dynamical-biological systems
 - * Vicsek 95, Reynolds 87, Toner and Tu 98
 - Mathematical models of consensus and averaging
 - * Jadbabaie et al. 03, Olfati-Saber Murray 04, Boyd et al. 05
- Previous literature:
 - Focus on convergence to consensus
 - No explicit convergence rate estimates (except for specific cases;
 Olshevsky and Tsitsiklis 06, Cao *et al.* 06)
 - Limited focus on communication delay case

Model

- A network with m agents with node set $V = \{1, \ldots, m\}$
- Agents update and (potentially) send their information at discrete times t₀, t₁, t₂,...
- We use $x^i(k) \in \mathbb{R}^n$ to denote information state of agent *i* at time t_k

Agent Update Rule:

- Agent *i* updates his information state by

$$x^{i}(k+1) = \sum_{j=1}^{m} a_{j}^{i}(k)x^{j}(k),$$

where $a^{i}(k) = (a_{1}^{i}(k), \dots, a_{m}^{i}(k))'$ is a vector of weights

- The vector $a^i(k)$ represents agent *i*'s neighbor relations at slot k
- Dynamics governed by a *switched linear system*

Weights

Assumption (*Weights Rule*) For all k, we have

(a) There exists a scalar $\eta \in (0, 1)$ s.t. for all $i \in \{1, \ldots, m\}$,

(i)
$$a_i^i(k) \ge \eta$$

- (ii) $a_j^i(k) \ge \eta$ for all j communicating directly with i in (t_k, t_{k+1}) . (iii) $a_j^i(k) = 0$ for all j otherwise.
- (b) The vectors $a^i(k)$ are stochastic, i.e., $\sum_{j=1}^m a^i_j(k) = 1$ for all *i*.

Example: Equal neighbor weights $a_j^i(k) = \frac{1}{n_i(k)+1}$, where $n_i(k)$ is the number of agents communicating with *i* (his neighbors) at slot *k*

Information Exchange

At slot k, information exchange may be represented by a directed graph (V, E_k) where

$$E_k = \{(j,i) \mid a_j^i(k) > 0\}$$

Assumption (*Connectivity*) The graph (V, E_{∞}) is connected, where

 $E_{\infty} = \{(j, i) \mid (j, i) \in E_k \text{ for infinitely many indices } k\}.$

• Information state of agent i influences information state of any other agent infinitely often

Assumption (Bounded Intercomm Interval) There is some $B \ge 1$ s.t.

 $(j,i) \in E_k \cup E_{k+1} \cup \cdots \cup E_{k+B-1}$ for all $(j,i) \in E_\infty$ and $k \ge 0$.

• Agent j send his information to neighboring agent i at least once every B consecutive time slots.

Evolution of Information States

Notation: For a matrix A, we write

 $[A]_i^j : (i,j)^{th}$ entry, $[A]_i : i^{th}$ row, $[A]^j : j^{th}$ column

- Let A(s) denote the matrix whose ith column is the vector aⁱ(k)
 By Weights Rule(b), A'(s) is a stochastic matrix
- By the linearity of the dynamics, the iterates satisfy

$$x^{i}(k+1) = \sum_{j=1}^{m} [A(s)A(s+1)\cdots A(k-1)a^{i}(k)]_{j} x^{j}(s)$$

• We introduce the transition matrices

$$\Phi(k,s) = A(s)A(s+1)\cdots A(k-1)A(k) \quad \text{for all } k \ge s$$

• Then: $x^{i}(k+1) = \sum_{j=1}^{m} [\Phi(k,s)]_{j}^{i} x^{j}(s)$

Properties of Transition Matrices

Lemma: Let Weights Rule (a), Connectivity, and Bounded Intercommunication Interval assumptions hold. We then have

$$[\Phi(s + (m-1)B - 1, s)]_j^i \ge \eta^{(m-1)B}$$
 for all $s, i, and j,$

where η is the lower bound on weights and B is the intercommunication interval bound.

• We introduce the matrices $D_k(s)$ as follows: for a fixed $s \ge 0$,

$$D_k(s) = \Phi'(s + kB_0 - 1, s + (k - 1)B_0)$$
 for $k = 1, 2, ...,$

where $B_0 = (m - 1)B$.

• By the previous lemma, all entries of $D_k(s)$ are positive.

