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Motivation

• Increasing interest in distributed control and coordination of

networks consisting of multiple autonomous (potentially mobile)

agents

• Motivated by many emerging networking applications, such as ad

hoc wireless communication networks and sensor networks,

characterized by:

– Lack of centralized control and access to information

– Time-varying connectivity

• Control algorithms deployed in such networks should be:

– Completely distributed relying on local information

– Robust against changes in the network topology

– Easily implementable
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Consensus Problem

• Canonical problem that appears in the coordination of multi-agent

systems is the consensus problem

• Goal: Given initial values (scalar or vector) of agents, establish

conditions under which through local interactions and computations,

agents asymptotically agree upon a common value, i.e.,

reach a consensus

• Examples:

– Control of moving vehicles (UAVs): alignment of the

heading angles

– Information processing in sensor networks: computing

averages of initial local observations (i.e., consensus on a

particular value)

– Design of distributed optimization algorithms: need a

mechanism to align estimates of decision variables maintained by

different agents/processors
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Our Work

• We study consensus problem for multi-agent systems

• Main Results:

– General distributed asynchronous computational model for

reaching consensus

– Convergence analysis and convergence rate estimates for

time-varying topologies under general connectivity assumptions

• This talk has two parts:

– Analysis with no communication delay (i.e., there is no delay in

locally delivering information from one agent to another)

– Analysis with communication delay

• Part of the work not discussed here:

– Simultaneous optimization and consensus:

∗ See talk by Nedić in EURO XXII on Monday
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Related Literature

• Parallel and Distributed Algorithms:

– General computational model for dist asynchronous optimization

∗ Tsitsiklis 84, Bertsekas and Tsitsiklis 95

• Consensus and Cooperative Control:

– Analysis of group behavior (flocking) in dynamical-biological

systems

∗ Vicsek 95, Reynolds 87, Toner and Tu 98

– Mathematical models of consensus and averaging

∗ Jadbabaie et al. 03, Olfati-Saber Murray 04, Boyd et al. 05

• Previous literature:

– Focus on convergence to consensus

– No explicit convergence rate estimates (except for specific cases;

Olshevsky and Tsitsiklis 06, Cao et al. 06)

– Limited focus on communication delay case
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Model

• A network with m agents with node set V = {1, . . . , m}
• Agents update and (potentially) send their information at discrete

times t0, t1, t2, . . .

• We use xi(k) ∈ Rn to denote information state of agent i at time tk

Agent Update Rule:

– Agent i updates his information state by

xi(k + 1) =

m∑
j=1

ai
j(k)xj(k),

where ai(k) = (ai
1(k), . . . , ai

m(k))′ is a vector of weights

– The vector ai(k) represents agent i’s neighbor relations at slot k

– Dynamics governed by a switched linear system
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Weights

Assumption (Weights Rule) For all k, we have

(a) There exists a scalar η ∈ (0, 1) s.t. for all i ∈ {1, . . . , m},
(i) ai

i(k) ≥ η

(ii) ai
j(k) ≥ η for all j communicating directly with i in (tk, tk+1).

(iii) ai
j(k) = 0 for all j otherwise.

(b) The vectors ai(k) are stochastic, i.e.,
∑m

j=1 ai
j(k) = 1 for all i.

Example: Equal neighbor weights ai
j(k) = 1

ni(k)+1
, where ni(k) is the

number of agents communicating with i (his neighbors) at slot k
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Information Exchange

At slot k, information exchange may be represented by a directed graph

(V, Ek) where

Ek = {(j, i) | ai
j(k) > 0}

Assumption (Connectivity) The graph (V, E∞) is connected, where

E∞ = {(j, i) | (j, i) ∈ Ek for infinitely many indices k}.

• Information state of agent i influences information state of any other

agent infinitely often

Assumption (Bounded Intercomm Interval) There is some B ≥ 1 s.t.

