The 30 Year Horizon

Manuel Bronstein
James Davenport
Albrecht Fortenbacher
Jocelyn Guidry
Michael Monagan
Jonathan Steinbach
Stephen Watt

William Burge
Michael Dewar
Patrizia Gianni
Richard Jenks
Scott Morrison
Robert Sutor
Jim Wen

Timothy Daly
Martin Dunstan
Johannes Grabmeier
Larry Lambe
William Sit
Barry Trager
Clifton Williamson

Volume 0: Axiom Jenks and Sutor
Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan
Portions Copyright (c) 2007 Alfredo Portes
Portions Copyright (c) 2007 Arthur Ralfs
Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,
The Numerical ALgorithms Group Ltd.
All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.

<table>
<thead>
<tr>
<th>Michael Albaugh</th>
<th>Cyril Alberg</th>
<th>Roy Adler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Aistleitner</td>
<td>Richard Anderson</td>
<td>George Andrews</td>
</tr>
<tr>
<td>S.J. Atkins</td>
<td>Henry Baker</td>
<td>Martin Baker</td>
</tr>
<tr>
<td>Stephen Balzac</td>
<td>Yuri Baransky</td>
<td>David R. Barton</td>
</tr>
<tr>
<td>Gerald Baumgartner</td>
<td>Gilbert Baumslag</td>
<td>Michael Becker</td>
</tr>
<tr>
<td>Nelson H. F. Beebe</td>
<td>Jay Belanger</td>
<td>David Binda</td>
</tr>
<tr>
<td>Fred Blair</td>
<td>Vladimir Bondarenko</td>
<td>Mark Botch</td>
</tr>
<tr>
<td>Raoul Bourquin</td>
<td>Alexandre Bouyer</td>
<td>Karen Braman</td>
</tr>
<tr>
<td>Peter A. Broadbery</td>
<td>Martin Brock</td>
<td>Manuel Bronstein</td>
</tr>
<tr>
<td>Stephen Buchwald</td>
<td>Florian Bundschuh</td>
<td>LuAnne Burns</td>
</tr>
<tr>
<td>William Burge</td>
<td>Ralph Byers</td>
<td>Quentin Carpente</td>
</tr>
<tr>
<td>Robert Caviness</td>
<td>Bruce Char</td>
<td>Ondrej Certik</td>
</tr>
<tr>
<td>Tzu-Yi Chen</td>
<td>Chekkai Chin</td>
<td>David V. Chudnovsky</td>
</tr>
<tr>
<td>Gregory V. Chudnovsky</td>
<td>Mark Clements</td>
<td>James Cloos</td>
</tr>
<tr>
<td>Jia Zhao Cong</td>
<td>Josh Cohen</td>
<td>Christophe Couil</td>
</tr>
<tr>
<td>Don Coppersmith</td>
<td>George Corliss</td>
<td>Robert Corless</td>
</tr>
<tr>
<td>Gary Cornell</td>
<td>Meino Cramer</td>
<td>Jeremy Du Croz</td>
</tr>
<tr>
<td>David Cyganski</td>
<td>Nathaniel Daly</td>
<td>Timothy Daly Sr.</td>
</tr>
<tr>
<td>Timothy Daly Jr.</td>
<td>James H. Davenport</td>
<td>David Day</td>
</tr>
<tr>
<td>James Demmel</td>
<td>Didier Deshommes</td>
<td>Michael Dewar</td>
</tr>
<tr>
<td>Jack Dongarra</td>
<td>Jean Della Dora</td>
<td>Gabriel Dos Reis</td>
</tr>
<tr>
<td>Claire DiCrescendo</td>
<td>Sam Dooley</td>
<td>Lionel Ducos</td>
</tr>
<tr>
<td>Iain Duff</td>
<td>Lee Duham</td>
<td>Martin Dunstan</td>
</tr>
<tr>
<td>Brian Dupee</td>
<td>Dominique Duval</td>
<td>Robert Edwards</td>
</tr>
<tr>
<td>Heow Eide-Goodman</td>
<td>Lars Erickson</td>
<td>Richard Fateman</td>
</tr>
<tr>
<td>Bertrand Fausier</td>
<td>Stuart Feldman</td>
<td>John Fletcher</td>
</tr>
<tr>
<td>Brian Ford</td>
<td>Albrecht Fortenbacher</td>
<td>George Frances</td>
</tr>
<tr>
<td>Constantine Frangos</td>
<td>Timothy Freeman</td>
<td>Korrinn Fu</td>
</tr>
<tr>
<td>Marc Gaetano</td>
<td>Rudiger Gebauer</td>
<td>Van de Geijn</td>
</tr>
<tr>
<td>Kathy Gerber</td>
<td>Patricia Gianni</td>
<td>Samantha Goldrich</td>
</tr>
<tr>
<td>Holger Gollan</td>
<td>Teresa Gomez-Diaz</td>
<td>Laureano Gonzalez-Vega</td>
</tr>
<tr>
<td>Stephen Gortler</td>
<td>Johannes Grabmeier</td>
<td>Matt Grayson</td>
</tr>
<tr>
<td>Klaus Ebbe Grue</td>
<td>James Griesmer</td>
<td>Vladimir Grinberg</td>
</tr>
<tr>
<td>Oswald Gschnitzer</td>
<td>Ming Gu</td>
<td>Jocelyn Guidry</td>
</tr>
<tr>
<td>Gaetan Hache</td>
<td>Steve Hague</td>
<td>Satoshi Hamaguchi</td>
</tr>
<tr>
<td>Sven Hammarling</td>
<td>Mike Hanson</td>
<td>Richard Hanson</td>
</tr>
<tr>
<td>Richard Harke</td>
<td>Bill Hart</td>
<td>Vilya Harvey</td>
</tr>
<tr>
<td>Martin Hassner</td>
<td>Arthur S. Hathaway</td>
<td>Dan Hatton</td>
</tr>
<tr>
<td>Waldek Hebisch</td>
<td>Karl Hegbloom</td>
<td>Ralf Hemmecke</td>
</tr>
<tr>
<td>Henderson</td>
<td>Antoine Hersen</td>
<td>Roger House</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Gernot Hueber</td>
<td>Pietro Iglio</td>
<td>Alejandro Jakubi</td>
</tr>
<tr>
<td>Richard Jenks</td>
<td>William Kahan</td>
<td>Kai Kaminski</td>
</tr>
<tr>
<td>Grant Keady</td>
<td>Wilfrid Kendall</td>
<td>Tony Kennedy</td>
</tr>
<tr>
<td>Ted Kosan</td>
<td>Paul Kosinski</td>
<td>Klaus Kusche</td>
</tr>
<tr>
<td>Bernhard Kutzler</td>
<td>Tim Lahey</td>
<td>Larry Lambe</td>
</tr>
<tr>
<td>Kaj Laurson</td>
<td>George L. Legendre</td>
<td>Franz Lehner</td>
</tr>
<tr>
<td>Frederic Lehobey</td>
<td>Michel Levaud</td>
<td>Howard Levy</td>
</tr>
<tr>
<td>Ren-Cang Li</td>
<td>Rudiger Loos</td>
<td>Michael Lucks</td>
</tr>
<tr>
<td>Richard Luczak</td>
<td>Cammi Maguire</td>
<td>Francois Maltey</td>
</tr>
<tr>
<td>Alasdair McAndrew</td>
<td>Bob McElrath</td>
<td>Michael McGetrick</td>
</tr>
<tr>
<td>Edi Meier</td>
<td>Ian Meikle</td>
<td>David Mentre</td>
</tr>
<tr>
<td>Victor S. Miller</td>
<td>Gerard Milmeister</td>
<td>Mohammed Mobarak</td>
</tr>
<tr>
<td>H. Michael Moeller</td>
<td>Michael Monagan</td>
<td>Marc Moreno-Maza</td>
</tr>
<tr>
<td>Scott Morrison</td>
<td>Joel Moses</td>
<td>Mark Murray</td>
</tr>
<tr>
<td>William Naylor</td>
<td>Patrice Naudin</td>
<td>C. Andrew Neff</td>
</tr>
<tr>
<td>John Nelder</td>
<td>Godfrey Nolan</td>
<td>Arthur Norman</td>
</tr>
<tr>
<td>Jinzhong Niu</td>
<td>Michael O’Connor</td>
<td>Summat Oemrawsingh</td>
</tr>
<tr>
<td>Kostas Oikonomou</td>
<td>Humberto Ortiz-Zuazaga</td>
<td>Julian A. Padget</td>
</tr>
<tr>
<td>Bill Page</td>
<td>David Parnas</td>
<td>Susan Pelzel</td>
</tr>
<tr>
<td>Michel Petitot</td>
<td>Didier Pinchon</td>
<td>Ayal Pinkus</td>
</tr>
<tr>
<td>Frederick H. Pitts</td>
<td>Jose Alfredo Portes</td>
<td>Gregorio Quintana-Orti</td>
</tr>
<tr>
<td>Claude Quitte</td>
<td>Arthur C. Ralfs</td>
<td>Norman Ramsey</td>
</tr>
<tr>
<td>Anatoly Raportirenko</td>
<td>Albert D. Rich</td>
<td>Michael Richardson</td>
</tr>
<tr>
<td>Guilherme Reis</td>
<td>Huan Ren</td>
<td>Renaud Stumbo</td>
</tr>
<tr>
<td>Jean Rivlin</td>
<td>Nicolas Robidoux</td>
<td>Simon Robinson</td>
</tr>
<tr>
<td>Raymond Rogers</td>
<td>Michael Rothstein</td>
<td>Martin Rubey</td>
</tr>
<tr>
<td>Philip Santas</td>
<td>Alfred Scheerhorn</td>
<td>William Schelter</td>
</tr>
<tr>
<td>Gerhard Schneider</td>
<td>Martin Schoener</td>
<td>Marshall Schor</td>
</tr>
<tr>
<td>Frithjof Schulze</td>
<td>Fritz Schwarz</td>
<td>Steven Segletes</td>
</tr>
<tr>
<td>V. Sina</td>
<td>Nick Simicich</td>
<td>William Sit</td>
</tr>
<tr>
<td>Elena Smirnova</td>
<td>Jonathan Steinbach</td>
<td>Fabio Stumbo</td>
</tr>
<tr>
<td>Christine Sundaresan</td>
<td>Robert Sutor</td>
<td>Moss E. Sweedler</td>
</tr>
<tr>
<td>Eugene Surowitz</td>
<td>Max Tegmark</td>
<td>T. Doug Telford</td>
</tr>
<tr>
<td>James Thatcher</td>
<td>Balbir Thomas</td>
<td>Mike Thomas</td>
</tr>
<tr>
<td>Dylan Thurston</td>
<td>Steve Toleque</td>
<td>Barry Trager</td>
</tr>
<tr>
<td>Themos T. Tsikas</td>
<td>Gregory Vanuxem</td>
<td>Bernhard Wall</td>
</tr>
<tr>
<td>Stephen Watt</td>
<td>Jaap Weel</td>
<td>Juergen Weiss</td>
</tr>
<tr>
<td>M. Weller</td>
<td>Mark Wegman</td>
<td>James Wen</td>
</tr>
<tr>
<td>Thorsten Werther</td>
<td>Michael Wester</td>
<td>R. Clint Whaley</td>
</tr>
<tr>
<td>John M. Wiley</td>
<td>Berhard Will</td>
<td>Clifton J. Williamson</td>
</tr>
<tr>
<td>Stephen Wilson</td>
<td>Shmuel Winograd</td>
<td>Robert Wisbauer</td>
</tr>
<tr>
<td>Sandra Wityak</td>
<td>Waldemar Wiwianka</td>
<td>Knut Wolf</td>
</tr>
<tr>
<td>Liu Xiaojun</td>
<td>Clifford Yapp</td>
<td>David Yun</td>
</tr>
<tr>
<td>Vadim Zhytnikov</td>
<td>Richard Zippel</td>
<td>Evelyn Zoernack</td>
</tr>
<tr>
<td>Bruno Zuercher</td>
<td>Dan Zwillinger</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Contributors

6

Introduction to Axiom

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolic Computation</td>
<td>1</td>
</tr>
<tr>
<td>Numeric Computation</td>
<td>2</td>
</tr>
<tr>
<td>Graphics</td>
<td>3</td>
</tr>
<tr>
<td>HyperDoc</td>
<td>4</td>
</tr>
<tr>
<td>Interactive Programming</td>
<td>5</td>
</tr>
<tr>
<td>Data Structures</td>
<td>6</td>
</tr>
<tr>
<td>Mathematical Structures</td>
<td>7</td>
</tr>
<tr>
<td>Pattern Matching</td>
<td>8</td>
</tr>
<tr>
<td>Polymorphic Algorithms</td>
<td>9</td>
</tr>
<tr>
<td>Extensibility</td>
<td>10</td>
</tr>
</tbody>
</table>

A Technical Introduction to Axiom

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Types are Defined by Abstract Datatype Programs</td>
<td>13</td>
</tr>
<tr>
<td>1.2 The Type of Basic Objects is a Domain or Subdomain</td>
<td>14</td>
</tr>
<tr>
<td>1.3 Domains Have Types Called Categories</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Operations Can Refer To Abstract Types</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Categories Form Hierarchies</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Domains Belong to Categories by Assertion</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Packages Are Clusters of Polymorphic Operations</td>
<td>16</td>
</tr>
<tr>
<td>1.8 The Interpreter Builds Domains Dynamically</td>
<td>16</td>
</tr>
<tr>
<td>1.9 Axiom Code is Compiled</td>
<td>17</td>
</tr>
<tr>
<td>1.10 Axiom is Extensible</td>
<td>17</td>
</tr>
<tr>
<td>1.11 Using Axiom as a Pocket Calculator</td>
<td>18</td>
</tr>
<tr>
<td>Basic Arithmetic</td>
<td>18</td>
</tr>
<tr>
<td>Type Conversion</td>
<td>20</td>
</tr>
<tr>
<td>Useful Functions</td>
<td>21</td>
</tr>
<tr>
<td>1.12 Using Axiom as a Symbolic Calculator</td>
<td>25</td>
</tr>
<tr>
<td>Expressions Involving Symbols</td>
<td>25</td>
</tr>
<tr>
<td>Complex Numbers</td>
<td>26</td>
</tr>
<tr>
<td>Number Representations</td>
<td>28</td>
</tr>
<tr>
<td>Modular Arithmetic</td>
<td>32</td>
</tr>
</tbody>
</table>
CONTENTS

1.13 General Points about Axiom 33
 Computation Without Output 33
 Accessing Earlier Results 33
 Splitting Expressions Over Several Lines 33
 Comments and Descriptions 34
 Control of Result Types 34

1.14 Data Structures in Axiom 36
 Lists .. 36
 Segmented Lists .. 44
 Streams ... 45
 Arrays, Vectors, Strings, and Bits 47
 Flexible Arrays ... 50

1.15 Functions, Choices, and Loops 52
 Reading Code from a File 52
 Blocks ... 52
 Functions ... 56
 Choices .. 59
 Loops ... 60

1 An Overview of Axiom 1
 1.1 Starting Up and Winding Down 1
 Clef ... 2

 1.2 Typographic Conventions 3

 1.3 The Axiom Language 3
 Arithmetic Expressions 4
 Previous Results ... 4
 Some Types ... 5
 Symbols, Variables, Assignments, and Declarations 6
 Conversion ... 9
 Calling Functions ... 10
 Some Predefined Macros 11
 Long Lines ... 11
 Comments ... 12

 1.4 Numbers .. 12

 1.5 Data Structures 20

 1.6 Expanding to Higher Dimensions 27

 1.7 Writing Your Own Functions 29

 1.8 Polynomials ... 35

 1.9 Limits .. 36

 1.10 Series ... 38

 1.11 Derivatives .. 40

 1.12 Integration ... 43

 1.13 Differential Equations 47

 1.14 Solution of Equations 49

 1.15 System Commands 51
 Undo .. 52
CONTENTS

1.16 Graphics .. 55

2 Using Types and Modes 57
 2.1 The Basic Idea 57
 Domain Constructors 59
 2.2 Writing Types and Modes 64
 Types with No Arguments 65
 Types with One Argument 66
 Types with More Than One Argument 67
 Modes .. 67
 Abbreviations ... 68
 2.3 Declarations ... 69
 2.4 Records ... 72
 2.5 Unions .. 76
 Unions Without Selectors 76
 Unions With Selectors 80
 2.6 The “Any” Domain 81
 2.7 Conversion .. 82
 2.8 Subdomains Again 85
 2.9 Package Calling and Target Types 89
 2.10 Resolving Types 93
 2.11 Exposing Domains and Packages 94
 2.12 Commands for Snooping 97

3 Using HyperDoc ... 101
 3.1 Headings ... 102
 3.2 Key Definitions 102
 3.3 Scroll Bars ... 103
 3.4 Input Areas ... 103
 3.5 Radio Buttons and Toggles 104
 3.6 Search Strings .. 104
 Logical Searches 105
 3.7 Example Pages ... 105
 3.8 X Window Resources for HyperDoc 106

4 Input Files and Output Styles 109
 4.1 Input Files ... 109
 4.2 The .axiom.input File 110
 4.3 Common Features of Using Output Formats 111
 4.4 Monospace Two-Dimensional Mathematical Format 112
 4.5 TeX Format ... 113
 4.6 IBM Script Formula Format 113
 4.7 FORTRAN Format 114
5 Overview of Interactive Language

5.1 Immediate and Delayed Assignments .. 119
5.2 Blocks .. 123
5.3 if-then-else ... 127
5.4 Loops ... 129
 Compiling vs. Interpreting Loops ... 129
 return in Loops ... 129
 break in Loops ... 130
 break vs. \(\Rightarrow \) in Loop Bodies ... 132
 More Examples of break .. 132
 iterate in Loops .. 135
 while Loops ... 135
 for Loops .. 138
 for i in n..m repeat ... 138
 for i in n..m by s repeat ... 140
 for i in n.. repeat .. 141
 for x in l repeat .. 141
 “Such that” Predicates ... 142
 Parallel Iteration .. 143
 Mixing Loop Modifiers ... 146

5.5 Creating Lists and Streams with Iterators ... 146

5.6 An Example: Streams of Primes .. 149

6 User-Defined Functions, Macros and Rules

6.1 Functions vs. Macros ... 153
6.2 Macros .. 154
6.3 Introduction to Functions .. 157
6.4 Declaring the Type of Functions .. 158
6.5 One-Line Functions .. 160
6.6 Declared vs. Undeclared Functions .. 162
6.7 Functions vs. Operations .. 164
6.8 Delayed Assignments vs. Functions with No Arguments 165
6.9 How Axiom Determines What Function to Use .. 166
6.10 Compiling vs. Interpreting .. 168
6.11 Piece-Wise Function Definitions ... 170
 A Basic Example ... 170
 Picking Up the Pieces .. 173
 Predicates ... 176
6.12 Caching Previously Computed Results .. 178
6.13 Recurrence Relations .. 179
6.14 Making Functions from Objects ... 182
6.15 Functions Defined with Blocks ... 186
6.16 Free and Local Variables .. 189
6.17 Anonymous Functions .. 196
 Some Examples .. 196
 Declaring Anonymous Functions .. 198
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>Example: A Database</td>
<td>200</td>
</tr>
<tr>
<td>6.19</td>
<td>Example: A Famous Triangle</td>
<td>203</td>
</tr>
<tr>
<td>6.20</td>
<td>Example: Testing for Palindromes</td>
<td>206</td>
</tr>
<tr>
<td>6.21</td>
<td>Rules and Pattern Matching</td>
<td>208</td>
</tr>
</tbody>
</table>

7 Graphics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Two-Dimensional Graphics</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Plotting Two-Dimensional Functions of One Variable</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Plotting Two-Dimensional Parametric Plane Curves</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Plotting Plane Algebraic Curves</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Two-Dimensional Options</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Palette</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Two-Dimensional Control-Panel</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Operations for Two-Dimensional Graphics</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Addendum: Building Two-Dimensional Gr...</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Addendum: Appending a Graph to a Viewport Window Containing a Graph</td>
<td>244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Three-Dimensional Graphics</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Plotting Three-Dimensional Functions of Two Variables</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Plotting Three-Dimensional Parametric Space Curves</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Plotting Three-Dimensional Parametric Surfaces</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Axiom Images</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Three-Dimensional Options</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>The makeObject Command</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Building Three-Dimensional Objects From Primitives</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Coordinate System Transformations</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Three-Dimensional Clipping</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Three-Dimensional Control-Panel</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Operations for Three-Dimensional Graphics</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Customization using .Xdefaults</td>
<td>286</td>
</tr>
</tbody>
</table>

8 Advanced Problem Solving

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Numeric Functions</td>
<td>289</td>
</tr>
<tr>
<td>8.2</td>
<td>Polynomial Factorization</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Integer and Rational Number Coefficients</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Finite Field Coefficients</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>Simple Algebraic Extension Field Coefficients</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Factoring Rational Functions</td>
<td>305</td>
</tr>
<tr>
<td>8.3</td>
<td>Manipulating Symbolic Roots of a Polynomial</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Using a Single Root of a Polynomial</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Using All Roots of a Polynomial</td>
<td>307</td>
</tr>
<tr>
<td>8.4</td>
<td>Computation of Eigenvalues and Eigenvectors</td>
<td>309</td>
</tr>
<tr>
<td>8.5</td>
<td>Solution of Linear and Polynomial Equations</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Solution of Systems of Linear Equations</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Solution of a Single Polynomial Equation</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Solution of Systems of Polynomial Equations</td>
<td>317</td>
</tr>
</tbody>
</table>
8.6 Limits ... 319
8.7 Laplace Transforms 323
8.8 Integration .. 324
8.9 Working with Power Series 328
 Creation of Power Series 328
 Coefficients of Power Series 331
 Power Series Arithmetic 332
 Functions on Power Series 333
 Converting to Power Series 336
 Power Series from Formulas 340
 Substituting Numerical Values in Power Series 343
 Example: Bernoulli Polynomials and Sums of Powers 344
8.10 Solution of Differential Equations 348
 Closed-Form Solutions of Linear Differential Equations 348
 Closed-Form Solutions of Non-Linear Differential Equations 351
 Power Series Solutions of Differential Equations 356
8.11 Finite Fields 358
 Modular Arithmetic and Prime Fields 358
 Extensions of Finite Fields 362
 Irreducible Modulus Polynomial Representations 364
 Cyclic Group Representations 367
 Normal Basis Representations 370
 Conversion Operations for Finite Fields 372
 Utility Operations for Finite Fields 376
8.12 Primary Decomposition of Ideals 383
8.13 Computation of Galois Groups 386
8.14 Non-Associative Algebras and Modelling Genetic Laws 395

9 Some Examples of Domains and Packages 401
 9.1 ApplicationProgramInterface 401
 9.2 ArrayStack 402
 9.3 AssociationList 406
 9.4 BalancedBinaryTree 409
 9.5 BasicOperator 411
 9.6 BinaryExpansion 415
 9.7 BinarySearchTree 417
 9.8 CardinalNumber 419
 9.9 CartesianTensor 423
 9.10 Character 434
 9.11 CharacterClass 437
 9.12 CliffordAlgebra 439
 The Complex Numbers as a Clifford Algebra 440
 The Quaternion Numbers as a Clifford Algebra 441
 The Exterior Algebra on a Three Space 443
 The Dirac Spin Algebra 445
 9.13 Complex 447
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.14</td>
<td>ContinuedFraction</td>
<td>450</td>
</tr>
<tr>
<td>9.15</td>
<td>CycleIndicators</td>
<td>457</td>
</tr>
<tr>
<td>9.16</td>
<td>DeRhamComplex</td>
<td>467</td>
</tr>
<tr>
<td>9.17</td>
<td>DecimalExpansion</td>
<td>475</td>
</tr>
<tr>
<td>9.18</td>
<td>Dequeque</td>
<td>476</td>
</tr>
<tr>
<td>9.19</td>
<td>DistributedMultivariatePolynomial</td>
<td>483</td>
</tr>
<tr>
<td>9.20</td>
<td>DoubleFloat</td>
<td>485</td>
</tr>
<tr>
<td>9.21</td>
<td>EqTable</td>
<td>488</td>
</tr>
<tr>
<td>9.22</td>
<td>Equation</td>
<td>489</td>
</tr>
<tr>
<td>9.23</td>
<td>EuclideanGroebnerBasisPackage</td>
<td>491</td>
</tr>
<tr>
<td>9.24</td>
<td>Exit</td>
<td>492</td>
</tr>
<tr>
<td>9.25</td>
<td>Expression</td>
<td>493</td>
</tr>
<tr>
<td>9.26</td>
<td>Factored</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Decomposing Factored Objects</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Expanding Factored Objects</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>Arithmetic with Factored Objects</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>Creating New Factored Objects</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td>Factored Objects with Variables</td>
<td>505</td>
</tr>
<tr>
<td>9.27</td>
<td>FactoredFunctions2</td>
<td>506</td>
</tr>
<tr>
<td>9.28</td>
<td>File</td>
<td>508</td>
</tr>
<tr>
<td>9.29</td>
<td>FileName</td>
<td>510</td>
</tr>
<tr>
<td>9.30</td>
<td>FlexibleArray</td>
<td>514</td>
</tr>
<tr>
<td>9.31</td>
<td>Float</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Introduction to Float</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Conversion Functions</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>Output Functions</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>An Example: Determinant of a Hilbert Matrix</td>
<td>523</td>
</tr>
<tr>
<td>9.32</td>
<td>Fraction</td>
<td>525</td>
</tr>
<tr>
<td>9.33</td>
<td>FullPartialFractionExpansion</td>
<td>528</td>
</tr>
<tr>
<td>9.34</td>
<td>GeneralDistributedMultivariatePolynomial</td>
<td>533</td>
</tr>
<tr>
<td>9.35</td>
<td>GeneralSparseTable</td>
<td>535</td>
</tr>
<tr>
<td>9.36</td>
<td>GroebnerFactorizationPackage</td>
<td>536</td>
</tr>
<tr>
<td>9.37</td>
<td>GroebnerPackage</td>
<td>539</td>
</tr>
<tr>
<td>9.38</td>
<td>Heap</td>
<td>539</td>
</tr>
<tr>
<td>9.39</td>
<td>HexadecimalExpansion</td>
<td>541</td>
</tr>
<tr>
<td>9.40</td>
<td>HomogeneousDistributedMultivariatePolynomial</td>
<td>543</td>
</tr>
<tr>
<td>9.41</td>
<td>Integer</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>Basic Functions</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>Primes and Factorization</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td>Some Number Theoretic Functions</td>
<td>552</td>
</tr>
<tr>
<td>9.42</td>
<td>IntegerLinearDependence</td>
<td>554</td>
</tr>
<tr>
<td>9.43</td>
<td>IntegerNumberTheoryFunctions</td>
<td>556</td>
</tr>
<tr>
<td>9.44</td>
<td>Kernel</td>
<td>562</td>
</tr>
<tr>
<td>9.45</td>
<td>KeyedAccessFile</td>
<td>566</td>
</tr>
<tr>
<td>9.46</td>
<td>LexTriangularPackage</td>
<td>570</td>
</tr>
<tr>
<td>9.47</td>
<td>LazardSetSolvingPackage</td>
<td>597</td>
</tr>
</tbody>
</table>
CONTENTS

9.48 Library ... 607
9.49 LieExponentials .. 609
9.50 LiePolynomial .. 611
9.51 LinearOrdinaryDifferentialOperator 616
 Differential Operators with Series Coefficients 616
9.52 LinearOrdinaryDifferentialOperator1 621
 Differential Operators with Rational Function Coefficients
9.53 LinearOrdinaryDifferentialOperator2 626
 Differential Operators with Constant Coefficients 626
 Differential Operators with Matrix Coefficients Operating on Vectors 628
9.54 List ... 632
 Creating Lists ... 632
 Accessing List Elements 633
 Changing List Elements 635
 Other Functions ... 637
 Dot, Dot ... 638
9.55 LyndonWord ... 639
9.56 Magma .. 643
9.57 MakeFunction .. 647
9.58 MappingPackage1 .. 649
9.59 Matrix ... 654
 Creating Matrices .. 655
 Operations on Matrices 660
9.60 Multiset ... 664
9.61 MultivariatePolynomial 666
9.62 None .. 669
9.63 NottinghamGroup .. 670
9.64 Octonion .. 671
9.65 OneDimensionalArray 674
9.66 Operator ... 676
9.67 OrderedVariableList 680
9.68 OrderlyDifferentialPolynomial 681
9.69 PartialFraction ... 689
9.70 Permanent ... 692
9.71 Permutation .. 693
9.72 Polynomial .. 693
9.73 Quaternion .. 703
9.74 Queue .. 706
9.75 RadixExpansion ... 708
9.76 RealClosure ... 711
9.77 RealSolvePackage .. 725
9.78 RegularTriangularSet 727
9.79 RomanNumeral ... 742
9.80 Segment .. 744
9.81 SegmentBinding ... 746
9.82 Set .. 748
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.83</td>
<td>SingleInteger</td>
<td>752</td>
</tr>
<tr>
<td>9.84</td>
<td>SparseTable</td>
<td>754</td>
</tr>
<tr>
<td>9.85</td>
<td>SquareMatrix</td>
<td>756</td>
</tr>
<tr>
<td>9.86</td>
<td>SquareFreeRegularTriangularSet</td>
<td>757</td>
</tr>
<tr>
<td>9.87</td>
<td>Stack</td>
<td>763</td>
</tr>
<tr>
<td>9.88</td>
<td>Stream</td>
<td>765</td>
</tr>
<tr>
<td>9.89</td>
<td>String</td>
<td>768</td>
</tr>
<tr>
<td>9.90</td>
<td>StringTable</td>
<td>774</td>
</tr>
<tr>
<td>9.91</td>
<td>Symbol</td>
<td>775</td>
</tr>
<tr>
<td>9.92</td>
<td>Table</td>
<td>780</td>
</tr>
<tr>
<td>9.93</td>
<td>TextFile</td>
<td>784</td>
</tr>
<tr>
<td>9.94</td>
<td>TwoDimensionalArray</td>
<td>786</td>
</tr>
<tr>
<td>9.95</td>
<td>TwoDimensionalViewport</td>
<td>790</td>
</tr>
<tr>
<td>9.96</td>
<td>UnivariatePolynomial</td>
<td>800</td>
</tr>
<tr>
<td>9.97</td>
<td>UnivariateSkewPolynomial</td>
<td>808</td>
</tr>
<tr>
<td></td>
<td>A second example</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>A third example</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>A fourth example</td>
<td>812</td>
</tr>
<tr>
<td>9.98</td>
<td>UniversalSegment</td>
<td>813</td>
</tr>
<tr>
<td>9.99</td>
<td>Vector</td>
<td>815</td>
</tr>
<tr>
<td>9.100</td>
<td>Void</td>
<td>817</td>
</tr>
<tr>
<td>9.101</td>
<td>WuWenTsunTriangularSet</td>
<td>819</td>
</tr>
<tr>
<td>9.102</td>
<td>XPBWPolynomial</td>
<td>823</td>
</tr>
<tr>
<td>9.103</td>
<td>XPolynomial</td>
<td>830</td>
</tr>
<tr>
<td>9.104</td>
<td>XPolynomialRing</td>
<td>833</td>
</tr>
<tr>
<td>9.105</td>
<td>ZeroDimensionalSolvePackage</td>
<td>837</td>
</tr>
<tr>
<td>10.1</td>
<td>Drawing Ribbons Interactively</td>
<td>865</td>
</tr>
<tr>
<td>10.2</td>
<td>A Ribbon Program</td>
<td>870</td>
</tr>
<tr>
<td>10.3</td>
<td>Coloring and Positioning Ribbons</td>
<td>871</td>
</tr>
<tr>
<td>10.4</td>
<td>Points, Lines, and Curves</td>
<td>872</td>
</tr>
<tr>
<td>10.5</td>
<td>A Bouquet of Arrows</td>
<td>875</td>
</tr>
<tr>
<td>10.6</td>
<td>Diversion: When Things Go Wrong</td>
<td>876</td>
</tr>
<tr>
<td>10.7</td>
<td>Drawing Complex Vector Fields</td>
<td>876</td>
</tr>
<tr>
<td>10.8</td>
<td>Drawing Complex Functions</td>
<td>878</td>
</tr>
<tr>
<td>10.9</td>
<td>Functions Producing Functions</td>
<td>880</td>
</tr>
<tr>
<td>10.10</td>
<td>Automatic Newton Iteration Formulas</td>
<td>881</td>
</tr>
<tr>
<td>11.1</td>
<td>Names, Abbreviations, and File Structure</td>
<td>885</td>
</tr>
<tr>
<td>11.2</td>
<td>Syntax</td>
<td>886</td>
</tr>
<tr>
<td>11.3</td>
<td>Abstract Datatypes</td>
<td>887</td>
</tr>
<tr>
<td>11.4</td>
<td>Capsules</td>
<td>887</td>
</tr>
<tr>
<td>11.5</td>
<td>Input Files vs. Packages</td>
<td>888</td>
</tr>
<tr>
<td>11.6</td>
<td>Compiling Packages</td>
<td>889</td>
</tr>
</tbody>
</table>
CONTENTS

14 Browse

14.1 The Front Page: Searching the Library ... 931
14.2 The Constructor Page .. 935
 Constructor Page Buttons ... 937
 Cross Reference ... 942
 Views Of Constructors ... 945
 Giving Parameters to Constructors ... 946
14.3 Miscellaneous Features of Browse .. 947
 The Description Page for Operations ... 947
 Views of Operations .. 949
 Capitalization Convention .. 952

15 What's New in Axiom Version 2.0

15.1 Important Things to Read First ... 953
15.2 The NAG Library Link ... 953
 Interpreting NAG Documentation .. 954
 Using the Link ... 955
 Providing values for Argument Subprograms 956
 General Fortran-generation utilities in Axiom 958
 Some technical information ... 966
15.3 Interactive Front-end and Language .. 967
15.4 Library .. 967
15.5 HyperTex .. 969
15.6 Documentation .. 969

A Axiom System Commands

A.1 Introduction .. 971
A.2)abbreviation ... 972
A.3)browse .. 974
A.4)cd ... 974
A.5)close .. 975
A.6)clear ... 975
A.7)compile ... 977
A.8)display ... 979
A.9)edit .. 980
A.10)fin ... 981
A.11)frame ... 981
A.12)help ... 983
A.13)history .. 984
A.14)include .. 984
A.15)library .. 986
A.16)lisp .. 987
A.17)regress ... 988
A.18)tangle ... 991
A.19)trace ... 991
A.20)pquit ... 992
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.21)quit</td>
<td>992</td>
</tr>
<tr>
<td>A.22)read</td>
<td>993</td>
</tr>
<tr>
<td>A.23)set</td>
<td>994</td>
</tr>
<tr>
<td>A.24)show</td>
<td>995</td>
</tr>
<tr>
<td>A.25)spool</td>
<td>995</td>
</tr>
<tr>
<td>A.26)synonym</td>
<td>996</td>
</tr>
<tr>
<td>A.27)system</td>
<td>997</td>
</tr>
<tr>
<td>A.28)trace</td>
<td>997</td>
</tr>
<tr>
<td>A.29)undo</td>
<td>1001</td>
</tr>
<tr>
<td>A.30)what</td>
<td>1002</td>
</tr>
<tr>
<td>B Categories</td>
<td>1005</td>
</tr>
<tr>
<td>C Domains</td>
<td>1017</td>
</tr>
<tr>
<td>D Packages</td>
<td>1049</td>
</tr>
<tr>
<td>E Operations</td>
<td>1065</td>
</tr>
<tr>
<td>F Programs for Axiom Images</td>
<td>1189</td>
</tr>
<tr>
<td>F.1 images1.input</td>
<td>1189</td>
</tr>
<tr>
<td>F.2 images2.input</td>
<td>1190</td>
</tr>
<tr>
<td>F.3 images3.input</td>
<td>1190</td>
</tr>
<tr>
<td>F.4 images5.input</td>
<td>1190</td>
</tr>
<tr>
<td>F.5 images6.input</td>
<td>1191</td>
</tr>
<tr>
<td>F.6 images7.input</td>
<td>1192</td>
</tr>
<tr>
<td>F.7 images8.input</td>
<td>1193</td>
</tr>
<tr>
<td>F.8 conformal.input</td>
<td>1193</td>
</tr>
<tr>
<td>F.9 tknot.input</td>
<td>1197</td>
</tr>
<tr>
<td>F.10 ntube.input</td>
<td>1197</td>
</tr>
<tr>
<td>F.11 dhtri.input</td>
<td>1199</td>
</tr>
<tr>
<td>F.12 tetra.input</td>
<td>1200</td>
</tr>
<tr>
<td>F.13 antoine.input</td>
<td>1201</td>
</tr>
<tr>
<td>F.14 scherk.input</td>
<td>1202</td>
</tr>
<tr>
<td>G Glossary</td>
<td>1205</td>
</tr>
<tr>
<td>H License</td>
<td>1225</td>
</tr>
</tbody>
</table>
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
You are holding in your hands an unusual book. Winston Churchill once said that the empires of the future will be empires of the mind. This book might hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science developed dreams of Artificial Intelligence and Automatic Theorem Proving in which theorems can be proved by machines instead of mathematicians. Now, when computer hardware has matured and become cheaper and faster, there is not too much talk of putting the burden of formulating and proving theorems on the computer’s shoulders. Moreover, even in those cases when computer programs do prove theorems, or establish counter-examples (for example, the solution of the four color problem, the non-existence of projective planes of order 10, the disproof of the Mertens conjecture), humans carry most of the burden in the form of programming and verification.

It is the language of computer programming that has turned out to be the crucial instrument of productivity in the evolution of scientific computing. The original Artificial Intelligence efforts gave birth to the first symbolic manipulation systems based on LISP. The first complete symbolic manipulation or, as they are called now, computer algebra packages tried to imbed the development programming and execution of mathematical problems into a framework of familiar symbolic notations, operations and conventions. In the third decade of symbolic computations, a couple of these early systems—REDUCE and MACSYMA—still hold their own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by IBM researchers. Scratchpad/Axiom was born big—its original platform was an IBM mainframe 3081, and later a 3090. The system was growing and learning during the decade of the 80’s, and its development and progress influenced the field of computer algebra. During this period, the first commercially available computer algebra packages for mini and microcomputers made their debut. By now, our readers are aware of Mathematica, Maple, Derive, and Macsyma. These systems (as well as a few special purpose computer algebra packages in academia) emphasize ease of operation and standard scientific conventions, and come with a prepared set of mathematical solutions for typical tasks confronting an applied scientist or an engineer. These features brought a recognition of the enormous benefits of computer algebra to the widest circles of scientists and engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom product. There is no rival to this powerful environment in its scope and, most importantly, in its structure and organization. Axiom contains the basis for any comprehensive and elaborate mathematical development. It gives the user all Foundation and Algebra instruments necessary to develop a computer realization of sophisticated mathematical objects in exactly the way a mathematician would do it. Axiom is also the basis of a complete scientific cyberspace—it provides an environment for mathematical objects used in scientific computation, and the means of controlling and communicating between these objects. Knowledge of only a few Axiom language features and operating principles is all that is required to make impressive progress in a given domain of interest. The system is powerful. It is not an interactive interpretive
environment operating only in response to one line commands—it is a complete language with rich syntax and a full compiler. Mathematics can be developed and explored with ease by the user of Axiom. In fact, during Axiom’s growth cycle, many detailed mathematical domains were constructed. Some of them are a part of Axiom’s core and are described in this book. For a bird’s eye view of the algebra hierarchy of Axiom, glance inside the book cover.

The crucial strength of Axiom lies in its excellent structural features and unlimited expandability—it is open, modular system designed to support an ever growing number of facilities with minimal increase in structural complexity. Its design also supports the integration of other computation tools such as numerical software libraries written in FORTRAN and C. While Axiom is already a very powerful system, the prospect of scientists using the system to develop their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in theoretical mathematics, mathematical physics, combinatorics, digital signal processing, cryptography and parallel processing. We have to confess that we enjoyed using Scratchpad/Axiom. It provided us with an excellent environment for our research, and allowed us to solve problems intractable on other systems. We were able to prove new diophantine results for \(\pi \); establish the Grothendieck conjecture for certain classes of linear differential equations; study the arithmetic properties of the uniformization of hyperelliptic and other algebraic curves; construct new factorization algorithms based on formal groups; within Scratchpad/Axiom we were able to obtain new identities needed for quantum field theory (elliptic genus formula and double scaling limit for quantum gravity), and classify period relations for CM varieties in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is well known for its high quality software products for numerical and statistical computations. The development of Axiom in IBM was conducted at IBM T.J. Watson Research Center at Yorktown, New York by a symbolic computation group headed by Richard D. Jenks. Shmuel Winograd of IBM was instrumental in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user through Axiom’s definitions, rules, applications and interfaces. A variety of fully developed areas of mathematics are presented as packages, and the user is well advised to take advantage of the sophisticated realization of familiar mathematics. The Axiom book is easy to read and the Axiom system is easy to use. It possesses all the features required of a modern computer environment (for example, windowing, integration of operating system features, and interactive graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an elaborate browser, and complete on-line documentation. The HyperDoc allows novices to solve their problems in a straightforward way, by providing menus for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing into a higher plane, where scientists can formulate their statements in their own language and receive computer assistance in their proofs. Axiom’s performance on workstations is truly impressive, and users of Axiom will get more from them than we, the early users, got from mainframes. Axiom provides a powerful scientific environment for easy construction of mathematical tools and algorithms; it is a symbolic manipulation system, and a high performance numerical system, with full graphics capabilities. We expect every (computer) power hungry scientist will
want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
Richard Dimick Jenks
Axiom Developer and Computer Algebra Pioneer

Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois, where he grew up. During his childhood he learned to play the organ and sang in the church choir thereby developing a life-long passion for music.

He received his PhD in mathematics from the University of Illinois at Urbana-Champaign in 1966. The title of his dissertation was "Quadratic Differential Systems for Mathematical Models" and was written under the supervision of Donald Gilles. After completing his PhD, he was a post-doctoral fellow at Brookhaven National Laboratory on Long Island. In 1968 he joined IBM Research where he worked until his retirement in 2002.

At IBM he was a principal architect of the Scratchpad system, one of the earliest computer algebra systems (1971). Dick always believed that natural user interfaces were essential and developed a user-friendly rule-based system for Scratchpad. Although this rule-based approach was easy to use, as algorithms for computer algebra became more complicated, he began to understand that an abstract data type approach would give sophisticated algorithm development considerably more leverage. In 1977 he began the Axiom development (originally called Scratchpad II) with the design of MODLISP, a merger of Lisp with types (modes). In 1980, with the help of many others, he completed an initial prototype design based on categories and domains that were intended to be natural for mathematically sophisticated users.

During this period many researchers in computer algebra visited IBM Research in Yorktown Heights and contributed to the development of the Axiom system. All this activity made the computer algebra group at IBM one of the leading centers for research in this area and Dick was always there to organize the visits and provide a stimulating and pleasant working environment for everyone. He had a good perspective on the most important research directions and worked to attract world-renowned experts to visit and interact with his group. He was an ideal manager for whom to work, one who always put the project and the needs of the group members first. It was a joy to work in such a vibrant and stimulating environment.

After many years of development, a decision was made to rename Scratchpad II to Axiom and to release it as a product. Dick and Robert Sutor were the primary authors of the book Axiom: The Scientific Computation System. In the foreword of the book, written by David and Gregory Chudnovsky, it is stated that "The Scratchpad system took its time to blossom into the beautiful Axiom product. There is no rival to this powerful environment in
its scope and, most importantly, in its structure and organization. Axiom was recently made available as free software. See http://savannah.nongnu.org/projects/axiom.

Dick was active in service to the computer algebra community as well. Here are some highlights. He served as Chair of ACM SIGSAM (1979-81) and Conference Co-chair (with J. A. van Hulzen) of EUROSAM ’84, a precursor of the ISSAC meetings. Dick also had a long period of service on the editorial board of the Journal of Symbolic Computation. At ISSAC ’95 in Montreal, Dick was elected to the initial ISSAC Steering Committee and was elected as the second Chair of the Committee in 1997. He, along with David Chudnovsky, organized the highly successful meetings on Computers and Mathematics that were held at Stanford in 1986 and MIT in 1989.

Dick had many interests outside of his professional pursuits including reading, travel, physical fitness, and especially music. Dick was an accomplished pianist, organist, and vocalist. At one point he was the organist and choirmaster of the Church of the Holy Communion in Mahopac, NY. In the 1980s and 1990s, he sang in choral groups under the direction of Dr. Dennis Keene that performed at Lincoln Center in New York City.

Especially important to him was his family: his eldest son Doug and his wife Patricia, his son Daniel and his wife Mercedes, a daughter Susan, his brother Albert and his wife Barbara, his sister Diane Alabaster and her husband Harold, his grandchildren Douglas, Valerie, Ryan, and Daniel Richard, and step-granddaughter Danielle. His longtime companion, Barbara Gatje, shared his love for music, traveling, Point O’Woods, and life in general.

On December 30, 2003, Dick Jenks died at the age of 66, after an extended and courageous battle with multiple system atrophy. Personally, Dick was warm, generous, and outgoing with many friends. He will be missed for his technical accomplishments, his artist talents, and most of all for his positive, gentle, charming spirit.

Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with contributions from Barbara Gatje, James H. Griesmer, Tony Hearn, Manuel Bronstein, and Erich Kaltofen.
Contributors

The design and development of Axiom was led by the Symbolic Computation Group of the Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New York. The current implementation of Axiom is the product of many people. The primary contributors are:

Richard D. Jenks (IBM, Yorktown) received a Ph.D. from the University of Illinois and was a principal architect of the Scratchpad computer algebra system (1971). In 1977, Jenks initiated the Axiom effort with the design of MODLISP, inspired by earlier work with Rüdiger Loos (Tübingen), James Griesmer (IBM, Yorktown), and David Y. Y. Yun (Hawaii). Joint work with David R. Barton (Berkeley, California) and James Davenport led to the design and implementation of prototypes and the concept of categories (1980). More recently, Jenks led the effort on user interface software for Axiom.

Barry M. Trager (IBM, Yorktown) received a Ph.D. from MIT while working in the MACSYMA computer algebra group. Trager's thesis laid the groundwork for a complete theory for closed-form integration of elementary functions and its implementation in Axiom. Trager and Richard Jenks are responsible for the original abstract datatype design and implementation of the programming language with its current MODLISP-based compiler and run-time system. Trager is also responsible for the overall design of the current Axiom library and for the implementation of many of its components.

Stephen M. Watt (IBM, Yorktown) received a Ph.D. from the University of Waterloo and is one of the original authors of the Maple computer algebra system. Since joining IBM in 1984, he has made central contributions to the Axiom language and system design, as well as numerous contributions to the library. He is the principal architect of the new Axiom compiler, planned for Release 2.

Robert S. Sutor (IBM, Yorktown) received a Ph.D. in mathematics from Princeton University and has been involved with the design and implementation of the system interpreter, system commands, and documentation since 1984. Sutor's contributions to the Axiom library include factored objects, partial fractions, and the original implementation of finite field extensions. Recently, he has devised technology for producing automatic hard-copy and on-line documentation from single source files.

Scott C. Morrison (IBM, Yorktown) received an M.S. from the University of California, Berkeley, and is a principal person responsible for the design and implementation of the Axiom interface, including the interpreter, HyperDoc, and applications of the computer graphics system.

Manuel Bronstein (ETH, Zurich) received a Ph.D. in mathematics from the University of California, Berkeley, completing the theoretical work on closed-form integration by Barry Trager. Bronstein designed and implemented the algebraic structures and algorithms in the Axiom library for integration, closed form solution of differential equations, operator algebras, and manipulation of top-level mathematical expressions. He also designed (with
Richard Jenks) and implemented the current pattern match facility for Axiom.

William H. Burge (IBM, Yorktown) received a Ph.D. from Cambridge University, implemented the Axiom parser, designed (with Stephen Watt) and implemented the stream and power series structures, and numerous algebraic facilities including those for data structures, power series, and combinatorics.

Timothy P. Daly (IBM, Yorktown) is pursuing a Ph.D. in computer science at Brooklyn Polytechnic Institute and is responsible for porting, testing, performance, and system support work for Axiom.

James Davenport (Bath) received a Ph.D. from Cambridge University, is the author of several computer algebra textbooks, and has long recognized the need for Axiom’s generality for computer algebra. He was involved with the early prototype design of system internals and the original category hierarchy for Axiom (with David R. Barton). More recently, Davenport and Barry Trager designed the algebraic category hierarchy currently used in Axiom. Davenport is Hebron and Medlock Professor of Information Technology at Bath University.

Michael Dewar (Bath) received a Ph.D. from the University of Bath for his work on the IRENA system (an interface between the REDUCE computer algebra system and the NAG Library of numerical subprograms), and work on interfacing algebraic and numerical systems in general. He has contributed code to produce FORTRAN output from Axiom, and is currently developing a comprehensive foreign language interface and a link to the NAG Library for release 2 of Axiom.

Albrecht Fortenbacher (IBM Scientific Center, Heidelberg) received a doctorate from the University of Karlsruhe and is a designer and implementer of the type-inferencing code in the Axiom interpreter. The result of research by Fortenbacher on type coercion by rewrite rules will soon be incorporated into Axiom.

Patrizia Gianni (Pisa) received a Laurea in mathematics from the University of Pisa and is the prime author of the polynomial and rational function component of the Axiom library. Her contributions include algorithms for greatest common divisors, factorization, ideals, Gröbner bases, solutions of polynomial systems, and linear algebra. She is currently Associate Professor of Mathematics at the University of Pisa.

Johannes Grabmeier (IBM Scientific Center, Heidelberg) received a Ph.D. from University Bayreuth (Bavaria) and is responsible for many Axiom packages, including those for representation theory (with Holger Gollan (Essen)), permutation groups (with Gerhard Schneider (Essen)), finite fields (with Alfred Scheerhorn), and non-associative algebra (with Robert Wisbauer (Düsseldorf)).

Larry Lambe received a Ph.D. from the University of Illinois (Chicago) and has been using Axiom for research in homological algebra. Lambe contributed facilities for Lie ring and exterior algebra calculations and has worked with Scott Morrison on various graphics applications.

Michael Monagan (ETH, Zürich) received a Ph.D. from the University of Waterloo and is a principal contributor to the Maple computer algebra system. He designed and implemented the category hierarchy and domains for data structures (with Stephen Watt), multi-precision
floating point arithmetic, code for polynomials modulo a prime, and also worked on the new compiler.

William Sit (CCNY) received a Ph.D. from Columbia University. He has been using Axiom for research in differential algebra, and contributed operations for differential polynomials (with Manuel Bronstein).

Jonathan M. Steinbach (IBM, Yorktown) received a B.A. degree from Ohio State University and has responsibility for the Axiom computer graphics facility. He has modified and extended this facility from the original design by Jim Wen. Steinbach is currently involved in the new compiler effort.

Jim Wen, a graduate student in computer graphics at Brown University designed and implemented the original computer graphics system for Axiom with pop-up control panels for interactive manipulation of graphic objects.

Clifton J. Williamson (Cal Poly) received a Ph.D. in Mathematics from the University of California, Berkeley. He implemented the power series (with William Burge and Stephen Watt), matrix, and limit facilities in the library and made numerous contributions to the HyperDoc documentation and algebraic side of the computer graphics facility. Williamson is currently an Assistant Professor of Mathematics at California Polytechnic State University, San Luis Obispo.

Contributions to the current Axiom system were also made by: Yurig Baransky (IBM Research, Yorktown), David R. Barton, Bruce Char (Drexel), Korrin Fu, Rüdiger Gebauer, Holger Gollan (Essen), Steven J. Gortler, Michael Lucks, Victor Miller (IBM Research, Yorktown), C. Andrew Neff (IBM Research, Yorktown), H. Michael Möller (Hagen), Simon Robinson, Gerhard Schneider (Essen), Thorsten Werther (Bonn), John M. Wiley, Waldemar Wiwianka (Paderborn), David Y. Y. Yun (Hawaii).

This book has contributions from several people in addition to its principal authors. Scott Morrison is responsible for the computer graphics gallery and the programs in Appendix F. Jonathon Steinbach wrote the original version of Chapter 7. Michael Dewar contributed material on the FORTRAN interface in Chapter 4. Manuel Bronstein, Clifton Williamson, Patricia Gianni, Johannes Grabmeier, Barry Trager, and Stephen Watt contributed to Chapters 8 and 9 and Appendix E. William Burge, Timothy Daly, Larry Lambe, and William Sit contributed material to Chapter 9. The original version of the documentation was created and maintained by Christine Sundaresan.

The authors would like to thank the production staff at Springer-Verlag for their guidance in the preparation of this book, and Jean K. Rivlin of IBM Yorktown Heights for her assistance in producing the camera-ready copy. Also, thanks to Robert F. Caviness, James H.
Davenport, Sam Dooley, Richard J. Fateman, Stuart I. Feldman, Stephen J. Hague, John A.
Nelder, Eugene J. Surowitz, Themos T. Tsikas, James W. Thatcher, and Richard E. Zippel
for their constructive suggestions on drafts of this book.
Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-contained toolbox designed to meet your scientific programming needs, from symbolics, to numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solving. Do you need to solve an equation, to expand a series, or to obtain an integral? If so, just ask Axiom to do it.

Given

\[
\int \left(\frac{1}{x^3 (a+bx)^{1/3}} \right) \, dx
\]

we would enter this into Axiom as:

\[
\text{integrate} \left(\frac{1}{x^3 * (a+b*x)^{(1/3)}} \right), x)
\]

which would give the result:

\[
\left(\frac{-2 \cdot b^2 \cdot x^2 \cdot \sqrt{3} \cdot \log \left(\sqrt[3]{a} \cdot \sqrt[3]{b} \cdot x + a^2 + \sqrt[3]{a^2} \cdot \sqrt[3]{b} \cdot x + a + a \right)}{4 \cdot b^2 \cdot x^2 \cdot \sqrt{3} \cdot \log \left(\sqrt[3]{a^2} \cdot \sqrt[3]{b} \cdot x + a - a \right)} + \right.
\]

\[
4 \cdot b^2 \cdot x^2 \cdot \sqrt{3} \cdot \log \left(\sqrt[3]{a^2} \cdot \sqrt[3]{b} \cdot x + a - a \right) +
\]

\[
12 \cdot b^2 \cdot x^2 \cdot \text{arctan} \left(\frac{2 \cdot \sqrt[3]{3} \cdot \sqrt[3]{a^2} \cdot \sqrt[3]{b} \cdot x + a + a \cdot \sqrt{3}}{3 \cdot a} \right) +
\]

\[
\left. \frac{(12 \cdot b \cdot x - 9 \cdot a) \cdot \sqrt[3]{a} \cdot \sqrt[3]{b} \cdot x + a^2}{18 \cdot a^2 \cdot x^2 \cdot \sqrt[3]{3} \cdot \sqrt[3]{a}} \right)
\]

Type: Union(Expression Integer,...)
Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic problems. For example, Axiom’s integrator gives you the answer when an answer exists. If one does not, it provides a proof that there is no answer. Integration is just one of a multitude of symbolic operations that Axiom provides.

Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equations, and special functions. For many of these operations, you can select any number of floating point digits to be carried out in the computation.

Solve \(x^{49} - 49x^4 + 9 \) to 49 digits of accuracy. First we need to change the default output length of numbers:

\[
\text{digits}(49)
\]

and then we execute the command:

\[
\text{solve}(x^{49} - 49x^4 + 9 = 0, 1.e-49)
\]

\[
\begin{align*}
x &= -0.6546536706904271136718122105095984761851224331556, \\
x &= 1.086921395653859508493939035954893289009213388763, \\
x &= 0.6546536707255271739694686066136764835361487607661
\end{align*}
\]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical computation. Besides floating point numbers, Axiom provides literally dozens of kinds of numbers to compute with. These range from various kinds of integers, to fractions, complex numbers, quaternions, continued fractions, and to numbers represented with an arbitrary base.

What is 10 to the 90-th power in base 32?

\[
\text{radix}(10^{90}, 32)
\]

returns:

```
FMM3Q955CSEIVOILKHSV20CN3I7PICQU0QMD0FV6TP00000000000000000000
```

Type: RadixExpansion 32
The Axiom numerical library can be enhanced with a substantial number of functions from the NAG library of numerical and statistical algorithms. These functions will provide coverage of a wide range of areas including roots of functions, Fourier transforms, quadrature, differential equations, data approximation, non-linear optimization, linear algebra, basic statistics, step-wise regression, analysis of variance, time series analysis, mathematical programming, and special functions. Contact the Numerical Algorithms Group Limited, Oxford, England.

Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical values. To do this, you can call upon the Axiom graphics capability.

Draw $J_0(\sqrt{x^2 + y^2})$ for $-20 \leq x, y \leq 20$.

\[
\text{draw}(5*besselJ(0,\sqrt{x**2+y**2}), x=-20..20, y=-20..20)
\]

\[\text{Figure 1.1: } J_0(\sqrt{x^2+y^2}) \text{ for } -20 \leq x, y \leq 20\]

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click on the graph, and a control panel pops up. Using this mouse and the control panel, you can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the picture. You can also generate a PostScript copy of your graph to produce hard-copy output.
HyperDoc

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples, tutorials, a browser, and reference material. HyperDoc gives you on-line access to this document in a “hypertext” format. Words that appear in a different font (for example, Matrix, factor, and category) are generally mouse-active; if you click on one with your mouse, HyperDoc shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to compute the roots of $x^{49} - 49x^4 + 9$ to 49 digits (as in our previous example) and you don't know how to tell Axiom to do this. The “basic command” facility of HyperDoc leads the way. Through the series of HyperDoc windows shown in figure 1.2 on page 4 and the specified mouse clicks, you and HyperDoc generate the correct command to issue to compute the answer.
Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple example of a user-defined function is one that computes the successive Legendre polynomials. Axiom lets you define these polynomials in a piece-wise way.

The first Legendre polynomial.

\[p(0) == 1 \]

Type: Void

The second Legendre polynomial.

\[p(1) == x \]

Type: Void

The \(n \)-th Legendre polynomial for \(n > 1 \).

\[p(n) == \frac{((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n}{n} \]

Type: Void

In addition to letting you define simple functions like this, the interactive language can be used to create entire application packages. All the graphs in the Axiom images section were created by programs written in the interactive language.

The above definitions for \(p \) do no computation—they simply tell Axiom how to compute \(p(k) \) for some positive integer \(k \).

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

\[p(10) \]

Compiling function \(p \) with type Integer -> Polynomial Fraction

Integer

Compiling function \(p \) as a recurrence relation.

\[
\frac{46189}{256} x^{10} - \frac{109395}{256} x^8 + \frac{45045}{128} x^6 - \frac{15015}{128} x^4 + \frac{3465}{256} x^2 - \frac{63}{256}
\]
Axiom applies the above pieces for \(p \) to obtain the value of \(p(10) \). But it does more: it creates an optimized, compiled function for \(p \). The function is formed by putting the pieces together into a single piece of code. By compiled, we mean that the function is translated into basic machine-code. By optimized, we mean that certain transformations are performed on that code to make it run faster. For \(p \), Axiom actually translates the original definition that is recursive (one that calls itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of \(x^{90} \) in \(p(90) \)?

\[
\text{coefficient}(p(90),x,90)
\]

\[
\begin{align*}
568826554205201782223458237426581853561497449095175 \\
77371252455336267181195264
\end{align*}
\]

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it with a different kind of object, the function is recompiled if necessary.

Data Structures

A variety of data structures are available for interactive use. These include strings, lists, vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.

\[
[D(p(i),x) \text{ for } i \text{ in 1..}]
\]

\[
\begin{bmatrix}
1,3, x, 15/2, x^2 - 3/2, x^3 - 15/8, x^4 - 105/4, x^2 + 15/8, \\
693/8, x^5 - 315/4, x^3 + 105/8, x, 3003/16, x^6 - 3465/16, x^4 + 945/16, x^2 - 35/16, \\
6435/16, x^7 - 9009/16, x^5 + 3465/16, x^3 - 315/16, x, \\
109395/128, x^8 - 45045/32, x^6 + 45045/64, x^4 - 3465/32, x^2 + 315/128, \\
230945/128, x^9 - 109395/32, x^7 + 135135/64, x^5 - 15015/32, x^3 + 3465/128, x, \ldots
\end{bmatrix}
\]
Streams display only a few of their initial elements. Otherwise, they are "lazy": they only compute elements when you ask for them.

Data structures are an important component for building application software. Advanced users can represent data for applications in optimal fashion. In all, Axiom offers over forty kinds of aggregate data structures, ranging from mutable structures (such as cyclic lists and flexible arrays) to storage efficient structures (such as bit vectors). As an example, streams are used as the internal data structure for power series.

What is the series expansion of \(\log(\cot(x)) \) about \(x = \pi/2 \)?

\[
\text{series}(\log(\cot(x)), x = \pi/2)
\]

\[
\log\left(\frac{-2x + \pi}{2}\right) + \frac{1}{3} (x - \frac{\pi}{2})^2 + \frac{7}{90} (x - \frac{\pi}{2})^4 + \frac{62}{2835} (x - \frac{\pi}{2})^6 + \\
\frac{127}{18900} (x - \frac{\pi}{2})^8 + \frac{146}{66825} (x - \frac{\pi}{2})^{10} + O\left((x - \frac{\pi}{2})^{11}\right)
\]

Type: GeneralUnivariatePowerSeries(Expression Integer, x, \pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready to deliver elements on demand.

What is the coefficient of the 50-th term of this series?

\[
\text{coefficient}(%, 50)
\]

\[
44590788901016030052447242300856550965644 \\
7131469286438669111584090881309300354581359130859375
\]

Type: Expression Integer

Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most structures allow the construction of arbitrarily complicated "types."

Even a simple input expression can result in a type with several levels.

\[
\text{matrix} \[\langle x + %i, 0 \rangle, \langle 1, -2 \rangle \]
\]

\[
\begin{bmatrix}
x + %i & 0 \\
1 & -2
\end{bmatrix}
\]
The Axiom interpreter builds types in response to user input. Often, the type of the result is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

\[
\begin{bmatrix}
\frac{1}{x+i} & 0 \\
\frac{1}{2x+2i} & -\frac{1}{2}
\end{bmatrix}
\]

Type: \text{Union}(\text{Matrix Fraction Polynomial Complex Integer}, \ldots)

\section*{Pattern Matching}

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a trigonometric expression and you want to transform it to some equivalent form. Use a \texttt{rule} command to describe the transformation rules you need. Then give the rules a name and apply that name as a function to your trigonometric expression.

Introduce two rewrite rules.

\begin{verbatim}
sinCosExpandRules := rule
 sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
 cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
 sin(2*x) == 2*sin(x)*cos(x)
 cos(2*x) == cos(x)**2 - sin(x)**2
\end{verbatim}

Type: \text{Ruleset}(\text{Integer}, \text{Integer}, \text{Expression Integer})

Apply the rules to a simple trigonometric expression.

\begin{verbatim}
sinCosExpandRules(sin(a+2*b+c))
\end{verbatim}
\[(-\cos(a) \sin(b)^2 - 2 \cos(b) \sin(a) \sin(b) + \cos(a) \cos(b)^2) \sin(c) - \\
\cos(c) \sin(a) \sin(b)^2 + 2 \cos(a) \cos(b) \cos(c) \sin(b) + \\
\cos(b)^2 \cos(c) \sin(a) \]

Type: Expression Integer

Using input files, you can create your own library of transformation rules relevant to your applications, then selectively apply the rules you need.

Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language. This language is similar to the interactive language except for protocols that authors are obliged to follow. The library language permits you to write “polymorphic algorithms,” algorithms defined to work in their most natural settings and over a variety of types.

Define a system of polynomial equations \(S \).

\[
S := [3 \times x^3 + y + 1 = 0, y^2 = 4]
\]

\[
[y + 3 x^3 + 1 = 0, y^2 = 4]
\]

Type: List Equation Polynomial Integer

Solve the system \(S \) using rational number arithmetic and 30 digits of accuracy.

\[
\text{solve}(S, 1/10^{30})
\]

\[
\left[\begin{array}{l}
y = -2, x = \frac{1757879671211184245283070414507}{2535301200456458802993406410752}, [y = 2, x = -1] \\
y = -2, x = \frac{1}{\sqrt{3}}
\end{array} \right]
\]

Type: List List Equation Polynomial Fraction Integer

Solve \(S \) with the solutions expressed in radicals.

\[
\text{radicalSolve}(S)
\]

\[
\left[\begin{array}{l}
y = 2, x = -1, [y = 2, x = \frac{-\sqrt{-3} + 1}{2}] \\
y = 2, x = \frac{-\sqrt{-1} \sqrt{3} - 1}{2 \sqrt{3}}, [y = -2, x = \frac{-\sqrt{-1} \sqrt{3} - 1}{2 \sqrt{3}}]
\end{array} \right]
\]
While these solutions look very different, the results were produced by the same internal algorithm! The internal algorithm actually works with equations over any “field.” Examples of fields are the rational numbers, floating point numbers, rational functions, power series, and general expressions involving radicals.

Extensibility

Users and system developers alike can augment the Axiom library, all using one common language. Library code, like interpreter code, is compiled into machine binary code for run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages. All library code is polymorphic, described in terms of a database of algebraic properties. By following the language protocols, there is an automatic, guaranteed interaction between your code and that of colleagues and system implementers.
A Technical Introduction

Axiom has both an interactive language for user interactions and a programming language for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the programming language emphasizes strict type-checking. Unlike these languages, types in Axiom are dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range from algebraic ones (like polynomials, matrices, and power series) to data structures (like lists, dictionaries, and input files). Types combine in any meaningful way. You can build polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for example, that matrices of polynomials are OK, but matrices of input files are not. Through categories, programs can discover that polynomials of continued fractions have a commutative multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an algorithm can be defined to solve polynomial equations over any field. Likewise a greatest common divisor can compute the “gcd” of two elements from any Euclidean domain. Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables. Categories also enable algorithms to be compiled into machine code that can be run with arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses type-inferencing to deduce the type of an object from user input. Type declarations can generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:
A Technical Introduction to Axiom

1.1 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized *Name* that is used to refer to the class of its members. For example, *Integer* denotes “the class of integers,” *Float*, “the class of floating point numbers,” and *String*, “the class of strings.”

The “...” part following *Name* lists zero or more parameters to the constructor. Some basic ones like *Integer* take no parameters. Others, like *Matrix*, *Polynomial* and *List*, take a single parameter that again must be a domain. For example, *Matrix(Integer)* denotes “matrices over the integers,” *Polynomial (Float)* denotes “polynomial with floating point coefficients,” and *List (Matrix (Polynomial (Integer)))* denotes “lists of matrices of polynomials over the integers.” There is no restriction on the number or type of parameters of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular data value as well as an integer. In this case the number 2 specifies the number of rows and columns the square matrix will contain. Elements of the matrices are integers.

The *Exports* part specifies operations for creating and manipulating objects of the domain. For example, type *Integer* exports constants 0 and 1, and operations “+”, “-”, and “*”. While these operations are common, others such as *odd?* and *bit?* are not. In addition the Exports section can contain symbols that represent properties that can be tested. For example, the Category *EntireRing* has the symbol *noZeroDivisors* which asserts that if a product is zero then one of the factors must be zero.

The *Implementation* part defines functions that implement the exported operations of the domain. These functions are frequently described in terms of another lower-level domain used to represent the objects of the domain. Thus the operation of adding two vectors of real numbers can be described and implemented using the addition operation from *Float*.
A TECHNICAL INTRODUCTION TO AXIOM

1.2 The Type of Basic Objects is a Domain or Subdomain

Every Axiom object belongs to a unique domain. The domain of an object is also called its type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer but NonNegativeInteger, PositiveInteger, and possibly, in general, any other "subdomain" of the domain Integer. A subdomain is a domain with a “membership predicate”. PositiveInteger is a subdomain of Integer with the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to those for domains. The Export part of a subdomain, however, must list a subset of the exports of the domain. The Implementation part optionally gives special definitions for subdomain objects.

1.3 Domains Have Types Called Categories

Domains and subdomains in Axiom are themselves objects that have types. The type of a domain or subdomain is called a category. Categories are described by programs of the form:

\[
\text{Name(...): Category == Exports}
\]

The type of every category is the distinguished symbol Category. The category Name is used to designate the class of domains of that type. For example, category Ring designates the class of all rings. Like domains, categories can take zero or more parameters as indicated by the “...” part following Name. Two examples are Module(R) and MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the operations “0”, “1”, “+”, “-”, and “*”. Many algebraic domains such as Integer and Polynomial (Float) are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix(R: Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category types, specify representations.

1.4 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols that stand for domains, called “symbolic domains.” The following lines of Axiom code use a symbolic domain R:
Line 1 declares the symbol \(R \) to be a ring. Line 2 declares the type of \(\text{power} \) in terms of \(R \). From the definition on line 3, \(\text{power}(3, 2) \) produces 9 for \(x = 3 \) and \(R = \text{Integer} \). Also, \(\text{power}(3.0, 2) \) produces 9.0 for \(x = 3.0 \) and \(R = \text{Float} \). \(\text{power}(\text{"oxford"}, 2) \) however fails since \"oxford\" has type \text{String} which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

1.5 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical world of algebraic categories is shown below. At the top of this world is \text{SetCategory}, the class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus ordered sets (domains of category \text{OrderedSet}) and rings are also algebraic sets. Likewise, fields and integral domains are rings and algebraic sets. However fields and integral domains are not ordered sets.

\[
\begin{array}{ccc}
\text{SetCategory} & \text{----} & \text{Ring} & \text{----} & \text{IntegralDomain} & \text{----} & \text{Field} \\
\text{----} & \text{----} & \text{Finite} & \text{----} \\
\text{----} & \text{----} & \text{OrderedSet} & \text{----} & \text{OrderedFinite} \\
\end{array}
\]

Figure 1. A simplified category hierarchy.

1.6 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that \text{Ring} designates the class of all domains that export 0, 1, \text{"+"}, \text{"-"}, and \text{"*"}. But this is not so. Each domain must assert which categories it belongs to.

The \text{Export} part of the definition for \text{Integer} reads, for example:

\[
\text{Join(OrderedSet, IntegralDomain, ...) with ...}
\]

This definition asserts that \text{Integer} is both an ordered set and an integral domain. In fact, \text{Integer} does not explicitly export constants 0 and 1 and operations \text{"+"}, \text{"-"}, and \text{"*"} at all: it inherits them all from \text{Ring}! Since \text{IntegralDomain} is a descendant of \text{Ring}, \text{Integer} is therefore also a ring.

Assertions can be conditional. For example, \text{Complex(R)} defines its exports by:

\[
\text{Ring with ... if R has Field then Field ...}
\]
Thus \texttt{Complex(Float)} is a field but \texttt{Complex(Integer)} is not since \texttt{Integer} is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain belongs to a given category?”, Axiom allows operation names (for example, \texttt{norm}) to have very different meanings in different contexts. The meaning of an operation in Axiom is determined by context. By associating operations with categories, operation names can be reused whenever appropriate or convenient to do so. As a simple example, the operation $<$ might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to use the same $<$ with this definition of absolute-value:

$$\text{abs}(x) = \text{if } x < 0 \text{ then } -x \text{ else } x$$

Such a definition for \texttt{abs} in Axiom is protected by context: argument x is required to be a member of a domain of category \texttt{OrderedSet}.

1.7 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed in “packages”. A package is a special kind of domain: one whose exported operations depend solely on the parameters of the constructor and/or explicit domains. Packages, unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of polynomials over an arbitrary field F, you can do so with a package of the form:

\[
\text{MySolve}(F: \text{Field}): \text{Exports} \equiv \text{Implementation}
\]

where \texttt{Exports} specifies the \texttt{solve} operations you wish to export from the domain and the \texttt{Implementation} defines functions for implementing your algorithms. Once Axiom has compiled your package, your algorithms can then be used for any F: floating-point numbers, rational numbers, complex rational functions, and power series, to name a few.

1.8 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the indicated computations. For example, to create the matrix

$$M = \begin{pmatrix} x^2 + 1 & 0 \\ 0 & x/2 \end{pmatrix}$$

using the command:

\[
M = [\texttt{[x**2+1,0],[0,x / 2]}]::\text{Matrix}(\text{POLY}(<\text{FRAC}(<\text{INT}))))
\]

$$M = \begin{bmatrix} x^2 + 1 & 0 \\ 0 & x/2 \end{bmatrix}$$
the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e. fractions of integers)".

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded. Most systems are preloaded with such common types. For efficiency reasons the most common domains are preloaded but most (there are more than 1100 domains, categories, and packages) are not. Once these domains are loaded they are immediately available to the interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation proceeds by calling operations that exist in the tower. For example, suppose that the user asks to square the above matrix. To do this, the function “*” from Matrix is passed the matrix M to compute \(M \times M \). The function is also passed an environment containing \(R \) that, in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input files”.

1.9 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules. Categories provide an important role in obtaining efficient object code by enabling:

- static type-checking at compile time;
- fast linkage to operations in domain-valued parameters;
- optimization techniques to be used for partially specified types (operations for “vectors of \(R \)”, for instance, can be open-coded even though \(R \) is unknown).

1.10 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom library. The entire Axiom library is in fact written in the Axiom source code and available for user modification and/or extension.
Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations are defined) from its implementation (how the objects are represented and operations are defined). Users of a domain can thus only create and manipulate objects through these exported operations. This allows implementers to “remove and replace” parts of the library safely by newly upgraded (and, we hope, correct) implementations without consequence to its users.

Categories protect names by context, making the same names available for use in other contexts. Categories also provide for code-economy. Algorithms can be parameterized categorically to characterize their correct and most general context. Once compiled, the same machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code. For example:

- if you write a new algorithm that requires a parameter to be a field, then your algorithm will work automatically with every field defined in the system; past, present, or future.
- if you introduce a new domain constructor that produces a field, then the objects of that domain can be used as parameters to any algorithm using field objects defined in the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend your reading chapters 11, 12, and 13, where these ideas are explained in greater detail.

1.11 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving numbers and operators are entered directly in infix notation. In this sense the more advanced features of the calculator can be regarded as operators (e.g \(\sin, \cos \), etc).

Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one would type:

\[
\begin{align*}
(1) & \rightarrow \cos 2.45 \\
& -0.7702312540473073417 \\
\end{align*}
\]

Type: \(\text{Float} \)

Before proceeding any further it would be best to explain the previous three lines. Firstly the text “(1) -> ” is part of the prompt that the Axiom system provides when in interactive mode. The full prompt has other text preceding this but it is not relevant here. The number
in parenthesis is the step number of the input which may be used to refer to the results of previous calculations. The step number appears at the start of the second line to tell you which step the result belongs to. Since the interpreter probably loaded numberous libraries to calculate the result given above and listed each one in the process, there could easily be several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real numbers of arbitrary size and precision (where the user is able to define how big arbitrary is – the default is 20 digits but can be as large as your computer system can handle). The type of the result can help track down mistakes in your input if you don’t get the answer you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as expected:

\[6.93 \times 4.1328 \]

\[28.640304 \]

Type: Float

\[6.93 / 4.1328 \]

\[1.6768292682926829268 \]

Type: Float

but integer division isn’t quite so obvious. For example, if one types:

\[4/6 \]

\[\frac{2}{3} \]

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce the most readable answer. In the example:

\[4/2 \]

\[2 \]

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction could be converted to type Integer with no loss of information but Axiom will not do so automatically.
Type Conversion

To obtain the floating point value of a fraction one must convert (conversions are applied by the user and coercions are applied automatically by the interpreter) the result to type Float using the `::` operator as follows:

\[(4.6)::\text{Float}\]

4.6

Type: Float

Although Axiom can convert this back to a fraction it might not be the same fraction you started with as due to rounding errors. For example, the following conversion appears to be without error but others might not:

\[\%::\text{Fraction Integer}\]

\[
\frac{23}{5}
\]

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision it must be remembered that calculations with these numbers are not exact. Since Axiom is a computer algebra package and not a numerical solutions package this should not create too many problems. The idea is that the user should use Axiom to do all the necessary symbolic manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them and does not perform any evaluation of them unless forced to then programming in the system will be much easier. It means that anything you ask Axiom to do (within reason) will be carried out with complete accuracy.

In the previous examples the `::` operator was used to convert values from one type to another. This type conversion is not possible for all values. For instance, it is not possible to convert the number 3.4 to an integer type since it can’t be represented as an integer. The number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round and truncate. The first of these rounds a floating point number to the nearest integer while the other truncates (i.e. removes the fractional part). Both functions return the result as a floating point number. To extract the fractional part of a floating point number use the function fractionPart but note that the sign of the result depends on the sign of the argument. Axiom obtains the fractional part of \(x\) using \(x - \text{truncate}(x)\):
1.11. USING AXIOM AS A POCKET CALCULATOR

round(3.77623)

4.0
Type: Float

round(-3.77623)

-4.0
Type: Float

truncate(9.235)

9.0
Type: Float

truncate(-9.654)

-9.0
Type: Float

fractionPart(-3.77623)

-0.77623
Type: Float

Useful Functions

To obtain the absolute value of a number the \texttt{abs} function can be used. This takes a single argument which is usually an integer or a floating point value but doesn’t necessarily have to be. The sign of a value can be obtained via the \texttt{sign} function which returns -1, 0, or 1 depending on the sign of the argument.

\texttt{abs}(4)
Tests on values can be done using various functions which are generally more efficient than using relational operators such as = particularly if the value is a matrix. Examples of some of these functions are:

positive?(-234)
1.11. USING AXIOM AS A POCKET CALCULATOR

false Type: Boolean

negative?(-234)
true Type: Boolean

zero?(42)
false Type: Boolean

one?(1)
true Type: Boolean

odd?(23)
true Type: Boolean

odd?(9.435)
false Type: Boolean

even?(-42)
true Type: Boolean
A TECHNICAL INTRODUCTION TO AXIOM

prime?(37)

true

Type: Boolean

prime?(−37)

false

Type: Boolean

Some other functions that are quite useful for manipulating numerical values are:

\[-\sin(x) \quad \text{Sine of} \ x
\]
\[-\cos(x) \quad \text{Cosine of} \ x
\]
\[-\tan(x) \quad \text{Tangent of} \ x
\]
\[-\text{asin}(x) \quad \text{Arcsin of} \ x
\]
\[-\text{acos}(x) \quad \text{Arccos of} \ x
\]
\[-\text{atan}(x) \quad \text{Arctangent of} \ x
\]
\[-\text{gcd}(x,y) \quad \text{Greatest common divisor of} \ x \text{ and} \ y
\]
\[-\text{lcm}(x,y) \quad \text{Lowest common multiple of} \ x \text{ and} \ y
\]
\[-\text{max}(x,y) \quad \text{Maximum of} \ x \text{ and} \ y
\]
\[-\text{min}(x,y) \quad \text{Minimum of} \ x \text{ and} \ y
\]
\[-\text{factorial}(x) \quad \text{Factorial of} \ x
\]
\[-\text{factor}(x) \quad \text{Prime factors of} \ x
\]
\[-\text{divide}(x,y) \quad \text{Quotient and remainder of} \ x/y
\]

Some simple infix and prefix operators:

+ Addition - Subtraction
- Numerical Negation ~ Logical Negation
/\ Conjunction (AND) \/ Disjunction (OR)
and Logical AND (\/) or Logical OR (/\)
not Logical Negation ** Exponentiation
* Multiplication / Division
quo Quotient rem Remainder
< less than > greater than
<= less than or equal >= greater than or equal

Some useful Axiom macros:

\[%i \quad \text{The square root of} \ -1
\]%e \quad \text{The base of the natural logarithm}
\[%pi \quad \text{Pi}
\]%infinity \quad \text{Infinity}
\%plusInfinity \quad \text{Positive Infinity}
\%minusInfinity \quad \text{Negative Infinity}
1.12 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions. Also none of the expressions entered were assigned to anything. In this section we will move on to simple algebra (i.e. expressions involving symbols and other features available on more sophisticated calculators).

Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for example:

\[
x \text{Squared} := x \ast 2
\]

\[
Type: \ Polynomial \ Integer
\]

where the assignment operator “\:=” represents immediate assignment. Later it will be seen that this form of assignment is not always desirable and the use of the delayed assignment operator “\:=” will be introduced. The type of the result is \textbf{Polynomial Integer} which is used to represent polynomials with integer coefficients. Some other examples along similar lines are:

\[
x \text{Dummy} := 3.21 \ast x \ast 2
\]

\[
3.21 \ x^2
\]

\[
Type: \ Polynomial \ Float
\]

\[
x \text{Dummy} := x \ast 2.5
\]

\[
x^2 \ \sqrt{x}
\]

\[
Type: \ Expression \ Float
\]

\[
x \text{Dummy} := x \ast 3.3
\]

\[
x^3 \ \sqrt[3]{x}
\]

\[
Type: \ Expression \ Float
\]
A TECHNICAL INTRODUCTION TO AXIOM

xyDummy := x2 - y**2**

\[-y^2 + x^2\]

Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually compute the result when the symbols are assigned values? The answer is to use the `eval` function which takes an expression as its first argument followed by a list of assignments. For example, to evaluate the expressions `xDummy` and `xyDummy` resulting from their respective assignments above we type:

```axiom
eval(xDummy, x=3)
```

37.540507598529552193

Type: Expression Float

```axiom
eval(xyDummy, [x=3, y=2.1])
```

4.59

Type: Polynomial Float

Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for complex numbers is also required. Complex numbers are handled in an intuitive manner and Axiom, which uses the `%i` macro to represent the square root of \(-1\). Thus expressions involving complex numbers are entered just like other expressions.

\[(2/3 + %i)^*3\]

\[-\frac{46}{27} + \frac{1}{3} %i\]

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using the `real` and `imag` functions and the complex conjugate of a number can be obtained using `conjugate`:

```axiom
real(3 + 2*%i)
```
3
Type: PositiveInteger

\texttt{imag}(3 + 2*%i)

2
Type: PositiveInteger

\texttt{conjugate}(3 + 2*%i)

3 - 2\texttt{\textbackslash{}i}
Type: Complex Integer

The function \texttt{factor} can also be applied to complex numbers but the results aren't quite so obvious as for factoring integer:

144 + 24*%i

144 + 24\texttt{\textbackslash{}i}
Type: Complex Integer

\texttt{factor} %

\texttt{\textbackslash{}i}(1 + \texttt{\textbackslash{}i})^6 3(6 + \texttt{\textbackslash{}i})
Type: Factored Complex Integer

We can see that this multiplies out to the original value by expanding the factored expression:

\texttt{expand} %

144 + 24\texttt{\textbackslash{}i}
Type: Complex Integer
Number Representations

By default all numerical results are displayed in decimal with real numbers shown to 20 significant figures. If the integer part of a number is longer than 20 digits then nothing after the decimal point is shown and the integer part is given in full. To alter the number of digits shown the function \texttt{digits} can be called. The result returned by this function is the previous setting. For example, to find the value of \pi to 40 digits we type:

\begin{verbatim}
digits(40)
\end{verbatim}

\begin{verbatim}
20
\end{verbatim}

\begin{verbatim}
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
\%pi::Float
\end{verbatim}

\begin{verbatim}
3.1415926535 8979323846 2643383279 502884197
\end{verbatim}

\begin{verbatim}
Type: Float
\end{verbatim}

As can be seen in the example above, there is a gap after every ten digits. This can be changed using the \texttt{outputSpacing} function where the argument is the number of digits to be displayed before a space is inserted. If no spaces are desired then use the value 0. Two other functions controlling the appearance of real numbers are \texttt{outputFloating} and \texttt{outputFixed}. The former causes Axiom to display floating-point values in exponent notation and the latter causes it to use fixed-point notation. For example:

\begin{verbatim}
outputFloating(); %
\end{verbatim}

\begin{verbatim}
0.3141592653589793238462643383279502884197 E 1
\end{verbatim}

\begin{verbatim}
Type: Float
\end{verbatim}

\begin{verbatim}
outputFloating(3); 0.00345
\end{verbatim}

\begin{verbatim}
0.345 E − 2
\end{verbatim}

\begin{verbatim}
Type: Float
\end{verbatim}

\begin{verbatim}
outputFixed(); %
\end{verbatim}

\begin{verbatim}
0.00345
\end{verbatim}
Note that the semicolon ";" in the examples above allows several expressions to be entered on one line. The result of the last expression is displayed. Remember also that the percent symbol "%;" is used to represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function \texttt{radix} is used. The first argument of this function is the expression to be displayed and the second is the base to be used.

\begin{verbatim}
radix(10**10,32)
\end{verbatim}

\begin{verbatim}
9A0NP00
\end{verbatim}

Type: RadixExpansion 32

\begin{verbatim}
radix(3/21,5)
\end{verbatim}

\begin{verbatim}
0.032412
\end{verbatim}

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the \texttt{decimal} function or as a continued fraction using \texttt{continuedFraction}. Any attempt to call these functions with irrational values will fail.

\begin{verbatim}
decimal(22/7)
\end{verbatim}

\begin{verbatim}
3.142857
\end{verbatim}
continuedFraction(6543/210)

\[31 + \frac{1}{6} + \frac{1}{2} + \frac{1}{1} + \frac{1}{3} \]

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the functions \texttt{partialFraction} and \texttt{padicFraction} respectively. The former takes two arguments, the first being the numerator of the fraction and the second being the denominator. The latter function takes a fraction and expands it further while the function \texttt{compactFraction} does the reverse:

\texttt{partialFraction(234,40)}

\[6 - \frac{3}{2^2} + \frac{3}{5} \]

Type: PartialFraction Integer

\texttt{padicFraction(\%)}

\[6 - \frac{1}{2} - \frac{1}{2^2} + \frac{3}{5} \]

Type: PartialFraction Integer

\texttt{compactFraction(\%)}

\[6 - \frac{3}{2^2} + \frac{3}{5} \]

Type: PartialFraction Integer

\texttt{padicFraction(234/40)}

\[\frac{117}{20} \]

Type: PartialFraction Fraction Integer
To extract parts of a partial fraction the function \texttt{nthFractionalTerm} is available and returns a partial fraction of one term. To decompose this further the numerator can be obtained using \texttt{firstNumer} and the denominator with \texttt{firstDenom}. The whole part of a partial fraction can be retrieved using \texttt{wholePart} and the number of fractional parts can be found using the function \texttt{numberOfFractionalTerms}:

\[t := \text{partialFraction}(234,40) \]

\[6 - \frac{3}{2^2} + \frac{3}{5} \]

\text{Type: PartialFraction Integer}

\[\text{wholePart}(t) \]

\[6 \]

\text{Type: PositiveInteger}

\[\text{numberOfFractionalTerms}(t) \]

\[2 \]

\text{Type: PositiveInteger}

\[p := \text{nthFractionalTerm}(t,1) \]

\[-\frac{3}{2^2} \]

\text{Type: PartialFraction Integer}

\[\text{firstNumer}(p) \]

\[-3 \]

\text{Type: Integer}

\[\text{firstDenom}(p) \]

\[2^2 \]

\text{Type: Factored Integer}
Modular Arithmetic

By using the type constructor `PrimeField` it is possible to do arithmetic modulo some prime number. For example, arithmetic module 7 can be performed as follows:

\[
x : \text{PrimeField 7} := 5
\]

\[
5
\]

\[
\text{Type: PrimeField 7}
\]

\[
x^{\ast 5} + 6
\]

\[
2
\]

\[
\text{Type: PrimeField 7}
\]

\[
1/x
\]

\[
3
\]

\[
\text{Type: PrimeField 7}
\]

The first example should be read as:

Let \(x\) be of type \(\text{PrimeField}(7)\) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is performed modulo a prime number. Thus arithmetic modulo a non-prime integer is possible but the reciprocal operation is undefined and will generate an error. Attempting to use the `PrimeField` type constructor with a non-prime argument will generate an error. An example of non-prime modulo arithmetic is:

\[
y : \text{IntegerMod 8} := 11
\]

\[
3
\]

\[
\text{Type: IntegerMod 8}
\]

\[
y^{\ast 4} + 27
\]

\[
7
\]
Note that polynomials can be constructed in a similar way:

\[(3a^4 + 27a - 36)::\text{Polynomial PrimeField 7}\]

\[3 a^4 + 6 a + 6\]

\text{Type: Polynomial PrimeField 7}

1.13 General Points about Axiom

Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from displaying the result. To do this the expression should be terminated with a semicolon \;\). In a previous section it was mentioned that a set of expressions separated by semicolons would be evaluated and the result of the last one displayed. Thus if a single expression is followed by a semicolon no output will be produced (except for its type):

\[2 + 4\times5;\]

\text{Type: PositiveInteger}

Accessing Earlier Results

The \%\% macro represents the result of the previous computation. The \%\%\% macro is available which takes a single integer argument. If the argument is positive then it refers to the step number of the calculation where the numbering begins from one and can be seen at the end of each prompt (the number in parentheses). If the argument is negative then it refers to previous results counting backwards from the last result. That is, \%\%(\-1)\) is the same as \%\%. The value of \%\%(0)\) is not defined and will generate an error if requested.

Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the width of the screen (just keep typing without pressing the Return key) it is often preferable to split the expression being entered at a point where it would result in more readable input. To do this the underscore _\) symbol is placed before the break point and then the Return key is pressed. The rest of the expression is typed on the next line, can be preceeded by any number of whitespace chars, for example:
The underscore symbol is an escape character and its presence alters the meaning of the characters that follow it. As mentioned above, whitespace following an underscore is ignored (the Return key generates a whitespace character). Any other character following an underscore loses whatever special meaning it may have had. Thus one can create the identifier “a+b” by typing “aₜ+b” although this might lead to confusions. Also note the result of the following example:

ThisIsAVeryLong_ VariableName

Type: Variable ThisIsAVeryLongVariableName

Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but can be used when the output of an interactive session is being spooled to a file (via the system command)spool). A comment begins with two dashes “---” and continues until the end of the line. Multi-line comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will include them in the object files produced and make them available to the end user for documentation purposes.

A description is placed before a calculation begins with three “++” signs (i.e. “+++”) and a description placed after a calculation begins with two plus symbols (i.e. “++”). The so-called “plus plus” comments are used within the algebra files and are processed by the compiler to add to the documentation. The so-called “minus minus” comments are ignored everywhere.

Control of Result Types

In earlier sections the type of an expression was converted to another via the “::” operator. However, this is not the only method for converting between types and two other operators need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate the result. Thus:
1.13. GENERAL POINTS ABOUT AXIOM

(2/3) \texttt{\cdotFloat}

\begin{align*}
0.6666666666 & \ 6666666667 \\
\text{Type: Float}
\end{align*}

tells Axiom to use the "/" operator from the \texttt{Float} package to evaluate the expression 2/3. This does not necessarily mean that the result will be of the same type as the domain from which the operator was taken. In the following example the \texttt{sign} operator is taken from the \texttt{Float} package but the result is of type \texttt{Integer}.

\texttt{sign(2.3) \texttt{\cdotFloat}}

\begin{align*}
1 \\
\text{Type: Integer}
\end{align*}

The other operator is "@" which is used to tell Axiom what the desired type of the result of the calculation is. In most situations all three operators yield the same results but the example below should help distinguish them.

\texttt{(2 + 3)::String}

\texttt{"5"}

\texttt{Type: String}

\texttt{(2 + 3)@String}

An expression involving @ String actually evaluated to one of type \texttt{PositiveInteger}. Perhaps you should use :: String.

\texttt{(2 + 3)\texttt{\cdotString}}

The function + is not implemented in String.

If an expression \(X \) is converted using one of the three operators to type \(T \) the interpretations are:
- :: means explicitly convert \(X \) to type \(T \) if possible.
- $ means use the available operators for type \(T \) to compute \(X \).
- @ means choose operators to compute \(X \) so that the result is of type \(T \).
1.14 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

Lists

The Axiom List type constructor is used to create homogenous lists of finite size. The notation for lists and the names of the functions that operate over them are similar to those found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square brackets or if a list with just one element is desired then the function list is available:

\[[4]\]

\[[4]\]

Type: List PositiveInteger

\[\text{list}(4)\]

\[[4]\]

Type: List PositiveInteger

\[[1,2,3,5,7,11]\]

\[[1,2,3,5,7,11]\]

Type: List PositiveInteger

The function append takes two lists as arguments and returns the list consisting of the second argument appended to the first. A single element can be added to the front of a list using cons:

\[\text{append}([1,2,3,5],[7,11])\]

\[[1,2,3,5,7,11]\]

Type: List PositiveInteger

\[\text{cons}(23, [65,42,19])\]
Lists are accessed sequentially so if Axiom is asked for the value of the twentieth element in the list it will move from the start of the list over nineteen elements before it reaches the desired element. Each element of a list is stored as a node consisting of the value of the element and a pointer to the rest of the list. As a result the two main operations on a list are called first and rest. Both of these functions take a second optional argument which specifies the length of the first part of the list:

```
first([1,5,6,2,3])
```

```
1
```

```
Type: PositiveInteger
```

```
first([1,5,6,2,3],2)
```

```
[1,5]
```

```
Type: List PositiveInteger
```

```
rest([1,5,6,2,3])
```

```
[5,6,2,3]
```

```
Type: List PositiveInteger
```

```
rest([1,5,6,2,3],2)
```

```
[6,2,3]
```

```
Type: List PositiveInteger
```

Other functions are empty? which tests to see if a list contains no elements, member? which tests to see if the first argument is a member of the second, reverse which reverses the order of the list, sort which sorts a list, and removeDuplicates which removes any duplicates. The length of a list can be obtained using the “#” operator.

```
empty?([7,2,-1,2])
```

```
false
```

```
Type: Boolean
```
 Lists in Axiom are mutable and so their contents (the elements and the links) can be modified in place. Functions that operate over lists in this way have names ending in the symbol “!”.
For example, `concat!` takes two lists as arguments and appends the second argument to the first (except when the first argument is an empty list) and `setrest!` changes the link emanating from the first argument to point to the second argument:
1.14. DATA STRUCTURES IN AXIOM

\texttt{u := [9,2,4,7]}

\begin{verbatim}
[9, 2, 4, 7]
\end{verbatim}

Type: List PositiveInteger

\texttt{concat!(u,[1,5,42]); u}

\begin{verbatim}
[9, 2, 4, 7, 1, 5, 42]
\end{verbatim}

Type: List PositiveInteger

\texttt{endOfu := rest(u,4) }

\begin{verbatim}
[1, 5, 42]
\end{verbatim}

Type: List PositiveInteger

\texttt{partOfu := rest(u,2) }

\begin{verbatim}
[4, 7, 1, 5, 42]
\end{verbatim}

Type: List PositiveInteger

\texttt{setrest!(endOfu,partOfu); u}

\begin{verbatim}
[9, 2, 4, 7, 1]
\end{verbatim}

Type: List PositiveInteger

From this it can be seen that the lists returned by \texttt{first} and \texttt{rest} are pointers to the original list and \textit{not} a copy. Thus great care must be taken when dealing with lists in Axiom.

Although the \textit{n}th element of the list \textit{l} can be obtained by applying the \texttt{first} function to \textit{n} – 1 applications of \texttt{rest} to \textit{l}, Axiom provides a more useful access method in the form of the “.” operator:

\texttt{u.3}
A TECHNICAL INTRODUCTION TO AXIOM

Type: PositiveInteger

u.5
1
Type: PositiveInteger

u.6
4
Type: PositiveInteger

first rest rest u -- Same as u.3
4
Type: PositiveInteger

u.first
9
Type: PositiveInteger

u(3)
4
Type: PositiveInteger

The operation \(u.i \) is referred to as \textit{indexing into} \(u \) or \textit{elting into} \(u \). The latter term comes from the \texttt{elt} function which is used to extract elements (the first element of the list is at index 1).

\texttt{elt}(u,4)
7
If a list has no cycles then any attempt to access an element beyond the end of the list will generate an error. However, in the example above there was a cycle starting at the third element so the access to the sixth element wrapped around to give the third element. Since lists are mutable it is possible to modify elements directly:

\[u.3 := 42; u \]

\[[9, 2, 12, 7, 1]\]

Type: List PositiveInteger

Other list operations are:

\[L := [9, 3, 4, 7]; \#L \]

4

Type: PositiveInteger

last(L)

7

Type: PositiveInteger

L.last

7

Type: PositiveInteger

L.(#L - 1)

4

Type: PositiveInteger

Note that using the “\#” operator on a list with cycles causes Axiom to enter an infinite loop.

Note that any operation on a list \(L \) that returns a list \(LL' \) will, in general, be such that any changes to \(LL' \) will have the side-effect of altering \(L \). For example:
m := rest(L,2)

[4, 7]
Type: List PositiveInteger

m.1 := 20; L

[9, 3, 20, 7]
Type: List PositiveInteger

n := L

[9, 3, 20, 7]
Type: List PositiveInteger

n.2 := 99; L

[9, 99, 20, 7]
Type: List PositiveInteger

n

[9, 99, 20, 7]
Type: List PositiveInteger

Thus the only safe way of copying lists is to copy each element from one to another and not use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’

[9, 99, 20, 7]
Type: List PositiveInteger

p.2 := 5; p
In the previous example a new way of constructing lists was given. This is a powerful method
which gives the reader more information about the contents of the list than before and which
is extremely flexible. The example

\[[i \text{ for } i \text{ in } 1..10] \]

\[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] \]

Type: List PositiveInteger

should be read as

“Using the expression \(i \), generate each element of the list by iterating the symbol \(i \) over the
range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

\[[i**2 \text{ for } i \text{ in } 1..10] \]

\[[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] \]

Type: List PositiveInteger

For more complex lists we can apply a condition to the elements that are to be placed into
the list to obtain a list of even numbers between 0 and 11:

\[[i \text{ for } i \text{ in } 1..10 \mid \text{even?(i)}] \]

\[[2, 4, 6, 8, 10] \]

Type: List PositiveInteger
This example should be read as:

“Using the expression \(i \), generate each element of the list by iterating the symbol \(i \) over the range of integers \([1,10]\) such that \(i \) is even”

The following achieves the same result:

\[[i \text{ for } i \text{ in } 2..10 \text{ by } 2] \]

\[[2, 4, 6, 8, 10] \]

Type: List PositiveInteger

Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The `expand` function converts lists of this type into ordinary lists:

\[[1..10] \]

\[[1..10] \]

Type: List Segment PositiveInteger

\[[1..3, 5, 6, 8..10] \]

\[[1..3, 5..5, 6..6, 8..10] \]

Type: List Segment PositiveInteger

`expand(%)`

\[[1, 2, 3, 5, 6, 8, 9, 10] \]

Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented list is obtained and expanding it will produce a stream (which will be considered in the next section):

\[[1..] \]
Streams

Streams are infinite lists which have the ability to calculate the next element should it be
required. For example, a stream of positive integers and a list of prime numbers can be
generated by:

\[\text{[i for i in 1..]} \]

\[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots] \]

Type: Stream PositiveInteger

\[\text{[i for i in 1.. | prime?(i)]} \]

\[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots] \]

Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display purposes but the
rest of the stream remains unevaluated. The value of items in a stream are only calculated
when they are needed which gives rise to their alternative name of “lazy lists”.

Another method of creating streams is to use the `generate(f,a)` function. This applies its
first argument repeatedly onto its second to produce the stream
\[[a, f(a), f(f(a)), f(f(f(a))) \ldots] \]. Given that the function `nextPrime` returns the lowest
prime number greater than its argument we can generate a stream of primes as follows:

\[\text{generate(nextPrime,2)} \]

\[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots] \]

Type: Stream Integer
As a longer example a stream of Fibonacci numbers will be computed. The Fibonacci numbers start at 1 and each following number is the addition of the two numbers that precede it so the Fibonacci sequence is:

\[1, 1, 2, 3, 5, 8, \ldots \]

Since the generation of any Fibonacci number only relies on knowing the previous two numbers we can look at the series through a window of two elements. To create the series the window is placed at the start over the values \([1, 1]\) and their sum obtained. The window is now shifted to the right by one position and the sum placed into the empty slot of the window; the process is then repeated. To implement this we require a function that takes a list of two elements (the current view of the window), adds them, and outputs the new window. The result is the function \([a, b] \rightarrow [b, a + b]\):

\[
\text{win} : \text{List Integer} \rightarrow \text{List Integer}
\]

\[
\text{Type: Void}
\]

\[
\text{win}(x) == [x.2, x.1 + x.2]
\]

\[
\text{Type: Void}
\]

\[
\text{win}([1,1])
\]

\[[1,2]\]

\[
\text{Type: List Integer}
\]

\[
\text{win}(%)\]

\[[2,3]\]

\[
\text{Type: List Integer}
\]

Thus it can be seen that by repeatedly applying \textbf{win} to the results of the previous invocation each element of the series is obtained. Clearly \textbf{win} is an ideal function to construct streams using the \textbf{generate} function:

\[
fibs := [\text{generate(win}, [1,1])]\]
1.14. DATA STRUCTURES IN AXIOM

\[[1, 1], [1, 2], [2, 3], [3, 5], [5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], \ldots\]

Type: Stream List Integer

This isn’t quite what is wanted – we need to extract the first element of each list and place that in our series:

\[
fibs := [i.1 \text{ for } i \text{ in } \text{generate}(\text{win}, [1, 1])]
\]

\[[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots]\]

Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

\[
fibs.200
\]

280571172992510140037611932413038677189525

Type: PositiveInteger

One other function of interest is \texttt{complete} which expands a finite stream derived from an infinite one (and thus was still stored as an infinite stream) to form a finite stream.

\section*{Arrays, Vectors, Strings, and Bits}

The simplest array data structure is the one-dimensional array which can be obtained by applying the \texttt{oneDimensionalArray} function to a list:

\[
\text{oneDimensionalArray}([7, 2, 5, 4, 1, 9])
\]

\[[7, 2, 5, 4, 1, 9]\]

Type: OneDimensionalArray PositiveInteger

One-dimensional arrays are homogenous (all elements must have the same type) and mutable (elements can be changed) like lists but unlike lists they are constant in size and have uniform access times (it is just as quick to read the last element of a one-dimensional array as it is to read the first; this is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to arrays. That is, it is possible to modify an element in a copy of an array and change the original:

\[
x := \text{oneDimensionalArray}([7, 2, 5, 4, 1, 9])
\]
A TECHNICAL INTRODUCTION TO AXIOM

\[7, 2, 5, 4, 1, 9 \]

Type: OneDimensionalArray PositiveInteger

\(y := x \)

\[7, 2, 5, 4, 1, 9 \]

Type: OneDimensionalArray PositiveInteger

\(y.3 := 20 \); \(x \)

\[7, 20, 4, 1, 9 \]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the \texttt{concat!} function cannot be applied to them without generating an error. If arrays of this type are required use the \texttt{FlexibleArray} constructor.

One-dimensional arrays can be created using \texttt{new} which specifies the size of the array and the initial value for each of the elements. Other operations that can be applied to one-dimensional arrays are \texttt{map!} which applies a mapping onto each element, \texttt{swap!} which swaps two elements and \texttt{copyInto!(a,b,c)} which copies the array \(b \) onto \(a \) starting at position \(c \).

\(a : \text{ARRAY1 PositiveInteger} := \text{new}(10,3) \)

\[3, 3, 3, 3, 3, 3, 3, 3, 3, 3 \]

Type: OneDimensionalArray PositiveInteger

(note that \texttt{ARRAY1} is an abbreviation for the type \texttt{OneDimensionalArray}.) Other types based on one-dimensional arrays are \texttt{Vector}, \texttt{String}, and \texttt{Bits}.

\texttt{map!(i +-> i+1,a); a}

\[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 \]

Type: OneDimensionalArray PositiveInteger

\(b := \text{oneDimensionalArray([2,3,4,5,6])} \)
A vector is similar to a one-dimensional array except that if its components belong to a ring then arithmetic operations are provided.
Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays while retaining the flexibility of lists. They are implemented by allocating a fixed block of storage for the array. If the array needs to be expanded then a larger block of storage is allocated and the contents of the old block are copied into the new one.

There are several operations that can be applied to this type, most of which modify the array in place. As a result these functions all have names ending in "!". The `physicalLength` returns the actual length of the array as stored in memory while the `physicalLength!` allows this value to be changed by the user.

```axiom
f : FARRAY INT := new(6,1)
   [1,1,1,1,1,1]
Type: FlexibleArray Integer
f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f
   [4,3,8,1,2,1]
Type: FlexibleArray Integer
insert!(42,f,3); f
   [4,3,42,8,1,2,1]
Type: FlexibleArray Integer
insert!(28,f,8); f
   [4,3,42,8,1,2,1,28]
Type: FlexibleArray Integer
removeDuplicates!(f)
   [4,3,42,8,1,2,28]
Type: FlexibleArray Integer
```
1.14. DATA STRUCTURES IN AXIOM

\[
delete!(f,5) \\
[4, 3, 42, 8, 2, 28] \\
\text{Type: FlexibleArray Integer} \\
g:=f(3..5) \\
[42, 8, 2] \\
\text{Type: FlexibleArray Integer} \\
g.2:=7; f \\
[4, 3, 42, 8, 2, 28] \\
\text{Type: FlexibleArray Integer} \\
insert!(g,f,1) \\
[42, 7, 2, 4, 3, 42, 8, 2, 28] \\
\text{Type: FlexibleArray Integer} \\
physicalLength(f) \\
10 \\
\text{Type: PositiveInteger} \\
physicalLength!(f,20) \\
[42, 7, 2, 4, 3, 42, 8, 2, 28] \\
\text{Type: FlexibleArray Integer} \\
merge!(sort!(f),sort!(g)) \\
[2, 2, 2, 3, 4, 7, 7, 8, 28, 42, 42, 42]
There are several things to point out concerning these examples. First, although flexible arrays are mutable, making copies of these arrays creates separate entities. This can be seen by the fact that the modification of element \(g.2 \) above did not alter \(f \). Second, the \texttt{merge!} function can take an extra argument before the two arrays are merged. The argument is a comparison function and defaults to \("\leq" \) if omitted. Lastly, \texttt{shrinkable} tells the system whether or not to let flexible arrays contract when elements are deleted from them. An explicit package reference must be given as in the example above.

1.15 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involving variables and different data structures. This section builds on this knowledge and shows how to use iteration, make choices, and build functions in Axiom. At the moment it is assumed that the reader has a rough idea of how types are specified and constructed so that they can follow the examples given.

From this point on most examples will be taken from input files.

Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary difference between the command line and an input file is that indentation matters. In an input file you can specify “piles” of code by using indentation.

The names of all input files in Axiom should end in “.input” otherwise Axiom will refuse to read them.

If an input file is named \texttt{foo.input} you can feed the contents of the file to the command prompt (as though you typed them) by writing: \texttt{)read foo.input}.

It is good practice to start each input file with the \texttt{)clear all} command so that all functions and variables in the current environment are erased.

Blocks

The Axiom constructs that provide looping, choices, and user-defined functions all rely on the notion of blocks. A block is a sequence of expressions which are evaluated in the order
that they appear except when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form: \(\text{BoolExpr} \Rightarrow \text{Expr} \) where \(\text{BoolExpr} \) is any
Axiom expression that has type Boolean. The value and type of \(\text{Expr} \) determines the value
and type returned by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text file) then
there is only one way of creating them. The syntax is:

\[
(\text{expression}_1; \text{expression}_2; \ldots; \text{expression}_N)
\]

In an input file a block can be constructed as above or by placing all the statements at the
same indentation level. When indentation is used to indicate program structure the block
is called a pile. As an example of a simple block a list of three integers can be constructed
using parentheses:

\[
(\text{a}:=4; \text{b}:=1; \text{c}:=9; \text{L}:=[\text{a},\text{b},\text{c}])
\]

\[
[4,1,9]
\]

Type: List PositiveInteger

Doing the same thing using piles in an input file you could type:

\[
\text{L := (a:=4; b:=1; c:=9; \text{L}:=[a,b,c]);}
\]

\[
[4,1,9]
\]

Type: List PositiveInteger

Since blocks have a type and a value they can be used as arguments to functions or as part of
other expressions. It should be pointed out that the following example is not recommended
practice but helps to illustrate the idea of blocks and their ability to return values:

\[
\text{sqrt(4.0 +}
\]

\[
\text{a:=3.0}
\]

\[
\text{b:=1.0}
\]

\[
\text{c:=a + b}
\]

\[
\text{c}
\]

\[
2.8284271247 461900976
\]

Type: Float
Note that indentation is extremely important. If the example above had the pile starting at “a:=” moved left by two spaces so that the “a” was under the “(” of the first line then the interpreter would signal an error. Furthermore if the closing parenthesis “)” is moved up to give

\[
\sqrt(4.0 + \\
a:=3.0 \\
b:=1.0 \\
c:=a + b \\
c)
\]

Line 1: \texttt{sqrt(4.0 +} \\
\texttt{....A} \\
Error A: Missing mate. \\
Line 2: \texttt{a:=3.0} \\
Line 3: \texttt{b:=1.0} \\
Line 4: \texttt{c:=a + b} \\
Line 5: \texttt{c} \\
\texttt{.........A} \\
Error A: (from A up to B) Ignored. \\
Error B: Improper syntax. \\
Error B: syntax error at top level \\
Error B: Possibly missing a) \\
5 error(s) parsing

then the parser will generate errors. If the parenthesis is shifted right by several spaces so that it is in line with the “c” thus:

\[
\sqrt(4.0 + \\
a:=3.0 \\
b:=1.0 \\
c:=a + b \\
c)
\]

Line 1: \texttt{sqrt(4.0 +} \\
\texttt{....A} \\
Error A: Missing mate. \\
Line 2: \texttt{a:=3.0} \\
Line 3: \texttt{b:=1.0} \\
Line 4: \texttt{c:=a + b} \\
Line 5: \texttt{c} \\
Line 6: \texttt{) } \\
\texttt{.........A} \\
Error A: (from A up to A) Ignored. \\
Error A: Improper syntax. \\
Error A: syntax error at top level \\
Error A: Possibly missing a) \\
5 error(s) parsing
a similar error will be raised. Finally, the ")" must be indented by at least one space relative to the sqrt thus:

```
sqrt(4.0 +
    a:=3.0
    b:=1.0
    c:=a + b
    c
)
```

2.8284271247 461900976

Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files consisting of piles of expressions. It would seem prudent to add one pile at a time and check if it is acceptable before adding more, particularly if piles are nested. However, it should be pointed out that the use of piles as values for functions is not very readable and so perhaps the delicate nature of their interpretation should deter programmers from using them in these situations. Using piles should really be restricted to constructing functions, etc. and a small amount of rewriting can remove the need to use them as arguments. For example, the previous block could easily be implemented as:

```
a:=3.0
b:=1.0
c:=a + b
sqrt(4.0 + c)
```

3.0

Type: Float

```
b:=1.0
```

1.0

Type: Float

```
c:=a + b
```

4.0
\[
\sqrt{4.0 + c}
\]

\[2.8284271247 \, 461900976\]

which achieves the same result and is easier to understand. Note that this is still a pile but it is not as fragile as the previous version.

Functions

Definitions of functions in Axiom are quite simple providing two things are observed. First, the type of the function must either be completely specified or completely unspecified. Second, the body of the function is assigned to the function identifier using the delayed assignment operator "==".

To specify the type of something the "::" operator is used. Thus to define a variable \(x\) to be of type \(\text{Fraction Integer}\) we enter:

\[x : \text{Fraction Integer}\]

For functions the method is the same except that the arguments are placed in parentheses and the return type is placed after the symbol "\(\rightarrow\)". Some examples of function definitions taking zero, one, two, or three arguments and returning a list of integers are:

\[f : () \rightarrow \text{List Integer}\]

\[g : (\text{Integer}) \rightarrow \text{List Integer}\]

\[h : (\text{Integer, Integer}) \rightarrow \text{List Integer}\]
1.15. FUNCTIONS, CHOICES, AND LOOPS

\[k : \text{(Integer, Integer, Integer)} \rightarrow \text{List Integer} \]

Now the actual function definitions might be:

\[f() == [] \]

\[g(a) == [a] \]

\[h(a,b) == [a,b] \]

\[k(a,b,c) == [a,b,c] \]

with some invocations of these functions:

\[f() \]

Compiling function f with type () \rightarrow List Integer

\[[] \]

Type: List Integer

\[g(4) \]
Compiling function \(g \) with type \(\text{Integer} \rightarrow \text{List Integer} \)

\[[4] \]

Type: \(\text{List Integer} \)

\(h(2, 9) \)

Compiling function \(h \) with type \((\text{Integer}, \text{Integer}) \rightarrow \text{List Integer} \)

\[[2, 9] \]

Type: \(\text{List Integer} \)

\(k(-3, 42, 100) \)

Compiling function \(k \) with type \((\text{Integer}, \text{Integer}, \text{Integer}) \rightarrow \text{List Integer} \)

\[[-3, 42, 100] \]

Type: \(\text{List Integer} \)

The value returned by a function is either the value of the last expression evaluated or the result of a \textbf{return} statement. For example, the following are effectively the same:

\(p : \text{Integer} \rightarrow \text{Integer} \)

\(p \ x = (a:=1; b:=2; \text{a+b+x}) \)

Type: \(\text{Void} \)

\(p \ x = (a:=1; b:=2; \text{return(a+b+x)}) \)

Type: \(\text{Void} \)
1.15. FUNCTIONS, CHOICES, AND LOOPS

Note that a block (pile) is assigned to the function identifier \(p \) and thus all the rules about blocks apply to function definitions. Also there was only one argument so the parenthese are not needed.

This is basically all that one needs to know about defining functions in Axiom – first specify the complete type and then assign a block to the function name. The rest of this section is concerned with defining more complex blocks than those in this section and as a result function definitions will crop up continually particularly since they are a good way of testing examples. Since the block structure is more complex we will use the **pile** notation and thus have to use input files to read the piles.

Choices

Apart from the ‘\(\Rightarrow \)’ operator that allows a block to exit before the end Axiom provides the standard **if-then-else** construct. The general syntax is:

\[
\text{if } \text{BooleanExpr} \text{ then } \text{Expr1} \text{ else } \text{Expr2}
\]

where ‘else \(\text{Expr2} \)’ can be omitted. If the expression \(\text{BooleanExpr} \) evaluates to \text{true} then \(\text{Expr1} \) is executed otherwise \(\text{Expr2} \) (if present) will be executed. An example of piles and **if-then-else** is: (read from an input file)

\[
\begin{align*}
\text{h := 2.0} \\
\text{if h > 3.1 then} \\
\quad 1.0 \\
\quad \text{else} \\
\quad z := \cos(h) \\
\quad \max(x, 0.5) \\
\end{align*}
\]

\[
\begin{align*}
\text{h := 2.0} \\
\text{2.0} \\
\text{Type: Float}
\end{align*}
\]

\[
\begin{align*}
\text{if h > 3.1 then} \\
\quad 1.0 \\
\quad \text{else} \\
\quad z := \cos(h) \\
\quad \max(x, 0.5) \\
\end{align*}
\]

\[
\begin{align*}
\text{x} \\
\text{Type: Polynomial Float}
\end{align*}
\]
Note the indentation – the “else” must be indented relative to the “if” otherwise it will generate an error (Axiom will think there are two piles, the second one beginning with “else”).

Any expression that has type Boolean can be used as BooleanExpr and the most common will be those involving the relational operators “>”, “<”, and “=”.

Loops

Loops in Axiom are regarded as expressions containing another expression called the loop body. The loop body is executed zero or more times depending on the kind of loop. Loops can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general syntax of this is:

\[
\text{repeat loopBody}
\]

This will cause Axiom to execute loopBody repeatedly until either a break or return statement is encountered. If loopBody contains neither of these statements then it will loop forever. The following piece of code will display the numbers from 1 to 4:

\[
i:=1
\]

\[
\text{repeat}
\]

\[
\text{if } i > 4 \text{ then break}
\]

\[
\text{output}(i)
\]

\[
i:=i+1
\]

\[
i:=1
\]

1

Type: PositiveInteger

\[
\text{repeat}
\]

\[
\text{if } i > 4 \text{ then break}
\]

\[
\text{output}(i)
\]

\[
i:=i+1
\]

1

2

3

4
It was mentioned that loops will only be left when either a `break` or `return` statement is encountered so why can’t one use the "=>" operator? The reason is that the "=>" operator tells Axiom to leave the current block whereas `break` leaves the current loop. The `return` statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use the `iterate` statement (the -- starts a comment in Axiom)

```axiom
i := 0
repeat
  i := i + 1
  if i > 6 then break -- Return to start if i is odd
  if odd?(i) then iterate
  output(i)

i := 0
```

```axiom
0
```

```axiom
repeat
  i := i + 1
  if i > 6 then break
  -- Return to start if i is odd
  if odd?(i) then iterate
  output(i)

2
4
6
```

Type: Void

The while loop

The while statement extends the basic `repeat` loop to place the control of leaving the loop at the start rather than have it buried in the middle. Since the body of the loop is still part of a `repeat` loop, `break` and "=>" work in the same way as in the previous section. The general syntax of a `while` loop is:
while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body of the loop is executed BoolExpr is tested. If it evaluates to true then the loop body is entered otherwise the loop is terminated. Multiple conditions can be applied using the logical operators such as and or by using several while statements before the repeat.

```plaintext
x:=1
y:=1
while x < 4 and y < 10 repeat
    output [x,y]
    x := x + 1
    y := y + 2

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 and y < 10 repeat
    output [x,y]
    x := x + 1
    y := y + 2

[1,1]
[2,3]
[3,5]

Type: Void

We could use two parallel whiles

```plaintext
x:=1
y:=1
while x < 4 while y < 10 repeat
 output [x,y]
 x := x + 1
 y := y + 2
```
the )read yields:

\( x := 1 \)

1

Type: PositiveInteger

\( y := 1 \)

1

Type: PositiveInteger

\[
\text{while } x < 4 \text{ while } y < 10 \text{ repeat}
\text{ output } [x, y]
\text{ x := x + 1}
\text{ y := y + 2}
\]

[1,1]
[2,3]
[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but the following one is:

\( x := 1 \)
\( y := 1 \)

while x < 4 repeat
while y < 10 repeat
output [x, y]
\( x := x + 1 \)
\( y := y + 2 \)

\( x := 1 \)

1

Type: PositiveInteger

\( y := 1 \)
while $x < 4$ repeat
while $y < 10$ repeat
    output $[x,y]$
    $x := x + 1$
    $y := y + 2$

$[1,1]$
$[2,3]$
$[3,5]$
$[4,7]$
$[5,9]$

Suppose we that, given a matrix of arbitrary size, find the position and value of the first negative element by examining the matrix in row-major order:

$m := \text{matrix } [ [ 21, 37, 53, 14 ],$
    $[ 8, 22, -24, 16 ],$
    $[ 2, 10, 15, 14 ],$
    $[ 26, 33, 55, -13 ] ]$

$\text{lastrow} := \text{nrows}(m)$
$\text{lastcol} := \text{ncols}(m)$
$r := 1$
while $r \leq \text{lastrow}$ repeat
    $c := 1$ -- Index of first column
    while $c \leq \text{lastcol}$ repeat
        if $\text{elt}(m,r,c) < 0$ then
            output $[r,c,\text{elt}(m,r,c)]$
            $r := \text{lastrow}$
        break -- Don't look any further
        $c := c + 1$
    $r := r + 1$

$m := \text{matrix } [ [ 21, 37, 53, 14 ],$
    $[ 8, 22, -24, 16 ],$
    $[ 2, 10, 15, 14 ],$
    $[ 26, 33, 55, -13 ] ]$

\[
\begin{bmatrix}
21 & 37 & 53 & 14 \\
8 & 22 & -24 & 16 \\
2 & 10 & 15 & 14 \\
26 & 33 & 55 & -13 \\
\end{bmatrix}
\]
1.15. FUNCTIONS, CHOICES, AND LOOPS

lastrow := nrows(m)

Type: Matrix Integer

4

Type: PositiveInteger

lastcol := ncols(m)

4

Type: PositiveInteger

r := 1

1

Type: PositiveInteger

while r <= lastrow repeat
  c := 1 -- Index of first column
  while c <= lastcol repeat
    if elt(m,r,c) < 0 then
      output [r,c,elt(m,r,c)]
      r := lastrow
      break -- Don’t look any further
    c := c + 1
  r := r + 1
[end]

[2,3,-24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of creating a for loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody
where \( \text{var} \) is an index variable which is iterated over the values in \( \text{seg} \) or \( \text{list} \). The value \( \text{seg} \) is a segment such as \( 1 \ldots 10 \) or \( 1 \ldots \) and \( \text{list} \) is a list of some type. For example:

\[
\begin{align*}
\text{for } i \text{ in } 1..10 \text{ repeat} \\
\text{~prime?(i) => iterate} \\
\text{output(i)} \\
2 \\
3 \\
5 \\
7 \\
\text{Type: Void}
\end{align*}
\]

\[
\begin{align*}
\text{for } w \text{ in } ["This", "is", "your", "life!"] \text{ repeat} \\
\text{output(w)} \\
\text{This} \\
\text{is} \\
\text{your} \\
\text{life!} \\
\text{Type: Void}
\end{align*}
\]

The second form of the \texttt{for} loop syntax includes a \texttt{such that} clause which must be of type \texttt{Boolean}:

\[
\text{for } \text{var} \text{ in } \text{seg} \mid \text{BoolExpr} \text{ repeat } \text{loopBody}
\]

for \texttt{var} in \texttt{seg} | \texttt{BoolExpr} repeat \texttt{loopBody}

for \texttt{var} in \texttt{list} | \texttt{BoolExpr} repeat \texttt{loopBody}

Some examples are:

\[
\begin{align*}
\text{for } i \text{ in } 1..10 \mid \text{prime?(i)} \text{ repeat} \\
\text{output(i)} \\
2 \\
3 \\
5 \\
7 \\
\text{Type: Void}
\end{align*}
\]

\[
\begin{align*}
\text{for } i \text{ in } [1,2,3,4,5,6,7,8,9,10] \mid \text{prime?(i)} \text{ repeat} \\
\text{output(i)} \\
2 \\
3 \\
5 \\
7
\end{align*}
\]
You can also use a `while` clause:

```plaintext
for i in 1.. while i < 7 repeat
 if even?(i) then output(i)
 2
 4
 6
```

Using the "such that" clause makes this appear simpler:

```plaintext
for i in 1.. | even?(i) while i < 7 repeat
 output(i)
 2
 4
 6
```

You can use multiple `for` clauses to iterate over several sequences in parallel:

```plaintext
for a in 1..4 for b in 5..8 repeat
 output [a,b]
 [1,5]
 [2,6]
 [3,7]
 [4,8]
```

As a general point it should be noted that any symbols referred to in the "such that" and `while` clauses must be pre-defined. This either means that the symbols must have been defined in an outer level (e.g. in an enclosing loop) or in a `for` clause appearing before the "such that" or `while`. For example:

```plaintext
for a in 1..4 repeat
 for b in 7..9 | prime?(a+b) repeat
 output [a,b,a+b]
 [2,9,11]
 [3,8,11]
 [4,7,11]
 [4,9,13]
Finally, the `for` statement has a `by` clause to specify the step size. This makes it possible to iterate over the segment in reverse order:

```
for a in 1..4 for b in 8..5 by -1 repeat
  output [a,b]
```

\[1,8\]
\[2,7\]
\[3,6\]
\[4,5\]

Note that without the “by -1” the segment 8..5 is empty so there is nothing to iterate over and the loop exits immediately.
Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer, the benefits of software are amazing. But, if the benefits of software are so great, why do we worry about making it easier – don’t the ends pay for the means? We worry because making such software is extraordinarily hard and almost no one can do it – the detail is exhausting, the creativity required is extreme, the hours of failure upon failure requiring patience and persistence would tax anyone claiming to be sane. Yet we require people with such characteristics be found and employed and employed cheaply.

– Christopher Alexander
(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem solving. Consider this chapter a brief, whirlwind tour of the Axiom world. We introduce you to Axiom’s graphics and the Axiom language. Then we give a sampling of the large variety of facilities in the Axiom system, ranging from the various kinds of numbers, to data types (like lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential equations). We conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interactively with Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We assume that Axiom has been correctly installed on your machine (as described in another Axiom document).

To begin using Axiom, issue the command **axiom** to the Axiom operating system shell. There is a brief pause, some start-up messages, and then one or more windows appear.
If you are not running Axiom under the X Window System, there is only one window (the console). At the lower left of the screen there is a prompt that looks like

(1) ->

When you want to enter input to Axiom, you do so on the same line after the prompt. The “1” in “(1)” also called the equation number, is the computation step number and is incremented after you enter Axiom statements. Note, however, that a system command such as)clear all may change the step number in other ways. We talk about step numbers more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the console window (as just described) and the HyperDoc main menu. HyperDoc is a multiple-window hypertext system that lets you view Axiom documentation and examples on-line, execute Axiom expressions, and generate graphics. If you are in a graphical windowing environment, it is usually started automatically when Axiom begins. If it is not running, issue)hd to start it. We discuss the basics of HyperDoc in section 3 on page 101.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press c. This brings you back to the Axiom prompt.

| To exit from Axiom, move to the console window, type)quit at the input prompt and press the Enter key. You will probably be prompted with the following message: |
| Please enter y or yes if you really want to leave the interactive environment and return to the operating system |
| You should respond yes, for example, to exit Axiom. |

We are purposely vague in describing exactly what your screen looks like or what messages Axiom displays. Axiom runs on a number of different machines, operating systems and window environments, and these differences all affect the physical look of the system. You can also change the way that Axiom behaves via system commands described later in this chapter and in Appendix A. System commands are special commands, like)set, that begin with a closing parenthesis and are used to change your environment. For example, you can set a system variable so that you are not prompted for confirmation when you want to leave Axiom.

Clef

If you are using Axiom under the X Window System, the Clef command line editor is probably available and installed. With this editor you can recall previous lines with the up and down arrow keys. To move forward and backward on a line, use the right and left arrows. You can use the Insert key to toggle insert mode on or off. When you are in insert mode, the cursor appears as a large block and if you type anything, the characters are inserted into the line without deleting the previous ones.
1.2. TYPOGRAPHIC CONVENTIONS

If you press the **Home** key, the cursor moves to the beginning of the line and if you press
the **End** key, the cursor moves to the end of the line. Pressing **Ctrl-End** deletes all the text
from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you
enter a few letters and then press the **Tab** key, Clef tries to use those letters as the prefix of
an Axiom operation name. If a name appears and it is not what you want, press **Tab** again
to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions

In this document we have followed these typographical conventions:

- **Categories, domains and packages** are displayed in this font:
 \texttt{Ring, Integer, DiophantineSolutionPackage}.

- **Prefix operators, infix operators, and punctuation symbols** in the Axiom language are
displayed in the text like this: +, $, \rightarrow$.

- **Axiom expressions or expression fragments** are displayed in this font:
 \texttt{inc(x) \equiv x + 1}.

- **For clarity of presentation, \TeX{} is often used to format expressions**
 \texttt{g(x) = x^2 + 1}.

- **Function names and HyperDoc button names** are displayed in the text in this font:
 \texttt{factor, integrate, Lighting}.

- **Italics** are used for emphasis and for words defined in the glossary:
 \texttt{category}.

This document contains over 2500 examples of Axiom input and output. All examples were
run through Axiom and their output was created in \TeX{} form by the Axiom \texttt{TexFormat}
package. We have deleted system messages from the example output if those messages are
not important for the discussions in which the examples appear.

1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations and for
building components of the Axiom library. Here we present only some basic aspects of
the language that you need to know for the rest of this chapter. Our discussion here is
intentionally informal, with details unveiled on an “as needed” basis. For more information
on a particular construct, we suggest you consult the index.
Arithmetic Expressions

For arithmetic expressions, use the “+” and “−” operator as in mathematics. Use “∗” for multiplication, and “**” for exponentiation. To create a fraction, use “/”. When an expression contains several operators, those of highest precedence are evaluated first. For arithmetic operators, “**” has highest precedence, “∗” and “/” have the next highest precedence, and “+” and “−” have the lowest precedence.

Axiom puts implicit parentheses around operations of higher precedence, and groups those of equal precedence from left to right.

\[
1 + 2 - 3 / 4 \times 3 ^ {2} - 1
\]

\[
\frac{-19}{4}
\]

Type: Fraction Integer

The above expression is equivalent to this.

\[
((1 + 2) - ((3 / 4) \times (3 ^ {2}))) - 1
\]

\[
\frac{-19}{4}
\]

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthesized subexpressions are evaluated first (from left to right, from inside out).

\[
1 + 2 - 3 / (4 \times 3 ^ {2 - 1})
\]

\[
\frac{11}{4}
\]

Type: Fraction Integer

Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%” to refer to previous results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next to the last result, and so on. “%%(1)” returns the result from step number 1, “%%(2)” returns the result from step number 2, and so on. “%%(0)” is not defined.

This is ten to the tenth power.

\[
10 ^ {10}
\]
1.3. THE AXIOM LANGUAGE

10000000000
Type: PositiveInteger

This is the last result minus one.

% - 1

9999999999
Type: PositiveInteger

This is the last result.

%%(-1)

9999999999
Type: PositiveInteger

This is the result from step number 1.

%%(1)

10000000000
Type: PositiveInteger

Some Types

Everything in Axiom has a type. The type determines what operations you can perform on an object and how the object can be used. The section 2 on page 57 is dedicated to the interactive use of types. Several of the final chapters discuss how types are built and how they are organized in the Axiom library.

Positive integers are given type PositiveInteger.

8

8
Type: PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the Axiom interpreter.
CHAPTER 1. AN OVERVIEW OF AXIOM

Here a positive integer exponent gives a polynomial result.

\[x^{**8} \]

\[x^8 \]

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

\[x^{**(-8)} \]

\[\frac{1}{x^8} \]

Type: Fraction Polynomial Integer

Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and power series.

We use the three symbols \(x, y, \) and \(z \) in entering this polynomial.

\[(x - y*z)**2\]

\[y^2 z^2 - 2 x y z + x^2 \]

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “\%”, or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is distinguished: the symbol points is different from the symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value. To assign a value to a variable, the operator “:=” is used.\(^1\) A variable initially has no restrictions on the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named \(x \).

\(^1\)Axiom actually has two forms of assignment: immediate assignment, as discussed here, and delayed assignment. See section 5.1 on page 119 for details.
1.3. THE AXIOM LANGUAGE

\[x := 4 \]

\[4 \]

Type: PositiveInteger

This gives the value \(z + \frac{3}{5} \) (a polynomial) to \(x \).

\[x := z + \frac{3}{5} \]

\[z + \frac{3}{5} \]

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a *declaration*

\[y : \text{Integer} \]

Type: Void

After a variable is declared to be of some type, only values of that type can be assigned to that variable.

\[y := 89 \]

\[89 \]

Type: Integer

The declaration for \(y \) forces values assigned to \(y \) to be converted to integer values.

\[y := \sin \%pi \]

\[0 \]

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to \(y \).

\[y := 2/3 \]
Cannot convert right-hand side of assignment
2
- 3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The declaration can assist Axiom in choosing the correct operations to apply.

\[f : \text{Float} \ := \frac{2}{3} \]

\[
\begin{array}{c}
0.6666666666 6666666667 \\
\text{Type: Float}
\end{array}
\]

Any number of expressions can be given on input line. Just separate them by semicolons. Only the result of evaluating the last expression is displayed. These two expressions have the same effect as the previous single expression.

\[f : \text{Float}; \ f := \frac{2}{3} \]

\[
\begin{array}{c}
0.6666666666 6666666667 \\
\text{Type: Float}
\end{array}
\]

The type of a symbol is either \texttt{Symbol} or \texttt{Variable(name)} where \texttt{name} is the name of the symbol.

By default, the interpreter gives this symbol the type \texttt{Variable(q)}.

\[q \]

\[
q \\
\text{Type: Variable q}
\]

When multiple symbols are involved, \texttt{Symbol} is used.

\[[q, r] \]

\[
[q, r] \\
\text{Type: List OrderedVariableList [q,r]}
\]
1.3. THE AXIOM LANGUAGE

What happens when you try to use a symbol that is the name of a variable?

\[f \]

0.6666666666 6666666667

Type: Float

Use a single quote ‘\[\]' before the name to get the symbol.

‘\[f \]

\[f \]

Type: Variable \[f \]

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Experience will teach you when you are most likely going to need to use a quote. We try to point out the location of such trouble spots.

Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert an object to a new type, use the “::” infix operator.\(^2\) For example, to display an object, it is necessary to convert the object to type \texttt{OutputForm}.

This produces a polynomial with rational number coefficients.

\[p := r**2 + 2/3 \]

\[r^2 + \frac{2}{3} \]

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

\[p :: \text{Fraction Polynomial Integer} \]

\[\frac{3r^2 + 2}{3} \]

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate your input. Others conversions must be explicitly requested.

\(^2\)Conversion is discussed in detail in section 2.7 on page 82.
CHAPTER 1. AN OVERVIEW OF AXIOM

Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic operator “+” or “-” between the two arguments denoting the values. To use most other Axiom operations, however, you use another syntax: write the name of the operation first, then an open parenthesis, then each of the arguments separated by commas, and, finally, a closing parenthesis. If the operation takes only one argument and the argument is a number or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

\[
\text{factor}(120) \\
2^3 \cdot 3 \cdot 5 \\
\text{Type: Factored Integer}
\]

This is a call to divide with the two integer arguments 125 and 7.

\[
\text{divide}(125,7) \\
\quad \{\text{quotient} = 17, \text{remainder} = 6\} \\
\text{Type: Record(quotient: Integer, remainder: Integer)}
\]

This calls quatern with four floating-point arguments.

\[
\text{quatern}(3.4,5.6,2.9,0.1) \\
3.4 + 5.6 \cdot i + 2.9 \cdot j + 0.1 \cdot k \\
\text{Type: Quaternion Float}
\]

This is the same as factorial(10).

\[
\text{factorial 10} \\
3628800 \\
\text{Type: PositiveInteger}
\]

An operations that returns a Boolean value (that is, true or false) frequently has a name suffixed with a question mark (“?”). For example, the even? operation returns true if its integer argument is an even number, false otherwise.
An operation that can be destructive on one or more arguments usually has a name ending in a exclamation point ("!"). This actually means that it is allowed to update its arguments but it is not required to do so. For example, the underlying representation of a collection type may not allow the very last element to removed and so an empty object may be returned instead. Therefore, it is important that you use the object returned by the operation and not rely on a physical change having occurred within the object. Usually, destructive operations are provided for efficiency reasons.

Some Predefined Macros

Axiom provides several macros for your convenience. Macros are names (or forms) that expand to larger expressions for commonly used values.

- \%i The square root of -1.
- \%e The base of the natural logarithm.
- \%pi \(\pi \).
- \%infinity \(\infty \).
- \%plusInfinity \(+\infty\).
- \%minusInfinity \(-\infty\).

To display all the macros (along with anything you have defined in the workspace), issue the system command `)display all`.

Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are too long to fit on one line. Axiom does not care how long your lines are, so you can let them continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together. To get this glue, put an underscore (_) at the end of each line you wish to continue.

```
2_
+_
3
```

is the same as if you had entered

```
2+3
```

Axiom statements in an input file (see section 4.1 on page 109) can use indentation to indicate the program structure. (see section 5.2 on page 123).

3See section 6.2 on page 154 for a discussion on how to write your own macros.
CHAPTER 1. AN OVERVIEW OF AXIOM

Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and continue until the end of the line.
The comment beginning with “--” is ignored by Axiom.

2 + 3 -- this is rather simple, no?

5

Type: PositiveInteger

There is no way to write long multi-line comments other than starting each line with “--” or “++”.

1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are represented and what their properties are. Here are a sampling of some of these kinds of numbers and some things you can do with them.

Integer arithmetic is always exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298

Type: PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412651704344145570763243

11^{13} 13^{11} 17^{7} 19^{5} 23^{3} 29^{2}

Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically factored for you.

% * 12

2^{2} 3 11^{13} 13^{11} 17^{7} 19^{5} 23^{3} 29^{2}
1.4. NUMBERS

Integers can also be displayed to bases other than 10. This is an integer in base 11.

\[
\text{radix}(25937424601,11)
\]

10000000000

Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

\[
\text{roman}(1992)
\]

MCMXCII

Type: RomanNumeral

Rational number arithmetic is also exact.

\[
r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9
\]

\[
\frac{55739}{2520}
\]

Type: Fraction Integer

To factor fractions, you have to map \texttt{factor} onto the numerator and denominator.

\[
\text{map(factor,r)}
\]

\[
\frac{139}{2^3} \frac{401}{3^2} \frac{7}{5}
\]

Type: Fraction Factored Integer

\texttt{SingleInteger} refers to machine word-length integers.

In English, this expression means “11 as a small integer”.

\[
\text{11@SingleInteger}
\]

11

Type: SingleInteger
Machine double-precision floating-point numbers are also available for numeric and graphical applications.

123.21@DoubleFloat

123.210000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation of floating-point numbers in which the exponent and the mantissa may have any number of digits. The types Complex(Float) and Complex(DoubleFloat) are the corresponding software implementations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The "::" is used here to change from one kind of object (here, a rational number) to another (a floating-point number).

r :: Float

22.118650793650793651

Type: Float

Use digits to change the number of digits in the representation. This operation returns the previous value so you can reset it later.

digits(22)

20

Type: PositiveInteger

To 22 digits of precision, the number $e^{\pi \sqrt{163}}$ appears to be an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)
Here are complex numbers with rational numbers as real and imaginary parts.

\[(2/3 + \%i)^3\]

\[-\frac{46}{27} + \frac{1}{3} i\]

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

\[\text{conjugate}\]

\[-\frac{46}{27} - \frac{1}{3} i\]

Type: Complex Fraction Integer

You can factor complex integers.

\[\text{factor}(89 - 23 \times \%i)\]

\[-(1 + i)(2 + i)^2(3 + 2i)^2\]

Type: Factored Complex Integer

Complex numbers with floating point parts are also available.

\[\exp(\%pi/4.0 \times \%i)\]

0.7071067811 8654752440 0844362104 8490392849+
0.7071067811 8654752440 0844362104 8490392848 i

Type: Complex Float

The real and imaginary parts can be symbolic.

\[\text{complex}(u,v)\]

\[u + v i\]
CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Complex Polynomial Integer

Of course, you can do complex arithmetic with these also.

\% ** 2

\[-v^2 + u^2 + 2 u v i\]

Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal expansion

decimal(1/352)

0.00284099

Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.

continuedFraction(6543/210)

\[31 + \frac{1}{6} + \frac{1}{2} + \frac{1}{1} + \frac{1}{3}\]

Type: ContinuedFraction Integer

Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1, factorial(10))

\[\frac{159}{2^8} \frac{23}{3^4} - \frac{12}{5^2} + \frac{1}{7}\]

Type: PartialFraction Integer

or expanded format.

padicFraction(%)

\[\frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} - \frac{2}{3^2} - \frac{1}{3^3} - \frac{2}{5} - \frac{2}{5^2} + \frac{1}{7}\]

Type: PartialFraction Integer
Like integers, bases (radices) other than ten can be used for rational numbers. Here we use base eight.

\[\text{radix}(4/7, 8) \]

\[
0.\overline{4} \\
\text{Type: RadixExpansion 8}
\]

Of course, there are complex versions of these as well. Axiom decides to make the result a complex rational number.

\[
\frac{4}{7} + \frac{2}{3}i \\
\text{Type: Complex Fraction Integer}
\]

You can also use Axiom to manipulate fractional powers.

\[
(5 + \sqrt{63} + \sqrt{847})^{(1/3)} \\
\text{Type: AlgebraicNumber}
\]

You can also compute with integers modulo a prime.

\[x \text{ : PrimeField 7 := 5} \]

\[5 \\
\text{Type: PrimeField 7} \]

Arithmetic is then done modulo 7.

\[x^{**3} \]

\[6 \\
\text{Type: PrimeField 7} \]

Since 7 is prime, you can invert nonzero values.
You can also compute modulo an integer that is not a prime.

\[
y : \text{IntegerMod 6} := 5
\]

\[
y^3
\]

All of the usual arithmetic operations are available.

Inversion is not available if the modulus is not a prime number. Modular arithmetic and prime fields are discussed in section 8.11 on page 358.

This defines \(a\) to be an algebraic number, that is, a root of a polynomial equation.
1.4. NUMBERS

\[a := \text{rootOf}(a^5 + a^3 + a^2 + 3, a) \]

\[a \]

Type: Expression Integer

Computations with \(a \) are reduced according to the polynomial equation.

\[(a + 1)^{10} \]

\[-85 a^4 - 264 a^3 - 378 a^2 - 458 a - 287\]

Type: Expression Integer

Define \(b \) to be an algebraic number involving \(a \).

\[b := \text{rootOf}(b^4 + a, b) \]

\[b \]

Type: Expression Integer

Do some arithmetic.

\[\frac{2}{b - 1} \]

\[\frac{2}{b - 1} \]

Type: Expression Integer

To expand and simplify this, call \text{ratDenom} to rationalize the denominator.

\[\text{ratDenom}(\%) \]

\[(a^4 - a^3 + 2 a^2 - a + 1) b^3 + (a^4 - a^3 + 2 a^2 - a + 1) b^2 + (a^4 - a^3 + 2 a^2 - a + 1) b + a^4 - a^3 + 2 a^2 - a + 1 \]

Type: Expression Integer

If we do this, we should get \(b \).

\[2/\%+1 \]
\[
\left((a^4 - a^3 + 2 a^2 - a + 1) \ b^3 + (a^4 - a^3 + 2 a^2 - a + 1) \ b^2 + \right) \\
\left((a^4 - a^3 + 2 a^2 - a + 1) \ b + a^4 - a^3 + 2 a^2 - a + 3 \right) \\
\left((a^4 - a^3 + 2 a^2 - a + 1) \ b^3 + (a^4 - a^3 + 2 a^2 - a + 1) \ b^2 + \right) \\
\left((a^4 - a^3 + 2 a^2 - a + 1) \ b + a^4 - a^3 + 2 a^2 - a + 1 \right)
\]

Type: Expression Integer

But we need to rationalize the denominator again.

\[
\text{ratDenom}(\%)
\]

\[
b
\]

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quaternions is non-commutative, as expected.

\[
q := \text{quatern}(1,2,3,4) \ast \text{quatern}(5,6,7,8) - \text{quatern}(5,6,7,8) \ast \text{quatern}(1,2,3,4)
\]

\[
-8 \ i + 16 \ j - 8 \ k
\]

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures are particularly useful for interactive computation and others are useful for building applications. The data structures of Axiom are organized into category hierarchies.

A list 4 is the most commonly used data structure in Axiom for holding objects all of the same type. The name list is short for “linked-list of nodes.” Each node consists of a value (first) and a link (rest) that points to the next node, or to a distinguished value denoting the empty list. To get to, say, the third element, Axiom starts at the front of the list, then traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.

\[
u := [1, -7, 11]
\]

\footnote{List 9.54 on page 632}
1.5. DATA STRUCTURES

[1, -7, 11]

Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements; cons(x, l), to create a new list with first element x and rest l; reverse, to create a new list with elements in reverse order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and links can be changed “in place.” To do this, use any of the operations whose names end with the character “!”.

The operation concat!(u, v) replaces the last link of the list u to point to some other list v. Since u refers to the original list, this change is seen by u.

concat!(u, [9, 1, 3, -4]); u

[1, -7, 11, 9, 1, 3, -4]

Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To create a cycle, first get a node somewhere down the list.

lastnode := rest(u, 3)

[9, 1, 3, -4]

Type: List Integer

Use setrest! to change the link emanating from that node to point back to an earlier part of the list.

setrest!(lastnode, rest(u, 2)); u

[1, -7, 11, 9]

Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct elements. Think of a stream as an “infinite list” where elements are computed successively. 5

5Stream 9.88 on page 765
Create an infinite stream of factored integers. Only a certain number of initial elements are computed and displayed.

\[\text{[factor(i) for i in 2.. by 2]} \]

\[
[2, 2^2, 2 \cdot 3, 2^3, 2 \cdot 5, 2^2 \cdot 3, 2 \cdot 7, 2^4, 2 \cdot 3^2, 2^2 \cdot 5, \ldots]
\]

Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together with a function to compute the next element “on demand.” Asking for the \(n \)-th element causes elements 1 through \(n \) to be evaluated.

\[.36 \]

\[2^3 \cdot 3^2 \]

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list structure similar to lists and have many of the same operations. For example, \texttt{first} and \texttt{rest} are used to access elements and successive nodes of a stream.

A \textit{one-dimensional array} is another data structure used to hold objects of the same type \(^6\). Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation \texttt{oneDimensionalArray} to a list of elements.

\[a := \text{oneDimensionalArray} [1, -7, 3, 3/2] \]

\[
[1, -7, 3, \frac{3}{2}]
\]

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent elements “in place.”

\[a.3 := 11; a \]

\[
[1, -7, 11, \frac{3}{2}]
\]

\(^6\)OneDimensionalArray 9.65 on page 674
However, one-dimensional arrays are not flexible structures. You cannot destructively \texttt{concat!} them together.

\texttt{concat!}(a,\text{OneDimensionalArray} \ [1, -2])

There are 5 exposed and 0 unexposed library operations named \texttt{concat!} having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue

\texttt{)display op concat!}

to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named \texttt{concat!} with argument type(s)

\begin{itemize}
 \item \texttt{OneDimensionalArray Fraction Integer}
 \item \texttt{OneDimensionalArray Integer}
\end{itemize}

Perhaps you should use "$0" to indicate the required return type, or "$\$" to specify which version of the function you need.

Examples of datatypes similar to \texttt{OneDimensionalArray} are: \texttt{Vector} (vectors are mathematical structures implemented by one-dimensional arrays), \texttt{String} (arrays of “characters,” represented by byte vectors), and \texttt{Bits} (represented by “bit vectors”).

A vector of 32 bits, each representing the \texttt{Boolean} value \texttt{true}.

\texttt{bits(32,true)}

\texttt{"11111111111111111111111111111111"}

Type: \texttt{Bits}

A \textit{flexible array}\footnote{\texttt{FlexibleArray 9.30} on page 514} is a cross between a list and a one-dimensional array. Like a one-dimensional array, a flexible array occupies a fixed block of storage. Its block of storage, however, has room to expand. When it gets full, it grows (a new, larger block of storage is allocated); when it has too much room, it contracts.

Create a flexible array of three elements.

\texttt{f := flexibleArray [2, 7, -5]}

\[[2, 7, -5] \]
CHAPTER 1. AN OVERVIEW OF AXIOM

Type: FlexibleArray Integer

Insert some elements between the second and third elements.

\texttt{insert!(flexibleArray [11, -3],f,2)}

\[2, 11, -3, 7, -5\]

Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example of a data structure called a priority queue, where elements are ordered with respect to one another. A heap is organized so as to optimize insertion and extraction of maximum elements. The \texttt{extract!} operation returns the maximum element of the heap, after destructively removing that element and reorganizing the heap so that the next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation \texttt{heap} to a list of values.

\texttt{h := heap [-4,7,11,3,4,-7]}

\[11, 4, 7, -4, 3, -7\]

Type: Heap Integer

This loop extracts elements one-at-a-time from \texttt{h} until the heap is exhausted, returning the elements as a list in the order they were extracted.

\[\texttt{[extract!(h) while not empty?(h)]}\]

\[11, 7, 4, 3, -4, -7\]

Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty, or else is a node consisting of a value, and a left and right subtree (again, binary trees). Examples of binary tree types are BinarySearchTree, PendantTree, TournamentTree, and BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the node is greater than all values (if any) in the left subtree, and less than or equal all values (if any) in the right subtree.

\texttt{binarySearchTree [5,3,2,9,4,7,11]}

8Heap 9.38 on page 539

9BinarySearchTree 9.7 on page 417
1.5. DATA STRUCTURES

\[[2, 3, 4], 5, [7, 9, 11]\]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. 10 Given a list of moduli, \texttt{modTree}(a, lm) produces a balanced binary tree with the values \(a \mod m\) at its leaves.

\texttt{modTree(8, [2, 3, 5, 7])}

\[0, 2, 3, 1\]

Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. 11 Sets are always finite and have no corresponding structure like streams for infinite collections.

Create sets using braces “\{” and “\}” rather than brackets.

\texttt{fs := set [1/3, 4/5, -1/3, 4/5]}

\[\left\{-\frac{1}{3}, \frac{1}{3}, \frac{4}{5}\right\}\]

Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values. 12

For all the primes \(p\) between 2 and 1000, find the distribution of \(p \mod 5\).

\texttt{multiset [x rem 5 for x in primes(2, 1000)]]}

\[\{0, 42: 3, 40: 1, 38: 4, 47: 2\}\]

Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization of a multiset. For examples of tables, see \texttt{AssociationList, HashTable, KeyedAccessFile, Library, SparseTable, StringTable, and Table}. The domain \texttt{Table(Key, Entry)} provides a general-purpose type for tables with values of type \texttt{Entry} indexed by keys of type \texttt{Key}.

Compute the above distribution of primes using tables. First, let \texttt{t} denote an empty table of keys and values, each of type \texttt{Integer}.

10 BalancedBinaryTree 9.4 on page 409
11 Set 9.82 on page 748
12 Multiset 9.60 on page 664
We define a function \texttt{howMany} to return the number of values of a given modulus \(k\) seen so far. It calls \texttt{search}(\(k,t\)) which returns the number of values stored under the key \(k\) in table \(t\), or "\texttt{failed}" if no such value is yet stored in \(t\) under \(k\).

In English, this says “Define \texttt{howMany}(\(k\)) as follows. First, let \(n\) be the value of \texttt{search}(\(k,t\)). Then, if \(n\) has the value "\texttt{failed}”, return the value 1; otherwise return \(n + 1\).”

\[
\texttt{howMany}(k) == (n:=\texttt{search}(k,t); \ n \text{ case } "\texttt{failed}" \Rightarrow 1; \ n+1)
\]

Run through the primes to create the table, then print the table. The expression \(t.m := \texttt{howMany}(m)\) updates the value in table \(t\) stored under key \(m\).

\[
\text{for } p \text{ in primes}(2,1000) \text{ repeat } (m:= p \text{ rem } 5; \ t.m:= \texttt{howMany}(m)); t
\]

\[
\text{Compiling function } \texttt{howMany} \text{ with type } \text{Integer} \rightarrow \text{Integer}
\]

\[
\text{table} \(2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1\)
\]

\[
\text{Type: } \text{Table(Integer,Integer)}
\]

A \textit{record} is an example of an inhomogeneous collection of objects.13 A record consists of a set of named \textit{selectors} that can be used to access its components.

Declare that \texttt{daniel} can only be assigned a record with two prescribed fields.

\[
\texttt{daniel : Record(age : Integer, salary : Float)}
\]

\[
\text{Type: Void}
\]

Give \texttt{daniel} a value, using square brackets to enclose the values of the fields.

\[
\texttt{daniel := [28, 32005.12]}
\]

\[
[\text{age} = 28, \text{salary} = 32005.12]
\]

13See section 2.4 on page 72 for details.
1.6. EXPANDING TO HIGHER DIMENSIONS

Type: Record(age: Integer, salary: Float)

Give *daniel* a raise.

daniel.salary := 35000; daniel

\[\text{[age} = 28, \text{salary} = 35000.0]\]

Type: Record(age: Integer, salary: Float)

A *union* is a data structure used when objects have multiple types.\(^{14}\)

Let *dog* be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give *dog* a name.

dog := "Whisper"

"Whisper"

Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the domain constructors described in section 13 on page 911, you can add your own data structure or extend an existing one. Choosing the right data structure for your application may be the key to obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with elements that are themselves aggregates, for example, lists of lists, one-dimensional arrays of lists of multisets, and so on. For applications requiring two-dimensional homogeneous aggregates, you will likely find *two-dimensional arrays* and *matrices* most useful.

The entries in *TwoDimensionalArray* and *Matrix* objects are all the same type, except that those for *Matrix* must belong to a *Ring*. You create and access elements in roughly the same way. Since matrices have an understood algebraic structure, certain algebraic

\(^{14}\)See section 2.5 on page 76 for details.
operations are available for matrices but not for arrays. Because of this, we limit our discussion here to Matrix, that can be regarded as an extension of TwoDimensionalArray. See TwoDimensionalArray for more information about arrays. For more information about Axiom’s linear algebra facilities, see Matrix 9.59 on page 654, Permanent 9.70 on page 692, SquareMatrix 9.85 on page 756, Vector 9.99 on page 815, TwoDimensionalArray 9.94 on page 786, section 8.4 on page 309 (computation of eigenvalues and eigenvectors), and section 8.5 on page 312 (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists represents a row of the matrix.

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\]

Type: Matrix Integer

The “collections” construct (see section 5.5 on page 146) is useful for creating matrices whose entries are given by formulas.

\[
\begin{pmatrix}
\frac{1}{i + j - x} \\
\end{pmatrix}
\]

Type: Matrix Fraction Polynomial Integer

Let \(vm\) denote the three by three Vandermonde matrix.

\[
\begin{pmatrix}
1 & 1 & 1 \\
x & y & z \\
x^2 & y^2 & z^2
\end{pmatrix}
\]

Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

\(vm(3,3)\)
You can also pull out a row or a column.

column(vm, 2)

\[
[1, y, y^2]
\]

Type: Vector Polynomial Integer

You can do arithmetic.

\[v m \ast v m\]

\[
\begin{bmatrix}
x^2 + x + 1 & y^2 + y + 1 & z^2 + z + 1 \\
x^2 z + x y + x & y^2 z + y^2 + x & z^3 + y z + x \\
x^2 z^2 + x y^2 + x^2 & y^2 z^2 + y^2 + x^2 & z^4 + y^2 z + x^2
\end{bmatrix}
\]

Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

\[factor \ determinant \ vm\]

\[(y - x) (z - y) (z - x)\]

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and objects to compute with. You can use the Axiom library of constructors to create new objects dynamically of quite arbitrary complexity. For example, you can make lists of matrices of fractions of polynomials with complex floating point numbers as coefficients. Moreover, the library provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom programs to tackle your application. Axiom allows you to write functions interactively, thereby effectively extending the system library. Here we give a few simple examples, leaving the details to section 6 on page 153.

We begin by looking at several ways that you can define the “factorial” function in Axiom. The first way is to give a piece-wise definition of the function. This method is best for a
general recurrence relation since the pieces are gathered together and compiled into an efficient iterative function. Furthermore, enough previously computed values are automatically saved so that a subsequent call to the function can pick up from where it left off.

Define the value of fact at 0.

\[
\text{fact}(0) == 1
\]

Type: Void

Define the value of $\text{fact}(n)$ for general n.

\[
\text{fact}(n) == n \times \text{fact}(n-1)
\]

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the value by iteration.

\[
\text{fact}(50)
\]

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

3041409320171337804361260816606476884437764156896051200000000000000

Type: PositiveInteger

A second definition uses an \text{if-then-else} and recursion.

\[
\text{fac}(n) == \text{if } n < 3 \text{ then } n \text{ else } n \times \text{fac}(n - 1)
\]

Type: Void

This function is less efficient than the previous version since each iteration involves a recursive function call.

\[
\text{fac}(50)
\]

3041409320171337804361260816606476884437764156896051200000000000000

Type: PositiveInteger
1.7. WRITING YOUR OWN FUNCTIONS

A third version directly uses iteration.

\(fa(n) == (a := 1; \text{for } i \text{ in } 2..n \text{ repeat } a := a*i; a)\)

Type: Void

This is the least space-consumptive version.

\(fa(50)\)

Compiling function \(fac\) with type \(\text{Integer} \to \text{Integer}\)

30414093201713378043612608166064768844377641568960512000000000000000000

Type: PositiveInteger

A final version appears to construct a large list and then reduces over it with multiplication.

\(f(n) == \text{reduce}([^*], [i \text{ for } i \text{ in } 2..n])\)

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to that of the third version.

\(f(50)\)

Compiling function \(f\) with type

\(\text{PositiveInteger} \to \text{PositiveInteger}\)

30414093201713378043612608166064768844377641568960512000000000000000000

Type: PositiveInteger

The library version uses an algorithm that is different from the four above because it highly optimizes the recurrence relation definition of \(\text{factorial}\).

\(\text{factorial}(50)\)

30414093201713378043612608166064768844377641568960512000000000000000000
You are not limited to one-line functions in Axiom. If you place your function definitions in .input files (see section 4.1 on page 109), you can have multi-line functions that use indentation for grouping.

Given \(n \) elements, \texttt{diagonalMatrix} creates an \(n \) by \(n \) matrix with those elements down the diagonal. This function uses a permutation matrix that interchanges the \(i \)th and \(j \)th rows of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .input files. Indentation is used to create blocks: sequences of expressions that are evaluated in sequence except as modified by control statements such as \texttt{if-then-else} and \texttt{return}.

\[
\text{permMat}(n, i, j) == \\
\text{m} := \text{diagonalMatrix} \\
[(\text{if } i = k \text{ or } j = k \text{ then } 0 \text{ else } 1) \\
\text{for } k \text{ in } 1..n] \\
\text{m}(i,j) := 1 \\
\text{m}(j,i) := 1 \\
\text{m}
\]

This creates a four by four matrix that interchanges the second and third rows.

\[
p := \text{permMat}(4,2,3)
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Type: Matrix Integer

Create an example matrix to permute.

\[
m := \text{matrix} [[4*i + j \text{ for } j \text{ in } 1..4] \text{ for } i \text{ in } 0..3]
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}
\]

Type: Matrix Integer
Interchange the second and third rows of \(m \).

\[
\text{permMat}(4,2,3) \ast m = \begin{bmatrix}
1 & 2 & 3 & 4 \\
9 & 10 & 11 & 12 \\
5 & 6 & 7 & 8 \\
13 & 14 & 15 & 16
\end{bmatrix}
\]

Type: Matrix Integer

A function can also be passed as an argument to another function, which then applies the function or passes it off to some other function that does. You often have to declare the type of a function that has functional arguments.

This declares \(t \) to be a two-argument function that returns a \texttt{Float}. The first argument is a function that takes one \texttt{Float} argument and returns a \texttt{Float}.

\[
t : (\text{Float} \to \text{Float}, \text{Float}) \to \text{Float}
\]

Type: Void

This is the definition of \(t \).

\[
t(\text{fun}, x) = \text{fun}(x)^{\ast2} + \sin(x)^{\ast2}
\]

Type: Void

We have not defined a \texttt{cos} in the workspace. The one from the Axiom library will do.

\[
t(\text{cos}, 5.2058)
\]

1.0

Type: Float

Here we define our own (user-defined) function.

\[
\text{cosinv}(y) = \cos(1/y)
\]

Type: Void
Axiom also has pattern matching capabilities for simplification of expressions and for defining new functions by rules. For example, suppose that you want to apply regularly a transformation that groups together products of radicals:
\[\sqrt{a} \sqrt{b} \mapsto \sqrt{ab}, \quad (\forall a)(\forall b) \]

Note that such a transformation is not generally correct. Axiom never uses it automatically. Give this rule the name `groupSqrt`.

\[
\text{groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))}
\]

\[\%C \sqrt{a} \sqrt{b}== \%C \sqrt{a \, b}\]

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

\[a := (\sqrt{x} + \sqrt{y} + \sqrt{z})^4\]

\[= (4 \, x + 4 \, y + 12 \, x) \, \sqrt{y} + (4 \, z + 12 \, y + 4 \, x) \, \sqrt{x} + (12 \, z + 4 \, y + 4 \, x) \, \sqrt{x} \, \sqrt{y} + z^2 + (6 \, y + 6 \, x) \, z + y^2 + 6 \, x \, y + x^2\]

Type: Expression Integer

The rule `groupSqrt` successfully simplifies the expression.

\[\text{groupSqrt a}\]

\[= (4 \, z + 4 \, y + 12 \, x) \, \sqrt{y} \, \sqrt{z} + (4 \, z + 12 \, y + 4 \, x) \, \sqrt{x} \, \sqrt{z} + (12 \, z + 4 \, y + 4 \, x) \, \sqrt{x} \, \sqrt{y} + z^2 + (6 \, y + 6 \, x) \, z + y^2 + 6 \, x \, y + x^2\]

Type: Expression Integer
1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive users of Axiom generally only see one type of polynomial: \texttt{Polynomial}(R). This type represents polynomials in any number of unspecified variables over a particular coefficient domain \(R \). This type represents its coefficients sparsely: only terms with non-zero coefficients are represented.

In building applications, many other kinds of polynomial representations are useful. Polynomials may have one variable or multiple variables, the variables can be named or unnamed, the coefficients can be stored sparsely or densely. So-called “distributed multivariate polynomials” store polynomials as coefficients paired with vectors of exponents. This type is particularly efficient for use in algorithms for solving systems of non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user is \texttt{Polynomial}.

\[(x**2 - x*y**3 + 3*y)**2\]

\[x^2 y^6 - 6 x y^4 - 2 x^3 y^3 + 9 y^2 + 6 x^2 y + x^4\]

Type: Polynomial Integer

If you wish to restrict the variables used, \texttt{UnivariatePolynomial} provides polynomials in one variable.

\[p: \texttt{UP}(x,\texttt{INT}) := (3*x-1)**2 * (2*x + 8)\]

\[18 x^3 + 60 x^2 - 46 x + 8\]

Type: UnivariatePolynomial(x,Integer)

The constructor \texttt{MultivariatePolynomial} provides polynomials in one or more specified variables.

\[m: \texttt{MPOLY}([x,y],\texttt{INT}) := (x**2-x*y**3+3*y)**2\]

\[x^4 - 2 y^3 x^3 + (y^6 + 6 y) x^2 - 6 y^4 x + 9 y^2\]

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable ordering in the explicit list.

\[m :: \texttt{MPOLY}([y,x],\texttt{INT})\]
\[x^2 y^6 - 6 x y^4 - 2 x^3 y^3 + 9 y^2 + 6 x^2 y + x^4 \]

Type: MultivariatePolynomial([y,x],Integer)

The constructor `DistributedMultivariatePolynomial` provides polynomials in one or more specified variables with the monomials ordered lexicographically.

\[
m :: \text{DMP}([y,x],\text{INT})
\]

\[y^6 x^2 - 6 y^4 x - 2 y^3 x^3 + 9 y^2 + 6 y x^2 + x^4 \]

Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor `HomogeneousDistributedMultivariatePolynomial` is similar except that the monomials are ordered by total order refined by reverse lexicographic order.

\[
m :: \text{HDMP}([y,x],\text{INT})
\]

\[y^6 x^2 - 2 y^3 x^3 - 6 y^4 x + x^4 + 6 y x^2 + 9 y^2 \]

Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor `GeneralDistributedMultivariatePolynomial` allows the user to provide an arbitrary predicate to define his own term ordering. These last three constructors are typically used in Gröbner basis applications and when a flat (that is, non-recursive) display is wanted and the term ordering is critical for controlling the computation.

1.9 Limits

Axiom’s `limit` function is usually used to evaluate limits of quotients where the numerator and denominator both tend to zero or both tend to infinity. To find the limit of an expression \(f \) as a real variable \(x \) tends to a limit value \(a \), enter `limit(f, x=a)`. Use `complexLimit` if the variable is complex. Additional information and examples of limits are in section 8.6 on page 319.

You can take limits of functions with parameters.

\[g := \csc(a*x) / \csch(b*x) \]

\[
\frac{\csc(a \cdot x)}{\csch(b \cdot x)}
\]

Type: Expression Integer
1.9. LIMITS

As you can see, the limit is expressed in terms of the parameters.

\[
\lim_{x \to 0} \frac{b}{a}
\]

Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:

\[h := \left(1 + \frac{k}{x}\right)^x \]

\[
\frac{x + k^x}{x}
\]

Type: Expression Integer

Use \%plusInfinity and \%minusInfinity to denote \(\infty\) and \(-\infty\).

\[
\lim_{x \to \%plusInfinity} h = e^k
\]

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to different limits as its variable approaches that value from the left and from the right.

\[
\lim_{y \to 0} \frac{\sqrt{y^2}}{y} = 0
\]

\[
\left[\text{leftHandLimit} = -1, \text{rightHandLimit} = 1\right]
\]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)

As \(x\) approaches 0 along the real axis, \(\exp(-1/x^2)\) tends to 0.

\[
\lim_{x \to 0} \exp(-1/x^2) = 0
\]

Type: Union(OrderedCompletion Expression Integer,...)
However, if \(x \) is allowed to approach 0 along any path in the complex plane, the limiting value of \(\exp(-1/x^2) \) depends on the path taken because the function has an essential singularity at \(x = 0 \). This is reflected in the error message returned by the function.

\[
\text{complexLimit}(\exp(-1/x^2), x = 0)
\]

"failed"

Type: Union("failed", ...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and display the first ten elements of a series. Use \texttt{)}set streams calculate\texttt{)} to change the default value to something else. For the purposes of this document, we have used this system command to display fewer than ten terms. For more information about working with series, see section 8.9 on page 328.

You can convert a functional expression to a power series by using the operation \texttt{series}. In this example, \(\sin(a*x) \) is expanded in powers of \((x - 0) \), that is, in powers of \(x \).

\[
\text{series(}\sin(a*x), x = 0) = a \ x - \frac{a^3}{6} x^3 + \frac{a^5}{120} x^5 - \frac{a^7}{5040} x^7 + \frac{a^9}{362880} x^9 - \frac{a^{11}}{39916800} x^{11} + O(x^{12})
\]

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

This expression expands \(\sin(a*x) \) in powers of \((x - \%pi/4) \).

\[
\text{series(}\sin(a*x), x = \%pi/4) = \sin\left(\frac{a \pi}{4}\right) + a \ \cos\left(\frac{a \pi}{4}\right) \left(x - \frac{\pi}{4}\right) - \frac{a^2 \sin\left(\frac{a \pi}{4}\right)}{2} \left(x - \frac{\pi}{4}\right)^2 - \frac{a^3 \cos\left(\frac{a \pi}{4}\right)}{6} \left(x - \frac{\pi}{4}\right)^3 + \frac{a^4 \sin\left(\frac{a \pi}{4}\right)}{24} \left(x - \frac{\pi}{4}\right)^4 + \frac{a^5 \cos\left(\frac{a \pi}{4}\right)}{120} \left(x - \frac{\pi}{4}\right)^5 - \frac{a^6 \sin\left(\frac{a \pi}{4}\right)}{720} \left(x - \frac{\pi}{4}\right)^6 - \frac{a^7 \cos\left(\frac{a \pi}{4}\right)}{5040} \left(x - \frac{\pi}{4}\right)^7 + \frac{a^8 \sin\left(\frac{a \pi}{4}\right)}{40320} \left(x - \frac{\pi}{4}\right)^8 + \frac{a^9 \cos\left(\frac{a \pi}{4}\right)}{362880} \left(x - \frac{\pi}{4}\right)^9 - \frac{a^{10} \sin\left(\frac{a \pi}{4}\right)}{3628800} \left(x - \frac{\pi}{4}\right)^{10} + O\left(\left(x - \frac{\pi}{4}\right)^{11}\right)
\]
Axiom provides Puiseux series: series with rational number exponents. The first argument to series is an in-place function that computes the \(n \)-th coefficient. (Recall that the \("\leftrightarrow" \) is an infix operator meaning “maps to.”)

\[
\text{series}(n \leftrightarrow (-1)^{(3n - 4)/6}/\text{factorial}(n - 1/3), x=0, 4/3.., 2)
\]

\[
x^{\frac{1}{3}} - \frac{1}{6} x^{\frac{4}{3}} + O(x^5)
\]

Once you have created a power series, you can perform arithmetic operations on that series. We compute the Taylor expansion of \(1/(1-x) \).

\[
f := \text{series}(1/(1-x), x = 0)
\]

\[
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + O(x^{11})
\]

Compute the square of the series.

\[
f ** 2
\]

\[
1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8 + 10 x^9 + 11 x^{10} + O(x^{11})
\]

The usual elementary functions (\text{log}, \text{exp}, trigonometric functions, and so on) are defined for power series.

\[
f := \text{series}(1/(1-x), x = 0)
\]

\[
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + O(x^{11})
\]

\[
g := \text{log}(f)
\]

\[
x + \frac{1}{2} x^2 + \frac{1}{3} x^3 + \frac{1}{4} x^4 + \frac{1}{5} x^5 + \frac{1}{6} x^6 + \frac{1}{7} x^7 +
\]

\[
\frac{1}{8} x^8 + \frac{1}{9} x^9 + \frac{1}{10} x^{10} + \frac{1}{11} x^{11} + O(x^{12})
\]
Here is a way to obtain numerical approximations of e from the Taylor series expansion of \(\exp(x) \). First create the desired Taylor expansion.

\[
\begin{align*}
\text{f := taylor}(\exp(x)) & = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4 + \frac{1}{120} x^5 + \frac{1}{720} x^6 + \\
& + \frac{1}{5040} x^7 + \frac{1}{40320} x^8 + \frac{1}{362880} x^9 + \frac{1}{3628800} x^{10} + O(x^{11})
\end{align*}
\]

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.

\[
\text{eval}(\text{f, 1.0}) = \left[1.0, 2.0, 2.5, 2.6666666666666667, \\
2.7083333333333333, 2.7166666666666667, \\
2.7180555555555556, 2.71825396825996254, \\
2.7182787698412698413, 2.7182815255731922399, \ldots \right]
\]

\[
\text{Type: Stream Expression Float}
\]

1.11 Derivatives

Use the Axiom function \(D \) to differentiate an expression.

To find the derivative of an expression \(f \) with respect to a variable \(x \), enter \(D(f, x) \).

\[
f := \exp \exp x
\]

\[
e^{e^x}
\]
1.11. DERIVATIVES

D(f, x)

\[e^x e^x \]

Type: Expression Integer

An optional third argument \(n \) in D asks Axiom for the \(n \)-th derivative of \(f \). This finds the fourth derivative of \(f \) with respect to \(x \).

D(f, x, 4)

\[(e^x^4 + 6 e^x^3 + 7 e^x^2 + e^x) e^x \]

Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentiation.

\[g := \sin(x^2 + y) \]

\[\sin(y + x^2) \]

Type: Expression Integer

D(g, y)

\[\cos(y + x^2) \]

Type: Expression Integer

D(g, [y, y, x, x])

\[4 x^2 \sin(y + x^2) - 2 \cos(y + x^2) \]

Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on \(x \).
Suppose that we have F a function of x, y, and z, where x and y are themselves functions of z.

Start by declaring that F, x, and y are operators.

$$F := \text{operator 'F}; x := \text{operator 'x}; y := \text{operator 'y}$$

You can use F, x, and y in expressions.

$$a := F(x \, z, \, y \, z, \, z**2) + x \, y(z+1)$$

$$x(y(z+1)) + F(x(z), y(z), z^2)$$

You can evaluate the above for particular functional values of F, x, and y. If $x(z)$ is $\exp(z)$ and $y(z)$ is $\log(z+1)$, then evaluates $dadz$.

$$\text{eval(eval(dadz, 'x, z +-> \exp z), 'y, z +-> \log(z+1))}$$

$$\left(\begin{array}{c}
(2 \, z^2 + 2 \, z) \, F_3(e^z, \log(z+1), z^2)+ \\
F_2(e^z, \log(z+1), z^2)+ \\
(z + 1) \, e^z \, F_1(e^z, \log(z+1), z^2) + z + 1
\end{array}\right)$$
You obtain the same result by first evaluating a and then differentiating.

$$\text{eval(eval(a, 'x, z +-> \exp z), 'y, z +-> \log(z+1))}$$

$$F(e^z, \log(z+1), z^2) + z + 2$$

Type: Expression Integer

$$\text{D(%, z)}$$

$$\left(\frac{(2 z^2 + 2 z) F_3(e^z, \log(z+1), z^2) + F_2(e^z, \log(z+1), z^2) + (z+1) e^z F_1(e^z, \log(z+1), z^2) + z + 1}{z + 1}\right)$$

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a quadratic and a quartic irreducible polynomial. The usual partial fraction approach used by most other computer algebra systems either fails or introduces expensive unneeded algebraic numbers.

We use a factorization-free algorithm.

$$\text{integrate((x**2+2*x+1)/((x+1)**6+1),x)}$$

$$\frac{\arctan(x^3 + 3 x^2 + 3 x + 1)}{3}$$

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.
CHAPTER 1. AN OVERVIEW OF AXIOM

\[
\int \frac{1}{x^2 + a} \, dx
\]

\[
\log \left(\frac{\sqrt{-a} \, \sqrt{\frac{x^2 - a}{x^2 + a}} \, x}{2 \sqrt{-a}} \right), \arctan \left(\frac{x \sqrt{-a}}{\sqrt{a}} \right)
\]

Type: \text{Union(List Expression Integer,...)}

The \text{integrate} operation generally assumes that all parameters are real. The only exception is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is a unique answer. You can request this answer by “prepending” the word “complex” to the command name:

\[
\text{complexIntegrate} \left(\frac{1}{x^2 + a} , x \right)
\]

\[
\log \left(\frac{x \sqrt{-a} + a}{\sqrt{-a}} \right) - \log \left(\frac{x \sqrt{-a} - a}{\sqrt{-a}} \right)
\]

Type: \text{Expression Integer}

The following two examples illustrate the limitations of table-based approaches. The two integrands are very similar, but the answer to one of them requires the addition of two new algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more complicated.

\[
\int \frac{x^3}{(a+b \cdot x)^{1/3}} \, dx
\]

\[
\frac{120 \, b^3 \, x^3 - 135 \, a \, b^2 \, x^2 + 162 \, a^2 \, b \, x - 243 \, a^3}{440 \, b^4}
\]

Type: \text{Union(Expression Integer,...)}

Only an algorithmic approach is guaranteed to find what new constants must be added in order to find a solution.

\[
\int \frac{1}{x^3 \cdot (a+b \cdot x)^{1/3}} \, dx
\]
Some computer algebra systems use heuristics or table-driven approaches to integration. When these systems cannot determine the answer to an integration problem, they reply “I don’t know.” Axiom uses an algorithm which is a decision procedure for integration. If Axiom returns the original integral that conclusively proves that an integral cannot be expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer exists as an elementary function.

\[
\int \frac{\log(1 + \sqrt{a x + b})}{x} \, dx
\]

\[
\left(\begin{array}{c}
-2 b^2 x^2 \sqrt{3} \log\left(\frac{\sqrt{a} \sqrt{b} x + a^2 + \sqrt{a} \sqrt{b} x + a + a}{\sqrt{a} \sqrt{b} x + a - a} \right) + \\
4 b^2 x^2 \sqrt{3} \log\left(\frac{\sqrt{a} \sqrt{b} x + a - a}{\sqrt{a} \sqrt{b} x + a + a \sqrt{3}} \right) + \\
12 b^2 x^2 \arctan\left(\frac{2 \sqrt{3} \sqrt{a} \sqrt{b} x + a + a}{3 a} \right) + \\
(12 b x - 9 a) \sqrt{3} \sqrt{a} \sqrt{b} x + a^2 \\
18 a^2 x^2 \sqrt{3} \sqrt{a}
\end{array} \right)
\]

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find in tables. Whenever possible, Axiom tries to express the answer using the functions present in the integrand.

\[
\int x \log\left(\frac{\sqrt{b} + \%Q a + 1}{\%Q} \right) d\%Q
\]

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between functions.
integrate(tan(atan(x)/3),x)

\[
\left(8 \log\left(3 \tan\left(\frac{\arctan(x)}{3}\right)^2 - 1\right) - 3 \tan\left(\frac{\arctan(x)}{3}\right)^2 + \frac{18 x \tan\left(\frac{\arctan(x)}{3}\right)}{18}\right)
\]

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration of this function. Here are the details:

1. If \(x = \tan t\) and \(g = \tan(t/3)\) then the following algebraic relation is true:
 \[g^3 - 3xg^2 - 3g + x = 0\]

2. Integrate \(g\) using this algebraic relation; this produces:
 \[
 \frac{(24g^2 - 8) \log(3g^2 - 1) + (81x^2 + 24)g^2 + 72xg - 27x^2 - 16}{54g^2 - 18}
 \]

3. Rationalize the denominator, producing:
 \[
 \frac{8 \log(3g^2 - 1) - 3g^2 + 18xg + 16}{18}
 \]
 Replace \(g\) by the initial definition \(g = \tan(\arctan(x)/3)\) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

\[
\frac{2 \sqrt{\log(x) + x}}{\log(x) + x}
\]

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)

\[
\frac{(erf(x) - 1) \sqrt{\pi} \log\left(\frac{erf(x) - 1}{erf(x) + 1}\right) - 2 \sqrt{\pi}}{8 \, erf(x) - 8}
\]

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in section 8.8 on page 324.
1.13 Differential Equations

The general approach used in integration also carries over to the solution of linear differential equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

$$y := \text{operator } y$$

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

$$\begin{align*}
\text{deq} & := x^{**3} \cdot D(y \ x, \ x, \ 3) + x^{**2} \cdot D(y \ x, \ x, \ 2) - 2 \cdot x \cdot D(y \ x, \ x) + 2 \cdot y \\
x & = 2 \cdot x^{**4}
\end{align*}$$

$$x^3 y^{"'}(x) + x^2 y^{'}(x) - 2 \cdot x \ y^{'}(x) + 2 \ y(x) = 2 \ x^4$$

Type: Equation Expression Integer

$$\begin{align*}
\text{solve(deq, y, x)} & \quad \left[\text{particular} = \frac{x^5 - 10 \ x^3 + 20 \ x^2 + 4}{15 \ x}, \\
\text{basis} & = \left[\frac{2 \ x^3 - 3 \ x^2 + 1}{x}, \frac{x^3 - 1}{x}, \frac{x^3 - 3 \ x^2 - 1}{x} \right] \right]
\end{align*}$$

Type: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)

Here we find all the algebraic function solutions of the equation.

$$\begin{align*}
\text{deq} & := (x^{**2} + 1) \cdot D(y \ x, \ x, \ 2) + 3 \cdot x \cdot D(y \ x, \ x) + y \ x = 0 \\
& \quad (x^2 + 1) \ y^{"'}(x) + 3 \ x \ y^{'}(x) + y(x) = 0
\end{align*}$$

Type: Equation Expression Integer

$$\begin{align*}
\text{solve(deq, y, x)}
\end{align*}$$
CHAPTER 1. AN OVERVIEW OF AXIOM

\[\text{particular} = 0, \text{basis} = \left[\frac{1}{\sqrt{x^2 + 1}}, \frac{\log(\sqrt{x^2 + 1} - x)}{\sqrt{x^2 + 1}} \right] \]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)

Coefficients of differential equations can come from arbitrary constant fields. For example, coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree two.

\[\text{eq} := 2x^3 \cdot D(y(x),x,2) + 3x^2 \cdot D(y(x),x) - 2 \cdot y(x) \]

\[2x^3 \cdot y''(x) + 3x^2 \cdot y'(x) - 2 \cdot y(x) \]

Type: Expression Integer

\[
\text{solve(eq,y,x).basis}
\]

\[\left[e^{-\frac{x}{\sqrt{x^2 + 1}}}, e^{\frac{x}{\sqrt{x^2 + 1}}} \right] \]

Type: List Expression Integer

Here's another differential equation to solve.

\[\text{deq} := D(y(x),x) = y(x) \cdot (x + y(x) \cdot \log(y(x))) \]

\[y'(x) = \frac{y(x)}{y(x) \cdot \log(y(x)) + x} \]

Type: Equation Expression Integer

\[\text{solve(deq, y, x)} \]

\[\frac{y(x) \cdot \log(y(x))^2 - 2x}{2y(x)} \]

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation, you instead might want to find an approximate solution in the form of a series.