Convergence of Transition Matrices

Lemma: Let Weights Rule, Connectivity, and Bounded Intercommunication Interval assumptions hold. For each $s \ge 0$, we have:

- (a) The limit $\overline{D}(s) = \lim_{k \to \infty} D_k(s) \cdots D_1(s)$ exists.
- (b) The limit $\overline{D}(s)$ is a stochastic matrix with identical rows.
- (c) The convergence of $D_k(s) \cdots D_1(s)$ to $\overline{D}(s)$ is geometric: $\forall x \in \mathbb{R}^m$,

$$\left\| (D_k(s)\cdots D_1(s)) x - \bar{D}(s)x \right\|_{\infty} \le 2\left(1+\eta^{-B_0}\right) \left(1-\eta^{B_0}\right)^k \|x\|_{\infty}$$

In particular, for every j, the entries $[D_k(s) \cdots D_1(s)]_i^j$, $i = 1, \ldots, m$, converge to the same limit $\phi_j(s)$ as $k \to \infty$ with a geometric rate:

$$\left| [D_k(s) \cdots D_1(s)]_i^j - \phi_j(s) \right| \le 2 \left(1 + \eta^{-B_0} \right) \left(1 - \eta^{B_0} \right)^k$$

where η is the lower bound on weights, *B* is the intercommunication interval bound, and $B_0 = (m-1)B$.

Proof Idea

- We show that the sequence $\{(D_k \cdots D_1)x\}$ converges for every $x \in \mathbb{R}^m$
- Consider the sequence $\{x_k\}$ with $x_k = D_k \cdots D_1 x$ and write x_k as

$$x_k = z_k + c_k e,$$
 where $c_k = \min_{1 \le i \le m} [x_k]_i$

• Using the property that each entry of the matrix D_k is positive, we show

$$||z_k||_{\infty} \le \left(1 - \eta^{B_0}\right)^k ||z_0||_{\infty} \quad \text{for all } k.$$

Hence $z_k \to 0$ with a geometric rate.

- We then show that the sequence $\{c_k\}$ converges to some $\bar{c} \in \mathbb{R}$ and use the contraction constant to establish the rate estimate
- The final relation follows by picking $x = e_j$, the j^{th} unit vector

Convergence of Transition Matrices

Proposition: Let Weights Rule, Connectivity, and Bounded Intercommunication Interval assumptions hold.

- (a) The limit $\overline{\Phi}(s) = \lim_{k \to \infty} \Phi(k, s)$ exists for each s.
- (b) The limit matrix $\overline{\Phi}(s)$ has identical columns and the columns are stochastic, i.e.,

$$\bar{\Phi}(s) = \phi(s)e',$$

where $\phi(s) \in \mathbb{R}^m$ is a stochastic vector for each s.

(c) For every i, $[\Phi(k,s)]_i^j$, j = 1, ..., m, converge to the same limit $\phi_i(s)$ as $k \to \infty$ with a geometric rate, i.e., for all i, j and all $k \ge s$,

$$\left| \left[\Phi(k,s) \right]_{i}^{j} - \phi_{i}(s) \right| \leq 2 \frac{1 + \eta^{-B_{0}}}{1 - \eta^{B_{0}}} \left(1 - \eta^{B_{0}} \right)^{\frac{k-s}{B_{0}}}$$

where η is the lower bound on weights, *B* is the intercommunication interval bound, and $B_0 = (m-1)B$.

Model with Delays

- Assume now that there is delay in delivering information of j to i
 - Models communication delay over wireless links
- In the presence of delay, agent i updates his information state by

$$x^{i}(k+1) = \sum_{j=1}^{m} a_{j}^{i}(k)x^{j}(k-t_{j}^{i}(k)),$$

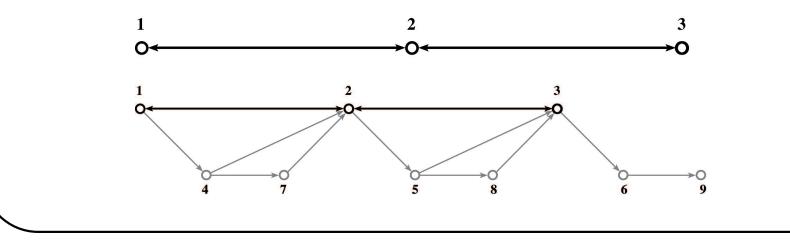
where $t_j^i(k)$ is the delay in passing information from j to i

Assumption (Bounded Delays)

- (a) $t_i^i(k) = 0$ for all agents *i* and all $k \ge 0$.
- (b) $t_j^i(k) = 0$ for all agents *i* and *j* such that $a_j^i(k) = 0$.
- (c) There is an integer B_1 such that $0 \le t_j^i(k) \le B_1 1$ for all agents i, j, and all k.

