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Motivation

• Most large-scale communication networks, such as the Internet,

consist of interconnected administrative domains.

• Increasing interest to allow end users to choose routes themselves.

– Selfish Routing

• Administrative domains control the routing of traffic within their

own networks.

• Obvious conflicting interests as a result:

– Users care about end-to-end performance.

– Individual network providers optimize their own objectives.

• The study of routing patterns and performance requires an analysis

of Partially Optimal Routing:

– End-to-end route selection selfish

∗ Transmission follows minimum latency route for each source.

– Network providers route traffic within their own network to

achieve minimum intradomain latency.
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Our Work

• A model of partially optimal routing.

• Implications for equilibrium routing patterns and network

performance.

• Three Main Objectives:

1. Investigate whether partially optimal routing (i.e., the presence

of traffic engineering) improves the overall network performance.

– Relation to Braess’ Paradox

2. Quantify performance losses of partially optimal routing relative

to optimal routing for the overall network:

– Price of Anarchy for partially optimal routing [Pigou],

[Koutsoupias and Papadimitriou], [Roughgarden and Tardos].

3. Understand the choice of routing policy by a single network

provider.
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Model

• A network G = (V, A), with distinguished source and destination

nodes s, t ∈ V .

• P denotes the set of paths from s to t.

• X units of flow are to be routed from s to t.

• Each link j ∈ A has a latency function lj(xj) that represents the

delay as a function of the flow xj on link j.

– Assume lj(xj) is strictly increasing and nonnegative.

• We call the tuple R = (V, A, P, s, t, X, l) a routing instance.
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Socially Optimal Routing

Given a routing instance R = (V, A, P, s, t, X, l):

• We define the social optimum xSO(R), as the optimal solution of:

minimize
X
j∈A

xj lj(xj)

subject to
X

p∈P :j∈p

yp = xj , j ∈ A,

X
p∈P

yp = X, yp ≥ 0, p ∈ P.

• Given a routing instance R and a feasible flow x(R), we denote the

total latency cost at x(R) by:

C(x(R)) =
X
j∈A

xj(R)lj(xj(R)).
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Selfish Routing

• When traffic routes “selfishly,” all paths with nonzero flow must

have the same total delay.

• The Wardrop equilibrium flow, xWE(R), is the unique solution of:

minimize
X
j∈A

Z xj

0

lj(z) dz (1)

subject to
X

p∈P :j∈p

yp = xj , j ∈ A,

X
p∈P

yp = X, yp ≥ 0, p ∈ P.

• It is well-known that a feasible solution xWE of Problem (1) is a

Wardrop equilibrium if and only if
X
j∈A

lj(x
WE
j )(xWE

j − xj) ≤ 0,

for all feasible solutions x of Problem (1).
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Partially Optimal Routing

• Consider a subnetwork inside of G, denoted G0 = (V0, A0).

• Assume first that G0 has a unique entry and exit point, denoted by

s0 ∈ V0 and t0 ∈ V0. P0 denotes paths from s0 to t0.

• We call R0 = (V0, A0, P0, s0, t0) a subnetwork of G : R0 ⊂ R.

• Given an incoming amount of flow X0, the network operator chooses

the routing by:

L(X0) = min
X

j∈A0

xj lj(xj)

s.t.
X

p∈P0:j∈p

yp = xj , j ∈ A0,

X
p∈P0

yp = X0, yp ≥ 0, p ∈ P0.

• Define l0(X0) = L(X0)/X0 as the effective latency of POR in the

subnetwork R0.
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POR Flows

• Given a routing instance R = (V, A, P, s, t, X, l), and a subnetwork

R0 = (V0, A0, P0, s0, t0) defined as above, we define a new routing

instance R′ = (V ′, A′, P ′, s, t, X, l′) as follows:

V ′ = (V \ V0)
[
{s0, t0};

A′ = (A \A0)
[
{(s0, t0)};

• l′ = {lj}j∈A\A0

S{l0}.
• We refer to R′ as the equivalent POR instance for R with respect to

R0.

• The overall network flow in R with partially optimal routing in R0,

xPOR(R, R0), is defined as:

xPOR(R, R0) = xWE(R′).
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Performance of Partially Optimal Routing
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• Selfish Routing: Link flows xWE
1 = 0.94 and XWE

0 = 0.92, with a

total cost of C(xWE(R)) = 4.19.

• Partially Optimal Routing: Link flows xPOR
1 = 1 and XPOR

0 = 1,

with a total cost of C(xPOR(R)) = 4.25,
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Braess Paradox and POR Paradox

• Braess’ Paradox: Consider a routing instance R = (V, A, P, s, t, X, l).

