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Introduction

• Lagrangian relaxation and duality effective tools for

– solving large-scale convex optimization,

– systematically providing lower bounds on the optimal value

• Subgradient methods provide efficient computational means to solve

the dual problem to obtain

– Near-optimal dual solutions

– Bounds on the primal optimal value

• Most remarkably, in networking applications, subgradient methods

have been used to design decentralized resource allocation

mechanisms

– Kelly 1997, Low and Lapsley 1999, Srikant 2003
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Issues with this approach

• Subgradient methods operate in the dual space

– In most problems, interest in primal solutions

• Convergence analysis mostly focuses on diminishing stepsize

• No convergence rate analysis

• Question of Interest: Can we use the subgradient information to

produce near-feasible and near-optimal primal solutions?
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Our Work

• Primal solution generation from subgradient algorithms

• Main Results:

– Development of algorithms that use the subgradient information

and an averaging scheme to generate approximate primal

optimal solutions

– Convergence rate analysis for the approximation error of the

primal solutions including:

∗ The amount of feasibility violation

∗ Primal optimal cost approximation error

– Stopping criteria for our algorithms

• This talk has two parts:

– Dual subgradient algorithms (subgradient of dual func available)

– Primal-dual subgradient algorithms
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Prior Work

• Subgradient methods producing primal solutions by averaging

– Nemirovskii and Yudin 1978

– Shor 1985, Sherali and Choi 1996 [linear primal]

– Sen and Sherali 1986

– Larsson, Patriksson, Strömberg 1995, 1998, 1999 [convex primal]

– Kiwiel, Larsson, and Lindberg 1999

• In all of the existing literature:

– Interest is in generating primal optimal solutions in the limit

– The focus is on subgradient algorithms using a diminishing step

– There is no convergence rate analysis
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Primal and Dual Problem

• We consider the following primal problem

f∗ = minimize f(x)

subject to g(x) ≤ 0, x ∈ X,

where g(x) = (g1(x), . . . , gm(x)) and f∗ is finite.

– The functions f : Rn → R and gi : Rn → R, i = 1, . . . , m are

convex, and the set X ⊆ Rn is nonempty and convex

• We are interested in solving the primal problem by considering the

Lagrangian dual problem

q∗ = maximize q(µ) = inf
x∈X

{f(x) + µT g(x)}
subject to µ ≥ 0, µ ∈ Rm
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Dual Subgradient Method

The dual iterates are generated by the following update rule:

µk+1 = [µk + αkgk]+ for k ≥ 0

• µ0 is an initial iterate with µ0 ≥ 0

• [·]+ denotes the projection on the nonnegative orthant

• αk > 0 is a stepsize

• gk is a subgradient of q(µ) at µk, i.e.,

gk = g(xk) with xk ∈ X and q(µk) = f(xk) + µT
k g(xk)

We assume that:

• The set of optimal solutions, arg minx∈X{f(x) + µT g(x)}, is

nonempty for all µ ≥ 0

• The subgradient of the dual function is “easy” to compute
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Dual Set Boundedness under Slater

Assumption (Slater Condition) There is a vector x̄ ∈ Rn such that

gj(x̄) < 0, ∀ j = 1, . . . , r.

Under the Slater condition, we have:

• The dual optimal set is nonempty and bounded

• There holds for any dual optimal solution µ∗ ≥ 0,

m∑
j=1

µ∗j ≤ f(x̄)− q∗

min1≤j≤m{−gj(x̄)} [Uzawa 1958]

We extend this result, as follows:

Proposition: Let the Slater condition hold. Then, for every c ∈ R, the set

Qc = {µ ≥ 0 | q(µ) ≥ c} is bounded:

‖µ‖ ≤ f(x̄)− c

min1≤j≤m{−gj(x̄)} for all µ ∈ Qc

where x̄ is a Slater vector.
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Analysis of the Subgradient Method

