SINGLE CROSSING PROPERTIES AND THE EXISTENCE OF PURE STRATEGY
EQUILIBRIA IN GAMES OF INCOMPLETE INFORMATION
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This paper analyzes a class of games of incomplete information where each agent has
private information about her own type, and the types are drawn from an atomless joint
probability distribution. The main result establishes existence of pure strategy Nash
equilibria (PSNE) under a condition we call thiagle crossing conditio(SCC), roughly
described as follows: whenever each opponent uses a nondecreasing strategy (in the sense
that higher types choose higher actions), a player's best response strategy is also
nondecreasing. When the SCC holds, a PSNE exists in every finite-action game. Further,
for games with continuous payoffs and a continuum of actions, there exists a sequence of
PSNE to finite-action games that converges to a PSNE of the continuum-action game.
These convergence and existence results also extend to some classes of games with
discontinuous payoffs, such as first-price auctions, where bidders may be heterogeneous
and reserve prices are permitted. Finally, the paper characterizes the SCC based on
properties of utility functions and probability distributions over types. Applications include
first-price, multi-unit, and all-pay auctions; pricing games with incomplete information
about costs; and noisy signaling games.
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1 INTRODUCTION
THIS PAPER DERIVESsufficient conditions for a class of games of incomplete information, such

as first-price auction games, to have pure strategy Nash equilibria (PSNE). The class of games is



described as follows. There is a finite number of players, each with private information about
her own type. Each player’'s type is drawn from a convex subset of the real line. The joint
distribution of types is atomless, and the types are not necessarily independent. Each player
takes an action after observing her type. Players may be heterogeneous in utility functions or in
the distribution of types, and the utility functions may depend directly on other players’ types.
Thus, the formulation includes the “mineral rights” auction (Milgrom and Weber (1982)), where
bidders receive a signal about the underlying value of the object, and signals and values may be
correlated across players.

The goal of this paper is to dispense with many of the assumptions required in the prior
literature on existence of PSNE. Instead, we explore the consequences of a single restriction that
arises naturally in a wide variety of economic applicationssiihgle crossing conditio(SCC)
for games of incomplete information. A player’s strategy is said to be nondecreasing if it assigns
(weakly) higher actions to higher types. The SCC requires that for every playenever each
of playeri’s opponents uses a nondecreasing pure strategy, playepected payoffs satisfy
Milgrom and Shannon’s (1994) single crossing properfihe SCC implies that in response to
nondecreasing strategies by opponents, each player has a best response strategy that is
nondecreasing.

The paper has two main objectives. First, we show that the SCC implies existence of PSNE
in a range of circumstances, and second, we characterize the SCC based on properties of the
primitives (utility functions and type distributions). To accomplish the first objective, we begin
by showing that when a game of incomplete information satisfies the SCC, and the players are
restricted to choose from a finite action set, a PSNE exists. We then show that if players’ utility

functions are continuous, a PSNE to the continuum-action game can be found by taking the limit



of a sequence of PSNE of finite-action games. Thus, the existence result is constructive and
suggests a computational algorithm. Finally, we extend the latter result to allocation games, such
as first-price auctions, that have a particular type of discontinuity.

To characterize the SCC based on primitives, we exploit tools developed for analyzing
comparative statics in stochastic problems (Athey (1998a, b)). Using these tools, we demonstrate
that a wide variety of commonly studied games satisfy the SCC. In the industrial organization
literature, examples include noisy signaling games (such as limit pricing with demand shocks), as
well as oligopoly games with incomplete information about costs or demand. The SCC holds in
first-price auction games under a wide variety of primitive conditions; it also holds in all-pay
auctions and multi-unit discriminatory auctions, under somewhat more restrictive conditions. In
each of these games, our results imply that a PSNE exists in nondecreasing strategies, potentially
yielding empirical implications that would not follow in a mixed strategy equilibrium or an
equilibrium in non-monotone strategies.

The existence theorems exploit a variety of consequences of the SCC. The SCC implies that
we may search for equilibria in the space of nondecreasing strategies. Indeed, the existence
theorems can be thought of as fixed point theorems tailored to the special case of hondecreasing
functions. We begin by observing that in the case of finite action sets, a nondecreasing strategy
is a step function, and thus can be represented by a finite vector which determines the points of
strict increase of the function. This vector is referred to as the vector of “jump points.” Second,
we establish that when a player’s expected payoffs satisfy Milgrom and Shannon’s (1994) single
crossing property, the set of vectors of jump points representing optimal best responses for each
player is convex. When the type distribution is atomless, Kakutani’s fixed point theorem can be

applied to the best-response correspondence where players choose vectors of jump points. To



treat the continuum-action case, we proceed by taking the limit of a sequence of equilibria with
successively finer action sets. We make use of the fact that a sequence of uniformly bounded,
nondecreasing functions has a subsequence which converges to a nondecreasing function.
Finally, the results on auctions make use of the special structure of the auction game to rule out
discontinuities in the limit.

The seminal work on the existence of PSNE in games of incomplete information (Radner and
Rosenthal (1982), Milgrom and Weber (1985)) restricts attention to finite-action games. It
proceeds by proving existence of mixed strategy equilibria in a game where players choose
probability distributions over the actions, and then providing purification thedrerfibis
approach is limited because mapping from a mixed strategy equilibrium, where players
effectively choose probability distributions over the actions, to a pure strategy equilibrium
requires independence (or, at best, conditional independence) of type distributions, and players’
types must be restricted to directly affect only their own payoffs. Radner and Rosenthal (1982)
provide several counter-examples of games which fail to have PSNE, in particular games where
players’ types are correlated.

Although results about existence of mixed strategy equilibria can be found when actions are
chosen from a compact subset of the real line (Milgrom and Weber, 1985), there are several
known counter-examples to existence of PSNE in this context (Khan and Sun, 1996, 1997). In
the case where types are independent and payoffs are continuous, Khan and Sun (1995) have
recently shown that PSNE exist when the action sets are countably infinite, but not when the
action sets are uncountable.

An alternative approach is due to Vives (1990), who shows that a sufficient condition for

existence of PSNE is that the game is supermodular in the strategies, in the following sense: if



one player’'s strategy increases pointwise, the best response strategies of all opponents must
increase pointwise. But, the strategies themselves need not be monotone in types. Vives’
condition is applicable in games where each player’s payoff function is supermodular in actions,
but not in the auctions and log-supermodular pricing games highlighted in this paper.

Now consider the case of games such as auctions where indivisible objects are allocated
among players. The difficulty with such games is that a player’s payoffs change discontinuously
when she receives an objécfThe issue of the existence of PSNE in first-price auctions with
heterogeneous agents has challenged economists for many years. Recently, several authors have
made substantial progress.While the SCC is satisfied in the settings considered in the
literature! many interesting classes of auctions are not treated by existing analyses. We provide
new results about auctions where bidders may differ in utility functions or type distributions
(including in the support of these distributions), the type distributions are potentially correlated
(though in somewhat restrictive ways), and reserve prices may vary by bidder. We reduce the
guestion of existence in the game, a technically challenging fixed-point problem, to the simpler
guestion of whether the SCC holds. Verifying the SCC entails analyzing a comparative statics
guestion for a single bidder’s decision problem, and it holds by construction in many settings.

Finally, even for the auctions where existence is known, computation of equilibrium (which
involves numerically solving a system of nonlinear differential equations with two boundary
points) can be difficult due to pathological behavior of the system. Thus, the computational
algorithm suggested by the constructive existence theorems in this paper may be of use in
applications. For example, it can be used to evaluate the effects of mergers between bidders in
auctions, as well as to analyze common value auctions with heterogeneous bidders, about which

very little is known.



2  FINITE -ACTION GAMES

Consider a game of incomplete information betwleglayersj=1,..], where each player first
observes her own typeg T=[t,,t ]OR and then takes an actianfrom a compact se¥JR.
Let /=4 x4, TET,xIRT, a =min-#, andg =max~. The joint density over player types is
f(Qi, with the conditional density of, givent denotedf(t_|t). Playeri’s payoff function is
u:4#xT - R. Given any set of strategies for the opponem}sT; - 4, j#i, playeri’s objective
function is defined as follows (using the notation ad_.t. ()=
(- 00(t.).3,0(t,).)):

U@ tas@=f u@ o)), i ;.

The following basic assumptions are maintained throughout the paper.

ASSUMPTION Al:The types have joint density with respect to Lebesgue medB8Lrehich is

bounded and atomle%sl.:urther,'['t U ((a,0_ (t.)), ) f(t_]t)dt_, exists and is finite for all

convex S and all nondecreasing functionsT; - 4, j#.

The following definitions are needed (the weak version will be referred to in Section 4).
DEFINITION 1: The function HR* — R satisfies the (Milgrom-Shannon) single crossing
property of incremental returns (SCP-IR) ingxif, for all x,>x_and all8,> 8,
h(x,,8)-(x,8)=(>)0 implies h(x,8.)-(x,6.)=(>)0, and h satisfies weak SCP-IR if for a|bx
and all§,>6, h(x,8)-h(x,8)>0 implies h(x,6.)-(x,6,)=0.