We say that Braess’ paradox occurs in R if there exists another

routing instance Rm = (V, A, P, s, t, X,m), with a vector of strictly

increasing, nonnegative latency functions, m = (mj , j ∈ A), such

that mj(xj) ≤ lj(xj) for all xj ≥ 0 and

C(xWE(Rm)) > C(xWE(R)).

• POR Paradox: Consider a routing instance R = (V, A, P, s, t, X, l),

and a subnetwork R0 = (V0, A0, P0, s0, t0). We say that the POR

paradox (partially optimal routing paradox) occurs in R with respect

to R0 if

C(xPOR(R, R0)) > C(xWE(R)).
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Main Result

• Proposition: Consider a routing instance R = (V, A, P, s, t, X, l) and

a subnetwork R0 = (V0, A0, P0, s0, t0) ⊂ R. Assume that the POR

paradox occurs in R with respect to R0. Then Braess’ paradox

occurs in R.

– Proof Idea: Uniformly lower the latency functions in the

subnetwork R0, such that the Wardrop effective latency of R0 is

given by l0 (the effective latency of optimal routing within R0).

• Corollary: Given a routing instance R, if Braess’ paradox does not

occur in R, then partially optimal routing with respect to any

subnetwork always improves the network performance.

– Milchtaich has shown that Braess’ paradox does not occur in

directed graphs where the underlying undirected graph has a

series-parallel structure.

– For a network with serial-parallel links, partially optimal routing

always improves the overall network performance.
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Price of Anarchy for Partially Optimal Routing

• Investigate the worst case efficiency loss of partially optimal routing

with respect to socially optimal routing.

• We first recall the following key results in the analysis of selfish

routing:

• Proposition [Roughgarden-Tardos (2002)]:

(a)

inf
R∈Rconv

C(xSO(R))

C(xWE(R))
= 0.

(b) Consider a routing instance R = (V, A, P, s, t, X, l) where lj is an

affine latency function for all j ∈ A. Then,

C(xSO(R))

C(xWE(R))
≥ 3

4
.

Furthermore, the bound above is tight.
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Price of Anarchy for Partially Optimal Routing

• Proposition:Let R′ denote a set of routing instances.

inf
R∈R′
R0⊂R

C(xSO(R))

C(xPOR(R, R0))
≤ inf

R∈R′
C(xSO(R))

C(xWE(R))
.

inf
R∈Raff

R0⊂R

C(xSO(R))

C(xPOR(R, R0))
≥ inf

R∈Rconc

C(xSO(R))

C(xWE(R))
.

• Theorem:

(a)

inf
R∈Rconv

R0⊂R

C(xSO(R))

C(xPOR(R, R0))
= 0.

(b) Consider a routing instance R = (V, A, P, s, t, X, l) where lj is an

affine latency function for all j ∈ A; and a subnetwork R0 of R.

C(xSO(R))

C(xPOR(R, R0))
≥ 3

4
.

Furthermore, the bound above is tight.



Lab. Information & Decision Systems, MIT'

&

$

%

Price of Anarchy for Partially Optimal Routing

• Proof of part (b): The proof relies on the following two results:

• Lemma: Assume that the latency functions lj of all the links in the

subnetwork are nonnegative affine functions. Then, the effective

latency of POR, l0(X0), is a nonnegative concave function of X0.

• Proposition: Let R ∈ Rconc be a routing instance where all latency

functions are concave. Then,

C(xSO(R))

C(xWE(R))
≥ 3

4
.

Furthermore, this bound is tight.
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Price of Anarchy for Partially Optimal Routing

Proof of Proposition: From variational inequality representation of WE,

for all feasible x, we have

C(xWE) =
X
j∈A

xWE
j lj(x

WE
j ) ≤

X
j∈A

xj lj(x
WE
j )

=
X
j∈A

xj lj(xj) +
X
j∈A

xj(lj(x
WE
j )− lj(xj)).

For all feasible x, we have

xj(lj(x
WE
j )− lj(xj)) ≤ 1

4
xWE

j lj(x
WE
j ).
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Bounds for Polynomial Latency Functions

• Given a class of latency functions L, we define:

β(L) = sup
l∈L, x≥0

β(l, x),

β(l, x) = max
z≥0

(l(x)− l(z))z

l(x)x
,

• Intuitively β is measure of the steepness of a class of latency

functions: β(Laff ) = 0.25, β(Lquad) = 0.385.

• Theorem: Let Ld be a class of nonnegative polynomial latency

functions of degree d. Consider a routing instance

R = (V, A, P, s, t, X, l) with lj ∈ Ld for all j ∈ A, and a subnetwork

R0 of R. Then,

C(xSO(R))

C(xPOR(R, R0))
≥ (1− β(Ld)).

