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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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A bibliography of Axiom references which are used throughout Axiom. The first section con-
tains literature that mentions Axiom, initially derived with permission from Nelson Beebe’s
collection. The second section contains references from Axiom to the literature. The third
section sorts papers by topic.
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“Buchberger’s algorithm and staggered linear bases”
In Bruce W. Char, editor. Proceedings of the 1986 Symposium on Symbolic and Al-
gebraic Computation: SYMSAC ’86, July 21-23, 1986 Waterloo, Ontario, pp218-221
ACM Press, New York, NY 10036, USA, 1986. ISBN 0-89791-199-7 LCCN QA155.7.E4
A281 1986 ACM order number 505860

[Gebauer 88] Gebauer, R.; Möller, H. M.
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presented in ARL-TR-1758. My actual fits are to

F1 = [x exp(x)E1(x)]
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Algorithms_for_Polynomials_over_Finite_Fields/file/

60b7d52b326a1058e4.pdf

This paper analyzes the Euclidean algorithm and some variants of it for comput-
ing the greatest common divisor of two univariate polynomials over a finite field.
The minimum, maximum, and average number of arithmetic operations both on
polynomials and in the ground field are derived.

[Naylor 00a] Naylor, Bill
“Polynomial GCD Using Straight Line Program Representation”
PhD. Thesis, University of Bath, 2000
www.sci.csd.uwo.ca/~bill/thesis.ps

This thesis is concerned with calculating polynomial greatest common divisors
using straight line program representation.

In the Introduction chapter, we introduce the problem and describe some of
the traditional representations for polynomials, we then talk about some of the
general subjects central to the thesis, terminating with a synopsis of the category
theory which is central to the Axiom computer algebra system used during this
research.
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The second chapter is devoted to describing category theory. We follow with a
chapter detailing the important sections of computer code written in order to
investigate the straight line program subject. The following chapter on evalution
strategies and algorithms which are dependant on these follows, the major al-
gorith which is dependant on evaluation and which is central to our theis being
that of equality checking. This is indeed central to many mathematical problems.
Interpolation, that is the determination of coefficients of a polynomial is the sub-
ject of the next chapter. This is very important for many straight line program
algorithms, as their non-canonical structure implies that it is relatively difficult to
determine coefficients, these being the basic objects that many algorithms work
on. We talk about three separate interpolation techniques and compare their ad-
vantages and disadvantages. The final two chapters describe some of the results
we have obtained from this research and finally conclusions we have drawn as to
the viability of the straight line program approach and possible extensions.

Finally we terminate with a number of appendices discussing side subjects en-
countered during the thesis.

[Shoup 93] Shoup, Victor
“Factoring Polynomials over Finite Fields: Asymptotic Complexity vs Reality*”
Proc. IMACS Symposium, Lille, France, (1993) www.shoup.net/papers/lille.pdf

This paper compares the algorithms by Berlekamp, Cantor and Zassenhaus, and
Gathen and Shoup to conclude that (a) if large polynomials are factored the FFT
should be used for polynomial multiplication and division, (b) Gathen and Shoup
should be used if the number of irreducible factors of f is small. (c) if nothing
is know about the degrees of the factors then Berlekamp’s algorithm should be
used

[Gathen 01] Gathen, Joachim von zur; Panario, Daniel
“Factoring Polynomials Over Finite Fields: A Survey”
J. Symbolic Computation (2001) Vol 31, pp3-17
people.csail.mit.edu/dmoshdov/courses/codes/poly-factorization.pdf

This survey reviews several algorithms for the factorization of univariate poly-
nomials over finite fields. We emphasize the main ideas of the methods and pro-
vide and up-to-date bibliography of the problem. This paper gives algorithms for
squarefree factorization, distinct-degree factorization, and equal-degree factoriza-
tion. The first and second algorithms are deterministic, the third is probabilistic.

[van Hoeij] Hoeij, Mark van; Monagen, Michael
“Algorithms for Polynomial GCD Computation over Algebraic Function Fields”
www.cecm.sfu.ca/personal/mmonagan/papers/AFGCD.pdf

Let L be an algebraic function field in k ≥ 0 parameters t1, . . . , t)k. Let f1, f2
be non-zero polynomials in L[x]. We give two algorithms for computing their
gcd. The first, a modular GCD algorithm, is an extension of the modular GCD
algorithm for Brown for Z[x1, . . . , xn] and Encarnacion for Q(α[x]) to function
fields. The second, a fraction-free algorithm, is a modification of the Moreno Maza
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and Rioboo algorithm for computing gcds over triangular sets. The modification
reduces coefficient grownth in L to be linear. We give an empirical comparison
of the two algorithms using implementations in Maple.

[Wang 78] Wang, Paul S.
“An Improved Multivariate Polynomial Factoring Algorithm”
Mathematics of Computation, Vol 32, No 144 Oct 1978, pp1215-
1231 www.ams.org/journals/mcom/1978-32-144/S0025-5718-1978-0568284-3/

S0025-5718-1978-0568284-3.pdf

A new algorithm for factoring multivariate polynomials over the integers based
on an algorithm by Wang and Rothschild is described. The new algorithm has
improved strategies for dealing with the known problems of the original algo-
rithm, namely, the leading coefficient problem, the bad-zero problem and the
occurence of extraneous factors. It has an algorithm for correctly predetermining
leading coefficients of the factors. A new and efficient p-adic algorith named EEZ
is described. Basically it is a linearly convergent variable-by-variable parallel con-
struction. The improved algorithm is generally faster and requires less store than
the original algorithm. Machine examples with comparative timing are included.

