MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Economics

14.129 - Contract Theory, Fall 1999

Professor Susan Athey Phone: 3-6407

Office: E52-252C Email: athey@mit.edu

Solving Moral Hazard Models

- 1. Benchmark: effort is observable and contract can depend on it: $\tilde{s}(x,e)$
 - IC drops out.
 - Simply pay $\tilde{s}(x, e) = 0$ unless correct effort is chosen (depends on reservation utility)
 - First Best \longrightarrow still use a sharing rule, $\tilde{s}(x,e) = s(x)$ if $e = e^*$
 - gains from trade in risk-sharing (unless same utility functions)
 - Program

$$\max_{e,s(\cdot)} \int v(x-s(x)) f(x \mid e) dx$$

s.t.
$$\int u(s(x)) f(x \mid e) dx - c(e) \ge \underline{u}$$
 (IR)

- 1. $-\lambda$ multiplier on (IR)
 - Can drop IC due to observability, don't pay them unless see the effort specified

- To Solve: Take a 2 step approach
 - notice IR must bind (or can lower u(s(x)) by a constant, Principal better off
 - maximize the objective pointwise
 - * if x is discrete, clearly this approach is right
 - * optimal control: same thing works if you choose a function
- FOC: differentiate w.r.t. s(x)

$$-v'(x - s(x)) f(x \mid e) + \lambda u'(s(x)) f(x \mid e) = 0$$

$$\lambda = \frac{v'(x - s(x))}{u'(s(x))}, \quad \forall x$$

- Ratio of marginal utilities is constant (characteristic of optimal risk-sharing)
- Observe:
 - if $f(x \mid e)$ is degenerate $e \longrightarrow x_e$ (no uncertainty, no risk)
 - if v(w) = w (risk neutral principal)
 - * agent bears no risk
 - * risk-neutral agent bears all the uncertainty (insurance contract)

$$\underbrace{\lambda}_{\text{optimal risk-sharing constant}} = \frac{1}{u'(s(x))} \Longrightarrow u'(s(x)) = \text{constant}$$
$$\Longrightarrow s(x) = \text{constant}$$

Question: If principal is risk-neutral, how do we find the effort?

Answer: IR

$$u(w(e)) - c(e) = \underline{u}$$
, (will bind)

$$w(e) = u^{-1} \left[\underline{u} + c(e) \right]$$

- Principal (think of u^{-1} as converting monetary units to utils of principal)

$$\max_{e} \underbrace{\int x f\left(x\left(e\right)\right) dx}_{\text{benefits}} - \underbrace{u^{-1}\left[\underline{u} + c\left(e\right)\right]}_{\text{cost} \to \text{deterministic}}$$
$$= E\left[x \mid e\right] - u^{-1}\left[\overline{u} + c\left(e\right)\right]$$

- equalize marginal benefit (MB) of effort with monetary cost of effort
- To see this, take FOC—>differentiate—>get marginals—>no distortion

2. Unobservable Effort

• No Risk Aversion (either principal or agent) —— no need for insurance

Proposition 1 First Best can be attained. Principal "sell the firm" to Agent.

$$s(x) = x - \alpha$$
, $\alpha = \text{price of firm}$
(Agent is the residual claimant)

IR:
$$\int x f(x \mid e) dx - c(e) - \alpha \ge \underline{u}$$

IC:

$$e^* = \arg \max_{e} \int x f(x \mid e) dx - c(e) - \alpha$$

$$= \arg \max_{e} E[\times \mid e] - c(e) \text{ (First Best incentives)}$$

$$= \int v(x - s(x)) f(x \mid e) dx + \int u(s(x)) f(x \mid e) dx - c(e) \text{ (choice of effort that maximizes joint surplus)}$$

 $- \longrightarrow e^*$ is FB set α so that IR binds (e.g. taxi pays dispatcher for the day and keeps the rest):

$$\alpha = E\left[x \mid e^{FB}\right] - c\left(e^{FB}\right) - \underline{u}$$

• Risk-Averse Agent, Principal Risk-Neutral (two effort model)

$$e_L, e_H$$
 $c(e) = c_H, c_L, (c_H > c_L)$
 $F(x \mid e) = \begin{cases} F_H(x) \\ F_L(x) \end{cases}$

Remark 2 Assume
$$F_H(x) \geq F_L(x)$$

 $\implies F_H \leq F_L, \quad \forall x \Leftrightarrow \int g(x) dF_H(x) \geq \int g(x) dF_L(x), \quad \forall g$
non-decreasing
(check true for all step functions)
 $E(g) = 1 - F \Longrightarrow increase \ mass \ to \ the \ right$

- Question: How is the e_L implemented? <u>Answer</u>: Optimal Risk Sharing
 - $-s_L$ is constant since $e_L > e_H \Longrightarrow IC$ satisfied
 - make IR bind with fixed wage (constant wage)
- Question: How is the e_H implemented? Answer:
 - sharing has to reward high output more

$$\max_{s(-)} \int \left(x - s\left(x\right)\right) f_{H}\left(x\right) \text{ such that}$$

$$IC : \int u\left(s\left(x\right)\right) f_{H}\left(x\right) - e_{H} \ge \int u\left(s\left(x\right)\right) f_{L}\left(x\right) dx - e_{L}, \quad \mu$$

$$IR : \int u\left(s\left(x\right)\right) f_{H}\left(x\right) dx - e_{H} \ge u, \quad \lambda$$

