PARTIALLY OPTIMAL ROUTING

Asu Ozdaglar

Daron Acemoglu and Ramesh Johari
Dept. of Economics, MIT and Dept. of MS&E, Stanford

September, 2006

Electrical Engineering and Computer Science Dept.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Motivation

- Most large-scale communication networks, such as the Internet, consist of interconnected administrative domains.
- Increasing interest to allow end users to choose routes themselves.
 - Selfish Routing
- Administrative domains control the routing of traffic within their own networks.
- Obvious conflicting interests as a result:
 - Users care about end-to-end performance.
 - Individual network providers optimize their own objectives.
- The study of routing patterns and performance requires an analysis of Partially Optimal Routing:
 - End-to-end route selection selfish
 - Transmission follows minimum latency route for each source.
 - Network providers route traffic within their own network to achieve minimum intradomain latency.
Our Work

- A model of partially optimal routing.
- Implications for equilibrium routing patterns and network performance.
- Three Main Objectives:
 1. Investigate whether partially optimal routing (i.e., the presence of traffic engineering) improves the overall network performance.
 - Relation to Braess’ Paradox
 2. Quantify performance losses of partially optimal routing relative to optimal routing for the overall network:
 - Price of Anarchy for partially optimal routing [Pigou], [Koutsoupias and Papadimitriou], [Roughgarden and Tardos].
 3. Understand the choice of routing policy by a single network provider.
Model

- A network $\mathcal{G} = (V, A)$, with distinguished source and destination nodes $s, t \in V$.
- P denotes the set of paths from s to t.
- X units of flow are to be routed from s to t.
- Each link $j \in A$ has a latency function $l_j(x_j)$ that represents the delay as a function of the flow x_j on link j.
 - Assume $l_j(x_j)$ is strictly increasing and nonnegative.
- We call the tuple $R = (V, A, P, s, t, X, l)$ a routing instance.
Socially Optimal Routing

Given a routing instance $R = (V, A, P, s, t, X, l)$:

- We define the social optimum $x^{SO}(R)$, as the optimal solution of:

$$\text{minimize} \sum_{j \in A} x_j l_j(x_j)$$
subject to
$$\sum_{p \in P : j \in p} y_p = x_j, \quad j \in A,$$
$$\sum_{p \in P} y_p = X, \quad y_p \geq 0, \quad p \in P.$$

- Given a routing instance R and a feasible flow $x(R)$, we denote the total latency cost at $x(R)$ by:

$$C(x(R)) = \sum_{j \in A} x_j(R) l_j(x_j(R)).$$
Selfish Routing

• When traffic routes “selfishly,” all paths with nonzero flow must have the same total delay.

• The Wardrop equilibrium flow, $x^{WE}(R)$, is the unique solution of:

$$\begin{align*}
\text{minimize} & \quad \sum_{j \in A} \int_0^{x_j} l_j(z) \, dz \\
\text{subject to} & \quad \sum_{p \in P: j \in p} y_p = x_j, \quad j \in A, \\
& \quad \sum_{p \in P} y_p = X, \quad y_p \geq 0, \quad p \in P.
\end{align*}$$ \hspace{1cm} (1)

• It is well-known that a feasible solution x^{WE} of Problem (1) is a Wardrop equilibrium if and only if

$$\sum_{j \in A} l_j(x_j^{WE})(x_j^{WE} - x_j) \leq 0,$$

for all feasible solutions x of Problem (1).
Partially Optimal Routing

- Consider a subnetwork inside of G, denoted $G_0 = (V_0, A_0)$.
- Assume first that G_0 has a unique entry and exit point, denoted by $s_0 \in V_0$ and $t_0 \in V_0$. P_0 denotes paths from s_0 to t_0.
- We call $R_0 = (V_0, A_0, P_0, s_0, t_0)$ a subnetwork of $G : R_0 \subset R$.
- Given an incoming amount of flow X_0, the network operator chooses the routing by:

$$L(X_0) = \min \sum_{j \in A_0} x_j l_j(x_j)$$

s.t.

$$\sum_{p \in P_0 : j \in p} y_p = x_j, \quad j \in A_0,$$

$$\sum_{p \in P_0} y_p = X_0, \quad y_p \geq 0, \quad p \in P_0.$$

- Define $l_0(X_0) = L(X_0)/X_0$ as the effective latency of POR in the subnetwork R_0.
POR Flows

- Given a routing instance $R = (V, A, P, s, t, X, \lambda)$, and a subnetwork $R_0 = (V_0, A_0, P_0, s_0, t_0)$ defined as above, we define a new routing instance $R' = (V', A', P', s, t, X, \lambda')$ as follows:

 $$V' = (V \setminus V_0) \cup \{s_0, t_0\};$$

 $$A' = (A \setminus A_0) \cup \{(s_0, t_0)\};$$

- $\lambda' = \{l_j\}_{j \in A \setminus A_0} \cup \{l_0\}$.