[Wiki 4] .
“Polynomial greatest common divisor”
en.wikipedia.org/wiki/Polynomial_greatest_common_divisor

Category Theory

[Baez 09] Baez, John C.; Stay, Mike
“Physics, Topology, Logic and Computation: A Rosetta Stone”
arxiv.org/pdf/0903.0340v3.pdf

In physics, Feynman diagrams are used to reason about quantum processes. In
the 1980s, it became clear that underlying these diagrams is a powerful analogy
between quantum physics and topology. Namely, a linear operator behaves very
much like a “cobordism”: a manifold representing spacetime, going between two
manifolds representing space. But this was just the beginning: simiar diagrams
can be used to reason about logic, where they represent proofs, and computation,
where they represent programs. With the rise of interest in quantum cryptogra-
phy and quantum computation, it became clear that there is an extensive network
of analogies between physics, topology, logic and computation. In this expository
paper, we make some of these analogies precise using the concept of “closed sym-
metric monodial category”. We assume no prior knowledge of category theory,
proof theory or computer science.

[Meijer 91] Meijer, Erik; Fokkinga, Maarten; Paterson, Ross
“Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire”
eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
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We develop a calculus for lazy functional programming based on recursion oper-
ators associated with data type definitions. For these operators we derive various
algebraic laws that are useful in deriving and manipulating programs. We shall
show that all example functions in Bird and Wadler’s “Introduction to Functional
Programming” can be expressed using these operators.

[Youssef 04] Youssef, Saul
“Prospects for Category Theory in Aldor”
October 2004

Ways of encorporating category theory constructions and results into the Aldor
language are discussed. The main features of Aldor which make this possible are
identified, examples of categorical constructions are provided and a suggestion is
made for a foundation for rigorous results.

Proving Axiom Correct

[Bertot 04] Bertot, Yves; Castéran, Pierre
“Interactive Theorem Proving and Program Development”
Springer ISBN 3-540-20854-2

Coq is an interactive proof assistant for the development of mathematical theories
and formally certified software. It is based on a theory called the calculus of
inductive constructions, a variant of type theory.

This book provides a pragmatic introduction to the development of proofs and
certified programs using Coq. With its large collection of examples and exercies it
is an invaluable tool for researchers, students, and engineers interested in formal
methods and the development of zero-fault software.

[Boulme 00] Boulmé, S.; Hardin, T.; Rioboo, R.
“Polymorphic Data Types, Objects, Modules and Functors,: is it too much?”

Abstraction is a powerful tool for developers and it is offered by numerous features
such as polymorphism, classes, modules, and functors, . . . A working programmer
may be confused by this abundance. We develop a computer algebra library which
is being certificed. Reporting this experience made with a language (Ocaml)
offering all these features, we argue that the are all needed together. We compare
several ways of using classes to represent algebraic concepts, trying to follow as
close as possible mathematical specification. Thenwe show how to combine classes
and modules to produce code having very strong typing properties. Currently,
this library is made of one hundred units of functional code and behaves faster
than analogous ones such as Axiom.

[Boulme 01] Boulmé, S.; Hardin, T.; Hirschkoff, D.; Ménissier-Morain, V.; Rioboo, R.
“On the way to certify Computer Algebra Systems”
Calculemus-2001
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The FOC project aims at supporting, within a coherent software system, the en-
tire process of mathematical computation, starting with proved theories, ending
with certified implementations of algorithms. In this paper, we explain our design
requirements for the implementation, using polynomials as a running example.
Indeed, proving correctness of implementations depends heavily on the way this
design allows mathematical properties to be truly handled at the programming
level.

The FOC project, started at the fall of 1997, is aimed to build a programming
environment for the development of certified symbolic computation. The working
languages are Coq and Ocaml. In this paper, we present first the motivations of
the project. We then explain why and how our concern for proving properties
of programs has led us to certain implementation choices in Ocaml. This way,
the sources express exactly the mathematical dependencies between different
structures. This may ease the achievement of proofs.

[Daly 10] Daly, Timothy
“Intel Instruction Semantics Generator”
daly.axiom-developer.org/TimothyDaly_files/publications/sei/intel/intel.pdf

Given an Intel x86 binary, extract the semantics of the instruction stream as
Conditional Concurrent Assignments (CCAs). These CCAs represent the seman-
tics of each individual instruction. They can be composed to represent higher
level semantics.

[Danielsson 06] Danielsson, Nils Anders; Hughes, John; Jansson, Patrik; Gibbons, Jeremy
“Fast and Loose Reasoning is Morally Correct”
ACM POPL’06 January 2005, Charleston, South Carolina, USA

Functional programmers often reason about programs as if they were written in a
total language, expecting the results to carry over to non-toal (partial) languages.
We justify such reasoning.

Two languages are defined, one total and one partial, with identical syntax. The
semantics of the partial language includes partial and infinite values, and all types
are lifted, including the function spaces. A partial equivalence relation (PER) is
then defined, the domain of which is the total subset of the partial language. For
types not containing function spaces the PER relates equal values, and functions
are related if they map related values to related values.

It is proved that if two closed terms have the same semantics in the total language,
then they have related semantics in the partial language. It is also shown that
the PER gives rise to a bicartesian closed category which can be used to reason
about values in the domain of the relation.