The definition of SCP-IR requires that the incremental returnsctoss zero at most once,
from below, as a function @. Characterizations will be given below; for the moment, note that

in the special case wherk is differentiable, the following are sufficient for SCP-IR:



2oh(x0)20, or if h>0, ;2 In(h(x8))=0. The SCP-IR also admits cases such as
h(x,8) = u(»@ — d ¥), whereu is an increasing function. It implies that the set of optimizers is
nondecreasing in the Strong Set Order, defined as follows.

DEFINITION 2: A set AR is greater than a set/BR in thestrong set order, written AB, if,

for any &JA and any b/B, max(a,b)/A and min(a,b)B. If K is a partially ordered set, a set-
valued functionA: K - 2% is nondecreasing in the strong set order if for apy «,

AK,)2A(K).

LEMMA 1: (Milgrom and Shannon, 1994) LefRf — R. Then h satisfies SCP-IR if and only

if X (6,B)= argmmaéxh(x,e) is nondecreasing id and B in the strong set order.

Under SCP-IR, there might bexdIx*(8) and ax'Ux*(8,) such thatx>x", so that some
selection of optimizers is decreasing on a region; but if this is truexther{ ,) andx''Ux*(6))
as well. Definition 1 can be used to state the sufficient condition for existence of a PSNE in
nondecreasing strategies.
DEFINITION 3: TheSingle Crossing Condition for games of incomplete information (SCC) is

satisfied if for each i%,..], whenever every opponewt pses a strategy ;:[t,,f,] - #; thatis

nondecreasing, player i's objective functidh(a,t;a (), satisfies single crossing of
incremental returns (SCP-IR) {@a,t).

The SCC implies that in response to nondecreasing strategies by all opponents, each player’'s
best response correspondence is nondecreasing in the strong set order. This implies that each
player has a best response strategy that is nondecreasing; however, it allows that some best
response strategies might be decreasing over an interval of types where there are multiple

optimal actions.



Our first observation is that when the action set is finite, any nondecreasing strategy is a step
function, and the strategy can be described simply by naming the values of the playdy'attype
which the player “jumps” from one action to the next higher action.

Consider the following representation. L&t={A,A,,..A,} be the set of potential actions, in
ascending order, wheM+1is the number of potential actions (and for notational simplicity, we
suppose for the moment that the action sets are the same for all players). Thefifie, 11",
= {xOT"2 % =t, x< %<IK %, %.,={, and let Z=5 8% . A nondecreasing
strategy for player, a,:T, -4, can be represented by a vectdrZ, according to the following
algorithm (illustrated in Figure 1).

DEFINITION 4: (i) Given a nondecreasing strategy/)/ we say that the vectaf]Z,
representsy(JVif x,, =inf{t|a(t) = A,} whenever there is somem such thatr(t)=A, on an

open interval of Tand x=t, otherwise.

(i) GivenxOZ,, let{x} denote the sdt,X,,..,xy,t}, and definem’ (t,x)= max{mx, <& . We

say a nondecreasing strategy/J/is consistent with if a(t) = A, ,, for all't O T\{x}.

Each component of is a “jump point” of the step function described doy Sincex does not
specify behavior fot[J{x}, a givenxOZ, might correspond to more than one nondecreasing

strategy. Because there are no atoms in the distributions of types, however, a player’'s behavior
on the set X} (which has measure zero) will not affect the best responses of other players.
GivenX=(x",..X)OZ, letV,(a,t,;X) denote the expected payoffs to player 1 with typehen

player 1 chooses 14, and players 2,l.use strategies consistent wifi, ( x'). Then,
&3 LA
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and likewise for the other players.
Since (1) embeds the assumption that opponent strategies are nondecreasing, the SCC implies

thatV (a,t;X) satisfies the SCP-IR ira(t) for all XOZ. Let a®?(t|X)=arg maxVi(a,t;X); this is

nonempty for alt, by finiteness of4. By Lemma 1a°"(0X) is nondecreasing in the strong set

order, which in turn implies (see Milgrom and Shannon, 1994) that there exists a sejé#tion

where y(t)Ja?*(t|X) for eachtOT,, which is nondecreasing. Using Definition [}l can be

represented by 1>. Now define the set of all vectors that represent best response strategies:
r(X)={y0Z,: Oa()which is consistent witl such that1tOT,, a,(t)0 a®*(t|X)}.

The existence proof proceeds by showing that a fixed point exists for this correspondence. A
critical property required df=(I",,..,I")) for this purpose is convexity. Establishing this property
requires some additional work, since the player might be indifferent between two actions over a
set of types (and this remains true even under the additional assumptions that the player’'s payoff
function is strictly quasi-concave and that payoffs are nowhere constant in her type, so long as
the action set is finite).

In Figure 2,a°([X) is nondecreasing in the strong set order. In the figuaady are both
vectors of jump points representing optimal behavior; the arrows in the figure show convex
combinations ok andy, for m=1,..,4. Notice that any such convex combination also represents
optimal behavior. The following Lemma shows that convexity of the best response
correspondence is a general consequence of the strong set order.

LEMMA 2: T, is convex ifa”"(X) is nondecreasing in the strong set order.



PROOF:Fix X and suppose thaty [ (X). Letz=A w+(1-A) y for AL(0,1), and observe
thatzOJ%, . Now, form=0,..M, we show tha# is an optimal action orz(z ). If w=w_, and
y.=Y..., thenz =z _ and there is nothing to show; so, assumewat, ...

Considett[(z,,z,.,) and & such thaAJa*(t|X). Case 1: Eithew <w,_, or
y.<w =w_ <y .. By definition ofw andy, there exists &<t and a''>t, such thai\ Ja?(t'|X)
andA OJa®*(t"[X). If k<m, thena®¥(t|X)=.a°R(t'|X) andA,Oda(t'|X) imply thatA,0a°R (t[X).
Likewise, if k>m, thena®?(t"'|X)=,a°" (t[X) andA,0a Rt |X) imply thatA,0a°R(t[X). Case 2:
w,=w_. <y <y_.. Then, there existsta<t; and amm’’>m such tha#\ -0a°*(t'|X), and &' >t,
such tha, Ja*(t"[X). If k<m, thena®*(t|X)=.aR(t/'|X) andA, -Oa’R(t'[X) imply that
A _OaPR(t]X). But this fact, together with®R(t/'|X)=,a*(t|X) andA,Ja*(t"|X), implies that
A 0aR(t[X). If kem, aBR(t"'|X)=.a°*(t|X) andA,0a’?(t""[X) implies thatA,0a’?(t[X). Case
3 Y, <Y..<W =w_.. Analogous to Case 2.

Let B.(t,z)= Aw.n- Then B. [z )is a nondecreasing strategy consistent witthich
assigns optimal actions to almost every type, implyingzhiat(X). Q.E.D.
With convexity established, it is straightforward to prove existence of a fixed point.
LEMMA 3: Suppose that A1 and the SCC haldhen there exists a fixed point of the

correspondenc ,..,I):Z-Z.

PROOF: Sinc& is a compact, convex subsetRf"*?  we can apply Kakutani’s fixed
point theorem. We argued in the text thas nonempty, and Lemma 2 established convexity.
We next establish théit has a closed graph. From (1) and our assumption that the type

distribution is atomless, it follows th¥li(a;X,t) is continuous in the elementsXf Consider a



sequencéX®,Y*) which converges toX(Y), such that“Or (X“) for allk. To see thay O (X),

consider player, and a typaOT\{y}. Then there exists am [}{0,..,M} such thaty' <t<yi ...

Sincey™ converges tg', there must exist ad such that, for alk>K, y"*<t<yik —and thus_ is

one oft’s best responses ¥. Becaus®/(a,t;X) is continuous irX, if V(A t;X)=V,(A, t;X")

for all k>K and alln?, thenV,(A,,t;X)=V,(A, .t;X). Q.E.D.
Existence of a PSNE follows directly from this Lemma. It remains only to assign strategies

to players that are consistent with a fixed pointrof Let X be such a fixed point, and let

(B,(DL...5(0) be a vector of nondecreasing strategies consistent Xith Since the type

distribution is atomless, a given playiedoes not care about the behavior of her opponents at

jump points, and thug(0] is a best response to any set of strateigg) consistent withX_.

This implies that8,(0l..,5(0) is a PSNE of the original game. Formally:

THEOREM 1: Assume Al and the SCC hold.4]fis finite for all i, this game has a PSNE

where each player’s equilibrium strateg3()} is nondecreasing.

