Assessment of Turbulence Modeling for Compressible Flow Around Stationary and Oscillating Cylinders

University

of Victoria

by Alejandra Uranga

Applied Vehicle Technologies

August 21, 2006

Supervisors: Drs Nedjib Djilali and Afzal Suleman Dept. of Mechanical Engineering - University of Victoria

Outline

- Introduction
- Simulation Methodology
- Stationary Cylinder
- Oscillating Cylinder
- Conclusions

Kármán Vortex Street

Periodic pattern of counter-rotating vortices caused by unsteady separation from a bluff body

Introduction Methodology Stationary Oscillating Conclusions

Kármán Vortex Street

Periodic pattern of counter-rotating vortices caused by unsteady separation from a bluff body

Introduction Methodology Stationary Oscillating Conclusions

Flow Around a Circular Cylinder

- Interaction between 3 shear layers
 - Boundary layer
 - Free shear layer
 - Wake

Flow Around a Circular Cylinder

- Interaction between 3 shear layers
 - Boundary layer
 - Free shear layer
 - Wake

- Transition to turbulence in
 - Wake $Re_D = 200 \rightarrow 400$
 - Free Shear layer Re_D 400 \rightarrow 150x10³
 - Boundary layer $Re_D = 150 \times 10^3 \rightarrow 8 \times 10^6$

Scope

- Simulation of turbulent flow around circular cylinders
 - Stationary $Re_D = 3900$
 - Oscillating $Re_D = 3600$
- Compare accuracy of turbulence models
 using same numerical procedure
 with respect to experiments
 and other simulations

Numerical Simulation of Turbulent Flows

The Need for Turbulence Models

Example: Incompressible Momentum Equation

Applying an average or filter operator (overbar) to the momentum equation yields

$$\frac{\partial}{\partial t}(\rho \overline{u_i}) + \frac{\partial}{\partial x_j}(\rho \overline{u_i} \,\overline{u_j}) = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j}[\,\overline{\sigma_{ij}} - \rho(\overline{u_i u_j} - \overline{u_i} \,\overline{u_j})\,]$$

 \backsim The terms $\overline{u_i}$, \overline{p} , $\overline{\sigma_{ij}}$ are solved for

 \backsim The cross terms $\overline{u_i u_j}$ are unknown

closure problem

Simulation of Turbulence $u_i = \overline{u_i} + u_i'$

URANS Unsteady Reynolds Averaged Navier-Stokes (One-point closure)

 $\overline{u_i}$ mean u_i' fluctuating

Solve mean quantities \overline{u}_i

Model Reynolds stresses

 $ho \overline{u'_i u'_j}$

LES Large Eddy Simulation

 $\overline{u_i}$ large scale u_i' Subgrid-Scale

Solve large scale eddies \overline{u}_i

Model subgrid-scale stress $ho(\overline{u_i u_j} - \overline{u_i} \, \overline{u_j})$

DNS Direct Numerical Simulation

Solve all Scales u_i

very thin grid required

Methodology

Stationary

Oscillating

Conclusions

Turbulence Models Considered

- URANS
 - One equation Spalart-Allmaras
 - K-tau Speziale et al.
- Large Eddy Simulation (LES)
 Smagorinsky-Lilly

Computational Code

- SPARC Structured PArallel Research Code
- Finite Volume, Cell Centered, Block-Structured, Multigrid
- Simulations are 3D
 Unsteady
 Compressible
 Viscous

Stationary Circular Cylinder in a Uniform Flow

Problem Setup

- Cylinder diameter
- Flow velocity
- Mach number
- Reynolds number

D = 1m $U_0 = 68.63m/s$ Mach 0.2 $Re_D = 3900$

Introduction

Methodology

Stationary

Conclusions

URANS : Average Fields

URANS : Average Streamlines

URANS : Average Profiles

LES-VLES : Streamlines

LES-VLES : Average Fields

LES-VLES : Average Profiles

3-Dimensionality Streamwise velocity iso-surfaces

URANS Sp

Introduction

Methodology

Stationary

Oscillating Conclusions

Comparison

	Model	$St = fD/U_0$	$< c_D >$	$< c_{p_b} >$	$< heta_{s}>$
DNS	Tremblay et al. (2000)	0.220	1.03	-0.92	94.3°
URANS	Spalart-Allmaras	-0.8%	25.5%	-46.0%	9.8%
URANS	k- au Speziale	-10.6%	-3.0%	20.9%	4.7%
LES	Smagorinsky-Lilly	-10.6%	29.1%	-53.1%	-1.9%
VLES	adaptive $k - \tau$	-3.9%	29.0%	-49.0%	6.0%

Methodology Stat

Stationary

Circular Cylinder in Cross-Flow Oscillations

Motion and Cases

- Vertical sinusoidal motion $\frac{y(t)}{D} = \frac{A}{D} \sin(2\pi f_c t)$
- 2D URANS k-tau Speziale
- Reynolds number 3600
- Lock-in: vortex shedding frequency matches cylinder motion frequency

URANS Sp Fields Case IV $f_c/f_0 = 0.800$

Summary and Further Work

- comparison of results from different turbulence models with same numerical procedure
- Spalart-Allmaras model
 - error in separation point
 - ✤ flow remains attached too long
 - Small recirculation zone
 - Accurate Strouhal number

- K-tau Speziale model
 - Good mean global quantities
 - Strouhal number, drag, back pressure, separation point
 - yelocity profiles along the wake
- LES and VLES
 - reveal secondary eddies
 - LES resolves dynamics in boundary layer
- Oscillating Cylinder
 - No other numerical results in same regime
 - Lock-in over large range of motion frequencies
 - Further investigation required

Further Work

- Better averages on LES and VLES
- LES with Dynamic and Dynamic Mixed subgridscale models
- LES of oscillating cylinder

Questions