Lab. Information € Decision Systems, MIT

4 N

A UNIFYING FRAMEWORK FOR DUALITY
AND MINIMAX

DIMITRI BERTSEKAS, ANGELIA NEDIC, ASUMAN OZDAGLAR

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPT.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

November 19, 2002




Lab. Information € Decision Systems, MIT

-

N

Motivation \

e Minimax Theory: Given ¢ : X x Z +— R, where X C R", Z C ™,

under what conditions do we have

SuszZ inf-’IJEX ¢($, Z) — infchX SuszZ ¢($, Z) ?

e Optimization Duality: Consider the problem

minimize  f(x)

subject to =z € X, g;(x) <0, j=1,...,r

Define the Lagrangian function : L(z,p) = f(z) + >_7_; p;g;(z).
fF=infyex Sup,,>o L(:C, :u)
¢" = sup,>g q(u)

= SUp,,>¢ infzex L(z, 1)

e All of (convex/concave) minimax theory and duality theory can be
developed in terms of simple geometry of convex sets! (Need
machinery from convex analysis) /
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Min Common/Max Crossing Problems

Let M be a nonempty subset of R"**

e Min Common Point Problem: Consider all vectors that are common
to M and the (n + 1)st axis. Find one whose (n + 1)st component is

minimuin.

e Max Crossing Point Problem: Consider nonvertical hyperplanes that
contain M in their “upper” closed halfspace. Find one whose

crossing point of the (n + 1)st axis is maximum.
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Weak Duality

Optimal value of the min common problem:

* .
w” = nf (g, w)yem w.

Focus on hyperplanes with normals (u, 1) whose crossing point £

satisfies
£ <w+ plu, V (u,w) € M.

Maximum crossing level over all hyperplanes with normal (u, 1) is
q(n) = infy wyem{w + p'u}

Max crossing problem: maximize q(u)

subject to u € R".

Note that for all (u,w) € M and p € R,
q(/_j,) = inf(u,w)eM{w + /J,/’U,} S inf(o,w)eM w = ’w*,

sup,,>o q(p) = ¢" < w’.

~

/
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/ Strong Duality \

Question: Under what conditions do we have ¢* = w™ and the supremum

in the max crossing problem is attained?
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Duality Theorems

e Assume that w™ is finite and that the set
M = {(u,w) | 3 @ with @ < w and (u,w) € M}
1S convex.
e Min Common Max Crossing Theorem I: We have ¢* = w™ if and

only if for every sequence {(ux,wr)} C M with ux — 0, we have

w* < liminfy_ oo Wk.
A

*
\J
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Problem

exists a vector p € R™ such that q(u) = ¢~.

optimum of the max crossing problem.

S

N\

/ Attainment of Optimum in Max Crossing \

e Min Common Max Crossing Theorem II: Assume that the set
D = {u | there exists w € R with (u,w) € M}

contains the origin in its relative interior. Then ¢* = w™ and there

e Min Common Max Crossing Theorem III: Involves polyhedral

assumptions and guarantees ¢© = w™ as well as attainment of the

¥

/
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/ Minimax Problems

e Given ¢ : X x Z — R, where X C R", Z C R™, under what

conditions do we have

SUp, ¢, infeex ¢(x,2) = infoex sup,c, ¢(z,2) 7

e Introduce the p: R — [—00, 0]
p(u) = infeex sup,c 4 {¢p(x, z) — u'z}, u € R™.

e Apply min common/max crossing framework with M =epi(p).

inf x sup z ¢ (x,2)
= min common
value w”

sup 7 infx 04K7)

. = max crossing
sup z infx ¢ (X,Z\ value q*
= max crossing

value q

inf x sup z ¢ (x,2)
= min common
value w"

Y

Y

e Note that w* = inf.ecx sup,c, ¢(z, 2).

— Convexity in x implies M is a convex set.

K — Concavity /semicont. in z implies ¢* = sup, ., infzex ¢(z, 2).
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Minimax Theorems

— X and Z are convex and p(0) = inf,ex sup,c, ¢(z, 2) is finite.
— For each z € Z, the function ¢(-, z) is convex.