Let's solve a system of nonlinear first order equations and get a solution in power series. Tell Axiom that \(x \) is also an operator.
Here are the two equations forming our system.

\(eq1 := D(x(t), t) = 1 + x(t)^2 \)

\(x'(t) = x(t)^2 + 1 \)

Type: Equation Expression Integer

\(eq2 := D(y(t), t) = x(t) \cdot y(t) \)

\(y'(t) = x(t) \cdot y(t) \)

Type: Equation Expression Integer

We can solve the system around \(t = 0 \) with the initial conditions \(x(0) = 0 \) and \(y(0) = 1 \). Notice that since we give the unknowns in the order \([x, y]\), the answer is a list of two series in the order \([\text{series for } x(t), \text{series for } y(t)]\).

\[
\text{seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])}
\]

\[
\left\{ t + \frac{1}{3} t^3 + \frac{2}{15} t^5 + \frac{17}{315} t^7 + \frac{62}{2835} t^9 + O(t^{11}), 1 + \frac{1}{2} t^2 + \frac{5}{24} t^4 + \frac{61}{720} t^6 + \frac{277}{8064} t^8 + \frac{50521}{3628800} t^{10} + O(t^{11}) \right\}
\]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equations. When the number of equations and unknowns is the same, and you have no symbolic coefficients, you can use \texttt{solve} for real roots and \texttt{complexSolve} for complex roots. In each case, you tell Axiom how accurate you want your result to be. All operations in the \texttt{solve} family return answers in the form of a list of solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter \(t \).
CHAPTER 1. AN OVERVIEW OF AXIOM

\[S(t) = [x^{**}2 - 2*y**2 - t, x*y - y - 5*x + 5] \]

Type: Void

Find the real roots of \(S(19) \) with rational arithmetic, correct to within \(1/10^{20} \).

\[\text{solve}(S(19),1/10^{**}20) \]

\[\begin{bmatrix}
 y = 5, x = - \frac{2451682632253093442511}{295147905179352825856} \\
 y = 5, x = \frac{2451682632253093442511}{295147905179352825856}
\end{bmatrix} \]

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of \(S(19) \) with floating point coefficients to 20 digits accuracy in the mantissa.

\[\text{complexSolve}(S(19),10.e-20) \]

\[\begin{bmatrix}
 [y = 5.0, x = 8.3066238629180748526], \\
 [y = 5.0, x = -8.3066238629180748526], \\
 [y = -3.0 \pm 1.0], [y = 3.0 \pm 1.0]
\end{bmatrix} \]

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in radicals, try \texttt{radicalSolve}.

\[\text{radicalSolve}(S(a),[x,y]) \]

\[\begin{bmatrix}
 [x = -\sqrt{a + 50}, y = 5], [x = \sqrt{a + 50}, y = 5], \\
 [x = 1, y = \sqrt{-\frac{a + 1}{2}}], [x = 1, y = -\sqrt{-\frac{a + 1}{2}}]
\end{bmatrix} \]

Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply \texttt{solve}, listing the variables that you want Axiom to solve for. For polynomial equations, a solution cannot usually be expressed solely in terms of the other variables. Instead, the solution is presented as a “triangular” system of equations, where each polynomial has coefficients involving only the succeeding variables. This is analogous to converting a linear system of equations to “triangular form”.

A system of three equations in five variables.
1.15. **SYSTEM COMMANDS**

\[\text{eqns := } [x**2 - y + z, x**2*z + x**4 - b*y, y**2*z - a - b*x] \]

\[[z - y + x^2, x^2 z - b y + x^4, y^2 z - b x - a] \]

Type: List Polynomial Integer

Solve the system for unknowns \([x, y, z]\), reducing the solution to triangular form.

\[
\begin{align*}
\text{solve(eqns,[x,y,z])} \\
&= \left[x = -\frac{a}{b}, y = 0, z = -\frac{a^2}{b^2} \right], \\
&\left[x = \frac{z^3 + 2 b z^2 + b^2 z - a}{b}, y = z + b, \right. \\
&\left. z^6 + 4 b z^5 + 6 b^2 z^4 + (4 b^3 - 2 a) z^3 + (b^4 - 4 a b) z^2 - 2 a b^2 z - b^3 + a^2 = 0 \right] \\
\end{align*}
\]

Type: List List Equation Fraction Polynomial Integer

1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands. System commands are special statements that start with a closing parenthesis (\)). They are used to control or display your Axiom environment, start the HyperDoc system, issue operating system commands and leave Axiom. For example, \texttt{)}system is used to issue commands to the operating system from Axiom. Here is a brief description of some of these commands. For more information on specific commands, see Appendix A on page 971.

Perhaps the most important user command is the \texttt{)}clear all command that initializes your environment. Every section and subsection in this document has an invisible \texttt{)}clear all that is read prior to the examples given in the section. \texttt{)}clear all gives you a fresh, empty environment with no user variables defined and the step number reset to 1. The \texttt{)}clear command can also be used to selectively clear values and properties of system variables.

Another useful system command is \texttt{)}read. A preferred way to develop an application in Axiom is to put your interactive commands into a file, say \texttt{my.input} file. To get Axiom to read this file, you use the system command \texttt{)}read my.input. If you need to make changes to your approach or definitions, go into your favorite editor, change \texttt{my.input}, then \texttt{)}read my.input again.

Other system commands include: \texttt{)}history, to display previous input and/or output lines; \texttt{)}display, to display properties and values of workspace variables; and \texttt{)}what.

Issue \texttt{)}what to get a list of Axiom objects that contain a given substring in their name.
Operations whose names satisfy the above pattern(s):

- HermiteIntegrate
- expintegrate
- infiIntegrate
- internalIntegrate0
- lnIntegrate
- nagPolygonIntegrate
- pmIntegrate

To get more information about an operation such as limitedIntegrate, issue the command)display op limitedIntegrate

Undo

A useful system command is)undo. Sometimes while computing interactively with Axiom, you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to try one of several alternative approaches, one after another, to find the best way to approach an application. For this, you will find the undo facility of Axiom helpful.

System command)undo n means “undo back to step n”; it restores the values of user variables to those that existed immediately after input expression n was evaluated. Similarly,)undo -n undoes changes caused by the last n input expressions. Once you have done an)undo, you can continue on from there, or make a change and redo all your input expressions from the point of the)undo forward. The)undo is completely general: it changes the environment like any user expression. Thus you can)undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

\[
f(0) = 1; g(0) = 1
\]

Type: Void

“Here is the general term for f.”

\[
f(n) = e/2*f(n-1) - x*g(n-1)
\]

Type: Void

“And here is the general term for g.”

\[
g(n) = -x*f(n-1) + d/3*g(n-1)
\]
“What is the value of $f(3)$?”

$$f(3) = -x^3 + \left(c + \frac{1}{3} d\right) x^2 + \left(-\frac{1}{4} e^2 - \frac{1}{6} d e - \frac{1}{9} d^2\right) x + \frac{1}{8} e^3$$

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right after I defined $f.$”

)undo 2

“Here is how I think I want f to be defined instead.”

$$f(n) = \frac{d}{3} f(n-1) - x g(n-1)$$

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from expression 3 forward.

)undo)redo

$$g(n) = -x f(n-1) + \frac{d}{3} g(n-1)$$

Type: Void

$$f(3)$$

Compiling function g with type Integer -> Polynomial Fraction Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined
54

CHAPTER 1. AN OVERVIEW OF AXIOM

+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction
 Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

\[-x^3 + d x^2 - \frac{1}{3} d^2 x + \frac{1}{27} d^3 \]

Type: Polynomial Fraction Integer

“I want my old definition of \(f \) after all. Undo the undo and restore the environment to that immediately after (4).”

undo 4

“Check that the value of \(f(3) \) is restored.”

f(3)

Compiling function g with type Integer -> Polynomial Fraction
 Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction
 Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction
 Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

\[-x^3 + \left(e + \frac{1}{3} d \right) x^2 + \left(-\frac{1}{4} e^2 - \frac{1}{6} d^2 e - \frac{1}{9} d^2 \right) x + \frac{1}{8} e^3 \]
After you have gone off on several tangents, then backtracked to previous points in your conversation using \texttt{undo}, you might want to save all the “correct” input commands you issued, disregarding those undone. The system command \texttt{)history \write mynew.input} writes a clean straight-line program onto the file \texttt{mynew.input} on your disk.

1.16 Graphics

Axiom has a two- and three-dimensional drawing and rendering package that allows you to draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom computations. The graphics interface is capable of plotting functions of one or more variables and plotting parametric surfaces. Once the graphics figure appears in a window, move your mouse to the window and click. A control panel appears immediately and allows you to interactively transform the object.

This is an example of Axiom’s two-dimensional plotting. From the 2D Control Panel you can rescale the plot, turn axes and units on and off and save the image, among other things. This PostScript image was produced by clicking on the \texttt{PS 2D Control Panel button}.

\begin{verbatim}
draw(cos(5*t/8), t=0..16*%pi, coordinates==polar)
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig11c.png}
\caption{$J_0(\sqrt{x^2+y^2})$ for $-20 \leq x, y \leq 20$}
\end{figure}

This is an example of Axiom’s three-dimensional plotting. It is a monochrome graph of the complex arctangent function. The image displayed was rotated and had the “shade” and “outline” display options set from the 3D Control Panel. The PostScript output was produced by clicking on the \texttt{save 3D Control Panel button} and then clicking on the \texttt{PS}.
button. See section 8.1 on page 289 for more details and examples of Axiom’s numeric and graphics capabilities.

\[\text{draw}\left((x,y) \rightarrow \text{real \ atan \ complex}(x,y), -\pi..\pi, -\pi..\pi, \text{colorFunction} = (x,y) \rightarrow \text{argument \ atan \ complex}(x,y)\right) \]

Figure 1.2: atan

An exhibit of Axiom images is given later. For a description of the commands and programs that produced these figures, see section F on page 1189. PostScript output is available so that Axiom images can be printed.\(^\text{15}\) See section 7 on page 217 for more examples and details about using Axiom’s graphics facilities.

This concludes your tour of Axiom. To disembark, issue the system command }quit to leave Axiom and return to the operating system.

\(^{15}\text{PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.}\)
Chapter 2

Using Types and Modes

Only recently have I begun to realize that the problem is not merely one of technical mastery or the competent application of the rules ... but that there is actually something else which is guiding these rules. It actually involves a different level of mastery. It's quite a different process to do it right; and every single act that you do can be done in that sense well or badly. But even assuming that you have got the technical part clear, the creation of this quality is a much more complicated process of the most utterly absorbing and fascinating dimensions. It is in fact a major creative or artistic act – every single little thing you do – ...

– Christopher Alexander

(from Patterns of Software by Richard Gabriel)

In this chapter we look at the key notion of type and its generalization mode. We show that every Axiom object has a type that determines what you can do with the object. In particular, we explain how to use types to call specific functions from particular parts of the library and how types and modes can be used to create new objects from old. We also look at Record and Union types and the special type Any. Finally, we give you an idea of how Axiom manipulates types and modes internally to resolve ambiguities.

2.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such as numbers and polynomials, data structure objects such as lists and arrays, and graphics objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or simply domain. Each domain denotes a class of objects. The class of objects it denotes is usually given by the name of the domain: Integer for the integers, Float for floating-point numbers, and so on. The convention is that the first letter of a domain name is capitalized. Similarly,
the domain \texttt{Polynomial(Integer)} denotes “polynomials with integer coefficients.” Also, \texttt{Matrix(Float)} denotes “matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain \texttt{Integer} and the polynomial \(x + 3 \) belongs to the domain \texttt{Polynomial(Integer)}. The domain of an object is also called its type. Thus we speak of “the type \texttt{Integer}” and “the type \texttt{Polynomial(Integer)}.”

After an Axiom computation, the type is displayed toward the right-hand side of the page (or screen).

\[-3\]

\[-3\]

Type: Integer

Here we create a rational number but it looks like the last result. The type however tells you it is different. You cannot identify the type of an object by how Axiom displays the object.

\[-3/1\]

\[-3\]

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type unsimplified. Thus no information is lost.

\[x + 3 - x\]

\[3\]

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

\texttt{factorial(\%)}

6

Type: Expression Integer

When you issue a positive number, the type \texttt{PositiveInteger} is printed. Surely, 3 also has type \texttt{Integer}! The curious reader may now have two questions. First, is the type of an object not unique? Second, how is \texttt{PositiveInteger} related to \texttt{Integer}?
2.1. THE BASIC IDEA

Any domain can be refined to a subdomain by a membership predicate. A predicate is a function that, when applied to an object of the domain, returns either true or false. For example, the domain Integer can be refined to the subdomain PositiveInteger, the set of integers \(x \) such that \(x > 0 \), by giving the Axiom predicate \(x \leftrightarrow x > 0 \). Similarly, Axiom can define subdomains such as “the subdomain of diagonal matrices,” “the subdomain of lists of length two,” “the subdomain of monic irreducible polynomials in \(x \),” and so on. Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains. Any subdomain of the domain of an object can be used as the type of that object. The type of 3 is indeed both Integer and PositiveInteger as well as any other subdomain of integer whose predicate is satisfied, such as “the prime integers,” “the odd positive integers between 3 and 17,” and so on.

Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions, and, as we’ll see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies the function factorial to the value 7 to compute the result.

\[
\text{factorial}(7)
\]

5040

Type: PositiveInteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks much like a function call as well. It is! The result is appropriately stated to be of type Domain, which according to our usual convention, denotes the class of all domains.

\[
\text{Polynomial(Integer)}
\]

Polynomial Integer

Type: Domain
The most basic operation involving domains is that of building a new domain from a given one. To create the domain of “polynomials over the integers,” Axiom applies the function \textbf{Polynomial} to the domain \textbf{Integer}. A function like \textbf{Polynomial} is called a \textit{domain constructor} or, more simply, a \textit{constructor}. A domain constructor is a function that creates a domain. An argument to a domain constructor can be another domain or, in general, an arbitrary kind of object. \textbf{Polynomial} takes a single domain argument while \textbf{SquareMatrix} takes a positive integer as an argument to give its dimension and a domain argument to give the type of its components.

What kinds of domains can you use as the argument to \textbf{Polynomial} or \textbf{SquareMatrix} or \textbf{List}? Well, the first two are mathematical in nature. You want to be able to perform algebraic operations like “+” and “*” on polynomials and square matrices, and operations such as \textbf{determinant} on square matrices. So you want to allow polynomials of integers \textit{and} polynomials of square matrices with complex number coefficients and, in general, anything that “makes sense.” At the same time, you don’t want Axiom to be able to build nonsense domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations on lists such as \textbf{insert}, \textbf{delete}, and \textbf{concat} just manipulate the list itself without changing or operating on its elements. Thus you can build \textbf{List} over almost any datatype, including itself.

Create a complicated algebraic domain.

\begin{verbatim}
List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))
\end{verbatim}

\textbf{Type: Domain}

Try to create a meaningless domain.

\begin{verbatim}
Polynomial(String)
\end{verbatim}

\textbf{Polynomial String is not a valid type.}

Evidently from our last example, Axiom has some mechanism that tells what a constructor can use as an argument. This brings us to the notion of \textit{category}. As domains are objects, they too have a domain. The domain of a domain is a category. A category is simply a type whose members are domains.

A common algebraic category is \textbf{Ring}, the class of all domains that are “rings.” A ring is an algebraic structure with constants 0 and 1 and operations “+”, “-”, and “*”. These operations are assumed “closed” with respect to the domain, meaning that they take two objects of the domain and produce a result object also in the domain. The operations are understood to satisfy certain “axioms,” certain mathematical principles providing the algebraic foundation for rings. For example, the \textit{additive inverse axiom} for rings states:
2.1. THE BASIC IDEA

Every element x has an additive inverse y such that $x + y = 0$.

The prototypical example of a domain that is a ring is the integers. Keep them in mind whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as arguments and return rings as values. You can use the infix operator “has” to ask a domain if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polynomials over any other ring.”

Polynomial(Integer) has Ring

true

Type: Boolean

Constructor List never produces a ring.

List(Integer) has Ring

false

Type: Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.” This domain is never a ring since the operations “+”, “-”, and “*” on matrices of arbitrary shapes are undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n matrices over R.”
CHAPTER 2. USING TYPES AND MODES

Polynomial(SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix(7,Complex Integer)

\[\text{Type: Domain} \]

Another common category is \text{Field}, the class of all fields. A field is a ring with additional operations. For example, a field has commutative multiplication and a closed operation “/” for the division of two elements. \text{Integer} is not a field since, for example, 3/2 does not have an integer result. The prototypical example of a field is the rational numbers, that is, the domain \text{Fraction(Integer)}. In general, the constructor \text{Fraction} takes an \text{IntegralDomain}, which is a ring with additional properties, as an argument and returns a field. \footnote{Actually, the argument domain must have some additional so as to belong to the category \text{IntegralDomain}} Other domain constructors, such as \text{Complex}, build fields only if their argument domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.

\text{Complex(Integer)} has Field

\[\text{false} \]

\[\text{Type: Boolean} \]

But fractions of complex integers do.

\text{Fraction(Complex(Integer))} has Field

\[\text{true} \]

\[\text{Type: Boolean} \]

The algebraically equivalent domain of complex rational numbers is a field since domain constructor \text{Complex} produces a field whenever its argument is a field.

\text{Complex(Fraction(Integer))} has Field

\[\text{true} \]

\[\text{Type: Boolean} \]

The most basic category is \text{Type}. It denotes the class of all domains and subdomains. Note carefully that \text{Type} does not denote the class of all types. The type of all categories is \text{Category}. The type of \text{Type} itself is undefined. Domain constructor \text{List} is able to build
lists of elements from domain \(D \) for arbitrary \(D \) simply by requiring that \(D \) belong to category \textit{Type}.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in the Axiom language. A category is defined by three components:

1. a name (for example, \texttt{Ring}), used to refer to the class of domains that the category represents;
2. a set of operations, used to refer to the operations that the domains of this class support (for example, “+”, “-”, and “*” for rings); and
3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom! Because categories can extend one another, they form hierarchies. Detailed charts showing the category hierarchies in Axiom are displayed in Appendix (TPDHERE). There you see that all categories are extensions of \textit{Type} and that \texttt{Field} is an extension of \texttt{Ring}.

The operations supported by the domains of a category are called the exports of that category because these are the operations made available for system-wide use. The exports of a domain of a given category are not only the ones explicitly mentioned by the category. Since a category extends other categories, the operations of these other categories—and all categories these other categories extend—are also exported by the domains.

For example, polynomial domains belong to \texttt{PolynomialCategory}. This category explicitly mentions some twenty-nine operations on polynomials, but it extends eleven other categories (including \texttt{Ring}). As a result, the current system has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, \texttt{Ring}, it is convenient to say that the domain exports \texttt{Ring}. The name of the category thus provides a convenient shorthand for the list of operations exported by the category. Rather than listing operations such as “+” and “*” of \texttt{Ring} each time they are needed, the definition of a type simply asserts that it exports category \texttt{Ring}.

The category name, however, is more than a shorthand. The name \texttt{Ring}, in fact, implies that the operations exported by rings are required to satisfy a set of “axioms” associated with the name \texttt{Ring}. This subtle but important feature distinguishes Axiom from other abstract datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of the operations of \texttt{Ring}? Here is why. Some languages such as \texttt{APL} denote the \texttt{Boolean} constants \texttt{true} and \texttt{false} by the integers 1 and 0 respectively, then use “+” and “*” to denote the logical operators \texttt{or} and \texttt{and}. But with these definitions \texttt{Boolean} is not a ring since the additive inverse axiom is violated. That is, there is no inverse element \(a \) such that \(1 + a = 0 \), or, in the usual terms: \texttt{true or a = false}. This alternative definition of \texttt{Boolean} can be easily and correctly implemented in Axiom, since \texttt{Boolean} simply does not assert that it is of category \texttt{Ring}. This prevents the system from building meaningless domains such as \texttt{Polynomial(Boolean)} and then wrongfuly applying algorithms that presume that the ring axioms hold.
CHAPTER 2. USING TYPES AND MODES

Enough on categories. To learn more about them, see section 12 on page 899. We now return
to our discussion of domains.

Domains export a set of operations to make them available for system-wide use. Integer, for
example, exports the operations “+” and “=” given by the signatures “+”: \((\text{Integer, Integer}) \rightarrow \text{Integer}\) and “=”: \((\text{Integer, Integer}) \rightarrow \text{Boolean}\), respectively. Each of these operations takes
two Integer arguments. The “+” operation also returns an Integer but “=” returns a
Boolean: true or false. The operations exported by a domain usually manipulate objects
of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects
from any domain. For example, Fraction (Integer) exports the operations “/”:
\((\text{Integer, Integer}) \rightarrow \text{Fraction(Integer)}\) and characteristic:
\(\rightarrow \text{NonNegativeInteger}\).

Suppose all operations of a domain take as arguments and return as values, only objects
from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection
of operations. Actually the bulk of the Axiom library of algorithms consists of packages.
The facilities for factorization; integration; solution of linear, polynomial, and differential
equations; computation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if they are not
“variable.” Packages are useful for defining operations that convert objects of one type to
another, particularly when these types have different parameterizations. As an example,
the package PolynomialFunction2(R, S) defines operations that convert polynomials over
a domain \(R\) to polynomials over \(S\). To convert an object from Polynomial(Integer) to
Polynomial(Float), Axiom builds the package PolynomialFunctions2(Integer, Float)
in order to create the required conversion function. (This happens “behind the scenes” for
you: see section 2.7 on page 82 for details on how to convert objects.)

Axiom categories, domains and packages and all their contained functions are written in
the Axiom programming language and have been compiled into machine code. This is what
comprises the Axiom library. We will show you how to use these domains and their functions
and how to write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section section 2.1 on page 57 several examples of types.
Most of these examples had either no arguments (for example, Integer) or one argument (for
example, Polynomial (Integer)). In this section we give details about writing arbitrary
types. We then define modes and discuss how to write them. We conclude the section with
a discussion on constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

\[a : \text{PositiveInteger} \]

Type: Void
2.2. WRITING TYPES AND MODES

You need to do so when you declare functions (See section 2.3 on page 69)

\[f : \text{Integer} \rightarrow \text{String} \]

Type: Void

You need to do so when you convert an object from one type to another (See section 2.7 on page 82).

factor(2 :: \text{Complex(Integer)})

\[-i (1 + i)^2 \]

Type: Factored Complex Integer

(2 = 3)Integer

false

Type: Boolean

You need to do so when you give computation target type information (See section 2.9 on page 89)

(2 = 3)Boolean

false

Type: Boolean

Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and closing parentheses “()”.

Boolean() is the same as Boolean
Integer() is the same as Integer
String() is the same as String
Void() is the same as Void

It is customary to omit the parentheses.
Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest from right to left so that \texttt{Complex Fraction Polynomial Integer} is the same as \texttt{Complex (Fraction (Polynomial (Integer)))}. You need to use parentheses to force the application of a constructor to the correct argument, but you need not use any more than is necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive than they need to be).

If the argument is an expression like \(2+3\) then you must enclose the argument in parentheses.

\[
e : \text{PrimeField}(2 + 3)
\]

\textbf{Type: Void}

If the type is to be used with package calling then you must enclose the argument in parentheses.

\[
\text{content}(2) \text{\$Polynomial(Integer)}
\]

\textbf{Type: Integer}

Alternatively, you can write the type without parentheses then enclose the whole type expression with parentheses.

\[
\text{content}(2) \text{\$(Polynomial Complex Fraction Integer)}
\]

\textbf{Type: Complex Fraction Integer}

If you supply computation target type information (See section \ref{sec:computation-target-type} on page \pageref{sec:computation-target-type}) then you should enclose the argument in parentheses.

\[
(2/3) \text{\$Fraction(Polynomial(Integer))}
\]

\textbf{Type: Fraction Polynomial Integer}
If the type itself has parentheses around it and we are not in the case of the first example above, then the parentheses can usually be omitted.

\[(2/3)\)@Fraction(Polynomial Integer)

\[
\frac{2}{3}
\]

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type, integer or symbol, then the parentheses can usually be omitted.

\[(d,f,g) : Complex Polynomial Integer\]

Type: Void

Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial([z,w,r], Complex Float)
SquareMatrix(3, Integer)
FactoredFunctions2(Integer, Fraction Integer)

Modes

A *mode* is a type that possibly is a question mark (?) or contains one in an argument position. For example, the following are all modes.

? Polynomial ?
Matrix Polynomial ?
SquareMatrix(3,?)
Integer
OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated by a question mark). Only one “?” is allowed per mode and it must appear in the most deeply nested argument that is a type. Thus ?(Integer), Matrix(?(Polynomial)), SquareMatrix(? , Integer) (it requires a numeric argument) and SquareMatrix(? , ?)
are all invalid. The question mark must take the place of a domain, not data. This rules out, for example, the two SquareMatrix expressions.

Modes can be used for declarations (See section 2.3 on page 69) and conversions (section 2.7 on page 82). However, you cannot use a mode for package calling or giving target type information.

Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor name. In some cases, the abbreviation is nothing more than the capitalized version of the constructor name.

Aside from allowing types to be written more concisely, abbreviations are used by Axiom to name various system files for constructors (such as library filenames, test input files and example files). Here are some common abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLEX</td>
<td>Complex</td>
</tr>
<tr>
<td>DFLOAT</td>
<td>DoubleFloat</td>
</tr>
<tr>
<td>EXPR</td>
<td>Expression</td>
</tr>
<tr>
<td>FLOAT</td>
<td>Float</td>
</tr>
<tr>
<td>FRAC</td>
<td>Fraction</td>
</tr>
<tr>
<td>INT</td>
<td>Integer</td>
</tr>
<tr>
<td>MATRIX</td>
<td>Matrix</td>
</tr>
<tr>
<td>NNI</td>
<td>NonNegativeInteger</td>
</tr>
<tr>
<td>PI</td>
<td>PositiveInteger</td>
</tr>
<tr>
<td>POLY</td>
<td>Polynomial</td>
</tr>
<tr>
<td>STRING</td>
<td>String</td>
</tr>
<tr>
<td>UP</td>
<td>UnivariatePolynomial</td>
</tr>
</tbody>
</table>

You can combine both full constructor names and abbreviations in a type expression. Here are some types using abbreviations.

- \texttt{POLY INT} is the same as \texttt{Polynomial(INT)}
- \texttt{POLY(Integer)} is the same as \texttt{Polynomial(Integer)}
- \texttt{POLY(Integer)} is the same as \texttt{Polynomial(INT)}
- \texttt{FRAC(COMPLEX(INT))} is the same as \texttt{Fraction Complex Integer}
- \texttt{FRAC(COMPLEX(INT))} is the same as \texttt{FRAC(Complex Integer)}

There are several ways of finding the names of constructors and their abbreviations. For a specific constructor, use \texttt{\textbackslash abbreviation query}. You can also use the \texttt{\textbackslash what} system command to see the names and abbreviations of constructors. For more information about \texttt{\textbackslash what}, see section A.30 on page 1002.

\texttt{\textbackslash abbreviation query} can be abbreviated (no pun intended) to \texttt{\textbackslash abb q}.

\texttt{\textbackslash abb q Integer}

\texttt{INT abbreviates domain Integer}
2.3. DECLARATIONS

The \texttt{)abbreviation query} command lists the constructor name if you give the abbreviation. Issue \texttt{)abb q} if you want to see the names and abbreviations of all Axiom constructors.

\texttt{)abb q DMP}

\texttt{DMP abbreviates domain DistributedMultivariatePolynomial}

Issue this to see all packages whose names contain the string “ode”.

\texttt{)what packages ode}

--------------------------------- Packages --------------------------------

Packages with names matching patterns:

ode

EXPRODE ExpressionSpaceODESolver
FCPAK1 FortranCodePackage1
GRAY GrayCode
LODEEF ElementaryFunctionLODESolver
NODE1 NonLinearFirstOrderODESolver
ODECONST ConstantLODE
ODEEF ElementaryFunctionLODESolver
ODEINT ODEIntegration
ODEPAL PureAlgebraicLODE
ODERAT RationalLODE
ODERED ReduceLODE
ODESYS SystemODESolver
ODETOOLS ODETools
UTSODE UnivariateTaylorSeriesODESolver
UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to variables. A colon “:” is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is

\[
\text{variableName : typeOrMode}
\]

For multiple variables, the syntax is

\[
(\text{variableName}_1, \text{variableName}_2, \ldots \text{variableName}_N) : \text{typeOrMode}
\]
You can always combine a declaration with an assignment. When you do, it is equivalent to first giving a declaration statement, then giving an assignment. For more information on assignment, see section 1.3 on page 6 and section 5.1 on page 119. To see how to declare your own functions, see section 6.4 on page 158.

This declares one variable to have a type.

\[
a : \text{Integer}
\]

Type: Void

This declares several variables to have a type.

\[
(b,c) : \text{Integer}
\]

Type: Void

\[a, b \text{ and } c \text{ can only hold integer values.}
\]

\[
a := 45
\]

45

Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

\[
b := 4/5
\]

Cannot convert right-hand side of assignment
4
- 5
to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

\[
n : \text{Complex} ?
\]

Type: Void
2.3. DECLARATIONS

This declares several variables with a mode.

\[(p, q, r) : \text{Matrix Polynomial ?} \]

Type: Void

This complex object has integer real and imaginary parts.

\[n := -36 + 9 \times \%i\]

\[-36 + 9 \, i\]

Type: Complex Integer

This complex object has fractional symbolic real and imaginary parts.

\[n := \text{complex}(4/(x + y), y/x)\]

\[\frac{4}{y + x} + \frac{y}{x} \, i\]

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

\[p := \left[\begin{array}{ccc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array} \right] \]

Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coefficients.

\[q := \left[\begin{array}{c} x - \frac{2}{3} \end{array} \right] \]

\[\left[x - \frac{2}{3} \right] \]

Type: Matrix Polynomial Fraction Integer

This matrix has entries that are polynomials with complex integer coefficients.

\[r := \left[\begin{array}{c} 1-\%i \times x, 7y + 4\times \%i \end{array} \right] \]
CHAPTER 2. USING TYPES AND MODES

\[
\begin{bmatrix}
-1 & x + 1 \\
7 & y + 4i
\end{bmatrix}
\]

Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object with polynomial real and imaginary parts.

\[
f : \text{COMPLEX POLY} := (x + y*%i)^2
\]

\[-y^2 + x^2 + 2xyi\]

Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convertible from one to the other. See section 2.7 on page 82 for more information.

\[
g : \text{POLY COMPLEX} := (x + y*%i)^2
\]

\[-y^2 + 2yi + x^2\]

Type: Polynomial Complex Integer

2.4 Records

A Record is an object composed of one or more other objects, each of which is referenced with a selector. Components can all belong to the same type or each can have a different type.

The syntax for writing a Record type is

\[
\text{Record}(selector_1: type_1, selector_2: type_2, \ldots, selector_N: type_N)
\]

You must be careful if a selector has the same name as a variable in the workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at once by assigning the record a bracketed tuple of values of the proper length. For example:

\[
r : \text{Record}(a: \text{Integer}, b: \text{String}) := [1, "two"]
\]

\[
[a = 1, b = "two"]
\]
2.4. RECORDS

Type: Record(a: Integer, b: String)

To access a component of a record \(r \), write the name \(r \), followed by a period, followed by a selector.

The object returned by this computation is a record with two components: a quotient part and a remainder part.

\[u := \text{divide}(5, 2) \]

\[\text{[quotient} = 2, \text{remainder} = 1\] \]

Type: Record(quotient: Integer, remainder: Integer)

This is the quotient part.

\[u.\text{quotient} \]

2

Type: PositiveInteger

This is the remainder part.

\[u.\text{remainder} \]

1

Type: PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change destructively the components of a record.

\[u.\text{quotient} := 8978 \]

8978

Type: PositiveInteger

The selected component \(\text{quotient} \) has the value 8978, which is what is returned by the assignment. Check that the value of \(u \) was modified.

\[u \]

\[\text{[quotient} = 8978, \text{remainder} = 1\]
Type: Record(quotient: Integer, remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the selectors themselves.

\[
s := 'quotient
\]

\[
quotient
\]

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace. If this occurs, precede the selector name by a single quote, as in \[u.'quotient\].

\[
divide(5,2).s
\]

\[
2
\]

Type: PositiveInteger

Here we declare that the value of \(bd\) has two components: a string, to be accessed via \(name\), and an integer, to be accessed via \(birthdayMonth\).

\[
bd : Record(name : String, birthdayMonth : Integer)
\]

Type: Void

You must initially set the value of the entire Record at once.

\[
bd := ["Judith", 3]
\]

\[
[name = "Judith", birthdayMonth = 3]
\]

Type: Record(name: String, birthdayMonth: Integer)

Once set, you can change any of the individual components.

\[
bd.name := "Katie"
\]

"Katie"

Type: String
Records may be nested and the selector names can be shared at different levels.

\[
r : \text{Record}(a : \text{Record}(b: \text{Integer}, c: \text{Integer}), b: \text{Integer})
\]

Type: Void

The record \(r \) has a \(b \) selector at two different levels. Here is an initial value for \(r \).

\[
r := [[1,2], 3]
\]

\[
[a = [b = 1, c = 2], b = 3]
\]

Type: \text{Record}(a: \text{Record}(b: \text{Integer},c: \text{Integer}),b: \text{Integer})

This extracts the \(b \) component from the \(a \) component of \(r \).

\[
r.a.b
\]

1

Type: \text{PositiveInteger}

This extracts the \(b \) component from \(r \).

\[
r.b
\]

3

Type: \text{PositiveInteger}

You can also use spaces or parentheses to refer to \text{Record} components. This is the same as \(r.a \).

\[
r(a)
\]

[\(b = 1, c = 2 \)]

Type: \text{Record}(b: \text{Integer},c: \text{Integer})

This is the same as \(r.b \).

\[
r.b
\]
CHAPTER 2. USING TYPES AND MODES

3

Type: PositiveInteger

This is the same as \(r.b := 10 \).

\[r(b) := 10 \]

Type: PositiveInteger

Look at \(r \) to make sure it was modified.

\[r \]

\[[a = [b = 1, c = 2], b = 10] \]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two versions of unions are available, one with selectors (like records) and one without.

Unions Without Selectors

The declaration \(x : \text{Union}(\text{Integer, String, Float}) \) states that \(x \) can have values that are integers, strings or “big” floats. If, for example, the Union object is an integer, the object is said to belong to the Integer branch of the Union. Note that we are being a bit careless with the language here. Technically, the type of \(x \) is always \(\text{Union} \text{(Integer, String, Float)} \). If it belongs to the Integer branch, \(x \) may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is

\[\text{Union}(\text{type}_1, \text{type}_2, \ldots, \text{type}_N) \]

The types in a union without selectors must be distinct.

It is possible to create unions like \(\text{Union}(\text{Integer, PositiveInteger}) \) but they are difficult to work with because of the overlap in the branch types. See below for the rules Axiom uses for converting something into a union object.
2.5. UNIONS

The case infix operator returns a Boolean and can be used to determine the branch in which an object lies.

This function displays a message stating in which branch of the Union the object (defined as x above) lies.

```lisp
sayBranch(x : Union(Integer,String,Float)) : Void ==
  output
  x case Integer => "Integer branch"
  x case String  => "String branch"
  "Float branch"
```

This tries `sayBranch` with an integer.

```lisp
sayBranch 1
```

Compiling function sayBranch with type Union(Integer,String,Float) -> Void

```
Integer branch
Type: Void
```

This tries `sayBranch` with a string.

```lisp
sayBranch "hello"
```

```
String branch
Type: Void
```

This tries `sayBranch` with a floating-point number.

```lisp
sayBranch 2.718281828
```

```
Float branch
Type: Void
```

There are two things of interest about this particular example to which we would like to draw your attention.

1. Axiom normally converts a result to the target value before passing it to the function. If we left the declaration information out of this function definition then the `sayBranch` call would have been attempted with an Integer rather than a Union, and an error would have resulted.
2. The types in a Union are searched in the order given. So if the type were given as

```plaintext
sayBranch(x: Union(String,Integer,Float,Any)): Void
```

then the result would have been “String branch” because there is a conversion from Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore abbreviates the names of unions by printing the type of the branch first within the Union and then eliding the remaining types with an ellipsis (...).

Here the Integer branch is displayed first. Use “::” to create a Union object from an object.

```plaintext
78 :: Union(Integer,String)
```

```
Type: Union(Integer,...)
```

Here the String branch is displayed first.

```plaintext
s := "string" :: Union(Integer,String)
```

```
"string"
Type: Union(String,...)
```

Use typeOf to see the full and actual Union type.

```plaintext
typeOf s
```

```
Union(Integer,String)
```

```
Type: Domain
```

A common operation that returns a union is exquo which returns the “exact quotient” if the quotient is exact.

```plaintext
three := exquo(6,2)
```

```
3
Type: Union(Integer,...)
```

and "failed" if the quotient is not exact.
A union with a "failed" is frequently used to indicate the failure or lack of applicability of an object. As another example, assign an integer a variable r declared to be a rational number.

```plaintext
r: FRAC INT := 3
```

3

Type: Fraction Integer

The operation `retractIfCan` tries to retract the fraction to the underlying domain `Integer`. It produces a union object. Here it succeeds.

```plaintext
retractIfCan(r)
```

3

Type: Union(Integer,...)

Assign it a rational number.

```plaintext
r := 3/2
```

3

2

Type: Fraction Integer

Here the retraction fails.

```plaintext
retractIfCan(r)
```

"failed"

Type: Union("failed",...)
Unions With Selectors

Like records (section 2.4 on page 72), you can write Union types with selectors.

The syntax for writing a Union type with selectors is

\[
\text{Union}(\text{selector}_1:\text{type}_1, \text{selector}_2:\text{type}_2, \ldots, \text{selector}_N:\text{type}_N)
\]

You must be careful if a selector has the same name as a variable in the workspace. If this occurs, precede the selector name by a single quote. It is an error to use a selector that does not correspond to the branch of the Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records can have more than one component and the selectors are used to refer to the components. Unions always have one component but the type of that one component can vary. An object of type Record(a: Integer, b: Float, c: String) contains an integer and a float and a string. An object of type Union(a: Integer, b: Float, c: String) contains an integer or a float or a string.

Here is a version of the sayBranch function (cf. section 2.5 on page 76) that works with a union with selectors. It displays a message stating in which branch of the Union the object lies.

```
sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
output
  x case i => "Integer branch"
  x case s => "String branch"
  "Float branch"
```

Note that case uses the selector name as its right-hand argument. If you accidentally use the branch type on the right-hand side of case, false will be returned.

Declare variable `u` to have a union type with selectors.

```
u : Union(i : Integer, s : String)
```

Type: Void

Give an initial value to `u`.

```
u := "good morning"
```

"good morning"

Type: Union(s: String,...)
2.6. THE “ANY” DOMAIN

Use case to determine in which branch of a Union an object lies.

u case i

false

Type: Boolean

u case s

ture

Type: Boolean

To access the element in a particular branch, use the selector.

u.s

"good morning"

Type: String

2.6 The “Any” Domain

With the exception of objects of type Record, all Axiom data structures are homogenous, that is, they hold objects all of the same type. If you need to get around this, you can use type Any. Using Any, for example, you can create lists whose elements are integers, rational numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x**2, "wally"]

\[
\begin{bmatrix}
1, 7.2, \frac{3}{2}, x^2, \text{"wally"}
\end{bmatrix}
\]
CHAPTER 2. USING TYPES AND MODES

Type: List Any

When we ask for the elements, Axiom displays these types.

u.1

1

Type: PositiveInteger

Actually, these objects belong to Any but Axiom automatically converts them to their natural types for you.

u.3

3

\frac{3}{2}

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it cannot be used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type Any. An object of type Any consists not only a data part representing its normal value, but also a type part (a badge) giving its type. For example, the value 1 of type PositiveInteger as an object of type Any internally looks like [1, PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know in advance exactly which types you are going to allow. For Any, anything that comes along can be accommodated.

2.7 Conversion

Conversion is the process of changing an object of one type into an object of another type. The syntax for conversion is:

\textit{object::newType}
By default, 3 has the type `PositiveInteger`.

\[
3
\]

\[
\text{Type: PositiveInteger}
\]

We can change this into an object of type `Fraction Integer` by using "::".

\[
3 :: \text{Fraction Integer}
\]

\[
\text{Type: Fraction Integer}
\]

A coercion is a special kind of conversion that Axiom is allowed to do automatically when you enter an expression. Coercions are usually somewhat safer than more general conversions. The Axiom library contains operations called `coerce` and `convert`. Only the `coerce` operations can be used by the interpreter to change an object into an object of another type unless you explicitly use a `::`.

By now you will be quite familiar with what types and modes look like. It is useful to think of a type or mode as a pattern for what you want the result to be.

Let's start with a square matrix of polynomials with complex rational number coefficients.

\[
m : \text{SquareMatrix}(2,\text{POLY COMPLEX FRAC INT})
\]

\[
m := \text{matrix} \begin{bmatrix} x-3/4*%i, z*y**2+1/2, [3/7*%i*y**4 - x, 12-%i*9/5] \end{bmatrix}
\]

\[
\text{Type: SquareMatrix}(2,\text{Polynomial Complex Fraction Integer})
\]

We first want to interchange the `Complex` and `Fraction` layers. We do the conversion by doing the interchange in the type expression.

\[
m1 := m :: \text{SquareMatrix}(2,\text{POLY FRAC COMPLEX INT})
\]

\[
\begin{bmatrix} x - \frac{3}{4} i & y^2 z + \frac{1}{2} \\ \frac{2}{3} i y^3 - x & 12 - \frac{9}{5} i \end{bmatrix}
\]

\[
\text{Type: SquareMatrix}(2,\text{Polynomial Complex Fraction Integer})
\]
Interchange the Polynomial and the Fraction levels.

\[
m2 := m1 :: \text{SquareMatrix}(2,\text{FRAC POLY COMPLEX INT})
\]

\[
\begin{bmatrix}
\frac{4}{i} x - 3 i \quad \frac{2}{i} y^2 - 1
\end{bmatrix}
\]

Type: \text{SquareMatrix}(2,\text{Fraction Polynomial Complex Integer})

Interchange the Polynomial and the Complex levels.

\[
m3 := m2 :: \text{SquareMatrix}(2,\text{FRAC COMPLEX POLY INT})
\]

\[
\begin{bmatrix}
\frac{4}{i} x - 3 i \quad \frac{2}{i} y^2 - 1
\end{bmatrix}
\]

Type: \text{SquareMatrix}(2,\text{Fraction Complex Polynomial Integer})

All the entries have changed types, although in comparing the last two results only the entry in the lower left corner looks different. We did all the intermediate steps to show you what Axiom can do.

In fact, we could have combined all these into one conversion.

\[
m :: \text{SquareMatrix}(2,\text{FRAC COMPLEX POLY INT})
\]

\[
\begin{bmatrix}
\frac{4}{i} x - 3 i \quad \frac{2}{i} y^2 - 1
\end{bmatrix}
\]

Type: \text{SquareMatrix}(2,\text{Fraction Complex Polynomial Integer})

There are times when Axiom is not be able to do the conversion in one step. You may need to break up the transformation into several conversions in order to get an object of the desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you look at it) SquareMatrix because each of these levels requires that its argument type have commutative multiplication, whereas SquareMatrix does not. That is because Fraction requires that its argument belong to the category IntegralDomain and Complex requires that its argument belong to CommutativeRing. See section 2.1 on page 57 for a brief discussion of categories. The Integer level did not move anywhere because it does not allow any arguments. We also did not move the SquareMatrix part anywhere, but we could have.

Recall that \(m \) looks like this.
2.8. SUBDOMAINS AGAIN

A subdomain \(S \) of a domain \(D \) is a domain consisting of

1. those elements of \(D \) that satisfy some predicate (that is, a test that returns true or false) and

\[
\begin{pmatrix}
 x - \frac{3}{4} i & y^2 z + \frac{1}{2} \\
 \frac{3}{4} i y^3 - x & 12 - \frac{2}{3} i
\end{pmatrix}
\]

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with polynomial entries, we can just do the conversion.

\[
m :: \text{POLY SquareMatrix}(2,\text{COMPLEX FRAC INT})
\]

\[
\begin{pmatrix}
 0 & 1 \\
 0 & 0
\end{pmatrix} y^2 z + \begin{pmatrix}
 0 & 0 \\
 \frac{3}{4} i & 0
\end{pmatrix} y^4 + \begin{pmatrix}
 1 & 0 \\
 -1 & 0
\end{pmatrix} x + \begin{pmatrix}
 -\frac{3}{4} i & \frac{1}{2} \\
 0 & 12 - \frac{2}{3} i
\end{pmatrix}
\]

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We have not yet used modes for any conversions. Modes are a great shorthand for indicating the type of the object you want. Instead of using the long type expression in the last example, we could have simply said this.

\[
m :: \text{POLY} ?
\]

\[
\begin{pmatrix}
 0 & 1 \\
 0 & 0
\end{pmatrix} y^2 z + \begin{pmatrix}
 0 & 0 \\
 \frac{3}{4} i & 0
\end{pmatrix} y^4 + \begin{pmatrix}
 1 & 0 \\
 -1 & 0
\end{pmatrix} x + \begin{pmatrix}
 -\frac{3}{4} i & \frac{1}{2} \\
 0 & 12 - \frac{2}{3} i
\end{pmatrix}
\]

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be fractions.

\[
m :: \text{POLY SquareMatrix}(2,\text{FRAC} ?)
\]

\[
\begin{pmatrix}
 0 & 1 \\
 0 & 0
\end{pmatrix} y^2 z + \begin{pmatrix}
 0 & 0 \\
 \frac{3}{4} i & 0
\end{pmatrix} y^4 + \begin{pmatrix}
 1 & 0 \\
 -1 & 0
\end{pmatrix} x + \begin{pmatrix}
 -\frac{3}{4} i & \frac{1}{2} \\
 0 & 12 - \frac{2}{3} i
\end{pmatrix}
\]

Type: Polynomial SquareMatrix(2,Fraction Complex Integer)
2. a subset of the operations of \(D \).

Every domain is a subdomain of itself, trivially satisfying the membership test: \texttt{true}.

Currently, there are only two system-defined subdomains in Axiom that receive substantial use. \texttt{PositiveInteger} and \texttt{NonNegativeInteger} are subdomains of \texttt{Integer}. An element \(x \) of \texttt{NonNegativeInteger} is an integer that is greater than or equal to zero, that is, satisfies \(x \geq 0 \). An element \(x \) of \texttt{PositiveInteger} is a nonnegative integer that is, in fact, greater than zero, that is, satisfies \(x > 0 \). Not all operations from \texttt{Integer} are available for these subdomains. For example, negation and subtraction are not provided since the subdomains are not closed under those operations. When you use an integer in an expression, Axiom assigns to it the type that is the most specific subdomain whose predicate is satisfied.

This is a positive integer.

\[5 \]

\[\text{Type: PositiveInteger} \]

This is a nonnegative integer.

\[0 \]

\[\text{Type: NonNegativeInteger} \]

This is neither of the above.

\[-5 \]

\[\text{Type: Integer} \]

Furthermore, unless you are assigning an integer to a declared variable or using a conversion, any integer result has as type the most specific subdomain.

\[(-2) - (-3) \]

\[1 \]

\[\text{Type: PositiveInteger} \]
When necessary, Axiom converts an integer object into one belonging to a less specific subdomain. For example, in \(3 - 2\), the arguments to “-” are both elements of \texttt{PositiveInteger}, but this type does not provide a subtraction operation. Neither does \texttt{NonNegativeInteger}, so 3 and 2 are viewed as elements of \texttt{Integer}, where their difference can be calculated. The result is 1, which Axiom then automatically assigns the type \texttt{PositiveInteger}.

Certain operations are very sensitive to the subdomains to which their arguments belong. This is an element of \texttt{PositiveInteger}.

\[
2 \times 2
\]

\[
4
\]

\texttt{Type: PositiveInteger}

This is an element of \texttt{Fraction Integer}.

\[
2 \times (-2)
\]

\[
\frac{1}{4}
\]

\texttt{Type: Fraction Integer}

It makes sense then that this is a list of elements of \texttt{PositiveInteger}.

\[
[10 \times i \text{ for } i \text{ in } 2 \ldots 5]
\]

\[
[100, 1000, 10000, 100000]
\]

\texttt{Type: List PositiveInteger}
CHAPTER 2. USING TYPES AND MODES

What should the type of \([10^{(i-1)} \text{ for } i \text{ in } 2..5]\) be? On one hand, \(i - 1\) is always an integer greater than zero as \(i\) ranges from 2 to 5 and so \(10 \cdot i\) is also always a positive integer. On the other, \(i - 1\) is a very simple function of \(i\). Axiom does not try to analyze every such function over the index's range of values to determine whether it is always positive or nowhere negative. For an arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.

\[
[10^{(i-1)} \text{ for } i \text{ in } 2..5]
\]

\[
[10, 100, 1000, 10000]
\]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices. You can use a conversion.

\[
[10^{((i-1) :: \text{PI}) \text{ for } i \text{ in } 2..5}]
\]

Compiling function G82696 with type Integer -> Boolean
Compiling function G82708 with type NonNegativeInteger -> Boolean

\[
[10, 100, 1000, 10000]
\]

Type: List PositiveInteger

Or you can use pretend.

\[
[10^{((i-1) \text{ pretend PI}) \text{ for } i \text{ in } 2..5}]
\]

\[
[10, 100, 1000, 10000]
\]

Type: List PositiveInteger

The operation pretend is used to defeat the Axiom type system. The expression object pretend D means “make a new object (without copying) of type D from object.” If object were an integer and you told Axiom to pretend it was a list, you would probably see a message about a fatal error being caught and memory possibly being damaged. Lists do not have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified type.

\[
(2/3) \text{ pretend Complex Integer}
\]

\[
2 + 3 \, i
\]

Type: Complex Integer
2.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your having to qualify it with type information. Nevertheless, there are times when you need to help it along by providing hints (or even orders!) to get Axiom to do what you want.

We saw in section 2.3 on page 69 that declarations using types and modes control the type of the results produced. For example, we can either produce a complex object with polynomial real and imaginary parts or a polynomial with complex integer coefficients, depending on the declaration.

Package calling is how you tell Axiom to use a particular function from a particular part of the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

\[
\frac{2}{3}
\]

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

\[(2/3)$Float
\]

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

\[(2/3)$Fraction(Complex Integer)
\]

\[
\frac{2}{3}
\]

Type: Fraction Complex Integer

In each case, Axiom used the indicated operations, sometimes first needing to convert the two integers into objects of the appropriate type. In these examples, “/” is written as an infix operator.

To use package calling with an infix operator, use the following syntax:

\[(arg_1 \ op \ arg_2)$type
\]
We used, for example, \((2/3)\texttt{Float} \). The expression \(2 + 3 + 4 \) is equivalent to \((2 + 3) + 4 \). Therefore in the expression \((2 + 3 + 4)\texttt{Float} \) the second \(+ \) comes from the \texttt{Float} domain. The first \(+ \) comes from \texttt{Float} because the package call causes Axiom to convert \((2 + 3) \) and 4 to type \texttt{Float}. Before the sum is converted, it is given a target type of \texttt{Float} by Axiom and then evaluated. The target type causes the \(+ \) from \texttt{Float} to be used.

For an operator written before its arguments, you must use parentheses around the arguments (even if there is only one), and follow the closing parenthesis by a \(\$ \) and then the type.

\[
\text{fun} \ (\ arg_1, arg_2, \ldots, arg_N)\texttt{type}
\]

For example, to call the “minimum” function from \texttt{DoubleFloat} on two integers, you could write \texttt{min(4,89)\texttt{DoubleFloat}}. Another use of package calling is to tell Axiom to use a library function rather than a function you defined. We discuss this in section 6.9 on page 166.

Sometimes rather than specifying where an operation comes from, you just want to say what type the result should be. We say that you provide a target type for the expression. Instead of using a \(\$ \), use a \(@ \) to specify the requested target type. Otherwise, the syntax is the same. Note that giving a target type is not the same as explicitly doing a conversion. The first says “try to pick operations so that the result has such-and-such a type.” The second says “compute the result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this expression so that the final result is \texttt{Float}.”

\[(2/3)@\texttt{Float}\]

\[0.66666666666666666667\]

Type: \texttt{Float}

Here we used \(@ \) to say that the target type of the left-hand side was \texttt{Float}. In this simple case, there was no real difference between using \(\$ \) and \(@ \). You can see the difference if you try the following.

This says to try to choose \(+ \) so that the result is a string. Axiom cannot do this.

\[(2 + 3)@\texttt{String}\]

An expression involving \(@ \) \texttt{String} actually evaluated to one of type \texttt{PositiveInteger} . Perhaps you should use :: \texttt{String} .

This says to get the \(+ \) from \texttt{String} and apply it to the two integers. Axiom also cannot do this because there is no \(+ \) exported by \texttt{String}.
The function + is not implemented in String.

The operation `concat` is used to concatenate two strings. One can also concatenate strings by juxtaposition. For instance, by writing

"asdf" "jkl"

When we have more than one operation in an expression, the difference is even more evident. The following two expressions show that Axiom uses the target type to create different objects. The "+", "*" and "**" operations are all chosen so that an object of the correct final type is created.

This says that the operations should be chosen so that the result is a Complex object.

\[
((x + y * \%i)**2)@(Complex Polynomial Integer)
\]

\[-y^2 + x^2 + 2 \times y \times i\]

Type: Complex Polynomial Integer

This says that the operations should be chosen so that the result is a Polynomial object.

\[
((x + y * \%i)**2)@(Polynomial Complex Integer)
\]

\[-y^2 + 2 \times i \times y + x^2\]

Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call information in this last example?

\[
(x + y * \%i)**2
\]

\[-y^2 + 2 \times i \times y + x^2\]

Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than just saying making what we want in the first place.

\[
% ::\ Complex?
\]

\[-y^2 + x^2 + 2 \times y \times i\]
Finally, another use of package calling is to qualify fully an operation that is passed as an argument to a function.

Start with a small matrix of integers.

\[
h := \text{matrix} \begin{bmatrix} 8 & 6 \\ -4 & 9 \end{bmatrix}
\]

\[
\text{Type: Matrix Integer}
\]

We want to produce a new matrix that has for entries the multiplicative inverses of the entries of \(h \). One way to do this is by calling \texttt{map} with the \texttt{inv} function from \texttt{Fraction(Integer)}.

\[
\text{map(inv$Fraction(Integer),h)}
\]

\[
\begin{bmatrix} \frac{1}{8} & \frac{1}{6} \\ \frac{1}{-4} & \frac{1}{9} \end{bmatrix}
\]

\[
\text{Type: Matrix Fraction Integer}
\]

We could have been a bit less verbose and used abbreviations.

\[
\text{map(inv$FRAC(INT),h)}
\]

\[
\begin{bmatrix} \frac{1}{8} & \frac{1}{6} \\ \frac{1}{-4} & \frac{1}{9} \end{bmatrix}
\]

\[
\text{Type: Matrix Fraction Integer}
\]

As it turns out, Axiom is smart enough to know what we mean anyway. We can just say this.

\[
\text{map(inv,h)}
\]

\[
\begin{bmatrix} \frac{1}{8} & \frac{1}{6} \\ \frac{1}{-4} & \frac{1}{9} \end{bmatrix}
\]

\[
\text{Type: Matrix Fraction Integer}
\]
2.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines a type to which two objects of possibly different types can be converted. We do this to give you further insight into how Axiom takes your input, analyzes it, and produces a result.

What happens when you enter $x + 1$ to Axiom? Let’s look at what you get from the two terms of this expression.

This is a symbolic object whose type indicates the name.

x

Type: Variable x

This is a positive integer.

1

Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to objects of type Variable(x) nor are there any in Variable(x). Before it can add the two parts, Axiom must come up with a common type to which both x and 1 can be converted. We say that Axiom must resolve the two types into a common type. In this example, the common type is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the addition operation from Polynomial(Integer) is used to get the answer.

$x + 1$

Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types can be found, then Any is be used. This is fine and useful in some cases.

[$"string",3.14159]$
Type: List Any

In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the
arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
Float

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to
help Axiom resolve the types involved. You may need to declare a few variables, do some
package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does.
We think you will be impressed with its ability to “do what I mean.” If Axiom is still being
obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

2.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding
others that are meant to be used by developers or only in rare cases. If you are a new user
of Axiom, it is likely that everything you need is available by default and you may want to
skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can
use its operations without doing anything special) or it is hidden (meaning you have to
either package call (see section 2.9 on page 89) the operations it contains or explicitly expose
it to use the operations). The initial exposure status for a constructor is set in the file
exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of this file).
Constructors are collected together in exposure groups. Categories are all in the exposure
group “categories” and the bulk of the basic set of packages and domains that are exposed
are in the exposure group “basic.” Here is an abbreviated sample of the file (without the
Lisp parentheses):
2.11. EXPOSING DOMAINS AND PACKAGES

For each constructor in a group, the full name and the abbreviation is given. There are other groups in `exposed.lsp` but initially only the constructors in exposure groups “basic”, “categories”, “aglink”, and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use `)set expose` to expose, hide or query the exposure status of an individual constructor or exposure group. The reason for having exposure groups is to be able to expose or hide multiple constructors with a single command. For example, you might group together into exposure group “quantum” a number of domains and packages useful for quantum mechanical computations. These probably should not be available to every user, but you want an easy way to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue `)set expose drop group basic`. We do not recommend that you do this. If, however, you discover that you have hidden all the basic constructors, you should issue `)set expose add group basic` to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. In section 6.19 on page 203 we use several operations from `OutputForm`, a domain usually hidden. To avoid package calling every operation from `OutputForm`, we expose the domain and let Axiom...
conclude that those operations should be used. Use \texttt{)}set expose add constructor and \texttt{)}set expose drop constructor to expose and hide a constructor, respectively. You should use the constructor name, not the abbreviation. The \texttt{)}set expose command guides you through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your intention) though you might not expect the results that you get. \texttt{OutputForm} is, in fact, one of the worst offenders in this regard. This domain is meant to be used by other domains for creating a structure that Axiom knows how to display. It has functions like \texttt{+} that form output representations rather than do mathematical calculations. Because of the order in which Axiom looks at constructors when it is deciding what operation to apply, \texttt{OutputForm} might be used instead of what you expect.

This is a polynomial.

\begin{verbatim}
x + x
\end{verbatim}

\begin{verbatim}
2 x
\end{verbatim}

\texttt{Type: Polynomial Integer}

Exposé \texttt{OutputForm}.

\begin{verbatim}
)set expose add constructor OutputForm
\end{verbatim}

\begin{verbatim}
OutputForm is now explicitly exposed in frame G82322
\end{verbatim}

This is what we get when \texttt{OutputForm} is automatically available.

\begin{verbatim}
x + x
\end{verbatim}

\begin{verbatim}
x + x
\end{verbatim}

\texttt{Type: OutputForm}

Hide \texttt{OutputForm} so we don’t run into problems with any later examples!

\begin{verbatim}
)set expose drop constructor OutputForm
\end{verbatim}

\begin{verbatim}
OutputForm is now explicitly hidden in frame G82322
\end{verbatim}

Finally, exposure is done on a frame-by-frame basis. A \textit{frame} (see section \texttt{A.11} on page 981) is one of possibly several logical Axiom workspaces within a physical one, each having its own environment (for example, variables and function definitions). If you have several Axiom workspace windows on your screen, they are all different frames, automatically created for you by HyperDoc. Frames can be manually created, made active and destroyed by the \texttt{)}frame system command. They do not share exposure information, so you need to use \texttt{)}set expose in each one to add or drop constructors from view.
2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for getting more information about domains, packages, categories, and operations. The most powerful Axiom facility for getting information about constructors and operations is the Browse component of HyperDoc. This is discussed in section 14 on page 931.

Use the \texttt{)what} system command to see lists of system objects whose name contain a particular substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with \texttt{“complex”} in their names.

\texttt{)what operation complex}

Operations whose names satisfy the above pattern(s):

\begin{verbatim}
complex complex?
complexEigenvalues complexEigenvectors
complexElementary complexExpand
complexForm complexIntegrate
complexLimit complexNormalize
complexNumeric complexNumericIfCan
complexRoots complexSolve
complexZeros createLowComplexityNormalBasis
createLowComplexityTable doubleComplex?
drawComplex drawComplexVectorField
fortranComplex fortranDoubleComplex
pmComplexintegrate
\end{verbatim}

To get more information about an operation such as \texttt{complexZeros}, issue the command \texttt{)display op complexZeros}

If you want to see all domains with \texttt{“matrix”} in their names, issue this.

\texttt{)what domain matrix}

----------------------- Domains -----------------------

Domains with names matching patterns:

\begin{verbatim}
matrix
\end{verbatim}
Similarly, if you wish to see all packages whose names contain “gauss”, enter this.

)what package gauss

---------------------- Packages ----------------------

Packages with names matching patterns:
 gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears, it means “Any”.

)show Any

Any is a domain constructor
Abbreviation for Any is ANY
This constructor is exposed in this frame.
Issue)edit /usr/local/axiom/mnt/algebra/any.spad
to see algebra source code for ANY

--------------------- Operations ---------------------

?=?: (%,%) -> Boolean
any : (SExpression,None) -> %
coerce : % -> OutputForm
dom : % -> SExpression
domainOf : % -> OutputForm
hash : % -> SingleInteger
latex : % -> String
obj : % -> None
objectOf : % -> OutputForm
?=?: (%,%) -> Boolean
showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex
There is one exposed function called complex:
\[(D1, D1) \rightarrow D \text{ from } D \text{ if } D \text{ has COMPCAT } D1 \text{ and } D1 \text{ has COMRING } \]

Let's analyze this output.
First we find out what some of the abbreviations mean.

}\text{abbreviation query COMPCAT}

\text{COMPCAT abbreviates category ComplexCategory}

}\text{abbreviation query COMRING}

\text{COMRING abbreviates category CommutativeRing}

So if D1 is a commutative ring (such as the integers or floats) and D belongs to \text{ComplexCategory D1}, then there is an operation called \text{complex} that takes two elements of D1 and creates an element of D. The primary example of a constructor implementing domains belonging to \text{ComplexCategory} is \text{Complex}. See \text{Complex 9.13} on page 447 for more information on that and see section 6.4 on page 158 for more information on function types.
Chapter 3

Using HyperDoc

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line reference manual. It also enables you to use Axiom simply by using the mouse and filling in templates. HyperDoc is available to you if you are running Axiom under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse
pointer to an active area, the pointer changes from a filled dot to an open circle. The active areas are usually linked to other pages. When you click on an active area, you move to the linked page.

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

- Click on this to get help. The button only appears if there is specific help for the page you are viewing. You can get *general* help for HyperDoc by clicking the help button on the home page.

- Click here to go back one page. By clicking on this button repeatedly, you can go back several pages and then take off in a new direction.

- Go back to the home page, that is, the page on which you started. Use HyperDoc to explore, to make forays into new topics. Don’t worry about how to get back. HyperDoc remembers where you came from. Just click on this button to return.

- From the root window (the one that is displayed when you start the system) this button leaves the HyperDoc program, and it must be restarted if you want to use it again. From any other HyperDoc window, it just makes that one window go away. You *must* use this button to get rid of a window. If you use the window manager “Close” button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are viewing. For example, there is no button on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See section 3.3 on page 103 and section 3.4 on page 103 for some contextual key definitions.

- **F1** Display the main help page.
- **F3** Same as, makes the window go away if you are not at the top-level window or quits the HyperDoc facility if you are at the top-level.
- **F5** Rereads the HyperDoc database, if necessary (for system developers).
- **F9** Displays this information about key definitions.
- **F12** Same as F3.
3.3 SCROLL BARS

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.

3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount of text than can be displayed at one time. The scroll bar lets you move up and down in the text to see different parts. It also shows where the aperture is relative to the whole text. The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and click. See that the aperture moves down one line. Do it several times. Each time you click, the aperture moves down one line. Move the mouse to the “up-arrow” at the top of the scroll bar and click. The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the PageUp and PageDown keys on your keyboard. They move the visible part of the region up and down one page each time you press them.

If the HyperDoc page does not contain an input area (see section 3.4 on page 103, you can also use the Home and # arrow keys to navigate. When you press the Home key, the screen is positioned at the very top of the page. Use the # and # arrow keys to move the screen up and down one line at a time, respectively.

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page. Characters that you type are inserted in front of the underscore. This means that when you type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the Backspace key to erase characters to the left. To modify what you type, use the right-arrow and
left-arrow keys and the keys Insert, Delete, Home and End. These keys are found immediately on the right of the standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and if you press the End key, the cursor moves to the end of the line. Pressing Ctrl End deletes all the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor. When you first see a page, the top-most input area contains the cursor. To type information into another input area, use the Enter or Tab key to move from one input area to another. To move in the reverse order, use Shift Tab.

You can also move from one input area to another using your mouse. Notice that each input area is active. Click on one of the areas. As you can see, the underscore cursor moves to that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a checkmark. To change the selection, move the cursor with the mouse to a different radio button and click. A toggle is an independent button that displays some on/off state. When “on”, the button appears to be inverted and contains a checkmark. When “off”, the button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change toggle the selection, move the cursor with the mouse to the button and click.

3.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest that you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.
2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry having exactly that spelling. Enter the word operation into the input area above then click on Search. As you can see, operation matches only one entry, namely with operation itself.

Normally matching is insensitive to whether the alphabetic characters of your search string are in uppercase or lowercase. Thus operation and Operation both have the same effect.
You will very often want to use the wildcard “*” in your search string so as to match multiple entries in the list. The search key “*” matches every entry in the list. You can also use “*” anywhere within a search string to match an arbitrary substring. Try “cat*” for example: enter “cat*” into the input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try search strings such as “*dom*”. As you see, this search string matches “domain”, “domain constructor”, “subdomain”, and so on.

Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings; write logical expressions using these three operators just as in the Axiom language. For example, domain or package matches the two entries domain and package. Similarly, “domain constructor*” matches “domain constructor” and others. Also “not *a*” matches every entry that does not contain the letter “a” somewhere.

Use parentheses for grouping. For example, “domain or (not *con*)” matches “domain” but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,

\[a* \text{ or } b* \text{ or } c* \text{ or } d* \text{ or } e* \text{ and } (\text{not } *a*) \]

is a valid expression.

3.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click on this button, the output for the command is “pasted-in.” Click again on the button and you see that the pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When you do, the example line is copied into a new interactive Axiom buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If you want to get rid of it beforehand, use the Cancel button of the X Window manager or issue the Axiom system command \texttt{)close}.
3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X Window System by placing the following resources in the file .Xdefaults in your home directory. In what follows, font is any valid X11 font name (for example, Rom14) and color is any valid X11 color specification (for example, NavyBlue). For more information about fonts and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is Bld14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is Bld14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is black

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is Bld14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black

Axiom.hyperdoc.TtFont: font
This is the font used for Axiom output in HyperDoc. This font must be fixed-width. The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is Itl14

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value is white
Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default value is white
Chapter 4

Input Files and Output Styles

In this chapter we discuss how to collect Axiom statements and commands into files and then read the contents into the workspace. We also show how to display the results of your computations in several different styles including \TeX, FORTRAN and monospace two-dimensional format.\footnote{\TeX is a trademark of the American Mathematical Society.}

The printed version of this book uses the Axiom \TeX output formatter. When we demonstrate a particular output style, we will need to turn \TeX formatting off and the output style on so that the correct output is shown in the text.

4.1 Input Files

In this section we explain what an input file is and why you would want to know about it. We discuss where Axiom looks for input files and how you can direct it to look elsewhere. We also show how to read the contents of an input file into the workspace and how to use the history facility to generate an input file from the statements you have entered directly into the workspace.

An input file contains Axiom expressions and system commands. Anything that you can enter directly to Axiom can be put into an input file. This is how you save input functions and expressions that you wish to read into Axiom more than one time.

To read an input file into Axiom, use the \texttt{\textbf{\textbackslash read}} system command. For example, you can read a file in a particular directory by issuing

\begin{verbatim}
\texttt{\textbackslash read /spad/src/input/matrix.input}
\end{verbatim}

The “.input” is optional; this also works:

\begin{verbatim}
\texttt{\textbackslash read /spad/src/input/matrix}
\end{verbatim}
CHAPTER 4. INPUT FILES AND OUTPUT STYLES

What happens if you just enter \texttt{read matrix.input} or even \texttt{read matrix}? Axiom looks in your current working directory for input files that are not qualified by a directory name. Typically, this directory is the directory from which you invoked Axiom.

To change the current working directory, use the \texttt{cd} system command. The command \texttt{cd} by itself shows the current working directory. To change it to the src/input subdirectory for user “babar”, issue

\texttt{cd /u/babar/src/input}

Axiom looks first in this directory for an input file. If it is not found, it looks in the system’s directories, assuming you meant some input file that was provided with Axiom.

If you have the Axiom history facility turned on (which it is by default), you can save all the lines you have entered into the workspace by entering \texttt{history \textit{write}}

Axiom tells you what input file to edit to see your statements. The file is in your home directory or in the directory you specified with \texttt{cd}.

In section 5.2 on page 123 we discuss using indentation in input files to group statements into blocks.

4.2 The .axiom.input File

When Axiom starts up, it tries to read the input file \texttt{.axiom.input} from your home directory. It there is no \texttt{.axiom.input} in your home directory, it reads the copy located in its own src/input directory. The file usually contains system commands to personalize your Axiom environment. In the remainder of this section we mention a few things that users frequently place in their \texttt{.axiom.input} files.

In order to have FORTRAN output always produced from your computations, place the system command \texttt{set output fortran on} in \texttt{.axiom.input}. If you do not want to be prompted for confirmation when you issue the \texttt{quit} system command, place \texttt{set quit unprotected} in \texttt{.axiom.input}.

If you then decide that you do want to be prompted, issue \texttt{set quit protected}. This is the default setting so that new users do not leave Axiom inadvertently.\footnote{The system command \texttt{pquit} always prompts you for confirmation.}

To see the other system variables you can set, issue \texttt{set} or use the HyperDoc \texttt{Settings} facility to view and change Axiom system variables.

\footnote{\texttt{.axiom.input} used to be called \texttt{axiom.input} in the NAG version}
4.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different output formats and how to send the output to the screen or to a file. To fix ideas, we use FORTRAN output format for most of the examples.

You can use the)set output system command to toggle or redirect the different kinds of output. The name of the kind of output follows “output” in the command. The names are

- **fortran** for FORTRAN output.
- **algebra** for monospace two-dimensional mathematical output.
- **tex** for TeX output.
- **script** for IBM Script Formula Format output.

For example, issue)set output fortran on to turn on FORTRAN format and issue)set output fortran off to turn it off. By default, algebra is on and all others are off. When output is started, it is sent to the screen. To send the output to a file, give the file name without directory or extension. Axiom appends a file extension depending on the kind of output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort.

You must also turn on the creation of FORTRAN output. The above just says where it goes if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which you started Axiom, or if you have used the)cd system command, the one that you specified with)cd. You should use)cd before you send the output to the file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now on produces FORTRAN output.

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg.sfort
CHAPTER 4. INPUT FILES AND OUTPUT STYLES

You can abbreviate the words “on,” “off,” and “console” to the minimal number of characters needed to distinguish them. Because of this, you cannot send output to files called on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort and so on.

The width of the output on the page is set by)set output length for all formats except FORTRAN. Use)set fortran fortlength to change the FORTRAN line length from its default value of 72.

4.4 Monospace Two-Dimensional Mathematical Format

This is the default output format for Axiom. It is usually on when you start the system. If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version) shows output produced by the \TeX output formatter, let us temporarily turn off \TeX output.

)set output tex off

Here is an example of what it looks like.

\begin{verbatim}
matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]
+ 3 3 2+
n|3%i y + x 3%i y + 2x |
x|4 4 2|
+4%i y + x 4%i y + 2x +
\end{verbatim}

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of formatting.

)set output algebra off

Turn \TeX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this character set when you issue)set output characters plain. This character set should be used when you are running on a machine that does not support the IBM extended ASCII character set. If you are running on an IBM workstation, for example, issue)set output characters default to get better looking output.
4.5 TeX Format

Axiom can produce TeX output for your expressions. The output is produced using macros from the \LaTeX\ document preparation system by Leslie Lamport\cite{1}. The printed version of this book was produced using this formatter.

To turn on TeX output formatting, issue this.

\texttt{)set output tex on}

Here is an example of its output.

\texttt{matrix \{ i*x**i + j*y**j for i in 1..2 for j in 3..4\}}

$$
\begin{array}{cc}
3i y^3 + x & 3i y^3 + 2x^2 \\
4i y^4 + x & 4i y^4 + 2x^2 \\
\end{array}
$$

This formats as

$$
\begin{array}{cc}
3i y^3 + x & 3i y^3 + 2x^2 \\
4i y^4 + x & 4i y^4 + 2x^2 \\
\end{array}
$$

To turn TeX output formatting off, issue \texttt{)set output tex off}. The \LaTeX\ macros in the output generated by Axiom are all standard except for the following definitions:

\texttt{\def\csch{\mathop{\rm csch}\nolimits}}

\texttt{\def\erf{\mathop{\rm erf}\nolimits}}

\texttt{\def\zag#1#2{\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill}}}

4.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.
Here is an example of its output.

\[
\text{matrix } \begin{bmatrix} i*x**i + j*y**j & \text{for } i \text{ in } 1..2 \\ \text{for } j \text{ in } 3..4 \end{bmatrix}
\]

To turn IBM Script Formula Format output formatting off, issue this.

\)set output script off\)

\section*{4.7 FORTRAN Format}

In addition to turning FORTRAN output on and off and stating where the output should be placed, there are many options that control the appearance of the generated code. In this section we describe some of the basic options. Issue \texttt{)}set fortran\texttt{) to see a full list with their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs more than one line, the ampersand character \& is used in column 6. Since some versions of FORTRAN have restrictions on the number of lines per statement, Axiom breaks long expressions into segments with a maximum of 1320 characters (20 lines of 66 characters) per segment. If you want to change this, say, to 660 characters, issue the system command \)set fortran explength 660\). You can turn off the line breaking by issuing \)set fortran segment off\). Various code optimization levels are available.

FORTRAN output is produced after you issue this.

\)set output fortran on\)

For the initial examples, we set the optimization level to 0, which is the lowest level.

\)set fortran optlevel 0\)

The output is usually in columns 7 through 72, although fewer columns are used in the following examples so that the output fits nicely on the page.

\)set fortran fortlength 60\)
4.7. **FORTRAN FORMAT**

By default, the output goes to the screen and is displayed before the standard Axiom two-dimensional output. In this example, an assignment to the variable \(R1 \) was generated because this is the result of step 1.

\[(x+y)^3\]

\[
R1 = y^3 + 3xy^2 + 3x^2y + x^3
\]

Type: Polynomial Integer

Here is an example that illustrates the line breaking.

\[(x+y+z)^3\]

\[
R2 = z^3 + (3y+3x)z^2 + (3y^2 + 6xy + 3x^2)z + y^3 + 3x^2y + x^3
\]

Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating point numbers, except in exponents. This is the default behavior but can be turned off by issuing `)set fortran ints2floats off`. The rules governing when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number if it is greater than 32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules apply only govern integers in expressions.

Numbers generated by Axiom for `DIMENSION` statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

- `)set fortran defaulttype REAL`
- `)set fortran defaulttype INTEGER`
- `)set fortran defaulttype COMPLEX`
- `)set fortran defaulttype LOGICAL`
- `)set fortran defaulttype CHARACTER`

When temporaries are created, they are given a default type of `REAL`. Also, the `REAL` versions of functions are used by default.
CHAPTER 4. INPUT FILES AND OUTPUT STYLES

\[
\sin(x)
\]

\[
R3 = \text{DSIN}(x)
\]

\[
\sin(x)
\]

Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

\[
)\text{set fortran optlevel 1}
\]

\[(x+y+z)^3\]

\[
T2 = y \cdot y
\]

\[
T3 = x \cdot x
\]

\[
R4 = z \cdot z \cdot z + (3 \cdot y + 3 \cdot x) \cdot z \cdot z + (3 \cdot T2 + 6 \cdot x \cdot y + 3 \cdot T3) \cdot z \cdot y + 3 \cdot 3 \cdot x \cdot T2 +
\]

\[
&3 \cdot T3 \cdot y + x \cdot z
\]

\[z^3 + (3 \cdot y + 3 \cdot x) \cdot z^2 + (3 \cdot y^2 + 6 \cdot x \cdot y + 3 \cdot x^2) \cdot z + y^3 + 3 \cdot x \cdot y^2 + 3 \cdot x^2 \cdot y + x^3\]

Type: Polynomial Integer

This changes the precision to \text{DOUBLE}. Substitute \text{single} for \text{double} to return to single precision.

\[
)\text{set fortran precision double}
\]

Complex constants display the precision.

\[
2.3 + 5.6 \cdot \text{i}
\]

\[
R5 = (2.3D0, 5.6D0)
\]

\[2.3 + 5.6 \cdot i\]

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

\[
\sin \ \%e
\]
4.7. FORTRAN FORMAT

R6 = DSIN(DEXP(1))

\[\sin(e) \]

Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

R7 = (2.3, 5.6)

2.3 + 5.6i

Type: Complex Float

\[\sin %e \]

R8 = SIN(EXP(1))

\[\sin(e) \]

Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

\[[x+1, y+1, z+1] \]

\[
\begin{align*}
T1(1) &= x+1 \\
T1(2) &= y+1 \\
T1(3) &= z+1 \\
R9 &= T1
\end{align*}
\]

\[[x + 1, y + 1, z + 1] \]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have to be changed in your particular application.
set[2,3,4,3,5]

 T1(1)=2
 T1(2)=3
 T1(3)=4
 T1(4)=5
 R10=T1

{2,3,4,5}
Type: Set PositiveInteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [[2.3,9.7],[0.0,18.778]]

 T1(0,0)=2.3
 T1(0,1)=9.7
 T1(1,0)=0.0
 T1(1,1)=18.778
 T1

 [2.3 9.7
 0.0 18.778]

Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this. This value can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [[2.3,9.7],[0.0,18.778]]

 T1(1,1)=2.3
 T1(1,2)=9.7
 T1(2,1)=0.0
 T1(2,2)=18.778
 T1

 [2.3 9.7
 0.0 18.778]

Type: Matrix Float
Chapter 5

Overview of Interactive Language

In this chapter we look at some of the basic components of the Axiom language that you can use interactively. We show how to create a block of expressions, how to form loops and list iterations, how to modify the sequential evaluation of a block and how to use if-then-else to evaluate parts of your program conditionally. We suggest you first read the boxed material in each section and then proceed to a more thorough reading of the chapter.

5.1 Immediate and Delayed Assignments

A variable in Axiom refers to a value. A variable has a name beginning with an uppercase or lowercase alphabetic character, “%”, or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is distinguished. The following are all examples of valid, distinct variable names:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>tooBig?</td>
</tr>
<tr>
<td>A</td>
<td>%j</td>
</tr>
<tr>
<td>beta6</td>
<td>%J</td>
</tr>
<tr>
<td>1B2c3%!?</td>
<td>numberOfPoints</td>
</tr>
<tr>
<td>A %j</td>
<td>numberOfPoints</td>
</tr>
</tbody>
</table>

The “:=” operator is the immediate assignment operator. Use it to associate a value with a variable.

The syntax for immediate assignment for a single variable is

\[
\text{variable} := \text{expression}
\]

The value returned by an immediate assignment is the value of expression.
The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to a.

\[a := 1 \]

\[1 \]

\text{Type: PositiveInteger} \]

The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to b. Thus a and b both have the value 1 after the sequence of assignments.

\[b := a \]

\[1 \]

\text{Type: PositiveInteger} \]

What is the value of b if a is assigned the value 2?

\[a := 2 \]

\[2 \]

\text{Type: PositiveInteger} \]

As you see, the value of b is left unchanged.

\[b \]

\[1 \]

\text{Type: PositiveInteger} \]

This is what we mean when we say this kind of assignment is \textit{immediate}; b has no dependency on a after the initial assignment. This is the usual notion of assignment found in programming languages such as C, PASCAL and FORTRAN.

Axiom provides delayed assignment with "\texttt{==}". This implements a delayed evaluation of the right-hand side and dependency checking.

| The syntax for delayed assignment is |
| \texttt{variable == expression} |

The value returned by a delayed assignment is the unique value of \texttt{Void}. |
Using a and b as above, these are the corresponding delayed assignments.

\[a == 1\]

Type: Void

\[b == a\]

Type: Void

The right-hand side of each delayed assignment is left unevaluated until the variables on the left-hand sides are evaluated. Therefore this evaluation and . . .

\[a\]

Compiling body of rule a to compute value of type PositiveInteger

\[1\]

Type: PositiveInteger

this evaluation seem the same as before.

\[b\]

Compiling body of rule b to compute value of type PositiveInteger

\[1\]

Type: PositiveInteger

If we change a to 2

\[a == 2\]

Compiled code for a has been cleared.
Compiled code for b has been cleared.
1 old definition(s) deleted for function or rule a

Type: Void
then a evaluates to 2, as expected, but

\[a \]

Compiling body of rule a to compute value of type PositiveInteger

+++ |*0;1;G82322| redefined

2

Type: PositiveInteger

the value of b reflects the change to a.

\[b \]

Compiling body of rule b to compute value of type PositiveInteger

+++ |*0;1;G82322| redefined

2

Type: PositiveInteger

It is possible to set several variables at the same time by using a tuple of variables and a tuple of expressions. Note that a tuple is a collection of things separated by commas, often surrounded by parentheses.

The syntax for multiple immediate assignments is

\[(var_1, var_2, \ldots, var_N) := (expr_1, expr_2, \ldots, expr_N)\]

The value returned by an immediate assignment is the value of $expr_N$.

This sets x to 1 and y to 2.

\[(x,y) := (1,2)\]

2

Type: PositiveInteger

Multiple immediate assignments are parallel in the sense that the expressions on the right are all evaluated before any assignments on the left are made. However, the order of evaluation of these expressions is undefined.

You can use multiple immediate assignment to swap the values held by variables.
5.2. BLOCKS

\[(x,y) := (y,x)\]

1

Type: PositiveInteger

\[x\] has the previous value of \[y\].

\[x\]

2

Type: PositiveInteger

\[y\] has the previous value of \[x\].

\[y\]

There is no syntactic form for multiple delayed assignments. See the discussion in section 6.8 on page 165 about how Axiom differentiates between delayed assignments and user functions of no arguments.

5.2 Blocks

A block is a sequence of expressions evaluated in the order that they appear, except as modified by control expressions such as break, return, iterate and if-then-else constructions. The value of a block is the value of the expression last evaluated in the block.

To leave a block early, use “\(\Rightarrow\)”. For example, \(i < 0 \Rightarrow x\). The expression before the “\(\Rightarrow\)” must evaluate to true or false. The expression following the “\(\Rightarrow\)” is the return value for the block.

A block can be constructed in two ways:

1. the expressions can be separated by semicolons and the resulting expression surrounded by parentheses, and

2. the expressions can be written on succeeding lines with each line indented the same number of spaces (which must be greater than zero). A block entered in this form is called a pile.
Only the first form is available if you are entering expressions directly to Axiom. Both forms are available in .input files.

The syntax for a simple block of expressions entered interactively is

\[
(\text{expression}_1; \text{expression}_2; \ldots; \text{expression}_N)
\]

The value returned by a block is the value of an \texttt{=>} expression, or \texttt{expression}_N if no \texttt{=>} is encountered.

In .input files, blocks can also be written using piles. The examples throughout this book are assumed to come from .input files.

In this example, we assign a rational number to \(a \) using a block consisting of three expressions. This block is written as a pile. Each expression in the pile has the same indentation, in this case two spaces to the right of the first line.

\begin{verbatim}
a :=
 i := \gcd(234,672)
i := 3*i**5 - i + 1
 1 / i
\end{verbatim}

\[
\frac{1}{23323}
\]

Type: Fraction Integer

Here is the same block written on one line. This is how you are required to enter it at the input prompt.

\begin{verbatim}
a := (i := \gcd(234,672); i := 3*i**5 - i + 1; 1 / i)
\end{verbatim}

\[
\frac{1}{23323}
\]

Type: Fraction Integer

Blocks can be used to put several expressions on one line. The value returned is that of the last expression.

\begin{verbatim}
(a := 1; b := 2; c := 3; [a,b,c])
\end{verbatim}

\[[1,2,3] \]

Type: List PositiveInteger
5.2. BLOCKS

Axiom gives you two ways of writing a block and the preferred way in an .input file is to use a pile. Roughly speaking, a pile is a block whose constituent expressions are indented the same amount. You begin a pile by starting a new line for the first expression, indenting it to the right of the previous line. You then enter the second expression on a new line, vertically aligning it with the first line. And so on. If you need to enter an inner pile, further indent its lines to the right of the outer pile. Axiom knows where a pile ends. It ends when a subsequent line is indented to the left of the pile or the end of the file.