[Davenport 12] Davenport, James H.; Bradford, Russell; England, Matthew; Wilson, David
“Program Verification in the presence of complex numbers, functions with branch cuts
etc.”
arxiv.org/pdf/1212.5417.pdf
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In considering the reliability of numerical programs, it is normal to “limit our
study to the semantics dealing with numerical precision”. On the other hand,
there is a great deal of work on the reliability of programs that essentially ignores
the numerics. The thesis of this paper is that there is a class of problems that
fall between these two, which could be described as “does the low-level arithmeti
implement the high-level mathematics”. Many of these problems arise because
mathematics, particularly the mathematics of the complex numbers, is more
difficult than expected: for example the complex function log is not continuous,
writing down a program to compute an inverse function is more complicated
than just solving an equation, and many algebraic simplification rules are not
universally valid.

The good news is that these problems are theoretically capable of being solved,
and are practically close to being solved, but not yet solved, in several real-world
examples. However, there is still a long way to go before implementations match
the theoretical possibilities.

[Dolzmann 97] Dolzmann, Andreas; Sturm, Thomas
“Guarded Expressions in Practice”
redlog.dolzmann.de/papers/pdf/MIP-9702.pdf

Computer algebra systems typically drop some degenerate cases when evaluating
expressions, e.g. x/x becomes 1 dropping the case x = 0. We claim that it
is feasible in practice to compute also the degenerate cases yielding guarded
expressions. We work over real closed fields but our ideas about handling guarded
expressions can be easily transferred to other situations. Using formulas as guards
provides a powerful tool for heuristically reducing the combinatorial explosion
of cases: equivalent, redundant, tautological, and contradictive cases can be
detected by simplification and quantifier elimination. Our approach allows to
simplify the expressions on the basis of simplification knowledge on the logical
side. The method described in this paper is implemented in the REDUCE package
GUARDIAN, which is freely available on the WWW.

[Dos Reis 11] Dos Reis, Gabriel; Matthews, David; Li, Yue
“Retargeting OpenAxiom to Poly/ML: Towards an Integrated Proof Assistants and
Computer Algebra System Framework”
Calculemus (2011) Springer paradise.caltech.edu/~yli/paper/oa-polyml.pdf

This paper presents an ongoing effort to integrate the Axiom family of computer
algebra systems with Poly/ML-based proof assistants in the same framework. A
long term goal is to make a large set of efficient implementations of algebraic
algorithms available to popular proof assistants, and also to bring the power
of mechanized formal verification to a family of strongly typed computer alge-
bra systems at a modest cost. Our approach is based on retargeting the code
generator of the OpenAxiom compiler to the Poly/ML abstract machine.

[Dunstan 00a] Dunstan, Martin N.
“Adding Larch/Aldor Specifications to Aldor”
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We describe a proposal to add Larch-style annotations to the Aldor program-
ming language, based on our PhD research. The annotations are intended to be
machine-checkable and may be used for a variety of purposes ranging from com-
piler optimizations to verification condition (VC) generation. In this report we
highlight the options available and describe the changes which would need to be
made to the compiler to make use of this technology.

[Dunstan 98] Dunstan, Martin; Kelsey, Tom; Linton, Steve; Martin, Ursula
“Lightweight Formal Methods For Computer Algebra Systems”
www.cs.st-andrews.ac.uk/~tom/pub/issac98.pdf

Demonstrates the use of formal methods tools to provide a semantics for the type
hierarchy of the Axiom computer algebra system, and a methodology for Aldor
program analysis and verification. There are examples of abstract specifications
of Axiom primitives.

[Dunstan 99a] Dunstan, MN
“Larch/Aldor - A Larch BISL for AXIOM and Aldor”
PhD Thesis, 1999
www.cs.st-andrews.uk/files/publications/Dun99.php

In this thesis we investigate the use of lightweight formal methods and verification
conditions (VCs) to help improve the reliability of components constructed within
a computer algebra system. We follow the Larch approach to formal methods
and have designed a new behavioural interface specification language (BISL) for
use with Aldor: the compiled extension language of Axiom and a fully-featured
programming language in its own right. We describe our idea of lightweight formal
methods, present a design for a lightweight verification condition generator and
review our implementation of a prototype verification condition generator for
Larch/Aldor.

[Dunstan 00] Dunstan, Martin; Kelsey, Tom; Martin, Ursula; Linton, Steve
“Formal Methods for Extensions to CAS”
FM 99, Toulouse, France, Sept 20-24, 1999, p1758-1777

We demonstrate the use of formal methods tools to provide a semantics for the
type hierarchy of the AXIOM computer algebra system, and a methodology
for Aldor program analysis and verification. We give a case study of abstract
specifications of AXIOM primitives, and provide an interface between these ab-
stractions and Aldor code.

[Hardin 13] Hardin, David S.; McClurg, Jedidiah R.; Davis, Jennifer A.
“Creating Formally Verified Components for Layered Assurance with an LLVM to
ACL2 Translator”
www.jrmcclurg.com/papers/law_2013_paper.pdf

This paper describes an effort to create a library of formally verified software
component models from code that have been compiled using the Low-Level Vir-
tual Machine (LLVM) intermediate form. The idea is to build a translator from



1.3. SPECIAL TOPICS 81

LLVM to the applicative subset of Common Lisp accepted by the ACL2 the-
orem prover. They perform verification of the component model using ACL2’s
automated reasoning capabilities.

[Hardin 14] Hardin, David S.; Davis, Jennifer A.; Greve, David A.; McClurg, Jedidiah R.
“Development of a Translator from LLVM to ACL2”
arxiv.org/pdf/1406.1566

In our current work a library of formally verified software components is to be
created, and assembled, using the Low-Level Virtual Machine (LLVM) intermedi-
ate form, into subsystems whose top-level assurance relies on the assurance of the
individual components. We have thus undertaken a project to build a translator
from LLVM to the applicative subset of Common Lisp accepted by the ACL2 the-
orem prover. Our translator produces executable ACL2 formal models, allowing
us to both prove theorems about the translated models as well as validate those
models by testing. The resulting models can be translated and certified without
user intervention, even for code with loops, thanks to the use of the def::ung
macro which allows us to defer the question of termination. Initial measurements
of concrete execution for translated LLVM functions indicate that performance
is nearly 2.4 million LLVM instructions per second on a typical laptop computer.
In this paper we overview the translation process and illustrate the translator’s
capabilities by way of a concrete example, including both a functional correctness
theorem as well as a validation test for that example.

