Linear Contracting Models with Multiple Efforts

- Multiple tasks $e_1...e_n$.
 - Output:

$$x_i = e_i + \theta_i$$
$$\theta \sim N(0, \Sigma)$$

 Σ allows for correlation between tasks

- Cost:

$$c(e) = c(e_1, ..., e_n)$$

- Principal has some benefit function B(e).
- Contracts:

$$s(x) = \alpha x + \beta$$

- Note: CE in normal exp. model is

$$\alpha e + \beta - \frac{1}{2}r \, \alpha' \Sigma \alpha - c(e)$$

 β shifts surplus \Rightarrow linear Pareto frontier

- TCE:

$$B(e) - c(e) - \frac{1}{2}r \alpha' \Sigma \alpha$$

$$\max_{\alpha} B(e) - c(e) - \frac{1}{2} r \alpha' \Sigma \alpha$$
s.t. $\alpha = \nabla_e c(e)$ (IC)

i.e.,
$$\frac{\partial c}{\partial e_i} = \alpha_i$$
.

Observe:

$$D\alpha(e) = D^{2}c(e) = \begin{bmatrix} \frac{\partial^{2}}{\partial e_{1}^{2}}c(e) & \cdots & \frac{\partial^{2}}{\partial e_{1}\partial e_{n}}c(e) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial e_{n}\partial e_{1}}c(e) & \cdots & \frac{\partial^{2}}{\partial e_{n}^{2}}c(e) \end{bmatrix}$$

FOC:

$$\nabla B(e) = \nabla c(e) + r D^2 c(e) \Sigma \nabla c(e)$$

$$= (I + r D^2 c(e) \Sigma) \nabla c(e)$$

$$\alpha^* = (I + r D^2 c(e) \Sigma)^{-1} \nabla B(e)$$

• Case 1:

Outputs stochastically independent, efforts independent in cost function.

$$\Sigma_{ij} = 0, \text{ for } i \neq j$$

$$\frac{\partial^2 c}{\partial e_i \partial e_j} = 0, \text{ for } i \neq j$$

- This yields

$$\alpha_i = \frac{\partial B/\partial e_i}{1 + r \frac{\partial^2 c}{(\partial e_i)^2} \sigma_i^2}$$

• Case 2:

- Unmonitored tasks: two tasks (c(x) convex)

$$\sigma_{12} = 0; \ B_{12} = 0; \ c_{12} = 0; \ \sigma_2^2 \to \infty$$

$$\alpha_1 = \frac{B_1 - \frac{c_{12}}{c_{22}} B_2}{1 + r\sigma_1^2 (c_{11} - \frac{c_{12}^2}{c_{22}})}$$

$$(c_{11} - \frac{c_{12}^2}{c_{22}}) > 0$$
 (convexity)

- $-\alpha_2 = 0 \rightarrow$ no incentive for task 2 (too expensive)
- If $c_{12} > 0$, $B_2 > 0$, then $\alpha_1 \downarrow$
- Incentives to activity 1 are also decreasing
- Suppose:

$$c(e) = \hat{c}(e_1 + e_2)$$

 $B(e_1, 0) = 0 \quad \forall e_1$

Then, as $\sigma_2^2 \to \infty$, $\alpha_2 \to 0$.

- If $\alpha_1 > 0$, then $e_2 = 0$, leading to no benefit to the principal (B = 0).
- Hence if $\alpha = (0,0)$ induces any effort it is better.
- Justification for low-powered incentives!
- Holmstrom and Milgrom, AER 1994: "Firm as an Incentive System"
 - Suppose task 2 is asset maintenance (machines, firm reputation)
 - Solution: $\alpha_2 = 1$ using ownership
 - Two systems:
 - * high-powered incentives, ownership
 - * "employee"-firm owns assets, fixed wages
 - Under what conditions are α_1 , α_2 complements in the principal's objective function?

$$TCE = TCE(\alpha_1, \alpha_2, \sigma_1^2, \sigma_2^2, \sigma_{12}, r)$$

- Assumptions on the cost function: assume quadratic for simplicity.
 - * Efforts substitutes in the cost function: $c_{12}(e_1, e_2) \ge 0$. Implies $\frac{\partial^2}{\partial \alpha_1 \partial \alpha_2} TCE \ge 0$ if c is quadratic.
 - * Efforts complements in the cost function: $c_{12}(e_1, e_2) \leq 0$. Implies $\frac{\partial^2}{\partial \alpha_1 \partial \alpha_2} TCE \leq 0$ if c is quadratic.
- Examples of questions to ask in this framework:
 - What happens when σ_1^2 changes?
 - How does the choice of $\alpha_1, \alpha_2, \sigma_1^2$ vary with the cost of changing technology?
- Intuition: when efforts are substitutes in the cost function, incentive instruments are complements to the principal.