Blocks can be used to perform several steps before an assignment (immediate or delayed) is made.

\[
\begin{align*}
d & := \text{a}^{*2} + \text{b}^{*2} \\
\text{sqrt}(c * 1.3) & \quad 2.549509756796392415
\end{align*}
\]

Type: Float

Blocks can be used in the arguments to functions. (Here \(h\) is assigned \(2.1 + 3.5\).)

\[
\begin{align*}
h & := 2.1 + \\
1.0 & \\
3.5 & \quad 5.6
\end{align*}
\]

Type: Float

Here the second argument to \texttt{eval} is \(x = z\), where the value of \(z\) is computed in the first line of the block starting on the second line.

\[
\begin{align*}
\text{eval}(\text{x}^{*2} - \text{x*y}^{*2}, \\
\text{z} & := \pi/2.0 - \exp(4.1) \\
\text{x} & = \text{z}
\end{align*}
\]

\[
58.769491270567072878 \quad 3453.853104201259382
\]

Type: Polynomial Float

Blocks can be used in the clauses of \texttt{if-then-else} expressions (see section 5.3 on page 127).

\[
\begin{align*}
\text{if} \ h & > 3.1 \ \text{then} \ 1.0 \ \text{else} \ (z := \cos(h) \ ; \ \max(z, 0.5))
\end{align*}
\]

\[
1.0
\]
CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

This is the pile version of the last block.

```plaintext
if h > 3.1 then
  1.0
else
  z := cos(h)
  max(z,0.5)

1.0
```

Type: Float

Blocks can be nested.

```plaintext
a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d)); b+c)
482630400
```

Type: PositiveInteger

This is the pile version of the last block.

```plaintext
a :=
b := factorial(12)
c :=
d := eulerPhi(22)
factorial(d)
b+c
482630400
```

Type: PositiveInteger

Since $c + d$ does equal 3628855, a has the value of c and the last line is never evaluated.

```plaintext
a :=
c := factorial 10
d := fibonacci 10
c + d = 3628855 => c
d
3628800
```

Type: PositiveInteger
5.3 if-then-else

Like many other programming languages, Axiom uses the three keywords `if`, `then` and `else` to form conditional expressions. The `else` part of the conditional is optional. The expression between the `if` and `then` keywords is a predicate: an expression that evaluates to or is convertible to either `true` or `false`, that is, a Boolean.

The syntax for conditional expressions is

```
if predicate then expression_1 else expression_2
```

where the `else expression_2` part is optional. The value returned from a conditional expression is `expression_1` if the predicate evaluates to `true` and `expression_2` otherwise. If no `else` clause is given, the value is always the unique value of `Void`.

An if-then-else expression always returns a value. If the `else` clause is missing then the entire expression returns the unique value of `Void`. If both clauses are present, the type of the value returned by `if` is obtained by resolving the types of the values of the two clauses. See section 2.10 on page 93 for more information.

The predicate must evaluate to, or be convertible to, an object of type `Boolean`: `true` or `false`. By default, the equal sign `=` creates an equation. This is an equation. In particular, it is an object of type `Equation Polynomial Integer`.

```
x + 1 = y

Type: Equation Polynomial Integer
```

However, for predicates in `if` expressions, Axiom places a default target type of `Boolean` on the predicate and equality testing is performed. Thus you need not qualify the `="` in any way. In other contexts you may need to tell Axiom that you want to test for equality rather than create an equation. In those cases, use `@` and a target type of `Boolean`. See section 2.9 on page 89 for more information.

The compound symbol meaning “not equal” in Axiom is “~=". This can be used directly without a package call or a target specification. The expression `a ~= b` is directly translated into `not(a = b)`.

Many other functions have return values of type `Boolean`. These include `<`, `<=`, `>`, `>=`, `~=` and `member?`. By convention, operations with names ending in `?` return `Boolean` values.

The usual rules for piles are suspended for conditional expressions. In `.input` files, the `then` and `else` keywords can begin in the same column as the corresponding `if` but may also
appear to the right. Each of the following styles of writing \texttt{if-then-else} expressions is acceptable:

\begin{verbatim}
if i>0 then output("positive") else output("nonpositive")
if i > 0 then output("positive")
 else output("nonpositive")
if i > 0 then output("positive")
 else output("nonpositive")
if i > 0
 then output("positive")
 else output("nonpositive")
if i > 0
 then output("positive")
 else output("nonpositive")
\end{verbatim}

A block can follow the \texttt{then} or \texttt{else} keywords. In the following two assignments to \texttt{a}, the \texttt{then} and \texttt{else} clauses each are followed by two-line piles. The value returned in each is the value of the second line.

\begin{verbatim}
a :=
 if i > 0 then
 j := sin(i * pi())
 exp(j + 1/j)
 else
 j := cos(i * 0.5 * pi())
 log(abs(j)**5 + 1)
\end{verbatim}

\begin{verbatim}
a :=
 if i > 0
 then
 j := sin(i * pi())
 exp(j + 1/j)
 else
 j := cos(i * 0.5 * pi())
 log(abs(j)**5 + 1)
\end{verbatim}

These are both equivalent to the following:

\begin{verbatim}
a :=
 if i > 0 then (j := sin(i * pi()); exp(j + 1/j))
 else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))
\end{verbatim}
5.4 Loops

A loop is an expression that contains another expression, called the loop body, which is to be evaluated zero or more times. All loops contain the \texttt{repeat} keyword and return the unique value of \texttt{Void}. Loops can contain inner loops to any depth.

The most basic loop is of the form

\begin{verbatim}
repeat loopBody
\end{verbatim}

Unless \texttt{loopBody} contains a \texttt{break} or \texttt{return} expression, the loop repeats forever. The value returned by the loop is the unique value of \texttt{Void}.

Compiling vs. Interpreting Loops

Axiom tries to determine completely the type of every object in a loop and then to translate the loop body to LISP or even to machine code. This translation is called compilation. If Axiom decides that it cannot compile the loop, it issues a message stating the problem and then the following message:

\textbf{We will attempt to step through and interpret the code.}

It is still possible that Axiom can evaluate the loop but in \textit{interpret-code mode}. See section 6.10 on page 168 where this is discussed in terms of compiling versus interpreting functions.

return in Loops

A \texttt{return} expression is used to exit a function with a particular value. In particular, if a \texttt{return} is in a loop within the function, the loop is terminated whenever the \texttt{return} is evaluated.

Suppose we start with this.

\begin{verbatim}
f() ==
i := 1
repeat
 if factorial(i) > 1000 then return i
 i := i + 1
\end{verbatim}

Type: Void

When \texttt{factorial(i)} is big enough, control passes from inside the loop all the way outside the function, returning the value of \texttt{i} (or so we think).
What went wrong? Isn’t it obvious that this function should return an integer? Well, Axiom makes no attempt to analyze the structure of a loop to determine if it always returns a value because, in general, this is impossible. So Axiom has this simple rule: the type of the function is determined by the type of its body, in this case a block. The normal value of a block is the value of its last expression, in this case, a loop. And the value of every loop is the unique value of Void! So the return type of \(f \) is Void.

There are two ways to fix this. The best way is for you to tell Axiom what the return type of \(f \) is. You do this by giving \(f \) a declaration \(f:() \rightarrow \text{Integer} \) prior to calling for its value. This tells Axiom: “trust me—an integer is returned.” We’ll explain more about this in the next chapter. Another clumsy way is to add a dummy expression as follows.

Since we want an integer, let’s stick in a dummy final expression that is an integer and will never be evaluated.

When we try \(f \) again we get what we wanted. See section 6.15 on page 186 for more information.

break in Loops

The \texttt{break} keyword is often more useful in terminating a loop. A \texttt{break} causes control to transfer to the expression immediately following the loop. As loops always return the unique value of Void, you cannot return a value with \texttt{break}. That is, \texttt{break} takes no argument.

This example is a modification of the last example in the previous section 5.4 on page 129. Instead of using \texttt{return}, we’ll use \texttt{break}.

5.4. LOOPS

f() ==
 i := 1
 repeat
 if factorial(i) > 1000 then break
 i := i + 1
 i

Compiled code for f has been cleared.
1 old definition(s) deleted for function or rule f

Type: Void

The loop terminates when \texttt{factorial(i)} gets big enough, the last line of the function evaluates to the corresponding “good” value of \texttt{i}, and the function terminates, returning that value.

\texttt{f()}

Compiling function f with type () -> PositiveInteger

+++ |*0;f;1;G82322| redefined

7

Type: PositiveInteger

You can only use \texttt{break} to terminate the evaluation of one loop. Let’s consider a loop within a loop, that is, a loop with a nested loop. First, we initialize two counter variables.

\texttt{(i,j) := (1, 1)}

1

Type: PositiveInteger

Nested loops must have multiple \texttt{break} expressions at the appropriate nesting level. How would you rewrite this so \((i + j) > 10\) is only evaluated once?

repeat
 repeat
 if (i + j) > 10 then break
 j := j + 1
 if (i + j) > 10 then break
 i := i + 1

Type: Void
break vs. \texttt{=>} in Loop Bodies

Compare the following two loops:

\begin{verbatim}
 i := 1
repeat
 i := i + 1
 i > 3 => i
 output(i)
\end{verbatim}

\begin{verbatim}
 i := 1
repeat
 i := i + 1
 if i > 3 then break
 output(i)
\end{verbatim}

In the example on the left, the values 2 and 3 for \texttt{i} are displayed but then the \texttt{=>} does not allow control to reach the call to \texttt{output} again. The loop will not terminate until you run out of space or interrupt the execution. The variable \texttt{i} will continue to be incremented because the \texttt{=>} only means to leave the block, not the loop.

In the example on the right, upon reaching 4, the \texttt{break} will be executed, and both the block and the loop will terminate. This is one of the reasons why both \texttt{=>} and \texttt{break} are provided. Using a \texttt{while} clause (see below) with the \texttt{=>} lets you simulate the action of \texttt{break}.

More Examples of \texttt{break}

Here we give four examples of \texttt{repeat} loops that terminate when a value exceeds a given bound.

First, initialize \texttt{i} as the loop counter.

\begin{verbatim}
i := 0
\end{verbatim}

\texttt{i}

\texttt{i}

Type: \texttt{NonNegativeInteger}

Here is the first loop. When the square of \texttt{i} exceeds 100, the loop terminates.

\begin{verbatim}
repeat
 i := i + 1
 if i**2 > 100 then break
\end{verbatim}

\texttt{i}

Upon completion, \texttt{i} should have the value 11.

\begin{verbatim}
i
\end{verbatim}

\texttt{i}

11
5.4. **LOOPS**

Do the same thing except use "=>" instead an *if-then* expression.

\[i := 0 \]

\[0 \]

\[i := i + 1 \]

\[i**2 > 100 => \text{break} \]

\[11 \]

As a third example, we use a simple loop to compute \(n! \).

\[(n, i, f) := (100, 1, 1) \]

\[1 \]

Use \(i \) as the iteration variable and \(f \) to compute the factorial.

\[\text{repeat} \]

\[\text{if } i > n \text{ then break} \]

\[f := f * i \]

\[i := i + 1 \]

\[\text{Type: Void} \]

Look at the value of \(f \).

\[f \]
Finally, we show an example of nested loops. First define a four by four matrix.

\[
m := \begin{bmatrix}
21 & 37 & 53 & 14 \\
8 & -24 & 22 & -16 \\
2 & 10 & 15 & 14 \\
26 & 33 & 55 & -13
\end{bmatrix}
\]

Type: Matrix Integer

Next, set row counter \(r \) and column counter \(c \) to 1. Note: if we were writing a function, these would all be local variables rather than global workspace variables.

\[(r, c) := (1, 1)\]

Type: PositiveInteger

Also, let \(\text{lastrow} \) and \(\text{lastcol} \) be the final row and column index.

\[(\text{lastrow}, \text{lastcol}) := (\text{nrows}(m), \text{ncols}(m))\]

Type: PositiveInteger

Scan the rows looking for the first negative element. We remark that you can reformulate this example in a better, more concise form by using a \texttt{for} clause with \texttt{repeat}. See section 5.4 on page 138 for more information.

\[
\text{repeat}
\quad \text{if } r > \text{lastrow} \text{ then break}
\quad c := 1
\quad \text{repeat}
\quad \quad \text{if } c > \text{lastcol} \text{ then break}
\quad \quad \text{if } \text{elt}(m, r, c) < 0 \text{ then}
\quad \quad \quad \text{output } [r, c, \text{elt}(m, r, c)]
\]
iterate in Loops

Axiom provides an iterate expression that skips over the remainder of a loop body and starts the next loop iteration.

We first initialize a counter.

\[
i := 0
\]

Display the even integers from 2 to 5.

\[
\text{repeat}
\]
\[
\quad i := i + 1
\]
\[
\quad \text{if } i > 5 \text{ then break}
\]
\[
\quad \text{if odd?(i) then iterate}
\]
\[
\quad \text{output(i)}
\]

2
4

while Loops

The repeat in a loop can be modified by adding one or more while clauses. Each clause contains a predicate immediately following the while keyword. The predicate is tested before the evaluation of the body of the loop. The loop body is evaluated whenever the predicates in a while clause are all true.
The syntax for a simple loop using while is

\[\text{while } \text{predicate} \text{ repeat } \text{loopBody} \]

The predicate is evaluated before loopBody is evaluated. A while loop terminates immediately when predicate evaluates to false or when a break or return expression is evaluated in loopBody. The value returned by the loop is the unique value of Void.

Here is a simple example of using while in a loop. We first initialize the counter.

\[i := 1 \]

\[1 \]

Type: PositiveInteger

The steps involved in computing this example are

1. set \(i \) to 1,
2. test the condition \(i < 1 \) and determine that it is not true, and
3. do not evaluate the loop body and therefore do not display "hello".

\[
\begin{align*}
\text{while } i < 1 \text{ repeat} \\
& \quad \text{output } "\text{hello}" \\
& \quad i := i + 1
\end{align*}
\]

Type: Void

If you have multiple predicates to be tested use the logical and operation to separate them. Axiom evaluates these predicates from left to right.

\[(x, y) := (1, 1) \]

\[1 \]

Type: PositiveInteger

\[
\begin{align*}
\text{while } x < 4 \text{ and } y < 10 \text{ repeat} \\
& \quad \text{output } [x,y] \\
& \quad x := x + 1 \\
& \quad y := y + 2
\end{align*}
\]

\[
\begin{align*}
[1,1] \\
[2,3] \\
[3,5]
\end{align*}
\]
A break expression can be included in a loop body to terminate a loop even if the predicate in any while clauses are not false.

\[(x, y) := (1, 1)\]

\[1\]

This loop has multiple while clauses and the loop terminates before any one of their conditions evaluates to false.

\[\text{while } x < 4 \text{ while } y < 10 \text{ repeat}\]
\[\quad \text{if } x + y > 7 \text{ then break}\]
\[\quad \text{output } [x, y]\]
\[\quad x := x + 1\]
\[\quad y := y + 2\]

\[[1,1]\]
\[[2,3]\]

Here's a different version of the nested loops that looked for the first negative element in a matrix.

\[m := \text{matrix} \begin{bmatrix} 21 & 37 & 53 & 14 \\ 8 & -24 & 22 & -16 \\ 2 & 10 & 15 & 14 \\ 26 & 33 & 55 & -13 \end{bmatrix}\]

\[\text{Type: Matrix Integer}\]

Initialized the row index to 1 and get the number of rows and columns. If we were writing a function, these would all be local variables.

\[r := 1\]

\[1\]

\[\text{Type: PositiveInteger}\]
(lastrow, lastcol) := (nrows(m), ncols(m))

4

Type: PositiveInteger

Scan the rows looking for the first negative element.

while r <= lastrow repeat
 c := 1 -- index of first column
 while c <= lastcol repeat
 if elt(m,r,c) < 0 then
 output [r, c, elt(m,r,c)]
 r := lastrow
 break -- don't look any further
 c := c + 1
 r := r + 1

[2,2,-24]

Type: Void

for Loops

Axiom provides the for and in keywords in repeat loops, allowing you to iterate across all elements of a list, or to have a variable take on integral values from a lower bound to an upper bound. We shall refer to these modifying clauses of repeat loops as for clauses. These clauses can be present in addition to while clauses. As with all other types of repeat loops, break can be used to prematurely terminate the evaluation of the loop.

The syntax for a simple loop using for is

\[\text{for } \text{iterator } \text{repeat } \text{loopBody} \]

The iterator has several forms. Each form has an end test which is evaluated before loopBody is evaluated. A for loop terminates immediately when the end test succeeds (evaluates to true) or when a break or return expression is evaluated in loopBody. The value returned by the loop is the unique value of Void.

for i in n..m repeat

If for is followed by a variable name, the in keyword and then an integer segment of the form n..m, the end test for this loop is the predicate \(i > m \). The body of the loop is evaluated
5.4. **LOOPS**

$m - n + 1$ times if this number is greater than 0. If this number is less than or equal to 0, the loop body is not evaluated at all.

The variable i has the value $n, n + 1, \ldots, m$ for successive iterations of the loop body. The loop variable is a *local variable* within the loop body: its value is not available outside the loop body and its value and type within the loop body completely mask any outer definition of a variable with the same name.

This loop prints the values of 10^3, 11^3, and 12^3:

```plaintext
for i in 10..12 repeat output(i**3)
```

```
1000
1331
1728
```

Type: Void

Here is a sample list.

```plaintext
a := [1,2,3]
```

```
[1,2,3]
```

Type: List PositiveInteger

Iterate across this list, using `.` to access the elements of a list and the `#` operation to count its elements.

```plaintext
for i in 1..#a repeat output(a.i)
```

```
1
2
3
```

Type: Void

This type of iteration is applicable to anything that uses `.`. You can also use it with functions that use indices to extract elements.

Define m to be a matrix.

```plaintext
m := matrix [ [1,2],[4,3],[9,0] ]
```
CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
9 & 0 \\
\end{bmatrix}
\]

Type: Matrix Integer

Display the rows of \(m \).

\[
\text{for } i \text{ in } 1..\text{nrows}(m) \text{ repeat output row}(m,i)
\]

\[
[1,2] \\
[4,3] \\
[9,0]
\]

Type: Void

You can use \textit{iterate} with \textit{for}-loops.

Display the even integers in a segment.

\[
\text{for } i \text{ in } 1..5 \text{ repeat}
\]
\[
\text{if odd?}(i) \text{ then iterate output}(i)
\]

\[
2 \\
4
\]

Type: Void

See Segment 9.80 on page 744.

\textbf{for i in n..m by s repeat}

By default, the difference between values taken on by a variable in loops such as \textbf{for i in n..m repeat ...} is 1. It is possible to supply another, possibly negative, step value by using the \textit{by} keyword along with \textit{for} and \textit{in}. Like the upper and lower bounds, the step value following the \textit{by} keyword must be an integer. Note that the loop \textbf{for i in 1..2 by 0 repeat output}(i) will not terminate by itself, as the step value does not change the index from its initial value of 1.

This expression displays the odd integers between two bounds.

\[
\text{for } i \text{ in } 1..5 \text{ by } 2 \text{ repeat output}(i)
\]

\[
1 \\
3 \\
5
\]
5.4. **LOOPS**

Use this to display the numbers in reverse order.

```lisp
for i in 5..1 by -2 repeat output(i)
```

```
5
3
1
```

for i in n.. repeat

If the value after the “..” is omitted, the loop has no end test. A potentially infinite loop is thus created. The variable is given the successive values $n, n + 1, n + 2, \ldots$ and the loop is terminated only if a `break` or `return` expression is evaluated in the loop body. However you may also add some other modifying clause on the `repeat` (for example, a `while` clause) to stop the loop.

This loop displays the integers greater than or equal to 15 and less than the first prime greater than 15.

```lisp
for i in 15.. while not prime?(i) repeat output(i)
```

```
15
16
```

for x in l repeat

Another variant of the `for` loop has the form:

```lisp
for x in list repeat loopBody
```

This form is used when you want to iterate directly over the elements of a list. In this form of the `for` loop, the variable x takes on the value of each successive element in l. The end test is most simply stated in English: “are there no more x in l?”

If l is this list,

```
l := [0,-5,3]
```
CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

[0, -5, 3]

Type: List Integer
display all elements of \(l \), one per line.

\[
\begin{align*}
\text{for } x \text{ in } l \text{ repeat output}(x) \\
0 \\
-5 \\
3
\end{align*}
\]

Type: Void

Since the list constructing expression \(\text{expand}[n..m] \) creates the list \([n, n+1, \ldots, m]\). Note that this list is empty if \(n > m \). You might be tempted to think that the loops

\[
\begin{align*}
\text{for } i \text{ in } n..m \text{ repeat output}(i) \\
\text{for } x \text{ in } \text{expand}[n..m] \text{ repeat output}(x)
\end{align*}
\]

are equivalent. The second form first creates the list \(\text{expand}[n..m] \) (no matter how large it might be) and then does the iteration. The first form potentially runs in much less space, as the index variable \(i \) is simply incremented once per loop and the list is not actually created. Using the first form is much more efficient.

Of course, sometimes you really want to iterate across a specific list. This displays each of the factors of 2400000.

\[
\begin{align*}
\text{for } f \text{ in } \text{factors(factor}(2400000)) \text{ repeat output}(f) \\
[\text{factor}= 2, \text{exponent}= 8] \\
[\text{factor}= 3, \text{exponent}= 1] \\
[\text{factor}= 5, \text{exponent}= 5]
\end{align*}
\]

Type: Void

“Such that” Predicates

A \(\text{for} \) loop can be followed by a “\(| \)” and then a predicate. The predicate qualifies the use of the values from the iterator following the \(\text{for} \). Think of the vertical bar “\(| \)” as the phrase “such that.”

This loop expression prints out the integers \(n \) in the given segment such that \(n \) is odd.
5.4. LOOPS

for n in 0..4 | odd? n repeat output n

1
3

Type: Void

A for loop can also be written

\[
\text{for iterator | predicate repeat loopBody}
\]

which is equivalent to:

\[
\text{for iterator repeat if predicate then loopBody else iterate}
\]

The predicate need not refer only to the variable in the for clause: any variable in an outer scope can be part of the predicate.

In this example, the predicate on the inner for loop uses \(i\) from the outer loop and the \(j\) from the for clause that it directly modifies.

for i in 1..50 repeat
 for j in 1..50 | factorial(i+j) < 25 repeat
 output [i,j]

[1,1]
[1,2]
[1,3]
[2,1]
[2,2]
[3,1]

Type: Void

Parallel Iteration

The last example of the previous section 5.4 on page 142 gives an example of nested iteration: a loop is contained in another loop. Sometimes you want to iterate across two lists in parallel, or perhaps you want to traverse a list while incrementing a variable.
The general syntax of a repeat loop is

\[
\text{iterator}_1 \ \text{iterator}_2 \ldots \ \text{iterator}_N \ \text{repeat} \ \text{loopBody}
\]

where each \text{iterator} is either a \text{for} or a \text{while} clause. The loop terminates immediately when the end test of any \text{iterator} succeeds or when a \text{break} or \text{return} expression is evaluated in \text{loopBody}. The value returned by the loop is the unique value of \text{Void}.

Here we write a loop to iterate across two lists, computing the sum of the pairwise product of elements. Here is the first list.

\[
l := [1,3,5,7]
\]

\[
[1,3,5,7]
\]

Type: List PositiveInteger

And the second.

\[
m := [100,200]
\]

\[
[100,200]
\]

Type: List PositiveInteger

The initial value of the sum counter.

\[
\text{sum} := 0
\]

\[
0
\]

Type: NonNegativeInteger

The last two elements of \(l\) are not used in the calculation because \(m\) has two fewer elements than \(l\).

\[
\text{for} \ x \ \text{in} \ l \ \text{for} \ y \ \text{in} \ m \ \text{repeat}
\]

\[
\text{sum} := \text{sum} + x*y
\]

Type: Void

Display the “dot product.”
Next, we write a loop to compute the sum of the products of the loop elements with their positions in the loop.

\[
\text{l := [2,3,5,7,11,13,17,19,23,29,31,37]}
\]

Type: List PositiveInteger

The initial sum.

\[
\text{sum := 0}
\]

Type: NonNegativeInteger

Here looping stops when the list \(l \) is exhausted, even though the for \(i \) in 0.. specifies no terminating condition.

\[
\text{for i in 0.. for x in l repeat sum := i * x}
\]

Type: Void

Display this weighted sum.

\[
\text{sum}
\]

Type: NonNegativeInteger

When "|" is used to qualify any of the for clauses in a parallel iteration, the variables in the predicates can be from an outer scope or from a for clause in or to the left of a modified clause.

This is correct:
for i in 1..10 repeat
 for j in 200..300 | odd? (i+j) repeat
 output [i,j]

This is not correct since the variable \(j \) has not been defined outside the inner loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, \(j \) not defined
 for j in 200..300 repeat
 output [i,j]

Mixing Loop Modifiers

This example shows that it is possible to mix several of the forms of `repeat` modifying clauses on a loop.

```
for i in 1..10
  for j in 151..160 | odd? j
    while i + j < 160 repeat
      output [i,j]
```

```
[1,151]
[3,153]
```

Type: Void

Here are useful rules for composing loop expressions:

1. `while` predicates can only refer to variables that are global (or in an outer scope) or that are defined in `for` clauses to the left of the predicate.

2. A “such that” predicate (something following “|”) must directly follow a `for` clause and can only refer to variables that are global (or in an outer scope) or defined in the modified `for` clause or any `for` clause to the left.

5.5 Creating Lists and Streams with Iterators

All of what we did for loops in section 5.4 on page 129 can be transformed into expressions that create lists and streams. The `repeat`, `break` or `iterate` words are not used but all the other ideas carry over. Before we give you the general rule, here are some examples which give you the idea.

This creates a simple list of the integers from 1 to 10.

```
list := [i for i in 1..10]
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
Type: List PositiveInteger

Create a stream of the integers greater than or equal to 1.

\[\text{stream} := [i \text{ for } i \text{ in } 1..] \]

\[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] \]

Type: Stream PositiveInteger

This is a list of the prime integers between 1 and 10, inclusive.

\[[i \text{ for } i \text{ in } 1..10 \mid \text{prime? } i] \]

\[[2, 3, 5, 7] \]

Type: List PositiveInteger

This is a stream of the prime integers greater than or equal to 1.

\[[i \text{ for } i \text{ in } 1.. \mid \text{prime? } i] \]

\[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...] \]

Type: Stream PositiveInteger

This is a list of the integers between 1 and 10, inclusive, whose squares are less than 700.

\[[i \text{ for } i \text{ in } 1..10 \text{ while } i*i < 700] \]

\[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] \]

Type: List PositiveInteger

This is a stream of the integers greater than or equal to 1 whose squares are less than 700.

\[[i \text{ for } i \text{ in } 1.. \text{ while } i*i < 700] \]

\[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] \]

Type: Stream PositiveInteger

Here is the general rule.
The general syntax of a collection is

\[
[\text{collectExpression iterator}_1 \text{ iterator}_2 \ldots \text{iterator}_N]
\]

where each iterator is either a for or a while clause. The loop terminates immediately when the end test of any iterator succeeds or when a return expression is evaluated in collectExpression. The value returned by the collection is either a list or a stream of elements, one for each iteration of the collectExpression.

Be careful when you use while to create a stream. By default, Axiom tries to compute and display the first ten elements of a stream. If the while condition is not satisfied quickly, Axiom can spend a long (possibly infinite) time trying to compute the elements. Use set streams calculate to change the default to something else. This also affects the number of terms computed and displayed for power series. For the purposes of this book, we have used this system command to display fewer than ten terms.

Use nested iterators to create lists of lists which can then be given as an argument to matrix.

\[
\text{matrix } [[x**i+j \text{ for } i \text{ in } 1..3] \text{ for } j \text{ in } 10..12]
\]

\[
\begin{bmatrix}
x + 10 & x^2 + 10 & x^3 + 10 \\
x + 11 & x^2 + 11 & x^3 + 11 \\
x + 12 & x^2 + 12 & x^3 + 12
\end{bmatrix}
\]

Type: Matrix Polynomial Integer

You can also create lists of streams, streams of lists and streams of streams. Here is a stream of streams.

\[
[[i/j \text{ for } i \text{ in } j+1..] \text{ for } j \text{ in } 1..]
\]

\[
\begin{bmatrix}
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots],
[\frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, 5, \frac{11}{2}, 6, \ldots],

[4, 5, \frac{7}{3}, \frac{11}{3}, 10, \frac{13}{3}, 11, \frac{14}{3}, \ldots],
[5, 3, 7, 9, 5, 11, 4, \frac{13}{4}, 3, \frac{7}{4}, \ldots],

[6, 7, 8, 9, \frac{2}{5}, \frac{11}{5}, 12, 13, 14, \frac{1}{5}, \frac{6}{5}, \frac{10}{5}, \frac{13}{5}, \frac{7}{5}, \ldots],
[7, 4, 3, 5, 11, \frac{2}{6}, \frac{13}{6}, 7, 5, 8, \frac{3}{6}, \frac{12}{6}, \frac{7}{6}, \frac{5}{6}, \ldots],

[8, 9, 10, 11, \frac{12}{7}, \frac{13}{7}, 15, 16, 17, \frac{14}{7}, \frac{15}{7}, \frac{17}{7}, \ldots],
[9, 5, 11, 3, 13, 7, 15, \frac{2}{8}, \frac{17}{8}, 9, \frac{4}{8}, \frac{3}{8}, \frac{18}{8}, \frac{7}{8}, \frac{5}{8}, \ldots],

[10, 11, 4, 13, 14, 5, 16, 17, \frac{2}{9}, \frac{19}{9}, \frac{3}{9}, \frac{14}{9}, \frac{6}{9}, \frac{19}{9}, \ldots],
[\frac{11}{9}, \frac{6}{9}, \frac{13}{9}, \frac{7}{9}, \frac{3}{9}, \frac{8}{9}, \frac{17}{9}, \frac{9}{9}, \frac{2}{9}, \ldots],
\end{bmatrix}
\]

\[
\begin{bmatrix}
[10, 5, 10, \frac{15}{10}, \frac{17}{10}, 12, \frac{19}{10}, \ldots]
\end{bmatrix}
\]
5.6. **AN EXAMPLE: STREAMS OF PRIMES**

You can use parallel iteration across lists and streams to create new lists.

\[\left[\frac{i}{j} \text{ for } i \text{ in } 3.. \text{ by } 10 \text{ for } j \text{ in } 2.. \right] \]

\[\left[3, 13, 23, 33, 43, 53, 63, 73, 83, 93 \right] \]

\[\left[2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \right] \]

As with loops, you can combine these modifiers to make very complicated conditions.

\[\left[\left[i, j \right] \text{ for } i \text{ in } 10..15 \mid \text{prime? } i \right] \text{ for } j \text{ in } 17..22 \mid j = \text{squareFreePart } j \] \]

\[\left[\left[[11, 17], [13, 17], [11, 19], [13, 19], [11, 21], [13, 21], [11, 22], [13, 22] \right] \right] \]

Iteration stops if the end of a list or stream is reached.

\[\left[i**j \text{ for } i \text{ in } 1..7 \text{ for } j \text{ in } 2.. \right] \]

\[[1, 8, 81, 1024, 15625, 279936, 5764801] \]

As with loops, you can combine these modifiers to make very complicated conditions.

See **List 9.54** on page 632 and **Stream 9.88** on page 765 for more information on creating and manipulating lists and streams, respectively.

5.6 An Example: Streams of Primes

We conclude this chapter with an example of the creation and manipulation of infinite streams of prime integers. This might be useful for experiments with numbers or other applications where you are using sequences of primes over and over again. As for all streams, the stream of primes is only computed as far out as you need. Once computed, however, all the primes up to that point are saved for future reference.

Two useful operations provided by the Axiom library are **prime?** and **nextPrime**. A straightforward way to create a stream of prime numbers is to start with the stream of positive integers \([2,..] \) and filter out those that are prime.

Create a stream of primes.
primes : Stream Integer := [i for i in 2.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...]

Type: Stream Integer

A more elegant way, however, is to use the \texttt{generate} operation from \texttt{Stream}. Given an initial value \texttt{a} and a function \texttt{f}, \texttt{generate} constructs the stream \([a, f(a), f(f(a)), ...]. This function gives you the quickest method of getting the stream of primes.

This is how you use \texttt{generate} to generate an infinite stream of primes.

\texttt{primes := generate(nextPrime,2)}

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...]

Type: Stream Integer

Once the stream is generated, you might only be interested in primes starting at a particular value.

\texttt{smallPrimes := [p for p in primes | p > 1000]}

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, ...]

Type: Stream Integer

Here are the first 11 primes greater than 1000.

\texttt{[p for p in smallPrimes for i in 1..11]}

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, ...]

Type: Stream Integer

Here is a stream of primes between 1000 and 1200.

\texttt{[p for p in smallPrimes while p < 1200]}

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, ...]

Type: Stream Integer

To get these expanded into a finite stream, you call \texttt{complete} on the stream.
5.6. AN EXAMPLE: STREAMS OF PRIMES

Twin primes are consecutive odd number pairs which are prime. Here is the stream of twin primes.

\[
twinPrimes := \{ [p,p+2] \text{ for } p \text{ in } \text{primes} \mid \text{prime?}(p + 2) \}
\]

\[
\begin{align*}
[101, 103] & , [107, 109] , \ldots
\end{align*}
\]

Type: Stream List Integer

Since we already have the primes computed we can avoid the call to `prime?` by using a double iteration. This time we'll just generate a stream of the first of the twin primes.

\[
\text{firstOfTwins} := \{ p \text{ for } p \text{ in } \text{primes} \text{ for } q \text{ in rest } \text{primes} \mid q = p+2 \}
\]

\[
\begin{align*}
[3, 5, 11, 17, 29, 41, 59, 71, 101, 107, \ldots]
\end{align*}
\]

Type: Stream Integer

Let's try to compute the infinite stream of triplet primes, the set of primes \(p \) such that \([p, p+2, p+4] \) are primes. For example, \([3, 5, 7]\) is a triple prime. We could do this by a triple for iteration. A more economical way is to use `firstOfTwins`. This time however, put a semicolon at the end of the line.

Create the stream of `firstTriplets`. Put a semicolon at the end so that no elements are computed.

\[
\text{firstTriplets} := \{ p \text{ for } p \text{ in } \text{firstOfTwins} \text{ for } q \text{ in rest } \text{firstOfTwins} \mid q = p+2 \};
\]

Type: Stream Integer

What happened? As you know, by default Axiom displays the first ten elements of a stream when you first display it. And, therefore, it needs to compute them! If you want no elements computed, just terminate the expression by a semicolon (";"). The semi-colon prevents the display of the result of evaluating the expression. Since no stream elements are needed for display (or anything else, so far), none are computed.

Compute the first triplet prime.
firstTriples.1

3

Type: PositiveInteger

If you want to compute another, just ask for it. But wait a second! Given three consecutive odd integers, one of them must be divisible by 3. Thus there is only one triplet prime. But suppose that you did not know this and wanted to know what was the tenth triplet prime.

firstTriples.10

To compute the tenth triplet prime, Axiom first must compute the second, the third, and so on. But since there isn’t even a second triplet prime, Axiom will compute forever. Nonetheless, this effort can produce a useful result. After waiting a bit, hit \texttt{Ctrl-c}. The system responds as follows.

\begin{verbatim}
>> System error:
 Console interrupt.
 You are being returned to the top level of
 the interpreter.
\end{verbatim}

If you want to know how many primes have been computed, type:

\texttt{numberOfComputedEntries primes}

and, for this discussion, let’s say that the result is 2045. How big is the 2045-th prime?

primes.2045

17837

Type: PositiveInteger

What you have learned is that there are no triplet primes between 5 and 17837. Although this result is well known (some might even say trivial), there are many experiments you could make where the result is not known. What you see here is a paradigm for testing of hypotheses. Here our hypothesis could have been: “there is more than one triplet prime.” We have tested this hypothesis for 17837 cases. With streams, you can let your machine run, interrupt it to see how far it has progressed, then start it up and let it continue from where it left off.
Chapter 6

User-Defined Functions, Macros and Rules

In this chapter we show you how to write functions and macros, and we explain how Axiom looks for and applies them. We show some simple one-line examples of functions, together with larger ones that are defined piece-by-piece or through the use of piles.

6.1 Functions vs. Macros

A function is a program to perform some computation. Most functions have names so that it is easy to refer to them. A simple example of a function is one named abs which computes the absolute value of an integer.

This is a use of the “absolute value” library function for integers.

abs(-8)

8

Type: PositiveInteger

This is an unnamed function that does the same thing, using the “maps-to” syntax ++> that we discuss in section 6.17 on page 196.

(x ++> if x < 0 then -x else x)(-8)

8

Type: PositiveInteger
Functions can be used alone or serve as the building blocks for larger programs. Usually they return a value that you might want to use in the next stage of a computation, but not always (for example, see Exit 9.24 on page 492 and Void 9.100 on page 817. They may also read data from your keyboard, move information from one place to another, or format and display results on your screen.

In Axiom, as in mathematics, functions are usually parameterized. Each time you call (some people say apply or invoke) a function, you give values to the parameters (variables). Such a value is called an argument of the function. Axiom uses the arguments for the computation. In this way you get different results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the workspace. Axiom can often compile functions so that they execute very efficiently. Functions can be passed as arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of constants or expressions and to be templates for frequently used expressions. Macros can be parameterized but they are not objects that can be passed as arguments to functions. In effect, macros are extensions to the Axiom expression parser.

6.2 Macros

A macro provides general textual substitution of an Axiom expression for a name. You can think of a macro as being a generalized abbreviation. You can only have one macro in your workspace with a given name, no matter how many arguments it has.

The two general forms for macros are

```
macro name == body
macro name(arg1,...) == body
```

where the body of the macro can be any Axiom expression.

For example, suppose you decided that you like to use df for D. You define the macro df like this.

```
macro df == D
```

Type: Void

Whenever you type df, the system expands it to D.

```
df(x**2 + x + 1,x)
```

```
2 x + 1
```
Macros can be parameterized and so can be used for many different kinds of objects.

```plaintext
macro ff(x) == x**2 + 1
```

Apply it to a number, a symbol, or an expression.

```plaintext
ff z
```

```
z^2 + 1
```

Macros can also be nested, but you get an error message if you run out of space because of an infinite nesting loop.

```plaintext
macro gg(x) == ff(2*x - 2/3)
```

This new macro is fine as it does not produce a loop.

```plaintext
gg(1/w)
```

```
\frac{13 w^2 - 24 w + 36}{9 w^2}
```

This, however, loops since `gg` is defined in terms of `ff`.

```plaintext
macro ff(x) == gg(-x)
```

The body of a macro can be a block.

```plaintext
macro next == (past := present; present := future; future := past + present)
```
Before entering next, we need values for present and future.

\[
\text{present} : \text{Integer} := 0
\]

\[
0
\]

\[
\text{future} : \text{Integer} := 1
\]

\[
1
\]

Repeatedly evaluating next produces the next Fibonacci number.

\[
\text{next}
\]

\[
1
\]

And the next one.

\[
\text{next}
\]

\[
2
\]

Here is the infinite stream of the rest of the Fibonacci numbers.

\[
[\text{next for } i \text{ in } 1..]
\]

\[
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots]
\]

Bundle all the above lines into a single macro.
6.3. **INTRODUCTION TO FUNCTIONS**

macro fibStream ==
 present : Integer := 1
 future : Integer := 1
 [next for i in 1..] where
 macro next ==
 past := present
 present := future
 future := past + present

Type: Void

Use **concat** to start with the first two Fibonacci numbers.

concat([1,1],fibStream)

\[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\]

Type: Stream Integer

The library operation **fibonacci** is an easier way to compute these numbers.

[fibonacci i for i in 1..]

\[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\]

Type: Stream Integer

6.3 **Introduction to Functions**

Each name in your workspace can refer to a single object. This may be any kind of object including a function. You can use interactively any function from the library or any that you define in the workspace. In the library the same name can have very many functions, but you can have only one function with a given name, although it can have any number of arguments that you choose.

If you define a function in the workspace that has the same name and number of arguments as one in the library, then your definition takes precedence. In fact, to get the library function you must **package-call** it (see section 2.9 on page 89).

To use a function in Axiom, you apply it to its arguments. Most functions are applied by entering the name of the function followed by its argument or arguments.

factor(12)

\[2^2 \times 3\]
Some functions like “*” have infix operators as names.

\[3 + 4 \]

7

Type: PositiveInteger

The function “*” has two arguments. When you give it more than two arguments, Axiom groups the arguments to the left. This expression is equivalent to \((1 + 2) + 7\).

\[1 + 2 + 7 \]

10

Type: PositiveInteger

All operations, including infix operators, can be written in prefix form, that is, with the operation name followed by the arguments in parentheses. For example, \(2 + 3\) can alternatively be written as \((2, 3)\). But \((2, 3, 4)\) is an error since \(*\) takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus the form \texttt{factorial} \(3 + 1\) means \texttt{factorial}(3) + 1 producing 7, and \(-2 + 5\) means \((-2) + 5\) producing 3. An example of a prefix operator is \texttt{pre_}-\texttt{-}”. For example, \(2 + 5\) converts to \((2) + 5\) producing the value 3. Any prefix function taking two arguments can be written in an infix manner by putting an ampersand “&” before the name. Thus \texttt{D}(2 * x, x) can be written as \(2 * x \& D x\) returning 2.

Every function in Axiom is identified by a \textit{name} and \textit{type}. (An exception is an “anonymous function” discussed in section 6.17 on page 196.) The type of a function is always a mapping of the form \texttt{Source -> Target} where \texttt{Source} and \texttt{Target} are types. To enter a type from the keyboard, enter the arrow by using a hyphen “-” followed by a greater-than sign “>”, e.g. \texttt{Integer -> Integer}.

Let’s go back to “*”. There are many “*” functions in the Axiom library: one for integers, one for floats, another for rational numbers, and so on. These “*” functions have different types and thus are different functions. You’ve seen examples of this overloading before—using the same name for different functions. Overloading is the rule rather than the exception. You can add two integers, two polynomials, two matrices or two power series. These are all done with the same function name but with different functions.

6.4 Declaring the Type of Functions

In section 2.3 on page 69 we discussed how to declare a variable to restrict the kind of values that can be assigned to it. In this section we show how to declare a variable that refers to function objects.
A function is an object of type

\[\text{Source} \rightarrow \text{Type} \]

where \text{Source} and \text{Target} can be any type. A common type for \text{Source} is \text{Tuple}(T_1, \ldots, T_n), usually written \((T_1, \ldots, T_n)\), to indicate a function of \(n\) arguments.

If \(g\) takes an \text{Integer}, a \text{Float} and another \text{Integer}, and returns a \text{String}, the declaration is written:

\[g: (\text{Integer}, \text{Float}, \text{Integer}) \rightarrow \text{String} \]

Type: Void

The types need not be written fully; using abbreviations, the above declaration is:

\[g: (\text{INT}, \text{FLOAT}, \text{INT}) \rightarrow \text{STRING} \]

Type: Void

It is possible for a function to take no arguments. If \(h\) takes no arguments but returns a \text{Polynomial Integer}, any of the following declarations is acceptable.

\[h: () \rightarrow \text{POLY INT} \]

Type: Void

\[h: () \rightarrow \text{Polynomial INT} \]

Type: Void

\[h: () \rightarrow \text{POLY Integer} \]

Type: Void
Functions can also be declared when they are being defined. The syntax for combined declaration/definition is:

```
functionName(parm1: parmType1, ..., parmN: parmTypeN):
  functionReturnType
```

The following definition fragments show how this can be done for the functions g and h above.

$$g(\text{arg1: INT, arg2: FLOAT, arg3: INT}): \text{STRING} == ...$$

$$h(): \text{POLY INT} == ...$$

A current restriction on function declarations is that they must involve fully specified types (that is, cannot include modes involving explicit or implicit “?”). For more information on declaring things in general, see section 2.3 on page 69.

6.5 One-Line Functions

As you use Axiom, you will find that you will write many short functions to codify sequences of operations that you often perform. In this section we write some simple one-line functions.

This is a simple recursive factorial function for positive integers.

$$\text{fac n == if } n < 3 \text{ then } n \text{ else } n * \text{fac(n-1)}$$

Type: Void

```
fac 10
```

3628800

Type: PositiveInteger

This function computes $1 + 1/2 + 1/3 + \ldots + 1/n$.

$$\text{s n == reduce(+,[1/i for i in 1..n])}$$

Type: Void

```
s 50
```
This function computes a Mersenne number, several of which are prime.

\[
\text{mersenne } i = 2^i - 1
\]

If you type `mersenne`, Axiom shows you the function definition.

\[
\text{mersenne }
\]

\[
\text{mersenne } i = 2^i - 1
\]

Generate a stream of Mersenne numbers.

\[
[\text{mersenne } i \text{ for } i \text{ in } 1..]
\]

\[
[1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, \ldots]
\]

Create a stream of those values of \(i \) such that \(\text{mersenne}(i) \) is prime.

\[
\text{mersenneIndex} := [n \text{ for } n \text{ in } 1.. \mid \text{prime?}(\text{mersenne}(n))]
\]

\[
[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, \ldots]
\]

Finally, write a function that returns the \(n \)-th Mersenne prime.

\[
\text{mersennePrime } n = \text{mersenne mersenneIndex}(n)
\]

\[
\text{mersennePrime } 5
\]

\[
8191
\]
6.6 Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be converted to the source type of the function.

Define \(f \) with type \(\text{Integer} \rightarrow \text{Integer} \).

\[
f(x: \text{Integer}) : \text{Integer} \equiv x + 1
\]

Function declaration \(f : \text{Integer} \rightarrow \text{Integer} \) has been added to workspace.

Type: Void

The function \(f \) can be applied to integers, …

\(f \ 9 \)

Compiling function \(f \) with type \(\text{Integer} \rightarrow \text{Integer} \)

Type: PositiveInteger

and to values that convert to integers, …

\(f(-2.0) \)

\(-1\)

Type: Integer

but not to values that cannot be converted to integers.

\(f(2/3) \)

Conversion failed in the compiled user function \(f \).

Cannot convert from type \(\text{Fraction Integer} \) to \(\text{Integer} \) for value

\[
\frac{2}{3}
\]
To make the function over a wide range of types, do not declare its type.
Give the same definition with no declaration.

\[g \ x = \ x + 1 \]

Type: Void

If \(x + 1 \) makes sense, you can apply \(g \) to \(x \).

\[g \ 9 \]

Compiling function \(g \) with type PositiveInteger -> PositiveInteger

10

Type: PositiveInteger

A version of \(g \) with different argument types get compiled for each new kind of argument used.

\[g(2/3) \]

Compiling function \(g \) with type Fraction Integer -> Fraction Integer

\[\frac{5}{3} \]

Type: Fraction Integer

Here \(x + 1 \) for \(x = \text{"axiom"} \) makes no sense.

\[g(\text{"axiom"}) \]

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

\)

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. Axiom will attempt to step through and interpret the code.

There are 11 exposed and 5 unexposed library operations named + having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue

\texttt{)display op +}

to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named + with argument type(s)

\texttt{String PositiveInteger}

Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

As you will see in section 12 on page 899, Axiom has a formal idea of categories for what “makes sense.”

6.7 Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from functions (for some interesting examples of library functions that manipulate functions, see MappingPackage1 9.58 on page 649. Yet, we often seem to use the term operation and function interchangeably in Axiom. What is the distinction?

First consider values and types associated with some variable n in your workspace. You can make the declaration $n : \text{Integer}$, then assign n an integer value. You then speak of the integer n. However, note that the integer is not the name n itself, but the value that you assign to n.

Similarly, you can declare a variable f in your workspace to have type $\text{Integer} \to \text{Integer}$, then assign f, through a definition or an assignment of an anonymous function. You then speak of the function f. However, the function is not f, but the value that you assign to f.

A function is a value, in fact, some machine code for doing something. Doing what? Well, performing some operation. Formally, an operation consists of the constituent parts of f in your workspace, excluding the value; thus an operation has a name and a type. An operation is what domains and packages export. Thus Ring exports one operation “+”. Every ring also exports this operation. Also, the author of every ring in the system is obliged under contract (see section 11.3 on page 887 to provide an implementation for this operation.

This chapter is all about functions—how you create them interactively and how you apply them to meet your needs. In section 11 on page 885 you will learn how to create them for the
Axiom library. Then in section 12 on page 899, you will learn about categories and exported operations.

6.8 Delayed Assignments vs. Functions with No Arguments

In section 5.1 on page 119 we discussed the difference between immediate and delayed assignments. In this section we show the difference between delayed assignments and functions of no arguments.

A function of no arguments is sometimes called a nullary function.

\[
sin24() \equiv \sin(24.0)
\]

Type: Void

You must use the parentheses \(() \) to evaluate it. Like a delayed assignment, the right-hand-side of a function evaluation is not evaluated until the left-hand-side is used.

\[
sin24()
\]

Compiling function sin24 with type \(() \rightarrow \text{Float} \)

\[-0.9055783620 0662384514\]

Type: Float

If you omit the parentheses, you just get the function definition.

\[
sin24
\]

\[
\sin24 () \equiv \sin(24.0)
\]

Type: FunctionCalled sin24

You do not use the parentheses \(() \) in a delayed assignment...

\[
cos24 \equiv \cos(24.0)
\]

Type: Void
nor in the evaluation.

\[\text{cos24} \]

Compiling body of rule cos24 to compute value of type Float

\[0.4241790073 3699697594 \]

Type: Float

The only syntactic difference between delayed assignments and nullary functions is that you use "()" in the latter case.

6.9 How Axiom Determines What Function to Use

What happens if you define a function that has the same name as a library function? Well, if your function has the same name and number of arguments (we sometimes say *arity*) as another function in the library, then your function covers up the library function. If you want then to call the library function, you will have to *package-call* it. Axiom can use both the functions you write and those that come from the library. Let’s do a simple example to illustrate this.

Suppose you (wrongly!) define \textbf{sin} in this way.

\[\text{sin } x \equiv 1.0 \]

Type: Void

The value 1.0 is returned for any argument.

\[\text{sin } 4.3 \]

Compiling function sin with type Float \rightarrow Float

\[1.0 \]

Type: Float

If you want the library operation, we have to package-call it (see section \textbf{2.9} on page 89 for more information).

\[\text{sin}(4.3) \$\text{Float} \]
6.9. HOW AXIOM DETERMINES WHAT FUNCTION TO USE

-0.91616593674945498404

Type: Float

\(\sin(34.6)\) Float

-0.042468034716950101543

Type: Float

Even worse, say we accidentally used the same name as a library function in the function.

\(\sin x \equiv \sin x\)

Compiled code for \(\sin\) has been cleared.
1 old definition(s) deleted for function or rule \(\sin\)

Type: Void

Then Axiom definitely does not understand us.

\(\sin 4.3\)

Axiom cannot determine the type of \(\sin\) because it cannot analyze the non-recursive part, if that exists. This may be remedied by declaring the function.

Again, we could package-call the inside function.

\(\sin x \equiv \sin(x)\) Float

1 old definition(s) deleted for function or rule \(\sin\)

Type: Void

\(\sin 4.3\)

Compiling function \(\sin\) with type \(\text{Float} \rightarrow \text{Float}\)

+++ |*1;sin;1;G82322| redefined
Of course, you are unlikely to make such obvious errors. It is more probable that you would write a function and in the body use a function that you think is a library function. If you had also written a function by that same name, the library function would be invisible.

How does Axiom determine what library function to call? It very much depends on the particular example, but the simple case of creating the polynomial $x + 2/3$ will give you an idea.

1. The x is analyzed and its default type is $\text{Variable}(x)$.
2. The 2 is analyzed and its default type is PositiveInteger.
3. The 3 is analyzed and its default type is PositiveInteger.
4. Because the arguments to $\times/$ are integers, Axiom gives the expression $2/3$ a default target type of Fraction(Integer).
5. Axiom looks in PositiveInteger for $\times/$. It is not found.
6. Axiom looks in Fraction(Integer) for $\times/$. It is found for arguments of type Integer.
7. The 2 and 3 are converted to objects of type Integer (this is trivial) and $\times/$ is applied, creating an object of type Fraction(Integer).
8. No $\times/$ for arguments of types Variable(x) and Fraction(Integer) are found in either domain.
9. Axiom resolves (see section 2.10 on page 93) the types and gets $\text{Polynomial(Fraction(Integer))}$.
10. The x and the $2/3$ are converted to objects of this type and \times is applied, yielding the answer, an object of type $\text{Polynomial(Fraction(Integer))}$.

6.10 Compiling vs. Interpreting

When possible, Axiom completely determines the type of every object in a function, then translates the function definition to Common Lisp or to machine code (see the next section). This translation, called compilation, happens the first time you call the function and results in a computational delay. Subsequent function calls with the same argument types use the compiled version of the code without delay.

If Axiom cannot determine the type of everything, the function may still be executed but in interpret-code mode: each statement in the function is analyzed and executed as the control flow indicates. This process is slower than executing a compiled function, but it allows the execution of code that may involve objects whose types change.
6.10. **COMPILING VS. INTERPRETING**

If Axiom decides that it cannot compile the code, it issues a message stating the problem and then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave to Axiom is somehow ambiguous: either it is not specific enough to be analyzed completely, or it is beyond Axiom’s present interactive compilation abilities.

This function runs in interpret-code mode, but it does not compile.

```axiom
varPolys(vars) ==
  for var in vars repeat
    output(1 :: UnivariatePolynomial(var,Integer))

Type: Void
```

For `vars` equal to `[x, y, z]`, this function displays 1 three times.

```axiom
varPolys ['x,'y,'z]
```

The type of the argument to `output` changes in each iteration, so Axiom cannot compile the function. In this case, even the inner loop by itself would have a problem:

```axiom
for var in ['x,'y,'z] repeat
  output(1 :: UnivariatePolynomial(var,Integer))
```

```axiom
Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving ::
  UnivariatePolynomial(var,Integer)
Axiom will attempt to step through and interpret the code.
1
1
1
```

Type: Void
Sometimes you can help a function to compile by using an extra conversion or by using `pretend`. See section 2.8 on page 85 for details.

When a function is compilable, you have the choice of whether it is compiled to Common Lisp and then interpreted by the Common Lisp interpreter or then further compiled from Common Lisp to machine code. The option is controlled via `)set functions compile`. Issue `)set functions compile on` to compile all the way to machine code. With the default setting `)set functions compile off`, Axiom has its Common Lisp code interpreted because the overhead of further compilation is larger than the run-time of most of the functions our users have defined. You may find that selectively turning this option on and off will give you the best performance in your particular application. For example, if you are writing functions for graphics applications where hundreds of points are being computed, it is almost certainly true that you will get the best performance by issuing `)set functions compile on`.

6.11 Piece-Wise Function Definitions

To move beyond functions defined in one line, we introduce in this section functions that are defined piece-by-piece. That is, we say “use this definition when the argument is such-and-such and use this other definition when the argument is that-and-that.”

A Basic Example

There are many other ways to define a factorial function for nonnegative integers. You might say factorial of 0 is 1, otherwise factorial of n is n times factorial of $n - 1$. Here is one way to do this in Axiom.

Here is the value for $n = 0$.

```lisp
fact(0) == 1
```

Type: Void

Here is the value for $n > 0$. The vertical bar “|” means “such that”.

```lisp
fact(n | n > 0) == n * fact(n - 1)
```

Type: Void

What is the value for $n = 7$?

```lisp
fact(7)
```
6.11. PIECE-WISE FUNCTION DEFINITIONS

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

5040

Type: PositiveInteger

What is the value for \(n = -3 \)?

\texttt{fact(-3)}

You did not define fact for argument -3.

Now for a second definition. Here is the value for \(n = 0 \).

\texttt{facto(0) == 1}

Type: Void

Give an error message if \(n < 0 \).

\texttt{facto(n | n < 0) == error "arguments to facto must be non-negative"}

Type: Void

Here is the value otherwise.

\texttt{facto(n) == n * facto(n - 1)}

Type: Void

What is the value for \(n = 7 \)?

\texttt{facto(3)}

Compiling function facto with type Integer -> Integer

6

Type: PositiveInteger
What is the value for \(n = -7 \)?

\[\text{facto}(-7) \]

Error signalled from user code in function facto:
arguments to facto must be non-negative

Type: PositiveInteger

To see the current piece-wise definition of a function, use \(\text{display value} \).

\(\text{display value facto} \)

Definition:
- \(\text{facto} \ 0 == 1 \)
- \(\text{facto} \ (n \mid n < 0) == \)
 - error(arguments to facto must be non-negative)
- \(\text{facto} \ n == n \ \text{facto}(n - 1) \)

In general a piece-wise definition of a function consists of two or more parts. Each part gives a “piece” of the entire definition. Axiom collects the pieces of a function as you enter them. When you ask for a value of the function, it then “glues” the pieces together to form a function.

The two piece-wise definitions for the factorial function are examples of recursive functions, that is, functions that are defined in terms of themselves. Here is an interesting doubly-recursive function. This function returns the value 11 for all positive integer arguments.

Here is the first of two pieces.

\[\text{eleven}(n \mid n < 1) == n + 11 \]

Type: Void

And the general case.

\[\text{eleven}(m) == \text{eleven}(\text{eleven}(m - 12)) \]

Type: Void

Compute \(\text{elevens} \), the infinite stream of values of \(\text{eleven} \).

\[\text{elevens} := [\text{eleven}(i) \ \text{for} \ i \ \text{in} \ 0..] \]
6.11. PIECE-WISE FUNCTION DEFINITIONS

\[[11, 11, 11, 11, 11, 11, 11, 11, 11, 11, \ldots] \]

Type: Stream Integer

What is the value at \(n = 200 \)?

elevens 200

11

Type: PositiveInteger

What is the Axiom's definition of eleven?

\[)display \text{value}\ \text{eleven} \]

\begin{verbatim}
Definition:
eleven (m | m < 1) == m + 11
eleven m == eleven(eleven(m - 12))
\end{verbatim}

Picking Up the Pieces

Here are the details about how Axiom creates a function from its pieces. Axiom converts the \(i \)-th piece of a function definition into a conditional expression of the form: \(\text{if } \text{pred}_i \text{ then } \text{expression}_i \). If any new piece has a \(\text{pred}_i \) that is identical (after all variables are uniformly named) to an earlier \(\text{pred}_j \), the earlier piece is removed. Otherwise, the new piece is always added at the end.

\begin{verbatim}
If there are \(n \) pieces to a function definition for \(f \), the function defined \(f \) is:
\begin{verbatim}
\begin{align*}
\text{if } \text{pred}_1 \text{ then } \text{expression}_1 \text{ else } \\
\quad \ldots \\
\text{if } \text{pred}_n \text{ then } \text{expression}_n \text{ else } \\
\quad \text{error } \text{"You did not define } f \text{ for argument } <\text{arg}>."\end{align*}
\end{verbatim}
\end{verbatim}

You can give definitions of any number of mutually recursive function definitions, piece-wise or otherwise. No computation is done until you ask for a value. When you do ask for a value, all the relevant definitions are gathered, analyzed, and translated into separate functions and compiled.

Let's recall the definition of \textbf{eleven} from the previous section.

\textbf{eleven}(n | n < 1) == n + 11

Type: Void
eleven(m) == eleven(eleven(m - 12))

Type: Void

A similar doubly-recursive function below produces -11 for all negative positive integers. If you haven’t worked out why or how eleven works, the structure of this definition gives a clue.

This definition we write as a block.

\[
\text{minusEleven}(n) == \\
\begin{cases}
 n \geq 0 & \Rightarrow n - 11 \\
 \text{minusEleven}(5 + \text{minusEleven}(n + 7)) & \text{otherwise}
\end{cases}
\]

Type: Void

Define \(s(n) \) to be the sum of plus and minus “eleven” functions divided by \(n \). Since \(11 - 11 = 0 \), we define \(s(0) \) to be 1.

\[s(0) == 1 \]

Type: Void

And the general term.

\[s(n) == (\text{eleven}(n) + \text{minusEleven}(n))/n \]

Type: Void

What are the first ten values of \(s \)?

\[[s(n) \text{ for } n \text{ in } 0..] \]

\[[1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots] \]

Type: Stream Fraction Integer

Axiom can create infinite streams in the positive direction (for example, for index values 0, 1, \ldots) or negative direction (for example, for 0, -1, -2, \ldots). Here we would like a stream of values of \(s(n) \) that is infinite in both directions. The function \(t(n) \) below returns the \(n \)-th term of the infinite stream

\[[s(0), s(1), s(-1), s(2), s(-2), \ldots] \]

Its definition has three pieces.

Define the initial term.
6.11. PIECE-WISE FUNCTION DEFINITIONS

\[t(i) == s(0) \]

Type: Void

The even numbered terms are the \(s(i) \) for positive \(i \). We use "quo" rather than "/" since we want the result to be an integer.

\[t(n \mid \text{even?}(n)) == s(n \text{ quo } 2) \]

Type: Void

Finally, the odd numbered terms are the \(s(i) \) for negative \(i \). In piece-wise definitions, you can use different variables to define different pieces. Axiom will not get confused.

\[t(p) == s(- p \text{ quo } 2) \]

Type: Void

Look at the definition of \(t \). In the first piece, the variable \(n \) was used; in the second piece, \(p \). Axiom always uses your last variable to display your definitions back to you.

\(\text{)display value t} \)

\[
\text{Definition:}
\begin{align*}
t & i == s(0) \\
t & (p \mid \text{even?}(p)) == s(p \text{ quo } 2) \\
t & p == s(- p \text{ quo } 2)
\end{align*}
\]

Create a series of values of \(s \) applied to alternating positive and negative arguments.

\[[t(i) \text{ for } i \text{ in 1..}] \]

Compiling function \(s \) with type \(\text{PositiveInteger} \to \text{Fraction Integer} \)

Compiling function \(t \) with type \(\text{PositiveInteger} \to \text{Fraction Integer} \)

\[[1,1,1,1,1,1,1,1,1,1,\ldots] \]

Type: Stream Fraction Integer

Evidently \(t(n) = 1 \) for all \(i \). Check it at \(n = 100 \).

\[t(100) \]

1

Type: Fraction Integer
Predicates

We have already seen some examples of predicates (section 6.11 on page 170. Predicates are Boolean-valued expressions and Axiom uses them for filtering collections (see section 5.5 on page 146 and for placing constraints on function arguments. In this section we discuss their latter usage.

The simplest use of a predicate is one you don’t see at all.

\[\text{opposite } '\text{right} == '\text{left} \]

Type: Void

Here is a longer way to give the “opposite definition.”

\[\text{opposite } (x | x = '\text{left}) == '\text{right} \]

Type: Void

Try it out.

for x in ['right,'left,'inbetween] repeat output opposite x

Compiling function opposite with type

OrderedVariableList [right, left,inbetween] -> Symbol

left
right

The function opposite is not defined for the given argument(s).

Explicit predicates tell Axiom that the given function definition piece is to be applied if the predicate evaluates to true for the arguments to the function. You can use such “constant” arguments for integers, strings, and quoted symbols. The Boolean values true and false can also be used if qualified with “@” or “$” and Boolean. The following are all valid function definition fragments using constant arguments.

\[a(1) == ... \]
\[b("unramified") == ... \]
\[c('untested) == ... \]
\[d(true@Boolean) == ... \]

If a function has more than one argument, each argument can have its own predicate. However, if a predicate involves two or more arguments, it must be given after all the arguments mentioned in the predicate have been given. You are always safe to give a single predicate at the end of the argument list.

A function involving predicates on two arguments.
inFirstHalfQuadrant(x | x \geq 0, y | y < x) == true

This is incorrect as it gives a predicate on y before the argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x, y) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

It is always correct to write the predicate at the end.

inFirstHalfQuadrant(x, y | x > 0 and y < x) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

Here is the rest of the definition.

inFirstHalfQuadrant(x, y) == false

Try it out.

[inFirstHalfQuadrant(i, 3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (PositiveInteger, PositiveInteger) -> Boolean

[false, false, false, true, true]

Type: List Boolean
6.12 Caching Previously Computed Results

By default, Axiom does not save the values of any function. You can cause it to save values and not to recompute unnecessarily by using \texttt{)set functions cache}. This should be used before the functions are defined or, at least, before they are executed. The word following “cache” should be 0 to turn off caching, a positive integer \(n \) to save the last \(n \) computed values or “all” to save all computed values. If you then give a list of names of functions, the caching only affects those functions. Use no list of names or “all” when you want to define the default behavior for functions not specifically mentioned in other \texttt{)set functions cache} statements. If you give no list of names, all functions will have the caching behavior. If you explicitly turn on caching for one or more names, you must explicitly turn off caching for those names when you want to stop saving their values.

This causes the functions \(f \) and \(g \) to have the last three computed values saved.

\texttt{)set functions cache 3 \textbackslash{} f \textbackslash{} g}

\begin{verbatim}
 function f will cache the last 3 values.
 function g will cache the last 3 values.
\end{verbatim}

This is a sample definition for \(f \).

\texttt{f \textbackslash{} x == factorial(2**x)}

\begin{verbatim}
Type: Void
\end{verbatim}

A message is displayed stating what \(f \) will cache.

\texttt{f(4)}

\begin{verbatim}
Compiling function f with type PositiveInteger -> Integer
f will cache 3 most recently computed value(s).
++|*1;f;1;G82322| redefined

20922789888000
Type: PositiveInteger
\end{verbatim}

This causes all other functions to have all computed values saved by default.

\texttt{)set functions cache all}
In general, interpreter functions will cache all values.

This causes all functions that have not been specifically cached in some way to have no computed values saved.

)set functions cache 0

In general, functions will cache no returned values.

We also make f and g uncached.

)set functions cache 0 f g

Be careful about caching functions that have side effects. Such a function might destructively modify the elements of an array or issue a draw command, for example. A function that you expect to execute every time it is called should not be cached. Also, it is highly unlikely that a function with no arguments should be cached.

You should also be careful about caching functions that depend on free variables. See section 6.16 on page 189 for an example.

6.13 Recurrence Relations

One of the most useful classes of function are those defined via a “recurrence relation.” A recurrence relation makes each successive value depend on some or all of the previous values. A simple example is the ordinary “factorial” function:

\[
\begin{align*}
\text{fact}(0) & = 1 \\
\text{fact}(n \ | \ n > 0) & = n \times \text{fact}(n-1)
\end{align*}
\]

The value of fact(10) depends on the value of fact(9), fact(9) on fact(8), and so on. Because it depends on only one previous value, it is usually called a first order recurrence relation. You can easily imagine a function based on two, three or more previous values. The Fibonacci numbers are probably the most famous function defined by a second order recurrence relation.

The library function fibonacci computes Fibonacci numbers. It is obviously optimized for speed.
Define the Fibonacci numbers ourselves using a piece-wise definition.

\[
\text{fib}(1) = 1 \quad \text{Type: Void}
\]

\[
\text{fib}(2) = 1 \quad \text{Type: Void}
\]

\[
\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \quad \text{Type: Void}
\]

As defined, this recurrence relation is obviously doubly-recursive. To compute \(\text{fib}(10)\), we need to compute \(\text{fib}(9)\) and \(\text{fib}(8)\). And to \(\text{fib}(9)\), we need to compute \(\text{fib}(8)\) and \(\text{fib}(7)\). And so on. It seems that to compute \(\text{fib}(10)\) we need to compute \(\text{fib}(9)\) once, \(\text{fib}(8)\) twice, \(\text{fib}(7)\) three times. Look familiar? The number of function calls needed to compute any second order recurrence relation in the obvious way is exactly \(\text{fib}(n)\). These numbers grow! For example, if Axiom actually did this, then \(\text{fib}(500)\) requires more than \(10^{104}\) function calls. And, given all this, our definition of \textbf{fib} obviously could not be used to calculate the five-hundredth Fibonacci number.

Let’s try it anyway.

\[
\text{fib}(500) \quad \text{Compiling function fib with type Integer -> PositiveInteger}
\]

Compiling function fib as a recurrence relation.

\[
1394232245616978801397243287040728395007025658769730726410_{-}
896294832557162286329069155765876222521294125
\]

\[
\text{Type: PositiveInteger}
\]
Since this takes a short time to compute, it obviously didn’t do as many as \(10^{10^4}\) operations! By default, Axiom transforms any recurrence relation it recognizes into an iteration. Iterations are efficient. To compute the value of the \(n\)-th term of a recurrence relation using an iteration requires only \(n\) function calls. Note that if you compare the speed of our \texttt{fib} function to the library function, our version is still slower. This is because the library \texttt{fibonacci} uses a “powering algorithm” with a computing time proportional to \(\log^3(n)\) to compute \texttt{fibonacci}(n).

To turn off this special recurrence relation compilation, issue

\texttt{)}set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that Axiom uses for \texttt{fib} caches the last two values. For a more general \(k\)-th order recurrence relation, Axiom caches the last \(k\) values. If, after computing a value for \texttt{fib}, you ask for some larger value, Axiom picks up the cached values and continues computing from there. See section 6.16 on page 189 for an example of a function definition that has this same behavior. Also see section 6.12 on page 178 for a more general discussion of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involving polynomials, rational functions, or anything you like. Here we compute the infinite stream of Legendre polynomials.

The Legendre polynomial of degree 0.

\[
p(0) == 1\]

Type: Void

The Legendre polynomial of degree 1.

\[
p(1) == x\]

Type: Void

The Legendre polynomial of degree \(n\).

\[
p(n) == ((2*\texttt{n-1})*x*p(n-1) - (\texttt{n-1})*p(n-2))/n\]

Type: Void

Compute the Legendre polynomial of degree 6.

\[
p(6)\]
Compiling function p with type Integer -> Polynomial Fraction Integer
Compiling function p as a recurrence relation.

\[
\frac{231}{16} x^6 - \frac{315}{16} x^4 + \frac{105}{16} x^2 - \frac{5}{16}
\]

Type: Polynomial Fraction Integer

6.14 Making Functions from Objects

There are many times when you compute a complicated expression and then wish to use that expression as the body of a function. Axiom provides an operation called \texttt{function} to do this. It creates a function object and places it into the workspace. There are several versions, depending on how many arguments the function has. The first argument to \texttt{function} is always the expression to be converted into the function body, and the second is always the name to be used for the function. For more information, see \texttt{MakeFunction} 9.57 on page 647.

Start with a simple example of a polynomial in three variables.

\[
p := -x + y^2 - z^3
\]

\[-z^3 + y^2 - x
\]

Type: Polynomial Integer

To make this into a function of no arguments that simply returns the polynomial, use the two argument form of \texttt{function}.

\[
\text{function(p,'f0)}
\]

\[f0
\]

Type: Symbol

To avoid possible conflicts (see below), it is a good idea to quote always this second argument.

\[f0
\]

\[f0 () == -z^3 + y^2 - x
\]

Type: FunctionCalled f0

This is what you get when you evaluate the function.
To make a function in \(x \), use a version of \texttt{function} that takes three arguments. The last argument is the name of the variable to use as the parameter. Typically, this variable occurs in the expression and, like the function name, you should quote it to avoid possible confusion.

\begin{verbatim}
function(p,'f1,'x)

f1

Type: Symbol
\end{verbatim}

This is what the new function looks like.

\begin{verbatim}
f1

f1 x == -z^3 + y^2 - x

Type: FunctionCalled f1
\end{verbatim}

This is the value of \(f1 \) at \(x = 3 \). Notice that the return type of the function is \texttt{Polynomial\ (Integer)}\, the same as \(p \).

\begin{verbatim}
f1(3)

Compiling function f1 with type PositiveInteger -> Polynomial
Integer

-z^3 + y^2 - 3

Type: Polynomial Integer
\end{verbatim}

To use \(x \) and \(y \) as parameters, use the four argument form of \texttt{function}.

\begin{verbatim}
function(p,'f2,'x,'y)

f2

Type: Symbol
\end{verbatim}
f2

\[
f2(x, y) = -z^3 + y^2 - x
\]

Type: FunctionCalled f2

Evaluate \(f2\) at \(x = 3\) and \(y = 0\). The return type of \(f2\) is still \(Polynomial(Integer)\) because the variable \(z\) is still present and not one of the parameters.

\[
f2(3, 0)
\]

\[-z^3 - 3\]

Type: Polynomial Integer

Finally, use all three variables as parameters. There is no five argument form of \(function\), so use the one with three arguments, the third argument being a list of the parameters.

\[function(p, 'f3, ['x', 'y', 'z'])\]

\(f3\)

Type: Symbol

Evaluate this using the same values for \(x\) and \(y\) as above, but let \(z\) be \(-6\). The result type of \(f3\) is \(Integer\).

\(f3\)

\[
f3(x, y, z) = -z^3 + y^2 - x
\]

Type: FunctionCalled f3

\(f3(3, 0, -6)\)

Compiling function \(f3\) with type \((PositiveInteger, NonNegativeInteger, Integer) \to Integer\)

Type: PositiveInteger
The four functions we have defined via \(p \) have been undeclared. To declare a function whose body is to be generated by \texttt{function}, issue the declaration \texttt{before} the function is created.

\[
g: (\text{Integer, Integer}) \rightarrow \text{Float}
\]

Type: Void

\[
\text{D}(\sin(x-y)/\cos(x+y),x)
\]

\[
\frac{-\sin(y-x) \sin(y+x) + \cos(y-x) \cos(y+x)}{\cos(y+x)^2}
\]

Type: Expression Integer

\[
\text{function}(\%, \ 'g', \ 'x', \ 'y')
\]

\[
g
\]

Type: Symbol

\[
g
\]

\[
g(x,y) \ = \ \frac{-\sin(y-x) \sin(y+x) + \cos(y-x) \cos(y+x)}{\cos(y+x)^2}
\]

Type: FunctionCalled g

It is an error to use \(g \) without the quote in the penultimate expression since \(g \) had been declared but did not have a value. Similarly, since it is common to overuse variable names like \(x, y \), and so on, you avoid problems if you always quote the variable names for \texttt{function}. In general, if \(x \) has a value and you use \(x \) without a quote in a call to \texttt{function}, then Axiom does not know what you are trying to do.

What kind of object is allowable as the first argument to \texttt{function}? Let’s use the Browse facility of HyperDoc to find out. At the main Browse menu, enter the string \texttt{function} and then click on \texttt{Operations}. The exposed operations called \texttt{function} all take an object whose type belongs to category \texttt{ConvertibleTo InputForm}. What domains are those? Go back to the main Browse menu, erase \texttt{function}, enter \texttt{ConvertibleTo} in the input area, and click on \texttt{categories} on the \texttt{Constructors} line. At the bottom of the page, enter \texttt{InputForm} in the input area following \texttt{S =}. Click on \texttt{Cross Reference} and then on \texttt{Domains}. The list you see contains over forty domains that belong to the category \texttt{ConvertibleTo InputForm}. Thus you can use \texttt{function} for \texttt{Integer, Float, Symbol, Complex, Expression}, and so on.
6.15 Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written in a piece-wise manner. The body of the function can be a block, as discussed in section 5.2 on page 123.

Here is a short function that swaps two elements of a list, array or vector.

```lisp
swap(m,i,j) ==
    temp := m.i
    m.i := m.j
    m.j := temp
```

Type: Void

The significance of `swap` is that it has a destructive effect on its first argument.

```ll
k := [1,2,3,4,5]
```

```
[1,2,3,4,5]
```

Type: List PositiveInteger

```ll
swap(k,2,4)
```

Compiling function swap with type (List PositiveInteger, PositiveInteger,PositiveInteger) -> PositiveInteger

2

Type: PositiveInteger

You see that the second and fourth elements are interchanged.

```ll
k
```

```
[1,4,3,2,5]
```

Type: List PositiveInteger

Using this, we write a couple of different sort functions. First, a simple bubble sort. The operation “#” returns the number of elements in an aggregate.
FUNCTIONS DEFINED WITH BLOCKS

bubbleSort(m) ==

\[n := \#m \]

\[\text{for } i \in 1..(n-1) \text{ repeat} \]

\[\text{for } j \in n..(i+1) \text{ by -1 repeat} \]

\[\text{if } m.j < m.(j-1) \text{ then swap}(m,j,j-1) \]

\[m \]

Type: Void

Let this be the list we want to sort.

\[m := [8,4,-3,9] \]

\[[8,4,-3,9] \]

Type: List Integer

This is the result of sorting.

\[\text{bubbleSort}(m) \]

Compiling function swap with type (List Integer, Integer, Integer) -> Integer

+++ |*3;swap;1;G82322| redefined

Compiling function bubbleSort with type List Integer -> List Integer

\[[-3,4,8,9] \]

Type: List Integer

Moreover, \(m \) is destructively changed to be the sorted version.

\[m \]

\[[-3,4,8,9] \]

Type: List Integer

This function implements an insertion sort. The basic idea is to traverse the list and insert the \(i \)-th element in its correct position among the \(i - 1 \) previous elements. Since we start at the beginning of the list, the list elements before the \(i \)-th element have already been placed in ascending order.
insertionSort(m) ==
 for i in 2..#m repeat
 j := i
 while j > 1 and m.j < m.(j-1) repeat
 swap(m,j,j-1)
 j := j - 1
 m

Type: Void

As with our bubble sort, this is a destructive function.

m := [8,4,-3,9]

[8, 4, -3, 9]

Type: List Integer

insertionSort(m)

Compiling function insertionSort with type List Integer -> List
 Integer

[−3, 4, 8, 9]

Type: List Integer

m

[−3, 4, 8, 9]

Type: List Integer

Neither of the above functions is efficient for sorting large lists since they reference elements
by asking for the j-th element of the structure m.

Here is a more efficient bubble sort for lists.

bubbleSort2(m: List Integer): List Integer ==
 null m => m
 l := m
 while not null (r := l.rest) repeat
 r := bubbleSort2 r
 x := l.first
6.16. **FREE AND LOCAL VARIABLES**

```lisp
if x < r.first then
  l.first := r.first
  r.first := x
l.rest := r
l := l.rest
```

Function declaration bubbleSort2 : List Integer -> List Integer has been added to workspace.

Type: Void

Try it out.

```lisp
bubbleSort2 [3,7,2]
```

```
[7,3,2]
```

Type: List Integer

This definition is both recursive and iterative, and is tricky! Unless you are really curious about this definition, we suggest you skip immediately to the next section.

Here are the key points in the definition. First notice that if you are sorting a list with less than two elements, there is nothing to do: just return the list. This definition returns immediately if there are zero elements, and skips the entire `while` loop if there is just one element.

The second point to realize is that on each outer iteration, the bubble sort ensures that the minimum element is propagated leftmost. Each iteration of the `while` loop calls `bubbleSort2` recursively to sort all but the first element. When finished, the minimum element is either in the first or second position. The conditional expression ensures that it comes first. If it is in the second, then a swap occurs. In any case, the `rest` of the original list must be updated to hold the result of the recursive call.

6.16 Free and Local Variables

When you want to refer to a variable that is not local to your function, use a “free” declaration. Variables declared to be **free** are assumed to be defined globally in the workspace.

This is a global workspace variable.

```lisp
counter := 0
```

```lisp
0
```
This function refers to the global \(\text{counter}\).

\[
f() ==
 \text{free counter}
 \text{counter} := \text{counter} + 1
\]

Type: Void

The global \(\text{counter}\) is incremented by 1.

\[
f()
\]

Compiling function \(f\) with type () \(\rightarrow\) NonNegativeInteger

+++ |*0;f;1;G82322| redefined

1

Type: PositiveInteger

\[
\text{counter}
\]

1

Type: NonNegativeInteger

Usually Axiom can tell that you mean to refer to a global variable and so \text{free} isn't always necessary. However, for clarity and the sake of self-documentation, we encourage you to use it.

Declare a variable to be “\text{local}” when you do not want to refer to a global variable by the same name.

This function uses \(\text{counter}\) as a local variable.

\[
g() ==
 \text{local counter}
 \text{counter} := 7
\]

Type: Void

Apply the function.
6.16. **FREE AND LOCAL VARIABLES**

$$g()$$

7

Type: PositiveInteger

Check that the global value of `counter` is unchanged.

```plaintext
counter
```

1

Type: NonNegativeInteger

Parameters to a function are local variables in the function. Even if you issue a `free` declaration for a parameter, it is still local.

What happens if you do not declare that a variable `x` in the body of your function is local or free? Well, Axiom decides on this basis:

1. Axiom scans your function line-by-line, from top-to-bottom. The right-hand side of an assignment is looked at before the left-hand side.

2. If `x` is referenced before it is assigned a value, it is a free (global) variable.

3. If `x` is assigned a value before it is referenced, it is a local variable.

Set two global variables to 1.

```plaintext
a := b := 1
```

1

Type: PositiveInteger

Refer to `a` before it is assigned a value, but assign a value to `b` before it is referenced.

```plaintext
h() ==
  b := a + 1
  a := b + a
```

Type: Void

Can you predict this result?

```plaintext
h()
```
Compiling function h with type () -> PositiveInteger

+++ |*0;h;1;G82322| redefined

3

Type: PositiveInteger

How about this one?

[a, b]

[3, 1]

Type: List PositiveInteger

What happened? In the first line of the function body for h, a is referenced on the right-hand side of the assignment. Thus a is a free variable. The variable b is not referenced in that line, but it is assigned a value. Thus b is a local variable and is given the value a + 1 = 2. In the second line, the free variable a is assigned the value b + a which equals 2 + 1 = 3. This is the value returned by the function. Since a was free in h, the global variable a has value 3. Since b was local in h, the global variable b is unchanged—it still has the value 1.

It is good programming practice always to declare global variables. However, by far the most common situation is to have local variables in your functions. No declaration is needed for this situation, but be sure to initialize their values.

Be careful if you use free variables and you cache the value of your function (see section 6.12 on page 178). Caching only checks if the values of the function arguments are the same as in a function call previously seen. It does not check if any of the free variables on which the function depends have changed between function calls.

Turn on caching for p.

)set fun cache all p

function p will cache all values.

Define p to depend on the free variable N.

p(i,x) == (free N; reduce(+ , [(x-i)**n for n in 1..N]))

Type: Void

Set the value of N.
N := 1

Evaluate \(p \) the first time.

\[p(0, x) \]

\(x \)

If caching had been turned off, the second evaluation would have reflected the changed value of \(N \).

Turn off caching for \(p \).

\(\text{)} \text{set fun cache 0 p} \)

Axiom does not allow fluid variables, that is, variables bound by a function \(f \) that can be referenced by functions called by \(f \).

Values are passed to functions by reference: a pointer to the value is passed rather than a copy of the value or a pointer to a copy.

This is a global variable that is bound to a record object.
r : Record(i : Integer) := [1]

\[i = 1 \]

Type: Record(i: Integer)

This function first modifies the one component of its record argument and then rebinds the parameter to another record.

\[
\text{resetRecord } rr == \\
rr.i := 2 \\
rr := [10]
\]

Type: Void

Pass \(r \) as an argument to \text{resetRecord}.

\[
\text{resetRecord } r \\
\]

\[i = 10 \]

Type: Record(i: Integer)

The value of \(r \) was changed by the expression \(rr.i := 2 \) but not by \(rr := [10] \).

\[
r \\
\]

\[i = 2 \]

Type: Record(i: Integer)

To conclude this section, we give an iterative definition of a function that computes Fibonacci numbers. This definition approximates the definition into which Axiom transforms the recurrence relation definition of \text{fib} in section 6.13 on page 179.

Global variables \text{past} and \text{present} are used to hold the last computed Fibonacci numbers.

\[
past := present := 1 \\
1
\]

Type: PositiveInteger

Global variable \text{index} gives the current index of \text{present}.
index := 2

Type: PositiveInteger

Here is a recurrence relation defined in terms of these three global variables.

\[
\text{fib}(n) = \begin{cases}
1 & \text{if } n < 3 \\
\text{past} & \text{if } n = \text{index} - 1 \\
\text{fib}(n-1) + \text{fib}(n-2) & \text{if } n > \text{index} - 1
\end{cases}
\]

\[
\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2)
\]

Compute the infinite stream of Fibonacci numbers.

\[
fibs := [\text{fib}(n) \text{ for } n \text{ in } 1..]
\]

\[
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...]
\]

Type: Stream PositiveInteger

What is the 1000th Fibonacci number?

\[
fibs 1000
\]

43465576869345643568852767504062580256646605173717804024_
8172908953655541794905189040387984007925516929592259308_
0322634775209689623239873322471161642996440906533187938_
298969649928516003704476137795166849228875

Type: PositiveInteger

As an exercise, we suggest you write a function in an iterative style that computes the value of the recurrence relation \(p(n) = p(n-1) - 2p(n-2) + 4p(n-3) \) having the initial values \(p(1) = 1, p(2) = 3 \) and \(p(3) = 9 \). How would you write the function using an element OneDimensionalArray or Vector to hold the previously computed values?
6.17 Anonymous Functions

An anonymous function is a function that is defined by giving a list of parameters, the “maps-to” compound symbol “+->” (from the mathematical symbol \(\rightarrow \)), and by an expression involving the parameters, the evaluation of which determines the return value of the function.

\[
(\text{parm}_1, \text{parm}_2, \ldots, \text{parm}_N) \; +-> \; \text{expression}
\]

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed by a list of arguments.

2. Assign the anonymous function to a variable and then use the variable name when you would normally use a function name.

3. Use “==” to use the anonymous function definition as the arguments and body of a regular function definition.

4. Have a named function contain a declared anonymous function and use the result returned by the named function.

Some Examples

Anonymous functions are particularly useful for defining functions “on the fly.” That is, they are handy for simple functions that are used only in one place. In the following examples, we show how to write some simple anonymous functions.

This is a simple absolute value function.

\[
x +-> \text{if } x < 0 \text{ then } -x \text{ else } x
\]

\[x \rightarrow \text{if } x < 0 \text{ then } -x \text{ else } x\]

Type: AnonymousFunction

\[
\text{abs1} := \%
\]

\[x \rightarrow \text{if } x < 0 \text{ then } -x \text{ else } x\]

Type: AnonymousFunction
This function returns \texttt{true} if the absolute value of the first argument is greater than the absolute value of the second, \texttt{false} otherwise.

\[(x,y) \rightarrow \text{abs1}(x) > \text{abs1}(y)\]

\[(x,y) \rightarrow \text{abs1}(y) < \text{abs1}(x)\]

Type: AnonymousFunction

We use the above function to “sort” a list of integers.

\[\text{sort}(\%, [3,9,-4,10,-3,-1,-9,5])\]

\[[10,-9,9,5,-4,-3,3,-1]\]

Type: List Integer

This function returns 1 if \(i+j\) is even, \(-1\) otherwise.

\[\text{ev} := ((i,j) \rightarrow \text{if even?}(i+j) \text{ then } 1 \text{ else } -1)\]

\[(i,j) \rightarrow \text{if even?}(i+j) \text{ then } 1 \text{ else } -1\]

Type: AnonymousFunction

We create a four-by-four matrix containing 1 or \(-1\) depending on whether the row plus the column index is even or not.

\[\text{matrix}([[\text{ev}(\text{row},\text{col}) \text{ for row in } 1..4] \text{ for col in } 1..4])\]

\[
\begin{bmatrix}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
\end{bmatrix}
\]

Type: Matrix Integer

This function returns \texttt{true} if a polynomial in \(x\) has multiple roots, \texttt{false} otherwise. It is defined and applied in the same expression.

\[(p \rightarrow \text{not one?}(\gcd(p,\text{D}(p,x)))) \, (x**2+4*x+4)\]

\texttt{true}
This and the next expression are equivalent.

\[g(x, y, z) = \cos(x + \sin(y + \tan(z))) \]

The one you use is a matter of taste.

\[g = (x, y, z) \rightarrow \cos(x + \sin(y + \tan(z))) \]

1 old definition(s) deleted for function or rule \(g \)

Declaring Anonymous Functions

If you declare any of the arguments you must declare all of them. Thus,

\[(x: \text{INT}, y): \text{FRAC INT} \rightarrow (x + 2y)/(y - 1) \]

is not legal.

This is an example of a fully declared anonymous function. The output shown just indicates that the object you created is a particular kind of map, that is, function.

\[(x: \text{INT}, y: \text{INT}): \text{FRAC INT} \rightarrow (x + 2y)/(y - 1) \]

\[\text{theMap(...)} \]

Type: \(((\text{Integer, Integer}) \rightarrow \text{Fraction Integer})\)

Axiom allows you to declare the arguments and not declare the return type.

\[(x: \text{INT}, y: \text{INT}) \rightarrow (x + 2y)/(y - 1) \]

\[\text{theMap(...)} \]

Type: \(((\text{Integer, Integer}) \rightarrow \text{Fraction Integer})\)

The return type is computed from the types of the arguments and the body of the function. You cannot declare the return type if you do not declare the arguments. Therefore,
6.17. **ANONYMOUS FUNCTIONS**

\[(x,y): \text{FRAC INT} \rightarrow (x + 2y)/(y - 1)\]

is not legal. This and the next expression are equivalent.

\[h(x: \text{INT}, y: \text{INT}): \text{FRAC INT} \equiv (x + 2y)/(y - 1)\]

Function declaration \(h : (\text{Integer, Integer}) \rightarrow \text{Fraction Integer}\)

has been added to workspace.

Type: Void

The one you use is a matter of taste.

\[h == (x: \text{INT}, y: \text{INT}): \text{FRAC INT} \rightarrow (x + 2y)/(y - 1)\]

Function declaration \(h : (\text{Integer, Integer}) \rightarrow \text{Fraction Integer}\)

has been added to workspace.

1 old definition(s) deleted for function or rule \(h\)

Type: Void

When should you declare an anonymous function?

1. If you use an anonymous function and Axiom can’t figure out what you are trying to do, declare the function.

2. If the function has nontrivial argument types or a nontrivial return type that Axiom may be able to determine eventually, but you are not willing to wait that long, declare the function.

3. If the function will only be used for arguments of specific types and it is not too much trouble to declare the function, do so.

4. If you are using the anonymous function as an argument to another function (such as \textbf{map} or \textbf{sort}), consider declaring the function.

5. If you define an anonymous function inside a named function, you \textit{must} declare the anonymous function.

This is an example of a named function for integers that returns a function.

\[\text{addx } x == ((y: \text{Integer}): \text{Integer} \rightarrow x + y)\]

Type: Void
We define \(g \) to be a function that adds 10 to its argument.

\[
g := \text{addx 10}
\]

Compiling function addx with type
PositiveInteger -> (Integer -> Integer)

theMap(...)

Type: (Integer -> Integer)

Try it out.

\[
g 3
\]

13

Type: PositiveInteger

\[
g(-4)
\]

6

Type: PositiveInteger

An anonymous function cannot be recursive: since it does not have a name, you cannot even call it within itself! If you place an anonymous function inside a named function, the anonymous function must be declared.

6.18 Example: A Database

This example shows how you can use Axiom to organize a database of lineage data and then query the database for relationships.

The database is entered as “assertions” that are really pieces of a function definition.

\[
\text{children("albert")} == ["albertJr","richard","diane"]
\]

Type: Void

Each piece \(\text{children}(x) == y \) means “the children of \(x \) are \(y \).”
6.18. EXAMPLE: A DATABASE

children("richard") == ["douglas","daniel","susan"]

This family tree thus spans four generations.

children("douglas") == ["dougie","valerie"]

Say “no one else has children.”

children(x) == []

We need some functions for computing lineage. Start with childOf.

childOf(x,y) == member?(x,children(y))

To find the parentOf someone, you have to scan the database of people applying children.

parentOf(x) ==
 for y in people repeat
 if childOf(x,y) then return y
 "unknown"

And a grandparent of x is just a parent of a parent of x.

grandParentOf(x) == parentOf parentOf x

The grandchildren of x are the people y such that x is a grandparent of y.

grandchildren(x) == [y for y in people | grandParentOf(y) = x]
Suppose you want to make a list of all great-grandparents. Well, a great-grandparent is a
grandparent of a person who has children.