[Lamport 02] Lamport, Leslie
“Specifying Systems”
research.microsoft.com/en-us/um/people/lamport/tla/book-02-08-08.pdf Addison-
Wesley ISBN 0-321-14306-X

[Mason 86] Mason, Ian A.
“The Semantics of Destructive Lisp”
Center for the Study of Language and Information ISBN 0-937073-06-7

Our basic premise is that the ability to construct and modify programs will not
improve without a new and comprehensive look at the entire programming pro-
cess. Past theoretical research, say, in the logic of programs, has tended to focus
on methods for reasoning about individual programs; little has been done, it
seems to us, to develop a sound understanding of the process of programming –
the process by which programs evolve in concept and in practice. At present, we
lack the means to describe the techniques of program construction and improve-
ment in ways that properly link verification, documentation and adaptability.

[Newcombe 13] Newcombe, Chris; Rath, Tim; Zhang, Fan; Munteanu, Bogdan; Brooker,
Marc; Deardeuff, Michael
“Use of Formal Methods at Amazon Web Services”
research.microsoft.com/en-us/um/people/lamport/tla/ formal-methods-amazon.pdf

In order to find subtle bugs in a system design, it is necessary to have a precise de-
scription of that design. There are at least two major benefits to writing a precise
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design; the author is forced to think more clearly, which helps eliminate “plau-
sible hand-waving”, and tools can be applied to check for errors in the design,
even while it is being written. In contrast, conventional design documents consist
of prose, static diagrams, and perhaps pseudo-code in an ad hoc untestable lan-
guage. Such descriptions are far from precise; they are often ambiguous, or omit
critical aspects such as partial failure or the granularity of concurrency (i.e. which
constructs are assumed to be atomic). At the other end of the spectrum, the final
executable code is unambiguous, but contains an overwhelming amount of detail.
We needed to be able to capture the essence of a design in a few hundred lines of
precise description. As our designs are unavoidably complex, we need a highly-
expressive language, far above the level of code, but with precise semantics. That
expressivity must cover real-world concurrency and fault-tolerance. And, as we
wish to build services quickly, we wanted a language that is simple to learn and
apply, avoiding esoteric concepts. We also very much wanted an existing ecosys-
tem of tools. We found what we were looking for in TLA+, a formal specification
language.

[Poll 99a] Poll, Erik
“The Type System of Axiom”
www.cs.ru.nl/E.Poll/talks/axiom.pdf

This is a slide deck from a talk on the correspondence between Axiom/Aldor
types and Logic.

[Poll 99] Poll, Erik; Thompson, Simon
“The Type System of Aldor”
www.cs.kent.ac.uk/pubs/1999/874/content.ps

This paper gives a formal description of – at least a part of – the type system
of Aldor, the extension language of the Axiom. In the process of doing this a
critique of the design of the system emerges.

[Poll (a)] Poll, Erik; Thompson, Simon
“Adding the axioms to Axiom. Toward a system of automated reasoning in Aldor”
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.1457&rep=rep1&type=ps

This paper examines the proposal of using the type system of Axiom to represent
a logic, and thus to use the constructions of Axiom to handle the logic and
represent proofs and propositions, in the same way as is done in theorem provers
based on type theory such as Nuprl or Coq.

The paper shows an interesting way to decorate Axiom with pre- and post-
conditions.

The Curry-Howard correspondence used is

PROGRAMMING LOGIC

Type Formula

Program Proof

Product/record type (...,...) Conjunction

Sum/union type \/ Disjunction
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Function type -> Implication

Dependent function type (x:A) -> B(x) Universal quantifier

Dependent product type (x:A,B(x)) Existential quantifier

Empty type Exit Contradictory proposition

One element type Triv True proposition

[Poll 00] Poll, Erik; Thompson, Simon
“Integrating Computer Algebra and Reasoning through the Type System of Aldor”

A number of combinations of reasoning and computer algebra systems have been
proposed; in this paper we describe another, namely a way to incorporate a logic
in the computer algebra system Axiom. We examine the type system of Aldor
– the Axiom Library Compiler – and show that with some modifications we
can use the dependent types of the system to model a logic, under the Curry-
Howeard isomorphism. We give a number of example applications of the logi we
construct and explain a prototype implementation of a modified type-checking
system written in Haskell.

Interval Arithmetic

[Boehm 86] Boehm, Hans-J.; Cartwright, Robert; Riggle, Mark; O’Donnell, Michael J.
“Exact Real Arithmetic: A Case Study in Higher Order Programming”
dev.acm.org/pubs/citations/proceedings/lfp/319838/p162-boehm

[Briggs 04] Briggs, Keith
“Exact real arithmetic”
keithbriggs.info/documents/xr-kent-talk-pp.pdf

[Fateman 94] Fateman, Richard J.; Yan, Tak W.
“Computation with the Extended Rational Numbers and an Application to Interval
Arithmetic”
www.cs.berkeley.edu/~fateman/papers/extrat.pdf

Programming languages such as Common Lisp, and virtually every computer al-
gebra system (CAS), support exact arbitrary-precision integer arithmetic as well
as exect rational number computation. Several CAS include interval arithmetic
directly, but not in the extended form indicated here. We explain why changes to
the usual rational number system to include infinity and “not-a-number” may be
useful, especially to support robust interval computation. We describe techniques
for implementing these changes.