- use pointwise optimization

$$\max_{s(x)} -s\left(x\right) f_{H}\left(x\right) + \mu \left[u\left(s\left(x\right)\right) \left[f_{H}\left(x\right) - f_{L}\left(x\right)\right]\right] + \lambda u\left(s\right)$$
differentiate :
$$-f_{H}\left(x\right) + \mu u'\left(s\left(x\right)\right) \left(f_{H}\left(x\right) - f_{L}\left(x\right)\right) + \lambda u'\left(s\left(x\right)\right) f_{H}$$
re-arrange :
$$\frac{1}{u'\left(s_{H}\left(x\right)\right)} = \lambda + \mu \left[1 - \frac{f_{L}}{f_{H}}\right]$$

• IR binds: if did not bind, sharing rule would not satisfy IC.

$$u(s(x)) - u(\hat{s}(x)) = \Delta$$
 doesn't depend on $x, \lambda > 0$

- Question: Could we have $\mu = 0$?

 Answer: full insurance, MU=constant
 - Contradiction full insurance can't be incentive compatible (IC violated), $\lambda > 0$
- Interpretations
 - deviating from first best
 - * not full insurance which we know is first best
 - * μ : extent to which IC matters (distorts our choice)
 - Question: Given x we observe, how likely is it that they chose high effort?

Answer: $\frac{f_H(x)}{f_L(x)}$ (likelihood ratio)

- * $\frac{f_H(x)}{f_L(x)} = 1 \longrightarrow \text{don't want to reward or punish}$
- * low more likely than high \longrightarrow punish
- * high more likely than low \longrightarrow reward
- Optimal Sharing Rule varies only with $\frac{f_H(x)}{f_L(x)}$

find
$$s^*(x) = \frac{1}{u'(s^*(x))} = \lambda$$

$$s_H(x) > s^*(x) \text{ if } f \frac{f_H(x)}{f_L(x)} > 1$$

$$s_H(x) < s^*(x) \text{ if } f \frac{f_H(x)}{f_L(x)} < 1$$

- Interpretation: rewarded for evidence of good behavior, punished for bad
 - $s_{H}\left(x\right)$ strictly increasing in $\frac{f_{H}\left(x\right)}{f_{L}\left(x\right)}$

Remark 3 This is not a statistical inference problem. In eqbm, you know what agent did (implement e_H). You behave as if inference problem. Provide incentives to get the other guy to truthfully reveal effort.

• Question: $s_H(x)$ monotone in x?

Answer: only true if $\frac{f_H(x)}{f_L(x)}$ is monotone

- e.g.: suppose $x = e + \theta$, θ has two humps $s_H(x)$ monotone $iff \frac{f_H(x)}{f_L(x)} \uparrow \text{(monotone)}$ in x (MLRP)
- MLRP \longrightarrow local. Can condition on two points. $MLRP \Longrightarrow FOSD$, but $FOSD \not\Rightarrow MLRP$
- PROOF: log supermodularity

$$f\left(x,e\right) : \frac{\partial^{2}}{\partial x \partial e} f\left(x,e\right) \geq 0 \Leftrightarrow \text{supermodularity}$$

$$\frac{\partial^{2}}{\partial x \partial e} \ln f\left(x,e\right) \geq 0 \Leftrightarrow \text{log supermodularity}$$

- increasing differences: f(x, e) supermodular $\Leftrightarrow f(x, e_H) f(x, e_L) \uparrow x \forall e_H > e_L$
- increasing ratios: f(x,e) log supermodular $\Leftrightarrow \frac{f(x,e_H)}{f(x,e_L)} \uparrow x \ \forall e_H > e_L$ **Theorem 4** f(x,e) log $sprm \rightarrow \int_a^b f(x,e) \, dx$ log sprm in (a,b,e) use for uncertainty, risk aversion, elasticity
- $f \ MLRP \Leftrightarrow f \log \text{sprm}$ $\Longrightarrow \int_{-\infty}^{x} f(x, e) dx \text{ is log sprm} \Longrightarrow \frac{F(x, e_H)}{F(x, e_L)} \uparrow x \ \forall e_H > e_L \text{ (by def'n)}$ but $\lim_{x \to \infty} \frac{F(x, e_H)}{F(x, e_L)} = 1 \text{ (by def'n CDF)}$ $\Longrightarrow F(x, e_H) \leq F(x, e_L)$

- x can be interpreted generally if Principal is risk neutral $\int (\pi s(x)) f_H(\frac{\pi}{x}) dx$ x is just a signal e.g.: $x = \text{exam score}, \ \pi = \text{how good a researcher you will be}$
- Add'l information multiple signal

$$x = (x_1, x_2), \frac{1}{u'(s_H(x_1, x_2))} = \lambda + \mu \left[1 - \frac{f_L(x_1, x_2)}{f_H(x_1, x_2)}\right]$$

$$s \text{ depends on } x_i \text{ iff } \frac{f_H}{f_L}(x_1, ..., x_n) \text{ depends on } x_i$$

• if π is a sufficient statistic for $(x_1,...,x_n)$ then WLOG $s(\pi)$

$$\frac{f_H(x_1,...,x_n,\pi)}{f(x_1,...,x_n,\pi)} = \frac{f_H(\pi)}{f_L(\pi)}$$

• Random Schemes are not optimal