Consider the algorithm with a constant stepsize α > 0, i.e.,

µk+1 = [µk + αgk]+ for k ≥ 0

Assumption (Bounded Subgradients) The subgradient sequence {gk} is

bounded, i.e., there exists a scalar L > 0 such that

‖gk‖ ≤ L, ∀ k ≥ 0

• This assumption satisfied when primal constraint set X is compact

– By the convexity of the gj over Rn, maxx∈X ‖g(x)‖ is finite and

provides an upper bound on the norms of the subgradients
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Bounded Multipliers

Proposition: Let the Slater condition hold and let the subgradients gk be

bounded. Let {µk} be the multiplier sequence generated by the

subgradient algorithm. Then, the sequence {µk} is bounded. In

particular, for all k, we have

‖µk‖ ≤ 2

γ
[f(x̄)− q∗] + max

{
‖µ0‖, 1

γ
[f(x̄)− q∗] +

αL2

2γ
+ αL

}

• α is the stepsize

• x̄ is a Slater vector

• γ = min1≤j≤m{−gj(x̄)}
• L is a subgradient norm bound
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Subgradient Algorithm and Primal Averages

Subgradient Method

Generates multipliers in the dual space:

µk+1 = [µk + αgk]+ for k ≥ 0

gk = g(xk) with xk ∈ X and q(µk) = f(xk) + µT
k g(xk)

Primal Averaging

Generates the primal averages of x0, . . . , xk−1:

x̂k =
1

k

k−1∑
i=0

xi for k ≥ 1

• Each x̂k belongs to X by convexity of X and the fact xi ∈ X for all i

• The vectors x̂k need not be feasible

• We consider x̂k as an approximate primal solution
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Basic Estimates for the Primal Averages

Proposition:

Let {µk} be generated by the subgradient method with a stepsize α.

Let x̂k be the primal averages of the subgradient defining vectors xk ∈ X.

Then, for all k ≥ 1:

• The amount of feasibility violation at x̂k is bounded by
∥∥g(x̂k)+

∥∥ ≤ ‖µk‖
kα

• The primal cost at x̂k is bounded above by

f(x̂k) ≤ q∗ +
‖µ0‖2
2kα

+
α

2k

k−1∑
i=0

‖g(xi)‖2

• The primal cost at x̂k is bounded below by

f(x̂k) ≥ q∗ − ‖µ∗‖ ∥∥g(x̂k)+
∥∥

where µ∗ is a dual optimal solution and q∗ is the dual optimal value.
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Estimates under Slater

Proposition: Let Slater condition hold and subgradients be bounded.

Then, the estimates for x̂k can be strengthened as follows: for all k ≥ 1,

• The amount of feasibility violation is bounded by

∥∥g(x̂k)+
∥∥ ≤ B∗

µ0

kα

• The primal cost is bounded above by

f(x̂k) ≤ f∗ +
‖µ0‖2
2kα

+
αL2

2

• The primal cost is bounded below by

f(x̂k) ≥ f∗ − 1

γ
[f(x̄)− q∗]

∥∥g(x̂k)+
∥∥

where L is a subgradient norm bound, γ = min1≤j≤m{−gj(x̄)}

B∗
µ0 =

2

γ
[f(x̄)− q∗] + max

{
‖µ0‖, 1

γ
[f(x̄)− q∗] +

αL2

2γ
+ αL

}
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Analyzing the Results

Choosing µ0 = 0 yields:

∥∥g(x̂k)+
∥∥ ≤ B∗

0

kα
with B∗

0 =
3

γ
[f(x̄)− q∗] +

αL2

2γ
+ αL

f(x̂k) ≤ f∗ +
αL2

2

f(x̂k) ≥ f∗ − 1

γ
[f(x̄)− q∗]

∥∥g(x̂k)+
∥∥

Remarks:

• The rate of convergence to the primal “near-optimal” value is driven

by the rate of infeasibility decrease

• The bound on feasibility violation B∗
0 involves dual optimal value q∗.

We can use max0≤i≤k q(µi) ≤ q∗ for an alternative bound.