[Lambov 06] Lambov, Branimir
“Interval Arithmetic Using SSE-2”
in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0 (2006) pp102-
113
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Numerics

[Lefévre 06] Lefévre, Vincent; Stehlé, Damien; Zimmermann, Paul
“Worst Cases for the Exponential Function in the IEEE-754r decimal64 Format”
in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0 (2006) pp114-
125

We searched for the worst cases for correct rounding of the exponential function in
the IEEE 754r decimal64 format, and computed all the bad cases whose distance
from a breakpoint (for all rounding modes) is less than 10−15 ulp, and we give
the worst ones. In particular, the worst case for |x| ≥ 3x10−11 is

exp(9.407822313572878x10−2 = 1.09864568206633850000000000000000278 . . .

This work can be extended to other elementary functions in the decimal64 format
and allows the design of reasonably fast routines that will evaluate these functions
with correct rounding, at least in some situations.

[Hamming 62] Hamming R W.
“Numerical Methods for Scientists and Engineers”
Dover (1973) ISBN 0-486-65241-6

Advanced Documentation

[Bostock 14] Bostock, Mike
“Visualizing Algorithms”
bost.ocks.org/mike/algorithms

This website hosts various ways of visualizing algorithms. The hope is that these
kind of techniques can be applied to Axiom.

[Leeuwen] van Leeuwen, André M.A.
“Representation of mathematical object in interactive books”

We present a model for the representation of mathematical objects in struc-
tured electronic documents, in a way that allows for interaction with applications
such as computer algebra systems and proof checkers. Using a representation
that reflects only the intrinsic information of an object, and storing application-
dependent information in so-called application descriptions, it is shown how the
translation from the internal to an external representation and vice versa can
be achieved. Hereby a formalisation of the concept of context is introduced. The
proposed scheme allows for a high degree of application integration, e.g., par-
allel evaluation of subexpressions (by different computer algebra systems), or a
proof checker using a computer algebra system to verify an equation involving a
symbolic computation.

[Soiffer 91] Soiffer, Neil Morrell
“The Design of a User Interface for Computer Algebra Systems”
www.eecs.berkeley.edu/Pubs/TechRpts/1991/CSD-91-626.pdf
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This thesis discusses the design and implementation of natural user interfaces for
Computer Algebra Systems. Such an interface must not only display expressions
generated by the Computer Algebra System in standard mathematical notation,
but must also allow easy manipulation and entry of expressions in that notation.
The user interface should also assist in understanding of large expressions that
are generated by Computer Algebra Systems and should be able to accommodate
new notational forms.

[Victor 11] Victor, Bret
“Up and Down the Ladder of Abstraction”
worrydream.com/LadderOfAbstraction

This interactive essay presents the ladder of abstraction, a technique for thinking
explicitly about these levels, so a designer can move among them consciously and
confidently.

[Victor 12] Victor, Bret
“Inventing on Principle”
www.youtube.com/watch?v=PUv66718DII

This video raises the level of discussion about human-computer interaction from
a technical question to a question of effectively capturing ideas. In particular,
this applies well to Axiom’s focus on literate programming.

Differential Equations

[Abramov 95] Abramov, Sergei A.; Bronstein, Manuel; Petkovsek, Marko
“On Polynomial Solutions of Linear Operator Equations”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

[Abramov 01] Abramov, Sergei; Bronstein, Manuel
“On Solutions of Linear Functional Systems”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We describe a new direct algorithm for transforming a linear system of recur-
rences into an equivalent one with nonsingular leading or trailing matrix. Our
algorithm, which is an improvement to the EG elimination method, uses only
elementary linear algebra operations (ranks, kernels, and determinants) to pro-
duce an equation satisfied by the degress of the solutions with finite support.
As a consequence, we can boudn and compute the polynomial and rational solu-
tions of very general linear functional systems such as systems of differential or
(q−)difference equations.

[Bronstein 96a] Bronstein, Manuel; Petkovsek, Marko
“An introduction to pseudo-linear algebra”
Theoretical Computer Science V157 pp3-33 (1966)
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html



86 BIBLIOGRAPHY

Pseudo-linear algebra is the study of common properties of linear differential
and difference operators. We introduce in this paper its basic objects (pseudo-
derivations, skew polynomials, and pseudo-linear operators) and describe several
recent algorithms on them, which, when applied in the differential and difference
cases, yield algorithms for uncoupling and solving systems of linear differential
and difference equations in closed form.

[Bronstein xb] Bronstein, Manuel
“Computer Algebra Algorithms for Linear Ordinary Differential and Difference equa-
tions”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/ecm3.pdf

Galois theory has now produced algorithms for solving linear ordinary differential
and difference equations in closed form. In addition, recent algorithmic advances
have made those algorithms effective and implementable in computer algebra
systems. After introducing the relevant parts of the theory, we describe the latest
algorithms for solving such equations.

[Bronstein 94] Bronstein, Manuel
“An improved algorithm for factoring linear ordinary differential operators”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We describe an efficient algorithm for computing the associated equations appear-
ing in the Beke-Schlesinger factorisation method for linear ordinary differential
operators. This algorithm, which is based on elementary operations with sets of
integers, can be easily implemented for operators of any order, produces sev-
eral possible associated equations, of which only the simplest can be selected for
solving, and often avoids the degenerate case, where the order of the associated
equation is less than in the generic case. We conclude with some fast heuristics
that can produce some factorizations while using only linear computations.

