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This paper analyzes a class of games of incomplete information where each agent has

private information about her own type, and the types are drawn from an atomless joint

probability distribution.  The main result establishes existence of pure strategy Nash

equilibria (PSNE) under a condition we call the single crossing condition (SCC), roughly

described as follows: whenever each opponent uses a nondecreasing strategy (in the sense

that higher types choose higher actions), a player’s best response strategy is also

nondecreasing.  When the SCC holds, a PSNE exists in every finite-action game.  Further,

for games with continuous payoffs and a continuum of actions, there exists a sequence of

PSNE to finite-action games that converges to a PSNE of the continuum-action game.

These convergence and existence results also extend to some classes of games with

discontinuous payoffs, such as first-price auctions, where bidders may be heterogeneous

and reserve prices are permitted.  Finally, the paper characterizes the SCC based on

properties of utility functions and probability distributions over types.  Applications include

first-price, multi-unit, and all-pay auctions; pricing games with incomplete information

about costs; and noisy signaling games.

KEYWORDS: Games of incomplete information, pure strategy Nash equilibrium,

auctions, pricing games, signaling games, supermodular games, single crossing property.

1 INTRODUCTION

THIS PAPER DERIVES sufficient conditions for a class of games of incomplete information, such

as first-price auction games, to have pure strategy Nash equilibria (PSNE).  The class of games is
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described as follows.  There is a finite number of players, each with private information about

her own type.  Each player’s type is drawn from a convex subset of the real line.  The joint

distribution of types is atomless, and the types are not necessarily independent.  Each player

takes an action after observing her type.  Players may be heterogeneous in utility functions or in

the distribution of types, and the utility functions may depend directly on other players’ types.

Thus, the formulation includes the “mineral rights” auction (Milgrom and Weber (1982)), where

bidders receive a signal about the underlying value of the object, and signals and values may be

correlated across players.

The goal of this paper is to dispense with many of the assumptions required in the prior

literature on existence of PSNE.  Instead, we explore the consequences of a single restriction that

arises naturally in a wide variety of economic applications, the single crossing condition (SCC)

for games of incomplete information.  A player’s strategy is said to be nondecreasing if it assigns

(weakly) higher actions to higher types.  The SCC requires that for every player i, whenever each

of player i’s opponents uses a nondecreasing pure strategy, player i’s expected payoffs satisfy

Milgrom and Shannon’s (1994) single crossing property.2  The SCC implies that in response to

nondecreasing strategies by opponents, each player has a best response strategy that is

nondecreasing.

The paper has two main objectives.  First, we show that the SCC implies existence of PSNE

in a range of circumstances, and second, we characterize the SCC based on properties of the

primitives (utility functions and type distributions).  To accomplish the first objective, we begin

by showing that when a game of incomplete information satisfies the SCC, and the players are

restricted to choose from a finite action set, a PSNE exists.  We then show that if players’ utility

functions are continuous, a PSNE to the continuum-action game can be found by taking the limit
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of a sequence of PSNE of finite-action games.  Thus, the existence result is constructive and

suggests a computational algorithm.  Finally, we extend the latter result to allocation games, such

as first-price auctions, that have a particular type of discontinuity.

To characterize the SCC based on primitives, we exploit tools developed for analyzing

comparative statics in stochastic problems (Athey (1998a, b)).  Using these tools, we demonstrate

that a wide variety of commonly studied games satisfy the SCC.  In the industrial organization

literature, examples include noisy signaling games (such as limit pricing with demand shocks), as

well as oligopoly games with incomplete information about costs or demand.  The SCC holds in

first-price auction games under a wide variety of primitive conditions; it also holds in all-pay

auctions and multi-unit discriminatory auctions, under somewhat more restrictive conditions.  In

each of these games, our results imply that a PSNE exists in nondecreasing strategies, potentially

yielding empirical implications that would not follow in a mixed strategy equilibrium or an

equilibrium in non-monotone strategies.

The existence theorems exploit a variety of consequences of the SCC.  The SCC implies that

we may search for equilibria in the space of nondecreasing strategies.  Indeed, the existence

theorems can be thought of as fixed point theorems tailored to the special case of nondecreasing

functions.  We begin by observing that in the case of finite action sets, a nondecreasing strategy

is a step function, and thus can be represented by a finite vector which determines the points of

strict increase of the function.  This vector is referred to as the vector of “jump points.”  Second,

we establish that when a player’s expected payoffs satisfy Milgrom and Shannon’s (1994) single

crossing property, the set of vectors of jump points representing optimal best responses for each

player is convex.  When the type distribution is atomless, Kakutani’s fixed point theorem can be

applied to the best-response correspondence where players choose vectors of jump points.  To
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treat the continuum-action case, we proceed by taking the limit of a sequence of equilibria with

successively finer action sets.  We make use of the fact that a sequence of uniformly bounded,

nondecreasing functions has a subsequence which converges to a nondecreasing function.

Finally, the results on auctions make use of the special structure of the auction game to rule out

discontinuities in the limit.

The seminal work on the existence of PSNE in games of incomplete information (Radner and

Rosenthal (1982), Milgrom and Weber (1985)) restricts attention to finite-action games.  It

proceeds by proving existence of mixed strategy equilibria in a game where players choose

probability distributions over the actions, and then providing purification theorems.3  This

approach is limited because mapping from a mixed strategy equilibrium, where players

effectively choose probability distributions over the actions, to a pure strategy equilibrium

requires independence (or, at best, conditional independence) of type distributions, and players’

types must be restricted to directly affect only their own payoffs.  Radner and Rosenthal (1982)

provide several counter-examples of games which fail to have PSNE, in particular games where

players’ types are correlated.

Although results about existence of mixed strategy equilibria can be found when actions are

chosen from a compact subset of the real line (Milgrom and Weber, 1985), there are several

known counter-examples to existence of PSNE in this context (Khan and Sun, 1996, 1997).  In

the case where types are independent and payoffs are continuous, Khan and Sun (1995) have

recently shown that PSNE exist when the action sets are countably infinite, but not when the

action sets are uncountable.4

An alternative approach is due to Vives (1990), who shows that a sufficient condition for

existence of PSNE is that the game is supermodular in the strategies, in the following sense: if
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one player’s strategy increases pointwise, the best response strategies of all opponents must

increase pointwise.  But, the strategies themselves need not be monotone in types.  Vives’

condition is applicable in games where each player’s payoff function is supermodular in actions,

but not in the auctions and log-supermodular pricing games highlighted in this paper.

Now consider the case of games such as auctions where indivisible objects are allocated

among players.  The difficulty with such games is that a player’s payoffs change discontinuously

when she receives an object.5  The issue of the existence of PSNE in first-price auctions with

heterogeneous agents has challenged economists for many years.  Recently, several authors have

made substantial progress.6  While the SCC is satisfied in the settings considered in the

literature,7 many interesting classes of auctions are not treated by existing analyses.  We provide

new results about auctions where bidders may differ in utility functions or type distributions

(including in the support of these distributions), the type distributions are potentially correlated

(though in somewhat restrictive ways), and reserve prices may vary by bidder.  We reduce the

question of existence in the game, a technically challenging fixed-point problem, to the simpler

question of whether the SCC holds.  Verifying the SCC entails analyzing a comparative statics

question for a single bidder’s decision problem, and it holds by construction in many settings.

Finally, even for the auctions where existence is known, computation of equilibrium (which

involves numerically solving a system of nonlinear differential equations with two boundary

points) can be difficult due to pathological behavior of the system.  Thus, the computational

algorithm suggested by the constructive existence theorems in this paper may be of use in

applications.  For example, it can be used to evaluate the effects of mergers between bidders in

auctions, as well as to analyze common value auctions with heterogeneous bidders, about which

very little is known.
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2   FINITE -ACTION  GAMES

Consider a game of incomplete information between I players, i=1,..,I, where each player first

observes her own type ti∈Ti≡[ t i ,ti ]⊂�  and then takes an action ai from a compact set $i⊂� .

Let $=$1×⋅⋅×$I, T≡T1×⋅⋅×TI, ai i≡ min$ , and ai i≡ max$ .  The joint density over player types is

f(⋅), with the conditional density of t − i  given ti denoted f(t − i |ti).  Player i’s payoff function is

:iu × →T �$ . Given any set of strategies for the opponents, α j :Tj→$ j,  j≠i, player i’s objective

function is defined as follows (using the notation  ( , ( ))ai i iα− −t  ≡

(..,αi-1(ti-1),ai,αi+1(ti+1),..)):

U a ti i i i( , ; ( ))α − ⋅ ≡ (( , ( )), ) ( ) .
i

i i i i i i it
u a f t d

−
− − − −∫ t t t tα

The following basic assumptions are maintained throughout the paper.

ASSUMPTION A1: The types have joint density with respect to Lebesgue measure, f(⋅), which is

bounded and atomless.8  Further, ui ((ai ,α−i (t −i )), t) f ( t− i ti )dt −i ∈S∫ t − i  exists and is finite for all

convex S and all nondecreasing functions α j :Tj→$ j, j≠i.

The following definitions are needed (the weak version will be referred to in Section 4).

DEFINITION 1:  The function h: 2 →� �  satisfies the (Milgrom-Shannon) single crossing

property of incremental returns (SCP-IR) in (x;θ) if, for all xH>xL and all θH>θL,

h(xH,θL)−h(xL,θL)≥(>)0 implies h(xH,θH)−h(xL,θH)≥(>)0, and h satisfies weak SCP-IR if for all xH>xL

and all θH>θL, h(xH,θL)−h(xL,θL)>0 implies h(xH,θH)−h(xL,θH)≥0.

The definition of SCP-IR requires that the incremental returns to x cross zero at most once,

from below, as a function of θ.  Characterizations will be given below; for the moment, note that

in the special case where h is differentiable, the following are sufficient for SCP-IR:
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2

( , ) 0x h xθ θ∂
∂ ∂ ≥ , or if h>0, 

2

ln( ( , )) 0x h xθ θ∂
∂ ∂ ≥ .  The SCP-IR also admits cases such as

( , ) ( ( ))h x u x c xθ θ= − , where u is an increasing function.  It implies that the set of optimizers is

nondecreasing in the Strong Set Order, defined as follows.

