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Motivation: Communication and Transportation

Networks

• Analysis of resource allocation in the presence of decentralized

information, selfish users/administrative domains.

• Instead of a central control objective, model as a multi-agent

decision problem: Game theory and economic market mechanisms.

• Recent interest: Quantification of efficiency loss, “Price of Anarchy,

Stability” in “user games” as a guarantee on performance in

decentralized and unregulated networked-systems.

• Question: Effects of prices/tolls and investment decisions on

performance when they are set (partly) for profit maximization
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This Paper

• A stylized model of price and capacity competition.

• Implications for timing of capacity and price choices for existence of

equilibrium and efficiency losses in equilibrium.

• Three Main Sets of Results:

1. For a two-stage competition model, where N firms invest in

capacities first, and then compete in prices:

– There exists (a continuum of) pure Oligopoly equilibria.

– The Price of Anarchy (performance for the worst parameter

values of the worst equilibrium) is 0.

– The Price of Stability (performance for the worst parameter

values of the best equilibria) bounded from below by 2
√

N−1
N−1

.

2. A Stackelberg game for implementing the best equilibrium.

3. For a one-stage competition model, where capacities and

prices are chosen simultaneously:

– A pure strategy Oligopoly equilibrium always fails to exist.
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Related Work

• Industrial Organization Literature on Capacity Competition:

– [Kreps and Scheinkman 83], [Davidson and Deneckere 84]: Main

issue whether Bertrand competition yields Cournot outcomes

and implications of the “rationing rule”.

• Price Competition in Congested Networks:

– [Acemoglu and Ozdaglar 05, 06], [Hayrapetyan, Tardos, and

Wexler 05]: Bounds on the extent of inefficiency of unregulated

price competition with congestion externalities.

• Investments and Price Competition:

– [Weintraub, Johari, and Van Roy 06]: One-stage competition

model in the presence of congestion externalities and in a

symmetric environment.

• Today focus on capacity constraints without congestion externalities.
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Model

• N firms competing over capacities and prices for user demand.

• Motivating Example: Service providers operating their own

communication subnetworks.

Reservation utility R

Total flow d

p1, c1

p2, c2

x2

x1

• Interested in allocating d units of aggregate flow (of many “small

users”) between two firms.

• Users have a reservation utility R: they choose the lowest price firm

until its capacity is reached; after this, remaining users allocate their

capacity to second lowest price firm (as long as its price ≤ R); so on.

• Service provider i invests in capacity ci at a cost of γi, and charges a

price pi per unit flow on link i.
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Two-Stage Competition

• Model economy corresponds to the following 3-stage game:

– First, N firms simultaneously choose their capacities.

– Second, having observed the capacities, firms simultaneously

choose their prices.

– Finally, users allocate their demands across the firms.

• We refer to the dynamic game between the firms as price-capacity

competition game.

• Good approximation to a situation in which prices can change at

much higher frequencies than capacities.
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User Demand

Definition: For a given capacity vector c and price vector p ≥ 0, a vector

x∗ ≥ 0 is a flow equilibrium if

x∗ ∈ arg max
0≤xi≤ciPN
i=1 xi≤1

(
NX

i=1

(R− pi) xi

)
. (1)

We denote the set of flow equilibrium at a given p and c by W [p, c].

Proposition: Let c = (c1, ..., cN ) be a capacity vector and p = (p1, ..., pN )

be a price vector. Suppose that for some M ≤ N , we have

p1 < p2 < ... < pM ≤ R < pM+1. Then, there exists a unique flow

equilibrium x ∈ W [p, c] given by

x1 = min{c1, 1},

xm = min

(
cm, max

n
0, 1−

m−1X
i=1

xi

o)
, ∀ 2 ≤ m ≤ M.

For 2 firms; when p1 < p2 ≤ R, the unique flow equilibrium:

x1 = min{c1, 1} and x2 = min{c2, 1− x1}.
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Social Optimum

Definition: A capacity-flow vector (cS , xS) is a social optimum if it is an

optimal solution of the social problem

maximizex≥0, c≥0

NX
i=1

Rxi −
NX

i=1

γici (2)

subject to

NX
i=1

xi ≤ 1,

xi ≤ ci, i ∈ {1, . . . , N}.

The social capacity cS is given as the solution to the following

maximization problem:

cS ∈ arg max
c≥0,

P
ci≤1

(
NX

i=1

(R− γi)ci

)
. (3)
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Price Equilibrium

• Given the price vector of other firms, p−i, the profit of firm i is

Πi[pi, p−i, ci, c−i, x] = pixi − γici,

where x ∈ W [p, c] is a flow equilibrium given p and c.