```
greatGrandParents == [x for x in people | 
    reduce(_or, 
       [not empty? children(y) for y in grandchildren(x)],false)]
```

Define `descendants` to include the parent as well.

```
descendants(x) ==
    kids := children(x)
    null kids => [x]
    concat(x,reduce(concat,[descendants(y) 
        for y in kids],[]))
```

Finally, we need a list of people. Since all people are descendants of “albert”, let’s say so.

```
people == descendants "albert"
```

We have used `==` to define the database and some functions to query the database. But no
computation is done until we ask for some information. Then, once and for all, the functions
are analyzed and compiled to machine code for run-time efficiency. Notice that no types are
given anywhere in this example. They are not needed.

Who are the grandchildren of “richard”?

```
grandchildren "richard"
```

```
["dougie","valerie"]
```
Who are the great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute value of
type List String

["albert"]

6.19 Example: A Famous Triangle

In this example we write some functions that display Pascal’s triangle. It demonstrates the
use of piece-wise definitions and some output operations you probably haven’t seen before.
To make these output operations available, we have to expose the domain OutputForm. See
section 2.11 on page 94 for more information about exposing domains and packages.

)set expose add constructor OutputForm

 OutputForm is now explicitly exposed in frame G82322

Define the values along the first row and any column i.

\[pascal(1, i) == 1 \]

Type: Void

Define the values for when the row and column index i are equal. Repeating the argument
name indicates that the two index values are equal.

\[pascal(n, n) == 1 \]

Type: Void
Now that we have defined the coefficients in Pascal’s triangle, let’s write a couple of one-liners to display it.

First, define a function that gives the n-th row.

\[
pascalRow(n) = [\text{pascal}(i,n) \text{ for } i \text{ in } 1..n]\
\]

Next, we write the function `displayRow` to display the row, separating entries by blanks and centering.

\[
displayRow(n) = \text{output center blankSeparate pascalRow(n)}\
\]

Here we have used three output operations. Operation `output` displays the printable form of objects on the screen, `center` centers a printable form in the width of the screen, and `blankSeparate` takes a list of n printable forms and inserts a blank between successive elements.

Look at the result.

\[
\text{for } i \text{ in } 1..7 \text{ repeat displayRow } i
\]
Being purists, we find this less than satisfactory. Traditionally, elements of Pascal’s triangle are centered between the left and right elements on the line above.

To fix this misalignment, we go back and redefine `pascalRow` to right adjust the entries within the triangle within a width of four characters.

```
pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]
```

Compiled code for `pascalRow` has been cleared.
Compiled code for `displayRow` has been cleared.
1 old definition(s) deleted for function or rule `pascalRow`

Type: Void

Finally let’s look at our purely reformatted triangle.

```
for i in 1..7 repeat displayRow i
```

Compiling function `pascalRow` with type `PositiveInteger -> List OutputForm`

+++ |*1:pascalRow;1;G82322| redefined
Compiling function `displayRow` with type `PositiveInteger -> Void`

+++ |*1;displayRow;1;G82322| redefined

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

Type: Void

Unexpose `OutputForm` so we don’t get unexpected results later.

```
)set expose drop constructor OutputForm
```

`OutputForm` is now explicitly hidden in frame `G82322`
6.20 Example: Testing for Palindromes

In this section we define a function \(\text{pal}\) that tests whether its argument is a palindrome, that is, something that reads the same backwards and forwards. For example, the string “Madam I’m Adam” is a palindrome (excluding blanks and punctuation) and so is the number 123454321. The definition works for any datatype that has \(n \) components that are accessed by the indices \(1 \ldots n \).

Here is the definition for \(\text{pal} \). It is simply a call to an auxiliary function called \(\text{palAux} \). We are following the convention of ending a function’s name with \(? \) if the function returns a Boolean value.

\[
\text{pal}\ s \equiv \text{palAux}(s,1,\#s)
\]

Here is \(\text{palAux} \). It works by comparing elements that are equidistant from the start and end of the object.

\[
\text{palAux}(s,i,j) \equiv
\begin{align*}
& \text{true} & \text{if } j > i \\
& (s.i = s.j) \text{ and } \text{palAux}(s,i+1,i-1) & \text{otherwise}
\end{align*}
\]

Try \(\text{pal} \) on some examples. First, a string.

\[
\text{pal}\ "Oxford"
\]

\[
\text{false}
\]

A list of polynomials.

\[
\text{pal}\ [4, a, x-1, 0, x-1, a, 4]
\]

\[
\text{false}
\]
A list of integers from the example in the last section.

\[
pal? \ [1,6,15,20,15,6,1]
\]

Compiling function \(\text{palAux?} \) with type \((\text{List PositiveInteger}, \text{Integer}, \text{Integer}) \rightarrow \text{Boolean}\)

Compiling function \(\text{pal?} \) with type \(\text{List PositiveInteger} \rightarrow \text{Boolean}\)

\[
\text{true}
\]

Type: \text{Boolean}

To use \(\text{pal?} \) on an integer, first convert it to a string.

\[
pal?(1441::\text{String})
\]

\[
\text{true}
\]

Type: \text{Boolean}

Compute an infinite stream of decimal numbers, each of which is an obvious palindrome.

\[
\text{ones} := \ [\text{reduce}(+,[10**j \text{ for } j \text{ in } 0..i]) \text{ for } i \text{ in } 1..]
\]

\[
[11,111,1111,11111,111111,1111111,11111111,111111111,1111111111,...]
\]

Type: \text{Stream PositiveInteger}

How about their squares?

\[
\text{squares} := [x**2 \text{ for } x \text{ in } \text{ones}]
\]

\[
[121,12321,1234321,123454321,12345654321,1234567654321, 123456787654321,12345678987654321,1234567900987654321, 123456790120987654321,...]
\]
Well, let’s test them all.

[pal?(x::String) for x in squares]

[true, true, true, true, true, true, true, true, true,...]

Type: Stream Boolean

6.21 Rules and Pattern Matching

A common mathematical formula is

\[\log(x) + \log(y) = \log(xy) \quad \forall x \text{ and } y \]

The presence of "\(\forall\)" indicates that \(x\) and \(y\) can stand for arbitrary mathematical expressions in the above formula. You can use such mathematical formulas in Axiom to specify "rewrite rules". Rewrite rules are objects in Axiom that can be assigned to variables for later use, often for the purpose of simplification. Rewrite rules look like ordinary function definitions except that they are preceded by the reserved word \texttt{rule}. For example, a rewrite rule for the above formula is:

\begin{verbatim}
rule log(x) + log(y) == log(x * y)
\end{verbatim}

Like function definitions, no action is taken when a rewrite rule is issued. Think of rewrite rules as functions that take one argument. When a rewrite rule \(A = B\) is applied to an argument \(f\), its meaning is: "rewrite every subexpression of \(f\) that matches \(A\) by \(B\)." The left-hand side of a rewrite rule is called a pattern; its right-hand side is called its substitution.

Create a rewrite rule named \texttt{logrule}. The generated symbol beginning with a "\%" is a place-holder for any other terms that might occur in the sum.

\begin{verbatim}
logrule := rule log(x) + log(y) == log(x * y)
\end{verbatim}

Create an expression with logarithms.

\[f := \log \sin x + \log x \]
6.21. RULES AND PATTERN MATCHING

\[\log(\sin(x)) + \log(x) \]

Type: Expression Integer

Apply \texttt{logrule} to \(f \).

\texttt{logrule f}

\[\log(x \sin(x)) \]

Type: Expression Integer

The meaning of our example rewrite rule is: “for all expressions \(x \) and \(y \), rewrite \(\log(x) + \log(y) \) by \(\log(x \ast y) \).” Patterns generally have both operation names (here, \texttt{log} and “+”) and variables (here, \(x \) and \(y \)). By default, every operation name stands for itself. Thus \texttt{log} matches only “\texttt{log}” and not any other operation such as \texttt{sin}. On the other hand, variables do not stand for themselves. Rather, a variable denotes a \textit{pattern variable} that is free to match any expression whatsoever.

When a rewrite rule is applied, a process called \textit{pattern matching} goes to work by systematically scanning the subexpressions of the argument. When a subexpression is found that “matches” the pattern, the subexpression is replaced by the right-hand side of the rule. The details of what happens will be covered later.

The customary Axiom notation for patterns is actually a shorthand for a longer, more general notation. Pattern variables can be made explicit by using a percent \texttt{%} as the first character of the variable name. To say that a name stands for itself, you can prefix that name with a quote operator \texttt{'}\texttt{‘}. Although the current Axiom parser does not let you quote an operation name, this more general notation gives you an alternate way of giving the same rewrite rule:

\begin{verbatim}
rule log(%x) + log(%y) == log(x * y)
\end{verbatim}

This longer notation gives you patterns that the standard notation won’t handle. For example, the rule

\begin{verbatim}
rule %f(c * 'x) == c*%f(x)
\end{verbatim}

means “for all \(f \) and \(c \), replace \(f(y) \) by \(c \ast f(x) \) when \(y \) is the product of \(c \) and the explicit variable \(x \).”

Thus the pattern can have several adornments on the names that appear there. Normally, all these adornments are dropped in the substitution on the right-hand side.

To summarize:
To enter a single rule in Axiom, use the following syntax:

\[\text{rule } \text{leftHandSide} =\rightarrow \text{rightHandSide} \]

The leftHandSide is a pattern to be matched and the rightHandSide is its substitution. The rule is an object of type \texttt{RewriteRule} that can be assigned to a variable and applied to expressions to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be applied at once. Here is another simplification rule for logarithms.

\[y \log(x) = \log(x^y) \quad \forall \ x \text{ and } y \]

If instead of giving a single rule following the reserved word \texttt{rule} you give a “pile” of rules, you create what is called a ruleset. Like rules, rulesets are objects in Axiom and can be assigned to variables. You will find it useful to group commonly used rules into input files, and read them in as needed.

Create a ruleset named \texttt{logrules}.

\begin{verbatim}
logrules := rule
 log(x) + log(y) == log(x * y)
y * log x == log(x ** y)

 \{log (y) + log (x) + %B== log (x y) + %B, y log (x)== log (x^y)\}

Type: Ruleset(Integer,Integer,Expression Integer)
\end{verbatim}

Again, create an expression \(f \) containing logarithms.

\[f := a \log(\sin(x)) - 2 \log(x) \]

\[a \log(\sin(x)) - 2 \log(x) \]

Type: Expression Integer

Apply the ruleset \texttt{logrules} to \(f \).

\begin{verbatim}
logrules f
\end{verbatim}

\[\log \left(\frac{\sin(x)^a}{x^2} \right) \]

Type: Expression Integer
We have allowed pattern variables to match arbitrary expressions in the above examples. Often you want a variable only to match expressions satisfying some predicate. For example, we may want to apply the transformation

\[y \log(x) = \log(x^y) \]

only when \(y \) is an integer.

The way to restrict a pattern variable \(y \) by a predicate \(f(y) \) is by using a vertical bar “\(\mid \)”, which means “such that,” in much the same way it is used in function definitions. You do this only once, but at the earliest (meaning deepest and leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.

```lisp
logrules2 := rule
  \log(x) + \log(y) == \log(x * y)
(y | integer? y) * \log(x) == \log(x ** y)

\{ \log(y) + \log(x) + \%D == \log(x y) + \%D, y \log(x) == \log(x^y) \}
```

Type: Ruleset(Integer,Integer,Expression Integer)

Compare this with the result of applying the previous set of rules.

\[f \]

\[a \log(\sin(x)) - 2 \log(x) \]

Type: Expression Integer

```lisp
logrules2 f
```

\[a \log(\sin(x)) + \log\left(\frac{1}{x^2}\right) \]

Type: Expression Integer

You should be aware that you might need to apply a function like `integer` within your predicate expression to actually apply the test function.

Here we use `integer` because \(n \) has type `Expression Integer` but `even?` is an operation defined on integers.

```lisp
evenRule := rule cos(x)**(n | integer? n and even? integer n)==(1-sin(x)**2)**(n/2)
```

\[\cos(x)^n = \left(-\sin(x)^2 + 1\right)^{\frac{n}{2}} \]
CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is the application of the rule.

evenRule(cos(x)**2)

\[-\sin(x)^2 + 1\]

Type: Expression Integer

This is an example of some of the usual identities involving products of sines and cosines.

\[
\text{sinCosProducts} == \text{rule}
\quad \sin(x) \times \sin(y) == \frac{\cos(x-y) - \cos(x + y)}{2}
\quad \cos(x) \times \cos(y) == \frac{\cos(x-y) + \cos(x+y)}{2}
\quad \sin(x) \times \cos(y) == \frac{\sin(x-y) + \sin(x + y)}{2}
\]

Type: Void

g := \sin(a)\sin(b) + \cos(b)\cos(a) + \sin(2a)\cos(2a)

\[
\sin(a) \sin(b) + \cos(2a) \sin(2a) + \cos(a) \cos(b)
\]

Type: Expression Integer

\[
\text{sinCosProducts g}
\]

Compiling body of rule \text{sinCosProducts} to compute value of type

Ruleset(Integer,Integer,Expression Integer)

\[
\frac{\sin(4a) + 2 \cos(b-a)}{2}
\]

Type: Expression Integer

Another qualification you will often want to use is to allow a pattern to match an identity element. Using the pattern \(x + y\), for example, neither \(x\) nor \(y\) matches the expression 0. Similarly, if a pattern contains a product \(x \times y\) or an exponentiation \(x \times y\), then neither \(x\) or \(y\) matches 1.

If identical elements were matched, pattern matching would generally loop. Here is an expansion rule for exponentials.
6.21. RULES AND PATTERN MATCHING

exprule := rule exp(a + b) == exp(a) * exp(b)

\[e^{(b+a)} = e^a e^b \]

Type: RewriteRule(Integer,Integer,Expression Integer)

This rule would cause infinite rewriting on this if either \(a \) or \(b \) were allowed to match 0.

exprule exp x

\[e^x \]

Type: Expression Integer

There are occasions when you do want a pattern variable in a sum or product to match 0 or 1. If so, prefix its name with a “?" whenever it appears in a left-hand side of a rule. For example, consider the following rule for the exponential integral:

\[\int \left(y + e^x \right) \, dx = \int \frac{y}{x} \, dx + Ei(x) \quad \forall \, x \text{ and } y \]

This rule is valid for \(y = 0 \). One solution is to create a Ruleset with two rules, one with and one without \(y \). A better solution is to use an “optional” pattern variable.

Define rule eirule with a pattern variable \(?y\) to indicate that an expression may or may not occur.

eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x

\[\int x \, \frac{e^x}{x} \, dM + y \, dM = \int \frac{y}{x} \, dx + Ei(x) \]

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply rule eirule to an integral without this term.

eirule integral(exp u/u, u)

\[Ei(u) \]

Type: Expression Integer

Apply rule eirule to an integral with this term.

eirule integral(sin u + exp u/u, u)
\[\int \sin(\%M) \ d\%M + Ei(u) \]
Type: Expression Integer

Here is one final adornment you will find useful. When matching a pattern of the form \(x + y \) to an expression containing a long sum of the form \(a + \ldots + b \), there is no way to predict in advance which subset of the sum matches \(x \) and which matches \(y \). Aside from efficiency, this is generally unimportant since the rule holds for any possible combination of matches for \(x \) and \(y \). In some situations, however, you may want to say which pattern variable is a sum (or product) of several terms, and which should match only a single term. To do this, put a prefix colon ‘:\’ before the pattern variable that you want to match multiple terms.

The remaining rules involve operators \(u \) and \(v \).

\begin{verbatim}
\texttt{u} := \texttt{operator 'u}
\texttt{u}
\texttt{Type: BasicOperator}
\end{verbatim}

These definitions tell Axiom that \(u \) and \(v \) are formal operators to be used in expressions.

\begin{verbatim}
\texttt{v} := \texttt{operator 'v}
\texttt{v}
\texttt{Type: BasicOperator}
\end{verbatim}

First define \texttt{myRule} with no restrictions on the pattern variables \(x \) and \(y \).

\begin{verbatim}
\texttt{myRule} := \texttt{rule u(x + y) == u x + v y}
\texttt{u(}y + x\texttt{) == 'v(}y\texttt{) + 'u(}x\texttt{)}
\texttt{Type: RewriteRule(Integer,Integer,Expression Integer)}
\end{verbatim}

Apply \texttt{myRule} to an expression.

\begin{verbatim}
\texttt{myRule u(a + b + c + d)}
\texttt{v(}d + c + b\texttt{) + u(}a\texttt{)}
\texttt{Type: Expression Integer}
\end{verbatim}
Define \texttt{myOtherRule} to match several terms so that the rule gets applied recursively.

\begin{verbatim}
myOtherRule := rule u(:x + y) == u x + v y

u(y+x) == 'v(y) + 'u(x)
\end{verbatim}

Type: \texttt{RewriteRule(Integer,Integer,Expression Integer)}

Apply \texttt{myOtherRule} to the same expression.

\begin{verbatim}
myOtherRule u(a + b + c + d)

 v(c) + v(b) + v(a) + u(d)
\end{verbatim}

Type: \texttt{Expression Integer}

Summary of pattern variable adornments:

\begin{center}
\begin{tabular}{|l|}
\hline
\texttt{(x | predicate?(x))} & means that the substitution \texttt{s} for \texttt{x} must satisfy \texttt{predicate(s) = true}. \\
\hline
\texttt{?x} & means that \texttt{x} can match an identity element (0 or 1). \\
\hline
\texttt{:x} & means that \texttt{x} can match several terms in a sum. \\
\hline
\end{tabular}
\end{center}

Here are some final remarks on pattern matching. Pattern matching provides a very useful paradigm for solving certain classes of problems, namely, those that involve transformations of one form to another and back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply increases. Thus it is good practice to organize the sets of rules you use optimally so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers. You should avoid using pattern matching to handle hidden algebraic relationships that can go undetected by other programs. As a simple example, a symbol such as \texttt{J} can easily be used to represent the square root of \texttt{-1} or some other important algebraic quantity. Many algorithms branch on whether an expression is zero or not, then divide by that expression if it is not. If you fail to simplify an expression involving powers of \texttt{J} to \texttt{1}, algorithms may incorrectly assume an expression is non-zero, take a wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain. In Axiom, objects of one domain are transformed to objects of other domains using well-defined \texttt{coerce} operations. Pattern matching should be used on objects that are all the same type. Thus if your application can be handled by type \texttt{Expression} in Axiom and you think you need pattern matching, consider this choice carefully. You may well be better served by extending an existing domain or by building a new domain of objects for your application.
Chapter 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the Axiom graphics facilities under the X Window System. Axiom has two-dimensional and three-dimensional drawing and rendering packages that allow the drawing, coloring, transforming, mapping, clipping, and combining of graphic output from Axiom computations. This facility is particularly useful for investigating problems in areas such as topology. The graphics package is capable of plotting functions of one or more variables or plotting parametric surfaces and curves. Various coordinate systems are also available, such as polar and spherical.

A graph is displayed in a viewport window and it has a control-panel that uses interactive
mouse commands. PostScript and other output forms are available so that Axiom images can be printed or used by other programs.

7.1 Two-Dimensional Graphics

The Axiom two-dimensional graphics package provides the ability to display

- curves defined by functions of a single real variable
- curves defined by parametric equations
- implicit non-singular curves defined by polynomial equations
- planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as calculating points in the polar coordinate system or changing the size of the graph viewport window.

Plotting Two-Dimensional Functions of One Variable

The first kind of two-dimensional graph is that of a curve defined by a function \(y = f(x) \) over a finite interval of the \(x \) axis.

The general format for drawing a function defined by a formula \(f(x) \) is:

\[
\text{draw}(f(x), x = a..b, \text{options})
\]

where \(a..b \) defines the range of \(x \), and where \(\text{options} \) prescribes zero or more options as described in section 7.1 on page 224. An example of an option is \(\text{curveColor} == \text{bright red}() \). An alternative format involving functions \(f \) and \(g \) is also available.

A simple way to plot a function is to use a formula. The first argument is the formula. For the second argument, write the name of the independent variable (here, \(x \)), followed by an “\=”, and the range of values.

Display this formula over the range \(0 \leq x \leq 6 \). Axiom converts your formula to a compiled function so that the results can be computed quickly and efficiently.

\[
\text{draw}(\sin(\tan(x)) - \tan(\sin(x)), x = 0..6)
\]
Notice that Axiom compiled the function before the graph was put on the screen.

Here is the same graph on a different interval.

draw(sin(tan(x)) - tan(sin(x)), x = 10..16)

Once again the formula is converted to a compiled function before any points were computed. If you want to graph the same function on several intervals, it is a good idea to define the function first so that the function has to be compiled only once.

This time we first define the function.

\[
f(x) = (x-1)(x-2)(x-3)
\]

To draw the function, the first argument is its name and the second is just the range with no independent variable.

draw(f, 0..4)
Plotting Two-Dimensional Parametric Plane Curves

The second kind of two-dimensional graph is that of curves produced by parametric equations. Let \(x = f(t) \) and \(y = g(t) \) be formulas or two functions \(f \) and \(g \) as the parameter \(t \) ranges over an interval \([a, b]\). The function `curve` takes the two functions \(f \) and \(g \) as its parameters.

The general format for drawing a two-dimensional plane curve defined by parametric formulas \(x = f(t) \) and \(y = g(t) \) is:

```plaintext
draw(curve(f(t), g(t)), t = a..b, options)
```

where \(a..b \) defines the range of the independent variable \(t \), and where `options` prescribes zero or more options as described in section 7.2 on page 260. An example of an option is `curveColor == bright red()`.

Here’s an example:

Define a parametric curve using a range involving \(\%\pi \), Axiom’s way of saying \(\pi \). For parametric curves, Axiom compiles two functions, one for each of the functions \(f \) and \(g \).

```plaintext
draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2*\%pi)
```
7.1. TWO-DIMENSIONAL GRAPHICS

\[\text{curve}(\sin(t) \cdot \sin(2t) \cdot \sin(3t), \sin(4t) \cdot \sin(5t) \cdot \sin(6t)) \]

The title may be an arbitrary string and is an optional argument to the \texttt{draw} command.

\texttt{draw(curve(cos(t), sin(t)), t = 0..2*\pi)}

\[\text{curve}(\cos(t), \sin(t)), \ t = 0..2\pi \]

If you plan on plotting \(x = f(t), y = g(t) \) as \(t \) ranges over several intervals, you may want to define functions \(f \) and \(g \) first, so that they need not be recompiled every time you create a new graph. Here’s an example:

As before, you can first define the functions you wish to draw.

\[f(t: \text{DFLOAT}): \text{DFLOAT} = \sin(3t/4) \]

Function declaration \(f : \text{DoubleFloat} \rightarrow \text{DoubleFloat} \) has been added to workspace.

Type: Void

Axiom compiles them to map \texttt{DoubleFloat} values to \texttt{DoubleFloat} values.
g(t:DFLOAT):DFLOAT == sin(t)

Function declaration f : DoubleFloat -> DoubleFloat has been added to workspace.
Type: Void

Give to curve the names of the functions, then write the range without the name of the independent variable.

draw(curve(f,g),0..%pi)

Here is another look at the same curve but over a different range. Notice that f and g are not recompiled. Also note that Axiom provides a default title based on the first function specified in curve.

draw(curve(f,g),-4*%pi..4*%pi)
Plotting Plane Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve” in a rectangular region of the plane. A solution curve is a curve defined by a polynomial equation \(p(x, y) = 0 \). Non-singular means that the curve is “smooth” in that it does not cross itself or come to a point (cusp). Algebraically, this means that for any point \((x, y)\) on the curve, that is, a point such that \(p(x, y) = 0 \), the partial derivatives \(\frac{\partial p}{\partial x}(x, y) \) and \(\frac{\partial p}{\partial y}(x, y) \) are not both zero.

The general format for drawing a non-singular solution curve given by a polynomial of the form \(p(x, y) = 0 \) is:

\[
\text{draw}(p(x, y) = 0, x, y, \text{range} == [a..b, c..d], \text{options})
\]

where the second and third arguments name the first and second independent variables of \(p \). A \text{range} option is always given to designate a bounding rectangular region of the plane \(a \leq x \leq b, c \leq y \leq d \). Zero or more additional options as described in section 7.1 on page 224 may be given.

We require that the polynomial has rational or integral coefficients. Here is an algebraic curve example (“Cartesian ovals”):

\[
p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)
\]

\[
y^4 + (2 x^2 - 16 x - 6) y^2 + x^4 - 16 x^3 + 58 x^2 - 12 x - 6
\]

\[
\text{Type: Polynomial Integer}
\]

The first argument is always expressed as an equation of the form \(p = 0 \) where \(p \) is a polynomial.

\[
\text{draw}(p = 0, x, y, \text{range} == [-1..11, -7..7])
\]
Two-Dimensional Options

The `draw` commands take an optional list of options, such as `title` shown above. Each option is given by the syntax: `name == value`. Here is a list of the available options in the order that they are described below.

- `adaptive` clip unit
- `clip` curveColor range
- `toScale` pointColor coordinates

The `adaptive` option turns adaptive plotting on or off. Adaptive plotting uses an algorithm that traverses a graph and computes more points for those parts of the graph with high curvature. The higher the curvature of a region is, the more points the algorithm computes.

The `adaptive` option is normally on. Here we turn it off.

```
draw(sin(1/x), x=-2*%pi..2*%pi, adaptive == false)
```

The `clip` option turns clipping on or off. If on, large values are cut off according to `clip-PointsDefault`.

```
draw(tan(x), x=-2*%pi..2*%pi, clip == true)
```

The `clip` option turns clipping on or off. If on, large values are cut off according to `clip-PointsDefault`.

```
draw(sin(1/x), x=-2*%pi..2*%pi, adaptive == false)
```

```
draw(tan(x), x=-2*%pi..2*%pi, clip == true)
```
7.1. TWO-DIMENSIONAL GRAPHICS

\[\tan(x), x = -2\pi \ldots 2\pi, \quad \text{clip} == \text{true} \]

Option \texttt{toScale} does plotting to scale if \texttt{true} or uses the entire viewport if \texttt{false}. The default can be determined using \texttt{drawToScale}.

\[
\text{draw(sin(x), x=-\pi..\pi, toScale == true, unit == [1.0,1.0])}
\]

\[\sin(x), x = -\pi \ldots \pi, \quad \text{toScale} == \text{true}, \quad \text{unit} == [1.0,1.0] \]

Option \texttt{clip} with a range sets point clipping of a graph within the ranges specified in the list \([xrange,yrange]\). If only one range is specified, clipping applies to the y-axis.

\[
\text{draw(sec(x), x=-2*\pi..2*\pi, clip == [-2*\pi..2*\pi,-\pi..\pi], unit == [1.0,1.0])}
\]
CHAPTER 7. GRAPHICS

\[\text{sec}(x), \, x = -2\pi..2\pi, \quad \text{clip} == [-2\pi..2\pi, -\pi..\pi], \, \text{unit} == [1.0, 1.0] \]

Option \texttt{curveColor} sets the color of the graph curves or lines to be the indicated palette color (see section 7.1 on page 229 and section 7.1 on page 230).

\begin{verbatim}
 draw(sin(x), x=-%pi..%pi, curveColor == bright red())
\end{verbatim}

\[\sin(x), \, x = -\pi..\pi, \quad \text{curveColor} == \text{brightred()} \]

Option \texttt{pointColor} sets the color of the graph points to the indicated palette color (see section 7.1 on page 229 and section 7.1 on page 230).

\begin{verbatim}
 draw(sin(x), x=-%pi..%pi, pointColor == pastel yellow())
\end{verbatim}
7.1. TWO-DIMENSIONAL GRAPHICS

\[\sin(x), x = -\pi..\pi, \quad \text{pointColor} == \text{pastelyellow()} \]

Option \texttt{unit} sets the intervals at which the axis units are plotted according to the indicated steps \([x \text{ interval, } y \text{ interval}]\).

\texttt{draw(curve(9*\sin(3*t/4), 8*\sin(t)), t = -4*\%pi..4*\%pi, unit == [2.0,1.0])}

\[9\sin(3t/4), 8\sin(t), t = -4\pi..4\pi, \quad \text{unit} == [2.0,1.0] \]

Option \texttt{range} sets the range of variables in a graph to be within the ranges for solving plane algebraic curve plots.

\texttt{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1], unit==[1.0,1.0])}
A second example of a solution plot.

draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])

Option
Option \textit{coordinates} indicates the coordinate system in which the graph is plotted. The default is to use the Cartesian coordinate system. For more details, see section 7.2 on page 273 or CoordinateSystems.

draw(curve(sin(5*t),t),t=0..2*%pi, coordinates == polar)
Color

The domain Color provides operations for manipulating colors in two-dimensional graphs. Colors are objects of Color. Each color has a hue and a weight. Hues are represented by integers that range from 1 to the \texttt{numberOfHues()}, normally 27. Weights are floats and have the value 1.0 by default.

\begin{itemize}
 \item \texttt{color (integer)} creates a color of hue \texttt{integer} and weight 1.0.
 \item \texttt{hue (color)} returns the hue of \texttt{color} as an integer.
 \item \texttt{red ()} \texttt{blue()}, \texttt{green()}, and \texttt{yellow()} create colors of that hue with weight 1.0.
 \item \texttt{color1 + color2} returns the color that results from additively combining the indicated \texttt{color1} and \texttt{color2}. Color addition is not commutative: changing the order of the arguments produces different results.
 \item \texttt{integer * color} changes the weight of \texttt{color} by \texttt{integer} without affecting its hue. For example, \texttt{red()} + 3 * \texttt{yellow()} produces a color closer to yellow than to red. Color multiplication is not associative: changing the order of grouping produces different results.
\end{itemize}

These functions can be used to change the point and curve colors for two- and three-dimensional graphs. Use the \texttt{pointColor} option for points.

\begin{verbatim}
draw(x**2, x=-1..1, pointColor == green())
\end{verbatim}
\[x^2, x = -1..1, \quad \text{pointColor} == \text{green}() \]

Use the curveColor option for curves.

\[\text{draw}(x^2, x=-1..1, \text{curveColor} == \text{color}(13) + 2*\text{blue}()) \]

\[x^2, x = -1..1, \quad \text{curveColor} == \text{color}(13) + 2*\text{blue}() \]

Palette

Domain **Palette** is the domain of shades of colors: **dark, dim, bright, pastel, and light**, designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

\(\text{Type: PositiveInteger} \)

To change the shade of a color, apply the name of a shade to it.
7.1. TWO-DIMENSIONAL GRAPHICS

\[\text{myFavoriteColor := dark blue()} \]

\[\text{[Hue: 22 Weight: 1.0] from the Dark palette} \]

Type: Palette

The expression \(\text{shade(color)} \) returns the value of a shade of \(\text{color} \).

\[\text{shade myFavoriteColor} \]

\[1 \]

Type: PositiveInteger

The expression \(\text{hue(color)} \) returns its hue.

\[\text{hue myFavoriteColor} \]

\[\text{Hue: 22 Weight: 1.0} \]

Type: Color

Palettes can be used in specifying colors in two-dimensional graphs.

\[\text{draw(x**2,x=-1..1,curveColor == dark blue())} \]

\[x^2, x = -1..1, \text{ curveColor == darkblue()} \]
Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left mouse button to display a control-panel. The panel is displayed on the side of the viewport closest to where you clicked. Each of the buttons which toggle on and off show the current state of the graph.

Transformations

Object transformations are executed from the control-panel by mouse-activated potentiometer windows.

Scale: To scale a graph, click on a mouse button within the Scale window in the upper left corner of the control-panel. The axes along which the scaling is to occur are indicated by setting the toggles above the arrow. With X On and Y On appearing, both axes are selected and scaling is uniform. If either is not selected, for example, if X Off appears, scaling is non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in the direction you wish the graph to move. This window is located in the upper right corner of the control-panel. Along the top of the Translate window are two buttons for selecting the direction of translation. Translation along both coordinate axes results when X
On and Y On appear or along one axis when one is on, for example, X On and Y Off appear.

Messages

The window directly below the transformation potentiometer windows is used to display system messages relating to the viewport and the control-panel. The following format is displayed:

```
[scaleX, scaleY] >graph< [translateX, translateY]
```

The two values to the left show the scale factor along the X and Y coordinate axes. The two values to the right show the distance of translation from the center in the X and Y directions. The number in the center shows which graph in the viewport this data pertains to. When multiple graphs exist in the same viewport, the graph must be selected (see “Multiple Graphs,” below) in order for its transformation data to be shown, otherwise the number is 1.

Multiple Graphs

The **Graphs** window contains buttons that allow the placement of two-dimensional graphs into one of nine available slots in any other two-dimensional viewport. In the center of the window are numeral buttons from one to nine that show whether a graph is displayed in the viewport. Below each number button is a button showing whether a graph that is present is selected for application of some transformation. When the caret symbol is displayed, then the graph in that slot will be manipulated. Initially, the graph for which the viewport is created occupies the first slot, is displayed, and is selected.

Clear: The **Clear** button deselects every viewport graph slot. A graph slot is reselected by selecting the button below its number.

Query: The **Query** button is used to display the scale and translate data for the indicated graph. When this button is selected the message “Click on the graph to query” appears. Select a slot number button from the **Graphs** window. The scaling factor and translation offset of the graph are then displayed in the message window.

Pick: The **Pick** button is used to select a graph to be placed or dropped into the indicated viewport. When this button is selected, the message “Click on the graph to pick” appears. Click on the slot with the graph number of the desired graph. The graph information is held waiting for you to execute a **Drop** in some other graph.

Drop: Once a graph has been picked up using the **Pick** button, the **Drop** button places it into a new viewport slot. The message “Click on the graph to drop” appears in the message window when the **Drop** button is selected. By selecting one of the slot
number buttons in the **Graphs** window, the graph currently being held is dropped into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the box if already enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file `axiom2d.ps` or to a name specified in the user’s `.Xdefaults` file. The file is placed in the directory from which Axiom or the `viewalone` program was invoked.

Reset resets the object transformation characteristics and attributes back to their initial states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics. Each operation name is followed by a list of arguments. Each argument is written as a variable informally named according to the type of the argument (for example, `integer`). If appropriate, a default value for an argument is given in parentheses immediately following the name.

adaptive ([`boolean(true)`])

sets or indicates whether graphs are plotted according to the adaptive refinement algorithm.

axesColorDefault ([`color(dark blue())`])

sets or indicates the default color of the axes in a two-dimensional graph viewport.

clipPointsDefault ([`boolean(false)`])

sets or indicates whether point clipping is to be applied as the default for graph plots.

drawToScale ([`boolean(false)`])

sets or indicates whether the plot of a graph is “to scale” or uses the entire viewport space as the default.
7.1. TWO-DIMENSIONAL GRAPHICS

- **lineColorDefault** ([color(pastel yellow())])
 sets or indicates the default color of the lines or curves in a two-dimensional graph viewport.

- **maxPoints** ([integer(500)])
 sets or indicates the default maximum number of possible points to be used when constructing a two-dimensional graph.

- **minPoints** ([integer(21)])
 sets or indicates the default minimum number of possible points to be used when constructing a two-dimensional graph.

- **pointColorDefault** ([color(bright red())])
 sets or indicates the default color of the points in a two-dimensional graph viewport.

- **pointSizeDefault** ([integer(5)])
 sets or indicates the default size of the dot used to plot points in a two-dimensional graph.

- **screenResolution** ([integer(600)])
 sets or indicates the default screen resolution constant used in setting the computation limit of adaptively generated curve plots.

- **unitsColorDefault** ([color(dim green())])
 sets or indicates the default color of the unit labels in a two-dimensional graph viewport.

- **viewDefaults** ()
 resets the default settings for the following attributes: point color, line color, axes color, units color, point size, viewport upper left-hand corner position, and the viewport size.

- **viewPosDefault** ([list([100,100])])
 sets or indicates the default position of the upper left-hand corner of a two-dimensional viewport, relative to the display root window. The upper left-hand corner of the display is considered to be at the (0, 0) position.

- **viewSizeDefault** ([list([200,200])])
 sets or indicates the default size in which two dimensional viewport windows are shown. It is defined by a width and then a height.

- **viewWriteAvailable** ([list(["pixmap","bitmap","postscript","image"])])
 indicates the possible file types that can be created with the write function.

- **viewWriteDefault** ([list([])])
 sets or indicates the default types of files, in addition to the data file, that are created when a write function is executed on a viewport.

- **units** ([viewport, integer(1), string("off"))
 turns the units on or off for the graph with index integer.

- **axes** ([viewport, integer(1), string("on"))
 turns the axes on or off for the graph with index integer.
close (viewport)
closes viewport.

connect (viewport, integer(1), string("on"))
declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))
declares whether the two-dimensional control-panel is automatically displayed or not.

graphs (viewport)
returns a list describing the state of each graph. If the graph state is not being used
this is shown by "undefined", otherwise a description of the graph’s contents is shown.

graphStates (viewport)
displays a list of all the graph states available for viewport, giving the values for every
property.

key (viewport)
returns the process ID number for viewport.

move (viewport, integer_x(viewPosDefault), integer_y(viewPosDefault))
moves viewport on the screen so that the upper left-hand corner of viewport is at the
position (x,y).

options (viewport)
returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))
specifies whether the graph points for graph integer are to be displayed or not.

region (viewport, integer(1), string("off"))
declares whether graph integer is or is not to be displayed with a bounding rectangle.

reset (viewport)
resets all the properties of viewport.

resize (viewport, integer_width, integer_height)
resizes viewport with a new width and height.

scale (viewport, integer_x(1), integer_x(0.9), integer_y(0.9))
scales values for the x and y coordinates of graph n.

show (viewport, integer(1), string("on"))
indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))
designates the title for viewport.

translate (viewport, integer_x(1), float_x(0.0), float_y(0.0))
causes graph n to be moved x and y units in the respective directions.
write (viewport, stringdirectory, [strings])
 if no third argument is given, writes the data file onto the directory with extension data. The third argument can be a single string or a list of strings with some or all the entries "pixmap", "bitmap", "postscript", and "image".

Addendum: Building Two-Dimensional Graphs

In this section we demonstrate how to create two-dimensional graphs from lists of points and give an example showing how to read the lists of points from a file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the GraphImage and TwoDimensionalViewport domains. In this example, the makeGraphImage function takes a list of lists of points parameter, a list of colors for each point in the graph, a list of colors for each line in the graph, and a list of sizes for each point in the graph.

The following expressions create a list of lists of points which will be read by Axiom and made into a two-dimensional viewport.

\[
\begin{align*}
p1 & := \text{point } [1,1]$\text{(Point DFLOAT)} \\
& = [1.0, 1.0] \\
& \text{Type: Point DoubleFloat} \\
p2 & := \text{point } [0,1]$\text{(Point DFLOAT)} \\
& = [0.0, 1.0] \\
& \text{Type: Point DoubleFloat} \\
p3 & := \text{point } [0,0]$\text{(Point DFLOAT)} \\
& = [0.0, 0.0] \\
& \text{Type: Point DoubleFloat} \\
p4 & := \text{point } [1,0]$\text{(Point DFLOAT)} \\
& = [1.0, 0.0]
\end{align*}
\]
p5 := point [1,.5](Point DFLOAT)
[1.0, 0.5]
Type: Point DoubleFloat

p6 := point [.5,0](Point DFLOAT)
[0.5, 0.0]
Type: Point DoubleFloat

p7 := point [0,0.5](Point DFLOAT)
[0.0, 0.5]
Type: Point DoubleFloat

p8 := point [.5,1](Point DFLOAT)
[0.5, 1.0]
Type: Point DoubleFloat

p9 := point [.25,.25](Point DFLOAT)
[0.25, 0.25]
Type: Point DoubleFloat

p10 := point [.25,.75](Point DFLOAT)
[0.25, 0.75]
Type: Point DoubleFloat
p11 := point [.75,.75]$(Point DFLOAT)

[0.75,0.75]
Type: Point DoubleFloat

p12 := point [.75,.25]$(Point DFLOAT)

[0.75,0.25]
Type: Point DoubleFloat

Finally, here is the list.

llp := [[p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7], [p7,p8],
[p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9]]

[[[1.0,1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]],
[[1.0, 0.0], [1.0, 1.0]],
[[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5]], [[0.0, 0.5], [0.5, 1.0]],
[[0.5, 1.0], [1.0, 0.5]], [[0.25, 0.25], [0.25, 0.75]], [[0.25, 0.75], [0.75, 0.75]],
[[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]

Type: List ListPoint DoubleFloat

Now we set the point sizes for all components of the graph.

size1 := 6::PositiveInteger

6
Type: PositiveInteger

size2 := 8::PositiveInteger

8
Type: PositiveInteger

size3 := 10::PositiveInteger
\[\text{lsize} := [\text{size1, size1, size1, size1, size2, size2, size2, size2, size3, size3, size3, size3}]
\]
\[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10\]
Type: List Polynomial Integer

Here are the colors for the points.

\(\text{pc1} := \text{pastel red()}\)

[Hue: 1Weight: 1.0] from the Pastelpalette
Type: Palette

\(\text{pc2} := \text{dim green()}\)

[Hue: 14Weight: 1.0] from the Dimpalette
Type: Palette

\(\text{pc3} := \text{pastel yellow()}\)

[Hue: 11Weight: 1.0] from the Pastelpalette
Type: Palette

\(\text{lpc} := [\text{pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3}]\)

[[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette]
7.1. TWO-DIMENSIONAL GRAPHICS

Here are the colors for the lines.

```
lc := [pastel blue(), light yellow(), dim green(), bright red(), light
.green(), dim yellow(), bright blue(), dark red(), pastel red(), light
.blue(), dim green(), light yellow()]

[[Hue: 22Weight: 1.0] from the Pastel palette, [Hue: 11Weight: 1.0] from the Light palette,
[Hue: 14Weight: 1.0] from the Dim palette, [Hue: 1Weight: 1.0] from the Bright palette,
[Hue: 14Weight: 1.0] from the Light palette, [Hue: 11Weight: 1.0] from the Dim palette,
+ [Hue: 22Weight: 1.0] from the Bright palette, [Hue: 1Weight: 1.0] from the Dark palette,
[Hue: 1Weight: 1.0] from the Pastel palette, [Hue: 22Weight: 1.0] from the Light palette,
[Hue: 14Weight: 1.0] from the Dim palette, [Hue: 11Weight: 1.0] from the Light palette]
```

Now the \texttt{GraphImage} is created according to the component specifications indicated above.

```
g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The \texttt{makeViewport2D} function now creates a TwoDimensionalViewport for this graph according to the list of options specified within the brackets.

\texttt{makeViewport2D(g,[title("Lines")])}$VIEW2D

This example demonstrates the use of the \texttt{GraphImage} functions \texttt{component} and \texttt{appendPoint} in adding points to an empty \texttt{GraphImage}.

\texttt{)clear all}

```
g := graphImage()$GRIMAGE
```

Graph with 0point lists
p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5]

Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

component(g,p1)$GRIMAGE

Type: Void

component(g,p2)$GRIMAGE

Type: Void
appendPoint(g,p3)\ GRIMAGE

Type: Void

appendPoint(g,p4)\ GRIMAGE

Type: Void

appendPoint(g,p5)\ GRIMAGE

Type: Void

g1 := makeGraphImage(g)\ GRIMAGE

Here is the graph.

makeViewport2D(g1,[title("Graph Points")])\ VIEW2D

A list of points can also be made into a GraphImage by using the operation coerce. It is equivalent to adding each point to g2 using component.

g2 := coerce([ [p1],[p2],[p3],[p4],[p5] ]\ GRIMAGE

Now, create an empty TwoDimensionalViewport.

v := viewport2D()\ VIEW2D

options(v,[title("Just Points")])\ VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1)\ VIEW2D

Take a look.

makeViewport2D(v)\ VIEW2D
CHAPTER 7. GRAPHICS

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the points and the connecting lines. The points are stored in the file in readable form as floating point numbers (specifically, DoubleFloat values) as an alternating stream of x- and y-values. For example,

\[
\begin{array}{ccc}
0.0 & 0.0 & 1.0 & 1.0 & 2.0 & 4.0 \\
3.0 & 9.0 & 4.0 & 16.0 & 5.0 & 25.0 \\
\end{array}
\]

drawPoints(lp:List Point DoubleFloat):VIEW2D ==
g := graphImage()$GRIMAGE
for p in lp repeat
  component(g,p,pointColorDefault(),lineColorDefault(),
    pointSizeDefault())
  gi := makeGraphImage(g)$GRIMAGE
makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==
g := graphImage()$GRIMAGE
component(g, lp, pointColorDefault(), lineColorDefault(),
  pointSizeDefault())$GRIMAGE
  gi := makeGraphImage(g)$GRIMAGE
makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==
f:File(DFLOAT) := open(name,"input")
lp:LIST(Point DFLOAT) := empty()
while ((x := readIfCan!(f)) case DFLOAT) repeat
  y := read!(f)
  lp := cons(point [x,y]$(Point DFLOAT), lp)
lp
  close!(f)
drawPoints(lp)
drawLines(lp)

This command will actually create the viewport and the graph if the point data is in the file "file.data".

plotData2D("file.data", "2D Data Plot")

Addendum: Appending a Graph to a Viewport Window Containing a Graph

This section demonstrates how to append a two-dimensional graph to a viewport already containing other graphs. The default draw command places a graph into the first GraphImage slot position of the TwoDimensionalViewport.

This graph is in the first slot in its viewport.
v1 := draw(sin(x),x=0..2*%pi)

So is this graph.

v2 := draw(cos(x),x=0..2*%pi, curveColor=light red())

The operation getGraph retrieves the GraphImage g1 from the first slot position in the viewport v1.

g1 := getGraph(v1,1)

Now putGraph places g1 into the the second slot position of v2.

putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

7.2 Three-Dimensional Graphics

The Axiom three-dimensional graphics package provides the ability to

- generate surfaces defined by a function of two real variables
- generate space curves and tubes defined by parametric equations
- generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating points in the spherical coordinate system or changing the polygon grid size of a surface.

Plotting Three-Dimensional Functions of Two Variables

The simplest three-dimensional graph is that of a surface defined by a function of two variables, \( z = f(x,y) \).

The general format for drawing a surface defined by a formula \( f(x,y) \) of two variables \( x \) and \( y \) is:

\[
\text{draw}(f(x,y), x = a..b, y = c..d, \text{options})
\]

where \( a..b \) and \( c..d \) define the range of \( x \) and \( y \), and where options prescribes zero or more options as described in section 7.2 on page 260. An example of an option is title == "Title of Graph". An alternative format involving a function \( f \) is also available.
The simplest way to plot a function of two variables is to use a formula. With formulas you always precede the range specifications with the variable name and an = sign.

\[
draw(\cos(xy), x=-3..3, y=-3..3)
\]

\[
cos(xy), x = -3..3, y = -3..3
\]

If you intend to use a function more than once, or it is long and complex, then first give its definition to Axiom.

\[
f(x,y) \equiv \sin(x)\cos(y)
\]

\text{Type: Void}

To draw the function, just give its name and drop the variables from the range specifications. Axiom compiles your function for efficient computation of data for the graph. Notice that Axiom uses the text of your function as a default title.

\[
draw(f, -\pi..\pi, -\pi..\pi)
\]

\[
f, -\pi..\pi, -\pi..\pi
\]
Plotting Three-Dimensional Parametric Space Curves

A second kind of three-dimensional graph is a three-dimensional space curve defined by the parametric equations for \( x(t) \), \( y(t) \), and \( z(t) \) as a function of an independent variable \( t \).

The general format for drawing a three-dimensional space curve defined by parametric formulas \( x = f(t) \), \( y = g(t) \), and \( z = h(t) \) is:

\[
\text{draw(curve}(f(t),g(t),h(t)), \ t = a..b, \ \text{options})
\]

where \( a..b \) defines the range of the independent variable \( t \), and where \( \text{options} \) prescribes zero or more options as described in section 7.2 on page 260. An example of an option is \( \text{title} == \text{"Title of Graph"} \). An alternative format involving functions \( f, g \) and \( h \) is also available.

If you use explicit formulas to draw a space curve, always precede the range specification with the variable name and an \( = \) sign.

\[
\text{draw(curve}(5\cos(t), 5\sin(t),t), \ t=-12..12)
\]

Alternatively, you can draw space curves by referring to functions.

\[
i1(t:\text{DFLOAT}) : \text{DFLOAT} == \sin(t)\cos(3t/5)
\]

Function declaration \( i1 : \text{DoubleFloat} \rightarrow \text{DoubleFloat} \) has been added to workspace.

Type: Void

This is useful if the functions are to be used more than once …
i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5)

Function declaration i2 : DoubleFloat -> DoubleFloat has been added to workspace.

Type: Void

or if the functions are long and complex.

i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5)

Function declaration i3 : DoubleFloat -> DoubleFloat has been added to workspace.

Type: Void

Give the names of the functions and drop the variable name specification in the second argument. Again, Axiom supplies a default title.

draw(curve(i1,i2,i3),0..15*%pi)

Plotting Three-Dimensional Parametric Surfaces

A third kind of three-dimensional graph is a surface defined by parametric equations for $x(u,v)$, $y(u,v)$, and $z(u,v)$ of two independent variables $u$ and $v$. 
The general format for drawing a three-dimensional graph defined by parametric formulas \( x = f(u,v) \), \( y = g(u,v) \), and \( z = h(u,v) \) is:

\[
draw(surface(f(u,v),g(u,v),h(u,v)), \ u = a..b, \ v = c..d, \ options)
\]
where \( a\ldots b \) and \( c\ldots d \) define the range of the independent variables \( u \) and \( v \), and where \( options \) prescribes zero or more options as described in section 7.2 on page 260. An example of an option is \( title == \ "Title of Graph" \). An alternative format involving functions \( f, g \) and \( h \) is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical coordinate system option. The values of the functions supplied to \( surface \) are interpreted in coordinates as given by a \( coordinates \) option, here as parabolic cylindrical coordinates (see section 7.2 on page 273.

\[
draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..%pi, coordinates==parabolicCylindrical)
\]

\[
surface(ucos(v), usin(v), vcoss(u)), u = -4..4, v = 0..%pi, coordinates == parabolicCylindrical
\]
Again, you can graph these parametric surfaces using functions, if the functions are long and complex.

Here we declare the types of arguments and values to be of type \( \text{DoubleFloat} \).

\[
n1(u:\text{DOUBLEFLOAT},v:\text{DOUBLEFLOAT}):\text{DOUBLEFLOAT} \equiv u*\cos(v)
\]

\[
\text{Function declaration n1 : DoubleFloat -> DoubleFloat has been added to workspace.}
\]

Type: Void
As shown by previous examples, these declarations are necessary.

\[ n_2(u:DFLOAT,v:DFLOAT):DFLOAT = u \sin(v) \]

Function declaration \( n_2 : \text{DoubleFloat} \rightarrow \text{DoubleFloat} \) has been added to workspace.

Type: Void

In either case, Axiom compiles the functions when needed to graph a result.

\[ n_3(u:DFLOAT,v:DFLOAT):DFLOAT = u \]

Function declaration \( n_3 : \text{DoubleFloat} \rightarrow \text{DoubleFloat} \) has been added to workspace.

Type: Void

Without these declarations, you have to suffix floats with \(@DFLOAT@\) to get a DoubleFloat result. However, a call here with an unadorned float produces a DoubleFloat.

\[ n_3(0.5,1.0) \]

Compiling function \( n_3 \) with type \((\text{DoubleFloat,DoubleFloat}) \rightarrow \text{DoubleFloat}\)

Type: DoubleFloat

Draw the surface by referencing the function names, this time choosing the toroidal coordinate system.

\[ \text{draw(surface}(n_1,n_2,n_3), 1..4, 1..2*\pi, \text{coordinates} = \text{toroidal}(1\$\text{DFLOAT})) \]
7.2. THREE-DIMENSIONAL GRAPHICS

\[
\text{surface}(n1, n2, n3, 1..4, 1..2\pi, \text{coordinates} == \text{toroidal}(1$DFLOAT$))
\]

Axiom Images
Newton's method for finding the complex cube root of $z$. Oscillations from top-left. Vector field images after 3 iterations, surface view after 5 iterations; surface view after 4 iterations.
Complex mappings. Top: Conformal map of the grid in the complex plane on the left to the grid on the right by \( z \to z + \frac{1}{z} \). Middle: Map of the Riemann sphere to the complex plane. Bottom: Conformal map of the unit disk (on the left) to the right half plane by \( z \to \frac{z}{1-z^2} \) displayed on the Riemann sphere.
7.2. THREE-DIMENSIONAL GRAPHICS
A torus turning into a trefoil knot.
7.2. THREE-DIMENSIONAL GRAPHICS

Concrete Torus (right), Equilateral Triangular Torus (center), Twisted Torus (left), Shaped Torus (middle), The Klein Bottle.

257
Numeric Functions. Clockwise from top-right:
The real sine function near the origin, the complex Gaussian function, The complex exponential function, for the complex image, the height is the real part and the color is the argument.
Three-Dimensional Options

The `draw` commands optionally take an optional list of options such as `coordinates` as shown in the last example. Each option is given by the syntax: `name == value`. Here is a list of the available options in the order that they are described below:

- `title` coordinates `var1Steps`
- `style` tubeRadius `var2Steps`
- `colorFunction` tubePoints `space`

The option `title` gives your graph a title.

```latex
\text{draw}(\cos(x*y), x=0..2*\pi, y=0..\pi, title == \text{"Title of Graph"})
```

The `style` determines which of four rendering algorithms is used for the graph. The choices are "wireMesh", "solid", "shade", and "smooth".

```latex
\text{draw}(\cos(x*y), x=-3..3, y=-3..3, style==\text{"smooth"}, title==\text{"Smooth Option"})
```

$\cos(xy), x = 0..2\pi, y = 0..\pi, \text{ title == } \text{"Title of Graph"}$

$\cos(xy), x = -3..3, y = -3..3, style == \text{"smooth"}, title == \text{"Smooth Option"}$
In all but the wire-mesh style, polygons in a surface or tube plot are normally colored in a graph according to their $z$-coordinate value. Space curves are colored according to their parametric variable value. To change this, you can give a coloring function. The coloring function is sampled across the range of its arguments, then normalized onto the standard Axiom colormap.

A function of one variable makes the color depend on the value of the parametric variable specified for a tube plot.

\[
\text{color1}(t) = t
\]

\[
\text{draw} \left( \text{curve} \left( \sin(t), \cos(t), 0 \right), \ t=0..2\times\pi, \ \text{tubeRadius} == .3, \ \text{colorFunction} == \text{color1} \right)
\]

\[
\text{curve} \left( \sin(t), \cos(t), 0 \right), \ t = 0.2\pi, \ \text{tubeRadius} == .3, \ \text{colorFunction} == \text{color1}
\]

A function of two variables makes the color depend on the values of the independent variables.

\[
\text{color2}(u,v) = u^2 - v^2
\]

\[
\text{draw} \left( \text{cos}(u\times v), \ u=-3..3, \ v=-3..3, \ \text{colorFunction} == \text{color2} \right)
\]

Use the option \text{colorFunction} for special coloring.
\[ \cos(uv), u = -3..3, v = -3..3, \text{colorFunction} == \text{color2} \]

With a three variable function, the color also depends on the value of the function.

\[ \text{color3}(x,y,fx) == \sin(x*fx) + \cos(y*fx) \]

Type: Void

\[ \text{draw} (\cos(x*y), x=-3..3, y=-3..3, \text{colorFunction} == \text{color3}) \]

\[ \cos(xy), x = -3..3, y = -3..3, \text{colorFunction} == \text{color3} \]

Normally the Cartesian coordinate system is used. To change this, use the coordinates option. For details, see section 7.2 on page 273.

\[ \text{m}(u:DFLOAT, v:DFLOAT):DFLOAT == 1 \]

Function declaration \text{m} : (DoubleFloat,DoubleFloat) \to DoubleFloat has been added to workspace.
7.2. THREE-DIMENSIONAL GRAPHICS

Use the spherical coordinate system.

\[
\text{draw}(m, 0..2\pi, 0..\pi, \text{coordinates} == \text{spherical, style}=="\text{shade}")
\]

Space curves may be displayed as tubes with polygonal cross sections. Two options, \text{tubeRadius} and \text{tubePoints}, control the size and shape of this cross section.

The \text{tubeRadius} option specifies the radius of the tube that encircles the specified space curve.

\[
\text{draw}(\text{curve}(\sin(t), \cos(t), 0), t=0..2\pi, \text{style}=="\text{shade}", \text{tubeRadius} == .3)
\]
The \texttt{tubePoints} option specifies the number of vertices defining the polygon that is used to create a tube around the specified space curve. The larger this number is, the more cylindrical the tube becomes.

\begin{verbatim}
draw(curve(sin(t), cos(t), 0), t=0..2*%pi, style=="shade", tubeRadius == .25, tubePoints == 3)
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{tube.png}
\caption{Example of a tube around a space curve.}
\end{figure}

\textit{curve}(\sin(t), \cos(t), 0), \ t = 0..2\pi, \ \textit{style} = "\textit{shade}", \ \textit{tubeRadius} = .25, \ \textit{tubePoints} = 3

Options \texttt{var1Steps} and \texttt{var2Steps} specify the number of intervals into which the grid defining a surface plot is subdivided with respect to the first and second parameters of the surface function(s).

\begin{verbatim}
draw(cos(x*y), x=-3..3, y=-3..3, style=="shade", var1Steps == 30, var2Steps == 30)
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{surface.png}
\caption{Example of a surface plot.}
\end{figure}

\textit{cos}(xy), x = -3..3, y = -3..3, \ \textit{style} = "\textit{shade}", \ \textit{var1Steps} = 30, \ \textit{var2Steps} = 30

The \texttt{space} option of a \texttt{draw} command lets you build multiple graphs in three space. To use
this option, first create an empty three-space object, then use the space option thereafter. There is no restriction as to the number or kinds of graphs that can be combined this way. Create an empty three-space object.

\[
s := \text{create3Space()}\text{(ThreeSpace DFLOAT)}
\]

3-Space with 0 components

\[
\text{Type: ThreeSpace DoubleFloat}
\]

\[
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
\]

Function declaration \( m: (\text{DoubleFloat,DoubleFloat}) \rightarrow \text{DoubleFloat} \)
has been added to workspace.

\[
\text{Type: Void}
\]

Add a graph to this three-space object. The new graph destructively inserts the graph into \( s \).

\[
\text{draw(m,0..\%pi,0..2*\%pi, coordinates == spherical, space == s)}
\]

Add a second graph to \( s \).

\[
v := \text{draw(curve}(1.5*\sin(t), 1.5*\cos(t),0), t=0..2*\%pi, \text{tubeRadius == .25, space == s)}
\]
A three-space object can also be obtained from an existing three-dimensional viewport using the `subspace` command. You can then use `makeViewport3D` to create a viewport window.

Assign to `subsp` the three-space object in viewport `v`.

```
subsp := subspace v
```

Reset the space component of `v` to the value of `subsp`.

```
subspace(v, subsp)
```

Create a viewport window from a three-space object.

```
makeViewport3D(subsp,"Graphs")
```

### The `makeObject` Command

An alternate way to create multiple graphs is to use `makeObject`. The `makeObject` command is similar to the `draw` command, except that it returns a three-space object rather than a `ThreeDimensionalViewport`. In fact, `makeObject` is called by the `draw` command to create the `ThreeSpace` then `makeViewport3D` to create a viewport window.

```
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
```

```
Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat has been added to workspace.
```

Type: Void
Do the last example a new way. First use makeObject to create a three-space object \textit{sph}.

\texttt{sph := makeObject(m, 0..\%pi, 0..2*\%pi, coordinates==spherical)}

\begin{verbatim}
Compiling function m with type (DoubleFloat,DoubleFloat) ->
DoubleFloat

3 - Space with 1 component

Type: ThreeSpace DoubleFloat
\end{verbatim}

Add a second object to \textit{sph}.

\texttt{makeObject(curve(1.5*sin(t), 1.5*cos(t), 0), t=0..2*\%pi, space == sph,}
\texttt{tubeRadius == .25)}

\begin{verbatim}
Compiling function %D with type DoubleFloat -> DoubleFloat
Compiling function %F with type DoubleFloat -> DoubleFloat
Compiling function %H with type DoubleFloat -> DoubleFloat

3 - Space with 2 components

Type: ThreeSpace DoubleFloat
\end{verbatim}

Create and display a viewport containing \textit{sph}.

\texttt{makeViewport3D(sph,"Multiple Objects")}

Note that an undefined \textit{ThreeSpace} parameter declared in a \texttt{makeObject} or \texttt{draw} command results in an error. Use the \texttt{create3Space} function to define a \textit{ThreeSpace}, or obtain a \textit{ThreeSpace} that has been previously generated before including it in a command line.

\textbf{Building Three-Dimensional Objects From Primitives}

Rather than using the \texttt{draw} and \texttt{makeObject} commands, you can create three-dimensional graphs from primitives. Operation \texttt{create3Space} creates a three-space object to which points, curves and polygons can be added using the operations from the \textit{ThreeSpace} domain. The resulting object can then be displayed in a viewport using \texttt{makeViewport3D}.

Create the empty three-space object \textit{space}.

\texttt{space := create3Space()$(ThreeSpace DFLOAT)$}
3 – Space with 0 components

Type: ThreeSpace DoubleFloat

Objects can be sent to this space using the operations exported by the ThreeSpace domain. The following examples place curves into space.

Add these eight curves to the space.

\[
\text{closedCurve}(\text{space}, [ [0,30,20], [0,30,30], [0,40,30], [0,40,100], [0,30,100], [0,30,110], [0,60,110], [0,60,100], [0,50,100], [0,50,30], [0,60,30], [0,60,20] ]) 
\]

3 – Space with 1 component

Type: ThreeSpace DoubleFloat

\[
\text{closedCurve}(\text{space}, [ [80,0,30], [80,0,100], [70,0,110], [40,0,110], [30,0,100], [30,0,90], [40,0,90], [40,0,95], [45,0,100], [65,0,100], [70,0,95], [70,0,35] ]) 
\]

3 – Space with 2 components

Type: ThreeSpace DoubleFloat

\[
\text{closedCurve}(\text{space}, [ [70,0,35], [65,0,30], [45,0,30], [40,0,35], [40,0,60], [50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20], [80,0,30] ]) 
\]

3 – Space with 3 components

Type: ThreeSpace DoubleFloat

\[
\text{closedCurve}(\text{space}, [ [0,70,20], [0,70,110], [0,110,110], [0,120,100], [0,120,70], [0,115,65], [0,120,60], [0,120,30], [0,110,20], [0,80,20], [0,80,30], [0,80,20] ]) 
\]

3 – Space with 4 components

Type: ThreeSpace DoubleFloat
closedCurve(space,[ [0,105,30], [0,110,35], [0,110,55], [0,105,60],
[0,80,60], [0,80,70], [0,105,70], [0,110,75], [0,110,95], [0,105,100],
[0,80,100], [0,80,20], [0,80,30] ])

3 – Space with 5 components
Type: ThreeSpace DoubleFloat

closedCurve(space,[ [140,0,20], [140,0,110], [130,0,110], [90,0,20],
[101,0,20],[114,0,50], [130,0,50], [130,0,60], [119,0,60], [130,0,85],
[130,0,20] ])

3 – Space with 6 components
Type: ThreeSpace DoubleFloat

closedCurve(space,[ [0,140,20], [0,140,110], [0,150,110], [0,170,50],
[0,190,110], [0,200,110], [0,200,20], [0,190,20], [0,190,75], [0,175,35],
[0,165,35],[0,150,75], [0,150,20] ])

3 – Space with 7 components
Type: ThreeSpace DoubleFloat

closedCurve(space,[ [200,0,20], [200,0,110], [189,0,110], [160,0,45],
[160,0,110], [150,0,110], [150,0,20], [161,0,20], [190,0,85], [190,0,20] ])

3 – Space with 8 components
Type: ThreeSpace DoubleFloat

Create and display the viewport using makeViewport3D. Options may also be given but here are displayed as a list with values enclosed in parentheses.

makeViewport3D(space, title == "Letters")
Cube Example

As a second example of the use of primitives, we generate a cube using a polygon mesh. It is important to use a consistent orientation of the polygons for correct generation of three-dimensional objects.

Again start with an empty three-space object.

\[
\text{spaceC := create3Space()$(ThreeSpace DFLOAT)}
\]

\[3 - \text{Spacewith0components}\]

Type: ThreeSpace DoubleFloat

For convenience, give DoubleFloat values +1 and -1 names.

\[x: \text{DFLOAT := 1}\]

1.0

Type: DoubleFloat

\[y: \text{DFLOAT := -1}\]

-1.0

Type: DoubleFloat
7.2. THREE-DIMENSIONAL GRAPHICS

Define the vertices of the cube.

\[
a := \text{point } [x, x, y, 1::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[1.0, 1.0, -1.0, 1.0]
\]

Type: Point DoubleFloat

\[
b := \text{point } [y, x, y, 4::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[-1.0, 1.0, -1.0, 4.0]
\]

Type: Point DoubleFloat

\[
c := \text{point } [y, x, x, 8::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[-1.0, 1.0, 1.0, 8.0]
\]

Type: Point DoubleFloat

\[
d := \text{point } [x, x, 12::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[1.0, 1.0, 1.0, 12.0]
\]

Type: Point DoubleFloat

\[
e := \text{point } [x, y, y, 16::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[1.0, -1.0, -1.0, 16.0]
\]

Type: Point DoubleFloat

\[
f := \text{point } [y, y, 20::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
\[
[-1.0, -1.0, -1.0, 20.0]
\]

Type: Point DoubleFloat

\[
g := \text{point } [y, y, x, 24::\text{DFLOAT}] \text{(Point DFLOAT)}
\]
$[-1.0, -1.0, 1.0, 24.0]$

Type: Point DoubleFloat

\h := \text{point} [x, y, x, 27::\text{DFLOAT}]$

$[1.0, -1.0, 1.0, 27.0]$

Type: Point DoubleFloat

Add the faces of the cube as polygons to the space using a consistent orientation.

\text{polygon}(\text{spaceC}, [d, c, g, h])

3 - \text{Space with 1 component}

Type: ThreeSpace DoubleFloat

\text{polygon}(\text{spaceC}, [d, h, e, a])

3 - \text{Space with 2 components}

Type: ThreeSpace DoubleFloat

\text{polygon}(\text{spaceC}, [c, d, a, b])

3 - \text{Space with 3 components}

Type: ThreeSpace DoubleFloat

\text{polygon}(\text{spaceC}, [g, c, b, f])

3 - \text{Space with 4 components}

Type: ThreeSpace DoubleFloat

\text{polygon}(\text{spaceC}, [h, g, f, e])

3 - \text{Space with 5 components}
7.2. THREE-DIMENSIONAL GRAPHICS

Type: ThreeSpace DoubleFloat

```
polygon(spaceC,[e,f,b,a])
```

3 - Space with 6 components

Type: ThreeSpace DoubleFloat

Create and display the viewport.

```
makeViewport3D(spaceC, title == "Cube")
```

Coordinate System Transformations

The CoordinateSystems package provides coordinate transformation functions that map a given data point from the coordinate system specified into the Cartesian coordinate system. The default coordinate system, given a triplet \((f(u,v), u, v)\), assumes that \(z = f(u,v)\), \(x = u\) and \(y = v\), that is, reads the coordinates in \((z, x, y)\) order.

```
m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2
```

Function declaration \(m : (\text{DoubleFloat, DoubleFloat}) \rightarrow \text{DoubleFloat}\) has been added to workspace.

Type: Void
Graph plotted in default coordinate system.

\texttt{draw(m,0..3,0..5)}

The \( z \) coordinate comes first since the first argument of the \texttt{draw} command gives its values. In general, the coordinate systems Axiom provides, or any that you make up, must provide a map to an \((x,y,z)\) triplet in order to be compatible with the \texttt{coordinates DrawOption}. Here is an example.

Define the identity function.

\texttt{cartesian(point:Point DFLOAT):Point DFLOAT == point}

Function declaration \texttt{cartesian} : \texttt{Point DoubleFloat \rightarrow Point DoubleFloat} has been added to workspace.

Type: \texttt{Void}

Pass \texttt{cartesian} as the \texttt{coordinates} parameter to the \texttt{draw} command.

\texttt{draw(m,0..3,0..5,coordinates==cartesian)}
What happened? The option \texttt{coordinates == cartesian} directs Axiom to treat the dependent variable \( m \) defined by \( m = u^2 \) as the \( x \) coordinate. Thus the triplet of values \((m, u, v)\) is transformed to coordinates \((x, y, z)\) and so we get the graph of \( x = y^2 \).

Here is another example. The \texttt{cylindrical} transform takes input of the form \((w, u, v)\), interprets it in the order \((r, \theta, z)\) and maps it to the Cartesian coordinates \( x = r \cos(\theta), \ y = r \sin(\theta), \ z = z \) in which \( r \) is the radius, \( \theta \) is the angle and \( z \) is the \( z \)-coordinate.

An example using the \texttt{cylindrical} coordinates for the constant \( r = 3 \).

\begin{verbatim}
f(u:DFLOAT,v:DFLOAT):DFLOAT == 3

Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat
    has been added to workspace.

Type: Void

Graph plotted in cylindrical coordinates.

draw(f,0..%pi,0..6,coordinates==cylindrical)
\end{verbatim}
Suppose you would like to specify \( z \) as a function of \( r \) and \( \theta \) instead of just \( r \)? Well, you still can use the \texttt{cylindrical} Axiom transformation but we have to reorder the triplet before passing it to the transformation.

First, let’s create a point to work with and call it \( pt \) with some color \( col \).

\[
\begin{align*}
col & := 5 \\
pt & := \text{point}[1,2,3,col]$(\text{Point DFLOAT}) \\
& = [1.0, 2.0, 3.0, 5.0]
\end{align*}
\]

The reordering you want is \((z, r, \theta)\) to \((r, \theta, z)\) so that the first element is moved to the third element, while the second and third elements move forward and the color element does not change.

Define a function \texttt{reorder} to reorder the point elements.

\[
\begin{align*}
\text{reorder}(p:\text{Point DFLOAT}):\text{Point DFLOAT} & = \text{point}[p.2, p.3, p.1, p.4]
\end{align*}
\]

\texttt{Function declaration reordered : Point DoubleFloat -> Point} \\
\texttt{DoubleFloat has been added to workspace.}
The function moves the second and third elements forward but the color does not change.

reorder pt

\[[2.0, 3.0, 1.0, 5.0]\]

Type: Point DoubleFloat

The function \texttt{newmap} converts our reordered version of the cylindrical coordinate system to the standard \((x, y, z)\) Cartesian system.

\texttt{newmap(pt:Point DFLOAT):Point DFLOAT == cylindrical(reorder pt)}

Function declaration \texttt{newmap : Point DoubleFloat -> Point DoubleFloat} has been added to workspace.

Type: Void

\texttt{newmap pt}

\[[-1.9799849932008908, 0.28224001611973443, 1.0, 5.0]\]

Type: Point DoubleFloat

Graph the same function \(f\) using the coordinate mapping of the function \texttt{newmap}, so it is now interpreted as \(z = 3\):

\texttt{draw(f,0..3,0..2*%pi,coordinates==newmap)}
The CoordinateSystems package exports the following operations:
- bipolar
- bipolarCylindrical
- cartesian
- conical
- cylindrical
- elliptic
- ellipticCylindrical
- oblateSpheroidal
- parabolic
- parabolicCylindrical
- paraboloidal
- polar
- prolateSpheroidal
- spherical
- toroidal

Use Browse or the \texttt{\textbackslash show} system command to get more information.

### Three-Dimensional Clipping

A three-dimensional graph can be explicitly clipped within the \texttt{draw} command by indicating a minimum and maximum threshold for the given function definition. These thresholds can be defined using the Axiom \texttt{min} and \texttt{max} functions.

```axiom
gamma(x,y) ==
g := Gamma complex(x,y)
 point [x, y, max(min(real g, 4), -4), argument g]
```

Here is an example that clips the gamma function in order to eliminate the extreme divergence it creates.

```
draw(gamma,-%pi..%pi,-%pi..%pi, var1Steps==50, var2Steps==50)
```

### Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left mouse button. This displays a control-panel on the side of the viewport that is closest to where you clicked.
Transformations

We recommend you first select the **Bounds** button while executing transformations since the bounding box displayed indicates the object’s position as it changes.

**Rotate:** A rotation transformation occurs by clicking the mouse within the **Rotate** window in the upper left corner of the control-panel. The rotation is computed in spherical coordinates, using the horizontal mouse position to increment or decrement the value of the longitudinal angle $\theta$ within the range of $0$ to $2\pi$ and the vertical mouse position to increment or decrement the value of the latitudinal angle $\phi$ within the range of $-\pi$ to $\pi$. The active mode of rotation is displayed in green on a color monitor or in clear text on a black and white monitor, while the inactive mode is displayed in red for color display or a mottled pattern for black and white.

- **origin:** The **origin** button indicates that the rotation is to occur with respect to the origin of the viewing space, that is indicated by the axes.

- **object:** The **object** button indicates that the rotation is to occur with respect to the center of volume of the object, independent of the axes’ origin position.

**Scale:** A scaling transformation occurs by clicking the mouse within the **Scale** window in the upper center of the control-panel, containing a zoom arrow. The axes along which
the scaling is to occur are indicated by selecting the appropriate button above the zoom arrow window. The selected axes are displayed in green on a color monitor or in clear text on a black and white monitor, while the unselected axes are displayed in red for a color display or a mottled pattern for black and white.

**uniform:** Uniform scaling along the \( x \), \( y \) and \( z \) axes occurs when all the axes buttons are selected.

**non-uniform:** If any of the axes buttons are not selected, non-uniform scaling occurs, that is, scaling occurs only in the direction of the axes that are selected.

**Translate:** Translation occurs by indicating with the mouse in the \textbf{Translate} window the direction you want the graph to move. This window is located in the upper right corner of the control-panel and contains a potentiometer with crossed arrows pointing up, down, left and right. Along the top of the \textbf{Translate} window are three buttons (\textbf{XY}, \textbf{XZ}, and \textbf{YZ}) indicating the three orthographic projection planes. Each orientates the group as a view into that plane. Any translation of the graph occurs only along this plane.

**Messages**

The window directly below the potentiometer windows for transformations is used to display system messages relating to the viewport, the control-panel and the current graph displaying status.

**Colormap**

Directly below the message window is the colormap range indicator window. The Axiom Colormap shows a sampling of the spectrum from which hues can be drawn to represent the colors of a surface. The Colormap is composed of five shades for each of the hues along this spectrum. By moving the markers above and below the Colormap, the range of hues that are used to color the existing surface are set. The bottom marker shows the hue for the low end of the color range and the top marker shows the hue for the upper end of the range. Setting the bottom and top markers at the same hue results in monochromatic smooth shading of the graph when \textbf{Smooth} mode is selected. At each end of the Colormap are \textbf{+} and \textbf{-} buttons. When clicked on, these increment or decrement the top or bottom marker.

**Buttons**

Below the Colormap window and to the left are located various buttons that determine the characteristics of a graph. The buttons along the bottom and right hand side all have special meanings; the remaining buttons in the first row indicate the mode or style used to display the graph. The second row are toggles that turn on or off a property of the graph. On a color monitor, the property is on if green (clear text, on a monochrome monitor) and off if red (mottled pattern, on a monochrome monitor). Here is a list of their functions.
7.2. THREE-DIMENSIONAL GRAPHICS

Wire displays surface and tube plots as a wireframe image in a single color (blue) with no hidden surfaces removed, or displays space curve plots in colors based upon their parametric variables. This is the fastest mode for displaying a graph. This is very useful when you want to find a good orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon beginning with the furthest from the viewer. The edges of the polygons are displayed in the hues specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons shaded, drawing each polygon beginning with the furthest from the viewer. Polygons are shaded in the hues specified by the range in the Colormap window using the Phong illumination model.

Smooth displays the graph using a renderer that computes the graph one line at a time. The location and color of the graph at each visible point on the screen are determined and displayed using the Phong illumination model. Smooth shading is done in one of two ways, depending on the range selected in the colormap window and the number of colors available from the hardware and/or window manager. When the top and bottom markers of the colormap range are set to different hues, the graph is rendered by dithering between the transitions in color hue. When the top and bottom markers of the colormap range are set to the same hue, the graph is rendered using the Phong smooth shading model. However, if enough colors cannot be allocated for this purpose, the renderer reverts to the color dithering method until a sufficient color supply is available. For this reason, it may not be possible to render multiple Phong smooth shaded graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box, or removes the box if previously selected. The region that encloses the entire volume of the viewport graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if previously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined in black when the graph is displayed in Shade mode.

BW converts a color viewport to black and white, or vice-versa. When this button is selected the control-panel and viewport switch to an immutable colormap composed of a range of grey scale patterns or tiles that are used wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the control-panel. The Exit button leaves the save menu. The Pixmap button writes an Axiom pixmap of the current viewport contents. The file is called axiom3D.pixmap and is located in the directory from which Axiom or viewalone was started. The PS button writes the current viewport contents to PostScript output rather than to the viewport window.
By default the file is called `axiom3D.ps`; however, if a file name is specified in the user's `.Xdefaults` file it is used. The file is placed in the directory from which the Axiom or `viewalone` session was begun. See also the `write` function.

**Reset** returns the object transformation characteristics back to their initial states.

**Hide** causes the control-panel for the corresponding viewport to disappear from the screen.

**Quit** queries whether the current viewport session should be terminated.

**Light**

The **Light** button changes the control-panel into the **Lighting Control-Panel**. At the top of this panel, the three axes are shown with the same orientation as the object. A light vector from the origin of the axes shows the current position of the light source relative to the object. At the bottom of the panel is an **Abort** button that cancels any changes to the lighting that were made, and a **Return** button that carries out the current set of lighting changes on the graph.

**XY:** The **XY** lighting axes window is below the **Lighting Control-Panel** title and to the left. This changes the light vector within the **XY** view plane.

**Z:** The **Z** lighting axis window is below the **Lighting Control-Panel** title and in the center. This changes the **Z** location of the light vector.

**Intensity:** Below the **Lighting Control-Panel** title and to the right is the light intensity meter. Moving the intensity indicator down decreases the amount of light emitted from the light source. When the indicator is at the top of the meter the light source is emitting at 100% intensity. At the bottom of the meter the light source is emitting at a level slightly above ambient lighting.

**View Volume**

The **View Volume** button changes the control-panel into the **Viewing Volume Panel**. At the bottom of the viewing panel is an **Abort** button that cancels any changes to the viewing volume that were made and a **Return** button that carries out the current set of viewing changes to the graph.

**Eye Reference:** At the top of this panel is the **Eye Reference** window. It shows a planar projection of the viewing pyramid from the eye of the viewer relative to the location of the object. This has a bounding region represented by the rectangle on the left. Below the object rectangle is the **Hither** window. By moving the slider in this window the hither clipping plane sets the front of the view volume. As a result of this depth clipping all points of the object closer to the eye than this hither plane are not shown. The **Eye Distance** slider to the right of the **Hither** slider is used to change the degree of perspective in the image.
Clip Volume: The Clip Volume window is at the bottom of the Viewing Volume Panel. On the right is a Settings menu. In this menu are buttons to select viewing attributes. Selecting the Perspective button computes the image using perspective projection. The Show Region button indicates whether the clipping region of the volume is to be drawn in the viewport and the Clipping On button shows whether the view volume clipping is to be in effect when the image is drawn. The left side of the Clip Volume window shows the clipping boundary of the graph. Moving the knobs along the X, Y, and Z sliders adjusts the volume of the clipping region accordingly.

Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics. Each operation name is followed by a list of arguments. Each argument is written as a variable informally named according to the type of the argument (for example, integer). If appropriate, a default value for an argument is given in parentheses immediately following the name.

adaptive3D? ()
    tests whether space curves are to be plotted according to the adaptive refinement algorithm.

axes (viewport, string("on"))
    turns the axes on and off.

close (viewport)
    closes the viewport.

colorDef (viewport, color1(1), color2(27))
    sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))
    declares whether the control-panel for the viewport is to be displayed or not.

diagonals (viewport, string("off"))
    declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)
    selects which of four drawing styles are used: "wireMesh", "solid", "shade", or "smooth".

eyeDistance (viewport, float(500))
    sets the distance of the eye from the origin of the object for use in the perspective.

key (viewport)
    returns the operating system process ID number for the viewport.

lighting (viewport, float_x(-0.5), float_y(0.5), float_z(0.5))
    sets the Cartesian coordinates of the light source.
modifyPointData (viewport, integer, point)
replaces the coordinates of the point with the index integer with point.

move (viewport, integer_x(viewPosDefault), integer_y(viewPosDefault))
moves the upper left-hand corner of the viewport to screen position (integer_x, integer_y).

options (viewport)
returns a list of all current draw options.

outlineRender (viewport, string("off"))
turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))
turns perspective viewing on and off.

reset (viewport)
resets the attributes of a viewport to their initial settings.

resize (viewport, integer_width(viewSizeDefault), integer_height(viewSizeDefault))
resets the width and height values for a viewport.

rotate (viewport, number_theta(viewThetaDefapult), number_phi(viewPhiDefault))
rotates the viewport by rotation angles for longitude (θ) and latitude (ϕ). Angles
designate radians if given as floats, or degrees if given as integers.

setAdaptive3D (boolean(true))
sets whether space curves are to be plotted according to the adaptive refinement algo-
rithm.

setMaxPoints3D (integer(1000))
sets the default maximum number of possible points to be used when constructing a
three-dimensional space curve.

setMinPoints3D (integer(49))
sets the default minimum number of possible points to be used when constructing a
three-dimensional space curve.

setScreenResolution3D (integer(49))
sets the default screen resolution constant used in setting the computation limit of
adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))
declares whether the bounding box of a graph is shown or not.

subspace (viewport)
returns the space component.

subspace (viewport, subspace)
resets the space component to subspace.
title \( (\text{viewport}, \text{string}) \)
gives the viewport the title \text{string}.

\textbf{translate} \( (\text{viewport}, \text{float}_{x}(\text{viewDeltaXDefault}), \text{float}_{y}(\text{viewDeltaYDefault})) \)
translates the object horizontally and vertically relative to the center of the viewport.

\textbf{intensity} \( (\text{viewport}, \text{float}(1.0)) \)
resets the intensity \( I \) of the light source, \( 0 \leq I \leq 1 \).

\textbf{tubePointsDefault} \( ([\text{integer}(6)]) \)
sets or indicates the default number of vertices defining the polygon that is used to create a tube around a space curve.

\textbf{tubeRadiusDefault} \( ([\text{float}(0.5)]) \)
sets or indicates the default radius of the tube that encircles a space curve.

\textbf{var1StepsDefault} \( ([\text{integer}(27)]) \)
sets or indicates the default number of increments into which the grid defining a surface plot is subdivided with respect to the first parameter declared in the surface function.

\textbf{var2StepsDefault} \( ([\text{integer}(27)]) \)
sets or indicates the default number of increments into which the grid defining a surface plot is subdivided with respect to the second parameter declared in the surface function.

\textbf{viewDefaults} \( ([\text{integer}_{\text{point}}, \text{integer}_{\text{line}}, \text{integer}_{\text{axes}}, \text{integer}_{\text{units}}, \text{float}_{\text{point}}, \text{list}_{\text{position}}, \text{list}_{\text{size}}]) \)
resets the default settings for the point color, line color, axes color, units color, point size, viewport upper left-hand corner position, and the viewport size.

\textbf{viewDeltaXDefault} \( ([\text{float}(0)]) \)
resets the default horizontal offset from the center of the viewport, or returns the current default offset if no argument is given.

\textbf{viewDeltaYDefault} \( ([\text{float}(0)]) \)
resets the default vertical offset from the center of the viewport, or returns the current default offset if no argument is given.

\textbf{viewPhiDefault} \( ([\text{float}(-\pi/4)]) \)
resets the default latitudinal view angle, or returns the current default angle if no argument is given. \( \phi \) is set to this value.

\textbf{viewpoint} \( (\text{viewport}, \text{float}_{z}, \text{float}_{y}, \text{float}_{z}) \)
sets the viewing position in Cartesian coordinates.

\textbf{viewpoint} \( (\text{viewport}, \text{float}_{\theta}, \text{Float}_{\phi}) \)
sets the viewing position in spherical coordinates.

