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Motivation \

Most large-scale communication networks, such as the Internet,

consist of interconnected administrative domains.

Increasing interest to allow end users to choose routes themselves.

— Selfish Routing

Administrative domains control the routing of traffic within their
own networks.

Obvious conflicting interests as a result:

— Users care about end-to-end performance.

— Individual network providers optimize their own objectives.

The study of routing patterns and performance requires an analysis
of Partially Optimal Routing:

— End-to-end route selection selfish

* Transmission follows minimum latency route for each source.

— Network providers route traffic within their own network to

achieve minimum intradomain latency. /
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Our Work

e A model of partially optimal routing.

e Implications for equilibrium routing patterns and network

performance.

e Three Main Objectives:

1. Investigate whether partially optimal routing (i.e., the presence
of traffic engineering) improves the overall network performance.
— Relation to Braess’ Paradox

2. Quantify performance losses of partially optimal routing relative
to optimal routing for the overall network:
— Price of Anarchy for partially optimal routing [Pigou],

|[Koutsoupias and Papadimitriou], [Roughgarden and Tardos].

3. Understand the choice of routing policy by a single network

provider.

\_ /
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Model

A network G = (V, A), with distinguished source and destination
nodes s,t € V.

P denotes the set of paths from s to .
X units of flow are to be routed from s to t.

Each link j € A has a latency function [;(z;) that represents the

delay as a function of the flow z; on link j.

— Assume [;(x;) is strictly increasing and nonnegative.

We call the tuple R = (V, A, P, s,t, X, 1) a routing instance.

~
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Socially Optimal Routing

Given a routing instance R = (V, A, P, s,t, X, 1):

e We define the social optimum x°“(R), as the optimal solution of:

X
minimize zil;(x;)
JEA
X
subject to Yp = Tj, J E A,
peEP:j€D
Yp =X, yp =20, peh
pEP

e Given a routing instance R and a feasible flow x(R), we denote the

total latency cost at x(R) by:

\_ /
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/ Selfish Routing \

e When traffic routes “selfishly,” all paths with nonzero flow must

have the same total delay.

e The Wardrop equilibrium flow, x"V ¥ (R), is the unique solution of:

<% s
minimize Li(z) dz (1)
jea O
X
subject to Yp = Tj, J E A,
pEP:jeEp
X
Yp =X, Yp=20, pePl
peP

o It is well-known that a feasible solution x"V'* of Problem (1) is a

Wardrop equilibrium if and only if

> WE WE
iy 7 )(wy ~ — ;) <0,

J
JjEA

\ for all feasible solutions x of Problem (1). /
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/ Partially Optimal Routing \

e Consider a subnetwork inside of GG, denoted Go = (Vb, Ao).

e Assume first that Go has a unique entry and exit point, denoted by

so € Vo and tg € V. Py denotes paths from sg to tg.
e We call Ry = (Wb, Ao, Po, so,to) a subnetwork of G : Ry C R.

e Given an incoming amount of flow X, the network operator chooses

the routing by:

X
L(Xo) — min ZL‘jlj(SUj)
JEAQ
s.t. Yp = T, J € Ao,
pEPy:jEP
>
Yp = Xo, yp > 0, p€ F.
pe Py

e Define Io(Xo) = L(Xo)/Xo as the effective latency of POR in the

\ subnetwork Rj. /
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POR Flows

Given a routing instance R = (V, A, P, s,t, X, 1), and a subnetwork
Ro = (Wb, Ao, Po, so, to) defined as above, we define a new routing
instance R = (V', A", P',s,t, X,1") as follows:

L
Vi=(V\Vo) {so,to};

L
A= (A\ Ao)  {(s0,t0)};

S
' ={l;}jeaa, {lo}

We refer to R’ as the equivalent POR instance for R with respect to

Ro.