DEFINITION 2:  A set A⊆�  is greater than a set B⊆�  in the strong set order, written A≥SB, if,

for any a∈A and any b∈B, max(a,b)∈A and min(a,b)∈B.  If Κ is a partially ordered set, a set-

valued function : 2A Κ → �  is nondecreasing in the strong set order if for any κH > κL,

A(κH)≥SA(κL).

LEMMA 1:  (Milgrom and Shannon, 1994)  Let h: 2 →� � .  Then h satisfies SCP-IR if and only

if x*(θ,B)≡ argmax
x∈B

h(x,θ) is nondecreasing in θ and B in the strong set order.

Under SCP-IR, there might be a x′∈x*(θL) and a x′′∈x*(θH) such that x′>x′′, so that some

selection of optimizers is decreasing on a region; but if this is true, then x′∈x*(θH) and x′′∈x*(θL)

as well.  Definition 1 can be used to state the sufficient condition for existence of a PSNE in

nondecreasing strategies.

DEFINITION 3: The Single Crossing Condition for games of incomplete information (SCC) is

satisfied if for each i=1,..,I, whenever every opponent j≠i uses a strategy α j :[ t j ,t j ]→$ j  that is

nondecreasing, player i’s objective function, U a ti i i i( , ; ( ))α − ⋅ , satisfies single crossing of

incremental returns (SCP-IR) in (ai;ti).

The SCC implies that in response to nondecreasing strategies by all opponents, each player’s

best response correspondence is nondecreasing in the strong set order.  This implies that each

player has a best response strategy that is nondecreasing; however, it allows that some best

response strategies might be decreasing over an interval of types where there are multiple

optimal actions.
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Our first observation is that when the action set is finite, any nondecreasing strategy is a step

function, and the strategy can be described simply by naming the values of the player’s type ti at

which the player “jumps” from one action to the next higher action.

Consider the following representation.  Let $ i ={A0,A1,..,AM} be the set of potential actions, in

ascending order, where M+1 is the number of potential actions (and for notational simplicity, we

suppose for the moment that the action sets are the same for all players).  Define [ , ]M M
i i iT t t≡ ,

iΣ ≡ x ∈ = ≤ ≤ ⋅⋅ ≤ =+
+T x t x x x x ti

M
i M M i

2
0 1 2 1, ,< A, and let Σ≡ 1Σ ×⋅⋅× IΣ .  A nondecreasing

strategy for player i, α i :Ti→$i, can be represented by a vector x∈ iΣ  according to the following

algorithm (illustrated in Figure 1).

DEFINITION 4:  (i) Given a nondecreasing strategy αi(⋅), we say that the vector x∈ iΣ

represents αi(⋅) if x t t Am i i i m= ≥inf ( )α< A  whenever there is some n≥m such that αi(ti)=An on an

open interval of Ti, and xm= ti  otherwise.

(ii)  Given x∈ iΣ ,  let { x}  denote the set { ti ,x1,..,xM ,ti} , and define m* (t,x) ≡ max{m xm < t} .  We

say a nondecreasing strategy αi(⋅) is consistent with x if αi(ti) = Am ti*( , )x  for all ti ∈ Ti\{ x} .

Each component of x is a “jump point” of the step function described by αi.  Since x does not

specify behavior for ti∈{ x}, a given x∈ iΣ  might correspond to more than one nondecreasing

strategy.  Because there are no atoms in the distributions of types, however, a player’s behavior

on the set {x} (which has measure zero) will not affect the best responses of other players.

Given X=(x1,..,xI)∈ΣΣ, let V1(a1,t1;X) denote the expected payoffs to player 1 with type t1 when

player 1 chooses a1∈$1 and players 2,..,I use strategies consistent with (x2,..,xI).  Then,
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(1) V1(a1,t1;X)≡ ⋅⋅ ⋅ − −
====

++
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( , ,.., , ) ( )t t t ,

and likewise for the other players.

Since (1) embeds the assumption that opponent strategies are nondecreasing, the SCC implies

that Vi(ai,ti;X) satisfies the SCP-IR in (ai;ti) for all X∈ΣΣ.  Let ai
BR(ti|X)≡arg max

ai i∈$
 Vi(ai,ti;X); this is

nonempty for all ti by finiteness of $i.  By Lemma 1, ai
BR(⋅|X) is nondecreasing in the strong set

order, which in turn implies (see Milgrom and Shannon, 1994) that there exists a selection γi(⋅),

where γi(ti)∈ai
BR(ti|X) for each ti∈Ti, which is nondecreasing.  Using Definition 4, γi(⋅) can be

represented by a y∈Σi.  Now define the set of all vectors that represent best response strategies:

Γi(X)={y∈ iΣ : ∃ αi(⋅) which is consistent with y such that ∀ti∈Ti, αi(ti)∈ ai
BR(ti|X)}.

The existence proof proceeds by showing that a fixed point exists for this correspondence.  A

critical property required of Γ=(Γ1,..,ΓI) for this purpose is convexity.  Establishing this property

requires some additional work, since the player might be indifferent between two actions over a

set of types (and this remains true even under the additional assumptions that the player’s payoff

function is strictly quasi-concave and that payoffs are nowhere constant in her type, so long as

the action set is finite).

In Figure 2, ai
BR(⋅|X) is nondecreasing in the strong set order.  In the figure, x and y are both

vectors of jump points representing optimal behavior; the arrows in the figure show convex

combinations of xm and ym for m=1,..,4.  Notice that any such convex combination also represents

optimal behavior.  The following Lemma shows that convexity of the best response

correspondence is a general consequence of the strong set order.

LEMMA 2:  Γi is convex if ai
BR(⋅|X) is nondecreasing in the strong set order.
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PROOF: Fix X and suppose that w,y ∈Γi(X).  Let z=λ w+(1−λ) y for λ∈(0,1), and observe

that z∈ iΣ .  Now, for m=0,..,M, we show that Am is an optimal action on (zm,zm+1).  If wm=wm+1 and

ym=ym+1, then zm=zm+1 and there is nothing to show; so, assume that ym<ym+1.

Consider ti∈(zm,zm+1) and a k such that Ak∈ai
BR(ti|X).  Case 1: Either wm<wm+1 or

ym<wm=wm+1<ym+1.  By definition of w and y, there exists a ti′<ti and a ti′′>ti such that Am∈ai
BR(ti′|X)

and Am∈ai
BR(ti′′|X).  If k<m, then ai

BR(ti|X)≥S
ai

BR(ti′|X) and Am∈ai
BR(ti′|X) imply that Am∈ai

BR(ti|X).

Likewise, if k>m, then ai
BR(ti′′|X)≥Sai

BR(ti|X) and Am∈ai
BR(ti′′|X) imply that Am∈ai

BR(ti|X).  Case 2:

wm=wm+1≤ym<ym+1.  Then, there exists a ti′<ti and an m′′>m such that Am′′∈ai
BR(ti′|X), and a ti′′>ti

such that Am∈ai
BR(ti′′|X).  If k<m, then ai

BR(ti|X)≥Sai
BR(ti′|X) and Am′′∈ai

BR(ti′|X) imply that

Am′′∈ai
BR(ti|X).  But this fact, together with ai

BR(ti′′|X)≥S
ai

BR(ti|X) and Am∈ai
BR(ti′′|X), implies that

Am∈ai
BR(ti|X).  If k>m, ai

BR(ti′′|X)≥S
ai

BR(ti|X) and Am∈ai
BR(ti′′|X) implies that Am∈ai

BR(ti|X).  Case

3: ym+1<ym+1≤wm=wm+1.  Analogous to Case 2.

Let *( , )( , )
ii i m tt Aβ ≡ zz .  Then ( , )iβ ⋅ z  is a nondecreasing strategy consistent with z which

assigns optimal actions to almost every type, implying that z∈Γi(X). Q.E.D.

With convexity established, it is straightforward to prove existence of a fixed point.

LEMMA 3:  Suppose that A1 and the SCC hold.  Then there exists a fixed point of the

correspondence (Γ1,.., ΓI):Σ→ΣΣ.

PROOF:  Since Σ is a compact, convex subset of ( 2)I M +
� , we can apply Kakutani’s fixed

point theorem.  We argued in the text that Γ is nonempty, and Lemma 2 established convexity.

We next establish that Γ has a closed graph.  From (1) and our assumption that the type

distribution is atomless, it follows that Vi(ai;X,ti) is continuous in the elements of X.  Consider a
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sequence (Xk ,Yk )  which converges to (X,Y), such that Yk∈Γ(Xk) for all k.  To see that Y∈Γ(X),

consider player i, and a type ti∈Ti\{ yi}.  Then there exists an m ∈{0,..,M} such that ym
i <ti<ym

i
+1.

Since yi,k converges to yi, there must exist an K such that, for all k>K, ym
i,k <ti<ym

i k
+1

, , and thus Am is

one of ti’s best responses to Xk.  Because Vi(ai,ti;X) is continuous in X, if Vi(Am,ti;X
k)≥Vi(Am′ ,ti;X

k)

for all k>K and all m′, then Vi(Am,ti;X)≥Vi(Am′ ,ti;X). Q.E.D.

Existence of a PSNE follows directly from this Lemma.  It remains only to assign strategies

to players that are consistent with a fixed point of Γ.  Let X be such a fixed point, and let

(β1(⋅),..,βI(⋅)) be a vector of nondecreasing strategies consistent with X.  Since the type

distribution is atomless, a given player i does not care about the behavior of her opponents at

jump points, and thus βi(⋅) is a best response to any set of strategies β− i (⋅) consistent with X−i.

This implies that (β1(⋅),..,βI(⋅)) is a PSNE of the original game.  Formally:

THEOREM 1:  Assume A1 and the SCC hold.  If $ i
 is finite for all i, this game has a PSNE

where each player’s equilibrium strategy, βi(⋅), is nondecreasing.

Before proceeding, it is useful to consider the precise role of the SCC in this analysis.  Can

the approach be extended to non-monotone strategies?  In the working paper (Athey, 1997), this

question is explored more fully by considering strategies of “limited complexity.”  The basic idea

is that a PSNE exists if we can find bounds on the “complexity” (formalized as the number of

times the function changes from nondecreasing to nonincreasing or vice versa) of each player’s

strategy, and further, player i’s best response stays within her specified bound whenever all

opponents use strategies within their respective bounds.  The main limitation of the extension to

games with limited complexity is that much stronger assumptions may be required to guarantee

convexity of the best response correspondence, which followed above (in Lemma 2) as a
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consequence of the SCC.  For example, the extension in Athey (1997) requires the assumption

that the best response action is unique for almost all types.