(j, i) ∈ Ek ∪ Ek+1 ∪ · · · ∪ Ek+B−1 for all (j, i) ∈ E∞ and k ≥ 0.

• Agent j send his information to neighboring agent i at least once

every B consecutive time slots.
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Evolution of Information States

Notation: For a matrix A, we write

[A]ji : (i, j)th entry, [A]i : ith row, [A]j : jth column

• Let A(s) denote the matrix whose ith column is the vector ai(k)

– By Weights Rule(b), A′(s) is a stochastic matrix

• By the linearity of the dynamics, the iterates satisfy

xi(k + 1) =

m∑
j=1

[A(s)A(s + 1) · · ·A(k − 1)ai(k)]jx
j(s)

• We introduce the transition matrices

Φ(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k) for all k ≥ s

• Then: xi(k + 1) =
∑m

j=1[Φ(k, s)]ijx
j(s)
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Properties of Transition Matrices

Lemma: Let Weights Rule (a), Connectivity, and Bounded

Intercommunication Interval assumptions hold. We then have

[Φ(s + (m− 1)B − 1, s)]ij ≥ η(m−1)B for all s, i, and j,

where η is the lower bound on weights and B is the intercommunication

interval bound.

• We introduce the matrices Dk(s) as follows: for a fixed s ≥ 0,

Dk(s) = Φ′ (s + kB0 − 1, s + (k − 1)B0) for k = 1, 2, . . . ,

where B0 = (m− 1)B.

• By the previous lemma, all entries of Dk(s) are positive.
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Convergence of Transition Matrices

Lemma: Let Weights Rule, Connectivity, and Bounded Intercommuni-

cation Interval assumptions hold. For each s ≥ 0, we have:

(a) The limit D̄(s) = limk→∞Dk(s) · · ·D1(s) exists.

(b) The limit D̄(s) is a stochastic matrix with identical rows.

(c) The convergence of Dk(s) · · ·D1(s) to D̄(s) is geometric: ∀ x ∈ Rm,

∥∥(Dk(s) · · ·D1(s)) x− D̄(s)x
∥∥
∞ ≤ 2

(
1 + η−B0

) (
1− ηB0

)k

‖x‖∞

In particular, for every j, the entries [Dk(s) · · ·D1(s)]
j
i , i = 1, . . . , m,

converge to the same limit φj(s) as k →∞ with a geometric rate:∣∣∣[Dk(s) · · ·D1(s)]
j
i − φj(s)

∣∣∣ ≤ 2
(
1 + η−B0

) (
1− ηB0

)k

where η is the lower bound on weights, B is the intercommunication

interval bound, and B0 = (m− 1)B.
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Proof Idea

• We show that the sequence {(Dk · · ·D1)x} converges for every

x ∈ Rm

• Consider the sequence {xk} with xk = Dk · · ·D1x and write xk as

xk = zk + cke, where ck = min
1≤i≤m

[xk]i

• Using the property that each entry of the matrix Dk is positive, we

show

‖zk‖∞ ≤
(
1− ηB0

)k

‖z0‖∞ for all k.

Hence zk → 0 with a geometric rate.

• We then show that the sequence {ck} converges to some c̄ ∈ R and

use the contraction constant to establish the rate estimate

• The final relation follows by picking x = ej , the jth unit vector
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Convergence of Transition Matrices

Proposition: Let Weights Rule, Connectivity, and Bounded Inter-

communication Interval assumptions hold.

(a) The limit Φ̄(s) = limk→∞ Φ(k, s) exists for each s.

(b) The limit matrix Φ̄(s) has identical columns and the columns are

stochastic, i.e.,

Φ̄(s) = φ(s)e′,

where φ(s) ∈ Rm is a stochastic vector for each s.