- We refer to R' as the equivalent POR instance for R with respect to R_0.

- The overall network flow in R with partially optimal routing in R_0, $x^{POR}(R, R_0)$, is defined as:

 $$x^{POR}(R, R_0) = x^{WE}(R').$$
Performance of Partially Optimal Routing

- **Selfish Routing:** Link flows $x_1^{WE} = 0.94$ and $X_0^{WE} = 0.92$, with a total cost of $C(x^{WE}(R)) = 4.19$.

- **Partially Optimal Routing:** Link flows $x_1^{POR} = 1$ and $X_0^{POR} = 1$, with a total cost of $C(x^{POR}(R)) = 4.25$,.
Braess Paradox and POR Paradox

- **Braess’ Paradox:** Consider a routing instance \(R = (V, A, P, s, t, X, l) \). We say that *Braess’ paradox* occurs in \(R \) if there exists another routing instance \(R_m = (V, A, P, s, t, X, m) \), with a vector of strictly increasing, nonnegative latency functions, \(m = (m_j, j \in A) \), such that \(m_j(x_j) \leq l_j(x_j) \) for all \(x_j \geq 0 \) and

\[
C(x^{WE}(R_m)) > C(x^{WE}(R)).
\]

- **POR Paradox:** Consider a routing instance \(R = (V, A, P, s, t, X, l) \), and a subnetwork \(R_0 = (V_0, A_0, P_0, s_0, t_0) \). We say that the *POR paradox* (partially optimal routing paradox) occurs in \(R \) with respect to \(R_0 \) if

\[
C(x^{POR}(R, R_0)) > C(x^{WE}(R)).
\]
Main Result

- **Proposition:** Consider a routing instance \(R = (V, A, P, s, t, X, l) \) and a subnetwork \(R_0 = (V_0, A_0, P_0, s_0, t_0) \subset R \). Assume that the POR paradox occurs in \(R \) with respect to \(R_0 \). Then Braess’ paradox occurs in \(R \).

 - **Proof Idea:** Uniformly lower the latency functions in the subnetwork \(R_0 \), such that the Wardrop effective latency of \(R_0 \) is given by \(l_0 \) (the effective latency of optimal routing within \(R_0 \)).

- **Corollary:** Given a routing instance \(R \), if Braess’ paradox does not occur in \(R \), then partially optimal routing with respect to any subnetwork always improves the network performance.

 - Milchtaich has shown that Braess’ paradox does not occur in directed graphs where the underlying undirected graph has a *series-parallel* structure.

 - For a network with *serial-parallel links*, partially optimal routing always improves the overall network performance.
Price of Anarchy for Partially Optimal Routing

- Investigate the worst case efficiency loss of partially optimal routing with respect to socially optimal routing.

- We first recall the following key results in the analysis of selfish routing:

- Proposition [Roughgarden-Tardos (2002)]:
 (a) \[
 \inf_{R \in \mathcal{R}^{\text{conv}}} \frac{C(x^{SO}(R))}{C(x^{WE}(R))} = 0.
 \]
 (b) Consider a routing instance \(R = (V, A, P, s, t, X, l) \) where \(l_j \) is an affine latency function for all \(j \in A \). Then, \[
 \frac{C(x^{SO}(R))}{C(x^{WE}(R))} \geq \frac{3}{4}.
 \]
 Furthermore, the bound above is tight.
Price of Anarchy for Partially Optimal Routing

- **Proposition:** Let \(\mathcal{R}' \) denote a set of routing instances.

\[
\inf_{\substack{R \in \mathcal{R}' \\ R_0 \subset R}} \frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \leq \inf_{\substack{R \in \mathcal{R}'}} \frac{C(x^{SO}(R))}{C(x^{WE}(R))}.
\]

\[
\inf_{\substack{R \in \mathcal{R}^{aff} \\ R_0 \subset R}} \frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \geq \inf_{\substack{R \in \mathcal{R}^{conc}}} \frac{C(x^{SO}(R))}{C(x^{WE}(R))}.
\]

