Micro Theory I

Professor Susan Athey E52-252C athey@mit.edu

http://web.mit.edu/athey/www/14.121/

An Axiomatic Development of Utility Functions.

Overview

- In most economic models, we start with an agent's utility function. The utility function maps from bundles that the agent might consume, to the real line. The utility function is convenient: it can be maximized and manipulated using standard mathematical tools.
- The question: Is it valid to reduce to a simple, real-valued function, something as complicated as an agent's preferences over a wide variety of bundles? What does it really mean about the agent's preferences? Are we imposing some hidden or undesirable assumptions when we take this approach?
- An approach to an answer: analyze the relationship between axioms about an agent's preferences, and the existence of a utility function that "represents" the agent's preferences.
- The axiomatic approach: specify basic axioms. See what consequences follow.

• The primitives

- Bundle
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
;

 x_i is quantity of good i. $x_i \in \mathbb{R}$. $x \in \mathbb{R}^n$ is vector of quantities.

- Preferences:

```
x\mathbf{R}y "x is weakly preferred to y" or x\mathbf{I}y "consumer is indifferent between x and y" or x\mathbf{P}y "consumer strictly prefers x to y"
```

Note: "Usual" order of vectors is not "complete" order, ex: (1,2) and (2,1) are not ordered component-wise.

Goal: Map from primitives to utility function.

- Questions: Given axioms on preferences,
 - Can we find the utility function?
 - Is it unique?
 - What properties does it satisfy?

Axioms About Preference Relations

Let the set of available bundles and the consumer's preferences, represented by \mathbf{R} , be given.

Define following axioms:

<u>Axiom 1</u>: Complete Order

$$\forall x, y, ((x\mathbf{R}y) \lor (y\mathbf{R}x))$$

This implies: **R** cannot be defined so that $x\mathbf{R}y \Leftrightarrow x_i \geq y_i \ \forall i$. bundles are only <u>partially</u> ordered in this way.

Axiom 2: Reflexivity

$$\forall x, (x\mathbf{R}x).$$

Axiom 3: Transitivity

$$(x\mathbf{R}y) \wedge (y\mathbf{R}z) \Longrightarrow x\mathbf{R}z.$$

Axiom 4: Weak Monotonicity

$$x_i \ge y_i \text{ for all } i \Rightarrow x\mathbf{R}y$$
 "good are goods"

Axiom 5: Local Non-Satiation

 $\forall x \text{ and all scalars } \delta > 0, \ \exists y \text{ such that:}$

$$1. \|y - x\| < \delta \text{ and }$$

2. y**P**x. "never at a bliss point, even a local one." Strong Preference!

Exercise (variations on transitivity). Show (a) $(z\mathbf{I}y) \wedge (y\mathbf{I}x) \Longrightarrow z\mathbf{I}x;$

(b)
$$(z\mathbf{R}y) \wedge (y\mathbf{P}x) \Longrightarrow z\mathbf{P}x$$
.

Lemma $\forall x, z, \text{ if } z_i > x_i \ \forall i, \text{ then } z\mathbf{P}x.$

Proof:

First, note that $\exists \ \delta > 0$ such that $\forall y \text{ satisfying } ||y - x|| < \delta, \ z_i > y_i.$

For some such y, by (A5), $y\mathbf{P}x$.

But, by transitivity (A3) and your exercise, $(z\mathbf{R}y) \wedge (y\mathbf{P}x) \Longrightarrow z\mathbf{P}x$.

Definition For a given x, $S^+(x) = \{y \mid y\mathbf{R}x\}$ "better than bundles." $S^-(x) = \{y \mid x\mathbf{R}y\}$ "worse than bundles."

Axiom 6 "Continuity of Preferences"

 $\forall x, S^{+}(x) \text{ and } S^{-}(x) \text{ are closed.}$

(i.e. $\forall \{y_n\} \ s.t \ y_n \rightarrow y \text{ and } y_n \in S \ \forall n, y \in S$).

Consequence: Path from $y \in S^{-}(x)$ to $z \in S^{+}(x)$ passes through point w s.t. $w\mathbf{I}x$.

(we will prove this to the extent that we need it below)

Goal: Show exists a utility function $u: X \to \mathbb{R}$, s.t.

$$(u(x) \ge u(y)) \Leftrightarrow (x\mathbf{R}y). (*)$$

Definition Given commodity space X and relation $\mathbf{R},\ u:X\to\mathbb{R}$ represents \mathbf{R} if (*) holds.

Note 1: if u represents \mathbf{R} , then so does $\phi \circ u$ for any increasing for $\phi : \mathbb{R} \to \mathbb{R}$. (It is unique up to a monotone transformation).

Note 2: Observe that u contains same information as preference relation. But, u maps from vectors into real line, which is totally ordered in the usual way! This is by definition a complete order! If we didn't assume a complete order on \mathbf{R} , these two representations could not possibly be equivalent.

Similarly, the order \geq on the real line is transitive and reflexive. So we see why these axioms are required for a representation theorem!

