Consumer Theory: Pulling the Pieces Together

• Motivation

- Hicksian demand has nice theoretical properties, can be used to answer welfare questions.
- Marshallian demand is observable.
- Connecting Marshallian and Hicksian Demand: The Slutsky Equation
 - Approach: recall the identity

$$h^i(\mathbf{p}, \bar{u}) \equiv D^i(\mathbf{p}, E(\mathbf{p}, \bar{u}))$$

- Differentiate the identity $h^i(\mathbf{p}, \bar{u}) \equiv D^i(\mathbf{p}, E(\mathbf{p}, \bar{u}))$:

$$\frac{\partial}{\partial p_i} h^i(\mathbf{p}, \bar{u}) = \frac{d}{dp_i} D^i(\mathbf{p}, E(\mathbf{p}, \bar{u}))$$

$$= \frac{\partial}{\partial p_j} D^i(\mathbf{p}, Y) \bigg|_{Y = E(\mathbf{p}, \bar{u})} + \frac{\partial}{\partial p_j} E(\mathbf{p}, \bar{u}) \cdot \frac{\partial}{\partial Y} D^i(\mathbf{p}, Y) \bigg|_{Y = E(\mathbf{p}, \bar{u})}$$

$$= \frac{\partial}{\partial p_j} D^i(\mathbf{p}, Y) \bigg|_{Y = E(\mathbf{p}, \bar{u})} + h^j(\mathbf{p}, \bar{u}) \cdot \frac{\partial}{\partial Y} D^i(\mathbf{p}, Y) \bigg|_{Y = E(\mathbf{p}, \bar{u})}$$

- Substitute back in for identities to eliminate the \bar{u} : $E(\mathbf{p},\bar{u}) = Y$, $\bar{u} = V(\mathbf{p},Y), h^j(\mathbf{p},\bar{u}) = D^j(\mathbf{p},Y)$.

$$\left. \frac{\partial}{\partial p_j} h^i(\mathbf{p}, \bar{u}) \right|_{\bar{u} = V(\mathbf{p}, Y)} = \frac{\partial}{\partial p_j} D^i(\mathbf{p}, Y) + D^j(\mathbf{p}, Y) \cdot \frac{\partial}{\partial Y} D^i(\mathbf{p}, Y)$$

– Recall: since $E(\mathbf{p}, \bar{u})$ is concave, $\frac{\partial^2}{\partial p_i^2} h^i(\mathbf{p}, \bar{u}) \leq 0$. Thus, the own-price substitution effect is always negative. This can be rephrased in terms of the potentially observable Marshallian demand function as follows:

$$\frac{\partial}{\partial p_i} D^i(\mathbf{p}, Y) + D^i(\mathbf{p}, Y) \cdot \frac{\partial}{\partial Y} D^i(\mathbf{p}, Y) \le 0.$$

• Integrability

- Suppose you make up a nice functional form for a demand system.
- Is it valid?
- We have established properties that demand functions must satisfy. What properties of demand functions are sufficient to guarantee that demands come from some underlying utility function?
- If Marshallian demand satisfies $\mathbf{p} \cdot \mathbf{D}(\mathbf{p}, Y) = Y, \mathbf{D}(\mathbf{p}, Y) = \mathbf{D}(\alpha \mathbf{p}, \alpha Y)$ for $\alpha \geq 0$, and the corresponding Slutsky substitution matrix, whose (i, j)th element is given by

$$S_{ij} = \frac{\partial}{\partial p_i} D^i(\mathbf{p}, Y) + D^j(\mathbf{p}, Y) \cdot \frac{\partial}{\partial Y} D^i(\mathbf{p}, Y)$$

is negative semi-definite and symmetric, it can be "integrated up" to get the indirect utility function, and this can in turn be used to derive the direct utility function.

- With these conditions, I can check whether my functional forms work without actually performing the integration (which is often quite tricky).
- Can empirically estimate Marshallian demands, then construct Hicksian demand and do welfare analysis!
- Characterizing Utility-Maximizing Demands Using FOC's: Results from Intermediate Micro

- Suppose that u is continuously differentiable, locally non-satiated, and strictly quasi-concave.
- Then: $\mathbf{D}(\mathbf{p}, Y)$ solves

$$\min_{\boldsymbol{\mu}, \lambda} \max_{\mathbf{x}} \ u(\mathbf{x}) + \lambda [Y - \mathbf{p} \cdot \mathbf{x}] + \boldsymbol{\mu} \cdot \mathbf{x}$$

– If optimum is interior, then the solution is characterized by $\mu^*=0$, and

$$\nabla u(\mathbf{x}) = \lambda \mathbf{p}.$$

More generally, either

$$\frac{\partial}{\partial x_i}u(\mathbf{x}) = \lambda p_i, \text{ or } x_i = 0.$$

- Interpretations
 - * Shadow Value of Income: By the envelope theorem,

$$\frac{\partial}{\partial Y}V(\mathbf{p},Y) = \lambda.$$

Bang-for-the-buck:

$$\frac{\frac{\partial}{\partial x_i}u(\mathbf{x})}{p_i} = \lambda.$$

* Along an iso-expenditure line, $\mathbf{p} \cdot \mathbf{x}$ is constant. Thus,

$$\left. \mathbf{p} \cdot \left. \mathbf{\nabla} \mathbf{x} \right|_{\mathbf{p} \cdot \mathbf{x} = Y} = 0 \right.$$

i.e., the price vector is \perp to the budget line.

· 2-D example: Along a budget line,

$$p_1 dx_1 + p_2 dx_2 = 0,$$

$$\implies \left. \frac{dx_2}{dx_1} \right|_{\mathbf{p} \cdot \mathbf{x} = Y} = \frac{p_1}{p_2}$$

* Along an iso-utility line, $u(\mathbf{x})$ is constant. Thus,

$$\nabla u(\mathbf{x}) \cdot \nabla \mathbf{x}|_{u(\mathbf{x}) = \bar{u}} = 0$$

i.e., gradient of the utility function is \perp to indifference curve.

· 2-D example: Along an indifference curve,

$$u_1dx_1 + u_2dx_2 = 0,$$

or

$$\left. \frac{dx_2}{dx_1} \right|_{u(\mathbf{x}) = \bar{u}} = \frac{u_1(\mathbf{x})}{u_2(\mathbf{x})}$$

- * Tangency: $\nabla u(\mathbf{x}) = \lambda \mathbf{p}$.
- Duality
 - * To see from tangency:

$$\min_{\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\gamma}} \ \mathbf{p} \cdot \mathbf{x} + \gamma [\bar{u} - u(\mathbf{x})] + \boldsymbol{\mu} \cdot \mathbf{x}$$

FOC for interior optimum is the same: equalize bang-for-the-buck:

$$\mathbf{p} = \gamma \nabla u(\mathbf{x})$$

Note: $\gamma = 1/\lambda = \frac{\partial}{\partial \bar{u}} E(\mathbf{p}, \bar{u}).$