- **Theorem:**

 (a) \[
 \inf_{\substack{R \in \mathcal{R}^{conv} \\ R_0 \subset R}} \frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} = 0.
 \]

 (b) Consider a routing instance \(R = (V, A, P, s, t, X, l) \) where \(l_j \) is an affine latency function for all \(j \in A \); and a subnetwork \(R_0 \) of \(R \).

\[
\frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \geq \frac{3}{4}.
\]

Furthermore, the bound above is tight.
Price of Anarchy for Partially Optimal Routing

- **Proof of part (b):** The proof relies on the following two results:

- **Lemma:** Assume that the latency functions l_j of all the links in the subnetwork are nonnegative affine functions. Then, the effective latency of POR, $l_0(X_0)$, is a nonnegative concave function of X_0.

- **Proposition:** Let $R \in \mathcal{R}^{conc}$ be a routing instance where all latency functions are concave. Then,

$$\frac{C(x^{SO}(R))}{C(x^{WE}(R))} \geq \frac{3}{4}.$$

Furthermore, this bound is tight.
Price of Anarchy for Partially Optimal Routing

Proof of Proposition: From variational inequality representation of WE, for all feasible x, we have

$$C(x^{WE}) = \sum_{j \in A} x_j^{WE} l_j(x_j^{WE}) \leq \sum_{j \in A} x_j l_j(x_j^{WE})$$

$$= \sum_{j \in A} x_j l_j(x_j) + \sum_{j \in A} x_j (l_j(x_j^{WE}) - l_j(x_j)).$$

For all feasible x, we have

$$x_j (l_j(x_j^{WE}) - l_j(x_j)) \leq \frac{1}{4} x_j^{WE} l_j(x_j^{WE}).$$
Bounds for Polynomial Latency Functions

• Given a class of latency functions \(\mathcal{L} \), we define:

\[
\beta(\mathcal{L}) = \sup_{l \in \mathcal{L}, \ x \geq 0} \beta(l, x),
\]

\[
\beta(l, x) = \max_{z \geq 0} \frac{(l(x) - l(z))z}{l(x)x},
\]

• Intuitively \(\beta \) is measure of the steepness of a class of latency functions: \(\beta(\mathcal{L}^{aff}) = 0.25, \beta(\mathcal{L}^{quad}) = 0.385 \).

• **Theorem:** Let \(\mathcal{L}_d \) be a class of nonnegative polynomial latency functions of degree \(d \). Consider a routing instance \(R = (V, A, P, s, t, X, l) \) with \(l_j \in \mathcal{L}_d \) for all \(j \in A \), and a subnetwork \(R_0 \) of \(R \). Then,

\[
\frac{C(x^{SO}(R))}{C(x^{POR}(R, R_0))} \geq (1 - \beta(\mathcal{L}_d)).
\]

Furthermore, the bound above is tight.
Bounds for Polynomial Latency Functions

- **Lemma:** Let $R_0 = (V_0, A_0, P_0, s_0, t_0)$ be a subnetwork with polynomial latency functions of degree d. Then the effective latency $l_0(X_0)$ is given by

$$l_0(X_0) = \inf_{y \in \mathcal{Y}} \{ f(X_0, y) \},$$

where \mathcal{Y} is a nonempty compact set, $f(X_0, y)$ is a cont. function of y, and $\forall y \in \mathcal{Y}$, $f(\cdot, y)$ is a nonneg. polynomial of degree d.

- **Lemma:** Let \mathcal{L}_s be a class of nonnegative latency functions which is closed under scaling by a constant $k \leq 1$. Let

$$l_j(x) = \inf_{z \in \mathcal{Z}_j} \{ f(x, z) \}, \quad \forall j \in A,$$

where \mathcal{Z}_j is a compact set; for each x, $f(x, \cdot)$ is a continuous function of z; and for each $z \in \mathcal{Z}_j$, $f(\cdot, z) \in \mathcal{L}_s$. Then:

$$\frac{C(x^{SO}(R))}{C(x^{WE}(R))} \geq (1 - \beta(\mathcal{L}_s)).$$
Subnetworks with Multiple Entry-Exit Points

- Even for linear latencies, efficiency loss of partially optimal routing can be arbitrarily high.