• We look for the subgame perfect equilibria (SPE) of this game.

Definition: [Price Equilibrium] Given c ≥ 0, a vector [p(c), x(c)] is a pure

strategy Price Equilibrium if x(c) ∈ W [p(c), c] and for all i,

Πi[pi(c), p−i(c), x(c), c] ≥ Πi[pi, p−i(c), x, c], ∀ pi ≥ 0, x ∈ W [pi, p−i(c), c].

A vector [µc, xc(p)] is a mixed strategy Price Equilibrium if µc ∈ BN and

the function xc(p) ∈ W [p, c] for every p, and for all i and µi ∈ B,
Z

[0,R]N
Πi[pi, p−i, x

c(pi, p−i), c]d
�
µc

i (pi)× µc
−i(p−i)

�

≥
Z

[0,R]N
Πi[pi, p−i, x

c(pi, p−i), c]d
�
µi(pi)× µc

−i(p−i)
�
.

We denote set of pure [mixed] price eq. at a given c by PE(c) [MPE(c)].
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Oligopoly Equilibrium

• We next define the SPE of the entire game, focusing on the actions

along the equilibrium path.

• We denote the profits of the mixed strategy price equilibria in the

capacity subgame by

Πi[µ, x(·), c] =

Z

[0,R]N
Πi[p, x(p), c]dµ(p).

Definition: [Oligopoly Equilibrium] A vector [cOE , p(cOE), x(cOE)] is a

(pure strategy) Oligopoly Equilibrium (OE) if [p(cOE), x(cOE)] ∈
PE(cOE) and for all i ∈ {1, ..., N},

Πi[p(cOE), x(cOE), (cOE
i , cOE

−i )] ≥ Πi[µ, x(·), (ci, c
OE
−i )], (4)

for all ci ≥ 0, and for all [µ, x(·)] ∈ MPE(ci, c
OE
−i ). We refer to cOE as

the OE capacity.
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Existence of Pure and Mixed Price Equilibria

We assume without loss of generality that d = 1 and ci > 0 for all i.

• Suppose that
PN

i=1 ci ≤ 1. Then there exists a unique PE in the

capacity subgame [p, x] such that pi = R and xi = ci.

• Suppose that
PN

i=1 ci > 1, and there exists some j withPN
i=1 ci − cj < 1. Then there exists no pure PE, but there exists a

mixed strategy PE.

• Suppose that for each j ∈ {1, ..., N}, PN
i=1 ci − cj ≥ 1. Then, for all

PE [p, x], we have pi = 0 for i ∈ {1, ..., N}, i.e., all firms make

(ex-post) zero profits.

– Capacity subgame: uncapacitated Bertrand price competition.
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Characterization of Mixed Price Equilibria

Denote the (essential) support of µi by [li, ui] and the corresponding

cumulative distributions by Fi

Proposition: Let c be a capacity vector with
PN

i=1 ci > 1, ci > 0 for

i ∈ {1, ..., N} and suppose that there exists j with
PN

i=1 ci − cj < 1. Let

c̄ = maxi=1,...,N ci. Let u = maxi∈{1,2,...,N} ui. For firm j, the expected

profits Πj [µ, x(·), c] are given by

Πj [µ, x(·), c] =

8
<
:

R(1 + c̄−PN
i=1 ci)− γjcj , if Fj has an atom at u,

R(1 + c̄−PN
i=1 ci)

cj

c̄
− γjcj , if Fj has no atom at u.
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Example (Two firms)

Let c = (c1, c2) be a capacity vector with 1 < c1 + c2 < 2, and ci ≤ 1 for

i = 1, 2. Let [µ, x(·)] be a mixed PE in the capacity subgame c. The

expected profits Πi[µ, x(·), c], for i = 1, 2 are given by

Πi[µ, x(·), c] =

8
<
:

R(1− c−i)− γici, if c−i ≤ ci,

R(1−ci)ci
c−i

− γici, if ci ≤ c−i,
.
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Proof of the Proposition

Relies on two lemmas:

Lemma: Let l denote the minimum of the lower supports of the mixed

strategies, i.e., l = mini∈{1,2,...,N} li. Let Pl denote the set of firms whose

lower support is l, i.e., Pl = {i ∈ {1, . . . , N} : li = l}. Then:

(i)
P

i∈Pl
ci > 1.

