Comparative Statics for Mechanism Design

•

- Question: Let $x \in \mathbb{R}$. When is $x^*(\theta) = \arg \max f(x, \theta)$ $\uparrow \theta$?
- Single Crossing Properties
 - Definition: $f(x, \theta)$ satisfies Single Crossing Property of Incremental Returns if $\forall \theta^H > \theta^L$, $\forall x^H > x^L$

$$f(x^H, \theta^L) - f(x^L, \theta^L) \ge (>)0$$

$$\Rightarrow f(x^H, \theta^H) - f(x^L, \theta^H) \ge (>)0.$$

– Definition: If f is differentiable in x, $f(x, \theta)$ satisfies Single Crossing Property of Marginal Returns (SCP-MR) if

$$\forall \theta^H > \theta^L, \ \forall x \ f_1(x, \theta^L) \ge (>)0 \Rightarrow f_1(x, \theta^H) \ge (>)0.$$

- Discrete Case:
 - Suppose $S = \{x^L, x^H\}$ SCP-IR satisfied. Then, $x^*(\theta)$ is nondecreasing SSO.

$$-\theta < \theta', \ x^*(\theta) = \{x^L\}$$

$$-\theta' \le \theta \le \theta'', \ x^*(\theta) = \{x^L, x^H\}$$

$$-\theta > \theta'', \ x^*(\theta) = \{x^H\}$$

• Theorem (Milgrom and Shannon):

$$x^*(\theta, S) = \arg\max_{x \in S} f(x, \theta)$$
 is nondecreasing (SSO) in (θ, S) IF AND ONLY IF

f satisfies SCP-IR.

Note: necessity result relies on quantifying over sets.

• Definition: If $f(x, \theta)$ is differentiable in x, f satisfies the Strict SCP-MR if:

$$\forall x, \ \forall \ \theta_H > \theta_L, \ f_1\left(x, \theta^L\right) \ge 0$$

$$\Rightarrow f_1(x, \theta^H) > 0$$

Note: definition implies that agent can't be indifferent over region of x)

- Theorem: If f is differentiable and $x^*(\theta)$ is interior, and if f satisfies the Strict SCP-MR, then $x^*(\theta)$ is strictly increasing in θ .
- Comparison:
 - f satisfies the strong SCP-IR if, for all $\theta_H > \theta_L$ and all $x^H > x^L$,

$$f\left(x^{H}, \theta^{L}\right) - f\left(x^{L}, \theta^{L}\right) \ge 0$$

$$\Rightarrow f(x^H, \theta^H) - f(x^L, \theta^H) > 0$$

– Fact: Strong SCP-IR not sufficient so that $x^*(\theta)$ strictly increasing in θ .

- Only true if $f(x, \theta)$ is differentiable in x and interior optimum.

• Mechanism Design

- Agent's objective: $u(x, \theta) t(x)$
- Separation: $x^*(\theta)$ strictly increasing
- Pooling: $x^*(\theta)$ constant somewhere
- Question: When is $x^*(\theta) = \arg \max_{x \in S} u(x, \theta) t(x)$ nondecreasing for all t(x)?
 - Answer: necessary and sufficient condition is that u is supermodular.
 - Motivation: t(x) is endogenously determined. We would like comparative statics result to hold no matter what the principal chooses!
 - To see this: t(x) is independent of θ .
 - SCP-IR is not preserved by adding function t(x)
 - Sufficiency: supermodularity \Rightarrow SCP-IR.
 - Necessity: $u(x, \theta) t(x)$ satisfies SCP-IR for all t, iff u is supermodular. See graph.

- General: $u(x, t(x), \theta)$ (assume u differentiable, $u_2 \neq 0$)
 - Spence Mirrlees SCP (SM-SCP): $\frac{u_1}{|u_2|}(x, y, \theta) \uparrow \theta$
 - Fact: (Milgram/Shannon) $u(x, t(x), \theta)$ satisfies SCP-IR in $(x, \theta) \ \forall t : \mathbb{R} \to \mathbb{R}$ if and only if $\frac{u_1}{|u_2|} \uparrow \theta$ (SM-SCP)
 - Same as SCP of x-y in difference curves
 - higher types have steeper indifference curves

$$u(x, y, \theta) = \bar{u}$$
$$u_1 dx + u_2 dy = 0$$

$$\frac{dy}{dx} = -\frac{u_1}{u_2}$$

- Summary of Comparative Statics for Mechanism Design
 - Agent's objective: $u(x, t(x), \theta)$
 - If objective satisfies SCP-IR, $x^*(\theta)$ is nondecreasing in θ (SSO).
 - If objective satisfies strict SCP-IR, every selection from $x^*(\theta)$ is nondecreasing in θ .
 - If obj. differentiable in x and interior optimum, strict SCP-MR $\Rightarrow x^*(\theta)$ is strictly increasing.
 - In order to get "pooling," need non-differentiability.
- Generalized Envelope Theorem (Milgrom)

- Theorem: Let S be a non-empty subset of a compact set and suppose that for all $\theta \in [\underline{\theta}, \overline{\theta}], x^*(\theta) = \arg\max_{x \in S} f(x, \theta)$ is non-empty and $f(x, \theta)$ is continuous in x. Further assume that the partial derivative f_{θ} exists and is continuous in (x, θ) . Then for any selection $\hat{x}(\theta)$ from $x^*(\theta)$,

$$f(\hat{x}(\theta), \theta) = f(\hat{x}(\underline{\theta}), \underline{\theta}) + \int_{\underline{\theta}}^{\theta} f_{\theta}(\hat{x}(\tilde{\theta}), \tilde{\theta}) d\tilde{\theta}.$$