Before proceeding, it is useful to consider the precise role of the SCC in this analysis. Can
the approach be extended to non-monotone strategies? In the working paper (Athey, 1997), this
guestion is explored more fully by considering strategies of “limited complexity.” The basic idea
is that a PSNE exists if we can find bounds on the “complexity” (formalized as the number of
times the function changes from nondecreasing to nonincreasing or vice versa) of each player’'s
strategy, and further, playéls best response stays within her specified bound whenever all
opponents use strategies within their respective bounds. The main limitation of the extension to
games with limited complexity is that much stronger assumptions may be required to guarantee

convexity of the best response correspondence, which followed above (in Lemma 2) as a

10



consequence of the SCC. For example, the extension in Athey (1997) requires the assumption
that the best response action is unique for almost all types.

What is ruled out by the SCC, or more generally by a restriction like “limited complexity”?
An example of a game with no PSNE, due to Radner and Rosenthal (1982), is an incomplete-
information version of “matching pennies.” The setup is as follows: the game is zero-sum, and
each player chooses actions from,fA}. When the players choose the same action, player 2
pays $1 to player 1, while if the actions do not match, the players each receive zero. The types
do not directly affect payoffs, and are uniformly distributed on the triangigtx1. Notice
first that this game fails the SCC. When player 2 uses a nondecreasing strategy, player 1's best
response is nondecreasing. But, when player 1 uses a nondecreasing strategy, player 2's best
response isionincreasingsince player 2 prefers not to match with player 1. Further, this game
also fails the more general “limited complexity” condition. Intuitively, player 1's best response
to any pure strategy of player 2 will essentially mirror player 2's strategy, while player 2 will

wish to “reverse” any pure strategy of player 1.

3 GAMES WITHA CONTINUUM OF ACTIONS AND CONTINUOUS PAYOFFS
3.1 Existence of PSNE

This section shows that the results about existence in games with a finite number of actions
can be used to construct equilibria of games with a continuum of actions. The properties of the
equilibrium strategies implied by the SCC play a special role in the limiting arguments used in
section. While arbitrary sequences of functions need not have convergent subsequences,
sequences of uniformly bounded, nondecreasing functions do have convergent subsequences.
Thus, all that remains is to show that the limits of these sequences are in fact equilibria to the

continuous-action game.
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The assumption of finite actions in Section 2 plays two roles: (i) it guarantees that an optimal
action exists for every type, and (ii) it simplifies the description of strategies so that they can be
represented with finite-dimensional vectors. In moving to the continuum-action case, we
introduce the assumption that payoffs are continuous in actions. Continuity is a substitute for
finiteness in (i), and further, it is used in showing that the limit of a sequence of equilibria in
finite-action games is an equilibrium of the limiting gaine.

THEOREM 2: Assume Al. Suppose that (i) for al¢j=[a, 3], (ii) for all i, u(at) is

continuous irg, and (iii) for any finite#'[]#4, a PSNE exists in nondecreasing strategies. Then a
PSNE exists in nondecreasing strategies in the game where players choose actigfis from

PROOF: For each playeri, consider a sequence of action set#'} where

,«-z»’i“:{g+ m (a—g): m= O,..,l@}. Let #=(A4",...4"), and letB"(0) be the corresponding

10"
nondecreasing PSNE strategies. Helly’s Selection Theorem (Kolmogorov and Fomin, 1970, p.
373) guarantees that a sequence of nondecreasing, uniformly bounded funcliign® omas a

subsequence which converges to a nondecreasing functionn}lagr{ote a sequence such that

B"() converges t@ (DL

Consider player, and a typeT. Letb=8(t); Helly’s Selection Theorem implig8(t)
converges td. Consider any' (4, and consider a sequenc& ) such that, for alh, & 04",
and furthera’ - a'. Sincef!(QJis an equilibrium strategy for amy then for alln,
u(Br).t;p (D =U(a,t;p(0). Because payoffs are continuous and sip@) converges to
B (0, it follows that for allt_;, u(B"(t),B"(t_;),t) converges tai(b,B,(t_)t) and

u(a;,Bn(t).t) converges to(a,B(t_) t). Thus, the expectations also converge, so that

12



U(bt; B (D)=U (@ t; B~ (0). This guarantees thai(t) is a best response B, (0. Q.E.D.
COROLLARY 2.1: Assume Al and the SCC. Suppose that (i) for eagh(ia, 3], and (ii) for

all i, u(a,t) is continuous ira. Then there exists a PSNE in nondecreasing strategies.

Corollary 2.1 establishes that the assumption of finite or countable actions can be dispensed
with for the class of games that satisfies the SCC. This result contrasts with the general finding
(see Khan and Sun, 1996, 7) that PSNE may not exist when the action sets are uncountable and
the type distribution is atomless (Lebesgle)lt can be readily verified that the counter-
examples put forward by Khan and Sun (1996, 7) for this class of games fail the SCC.

3.2 Characterizing the Single Crossing Condition in Applications

This section characterizes the SCC in several classes of games of incomplete information.
The results make use of the propertsgpermodularityand log-supermodularity If X is a
lattice, the  function h:X- R IS supermodular if, for all xyOX,

h(x Oy) +h(x Oy)=>h(x) +h(y)." A non-negative functiom:X- R is log-supermodular if,
for all x,yOX, h(xOy) th(x Oy) = h(x)th(y). Recall that wherh:R" -~ R, and vectors are

ordered in the usual way, Topkis (1978) proves thaisftwice differentiableh is supermodular

if and only if 55-h(x)= 0 for alli # j.

Five facts together can be used to establish our characterization theorents Rf) i R is
supermodular or log-supermodular, théixt) satisfies SCP-IR in x(t); (i) sums of
supermodular functions are supermodular, while products of log-supermodular functions are log-
supermodular; (iii) ifh:R" - R is supermodular (resp. log-supermodular), then so is the
functionh(a,(x),...a,(x)), wherea () is nondecreasing; (iv) a density is log-supermodular almost

everywhere if and only if the random variables &ffdiated (as defined in Milgrom and Weber,
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1982); (v) ift is affiliated, and furtheh(x;t) is supermodular inx({) for all j (resp. log-
supermodular inxt)), then H(x,g):j:h(x,t) fit_ [1)d, is supermodular inx(t) (resp. log-
supermodular inxt,a,b)) (see Athey 1998a, b).
3.2.1 Supermodular and Log-Supermodular Games

Many widely-studied games have supermodular payoffs, that is, strategic complementarities;
examples include search models in the spirit of Diamond (1982), coordination games, and games
with network externalities (Katz and Shapiro, 1986); Topkis (1979), Vives (1990), and Milgrom
and Roberts (1990) provide a variety of additional examples. Further, two-player games with
strategic substitutes can be treated as supermodular games, when one player’'s action is re-
ordered. Games with strategic substitutes include Cournot quantity games as well as many
games among duopolists who make investments (for example, in cost-reduction) prior to product
market competition (see Athey and Schmutzler (1999) for numerous examples). Although such
games are typically analyzed under the assumption of complete information, it is perhaps more
realistic to consider the case where firms may have private information about their costs and
benefits to acting. For example, in an oligopoly game, firms may have incomplete information
about their rivals’ production costs or demand elastitity; an investment game, firms may
have incomplete information about investment costs or results from prior research and
development. The following result applies to such games.
THEOREM 3: Suppose (i) for all i, (a,t) is supermodular i and (at), j=1,..,1, and (ii) the
types are affiliated. Then the game satisfies the SCC. Thus, under Al, ifeitbdnite, or
elsefor all i, #=[a,3] and Way) is continuous ira, there exists a PSNE in nondecreasing
strategies.

Theorem 3 follows from facts (i)-(v) above together with Corollary 2.1. It applies to games

14



with additively separable payoffs (for example, when an investment has an additively separable
cost, as when(at)=h(a)—c(a,t) or u(at)=h(at)-c(a)), since supermodularity is preserved by
sums. It should be noted that the games studied in Theorem 3 also satisfy Vives’' (1990)
sufficient condition for existence of PSNE; but, Theorem 3 guarantees the existence of a PSNE
in nondecreasing strategies. This is not immediate, because even when existence is known and
the SCC is satisfied, and even when all opponents use nondecreasing strategies, a player may
have a best response strategy that is decreasing over an interval. In applications, additional
empirical implications typically follow from monotonicity. For example, in an oligopoly
context, a firm should receive greater market share when it has lower marginal cost.

Now consider the class of games with log-supermodular payoffs. This class does not satisfy
Vives' (1990) conditions. An example is a pricing game among firms with differentiated
products (we consider the case of homogeneous products in Section 4.2). Foefitndenote
the marginal cost of firmi, let a denote the price, léd'(a) denote the demand to firim and
suppose payoffs are given ky-t)ID'(a). Notice first that#-t) is log-supermodular. Further,
for many commonly studied exampld3(a) is log-supermodular; the interpretation is that a
higher price by opponents makes demand less elasfitien, payoffs are log-supermodular.