(ii) For all i ∈ Pl, Fi does not have an atom at l.

Lemma: Let u denote the maximum of the upper supports of the mixed

strategies, i.e., u = maxi∈{1,2,...,N} ui. Let ck ≥ ci, for all i ∈ {1, . . . , N}.
Then:

(i) At most one distribution Fi can have an atom at u.

(ii) If the distribution Fi has an atom at u, then ci = ck.

(iii) The maximum upper support u is equal to R.

Any price in the support yields the same expected profits.
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Existence and Characterization of OE

Proposition: Assume that γi < R for some i. Let k be a firm with the

maximum capacity, i.e., ck ≥ ci for all k ∈ {1, . . . , N}. A capacity vector

c is an OE capacity if and only if
PN

i=1 ci = 1 and

R− γi

2R− γi
· (ci + ck) ≤ ci ≤ ck, (5)

for all i 6= k.

• This implies that there exists a continuum of OE capacities.

• For all 0 ≤ γi ≤ R, the capacity vector c = (1/N, . . . , 1/N) satisfies

the preceding.

Proposition: The price-capacity competition game has a pure strategy

Oligopoly Equilibrium.

For two firms:

R− γi

2R− γi
≤ ci ≤ c−i, equivalently

R− γ1

2R− γ1
≤ c1 ≤ R

2R− γ2
.
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Efficiency Analysis of OE

• Given capacity costs γi, let C({γi}) denote the set of OE capacities.

We define the efficiency metric at some cOE ∈ C({γi}) as

r({γi}, cOE) =

PN
i=1(R− γi)c

OE
iPN

i=1(R− γi)cS
i

,

where cS is a social capacity given γi and the reservation utility R.

• We study:

– The worst performance in a capacity equilibrium [Price of

Anarchy (PoA)];

inf
{0≤γi≤R}

inf
cOE∈ C({γi})

r({γi}, cOE).

– The best performance in a capacity equilibrium [Price of

Stability (PoS)],

inf
{0≤γi≤R}

sup
cOE∈ C({γi})

r({γi}, cOE).
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Efficiency Analysis of OE

The PoA of the price-capacity competition game is 0:

Example: For two firms, let γ1 = R− ε for some 0 < ε < min{1, R},
γ2 = R− ε2:

cS = (1, 0) with surplus S(cS) = ε.

cOE = (
ε

R + ε
,

R

R + ε
) with surplus S(cOE) =

ε2(1 + R)

R + ε
.

Therefore, as ε → 0, the efficiency metric satisfies

lim
ε→0

r({γi}, cOE) = lim
ε→0

ε(1 + R)

R + ε
= 0.
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Efficiency Analysis of OE

Theorem: Consider the price competition game with N firms, N ≥ 2.

Then, for all 0 ≤ γi ≤ R, i = 1, . . . , N , we have

sup
cOE∈ C({γi})

r({γi}, cOE) ≥ 2

√
N − 1

N − 1

i.e., the PoS of the price-capacity competition game is 2 (
√

N−1)
(N−1)

and this

bound is tight.

Example: Let γ1 = δ > 0 and γ2 = (2−√2)R:

cS = (1, 0) with surplus S(cS) = R.

It can be seen that the efficiency metric satisfies

lim
δ→0

r({γi}, cOE) = 2
√

2− 2 ≈ 5

6
.
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Implementation : Stackelberg Leader Game

• To simplify the exposition, we focus on N = 2 firms.

• Consider a four-stage game, where the low-cost firm (say firm 1)

acts as the Stackelberg leader and chooses the its capacity first.

Definition [Stackelberg Equilibrium]: For a given c1 ≥ 0, let BR2(c1)

denote the set of best response capacities for firm 2, i.e.,

BR2(c1) = arg max
c2≥0

[µ,x(·)]∈MP E(c1,c2)

Π2[µ, x(·), c1, c2].

A vector [cSE , p(cSE), x(cSE)] is a (pure strategy) Stackelberg Equilibrium

(SE) if [p(cSE), x(cSE)] ∈ PE(cSE), cSE
2 ∈ BR2(c

SE
1 ), and

Π1[p(cSE), x(cSE), cSE
1 , cSE

2 ] ≥ Π1[µ, x(·), c1, c2],

for all c1 ≥ 0, [µ, x(·)] ∈ MPE(c1, c2), and c2 ∈ BR2(c1).
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Efficiency of Stackelberg Game

Theorem: Suppose that γ1 < γ2 ≤ R. Then there exists a unique pure

strategy Stackelberg equilibrium.