What is ruled out by the SCC, or more generally by a restriction like “limited complexity”?

An example of a game with no PSNE, due to Radner and Rosenthal (1982), is an incomplete-

information version of “matching pennies.”  The setup is as follows: the game is zero-sum, and

each player chooses actions from {A0,A1}.  When the players choose the same action, player 2

pays $1 to player 1, while if the actions do not match, the players each receive zero.  The types

do not directly affect payoffs, and are uniformly distributed on the triangle 0≤t1≤t2≤1.  Notice

first that this game fails the SCC.  When player 2 uses a nondecreasing strategy, player 1’s best

response is nondecreasing.  But, when player 1 uses a nondecreasing strategy, player 2’s best

response is nonincreasing, since player 2 prefers not to match with player 1.  Further, this game

also fails the more general “limited complexity” condition.  Intuitively, player 1’s best response

to any pure strategy of player 2 will essentially mirror player 2’s strategy, while player 2 will

wish to “reverse” any pure strategy of player 1.

3 GAMES WITH A  CONTINUUM  OF ACTIONS AND CONTINUOUS PAYOFFS

3.1 Existence of PSNE

This section shows that the results about existence in games with a finite number of actions

can be used to construct equilibria of games with a continuum of actions.  The properties of the

equilibrium strategies implied by the SCC play a special role in the limiting arguments used in

section.  While arbitrary sequences of functions need not have convergent subsequences,

sequences of uniformly bounded, nondecreasing functions do have convergent subsequences.

Thus, all that remains is to show that the limits of these sequences are in fact equilibria to the

continuous-action game.
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The assumption of finite actions in Section 2 plays two roles: (i) it guarantees that an optimal

action exists for every type, and (ii) it simplifies the description of strategies so that they can be

represented with finite-dimensional vectors.  In moving to the continuum-action case, we

introduce the assumption that payoffs are continuous in actions.  Continuity is a substitute for

finiteness in (i), and further, it is used in showing that the limit of a sequence of equilibria in

finite-action games is an equilibrium of the limiting game.9

THEOREM 2:  Assume A1.  Suppose that (i) for all i, $ i =[ , ]a ai i , (ii) for all i, ui(a,t) is

continuous in a, and (iii) for any finite $n⊂$, a PSNE exists in nondecreasing strategies.  Then a

PSNE exists in nondecreasing strategies in the game where players choose actions from $.

PROOF: For each player i, consider a sequence of action sets {$ i
n}, where

$ i
n= a a a mi

m
i i

n
n+ − =

10
0 10( ): ,..,> C.  Let $n=($1

n ,..,$ I
n), and let βn(⋅) be the corresponding

nondecreasing PSNE strategies.  Helly’s Selection Theorem (Kolmogorov and Fomin, 1970, p.

373) guarantees that a sequence of nondecreasing, uniformly bounded functions on Ti⊆�  has a

subsequence which converges to a nondecreasing function.  Let {n} denote a sequence such that

βn(⋅) converges to β*(⋅).

Consider player i, and a type ti∈Ti.  Let  b=βi

*(ti); Helly’s Selection Theorem implies β i
n(ti)

converges to b.  Consider any a′∈$
i, and consider a sequence {′an} such that, for all n, ′ ∈an i

n
$ ,

and further ′an→a′.  Since β i
n(⋅) is an equilibrium strategy for any n, then for all n,

Ui(β i
n(ti),ti;β− i

n (⋅)) ≥ Ui( ′an,ti;β− i
n (⋅)).  Because payoffs are continuous and since β− i

n (⋅) converges to

* ( )i− ⋅β , it follows that for all t − i , ui(β i
n(ti),β− i

n (t − i ),t) converges to ui(b,β−i
* ( t −i ) ,t) and

ui( ′an,β− i
n (t − i ),t) converges to ui(a′,β−i

* ( t −i ) ,t).  Thus, the expectations also converge, so that
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Ui(b,ti;β−i
* (⋅))≥Ui(a′,ti;β−i

* (⋅)).  This guarantees that βi

*(ti) is a best response to * ( )i− ⋅β . Q.E.D.

COROLLARY 2.1:  Assume A1 and the SCC.  Suppose that (i) for each i, $ i =[ , ]a ai i , and (ii) for

all i, ui(a,t) is continuous in a.  Then there exists a PSNE in nondecreasing strategies.

Corollary 2.1 establishes that the assumption of finite or countable actions can be dispensed

with for the class of games that satisfies the SCC.  This result contrasts with the general finding

(see Khan and Sun, 1996, 7) that PSNE may not exist when the action sets are uncountable and

the type distribution is atomless (Lebesgue).10  It can be readily verified that the counter-

examples put forward by Khan and Sun (1996, 7) for this class of games fail the SCC.

3.2 Characterizing the Single Crossing Condition in Applications

This section characterizes the SCC in several classes of games of incomplete information.

The results make use of the properties supermodularity and log-supermodularity.  If X is a

lattice, the function h:X→�  is supermodular if, for all x,y∈X,

h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y) .11  A non-negative function h:X→�  is log-supermodular if,

for all x,y∈X, h(x ∨ y) ⋅ h(x ∧ y) ≥ h(x) ⋅ h(y) . Recall that when h: n
� →� , and vectors are

ordered in the usual way, Topkis (1978) proves that if h is twice differentiable, h is supermodular

if and only if ∂2

∂xi ∂x j
h(x) ≥ 0 for all i ≠ j.

Five facts together can be used to establish our characterization theorems: (i) if h: 2
� →�  is

supermodular or log-supermodular, then h(x,t) satisfies SCP-IR in (x;t); (ii) sums of

supermodular functions are supermodular, while products of log-supermodular functions are log-

supermodular; (iii) if h: n
� →�  is supermodular (resp. log-supermodular), then so is the

function h(α1(x1),..,αn(xn)), where αi(⋅) is nondecreasing; (iv) a density is log-supermodular almost

everywhere if and only if the random variables are affiliated (as defined in Milgrom and Weber,



14

1982);  (v) if t is affiliated, and further h(x,t) is supermodular in (x,tj) for all j (resp. log-

supermodular in (x,t)), then H x t h x f t di i i i( , ) ( , ) ( | )= I − −a

b
t t t  is supermodular in (x,ti) (resp. log-

supermodular in (x,ti,a,b)) (see Athey 1998a, b).12

3.2.1 Supermodular and Log-Supermodular Games

Many widely-studied games have supermodular payoffs, that is, strategic complementarities;

examples include search models in the spirit of Diamond (1982), coordination games, and games

with network externalities (Katz and Shapiro, 1986); Topkis (1979), Vives (1990), and Milgrom

and Roberts (1990) provide a variety of additional examples.  Further, two-player games with

strategic substitutes can be treated as supermodular games, when one player’s action is re-

ordered.  Games with strategic substitutes include Cournot quantity games as well as many

games among duopolists who make investments (for example, in cost-reduction) prior to product

market competition (see Athey and Schmutzler (1999) for numerous examples).  Although such

games are typically analyzed under the assumption of complete information, it is perhaps more

realistic to consider the case where firms may have private information about their costs and

benefits to acting.  For example, in an oligopoly game, firms may have incomplete information

about their rivals’ production costs or demand elasticity;13 in an investment game, firms may

have incomplete information about investment costs or results from prior research and

development.  The following result applies to such games.

THEOREM 3:  Suppose (i) for all i, ui(a,t) is supermodular in a and (ai,tj), j=1,..,I, and (ii) the

types are affiliated.  Then the game satisfies the SCC.  Thus, under A1, if either $ �is finite, or

else for all i, $ i =[ , ]a ai i  and ui(a,t) is continuous in a, there exists a PSNE in nondecreasing

strategies.

Theorem 3 follows from facts (i)-(v) above together with Corollary 2.1.  It applies to games
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with additively separable payoffs (for example, when an investment has an additively separable

cost, as when ui(a,t)=hi(a)−ci(ai,ti) or ui(a,t)=hi(a,ti)−ci(ai)), since supermodularity is preserved by

sums.  It should be noted that the games studied in Theorem 3 also satisfy Vives’ (1990)

sufficient condition for existence of PSNE; but, Theorem 3 guarantees the existence of a PSNE

in nondecreasing strategies.  This is not immediate, because even when existence is known and

the SCC is satisfied, and even when all opponents use nondecreasing strategies, a player may

have a best response strategy that is decreasing over an interval.  In applications, additional

empirical implications typically follow from monotonicity.  For example, in an oligopoly

context, a firm should receive greater market share when it has lower marginal cost.

Now consider the class of games with log-supermodular payoffs.  This class does not satisfy

Vives’ (1990) conditions.  An example is a pricing game among firms with differentiated

products (we consider the case of homogeneous products in Section 4.2).  For firm i, let ti denote

the marginal cost of firm i, let ai denote the price, let Di(a) denote the demand to firm i, and

suppose payoffs are given by (ai−ti)⋅D
i(a).  Notice first that (ai−ti) is log-supermodular.  Further,

for many commonly studied examples, Di(a) is log-supermodular; the interpretation is that a

higher price by opponents makes demand less elastic.14  Then, payoffs are log-supermodular.

This model can be used to analyze a variety of questions in industrial organization, such as how

the presence of private information affects the relative profitability of a firm that is on average

less efficient.  The following theorem establishes existence of a PSNE for this class of games.

THEOREM 4:  Suppose (i) for all i, ui(a,t) is nonnegative and log-supermodular in (a,t), and (ii)

the types are affiliated.  Then the game satisfies the SCC.  Thus, under A1, if either $ �is finite,

or else for all i, $ i =[ , ]a ai i  and ui(a,t) is continuous in a, there exists a PSNE in nondecreasing

strategies.
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Theorem 4 may be especially useful in games with multiplicatively separable payoffs (for

example, when ui(a,t)=hi(a)⋅ci(ai,ti) or ui(a,t)=hi(a,ti)⋅ci(ai)), since log-supermodularity is

preserved by multiplication.