This model can be used to analyze a variety of questions in industrial organization, such as how
the presence of private information affects the relative profitability of a firm that is on average
less efficient. The following theorem establishes existence of a PSNE for this class of games.
THEOREM 4: Suppose (i) for all i, (a,t) is nonnegative and log-supermodular(&;t), and (ii)

the types are affiliated. Then the game satisfies the SCC. Thus, under Al, ieithinite,

or elsefor all i, 4#=[a, ] and Wat) is continuous ira, there exists a PSNE in nondecreasing

strategies.
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Theorem 4 may be especially useful in games with multiplicatively separable payoffs (for
example, whenu(at)=h(a)id(a,t) or u(at)=h(at)id(a)), since log-supermodularity is
preserved by multiplication.

3.2.2 Noisy Signaling Games

Our results about existence of PSNE can also be applied to games with alternative timing
assumptions. For example, consider a signaling game between two players, where player 1's
utility is given byu,(a;,a,,t)) and player 2’s utility is given by,(a,,a,). After observing her type
(for example, marginal cost or a parameter of demand), Player 1 takes an action which generates
a noisy signalt,, that is observed by player 2. Player 2 then takes an action. An example is a
game of limit pricing (Matthews and Mirman (1983)), where an entrant does not know the cost
of the incumbent, but can draw inferences about the incumbent’s cost by observing a noisy signal
of the incumbent’s product market decision (the noise might be due to demand shocks). In
another example, Maggi (1999) examines the extent to which noise in the signaling process
undermines the first mover advantage in commitment games. Different assumptions about the
nature of product market competition lead to different properties of payoffs. Games with
strategic substitutes or complements can be analyzed using Theorem 3, and many pricing games
are log-supermodular, so that Theorem 4 applies. Otherwise, the following result can e used:

THEOREM 5: Suppose that there are two players, i=1,2. Suppose that (i) for ig1&2t)

satisfies weak SCP-IR in; 3 and (aa), and is supermodular in (&), and (ii) the types are
affiliated with non-moving support. Then the game satisfies SCC. Thus, under Al, if#either

is finite, or elsdor all i, #=[a,3] and Wa,t) is continuous ira, there exists a PSNE in

nondecreasing strategies.
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4 GAMES WITH DISCONTINUITIES: AUCTIONS AND PRICING GAMES
4.1 Existence of PSNE

Auctions and resource allocation games are perhaps the most widely studied applications of
games of incomplete information. The problem is to allocate one or more goods to a subset of a
group of agents, where each agent has private information about her value for the good. For
example, in a first-price auction for a single good, each player submits a sealed bid after
observing her type, and the highest bidder receives the good and pays her bid. Corollary 2.1
cannot be applied to auction games, because a player sees a discrete change in her payoffs
depending on whether she is a “winner” or a “loser” in the auction. If any opponents use a given
bid b with positive probability, a player's probability of winning, and thus expected payoff,
changes discontinuously bt Thus, we say that the discontinuity arises as a result of “mass
points” in the distribution over opponent actions.

The literature has focused on the existence question primarily for the case of first-price
auctions. Two main approaches have been used: (i) establishing that a solution exists to a set of
differential equations (Lebrun (1997), Bajari (1997), Lizzeri and Persico (1997)), and (i)
establishing that an equilibrium exists when either types or actions are drawn from finite sets,
and then invoking limiting arguments (Lebrun (1996), Maskin and Riley (1999)).

This paper takes the second approach. Theorem 1 implies that in any auction where the SCC
is satisfied, a PSNE exists so long as bids must be placed in discrete units (as in many real-world
settings). This result holds even if there is a reserve price, or if there are different reserve prices
for different bidders.

Thus, any concern about existence of PSNE in auction games with the SCC must focus on

discontinuities that arise in the limit as the bidding units become small. Yet, this concern is
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serious: in some examples, there exists a PSNE for every finite action set, but not in the
continuum-action case (for example, see Fullerton and McAfee (1999)). Our approach is to use
properties of PSNE of finite-action games to show that in the limit, as the action set gets fine, no
“mass points” arise and thus payoffs are continuous.

The setup is given as follows. Winners receive payoffa,t), while losers receive payoffs

v.(a,t).”” The allocation rulg,(a) specifies the probability that playewins as a function of the

actions taken by all players. Thus, playempayoff given a realization of types and actions is

u(at)=¢;@N(a t)+1-4 @) (at)

2
2) =v.(g,t)+¢, (@) Ay(a,t),

whereAv,(g,t)=Vv(a,t)- y(at). Player’s expected payoffs can be written

Ui@.tias @)=y (a.a, )0 e, [td,
= [v(@ DO [Dd + [AV(RD @ (e, € DO | D d, .
There are several classes of examples with this structure. In a first-price auction, the winner
receives the object and pays her bid, so ¥.t) is the value of winning at bid, while losers

get payoffs ofv(a,t)=0. Note thatAv, § t )can be negative, if the winner pays more than the

object is worth. In an all-pay auction, the player pays her bid no matter what, but the winner
receives the object. Below, we show that several oligopoly games also fit into the framework.

In most auction models, participation is voluntary: there is some outside option, such as not
placing a bid, that provides a fixed, certain utility to the agent, typically normalized to zero. We

refer to this action a@<min{a,.., 8} . The allocation rules take the form

3 =
3) ¢ (@)= o GT% W

st.o nor= E{l ]'{a <min(g , a) |:ID_l l{q a, a3 Eﬂ{a>a|}
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where in this definitionk represents the number of units to be allocatedyepresents a set of
opponents defeated by playierand o; represents a set of opponents who tie with player

Thus, player receives the object with probability zerokifor more opponents choose actions
such thaia>a, and with probability 1 ifl—k or more opponents choose actions such dka.
The remaining events are “ties,” resolved randomly. In a first-price auction for a single object,
k=1, and the player wins with probability zero if 1 or more opponents place a higher bid. All of
our results below continue to apply if we consider “biased” allocation Yuseg] the rule for
resolving ties can also be generalized.

We group together several assumptions.
ASSUMPTION A2: For all i=1,..,I, all aO[a, 3] and allt OT : (i) The support of f) is a
product set; (ii)v (a,t) andy (a,t) are bounded and continuous(@,t); (i) V. (Q,t)=0,
v,(Qt)=0, andAv,(3,t) <0, wheret =(t,...T ); (iv) Av(a,t) is strictly increasing irf{-a,t);
(v) There exists >0 such that, for alk>0, Av(a,t;,t+€)-Av(a,t;,t)=Ae.
Part (i) guarantees that the supportrdt |ti) does not vary with; thus, any action used by a
player with positive probability is viewed as having positive probability by all types of all
opponents. Part (ii) includes regularity assumptions. Part (iii) normalizes the “outside option” to
zero, and further guarantees that the players have available actions larger than any they would
choose to use in equilibrium. Part (iv) requires that choosing a higher action decreases the gain
from winning, and the gain to winning is strictly increasing in the type. Part (v) requires that
there is a uniform lower bound on the slope (with respect to the action) of the gain to winning.
All of these assumptions, or more stringent ones, are standard (though often implicit) in the

literature on auctions.
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Now consider an existence result for this class of games. We can construct a set of strategies,
denotedB’(0], as the limit of a sequence of equilibria to finite-action gamB¥0), as in
Theorem 2. Because of the potential discontinuity described above, Theorem 2 cannot be
applied directly to establish thAt([] is a PSNE of the continuum-action game. If we can prove
that there are no mass points in the limit (that is, no action is used with positive probability),
continuity will be restored and the arguments of Theorem 2 can be applied.

Our approach (detailed formally in the Appendix) is to rule out mass points using the fact
that {B"(0} converges to (01 uniformly except on a set of arbitrarily small measure, together
with the fact that we can characterize certain properties offg¢tbased on the fact thRi(0lis
a PSNE. The argument can be sketched as follows. We proceed by contradiction. S{ipose
specifies that two playersandj, both use actiob with positive probability (which cannot be an
equilibrium by standard arguments). ISebe the subset of playgs types that usb under (0}
and likewise for playey. Consider the requirements placed gi(@}. Given ad>0, for somen
large enough (i.e., some action grid fine enouft{})) must specify that all but a small subset of
playeri’'s types inS use an action orbfd,b+d), and likewise for playey. But then we will
argue that there must be some action grid fine enough, anddsemall enough, such that the
“cost” to playerj of increasing her action by is less than the benefit from the increase in the
probability of defeating most of the typ&lSS. In this case, for playgr almost all type4,JS
preferb+d to any action onlf—d,b+d], contradicting uniform convergencepa[l

To complete the latter argument, it is necessary to establish that increasing the probability of
winning (for example, by increasing the action frbad to b+d) is in fact a benefit for most of
the player types i andS. That requires two building blocks.

