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/ Introduction \

e Two Related Problems: Establishing sufficient (local) conditions for:

— uniqueness of stationary points for optimization problems
— uniqueness of solutions of variational inequality problems (e.g.,

uniqueness of pure strategy Nash equilibrium)

e Standard approach is to use (strict) convexity for the optimization

and strict diagonal concavity for the equilibrium problem [Rosen].
e Too restrictive since recent network control models lead to

nonconvex formulations mainly due to two reasons:

— Nonlinear dependencies between control variables,

— Interaction between heterogeneous agents and heterogenous
same/cross layer protocols result in typically nonconvex

equilibrium problems.

e This talk presents differential topology tools to analyze network

\ optimization/equilibrium problems. /
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/ Our Approach \

e Our objective is to establish local conditions around equilibrium

points that imply uniqueness of an equilibrium and show its use in

network models.
e Natural Tool: Index theory of differential topology

e Poincare Hopf (PH) Theorem: relates the local properties of a
vector field (around its zeros) to the topological characteristics of
the underlying region, which is assumed to be a smooth manifold

with boundary under boundary conditions.

e We prove a generalized PH theorem for compact nonsmooth regions
for generalized equilibria without boundary conditions [Alp’s talk
today]|.

e This talk, focus on the special case of “box-constrained regions”.

e Use the PH Theorem:
— for the gradient of the objective function of an opt. problem.
\ — for the function defining the variational inequality problem. /
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/ Intuition for the PH Theorem \

e Consider a 1D smooth non-degenerate function (at all stationary
points z* € K = {z | Vf(z) = 0}, V?f(2*) is nonsingular) which is
increasing at the boundary of its region.

e Observation: (# of local minima of f)= (# of local maxima of f)41:

<
sign(V* f(z)) = 1

zeK
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/Our Generalization for Box Constrained Problems\

o Let M =|[a,b] CR" and F': M — R".
o Mized Complementarity Problem (MCP) is to find x € M s.t. for
each ¢ € {1,..,n}:
T, = a, Fi(x) >0
a; <z < by F;i(x) = 0.
r; = b, Fi(x) <0

N N N
wW NN =
N— N

We denote the set of solutions to (1)-(3) by MCP(F) [a, b]). This set

is equivalent to

— the set of KKT points (for minimization) of f over M when
F=VfFf.

— the solution set for the variational inequality problem defined by
F over M.

\ — the set of “generalized equilibria” of F' over M. /
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/Our Generalization for Box Constrained Problems\

)

Ty

Def: We say that ™ € MCP(F, M) is a complementary solution if

z; = a; implies F;(z*) > 0 and z7 = b; implies F;(z*) <0, i.e. o

JNB-MCEP(*y = I (2*), where I" (z*) = i€ {1,..,n} | Fi(z*) =0
n O

and IVEMCP () = G {1,..n} | a <xf <b
Assumption (SCS): Each x € MCP(F, M) is a complementary solution.

Notation: For an n x n matrix and J C {1,...,n}, let A|; denote the
Kprincipal sub-matrix that contains A*’ with i,j € J. /
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Our Generalization for Box Constrained Problems

Theorem: Let F': M — R"™ be a continuously differentiable function.
Assume that (F, M) satisfies Assumption SCS. Moreover, assume that
for each vector x* € MCP(F, M),
det(VF(x")| nB—mcP (4x)) # 0.
Then, MCP(F, M) has a finite number of elements and
X

Sign(det(VF(CU*)|INB—MCP(£E*)) = 1.
2* €MCP (F,M)
Proof: Based on local extension of region M to a smooth manifold and

appropriately extending F' on this region such that classical PH can be

applied.

\_ /
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Relaxing the Regularity Conditions

Corollary Let F': M — R" be a continuously differentiable function.

Assume that (F, M) satisfies Assumptions SCS and Vz* € MCP(F, M),
det(VF(z")|;NB-mcP(4z+)) > 0.

Then, MCP(F, M) has a unique element.

e Assumption (SCS) difficult to establish.

e We relax it for box constrained regions.

\_ /
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Relaxing SCS

Assumption (Strong Non-degeneracy (SND): Each z* € MCP(F) is
strongly non-degenerate, i.e., det(VF(x™)|s) > 0 for all J such that
INB—MCP<$*) cJC IF(l‘*)

11 12 1in

VF(.’I?) |]NB(Z)

VF(¢)|1F(Z)

nl VF(x)

Theorem: Assume that (F, M) satisfies Assumption SND. Then,
MCP(F') has a unique element.

Proof is based on exploiting properties of partial P-matrices.