Comparative Statics Detour

Comparative statics tools: Need for firm as a system and for mechanism design, as well as Hart-Moore 1990.

$$x^* (\theta, S) = \arg \max_{x \in S} f(x, \theta)$$

- When is $x^*(\theta, S)$ increasing in θ ?

 Question: Does a solution exist? Are there multiple optima? $x^*(\theta, S)$ could be empty or a set
- What is an order?
 - partial order: $x, y \in X$, could have $x \not\geq y$ and $y \not\geq x$
 - Componentwise Order on \mathbb{R}^n : $a \geq b$ iff $a_i \geq b_i$; $\forall i = 1, ..., n$
 - * Notation: Meet and Join

$$a \lor b = (\max(a_1, b_1), ..., \max(a_n, b_n))$$

$$a \wedge b = \left(\min\left(a_1, b_1\right), ..., \min\left(a_n, b_n\right)\right)$$

- versus complete order
 - * e.g., lexicographic order, usual order on real line
- Orders Over Sets
 - * Inclusion order: $A \geq_I B \ if \ B \subseteq A$

- - * Strong Set Order, Case 1: $A, B \subset \Re$
 - $A \ge_{SSO} B \Leftrightarrow a \in A \text{ and } b \in B \Rightarrow \max(a, b) \in A, \min(a, b) \in B$
 - · Equivalent definition: $x \in B \setminus A, y \in A \cap B, z \in A \setminus B \Rightarrow x \leq y \leq z$
 - * Case 2: $A, B \subset \Re^n$
 - $A \ge_{SSO} B \Leftrightarrow$ $a \in A \ and \ b \in B \quad \Rightarrow \quad a \lor b \in A, \ a \land b \in B$
 - * Fact: $x^*(\theta) \uparrow \theta \text{ in } SSO$

$$\Rightarrow \underbrace{x^{H}(\theta)}_{\text{highest member of } x^{*}(\theta)}, \underbrace{x^{L}(\theta)}_{\text{lowest member of } x^{*}(\theta)} \uparrow \theta$$

• General Definitions:

- Lattice: set X, partial order \geq
- "meet" \land , "join" \lor $x \lor y = \inf \{z : z > x, z > y\}$

$$x \wedge y = \sup \{z : z \le x, z \le y\}$$

- Sublattice: $S \subseteq X$ such that $x \in S$, $y \in S$ $\Rightarrow x \lor y \in S \text{ and } x \land y \in S$
- Supermodularity: $f: X \Rightarrow \mathbb{R}$ is SPM, if $\forall x, y \in X$,

$$f(x \lor y) + f(x \land y) \ge f(x) + f(y)$$

$$\Leftrightarrow f(x \vee y) - f(x \wedge y) \ge [f(x) - f(x \wedge y)] + [f(y) - f(x \wedge y)]$$

- Suppose
$$x = (z_1^H, z_2^L), y = (z_1^L, z_2^H)$$

$$x \lor y = (z_1^H, z_2^H), \quad x \land y = (z_1^L, z_2^L)$$

Then,

$$f(x \lor y) - f(x) \ge f(y) - f(x \land y)$$

 \Leftrightarrow

$$f\left(z_{1}^{H},z_{2}^{H}
ight)-f\left(z_{1}^{H},z_{2}^{L}
ight)\geq f\left(z_{1}^{L},z_{2}^{H}
ight)-f\left(z_{1}^{L},z_{2}^{L}
ight)$$

- Restated question: When is $x^*(\theta, S)$ increasing in θ in strong set order?
 - Question: What if $x^*(\theta) = \emptyset$ for some θ ? Fact: $\emptyset \geq_{SSO} A \geq_{SSO} \emptyset \ \forall A$.
- Theorem (Topkis, 1978): If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, it is SPM if $\forall i \neq j, \, \forall x$

$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) \ge 0.$$

Proof: Apply definition of derivative.