The first building block guarantees that playsrexpected gain from winning goes up when
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player i conditions on winning with a higher action. We require the following additional

notation: letW @ a_ )denote the event that the realizationt ond the outcome of the tie-
breaking mechanism are such that playevins with a, when opponents use strategies .
Thus, PriV (a0 )=JH)=J'¢. (@05 ¢ )OFE, [d, .
ASSUMPTION A3: For alli=1,..], all a,a'C[&,a ], and whenever every opponetityses a
strategya :[t,,f] - 4, thatis nondecreasingE[Avi(a,t)|t, W( &a, )] is strictly increasing in
t and nondecreasing ig .
This assumption is standard in the literature, but it is fairly restrictive. Although it holds trivially
for private value auctions, it requires strong assumptions on the type distribution in more general
models. For first-price auctions, Milgrom and Weber (1982) showed that Wkems
nondecreasing ihand strictly increasing ity A3 holds if the types are affiliated.

The second building block establishes thatd is a best response for typef playeri, this
type prefers winning to losing &t+d. This is not trivial, because playermight win with
probability O using actiob—d, in which case nothing about her preferences for winnirg-ct
can be inferred. To see a problematic example, consider a single-unit, first-price auction, and a
sequence of minimum bid incremergs-0. Suppose that for each) in the PSNE of the

corresponding finite-action game, a §eof playeri types uses actiob-¢, and a seft, t/] of

playerj types uses actiom Thus,b—¢&, wins with probability zero for playerfor eachn, and it
is possible that losing is preferred to winning by plajetypes inS. In this case, even though
winning atb is not desirable for these types, the limiting strategies require them to ¢hande
win with positive probability.
To this rule out, in the Appendix we show that for every finite-action game, there exists a
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PSNE that is robust to perturbations that generate a small probability that each action wins.

LEMMA 4: For i=1,..,1, let # be finite, with @Ql#,. Consider an auction game with payoffs
given by (2)-(3), and assume that A1 and the SCC hold. (i) Fér@|lthere exists a PSNE in
nondecreasing strategies of the modified game, derﬁ(ﬁﬂ , Where each player type on

t.0[t, ,t,+9] is required to use action @ii) There exists a PSNE in nondecreasing strategies,

B"(D} such thatB"(Dlim, . B(EB,) for some sequenddy} , wherelim, 3, =0 and

lim E[Avi(fsi (1:80.0[t, WG (£8.):B, (65, »]zo for all T,

With these two building blocks in place, we can rule out the possibility that two players both
use the same action with positive probability. Another case of potential concern occurs if just
one player, player, uses actiom with positive probability. Although this case can be ruled out
using somewhat more involved arguments, we will not undertake this exercise here because it
does not affect existence of PSNE: only a countable number of actions can be used Ly player
with positive probability, and thus the set of opponent types who see a discontinuity in payoffs
has measure zero. Since Bayesian Nash equilibrium only requires that almost every type chooses
an optimal action, such mass points do not affect existence. The conclusion then follows:

THEOREM 6: For all i, let #=Q0[a, 3d]. Consider an auction game with payoffs described by

(2)-(3), and assume A1-A3, and that the game satisfi€dde Then, there exists a PSNE in
nondecreasing strategies.

Theorem 6 generalizes the best available existence results about first-price auctions, multi-
unit pay-your-bid auctions where agents have a unit demand, and all-pay auctions. It allows for
bidder-specific reserve prices, heterogeneous agents, general risk preferences, and correlated type
distributions-so long as the SCC holds. Before discussing the primitive conditions under which
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the SCC holds, we consider some further implications of the theorem.

First, once existence is established for the continuous-action game, standard arguments can
be used to verify the usual regularity properties (including optimality of actions for every type).
For example, strategies are strictly increasing on the interior of the set of actions played with
positive probability. Further, with appropriate differentiability assumptions, a differential
eqguations approach can be used for characterizations.

Second, Theorems 2 and 6 not only provide existence results for the continuum case; they
also establish that finite-action games can be used to closely approximate continuum-action
games. Thus, the continuum model is an appropriate abstraction for auctions in which fixed bid
increments are small. As well, revenue and allocation in an auction will not be very sensitive to
small changes in the number of bid increments allowed.

Perhaps more importantly, the convergence results also motivate a computational algorithm.
This may be particularly useful in the case of first-price auctions, since in the absence of general
characterization theorems and functional form examples, computation of equilibria to first-price
auctions is the main tool available to evaluate the effects of mergers (or collusion) between
bidders in auctions. Prior to Marshall et al (1994), there were no general numerical algorithms
available for computing equilibria to asymmetric first-price auctions. Numerical computation of
equilibria in asymmetric first-price auctions in the independent private values case is difficult
due to pathological behavior of the system of differential equations at the origin. Marshall et al
(1994) provide computations for the independent private values case for a particular functional
form; see also Bajari (1997).

Theorem 6 suggests an alternative: compute equilibria to games with successively finer

action sets. The computation of a finite-action equilibrium requires searching for a fixed point to
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the correspondende defined in Section 2, where the calculatiorf ¢X) is a simple exercise of
calculating the best-response jump points for each player. The more difficult part of the problem
is solving the nonlinear set of equatiodsl (X). There are a number of standard ways to
approach this problem. There is not a global “contraction mapping” theorem, and so the simplest
algorithmX**=r"(X") is not guaranteed to converge, and indeed it does not appear to in numerical
trials. The working paper (Athey, 1997) provides a number of computational examples which
could be computed using either variations on the algorkfife AM(X") + (1-A)X")), or quasi-
Newton approaches.

4.2 Characterizing the Single Crossing Condition in Auctions and Pricing Games

This section characterizes properties of primitives (utility functions and type distributions)
that imply the SCC and A3 for a variety of widely-studied auctions and pricing games. To begin,
we formally describe the auction environments of interest. For many auction models, we can
model a bidder’s utility from obtaining the object\46&Z—m), whereZ is the value of the object
andm is the payment to the auctioneer. The utility from not receiving the object, and making
paymentm, isV,(-m). NormalizeV,(0)=0. Further assume th¥dtis strictly increasing with non-
vanishing slope. A bidder is risk-neutraMfis linear, risk-averse ¥, is concave, and “not too
risk-loving” if In(V) is concave.

In a first-price auction, as well as in a multi-unit auction where each bidder has unit demand
and pays her bid if she receives a thit,(a,t)=0. All-pay auctions have been used to model
activities such as lobbying (Becker (1983), Baye, Kovenock, and de Vries (1993)) and arms races
(O’Neill, 1986); in this modely (a,t)=V(-a).

Consider four alternative sets of assumptions for the auction models. gartbeal affiliated

values settingv (a,t) is nondecreasing in supermodular ina;t), and types are affiliated. In an
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affiliated private valuesetting,Z=t, so thatVv (a,t)=V,(t—a), and types are (weakly) affiliated,
independent private values is then a special case. lootnditionally independent common
valuesmodel,Z=Z for all i, bidders see signats=Z+¢, and theg, are distributed independently
across bidders, conditional @ This special case is commonly used in applications, including
the recent empirical literature on auctions (see, e.g., Li, Perrigne, and Vuong, 1999). In the
positive value interdependence, independent informatiodel, the bidders types are distributed
independently. The bidder’s utility from an allocati®n(a,t), is nondecreasing in the opponent
types, and further, biddeis utility is supermodular ingt) and in ¢,t) for all opponents.
These assumptions hold, for example, if the bidder is risk neutraZ aada weighted sum or
average of opponent types.

Now consider oligopoly games. In thgertrand pricing gamethe firm's payoff from
serving the market is given bg-c)D(p), whereD is nonincreasing is the sale price, anglis
the marginal cost of production, taken to be incomplete information. The seller serves the
market if she has the lowest price, shares it in the event of a tie, and earns zero profit otherwise.
Spulber (1995) uses such a model, with private values model and symmetric firms, to show that
incomplete information can lead to above-marginal-cost pricing; Athey, Bagwell, and Sanchirico
(1998) use the same model as the stage game in a repeated-game study of price rigidity. The
model also applies to procurement auction settings, where the bid is a per-unit price, and the
buyer's demand decreases with the winning price. Placing the model in our framework,
v,(a,t)=0. In a private values setting,(a,t)=(—a+t)D(-a), where—a is the price paid antf is
the marginal cost of production. Although the private value setting is appropriate for capturing
idiosyncratic productivity differences, firms might face common uncertainty about input prices,

or they might engage in research and development with spillovers. Then the general affiliated
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values setting may be applicable, wheveg(a,t)=E[(-a+Z)D(-a)[t]. The conditionally
independent common values case is analogous to the first-price auction; the positive value
interdependence, independent information case Zwg(t), where g is nondecreasing and
supermodular int(t) for i#j.

A final class of models was introduced by Varian (1980) to sputhe dispersion. Firms
sell to two types of consumers, a €adf “captured” consumers with inelastic demand, and a set
S of price-sensitive consumers who buy from the firm with the lowest price. Varian (1980)
derives a mixed-strategy equilibrium to this model, and interprets the model as a theory of sales.
Bagwell and Wolinsky (1998) analyze an extension where firms have incomplete information

about marginal cost. To analyze the model our framework, we (&ft)=(-a+t)D(-a) and

Vv (a,t)=(-a+t)(D(-a) +D%(-a)) for the case of private values; the other informational settings
are constructed in a similar manner.

