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Introduction

• Two Related Problems: Establishing sufficient (local) conditions for:

– uniqueness of stationary points for optimization problems

– uniqueness of solutions of variational inequality problems (e.g.,

uniqueness of pure strategy Nash equilibrium)

• Standard approach is to use (strict) convexity for the optimization

and strict diagonal concavity for the equilibrium problem [Rosen].

• Too restrictive since recent network control models lead to

nonconvex formulations mainly due to two reasons:

– Nonlinear dependencies between control variables,

– Interaction between heterogeneous agents and heterogenous

same/cross layer protocols result in typically nonconvex

equilibrium problems.

• This talk presents differential topology tools to analyze network

optimization/equilibrium problems.
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Our Approach

• Our objective is to establish local conditions around equilibrium

points that imply uniqueness of an equilibrium and show its use in

network models.

• Natural Tool: Index theory of differential topology

• Poincare Hopf (PH) Theorem: relates the local properties of a

vector field (around its zeros) to the topological characteristics of

the underlying region, which is assumed to be a smooth manifold

with boundary under boundary conditions.

• We prove a generalized PH theorem for compact nonsmooth regions

for generalized equilibria without boundary conditions [Alp’s talk

today].

• This talk, focus on the special case of “box-constrained regions”.

• Use the PH Theorem:

– for the gradient of the objective function of an opt. problem.

– for the function defining the variational inequality problem.
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Intuition for the PH Theorem

• Consider a 1D smooth non-degenerate function (at all stationary

points x∗ ∈ K = {x | ∇f(x) = 0}, ∇2f(x∗) is nonsingular) which is

increasing at the boundary of its region.

• Observation: (# of local minima of f)= (# of local maxima of f)+1:
X
x∈K

sign(∇2f(x)) = 1
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Our Generalization for Box Constrained Problems

• Let M = [a, b] ⊂ Rn and F : M 7→ Rn.

• Mixed Complementarity Problem (MCP) is to find x ∈ M s.t. for

each i ∈ {1, .., n}:

xi = ai, Fi(x) ≥ 0 (1)

ai < xi < bi, Fi(x) = 0. (2)

xi = bi, Fi(x) ≤ 0 (3)

We denote the set of solutions to (1)-(3) by MCP(F, [a, b]). This set

is equivalent to

– the set of KKT points (for minimization) of f over M when

F = ∇f .

– the solution set for the variational inequality problem defined by

F over M .

– the set of “generalized equilibria” of F over M .
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Our Generalization for Box Constrained Problems

x1

a1 ≤ x1 ≤ b1

a2 ≤ x2 ≤ b2

x2

F (D)F (C) = 0

G

E

F (E)

C

F (G) = 0

D

Def: We say that x∗ ∈ MCP(F, M) is a complementary solution if

x∗i = ai implies Fi(x
∗) > 0 and x∗i = bi implies Fi(x

∗) < 0, i.e.

INB−MCP(x∗) = IF (x∗), where IF (x∗) =
n

i ∈ {1, .., n} | Fi(x
∗) = 0

o

and INB−MCP(x∗) =
n

i ∈ {1, .., n} | ai < x∗i < bi

o
.

Assumption (SCS): Each x ∈ MCP(F, M) is a complementary solution.

Notation: For an n× n matrix and J ⊂ {1, . . . , n}, let A|J denote the

principal sub-matrix that contains Ai,j with i, j ∈ J .
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Our Generalization for Box Constrained Problems

Theorem: Let F : M 7→ Rn be a continuously differentiable function.

Assume that (F, M) satisfies Assumption SCS. Moreover, assume that

for each vector x∗ ∈ MCP(F, M),

det(∇F (x∗)|INB−MCP(x∗)) 6= 0.

Then, MCP(F, M) has a finite number of elements and

X

x∗∈MCP(F,M)

sign(det(∇F (x∗)|INB−MCP(x∗)) = 1.

Proof: Based on local extension of region M to a smooth manifold and

appropriately extending F on this region such that classical PH can be

applied.
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Relaxing the Regularity Conditions

Corollary Let F : M 7→ Rn be a continuously differentiable function.

Assume that (F, M) satisfies Assumptions SCS and ∀x∗ ∈ MCP(F, M),

det(∇F (x∗)|INB−MCP (x∗)) > 0.

Then, MCP(F, M) has a unique element.

• Assumption (SCS) difficult to establish.

• We relax it for box constrained regions.
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Relaxing SCS

Assumption (Strong Non-degeneracy (SND): Each x∗ ∈ MCP(F ) is

strongly non-degenerate, i.e., det(∇F (x∗)|J) > 0 for all J such that

INB−MCP (x∗) ⊂ J ⊂ IF (x∗).

a
11

a
12

a
n1 ∇F (x)

a
1n

∇F (x)|IF (x)

∇F (x)|INB(x)

Theorem: Assume that (F, M) satisfies Assumption SND. Then,

MCP(F ) has a unique element.