3.2.2 Noisy Signaling Games

Our results about existence of PSNE can also be applied to games with alternative timing

assumptions.  For example, consider a signaling game between two players, where player 1’s

utility is given by u1(a1,a2,t1) and player 2’s utility is given by u2(a1,a2).  After observing her type

(for example, marginal cost or a parameter of demand), Player 1 takes an action which generates

a noisy signal, t2, that is observed by player 2.  Player 2 then takes an action.  An example is a

game of limit pricing (Matthews and Mirman (1983)), where an entrant does not know the cost

of the incumbent, but can draw inferences about the incumbent’s cost by observing a noisy signal

of the incumbent’s product market decision (the noise might be due to demand shocks).  In

another example, Maggi (1999) examines the extent to which noise in the signaling process

undermines the first mover advantage in commitment games.  Different assumptions about the

nature of product market competition lead to different properties of payoffs.  Games with

strategic substitutes or complements can be analyzed using Theorem 3, and many pricing games

are log-supermodular, so that Theorem 4 applies.  Otherwise, the following result can be used:15

THEOREM 5:  Suppose that there are two players, i=1,2.  Suppose that (i) for i=1,2, ui ( , )a t

satisfies weak SCP-IR in (ai,tj) and (ai,aj), and is supermodular in (ai,ti), and (ii) the types are

affiliated with non-moving support.  Then the game satisfies SCC.  Thus, under A1, if either $

is finite, or else for all i, $ i =[ , ]a ai i  and ui(a,t) is continuous in a, there exists a PSNE in

nondecreasing strategies.
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4 GAMES WITH  DISCONTINUITIES:  AUCTIONS AND PRICING  GAMES

4.1 Existence of PSNE

Auctions and resource allocation games are perhaps the most widely studied applications of

games of incomplete information.  The problem is to allocate one or more goods to a subset of a

group of agents, where each agent has private information about her value for the good.  For

example, in a first-price auction for a single good, each player submits a sealed bid after

observing her type, and the highest bidder receives the good and pays her bid.  Corollary 2.1

cannot be applied to auction games, because a player sees a discrete change in her payoffs

depending on whether she is a “winner” or a “loser” in the auction.  If any opponents use a given

bid b with positive probability, a player’s probability of winning, and thus expected payoff,

changes discontinuously at b.  Thus, we say that the discontinuity arises as a result of “mass

points” in the distribution over opponent actions.

The literature has focused on the existence question primarily for the case of first-price

auctions.  Two main approaches have been used: (i) establishing that a solution exists to a set of

differential equations (Lebrun (1997), Bajari (1997), Lizzeri and Persico (1997)), and (ii)

establishing that an equilibrium exists when either types or actions are drawn from finite sets,

and then invoking limiting arguments (Lebrun (1996), Maskin and Riley (1999)).

This paper takes the second approach.  Theorem 1 implies that in any auction where the SCC

is satisfied, a PSNE exists so long as bids must be placed in discrete units (as in many real-world

settings).  This result holds even if there is a reserve price, or if there are different reserve prices

for different bidders.

Thus, any concern about existence of PSNE in auction games with the SCC must focus on

discontinuities that arise in the limit as the bidding units become small.  Yet, this concern is
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serious: in some examples, there exists a PSNE for every finite action set, but not in the

continuum-action case (for example, see Fullerton and McAfee (1999)).  Our approach is to use

properties of PSNE of finite-action games to show that in the limit, as the action set gets fine, no

“mass points” arise and thus payoffs are continuous.

The setup is given as follows.  Winners receive payoffs v i(ai,t), while losers receive payoffs

v
i(ai,t).

16  The allocation rule ϕi(a) specifies the probability that player i wins as a function of the

actions taken by all players.  Thus, player i’s payoff given a realization of types and actions is

(2)
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There are several classes of examples with this structure.  In a first-price auction, the winner

receives the object and pays her bid, so that v i(ai,t) is the value of winning at bid ai, while losers

get payoffs of vi(ai,t)=0.  Note that ( , )i iv a∆ t  can be negative, if the winner pays more than the

object is worth.  In an all-pay auction, the player pays her bid no matter what, but the winner

receives the object.  Below, we show that several oligopoly games also fit into the framework.

In most auction models, participation is voluntary: there is some outside option, such as not

placing a bid, that provides a fixed, certain utility to the agent, typically normalized to zero.  We

refer to this action as Q<min 1{ ,.., }Ia a .  The allocation rules take the form

(3)
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where in this definition, k represents the number of units to be allocated, Lσ  represents a set of

opponents defeated by player i, and Tσ  represents a set of opponents who tie with player i.

Thus, player i receives the object with probability zero if k or more opponents choose actions

such that aj>ai, and with probability 1 if I−k or more opponents choose actions such that aj<ai.

The remaining events are “ties,” resolved randomly.  In a first-price auction for a single object,

k=1, and the player wins with probability zero if 1 or more opponents place a higher bid.  All of

our results below continue to apply if we consider “biased” allocation rules,17 and the rule for

resolving ties can also be generalized.

We group together several assumptions.

ASSUMPTION A2:  For all i=1,..,I, all ai∈[ , ]a ai i  and all T∈t : (i) The support of F(t) is a

product set; (ii) v i(ai,t) and v i(ai,t) are bounded and continuous in (ai,t);  (iii) ( , ) 0iv Q =t ,

( , ) 0iv Q =t , and ∆v ai i( , )t < 0, where 1( ,.., )It t=t ; (iv) ∆vi(ai,t) is strictly increasing in (−ai,ti);

(v) There exists a λ>0 such that, for all ε>0, ∆vi(ai,t -i,ti+ε)−∆vi(ai,t -i,ti)≥λε.

Part (i) guarantees that the support of ( )i iF t−t  does not vary with ti; thus, any action used by a

player with positive probability is viewed as having positive probability by all types of all

opponents.  Part (ii) includes regularity assumptions.  Part (iii) normalizes the “outside option” to

zero, and further guarantees that the players have available actions larger than any they would

choose to use in equilibrium.  Part (iv) requires that choosing a higher action decreases the gain

from winning, and the gain to winning is strictly increasing in the type.  Part (v) requires that

there is a uniform lower bound on the slope (with respect to the action) of the gain to winning.

All of these assumptions, or more stringent ones, are standard (though often implicit) in the

literature on auctions.
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Now consider an existence result for this class of games.  We can construct a set of strategies,

denoted β*(⋅), as the limit of a sequence of equilibria to finite-action games, {βn(⋅)}, as in

Theorem 2.  Because of the potential discontinuity described above, Theorem 2 cannot be

applied directly to establish that β*(⋅) is a PSNE of the continuum-action game.  If we can prove

that there are no mass points in the limit (that is, no action is used with positive probability),

continuity will be restored and the arguments of Theorem 2 can be applied.

Our approach (detailed formally in the Appendix) is to rule out mass points using the fact

that {βn(⋅)} converges to β*(⋅) uniformly except on a set of arbitrarily small measure, together

with the fact that we can characterize certain properties of each βn(⋅) based on the fact that βn(⋅) is

a PSNE.  The argument can be sketched as follows.  We proceed by contradiction.  Suppose β*(⋅)

specifies that two players, i and j, both use action b with positive probability (which cannot be an

equilibrium by standard arguments).  Let Si be the subset of player i’s types that use b under β*(⋅),

and likewise for player j.  Consider the requirements placed on {βn(⋅)}.  Given a d>0, for some n

large enough (i.e., some action grid fine enough), βn(⋅) must specify that all but a small subset of

player i’s types in Si use an action on (b−d,b+d), and likewise for player j.  But then we will

argue that there must be some action grid fine enough, and some d small enough, such that the

“cost” to player j of increasing her action by d is less than the benefit from the increase in the

probability of defeating most of the types ti∈Si.  In this case, for player j, almost all types tj∈Sj

prefer b+d to any action on [b−d,b+d], contradicting uniform convergence to β*(⋅).

To complete the latter argument, it is necessary to establish that increasing the probability of

winning (for example, by increasing the action from b−d to b+d) is in fact a benefit for most of

the player types in Si and Sj. That requires two building blocks.

The first building block guarantees that player i’s expected gain from winning goes up when
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player i conditions on winning with a higher action.  We require the following additional

notation: let ( ; )i i iW a −α  denote the event that the realization of t -i and the outcome of the tie-

breaking mechanism are such that player i wins with ai, when opponents use strategies α − i .

Thus, Pr( ( ; ) 1 ) ( , ( )) ( )i i i i i i i i i i iW a t a f t dϕ− − − − −= = ⋅∫ t t tα α .

ASSUMPTION A3:  For all i= 1,..,I, all ai,ai′∈[ ai ,a i ], and whenever every opponent j≠i uses a

strategy α j :[ t j ,t j ]→$ j  that is nondecreasing, E v a t W ai i i i i i∆ ( , ) , ( ;t  )′ −α  is strictly increasing in

ti  and nondecreasing in ′ai .

This assumption is standard in the literature, but it is fairly restrictive.  Although it holds trivially

for private value auctions, it requires strong assumptions on the type distribution in more general

models.  For first-price auctions, Milgrom and Weber (1982) showed that when ∆vi is

nondecreasing in t and strictly increasing in ti, A3 holds if the types are affiliated.

The second building block establishes that if b−d is a best response for type ti of player i, this

type prefers winning to losing at b+d.  This is not trivial, because player i might win with

probability 0 using action b−d, in which case nothing about her preferences for winning at b−d

can be inferred.  To see a problematic example, consider a single-unit, first-price auction, and a

sequence of minimum bid increments εn→0.  Suppose that for each n, in the PSNE of the

corresponding finite-action game, a set Si of player i types uses action b−εn and a set [ , ]t tj j′  of

player j types uses action b.  Thus, b−εn wins with probability zero for player i for each n, and it

is possible that losing is preferred to winning by player i’s types in Si.  In this case, even though

winning at b is not desirable for these types, the limiting strategies require them to choose b and

win with positive probability.

To this rule out, in the Appendix we show that for every finite-action game, there exists a
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PSNE that is robust to perturbations that generate a small probability that each action wins.