The following result establishes existence of PSNE in these games.
THEOREM 7: The SCC and A3 are satisfied in the following pricing games and auction
environments (where in all cases, players are potentially heterogeneous, and bidder-specific
reserve prices are permitted):
1. First-price auction. The setting is either: (i) affiliated private values, bidders are not too risk
loving; (ii) positive value interdependence, independent information; (iii) conditionally
independent common values, and bidders are (weakly) risk averse;gererpl affiliated
values, but only two bidders.
2. Multi-unit discriminatory auction where each bidder demands a single unihe setting is
independent private values; bidders are not too risk-loving.

3. All-pay auction. The setting is either (i) independent private values, (weakly) risk averse
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bidders; or (ii) positive value interdependence, independent information.

4. Bertrand pricing game with downward-sloping demandhe setting is either: (i) affiliated
private values; (ii) positive value interdependence, independent information; (iii) conditionally
independent common values; or (leneral affiliated values, but only two bidders.

5. Price dispersion modelThe setting is either (i) independent private values; or (ii) positive
value interdependence, independent information.

Thus, under A1-A2, if participation is voluntary and eitheris finite, or elsdor each i, bids

must lie or{a, 3], a PSNE exists in nondecreasing strategies.

The proof of this result is in the Appendix. We highlight the proof for a few special cases
where the SCC is especially easy to check. Consider the independent private values information

structure. Then, in the first-price auction, payoffs to a bidder are givéhtya (& )Pr( .wins)

It is immediate to verify that this function is log-supermodular, no matter what strategies are

used by opponents, if and only M is log-concave. Then, the SCC holds. In the all-pay
auction, payoffs are given byV.(t £a - —& ))Rx( wins)y — & . ) No matter what
opponents do, this expression is supermodular so loNgiasncreasing and concave, and again

the SCC holds. The oligopoly games are similarly transparent.

In each of the games described above, Theorem 7 extends the set of environments where
existence of PSNE is known. Both of the pricing games have been analyzed only for symmetric
bidders and independent, private values. For first-price auctions, Lebrun (1997) establishes
existence for the independent private values case, where the value distributions have a common
support, and there is a single reserve price for all bidders. In contrast, our result allows the value

distributions of different bidders to have different supports, and it further allows for bidder-
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specific reserve prices, as would maximize revenue in an auction with heterogeneous bidders.
Maskin and Riley (1999) establish existence under the affiliated private values and positive value
interdependence, independent types settings; they do not consider reserve prices or the
conditionally independent common values cases, settings that are especially relevant for
empirical applications (for example, U.S. off-shore oil lease auctions have reserve prices and
heterogeneous bidders).

Amann and Leininger (1996) studied asymmetric all-pay auctions for the two-bidder, private
values case. In independent research, Lizzeri and Persico (1997) analyze two-bidder auctions,
establishing existence and uniqueness of equilibria in a general class of auction games that
includes first-price and all-pay auctions. Their approach does not extend to more than two
bidders unless bidders are symmetric, and while they include reserve prices, each bidder must
face the same reserve price. For the general affiliated values model of all-pay auctions, Krishna
and Morgan (1997) establish existence for the case of symmetric, risk-neutral bidders. Even in
that special case, additional assumptions on the type distribution are required. Their approach
can potentially be generalized to heterogeneous bidders, but this is left for future work.

It should be emphasized that neither the existing literature, nor Theorem 7, provides
sufficient conditions for existence in the general affiliated values model of first-price auctions,
with more than two heterogeneous bidders; as discussed in Athey (1997) and Athey (1998b),
competing effects may arise in that case. However, Theorem 6 does show that if primitive
conditions (even functional forms) can be found whereby the SCC does hold for the general case
(i.e., if the competing effects are assumed to be small, as in an extension of the conditionally
independent common values model where a “small” amount of correlation is permitted between

the errorse, ), existence of PSNE follows immediately; non-monotonicity of bidding functions is

28



the only concern in the more general model.

None of the above authors focus on multi-unit auctions. Indeed, extending the results about
multi-unit auctions to allow for more general primitive assumptions, and multi-unit demands,
represents an interesting avenue for future research.

5. CONCLUSIONS

This paper has introduced a restriction called the single crossing condition (SCC) for games
of incomplete information. We have shown that when the SCC is satisfied, PSNE exist when the
set of available actions is finite. Further, with appropriate continuity or in auction games, there
exists a sequence of equilibria of finite-action games that converges to an equilibrium in a game
with a continuum of actions.

The results developed in this paper have the following implications. First, existence of PSNE
in nondecreasing strategies can be verified by checking economically interpretable conditions,
conditions which are satisfied by construction in many economic applications. Second, in
applications the question of existence has been reduced to the simpler question of comparative
statics in a single-agent decision problem. As shown in Sections 3.2 and 4.2 (see also Athey
(19984, b)), a variety of tools are available to solve this comparative statics problem. Finally, the
constructive approach to existence taken in this paper has advantages for numerical computation.
The equilibria are straightforward to calculate for finite-action games, and they approximate the
equilibria of continuous-action games.

Massachusetts Institute of Technology, Department of Economics, E52-252C, 50 Memorial

Drive, Cambridge, MA 02142-1347, USA; athey@mit.edu, http://web.mit.edu/athey/wwwy/.
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APPENDIX
PROOF OF LEMMA 4:(i) Define the constrained best response of platean arbitrary

(constrained or unconstrained) strategy by opponents represeredbyt|X,d) is set equal
to a®R(4/X) whent, >t, +J, to {QU &(t|X)} whent, =t, +J, and {Q} whent, <t, +4.
Using this notation, we modify our correspondence, as follows:
[ (X,0={yOs": Da(QIwhich is consistent witl such thaf1t (0T, a,(t)0 &% (t|X,5)}.
The arguments of Lemma 3 can be extended in a straightforward way to derive existence of a
fixed point of (CY) for all 0; details can be found in the working paper (Athey, 1997). Then,

consider a sequendé such tha* O (X*,1/k) for eachk. Since eacl*is an element of a
compact subset of finite-dimensional Euclidean space, we can find a subsedgiesoos that
{X'} converges to a matriX, and we simply need to establish thatr (X). Considet such

thatt OT\{x}. Then there exists an [}{0,..,M} such thatx <t <x/_,. Sincex* converges to
X', there must exist ak such that, for alk>K, x'* <t <x", andt>t;+1k. Find such &>K.
ThenA O &5R(t|X*,1/k) sinceXOr(X"). By definition and since>t, +1/k, A [ a®¥(t[x*).
But, sinceV,(a;X,t) is continuous ixX, if V(A ;X t)=V,(A;X"t) for allk>K and allnt, then
V(A X 1)=2V,(A,;X,t). ThisimpliesA 0 a®R(t|X), as desired. (ii) Finally, observe that for
eachk, each action greater th@wins with positive probability. Sind®@ is an available action

that yields zero payoffs, by revealed prefererﬁ{e&;\/i (/ABi A (50, )¢, W(ﬁi 2 (59 );[A3n (GO, ))]20

for all k. Since payoffs are continuousdan the limit asd, approaches zero exists. Q.E.D.
LEMMA 5: Consider an auction game satisfying A1-A3, (2)-(3), and the SCQ@ ([Jdte the

limit of a convergent subsequence of equilibrium strategies to finite gAttE<hat satisfy
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Lemma 4 (ii). Then the following holds:
(4) For alliZ and allb>Q, Pr(3'(t) = b)Pr(3 (t) = b)= 0.
PROOF: To begin we introduce some notation for the event that, when playmponents

use strategief’; (], the realization of_, and the outcome of the tie-breaking mechanism are

such that the actios produces the stated outcome:

W/ (a): Playeri wins usinga, (either by winning a tie or winning outright).

" (&), T (&) : Playeri ties for winner ag and player wins (resp. loses) the tie.
Further, letW"(a) be the event that playemins usinga when opponents use strateg2s([)!

For the case wheM/"(3"'(t)) occurs with probability 0, we use the following convention:
E W (B" (1,01 W' (B"(O)FF im ERAMB" (£ )0t W(B"(£d ;4 )5
whered, - 0, ﬁ“(wk) is defined in Lemma 4, aﬂﬁ/i“ (a;9,) is the event that playemwins with

a, when opponents use strategﬁ?_s([kﬁk).

We proceed by contradiction. Assume (4) fails for sbméetK={i:Pr(3 (t) = b)>0} (note
|K[=2), and letJ={1,..,I]\K. Recall that for each, B"(0) is measurable, and the sequence
converges tg8 (1) thus the sequence converges uniformhBt@) except on a set of arbitrarily
small measure (Royden, 1988, p. 73).