(c) For every i, [Φ(k, s)]ji , j = 1, ..., m, converge to the same limit φi(s)

as k →∞ with a geometric rate, i.e., for all i, j and all k ≥ s,

∣∣∣[Φ(k, s)]ji − φi(s)
∣∣∣ ≤ 2

1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0

where η is the lower bound on weights, B is the intercommunication

interval bound, and B0 = (m− 1)B.
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Model with Delays

• Assume now that there is delay in delivering information of j to i

– Models communication delay over wireless links

• In the presence of delay, agent i updates his information state by

xi(k + 1) =

m∑
j=1

ai
j(k)xj(k − ti

j(k)),

where ti
j(k) is the delay in passing information from j to i

Assumption (Bounded Delays)

(a) ti
i(k) = 0 for all agents i and all k ≥ 0.

(b) ti
j(k) = 0 for all agents i and j such that ai

j(k) = 0.

(c) There is an integer B1 such that 0 ≤ ti
j(k) ≤ B1 − 1 for all agents

i, j, and all k.
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Enlarged Linear System

• Under Bounded Delays assumption, the system with delays can be

reduced to a system without delays by state augmentation

• For each agent i, we associate a new agent for every possible delay

value

– Sufficient to add m(B1 − 1) new agents handling delays

• We refer to the original agents as computing agents (indexed by

1, . . . , m) and the new agents as non-computing agents (indexed

by m + 1, . . . , (B1 − 1)m)

• An example with 3 agents and delay bound B1 = 3
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Information State Evolution

• Let x̃i(k) denote information state of agent i of the enlarged system

• The evolution of the states x̃i(k) for all agents i in the enlarged

system:

x̃i(k + 1) =

mB1∑

h=1

ãi
h(k)x̃h(k),

where weights ãi
h(k) for computing agents i ∈ {1, . . . , m} are

ãi
h(k) =





ai
j(k) if h = j + tm, t = ti

j(k)

0 otherwise
for all k ≥ 0,

while weights ãi
h(k) for noncomputing agents i ∈ {m + 1, . . . ,

mB1} are

ãi
h(k) =





1 for h = i−m

0 otherwise
for all k ≥ 0.
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Convergence Analysis

• Let Ã(k) denote the matrix whose columns are given by ãi(k).

– Under Weights Rule, Ã′(k) is a stochastic matrix for all k.

• Similar to the previous analysis, we define the transition matrices

Φ̃(k, s) = Ã(s)Ã(s + 1) · · · Ã(k − 1)Ã(k) for all k ≥ s.

Lemma:

(a) For any computing nodes i, j ∈ {1, . . . , m},

[Φ̃(k, s)]ij ≥ ηk−s+1 for all k ≥ s + (m− 1)(B + B1).

(b) For any computing node j ∈ {1, . . . , m}, we have

[Φ̃(s + (m− 1)B + mB1 − 1, s)]ij ≥ η(m−1)B+mB1 for all i.
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Convergence Rate

Proposition:

(a) The limit Φ̃(s) = limk→∞ Φ̃(k, s) exists for each s.

(b) The limit matrix Φ̃(s) has identical columns and the columns are

stochastic, i.e.,

Φ̃(s) = φ̃(s)e′,

where φ̃(s) ∈ RmB1 is a stochastic vector for each s.

(c) For every i ∈ {1, . . . , mB1}, the entries [Φ̃(k, s)]ji , j = 1, ..., mB1,

converge to the same limit φ̃i(s) as k →∞ with a geometric rate,

i.e.,
∣∣∣[Φ̃(k, s)]ji − φ̃i(s)

∣∣∣ ≤ 2
1 + η−B2

1− ηB2

(
1− ηB2

) k−s
B2 ,

where B is the intercommunication interval bound, B1 is the delay

bound, and B2 = (m− 1)B + mB1.
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Conclusions

• We presented a general distributed computational model for the

consensus problem

• We provided convergence analysis and convergence rate estimates

with and without communication delay

• Our estimates highlight the dependence of convergence rate on key

system parameters

• Ongoing work:

– Distributed asynchronous subgradient methods for constrained

multi-agent optimization

– Effects of quantization of information states on consensus


