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  Transition to turbulence in 
-  Wake    ReD    200     →   400 
-  Free Shear layer ReD    400     → 150x103 
-  Boundary layer  ReD 150x103 →   8x106 



Introduction 

  Simulation of turbulent flow around circular 
cylinders 
- Stationary  ReD = 3900 
- Oscillating ReD = 3600 

  Compare accuracy of turbulence models 
 using same numerical procedure 
  with respect to experiments 

 and other simulations 

Scope 
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Methodology 

Numerical Simulation 
of Turbulent Flows 



Methodology 

 Example: Incompressible Momentum Equation 

Applying an average or filter operator (overbar) 
to the momentum equation yields 

  The terms     ,    ,       are solved for  

  The cross terms          are unknown 
            closure problem 
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Simulation of Turbulence 

DNS 
Direct Numerical 

Simulation 

Solve all  
           Scales  
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grid required € 
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Unsteady 

Reynolds Averaged  
Navier-Stokes 

(One-point closure) 

          mean 
          fluctuating 

      Solve mean       
      quantities 

Model Reynolds 
stresses 

€ 

u i

LES 
Large Eddy Simulation 

           large scale 
      Subgrid-Scale 

Solve large  
       scale eddies 

Model subgrid-scale 
stress 
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Methodology 

  URANS 
- One equation Spalart-Allmaras 
- K-tau Speziale et al. 

  Large Eddy Simulation (LES) 
- Smagorinsky-Lilly 

  Very Large Eddy Simulation (VLES)  
- Adaptive k-tau Magagnato & Gabi 
(uses a URANS type subgrid-scale model) 
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Methodology 

  SPARC 
Structured PArallel Research Code 

  Finite Volume, Cell Centered, Block-
Structured, Multigrid 

  Simulations are  3D 
     Unsteady 
     Compressible 
     Viscous 
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Computational Code 



Stationary Cylinder 

Stationary Circular Cylinder 
in a Uniform Flow 



Stationary Cylinder 

  Cylinder diameter D = 1m 
  Flow velocity  U0 = 68.63m/s 
  Mach number  Mach 0.2 
  Reynolds number ReD = 3900 

Problem Setup 
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Stationary Cylinder 

2D figures: x-y plane at span center 

Computational Domain 
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Stationary Cylinder 
URANS : Average Fields 

Introduction      Methodology      Stationary      Oscillating      Conclusions 

SA Sp 

u/U0 

ωzD/U0 



Stationary Cylinder 
URANS : Average Streamlines 
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Stationary Cylinder 
URANS : Average Profiles 
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Stationary Cylinder 
LES-VLES : Streamlines 

Introduction      Methodology      Stationary      Oscillating      Conclusions 

LES VLES 



Stationary Cylinder 
LES-VLES : Average Fields 
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Stationary Cylinder 
LES-VLES : Average Profiles 
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Stationary Cylinder 
3-Dimensionality 

Streamwise velocity iso-surfaces 
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Stationary Cylinder 
Comparison 
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Oscillating Cylinder 

Circular Cylinder 
in Cross-Flow Oscillations 



Oscillating Cylinder 

  Vertical sinusoidal motion 

  2D URANS k-tau Speziale 

  Reynolds number 3600 

  Lock-in: vortex shedding frequency 
matches cylinder motion frequency 

Motion and Cases 
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Oscillating Cylinder 
URANS Sp Fields 
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ωzD/U0 u/U0 

Case IV 
fc / f0 = 0.800 



Oscillating Cylinder 
Lock-in 
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Summary and Further Work 



Conclusions 

  comparison of results from different turbulence 
models with same numerical procedure 

  Spalart-Allmaras model 
-  error in separation point 
   flow remains attached too long 
   small recirculation zone 
   low back pressure 
   large drag 

-  Accurate Strouhal number 
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Conclusions 

  K-tau Speziale model 
-  Good mean global quantities 
   Strouhal number, drag, back pressure, separation point 
   velocity profiles along the wake 

  LES and VLES 
-  reveal secondary eddies 
-  LES resolves dynamics in boundary layer 

  Oscillating Cylinder 

-  No other numerical results in same regime 

-  Lock-in over large range of motion frequencies 

-  Further investigation required 
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Conclusions 

  Better averages on LES and VLES 

  LES with Dynamic and Dynamic Mixed subgrid-
scale models 

  LES of oscillating cylinder 

Further Work 
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Questions 