A little notation. Lete, be the minimum increment to actions (assumed for simplicity to be

the same for all players and independent of the level of the action) for the ack#nFsed a set
of typesE such thatp, (0] converges uniformly t@ (] except for typesJE, and such that for all
0K,

(B) v E‘Qf (Pr(ri“ (b)|1;)—Pr(Dj zi sty OE |t )> 10)]tsu() P zi  stt.OE |f ).)
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ForiOK, letS={t:B'(t) = b}, let é, =S\E, and lett =inf §

For anyd>0, defineN, as the smallest positive integer such that, fan=al,, (i) b—d>&, and
(i) for all iK and allt; [ é; 1B (t)-B(t)]<d.

We consider two claims in turn.

Claim 1: There existsp(0, min (sup(é)—f)/Z), d>0, and a positive integePN, such

that for allt S such that>t +¢, and alliCK, equations (6)-(9) hold whex=b-d+¢,.

pr([j 0J stB] ¢ 1 b-d p+ dbt)

(6) o ]
+Pr(IKOK k# i, st inff :B7 ¢)>b-d}<t <T+y|t)<iy,
[vi(a',t) = v (b+ dt)] Oft |it) d 0
(7) a"D{b—dETgaXbﬁd—s}é; U " %%E(ATVI)
wbéed LE DAy (1) -Ay( b+ dt)| ¢, W ( TP W () )5
8) Pr(W” (b+ )\ W' ( ) it)>tEQSf(Pr(ri” (4,5-PrOf isttO Eft )Ey
9) EFAy (b+ d )|, W (b 9\ W( 3%

Proof of Claim 1: Consider first (6). The first term on the left-hand side is less;thafor
small enoughi and large enough, by (5) and since RB; (t)=b)=0 [j=J by assumption. Now

consider the second term. By (Syp Pt(EkD Kk#zi,st in§ <t< 1| 1;) <iY,. Then, fory

t0S
small enoughd small enough, andlarge enough, the second term is less than, and (6)

holds. Pick sucly/, d’, andn’. Equation (6) will continue to hold for @<d andn>n'.

For (7), find Od"'<d" and a corresponding’>maxf’, N,. ) such that both (6) and (7) hold

wheny=/. This is possible because the term in brackets in (7) approaches dejppasaches

32



zero, sincev, andAv, are continuous.

Now consider equation (8). All opponent types out&igderho choose actiohin the limit
must choose actions ob-d+¢&,,b+d) for n>N,. By choosing actiob+d rather tharb—d+&,
playeri chooses a strictly higher action than those types she would lose to or tie with using

actionb—d+¢,; at worst, all of the types outside,; who choose actioh in the limit choose

actionb—d+¢, with gridn, and player defeats those players she would have otherwise tied with
by increasing her action te-d. Thus, (8) holds with=n"" andd=d".

Finally, consider (9). Letr:f+¢//2D§,. Then fom>N,,

R (BN (D). .ts)

I, W" (bt d)BzO, by Lemma 4 and since winning whkd rather than the

lower, assigned actiof3" t' (, )ncreases payoffs by A3. Combining this inequality with the

lower bound on the slope A, A, and the fact that>t +y yields

ERV (B (L)

L, W' (bt d)B> A /2. But, sincely, is continuous in actions, it is possible

to find 0<'<d” andn™'>max(", N, ) such thate [y (b+ d, £t )| £, W (b+ 9> Ay/2.
Finally, winning withb+d but not withb — d+ £, gives higher expected payoffs than winning
with b+d by A3. Thus, (6)-(9) hold with=n""" andd=d"".

Claim 2: There existgpJ(0, min, (sup(é )-1)/2),d>0 and a positive integ@>N, such that
for all t S such that>t +, and alliCK, B"(t) O (o—d,b+d).

Proof of Claim 2: Find the parameters guaranteed to exist in Claim 1. Cahs{defypet,

prefers actiom+d to a' if:
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E[Av(b+ d )| L, W (b 9\ W( 3FPr( W( b 3\ W 'R )t
(10) > [(a ) =y (b+ dOIOfE | d
+ERy(d,t)-ay(b+ dt)| t W(aFP( W(d ).

Equations (8) and (9) imply that wharrb— d+ £ andt>t +y, the left-hand side of (10) is
greater tharfZ y, , while the right-hand side is less tha('Zy,). Thus, no types>t +y use

actions less than or equallte- d +¢,..

We now proceed to show by induction that the same conclusion holds for higher actions on

(b—d,b+d) as well. Consider a positive integex 2 such thatb - d + le, <b+d, and suppose that
no typest>t + use actions less than or equabted + |- (&, Xwhich we have just established

for 1=2). Consider the change in the left-hand side of (10) when we inefdasm b—d+ ¢, to

b-d+lg,. First, E sti(b+ d,t)| t, W (br g\ W( %)Hincreases by A3. Second,
Pr(W” (b+ d)\ W' ( a)| it) decreases by at most the left-hand side of (6). Thus,

(11) Pr(W" (b+ )\ W' (&) 1) >3y,
whena'=b-d+le,. Given (9), a lower bound on the left-hand side of (103 (& y,), still
greater than the upper bound of the right-hand side of £1&%,y,). We conclude that faflK,
no typest>t + use actions less than or equalbte d + le,. By induction, for aliK, and all
t=t +, B"(t)>b+d-¢, and Claim 2 is established.

Claim 2 shows that when playefsK realize types on the upper part of theéethese types

strictly prefer to defeat the mass of opponent types by using &sttbnThis contradicts the

hypothesis of uniform convergence (outsidé&pfo strategies that violate (4). Q.E.D.
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LEMMA 6: Consider an auction game satisfying A1-A3, (2)-(3), and the SCQ (D)ete the
limit of a convergent sequence of nondecreasing PSNE strategies to finite-actiongjéines,
that satisfy Lemma 4 (ii). (i) &" - b and W(a,t; ., (0)) is continuous at;ab, U,(a",t;B" ()
converges to I(b,t;B- (). (ii) For all i and almost every,tU(a,t; B (0) is continuous in aat
a=p(t).

PROOF: Part (i): First, note that
(12) U (b,t; B2 (D)-U,(a B () .t:B% (D)

=[U(b,t;BL(D)-U (@ t: BL (D] (" t: BL (D-U (@ t: B (D]

The first term of the right-hand side of (12) goes to zerm a@ets large by continuity of
U.(a.t;B. (D) in a atb. So it remains to consider the second term of the right-hand side of (12).
This term converges to zeroUf(a,t;B" () converges uniformly (acrossin a neighborhood of

b) to U,(a,t;B(0). But uniform convergence follows sintev,, andAv, are bounded and since

Pr(W (a)) is continuous a&=b, and further", (0] converges uniformly t@, (] except on a set
of arbitrarily small measure (details are in the working paper Athey (1997)).

Part (ii): Sincev, andy, are continuous, whenever Rf((a)) is continuous a&=b, playeri’s
expected payoffs are continuous there as well. Conisidkér Suppose first that Pr((b))=0,

which implies Pr{" (b))=0 as well (recall ties are broken randomly). This in turn implies that
Pr(W (a)) is continuous at=b. Suppose second that Pr(b))>0 (this of course implies>Q).
Then, Lemma 5 establishes that at most a single type of plages actiob. Since

Pr(z" (b))>0 for only a countable number of actidnghe set of types who face discontinuities
has measure zero. Q.E.D.

PROOF OF THEOREM 6: Following the proof of Theorem 2, consider a sequence of games
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with successively finer finite action sets, indexed by {Restrict attention to sequences of
PSNE to these game$'{t)}, that satisfy condition (ii) of Lemma 4 and converge to a set of
strategies denote@l(t). Applying the logic of Theorem 2, so long asljja, B, (Ot) is
continuous irg ata=p0(t,), and (i)U,(BM(t).t;B" (D) converges t&J, (B (t) B (Dt), B (t) is
a best response of playietypet; when opponents ugg, (. But Lemma 6 establishes

conditions (i) and (ii) hold for almost every type, and we are done. Q.E.D.
PROOF OF THEOREM 7: We make frequent use of the five facts presented at the

beginning of Section 3.2. We add three more: (vif if_ (v |s )Jog-supermodular analt) is
nondecreasing, theﬁh t F)t_( y|d), is nondecreasing in(Milgrom and Weber (1982)); (vii)
¢, (a) is log-supermodular for the first-price auction game; (viii)¢jfa (@nd f(t) are log-
supermodular, then the density of conditional ona winning is log-supermodular when

opponents use nondecreasing strategies, and further Pr(wia|tyith log-supermodular.
Fact (viii) follows from facts (ii), (iii), and (v). Fact (vii) requires a short proof. Consider

anda’, and suppose that a ¢,) a(>) .0This impliesa >a anda >a for alli; in turn, that

implies that the vectors of bidsJa andaa must each give playémt least some probability
of winning. LetSbe the set of opponerjtshat ties for winner with givena, and likewise leS

be the set that ties wiihgivena'. If a >4, the same s& ties givenalla, and a set smaller
than$S ties givenalJa, since for some opponerjtsve may havea, <a . If =g, the set
SO S ties givenadd, while the setSn S ties givenadd. Since|Sn S|| S $<| 'S
¢, (ala)g (ald)2¢ (34 (3).
Now consider first-price auctions in the affiliated private values setting. Each player’s
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expected utility can be writtevj(t—a)Pr(win withalt). If both terms of this expression are log-
supermodular, the objective is log-supermodular and the SCC holdg(0)#0 and In¥) is
concave,V, is log-supermodular intf). By facts (vii) and (viii), Pr(win withalt)is log-
supermodular.

