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@ Accurate prediction of transition is of crucial importance at low Re
e transition location has significant impact on aerodynamic performance

e Formation of laminar separation bubble (LSB)

e Laminar BL separates in adverse pressure gradient
o Separated flow rapidly transitions to turbulence
e Subsequent reattachment of turbulent BL

@ Flow regime encountered in small aircraft and MAVs




o Goal: predict formation of LSB and subsequent transition

Flow around rectangular SD7003 wing at angle of attack of 4°
o flow exhibits LSB on upper surface
o extensive experimental data available [1]
o numerical simulations performed by other groups [2]

Laminar regime: Re = 10,000

@ Transitional regime: Re = 60,000

Implicit Large Eddy Simulations (ILES) using high-order
Discontinuous Galerkin (DG) method

[1] OI, M., McAuliffe, B., Hanff, E., Scholz, U., and Kahler, C., “Comparison of laminar separation bubbles measurements on a
low Reynolds number airfoil in three facilities”, AIAA-2005-5149, 2005.

[2] Galbraith, M. and Visbal, M., “Implicit Large Eddy Simulaion of low Reynolds number flow past the SD7003 airfoil”,

AIAA-2008-225 , 2008. %g:
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Compressible Navier-Stokes equations and ideal gas law
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@ Large Eddy Simulation (LES)

o large-scale motions are resolved
e small scales modeled through sub-grid-scale model

e Implicit LES (ILES)

e unresolved scales accounted for by numerical dissipation
(no sub-grid-scale model)
e solving the full compressible Navier-Stokes equations

@ ILES approach previously used by Visbal and collaborators [2] with
compact difference method for flow around SD7003

@ High computational cost = benefits from high-order methods

[2] Galbraith, M. and Visbal, M., “Implicit Large Eddy Simulaion of low Reynolds number flow past the SD7003 airfoil”,

AIAA-2008-225 , 2008. @
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High-order Discontinuous Galerkin (DG) method:

@ High-order, low dissipation
@ Unstructured meshes

@ System of conservation laws

%"‘V'F,‘(U)—V'F\/(U,Q)ZO

qg—Vu=0

@ Domain Q triangulated into elements K € T},




o Seek approximate solutions v, € V', g5 € X} in spaces of
element-wise polynomials of order p

Vi
b

{v e Q)" | vik € [Po(K)]", VK € T;}
{w e [L(Q]™ | rlk € [Po(K)™", VK € Ty}

@ Multiply by test functions v, w and integrate over element K
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@ Numerical fluxes I:_, IA-'V, i are approximations to F;, F,, u on boundary 0K
of element K

o Roe scheme for inviscid fluxes F;
e CDG method for viscous fluxes F,
o flux & only function of wuj (not of gy)

@ Resulting system of coupled ODEs solved with incomplete factorizations
(ILU) and p-multigrid with Newton-GMRES preconditioning

@ Code parallelized with block-ILU factorizations

@ Error O(hP"!) for smooth problems

@ Time stepping with 3 order diagonal implicit Runge-Kutta (DIRK)
method. Time step At* = At Uy, /c =0.01



Methodology Computational Grids

@ SD7003 at 4° AoA, span 0.2¢
e Domain [-4.3c , 7.4c]x[-6.0c , 5.9¢]
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@ Flow is essentially 2D
@ Close-to-periodic vortex shedding

Re=10k, oA 4°, grid 1
T T




Results Laminar Regime: Re = 10,000

Velocity Correlation u/7]

@ Separation at 34%

:j o
@ No transition along airfoil &

@ No reattachment

Velocity correlations
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Span-wise vorticity w, on wing's middle plane

t* = 0.1

Average Spanwise Vorticity
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Vortical structures: iso-surfaces of q-criterion (V2p/2p)
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Transitional Regime: Re = 60,000

Results

@ 3D solution very different from 2D solution

@ Significant 3D vortical structures present

@ Non-periodic vortex shedding

B0k, Mo 47, grid Z
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Velocity Correlation u,u,

@ Separation at 24%
@ Transition at 51%
@ Reattachment at 60%
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@ Average pressure and skin friction coefficients
@ Separation and transition well captured

e Good agreement with XFoil and previously published ILES [Galbraith
& Visbal 2008]
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Span-wise vorticity w, on wing's middle plane

t* = 0.1

Average Spanwise Vorticity
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Vortical structures: iso-surfaces of q-criterion (V2p/2p)
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Boundary layer integral parameters of time-average flow
e Pseudo-velocity profile i*(n) = [['& x 7 dn
(asymptotes outside BL even with strong curvature)
e BL edge n. defined where ||n < ¢q|i*| and |dii/dn|n® < €| "]

e Streamwise pseudo profile ui(n) = *(n) - u}/u}
o displacement thickness, momentum thickness, shape factor
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Transition Mechanism

@ Fluctuating stream-wise pseudo-velocity

Uy (%, t) = w1 (%, t) — t1(x)

o Consistent with
Tollmien-Schlichting (TS)
modes

@ Perturbation amplitude
increases downstream




Transition Mechanism

@ Amplification of stream-wise TS waves at any chord-wise location x:
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o Stream-wise amplification factor: Ni(x) = In (—1) (all waves)
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@ XFoil line: N-factor of the
single most-amplified wave
at given location

@ Similar slopes

@ = TS transition
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Laminar Regime: Re = 10,000
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@ Conclusions




Use of DG method for ILES of low Reynolds number flows

At Re = 10,000, flow laminar and essentially 2D over wing surface
@ At Re = 60,000, transition associated with LSB observed

@ Transition found to be the result of unstable TS waves

Remarkable agreement with XFoil predicitons, finer LES results
[Visbal and collaborators], experimental data [Ol and collaborators]
— in spite of use of relatively coarse meshes

@ Results suggest that DG is particularly suited to simulate these flows
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Questions
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