LEMMA 4:  For i=1,..,I, let $ i  be finite, with Q∈$ i .  Consider an auction game with payoffs

given by (2)-(3), and assume that A1 and the SCC hold.  (i) For all δ>0, there exists a PSNE in

nondecreasing strategies of the modified game, denoted ˆ ( ; )δ⋅β , where each player type on

ti∈[ t i ,t i +δ] is required to use action Q. (ii)  There exists a PSNE in nondecreasing strategies,

β*(⋅), such that: β*(⋅)= ˆlim ( ; )k kδ→∞ ⋅β  for some sequence { }kδ , where lim k k→∞ =δ 0  and

lim ( � ( ; ), ) , ( � ( ; ); � ( ; ))
k

i i i k i i i i k i kE v t t W t
→∞ − ⋅∆ β δ β δ δt  β ≥0 for all ti∈Ti.

With these two building blocks in place, we can rule out the possibility that two players both

use the same action with positive probability.  Another case of potential concern occurs if just

one player, player i, uses action b with positive probability.  Although this case can be ruled out

using somewhat more involved arguments, we will not undertake this exercise here because it

does not affect existence of PSNE: only a countable number of actions can be used by player i

with positive probability, and thus the set of opponent types who see a discontinuity in payoffs

has measure zero.  Since Bayesian Nash equilibrium only requires that almost every type chooses

an optimal action, such mass points do not affect existence.  The conclusion then follows:

THEOREM 6:  For all i, let $ i =Q∪[ , ]a ai i .  Consider an auction game with payoffs described by

(2)-(3), and assume A1-A3, and that the game satisfies the SCC.  Then, there exists a PSNE in

nondecreasing strategies.

Theorem 6 generalizes the best available existence results about first-price auctions, multi-

unit pay-your-bid auctions where agents have a unit demand, and all-pay auctions.  It allows for

bidder-specific reserve prices, heterogeneous agents, general risk preferences, and correlated type

distributions−so long as the SCC holds.  Before discussing the primitive conditions under which
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the SCC holds, we consider some further implications of the theorem.

First, once existence is established for the continuous-action game, standard arguments can

be used to verify the usual regularity properties (including optimality of actions for every type).

For example, strategies are strictly increasing on the interior of the set of actions played with

positive probability.  Further, with appropriate differentiability assumptions, a differential

equations approach can be used for characterizations.

Second, Theorems 2 and 6 not only provide existence results for the continuum case; they

also establish that finite-action games can be used to closely approximate continuum-action

games.  Thus, the continuum model is an appropriate abstraction for auctions in which fixed bid

increments are small.  As well, revenue and allocation in an auction will not be very sensitive to

small changes in the number of bid increments allowed.

Perhaps more importantly, the convergence results also motivate a computational algorithm.

This may be particularly useful in the case of first-price auctions, since in the absence of general

characterization theorems and functional form examples, computation of equilibria to first-price

auctions is the main tool available to evaluate the effects of mergers (or collusion) between

bidders in auctions.  Prior to Marshall et al (1994), there were no general numerical algorithms

available for computing equilibria to asymmetric first-price auctions.  Numerical computation of

equilibria in asymmetric first-price auctions in the independent private values case is difficult

due to pathological behavior of the system of differential equations at the origin.  Marshall et al

(1994) provide computations for the independent private values case for a particular functional

form; see also Bajari (1997).

Theorem 6 suggests an alternative: compute equilibria to games with successively finer

action sets.  The computation of a finite-action equilibrium requires searching for a fixed point to
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the correspondence Γ defined in Section 2, where the calculation of Γ(X) is a simple exercise of

calculating the best-response jump points for each player.  The more difficult part of the problem

is solving the nonlinear set of equations X=Γ(X).  There are a number of standard ways to

approach this problem.  There is not a global “contraction mapping” theorem, and so the simplest

algorithm Xk+1=Γ(Xk) is not guaranteed to converge, and indeed it does not appear to in numerical

trials.  The working paper (Athey, 1997) provides a number of computational examples which

could be computed using either variations on the algorithm Xk+1= λ⋅Γ(Xk) + (1-λ)⋅Xk)), or quasi-

Newton approaches.18

4.2 Characterizing the Single Crossing Condition in Auctions and Pricing Games

This section characterizes properties of primitives (utility functions and type distributions)

that imply the SCC and A3 for a variety of widely-studied auctions and pricing games.  To begin,

we formally describe the auction environments of interest.  For many auction models, we can

model a bidder’s utility from obtaining the object as Vi(Zi−m), where Zi is the value of the object

and m is the payment to the auctioneer.  The utility from not receiving the object, and making

payment m, is Vi(−m).  Normalize Vi(0)=0.  Further assume that Vi is strictly increasing with non-

vanishing slope.  A bidder is risk-neutral if Vi is linear, risk-averse if Vi is concave, and “not too

risk-loving” if ln(Vi) is concave.

In a first-price auction, as well as in a multi-unit auction where each bidder has unit demand

and pays her bid if she receives a unit,19 v
i(ai,t)=0.  All-pay auctions have been used to model

activities such as lobbying (Becker (1983), Baye, Kovenock, and de Vries (1993)) and arms races

(O’Neill, 1986); in this model, v i(ai,t)=Vi(−ai).

Consider four alternative sets of assumptions for the auction models.  In the general affiliated

values setting, v i(ai,t) is nondecreasing in t, supermodular in (ai,ti), and types are affiliated.  In an



25

affiliated private values setting, Zi=ti, so that v 
i(ai,t)=Vi(ti−ai), and types are (weakly) affiliated;

independent private values is then a special case.  In the conditionally independent common

values model, Zi=Z for all i, bidders see signals si=Z+εi, and the εi are distributed independently

across bidders, conditional on Z.  This special case is commonly used in applications, including

the recent empirical literature on auctions (see, e.g., Li, Perrigne, and Vuong, 1999).  In the

positive value interdependence, independent information model, the bidders types are distributed

independently.  The bidder’s utility from an allocation, v 
i(ai,t), is nondecreasing in the opponent

types, and further, bidder i’s utility is supermodular in (ai,ti) and in (ti,tj) for all opponents j.

These assumptions hold, for example, if the bidder is risk neutral and Zi is a weighted sum or

average of opponent types.

Now consider oligopoly games.  In the Bertrand pricing game, the firm’s payoff from

serving the market is given by (p−ci)D(p), where D is nonincreasing, p is the sale price, and ci is

the marginal cost of production, taken to be incomplete information.  The seller serves the

market if she has the lowest price, shares it in the event of a tie, and earns zero profit otherwise.

Spulber (1995) uses such a model, with private values model and symmetric firms, to show that

incomplete information can lead to above-marginal-cost pricing; Athey, Bagwell, and Sanchirico

(1998) use the same model as the stage game in a repeated-game study of price rigidity.  The

model also applies to procurement auction settings, where the bid is a per-unit price, and the

buyer’s demand decreases with the winning price.  Placing the model in our framework,

v i(ai,t)=0.  In a private values setting, v i(ai,t)=(−ai+ti)D(−ai), where −ai is the price paid and −ti is

the marginal cost of production.  Although the private value setting is appropriate for capturing

idiosyncratic productivity differences, firms might face common uncertainty about input prices,

or they might engage in research and development with spillovers.  Then the general affiliated
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values setting may be applicable, where v 
i(ai,t)=E[(−ai+Zi)D(−ai)|t].  The conditionally

independent common values case is analogous to the first-price auction; the positive value

interdependence, independent information case has Zi=gi(t), where gi is nondecreasing and

supermodular in (ti,tj) for i≠j.

A final class of models was introduced by Varian (1980) to study price dispersion.  Firms

sell to two types of consumers, a set C of “captured” consumers with inelastic demand, and a set

S of price-sensitive consumers who buy from the firm with the lowest price.  Varian (1980)

derives a mixed-strategy equilibrium to this model, and interprets the model as a theory of sales.

Bagwell and Wolinsky (1998) analyze an extension where firms have incomplete information

about marginal cost.  To analyze the model our framework, we let v i(ai,t)=(−ai+ti)D
C(−ai) and

v 
i(ai,t)=(−ai+ti)(D

C(−ai) +DS(−ai)) for the case of private values; the other informational settings

are constructed in a similar manner.

The following result establishes existence of PSNE in these games.

THEOREM 7:  The SCC and A3 are satisfied in the following pricing games and auction

environments (where in all cases, players are potentially heterogeneous, and bidder-specific

reserve prices are permitted):

1.  First-price auction.  The setting is either: (i) affiliated private values, bidders are not too risk

loving; (ii) positive value interdependence, independent information; (iii) conditionally

independent common values, and bidders are (weakly) risk averse; or (iv) general affiliated

values, but only two bidders.

2.  Multi-unit discriminatory auction where each bidder demands a single unit.  The setting is

independent private values; bidders are not too risk-loving.

3.  All-pay auction.  The setting is either (i) independent private values, (weakly) risk averse
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bidders; or (ii) positive value interdependence, independent information.

4. Bertrand pricing game with downward-sloping demand.  The setting is either: (i) affiliated

private values; (ii) positive value interdependence, independent information; (iii) conditionally

independent common values; or (iv) general affiliated values, but only two bidders.

5.  Price dispersion model.  The setting is either (i) independent private values; or (ii) positive

value interdependence, independent information.

Thus, under A1-A2, if participation is voluntary and either $ �is finite, or else for each i, bids

must lie on [ , ]a ai i , a PSNE exists in nondecreasing strategies.

The proof of this result is in the Appendix.  We highlight the proof for a few special cases

where the SCC is especially easy to check.  Consider the independent private values information

structure.  Then, in the first-price auction, payoffs to a bidder are given by ( )Pr(  wins)i i i iV t a a− .

It is immediate to verify that this function is log-supermodular, no matter what strategies are

used by opponents, if and only if iV  is log-concave.  Then, the SCC holds.  In the all-pay

auction, payoffs are given by ( ( ) ( ))Pr(  wins) ( )i i i i i i i iV t a V a a V a− − − − − .  No matter what

opponents do, this expression is supermodular so long as iV  is increasing and concave, and again

the SCC holds.  The oligopoly games are similarly transparent.