The case of positive value interdependence, independent information is similar. Expected
utility can be writtenE[V (a,t)|win with a]Pr(win with &). Since both terms are positive in the

relevant region, the probability of winning is nondecreasing,iandV (a,t) is increasing irt,
this expression is supermodular st if the first term is. By fact (viii), the density df;
conditional ona winning is log-supermodular. Athey (1998b) shows that this, together with
V.(a.t) is supermodular ina(t) and in {,t) for all opponentg, implies that the expectation is
supermodular. Further, sin®¢a,t) is nondecreasing i) fact (vi) implies A3.

Now consider the first-price auction in the general affiliated values model. First, we observe
that A3 holds following the logic from the last paragraph. Next, we introduce an additional
condition: there exists a functiork and a single random variables, such that

Ui(a,a, (Bt)=E[k(a, $ La)lt]. If there are only two bidders, this is satisfied when we let
s=t for j#i, and letk(a,s,t;a-) = Vi(a,t,5)#,(a,a,(s)). For more than two bidders, the
condition holds if the information structure is conditionally independent common values. In
particular, repeated application of Bayes’ rule establishes that the requirement is satisfied if we
let s=Z andk(a,s.t;0-) = V(s—a) E[¢,(g,a_(t ))|$] . In other contextss might be an order
statistic of opponent types, or a sufficient statistict for The following result can then be used:

LEMMA 7: Suppose that for all i=1,..I, there exists a random variapdand a family of

functions k(G ):R°- R, such that (iJ,(a,a_ (Dit )=E [k(a, s, ta)lt]; (i) whena- (D)
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is nondecreasing,(g, $, t;a_ ) is supermodular in (g) and satisfies weak SCP-IR in;§;
(iii) t; and sare affiliated, and the support gfdoes not vary with.t Then the game satisfies
SCC.
A proof of Lemma 7 can be found in Athey (1998b). Athey (1998b) also shows that in the

two-bidder exampley,(a,1,5)[#,(8.a,(s)) satisfies part (ii) of Lemma 7. Now consider the
conditionally independent common values model. SWte-a) E[¢.(a,a (tﬂ.))|$] does not

depend ort, it remains only to show that it satisfies weak SCP-IRais)( Considera"™ > g".

For s < d', the returns to using rather thana" are always negative, since the higher action
wins with higher probability, butv(s—a")<0. So restrict attention tcs >4d"; by our
normalization assumptioW,(s—a) is positive. Since log-supermodularity is stronger than SCP-
IR, it suffices to verify log-supermodularity on the restricted domain. So long iaslog-
concave\V,(s—a) is log-supermodular. FurtheE[¢,(a,a (tﬂ.))|$] =Pr(win with a|s) is log-
supermodular, sincg is affiliated with all bidder types angl is log-supermodular.

Now consider multiple-unit auctions. Unfortunatey,a (s)not log-supermodular in this

case. If the types are drawn independently, however, thenvimglt) does not depend dp

and the objective function becom¥éét—a)PPr(win with a), which is log-supermodular if Iw()
iS concave.

For the all-pay auction, in the private values case with independent types, expected payoffs
are given byV (t—a)-Vi(-a)]Pr(a wins) +Vi(-a). We argue that this objective is supermodular.
Since Prg wins) is nonnegative and nondecreasingjrit is straightforward to verify that the

second term of this expression is supermodul&(if-a)—-Vi(—a) is nondecreasing it) (which
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follows sinceV, is increasing) and supermodular &t). In turn,V(t-a) is supermodular if and
only if it is concave (the bidder is risk averse), as desired. In the positive value interdependence,
independent values setting, we established above Bhata,t)|win with a]Pr(a wins) is
supermodular ing,t); adding the functioW (—a)(1-Pr(@ wins)) does not affect this conclusion,
since it does not depend bn

The analysis of the Bertrand pricing game is similar to the first-price auction. The function
(—a+t)D(—a) is both supermodular and log-supermodularajit)(when demand is downward-
sloping. These were the only relevant properties of the utility function for our analysis of first-

price auctions. Similarly, the price dispersion model is analogous to the all-pay auction.
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*That is, when choosing between a low action and a high action, if a low type of plagakly (strictly)
prefers the higher action, then all higher types of agergkly (strictly) prefers the higher action as well.

° More precisely, Milgrom and Weber (1985) show that pure strategy equilibria exist when type spaces are
atomless and players choose from a finite set of actions, types are independent conditional on some common state
variable (which is finite-valued), and each player’s utility function depends only on his own type, the other players’
actions, and the common state variable (the utility cannot depend on the other players’ types directly). They also
require a condition which they call “continuity of information.”

* Khan and Sun (1996) show further that if the type distributions are taken to be atomless on a special class of
measure spaces, called hyperfinite Loeb spaces, existence of PSNE can be obtained when actions are drawn from
the continuum (again maintaining continuity of payoffs and independence of types).

° Dasgupta and Maskin (1986) provide sufficient conditions for existence of mixed strategy equilibria in games
with finite types. Simon and Zame (1990) analyze existence of mixed strategy equilibria (and epsilon-equilibria)
when tie-breaking rules are endogenous. More recently, Reny (1999) establishes existence of PSNE in general
classes of games with discontinuous payoffs, under additional regularity assumptions and a condition called “better-
reply security.”

® For asymmetric independent private values auctions, see Maskin and Riley (1999), Lebrun (1996, 1997), and
Bajari (1997); for affiliated private values or common values with independent signals, see Maskin and Riley
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(1999). Pesendorfer and Swinkels (1997) study symmetric, uniform-price common value auctions for multiple
units. Lizzeri and Persico (1997) have independently shown that a condition closely related to the single crossing
condition is sufficient for existence and uniqueness of equilibrium in two-player auction games with heterogeneous
bidders, but their approach only extends to more than two players under symmetry.

" Weber (1994) studies mixed strategy equilibria in a class of auction games when types are not affiliated, so
that the SCC fails.

® In games with finite actions, Assumption Al can be relaxed to allow for mass points at the lower end of the
distribution, so long as for each player, there existstasuch that the lowest action chosen by plgyierchosen
throughout the regiort [K).

° Athey (1997) shows that Theorem 2 can be easily extended to show that if every finite-action game has an
equilibrium in strategies of bounded variation, the continuum-action game will as well.

' Khan and Sun (1996, 1997) show that the use of atomless Loeb measure spaces for the types, as an alternative
to Lebesgue, can restore the applicability of limiting arguments.

" The operations “meet” [ and “join” () are defined for product sets as follows:

x Oy = (max(x,,y,),..,maxg Yy )andx Oy = (min(x,,Y,),.., min(x, ,y, ))
 For the case where payoffs are supermodular, the assumption that types are affiliated can be weakened; what

is actually required is that for eai;hjsf(tfini )dt . is nondecreasing i for all setsS whose indicator function is

nondecreasing ity;. See Athey (1998a).

 See Fudenberg and Tirole (1991, 215-216) for an example with linear demand and incomplete information
about cost.

“ The interpretation of the latter condition is that the elasticity of demand is a non-increasing function of the
other firms’ prices. As discussed in Milgrom and Roberts (1990b), demand functions which satisfy this criteria
include logit, CES, transcendental logarithmic, and a set of linear demand functions (see Topkis (1979)).

* This result follows as a corollary of Lemméanthe Appendix.

 Intermediate outcomes could also be considered; the arguments used to establish existence extend naturally.
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" When a player’s payoffs satisfy the single crossing property, only direct mechanisms in which the allocation
rule is monotonic can be incentive compatible; then, we can let the player's announcement of type be her action,
and redefine payoffs to incorporate the allocation rule of the mechanism.

' While quasi-Newton methods might at first seem computationally burdensome, there are potentially large
computational benefits to using an analytic Jacobian. In particular, the point at whichi plagps to actiorA
denotedX , affects only the following elements of the best response of oppptient ., X , andX_... Thus, the
Jacobian (of dimensioM I x M) can be computed with onl{B function calls.

 Our analysis can be extended to multiple-unit demands, so long as bidder preferences are summarized in a
one-dimensional type, but this requires an extension to allow for more than one discontinuity in the payoffs, as the

bidder goes from winning objects tan+1.
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CAPTIONS
FIGURE 1: The elements of the vector x specify when the agent “jumps” to a higher
action.
FIGURE 2: The set a®%(#;) is nondecreasing in the Strong Set Order. The vectors x and y
represent “jump points” corresponding to optimal strategies. The arrows indicate convex

combinations of x and y.