The overall network flow in R with partially optimal routing in Rp,

xT"9R(R, Ry), is defined as:

XPOR(R, RO) _ XWE(R/)

~

/
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/ Performance of Partially Optimal Routing \

1unit —

(b) (c)

e Selfish Routing: Link flows ' * = 0.94 and XJ"* = 0.92, with a
total cost of C(x"V*(R)) = 4.19.

e Partially Optimal Routing: Link flows z] % =1 and X9 =1,
with a total cost of C(x"°%(R)) = 4.25, /
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Braess Paradox and POR Paradox

e Braess’ Paradox: Consider a routing instance R = (V, A, P, s,t, X, 1).
We say that Braess’ parador occurs in R if there exists another
routing instance R,, = (V, A, P,s,t, X, m), with a vector of strictly
increasing, nonnegative latency functions, m = (m;,j € A), such
that m;(z;) < l;(z;) for all z; > 0 and

C(x" " (Bm)) > C(x" " (R)).

e POR Paradox: Consider a routing instance R = (V, A, P, s,t, X, 1),
and a subnetwork Ry = (Vp, Ao, Po, so,to). We say that the POR
paradoz (partially optimal routing paradox) occurs in R with respect
to Ry if

C(x"°"(R,Ro)) > C(x"*(R)).

\_ /
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/ Main Result \

e Proposition: Consider a routing instance R = (V, A, P, s,t, X,1) and
a subnetwork Ry = (Vb, Ao, Po, so,to) C R. Assume that the POR

paradox occurs in R with respect to Rg. Then Braess’ paradox

occurs in R.

— Proof Idea: Uniformly lower the latency functions in the
subnetwork Rp, such that the Wardrop effective latency of Ry is
given by lp (the effective latency of optimal routing within Rp).

e Corollary: Given a routing instance R, if Braess’ paradox does not
occur in R, then partially optimal routing with respect to any

subnetwork always improves the network performance.

— Milchtaich has shown that Braess’ paradox does not occur in
directed graphs where the underlying undirected graph has a

sertes-parallel structure.

— For a network with serial-parallel links, partially optimal routing
\ always improves the overall network performance. /
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Price of Anarchy for Partially Optimal Routing

e Investigate the worst case efficiency loss of partially optimal routing

with respect to socially optimal routing.

e We first recall the following key results in the analysis of selfish
routing:

e Proposition [Roughgarden-Tardos (2002)]:

(a)
L CESOR)
RERconv C(XWE(R))
(b) Consider a routing instance R = (V, A, P, s,t, X,1) where [; is an
affine latency function for all 7 € A. Then,

C(x*?(R))
C(x"VE(R))

= 0.

>3
— 4

Furthermore, the bound above is tight.

\_ /
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/ Price of Anarchy for Partially Optimal Routing\

e Proposition:Let R’ denote a set of routing instances.

inf C(XSO (R)) < inf C(XSO (7))
rer’ C(xPOE(R,Rp)) ~ ReR! C(XWE(R)).
R()CR

inf C<XSO (1) > inf C<XSO (R))

reraff C(xPOR(R, Ro)) — Rereone C(xWE(R))
RogCR
e Theorem:
(a) o
inf Clx"_(R)) = 0.
Rgozé‘;’;’“ C(XPOR(R, Ro))

(b) Consider a routing instance R = (V, A, P, s, t, X, 1) where [, is an
affine latency function for all 7 € A; and a subnetwork Ry of R.

C(x>?(R))
C(x"%(R, Ro))

\ Furthermore, the bound above is tight. /

>3
— 4
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Price of Anarchy for Partially Optimal Routing

e Proof of part (b): The proof relies on the following two results:

e Lemma: Assume that the latency functions [; of all the links in the
subnetwork are nonnegative affine functions. Then, the effective

latency of POR, lo(Xo), is a nonnegative concave function of Xp.

e Proposition: Let R € R°"° be a routing instance where all latency

functions are concave. Then,

C(x>?(R))
C(x"E(R))

>

W~ | QO

Furthermore, this bound is tight.
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/ Price of Anarchy for Partially Optimal Routing\

Proof of Proposition: From variational inequality representation of WE,

for all feasible x, we have
X X

CVEy =" dWELEVEY < T 4l
o icA
ic =< =< -
= lej(xj)‘i‘ xj(lj(xj ) l.?(x]))
JEA JEA

For all feasible x, we have

zi (i (2} ) — 1i(x;)) < 22 P12V P).
A

(XVE) /o




Lab. Information & Decision Systems, MIT

/ Bounds for Polynomial Latency Functions \

e Given a class of latency functions £, we define:

B(L)= sup B, ),

lelL, x>0

/B(ZJ x) — max (l(x) . l(z))z

2>0 l(x)x

e Intuitively [ is measure of the steepness of a class of latency
functions: B(L£*7) =0.25, B(L£L1**%) = 0.385.

e Theorem: Let L4 be a class of nonnegative polynomial latency
functions of degree d. Consider a routing instance
R=(V,A,P,s,t, X,1) with [; € L4 for all j € A, and a subnetwork
Ry of R. Then,

C(x*?(R))
C(xPOR(R, Ry)) > (1= B(La)).