In each of the games described above, Theorem 7 extends the set of environments where

existence of PSNE is known.  Both of the pricing games have been analyzed only for symmetric

bidders and independent, private values.  For first-price auctions, Lebrun (1997) establishes

existence for the independent private values case, where the value distributions have a common

support, and there is a single reserve price for all bidders.  In contrast, our result allows the value

distributions of different bidders to have different supports, and it further allows for bidder-
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specific reserve prices, as would maximize revenue in an auction with heterogeneous bidders.

Maskin and Riley (1999) establish existence under the affiliated private values and positive value

interdependence, independent types settings; they do not consider reserve prices or the

conditionally independent common values cases, settings that are especially relevant for

empirical applications (for example, U.S. off-shore oil lease auctions have reserve prices and

heterogeneous bidders).

Amann and Leininger (1996) studied asymmetric all-pay auctions for the two-bidder, private

values case.  In independent research, Lizzeri and Persico (1997) analyze two-bidder auctions,

establishing existence and uniqueness of equilibria in a general class of auction games that

includes first-price and all-pay auctions.  Their approach does not extend to more than two

bidders unless bidders are symmetric, and while they include reserve prices, each bidder must

face the same reserve price.  For the general affiliated values model of all-pay auctions, Krishna

and Morgan (1997) establish existence for the case of symmetric, risk-neutral bidders.  Even in

that special case, additional assumptions on the type distribution are required.  Their approach

can potentially be generalized to heterogeneous bidders, but this is left for future work.

It should be emphasized that neither the existing literature, nor Theorem 7, provides

sufficient conditions for existence in the general affiliated values model of first-price auctions,

with more than two heterogeneous bidders; as discussed in Athey (1997) and Athey (1998b),

competing effects may arise in that case.  However, Theorem 6 does show that if primitive

conditions (even functional forms) can be found whereby the SCC does hold for the general case

(i.e., if the competing effects are assumed to be small, as in an extension of the conditionally

independent common values model where a “small” amount of correlation is permitted between

the errors iε ), existence of PSNE follows immediately; non-monotonicity of bidding functions is
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the only concern in the more general model.

None of the above authors focus on multi-unit auctions.  Indeed, extending the results about

multi-unit auctions to allow for more general primitive assumptions, and multi-unit demands,

represents an interesting avenue for future research.

5. CONCLUSIONS

This paper has introduced a restriction called the single crossing condition (SCC) for games

of incomplete information.  We have shown that when the SCC is satisfied, PSNE exist when the

set of available actions is finite.  Further, with appropriate continuity or in auction games, there

exists a sequence of equilibria of finite-action games that converges to an equilibrium in a game

with a continuum of actions.

The results developed in this paper have the following implications.  First, existence of PSNE

in nondecreasing strategies can be verified by checking economically interpretable conditions,

conditions which are satisfied by construction in many economic applications.  Second, in

applications the question of existence has been reduced to the simpler question of comparative

statics in a single-agent decision problem.  As shown in Sections 3.2 and 4.2 (see also Athey

(1998a, b)), a variety of tools are available to solve this comparative statics problem.  Finally, the

constructive approach to existence taken in this paper has advantages for numerical computation.

The equilibria are straightforward to calculate for finite-action games, and they approximate the

equilibria of continuous-action games.

Massachusetts Institute of Technology, Department of Economics, E52-252C, 50 Memorial

Drive, Cambridge, MA 02142-1347, USA; athey@mit.edu, http://web.mit.edu/athey/www/.
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APPENDIX

PROOF OF LEMMA 4:  (i) Define the constrained best response of player i to an arbitrary

(constrained or unconstrained) strategy by opponents represented by X: � ( , )a ti
BR

i X δ  is set equal

to a ti
BR

i( )X  when t ti i> + δ , to { ( )BR
i iQ a t∪ X } when t ti i= + δ , and {Q } when t ti i< + δ .

Using this notation, we modify our correspondence, as follows:

ˆ Γ i(X,δ)={ y∈ΣM: ∃ αi(⋅) which is consistent with y such that ∀ti∈Ti, αi(ti)∈ ˆ a i
BR(ti X,δ )} .

The arguments of Lemma 3 can be extended in a straightforward way to derive existence of a

fixed point of ˆ Γ (⋅,δ) for all δ>0; details can be found in the working paper (Athey, 1997).  Then,

consider a sequence Xk such that Xk ∈ ˆ Γ (Xk,1/k) for each k.  Since each Xk is an element of a

compact subset of finite-dimensional Euclidean space, we can find a subsequence {k} such that

{ Xk} converges to a matrix X, and we simply need to establish that X∈Γ(X).  Consider ti such

that ti∈Ti\{ xi}.   Then there exists an m ∈{0,..,M} such that xm
i < ti < xm+1

i .  Since xi,k converges to

xi, there must exist an K such that, for all k>K, xm
i, k < ti < xm+1

i,k  and ti>t i +1/k.  Find such a k>K.

Then Am∈ ˆ a i
BR(ti Xk ,1/k)  since Xk∈Γ(Xk).  By definition and since  ti>t i +1/k, Am∈ ai

BR(ti Xk ) .

But, since Vi(ai;X,ti) is continuous in X, if Vi(Am;X
k,ti)≥Vi(Am′ ;X

k,ti) for all k>K and all m′, then

Vi(Am;X,ti)≥Vi(Am′ ;X,ti).  This implies Am∈ ai
BR(ti X), as desired.  (ii)  Finally, observe that for

each k, each action greater than Q wins with positive probability.  Since Q is an available action

that yields zero payoffs, by revealed preference, E v t t W ti i n i k i i i n i k n k∆ ( � ( ; ), ) , ( � ( ; ); � ( ; )), ,β δ β δ δt β ⋅ ≥0

for all k.  Since payoffs are continuous in δk, the limit as δk approaches zero exists. Q.E.D.

LEMMA 5:  Consider an auction game satisfying A1-A3, (2)-(3), and the SCC.  Let β*(⋅) be the

limit of a convergent subsequence of equilibrium strategies to finite games, βn(⋅), that satisfy
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Lemma 4 (ii).  Then the following holds:

(4) For all i≠j and all b>Q, Pr(βi

*(ti) = b)⋅Pr(βj

*(tj) = b)= 0.

PROOF:  To begin we introduce some notation for the event that, when player i’s opponents

use strategies * ( )i− ⋅β , the realization of t − i  and the outcome of the tie-breaking mechanism are

such that the action ai produces the stated outcome:

Wi

*(ai): Player i wins using ai (either by winning a tie or winning outright).

τ i
W* (ai ) , τ i

L* (ai ) : Player i ties for winner at ai and player i wins (resp. loses) the tie.

Further, let Wi
n (ai) be the event that player i wins using ai when opponents use strategies β− ⋅i

n ( ).

For the case where W ti
n

i
n

i( ( ))β  occurs with probability 0, we use the following convention:

ˆ ˆˆ( ( ), ) , ( ( )) lim ( ( ; ), ) , ( ( ; ); )n n n n n n
i i i i i i i i i i k i i i i k k

k
E v t t W t E v t t W tβ β β δ β δ δ

→∞
  ∆ = ∆   t t ,

where δk→0, � ( ; )βn
k⋅ δ  is defined in Lemma 4, and ˆ n

iW (ai ; )kδ  is the event that player i wins with

ai when opponents use strategies ˆ ( ; )n
i kδ− ⋅β .

We proceed by contradiction.  Assume (4) fails for some b.  Let K={ i:Pr(βi

*(ti) = b)>0} (note

|K|≥2), and let J={1,..,I}\ K.  Recall that for each n, ( )n
iβ ⋅  is measurable, and the sequence

converges to βi

*(⋅); thus the sequence converges uniformly to βi

*(⋅) except on a set of arbitrarily

small measure (Royden, 1988, p. 73).

A little notation.  Let εn be the minimum increment to actions (assumed for simplicity to be

the same for all players and independent of the level of the action) for the action set $
n. Find a set

of types E such that  βn(⋅) converges uniformly to β*(⋅) except for types t∈E, and such that for all

i∈K,

(5) ( ) ( )*inf Pr( ( ) ) Pr(  s.t. ) 10 sup Pr(  s.t. )
i i

L
i i i j j i j j i

t t

b t j i t E t j i t E tγ τ≡ − ∃ ≠ ∈ > ⋅ ∃ ≠ ∈ .
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For i∈K, let Si= { ti:βi

*(ti) = b}, let ˜ S i  = Si\Ei, and let ~ inf
~

t Si i= .

For any d>0, define Nd as the smallest positive integer such that, for all n>Nd, (i) b−d>εn and

(ii) for all i∈K and all j jt S∈ � , |β i
n(ti)−βi

*(ti)|<d.

We consider two claims in turn.

Claim 1:  There exists ψ∈(0, mini K∈ (sup(˜ S i )−
~ti )/2), d>0, and a positive integer n>Nd such

that for all ti∈Si such that ti≥~ti +ψ, and all i∈K, equations (6)-(9) hold when a′=b d n− + ε .

(6)
( )

( ) 1
2

Pr  s.t. ( ) ( , )

Pr , , s.t. inf{ : ( ) }

n
j j i

n
k k k k k i i

j J t b d b d t

k K k i t t b d t t t

β

β ψ γ

∃ ∈ ∈ − +

′ ′+ ∃ ∈ ≠ > − < < + <�

(7)
( )

1
4 2{ ,.., }

[ ( , ) ( , )] ( )
max ( )

( , ) ( , ) , ( ) Pr ( )n n

i i i i i

in na b d b d
i i i i i i

v a v b d f t d

E v a v b d t W a W a t

λψ

ε ε
γ

− −

′′∈ − + + −

 ′′ − + ⋅
  < ⋅
  ′′ ′′ ′′+ ∆ − ∆ + ⋅  

∫ t t t t

t t

(8) ( ) ( )*Pr ( ) \ ( ) inf Pr( ( ) ) Pr(  s.t. )
i i

n n L
i i i i i j j i i

t S
W b d W a t b t j i t E tτ γ

∈
′+ > − ∃ ≠ ∈ ≡

(9) 2( , ) , ( ) \ ( )n n
i i i iE v b d t W b d W a λψ ′∆ + + > t

Proof of Claim 1:  Consider first (6).  The first term on the left-hand side is less than 1
10 iγ  for

small enough d and large enough n, by (5) and since Pr(β j
* (tj)=b)=0 ∀j=J by assumption.  Now

consider the second term.  By (5), ( ) 1
10sup Pr , , s.t. inf

i i

k k k i i
t S

k K k i S t t t γ
∈

∃ ∈ ≠ < < <� .  Then, for ψ

small enough, d small enough, and n large enough, the second term is less than 1
10 iγ , and (6)

holds.  Pick such ψ′, d′, and n′.  Equation (6) will continue to hold for 0<d<d′ and n>n′.