Enlarged Linear System

- Under Bounded Delays assumption, the system with delays can be reduced to a system without delays by state augmentation
- For each agent i, we associate a new agent for every possible delay value
 - Sufficient to add $m(B_1 1)$ new agents handling delays
- We refer to the original agents as computing agents (indexed by 1,...,m) and the new agents as non-computing agents (indexed by m + 1,..., (B₁ − 1)m)
- An example with 3 agents and delay bound $B_1 = 3$



Information State Evolution

- Let $\tilde{x}^i(k)$ denote information state of agent *i* of the enlarged system
- The evolution of the states $\tilde{x}^i(k)$ for all agents *i* in the enlarged system:

$$\tilde{x}^{i}(k+1) = \sum_{h=1}^{mB_{1}} \tilde{a}^{i}_{h}(k)\tilde{x}^{h}(k),$$

where weights $\tilde{a}_h^i(k)$ for **computing agents** $i \in \{1, \ldots, m\}$ are

$$\tilde{a}_{h}^{i}(k) = \begin{cases} a_{j}^{i}(k) & \text{if } h = j + tm, \ t = t_{j}^{i}(k) \\ 0 & \text{otherwise} \end{cases} \quad \text{for all } k \ge 0,$$

while weights $\tilde{a}_h^i(k)$ for **noncomputing agents** $i \in \{m + 1, \ldots, mB_1\}$ are

$$\tilde{a}_{h}^{i}(k) = \begin{cases} 1 & \text{for } h = i - m \\ 0 & \text{otherwise} \end{cases} \quad \text{for all } k \ge 0.$$

Convergence Analysis

- Let $\tilde{A}(k)$ denote the matrix whose columns are given by $\tilde{a}^{i}(k)$.
 - Under Weights Rule, $\tilde{A}'(k)$ is a stochastic matrix for all k.
- Similar to the previous analysis, we define the transition matrices

$$\tilde{\Phi}(k,s) = \tilde{A}(s)\tilde{A}(s+1)\cdots\tilde{A}(k-1)\tilde{A}(k)$$
 for all $k \ge s$.

Lemma:

(a) For any computing nodes
$$i, j \in \{1, \ldots, m\}$$
,

$$[\tilde{\Phi}(k,s)]_j^i \ge \eta^{k-s+1} \qquad \text{for all } k \ge s + (m-1)(B+B_1).$$

(b) For any computing node $j \in \{1, \ldots, m\}$, we have

$$[\tilde{\Phi}(s+(m-1)B+mB_1-1,s)]_j^i \ge \eta^{(m-1)B+mB_1}$$
 for all *i*.

Convergence Rate

Proposition:

(a) The limit $\tilde{\Phi}(s) = \lim_{k \to \infty} \tilde{\Phi}(k, s)$ exists for each s.

(b) The limit matrix $\tilde{\Phi}(s)$ has identical columns and the columns are stochastic, i.e.,

$$\tilde{\Phi}(s) = \tilde{\phi}(s)e',$$

where $\tilde{\phi}(s) \in \mathbb{R}^{mB_1}$ is a stochastic vector for each s.

(c) For every $i \in \{1, ..., mB_1\}$, the entries $[\tilde{\Phi}(k, s)]_i^j$, $j = 1, ..., mB_1$, converge to the same limit $\tilde{\phi}_i(s)$ as $k \to \infty$ with a geometric rate, i.e.,

$$\left| [\tilde{\Phi}(k,s)]_i^j - \tilde{\phi}_i(s) \right| \le 2 \frac{1 + \eta^{-B_2}}{1 - \eta^{B_2}} \left(1 - \eta^{B_2} \right)^{\frac{k-s}{B_2}},$$

where B is the intercommunication interval bound, B_1 is the delay bound, and $B_2 = (m-1)B + mB_1$.

Conclusions

- We presented a general distributed computational model for the consensus problem
- We provided convergence analysis and convergence rate estimates with and without communication delay
- Our estimates highlight the dependence of convergence rate on key system parameters
- Ongoing work:
 - Distributed asynchronous subgradient methods for constrained multi-agent optimization
 - Effects of quantization of information states on consensus