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Introduction

e Lagrangian relaxation and duality effective tools for
— solving large-scale convex optimization,
— systematically providing lower bounds on the optimal value
e Subgradient methods provide efficient computational means to solve
the dual problem to obtain
— Near-optimal dual solutions
— Bounds on the primal optimal value
e Most remarkably, in networking applications, subgradient methods

have been used to design decentralized resource allocation

mechanisms

— Kelly 1997, Low and Lapsley 1999, Srikant 2003

/




Primal Solutions - Rate Analysis

4 N

Issues with this approach

e Subgradient methods operate in the dual space

— In most problems, interest in primal solutions
e Convergence analysis mostly focuses on diminishing stepsize

e No convergence rate analysis

e Question of Interest: Can we use the subgradient information to

produce near-feasible and near-optimal primal solutions?
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Our Work

e Primal solution generation from subgradient algorithms

e Main Results:

— Development of algorithms that use the subgradient information
and an averaging scheme to generate approximate primal

optimal solutions

— Convergence rate analysis for the approximation error of the

primal solutions including;:

x The amount of feasibility violation

x Primal optimal cost approximation error

— Stopping criteria for our algorithms

e This talk has two parts:

— Dual subgradient algorithms (subgradient of dual func available)

— Primal-dual subgradient algorithms
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Prior Work

e Subgradient methods producing primal solutions by averaging
— Nemirovskii and Yudin 1978
— Shor 1985, Sherali and Choi 1996 [linear primal]
— Sen and Sherali 1986
— Larsson, Patriksson, Stromberg 1995, 1998, 1999 [convex primal]
— Kiwiel, Larsson, and Lindberg 1999

e In all of the existing literature:
— Interest is in generating primal optimal solutions in the limit
— The focus is on subgradient algorithms using a diminishing step

— There is no convergence rate analysis

\_ /




Primal Solutions - Rate Analysis

4 N

Primal and Dual Problem

e We consider the following primal problem
f* = minimize f(x)
subject to g(x) <0, x € X,

where g(z) = (g1(x),...,gm(x)) and f* is finite.
— The functions f : R" —= Rand ¢g; : R" - R,7=1,...,m are

convex, and the set X C R" is nonempty and convex

e We are interested in solving the primal problem by considering the

Lagrangian dual problem

¢" = maximize  q(u) = inf {f(z) +p"g(x)}
subject to >0, ueR™
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The dual iterates are generated by the following update rule:

Dual Subgradient Method

tet1 = [pe + argr]”  for k>0
® /o is an initial iterate with ug > 0
e []* denotes the projection on the nonnegative orthant
e ar > 0 is a stepsize

e g; is a subgradient of q(u) at ug, i.e.,
gr =g(ze) with zx € X and q(ux) = f(@x) + pr g(2k)

We assume that:

o The set of optimal solutions, arg mingex{f(z) + u’ g(x)}, is
nonempty for all © > 0

e The subgradient of the dual function is “easy” to compute
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Assumption (Slater Condition) There is a vector & € R™ such that
g;(Z) <0, Vi=1,...,r
Under the Slater condition, we have:
e The dual optimal set is nonempty and bounded

e There holds for any dual optimal solution u* > 0,

Z Wi < (@)~ [Uzawa 1958]

ming <j<m{—9;(Z)}

We extend this result, as follows:

Proposition: Let the Slater condition hold. Then, for every c € R, the set
Q. ={pn>0]|q(p) > c} is bounded:
flx)—c

< — — for all u € Q.
IS i e 0 @) hew

Qhere T is a Slater vector. /
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Analysis of the Subgradient Method

Consider the algorithm with a constant stepsize a > 0, i.e.,

prt1 = [pe +ogr]”  for k>0

Assumption (Bounded Subgradients) The subgradient sequence {gx} is

bounded, i.e., there exists a scalar L > 0 such that
lgll <L, Vk2>0

e This assumption satisfied when primal constraint set X is compact

— By the convexity of the g; over R", max,ex ||g(x)|| is finite and

provides an upper bound on the norms of the subgradients
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Bounded Multipliers

Proposition: Let the Slater condition hold and let the subgradients gi be
bounded. Let {ur} be the multiplier sequence generated by the
subgradient algorithm. Then, the sequence {ux} is bounded. In

particular, for all k, we have

2 B N 1 B "
el < 2 17(@) — q ]+max{||uo||, L@ - a1+

« is the stepsize
T is a Slater vector
¥ = mini<;j<m{—g;(Z)}

L is a subgradient norm bound

~
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Subgradient Algorithm and Primal Averages

Subgradient Method

Generates multipliers in the dual space:

prtr = [pe +ogr]”  for k>0

gr = g(Tx) with 7, € X and q(ux) = f(zx) + pi 9(zx)

Primal Averaging

Generates the primal averages of zo,...,Tr_1:

&
—_

T = T for k > 1

ol
I
o

e Fach 7z, belongs to X by convexity of X and the fact z; € X for all ¢

e The vectors Zr need not be feasible

e We consider Tx as an approrimate primal solution
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Proposition:

Let {ux} be generated by the subgradient method with a stepsize «.