Moreover, for all 0 ≤ γi ≤ R, i = 1, 2, we have

inf
cSE∈ C({γi})

r({γi}, cSE) = sup
cSE∈ C({γi})

r({γi}, cSE) = 2
√

2− 2,

i.e., both the PoA and PoS of the Stackelberg game is 2
√

2− 2 and this

bound is tight.
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Simultaneous Capacity-Price Selection Game

Definition: A vector [c∗, p∗, x∗] is a (pure strategy) one-stage Oligopoly

Equilibrium (OE) if x∗ ∈ W [p∗, c∗] and for all i ∈ {1, ..., N},

Πi[(p
∗
i , p∗−i), x

∗, (c∗i , c∗−i)] ≥ Πi[(pi, p
∗
−i), x, (ci, c

∗
−i)],

for all pi ≥ 0, ci ≥ 0, and all x ∈ W [(pi, p
∗
−i), (ci, c

∗
−i)].

Proposition: Consider N firms playing the one-stage game described

above with N ≥ 2. Given any γi, with 0 < γi < R, i ∈ {1, ..., N}, there

does not exist a one-stage Oligopoly Equilibrium.

Intuition:

• Assume [c∗, p∗, x∗] is a one-stage OE, then
PN

i=1 c∗i = 1 and p∗i = R.

• Consider the case c∗1 = ε for some ε > 0 and the “double deviation”

(cj , pj) = (1, R− δ) for some δ > 0

[R− δ − γj > (R− γj)(1− ε)].
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Congestion in Networks

• Analysis so far focused only on capacity constraints.

• In addition to capacity constraints, a main concern in

communication networks is congestion (source of delay and packet

loss).

• Presence of congestion in particular routes or subnetworks

complicates analysis of equilibria and efficiency both with and

without capacity investments.

– More data or traffic on a particular route exerts a negative

externality on existing data or traffic (e.g. by increasing delay or

probability of packet loss).
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Price Competition with Congestion Externalities

• Outline of results from [Acemoglu, Ozdaglar 05, 06]:

• New Feature: A higher price results in traffic moving to an

alternative route, but also increases congestion there, making it less

attractive.

– New source of markup in oligopolistic competition.

– Greater competition may decrease efficiency.
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Price Competition with Congestion Externalities

- Continued

• Same model except that users utility is

NX
i=1

(R− li(xi)− pi)xi,

where li(xi) is a convex latency function measuring costs of delay

and congestion on link i as a function of link flow xi.

• Notion of pure and mixed Oligopoly equilibrium same as before.

• A flow vector xS is a social optimum if

li(x
S
i ) + xS

i l′i(x
S
i ) = min

j∈I
{lj(xS

j ) + xS
j l′j(x

S
j )}, ∀ i with xS

i > 0.

• (li)
′(xS

i )xS
i : Marginal congestion cost, Pigovian tax.
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Price Characterization with Parallel Links

• Oligopoly Prices: Let (pOE , xOE) be an OE. Then,

pOE
i = (li)

′(xOE
i )xOE

i +

P
j∈Is

xOE
jP

j /∈Is

1
l′j(xOE

j )

• In particular, for two links, the OE prices are given by

pOE
i = xOE

i (l′1(x
OE
1 ) + l′2(x

OE
2 )).

– Increase in price over the marginal congestion cost as a function

of the latency of the other link.

– Reflects the new source of market power because of the

congestion externality.
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Efficiency Bound for Parallel Links (without

Capacity Investments)

• Efficiency metric: Given a set of latency functions {li} and an

equilibrium flow xOE , we define the efficiency metric as

r({li}, xOE) =
R
PI

i=1 xOE
i −PI

i=1 li(x
OE
i )xOE

i

R
PI

i=1 xS
i −

PI
i=1 li(xS

i )xS
i

.

• Theorem: Consider a parallel link network. Then

r({li}, xOE) ≥ 5

6
, ∀ {li}i∈I , xOE ,

and the bound is tight.

• Tight bound irrespective of the number of links and market

structure.
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Future Work

• Studied efficiency of equilibria where firms compete over capacities

and prices.

• Importance of the sequence of decisions.

• Briefly discussed the effects of congestion externalities.

• Extensions to combine congestion costs with investment decisions.

– Existence of (pure strategy) Oligopoly Equilibria with general

latency functions.

– Efficiency properties.