\textbf{viewpoint} \( (\text{viewport}, \text{Float}_{\theta}, \text{Float}_{\phi}, \text{Float}_{\text{scaleFactor}}, \text{Float}_{\text{xOffset}}, \text{Float}_{\text{yOffset}}) \)
sets the viewing position in spherical coordinates, the scale factor, and offsets. \( \theta \) (longitude) and \( \phi \) (latitude) are in radians.
viewPosDefault ([list([0,0])])
sets or indicates the position of the upper left-hand corner of a two-dimensional viewport, relative to the display root window (the upper left-hand corner of the display is [0,0]).

viewSizeDefault ([list([400,400])])
sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(\pi/4)])
resets the default longitudinal view angle, or returns the current default angle if no argument is given. When a parameter is specified, the default longitudinal view angle $\theta$ is set to this value.

viewWriteAvailable ([list([" pixmap", " bitmap", " postscript", " image"])])
indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([])])
sets or indicates the default types of files that are created in addition to the data file when a write command is executed on a viewport.

viewScaleDefault ([float()])
sets the default scaling factor, or returns the current factor if no argument is given.

write (viewport, directory, [option])
writes the file data for viewport in the directory directory. An optional third argument specifies a file type (one of pixmap, bitmap, postscript, or image), or a list of file types. An additional file is written for each file type listed.

color (viewport, float(2.5))
specifies the scaling factor.

Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the .Xdefaults file for various defaults. The list of defaults that are recognized by the graphing routines is discussed in this section. These defaults are preceded by Axiom.3D. for three-dimensional viewport defaults, Axiom.2D. for two-dimensional viewport defaults, or Axiom* (no dot) for those defaults that are acceptable to either viewport type.

Axiom*buttonFont: font
This indicates which font type is used for the button text on the control-panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers and slots in the Graphs section of the two-dimensional control-panel. Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer header
names on three-dimensional viewport windows. This is also used for two-dimensional control-panels for indicating which font type is used for potentionmeter header names and multiple graph title headers. Itl14

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to black. If on, the graph viewports use black as the background color. If off or no declaration is made, the graph viewports use a white background. off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two lighting axes potentiometers, and for the Intensity title on the lighting control-panel. Rom10

Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel message window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the monitor is black and white, that is, a 1 bit plane. If on is specified, the viewport display is black and white. If off is specified, or no declaration for this default is given, the viewports are displayed in the normal fashion for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript graph is saved. axiom2d.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript graph is saved. axiom3D.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-dimensional graphs, in the lighting and viewing-volume control-panel windows. Rom14

Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on two-dimensional viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clipping region sliders; for the Perspective, Show Region, and Clipping On buttons under Settings, and above the windows for the Hither and Eye Distance sliders in the Viewing Volume Panel of the three-dimensional control-panel. Rom8
Chapter 8

Advanced Problem Solving

In this chapter we describe techniques useful in solving advanced problems with Axiom.

8.1 Numeric Functions

Axiom provides two basic floating-point types: Float and DoubleFloat. This section describes how to use numerical operations defined on these types and the related complex types. As we mentioned in Chapter section 1 on page 1, the Float type is a software implementation of floating-point numbers in which the exponent and the significand may have any number of digits. See Float 9.31 on page 517 for detailed information about this domain. The DoubleFloat 9.20 on page 485 is usually a hardware implementation of floating point numbers, corresponding to machine double precision. The types Complex Float and Complex DoubleFloat are the corresponding software implementations of complex floating-point numbers. In this section the term floating-point type means any of these four types. The floating-point types implement the basic elementary functions. These include (where $\$ means DoubleFloat, Float, Complex DoubleFloat, or Complex Float):

\[
\begin{align*}
\text{exp, log: } & $\$ \rightarrow $\$ \\
\text{sin, cos, tan, cot, sec, csc: } & $\$ \rightarrow $\$ \\
\text{asin, acos, atan, acot, asec, acsc: } & $\$ \rightarrow $\$ \\
\text{sinh, cosh, tanh, coth, sech, csch: } & $\$ \rightarrow $\$ \\
\text{asinh, acosh, atanh, acoth, asech, acsch: } & $\$ \rightarrow $\$ \\
\text{pi: } & () \rightarrow $\$ \\
\text{sqrt: } & $\$ \rightarrow $\$ \\
\text{nthRoot: } (\$, \$Integer) \rightarrow $\$ \\
\text{**: } & (\$, \$FractionInteger) \rightarrow $\$ \\
\text{**: } & (\$, $) \rightarrow $\$
\end{align*}
\]

The handling of roots depends on whether the floating-point type is real or complex: for the real floating-point types, DoubleFloat and Float, if a real root exists the one with the
same sign as the radicand is returned; for the complex floating-point types, the principal value is returned. Also, for real floating-point types the inverse functions produce errors if the results are not real. This includes cases such as \( \text{asin}(1.2) \), \( \log(-3.2) \), \( \text{sqrt}(-1.1) \).

The default floating-point type is \texttt{Float} so to evaluate functions using \texttt{Float} or \texttt{Complex Float}, just use normal decimal notation.

\[
\text{exp}(3.1) = 22.197951281441633405 \\
\text{Type: Float}
\]

\[
\text{exp}(3.1 + 4.5 \times \%i) = -4.679234886096989918 - 21.699165928071731864 \times i \\
\text{Type: Complex Float}
\]

To evaluate functions using \texttt{DoubleFloat} or \texttt{Complex DoubleFloat}, a declaration or conversion is required.

\[
r: \texttt{DFLOAT} := 3.1; t: \texttt{DFLOAT} := 4.5; \text{exp}(r + t \times \%i) = -4.6792348860969906 - 21.699165928071732 i \\
\text{Type: Complex DoubleFloat}
\]

\[
\text{exp}(3.1::\texttt{DFLOAT} + 4.5::\texttt{DFLOAT} \times \%i) = -4.6792348860969906 - 21.699165928071732 i \\
\text{Type: Complex DoubleFloat}
\]

A number of special functions are provided by the package \texttt{DoubleFloatSpecialFunctions} for the machine-precision floating-point types. The special functions provided are listed below, where \( F \) stands for the types \texttt{DoubleFloat} and \texttt{Complex DoubleFloat}. The real versions of the functions yield an error if the result is not real.

\textbf{Gamma}: \( F \rightarrow F \)

Gamma\( (z) \) is the Euler gamma function, \( \Gamma(z) \), defined by

\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.
\]
8.1. NUMERIC FUNCTIONS

Beta: \( F \rightarrow F \)

Beta \((u, v)\) is the Euler Beta function, \( Beta(u, v) \), defined by

\[
Beta(u, v) = \int_0^1 t^{u-1}(1-t)^{v-1} \, dt.
\]

This is related to \( \Gamma(z) \) by

\[
Beta(u, v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}.
\]

logGamma: \( F \rightarrow F \)

\( \text{logGamma}(z) \) is the natural logarithm of \( \Gamma(z) \). This can often be computed even if \( \Gamma(z) \) cannot.

digamma: \( F \rightarrow F \)

digamma \((z)\), also called \( \psi(z) \), is the function \( \psi(z) \), defined by

\[
\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}.
\]

polygamma: \( (\text{NonNegativeInteger}, F) \rightarrow F \)

\( \text{polygamma}(n, z) \) is the \( n \)-th derivative of \( \psi(z) \), written \( \psi^{(n)}(z) \).

\( E1: (\text{DoubleFloat}) \rightarrow \text{OnePointCompletionDoubleFloat} \)

\( E1(x) \) is the Exponential Integral function. The current implementation is a piecewise approximation involving one poly from \(-4.4 \) and a second poly for \( x > 4 \).

\( En: (PI, \text{DFLOAT}) \rightarrow \text{OnePointCompletionDoubleFloat} \)

\( En(PI, R) \) is the \( n \)-th Exponential Integral.

\( Ei: (\text{OnePointCompletionDFLOAT}) \rightarrow \text{OnePointCompletionDFLOAT} \)

\( Ei \) is the Exponential Integral function. This is computed using a 6 part piecewise approximation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation used can give 30 digits.

\( Ei1: (\text{DoubleFloat}) \rightarrow \text{DoubleFloat} \)

\( Ei1 \) is the first approximation of \( Ei \) where the result is \( x \cdot e^{-x} \cdot Ei(x) \) from \(-\infty \) to \(-10 \) (preserves digits)

\( Ei2: (\text{DoubleFloat}) \rightarrow \text{DoubleFloat} \)

\( Ei2 \) is the first approximation of \( Ei \) where the result is \( x \cdot e^{-x} \cdot Ei(x) \) from \(-10 \) to \(-4 \) (preserves digits)

\( Ei3: (\text{DoubleFloat}) \rightarrow \text{DoubleFloat} \)

\( Ei3 \) is the first approximation of \( Ei \) where the result is \((Ei(x) - \log|x| - \text{gamma})/x\) from \(-4 \) to \(4 \) (preserves digits)

\( Ei4: (\text{DoubleFloat}) \rightarrow \text{DoubleFloat} \)

\( Ei4 \) is the first approximation of \( Ei \) where the result is \( x \cdot e^{-x} \cdot Ei(x) \) from \(4 \) to \(12 \) (preserves digits)

\( Ei5: (\text{DoubleFloat}) \rightarrow \text{DoubleFloat} \)

\( Ei5 \) is the first approximation of \( Ei \) where the result is \( x \cdot e^{-x} \cdot Ei(x) \) from \(12 \) to \(32 \) (preserves digits)
Ei6: \((\text{DoubleFloat}) \rightarrow \text{DoubleFloat}\)

Ei6 is the first approximation of Ei where the result is \(x * e^{-x} * Ei(x)\) from 32 to infinity (preserves digits)

besselJ: \((F, F) \rightarrow F\)

\(\text{besselJ}(v, z)\) is the Bessel function of the first kind, \(J_v(z)\). This function satisfies the differential equation

\[ z^2 w''(z) + z w'(z) + (z^2 - \nu^2) w(z) = 0. \]

besselY: \((F, F) \rightarrow F\)

\(\text{besselY}(v, z)\) is the Bessel function of the second kind, \(Y_v(z)\). This function satisfies the same differential equation as \(\text{besselJ}\). The implementation simply uses the relation

\[ Y_v(z) = J_v(z) \cos(\nu \pi) - J_{-\nu}(z) \sin(\nu \pi). \]

besselI: \((F, F) \rightarrow F\)

\(\text{besselI}(v, z)\) is the modified Bessel function of the first kind, \(I_v(z)\). This function satisfies the differential equation

\[ z^2 w''(z) + z w'(z) - (z^2 + \nu^2) w(z) = 0. \]

besselK: \((F, F) \rightarrow F\)

\(\text{besselK}(v, z)\) is the modified Bessel function of the second kind, \(K_v(z)\). This function satisfies the same differential equation as \(\text{besselI}\). The implementation simply uses the relation

\[ K_v(z) = \pi \frac{I_{-\nu}(z) - I_{\nu}(z)}{2 \sin(\nu \pi)}. \]

airyAi: \(F \rightarrow F\)

\(\text{airyAi}(z)\) is the Airy function \(Ai(z)\). This function satisfies the differential equation \(w''(z) - zw(z) = 0\). The implementation simply uses the relation

\[ Ai(-z) = \frac{1}{3} \sqrt{2} (J_{-1/3} (\frac{2}{3} z^{3/2}) + J_{1/3} (\frac{2}{3} z^{3/2})). \]

airyBi: \(F \rightarrow F\)

\(\text{airyBi}(z)\) is the Airy function \(Bi(z)\). This function satisfies the same differential equation as \(\text{airyAi}\). The implementation simply uses the relation

\[ Bi(-z) = \frac{1}{3} \sqrt{3} (J_{-1/3} (\frac{2}{3} z^{3/2}) - J_{1/3} (\frac{2}{3} z^{3/2})). \]

hypergeometric0F1: \((F, F) \rightarrow F\)

\(\text{hypergeometric0F1}(c, z)\) is the hypergeometric function \(_0F_1(c; z)\).

The above special functions are defined only for small floating-point types. If you give Float arguments, they are converted to DoubleFloat by Axiom.
8.1. NUMERIC FUNCTIONS

\[
\Gamma(0.5)**2
\]

\[
3.14159265358979
\]

Type: DoubleFloat

\[
a := 2.1; b := 1.1; \text{besselI}(a + \frac{3}{2}i*b, b*a + 1)
\]

\[
2.489481690673867 - 2.365846713181643 \, i
\]

Type: Complex DoubleFloat

A number of additional operations may be used to compute numerical values. These are special polynomial functions that can be evaluated for values in any commutative ring \( R \), and in particular for values in any floating-point type. The following operations are provided by the package `OrthogonalPolynomialFunctions`:

- **chebyshevT**: \((\text{NonNegativeInteger}, R) \rightarrow R\)
  \( \text{chebyshevT}(n, z) \) is the \( n \)-th Chebyshev polynomial of the first kind, \( T_n(z) \). These are defined by
  \[
  \frac{1 - tz}{1 - 2tz + t^2} = \sum_{n=0}^{\infty} T_n(z)t^n.
  \]

- **chebyshevU**: \((\text{NonNegativeInteger}, R) \rightarrow R\)
  \( \text{chebyshevU}(n, z) \) is the \( n \)-th Chebyshev polynomial of the second kind, \( U_n(z) \). These are defined by
  \[
  \frac{1}{1 - 2tz + t^2} = \sum_{n=0}^{\infty} U_n(z)t^n.
  \]

- **hermiteH**: \((\text{NonNegativeInteger}, R) \rightarrow R\)
  \( \text{hermiteH}(n, z) \) is the \( n \)-th Hermite polynomial, \( H_n(z) \). These are defined by
  \[
  e^{2tz-t^2} = \sum_{n=0}^{\infty} H_n(z)\frac{t^n}{n!}.
  \]

- **laguerreL**: \((\text{NonNegativeInteger}, R) \rightarrow R\)
  \( \text{laguerreL}(n, z) \) is the \( n \)-th Laguerre polynomial, \( L_n(z) \). These are defined by
  \[
  e^{-t} \frac{t^n}{n!} = \sum_{n=0}^{\infty} L_n(z)\frac{t^n}{n!}.
  \]

- **laguerreL**: \((\text{NonNegativeInteger}, \text{NonNegativeInteger}, R) \rightarrow R\)
  \( \text{laguerreL}(m, n, z) \) is the associated Laguerre polynomial, \( L^m_n(z) \). This is the \( m \)-th derivative of \( L_n(z) \).
**legendreP**: \((\text{NonNegativeInteger}, R) \rightarrow R\)

\(\text{legendreP}(n, z)\) is the \(n\)-th Legendre polynomial, \(P_n(z)\). These are defined by

\[
\frac{1}{\sqrt{1 - 2tz + t^2}} = \sum_{n=0}^{\infty} P_n(z)t^n.
\]

These operations require non-negative integers for the indices, but otherwise the argument can be given as desired.

\([\text{chebyshevT}(i, z) \text{ for } i \text{ in } 0..5]\]

\([1, z, 2z^2 - 1, 4z^3 - 3z, 8z^4 - 8z^2 + 1, 16z^5 - 20z^3 + 5z]\]

Type: List Polynomial Integer

The expression \(\text{chebyshevT}(n, z)\) evaluates to the \(n\)-th Chebyshev polynomial of the first kind.

\(\text{chebyshevT}(3, 5.0 + 6.0\times\text{i})\)

\(-1675.0 + 918.0\times\text{i}\)

Type: Complex Float

\(\text{chebyshevT}(3, 5.0: \text{DoubleFloat})\)

\(485.0\)

Type: DoubleFloat

The expression \(\text{chebyshevU}(n, z)\) evaluates to the \(n\)-th Chebyshev polynomial of the second kind.

\([\text{chebyshevU}(i, z) \text{ for } i \text{ in } 0..5]\]

\([1, 2z, 4z^2 - 1, 8z^3 - 4z, 16z^4 - 12z^2 + 1, 32z^5 - 32z^3 + 6z]\]

Type: List Polynomial Integer

\(\text{chebyshevU}(3, 0.2)\)

\(-0.736\)
The expression \( \text{hermiteH}(n, z) \) evaluates to the \( n \)-th Hermite polynomial.

\[
[\text{hermiteH}(i, z) \text{ for } i \text{ in 0..5}]
\]

\[
[1, 2, 4 z^2 - 2, 8 z^3 - 12 z, 16 z^4 - 48 z^2 + 12, 32 z^5 - 160 z^3 + 120 z]
\]

Type: List Polynomial Integer

\( \text{hermiteH}(100, 1.0) \)

\[-0.1448706729337934088E93\]

Type: Float

The expression \( \text{laguerreL}(n, z) \) evaluates to the \( n \)-th Laguerre polynomial.

\[
[\text{laguerreL}(i, z) \text{ for } i \text{ in 0..4}]
\]

\[
[1, -z + 1, z^2 - 4 z + 2, -z^3 + 9 z^2 - 18 z + 6, z^4 - 16 z^3 + 72 z^2 - 96 z + 24]
\]

Type: List Polynomial Integer

\( \text{laguerreL}(4, 1.2) \)

\[-13.0944\]

Type: Float

\[
[\text{laguerreL}(j, 3, z) \text{ for } j \text{ in 0..4}]
\]

\[
[-z^3 + 9 z^2 - 18 z + 6, -3 z^2 + 18 z - 18, -6 z + 18, -6, 0]
\]

Type: List Polynomial Integer

\( \text{laguerreL}(1, 3, 2.1) \)

6.57
CHAPTER 8. ADVANCED PROBLEM SOLVING

The expression \( \text{legendreP}(n, z) \) evaluates to the \( n \)-th Legendre polynomial,

\[
[\text{legendreP}(i, z) \text{ for } i \text{ in } 0..5]
\]

\[
[1, z, \frac{3}{2} z^2 - \frac{1}{2}, \frac{5}{2} z^3 - z, \frac{35}{8} z^4 - \frac{15}{4} z^2 + \frac{3}{8}, 15 \frac{35}{8} z^5 - \frac{35}{4} z^3 + \frac{15}{8} z]
\]

Type: List Polynomial Fraction Integer

\( \text{legendreP}(3, 3.0\%i) \)

\(-72.0 \, i\)

Type: Complex Float

Finally, three number-theoretic polynomial operations may be evaluated. The following operations are provided by the package \texttt{NumberTheoreticPolynomialFunctions}.

\textbf{bernoulliB:} \( (\text{NonNegativeInteger}, R) \to R \)
\( \text{bernoulliB}(n, z) \) is the \( n \)-th Bernoulli polynomial, \( B_n(z) \). These are defined by

\[
\frac{te^{zt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(z) \frac{t^n}{n!}.
\]

\textbf{eulerE:} \( (\text{NonNegativeInteger}, R) \to R \)
\( \text{eulerE}(n, z) \) is the \( n \)-th Euler polynomial, \( E_n(z) \). These are defined by

\[
\frac{2e^{zt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(z) \frac{t^n}{n!}.
\]

\textbf{cyclotomic:} \( (\text{NonNegativeInteger}, R) \to R \)
\( \text{cyclotomic}(n, z) \) is the \( n \)-th cyclotomic polynomial \( \Phi_n(z) \). This is the polynomial whose roots are precisely the primitive \( n \)-th roots of unity. This polynomial has degree given by the Euler totient function \( \phi(n) \).

The expression \( \text{bernoulliB}(n, z) \) evaluates to the \( n \)-th Bernoulli polynomial.

\( \text{bernoulliB}(3, z) \)

\[
z^3 - \frac{3}{2} z^2 + \frac{1}{2} z
\]
8.1. NUMERIC FUNCTIONS

bernoulliB(3, 0.7 + 0.4 * %i)

\[-0.138 - 0.116 i\]

Type: Complex Float

The expression eulerE(n, z) evaluates to the n-th Euler polynomial.

eulerE(3, z)

\[z^3 - \frac{3}{2} z^2 + \frac{1}{4}\]

Type: Polynomial Fraction Integer

eulerE(3, 0.7 + 0.4 * %i)

\[-0.238 - 0.316 i\]

Type: Complex Float

The expression cyclotomic(n, z) evaluates to the n-th cyclotomic polynomial.

cyclotomic(3, z)

\[z^2 + z + 1\]

Type: Polynomial Integer

cyclotomic(3, (-1.0 + 0.0 * %i)**(2/3))

0.0

Type: Complex Float

Drawing complex functions in Axiom is presently somewhat awkward compared to drawing real functions. It is necessary to use the **draw** operations that operate on functions rather than expressions.

This is the complex exponential function (rotated interactively). When this is displayed in color, the height is the value of the real part of the function and the color is the imaginary part. Red indicates large negative imaginary values, green indicates imaginary values near zero and blue/violet indicates large positive imaginary values.
This is the complex arctangent function. Again, the height is the real part of the function value but here the color indicates the function value's phase. The position of the branch cuts are clearly visible and one can see that the function is real only for a real argument.

This is the complex Gamma function.
8.1. NUMERIC FUNCTIONS

This shows the real Beta function near the origin.

\[
\text{draw}(\text{Beta}(x,y)/100, x=-1.6..1.7, y=-1.6..1.7, \text{style}="\text{shade}", \text{title}="\text{Beta}(x,y)", \text{var}1\text{Steps}==40, \text{var}2\text{Steps}==40)
\]

This is the Bessel function \( J_\alpha(x) \) for index \( \alpha \) in the range 6..4 and argument \( x \) in the range 2.14.

\[
\text{draw}(\text{besselJ}(\alpha,x) \rightarrow \text{min}(\text{max}(\text{besselJ}(\alpha, x+8), -6), 6), -6..4, -6..6, \text{title}="\text{besselJ}(\alpha,x)", \text{style}="\text{shade}\), \text{var}1\text{Steps}==40, \text{var}2\text{Steps}==40)\]
This is the modified Bessel function $I_\alpha(x)$ evaluated for various real values of the index $\alpha$ and fixed argument $x = 5$.

\[ (\alpha, x) \rightarrow \min(\max(besselJ(\alpha, x + 8), -6), 6), -6.4, -6.6, \]
\[ title == \text{"besselJ(\alpha, x)"}, style == \text{"shade"}, var1Steps == 40, var2Steps == 40 \]

This is similar to the last example except the index $\alpha$ takes on complex values in a $6 \times 6$ rectangle centered on the origin.

\[ besselI(\alpha, 5), \alpha = -12..12, \text{unit} == [5,20] \]

This is similar to the last example except the index $\alpha$ takes on complex values in a $6 \times 6$ rectangle centered on the origin.

\[ draw((x,y) \rightarrow \text{real besselI(complex(x/20, y/20), 5), -60..60, -60..60}, \]
\[ \text{colorFunction == (x,y)\rightarrow argument besselI(complex(x/20,y/20),5),} \]
\[ \text{title=="besselI(x+i*y,5), style="shade"} \]
8.2 Polynomial Factorization

The Axiom polynomial factorization facilities are available for all polynomial types and a wide variety of coefficient domains. Here are some examples.

### Integer and Rational Number Coefficients

Polynomials with integer coefficients can be factored.

\[
v := (4x^3+2y^2+1)*(12x^5-x^3y+12)
\]

\[
-2x^3y^3+(24x^5+24)y^2+(-4x^6-x^3)y+48x^8+12x^5+48x^3+12
\]

Type: Polynomial Integer

factor v

\[
-(x^3y-12x^6-12)(2y^2+4x^3+1)
\]

Type: Factored Polynomial Integer

Also, Axiom can factor polynomials with rational number coefficients.

\[
w := (4x^3+(2/3)x^2+1)*(12x^5-(1/2)x^3+12)
\]
\[ 48 x^8 + 8 x^7 - 2 x^6 + \frac{35}{3} x^5 + \frac{95}{2} x^3 + 8 x^2 + 12 \]

Type: Polynomial Fraction Integer

\[ \text{factor } w \]

\[ 48 \left( x^3 + \frac{1}{6} x^2 + \frac{1}{4} \right) \left( x^5 - \frac{1}{24} x^3 + 1 \right) \]

Type: Factored Polynomial Fraction Integer

### Finite Field Coefficients

Polynomials with coefficients in a finite field can also be factored.

\[ u : \text{POLY}(\text{PF}(19)) := 3 x^4 + 2 x^2 + 15 x + 18 \]

3 \( x^4 + 2 x^2 + 15 x + 18 \)

Type: Polynomial PrimeField 19

These include the integers mod \( p \), where \( p \) is prime, and extensions of these fields.

\[ \text{factor } u \]

\[ 3 (x + 18) (x^3 + x^2 + 8 x + 13) \]

Type: Factored Polynomial PrimeField 19

Convert this to have coefficients in the finite field with \( 19^3 \) elements. See section 8.11 on page 358 for more information about finite fields.

\[ \text{factor}(u :: \text{POLY} \text{FFX}(\text{PF} 19,3)) \]

\[ 3 (x + 18) (x + 5 \% I^2 + 3 \% I + 13) (x + 16 \% I^2 + 14 \% I + 13) (x + 17 \% I^2 + 2 \% I + 13) \]

Type: Factored Polynomial FiniteFieldExtension(PrimeField 19,3)
8.2. POLYNOMIAL FACTORIZATION

Simple Algebraic Extension Field Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational numbers can be factored.

Here, \( aa \) and \( bb \) are symbolic roots of polynomials.

\[
aa := \text{rootOf}(aa^2 + aa + 1)
\]

\[
aa
\]

Type: AlgebraicNumber

\[
p := (x^3 + aa^2 x + y) (aa x^2 + aa x + aa y^2)^2
\]

\[
\begin{align*}
& (-aa - 1) y^5 + ((-aa - 1) x^3 + aa x) y^4 + \\
& ((-2 aa - 2) x^2 + (-2 aa - 2) x) y^3 + \\
& ((-2 aa - 2) x^5 + (-2 aa - 2) x^4 + 2 aa x^3 + 2 aa x^2) y^2 + \\
& ((-aa - 1) x^4 + (-2 aa - 2) x^3 + (-aa - 1) x^2) y + \\
& (-aa - 1) x^7 + (-2 aa - 2) x^6 - x^5 + 2 aa x^4 + aa x^3
\end{align*}
\]

Type: Polynomial AlgebraicNumber

Note that the second argument to factor can be a list of algebraic extensions to factor over.

\[
\text{factor}(p, [aa])
\]

\[
\begin{align*}
& (-aa - 1) (y + x^3 + (-aa - 1) x) (y^2 + x^2 + x)^2
\end{align*}
\]

Type: Factored Polynomial AlgebraicNumber

This factors \( x^2 + 2 + 3 \) over the integers.

\[
\text{factor}(x^{2} + 3)
\]

\[
x^2 + 3
\]

Type: Factored Polynomial Integer

Factor the same polynomial over the field obtained by adjoining \( aa \) to the rational numbers.
CHAPTER 8. ADVANCED PROBLEM SOLVING

\[ \text{factor}(x^2+3, [aa]) \]

\[(x - 2 \, aa - 1) \, (x + 2 \, aa + 1)\]

Type: Factored Polynomial AlgebraicNumber

Factor \( x^6 + 108 \) over the same field.

\[ \text{factor}(x^6+108, [aa]) \]

\[(x^3 - 12 \, aa - 6) \, (x^3 + 12 \, aa + 6)\]

Type: Factored Polynomial AlgebraicNumber

\( \text{bb} := \text{rootOf}(\text{bb}^3 - 2) \)

\( \text{bb} \)

Type: AlgebraicNumber

\[ \text{factor}(x^6+108, [bb]) \]

\[(x^2 - 3 \, bb \, x + 3 \, bb^2) \, (x^2 + 3 \, bb^2) \, (x^2 + 3 \, bb \, x + 3 \, bb^2)\]

Type: Factored Polynomial AlgebraicNumber

Factor again over the field obtained by adjoining both \( aa \) and \( bb \) to the rational numbers.

\[ \text{factor}(x^6+108, [aa, bb]) \]

\[(x + (-2 \, aa - 1) \, bb) \, (x + (-aa - 2) \, bb) \, (x + (-aa + 1) \, bb)\]

\[(x + (aa - 1) \, bb) \, (x + (aa + 2) \, bb) \, (x + (2 \, aa + 1) \, bb)\]

Type: Factored Polynomial AlgebraicNumber
8.3. MANIPULATING SYMBOLIC ROOTS OF A POLYNOMIAL

Factoring Rational Functions

Since fractions of polynomials form a field, every element (other than zero) divides any other, so there is no useful notion of irreducible factors. Thus the factor operation is not very useful for fractions of polynomials.

There is, instead, a specific operation factorFraction that separately factors the numerator and denominator and returns a fraction of the factored results.

\[
\text{factorFraction(}(x^2-4)/(y^2-4))
\]

\[
\begin{align*}
&= (x - 2) (x + 2) \\
&= (y - 2) (y + 2)
\end{align*}
\]

Type: Fraction Factored Polynomial Integer

You can also use map. This expression applies the factor operation to the numerator and denominator.

\[
\text{map(factor,}(x^2-4)/(y^2-4))
\]

\[
\begin{align*}
&= (x - 2) (x + 2) \\
&= (y - 2) (y + 2)
\end{align*}
\]

Type: Fraction Factored Polynomial Integer

8.3 Manipulating Symbolic Roots of a Polynomial

In this section we show you how to work with one root or all roots of a polynomial. These roots are represented symbolically (as opposed to being numeric approximations). See section 8.5 on page 315 and section 8.5 on page 317 for information about solving for the roots of one or more polynomials.

Using a Single Root of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootOf \( p, x \) returns a root of \( p(x) \). This creates an algebraic number \( a \).

\[
a := \text{root0f}(a^4+1, a)
\]

\( a \)

Type: Expression Integer
To find the algebraic relation that defines \( a \), use `definingPolynomial`.

\[
\text{definingPolynomial } a \\
\]
\[
a^4 + 1 \\
\text{Type: Expression Integer}
\]

You can use \( a \) in any further expression, including a nested `rootOf`.

\[
b := \text{rootOf}(b^{**2}-a-1,b) \\
\]
\[
b \\
\text{Type: Expression Integer}
\]

Higher powers of the roots are automatically reduced during calculations.

\[
a + b \\
b + a \\
\text{Type: Expression Integer}
\]

\[
%^{**} 5 \\
(10 \ a^3 + 11 \ a^2 + 2 \ a - 4) \ b + 15 \ a^3 + 10 \ a^2 + 4 \ a - 10 \\
\text{Type: Expression Integer}
\]

The operation `zeroOf` is similar to `rootOf`, except that it may express the root using radicals in some cases.

\[
\text{rootOf}(c**2+c+1,c) \\
c \\
\text{Type: Expression Integer}
\]

\[
\text{zeroOf}(d**2+d+1,d) \\
\]
8.3. MANIPULATING SYMBOLIC ROOTS OF A POLYNOMIAL

\[ \frac{\sqrt{-3} - 1}{2} \]

Type: Expression Integer

\text{rootOf}(e^{**5-2}, e)

\text{e}

Type: Expression Integer

\text{zeroOf}(f^{**5-2}, f)

\[ \sqrt[5]{2} \]

Type: Expression Integer

Using All Roots of a Polynomial

Use \text{rootsOf} to get all symbolic roots of a polynomial: \text{rootsOf}(p, x) returns a list of all the roots of \( p(x) \). If \( p(x) \) has a multiple root of order \( n \), then that root appears \( n \) times in the list.

Compute all the roots of \( x^{*4} + 1 \).

\( l := \text{rootsOf}(x^{*4+1}, x) \)

\[ [%x0, %x0 \ %x1, -%x0, -%x0 \ %x1] \]

Type: List Expression Integer

As a side effect, the variables \( %x0 \) and \( %x1 \) are bound to the first two roots of \( x^{*4} + 1 \).

\( %x0^{*5} \)

\[ -%x0 \]

Type: Expression Integer

Although they all satisfy \( x^{*4} + 1 = 0 \), \( %x0 \) and \( %x1 \) are different algebraic numbers. To find the algebraic relation that defines each of them, use \text{definingPolynomial}. 
definingPolynomial %x0

\[ %x^4 + 1 \]

Type: Expression Integer

definingPolynomial %x1

\[ %x^2 + 1 \]

Type: Expression Integer

\[ [t1:=l.1, t2:=l.2, t3:=l.3, t4:=l.4] \]

\[ [%x0, %x0 %x1, -%x0, -%x0 %x1] \]

Type: List Expression Integer

We can check that the sum and product of the roots of \( x^4 + 1 \) are its trace and norm.

\[ t1+t2+t3+t4 \]

\[ 0 \]

Type: Expression Integer

\[ t1*t2*t3*t4 \]

\[ 1 \]

Type: Expression Integer

Corresponding to the pair of operations \texttt{rootOf/zeroOf} in section 8.5 on page 315, there is an operation \texttt{zerosOf} that, like \texttt{rootsOf}, computes all the roots of a given polynomial, but which expresses some of them in terms of radicals.

\[ \text{zerosOf}(y**4+1,y) \]

\[ \left[ \frac{-1 + \sqrt{-1}}{\sqrt{2}}, \frac{-1 - \sqrt{-1}}{\sqrt{2}}, \frac{-\sqrt{-1} - 1}{\sqrt{2}}, \frac{-\sqrt{-1} + 1}{\sqrt{2}} \right] \]
As you see, only one implicit algebraic number was created ($%y1$), and its defining equation is this. The other three roots are expressed in radicals.

$$\text{definingPolynomial} \%y1$$

\[
%\%var^2 + 1
\]

Type: Expression Integer

8.4 Computation of Eigenvalues and Eigenvectors

In this section we show you some of Axiom’s facilities for computing and manipulating eigenvalues and eigenvectors, also called characteristic values and characteristic vectors, respectively.

Let’s first create a matrix with integer entries.

\[
m1 := \text{matrix} \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 1 & -2 \\
 1 & -2 & 4
\end{bmatrix}
\]

Type: Matrix Integer

To get a list of the rational eigenvalues, use the operation \textit{eigenvalues}.

\[
\text{leig} := \text{eigenvalues}(m1)
\]

\[
[5, (\%K \mid \%K^2 - \%K - 5)]
\]

Type: List Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer))

Given an explicit eigenvalue, \textit{eigenvector} computes the eigenvectors corresponding to it.

\[
\text{eigenvector}(\text{first}(\text{leig}), m1)
\]
The operation `eigenvectors` returns a list of pairs of values and vectors. When an eigenvalue is rational, Axiom gives you the value explicitly; otherwise, its minimal polynomial is given, (the polynomial of lowest degree with the eigenvalues as roots), together with a parametric representation of the eigenvector using the eigenvalue.

This means that if you ask Axiom to `solve` the minimal polynomial, then you can substitute these roots into the parametric form of the corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the eigenvector may be badly in error.

```
eigenvectors(m1)
```

```
[[eigval = 5, eigmult = 1, eigvec = [[0 1]
 [-1 1]]],

[[eigval = (%L | %L^2 - %L - 5), eigmult = 1, eigvec = [[%L 2]
 [2 1]]]]
```

Type: List Record(eigval: Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer)),eigmult: NonNegativeInteger,eigvec: List Matrix Fraction Polynomial Integer)

Another possibility is to use the operation `radicalEigenvectors` tries to compute explicitly the eigenvectors in terms of radicals.

```
radicalEigenvectors(m1)
```

```
[[radval = \sqrt{21} + 1, radmult = 1, radvec = [[\sqrt{21} + 1 2]
 [2 1]]],

[[radval = -\sqrt{21} + 1 2, radmult = 1, radvec = [[-\sqrt{21} + 1 2]
 [2 1]]],

[[radval = 5, radmult = 1, radvec = [[0 1]
 [-1 1]]]]
```

Type: List Record(radval: Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer)),radmult: NonNegativeInteger,radvec: List Matrix Fraction Polynomial Integer)
Alternatively, Axiom can compute real or complex approximations to the eigenvectors and eigenvalues using the operations `realEigenvectors` or `complexEigenvectors`. They each take an additional argument \( \epsilon \) to specify the “precision” required. In the real case, this means that each approximation will be within \( \pm \epsilon \) of the actual result. In the complex case, this means that each approximation will be within \( \pm \epsilon \) of the actual result in each of the real and imaginary parts.

The precision can be specified as a `Float` if the results are desired in floating-point notation, or as `Fraction Integer` if the results are to be expressed using rational (or complex rational) numbers.

\[
\text{realEigenvectors}(m1, 1/1000)
\]

\[
\begin{bmatrix}
\text{outval} = 5, \text{outmult} = 1, \text{outvect} = \begin{bmatrix} 0 \\
-\frac{1}{2} \\
1 \\
\end{bmatrix}
\end{bmatrix},
\]

\[
\begin{bmatrix}
\text{outval} = \frac{5717}{2048}, \text{outmult} = 1, \text{outvect} = \begin{bmatrix} \frac{5717}{2048} \\
2 \\
1 \\
\end{bmatrix}
\end{bmatrix},
\]

\[
\begin{bmatrix}
\text{outval} = -\frac{3669}{2048}, \text{outmult} = 1, \text{outvect} = \begin{bmatrix} -\frac{3669}{2048} \\
2 \\
1 \\
\end{bmatrix}
\end{bmatrix}
\]

If an \( n \) by \( n \) matrix has \( n \) distinct eigenvalues (and therefore \( n \) eigenvectors) the operation `eigenMatrix` gives you a matrix of the eigenvectors.

\[
\text{eigenMatrix}(m1)
\]

\[
\begin{bmatrix}
\frac{\sqrt{2}+1}{2} & -\frac{\sqrt{2}+1}{2} & 0 \\
2 & 2 & -\frac{1}{2} \\
1 & 1 & 1 \\
\end{bmatrix}
\]

\[
\text{Type: Union(Matrix Expression Integer,...)}
\]

\[
m2 := \text{matrix} \begin{bmatrix} -5, -2, [18, 7] \end{bmatrix}
\]
CHAPTER 8. ADVANCED PROBLEM SOLVING

\[
\begin{pmatrix}
-5 & -2 \\
18 & 7
\end{pmatrix}
\]

Type: Matrix Integer

eigenMatrix(m2)

"failed"

Type: Union("failed",...)

If a symmetric matrix has a basis of orthonormal eigenvectors, then \texttt{orthonormalBasis} computes a list of these vectors.

\[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\]

Type: Matrix Integer

orthonormalBasis(m3)

\[
\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
\]

Type: List Matrix Expression Integer

8.5 Solution of Linear and Polynomial Equations

In this section we discuss the Axiom facilities for solving systems of linear equations, finding the roots of polynomials and solving systems of polynomial equations. For a discussion of the solution of differential equations, see section 8.10 on page 348.

Solution of Systems of Linear Equations

You can use the operation \texttt{solve} to solve systems of linear equations.

The operation \texttt{solve} takes two arguments, the list of equations and the list of the unknowns to be solved for. A system of linear equations need not have a unique solution.
8.5. **SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS**

To solve the linear system:

\[
\begin{align*}
  x + y + z &= 8 \\
  3x - 2y + z &= 0 \\
  x + 2y + 2z &= 17
\end{align*}
\]

evaluate this expression.

\[
\text{solve}([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])
\]

\[
[[x = -1, y = 2, z = 7]]
\]

Type: List List Equation Fraction Polynomial Integer

Parameters are given as new variables starting with a percent sign and % and the variables are expressed in terms of the parameters. If the system has no solutions then the empty list is returned.

When you solve the linear system

\[
\begin{align*}
  x + 2y + 3z &= 2 \\
  2x + 3y + 4z &= 2 \\
  3x + 4y + 5z &= 2
\end{align*}
\]

with this expression you get a solution involving a parameter.

\[
\text{solve}([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])
\]

\[
[[x = %Q - 2, y = -2 %Q + 2, z = %Q]]
\]

Type: List List Equation Fraction Polynomial Integer

The system can also be presented as a matrix and a vector. The matrix contains the coefficients of the linear equations and the vector contains the numbers appearing on the right-hand sides of the equations. You may input the matrix as a list of rows and the vector as a list of its elements.

To solve the system:

\[
\begin{align*}
  x + y + z &= 8 \\
  3x - 2y + z &= 0 \\
  x + 2y + 2z &= 17
\end{align*}
\]

in matrix form you would evaluate this expression.

\[
\text{solve}([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])
\]

\[
[\text{particular} = [-1, 2, 7], \text{basis} = [[0, 0, 0]]]
\]
CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis: List Vector Fraction Integer)

The solutions are presented as a Record with two components: the component particular contains a particular solution of the given system or the item "failed" if there are no solutions, the component basis contains a list of vectors that are a basis for the space of solutions of the corresponding homogeneous system. If the system of linear equations does not have a unique solution, then the basis component contains non-trivial vectors.

This happens when you solve the linear system

\[
\begin{align*}
    x + 2y + 3z &= 2 \\
    2x + 3y + 4z &= 2 \\
    3x + 4y + 5z &= 2
\end{align*}
\]

with this command.

solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,2,2])

\[
[\text{particular} = [-2,2,0], \text{basis} = [[1,-2,1]]]
\]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis: List Vector Fraction Integer)

All solutions of this system are obtained by adding the particular solution with a linear combination of the basis vectors.

When no solution exists then "failed" is returned as the particular component, as follows:

solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,3,2])

\[
[\text{particular} = \text{"failed"}, \text{basis} = [[1,-2,1]]]
\]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis: List Vector Fraction Integer)

When you want to solve a system of homogeneous equations (that is, a system where the numbers on the right-hand sides of the equations are all zero) in the matrix form you can omit the second argument and use the nullSpace operation.

This computes the solutions of the following system of equations:

\[
\begin{align*}
    x + 2y + 3z &= 0 \\
    2x + 3y + 4z &= 0 \\
    3x + 4y + 5z &= 0
\end{align*}
\]

The result is given as a list of vectors and these vectors form a basis for the solution space.
nullSpace([ [1,2,3],[2,3,4],[3,4,5] ])  

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$  

Type: List Vector Integer

Solution of a Single Polynomial Equation

Axiom can solve polynomial equations producing either approximate or exact solutions. Exact solutions are either members of the ground field or can be presented symbolically as roots of irreducible polynomials. This returns the one rational root along with an irreducible polynomial describing the other solutions.

\[ \text{solve}(x^3 = 8,x) \]

\[ [x = 2, x^2 + 2 x + 4 = 0] \]

Type: List Equation Fraction Polynomial Integer

If you want solutions expressed in terms of radicals you would use this instead.

\[ \text{radicalSolve}(x^3 = 8,x) \]

\[ [x = -\sqrt{3} - 1, x = \sqrt{3} - 1, x = 2] \]

Type: List Equation Expression Integer

The \texttt{solve} command always returns a value but \texttt{radicalSolve} returns only the solutions that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approximations to its real roots by calling \texttt{solve} with a second argument that specifies the “precision” $\epsilon$. This means that each approximation will be within $\pm \epsilon$ of the actual result.

Notice that the type of second argument controls the type of the result.

\[ \text{solve}(x^4 - 10*x^3 + 35*x^2 - 50*x + 25,.0001) \]

\[ [x = 3.61801474609375, x = 1.381988525390625] \]

Type: List Equation Polynomial Float
If you give a floating-point precision you get a floating-point result; if you give the precision as a rational number you get a rational result.

\[
solve(x**3-2,1/1000)
\]

\[
\begin{align*}
x &= \frac{2581}{2048}
\end{align*}
\]

Type: List Equation Polynomial Fraction Integer

If you want approximate complex results you should use the command `complexSolve` that takes the same precision argument \( \epsilon \).

\[
\text{complexSolve}(x**3-2,.0001)
\]

\[
\begin{align*}
x &= 1.259918212890625,\\
x &= -0.62989432795395613131 - 1.091094970703125 \, i,\\
x &= -0.62989432795395613131 + 1.091094970703125 \, i
\end{align*}
\]

Type: List Equation Polynomial Complex Float

Each approximation will be within \( \pm \epsilon \) of the actual result in each of the real and imaginary parts.

\[
\text{complexSolve}(x**2-2*%i+1,1/100)
\]

\[
\begin{align*}
x &= \frac{-13028925}{16777216} - \frac{325}{256} \, i, x = \frac{13028925}{16777216} + \frac{325}{256} \, i
\end{align*}
\]

Type: List Equation Polynomial Complex Fraction Integer

Note that if you omit the \( = \) from the first argument Axiom generates an equation by equating the first argument to zero. Also, when only one variable is present in the equation, you do not need to specify the variable to be solved for, that is, you can omit the second argument.

Axiom can also solve equations involving rational functions. Solutions where the denominator vanishes are discarded.

\[
\text{radicalSolve}(1/x**3 + 1/x**2 + 1/x = 0,x)
\]

\[
\begin{align*}
x &= \frac{-\sqrt{-3} - 1}{2}, x = \frac{\sqrt{-3} - 1}{2}
\end{align*}
\]

Type: List Equation Expression Integer
8.5. SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS

Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:

\[ p_1(x_1, \ldots, x_n) \]
\[ \vdots \]
\[ p_m(x_1, \ldots, x_n) \]

Axiom can find numeric or symbolic solutions. The system is first split into irreducible components, then for each component, a triangular system of equations is found that reduces the problem to sequential solution of univariate polynomials resulting from substitution of partial solutions from the previous stage.

\[ q_1(x_1, \ldots, x_n) \]
\[ \vdots \]
\[ q_m(x_n) \]

Symbolic solutions can be presented using “implicit” algebraic numbers defined as roots of irreducible polynomials or in terms of radicals. Axiom can also find approximations to the real or complex roots of a system of polynomial equations to any user-specified accuracy.

The operation `solve` for systems is used in a way similar to `solve` for single equations. Instead of a polynomial equation, one has to give a list of equations and instead of a single variable to solve for, a list of variables. For solutions of single equations see section 8.5 on page 315.

Use the operation `solve` if you want implicitly presented solutions.

\[
\text{solve}([3*x**3 + y + 1, y**2 - 4], [x, y])
\]

\[
\left[ \begin{array}{c}
  x = -1, y = 2, \\
  x^2 - x + 1 = 0, y = 2, \\
  3x^3 - 1 = 0, y = -2
\end{array} \right]
\]

Type: List List Equation Fraction Polynomial Integer

\[
\text{solve([x = y**2-19, y = z**2+x+3, z = 3*x], [x, y, z])}
\]

\[
\left[ \begin{array}{c}
  x = \frac{z}{3}, y = \frac{3z^2 + z + 9}{3}, 9z^4 + 6z^3 + 55z^2 + 15z - 90 = 0
\end{array} \right]
\]

Type: List List Equation Fraction Polynomial Integer

Use `radicalSolve` if you want your solutions expressed in terms of radicals.

\[
\text{radicalSolve([3*x**3 + y + 1, y**2 - 4], [x, y])}
\]
\[
\begin{align*}
[x = \frac{\sqrt{3} + 1}{2}, y = 2],
[x = -\frac{\sqrt{3} + 1}{2}, y = 2],
[x = \frac{-\sqrt{3} - 1}{2 \sqrt{3}}, y = -2],
[x = \frac{-\sqrt{3} - 1}{2 \sqrt{3}}, y = -2],
\end{align*}
\]

Type: List List Equation Expression Integer

To get numeric solutions you only need to give the list of equations and the precision desired. The list of variables would be redundant information since there can be no parameters for the numerical solver.

If the precision is expressed as a floating-point number you get results expressed as floats.

\[
solve([x**2*y - 1, x*y**2 - 2], 0.01)
\]

\[
[[y = 1.5859375, x = 0.79296875]]
\]

Type: List List Equation Polynomial Float

To get complex numeric solutions, use the operation \texttt{complexSolve}, which takes the same arguments as in the real case.

\[
solve([x**2*y - 1, x*y**2 - 2], 1/1000)
\]

\[
[[y = 1.625 \times 10^{-2}, x = 1.625 \times 10^{-1}],
[y = -\frac{435445573689}{549755813888} - \frac{1407}{1024} i, x = -\frac{435445573689}{109951162776} - \frac{1407}{2048} i],
[y = -\frac{435445573689}{549755813888} + \frac{1407}{1024} i, x = -\frac{435445573689}{109951162776} + \frac{1407}{2048} i]]
\]

Type: List List Equation Polynomial Complex Fraction Integer

It is also possible to solve systems of equations in rational functions over the rational numbers. Note that \([x = 0.0, a = 0.0]\) is not returned as a solution since the denominator vanishes there.

\[
solve([x**2/a = a, a = a*x], 0.001)
\]

\[
[[x = 1.0, a = -1.0], [x = 1.0, a = 1.0]]
\]
When solving equations with denominators, all solutions where the denominator vanishes are discarded.

\[
\text{radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])}
\]
\[
\begin{align*}
x &= -\sqrt{-a^4 + 2a^3 + 3a^2 + 3a + 1}, y &= -\frac{a}{a} \\
x &= \sqrt{-a^4 + 2a^3 + 3a^2 + 3a + 1}, y &= -\frac{a - 1}{a}
\end{align*}
\]

8.6 Limits

To compute a limit, you must specify a functional expression, a variable, and a limiting value for that variable. If you do not specify a direction, Axiom attempts to compute a two-sided limit.

Issue this to compute the limit

\[
\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}.
\]

\[
\text{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
\]

\[
-\frac{1}{2}
\]

Sometimes the limit when approached from the left is different from the limit from the right and, in this case, you may wish to ask for a one-sided limit. Also, if you have a function that is only defined on one side of a particular value, you can compute a one-sided limit.

The function \( \log(x) \) is only defined to the right of zero, that is, for \( x > 0 \). Thus, when computing limits of functions involving \( \log(x) \), you probably want a “right-hand” limit.

\[
\text{limit(x * log(x),x = 0,"right")}
\]

0
When you do not specify "right" or "left" as the optional fourth argument, \texttt{limit} tries to compute a two-sided limit. Here the limit from the left does not exist, as Axiom indicates when you try to take a two-sided limit.

\[
\text{limit}(x \cdot \log(x), x = 0) = \begin{cases} \\
\text{leftHandLimit} = \text{"failed"}, \text{rightHandLimit} = 0
\end{cases}
\]

Type: \(\text{Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}\)

A function can be defined on both sides of a particular value, but tend to different limits as its variable approaches that value from the left and from the right. We can construct an example of this as follows: Since \(\sqrt{y^2}\) is simply the absolute value of \(y\), the function \(\sqrt{y^2}/y\) is simply the sign (+1 or -1) of the nonzero real number \(y\). Therefore, \(\sqrt{y^2}/y = -1\) for \(y < 0\) and \(\sqrt{y^2}/y = +1\) for \(y > 0\).

This is what happens when we take the limit at \(y = 0\). The answer returned by Axiom gives both a "left-hand" and a "right-hand" limit.

\[
\text{limit}(\sqrt{y^2}/y, y = 0) = \begin{cases} \\
\text{leftHandLimit} = 1, \text{rightHandLimit} = 1
\end{cases}
\]

Type: \(\text{Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}\)

Here is another example, this time using a more complicated function.

\[
\text{limit}(\sqrt{1 - \cos(t)}/t, t = 0)
\]

\[
\left[ \begin{array}{c}
\text{leftHandLimit} = -\frac{1}{\sqrt{2}}
\text{rightHandLimit} = \frac{1}{\sqrt{2}}
\end{array} \right]
\]

Type: \(\text{Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}\)

You can compute limits at infinity by passing either \(+\infty\) or \(-\infty\) as the third argument of \texttt{limit}.

To do this, use the constants \texttt{\%plusInfinity} and \texttt{\%minusInfinity}.\texttt{.}
You can take limits of functions with parameters. As you can see, the limit is expressed in terms of the parameters.

\[
\text{limit}(\sinh(a\cdot x)/\tan(b\cdot x), x = 0)
\]

\[
\frac{a}{b}
\]

Type: Union(OrderedCompletion Expression Integer,...)

When you use `limit`, you are taking the limit of a real function of a real variable.

When you compute this, Axiom returns 0 because, as a function of a real variable, \( \sin(1/z) \) is always between \(-1\) and \(1\), so \( z \cdot \sin(1/z) \) tends to 0 as \( z \) tends to 0.

\[
\text{limit}(z \cdot \sin(1/z), z = 0)
\]

\[
0
\]

Type: Union(OrderedCompletion Expression Integer,...)

However, as a function of a complex variable, \( \sin(1/z) \) is badly behaved near 0 (one says that \( \sin(1/z) \) has an essential singularity at \( z = 0 \)).

When viewed as a function of a complex variable, \( z \cdot \sin(1/z) \) does not approach any limit as \( z \) tends to 0 in the complex plane. Axiom indicates this when we call `complexLimit`.

\[
\text{complexLimit}(z \cdot \sin(1/z), z = 0)
\]

"failed"
CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Union("failed",...)

Here is another example. As \( x \) approaches 0 along the real axis, \( e^x \) tends to 0.

\[
\lim_{x \rightarrow 0} e^{-1/x^2}
\]

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if \( x \) is allowed to approach 0 along any path in the complex plane, the limiting value of \( e^{-1/x^2} \) depends on the path taken because the function has an essential singularity at \( x = 0 \). This is reflected in the error message returned by the function.

\[
\text{complexLimit}(e^{-1/x^2}, x = 0)
\]

"failed"

Type: Union("failed",...)

You can also take complex limits at infinity, that is, limits of a function of \( z \) as \( z \) approaches infinity on the Riemann sphere. Use the symbol \( \%\text{infinity} \) to denote “complex infinity.”

As above, to compute complex limits rather than real limits, use \texttt{complexLimit}.

\[
\text{complexLimit}((2 + z)/(1 - z), z = \%\text{infinity})
\]

\(-1\)

Type: OnePointCompletion Fraction Polynomial Integer

In many cases, a limit of a real function of a real variable exists when the corresponding complex limit does not. This limit exists.

\[
\lim_{x \rightarrow \%\text{plusInfinity}} \sin(x)/x
\]

0

Type: Union(OrderedCompletion Expression Integer,...)

But this limit does not.

\[
\text{complexLimit}(\sin(x)/x, x = \%\text{infinity})
\]

"failed"

Type: Union("failed",...)

8.7 Laplace Transforms

Axiom can compute some forward Laplace transforms, mostly of elementary functions not involving logarithms, although some cases of special functions are handled.

To compute the forward Laplace transform of $F(t)$ with respect to $t$ and express the result as $f(s)$, issue the command \texttt{laplace}(F(t), t, s).

\[
\text{laplace}(\sin(a\cdot t)\cdot \cosh(a\cdot t) - \cos(a\cdot t)\cdot \sinh(a\cdot t), t, s)
\]

\[
\frac{4 \ a^3}{s^4 + 4 \ a^4}
\]

\text{Type: Expression Integer}

Here are some other non-trivial examples.

\[
\text{laplace}\left((\exp(a\cdot t) - \exp(b\cdot t))/t, t, s\right)
\]

\[-\log(s - a) + \log(s - b)\]

\text{Type: Expression Integer}

\[
\text{laplace}(2/t \cdot (1 - \cos(a\cdot t)), t, s)
\]

\[
\log(s^2 + a^2) - 2 \log(s)
\]

\text{Type: Expression Integer}

\[
\text{laplace}(\exp(-a\cdot t) \cdot \sin(b\cdot t)/b^2, t, s)
\]

\[
\frac{1}{b \ s^2 + 2 \ a \ b \ s + b^2 + a^2 \ b}
\]

\text{Type: Expression Integer}

\[
\text{laplace}((\cos(a\cdot t) - \cos(b\cdot t))/t, t, s)
\]

\[
\frac{\log(s^2 + b^2) - \log(s^2 + a^2)}{2}
\]

\text{Type: Expression Integer}
Axiom also knows about a few special functions.

\[
laplace(\exp(a \cdot t + b) \cdot \text{Ei}(c \cdot t), \, t, \, s) = \frac{e^b \log\left(\frac{s + c - a}{c}\right)}{s - a}
\]

Type: Expression Integer

\[
laplace(a \cdot \text{Ci}(b \cdot t) + c \cdot \text{Si}(d \cdot t), \, t, \, s) = \frac{a \log\left(\frac{a^2 + b^2}{b^2}\right) + 2c \arctan\left(\frac{d}{s}\right)}{2s}
\]

Type: Expression Integer

When Axiom does not know about a particular transform, it keeps it as a formal transform in the answer.

\[
laplace(\sin(a \cdot t) - a \cdot t \cdot \cos(a \cdot t) + \exp(t^2), \, t, \, s) = \frac{(s^4 + 2a^2s^2 + a^4) \, \laplace(e^{t^2}, t, s) + 2a^3}{s^4 + 2a^2s^2 + a^4}
\]

Type: Expression Integer

### 8.8 Integration

Integration is the reverse process of differentiation, that is, an integral of a function \( f \) with respect to a variable \( x \) is any function \( g \) such that \( D(g, x) \) is equal to \( f \).

The package \texttt{FunctionSpaceIntegration} provides the top-level integration operation, \texttt{integrate}, for integrating real-valued elementary functions.

\[
\int \cosh(a \cdot x) \cdot \sinh(a \cdot x) \, dx = \frac{\sinh(a \cdot x)^2 + \cosh(a \cdot x)^2}{4a}
\]

Type: \texttt{Union(Expression Integer,...)}
Unfortunately, antiderivatives of most functions cannot be expressed in terms of elementary functions.

\[
\int x \log \left( \frac{\sqrt{b + Ma} + 1}{M} \right) dM
\]

\[\text{Type: Union(Expression Integer,...)}\]

Given an elementary function to integrate, Axiom returns a formal integral as above only when it can prove that the integral is not elementary and not when it cannot determine the integral. In this rare case it prints a message that it cannot determine if an elementary integral exists.

Similar functions may have antiderivatives that look quite different because the form of the antiderivative depends on the sign of a constant that appears in the function.

\[
\int \frac{1}{x^2 - 2} dx
\]

\[\log \left( \frac{(x^2+2) \sqrt{2-4} x}{x^2-2} \right) \]

\[\text{Type: Union(Expression Integer,...)}\]

\[
\int \frac{1}{x^2 + 2} dx
\]

\[\arctan \left( \frac{x \sqrt{2}}{2} \right) \]

\[\text{Type: Union(Expression Integer,...)}\]

If the integrand contains parameters, then there may be several possible antiderivatives, depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the possible cases. Here you use the answer involving the square root of \(a\) when \(a > 0\) and the answer involving the square root of \(-a\) when \(a < 0\).

\[
\int \frac{x^2}{x^4 - a^2} dx
\]
\[
\log \left( \frac{(x^2+a) \sqrt{a-2a}x}{x^2-a} \right) + 2 \arctan \left( \frac{x \sqrt{a}}{a} \right),
\]

\[
\frac{4 \sqrt{a}}{4 \sqrt{-a}}
\]

\[
\log \left( \frac{(x^2-a) \sqrt{a+2a}x}{x^2+a} \right) - 2 \arctan \left( \frac{x \sqrt{-a}}{a} \right)
\]

Type: Union(List Expression Integer,...)

If the parameters and the variables of integration can be complex numbers rather than real, then the notion of sign is not defined. In this case all the possible answers can be expressed as one complex function. To get that function, rather than a list of real functions, use \texttt{complexIntegrate}, which is provided by the package \texttt{FunctionSpaceComplexIntegration}.

This operation is used for integrating complex-valued elementary functions.

\[
\text{complexIntegrate}(x^2 / (x^4 - a^2), x)
\]

\[
\frac{\sqrt{4} a \log \left( \frac{x \sqrt{a} + 2 a}{\sqrt{4} a} \right) - \sqrt{-4} a \log \left( \frac{x \sqrt{4} a + 2 a}{\sqrt{4} a} \right) + \sqrt{4} a \log \left( \frac{x \sqrt{4} a - 2 a}{\sqrt{4} a} \right) - \sqrt{-4} a \log \left( \frac{x \sqrt{-4} a - 2 a}{\sqrt{-4} a} \right)}{2 \sqrt{-4} a \sqrt{4} a}
\]

Type: Expression Integer

As with the real case, antiderivatives for most complex-valued functions cannot be expressed in terms of elementary functions.

\[
\text{complexIntegrate}(\log(1 + \sqrt{a \cdot x + b}) / x, x)
\]

\[
\int x \log \left( \frac{\sqrt{b + \%M a + 1}}{\%M} \right) d\%M
\]

Type: Expression Integer

Sometimes \texttt{integrate} can involve symbolic algebraic numbers such as those returned by \texttt{rootOf}. To see how to work with these strange generated symbols (such as \texttt{%%a0}), see section 8.3 on page 307.
Definite integration is the process of computing the area between the $x$-axis and the curve of a function $f(x)$. The fundamental theorem of calculus states that if $f$ is continuous on an interval $a..b$ and if there exists a function $g$ that is differentiable on $a..b$ and such that $D(g, x)$ is equal to $f$, then the definite integral of $f$ for $x$ in the interval $a..b$ is equal to $g(b) - g(a)$.

The package `RationalFunctionDefiniteIntegration` provides the top-level definite integration operation, `integrate`, for integrating real-valued rational functions.

```plaintext
integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x = 1..2)

\[\frac{2 \arctan(8) + 2 \arctan(5) + 2 \arctan(2) + 2 \arctan\left(\frac{1}{2}\right) - \pi}{2} \]

Type: Union(f1: OrderedCompletion Expression Integer, ...)
```

Axiom checks beforehand that the function you are integrating is defined on the interval $a..b$, and prints an error message if it finds that this is not case, as in the following example:

```plaintext
integrate(1/(x**2-2), x = 1..2)

>> Error detected within library code:
 Pole in path of integration
 You are being returned to the top level
 of the interpreter.
```

When parameters are present in the function, the function may or may not be defined on the interval of integration.

If this is the case, Axiom issues a warning that a pole might lie in the path of integration, and does not compute the integral.

```plaintext
integrate(1/(x**2-a), x = 1..2)

potentialPole

Type: Union(pole: potentialPole, ...)
```

If you know that you are using values of the parameter for which the function has no pole in the interval of integration, use the string "noPole" as a third argument to `integrate`:

The value here is, of course, incorrect if $\sqrt{a}$ is between 1 and 2.

```plaintext
integrate(1/(x**2-a), x = 1..2, "noPole")
```
8.9 Working with Power Series

Axiom has very sophisticated facilities for working with power series.

Infinite series are represented by a list of the coefficients that have already been determined, together with a function for computing the additional coefficients if needed.

The system command that determines how many terms of a series is displayed is \texttt{set streams calculate}. For the purposes of this book, we have used this system command to display fewer than ten terms. Series can be created from expressions, from functions for the series coefficients, and from applications of operations on existing series. The most general function for creating a series is called \texttt{series}, although you can also use \texttt{taylor}, \texttt{laurent} and \texttt{puiseux} in situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see section 8.10 on page 356.

Creation of Power Series

This is the easiest way to create a power series. This tells Axiom that $x$ is to be treated as a power series, so functions of $x$ are again power series.

\begin{verbatim}
x := series 'x
\end{verbatim}

\texttt{x}

Type: \texttt{UnivariatePuiseuxSeries(Expression Integer,x,0)}
8.9. WORKING WITH POWER SERIES

We didn’t say anything about the coefficients of the power series, so the coefficients are general expressions over the integers. This allows us to introduce denominators, symbolic constants, and other variables as needed.

Here the coefficients are integers (note that the coefficients are the Fibonacci numbers).

\[
\frac{1}{1 - x - x^2}
\]

\[
1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + 13x^6 + 21x^7 + 34x^8 + 55x^9 + 89x^{10} + O(x^{11})
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This series has coefficients that are rational numbers.

\[
sin(x)
\]

\[
x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \frac{1}{362880}x^9 - \frac{1}{39916800}x^ {11} + O(x^{12})
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter this expression you introduce the symbolic constants \(sin(1)\) and \(cos(1)\).

\[
sin(1 + x)
\]

\[
\sin(1) + \cos(1)x - \frac{\sin(1)}{2}x^2 - \frac{\cos(1)}{6}x^3 + \frac{\sin(1)}{24}x^4 + \frac{\cos(1)}{120}x^5 - \frac{\sin(1)}{720}x^6 - \frac{\cos(1)}{5040}x^7 + \frac{\sin(1)}{40320}x^8 + \frac{\cos(1)}{362880}x^9 - \frac{\sin(1)}{3628800}x^{10} + O(x^{11})
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter the expression the variable \(a\) appears in the resulting series expansion.

\[
sin(a * x)
\]

\[
a x - \frac{a^3}{6}x^3 + \frac{a^5}{120}x^5 - \frac{a^7}{5040}x^7 + \frac{a^9}{362880}x^9 - \frac{a^{11}}{39916800}x^{11} + O(x^{12})
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also convert an expression into a series expansion. This expression creates the series expansion of \(1/log(y)\) about \(y = 1\). For details and more examples, see section 8.9 on page 336.
CHAPTER 8. ADVANCED PROBLEM SOLVING

\[
\text{series(1/log(y), y = 1)} \\
(y - 1)^{(-1)} + \frac{1}{2} - \frac{1}{12} \frac{1}{y - 1} + \frac{1}{24} \frac{1}{(y - 1)^2} - \frac{19}{720} \frac{1}{(y - 1)^3} + \frac{3}{160} \frac{1}{(y - 1)^4} - \\
\frac{863}{60480} \frac{1}{(y - 1)^5} + \frac{275}{24192} \frac{1}{(y - 1)^6} - \frac{33953}{3628800} \frac{1}{(y - 1)^7} + \\
\frac{8183}{1036800} \frac{1}{(y - 1)^8} - \frac{3250433}{479001600} \frac{1}{(y - 1)^9} + O \left( \frac{1}{(y - 1)^{10}} \right)
\]

Type: UnivariatePuiseuxSeries(Expression Integer, y, 1)

You can create power series with more general coefficients. You normally accomplish this via a type declaration (see section 2.3 on page 69). See section 8.9 on page 333 for some warnings about working with declared series.

We declare that \( y \) is a one-variable Taylor series (\textit{UTS} is the abbreviation for \textit{UnivariateTaylorSeries}) in the variable \( z \) with \texttt{FLOAT} (that is, floating-point) coefficients, centered about 0. Then, by assignment, we obtain the Taylor expansion of \( \exp(z) \) with floating-point coefficients.

\[
y : \text{UTS(FLOAT,'z,0)} := \exp(z)
\]

\[
1.0 + z + 0.5 \cdot z^2 + 0.1666666666 6666666667 \cdot z^3 + \\
0.0416666666 6666666667 \cdot z^4 + 0.0083333333 3333333334 \cdot z^5 + \\
0.0013888888 8888888889 \cdot z^6 + 0.0001984126 984126984127 \cdot z^7 + \\
0.0000248015 87301587301587 \cdot z^8 + 0.0000027557 319223985890653 \cdot z^9 + \\
0.2755731922 3985890653E - 6 \cdot z^{10} + O \left( z^{11} \right)
\]

Type: UnivariateTaylorSeries(Float, z, 0.0)

You can also create a power series by giving an explicit formula for its \( n \)-th coefficient. For details and more examples, see section 8.9 on page 340.

To create a series about \( w = 0 \) whose \( n \)-th Taylor coefficient is \( 1/n! \), you can evaluate this expression. This is the Taylor expansion of \( \exp(w) \) at \( w = 0 \).

\[
\text{series(1/factorial(n), n, w = 0)} \\
1 + w + \frac{1}{2} \cdot w^2 + \frac{1}{6} \cdot w^3 + \frac{1}{24} \cdot w^4 + \frac{1}{120} \cdot w^5 + \frac{1}{720} \cdot w^6 + \frac{1}{5040} \cdot w^7 + \\
\frac{1}{40320} \cdot w^8 + \frac{1}{362880} \cdot w^9 + \frac{1}{3628800} \cdot w^{10} + O \left( w^{11} \right)
\]
8.9. WORKING WITH POWER SERIES

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Coefficients of Power Series

You can extract any coefficient from a power series—even one that hasn’t been computed yet. This is possible because in Axiom, infinite series are represented by a list of the coefficients that have already been determined, together with a function for computing the additional coefficients. (This is known as lazy evaluation.) When you ask for a coefficient that hasn’t yet been computed, Axiom computes whatever additional coefficients it needs and then stores them in the representation of the power series.

Here’s an example of how to extract the coefficients of a power series.

\[
x := \text{series}(x)
\]

\[
x
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

\[
y := \exp(x) \times \sin(x)
\]

\[
x + x^2 + \frac{1}{3} x^3 - \frac{1}{30} x^5 - \frac{1}{90} x^6 - \frac{1}{630} x^7 + \frac{1}{22680} x^9 + \frac{1}{113400} x^{10} + \frac{1}{1247400} x^{11} + O(x^{12})
\]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This coefficient is readily available.

\[
\text{coefficient}(y,6)
\]

\[
\frac{1}{90}
\]

Type: Expression Integer

But let’s get the fifteenth coefficient of \(y\).

\[
\text{coefficient}(y,15)
\]

\[
\frac{1}{10216206000}
\]
If you look at $y$ then you see that the coefficients up to order 15 have all been computed.

$$y = x + x^2 + \frac{1}{3} x^3 - \frac{1}{30} x^5 - \frac{1}{90} x^6 - \frac{1}{630} x^7 + \frac{1}{22680} x^9 + \frac{1}{113400} x^{10} +$$

$$\frac{1}{1247400} x^{11} - \frac{1}{97297200} x^{13} - \frac{1}{681080400} x^{14} - \frac{1}{10216206000} x^{15} + O(x^{16})$$

Power Series Arithmetic

You can manipulate power series using the usual arithmetic operations $+, -, \ast,$ and $/$ (from UnivariatePuiseuxSeries)

The results of these operations are also power series.

$x := \text{series } x$

$$x$$

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

$$(3 + x) / (1 + 7x)$$

$$3 - 20 x + 140 x^2 - 980 x^3 + 6860 x^4 - 48020 x^5 + 336140 x^6 - 2352980 x^7 + 16470860 x^8 - 115296020 x^9 + 807072140 x^{10} + O(x^{11})$$

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also compute $f(x) \ast g(x)$, where $f(x)$ and $g(x)$ are two power series.

$\text{base} := 1 / (1 - x)$

$$1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + O(x^{11})$$

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
8.9. WORKING WITH POWER SERIES

\[ \text{expon := } x \times \text{base} \]
\[ x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + \mathcal{O}(x^{12}) \]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

\[ \text{base ** expon} \]
\[ 1 + x^2 + \frac{3}{2} x^3 + \frac{7}{3} x^4 + \frac{43}{12} x^5 + \frac{649}{120} x^6 + \frac{241}{30} x^7 + \frac{3706}{315} x^8 + \]
\[ \frac{85763}{5040} x^9 + \frac{245339}{10080} x^{10} + \mathcal{O}(x^{11}) \]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

**Functions on Power Series**

Once you have created a power series, you can apply transcendental functions (for example, \( \exp, \log, \sin, \tan, \cosh \), etc.) to it.

To demonstrate this, we first create the power series expansion of the rational function

\[ \frac{x^2}{1 - 6x + x^2} \]

about \( x = 0 \).

\[ x := \text{series 'x} \]

\[ x \]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

\[ \text{rat := x**2 / (1 - 6*x + x**2)} \]
\[ x^2 + 6 x^3 + 35 x^4 + 204 x^5 + 1189 x^6 + 6930 x^7 + 40391 x^8 + 235416 x^9 + \]
\[ 1372105 x^{10} + 7997214 x^{11} + 46611179 x^{12} + \mathcal{O}(x^{13}) \]

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
If you want to compute the series expansion of

$$\sin \left( \frac{x^2}{1 - 6x + x^2} \right)$$

you simply compute the sine of \( \text{rat} \).

\[
\sin(\text{rat})
\]

\[
x^2 + 6x^3 + 35x^4 + 204x^5 + \frac{7133}{6}x^6 + 6927x^7 + \frac{80711}{2}x^8 + 235068x^9 +
\]

\[
\frac{164285281}{120}x^{10} + \frac{31888513}{4}x^{11} + \frac{371324777}{8}x^{12} + O(x^{13})
\]

Type: \text{UnivariatePuiseuxSeries(\text{Expression Integer},x,0)}

\textbf{Warning}: the type of the coefficients of a power series may affect the kind of computations that you can do with that series. This can only happen when you have made a declaration to specify a series domain with a certain type of coefficient.

If you evaluate then you have declared that \( y \) is a one variable Taylor series (\text{UTS} is the abbreviation for \text{UnivariateTaylorSeries}) in the variable \( y \) with \text{FRAC INT} (that is, fractions of integer) coefficients, centered about 0.

\[
y : \text{UTS(\text{FRAC INT},y,0)} := y
\]

\[
y
\]

Type: \text{UnivariateTaylorSeries(\text{Fraction Integer},y,0)}

You can now compute certain power series in \( y \), provided that these series have rational coefficients.

\[
\exp(y)
\]

\[
1 + y + \frac{1}{2}y^2 + \frac{1}{6}y^3 + \frac{1}{24}y^4 + \frac{1}{120}y^5 + \frac{1}{720}y^6 + \frac{1}{5040}y^7 + \frac{1}{40320}y^8 +
\]

\[
\frac{1}{362880}y^9 + \frac{1}{3628800}y^{10} + O(y^{11})
\]

Type: \text{UnivariateTaylorSeries(\text{Fraction Integer},y,0)}
You can get examples of such series by applying transcendental functions to series in $y$ that have no constant terms.

$\tan(y^{*2})$

$$y^2 + \frac{1}{3} y^6 + \frac{2}{15} y^{10} + O(y^{11})$$

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

$\cos(y + y^{*5})$

$$1 - \frac{1}{2} y^2 + \frac{1}{24} y^4 - \frac{721}{720} y^6 + \frac{6721}{40320} y^8 - \frac{1844641}{3628800} y^{10} + O(y^{11})$$

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

Similarly, you can compute the logarithm of a power series with rational coefficients if the constant coefficient is 1.

$log(1 + \sin(y))$

$$y - \frac{1}{2} y^2 + \frac{1}{6} y^3 - \frac{1}{12} y^4 + \frac{1}{24} y^5 - \frac{1}{45} y^6 + \frac{61}{5040} y^7 - \frac{17}{2520} y^8 + \frac{277}{72576} y^9 - \frac{31}{14175} y^{10} + O(y^{11})$$

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

If you wanted to apply, say, the operation $\exp$ to a power series with a nonzero constant coefficient $a_0$, then the constant coefficient of the result would be $e^{a_0}$, which is not a rational number. Therefore, evaluating $\exp(2 + \tan(y))$ would generate an error message.

If you want to compute the Taylor expansion of $\exp(2 + \tan(y))$, you must ensure that the coefficient domain has an operation $\exp$ defined for it. An example of such a domain is Expression Integer, the type of formal functional expressions over the integers.

When working with coefficients of this type,

$$z : \quad \text{UTS(EXPR INT, z, 0)} := z$$

$$z$$

Type: UnivariateTaylorSeries(Expression Integer, z, 0)
this presents no problems.

\[ \exp(2 + \tan(z)) \]

\[ e^2 + e^2 z + \frac{e^2}{2} z^2 + \frac{e^2}{2} z^3 + \frac{3 e^2}{8} z^4 + \frac{37 e^2}{120} z^5 + \frac{59 e^2}{240} z^6 + \frac{137 e^2}{720} z^7 + \]

\[ \frac{871 e^2}{5760} z^8 + \frac{41641 e^2}{362880} z^9 + \frac{325249 e^2}{3628800} z^{10} + O(z^{11}) \]

Type: UnivariateTaylorSeries(Expression Integer,z,0)

Another way to create Taylor series whose coefficients are expressions over the integers is to use \texttt{taylor} which works similarly to \texttt{series}.

This is equivalent to the previous computation, except that now we are using the variable \( w \) instead of \( z \).

\[ w := \texttt{taylor}\ 'w \]

\[ w \]

Type: UnivariateTaylorSeries(Expression Integer,w,0)

\[ \exp(2 + \tan(w)) \]

\[ e^2 + e^2 w + \frac{e^2}{2} w^2 + \frac{e^2}{2} w^3 + \frac{3 e^2}{8} w^4 + \frac{37 e^2}{120} w^5 + \frac{59 e^2}{240} w^6 + \frac{137 e^2}{720} w^7 + \]

\[ \frac{871 e^2}{5760} w^8 + \frac{41641 e^2}{362880} w^9 + \frac{325249 e^2}{3628800} w^{10} + O(w^{11}) \]

Type: UnivariateTaylorSeries(Expression Integer,w,0)

**Converting to Power Series**

The \texttt{ExpressionToUnivariatePowerSeries} package provides operations for computing series expansions of functions.

Evaluate this to compute the Taylor expansion of \( \sin(x) \) about \( x = 0 \). The first argument, \( \sin(x) \), specifies the function whose series expansion is to be computed and the second argument, \( x = 0 \), specifies that the series is to be expanded in power of \( (x - 0) \), that is, in power of \( x \).

\[ \texttt{taylor(sin(x),x = 0)} \]
8.9. WORKING WITH POWER SERIES

\[ x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \frac{1}{362880}x^9 + O(x^{11}) \]

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Here is the Taylor expansion of \( \sin x \) about \( x = \frac{\pi}{6} \):

\[
taylor(\sin(x),x = \frac{\pi}{6})
\]

\[
\frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6}\right) - \frac{1}{4} \left(x - \frac{\pi}{6}\right)^2 - \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{6}\right)^3 + \frac{1}{48} \left(x - \frac{\pi}{6}\right)^4 +
\]

\[
\frac{\sqrt{3}}{240} \left(x - \frac{\pi}{6}\right)^5 - \frac{1}{1440} \left(x - \frac{\pi}{6}\right)^6 - \frac{\sqrt{3}}{10080} \left(x - \frac{\pi}{6}\right)^7 + \frac{1}{80640} \left(x - \frac{\pi}{6}\right)^8 +
\]

\[
\frac{\sqrt{3}}{725760} \left(x - \frac{\pi}{6}\right)^9 - \frac{1}{7257600} \left(x - \frac{\pi}{6}\right)^{10} + O \left(\left(x - \frac{\pi}{6}\right)^{11}\right)
\]

Type: UnivariateTaylorSeries(Expression Integer,x,\pi/6)

The function to be expanded into a series may have variables other than the series variable. For example, we may expand \( \tan(x \cdot y) \) as a Taylor series in \( x \)

\[
taylor(\tan(x*y),x = 0)
\]

\[
y \cdot \frac{y^3}{3} \cdot x^3 + \frac{2}{15} \cdot \frac{y^5}{15} \cdot x^5 + \frac{17}{315} \cdot \frac{y^7}{7} \cdot x^7 + \frac{62}{2835} \cdot \frac{y^9}{9} \cdot x^9 + O(x^{11})
\]

Type: UnivariateTaylorSeries(Expression Integer,x,0)

or as a Taylor series in \( y \).

\[
taylor(\tan(x*y),y = 0)
\]

\[
x \cdot \frac{x^3}{3} \cdot y^3 + \frac{2}{15} \cdot \frac{x^5}{15} \cdot y^5 + \frac{17}{315} \cdot \frac{x^7}{7} \cdot y^7 + \frac{62}{2835} \cdot \frac{x^9}{9} \cdot y^9 + O(y^{11})
\]

Type: UnivariateTaylorSeries(Expression Integer,y,0)

A more interesting function is \( \frac{e^x - 1}{x} \).

When we expand this function as a Taylor series in \( t \) the \( n \)-th order coefficient is the \( n \)-th Bernoulli polynomial divided by \( n! \).
bern := taylor(t*exp(x*t)/(exp(t) - 1), t = 0)

\[
1 + \frac{2 x - 1}{2} t + \frac{6 x^2 - 6 x + 1}{12} t^2 + \frac{2 x^3 - 3 x^2 + x}{12} t^3 + \frac{30 x^4 - 60 x^3 + 30 x^2 - 1}{720} t^4 + \frac{6 x^5 - 15 x^4 + 10 x^3 - x}{720} t^5 + \frac{42 x^6 - 126 x^5 + 105 x^4 - 21 x^2 + 1}{30240} t^6 + \frac{6 x^7 - 21 x^6 + 21 x^5 - 7 x^3 + x}{30240} t^7 + \frac{30 x^8 - 120 x^7 + 140 x^6 - 70 x^4 + 20 x^2 - 1}{1209600} t^8 + \frac{10 x^9 - 45 x^8 + 60 x^7 - 42 x^5 + 20 x^3 - 3 x}{3628800} t^9 + \frac{66 x^{10} - 330 x^9 + 495 x^8 - 462 x^6 + 330 x^4 - 99 x^2 + 5}{239500800} t^{10} + O(t^{11})
\]

Type: UnivariateTaylorSeries(Expression Integer, t, 0)

Therefore, this and the next expression produce the same result.

factorial(6) * coefficient(bern, 6)

\[
\frac{42 x^6 - 126 x^5 + 105 x^4 - 21 x^2 + 1}{42}
\]

Type: Expression Integer

BernoulliB(6, x)

\[
x^6 - 3 x^5 + \frac{5}{2} x^4 - \frac{1}{2} x^2 + \frac{1}{42}
\]

Type: Polynomial Fraction Integer

Technically, a series with terms of negative degree is not considered to be a Taylor series, but, rather, a Laurent series. If you try to compute a Taylor series expansion of \( \frac{x}{\log(x)} \) at \( x = 1 \) via \( \text{taylor}(x/\log(x), x = 1) \) you get an error message. The reason is that the function has a pole at \( x = 1 \), meaning that its series expansion about this point has terms of negative degree. A series with finitely many terms of negative degree is called a Laurent series.

You get the desired series expansion by issuing this.
8.9. WORKING WITH POWER SERIES

\text{laurent}(x/\log(x), x = 1)

\begin{align*}
(x - 1)^{(-1)} &+ \frac{3}{2} + \frac{5}{12} (x - 1) - \frac{1}{24} (x - 1)^2 + \frac{11}{720} (x - 1)^3 - \frac{11}{1440} (x - 1)^4 + \\
&\frac{271}{60480} (x - 1)^5 - \frac{13}{4480} (x - 1)^6 + \frac{7297}{3628800} (x - 1)^7 - \frac{425}{290304} (x - 1)^8 + \\
&\frac{530113}{479001600} (x - 1)^9 + O((x - 1)^{10})
\end{align*}

\text{Type: UnivariateLaurentSeries(Expression Integer,x,1)}

Similarly, a series with terms of fractional degree is neither a Taylor series nor a Laurent series. Such a series is called a \textit{Puiseux series}. The expression \text{laurent}(\sqrt{\sec(x)}, x = 3 \times \%pi/2) results in an error message because the series expansion about this point has terms of fractional degree.

However, this command produces what you want.

\text{puiseux}(\sqrt{\sec(x)}, x = 3 \times \%pi/2)

\begin{align*}
\left(x - \frac{3 \pi}{2}\right)^{(-\frac{1}{2})} &+ \frac{1}{12} \left(x - \frac{3 \pi}{2}\right)^{\frac{3}{2}} + \frac{1}{160} \left(x - \frac{3 \pi}{2}\right)^{\frac{7}{2}} + O\left((x - \frac{3 \pi}{2})^5\right)
\end{align*}

\text{Type: UnivariatePuiseuxSeries(Expression Integer,x,(3*pi)/2)}

Finally, consider the case of functions that do not have Puiseux expansions about certain points. An example of this is \(x^x\) about \(x = 0\). \text{puiseux}(x^x, x = 0) produces an error message because of the type of singularity of the function at \(x = 0\).

The general function \textit{series} can be used in this case. Notice that the series returned is not, strictly speaking, a power series because of the \(\log(x)\) in the expansion.

\text{series}(x**x, x=0)

\begin{align*}
1 + \log(x) &x + \frac{\log(x)^2}{2} x^2 + \frac{\log(x)^3}{6} x^3 + \frac{\log(x)^4}{24} x^4 + \frac{\log(x)^5}{120} x^5 + \frac{\log(x)^6}{720} x^6 + \\
&\frac{\log(x)^7}{5040} x^7 + \frac{\log(x)^8}{40320} x^8 + \frac{\log(x)^9}{362880} x^9 + \frac{\log(x)^{10}}{3628800} x^{10} + O(x^{11})
\end{align*}

\text{Type: GeneralUnivariatePowerSeries(Expression Integer,x,0)}

\text{The operation series} returns the most general type of infinite series. The user who is not interested in distinguishing between various types of infinite series may wish to use this operation exclusively.
Power Series from Formulas

The `GenerateUnivariatePowerSeries` package enables you to create power series from explicit formulas for their \( n \)-th coefficients. In what follows, we construct series expansions for certain transcendental functions by giving formulas for their coefficients. You can also compute such series expansions directly simply by specifying the function and the point about which the series is to be expanded. See section 8.9 on page 336 for more information.

Consider the Taylor expansion of \( e^x \) about \( x = 0 \):

\[
e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots
\]

The \( n \)-th Taylor coefficient is \( \frac{1}{n!} \).

This is how you create this series in Axiom.

\[
\text{series}(n \rightarrow 1/\text{factorial}(n), x = 0)
\]

\[
1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4 + \frac{1}{120} x^5 + \frac{1}{720} x^6 + \frac{1}{5040} x^7 + \frac{1}{40320} x^8 + \frac{1}{362880} x^9 + \frac{1}{3628800} x^{10} + O(x^{11})
\]

Type: `UnivariatePuiseuxSeries(Expression Integer,x,0)`

The first argument specifies a formula for the \( n \)-th coefficient by giving a function that maps \( n \) to \( 1/n! \). The second argument specifies that the series is to be expanded in powers of \( (x - 0) \), that is, in powers of \( x \). Since we did not specify an initial degree, the first term in the series was the term of degree 0 (the constant term). Note that the formula was given as an anonymous function. These are discussed in section 6.17 on page 196.

Consider the Taylor expansion of \( \log x \) about \( x = 1 \):

\[
\log(x) = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \cdots
\]

\[
= \sum_{n=1}^{\infty} \frac{(-1)^n-1 (x - 1)^n}{n}
\]

If you were to evaluate the expression `series(n + - > (-1) * *(n - 1)/n, x = 1)` you would get an error message because Axiom would try to calculate a term of degree 0 and therefore divide by 0.
8.9. WORKING WITH POWER SERIES

Instead, evaluate this. The third argument, 1..., indicates that only terms of degree \( n = 1, \ldots \) are to be computed.

\[
\text{series}(n \mapsto (-1)^{n-1}/n, x = 1, 1\ldots)
\]

\[
(x - 1) - \frac{1}{2} (x - 1)^2 + \frac{1}{3} (x - 1)^3 - \frac{1}{4} (x - 1)^4 + \frac{1}{5} (x - 1)^5 - \frac{1}{6} (x - 1)^6 + \ldots
\]

\[
\frac{1}{7} (x - 1)^7 - \frac{1}{8} (x - 1)^8 + \frac{1}{9} (x - 1)^9 - \frac{1}{10} (x - 1)^{10} + \frac{1}{11} (x - 1)^{11} + \ldots
\]

\[O((x - 1)^{12})\]

\[
\text{Type: UnivariatePuiseuxSeries(Expression Integer, x, 1)}
\]

Next consider the Taylor expansion of an odd function, say, \( \sin(x) \):

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots
\]

Here every other coefficient is zero and we would like to give an explicit formula only for the odd Taylor coefficients.

This is one way to do it. The third argument, 1..., specifies that the first term to be computed is the term of degree 1. The fourth argument, 2, specifies that we increment by 2 to find the degrees of subsequent terms, that is, the next term is of degree 1 + 2, the next of degree 1 + 2 + 2, etc.

\[
\text{series}(n \mapsto (-1)^{(3n-1)/2}/factorial(3n), x = 0, 1/3\ldots, 2/3)
\]

\[
x - \frac{1}{6} x^3 + \frac{1}{120} x^5 - \frac{1}{5040} x^7 + \frac{1}{362880} x^9 - \frac{1}{39916800} x^{11} + O(x^{12})
\]

\[
\text{Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)}
\]

The initial degree and the increment do not have to be integers. For example, this expression produces a series expansion of \( \sin(x^{3/4}) \).

\[
\text{series}(n \mapsto (-1)^{(3\cdot n-1)/2}/factorial(3\cdot n), x = 0, 1/3\ldots, 2/3)
\]

\[
x^{3/4} - \frac{1}{6} x + \frac{1}{120} x^5 - \frac{1}{5040} x^7 + \frac{1}{362880} x^9 - \frac{1}{39916800} x^{11} + O(x^4)
\]

\[
\text{Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)}
\]
While the increment must be positive, the initial degree may be negative. This yields the Laurent expansion of \( \csc(x) \) at \( x = 0 \). (bernoulli(numer(n+1)) is necessary because bernoulli takes integer arguments.)

\[
cscx := \text{series}(n \rightarrow (-1)^{(n-1)/2} \cdot 2 \cdot (2^{n-1}) \cdot \text{bernoulli}(\text{numer}(n+1)) / \text{factorial}(n+1), x=0, -1..,2)
\]

\[
x^{(-1)} + \frac{1}{6} x + \frac{7}{360} x^3 + \frac{31}{15120} x^5 + \frac{127}{604800} x^7 + \frac{73}{3421440} x^9 + O(x^{10})
\]

Type: \text{UnivariatePuiseuxSeries(Expression Integer,x,0)}

Of course, the reciprocal of this power series is the Taylor expansion of \( \sin(x) \).

\[
\frac{1}{cscx}
\]

\[
x - \frac{1}{6} x^3 + \frac{1}{120} x^5 - \frac{1}{5040} x^7 + \frac{1}{362880} x^9 - \frac{1}{39916800} x^{11} + O(x^{12})
\]

Type: \text{UnivariatePuiseuxSeries(Expression Integer,x,0)}

As a final example, here is the Taylor expansion of \( \arcsin(x) \) about \( x = 0 \).

\[
asinx := \text{series}(n \rightarrow \text{binomial}(n-1,(n-1)/2)/(n \cdot 2^{2 \cdot (n-1)}), x=0, 1..,2)
\]

\[
x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{5}{112} x^7 + \frac{35}{1152} x^9 + \frac{63}{2816} x^{11} + O(x^{12})
\]

Type: \text{UnivariatePuiseuxSeries(Expression Integer,x,0)}

When we compute the \( \sin \) of this series, we get \( x \) (in the sense that all higher terms computed so far are zero).

\[
\sin(asinx)
\]

\[
x + O(x^{12})
\]

Type: \text{UnivariatePuiseuxSeries(Expression Integer,x,0)}
Axiom isn’t sufficiently “symbolic” in the sense we might wish. It is an open problem to decide that “$x$” is the only surviving term. Two attacks on the problem might be:

1. Notice that all of the higher terms are identically zero but Axiom can’t decide that from the information it knows. Presumably we could attack this problem by looking at the sin function as a Taylor series around $x=0$ and seeing the term cancellation occur. This uses a term-difference mechanism.