/
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Definition: An n X n matrix A is called a P-matriz if the determinant of

Partial P-matrices

each of its principal sub-matrices is positive, i.e. if
det(Als) > 0, vJc{l,2,.,n}.

e P-matrices play an important role in establishing global univalance

of continuous maps (see the celebrated Gale-Nikaido Theorem).
e Weaker than positive definiteness when matrix isn’t symmetric.

Definition: Given an index set I C {1,2,..,n} and an n X n matrix A, we

say that A is a partial P-matrix with respect to I if
det(Als) > 0, VJwith I CJCA{l2,.,n}.
e Every P-matrix is a partial P-matrix wrt any I C {1,..,n}.

e [ satisfies Assumption SND if and only if VF(z")|;r,~) is a partial
P-matrix with respect to INZ~MSF (z*) for all * € MCP(F, M). /

\_
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/ Applications \

Corollary: Let f: U — R be twice continuously differentiable where

M = [a,b] C U. Assume that (V f, M) satisfies Assumption SND, i.e., for
each x € KKT(f, M), we have v2f(33)|IVf(x) is a partial P-matrix wrt
IVB(x). Then, KKT(f, M) has a unique element which is the unique

local (global) minimum.

Use our results in recently studied network control models and oligopoly

models of competition:

e Wireless power control in the presence of interference, studied by
Huang-Berry-Honig, 2005.

e Heterogeneous congestion control protocols in a wireline network,
studied by Tang-Wang-Low-Chiang, 2005.

e Cournot equilibrium, studied by Kolstad-Mathiesen, 1987.

e Equilibrium of price competition in the presence of congestion

\ externalities, studied by Acemoglu-Ozdaglar, 2005. /
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Wireless Power Control Problem

e Single-hop power control in the presence of interference.

Model: Let L = {1,2,...,n} denote the set of nodes and

Y
73 — [P’I:mll’l’ Pimax] C R’)’L

i€L
denote the set of power vectors p such that each node 7 € L

transmits at a power level p;.

e Received SINR for each node 7, v; : P — R

pihii
vi(p) = B2 T
ot jzii<j<n Pl

e The power control problem is:

min flp)= - ui (i(p)) -

\_ /
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Uniqueness for the Power Control Problem

e The objective function of the power control prob is nonconvex in p.

Proposition: Let

Y =miny (p), Y = maxv (p),

and assume that each utility function satisfies the following

assumption regarding its coefficient of relative risk aversion:

(A) = Zre €12, V€ pim A,

wl (V4)
Then, the power control problem has a unique KK'T point.

Proof: Under the given assumptions, show that V2 f(p)|,;v f(p) 1S @
P-matrix for all p € KKT(f,P).

\_ /
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/ Heterogenous Congestion Control Protocols \

Utility-based framework used by Kelly et. al.(1998), Low (1999) to study
homogeneous protocols. We consider the heterogenous model studied by
Tang et al (2005):

e L[ is the set of links with finite capacities ¢;, J is the set of protocols,

u? (%) denotes utility of user (s, j) from sending z units of traffic.

e The effective price for protocol 5 on link [ is denoted by a function

m‘g (p1). The price observed by a user is ¢ (p).

e The traffic sent by each user is given by

zl(p) = argmax, - qul(2) — z¢2 (p).

e y'(p) denotes the total flow on link [ and the equilibrium set is given
by
E={plp>0, v'(p) <c, my'(p) —a) =0V 1€ L}

\_ /
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/ Heterogenous Congestion Control Protocols \

Under mild assumptions, £ C P = [0,p™**]. Let Fi(p) = ¢ — yi(p).

e Tang et al uniqueness argument: Assumptions that guarantee p; > 0
for all p € E (i.e., every link is congested in equilibrium, strong!):
— FE is the same as the set of zeros of F' over P, and using classical
PH, there is a unique equilibrium if det(VF(p)) > 0 for each

peZ=A{p| F(p) =0}
e Our generalization: Allow for excess capacity (zero price) in
equilibrium
— F coincides with MCP(F,P). There is a unique equilibrium if

VF(p)|;r () is a partial P-matrix wrt IV B (p) for each
p € MCP(F,P).

e Tang et al show conditions on the underlying m and u which is
sufficient for uniqueness (under the assumption that all links are
congested). We show that the same conditions establish uniqueness

\ in the more general case. /
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Conclusions and Future Work

e A generalized PH Theorem for box constrained regions.
e Applications on network optimization, network equilibrium models.

e Relax the regularity assumptions for more general polyhedral

constraints.

e Stability properties of P-matrices.