\[l_1(x_1) = 0 \]
\[l_2(x_2) = ax_2 \]
\[l_3(x_3) = 0 \]
\[l_4(x_4) = bx_4 \]
\[l_5(x_5) = x_5 \]

- Social Optimum: \(x^{SO} = (0, \frac{1}{1+a}, \frac{1}{1+a}, z, \frac{a}{1+a}) \).
- POR: \(x^{POR} = (\frac{1-bz}{1+b}, 0, 0, \frac{1+z}{1+b}, \frac{b+bz}{1+b}) \).
- For a fixed \(b > 0 \), as \(a \to 0 \) and \(z \to 0 \),

\[C(x^{SO}) \to 0, \quad C(x^{POR}) \to \frac{b}{1+b} > 0, \]
Subnetwork Performance: Traffic Engineering

- We consider a model where a subnetwork can choose a routing policy to achieve the minimum latency within its subnetwork.

\[l(x) = \begin{cases} 1 & \text{if } x \leq 1 \\ x^2 & \text{if } 1 < x \leq 2 \\ c & \text{if } x > 2 \end{cases} \]

- **Selfish Routing:** \sqrt{c} units of traffic is routed through the subnetwork, leading to a total cost of $C(x^{WE}) = c$, and a subnetwork cost of $C_{G_0}(x^{WE}) = c\sqrt{c}$.

- **POR:** Entire traffic is routed through the subnetwork, leading to $C(x^{POR}) = C_{G_0}(x^{POR}) = 1 - \frac{2}{3\sqrt{3}}$.

- For $c\sqrt{c} < 1 - \frac{2}{3\sqrt{3}}$, we have $C_{G_0}(x^{POR}) > C_{G_0}(x^{WE})$.
Traffic Engineering for Parallel Link Topology

- Consider a network consisting of parallel links with \(d \) units of traffic.
- Suppose there are \(N + 1 \) providers each owning a subset of links.
- Consider a local ("partial equilibrium") analysis for the routing choice within subnetwork 0.
- Represent network provider \(i \), for \(i = 1, \ldots, N \), by a single link with effective latency \(l_i \) (reflecting the intradomain routing policy of \(i \))
 - \(l_0 \): effective latency of optimal routing within subnetwork 0.
 - \(\tilde{l}_0 \): effective latency of selfish routing within subnetwork 0.
- The routing policy choice of provider 0 can be parametrized by \(\delta \in [0, 1] \), leading to an effective latency of

\[
m_0 (x, \delta) = (1 - \delta) l_0 (x) + \delta \tilde{l}_0 (x).
\]
Traffic Engineering for Parallel Link Topology

- \(l_R(x) \): effective latency of Wardrop routing \(x \) units on links \(1, \ldots, N \).
- The optimization problem of subnetwork 0 then is:

\[
\min_{0 \leq x_0 \leq d, \delta \in [0,1]} \left[(1 - \delta) l_0(x_0) + \delta \tilde{l}_0(x_0) \right] x_0
\]

s.t. \((1 - \delta) l_0(0) + \delta \tilde{l}_0(0) \geq l_R(d) \), if \(x_0 = 0 \);

\((1 - \delta) l_0(d) + \delta \tilde{l}_0(d) \leq l_R(0) \), if \(x_0 = d \);

\((1 - \delta) l_0(x_0) + \delta \tilde{l}_0(x_0) = l_R(d - x_0) \), if \(0 < x_0 < d \).

- If \(\tilde{l}_0(0) \geq l_R(d) \), optimal solution is \(\delta = 1, x_0 = 0 \).
- If \(\tilde{l}_0(d) \leq l_R(0) \), optimal solution is \(\delta = 0, x_0 = d \).
- Otherwise, the optimization problem for subnetwork 0 reduces to:

\[
\min_{x_0 \in [x_0^{MIN}, x_0^{MAX}]} \min \left\{ x_0 l_R(d - x_0), dl_0(d) \right\}
\]

where

\[
\tilde{l}_0(x_0^{MIN}) = l_R(d - x_0^{MIN}); \quad l_0(x_0^{MAX}) = l_R(d - x_0^{MAX}).
\]
Conclusions

• First extension of the classical traffic routing models to capture traffic engineering.
• Interesting global and subnetwork performance results.
• Extensions to subnetworks with multiple entry-exit points.
• General equilibrium analysis for subnetwork routing policy choice.
• Other objectives for subnetworks: profit maximization.