\ Furthermore, the bound above is tight. /
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/ Bounds for Polynomial Latency Functions \

e Lemma: Let Ry = (Vb, Ao, Po, So,to) be a subnetwork with
polynomial latency functions of degree d. Then the effective latency

lo(Xo) is given by
lo(Xo) = inf {f(Xo,y)},
yey
where ) is a nonempty compact set, f(Xo,y) is a cont. function of
y,and Vy € Y, f(-,y) is a nonneg. polynomial of degree d.

e Lemma: Let £, be a class of nonnegative latency functions which is
closed under scaling by a constant £ < 1. Let

li(z) = inf {f(z,2)}, Vje€A,
where Z; is a compact set; for each x, f(x,-) is a continuous
function of z; and for each z € Z;, f(-,2) € Ls. Then:

C(x>?(R))
C(x"H(R))

> (1= pB(Ls)).
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Subnetworks with Multiple Entry-Exit Points \

e Even for linear latencies, efficiency loss of partially optimal routing

can be arbitrarily high.

_ B I4()(4) = bX4 C
Z units

— =  (1+2) units

1(x) =0

A

1 unit %

14+a’ 1—|—a7z’ 1+a /"

. .POR __ [1—b 1+2 b+b
e POR: x —(1_|_bz,0,07 1_|_27 1_|_bz).

1 1 a )

e Social Optimum: z°° = (0,

e For a fixed b >0, as a — 0 and z — 0,

C(z°?) — 0, C(z"°") - — >0,
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/ Subnetwork Performance: Traffic Engineering \

e We consider a model where a subnetwork can choose a routing

policy to achieve the minimum latency within its subnetwork.

Il(xl):l
lunit — @ o —

e Selfish Routing: +/c units of traffic is routed through the
subnetwork, leading to a total cost of C(x"V*) = ¢, and a
subnetwork cost of Cg,(x"V'?) = cy/c.

e POR: Entire traffic is routed through the subnetwork, leading to

C(XPOR) — CGO (XPOR) —1— %

e For c\/c < 1—%,\7&76 have

CGO (XPOR) > CGO (XWE)

\_ /
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Traffic Engineering for Parallel Link Topology

e Consider a network consisting of parallel links with d units of traffic.
e Suppose there are N 4+ 1 providers each owning a subset of links.

e Consider a local (“partial equilibrium”) analysis for the routing

choice within subnetwork 0.

e Represent network provider ¢, for ¢ = 1,..., N, by a single link with

effective latency [; (reflecting the intradomain routing policy of )
e [o: effective latency of optimal routing within subnetwork 0.
e l: effective latency of selfish routing within subnetwork 0.

e The routing policy choice of provider 0 can be parametrized by

0 € [0, 1], leading to an effective latency of

mo (z,68) = (1 — &) lo (z) + dlo (z) .

/
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/ Traffic Engineering for Parallel Link Topology \

o [r(x): effective latency of Wardrop routing « units on links 1,..., N.

e The optimization problem of sugnetwork 0 then is: i

min0§x0§d75€[0,1] (1 — 5)l0 (:Co) —+ 5[0(:170) Io
s.t. (1—0)1o(0)+6lp(0) > Ir(d), ifxzo=0;
(1—=0)1lo(d)+8lo(d) < Ir(0), ifxzo=d;

(1 — 5) lo (ibo) + 5?0 (.CE())

ZR(d—ZEQ), if 0 < g < d.

e If Io(0) > Ir(d), optimal solution is § = 1, zp = 0.
o If lo(d) < Ir(0), optimal solution is § = 0, o = d.

e Otherwise, the optimization problem for subnetwork 0 reduces to:
N O

min min xolr(d — xo), dlo(d)
é\JIN,a:MAX]

xoElx o
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Conclusions
First extension of the classical traffic routing models to capture
traffic engineering.
Interesting global and subnetwork performance results.
Extensions to subnetworks with multiple entry-exit points.
General equilibrium analysis for subnetwork routing policy choice.

Other objectives for subnetworks: profit maximization.

~

/