[Bronstein 90] Bronstein, Manuel
“On Solutions of Linear Ordinary Differential Equations in their Coefficient Field”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We describe a rational algorithm for finding the denominator of any solution of
a linear ordinary differential equation in its coefficient field. As a consequence,
there is now a rational algorithm for finding all such solutions when the coef-
ficients can be built up from the rational functions by finitely many algebraic
and primitive adjunctions. This also eliminates one of the computational bottle-
necks in algorithms that either factor or search for Liouvillian solutions of such
equations with Liouvillian coefficients.

[Bronstein 96] Bronstein, Manuel

“
∑IT

– A strongly-typed embeddable computer algebra library”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We describe the new computer algebra library
∑IT

and its underlying design.

The development of
∑IT

is motivated by the need to provide highly efficient im-
plementations of key algorithms for linear ordinary differential and (q)-difference
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equations to scientific programmers and to computer algebra users, regardless of
the programming language or interactive system they use. As such,

∑IT
is not

a computer algebra system per se, but a library (or substrate) which is designed
to be “plugged” with minimal efforts into different types of client applications.

[Bronstein 99a] Bronstein, Manuel
“Solving linear ordinary differential equations over C(x, e

∫
f(x)dx)

www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We describe a new algorithm for computing the solutions in

F = C(x, e
∫
f(x)dx)

of linear ordinary differential equations with coefficients in F . Compared to the
general algorithm, our algorithm avoids the computation of exponential solutions
of equations with coefficients in C(x), as well as the solving of linear differential
systems over C(x). Our method is effective and has been implemented.

[Bronstein 00] Bronstein, Manuel
“On Solutions of Linear Ordinary Differential Equations in their Coefficient Field”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We extend the notion of monomial extensions of differential fields, i.e. simple tran-
scendental extensions in which the polynomials are closed under differentiation,
to difference fields. The structure of such extensions provides an algebraic frame-
work for solving generalized linear difference equations with coefficients in such
fields. We then describe algorithms for finding the denominator of any solution
of those equations in an important subclass of monomial extensions that includes
transcendental indefinite sums and products. This reduces the general problem of
finding the solutions of such equations in their coefficient fields to bounding their
degrees. In the base case, this yields in particular a new algorithm for computing
the rational solutions of q-difference equations with polynomial coefficients.

[Bronstein 02] Bronstein, Manuel; Lafaille, Sébastien
“Solutions of linear ordinary differential equations in terms of special functions”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf

We describe a new algorithm for computing special function solutions of the form
y(x) = m(x)F (η(x)) of second order linear ordinary differential equations, where
m(x) is an arbitrary Liouvillian function, η(x) is an arbitrary rational function,
and F satisfies a given second order linear ordinary differential equations. Our
algorithm, which is base on finding an appropriate point transformation between
the equation defining F and the one to solve, is able to find all rational trans-
formations for a large class of functions F , in particular (but not only) the 0F1

and 1F1 special functions of mathematical physics, such as Airy, Bessel, Kummer
and Whittaker functions. It is also able to identify the values of the parameters
entering those special functions, and can be generalized to equations of higher
order.
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[Bronstein 03] Bronstein, Manuel; Trager, Barry M.
“A Reduction for Regular Differential Systems”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mega2003.pdf

We propose a definition of regularity of a linear differential system with coeffi-
cients in a monomial extension of a differential field, as well as a global and truly
rational (i.e. factorisation-free) iteration that transforms a system with regular
finite singularites into an equivalent one with simple finite poles. We then apply
our iteration to systems satisfied by bases of algebraic function fields, obtaining
algorithms for computing the number of irreducible components and the genus
of algebraic curves.

[Bronstein 03a] Bronstein, Manuel; Solé, Patrick
“Linear recurrences with polynomial coefficients”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html

We relate sequences generated by recurrences with polynomial coefficients to in-
terleaving and multiplexing of sequences generated by recurrences with constant
coefficients. In the special case of finite fields, we show that such sequences are
periodic and provide linear complexity estimates for all three constructions.

[Bronstein 05] Bronstein, Manuel; Li, Ziming; Wu, Min
“Picard-Vessiot Extensions for Linear Functional Systems”
www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2005.pdf

Picard-Vessiot extensions for ordinary differential and difference equations are
well known and are at the core of the associated Galois theories. In this paper,
we construct fundamental matrices and Picard-Vessiot extensions for systems of
linear partial functional equations having finite linear dimension. We then use
those extensions to show that all the solutions of a factor of such a system can
be completed to solutions of the original system.

[Von Mohrenschildt 94] Von Mohrenschildt, Martin
“Symbolic Solutions of Discontinuous Differential Equations”
e-collection.library.ethz.ch/eserv/eth:39463/eth-39463-01.pdf

[Von Mohrenschildt 98] Von Mohrenschildt, Martin
“A Normal Form for Function Rings of Piecewise Functions”
J. Symbolic Computation (1998) Vol 26 pp607-619
www.cas.mcmaster.ca/~mohrens/JSC.pdf

Computer algebra systems often have to deal with piecewise continuous func-
tions. These are, for example, the absolute value function, signum, piecewise
defined functions but also functions that are the supremum or infimum of two
functions. We present a new algebraic approach to these types of problems. This
paper presents a normal form for a function ring containing piecewise polynomial
functions of an expression. The main result is that this normal form can be used
to decide extensional equality of two piecewise functions. Also we define supre-
mum and infimum for piecewise functions; in fact, we show that the function
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ring forms a lattice. Additionally, a method to solve equalities and inequalities in
this function ring is presented. Finally, we give a “user interface” to the algebraic
representation of the piecewise functions.