- Interpretation:
 - Increasing first component increases marginal returns to other components
 - "Supermodular" \Leftrightarrow for product set, every pair of choices complements

• Theorem (Topkis, 1978): If $f(x,\theta)$ is SPM and S is a sublattice, then $x^*(\theta,S) = \arg\max_{x \in S} f(x,\theta)$ is nondecreasing in θ in the strong set order.

SPM is not necessary. We will discuss necessity later.

• Games:

Player payoffs: $f^1(x_1, x_2, \theta_1)$; $f^2(x_1, x_2, \theta_2)$ Suppose for each i, f^i SPM in (x_1, x_2) and, f^i is supermodular in components of x_i if x_i is a vector.

• Theorem (Topkis, 1979): If each f^i is SPM in (x_i, x_j, θ) , then eqm $(x_1^*, x_2^*) \uparrow \theta$.

• Applying the theorem:

- use θ to parametrize diff't games
 - $\theta_L: f^i(x_1, x_2, \theta_L) = f(x_i, x_j) c^i(x_i) c^j(x_i)$

 $\theta_H: f^i(x_1, x_2, \theta_H) = f(x_i, x_j) - c^i(x_i)$ (don't experience cost on other player)

- Social θ_L versus Nash Equilibrium θ_H if $c^i, c^j \uparrow x$ then game has "too much" x
- See Ilya Segal, "Contracting with Externalities."

Applying Comparative Statics to Multitask Problems

• Example: the two-effort linear contracting model.

The risk premium is:

$$-\frac{1}{2}r\alpha_{1}^{2}\sigma_{1}^{2} - \frac{1}{2}r\alpha_{2}^{2}\sigma_{2}^{2} - r\alpha_{1}\alpha_{2}\sigma_{12}$$

Verify that when c quadratic, $c_{12} \geq 0$, we have:

$$\frac{\partial^2}{\partial \alpha_1 \partial \alpha_2} TCE\left(\alpha_1, \alpha_2, \sigma_i^2\right) \ge 0$$

Verify:
$$\frac{\partial^2}{\partial \alpha_1 \partial \sigma_1^2} TCE \leq 0$$
, $\frac{\partial^2}{\partial \alpha_2 \partial \sigma_1^2} TCE = 0$

- Comp Statics: I
 - $-\operatorname{If} \sigma_1^2 \downarrow \alpha_1 \uparrow \alpha_2 \uparrow$
 - If technology is a choice, then reinforcing choices: $\sigma_1^2 \downarrow \alpha_1 \uparrow \alpha_2 \uparrow$
 - Suppose we observe different firms, and that (σ_1^2, σ_2^2) vary independently in population. Each firm t gets a draw of (σ_1^2, σ_2^2) .
 - Since $(\alpha_1, \alpha_2) \downarrow (\sigma_1^2, \sigma_2^2)$, there will be a positive correlation between α_1 and α_2 .
 - We expect to see some firms with low (α_1, α_2) and some with high $(\alpha_1, \alpha_2) \Rightarrow$ in general expect to see clusters.
 - * Some firms, however, will appear "mis-matched" due to high σ_1^2 and low σ_2^2 .
- Application: Franchising
 - Royalty rate: proportion of profits paid to company
 - Asset maintainance: mandatory advertising

- Monitoring technology: inspection for quality
- Empirical prediction: company owned on interstate, franchises in local stores
- Note: interpretations of α_1, α_2 can be quite general (i.e. government-owned or privately owned, etc.) See Hart, Schliefer, Vischny on prisons.
- Common Agency (Holmstrom and Milgrom unpublished paper; also see Dixit)
 - Two principals
 - Two efforts
 - Case 1: Principal i cares about x_i , cannot observe x_j .
 - * "Overworked student"
 - * Exert externalities on other principal, over-incentivize agent
 - Case 2: Principal i cares about x_i , can observe both outputs.
 - * Low-powered incentives for politicians (Dixit)
 - * Incentive schemes cancel each other out