Furthermore, the bound above is tight.
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Bounds for Polynomial Latency Functions

• Lemma: Let R0 = (V0, A0, P0, s0, t0) be a subnetwork with

polynomial latency functions of degree d. Then the effective latency

l0(X0) is given by

l0(X0) = inf
y∈Y

{f(X0, y)},

where Y is a nonempty compact set, f(X0, y) is a cont. function of

y, and ∀ y ∈ Y, f(·, y) is a nonneg. polynomial of degree d.

• Lemma: Let Ls be a class of nonnegative latency functions which is

closed under scaling by a constant k ≤ 1. Let

lj(x) = inf
z∈Zj

{f(x, z)}, ∀ j ∈ A,

where Zj is a compact set; for each x, f(x, ·) is a continuous

function of z; and for each z ∈ Zj , f(·, z) ∈ Ls. Then:

C(xSO(R))

C(xWE(R))
≥ (1− β(Ls)).
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Subnetworks with Multiple Entry-Exit Points

• Even for linear latencies, efficiency loss of partially optimal routing

can be arbitrarily high.

5 5
l (x )

1 1
l (x ) 3 3

l (x )

2 2
l (x ) = ax

2

x
5

4 4
l (x ) = bx

4

A

B C

D

z units

1 unit

(1 + z) units

= 0 = 0

=

• Social Optimum: xSO = (0, 1
1+a

, 1
1+a

, z, a
1+a

).

• POR: xPOR = ( 1−bz
1+b

, 0, 0, 1+z
1+b

, b+bz
1+b

).

• For a fixed b > 0, as a → 0 and z → 0,

C(xSO) → 0, C(xPOR) → b

1 + b
> 0,
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Subnetwork Performance: Traffic Engineering

• We consider a model where a subnetwork can choose a routing

policy to achieve the minimum latency within its subnetwork.
l (x ) = 1
1 1

l (x ) = x
2 2 2

2

l (x ) = c
3 3

1 unit

• Selfish Routing:
√

c units of traffic is routed through the

subnetwork, leading to a total cost of C(xWE) = c, and a

subnetwork cost of CG0(x
WE) = c

√
c.

• POR: Entire traffic is routed through the subnetwork, leading to

C(xPOR) = CG0(x
POR) = 1− 2

3
√

3
.

• For c
√

c < 1− 2

3
√

3
, we have

CG0(x
POR) > CG0(x

WE).
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Traffic Engineering for Parallel Link Topology

• Consider a network consisting of parallel links with d units of traffic.

• Suppose there are N + 1 providers each owning a subset of links.

• Consider a local (“partial equilibrium”) analysis for the routing

choice within subnetwork 0.

• Represent network provider i, for i = 1, . . . , N , by a single link with

effective latency li (reflecting the intradomain routing policy of i)

• l0: effective latency of optimal routing within subnetwork 0.

• l̃0: effective latency of selfish routing within subnetwork 0.

• The routing policy choice of provider 0 can be parametrized by

δ ∈ [0, 1], leading to an effective latency of

m0 (x, δ) = (1− δ) l0 (x) + δl̃0 (x) .
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Traffic Engineering for Parallel Link Topology

• lR(x): effective latency of Wardrop routing x units on links 1, . . . , N .

• The optimization problem of subnetwork 0 then is:

min0≤x0≤d,δ∈[0,1]

h
(1− δ)l0(x0) + δl̃0(x0)

i
x0

s.t. (1− δ) l0 (0) + δl̃0 (0) ≥ lR (d) , if x0 = 0;

(1− δ) l0 (d) + δl̃0 (d) ≤ lR (0) , if x0 = d;

(1− δ) l0 (x0) + δl̃0 (x0) = lR (d− x0) , if 0 < x0 < d.

• If l̃0(0) ≥ lR(d), optimal solution is δ = 1, x0 = 0.

• If l̃0(d) ≤ lR(0), optimal solution is δ = 0, x0 = d.

• Otherwise, the optimization problem for subnetwork 0 reduces to:

min
x0∈[xMIN

0 ,xMAX
0 ]

min
n

x0lR(d− x0), dl0(d)
o

where

l̃0(x
MIN
0 ) = lR(d− xMIN

0 ); l0(x
MAX
0 ) = lR(d− xMAX

0 ).
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Conclusions

• First extension of the classical traffic routing models to capture

traffic engineering.

• Interesting global and subnetwork performance results.

• Extensions to subnetworks with multiple entry-exit points.

• General equilibrium analysis for subnetwork routing policy choice.

• Other objectives for subnetworks: profit maximization.