[Weber 06] Weber, Andreas
“Quantifier Elimination on Real Closed Fields and Differential Equations”
cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber2006a.pdf

This paper surveys some recent applications of quantifier elimination on real
closed fields in the context of differential equations. Although polynomial vector
fields give rise to solutions involving the exponential and other transcendental
functions in general, many questions can be settled within the real closed field
without referring to the real exponential field. The technique of quantifier elim-
ination on real closed fields is not only of theoretical interest, but due to recent
advances on the algorithmic side including algorithms for the simplification of
quantifier-free formulae the method has gained practical applications, e.g. in the
context of computing threshold conditions in epidemic modeling.

2.5em0pt

Expression Simplification

[Carette 04] Carette, Jacques
“Understanding Expression Simplification”
www.cas.mcmaster.ca/~carette/publications/simplification.pdf

We give the first formal definition of the concept of simplification for general
expressions in the context of Computer Algebra Systems. The main mathematical
tool is an adaptation of the theory of Minimum Description Length, which is
closely related to various theories of complexity, such as Kolmogorov Complexity
and Algorithmic Information Theory. In particular, we show how this theory can
justify the use of various “magic constants” for deciding between some equivalent
representations of an expression, as found in implementations of simplification
routines.

Integration

[Baddoura 94] Baddoura, Mohamed Jamil
“Integration in Finite Terms with Elementary Functions and Dilogarithms”
dspace.mit.edu/bitstream/handle/1721.1/26864/30757785.pdf

In this thesis, we report on a new theorem that generalizes Liouville’s theorem on
integration in finite terms. The new theorem allows dilogarithms to occur in the
integral in addition to elementary functions. The proof is base on two identities
for the dilogarithm, that characterize all the possible algebraic relations among
dilogarithms of functions that are built up from the rational functions by taking
transcendental exponentials, dilogarithms, and logarithms.
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“The Poor Man’s Integrator, a parallel integration heuristic”
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www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples

[Cherry 84] Cherry, G.W.
“Integration in Finite Terms with Special Functions: The Error Function”
J. Symbolic Computation (1985) Vol 1 pp283-302

A decision procedure for integrating a class of transcendental elementary func-
tions in terms of elementary functions and error functions is described. The proce-
dure consists of three mutually exclusive cases. In the first two cases a generalised
procedure for completing squares is used to limit the error functions which can
appear in the integral of a finite number. This reduces the problem to the so-
lution of a differential equation and we use a result of Risch (1969) to solve it.
The third case can be reduced to the determination of what we have termed∑

-decompositions. The resutl presented here is the key procuedure to a more
general algorithm which is described fully in Cherry (1983).

[Cherry 86] Cherry, G.W.
“Integration in Finite Terms with Special Functions: The Logarithmic Integral”
SIAM J. Comput. Vol 15 pp1-21 February 1986

[Cherry 89] Cherry, G.W.
“An Analysis of the Rational Exponential Integral”
SIAM J. Computing Vol 18 pp 893-905 (1989)

[Davenport 79b] Davenport, James Harold
“On the Integration of Algebraic Functions”
Springer-Verlag Lecture Notes in Computer Science 102 ISBN 0-387-10290-6

[Davenport 82] Davenport, J.H.
“On the Parallel Risch Algorithm (III): Use of Tangents”
SIGSAM V16 no. 3 pp3-6 August 1982

[Fateman 02] Fateman, Richard
“Symbolic Integration”
inst.eecs.berkeley.edu/~cs282/sp02/lects/14.pdf

[Geddes 92a] Geddes, K.O.; Czapor, S.R.; Labahn, G.
“The Risch Integration Algorithm”
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“Sur l’intégration des fractions rationelles.”
Nouvelles Annales de Mathématiques (2eme série), 11:145-148, 1872

[Jeffrey 97] Jeffrey, D.J.; Rich, A.D.
“Recursive integration of piecewise-continuous functions”
www.cybertester.com/data/recint.pdf

An algorithm is given for the integration of a class of piecewise-continuous func-
tions. The integration is with respect to a real variable, because the functions
considered do not in general allow integration in the complex plane to be defined.
The class of integrands includes commonly occurring waveforms, such as square
waves, triangular waves, and the floor function; it also includes the signum func-
tion. The algorithm can be implemented recursively, and it has the property of
ensuring that integrals are continuous on domains of maximum extent.

[Jeffrey 99] Jeffrey, D.J.; Labahn, G.; Mohrenschildt, M.v.; Rich, A.D.
“Integration of the signum, piecewise and related functions”
cs.uwaterloo.ca/~glabahn/Papers/issac99-2.pdf

When a computer algebra system has an assumption facility, it is possible to dis-
tinguish between integration problems with respect to a real variable, and those
with respect to a complex variable. Here, a class of integration problems is de-
fined in which the integrand consists of compositions of continuous functions and
signum functions, and integration is with respect to a real variable. Algorithms
are given for evaluating such integrals.