Proof is based on exploiting properties of partial P-matrices.
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Partial P-matrices

Definition: An n× n matrix A is called a P-matrix if the determinant of

each of its principal sub-matrices is positive, i.e. if

det(A|J) > 0, ∀ J ⊂ {1, 2, .., n}.

• P-matrices play an important role in establishing global univalance

of continuous maps (see the celebrated Gale-Nikaido Theorem).

• Weaker than positive definiteness when matrix isn’t symmetric.

Definition: Given an index set I ⊂ {1, 2, .., n} and an n× n matrix A, we

say that A is a partial P-matrix with respect to I if

det(A|J) > 0, ∀ J with I ⊂ J ⊂ {1, 2, .., n}.

• Every P-matrix is a partial P-matrix wrt any I ⊂ {1, .., n}.
• F satisfies Assumption SND if and only if ∇F (x∗)|IF (x∗) is a partial

P-matrix with respect to INB−MCP (x∗) for all x∗ ∈ MCP(F, M).
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Applications

Corollary: Let f : U 7→ R be twice continuously differentiable where

M = [a, b] ⊂ U . Assume that (∇f, M) satisfies Assumption SND, i.e., for

each x ∈ KKT(f, M), we have ∇2f(x)|I∇f (x) is a partial P-matrix wrt

INB(x). Then, KKT(f, M) has a unique element which is the unique

local (global) minimum.

Use our results in recently studied network control models and oligopoly

models of competition:

• Wireless power control in the presence of interference, studied by

Huang-Berry-Honig, 2005.

• Heterogeneous congestion control protocols in a wireline network,

studied by Tang-Wang-Low-Chiang, 2005.

• Cournot equilibrium, studied by Kolstad-Mathiesen, 1987.

• Equilibrium of price competition in the presence of congestion

externalities, studied by Acemoglu-Ozdaglar, 2005.
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Wireless Power Control Problem

• Single-hop power control in the presence of interference.

Model: Let L = {1, 2, ..., n} denote the set of nodes and

P =
Y
i∈L

[Pmin
i , Pmax

i ] ⊂ Rn

denote the set of power vectors p such that each node i ∈ L

transmits at a power level pi.

• Received SINR for each node i, γi : P 7→ R

γi(p) =
pihii

n0 +
P

j 6=i,1≤j≤n pjhji

• The power control problem is:

min
p∈P

f(p) =
�
−
X

1≤i≤n

ui(γi(p))
�
.
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Uniqueness for the Power Control Problem

• The objective function of the power control prob is nonconvex in p.

Proposition: Let

γmin
i = min

p∈P
γi(p), γmax

i = max
p∈P

γi(p),

and assume that each utility function satisfies the following

assumption regarding its coefficient of relative risk aversion:

(A)− γiu′′i (γi)

u′i(γi)
∈ [1, 2], ∀ γi ∈ [γmin

i , γmax
i ].

Then, the power control problem has a unique KKT point.

Proof: Under the given assumptions, show that ∇2f(p)|I∇f (p) is a

P-matrix for all p ∈ KKT (f,P).
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Heterogenous Congestion Control Protocols

Utility-based framework used by Kelly et. al.(1998), Low (1999) to study

homogeneous protocols. We consider the heterogenous model studied by

Tang et al (2005):

• L is the set of links with finite capacities cl, J is the set of protocols,

uj
s(z) denotes utility of user (s, j) from sending z units of traffic.

• The effective price for protocol j on link l is denoted by a function

mj
l (pl). The price observed by a user is qj

s(p).

• The traffic sent by each user is given by

xj
s(p) = argmaxz≥0u

j
s(z)− zqj

s(p).

• yl(p) denotes the total flow on link l and the equilibrium set is given

by

E = {p| p ≥ 0, yl(p) ≤ cl, pl(y
l(p)− cl) = 0 ∀ l ∈ L}

.
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Heterogenous Congestion Control Protocols

Under mild assumptions, E ⊂ P = [0, pmax]. Let Fl(p) = cl − yl(p).

• Tang et al uniqueness argument: Assumptions that guarantee pl > 0

for all p ∈ E (i.e., every link is congested in equilibrium, strong!):

– E is the same as the set of zeros of F over P, and using classical

PH, there is a unique equilibrium if det(∇F (p)) > 0 for each

p ∈ Z = {p | F (p) = 0}.
• Our generalization: Allow for excess capacity (zero price) in

equilibrium (generalized equilibrium):

– E coincides with MCP(F,P). There is a unique equilibrium if

∇F (p)|IF (p) is a partial P-matrix wrt INB(p) for each

p ∈ MCP(F,P).

• Tang et al show conditions on the underlying m and u which is

sufficient for uniqueness (under the assumption that all links are

congested). We show that the same conditions establish uniqueness

in the more general case.
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Conclusions and Future Work

• A generalized PH Theorem for box constrained regions.

• Applications on network optimization, network equilibrium models.

• Relax the regularity assumptions for more general polyhedral

constraints.

• Stability properties of P-matrices.