2. Notice that there is no way to decide that the stream for asin(x) is actually the definition of asin(x). But we could recognize that the stream for asin(x) has a generator term and so will a Taylor series expansion of sin(x). From these two generators it may be possible in certain cases to decide that the application of one generator to the other will yield only “$x$”. This trick involves finding the correct inverse for the stream functions. If we can find an inverse for the “remaining tail” of the stream we could conclude cancellation and thus turn an infinite stream into a finite object.

In general this is the zero-equivalence problem and is undecidable.

As we discussed in section 8.9 on page 336, you can also use the operations taylor, laurent and puiseux instead of series if you know ahead of time what kind of exponents a series has. You can’t go wrong using series, though.

### Substituting Numerical Values in Power Series

Use eval to substitute a numerical value for a variable in a power series. For example, here’s a way to obtain numerical approximations of $e^x$ from the Taylor series expansion of $exp(x)$. First you create the desired Taylor expansion.

```plaintext
f := taylor(exp(x))
1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4 + \frac{1}{120} x^5 + \frac{1}{720} x^6 + \frac{1}{5040} x^7 + \\
\frac{1}{40320} x^8 + \frac{1}{362880} x^9 + \frac{1}{3628800} x^{10} + O(x^{11})
```

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Then you evaluate the series at the value 1.0. The result is a sequence of the partial sums.

```plaintext
eval(f, 1.0)
[1.0, 2.0, 2.5, 2.6666666666 666666667, 2.7083333333 333333333, 2.7166666666 666666667, 2.7180555555 555555556, 2.7182539682 53968254, 2.7182787698 412698413, 2.7182815255 731922399, . . .]
```
Example: Bernoulli Polynomials and Sums of Powers

Axiom provides operations for computing definite and indefinite sums.
You can compute the sum of the first ten fourth powers by evaluating this. This creates a
list whose entries are $m^4$ as $m$ ranges from 1 to 10, and then computes the sum of the entries
of that list.

\[
\text{reduce(+,[m**4 for m in 1..10])}
\]

\[
25333
\]

You can also compute a formula for the sum of the first $k$ fourth powers, where $k$ is an
unspecified positive integer.

\[
\text{sum4 := sum(m**4, m = 1..k)}
\]

\[
\frac{6 k^5 + 15 k^4 + 10 k^3 - k}{30}
\]

This formula is valid for any positive integer $k$. For instance, if we replace $k$ by 10, we obtain
the number we computed earlier.

\[
\text{eval(sum4, k = 10)}
\]

\[
25333
\]

You can compute a formula for the sum of the first $k$ $n$-th powers in a similar fashion. Just
replace the 4 in the definition of \text{sum4} by any expression not involving $k$. Axiom computes
these formulas using Bernoulli polynomials; we use the rest of this section to describe this
method.

First consider this function of $t$ and $x$.

\[
f := t*\exp(x*t) / (\exp(t) - 1)
\]
8.9. WORKING WITH POWER SERIES

\[ \frac{te^{tx}}{e^t - 1} \]

Type: Expression Integer

Since the expressions involved get quite large, we tell Axiom to show us only terms of degree up to 5.

)set streams calculate 5

If we look at the Taylor expansion of \( f(x,t) \) about \( t = 0 \), we see that the coefficients of the powers of \( t \) are polynomials in \( x \).

\[ ff := \text{taylor}(f, t = 0) \]

\[ 1 + \frac{2x - 1}{2} t + \frac{6x^2 - 6x + 1}{12} t^2 + \frac{2x^3 - 3x^2 + x}{12} t^3 + \]
\[ \frac{30x^4 - 60x^3 + 30x^2 - 1}{720} t^4 + \frac{6x^5 - 15x^4 + 10x^3 - x}{720} t^5 + O(t^6) \]

Type: UnivariateTaylorSeries(Expression Integer,t,0)

In fact, the \( n \)-th coefficient in this series is essentially the \( n \)-th Bernoulli polynomial: the \( n \)-th coefficient of the series is \( \frac{1}{n!} B_n(x) \), where \( B_n(x) \) is the \( n \)-th Bernoulli polynomial. Thus, to obtain the \( n \)-th Bernoulli polynomial, we multiply the \( n \)-th coefficient of the series \( ff \) by \( n! \).

For example, the sixth Bernoulli polynomial is this.

\[ \text{factorial}(6) * \text{coefficient}(ff,6) \]

\[ \frac{42x^6 - 126x^5 + 105x^4 - 21x^2 + 1}{42} \]

Type: Expression Integer

We derive some properties of the function \( f(x,t) \). First we compute \( f(x+1,t) - f(x,t) \).

\[ g := \text{eval}(f, x = x + 1) - f \]

\[ \frac{te^{tx+t} - t e^{tx}}{e^t - 1} \]

Type: Expression Integer
If we normalize $g$, we see that it has a particularly simple form.

\[
\text{normalize}(g) = t e^{(t \times)}
\]

Type: Expression Integer

From this it follows that the $n$-th coefficient in the Taylor expansion of $g(x, t)$ at $t = 0$ is

\[
\frac{1}{(n-1)!} x^{n-1}
\]

If you want to check this, evaluate the next expression.

\[
t\text{aylor}(g, t = 0)
\]

\[
t + x t^2 + \frac{x^2}{2} t^3 + \frac{x^3}{6} t^4 + \frac{x^4}{24} t^5 + O(t^6)
\]

Type: UnivariateTaylorSeries(Expression Integer, t, 0)

However, since

\[g(x, t) = f(x + 1, t) - f(x, t)\]

it follows that the $n$-th coefficient is

\[
\frac{1}{n!} (B_n(x + 1) - B_n(x))
\]

Equating coefficients, we see that

\[
\frac{1}{(n-1)!} x^{n-1} = \frac{1}{n!} (B_n(x + 1) - B_n(x))
\]

and, therefore,

\[x^{n-1} = \frac{1}{n} (B_n(x + 1) - B_n(x))\]

Let’s apply this formula repeatedly, letting $x$ vary between two integers $a$ and $b$, with $a < b$:

\[
\begin{align*}
a^{n-1} &= \frac{1}{n!} (B_n(a + 1) - B_n(a)) \\
(a + 1)^{n-1} &= \frac{1}{n!} (B_n(a + 2) - B_n(a + 1)) \\
(a + 2)^{n-1} &= \frac{1}{n!} (B_n(a + 3) - B_n(a + 2)) \\
&\quad \vdots \\
(b - 1)^{n-1} &= \frac{1}{n!} (B_n(b) - B_n(b - 1)) \\
b^{n-1} &= \frac{1}{n!} (B_n(b + 1) - B_n(b))
\end{align*}
\]
When we add these equations we find that the sum of the left-hand sides is
\[ \sum_{m=a}^{b} m^{n-1}, \]
the sum of the \((n - 1)\)st powers from \(a\) to \(b\). The sum of the right-hand sides is a “telescoping series.” After cancellation, the sum is simply
\[ \frac{1}{n}(B_n(b + 1) - B_n(a)) \]
Replacing \(n\) by \(n + 1\), we have shown that
\[ \sum_{m=a}^{b} m^n = \frac{1}{n+1}(B_{n+1}(b + 1) - B_{n+1}(a)) \]
Let’s use this to obtain the formula for the sum of fourth powers.
First we obtain the Bernoulli polynomial \(B_5\).
\[
\text{B5 := factorial(5) * coefficient(ff,5)}
\]
\[
\frac{6 \, x^5 - 15 \, x^4 + 10 \, x^3 - x}{6}
\]
Type: Expression Integer

To find the sum of the first \(k\) 4th powers, we multiply \(1/5\) by \(B_5(k + 1) - B_5(1)\).
\[
\frac{1}{5} \times \left( \text{eval(B5, x = k + 1)} - \text{eval(B5, x = 1)} \right)
\]
\[
\frac{6 \, k^5 + 15 \, k^4 + 10 \, k^3 - k}{30}
\]
Type: Expression Integer

This is the same formula that we obtained via \(\text{sum(m * 4, m = 1..k)}\).

\[
\text{sum4}
\]
\[
\frac{6 \, k^5 + 15 \, k^4 + 10 \, k^3 - k}{30}
\]
Type: Fraction Polynomial Integer

At this point you may want to do the same computation, but with an exponent other than 4. For example, you might try to find a formula for the sum of the first \(k\) 20th powers.
CHAPTER 8. ADVANCED PROBLEM SOLVING

8.10 Solution of Differential Equations

In this section we discuss Axiom’s facilities for solving differential equations in closed-form and in series.

Axiom provides facilities for closed-form solution of single differential equations of the following kinds:

- linear ordinary differential equations, and
- non-linear first order ordinary differential equations when integrating factors can be found just by integration.

For a discussion of the solution of systems of linear and polynomial equations, see section 8.5 on page 312.

Closed-Form Solutions of Linear Differential Equations

A differential equation is an equation involving an unknown function and one or more of its derivatives. The equation is called ordinary if derivatives with respect to only one dependent variable appear in the equation (it is called partial otherwise). The package ElementaryFunctionODESolver provides the top-level operation solve for finding closed-form solutions of ordinary differential equations.

To solve a differential equation, you must first create an operator for the unknown function. We let \( y \) be the unknown function in terms of \( x \).

\[
y := \text{operator ‘}y\text{‘}
\]

\[
y
\]

Type: BasicOperator

You then type the equation using \( D \) to create the derivatives of the unknown function \( y(x) \) where \( x \) is any symbol you choose (the so-called dependent variable).

This is how you enter the equation \( y'' + y' + y = 0 \).

\[
deq := D(y \ x, \ x, \ 2) + D(y \ x, \ x) + y \ x = 0
\]

\[
y''(x) + y'(x) + y(x) = 0
\]

Type: Equation Expression Integer

The simplest way to invoke the solve command is with three arguments.
8.10. **SOLUTION OF DIFFERENTIAL EQUATIONS**

- the differential equation,
- the operator representing the unknown function,
- the dependent variable.

So, to solve the above equation, we enter this.

```plaintext
solve(deq, y, x)
```

\[
\text{particular} = 0; \text{basis} = \left[ \cos \left( \frac{x \sqrt{3}}{2} \right), \exp \left( -\frac{x}{2} \right), \sin \left( \frac{x \sqrt{3}}{2} \right) \right] \]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)

Since linear ordinary differential equations have infinitely many solutions, `solve` returns a particular solution \( f_p \) and a basis \( f_1, \ldots, f_n \) for the solutions of the corresponding homogeneous equation. Any expression of the form

\[ f_p + c_1 f_1 + \ldots c_n f_n \]

where the \( c_i \) do not involve the dependent variable is also a solution. This is similar to what you get when you solve systems of linear algebraic equations.

A way to select a unique solution is to specify initial conditions: choose a value \( a \) for the dependent variable and specify the values of the unknown function and its derivatives at \( a \). If the number of initial conditions is equal to the order of the equation, then the solution is unique (if it exists in closed form!) and `solve` tries to find it. To specify initial conditions to `solve`, use an Equation of the form \( x = a \) for the third parameter instead of the dependent variable, and add a fourth parameter consisting of the list of values \( y(a), y'(a), \ldots \). To find the solution of \( y'' + y = 0 \) satisfying \( y(0) = y'(0) = 1 \), do this.

```plaintext
deq := D(y x, x, 2) + y x
```

\[ y''(x) + y(x) \]

Type: Expression Integer

You can omit the \( = 0 \) when you enter the equation to be solved.

```plaintext
solve(deq, y, x = 0, [1, 1])
```

\[ \sin(x) + \cos(x) \]
Axiom is not limited to linear differential equations with constant coefficients. It can also find solutions when the coefficients are rational or algebraic functions of the dependent variable. Furthermore, Axiom is not limited by the order of the equation.

Axiom can solve the following third order equations with polynomial coefficients.

\[
deq := x^3 y''' + x^2 y'' - 2 x y' + 2 y = 2 x^4
\]

Type: Equation Expression Integer

\[
solve(deq, y, x)
\]

\[
\begin{align*}
\text{particular} & = \frac{x^5 - 10 x^3 + 20 x^2 + 4}{15 x}, \\
basis & = [\frac{2 x^3 - 3 x^2 + 1}{x}, \frac{x^3 - 1}{x}, \frac{x^3 - 3 x^2 - 1}{x}]
\end{align*}
\]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer), ...)

Here we are solving a homogeneous equation.

\[
deq := (x^9 + x^3) y''' + 18 x^8 y'' - 90 x y' + 330 x^6 + 90) y(x)
\]

Type: Expression Integer

\[
solve(deq, y, x)
\]

\[
\begin{align*}
\text{particular} & = 0, \\
basis & = [\frac{x}{x^6 + 1}, \frac{x e^{-\sqrt{6} \log(x)}}{x^6 + 1}, \frac{x e^{\sqrt{6} \log(x)}}{x^6 + 1}]
\end{align*}
\]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer), ...)


On the other hand, and in contrast with the operation \texttt{integrate}, it can happen that Axiom finds no solution and that some closed-form solution still exists. While it is mathematically complicated to describe exactly when the solutions are guaranteed to be found, the following statements are correct and form good guidelines for linear ordinary differential equations:

- If the coefficients are constants, Axiom finds a complete basis of solutions (i.e. all solutions).
- If the coefficients are rational functions in the dependent variable, Axiom at least finds all solutions that do not involve algebraic functions.

Note that this last statement does not mean that Axiom does not find the solutions that are algebraic functions. It means that it is not guaranteed that the algebraic function solutions will be found.

This is an example where all the algebraic solutions are found.

\[
\text{deq := (x}^2 + 1) \cdot \text{D(y x, x, 2) + 3} \cdot x \cdot \text{D(y x, x)} + y x = 0
\]

\[
(x^2 + 1) \cdot y'(x) + 3 x \cdot y'(x) + y(x) = 0
\]

Type: Equation Expression Integer

\[
\text{solve(deq, y, x)}
\]

\[
\left[\begin{array}{c}
\text{particular} = 0, \\
\text{basis} = \\
\frac{1}{\sqrt{x^2 + 1}} \cdot \log \left(\frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}}\right)
\end{array}\right]
\]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)

Closed-Form Solutions of Non-Linear Differential Equations

This is an example that shows how to solve a non-linear first order ordinary differential equation manually when an integrating factor can be found just by integration. At the end, we show you how to solve it directly.

Let’s solve the differential equation \( y' = y/(x + ylogy) \).

Using the notation \( m(x, y) + n(x, y)y' = 0 \), we have \( m = -y \) and \( n = x + ylogy \).

\[
m := -y
\]

\[-y\]
CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Polynomial Integer

\[ n := x + y \cdot \log y \]

\[ y \cdot \log(y) + x \]

Type: Expression Integer

We first check for exactness, that is, does \( \frac{dm}{dy} = \frac{dn}{dx} \)?

\[ D(m, y) - D(n, x) \]

\[-2\]

Type: Expression Integer

This is not zero, so the equation is not exact. Therefore we must look for an integrating factor: a function \( \mu(x, y) \) such that \( \frac{d(\mu m)}{dy} = \frac{d(\mu n)}{dx} \). Normally, we first search for \( \mu(x, y) \) depending only on \( x \) or only on \( y \).

Let's search for such a \( \mu(x) \) first.

\[ \mu := \text{operator 'mu} \]

\[ \mu \]

Type: BasicOperator

\[ a := D(\mu(x) \cdot m, y) - D(\mu(x) \cdot n, x) \]

\[ (-y \cdot \log(y) - x) \cdot \mu'(x) - 2 \cdot \mu(x) \]

Type: Expression Integer

If the above is zero for a function \( \mu \) that does not depend on \( y \), then \( \mu(x) \) is an integrating factor.

\[ \text{solve}(a = 0, \mu, x) \]

\[ \begin{align*}
\text{particular} &= 0, \\
\text{basis} &= \frac{1}{y^2 \cdot \log(y)^2 + 2 \cdot x \cdot y \cdot \log(y) + x^2}
\end{align*} \]
The solution depends on $y$, so there is no integrating factor that depends on $x$ only. Let’s look for one that depends on $y$ only.

$$b := \frac{D(\mu(y) \cdot m, y) - D(\mu(y) \cdot n, x)}{\mu(y)^2}$$

Type: Expression Integer

$$sb := \text{solve}(b = 0, \mu, y)$$

$$\begin{align*}
\text{particular} &= 0; \\
\text{basis} &= \left[\frac{1}{y^2}\right]
\end{align*}$$

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)

We’ve found one! The above $\mu(y)$ is an integrating factor. We must multiply our initial equation (that is, $m$ and $n$) by the integrating factor.

$$\text{intFactor} := sb.\text{basis}.1$$

$$\frac{1}{y^2}$$

Type: Expression Integer

$$m := \text{intFactor} \cdot m$$

$$-\frac{1}{y}$$

Type: Expression Integer

$$n := \text{intFactor} \cdot n$$

$$\frac{y \log(y) + x}{y^2}$$
Let’s check for exactness.

\[ D(m, y) - D(n, x) \]

\[ 0 \]

We must solve the exact equation, that is, find a function \( s(x, y) \) such that \( ds/dx = m \) and \( ds/dy = n \).

We start by writing \( s(x, y) = h(y) + \text{integrate}(m, x) \) where \( h(y) \) is an unknown function of \( y \). This guarantees that \( ds/dx = m \).

\[ h := \text{operator}'h \]

\[ h \]

\[ \text{sol} := h \cdot y + \text{integrate}(m, x) \]

\[ \frac{y \cdot h(y) - x}{y} \]

All we want is to find \( h(y) \) such that \( ds/dy = n \).

\[ \text{dsol} := D(\text{sol}, y) \]

\[ \frac{y^2 \cdot h'(y) + x}{y^2} \]

\[ \text{nsol} := \text{solve}(\text{dsol} = n, h, y) \]

\[ \begin{bmatrix} \text{particular} = \frac{\log(y)^2}{2}, \text{basis} = [1] \end{bmatrix} \]
The above particular solution is the \( h(y) \) we want, so we just replace \( h(y) \) by it in the implicit solution.

\[
eval(sol, \ y = nsol\.particular)
\]

\[
\frac{y \log(y)^2 - 2x}{2y}
\]

A first integral of the initial equation is obtained by setting this result equal to an arbitrary constant.

Now that we’ve seen how to solve the equation “by hand,” we show you how to do it with the \texttt{solve} operation.

First define \( y \) to be an operator.

\[
y := \text{operator ‘y}
\]

Next we create the differential equation.

\[
deq := D(y \ x, x) = y(x) / (x + y(x) * \log y \ x)
\]

\[
y' (x) = \frac{y(x)}{y(x) \log(y(x)) + x}
\]

Finally, we solve it.

\[
solve(deq, y, x)
\]

\[
\frac{y(x) \log(y(x))^2 - 2x}{2y(x)}
\]
Power Series Solutions of Differential Equations

The command to solve differential equations in power series around a particular initial point with specific initial conditions is called \texttt{seriesSolve}. It can take a variety of parameters, so we illustrate its use with some examples.

Since the coefficients of some solutions are quite large, we reset the default to compute only seven terms.

\texttt{\textbackslash{}set streams calculate 7}

You can solve a single nonlinear equation of any order. For example, we solve

\[ y''' = \sin(y'') \cdot \exp(y) + \cos(x) \]

subject to

\[ y(0) = 1, y'(0) = 0, y''(0) = 0 \]

We first tell Axiom that the symbol \( 'y \) denotes a new operator.

\texttt{y := operator 'y}

Type: BasicOperator

Enter the differential equation using \( y \) like any system function.

\texttt{eq := D(y(x), x, 3) - sin(D(y(x), x, 2))\cdot \exp(y(x)) = \cos(x) }

\[ y'''(x) - e^{y(x)} \sin (y''(x)) = \cos (x) \]

Type: Equation Expression Integer

Solve it around \( x = 0 \) with the initial conditions \( y(0) = 1, y'(0) = y''(0) = 0 \).

\texttt{seriesSolve(eq, y, x = 0, [1, 0, 0])}

\[ 1 + \frac{1}{6} x^3 + \frac{e}{24} x^4 + \frac{e^2 - 1}{120} x^5 + \frac{e^3 - 2 e}{720} x^6 + \frac{e^4 - 8 e^2 + 4 e + 1}{5040} x^7 + O (x^8) \]

Type: UnivariateTaylorSeries(Expression Integer,x,0)

You can also solve a system of nonlinear first order equations. For example, we solve a system that has \( \tan(t) \) and \( \sec(t) \) as solutions.

We tell Axiom that \( x \) is also an operator.
Enter the two equations forming our system.

\[ \text{eq1 := } D(x(t), t) = 1 + x(t)^2 \]
\[ x'(t) = x(t)^2 + 1 \]

Type: Equation Expression Integer

\[ \text{eq2 := } D(y(t), t) = x(t) \times y(t) \]
\[ y'(t) = x(t) \times y(t) \]

Type: Equation Expression Integer

Solve the system around \( t = 0 \) with the initial conditions \( x(0) = 0 \) and \( y(0) = 1 \). Notice that since we give the unknowns in the order \([x, y]\), the answer is a list of two series in the order

\[ \text{seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])} \]

\[ \left[ \begin{array}{l}
  t + \frac{1}{3} t^3 + \frac{2}{15} t^5 + \frac{17}{315} t^7 + O(t^8), \\
 1 + \frac{1}{2} t^2 + \frac{5}{24} t^4 + \frac{61}{720} t^6 + O(t^8)
\end{array} \right] \]

Type: List UnivariateTaylorSeries(Expression Integer, t, 0)

The order in which we give the equations and the initial conditions has no effect on the order of the solution.
8.11 Finite Fields

A finite field (also called a Galois field) is a finite algebraic structure where one can add, multiply and divide under the same laws (for example, commutativity, associativity or distributivity) as apply to the rational, real or complex numbers. Unlike those three fields, for any finite field there exists a positive prime integer $p$, called the characteristic, such that $p \cdot x = 0$ for any element $x$ in the finite field. In fact, the number of elements in a finite field is a power of the characteristic and for each prime $p$ and positive integer $n$ there exists exactly one finite field with $p^n$ elements, up to isomorphism.\(^1\)

When $n = 1$, the field has $p$ elements and is called a prime field, discussed in the next section. There are several ways of implementing extensions of finite fields, and Axiom provides quite a bit of freedom to allow you to choose the one that is best for your application. Moreover, we provide operations for converting among the different representations of extensions and different extensions of a single field. Finally, note that you usually need to package-call operations from finite fields if the operations do not take as an argument an object of the field. See section 2.9 on page 89 for more information on package-calling.

Modular Arithmetic and Prime Fields

Let $n$ be a positive integer. It is well known that you can get the same result if you perform addition, subtraction or multiplication of integers and then take the remainder on dividing by $n$ as if you had first done such remaindering on the operands, performed the arithmetic and then (if necessary) done remaindering again. This allows us to speak of arithmetic modulo $n$ or, more simply $\text{mod } n$.

In Axiom, you use IntegerMod to do such arithmetic.

```
(a,b) : IntegerMod 12
```

Type: Void

```
(a, b) := (16, 7)
```

7

Type: IntegerMod 12

\[(a - b, a * b)\]

If \( n \) is not prime, there is only a limited notion of reciprocals and division.

\[
a / b
\]

There are 12 exposed and 13 unexposed library operations named `/`
having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue

\[
)display op /
\]
to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named `/`
with argument type(s)

\[
\text{IntegerMod 12}
\]

\[
\text{IntegerMod 12}
\]

Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

\[
\text{recip a}
\]

"failed"

\[
\text{Type: Union("failed",...)}
\]

Here 7 and 12 are relatively prime, so 7 has a multiplicative inverse modulo 12.

\[
\text{recip b}
\]

7

\[
\text{Type: Union(IntegerMod 12,...)}
\]

If we take \( n \) to be a prime number \( p \), then taking inverses and, therefore, division are generally defined. Use \texttt{PrimeField} instead of \texttt{IntegerMod} for \( n \) prime.

\[
c : \text{PrimeField 11} := 8
\]
You can also use $1/c$ and $c \cdot (-1)$ for the inverse of $c$.

In the following examples, we work with the finite field with $p = 101$ elements.

```
GF101 := PF 101
```

Like many domains in Axiom, finite fields provide an operation for returning a random element of the domain.

```
x := random()$GF101
```
8.11. FINITE FIELDS

\$ y : \text{GF101} := 37 \$

\[
37
\]

Type: PrimeField 101

\$ z := x/y \$

\[
63
\]

Type: PrimeField 101

\$ z * y - x \$

\[
0
\]

Type: PrimeField 101

The element 2 is a \textit{primitive element} of this field,

\$ \text{pe := primitiveElement()}$\text{GF101} \$

\[
2
\]

Type: PrimeField 101

in the sense that its powers enumerate all nonzero elements.

\$ \text{[pe**i for i in 0..99]} \$

\[
[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49, 98, 95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78, 55, 9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85, 69, 37, 74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52, 3, 6, 12, 24, 48, 96, 91, 81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65, 29, 58, 15, 30, 60, 19, 38, 76, 51]
\]

Type: List PrimeField 101

If every nonzero element is a power of a primitive element, how do you determine what the exponent is? Use \texttt{discreteLog}. 


ex := discreteLog(y)

Type: PositiveInteger

pe ** ex

Type: PrimeField 101

The order of a nonzero element \( x \) is the smallest positive integer \( t \) such \( x^t = 1 \).

order y

Type: PositiveInteger

The order of a primitive element is the defining \( p - 1 \).

order pe

Type: PositiveInteger

Extensions of Finite Fields

When you want to work with an extension of a finite field in Axiom, you have three choices to make:

1. Do you want to generate an extension of the prime field (for example, PrimeField 2) or an extension of a given field?

2. Do you want to use a representation that is particularly efficient for multiplication, exponentiation and addition but uses a lot of computer memory (a representation that models the cyclic group structure of the multiplicative group of the field extension and uses a Zech logarithm table), one that uses a normal basis for the vector space structure of the field extension, or one that performs arithmetic modulo an irreducible polynomial? The cyclic group representation is only usable up to “medium” (relative to your machine’s performance) sized fields. If the field is large and the normal basis is relatively simple, the normal basis representation is more efficient for exponentiation than the irreducible polynomial representation.
3. Do you want to provide a polynomial explicitly, a root of which “generates” the extension in one of the three senses in (2), or do you wish to have the polynomial generated for you?

This illustrates one of the most important features of Axiom: you can choose exactly the right data-type and representation to suit your application best.

We first tell you what domain constructors to use for each case above, and then give some examples.

 Constructors that automatically generate extensions of the prime field:
    FiniteField
    FiniteFieldCyclicGroup
    FiniteFieldNormalBasis

 Constructors that generate extensions of an arbitrary field:
    FiniteFieldExtension
    FiniteFieldExtensionByPolynomial
    FiniteFieldCyclicGroupExtension
    FiniteFieldCyclicGroupExtensionByPolynomial
    FiniteFieldNormalBasisExtension
    FiniteFieldNormalBasisExtensionByPolynomial

 Constructors that use a cyclic group representation:
    FiniteFieldCyclicGroup
    FiniteFieldCyclicGroupExtension
    FiniteFieldCyclicGroupExtensionByPolynomial

 Constructors that use a normal basis representation:
    FiniteFieldNormalBasis
    FiniteFieldNormalBasisExtension
    FiniteFieldNormalBasisExtensionByPolynomial

 Constructors that use an irreducible modulus polynomial representation:
    FiniteField
    FiniteFieldExtension
    FiniteFieldExtensionByPolynomial

 Constructors that generate a polynomial for you:
    FiniteField
    FiniteFieldExtension
    FiniteFieldCyclicGroup
    FiniteFieldCyclicGroupExtension
    FiniteFieldNormalBasis
    FiniteFieldNormalBasisExtension

 Constructors for which you provide a polynomial:
    FiniteFieldExtensionByPolynomial
    FiniteFieldCyclicGroupExtensionByPolynomial
    FiniteFieldNormalBasisExtensionByPolynomial
These constructors are discussed in the following sections where we collect together descriptions of extension fields that have the same underlying representation.\footnote{For more information on the implementation aspects of finite fields, see J. Grabmeier, A. Scheerhorn, \textit{Finite Fields in Axiom}, Technical Report, IBM Heidelberg Scientific Center, 1992.}

If you don’t really care about all this detail, just use \texttt{FiniteField}. As your knowledge of your application and its Axiom implementation grows, you can come back and choose an alternative constructor that may improve the efficiency of your code. Note that the exported operations are almost the same for all constructors of finite field extensions and include the operations exported by \texttt{PrimeField}.

### Irreducible Modulus Polynomial Representations

All finite field extension constructors discussed in this section use a representation that performs arithmetic with univariate (one-variable) polynomials modulo an irreducible polynomial. This polynomial may be given explicitly by you or automatically generated. The ground field may be the prime field or one you specify. See section 8.11 on page 362 for general information about finite field extensions.

For \texttt{FiniteField} (abbreviation \texttt{FF}) you provide a prime number \(p\) and an extension degree \(n\). This degree can be 1.

Axiom uses the prime field \texttt{PrimeField}(p), here \texttt{PrimeField 2}, and it chooses an irreducible polynomial of degree \(n\), here 12, over the ground field.

\[
\text{GF4096} := \text{FF}(2,12) ;
\]

\text{Type: Domain}

The objects in the generated field extension are polynomials of degree at most \(n - 1\) with coefficients in the prime field. The polynomial indeterminate is automatically chosen by Axiom and is typically something like \(\%A\) or \(\%D\). These (strange) variables are only for output display; there are several ways to construct elements of this field.

The operation \texttt{index} enumerates the elements of the field extension and accepts as argument the integers from 1 to \(p^n\).

The expression \texttt{index}(p) always gives the indeterminate.

\[
a := \text{index}(2)\$\text{GF4096}
\]

\(\%A\)

\text{Type: FiniteField(2,12)}

You can build polynomials in \(a\) and calculate in \(GF4096\).
8.11. **FINITE FIELDS**

\[ b := a^{12} - a^5 + a \]

\[ A^5 + A^3 + A + 1 \]

Type: `FiniteField(2,12)`

\[ b ** 1000 \]

\[ A^{10} + A^9 + A^7 + A^5 + A^4 + A^3 + A \]

Type: `FiniteField(2,12)`

\[ c := a/b \]

\[ A^{11} + A^8 + A^7 + A^5 + A^4 + A^3 + A^2 \]

Type: `FiniteField(2,12)`

Among the available operations are **norm** and **trace**.

\[ norm c \]

1

Type: `PrimeField 2`

\[ trace c \]

0

Type: `PrimeField 2`

Since any nonzero element is a power of a primitive element, how do we discover what the exponent is?

The operation **discreteLog** calculates the exponent and, if it is called with only one argument, always refers to the primitive element returned by **primitiveElement**.

\[ dL := discreteLog a \]

1729
$g^{1729}$

**FiniteFieldExtension** (abbreviation **FFX**) is similar to **FiniteField** except that the ground-field for **FiniteFieldExtension** is arbitrary and chosen by you.

In case you select the prime field as ground field, there is essentially no difference between the constructed two finite field extensions.

```plaintext
GF16 := FF(2,4);
```

```plaintext
GF4096 := FFX(GF16,3);
```

```plaintext
r := (random()$GF4096) ** 20

(%B^2 + 1) %C^2 + (%B^3 + %B^2 + 1) %C + %B^3 + %B^2 + %B + 1
```

**norm(r)**

```plaintext
%B^2 + %B
```

**FiniteFieldExtensionByPolynomial** (abbreviation **FFP**) is similar to **FiniteField** and **FiniteFieldExtension** but is more general.

```plaintext
GF4 := FF(2,2);
```
8.11. **FINITE FIELDS**

**Type:** Domain

\[ f := \text{nextIrreduciblePoly}(\text{random}(6)\text{FFPOLY}(\text{GF4})) \text{FFPOLY}(\text{GF4}) \]

\[ 7^6 + (7^D + 1) 7^5 + (7^D + 1) 7^4 + (7^D + 1) 7^1 + 1 \]

**Type:** Union(SparseUnivariatePolynomial FiniteField(2,2),..)

For **FFP** you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

\[ \text{GF4096 := FFP(GF4,f);} \]

**Type:** Domain

\[ \text{discreteLog random()}\text{GF4096} \]

582

**Type:** PositiveInteger

**Cyclic Group Representations**

In every finite field there exist elements whose powers are all the nonzero elements of the field. Such an element is called a **primitive element**.

In **FiniteFieldCyclicGroup** (abbreviation **FFCG**) the nonzero elements are represented by the powers of a fixed primitive element of the field (that is, a generator of its cyclic multiplicative group). Multiplication (and hence exponentiation) using this representation is easy. To do addition, we consider our primitive element as the root of a primitive polynomial (an irreducible polynomial whose roots are all primitive). See section 8.11 on page 376 for examples of how to compute such a polynomial.

To use **FiniteFieldCyclicGroup** you provide a prime number and an extension degree.

\[ \text{GF81 := FFCG(3,4);} \]

**Type:** Domain

Axiom uses the prime field, here **PrimeField 3**, as the ground field and it chooses a primitive polynomial of degree \( n \), here 4, over the prime field.
a := primitiveElement()$\mathbb{GF}_{81}$

\%$F^1$

Type: FiniteFieldCyclicGroup(3,4)

You can calculate in $\mathbb{GF}_{81}$.

b := a**12 - a**5 + a

\%$F^{72}$

Type: FiniteFieldCyclicGroup(3,4)

In this representation of finite fields the discrete logarithm of an element can be seen directly in its output form.

b

\%$F^{72}$

Type: FiniteFieldCyclicGroup(3,4)

discreteLog b

72

Type: PositiveInteger

\textit{FiniteFieldCyclicGroupExtension} (abbreviation \texttt{FFCGX}) is similar to \textit{FiniteFieldCyclicGroup} except that the ground field for \textit{FiniteFieldCyclicGroupExtension} is arbitrary and chosen by you. In case you select the prime field as ground field, there is essentially no difference between the constructed two finite field extensions.

GF9 := FF(3,2);

Type: Domain

GF729 := FFCGX(GF9,3);
8.11. Finite Fields

```
r := (random()$GF729) ** 20

% H^{420}

trace(r)

0
```

`FiniteFieldCyclicGroupExtensionByPolynomial` (abbreviation `FFCGP`) is similar to `FiniteFieldCyclicGroup` and `FiniteFieldCyclicGroupExtension` but is more general. For `FiniteFieldCyclicGroupExtensionByPolynomial` you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

```
GF3 := PrimeField 3;
```

We use a utility operation to generate an irreducible primitive polynomial (see section 8.11 on page 376). The polynomial has one variable that is “anonymous”: it displays as a question mark.

```
f := createPrimitivePoly(4)$FFPOLY(GF3)

?^4 + ? + 2

Type: SparseUnivariatePolynomial PrimeField 3
```

```
GF81 := FFCGP(GF3,f);
```

Let’s look at a random element from this field.

```
random()$GF81
```

```
% K^{13}

Type: FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField 3,?^4+?+2)
```
Normal Basis Representations

Let $K$ be a finite extension of degree $n$ of the finite field $F$ and let $F$ have $q$ elements. An element $x$ of $K$ is said to be normal over $F$ if the elements

$$1, x^q, x^{2q}, \ldots, x^{qn-1}$$

form a basis of $K$ as a vector space over $F$. Such a basis is called a normal basis.\(^3\)

If $x$ is normal over $F$, its minimal polynomial is also said to be normal over $F$. There exist normal bases for all finite extensions of arbitrary finite fields.

In `FiniteFieldNormalBasis` (abbreviation `FFNB`), the elements of the finite field are represented by coordinate vectors with respect to a normal basis.

You provide a prime $p$ and an extension degree $n$.

$$K := \text{FFNB}(3,8)$$

`FiniteFieldNormalBasis(3,8)`

Type: Domain

Axiom uses the prime field `PrimeField(p)`, here `PrimeField 3`, and it chooses a normal polynomial of degree $n$, here 8, over the ground field. The remainder class of the indeterminate is used as the normal element. The polynomial indeterminate is automatically chosen by Axiom and is typically something like `%A` or `%D`. These (strange) variables are only for output display; there are several ways to construct elements of this field. The output of the basis elements is something like `%A^q`.

$$a := \text{normalElement}()$K$$

```
%I
```

Type: FiniteFieldNormalBasis(3,8)

You can calculate in $K$ using $a$.

$$b := a^{**12} - a^{**5} + a$$

$$2 \cdot %I^7 + %I^5 + %I^q$$

Type: FiniteFieldNormalBasis(3,8)

\(^3\)This agrees with the general definition of a normal basis because the $n$ distinct powers of the automorphism $x \mapsto x^q$ constitute the Galois group of $K/F$. 
FiniteFieldNormalBasisExtension (abbreviation FFNBX) is similar to FiniteFieldNormalBasis except that the groundfield for FiniteFieldNormalBasisExtension is arbitrary and chosen by you. In case you select the prime field as ground field, there is essentially no difference between the constructed two finite field extensions.

\[
\text{GF9 := FFNB}(3,2);\]

Type: Domain

\[
\text{GF729 := FFNBX}(\text{GF9,3});\]

Type: Domain

\[
r := \text{random()}\|\text{GF729}
\]

Type: FiniteFieldNormalBasisExtension(\text{FiniteFieldNormalBasis}(3,2),3)

\[
r + r^{*3} + r^{*9} + r^{*27}
\]

Type: FiniteFieldNormalBasisExtension(\text{FiniteFieldNormalBasis}(3,2),3)

FiniteFieldNormalBasisExtensionByPolynomial (abbreviation FFNBP) is similar to FiniteFieldNormalBasis and FiniteFieldNormalBasisExtension but is more general. For FiniteFieldNormalBasisExtensionByPolynomial you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

\[
\text{GF3 := PrimeField 3};\]

Type: Domain

We use a utility operation to generate an irreducible normal polynomial (see section 8.11 on page 376). The polynomial has one variable that is “anonymous”: it displays as a question mark.
CHAPTER 8. ADVANCED PROBLEM SOLVING

\( f := \text{createNormalPoly}(4) \times \text{FFPOLY}(\text{GF3}) \)

\( \gamma^4 + 2 \gamma^3 + 2 \)

Type: SparseUnivariatePolynomial PrimeField 3

\( \text{GF81} := \text{FFNBP}(\text{GF3}, f); \)

Type: Domain

Let’s look at a random element from this field.

\( r := \text{random}() \times \text{GF81} \)

\( 2 \gamma^2 + 2 \gamma^3 + 2 \gamma + 2 \)

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3, \gamma^4 + 2 \gamma^3 + 2)

\( r \times r^3 \times r^9 \times r^{27} \)

\( 2 \gamma^3 + 2 \gamma^2 + 2 \gamma + 2 \gamma \)

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3, \gamma^4 + 2 \gamma^3 + 2)

\( \text{norm} r \)

2

Type: PrimeField 3

Conversion Operations for Finite Fields

Let \( K \) be a finite field.

\( K := \text{PrimeField} 3 \)

PrimeField 3
An extension field $K_m$ of degree $m$ over $K$ is a subfield of an extension field $K_n$ of degree $n$ over $K$ if and only if $m$ divides $n$.

$$
\begin{array}{ccc}
K_n & \subseteq & m|n \\
K_m & \subset & K
\end{array}
$$

`FiniteFieldHomomorphisms` provides conversion operations between different extensions of one fixed finite ground field and between different representations of these finite fields.

Let's choose $m$ and $n$,

$(m,n) := (4,8)$

build the field extensions,

$K_m := \text{FiniteFieldExtension}(K,m)$

`FiniteFieldExtension(PrimeField 3,4)`

Type: Domain

and pick two random elements from the smaller field.

$K_n := \text{FiniteFieldExtension}(K,n)$

`FiniteFieldExtension(PrimeField 3,8)`

Type: Domain

$a_1 := \text{random()} \in K_m$

$2 \% A^3 + \% A^2$

Type: FiniteFieldExtension(PrimeField 3,4)
b1 := random()$K_m

\%A^3 + \%A^2 + 2 \%A + 1

Type: FiniteFieldExtension(PrimeField 3,4)

Since \( m \) divides \( n \), \( K_m \) is a subfield of \( K_n \).

a2 := a1 :: Kn

\%B^4

Type: FiniteFieldExtension(PrimeField 3,8)

Therefore we can convert the elements of \( K_m \) into elements of \( K_n \).

b2 := b1 :: Kn

\( 2 \%B^6 + 2 \%B^4 + \%B^2 + 1 \)

Type: FiniteFieldExtension(PrimeField 3,8)

To check this, let’s do some arithmetic.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

There are also conversions available for the situation, when \( K_m \) and \( K_n \) are represented in different ways (see section 8.11 on page 362). For example let’s choose \( K_m \) where the representation is 0 plus the cyclic multiplicative group and \( K_n \) with a normal basis representation.

Km := FFCGX(K,m)
8.11. **FINITE FIELDS**

FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

Type: Domain

Kn := FFNBX(K, n)

FiniteFieldNormalBasisExtension(PrimeField 3, 8)

Type: Domain

(a1, b1) := (random()$Km, random()$Km)

\[ C^{11} \]

Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

a2 := a1 :: Kn

\[ 2 \, D^{q^5} + 2 \, D^{q^3} + 2 \, D^{q^2} + 2 \, D^{q} + 2 \, D \]

Type: FiniteFieldNormalBasisExtension(PrimeField 3, 8)

b2 := b1 :: Kn

\[ 2 \, D^{q^7} + 2 \, D^{q^6} + 2 \, D^{q^5} + 2 \, D^{q^4} + 2 \, D^{q^2} + 2 \, D^{q} + 2 \, D \]

Type: FiniteFieldNormalBasisExtension(PrimeField 3, 8)

Check the arithmetic again.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)
Utility Operations for Finite Fields

FiniteFieldPolynomialPackage (abbreviation FFPOLY) provides operations for generating, counting and testing polynomials over finite fields. Let’s start with a couple of definitions:

- A polynomial is *primitive* if its roots are primitive elements in an extension of the coefficient field of degree equal to the degree of the polynomial.
- A polynomial is *normal* over its coefficient field if its roots are linearly independent elements in an extension of the coefficient field of degree equal to the degree of the polynomial.

In what follows, many of the generated polynomials have one “anonymous” variable. This indeterminate is displayed as a question mark (“?”).

To fix ideas, let’s use the field with five elements for the first few examples.

\[
GF5 := PF 5;
\]

Type: Domain

You can generate irreducible polynomials of any (positive) degree (within the storage capabilities of the computer and your ability to wait) by using createIrreduciblePoly.

\[
f := createIrreduciblePoly(8)$FFPOLY(GF5)
\]

\[
?^8 + ?^4 + 2
\]

Type: SparseUnivariatePolynomial PrimeField 5

Does this polynomial have other important properties? Use primitive? to test whether it is a primitive polynomial.

\[
primitive?(f)$FFPOLY(GF5)
\]

false

Type: Boolean

Use normal? to test whether it is a normal polynomial.

\[
normal?(f)$FFPOLY(GF5)
\]

false
8.11. **FINITE FIELDS**

Note that this is actually a trivial case, because a normal polynomial of degree \( n \) must have a nonzero term of degree \( n - 1 \). We will refer back to this later.

To get a primitive polynomial of degree 8 just issue this.

\[
p := \text{createPrimitivePoly}(8)$\text{FFPOLY}(\text{GF5})$
\]

\[
?^8 + ?^3 + ?^2 + ? + 2
\]

Type: SparseUnivariatePolynomial PrimeField 5

primitive?(p)$\text{FFPOLY}(\text{GF5})

true

Type: Boolean

This polynomial is not normal,

normal?(p)$\text{FFPOLY}(\text{GF5})

false

Type: Boolean

but if you want a normal one simply write this.

\[
n := \text{createNormalPoly}(8)$\text{FFPOLY}(\text{GF5})$
\]

\[
?^8 + 4 ?^7 + ?^3 + 1
\]

Type: SparseUnivariatePolynomial PrimeField 5

This polynomial is not primitive!

primitive?(n)$\text{FFPOLY}(\text{GF5})

false

Type: Boolean
This could have been seen directly, as the constant term is 1 here, which is not a primitive
element up to the factor \((-1)\) raised to the degree of the polynomial.\footnote{Cf. Lidl, R. & \cite{Lidl}, \textit{Finite Fields}, Enyclo. of Math. 20, (Addison-Wesley, 1983), p.90, Th. 3.18.}

What about polynomials that are both primitive and normal? The existence of such a
polynomial is by no means obvious. \footnote{The existence of such polynomials is proved in Lenstra, H. W. & Schoof, R. J., \textit{Primitive Normal Bases for Finite Fields}, Math. Comp. 48, 1987, pp. 217-231.}

If you really need one use either \texttt{createPrimitiveNormalPoly} or \texttt{createNormalPrimitivePoly}.

\texttt{createPrimitiveNormalPoly(8)$FFPOLY(GF5)$}

\begin{verbatim}
\begin{verbatim}
\gamma^8 + 4 \gamma^7 + 2 \gamma^5 + 2
\end{verbatim}
\end{verbatim}

\texttt{Type: SparseUnivariatePolynomial PrimeField 5}

If you want to obtain additional polynomials of the various types above as given by the
\texttt{create...} operations above, you can use the \texttt{next...} operations. For instance, \texttt{nextIrreduciblePoly} yields the next monic irreducible polynomial with the same degree as the input polynomial. By “next” we mean “next in a natural order using the terms and coefficients.”
This will become more clear in the following examples.

This is the field with five elements.

\texttt{GF5 := PF 5;}

\texttt{Type: Domain}

Our first example irreducible polynomial, say of degree 3, must be “greater” than this.

\texttt{h := monomial(1,8)$SUP(GF5)$}

\begin{verbatim}
\begin{verbatim}
\gamma^8
\end{verbatim}
\end{verbatim}

\texttt{Type: SparseUnivariatePolynomial PrimeField 5}

You can generate it by doing this.

\texttt{nh := nextIrreduciblePoly(h)$FFPOLY(GF5)$}

\begin{verbatim}
\begin{verbatim}
\gamma^8 + 2
\end{verbatim}
\end{verbatim}
8.11. FINITE FIELDS

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

Notice that this polynomial is not the same as the one \texttt{createIrreduciblePoly}.

\texttt{createIrreduciblePoly(3)$FFPOLY(GF5)$}

\[ ?^3 + ? + 1 \]

Type: SparseUnivariatePolynomial PrimeField 5

You can step through all irreducible polynomials of degree 8 over the field with 5 elements by repeatedly issuing this.

\texttt{nh := nextIrreduciblePoly(nh)$FFPOLY(GF5)$}

\[ ?^8 + 3 \]

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

You could also ask for the total number of these.

\texttt{numberOfIrreduciblePoly(5)$FFPOLY(GF5)$}

624

Type: PositiveInteger

We hope that “natural order” on polynomials is now clear: first we compare the number of monomials of two polynomials (“more” is “greater”); then, if necessary, the degrees of these monomials (lexicographically), and lastly their coefficients (also lexicographically, and using the operation \texttt{lookup} if our field is not a prime field). Also note that we make both polynomials monic before looking at the coefficients: multiplying either polynomial by a nonzero constant produces the same result.

The package \texttt{FiniteFieldPolynomialPackage} also provides similar operations for primitive and normal polynomials. With the exception of the number of primitive normal polynomials; we’re not aware of any known formula for this.

\texttt{numberOfPrimitivePoly(3)$FFPOLY(GF5)$}

20

Type: PositiveInteger
Take these,

\[m := \text{monomial}(1,1)\]$\text{SUP}(\text{GF}5)\]

\[f := m^3 + 4m^2 + m + 2\]

and then we have:

\[f1 := \text{nextPrimitivePoly}(f)\]$\text{FFPOLY}(\text{GF}5)\]

What happened?

Well, for the ordering used in \texttt{nextPrimitivePoly} we use as first criterion a comparison of the constant terms of the polynomials. Analogously, in \texttt{nextNormal Poly} we first compare the monomials of degree 1 less than the degree of the polynomials (which is nonzero, by an earlier remark).
8.11. **FINITE FIELDS**

\[ f_1 := \text{nextNormalPoly}(f) \text{\(\text{\$FFPOLY(GF5)}\)} \]

\[ ?^3 + ?^2 + 4 ? + 3 \]

*Type: Union(SparseUnivariatePolynomial PrimeField 5,...)*

\[ \text{nextNormalPoly}(f_1) \text{\(\text{\$FFPOLY(GF5)}\)} \]

\[ ?^3 + 2 ?^2 + 1 \]

*Type: Union(SparseUnivariatePolynomial PrimeField 5,...)*

We don’t have to restrict ourselves to prime fields.
Let’s consider, say, a field with 16 elements.

\[ \text{GF16 := FFX(FFX(PF 2,2),2)}; \]

*Type: Domain*

We can apply any of the operations described above.

\[ \text{createIrreduciblePoly(5)\(\text{\$FFPOLY(GF16)}\)} \]

\[ ?^5 + %G \]

*Type: SparseUnivariatePolynomial FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)*

Axiom also provides operations for producing random polynomials of a given degree

\[ \text{random(5)\(\text{\$FFPOLY(GF16)}\)} \]

\[ ?^5 + (%F \%G + 1) ?^4 + %F \%G \ ?^3 + (%G + %F + 1) ?^2 + ((%F + 1) \%G + %F) ? + 1 \]

*Type: SparseUnivariatePolynomial FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)*

or with degree between two given bounds.
random(3,9)$FFPOLY(GF16)

\[ ?^3 + (%F \%G + 1) ?^2 + (%G + %F + 1) ? + 1 \]

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

FiniteFieldPolynomialPackage2 (abbreviation FFPOLY2) exports an operation rootOfIrreduciblePoly for finding one root of an irreducible polynomial \( f \) in an extension field of the coefficient field. The degree of the extension has to be a multiple of the degree of \( f \). It is not checked whether \( f \) actually is irreducible.

To illustrate this operation, we fix a ground field \( GF \)

\( GF2 := \text{PrimeField 2}; \)

Type: Domain

and then an extension field.

\( F := \text{FFX}(GF2,12) \)

FiniteFieldExtension(PrimeField 2,12)

Type: Domain

We construct an irreducible polynomial over \( GF2 \).

\( f := \text{createIrreduciblePoly}(6)$FFPOLY(GF2) \)

\[ ?^6 + ? + 1 \]

Type: SparseUnivariatePolynomial PrimeField 2

We compute a root of \( f \).

\( \text{root} := \text{rootOfIrreduciblePoly}(f)$FFPOLY2(F,GF2) \)

\[ \%H^{11} + \%H^8 + \%H^7 + \%H^5 + \%H + 1 \]

Type: FiniteFieldExtension(PrimeField 2,12)
and check the result
\[
\text{eval}(f, \text{monomial}(1,1) \sup F = \text{root})
\]
\[
0
\]
Type: SparseUnivariatePolynomial FiniteFieldExtension(PrimeField 2,12)

### 8.12 Primary Decomposition of Ideals

Axiom provides a facility for the primary decomposition of polynomial ideals over fields of characteristic zero. The algorithm works in essentially two steps:

1. the problem is solved for 0-dimensional ideals by "generic" projection on the last coordinate
2. a "reduction process" uses localization and ideal quotients to reduce the general case to the 0-dimensional one.

The Axiom constructor \texttt{PolynomialIdeals} represents ideals with coefficients in any field and supports the basic ideal operations, including intersection, sum and quotient. \texttt{IdealDecompositionPackage} contains the specific operations for the primary decomposition and the computation of the radical of an ideal with polynomial coefficients in a field of characteristic 0 with an effective algorithm for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal generated by \(x^2 + y^2 - 1\) (which defines a circle in the \((x,y)\)-plane) and the ideal generated by \(x^2 - y^2\) (corresponding to the straight lines \(x = y\) and \(x = -y\).

\[
(n,m) : \text{List DMP}([x,y], \text{FRAC INT})
\]
Type: Void

\[
m := [x**2+y**2-1]
\]
\[
[x^2 + y^2 - 1]
\]
Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)

\[
n := [x**2-y**2]
\]
We find the equations defining the intersection of the two loci. This corresponds to the sum of the associated ideals.

\[ [x^2 - y^2] \]

Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)

We can check if the locus contains only a finite number of points, that is, if the ideal is zero-dimensional.

\[ \text{zeroDim? id} \]

true

Type: Boolean

\[ \text{zeroDim?(ideal m)} \]

false

Type: Boolean

\[ \text{dimension ideal m} \]

1

Type: PositiveInteger

We can find polynomial relations among the generators \((f \text{ and } g \text{ are the parametric equations of the knot})\).

\[ (f,g):\text{DMP([x,y],FRAC INT)} \]
8.12. PRIMARY DECOMPOSITION OF IDEALS

\[ f := x^2 - 1 \]
\[ x^2 - 1 \]
Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

\[ g := x*(x^2 - 1) \]
\[ x^3 - x \]
Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

\[ \text{relationsIdeal \{f,g\}} \]
\[ \left[-\%B^2 + \%A^3 + \%A^2\right] \mid \left[\%A = x^2 - 1, \%B = x^3 - x\right] \]
Type: SuchThat(List Polynomial Fraction Integer, List Equation Polynomial Fraction Integer)

We can compute the primary decomposition of an ideal.

\[ l: \text{List DMP([x,y,z],FRAC INT)} \]
Type: Void

\[ l := [x^2+2*y^2,x*z^2-y*z,z^2-4] \]
\[ [x^2 + 2 y^2, x z^2 - y z, z^2 - 4] \]
Type: List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

\[ \text{ld:=primaryDecomp ideal l} \]
\[ \left[\left[x + \frac{1}{2} y, y^2, z + 2\right], \left[x - \frac{1}{2} y, y^2, z - 2\right]\right] \]
We can intersect back.

\[
\text{reduce(intersect,ld)}
\]
\[
\left[ x - \frac{1}{4} y z, y z^2, z^2 - 4 \right]
\]

We can compute the radical of every primary component.

\[
\text{reduce(intersect,[radical ld.i for i in 1..2])}
\]
\[
\left[ x, y, z^2 - 4 \right]
\]

Their intersection is equal to the radical of the ideal of \( I \).

\[
\text{radical ideal l}
\]
\[
\left[ x, y, z^2 - 4 \right]
\]

8.13 Computation of Galois Groups

As a sample use of Axiom’s algebraic number facilities, we compute the Galois group of the polynomial \( p(x) = x^5 - 5x + 12 \).

\[
p := x**5 - 5*x + 12
\]
We would like to construct a polynomial \( f(x) \) such that the splitting field of \( p(x) \) is generated by one root of \( f(x) \). First we construct a polynomial \( r = r(x) \) such that one root of \( r(x) \) generates the field generated by two roots of the polynomial \( p(x) \). (As it will turn out, the field generated by two roots of \( p(x) \) is, in fact, the splitting field of \( p(x) \).)

From the proof of the primitive element theorem we know that if \( a \) and \( b \) are algebraic numbers, then the field \( \mathbb{Q}(a, b) \) is equal to \( \mathbb{Q}(a + kb) \) for an appropriately chosen integer \( k \). In our case, we construct the minimal polynomial of \( a_i - a_j \), where \( a_i \) and \( a_j \) are two roots of \( p(x) \). We construct this polynomial using \texttt{resultant}. The main result we need is the following: If \( f(x) \) is a polynomial with roots \( a_i : \ldots : a_m \) and \( g(x) \) is a polynomial with roots \( b_1 : \ldots : b_n \), then the polynomial \( h(x) = \text{resultant}(f(y), g(x-y), y) \) is a polynomial of degree \( m \times n \) with roots \( a_i + b_j, i = 1 \ldots m, j = 1 \ldots n. \)

For \( f(x) \) we use the polynomial \( p(x) \). For \( g(x) \) we use the polynomial \( -p(-x) \). Thus, the polynomial we first construct is \( \text{resultant}(p(y), -p(y-x), y) \).

\[
q := \text{resultant}(\text{eval}(p, x, y), -\text{eval}(p, x-y, y), y)
\]

\[
x^{25} - 50 x^{21} - 2375 x^{17} + 90000 x^{15} - 5000 x^{13} + 2700000 x^{11} + 250000 x^9 + 18000000 x^7 + 64000000 x^5
\]

Type: Polynomial Integer

The roots of \( q(x) \) are \( a_i - a_j, i \leq 1, j \leq 5 \). Of course, there are five pairs \( (i, j) \) with \( i = j \), so 0 is a 5-fold root of \( q(x) \).

Let’s get rid of this factor.

\[
q1 := \text{exquo}(q, x^{*5})
\]

\[
x^{20} - 50 x^{16} - 2375 x^{12} + 90000 x^{10} - 5000 x^8 + 2700000 x^6 + 250000 x^4 + 18000000 x^2 + 64000000
\]

Type: Union(Polynomial Integer, ...)

Factor the polynomial \( q1 \).

\[
factoredQ := \text{factor} q1
\]

\[
(x^{10} - 10 x^8 - 75 x^6 + 1500 x^4 - 5500 x^2 + 160000) *
\]

\[
(x^{10} + 10 x^8 + 125 x^6 + 500 x^4 + 2500 x^2 + 4000)
\]
We see that \( q_1 \) has two irreducible factors, each of degree 10. (The fact that the polynomial \( q_1 \) has two factors of degree 10 is enough to show that the Galois group of \( p(x) \) is the dihedral group of order 10.)\(^6\) Note that the type of \( factoredQ \) is \( FR \ POLY \ INT \), that is, \( Factored \ Polynomial \ Integer \). This is a special data type for recording factorizations of polynomials with integer coefficients.

We can access the individual factors using the operation \texttt{nthFactor}.

\[
\begin{align*}
\text{r := nthFactor(factoredQ,1)} \\
&= x^{10} - 10 \, x^8 - 75 \, x^6 + 1500 \, x^4 - 5500 \, x^2 + 16000
\end{align*}
\]

Type: Polynomial Integer

Consider the polynomial \( r = r(x) \). This is the minimal polynomial of the difference of two roots of \( p(x) \). Thus, the splitting field of \( p(x) \) contains a subfield of degree 10. We show that this subfield is, in fact, the splitting field of \( p(x) \) by showing that \( p(x) \) factors completely over this field.

First we create a symbolic root of the polynomial \( r(x) \). (We replaced \( x \) by \( b \) in the polynomial \( r \) so that our symbolic root would be printed as \( b \).)

\[
\begin{align*}
\text{beta:AN := rootOf(eval(r,x,b))} \\
&= b
\end{align*}
\]

Type: AlgebraicNumber

We next tell Axiom to view \( p(x) \) as a univariate polynomial in \( x \) with algebraic number coefficients. This is accomplished with this type declaration.

\[
\begin{align*}
\text{p := p::UP(x,INT)::UP(x,AN)} \\
&= x^5 - 5 \, x + 12
\end{align*}
\]

Type: UnivariatePolynomial(x,AlgebraicNumber)

Factor \( p(x) \) over the field \( \mathbb{Q}(\beta) \). (This computation will take some time!)

\[
\begin{align*}
\text{algFactors := factor(p,[beta])}
\end{align*}
\]

---
\(^6\)See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of Number Theory 20, 273-281 (1983). We do not assume the results of this paper, however, and we continue with the computation.
8.13. COMPUTATION OF GALOIS GROUPS

\[
\begin{align*}
&\left(x + \frac{-85 b^9 - 116 b^8 + 780 b^7 + 2640 b^6 + 14895 b^5 - 8820 b^4 - 127050 b^3 + 327000 b^2 - 405200 b + 2062400}{1339200}\right) \\
&\left(x + \frac{-17 b^8 + 156 b^6 + 2979 b^4 - 25410 b^2 - 14080}{66960}\right) \\
&\left(x + \frac{143 b^8 - 2100 b^6 - 10485 b^4 + 290550 b^2 - 334800 b - 960800}{669600}\right) \\
&\left(x + \frac{143 b^8 - 2100 b^6 - 10485 b^4 + 290550 b^2 + 334800 b - 960800}{669600}\right) \\
&\left(x + \frac{85 b^9 - 116 b^8 - 780 b^7 + 2640 b^6 - 14895 b^5 - 8820 b^4 + 127050 b^3 - 327000 b^2 + 405200 b + 2062400}{1339200}\right)
\end{align*}
\]

Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

When factoring over number fields, it is important to specify the field over which the polynomial is to be factored, as polynomials have different factorizations over different fields. When you use the operation \texttt{factor}, the field over which the polynomial is factored is the field generated by

1. the algebraic numbers that appear in the coefficients of the polynomial, and
2. the algebraic numbers that appear in a list passed as an optional second argument of the operation.

In our case, the coefficients of \(p\) are all rational integers and only \(\beta\) appears in the list, so the field is simply \(\mathbb{Q}(\beta)\).

It was necessary to give the list \([\beta]\) as a second argument of the operation because otherwise the polynomial would have been factored over the field generated by its coefficients, namely the rational numbers.

\texttt{factor(p)}

\[x^5 - 5x + 12\]
Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

We have shown that the splitting field of \( p(x) \) has degree 10. Since the symmetric group of degree 5 has only one transitive subgroup of order 10, we know that the Galois group of \( p(x) \) must be this group, the dihedral group of order 10. Rather than stop here, we explicitly compute the action of the Galois group on the roots of \( p(x) \).

First we assign the roots of \( p(x) \) as the values of five variables.

We can obtain an individual root by negating the constant coefficient of one of the factors of \( p(x) \).

\[
\text{factor1 := nthFactor(algFactors,1)}
\]

\[
x + \frac{-85 b^9 - 116 b^8 + 780 b^7 + 2640 b^6 + 14895 b^5 - 
\quad 8820 b^4 - 127050 b^3 - 327000 b^2 - 405200 b + 2062400}{1339200}
\]

Type: UnivariatePolynomial(x,AlgebraicNumber)

\[
\text{root1 := -coefficient(factor1,0)}
\]

\[
\frac{85 b^9 + 116 b^8 - 780 b^7 - 2640 b^6 - 14895 b^5 + 
\quad 8820 b^4 + 127050 b^3 + 327000 b^2 + 405200 b - 2062400}{1339200}
\]

Type: AlgebraicNumber

We can obtain a list of all the roots in this way.

\[
\text{roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5]}
\]
8.13. COMPUTATION OF GALOIS GROUPS

\[
\begin{bmatrix}
85 b^9 + 116 b^8 - 780 b^7 - 2640 b^6 - 14895 b^5 + 8820 b^4 + \\
127050 b^3 + 327000 b^2 + 405200 b - 2062400 \\
1339200
\end{bmatrix},
\]

\[
17 b^8 - 156 b^6 - 2979 b^4 + 25410 b^2 + 14080 \\
66960
\]

\[
-143 b^8 + 2100 b^6 + 10485 b^4 - 290550 b^2 + 334800 b + 960800 \\
669600
\]

\[
-143 b^8 + 2100 b^6 + 10485 b^4 - 290550 b^2 - 334800 b + 960800 \\
669600
\]

\[
\begin{bmatrix}
-85 b^9 + 116 b^8 + 780 b^7 - 2640 b^6 + 14895 b^5 + 8820 b^4 - \\
127050 b^3 + 327000 b^2 - 405200 b - 2062400 \\
1339200
\end{bmatrix}
\]

Type: List AlgebraicNumber

The expression

\[- \text{coefficient(nthFactor(algFactors, i), 0)}\]

is the \(i\)-th root of \(p(x)\) and the elements of \(roots\) are the \(i\)-th roots of \(p(x)\) as \(i\) ranges from 1 to 5.

Assign the roots as the values of the variables \(a_1, \ldots, a_5\).

\((a_1, a_2, a_3, a_4, a_5) := (\text{roots.1, roots.2, roots.3, roots.4, roots.5})\)

\[
\begin{bmatrix}
-85 b^9 + 116 b^8 + 780 b^7 - 2640 b^6 + 14895 b^5 + 8820 b^4 - \\
127050 b^3 + 327000 b^2 - 405200 b - 2062400 \\
1339200
\end{bmatrix}
\]

Type: AlgebraicNumber

Next we express the roots of \(r(x)\) as polynomials in \(\beta\). We could obtain these roots by calling the operation \textbf{factor}: \textit{factor}(r, [\beta]) \text{ factors } r(x) \text{ over } \mathbb{Q}(\beta). \text{ However, this is a lengthy computation and we can obtain the roots of } r(x) \text{ as differences of the roots } a_1, \ldots, a_5.
of \( p(x) \). Only ten of these differences are roots of \( r(x) \) and the other ten are roots of the other irreducible factor of \( q_1 \). We can determine if a given value is a root of \( r(x) \) by evaluating \( r(x) \) at that particular value. (Of course, the order in which factors are returned by the operation \texttt{factor} is unimportant and may change with different implementations of the operation. Therefore, we cannot predict in advance which differences are roots of \( r(x) \) and which are not.)

Let’s look at four examples (two are roots of \( r(x) \) and two are not).

\[
eval(r,x,a_1 - a_2)
\]

\[
0
\]

Type: Polynomial AlgebraicNumber

\[
eval(r,x,a_1 - a_3)
\]

\[
\frac{47905 b^9 + 66920 b^8 - 536100 b^7 - 980400 b^6 - 3345075 b^5 - 5787000 b^4 + 75572250 b^3 + 161688000 b^2 - 184600000 b - 710912000}{4464}
\]

Type: Polynomial AlgebraicNumber

\[
eval(r,x,a_1 - a_4)
\]

\[
0
\]

Type: Polynomial AlgebraicNumber

\[
eval(r,x,a_1 - a_5)
\]

\[
\frac{405 b^8 + 3450 b^6 - 19875 b^4 - 198000 b^2 - 588000}{31}
\]

Type: Polynomial AlgebraicNumber

Take one of the differences that was a root of \( r(x) \) and assign it to the variable \( bb \).

For example, if \( eval(r, x, a_1 - a_4) \) returned 0, you would enter this.

\[
bb := a_1 - a_4
\]
Of course, if the difference is, in fact, equal to the root $\beta$, you should choose another root of $r(x)$.

Automorphisms of the splitting field are given by mapping a generator of the field, namely $\beta$, to other roots of its minimal polynomial. Let’s see what happens when $\beta$ is mapped to $\beta'$. We compute the images of the roots $a_1, ..., a_5$ under this automorphism:

$$\begin{align*}
\text{aa1 := subst(a1,beta = bb)} \\
&= -143 b^8 + 2100 b^6 + 10485 b^4 - 290550 b^2 + 334800 b + 960800 \\
&= \frac{669600}{1339200} \\
&= \text{Type: AlgebraicNumber}
\end{align*}$$

$$\begin{align*}
\text{aa2 := subst(a2,beta = bb)} \\
&= \left(-85 b^9 + 116 b^8 + 780 b^7 - 2640 b^6 + 14895 b^5 + 8820 b^4 - \right) \\
&= \frac{127050 b^3 + 327000 b^2 - 405200 b - 2062400}{1339200} \\
&= \text{Type: AlgebraicNumber}
\end{align*}$$

$$\begin{align*}
\text{aa3 := subst(a3,beta = bb)} \\
&= \left(85 b^9 + 116 b^8 - 780 b^7 - 2640 b^6 - 14895 b^5 + 8820 b^4 + \right) \\
&= \frac{127050 b^3 + 327000 b^2 + 405200 b - 2062400}{1339200} \\
&= \text{Type: AlgebraicNumber}
\end{align*}$$

$$\begin{align*}
\text{aa4 := subst(a4,beta = bb)} \\
&= -143 b^8 + 2100 b^6 + 10485 b^4 - 290550 b^2 - 334800 b + 960800 \\
&= \frac{669600}{1339200} \\
&= \text{Type: AlgebraicNumber}
\end{align*}$$
aa5 := subst(a5,beta = bb)

\[
\frac{17 b^8 - 156 b^6 - 2979 b^4 + 25410 b^2 + 14080}{66960}
\]

Type: AlgebraicNumber

Of course, the values \(aa_1, \ldots, aa_5\) are simply a permutation of the values \(a_1, \ldots, a_5\).
Let’s find the value of \(aa_1\) (execute as many of the following five commands as necessary).

\[(aa1 = a1) :: Boolean\]

false

Type: Boolean

\[(aa1 = a2) :: Boolean\]

false

Type: Boolean

\[(aa1 = a3) :: Boolean\]

ture

Type: Boolean

\[(aa1 = a4) :: Boolean\]

false

Type: Boolean

\[(aa1 = a5) :: Boolean\]

false
Proceeding in this fashion, you can find the values of $aa_2, \ldots, aa_5$. You have represented the automorphism $\beta_1 \rightarrow bb$ as a permutation of the roots $a_1, \ldots, a_5$. If you wish, you can repeat this computation for all the roots of $r(x)$ and represent the Galois group of $p(x)$ as a subgroup of the symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of $p(x) = x^4 + 2x^3 - 2x^2 - 3x + 1$ is the dihedral group of order eight. (The splitting field of this polynomial is the Hilbert class field of the quadratic field $Q(\sqrt{145})$.)

2. Show that the Galois group of $p(x) = x^6 + 108$ has order 6 and is isomorphic to $S_3$, the symmetric group on three letters. (The splitting field of this polynomial is the splitting field of $x^3 - 2$.)

### 8.14 Non-Associative Algebras and Modelling Genetic Laws

Many algebraic structures of mathematics and Axiom have a multiplication operation $\ast$ that satisfies the associativity law $a \ast (b \ast c) = (a \ast b) \ast c$ for all $a, b$ and $c$. The octonions are a well known exception. There are many other interesting non-associative structures, such as the class of Lie algebras.\(^7\) Lie algebras can be used, for example, to analyse Lie symmetry algebras of partial differential equations. In this section we show a different application of non-associative algebras, the modelling of genetic laws.

The Axiom library contains several constructors for creating non-associative structures, ranging from the categories `Monad`, `NonAssociativeRng`, and `FramedNonAssociativeAlgebra`, to the domains `AlgebraGivenByStructuralConstants` and `GenericNonAssociativeAlgebra`. Furthermore, the package `AlgebraPackage` provides operations for analysing the structure of such algebras.\(^8\)

Mendel’s genetic laws are often written in a form like

$$Aa \times Aa = \frac{1}{4} AA + \frac{1}{2} Aa + \frac{1}{4} aa$$

The implementation of general algebras in Axiom allows us to use this as the definition for multiplication in an algebra. Hence, it is possible to study questions of genetic inheritance using Axiom. To demonstrate this more precisely, we discuss one example from a monograph of A. Wörz-Busekros, where you can also find a general setting of this theory.\(^9\)

---

\(^7\)Two Axiom implementations of Lie algebras are `LieSquareMatrix` and `FreeNilpotentLie`.


\(^9\)Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980). In particular, see example 1.3.
We assume that there is an infinitely large random mating population. Random mating of two gametes \(a_i\) and \(a_j\) gives zygotes \(a_i a_j\), which produce new gametes. In classical Mendelian segregation we have
\[
a_i a_j = \frac{1}{2} a_i + \frac{1}{2} a_j.
\]
In general, we have
\[
a_i a_j = \sum_{k=1}^{n} \gamma_{i,j}^{k} a_k.
\]
The segregation rates \(\gamma_{i,j}^{k}\) are the structural constants of an \(n\)-dimensional algebra. This is provided in Axiom by the constructor \(\text{AlgebraGivenByStructuralConstants}\) (abbreviation \(\text{ALGSC}\)).

Consider two coupled autosomal loci with alleles \(A, a, B,\) and \(b,\) building four different gametes \(a_1 = AB, a_2 = Ab, a_3 = aB,\) and \(a_4 = ab\). The zygotes \(a_i a_j\) produce gametes \(a_i\) and \(a_j\) with classical Mendelian segregation.

Zygote \(a_1 a_4\) undergoes transition to \(a_2 a_3\) and vice versa with probability \(\frac{1}{2}\).

Define a list \([\gamma_{i,j}^{k}]_{1 \leq k \leq 4}\) of four four-by-four matrices giving the segregation rates. We use the value \(1/10\) for \(\theta\).

\[
\text{segregationRates} : \text{List SquareMatrix(4,FRAC INT)} := \left[ \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{9}{20} \\ \frac{1}{2} & 0 & \frac{1}{20} & 0 \\ \frac{1}{2} & \frac{1}{20} & 0 & 0 \\ \frac{9}{20} & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{20} \\ \frac{1}{2} & 1 & \frac{9}{20} & \frac{1}{2} \\ 0 & \frac{9}{20} & 0 & 0 \\ \frac{1}{20} & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{20} \\ 0 & \frac{1}{2} & \frac{9}{20} & 0 \\ \frac{1}{2} & \frac{9}{20} & 1 & \frac{1}{2} \\ \frac{1}{20} & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & \frac{9}{20} \\ 0 & 0 & \frac{1}{20} & \frac{1}{2} \\ \frac{9}{20} & 0 & 0 & 0 \\ \frac{1}{20} & \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \right]
\]

Choose the appropriate symbols for the basis of gametes,
\[
\text{gametes} := \left[ 'AB, 'Ab, 'aB, 'ab \right]
\]
\[
[ AB, Ab, aB, ab ]
\]

Type: List OrderedVariableList [AB,Ab,aB,ab]
Define the algebra.

\[ A := \text{ALGSC(FRAC INT, 4, gametes, segregationRates)} \]

\[ \text{AlgebraGivenByStructuralConstants(FractionInteger, 4, [AB, Ab, aB, ab], [MATRIZ, MATRIZ, MATRIZ, MATRIZ])} \]

Type: Domain

What are the probabilities for zygote \( a_1a_4 \) to produce the different gametes?

\[ a := \text{basis()} \] \[ A \]

\[ [AB, Ab, aB, ab] \]

Type: Vector \text{AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab], [MATRIZ, MATRIZ, MATRIZ, MATRIZ])}

\[ a.1 * a.4 \]

\[ \frac{9}{20} ab + \frac{1}{20} aB + \frac{1}{20} Ab + \frac{9}{20} AB \]

Type: \text{AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab], [MATRIZ, MATRIZ, MATRIZ, MATRIZ])}

Elements in this algebra whose coefficients sum to one play a distinguished role. They represent a population with the distribution of gametes reflected by the coefficients with respect to the basis of gametes.

Random mating of different populations \( x \) and \( y \) is described by their product \( x * y \).

This product is commutative only if the gametes are not sex-dependent, as in our example.

\[ \text{commutative?()} \]

true

Type: Boolean

In general, it is not associative.

\[ \text{associative?()} \]
Random mating within a population $x$ is described by $x \times x$. The next generation is $(x \times x) \times (x \times x)$.

Use decimal numbers to compare the distributions more easily.

$$x : \text{ALGSC(DECIMAL, 4, gametes, segregationRates) := convert [3/10, 1/5, 1/10, 2/5]}$$

$$0.4 \ ab + 0.1 \ aB + 0.2 \ Ab + 0.3 \ AB$$

Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

To compute directly the gametic distribution in the fifth generation, we use \text{plenaryPower}.

$$\text{plenaryPower}(x,5)$$

$$0.36561 \ ab + 0.13439 \ aB + 0.23439 \ Ab + 0.26561 \ AB$$

Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

We now ask two questions: Does this distribution converge to an equilibrium state? What are the distributions that are stable?

This is an invariant of the algebra and it is used to answer the first question. The new indeterminates describe a symbolic distribution.

$$q := \text{leftRankPolynomial}()$$

$$\text{GCNAALG(FRAC INT, 4, gametes, segregationRates) :: UP(Y, POLY FRAC INT)}$$

$$Y^3 + (-\frac{29}{20} \%x4 - \frac{29}{20} \%x3 - \frac{29}{20} \%x2 - \frac{29}{20} \%x1) Y^2 +$$

$$\left(\left(\frac{9}{20} \%x2x + \frac{9}{20} \%x3x + \frac{9}{20} \%x2 + \frac{9}{20} \%x1\right) \%x4 +
\left(\frac{9}{20} \%x3 + \frac{9}{20} \%x2 + \frac{9}{20} \%x1\right) \%x3 + \frac{9}{20} \%x2^2 +
\left(\frac{9}{10} \%x1 \%x2 + \frac{9}{20} \%x1^2\right) \right) Y$$
8.14. NON-ASSOCIATIVE ALGEBRAS AND MODELLING GENETIC LAWS

Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)

Because the coefficient \( \frac{9}{20} \) has absolute value less than 1, all distributions do converge, by a theorem of this theory.

\[
\text{factor(q :: POLY FRAC INT)}
\]

\[
(Y - \%x4 - \%x3 - \%x2 - \%x1)\]

\[
\left( Y - \frac{9}{20} \%x4 - \frac{9}{20} \%x3 - \frac{9}{20} \%x2 - \frac{9}{20} \%x1 \right) Y
\]

Type: Factored Polynomial Fraction Integer

The second question is answered by searching for idempotents in the algebra.

\[
cI := \text{conditionsForIdempotents()} \text{GCNAALG(FRAC INT, 4, gametes, segregationRates)}
\]

\[
\left[ \frac{9}{10} \%x1 \%x4 + \left( \frac{1}{10} \%x2 + \%x1 \right) \%x3 + \%x1 \%x2 + \%x1^2 - \%x1, \right.

\left. \left( \%x2 + \frac{1}{10} \%x1 \right) \%x4 + \frac{9}{10} \%x2 \%x3 + \%x2^2 + (\%x1 - 1) \%x2, \right.

\left. \left( \%x3 + \frac{1}{10} \%x1 \right) \%x4 + \%x3^2 + \left( \frac{9}{10} \%x2 + \%x1 - 1 \right) \%x3, \right.

\left. \%x4^2 + \left( \%x3 + \%x2 + \frac{9}{10} \%x1 - 1 \right) \%x4 + \frac{1}{10} \%x2 \%x3 \right]
\]

Type: List Polynomial Fraction Integer

Solve these equations and look at the first solution.

\[
gbs := \text{groebnerFactorize cI}
\]

\[
\left[ \%x4 + \%x3 + \%x2 + \%x1 - 1, \right.

\left. \left( \%x2 + \%x1 \right) \%x3 + \%x1 \%x2 + \%x1^2 - \%x1 \right],

[1], \left[ \%x4 + \%x3 - 1, \%x2, \%x1 \right],

\left[ \%x4 + \%x2 - 1, \%x3, \%x1 \right], \left[ \%x4, \%x3, \%x2, \%x1 \right],

\left[ \%x4 - 1, \%x3, \%x2, \%x1 \right], \left[ \%x4 - \frac{1}{2}, \%x3 - \frac{1}{2}, \%x2, \%x1 \right]
\]
CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: List List Polynomial Fraction Integer

gbs.1

\[
\begin{align*}
&\{x^4 + x^3 + x^2 + x - 1, \\
&(x^2 + x) x^3 + x^1 x^2 + x^1^2 - x^1\}
\end{align*}
\]

Type: List Polynomial Fraction Integer

Further analysis using the package PolynomialIdeals shows that there is a two-dimensional variety of equilibrium states and all other solutions are contained in it. Choose one equilibrium state by setting two indeterminates to concrete values.

\[
sol := \text{solve} \ \text{concat}(\text{gbs.1},[x1 - 1/10, x2 - 1/10])
\]

\[
\left[\begin{array}{l}
\%x4 = 2/5, \\
\%x3 = 2/5, \\
\%x2 = 1/10, \\
\%x1 = 1/10
\end{array}\right]
\]

Type: List List Equation Fraction Polynomial Integer

\[
e : A := \text{represent} \ \text{reverse} \ \text{(map} (\text{rhs}, \text{sol.1}) :: \text{List FRAC INT})
\]

\[
\frac{2}{5} ab + \frac{2}{5} aB + \frac{1}{10} Ab + \frac{1}{10} AB
\]

Type: AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab], [MATRIX, MATRIX, MATRIX, MATRIX])

Verify the result.

\[
e*e-e
\]

0

Type: AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab], [MATRIX, MATRIX, MATRIX, MATRIX])
Chapter 9

Some Examples of Domains and Packages

In this chapter we show examples of many of the most commonly used Axiom domains and packages. The sections are organized by constructor names.

9.1 ApplicationProgramInterface

The ApplicationProgramInterface exposes Axiom internal functions which might be useful for understanding, debugging, or creating tools.

The getDomains function takes the name of a category and returns a set of domains which inherit from that category:

\[
\text{getDomains 'Collection}
\]

\{AssociationList, Bits, CharacterClass, DataList, EqTable, FlexibleArray, GeneralPolynomialSet, GeneralSparseTable, GeneralTriangularSet, HashTable, IndexedBits, IndexedFlexibleArray, IndexedList, IndexedOneDimensionalArray, IndexedString, IndexedVector, InnerTable, KeyedAccessFile, Library, List, ListMultiDictionary, Multiset, OneDimensionalArray, Point, PrimitiveArray, RegularChain, RegularTriangularSet, Result, RoutinesTable, Set, SparseTable, SquareFreeRegularTriangularSet, Stream, String, StringTable, Table, Vector, WuWenTsunTriangularSet\}

Type: Set Symbol

This can be used to form the set-difference of two categories:
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\text{difference(getDomains 'IndexedAggregate, getDomains 'Collection)}
\]

\[
\{\text{DirectProduct, DirectProductMatrixModule, DirectProductModule, HomogeneousDirectProduct, OrderedDirectProduct, SplitHomogeneousDirectProduct}\}
\]

Type: Set Symbol

The credits function prints a list of the people who have contributed to the development of Axiom. This is equivalent to the )credits command.

The summary function prints a short list of useful console commands.

9.2 ArrayStack

An ArrayStack object is represented as a list ordered by last-in, first-out. It operates like a pile of books, where the “next” book is the one on the top of the pile.

Here we create an array stack of integers from a list. Notice that the order in the list is the order in the stack.

\[
a: \text{ArrayStack INT} := \text{arrayStack [1,2,3,4,5]}
\]

\[
[1,2,3,4,5]
\]

We can remove the top of the stack using pop!:

\[
\text{pop! a}
\]

\[
1
\]

Notice that the use of pop! is destructive (destructive operations in Axiom usually end with ! to indicate that the underlying data structure is changed).

\[
a
\]

\[
[2,3,4,5]
\]

The extract! operation is another name for the pop! operation and has the same effect. This operation treats the stack as a BagAggregate:

\[
\text{extract! a}
\]

\[
2
\]

and you can see that it also has destructively modified the stack:

\[
a
\]

\[
[3,4,5]
\]
Next we push a new element on top of the stack:

```
push!(9, a)
9
```

Again, the `push!` operation is destructive so the stack is changed:

```
a
[9,3,4,5]
```

Another name for `push!` is `insert!`, which treats the stack as a BagAggregate:

```
insert!(8, a)
[8,9,3,4,5]
```

and it modifies the stack:

```
a
[8,9,3,4,5]
```

The `inspect` function returns the top of the stack without modification, viewed as a BagAggregate:

```
inspect a
8
```

The `empty?` operation returns true only if there are no element on the stack, otherwise it returns false:

```
empty? a
false
```

The `top` operation returns the top of stack without modification, viewed as a Stack:

```
top a
8
```

The `depth` operation returns the number of elements on the stack:

```
depth a
5
```

which is the same as the `#` (length) operation:

```
#a
5
```

The `less?` predicate will compare the stack length to an integer:
less?(a, 9)
true

The more? predicate will compare the stack length to an integer:

more?(a, 9)
false

The size? operation will compare the stack length to an integer:

size?(a, #a)
true

and since the last computation must always be true we try:

size?(a, 9)
false

The parts function will return the stack as a list of its elements:

parts a
[8, 9, 3, 4, 5]

If we have a BagAggregate of elements we can use it to construct a stack. Notice that the elements are pushed in reverse order:

bag([1, 2, 3, 4, 5])$ArrayStack(INT)
[5, 4, 3, 2, 1]

The empty function will construct an empty stack of a given type:

b:=empty()$(ArrayStack INT)
[]

and the empty? predicate allows us to find out if a stack is empty:

empty? b
true

The sample function returns a sample, empty stack:

sample()$ArrayStack(INT)
[]

We can copy a stack and it does not share storage so subsequent modifications of the original stack will not affect the copy:

c:=copy a
[8, 9, 3, 4, 5]
The `eq?` function is only true if the lists are the same reference, so even though `c` is a copy of `a`, they are not the same:

```plaintext
eq?(a,c)
 false
```

However, `a` clearly shares a reference with itself:

```plaintext
eq?(a,a)
 true
```

But we can compare `a` and `c` for equality:

```plaintext
(a=c)@Boolean
 true
```

and clearly `a` is equal to itself:

```plaintext
(a=a)@Boolean
 true
```

and since `a` and `c` are equal, they are clearly NOT not-equal:

```plaintext
a=c
 false
```

We can use the `any?` function to see if a predicate is true for any element:

```plaintext
any?(x+->(x=4),a)
 true
```

or false for every element:

```plaintext
any?(x+->(x=11),a)
 false
```

We can use the `every?` function to check every element satisfies a predicate:

```plaintext
every?(x+->(x=11),a)
 false
```

We can count the elements that are equal to an argument of this type:

```plaintext
count(4,a)
 1
```

or we can count against a boolean function:
count(x+->(x>2),a)
5

You can also map a function over every element, returning a new stack:

map(x+->x+10,a)
[18,19,13,14,15]

Notice that the original stack is unchanged:

a
[8,9,3,4,5]

You can use map! to map a function over every element and change the original stack since map! is destructive:

map!(x+->x+10,a)
[18,19,13,14,15]

Notice that the original stack has been changed:

a
[18,19,13,14,15]

The member function can also get the element of the stack as a list:

members a
[18,19,13,14,15]

and using member? we can test if the stack holds a given element:

member?(14,a)
true

Also see Stack 9.87 on page 763, Queue 9.74 on page 706, Dequeue 9.18 on page 476 and Heap 9.38 on page 539.

9.3 AssociationList

The AssociationList constructor provides a general structure for associative storage. This type provides association lists in which data objects can be saved according to keys of any type. For a given association list, specific types must be chosen for the keys and entries. You can think of the representation of an association list as a list of records with key and entry fields.

Association lists are a form of table and so most of the operations available for Table are also available for AssociationList. They can also be viewed as lists and can be manipulated accordingly.