[Knowles 93] Knowles, P.
“Integration of a class of transcendental liouvillian functions with error-functions i”
Journal of Symbolic Computation Vol 13 pp525-543 (1993)

[Knowles 95] Knowles, P.
“Integration of a class of transcendental liouvillian functions with error-functions ii”
Journal of Symbolic Computation Vol 16 pp227-241 (1995)

[Lang 93] Lang, S.
“Algebra”
Addison-Wesly, New York, 3rd edition 1993

[Liouville 1833a] Liouville, Joseph
“Premier mémoire sur la détermination des intégrales dont la valeur est algébrique”
Journal de l’Ecole Polytechnique, 14:124-148, 1833

[Liouville 1833b] Liouville, Joseph
“Second mémoire sur la détermination des intégrales dont la valeur est algébrique”
Journal de l’Ecole Polytechnique, 14:149-193, 1833
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[Moses 71a] Moses, Joel
“Symbolic Integration: The Stormy Decade”
www-inst.eecs.berkeley.edu/~cs282/sp02/readings/moses-int.pdf

Three approaches to symbolic integration in the 1960’s are described. The first,
from artificial intelligence, led to Slagle’s SAINT and to a large degree to Moses’
SIN. The second, from algebraic manipulation, led to Monove’s implementation
and to Horowitz’ and Tobey’s reexamination of the Hermite algorithm for in-
tegrating rational functions. The third, from mathematics, led to Richardson’s
proof of the unsolvability of the problem for a class of functions and for Risch’s
decision procedure for the elementary functions. Generalizations of Risch’s algo-
rithm to a class of special functions and programs for solving differential equations
and for finding the definite integral are also described.

[Ostrowski 46] Ostrowski, A.
“Sur l’intégrabilité élémentaire de quelques classes d’expressions”
Comm. Math. Helv., Vol 18 pp 283-308, (1946)

[Raab 13] Raab, Clemens G.
“Generalization of Risch’s Algorithm to Special Functions”
arxiv.org/pdf/1305.1481.pdf

Symbolic integration deals with the evaluation of integrals in closed form. We
present an overview of Risch’s algorithm including recent developments. The
algorithms discussed are suited for both indefinite and definite integration. They
can also be used to compute linear relations among integrals and to find identities
for special functions given by parameter integrals. The aim of this presentation
is twofold: to introduce the reader to some basic idea of differential algebra in
the context of integration and to raise awareness in the physics community of
computer algebra algorithms for indefinite and definite integration.

[Raab xx] Raab, Clemens G.
“Integration in finite terms for Liouvillian functions”
www.mmrc.iss.ac.cn/~dart4/posters/Raab.pdf

Computing integrals is a common task in many areas of science, antiderivatives
are one way to accomplish this. The problem of integration in finite terms can
be states as follows. Given a differential field (F,D) and f ∈ F , compute g in
some elementary extension of (F,D) such that Dg = f if such a g exists.

This problem has been solved for various classes of fields F . For rational functions
(C(x), d

dx ) such a g always exists and algorithms to compute it are known already
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for a long time. In 1969 Risch published an algorithm that solves this problem
when (F,D) is a transcendental elementary extension of (C(x), d

dx ). Later this
has been extended towards integrands being Liouvillian functions by Singer et. al.
via the use of regular log-explicit extensions of (C(x), d

dx ). Our algorithm extends
this to handling transcendental Liouvillian extensions (F,D) of (C, 0) directly
without the need to embed them into log-explicit extensions. For example, this
means that ∫

(z − x)xz−1e−xdx = xze−x

can be computed without including log(x) in the differential field.
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The problem of integration in finite terms asks for an algorithm for decid-
ing whether an elementary function has an elementary indefinite integral and
for finding the integral if it does. “Elementary” is used here to denote those
functions build up from the rational functions using only exponentiation, log-
arithms, trigonometric, inverse trigonometric and algebraic operations. This
vaguely worded question has several precise, but inequivalent formulations. The
writer has devised an algorithm which solves the classical problem of Liouville. A
complete account is planned for a future publication. The present note is intended
to indiciate some of the ideas and techniques involved.
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“Basic Concepts of Differential Algebra”
www14.in.tum.de/konferenzen/Jass07/courses/1/Wuerfl/wuerfl_paper.pdf

Modern computer algebra systems symbolically integrate a vast variety of func-
tions. To reveal the underlying structure it is necessary to understand infinite in-
tegration not only as an analytical problem but as an algebraic one. Introducing
the differential field of elementary functions we sketch the mathematical tools like
Liouville’s Principle used in modern algorithms. We present Hermite’s method
for integration of rational functions as well as the Rothstein/Trager method for
rational and for elementary functions. Further applications of the mentioned al-
gorithms in the field of ODE’s conclude this paper.
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Partial Fraction Decomposition

[Angell] Angell, Tom
“Guidelines for Partial Fraction Decomposition”
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Ore Rings

This is used as a reference for the LeftOreRing category, in particular, the least left
common multiple (lcmCoef) function.

[Delenclos 06] Delenclos, Jonathon; Leroy, André
“Noncommutative Symmetric functions and W -polynomials”
arxiv.org/pdf/math/0606614.pdf

Let K, S, D be a division ring an endomorphism and a S-derivation of K, re-
spectively. In this setting we introduce generalized noncommutative symmetric
functions and obtain Viéte formula and decompositions of different operators.
W -polynomials show up naturally, their connetions with P -independency. Van-
dermonde and Wronskian matrices are briefly studied. The different linear fac-
torizations of W -polynomials are analysed. Connections between the existence of
LLCM (least left common multiples) of monic linear polynomials with coefficients
in a ring and the left duo property are established at the end of the paper.

[Abramov 05] Abramov, S.A.; Le, H.Q.; Li, Z.
“Univariate Ore Polynomial Rings in Computer Algebra”
www.mmrc.iss.ac.cn/~zmli/papers/oretools.pdf

We present some algorithms related to rings of Ore polynomials (or, briefly, Ore
rings) and describe a computer algebra library for basic operations in an arbitrary
Ore ring. The library can be used as a basis for various algorithms in Ore rings,
in particular, in differential, shift, and q-shift rings.
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