— For each z € X, the function —¢(x,-) is closed and convex.

e Minimax Thm. I: The minimax equality holds iff the function p is

lower semicontinuous at v = 0.

e Minimax Thm. II: If 0 lies in the relative interior of dom(p), then
the minimax equality holds and the supremum in

sup, ¢, infeex ¢(z, 2) is attained by some z € Z.

— Proofs by applying min common max crossing theorems to the

set

M = epi(p).

N /
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/ Conditions for Attaining the Minimum \

1. X and Z are convex and p(0) = infzex sup,, ¢(z, 2) < oo.

2. For each x € X, the function r;(z2) = —¢(x, 2) if z € Z, and oo

otherwise, is closed and convex.

3. For each z € Z, the function t,(x) = ¢(x,2) if x € X, and o

otherwise, is closed and convex.

4. The set of common directions of recession of all the functions t.,
z € Z, consists of the zero vector only.

e Then, the minimax equality holds, and the infimum over X is
attained at a compact set of points.

e Special cases of Condition 4:
— X is compact.

— Jdascalar v and Z € Z s.t. the level set {x € X | ¢(z,2z) < v} is

\ nonempty and compact. /
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/ Saddle Point Theorem \

1. X and Z are convex and either —oco < sup, ., infzex ¢(z,2), or
infrex sup, ¢, ¢, 2) < oco.

2. For each x € X, the function r;(z) is closed and convex, and the
set of common directions of recession of all the functions r.,
x € X, consists of the zero vector only.

3. For each z € Z, the function ¢.(z) is closed and convex, and the
set of common directions of recession of all the functions ¢.,
z € Z, consists of the zero vector only.

e Then, the minimax equality holds, and the set of saddle points of ¢
is nonempty and compact.

e Special cases:
— X and Z are compact.

— Z is compact, and d a scalar v and z € Z such that the level set

\ {x € X | ¢(x,z) <~} is nonempty and compact. /
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/ Optimization Duality

e (Consider the (optimal value f*)

minimize  f(x)

subject to x € C, gj(x) <0, j=1,...,r,
where C' is a convex set, f and g; are convex over C.

e (Consider also (optimal value q*)

maximize  q(p) = infreo { F(#) + X, 1i0;(x) |
subject to > 0.

Main Question: Under what conditions do we have

e (Question can be addressed using min common max crossing

\ framework.
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Nonlinear Farkas’ Lemma \
e Let C be convex, and f and the g; be convex functions. Assume that
f(z) >0, Vee F={xeC|g(x) L0},

and one of the following conditions holds:

1. 0 is in the relative interior of the set
D ={u| g(x) < u for some x € C'}.

2. The functions g;, j = 1,...,r are affine, and F' Nri(C) # (.
e Then, there exist scalars u; >0, j =1,...,r, such that
fl@)+) wigi(z") >0, VzeC
71=1

— Reduces to Farkas’ Lemma if C = R", and f, g; linear.

— Proofs by applying min common max crossing theorems to

M = {(u,w) | thereis x € C s.t. g(x) < u, f(x) < w}.
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Application to Convex Programming

e Consider the problem (optimal value f*, assumed finite)

minimize  f(x)

subject to xz € C, g;(x) <0, j=1,...,7,

where C' is convex, f and g; are convex over C.

o Apply Farkas’ Lemma. There exist p; > 0 such that
P f@) 4+ ) pigi(z), Vazel.
j=1

Since F' C C and pjg;(x) <0 forall z € F,

rEeF

f* < int {f(a:) 3 u;gj<as>} < inf f(z) = f".
=
Thus equality holds throughout above, and we have

f* = inf {f(@) + " g@)} = q(u").

~




Lab. Information € Decision Systems, MIT

4 N

Reference

Convex Analysis and Optimization,

Dimitri Bertsekas, with Angelia Nedic and Asuman Ozdaglar.

e To be published January 2003.
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— Min Common/Max Crossing Duality
— Existence of Solutions and Strong Duality
— Pseudonormality and Lagrange Multipliers

— Incremental Subgradient Methods