Let z be the primal averages of the subgradient defining vectors x; € X.
Then, for all £ > 1:

e The amount of feasibility violation at Zx is bounded by

v < Nl
lg(en) || < =

e The primal cost at Z is bounded above by

e The primal cost at Zx is bounded below by

F@r) > q" =l ||g@e) 7|

\ where u* is a dual optimal solution and ¢* is the dual optimal Value/
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Proposition: Let Slater condition hold and subgradients be bounded.

Then, the estimates for Zx can be strengthened as follows: for all £ > 1,

e The amount of feasibility violation is bounded by

e The primal cost is bounded above by

o Npol® oL

f@r) < f7 + e T 3

e The primal cost is bounded below by
~ * 1 — * ~ +
f(@k) > 7 — - [f(Z) = q"] ||g(@x)™ ||

where L is a subgradient norm bound, v = mini<j<m{—g;(Z)}

By = 2 1£@) ~ ¢") + max{ ol 2 17(0) ~ 4]+ G +aL
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Choosing o = 0 yields:
B} 3 al?
o + < 0 . h B* — = =\ * bt L
lg(@n)7[| < with Bg SU@ a5t
al?

f(@r) < fF+ 5
F@n) = 1 - % (@) — '] ||gla)|

Remarks:

e The rate of convergence to the primal “near-optimal” value is driven

by the rate of infeasibility decrease

e The bound on feasibility violation Bj involves dual optimal value ¢”.
We can use maxop<;<r q(iti) < ¢* for an alternative bound.

e Stopping criteria readily available from these estimates

e The estimates capture the trade-offs between a desired accuracy and
\ the computations required to achieve the accuracy /
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e We consider methods for computing saddle point of Lagrangian
L(x,p) = f(z) +p'g(z), forallzeX, p>0

Primal-Dual Subgradient Method:
Tr+1 = Px [z — oLy (xk, uk)] for k=0,1,....
tr+1 = Pplpr + ol (Tk, k)] for k=0,1,....
e D is a closed convex set containing set of dual optimal solutions
o L.(xk, ) denotes a subgradient wrt x of L(x, 1) at xy.
o L, (x,ur) denotes a subgradient wrt p of L(z, ) at pk.
Lo(mi, ) = sp(zn) + Y s (xr),  Lu(z, pr) = g(x),
i=1

where sf(xy) and sg4, (xx) are subgradients of f and g; at x.

e Assume subgradient of dual function cannot be computed efficiently

~

K. Builds on the seminal Arrow-Hurwicz-Uzawa gradient method 1958/
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Set D under Slater Assumption

Hy

e Under Slater, dual optimal set M™

nonempty and bounded

~

e This motivates the following choice D
for set D:
f(Z) —q
D={pzo|u <=0,
v 7

Sf&) —q* X —-q

where r > 0 is a scalar parameter Y Y

Assumption (Compactness): Set X is compact, ||z]| < B, for all x € X.

e Under the assumptions and the definition of the method, the

subgradients are bounded:

max max { || Lo (2, ) |, | £ (s )|} < L.

e The subgradient boundedness was assumed in previous analysis
(Gol’shtein 72, Korpelevich 76)
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Estimates for the Primal-Dual Method

Proposition: Let the Slater and Compactness Assumptions hold. Let

{Zr} be the primal average sequence. Then, for all k£ > 1, we have:

e The amount of feasibility violation is bounded by

) 2 T) — G > «aL? 2BL
lg(Zr) 7| < — J@=a, .\ . + .
kor 2r r

e The primal cost is bounded above by

+ al?’.

) o oll® | llwo — 2|
< RO
Flae) < £+ 2ka * 2ka

e The primal cost is bounded below by

Fan) = £ (W) lg(n)* I
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Optimal Choice for » and Resulting Estimate

By minimizing the bound for the feasibility violation with respect to the

parameter r > (0, we obtain:

e The resulting optimal r* depends on the iteration index k:

A A 272
r (k) = \/(f(x)q) + ka4L + kaBL for k > 1.
Y

Given some k, consider an algorithm where dual iterates are obtained by
pit1 = Poy [pitol (i, pe)], =020l < T (k)

e The resulting feasibility violation estimate at the primal average Zy:

st & (1229) o 4 (L4 EE)
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Conclusions

We considered dual and primal-dual subgradient methods with
primal averaging to generate primal “near-feasible” and

“near-optimal” solutions
Slater assumption plays a key role in our analysis
We provided estimates for feasibility violation and primal cost

Our estimates capture the trade-offs between desired accuracy and
the computations required to achieve the accuracy
Our analysis shows that

— The scheme using dual subgradient method converges with
rate 1/k

— The scheme using primal-dual subgradient method converges
with rate 1/vk