Exercise If u represents \mathbf{R} , then \mathbf{R} satisfies (weak) monotonicity if and only if u is nondecreasing.

Hint: Write definition of weak monotonicity, write down def. of non-decreasing. Connect the two!

Proposition If X is countable, and Axioms 1-4 are satisfied, $\exists u_{\mathbf{R}}$ which represents \mathbf{R} .

Exercise Show Axioms 1-4 imply that $\exists u_{\mathbf{R}}$ which represents \mathbf{R} when $X = \{\mathbf{x}^1, ..., \mathbf{x}^M\}, \mathbf{x}^i \in \mathbb{R}^n, M < \infty$.

Hint: Show that the elements of X can be ranked in order of preference, and then assign utilities according to the rank.

Optional Exercise Show Axioms 1-4 imply that $\exists u_{\mathbf{R}}$ which represents \mathbf{R} when X is countable.

General Problem: Order <u>all</u> possible! In general we don't have a countable X. Commodities are generally indivisible.

Representation Theorem If Axioms 1-6 are satisfied, then \mathbf{R} can be represented by a <u>continuous function</u> u.

Sketch of Proof

Overview: define e = (1, ..., 1) ("one each").

Show $\forall x, \exists \lambda_x \ s.t. \ \lambda_x e \ \mathbf{I} x. \ \text{Let } u(x) = \lambda_x.$

Issues:

- Show for each x, can partition line λe into "better than" & "worse than" sets.
- Sets closed $\Rightarrow \lambda_x$ in both sets.

Proof:

(Notation: $x \ge y \Leftrightarrow x_i \ge y_i \ \forall i; \quad x > y \Leftrightarrow x_i > y_i \ \forall i$)

 $\underline{\text{Step 1}} \ \forall \lambda > \lambda', \ \lambda e > \lambda' e.$

Lemma implies $\lambda e \mathbf{P} \lambda' e$. (uses non-sat. (A5), transitivity (A3))

Step 2 Pick $x \geq (0, \ldots, 0)$.

By A4 (weak monotonicity), $x \mathbf{R} (0, \dots, 0)$.

Let $m = \max\{x_1, \ldots, x_n\}$.

Choose $\overline{\lambda} > m$.

By Lemma, $\overline{\lambda}e\mathbf{P} x$.

Step 3 Show that $\exists \lambda_x$ such that $\forall \lambda < \lambda_x$, $x \mathbf{R} \lambda e$, and $\forall \lambda > \lambda_x$, $\lambda e \mathbf{R} x$.

Define $A = \{\lambda : x\mathbf{R}\lambda e\}$, and $B = \{\lambda : \lambda e\mathbf{R}x\}$.

(a) $\forall \lambda' < \lambda''$, we cannot have $\lambda' \in A \cap B$ and $\lambda'' \in A \cap B$ at the same time.

Pf: $\lambda \in A \cap B$ implies $\lambda e \mathbf{I} x$, by definition. But $\lambda' e \mathbf{I} x$ and $\lambda'' e \mathbf{I} x$ implies $\lambda' e \mathbf{I} \lambda'' e$ by your exercise on transitivity. But this violates Step 1.

(b)
$$\forall \lambda \in [0, 1], \lambda \in A \text{ or } \lambda \in B.$$

Pf: Follows by completeness (A1).

(c) $\lambda' \in A$ and $\lambda'' \in B$ implies that $\lambda' \leq \lambda''$.

Pf: Suppose not. Then $x\mathbf{R}\lambda'e\mathbf{P}\lambda''e\mathbf{R}x$, a contradiction of reflexivity (A2) and transitivity (A3).

(d) Let $\lambda_x = \sup\{\lambda : \lambda \in A\}$.

By parts (a)-(c), $\inf\{\lambda:\lambda\in B\}=\sup\{\lambda:\lambda\in A\}.$

Step 4 Show $\lambda_x e \in S^+(x)$ and $\lambda_x e \in S^-(x)$.

Observe:

$$\lambda e \mathbf{R} \lambda_x e \ \forall \lambda > \lambda_x$$

$$\lambda_x e \mathbf{R} \lambda e \quad \forall \lambda < \lambda_x$$

Take a sequence $\lambda_n \uparrow \lambda_x$.

$$\Rightarrow \lambda_n e \in S^-(x) \ \forall n.$$

By continuity (A6), $\lambda_x e \in S^-(x)$. This implies $x \mathbf{R} \lambda_x e$.

Likewise, if $\lambda_n \downarrow \lambda_x$, then $\lambda_n e \in S^+(x) \ \forall n \Rightarrow \lambda_x e \in S^+(x)$. This implies $\lambda_x e \mathbf{R} x$.

But $xR \lambda_x e$ and $\lambda_x e \mathbf{R} x \Rightarrow \lambda_x e \mathbf{I} x$

$$\underline{\text{Step 5}} \text{ Let } u(x) = \lambda_x$$

Exercise: Show it works! Need transitive, complete, reflexive?

Continuity: harder & tedious.