For (7), find 0<d′′<d′ and a corresponding n′′>max(n′, dN ′′ ) such that both (6) and (7) hold

when ψ=ψ′.  This is possible because the term in brackets in (7) approaches zero as d approaches
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zero, since iv  and ∆vi are continuous.

Now consider equation (8).  All opponent types outside E-i who choose action b in the limit

must choose actions on [b−d+εn,b+d) for n>Nd.  By choosing action b+d rather than b−d+εn,

player i chooses a strictly higher action than those types she would lose to or tie with using

action b−d+εn; at worst, all of the types outside i−E  who choose action b in the limit choose

action b−d+εn with grid n, and player i defeats those players she would have otherwise tied with

by increasing her action to b+d.  Thus, (8) holds with n=n′′ and d=d′′.

Finally, consider (9).  Let ti′=
~ti +ψ/2∈ ˜ S i .  Then for n>Nd,

( ( ), , ) , ( )n n
i i i i i i iE v t t t W b dβ −

 ′ ′ ′∆ + t ≥0, by Lemma 4 and since winning with b+d rather than the

lower, assigned action ( )n
i itβ ′ , increases payoffs by A3.  Combining this inequality with the

lower bound on the slope of ∆vi, λ, and the fact that ti >
~ti +ψ yields

( ( ), , ) , ( )n n
i i i i i i iE v t t t W b dβ −

 ′∆ + t  > λψ 2.  But, since ∆vi is continuous in actions, it is possible

to find 0<d′′′<d′′ and n′′′>max(n′′, dN ′′′ ) such that ( , , ) , ( )n
i i i i iE v b d t t W b d−

 ∆ + + t > λψ 2.

Finally, winning with b+d but not with b d n− + ε  gives higher expected payoffs than winning

with b+d by A3.  Thus, (6)-(9) hold with n=n′′′ and d=d′′′.

Claim 2: There exists ψ∈(0, mini K∈ (sup(˜ S i )−
~ti )/2), d>0 and a positive integer n>Nd such that

for all ti∈Si such that ti≥~ti +ψ, and all i∈K, β i
n

it( ) ∉ (b−d,b+d).

Proof of Claim 2:  Find the parameters guaranteed to exist in Claim 1.  Consider i∈K.  Type ti

prefers action b+d to a′ if:
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(10)   

( )

( )

( , ) , ( ) \ ( ) Pr ( ) \ ( )

[ ( , ) ( , )] ( )

( , ) ( , ) , ( ) Pr ( ) .

n n n n
i i i i i i i

i i i i i

n n
i i i i i i

E v b d t W b d W a W b d W a t

v a v b d f t d

E v a v b d t W a W a t

− −

 ′ ′∆ + + ⋅ + 
′> − + ⋅

 ′ ′ ′+ ∆ − ∆ + ⋅ 

∫
t

t t t t

t t

Equations (8) and (9) imply that when a′=b d n− + ε  and ti>
~ti +ψ, the left-hand side of (10) is

greater than 2 i
λψ γ , while the right-hand side is less than 1

4 2( )i
λψ γ .  Thus, no types ti>

~ti +ψ use

actions less than or equal to b d n− + ε .

We now proceed to show by induction that the same conclusion holds for higher actions on

(b−d,b+d) as well.  Consider a positive integer 2l ≥  such that nb d lε− + <b+d, and suppose that

no types ti>
~ti +ψ use actions less than or equal to ( 1)nb d l ε− + −  (which we have just established

for l=2).  Consider the change in the left-hand side of (10) when we increase a′ from b d n− + ε  to

nb d lε− + .  First, ( , ) , ( ) \ ( )n n
i i i iE v b d t W b d W a ′∆ + + t  increases by A3.  Second,

( )Pr ( ) \ ( )n n
i i iW b d W a t′+  decreases by at most the left-hand side of (6).  Thus,

(11) ( ) 1
2Pr ( ) \ ( )n n

i i i iW b d W a t γ′+ >

when a′= nb d lε− + .  Given (9), a lower bound on the left-hand side of (10) is 1
2 2( )i

λψ γ , still

greater than the upper bound of the right-hand side of (10), 1
4 2( )i

λψ γ .  We conclude that for i∈K,

no types ti>
~ti +ψ use actions less than or equal to nb d lε− + .  By induction, for all i∈K, and all

ti≥~ti +ψ, β i
n

it( )>b+d−εn, and Claim 2 is established.

Claim 2 shows that when players i∈K realize types on the upper part of the set ˜ S i , these types

strictly prefer to defeat the mass of opponent types by using action b+d.  This contradicts the

hypothesis of uniform convergence (outside of E) to strategies that violate (4). Q.E.D.
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LEMMA 6: Consider an auction game satisfying A1-A3, (2)-(3), and the SCC.  Let β*(t) be the

limit of a convergent sequence of nondecreasing PSNE strategies to finite-action games, βn(t),

that satisfy Lemma 4 (ii). (i) If ai
n→b and Ui(ai,ti;β−i

* (⋅)) is continuous at ai=b, Ui(ai
n,ti;β− ⋅i

n ( ))

converges to Ui(b,ti;β−i
* (⋅)).  (ii) For all i and almost every ti, Ui(ai,ti;β−i

* (⋅)) is continuous in ai at

ai=βi

*(ti).

PROOF:  Part (i): First, note that

(12) Ui(b,ti;β−i
* (⋅))−Ui(ai

nβ i
n

it( ),ti;β− ⋅i
n ( ))

= [Ui(b,ti;β−i
* (⋅))−Ui(ai

n,ti;β−i
* (⋅))]+[Ui(ai

n,ti;β−i
* (⋅))−Ui(ai

n,ti;β− ⋅i
n ( ))].

The first term of the right-hand side of (12) goes to zero as n gets large by continuity of

Ui(ai,ti;β−i
* (⋅)) in ai at b.  So it remains to consider the second term of the right-hand side of (12).

This term converges to zero if Ui(ai,ti;β− i
n (⋅)) converges uniformly (across ai in a neighborhood of

b) to Ui(ai,ti;β−i
* (⋅)).  But uniform convergence follows since f, v i, and ∆vi are bounded and since

Pr(Wi

*(ai)) is continuous at ai=b, and further, β− i
n (⋅) converges uniformly to β−i

* (⋅) except on a set

of arbitrarily small measure (details are in the working paper Athey (1997)).

Part (ii): Since v i and v i are continuous, whenever Pr(Wi

*(ai)) is continuous at ai=b, player i’s

expected payoffs are continuous there as well.  Consider b∈$i. Suppose first that Pr(τi

L*(b))=0,

which implies Pr(τi

W*(b))=0 as well (recall ties are broken randomly).  This in turn implies that

Pr(Wi

*(ai)) is continuous at ai=b.  Suppose second that Pr(τi

L*(b))>0 (this of course implies b>Q).

Then, Lemma 5 establishes that at most a single type of player i uses action b.  Since

Pr(τi

L*(b))>0 for only a countable number of actions b, the set of types who face discontinuities

has measure zero. Q.E.D.

PROOF OF THEOREM 6:  Following the proof of Theorem 2, consider a sequence of games
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with successively finer finite action sets, indexed by {n}.  Restrict attention to sequences of

PSNE to these games, {βn(t)}, that satisfy condition (ii) of Lemma 4 and converge to a set of

strategies denoted β*(t).  Applying the logic of Theorem 2, so long as (i) Ui(ai,β−i
* (⋅),ti) is

continuous in ai at ai=βi
* ( ti ) , and (ii) Ui(β i

n(ti),ti;β− i
n (⋅)) converges to Ui(βi

* ( ti ) ,β−i
* (⋅),ti), βi

* ( ti )  is

a best response of player i, type ti when opponents use β−i
* (⋅).  But Lemma 6 establishes

conditions (i) and (ii) hold for almost every type, and we are done. Q.E.D.

PROOF OF THEOREM 7:  We make frequent use of the five facts presented at the

beginning of Section 3.2.  We add three more: (vi) if ( | )if y−t  is log-supermodular and h(t) is

nondecreasing, then ( ) ( | )i ih f y d− −∫ t t t  is nondecreasing in y (Milgrom and Weber (1982)); (vii)

( )iϕ a  is log-supermodular for the first-price auction game; (viii) if ( )iϕ a  and f(t) are log-

supermodular, then the density of i−t  conditional on ai winning is log-supermodular when

opponents use nondecreasing strategies, and further Pr(win with ai|ti) is log-supermodular.

Fact (viii) follows from facts (ii), (iii), and (v).  Fact (vii) requires a short proof.  Consider a

and a′, and suppose that ( ) ( ) 0i iϕ ϕ ′ >a a .  This implies i ja a≥  and i ja a′ ′≥  for all i≠j; in turn, that

implies that the vectors of bids ′∨a a  and ′∧a a  must each give player i at least some probability

of winning.  Let S be the set of opponents j that ties for winner with i given a, and likewise let S′

be the set that ties with i given ′a .  If i ia a′> , the same set S ties given ′∨a a , and a set smaller

than S′ ties given ′∧a a , since for some opponents j we may have j ja a′< .  If i ia a′= , the set

S S′∪  ties given ′∨a a , while the set S S′∩  ties given ′∧a a .  Since S S S S S S′ ′ ′∩ ∪ ≤ ,

( ) ( ) ( ) ( )i i i iϕ ϕ ϕ ϕ′ ′ ′∨ ∧ ≥a a a a a a .

Now consider first-price auctions in the affiliated private values setting.  Each player’s
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expected utility can be written Vi(ti−ai)⋅Pr(win with ai|ti).  If both terms of this expression are log-

supermodular, the objective is log-supermodular and the SCC holds.  If Vi(0)≥0 and ln(Vi) is

concave, Vi is log-supermodular in (ti,ai).  By facts (vii) and (viii), Pr(win with ai|ti)is log-

supermodular.