• Stopping criteria readily available from these estimates

• The estimates capture the trade-offs between a desired accuracy and

the computations required to achieve the accuracy
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Primal-Dual Subgradient Method

• Assume subgradient of dual function cannot be computed efficiently

• We consider methods for computing saddle point of Lagrangian

L(x, µ) = f(x) + µ′g(x), for all x ∈ X, µ ≥ 0

Primal-Dual Subgradient Method:

xk+1 = PX [xk − αLx(xk, µk)] for k = 0, 1, . . . .

µk+1 = PD[µk + αLµ(xk, µk)] for k = 0, 1, . . . .

• D is a closed convex set containing set of dual optimal solutions

• Lx(xk, µ) denotes a subgradient wrt x of L(x, µ) at xk.

• Lµ(x, µk) denotes a subgradient wrt µ of L(x, µ) at µk.

Lx(xk, µ) = sf (xk) +

m∑
i=1

µisgi(xk), Lµ(x, µk) = g(x),

where sf (xk) and sgi(xk) are subgradients of f and gi at xk.

• Builds on the seminal Arrow-Hurwicz-Uzawa gradient method 1958
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Set D under Slater Assumption

• Under Slater, dual optimal set M∗

nonempty and bounded

• This motivates the following choice

for set D:

D =
{

µ ≥ 0 | ‖µ‖ ≤ f(x̄)− q̃

γ
+r

}

where r > 0 is a scalar parameter

Assumption (Compactness): Set X is compact, ‖x‖ ≤ B, for all x ∈ X.

• Under the assumptions and the definition of the method, the

subgradients are bounded:

max
k≥0

max
{
‖Lx(xk, µk)‖, ‖Lµ(xk, µk)‖

}
≤ L.

• The subgradient boundedness was assumed in previous analysis

(Gol’shtein 72, Korpelevich 76)
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Estimates for the Primal-Dual Method

Proposition: Let the Slater and Compactness Assumptions hold. Let

{x̂k} be the primal average sequence. Then, for all k ≥ 1, we have:

• The amount of feasibility violation is bounded by

‖g(x̂k)+‖ ≤ 2

kαr

(
f(x̄)− q̃

γ
+ r

)2

+
αL2

2r
+

2BL

r
.

• The primal cost is bounded above by

f(x̂k) ≤ f∗ +
‖µ0‖2
2kα

+
‖x0 − x∗‖2

2kα
+ αL2.

• The primal cost is bounded below by

f(x̂k) ≥ f∗ −
(

f(x̄)− q̃

γ

)
‖g(x̂k)+‖.
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Optimal Choice for r and Resulting Estimate

By minimizing the bound for the feasibility violation with respect to the

parameter r > 0, we obtain:

• The resulting optimal r∗ depends on the iteration index k:

r∗(k) =

√(
f(x̄)− q̃

γ

)2

+
kα2L2

4
+ kαBL for k ≥ 1.

Given some k, consider an algorithm where dual iterates are obtained by

µi+1 = PDk [µi+αLµ(xi, µi)], Dk =

{
µ ≥ 0

∣∣∣ ‖µ‖ ≤ f(x̄)− q̃

γ
+ r∗(k)

}

• The resulting feasibility violation estimate at the primal average x̂k:

∥∥g(x̂k)+
∥∥ ≤ 8

kα

(
f(x̄)− q̃

γ

)
+

4√
k

(
L

2
+

√
BL

α

)
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Conclusions

• We considered dual and primal-dual subgradient methods with

primal averaging to generate primal “near-feasible” and

“near-optimal” solutions

• Slater assumption plays a key role in our analysis

• We provided estimates for feasibility violation and primal cost

• Our estimates capture the trade-offs between desired accuracy and

the computations required to achieve the accuracy

• Our analysis shows that

– The scheme using dual subgradient method converges with

rate 1/k

– The scheme using primal-dual subgradient method converges

with rate 1/
√

k