The case of positive value interdependence, independent information is similar.  Expected

utility can be written E[v 
i(ai,t)|win with ai]Pr(win with ai).  Since both terms are positive in the

relevant region, the probability of winning is nondecreasing in ai, and v 
i(ai,t) is increasing in ti,

this expression is supermodular in (ai,ti) if the first term is.  By fact (viii), the density of i−t

conditional on ai winning is log-supermodular.  Athey (1998b) shows that this, together with

v 
i(ai,t) is supermodular in (ai,ti) and in (ti,tj) for all opponents j, implies that the expectation is

supermodular.  Further, since v 
i(ai,t) is nondecreasing in t, fact (vi) implies A3.

Now consider the first-price auction in the general affiliated values model.  First, we observe

that A3 holds following the logic from the last paragraph.  Next, we introduce an additional

condition: there exists a function ki and a single random variable, si, such that

U a ti i i i( , ( ), )α − ⋅ = E k a s t ts i i i i i ii
[ ( , , ; )| ]α − .  If there are only two bidders, this is satisfied when we let

si=tj for j≠i, and let ki(ai,si,ti;α−i) = ( , , )i i i jv a t s ⋅ ( , ( ))i i j ia sϕ α .  For more than two bidders, the

condition holds if the information structure is conditionally independent common values.  In

particular, repeated application of Bayes’ rule establishes that the requirement is satisfied if we

let si=Z and ki(ai,si,ti;α−i) = Vi(si−ai) [ ( , ( )) ]i i i i iE a sϕ − −tα .  In other contexts, si might be an order

statistic of opponent types, or a sufficient statistic for t − i .  The following result can then be used:

LEMMA 7:  Suppose that for all i=1,..I, there exists a random variable si and a family of

functions ki i( ; )⋅ −α :� 3→� , such that (i) U a ti i i i( , ( ), )α − ⋅ =E k a s t ts i i i i i ii
[ ( , , ; )| ]α − ; (ii) when α−i(⋅)
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is nondecreasing,k a s ti i i i i( , , ; )α −  is supermodular in (ai;ti) and satisfies weak SCP-IR in (ai;si);

(iii ) ti and si are affiliated, and the support of si does not vary with ti.  Then the game satisfies

SCC.

A proof of Lemma 7 can be found in Athey (1998b).  Athey (1998b) also shows that in the

two-bidder example, ( , , )i i i jv a t s ⋅ ( , ( ))i i j ia sϕ α  satisfies part (ii) of Lemma 7.  Now consider the

conditionally independent common values model.  Since Vi(si−ai) [ ( , ( )) ]i i i i iE a sϕ − −tα  does not

depend on ti, it remains only to show that it satisfies weak SCP-IR in (ai;si).  Consider H L
i ia a> .

For H
i is a≤ , the returns to using Hia  rather than L

ia  are always negative, since the higher action

wins with higher probability, but Vi(si−
H
ia )≤0.  So restrict attention to H

i is a> ; by our

normalization assumption, Vi(si−ai) is positive.  Since log-supermodularity is stronger than SCP-

IR, it suffices to verify log-supermodularity on the restricted domain.  So long as Vi is log-

concave, Vi(si−ai) is log-supermodular.  Further, [ ( , ( )) ]i i i i iE a sϕ − −tα =Pr(win with ai|si) is log-

supermodular, since is  is affiliated with all bidder types and iϕ  is log-supermodular.

Now consider multiple-unit auctions.  Unfortunately, ( )iϕ a  is not log-supermodular in this

case.  If the types are drawn independently, however, then Pr(ai wins|ti) does not depend on ti,

and the objective function becomes Vi(ti−ai)⋅Pr(win with ai), which is log-supermodular if ln(Vi)

is concave.

For the all-pay auction, in the private values case with independent types, expected payoffs

are given by [Vi(ti−ai)−Vi(−ai)]Pr(ai wins) + Vi(−ai).  We argue that this objective is supermodular.

Since Pr(ai wins) is nonnegative and nondecreasing in ai, it is straightforward to verify that the

second term of this expression is supermodular if Vi(ti−ai)−Vi(−ai) is nondecreasing in ti (which



39

follows since Vi is increasing) and supermodular in (ai,ti).  In turn, Vi(ti−ai) is supermodular if and

only if it is concave (the bidder is risk averse), as desired.  In the positive value interdependence,

independent values setting, we established above that E[v i(ai,t)|win with ai]Pr(ai wins) is

supermodular in (ai,ti); adding the function Vi(−ai)(1−Pr(ai wins)) does not affect this conclusion,

since it does not depend on ti.

The analysis of the Bertrand pricing game is similar to the first-price auction.  The function

(−ai+ti)D(−ai) is both supermodular and log-supermodular in (ai,ti) when demand is downward-

sloping.  These were the only relevant properties of the utility function for our analysis of first-

price auctions.  Similarly, the price dispersion model is analogous to the all-pay auction.
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FOOTNOTES

                                                

1 I am grateful to seminar participants at Arizona State, Columbia, Maryland, MIT, New York University,

University of Pennsylvania, Pennsylvania State, Pittsburgh, Princeton, Stanford GSB, UCLA, UC-Berkeley,

Toulouse, the 1997 Summer Meetings of the Econometric Society, as well as Kyle Bagwell, Abhijit Banerjee, Prajit

Dutta, Glenn Ellison, Ken Judd, Jonathan Levin, Eric Maskin, Preston McAfee, Paul Milgrom, John Roberts, Lones

Smith, Jeroen Swinkels, and Bob Wilson for useful conversations, and to Jonathan Dworak, Steven Schulenberg,

Luis Ubeda, and Jennifer Wu for excellent research assistance.  Nancy Stokey and three anonymous referees

provided suggestions which greatly improved the exposition of the paper.  I would like to thank the National

Science Foundation (Grant No. SBR-9631760) for financial support.

2That is, when choosing between a low action and a high action, if a low type of player i weakly (strictly)

prefers the higher action, then all higher types of agent i weakly (strictly) prefers the higher action as well.

3 More precisely, Milgrom and Weber (1985) show that pure strategy equilibria exist when type spaces are

atomless and players choose from a finite set of actions, types are independent conditional on some common state

variable (which is finite-valued), and each player’s utility function depends only on his own type, the other players’

actions, and the common state variable (the utility cannot depend on the other players’ types directly).  They also

require a condition which they call “continuity of information.”

4 Khan and Sun (1996) show further that if the type distributions are taken to be atomless on a special class of

measure spaces, called hyperfinite Loeb spaces, existence of PSNE can be obtained when actions are drawn from

the continuum (again maintaining continuity of payoffs and independence of types).

5 Dasgupta and Maskin (1986) provide sufficient conditions for existence of mixed strategy equilibria in games

with finite types.  Simon and Zame (1990) analyze existence of mixed strategy equilibria (and epsilon-equilibria)

when tie-breaking rules are endogenous.  More recently, Reny (1999) establishes existence of PSNE in general

classes of games with discontinuous payoffs, under additional regularity assumptions and a condition called “better-

reply security.”

6 For asymmetric independent private values auctions, see Maskin and Riley (1999), Lebrun (1996, 1997), and

Bajari (1997); for affiliated private values or common values with independent signals, see Maskin and Riley
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(1999).  Pesendorfer and Swinkels (1997) study symmetric, uniform-price common value auctions for multiple

units.  Lizzeri and Persico (1997) have independently shown that a condition closely related to the single crossing

condition is sufficient for existence and uniqueness of equilibrium in two-player auction games with heterogeneous

bidders, but their approach only extends to more than two players under symmetry.

7 Weber (1994) studies mixed strategy equilibria in a class of auction games when types are not affiliated, so

that the SCC fails.

8 In games with finite actions, Assumption A1 can be relaxed to allow for mass points at the lower end of the

distribution, so long as for each player, there exists a k>t j such that the lowest action chosen by player j is chosen

throughout the region [t j,k).

9 Athey (1997) shows that Theorem 2 can be easily extended to show that if every finite-action game has an

equilibrium in strategies of bounded variation, the continuum-action game will as well.

10 Khan and Sun (1996, 1997) show that the use of atomless Loeb measure spaces for the types, as an alternative

to Lebesgue, can restore the applicability of limiting arguments.

11 The operations “meet” (∨) and “join” (∧) are defined for product sets as follows:

x y∨ = (max( , ), . . , max( , ))x y x y
n n1 1

 and x y∧ = (min( , ), . . , min( , ))x y x y
n n1 1

.

12 For the case where payoffs are supermodular, the assumption that types are affiliated can be weakened; what

is actually required is that for each i, f t d
i i iS

( | )t t− −I  is nondecreasing in ti for all sets S whose indicator function is

nondecreasing in t−i.  See Athey (1998a).

13 See Fudenberg and Tirole (1991, 215-216) for an example with linear demand and incomplete information

about cost.

14 The interpretation of the latter condition is that the elasticity of demand is a non-increasing function of the

other firms’ prices.  As discussed in Milgrom and Roberts (1990b), demand functions which satisfy this criteria

include logit, CES, transcendental logarithmic, and a set of linear demand functions (see Topkis (1979)).

15 This result follows as a corollary of Lemma 7 in the Appendix.

16  Intermediate outcomes could also be considered; the arguments used to establish existence extend naturally.
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17 When a player’s payoffs satisfy the single crossing property, only direct mechanisms in which the allocation

rule is monotonic can be incentive compatible; then, we can let the player’s announcement of type be her action,

and redefine payoffs to incorporate the allocation rule of the mechanism.

18 While quasi-Newton methods might at first seem computationally burdensome, there are potentially large

computational benefits to using an analytic Jacobian.  In particular, the point at which player i jumps to action Am,

denoted xi

m, affects only the following elements of the best response of opponent j≠i: xj

m-1, x
j

m, and xj

m+1.  Thus, the

Jacobian (of dimension M⋅I × M⋅I) can be computed with only I⋅3 function calls.

19 Our analysis can be extended to multiple-unit demands, so long as bidder preferences are summarized in a

one-dimensional type, but this requires an extension to allow for more than one discontinuity in the payoffs, as the

bidder goes from winning n objects to n+1.
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