This is a Record type with age and gender fields.
Data := Record(monthsOld : Integer, gender : String)

Record(monthsOld: Integer, gender: String)

Type: Domain

In this expression, \( a_l \) is declared to be an association list whose keys are strings and whose entries are the above records.

\[ a_l : \text{AssociationList(String,Data)} \]

Type: Void

The \texttt{table} operation is used to create an empty association list.

\[ a_l := \text{table()} \]

\texttt{table()}

Type: AssociationList(String,Record(monthsOld: Integer, gender: String))

You can use assignment syntax to add things to the association list.

\[ a_l."bob" := [407,"male"]$\text{Data} \]

\[ monthsOld = 407; \text{gender} = "male" \]

Type: Record(monthsOld: Integer, gender: String)

\[ a_l."judith" := [366,"female"]$\text{Data} \]

\[ monthsOld = 366; \text{gender} = "female" \]

Type: Record(monthsOld: Integer, gender: String)

\[ a_l."katie" := [24,"female"]$\text{Data} \]

\[ monthsOld = 24; \text{gender} = "female" \]

Type: Record(monthsOld: Integer, gender: String)
Perhaps we should have included a species field.

```plaintext
al."smokie" := [200,"female"]$Data

[monthsOld = 200, gender = "female"]

Type: Record(monthsOld: Integer, gender: String)
```

Now look at what is in the association list. Note that the last-added (key, entry) pair is at the beginning of the list.

```plaintext
al

```

```plaintext
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>monthsOld</td>
<td>gender</td>
</tr>
<tr>
<td>200</td>
<td>female</td>
</tr>
<tr>
<td>24</td>
<td>female</td>
</tr>
<tr>
<td>366</td>
<td>female</td>
</tr>
<tr>
<td>407</td>
<td>male</td>
</tr>
</tbody>
</table>

```

Type: AssociationList(String,Record(monthsOld: Integer, gender: String))

You can reset the entry for an existing key.

```plaintext
al."katie" := [23,"female"]$Data

[monthsOld = 23, gender = "female"]

Type: Record(monthsOld: Integer, gender: String)
```

Use `delete!` to destructively remove an element of the association list. Use `delete` to return a copy of the association list with the element deleted. The second argument is the index of the element to delete.

```plaintext
delete!(al,1)

```

```plaintext
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>monthsOld</td>
<td>gender</td>
</tr>
<tr>
<td>23</td>
<td>female</td>
</tr>
<tr>
<td>366</td>
<td>female</td>
</tr>
<tr>
<td>407</td>
<td>male</td>
</tr>
</tbody>
</table>

```

Type: AssociationList(String,Record(monthsOld: Integer, gender: String))

For more information about tables, see Table 9.92 on page 780. For more information about lists, see List 9.54 on page 632.
9.4 BalancedBinaryTree

BalancedBinaryTrees(S) is the domain of balanced binary trees with elements of type S at the nodes. A binary tree is either empty or else consists of a node having a value and two branches, each branch a binary tree. A balanced binary tree is one that is balanced with respect its leaves. One with $2^k$ leaves is perfectly “balanced”: the tree has minimum depth, and the left and right branch of every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called “divide-and-conquer” algorithms. Conceptually, the data for a problem is initially placed at the root of the tree. The original data is then split into two subproblems, one for each subtree. And so on. Eventually, the problem is solved at the leaves of the tree. A solution to the original problem is obtained by some mechanism that can reassemble the pieces. In fact, an implementation of the Chinese Remainder Algorithm using balanced binary trees was first proposed by David Y. Y. Yun at the IBM T. J. Watson Research Center in Yorktown Heights, New York, in 1978. It served as the prototype for polymorphic algorithms in Axiom.

In what follows, rather than perform a series of computations with a single expression, the expression is reduced modulo a number of integer primes, a computation is done with modular arithmetic for each prime, and the Chinese Remainder Algorithm is used to obtain the answer to the original problem. We illustrate this principle with the computation of $12^2 = 144$.

A list of moduli.

\[ \text{lm} := [3, 5, 7, 11] \]

\[ [3, 5, 7, 11] \]

\text{Type: List PositiveInteger}

The expression \text{modTree(n, lm)} creates a balanced binary tree with leaf values n mod m for each modulus m in \text{lm}.

\text{modTree(12,lm)}

\[ [0, 2, 5, 1] \]

\text{Type: List Integer}

Operation \text{modTree} does this using operations on balanced binary trees. We trace its steps. Create a balanced binary tree t of zeros with four leaves.

\text{t := balancedBinaryTree(#lm, 0)}

\[ [[0, 0, 0], 0, [0, 0, 0]] \]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: BalancedBinaryTree NonNegativeInteger

The leaves of the tree are set to the individual moduli.

setleaves!(t, lm)

[[3, 0, 5], 0, [7, 0, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Use mapUp! to do a bottom-up traversal of t, setting each interior node to the product of the values at the nodes of its children.

mapUp!(t, *)

1155

Type: PositiveInteger

The value at the node of every subtree is the product of the moduli of the leaves of the subtree.

t

[[3, 15, 5], 1155, [7, 77, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Operation mapDown!(t, a, fn) replaces the value v at each node of t by fn(a, v).

mapDown!(t, 12, _rem)

[[0, 12, 2], 12, [5, 12, 1]]

Type: BalancedBinaryTree NonNegativeInteger

The operation leaves returns the leaves of the resulting tree. In this case, it returns the list of 12 mod m for each modulus m.

leaves %

[0, 2, 5, 1]
9.5. *BASICOPERATOR*

Compute the square of the images of 12 modulo each m.

\[ \text{squares} := [x \times 2 \ mod \ m \ for \ x \ in \ % \ for \ m \ in \ \text{lms}] \]

\[ [0, 4, 4, 1] \]

Call the Chinese Remainder Algorithm to get the answer for 12².

\[ \text{chineseRemainder}(%, \text{lms}) \]

\[ 144 \]

**9.5 BasicOperator**

A basic operator is an object that can be symbolically applied to a list of arguments from a set, the result being a kernel over that set or an expression. In addition to this section, please see *Expression* 9.25 on page 493 and *Kernel* 9.44 on page 562 for additional information and examples.

You create an object of type *BasicOperator* by using the `operator` operation. This first form of this operation has one argument and it must be a symbol. The symbol should be quoted in case the name has been used as an identifier to which a value has been assigned.

A frequent application of *BasicOperator* is the creation of an operator to represent the unknown function when solving a differential equation.

Let \( y \) be the unknown function in terms of \( x \).

\[ y := \text{operator} \ 'y \]

\[ y \]

\[ \text{Type: BasicOperator} \]

This is how you enter the equation \( y'' + y' + y = 0 \).

\[ \text{deq} := D(y(x), x, 2) + D(y(x), x) + y(x) = 0 \]
\[ y''(x) + y'(x) + y(x) = 0 \]

Type: Equation Expression Integer

To solve the above equation, enter this.

\[
\text{solve}(\text{deq}, y, x)
\]

\[
\begin{array}{l}
\text{particular} = 0, \\
\text{basis} = \left[ \cos \left( \frac{x \sqrt{3}}{2} \right) e^{-\frac{x}{2}}, e^{-\frac{x}{2}} \sin \left( \frac{x \sqrt{3}}{2} \right) \right]
\end{array}
\]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)

See section 8.10 on page 348 for this kind of use of BasicOperator.

Use the single argument form of operator (as above) when you intend to use the operator to create functional expressions with an arbitrary number of arguments.

Nary means an arbitrary number of arguments can be used in the functional expressions.

\[
nary? \ y
\]

\[
\text{true}
\]

Type: Boolean

\[
\text{unary?} \ y
\]

\[
\text{false}
\]

Type: Boolean

Use the two-argument form when you want to restrict the number of arguments in the functional expressions created with the operator.

This operator can only be used to create functional expressions with one argument.

\[
\text{opOne} := \text{operator}(\text{‘opOne}, 1)
\]

\[
\text{opOne}
\]

Type: BasicOperator
9.5. BASICOPERATOR

nary? opOne

false

Type: Boolean

unary? opOne

ture

Type: Boolean

Use arity to learn the number of arguments that can be used. It returns "false" if the operator is nary.

arity opOne

1

Type: Union(NonNegativeInteger,...)

Use name to learn the name of an operator.

name opOne

opOne

Type: Symbol

Use is? to learn if an operator has a particular name.

is?(opOne, 'z2)

false

Type: Boolean

You can also use a string as the name to be tested against.

is?(opOne, "opOne")

true
You can attach named properties to an operator. These are rarely used at the top-level of the Axiom interactive environment but are used with Axiom library source code. By default, an operator has no properties.

```
properties y

 table()

 Type: AssociationList(String,None)
```

The interface for setting and getting properties is somewhat awkward because the property values are stored as values of type `None`. Attach a property by using `setProperty`.

```
setProperty(y, "use", "unknown function" :: None)

y

 Type: BasicOperator
```

```
properties y

 table ("use" = NONE)

 Type: AssociationList(String,None)
```

We know the property value has type `String`.

```
property(y, "use") :: None pretend String

 "unknown function"

 Type: String
```

Use `deleteProperty!` to destructively remove a property.

```
deleteProperty!(y, "use")

y
```

Type: Boolean
9.6 BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access the individual bits of a binary expansion can be obtained by converting the value to RadixExpansion(2). More examples of expansions are available in DecimalExpansion 9.17 on page 475, HexadecimalExpansion 9.39 on page 541, and RadixExpansion 9.75 on page 708.

The expansion (of type BinaryExpansion) of a rational number is returned by the binary operation.

\[ r := \text{binary}(22/7) \]

\[ 11.001_\text{II} \]

Arithmetic is exact.

\[ r + \text{binary}(6/7) \]

\[ 100_\text{II} \]

The period of the expansion can be short or long ...
or very long.

\[
\text{binary}(1/1007)
\]

These numbers are bona fide algebraic objects.

\[
p := \text{binary}(1/4)x^2 + \text{binary}(2/3)x + \text{binary}(4/9)
\]

\[
0.01 \ x^2 + 0.10 \ x + 0.011100
\]

\[
g := \text{gcd}(p, q)
\]

\[
x + 1.01
\]
9.7 BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R, ordered across the nodes of the tree. A non-empty binary search tree has a value of type R, and right and left binary search subtrees. If a subtree is empty, it is displayed as a period (".").

Define a list of values to be placed across the tree. The resulting tree has 8 at the root; all other elements are in the left subtree.

\[
\text{lv := \{8,3,5,4,6,2,1,5,7\}}
\]

\[\text{[8,3,5,4,6,2,1,5,7]}\]

Type: List PositiveInteger

A convenient way to create a binary search tree is to apply the operation binarySearchTree to a list of elements.

\[
\text{t := binarySearchTree lv}
\]

\[\text{[[[1,2,\],3,[4,5,[5,6,7]],8,\],]}\]

Type: BinarySearchTree PositiveInteger

Another approach is to first create an empty binary search tree of integers.

\[
\text{emptybst := empty()}$BSTREE(INT)
\]

\[
[\ ]
\]

Type: BinarySearchTree Integer

Insert the value 8. This establishes 8 as the root of the binary search tree. Values inserted later that are less than 8 get stored in the left subtree, others in the right subtree.

\[
\text{t1 := insert!(8,emptybst)}
\]

8

Type: BinarySearchTree Integer

Insert the value 3. This number becomes the root of the left subtree of t1. For optimal retrieval, it is thus important to insert the middle elements first.
We go back to the original tree $t$. The leaves of the binary search tree are those which have empty left and right subtrees.

The operation $\text{split}(k, t)$ returns a containing the two subtrees: one with all elements “less” than $k$, another with elements “greater” than $k$.

Define $\text{insertRoot}$ to insert new elements by creating a new node.

The new node puts the inserted value between its “less” tree and “greater” tree.

Function $\text{buildFromRoot}$ builds a binary search tree from a list of elements $ls$ and the empty tree $\text{emptybst}$.
Apply this to the reverse of the list \(lv\).

\[
rt := \text{buildFromRoot} \ \text{reverse} \ \ lv
\]

\[
[[[1, 2, .], 3, [4, 5, [5, 6, 7]], 8, .]]
\]

Type: BinarySearchTree Integer

Have Axiom check that these are equal.

\[
(t = rt) \rightarrow \text{Boolean}
\]

true

Type: Boolean

9.8 CardinalNumber

The \texttt{CardinalNumber} domain can be used for values indicating the cardinality of sets, both finite and infinite. For example, the \texttt{dimension} operation in the category \texttt{VectorSpace} returns a cardinal number.

The non-negative integers have a natural construction as cardinals:

\[
0 = \#\{\}, \ 1 = \{0\}, \ 2 = \{0, 1\}, \ldots, \ n = \{i \mid 0 \leq i < n\}.
\]

The fact that 0 acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.

\[
c0 := 0 :: \text{CardinalNumber}
\]

0

Type: CardinalNumber

\[
c1 := 1 :: \text{CardinalNumber}
\]

1
They can also be obtained as the named cardinal $\text{Aleph}(n)$.

\[
A_0 := \text{Aleph } 0
\]

$\text{Aleph}(0)$

\[
A_1 := \text{Aleph } 1
\]

$\text{Aleph}(1)$

The `finite?` operation tests whether a value is a finite cardinal, that is, a non-negative integer.

\[
\text{finite? } c2
\]

`true`

\[
\text{finite? } A_0
\]

`false`
9.8. CARDINALNUMBER

Similarly, the countable? operation determines whether a value is a countable cardinal, that is, finite or \( \text{Aleph}(0) \).

\[
\text{countable? } c2 \\
\text{true} \\
\text{Type: Boolean}
\]

\[
\text{countable? } A0 \\
\text{true} \\
\text{Type: Boolean}
\]

\[
\text{countable? } A1 \\
\text{false} \\
\text{Type: Boolean}
\]

Arithmetic operations are defined on cardinal numbers as follows: If \( x = \#X \) and \( y = \#Y \) then

\[
x + y = \#(X + Y) \quad \text{cardinality of the disjoint union}
\]

\[
x - y = \#(X - Y) \quad \text{cardinality of the relative complement}
\]

\[
x \times y = \#(X \times Y) \quad \text{cardinality of the Cartesian product}
\]

\[
x \times y = \#(X \times Y) \quad \text{cardinality of the set of maps from } Y \text{ to } X
\]

Here are some arithmetic examples.

\[
[c2 + c2, c2 + A1] \\
[4, \text{Aleph}(1)] \\
\text{Type: List CardinalNumber}
\]

\[
[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1] \\
[0, 2, 4, 0, \text{Aleph}(1), \text{Aleph}(1), \text{Aleph}(1)]
\]
[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]

[1, 2, 4, 1, \text{Aleph}(1), \text{Aleph}(1)]

Subtraction is a partial operation: it is not defined when subtracting a larger cardinal from a smaller one, nor when subtracting two equal infinite cardinals.


[1, 0, "failed", \text{Aleph}(1), \text{Aleph}(1), "failed"]

The generalized continuum hypothesis asserts that

2**\text{Aleph} \ i = \text{Aleph}(i+1)

and is independent of the axioms of set theory.\footnote{Goedel, \textit{The consistency of the continuum hypothesis}, Ann. Math. Studies, Princeton Univ. Press, 1940.}

The \texttt{CardinalNumber} domain provides an operation to assert whether the hypothesis is to be assumed.

\texttt{generalizedContinuumHypothesisAssumed true}

When the generalized continuum hypothesis is assumed, exponentiation to a transfinite power is allowed.

[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]

[0, 1, \text{Aleph}(1), \text{Aleph}(1), \text{Aleph}(2), \text{Aleph}(1), \text{Aleph}(2)]

Three commonly encountered cardinal numbers are

\begin{align*}
a &= \#\mathbb{Z} & \text{countable infinity} \\
c &= \#\mathbb{R} & \text{the continuum} \\
f &= \#\{g|g:[0,1] \rightarrow \mathbb{R}\}
\end{align*}
9.9. **CARTESIANTENSOR**

\[ a := \aleph 0 \]

\[ \aleph (0) \]
\[ \text{Type: CardinalNumber} \]

\[ c := 2^{\aleph 0} \]

\[ \aleph (1) \]
\[ \text{Type: CardinalNumber} \]

\[ f := 2^{\aleph 1} \]

\[ \aleph (2) \]
\[ \text{Type: CardinalNumber} \]

### 9.9 CartesianTensor

The `CartesianTensor(i0, dim, R)` provides Cartesian tensors with components belonging to a commutative ring \( R \). Tensors can be described as a generalization of vectors and matrices. This gives a concise tensor algebra for multilinear objects supported by the `CartesianTensor` domain. You can form the inner or outer product of any two tensors and you can add or subtract tensors with the same number of components. Additionally, various forms of traces and transpositions are useful.

The `CartesianTensor` constructor allows you to specify the minimum index for subscripting. In what follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the integers, with indices starting at 1.

\[ CT := \text{CARTEN}(i0 := 1, 2, \text{Integer}) \]

\[ \text{CartesianTensor}(1, 2, \text{Integer}) \]
\[ \text{Type: Domain} \]
Forming tensors

 Scalars can be converted to tensors of rank zero.

 t0: CT := 8

 8

 Type: CartesianTensor(1,2,Integer)

 rank t0

 0

 Type: NonNegativeInteger

 Vectors (mathematical direct products, rather than one dimensional array structures) can be converted to tensors of rank one.

 v: DirectProduct(2, Integer) := directProduct [3,4]

 [3,4]

 Type: DirectProduct(2,Integer)

 Tv: CT := v

 [3,4]

 Type: CartesianTensor(1,2,Integer)

 Matrices can be converted to tensors of rank two.

 m: SquareMatrix(2, Integer) := matrix [ [1,2],[4,5] ]

 [ 1 2 ]
 [ 4 5 ]

 Type: SquareMatrix(2,Integer)

 Tm: CT := m
In general, a tensor of rank $k$ can be formed by making a list of rank $k-1$ tensors or, alternatively, a $k$-deep nested list of lists.

```plaintext
t1: CT := [2, 3]

[2,3]

Type: CartesianTensor(1,2,Integer)

rank t1

1

Type: PositiveInteger

t2: CT := [t1, t1]

[2 3]
[2 3]

Type: CartesianTensor(1,2,Integer)
```
t3: CT := [t2, t2]

\[
\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
,\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)

tt: CT := [t3, t3]; tt := [tt, tt]

\[
\begin{bmatrix}
\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
,\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
,\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
,\begin{bmatrix}
2 & 3 \\
2 & 3
\end{bmatrix}
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)

\text{rank \( \text{tt} \) = 5}

\text{Type: PositiveInteger}

\textbf{Multiplication}

Given two tensors of rank \( k_1 \) and \( k_2 \), the outer \textbf{product} forms a new tensor of rank \( k_1+k_2 \).

Here

\[ T_{mn}(i, j, k, l) = T_m(i, j) \ T_n(k, l) \]

\text{Tmn := product(Tm, Tn) }

\[
\begin{bmatrix}
2 & 3 \\
0 & 1 \\
8 & 12 \\
0 & 4
\end{bmatrix}
\begin{bmatrix}
4 & 6 \\
0 & 2 \\
10 & 15 \\
0 & 5
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)

The inner product (\textbf{contract}) forms a tensor of rank \( k_1+k_2-2 \). This product generalizes the vector dot product and matrix-vector product by summing component products along two indices.
Here we sum along the second index of $T_m$ and the first index of $T_v$. Here

$$T_{mv} = \sum_{j=1}^{\dim} T_m(i,j) \ T_v(j)$$

$T_{mv} := \text{contract}(T_m, 2, T_v, 1)$

$$[11, 32]$$

Type: CartesianTensor(1,2,Integer)

The multiplication operator “$\ast$” is scalar multiplication or an inner product depending on the ranks of the arguments.

If either argument is rank zero it is treated as scalar multiplication. Otherwise, $a \ast b$ is the inner product summing the last index of $a$ with the first index of $b$.

$T_m \ast T_v$

$$[11, 32]$$

Type: CartesianTensor(1,2,Integer)

This definition is consistent with the inner product on matrices and vectors.

$T_{mv} = m \ast v$

$$[11, 32] = [11, 32]$$

Type: Equation CartesianTensor(1,2,Integer)

Selecting Components

For tensors of low rank (that is, four or less), components can be selected by applying the tensor to its indices.

t0()
A general indexing mechanism is provided for a list of indices.

\[ t_0[] \]

8

Type: PositiveInteger

\[ t_1[2] \]

3

Type: PositiveInteger

\[ t_2[2,1] \]
The general mechanism works for tensors of arbitrary rank, but is somewhat less efficient since the intermediate index list must be created.

\[ t3[2,1,2] \]

\[ 3 \]

\[ Tmn[2,1,2,1] \]

\[ 0 \]

**Contraction**

A “contraction” between two tensors is an inner product, as we have seen above. You can also contract a pair of indices of a single tensor. This corresponds to a “trace” in linear algebra. The expression `contract(t,k1,k2)` forms a new tensor by summing the diagonal given by indices in position \( k1 \) and \( k2 \).

This is the tensor given by

\[
xT_{mn} = \sum_{k=1}^{\text{dim}} T_{mn}(k, k, i, j)
\]

\[ cTmn := contract(Tmn,1,2) \]

\[
\begin{bmatrix}
12 & 18 \\
0 & 6
\end{bmatrix}
\]

\[ \text{Type: CartesianTensor(1,2,Integer)} \]

Since \( Tmn \) is the outer product of matrix \( m \) and matrix \( n \), the above is equivalent to this.

\[ \text{trace}(m) * n \]

\[
\begin{bmatrix}
12 & 18 \\
0 & 6
\end{bmatrix}
\]
In this and the next few examples, we show all possible contractions of $T_{mn}$ and their matrix algebra equivalents.

\[
\text{contract}(T_{mn}, 1, 2) = \text{trace}(m) \cdot n
\]
\[
\begin{bmatrix}
12 & 18 \\
0 & 6
\end{bmatrix}
\]
\[
\begin{bmatrix}
12 & 18 \\
0 & 6
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

\[
\text{contract}(T_{mn}, 1, 3) = \text{transpose}(m) \cdot n
\]
\[
\begin{bmatrix}
2 & 7 \\
4 & 11
\end{bmatrix}
\]
\[
\begin{bmatrix}
2 & 7 \\
4 & 11
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

\[
\text{contract}(T_{mn}, 1, 4) = \text{transpose}(m) \cdot \text{transpose}(n)
\]
\[
\begin{bmatrix}
14 & 4 \\
19 & 5
\end{bmatrix}
\]
\[
\begin{bmatrix}
14 & 4 \\
19 & 5
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

\[
\text{contract}(T_{mn}, 2, 3) = m \cdot n
\]
\[
\begin{bmatrix}
2 & 5 \\
8 & 17
\end{bmatrix}
\]
\[
\begin{bmatrix}
2 & 5 \\
8 & 17
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

\[
\text{contract}(T_{mn}, 2, 4) = m \cdot \text{transpose}(n)
\]
\[
\begin{bmatrix}
8 & 2 \\
23 & 5
\end{bmatrix}
\]
\[
\begin{bmatrix}
8 & 2 \\
23 & 5
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

\[
\text{contract}(T_{mn}, 3, 4) = \text{trace}(n) \cdot m
\]
\[
\begin{bmatrix}
3 & 6 \\
12 & 15
\end{bmatrix}
\]
\[
\begin{bmatrix}
3 & 6 \\
12 & 15
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)
Transpositions

You can exchange any desired pair of indices using the `transpose` operation. Here the indices in positions one and three are exchanged, that is,

\[ tT_{mn}(i, j, k, l) = T_{mn}(k, j, i, l). \]

\[
tT_{mn} := \text{transpose}(T_{mn}, 1, 3)
\]

\[
\begin{bmatrix}
2 & 3 \\
8 & 12 \\
0 & 1 \\
0 & 4 \\
\end{bmatrix}
\begin{bmatrix}
4 & 6 \\
10 & 15 \\
0 & 2 \\
0 & 5 \\
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)

If no indices are specified, the first and last index are exchanged.

\[
\text{transpose } T_{mn}
\]

\[
\begin{bmatrix}
2 & 8 \\
0 & 0 \\
3 & 12 \\
1 & 4 \\
\end{bmatrix}
\begin{bmatrix}
4 & 10 \\
0 & 0 \\
6 & 15 \\
2 & 5 \\
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)

This is consistent with the matrix transpose.

\[
\text{transpose } T_m = \text{transpose } m
\]

\[
\begin{bmatrix}
1 & 4 \\
2 & 5 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 4 \\
2 & 5 \\
\end{bmatrix}
\]

Type: Equation CartesianTensor(1,2,Integer)

If a more complicated reordering of the indices is required, then the `reindex` operation can be used. This operation allows the indices to be arbitrarily permuted. This defines \( rT_{mn}(i, j, k, l) = T_{mn}(i, l, j, k). \)

\[
rT_{mn} := \text{reindex}(T_{mn}, [1, 4, 2, 3])
\]

\[
\begin{bmatrix}
2 & 0 \\
4 & 0 \\
8 & 0 \\
10 & 0 \\
\end{bmatrix}
\begin{bmatrix}
3 & 1 \\
6 & 2 \\
12 & 4 \\
15 & 5 \\
\end{bmatrix}
\]

Type: CartesianTensor(1,2,Integer)
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Arithmetic

Tensors of equal rank can be added or subtracted so arithmetic expressions can be used to produce new tensors.

\[
\text{\texttt{tt := transpose(Tm)*Tn - Tn*transpose(Tm)}}
\]

\[
\begin{bmatrix}
-6 & -16 \\
2 & 6
\end{bmatrix}
\]

Type: \texttt{CartesianTensor(1,2,Integer)}

\[
\text{\texttt{Tv*(tt+Tn)}}
\]

\[
\begin{bmatrix}
-4 & -11
\end{bmatrix}
\]

Type: \texttt{CartesianTensor(1,2,Integer)}

\[
\text{\texttt{reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)}}
\]

\[
\begin{bmatrix}
46 & 84 \\
174 & 212 \\
18 & 24 \\
57 & 63
\end{bmatrix}
\]

\[
\begin{bmatrix}
57 & 114 \\
228 & 285 \\
17 & 30 \\
63 & 76
\end{bmatrix}
\]

Type: \texttt{CartesianTensor(1,2,Integer)}

Specific Tensors

Two specific tensors have properties which depend only on the dimension.

The Kronecker delta satisfies

\[
\delta(i,j) =
\begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}
\]

\[
\text{\texttt{delta:= kroneckerDelta()}}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]
This can be used to reindex via contraction.

\[
\text{contract}(T_{mn}, 2, \text{delta}, 1) = \text{reindex}(T_{mn}, [1,3,4,2])
\]

\[
\begin{bmatrix}
2 & 4 \\
3 & 6 \\
8 & 10 \\
12 & 15 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
1 & 2 \\
0 & 0 \\
4 & 5 \\
\end{bmatrix}
= \begin{bmatrix}
2 & 4 \\
3 & 6 \\
8 & 10 \\
12 & 15 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
1 & 2 \\
0 & 0 \\
4 & 5 \\
\end{bmatrix}
\]

The Levi Civita symbol determines the sign of a permutation of indices.

\[
\text{epsilon} : \text{CT} := \text{leviCivitaSymbol()}
\]

\[
\begin{bmatrix}
0 & 1 \\
-1 & 0 \\
\end{bmatrix}
\]

Here we have:

\[
\text{epsilon}(i_1,\ldots,i_{\text{dim}})
\]

\[
= +1 \text{ if } i_1,\ldots,i_{\text{dim}} \text{ is an even permutation of } i_0,\ldots,i_0+\text{dim}-1
\]

\[
= -1 \text{ if } i_1,\ldots,i_{\text{dim}} \text{ is an odd permutation of } i_0,\ldots,i_0+\text{dim}-1
\]

\[
= 0 \text{ if } i_1,\ldots,i_{\text{dim}} \text{ is not a permutation of } i_0,\ldots,i_0+\text{dim}-1
\]

This property can be used to form determinants.

\[
\text{contract}(\text{epsilon} \cdot T_m \cdot \text{epsilon}, 1, 2) = 2 \cdot \text{determinant } m
\]

\[-6 = -6
\]

Properties of the CartesianTensor domain

\text{GradedModule}(R,E) \text{ denotes “E-graded R-module”, that is, a collection of } R\text{-modules indexed by an abelian monoid } E. \text{ An element } g \text{ of } G[s] \text{ for some specific } s \text{ in } E \text{ is said to be an element of } G \text{ with degree } s. \text{ Sums are defined in each module } G[s] \text{ so two elements of } G \text{ can be added if they have the same degree. Morphisms can be defined and composed by degree to give the mathematical category of graded modules.}

\text{GradedAlgebra}(R,E) \text{ denotes “E-graded R-algebra.” A graded algebra is a graded module together with a degree preserving R-bilinear map, called the product.}
degree(product(a,b)) = degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)

product(a1+a2,b) = product(a1,b) + product(a2,b)

product(a,b1+b2) = product(a,b1) + product(a,b2)

product(a,product(b,c)) = product(product(a,b),c)

The domain CartesianTensor(i0, dim, R) belongs to the category GradedAlgebra(R, NonNegativeInteger). The non-negative integer degree is the tensor rank and the graded algebra product is the tensor outer product. The graded module addition captures the notion that only tensors of equal rank can be added.

If V is a vector space of dimension dim over R, then the tensor module T[k](V) is defined as

T[0](V) = R
T[k](V) = T[k-1](V) * V

where * denotes the R-module tensor product. CartesianTensor(i0,dim,R) is the graded algebra in which the degree k module is T[k](V).

Tensor Calculus

It should be noted here that often tensors are used in the context of tensor-valued manifold maps. This leads to the notion of covariant and contravariant bases with tensor component functions transforming in specific ways under a change of coordinates on the manifold. This is no more directly supported by the CartesianTensor domain than it is by the Vector domain. However, it is possible to have the components implicitly represent component maps by choosing a polynomial or expression type for the components. In this case, it is up to the user to satisfy any constraints which arise on the basis of this interpretation.

9.10 Character

The members of the domain Character are values representing letters, numerals and other text elements. For more information on related topics, see CharacterClass 9.11 on page 437 and String 9.89 on page 768.

Characters can be obtained using String notation.

chars := [char "a", char "A", char "X", char "8", char "+"]

[a,A,X,8,+]  

Type: List Character

Certain characters are available by name. This is the blank character.
9.10. CHARACTER

space()

Type: Character

This is the quote that is used in strings.

quote()

" 

Type: Character

This is the escape character that allows quotes and other characters within strings.

escape()

" 

Type: Character

Characters are represented as integers in a machine-dependent way. The integer value can be obtained using the `ord` operation. It is always true that `char(ord c) = c` and `ord(char i) = i`, provided that `i` is in the range 0..size()$Character-1$.

[ord c for c in chars]

[97, 65, 88, 56, 43]

Type: List Integer

The `LowerCase` operation converts an upper case letter to the corresponding lower case letter. If the argument is not an upper case letter, then it is returned unchanged.

[upperCase c for c in chars]

[A, A, X, 8, +]

Type: List Character

Likewise, the `UpperCase` operation converts lower case letters to upper case.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[lowerCase c for c in chars]

\[a,a,x,8,+]\]

Type: List Character

A number of tests are available to determine whether characters belong to certain families.

[alphabetic? c for c in chars]

\[true,true,true,false,false]\]

Type: List Boolean

[upperCase? c for c in chars]

\[false,true,true,false,false]\]

Type: List Boolean

[lowerCase? c for c in chars]

\[true,false,false,false,false]\]

Type: List Boolean

[digit? c for c in chars]

\[false,false,false,true,false]\]

Type: List Boolean

[hexDigit? c for c in chars]

\[true,true,false,true,false]\]

Type: List Boolean

[alphanumeric? c for c in chars]

\[true,true,true,true,false]\]

Type: List Boolean
9.11 CharacterClass

The CharacterClass domain allows classes of characters to be defined and manipulated efficiently.
Character classes can be created by giving either a string or a list of characters.

cl1 := charClass [char "a", char "e", char "i", char "o", char "u", char "y"]

"aeiouy"  
Type: CharacterClass

cl2 := charClass "bcdfghjklmnpqrstvwxyz"

"bcdfghjklmnpqrstvwxyz"  
Type: CharacterClass

A number of character classes are predefined for convenience.

digit()

"0123456789"  
Type: CharacterClass

hexDigit()

"0123456789ABCDEFabcdef"  
Type: CharacterClass

upperCase()

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"  
Type: CharacterClass

lowerCase()
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphabetical()

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphanumeric()

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

You can quickly test whether a character belongs to a class.

member?(char "a", cl1)

ture

Type: Boolean

member?(char "a", cl2)

false

Type: Boolean

Classes have the usual set operations because the CharacterClass domain belongs to the category FiniteSetAggregate(Character).

intersect(cl1, cl2)

"y"

Type: CharacterClass

union(cl1, cl2)
9.12. **CLIFFORDALGEBRA**

"abcdefgijklmnopqrstuvwxyz"

Type: CharacterClass

difference(cl1,cl2)

"aeiou"

Type: CharacterClass

intersect(complement(cl1),cl2)

"bcdfghjklmnpqrstvwxyz"

Type: CharacterClass

You can modify character classes by adding or removing characters.

insert!(char "a", cl2)

"abcdfghijklmnopqrstuvwxyz"

Type: CharacterClass

remove!(char "b", cl2)

"acdfghijklmnopqrstuvwxyz"

Type: CharacterClass

For more information on related topics, see **Character** 9.10 on page 434 and **String** 9.89 on page 768.

### 9.12 CliffordAlgebra

**CliffordAlgebra**(n,K,Q) defines a vector space of dimension 2^n over the field K with a given quadratic form Q. If \( \{e_1, \ldots, e_n\} \) is a basis for \( K^n \) then
\{ 1, \\
e(i) 1 \leq i \leq n, \\
e(i1)\cdot e(i2) 1 \leq i1 < i2 \leq n, \\
... \\
e(1)\cdot e(2)\cdot ... \cdot e(n) \}\n
is a basis for the Clifford algebra. The algebra is defined by the relations

\begin{align*}
e(i)\cdot e(i) &= Q(e(i)) \\
e(i)\cdot e(j) &= -e(j)\cdot e(i), \quad i \neq j
\end{align*}

Examples of Clifford Algebras are gaussians (complex numbers), quaternions, exterior algebras and spin algebras.

**The Complex Numbers as a Clifford Algebra**

This is the field over which we will work, rational functions with integer coefficients.

\begin{align*}
K := \text{Fraction Polynomial Integer}
\end{align*}

\begin{align*}
\text{Fraction Polynomial Integer} \\
\text{Type: Domain}
\end{align*}

We use this matrix for the quadratic form.

\begin{align*}
m := \text{matrix} \begin{bmatrix} -1 \end{bmatrix}
\end{align*}

\begin{align*}
\begin{bmatrix} -1 \\
\end{bmatrix} \\
\text{Type: Matrix Integer}
\end{align*}

We get complex arithmetic by using this domain.

\begin{align*}
C := \text{CliffordAlgebra}(1, K, \text{quadraticForm} m)
\end{align*}

\begin{align*}
\text{CliffordAlgebra}(1,\text{Fraction Polynomial Integer,MATRIX}) \\
\text{Type: Domain}
\end{align*}

Here is \( i \), the usual square root of \(-1\).

\begin{align*}
i: \quad C := e(1)
\end{align*}
Here are some examples of the arithmetic.

\[ x := a + b \cdot i \]

\[ a + b \ e_1 \]

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

\[ y := c + d \cdot i \]

\[ c + d \ e_1 \]

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

See Complex 9.13 on page 447 for examples of Axiom’s constructor implementing complex numbers.

\[ x \ast y \]

\[ -b \ d + a \ c + (a \ d + b \ c) \ e_1 \]

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

**The Quaternion Numbers as a Clifford Algebra**

This is the field over which we will work, rational functions with integer coefficients.

\[ K := \text{Fraction Polynomial Integer} \]

\[ \text{Fraction Polynomial Integer} \]

Type: Domain

We use this matrix for the quadratic form.

\[ m := \text{matrix} \ [ [-1,0],[0,-1] ] \]
The resulting domain is the quaternions.

\[\begin{bmatrix}
    -1 & 0 \\
    0 & -1 \\
\end{bmatrix}\]

Type: Matrix Integer

We use Hamilton's notation for \(i, j, k\).

\(i: H := e(1)\)

\(e_1\)

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\(j: H := e(2)\)

\(e_2\)

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\(k: H := i * j\)

\(e_1 e_2\)

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\(x := a + b * i + c * j + d * k\)

\(a + b e_1 + c e_2 + d e_1 e_2\)

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\(y := e + f * i + g * j + h * k\)
\[ e + f e_1 + g e_2 + h e_1 e_2 \]

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\[ x + y \]

\[ e + a + (f + b) e_1 + (g + c) e_2 + (h + d) e_1 e_2 \]

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

\[ x * y \]

\[ -d h - c g - b f + a e + (c h - d g + a f + b e) e_1 + \]
\[ (-b h + a g + d f + c e) e_2 + (a h + b g - c f + d e) e_1 e_2 \]

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

See Quaternion 9.73 on page 703 for examples of Axiom’s constructor implementing quaternions.

\[ y * x \]

\[ -d h - c g - b f + a e + (-c h + d g + a f + b e) e_1 + \]
\[ (b h + a g - d f + c e) e_2 + (a h - b g + c f + d e) e_1 e_2 \]

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

The Exterior Algebra on a Three Space

This is the field over which we will work, rational functions with integer coefficients.

\[ K := \text{Fraction Polynomial Integer} \]

\[ \text{Fraction Polynomial Integer} \]

Type: Domain

If we chose the three by three zero quadratic form, we obtain the exterior algebra on \( e(1), e(2), e(3) \).
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Ext := CliffordAlgebra(3, K, quadraticForm 0)

CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Type: Domain

This is a three dimensional vector algebra. We define \( i, j, k \) as the unit vectors.

i: Ext := e(1)

\( e_1 \)

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

j: Ext := e(2)

\( e_2 \)

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

k: Ext := e(3)

\( e_3 \)

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Now it is possible to do arithmetic.

x := x1*i + x2*j + x3*k

\( x_1 e_1 + x_2 e_2 + x_3 e_3 \)

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

y := y1*i + y2*j + y3*k

\( y_1 e_1 + y_2 e_2 + y_3 e_3 \)

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)
9.12. CLIFFORD ALGEBRA

\[ x \times y \]
\[ (y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3 \]

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

\[ x \times y + y \times x \]
0

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

On an n space, a grade p form has a dual n-p form. In particular, in three space the dual of a grade two element identifies \( e1*e2->e3, e2*e3->e1, e3*e1->e2 \).

dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j + coefficient(a,[1,2]) * k

Type: Void

The vector cross product is then given by this.

dual2(x*y)

Compiling function dual2 with type CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX) -> CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

\[ (x2 y3 - x3 y2) e1 + (-x1 y3 + x3 y1) e2 + (x1 y2 - x2 y1) e3 \]

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

The Dirac Spin Algebra

In this section we will work over the field of rational numbers.

\[ K := \text{Fraction Integer} \]

Fraction Integer
We define the quadratic form to be the Minkowski space-time metric.

\[ g := \text{matrix} \begin{bmatrix} 1,0,0,0,0,-1,0,0,-1,0,0,0,0,-1 \end{bmatrix} \]

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

\[ D := \text{CliffordAlgebra}(4,\text{K, quadraticForm g}) \]

The usual notation for the basis is \( \gamma \) with a superscript. For Axiom input we will use \( \text{gam}(i) \):

\[ \text{gam} := [\text{e}(i)D \text{ for } i \text{ in } 1..4] \]

There are various contraction identities of the form

\[ g(1,t)\text{gam}(1)\text{gam}(m)\text{gam}(n)\text{gam}(r)\text{gam}(s)\text{gam}(t) = 2*(\text{gam}(s)\text{gam}(m)\text{gam}(n)\text{gam}(r) + \text{gam}(r)\text{gam}(n)\text{gam}(m)\text{gam}(s)) \]

where a sum over \( l \) and \( t \) is implied.

Verify this identity for particular values of \( m,n,r,s \).
9.13. COMPLEX

The Complex constructor implements complex objects over a commutative ring \( R \). Typically, the ring \( R \) is Integer, Fraction Integer, Float or DoubleFloat. \( R \) can also be a symbolic type, like Polynomial Integer. For more information about the numerical and graphical aspects of complex numbers, see section 8.1 on page 289.

Complex objects are created by the \texttt{complex} operation.

\begin{verbatim}
a := complex(4/3,5/2)

\frac{4}{3} + \frac{5}{2} i

Type: Complex Fraction Integer

b := complex(4/3,-5/2)

\frac{4}{3} - \frac{5}{2} i

Type: Complex Fraction Integer
\end{verbatim}

The standard arithmetic operations are available.

\begin{verbatim}
a + b

\frac{8}{3}
\end{verbatim}
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Complex Fraction Integer

\[ \frac{a - b}{5i} \]

Type: Complex Fraction Integer

\[ \frac{a \cdot b}{289} \]

Type: Complex Fraction Integer

If \( R \) is a field, you can also divide the complex objects.

\[ \frac{a}{b} \]

\[ \frac{-161 + 240i}{289} \]

Type: Complex Fraction Integer

Use a conversion (see section 2.7 on page 82) to view the last object as a fraction of complex integers.

\[ \% : \text{ Fraction Complex Integer} \]

\[ \frac{-15 + 8i}{15 + 8i} \]

Type: Fraction Complex Integer

The predefined macro \( \%i \) is defined to be \( \text{complex}(0,1) \).

\[ 3.4 + 6.7 \cdot \%i \]

\[ 3.4 + 6.7i \]

Type: Complex Float

You can also compute the \texttt{conjugate} and \texttt{norm} of a complex number.
9.13. **COMPLEX**

conjugate a

\[ \frac{4}{3} - \frac{5}{2} i \]

Type: Complex Fraction Integer

norm a

\[ \frac{289}{36} \]

Type: Fraction Integer

The `real` and `imag` operations are provided to extract the real and imaginary parts, respectively.

real a

\[ \frac{4}{3} \]

Type: Fraction Integer

imag a

\[ \frac{5}{2} \]

Type: Fraction Integer

The domain `Complex Integer` is also called the Gaussian integers. If \(R\) is the integers (or, more generally, a `EuclideanDomain`), you can compute greatest common divisors.

\[ \text{gcd}(13 - 13*%i, 31 + 27*%i) \]

\[ 5 + i \]

Type: Complex Integer

You can also compute least common multiples.

\[ \text{lcm}(13 - 13*%i, 31 + 27*%i) \]
143 – 39 \( i \)

Type: Complex Integer

You can factor Gaussian integers.

\[ \text{factor}(13 - 13*%i) \]

\[-(1 + i) \(2 + 3 \ 1\) (3 + 2 1)\]

Type: Factored Complex Integer

\[ \text{factor complex}(2,0) \]

\[ -i (1 + i)^2 \]

Type: Factored Complex Integer

### 9.14 ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics for well over three hundred years. Axiom implements continued fractions for fractions of any Euclidean domain. In practice, this usually means rational numbers. In this section we demonstrate some of the operations available for manipulating both finite and infinite continued fractions.

It may be helpful if you review Stream 9.88 on page 765 to remind yourself of some of the operations with streams.

The ContinuedFraction domain is a field and therefore you can add, subtract, multiply and divide the fractions.

The continuedFraction operation converts its fractional argument to a continued fraction.

\[ c := \text{continuedFraction}(314159/100000) \]

\[ 3 + \frac{1}{7} + \frac{1}{15} + \frac{1}{1} + \frac{1}{25} + \frac{1}{1} + \frac{1}{7} + \frac{1}{4} \]

Type: ContinuedFraction Integer

This display is a compact form of the bulkier
You can write any rational number in a similar form. The fraction will be finite and you can always take the “numerators” to be 1. That is, any rational number can be written as a simple, finite continued fraction of the form

\[ \frac{a(1)}{a(2) + \frac{1}{a(3) + \frac{1}{a(n-1) + \frac{1}{a(n)}}}} \]

The \( a_i \) are called partial quotients and the operation \texttt{partialQuotients} creates a stream of them.

\texttt{partialQuotients c}

\[ [3, 7, 15, 1, 25, 1, 7, \ldots] \]

Type: Stream Integer

By considering more and more of the fraction, you get the \texttt{convergents}. For example, the first convergent is \( a_1 \), the second is \( a_1 + 1/a_2 \) and so on.

\texttt{convergents c}
Since this is a finite continued fraction, the last convergent is the original rational number, in reduced form. The result of \texttt{approximants} is always an infinite stream, though it may just repeat the “last” value.

\begin{verbatim}
approximants c
\end{verbatim}

Inverting \texttt{c} only changes the partial quotients of its fraction by inserting a \texttt{0} at the beginning of the list.

\begin{verbatim}
pq := partialQuotients(1/c)
\end{verbatim}

Do this to recover the original continued fraction from this list of partial quotients. The three-argument form of the \texttt{continuedFraction} operation takes an element which is the whole part of the fraction, a stream of elements which are the numerators of the fraction, and a stream of elements which are the denominators of the fraction.

\begin{verbatim}
continuedFraction(first pq,repeating [1],rest pq)
\end{verbatim}

The streams need not be finite for \texttt{continuedFraction}. Can you guess which irrational number has the following continued fraction? See the end of this section for the answer.

\begin{verbatim}
z:=continuedFraction(3,repeating [1],repeating [3,6])
\end{verbatim}
In 1737 Euler discovered the infinite continued fraction expansion

\[
e - 1 = \frac{1}{2 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \ldots}}}}
\]

We use this expansion to compute rational and floating point approximations of \(e\).\(^2\)

By looking at the above expansion, we see that the whole part is 0 and the numerators are all equal to 1. This constructs the stream of denominators.

\[
dens: \text{Stream Integer} := \text{cons}(1, \text{generate}((x \rightarrow x + 4), 6))
\]

\[
[1, 6, 10, 14, 18, 22, 26, \ldots]
\]

Therefore this is the continued fraction expansion for \((e - 1)/2\).

\[
\text{cf := continuedFraction}(0, \text{repeating [1], dens})
\]

\[
\frac{1}{1 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \frac{1}{22 + \frac{1}{26 + \ldots}}}}}}
\]

These are the rational number convergents.

\[
\text{ccf := convergents cf}
\]

\[
\left[0, 1, \frac{6}{7}, \frac{61}{71}, \frac{860}{1001}, \frac{15541}{18089}, \frac{342762}{398959}, \ldots\right]
\]

---

You can get rational convergents for \( e \) by multiplying by 2 and adding 1.

\[
e\text{Convergents} := [2\cdot e + 1 \text{ for } e \text{ in } ccf]
\]

\[
\left[1, \frac{3}{7}, \frac{19}{71}, \frac{193}{1001}, \frac{2721}{18089}, \frac{49171}{398959}, \ldots \right]
\]

Type: Stream Fraction Integer

You can also compute the floating point approximations to these convergents.

\[
e\text{Convergents} ::\text{ Stream Float}
\]

\[
[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775, 2.7182817182817182817, 2.7182818287356957267, 2.7182818284 585634113, \ldots]
\]

Type: Stream Float

Compare this to the value of \( e \) computed by the \texttt{exp} operation in \texttt{Float}.

\[
\text{exp 1.0}
\]

\[
2.7182818284 590452354
\]

Type: Float

In about 1658, Lord Brouncker established the following expansion for \( 4/\pi \),

\[
1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \ldots}}}}
\]

Let’s use this expansion to compute rational and floating point approximations for \( \pi \).
9.14. CONTINUEDFRACTION

\[ cf := \text{continuedFraction}(1, [(2*i+1)**2 \text{ for } i \text{ in } 0..1] \text{, repeating [2]} ) \]

\[
1 + \frac{1}{2} + \frac{9}{2} + \frac{25}{2} + \frac{49}{2} + \frac{81}{2} + \frac{121}{2} + \frac{169}{2} + \cdots
\]

Type: ContinuedFraction Integer

\[ ccf := \text{convergents} \ cf \]

\[
\begin{bmatrix}
1 \\ 3 \\ 15 \\ 105 \\ 315 \\ 3465 \\ 45045 \\
2 \\ 13 \\ 76 \\ 263 \\ 2578 \\ 36979 \\
\end{bmatrix}
\]

Type: Stream Fraction Integer

\[ \text{piConvergents} := [4/p \text{ for } p \text{ in } ccf] \]

\[
\begin{bmatrix}
4 \\ 8 \\ 52 \\ 304 \\ 1052 \\ 10312 \\ 147916 \\
3 \\ 15 \\ 105 \\ 315 \\ 3465 \\ 45045 \\
\end{bmatrix}
\]

Type: Stream Fraction Integer

As you can see, the values are converging to \( \pi = 3.14159265358979323846 \ldots \), but not very quickly.

\[ \text{piConvergents} :: \text{Stream Float} \]

\[
[4.0, 2.6666666666666666, 3.4666666666666666, 2.8952380951980392, 2.9760461760462, \ldots]
\]

Type: Stream Float

You need not restrict yourself to continued fractions of integers. Here is an expansion for a quotient of Gaussian integers.

\[ \text{continuedFraction}((-122 + 597*\text{%i})/(4 - 4*\text{%i})) \]

\[
-90 + 59 \ \text{i} + \frac{1}{1 - 2 \ \text{i}} + \frac{1}{-1 + 2 \ \text{i}}
\]

Type: ContinuedFraction Complex Integer
This is an expansion for a quotient of polynomials in one variable with rational number
coefficients.

\[ r : \text{Fraction UnivariatePolynomial}(x,\text{Fraction Integer}) \]

Type: Void

\[ r := ((x - 1) \times (x - 2)) / ((x-3) \times (x-4)) \]

\[
\frac{x^2 - 3 \times x + 2}{x^2 - 7 \times x + 12}
\]

Type: Fraction UnivariatePolynomial(x,\text{Fraction Integer})

\[ \text{continuedFraction } r \]

\[ 1 + \frac{1}{\frac{1}{x - \frac{9}{4}} + \frac{1}{\frac{10}{x - \frac{40}{3}}} \frac{1}{x - \frac{40}{3}}} \frac{1}{x - \frac{40}{3}} \]

Type: ContinuedFraction UnivariatePolynomial(x,\text{Fraction Integer})

To conclude this section, we give you evidence that

\[ z = 3 + \frac{1}{\frac{1}{3 + \frac{1}{6 + \frac{1}{3 + \frac{1}{6 + \cdots}}}}} \]

is the expansion of \( \sqrt{11} \).

\[ [i*i \text{ for } i \text{ in } \text{convergents}(z) : : \text{Stream Float}] \]

\[ [9.0, 11.11111111111111111111111, 10.9945983379501385, 11.0002777777777777777778, 10.999986076398799786, 11.000000697929731039, 10.999999965015834466, \ldots] \]

Type: Stream Float
9.15 CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of Group-Reduced Distributions”, American J. Math.,49 (1927) 433-455, and is an application of group theory to enumeration problems. It is a development of the work by P. A. MacMahon on the application of symmetric functions and Hammond operators to combinatorial theory.

The theory is based upon the power sum symmetric functions $s_i$ which are the sum of the $i$-th powers of the variables. The cycle index of a permutation is an expression that specifies the sizes of the cycles of a permutation, and may be represented as a partition. A partition of a non-negative integer $n$ is a collection of positive integers called its parts whose sum is $n$. For example, the partition $(3^2 2^1)$ will be used to represent $s_3^2 s_2^1$ and will indicate that the permutation has two cycles of length 3, one of length 2 and two of length 1. The cycle index of a permutation group is the sum of the cycle indices of its permutations divided by the number of permutations. The cycle indices of certain groups are provided.

The operation `complete` returns the cycle index of the symmetric group of order $n$ for argument $n$. Alternatively, it is the $n$-th complete homogeneous symmetric function expressed in terms of power sum symmetric functions.

```
complete 1

(1)
Type: SymmetricPolynomial Fraction Integer

complete 2

$\frac{1}{2} (2) + \frac{1}{2} (1^2)$
Type: SymmetricPolynomial Fraction Integer

complete 3

$\frac{1}{3} (3) + \frac{1}{2} (2 \ 1) + \frac{1}{6} (1^3)$
Type: SymmetricPolynomial Fraction Integer
```

complete 7
\[ \frac{1}{7} (7) + \frac{1}{6} (6 \ 1) + \frac{1}{10} (5 \ 2) + \frac{1}{15} (5 \ 1^2) + \frac{1}{12} (4 \ 3) + \frac{1}{8} (4 \ 2 \ 1) + \]
\[ \frac{1}{24} (4 \ 1^3) + \frac{1}{18} (3^2 \ 1) + \frac{1}{24} (3 \ 2^2) + \frac{1}{12} (3 \ 2 \ 1^2) + \frac{1}{72} (3 \ 1^4) + \]
\[ \frac{1}{48} (2^3 \ 1) + \frac{1}{48} (2^2 \ 1^3) + \frac{1}{240} (2 \ 1^5) + \frac{1}{5040} (1^7) \]

Type: SymmetricPolynomial Fraction Integer

The operation \texttt{elementary} computes the \( n \)-th elementary symmetric function for argument \( n \).

\texttt{elementary 7}

\[ \frac{1}{7} (7) - \frac{1}{6} (6 \ 1) - \frac{1}{10} (5 \ 2) + \frac{1}{15} (5 \ 1^2) - \frac{1}{12} (4 \ 3) - \frac{1}{8} (4 \ 2 \ 1) \]
\[ -\frac{1}{24} (4 \ 1^3) + \frac{1}{18} (3^2 \ 1) + \frac{1}{24} (3 \ 2^2) - \frac{1}{12} (3 \ 2 \ 1^2) + \frac{1}{72} (3 \ 1^4) \]
\[ -\frac{1}{48} (2^3 \ 1) + \frac{1}{48} (2^2 \ 1^3) - \frac{1}{240} (2 \ 1^5) + \frac{1}{5040} (1^7) \]

Type: SymmetricPolynomial Fraction Integer

The operation \texttt{alternating} returns the cycle index of the alternating group having an even number of even parts in each cycle partition.

\texttt{alternating 7}

\[ \frac{6}{7} (7) + \frac{1}{5} (5 \ 1^2) + \frac{1}{4} (4 \ 2 \ 1) + \frac{1}{5} (3^2 \ 1) + \frac{1}{12} (3 \ 2^2) + \frac{1}{36} (3 \ 1^4) + \]
\[ \frac{1}{24} (2^2 \ 1^3) + \frac{1}{2520} (1^7) \]

Type: SymmetricPolynomial Fraction Integer

The operation \texttt{cyclic} returns the cycle index of the cyclic group.

\texttt{cyclic 7}

\[ \frac{6}{7} (7) + \frac{1}{7} (1^7) \]

Type: SymmetricPolynomial Fraction Integer
The operation **dihedral** is the cycle index of the dihedral group.

\[
\text{dihedral 7} = \frac{3}{7} \cdot (7) + \frac{1}{2} \cdot (2^3 \cdot 1) + \frac{1}{14} \cdot (1^7)
\]

Type: SymmetricPolynomial Fraction Integer

The operation **graphs** for argument \( n \) returns the cycle index of the group of permutations on the edges of the complete graph with \( n \) nodes induced by applying the symmetric group to the nodes.

\[
\text{graphs 5} = \frac{1}{6} \cdot (6 \cdot 3 \cdot 1) + \frac{1}{5} \cdot (5^2) + \frac{1}{4} \cdot (4^2 \cdot 2) + \frac{1}{6} \cdot (3^3 \cdot 1) + \frac{1}{8} \cdot (2^4 \cdot 1^2) + \\
\frac{1}{12} \cdot (2^3 \cdot 1^4) + \frac{1}{120} \cdot (1^{10})
\]

Type: SymmetricPolynomial Fraction Integer

The cycle index of a direct product of two groups is the product of the cycle indices of the groups. Redfield provided two operations on two cycle indices which will be called “cup” and “cap” here. The **cup** of two cycle indices is a kind of scalar product that combines monomials for permutations with the same cycles. The **cap** operation provides the sum of the coefficients of the result of the cup operation which will be an integer that enumerates what Redfield called group-reduced distributions.

We can, for example, represent `complete 2 * complete 2` as the set of objects `a a b b` and `complete 2 * complete 1 * complete 1` as `c c d e`.

This integer is the number of different sets of four pairs.

\[
\text{cap(complete 2**2, complete 2*complete 1**2)} = 4
\]

Type: Fraction Integer

For example,

```
a a b b a a b b a a b b a a b b
c c d e c d c e c e c d d e c c
```

This integer is the number of different sets of four pairs no two pairs being equal.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\text{cap}(\text{elementary } 2^{*2}, \text{complete } 2 \cdot \text{complete } 1^{*2})

2

Type: Fraction Integer

For example,

\begin{verbatim}
  a a b b   a a b b
  c d e e   c d e e
\end{verbatim}

In this case the configurations enumerated are easily constructed, however the theory merely enumerates them providing little help in actually constructing them. Here are the number of 6-pairs, first from \text{a a a b b c}, second from \text{d d e e f g}.

\text{cap}(\text{complete } 3 \cdot \text{complete } 2 \cdot \text{complete } 1, \text{complete } 2^{*2} \cdot \text{complete } 1^{*2})

24

Type: Fraction Integer

Here it is again, but with no equal pairs.

\text{cap}(\text{elementary } 3 \cdot \text{elementary } 2 \cdot \text{elementary } 1, \text{complete } 2^{*2} \cdot \text{complete } 1^{*2})

8

Type: Fraction Integer

\text{cap}(\text{complete } 3 \cdot \text{complete } 2 \cdot \text{complete } 1, \text{elementary } 2^{*2} \cdot \text{elementary } 1^{*2})

8

Type: Fraction Integer

The number of 6-triples, first from \text{a a a b b c}, second from \text{d d e e f g}, third from \text{h h i i j j}.

\text{eval}(\text{cup}(\text{complete } 3 \cdot \text{complete } 2 \cdot \text{complete } 1, \text{cup}(\text{complete } 2^{*2} \cdot \text{complete } 1^{*2}, \text{complete } 2^{*3})))

1500
The cycle index of vertices of a square is dihedral 4.

\[ \text{square} := \text{dihedral 4} \]

\[
\frac{1}{4} (4) + \frac{3}{8} (2^2) + \frac{1}{4} (2^2 1^2) + \frac{1}{8} (1^4)
\]

Type: SymmetricPolynomial Fraction Integer

The number of different squares with 2 red vertices and 2 blue vertices.

\[ \text{cap(complete 2**2, square)} \]

2

Type: Fraction Integer

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

\[ \text{cap(complete 3*complete 2**2, dihedral 7)} \]

18

Type: Fraction Integer

The number of graphs with 5 nodes and 7 edges.

\[ \text{cap(graphs 5, complete 7*complete 3)} \]

4

Type: Fraction Integer

The cycle index of rotations of vertices of a cube.

\[ s(x) = \text{powerSum}(x) \]

Type: Void
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)

Compiling function s with type PositiveInteger -> SymmetricPolynomial Fraction Integer

\[ \frac{1}{4} \left( \frac{2^4}{3} \right) + \frac{1}{3} \left( \frac{3^2}{1^2} \right) + \frac{3}{8} \left( \frac{2^4}{8} \right) + \frac{1}{24} \left( \frac{1^8}{24} \right) \]

Type: SymmetricPolynomial Fraction Integer

The number of cubes with 4 red vertices and 4 blue vertices.

cap(complete 4**2,cube)

7

Type: Fraction Integer

The number of labeled graphs with degree sequence 2 2 2 1 1 with no loops or multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))

7

Type: Fraction Integer

Again, but with loops allowed but not multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))

17

Type: Fraction Integer

Again, but with multiple edges allowed, but not loops

cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))

10

Type: Fraction Integer
Again, but with both multiple edges and loops allowed

\[ \text{cap} (\text{complete } 2**3*\text{complete } 1**2, \text{wreath} (\text{complete } 4, \text{complete } 2)) \]

23

Type: Fraction Integer

Having constructed a cycle index for a configuration we are at liberty to evaluate the $s_i$ components any way we please. For example we can produce enumerating generating functions. This is done by providing a function $f$ on an integer $i$ to the value required of $s_i$, and then evaluating $\text{eval}(f, \text{cycleindex})$.

\[
x : \text{ULS} (\text{FRAC INT}, 'x, 0) := 'x
\]

\[
x
\]

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

ZeroOrOne: \( \text{INT} \to \text{ULS} (\text{FRAC INT}, 'x, 0) \)

Type: Void

Integers: \( \text{INT} \to \text{ULS} (\text{FRAC INT}, 'x, 0) \)

Type: Void

For the integers 0 and 1, or two colors.

ZeroOrOne \( n \mapsto 1+x^{**n} \)

Type: Void

ZeroOrOne 5

Compiling function ZeroOrOne with type Integer -> UnivariateLaurentSeries(Fraction Integer, x, 0)
For the integers $0, 1, 2, \ldots$ we have this.

\[
\text{Integers } n = 1/(1-x^n)
\]

\[
\text{Type: Void}
\]

Integers 5

\[
\text{Compiling function Integers with type Integer -> Uni variateLaurentSeries(Fraction Integer,x,0)}
\]

\[
1 + x^5 + O(x^8)
\]

\[
\text{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}
\]

The coefficient of $x^n$ is the number of graphs with 5 nodes and $n$ edges.

Note that there is an eval function that takes two arguments. It has the signature:

\[
((\text{Integer -> D1}),\text{SymmetricPolynomial Fraction Integer}) \rightarrow D1
\]

\[
\text{from EvaluateCycleIndicators D1 if D1 has ALGEBRA FRAC INT}
\]

This function is not normally exposed (it will not normally be considered in the list of eval functions) as it is only useful for this particular domain. To use it we ask that it be considered thus:

\[
\text{)expose EVALCYC}
\]

and now we can use it:

\[
\text{eval(ZeroOrOne, graphs 5)}
\]

\[
1 + x + 2 x^2 + 4 x^3 + 6 x^4 + 6 x^5 + 6 x^6 + 4 x^7 + O(x^8)
\]

\[
\text{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}
\]

The coefficient of $x^n$ is the number of necklaces with $n$ red beads and $n-8$ green beads.
9.15. CYCLEINDICATORS

\texttt{eval(ZeroOrOne,dihedral 8)}

\[ 1 + x + 4\, x^2 + 5\, x^3 + 8\, x^4 + 5\, x^5 + 4\, x^6 + x^7 + O\left(x^8\right) \]

\textbf{Type:} \texttt{UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of \( x^n \) is the number of partitions of \( n \) into 4 or fewer parts.

\texttt{eval(Integers,complete 4)}

\[ 1 + x + 2\, x^2 + 3\, x^3 + 5\, x^4 + 6\, x^5 + 9\, x^6 + 11\, x^7 + O\left(x^8\right) \]

\textbf{Type:} \texttt{UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of \( x^n \) is the number of partitions of \( n \) into 4 boxes containing ordered distinct parts.

\texttt{eval(Integers,elementary 4)}

\[ x^6 + x^7 + 2\, x^8 + 3\, x^9 + 5\, x^{10} + 6\, x^{11} + 9\, x^{12} + 11\, x^{13} + O\left(x^{14}\right) \]

\textbf{Type:} \texttt{UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of \( x^n \) is the number of different cubes with \( n \) red vertices and \( 8-n \) green ones.

\texttt{eval(ZeroOrOne,cube)}

\[ 1 + x + 3\, x^2 + 3\, x^3 + 7\, x^4 + 3\, x^5 + 3\, x^6 + x^7 + O\left(x^8\right) \]

\textbf{Type:} \texttt{UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of \( x^n \) is the number of different cubes with integers on the vertices whose sum is \( n \).

\texttt{eval(Integers,cube)}

\[ 1 + x + 4\, x^2 + 7\, x^3 + 21\, x^4 + 37\, x^5 + 85\, x^6 + 151\, x^7 + O\left(x^8\right) \]

\textbf{Type:} \texttt{UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of \( x^n \) is the number of graphs with 5 nodes and with integers on the edges whose sum is \( n \). In other words, the enumeration is of multigraphs with 5 nodes and \( n \) edges.
eval(Integers, graphs 5)

\[ 1 + x + 3 x^2 + 7 x^3 + 17 x^4 + 35 x^5 + 76 x^6 + 149 x^7 + O(x^8) \]

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

Graphs with 15 nodes enumerated with respect to number of edges.

eval(ZeroOrOne, graphs 15)

\[ 1 + x + 2 x^2 + 5 x^3 + 11 x^4 + 26 x^5 + 68 x^6 + 177 x^7 + O(x^8) \]

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red beads.

cap(dihedral 30, complete 7*complete 8*complete 5*complete 10)

49958972383320

Type: Fraction Integer

The operation \texttt{SFunction} is the S-function or Schur function of a partition written as a descending list of integers expressed in terms of power sum symmetric functions.

In this case the argument partition represents a tableau shape. For example \(3,2,2,1\) represents a tableau with three boxes in the first row, two boxes in the second and third rows, and one box in the fourth row. \texttt{SFunction \([3,2,2,1]\)} counts the number of different tableaux of shape \(3, 2, 2, 1\) filled with objects with an ascending order in the columns and a non-descending order in the rows.

\texttt{sf3221:= SFunction \([3,2,2,1]\)}

\[
\frac{1}{12} (6 \ 2) - \frac{1}{12} (6 \ 1^2) - \frac{1}{16} (4^2) + \frac{1}{21} (4 \ 3 \ 1) + \frac{1}{24} (4 \ 1^4) - \frac{1}{36} (3^2 \ 2) + \\
\frac{1}{36} (3^2 \ 1^2) - \frac{1}{24} (3 \ 2^2 \ 1) - \frac{1}{36} (3 \ 2 \ 1^3) - \frac{1}{72} (3 \ 1^5) - \frac{1}{192} (2^4) + \\
\frac{1}{48} (2^3 \ 1^2) + \frac{1}{96} (2^2 \ 1^4) - \frac{1}{144} (2 \ 1^6) + \frac{1}{576} (1^8)
\]

Type: SymmetricPolynomial Fraction Integer

This is the number filled with \texttt{a a b b c c d d}.
9.16. **DERHAMCOMPLEX**

\[
\text{cap}(sf3221, \text{complete } 2^{\ast}4) = 3
\]

Type: Fraction Integer

The configurations enumerated above are:

\[
\begin{array}{cccc}
  a & a & b & a \\
  b & c & b & b \\
  c & d & c & c \\
  d & d & d & d
\end{array}
\]

This is the number of tableaux filled with 1..8.

\[
\text{cap}(sf3221, \text{powerSum } 1^{\ast}8) = 70
\]

Type: Fraction Integer

The coefficient of \(x^n\) is the number of column strict reverse plane partitions of \(n\) of shape 3 2 2 1.

\[
\text{eval}(\text{Integers, } sf3221) = x^9 + 3 x^{10} + 7 x^{11} + 14 x^{12} + 27 x^{13} + 47 x^{14} + O(x^{15})
\]

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The smallest is

\[
\begin{array}{ccc}
  0 & 0 & 0 \\
  1 & 1 \\
  2 & 2 \\
  3
\end{array}
\]

### 9.16 DeRhamComplex

The domain constructor **DeRhamComplex** creates the class of differential forms of arbitrary degree over a coefficient ring. The De Rham complex constructor takes two arguments: a ring, \texttt{coefRing}, and a list of coordinate variables.

This is the ring of coefficients.
coefRing := Integer

Integer

Type: Domain

These are the coordinate variables.

lv : List Symbol := [x,y,z]

[x, y, z]

Type: List Symbol

This is the De Rham complex of Euclidean three-space using coordinates x, y and z.

der := DERHAM(coefRing,lv)

DerhamComplex(Integer, [x, y, z])

Type: Domain

This complex allows us to describe differential forms having expressions of integers as coefficients. These coefficients can involve any number of variables, for example, \( f(x, t, r, y, u, z) \).
As we’ve chosen to work with ordinary Euclidean three-space, expressions involving these forms are treated as functions of x, y and z with the additional arguments t, r and u regarded as symbolic constants.

Here are some examples of coefficients.

R := Expression coefRing

Expression Integer

Type: Domain

f : R := x**2*y*z-5*x**3*y**2*z**5

\(-5 \, x^3 \, y^2 \, z^5 + x^2 \, y \, z\)

Type: Expression Integer
We now define the multiplicative basis elements for the exterior algebra over $\mathbb{R}$.

\[ g : \mathbb{R} := z^2y\cos(z) - 7\sin(x^3y^2)z^2 \]

\[ -7 \ z^2 \ \sin \ (x^3 \ y^2) \ + \ y \ z^2 \ \cos \ (z) \]

Type: Expression Integer

\[ h : \mathbb{R} := x^2y^2 - 2x^3yz^2 \]

\[ -2 \ x^3 \ y \ z^2 \ + \ x \ y \ z \]

Type: Expression Integer

This is an alternative way to give the above assignments.

\[ [dx,dy,dz] := [\text{generator}(i)\text{der} \text{ for } i \text{ in } 1..3] \]

\[ [dx,dy,dz] \]

Type: List DeRhamComplex(Integer,[x,y,z])
Now we define some one-forms.

\[
\alpha : \text{der} := f*dx + g*dy + h*dz
\]
\[
( -2x^3y z^2 + x y z ) dz + \\
( -7z^2 \sin(x^3y^2) + y z^2 \cos(z) ) dy + \\
( -5x^3y^2z^5 + x^2y z ) dx
\]

Type: \text{DeRhamComplex(Integer,[x,y,z])}

\[
\beta : \text{der} := \cos(\tan(x*y*z)+x*y*z)*dx + x*dy
\]

\[
x \ dy + \cos(\tan(x \ y \ z) + x \ y \ z) \ dx
\]

Type: \text{DeRhamComplex(Integer,[x,y,z])}

A well-known theorem states that the composition of \text{exteriorDifferential} with itself is the zero map for continuous forms. Let’s verify this theorem for \text{alpha}.

\text{exteriorDifferential} \ \alpha

\[
( y z^2 \sin(z) + 14 z \sin(x^3y^2) - 2 y z \cos(z) - 2 x^3 z^2 + x z ) \ dy \ dz + \\
( 25 x^3y^2z^4 - 6 x^2 y z^2 + y z - x^2 y ) \ dx \ dz + \\
( -21 x^2 y^2 z^2 \cos(x^3y^2) + 10 x^3 y z^5 - x^2 z ) \ dx \ dy
\]

Type: \text{DeRhamComplex(Integer,[x,y,z])}

We see a lengthy output of the last expression, but nevertheless, the composition is zero.

\text{exteriorDifferential} \ %

\[
0
\]

Type: \text{DeRhamComplex(Integer,[x,y,z])}

Now we check that \text{exteriorDifferential} is a “graded derivation” \text{D}, that is, \text{D} satisfies:

\[
\text{D}(a*b) = \text{D}(a)*b + (-1)^{\text{degree}(a)}*a*\text{D}(b)
\]
9.16. DERHAMCOMPLEX

\[\gamma := \alpha \cdot \beta\]

\[
(2 x^4 y z^2 - x^2 y z) \, dy \, dz + \\
(2 x^3 y z^2 - x y z) \cos(\tan(x y z) + x y z) \, dx \, dz + \\
(7 z^2 \sin(x^3 y^2) - y z^2 \cos(z)) \cos(\tan(x y z) + x y z) - \\
5 x^4 y^2 z^5 + x^3 y z \, dx \, dy
\]

Type: DeRhamComplex(Integer,[x,y,z])

We try this for the one-forms \(\alpha\) and \(\beta\).

\[
\text{exteriorDifferential}(\gamma) - (\text{exteriorDifferential}(\alpha) \cdot \beta - \alpha \cdot \text{exteriorDifferential}(\beta))
\]

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we define some “basic operators” (see Operator 9.66 on page 676).

\(a\) : BOP := operator('a)

\[a\]

Type: BasicOperator

\(b\) : BOP := operator('b)

\[b\]

Type: BasicOperator

\(c\) : BOP := operator('c)

\[c\]

Type: BasicOperator

We also define some indeterminate one- and two-forms using these operators.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ \sigma := a(x,y,z) \, dx + b(x,y,z) \, dy + c(x,y,z) \, dz \]
\[ c(x,y,z) \, dz + b(x,y,z) \, dy + a(x,y,z) \, dx \]
Type: \textit{DeRhamComplex}(Integer, [x,y,z])

\[ \theta := a(x,y,z) \, dx \, dy + b(x,y,z) \, dx \, dz + c(x,y,z) \, dy \, dz \]
\[ c(x,y,z) \, dy \, dz + b(x,y,z) \, dx \, dz + a(x,y,z) \, dx \, dy \]
Type: \textit{DeRhamComplex}(Integer, [x,y,z])

This allows us to get formal definitions for the “gradient”...

\texttt{totalDifferential(a(x,y,z))}\$der
\[ a,3(x,y,z) \, dz + a,2(x,y,z) \, dy + a,1(x,y,z) \, dx \]
Type: \textit{DeRhamComplex}(Integer, [x,y,z])

the “curl”...

\texttt{exteriorDifferential sigma}
\( (c,2(x,y,z) - b,3(x,y,z)) \, dy \, dz + \)
\( (c,1(x,y,z) - a,3(x,y,z)) \, dx \, dz + \)
\( (b,1(x,y,z) - a,2(x,y,z)) \, dx \, dy \)
Type: \textit{DeRhamComplex}(Integer, [x,y,z])

and the “divergence.”

\texttt{exteriorDifferential theta}
\( (c,1(x,y,z) - b,2(x,y,z) + a,3(x,y,z)) \, dx \, dy \, dz \)
Type: \textit{DeRhamComplex}(Integer, [x,y,z])

Note that the De Rham complex is an algebra with unity. This element 1 is the basis for elements for zero-forms, that is, functions in our space.
9.16. DERHAMCOMPLEX

one : der := 1

1

Type: DeRhamComplex(Integer,[x,y,z])

To convert a function to a function lying in the De Rham complex, multiply the function by "one."

g1 : der := a([x,t,y,u,v,z,e]) * one

\[ a(x,t,y,u,v,z,e) \]

Type: DeRhamComplex(Integer,[x,y,z])

A current limitation of Axiom forces you to write functions with more than four arguments using square brackets in this way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

\[ a(x,y,x,t,x,z,y,r,u,x) \]

Type: DeRhamComplex(Integer,[x,y,z])

Now note how the system keeps track of where your coordinate functions are located in expressions.

exteriorDifferential g1

\[ a_6(x,t,y,u,v,z,e) \, dz + \\
   a_3(x,t,y,u,v,z,e) \, dy + \\
   a_1(x,t,y,u,v,z,e) \, dx \]

Type: DeRhamComplex(Integer,[x,y,z])

exteriorDifferential h1
\[ a_6(x, y, z, x, t, x, y, r, u, x)\, dz + \\
(a_7(x, y, t, x, x, y, r, u, x) + \\
a_2(x, y, t, x, z, y, r, u, x)\, dy + \\
(a_{10}(x, y, t, x, z, y, r, u, x) + \\
a_5(x, y, t, x, z, y, r, u, x) + \\
a_3(x, y, t, x, z, y, r, u, x) + \\
a_1(x, y, t, x, z, y, r, u, x)\, dx \\
\text{Type: DeRhamComplex(Integer,[x,y,z])} \]

In this example of Euclidean three-space, the basis for the De Rham complex consists of the eight forms: 1, \( dx, dy, dz, dx*dy, dx*dz, dy*dz, \) and \( dx*dy*dz \).

\[
\text{coefficient(gamma, dx*dy)}
\]

\[
(7 \, z^2 \sin(x^3 \, y^2) - y \, z^2 \, \cos(z)) \, \cos(\tan(x \, y \, z) + x \, y \, z) \\
-5 \, x^4 \, y^2 \, z^5 + x^3 \, y \, z
\]

\text{Type: Expression Integer}

\[
\text{coefficient(gamma, one)}
\]

0

\text{Type: Expression Integer}

\[
\text{coefficient(g1,one)}
\]

\[
a(x, t, y, u, v, z, e)
\]

\text{Type: Expression Integer}
9.17 DecimalExpansion

All rationals have repeating decimal expansions. Operations to access the individual digits of a decimal expansion can be obtained by converting the value to \texttt{RadixExpansion(10)}. More examples of expansions are available in \texttt{BinaryExpansion 9.6} on page 415, \texttt{HexadecimalExpansion 9.39} on page 541, and \texttt{RadixExpansion 9.75} on page 708.

The operation \texttt{decimal} is used to create this expansion of type \texttt{DecimalExpansion}.

\begin{verbatim}
r := decimal(22/7)

3.142857

Type: DecimalExpansion
\end{verbatim}

Arithmetic is exact.

\begin{verbatim}
r + decimal(6/7)

4

Type: DecimalExpansion
\end{verbatim}

The period of the expansion can be short or long . . .

\begin{verbatim}
[decimal(1/i) for i in 350..354]

[0.00285714, 0.002849, 0.0028409, 0.00283286118980169971671388101983,
0.00282485875706214689265536723163841807909604519774011299435]

Type: List DecimalExpansion
\end{verbatim}

or very long.

\begin{verbatim}
decimal(1/2049)

0.000488042947779404587603709126403123474865788189360663738408979990239
141044411908247925817471937530502684236212786725231820400195217179111
76183504148365056124938994631527544265495363591996095656417764763299
1703269887750122010736944854146900092728160078086871644704734016593460
22449975597852611029770619814543679843826256710390531966813079551
\end{verbatim}
These numbers are bona fide algebraic objects.

\[ p := \text{decimal}(1/4) \times x^2 + \text{decimal}(2/3) \times x + \text{decimal}(4/9) \]

\[ 0.25 x^2 + 0.\overline{6} x + 0.\overline{4} \]

Type: Polynomial DecimalExpansion

\[ q := \text{differentiate}(p, x) \]

\[ 0.5 x + 0.\overline{6} \]

Type: Polynomial DecimalExpansion

\[ g := \text{gcd}(p, q) \]

\[ x + 1.\overline{3} \]

Type: Polynomial DecimalExpansion

### 9.18 Dequeue

A Dequeue is a double-ended queue so elements can be added to either end.

Here we create an dequeue of integers from a list. Notice that the order in the list is the order in the dequeue.

\[ a := \text{dequeue} \left[ 1, 2, 3, 4, 5 \right] \]

We can remove the top of the dequeue using dequeue!:

\[ \text{dequeue! a} \]

\[ 1 \]

Notice that the use of dequeue! is destructive (destructive operations in Axiom usually end with ! to indicate that the underlying data structure is changed).

\[ a \]

\[ [2, 3, 4, 5] \]
The extract! operation is another name for the dequeue! operation and has the same effect. This operation treats the dequeue as a BagAggregate:

```
extract! a
2
```

and you can see that it also has destructively modified the dequeue:

```
a [3,4,5]
```

Next we use enqueue! to add a new element to the end of the dequeue:

```
enqueue!(9,a)
9
```

Again, the enqueue! operation is destructive so the dequeue is changed:

```
a [3,4,5,9]
```

Another name for enqueue! is insert!, which treats the dequeue as a BagAggregate:

```
insert!(8,a)
[3,4,5,9,8]
```

and it modifies the dequeue:

```
a [3,4,5,9,8]
```

The front operation returns the item at the front of the dequeue:

```
front a
3
```

The back operation returns the item at the back of the dequeue:

```
back a
8
```

The bottom! operation returns the item at the back of the dequeue:

```
bottom! a
8
```

and it modifies the dequeue:
The depth function returns the number of elements in the dequeue:

```plaintext
depth a
4
```

The height function returns the number of elements in the dequeue:

```plaintext
height a
4
```

The insertBottom! function adds the element at the end:

```plaintext
insertBottom!(6,a)
6
```

and it modifies the dequeue:

```plaintext
[3,4,5,9,6]
```

The extractBottom! function removes the element at the end:

```plaintext
extractBottom! a
6
```

and it modifies the dequeue:

```plaintext
[3,4,5,9]
```

The insertTop! function adds the element at the top:

```plaintext
insertTop!(7,a)
7
```

and it modifies the dequeue:

```plaintext
[7,3,4,5,9]
```

The extractTop! function adds the element at the top:

```plaintext
extractTop! a
7
```
9.18. **DEQUEUE**

and it modifies the dequeue:

```
[3,4,5,9]
```

The top function returns the top element:

```
top a
3
```

and it does not modifies the dequeue:

```
[3,4,5,9]
```

The top! function returns the top element:

```
top! a
3
```

and it modifies the dequeue:

```
[4,5,9]
```

The reverse! operation destructively reverses the elements of the dequeue:

```
reverse! a
[9,5,4]
```

The rotate! operation moves the top element to the bottom:

```
rotate! a
[5,4,9]
```

The inspect function returns the top of the dequeue without modification, viewed as a BagAggregate:

```
inspect a
5
```

The empty? operation returns true only if there are no element on the dequeue, otherwise it returns false:

```
empty? a
false
```

The # (length) operation:
The length operation does the same thing:

```
length a
3
```

The less? predicate will compare the dequeue length to an integer:

```
less?(a,9)
true
```

The more? predicate will compare the dequeue length to an integer:

```
more?(a,9)
false
```

The size? operation will compare the dequeue length to an integer:

```
size?(a,#a)
true
```

and since the last computation must always be true we try:

```
size?(a,9)
false
```

The parts function will return the dequeue as a list of its elements:

```
parts a
[5, 4, 9]
```

If we have a BagAggregate of elements we can use it to construct a dequeue:

```
bag([1, 2, 3, 4, 5])$Dequeue(INT)
[1, 2, 3, 4, 5]
```

The empty function will construct an empty dequeue of a given type:

```
b:=empty()$(Dequeue INT)
[]
```

and the empty? predicate allows us to find out if a dequeue is empty:

```
empty? b
true
```
The sample function returns a sample, empty dequeue:

```plaintext
sample()$Dequeue(INT)
[]
```

We can copy a dequeue and it does not share storage so subsequent modifications of the original dequeue will not affect the copy:

```plaintext
c:=copy a
[5,4,9]
```

The `eq?` function is only true if the lists are the same reference, so even though `c` is a copy of `a`, they are not the same:

```plaintext
eq?(a,c)
false
```

However, `a` clearly shares a reference with itself:

```plaintext
eq?(a,a)
true
```

But we can compare `a` and `c` for equality:

```plaintext
(a=c)$Boolean
true
```

and clearly `a` is equal to itself:

```plaintext
(a=a)$Boolean
true
```

and since `a` and `c` are equal, they are clearly NOT not-equal:

```plaintext
a~c
false
```

We can use the `any?` function to see if a predicate is true for any element:

```plaintext
any?(x+->(x=4),a)
true
```

or false for every element:

```plaintext
any?(x+->(x=11),a)
false
```

We can use the `every?` function to check every element satisfies a predicate:
We can count the elements that are equal to an argument of this type:

```scheme
482
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

every?(x+>(x=11),a)
false
```

or we can count against a boolean function:

```scheme
count(x+>(x>2),a)
3
```

You can also map a function over every element, returning a new dequeue:

```scheme
map(x+>x+10,a)
[15,14,19]
```

Notice that the original dequeue is unchanged:

```scheme
a
[5,4,9]
```

You can use map! to map a function over every element and change the original dequeue since map! is destructive:

```scheme
map!(x+>x+10,a)
[15,14,19]
```

Notice that the original dequeue has been changed:

```scheme
a
[15,14,19]
```

The member function can also get the element of the dequeue as a list:

```scheme
members a
[15,14,19]
```

and using member? we can test if the dequeue holds a given element:

```scheme
member?(14,a)
true
```

DistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and HomogeneousDistributedMultivariatePolynomial, which is abbreviated as HDMP, are very similar to MultivariatePolynomial except that they are represented and displayed in a non-recursive manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

The constructor DMP orders its monomials lexicographically while HDMP orders them by total order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

\[-4 z + 4 y^2 x + 16 x^2 + 1\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d2 := 2*z*y**2 + 4*x + 1

\[2 z y^2 + 4 x + 1\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d3 := 2*z*x**2 - 2*y**2 - x

\[2 z x^2 - 2 y^2 - x\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

These constructors are mostly used in Gröbner basis calculations.

groebner [d1,d2,d3]

\[
\left[ z - \frac{1568}{2745} x^6 - \frac{1264}{305} x^5 + \frac{6}{305} x^4 + \frac{182}{549} x^3 - \frac{2047}{610} x^2 - \frac{103}{2745} x - \frac{2857}{10980},
\right.

\[
y^2 + \frac{112}{2745} x^6 - \frac{84}{305} x^5 - \frac{1264}{305} x^4 - \frac{13}{549} x^3 + \frac{84}{305} x^2 + \frac{1772}{2745} x + \frac{2}{2745},
\]

\[
x^7 + \frac{29}{4} x^6 - \frac{17}{16} x^4 - \frac{11}{8} x^3 + \frac{1}{32} x^2 + \frac{15}{16} x + \frac{1}{4}\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

n1 := d1

\[ 4 y^2 x + 16 x^2 - 4 z + 1 \]

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)

n2 := d2

\[ 2 z y^2 + 4 x + 1 \]

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)

n3 := d3

\[ 2 z x^2 - 2 y^2 - x \]

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)

Note that we get a different Gröbner basis when we use the HDMP polynomials, as expected.

groebner [n1,n2,n3]
\[
\begin{align*}
&\left[ y^4 + 2 x^3 - \frac{3}{2} x^2 + \frac{1}{2} \ z - \frac{1}{8}, \\
&\quad x^4 + \frac{29}{4} x^3 - \frac{1}{8} y^2 - \frac{7}{4} z x - \frac{9}{16} x - \frac{1}{4}, \\
&\quad z y^2 + 2 x + \frac{1}{2}, \\
&\quad y^2 x + 4 x^2 - z + \frac{1}{4}, \\
&\quad z x^2 - y^2 - \frac{1}{2} x, \\
&\quad z^2 - 4 y^2 + 2 x^2 - \frac{1}{4} z - \frac{3}{2} x \right] \\
\end{align*}
\]

Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that as well as accepting a list of variables to specify the variable ordering, it also takes a predicate on exponent vectors to specify the term ordering. With this polynomial type the user can experiment with the effect of using completely arbitrary term orderings. This flexibility is mostly important for algorithms such as Gröbner basis calculations which can be very sensitive to term ordering.

For more information on related topics, see section 1.8 on page 35, section 2.7 on page 82, Polynomial 9.72 on page 693, UnivariatePolynomial 9.96 on page 800, and MultivariatePolynomial 9.61 on page 666.

### 9.20 DoubleFloat

Axiom provides two kinds of floating point numbers. The domain Float (abbreviation FLOAT) implements a model of arbitrary precision floating point numbers. The domain DoubleFloat (abbreviation DFLOAT) is intended to make available hardware floating point arithmetic in Axiom. The actual model of floating point DoubleFloat that provides is system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time than hardware floating point.

The usual arithmetic and elementary functions are available for DoubleFloat. Use )show
DoubleFloat to get a list of operations or the HyperDoc browse facility to get more extensive documentation about DoubleFloat.

By default, floating point numbers that you enter into Axiom are of type Float.

\[ 2.71828 \]

\[ \text{Type: Float} \]

You must therefore tell Axiom that you want to use DoubleFloat values and operations. The following are some conservative guidelines for getting Axiom to use DoubleFloat.

To get a value of type DoubleFloat, use a target with @, ...

\[ 2.71828 @ \text{DoubleFloat} \]

\[ 2.71828 \]

\[ \text{Type: DoubleFloat} \]

a conversion, ...

\[ 2.71828 :\!:\!:\text{DoubleFloat} \]

\[ 2.71828 \]

\[ \text{Type: DoubleFloat} \]

or an assignment to a declared variable. It is more efficient if you use a target rather than an explicit or implicit conversion.

\[ \text{eApprox : DoubleFloat := 2.71828} \]

\[ 2.71828 \]

\[ \text{Type: DoubleFloat} \]

You also need to declare functions that work with DoubleFloat.

\[ \text{avg : List DoubleFloat -> DoubleFloat} \]
9.20. **DOUBLEFLOAT**

```
avg l ==
 empty? l => 0 :: DoubleFloat
 reduce(_+,l) / #l
```

Type: Void

```
avg [3.4,9.7,-6.8]
```

Compiling function avg with type List Float -> DoubleFloat

2.1

Type: DoubleFloat

Use package-calling for operations from DoubleFloat unless the arguments themselves are already of type DoubleFloat.

```
\cos(3.1415926) \cdot DoubleFloat
```

\[ -0.999999999999999 \]

Type: DoubleFloat

```
\cos(3.1415926 :: DoubleFloat)
```

\[ -0.999999999999999 \]

Type: DoubleFloat

By far, the most common usage of DoubleFloat is for functions to be graphed. For more information about Axiom’s numerical and graphical facilities, see Section section 7 on page 217, section 8.1 on page 289, and Float 9.31 on page 517.
9.21 EqTable

The EqTable domain provides tables where the keys are compared using eq?. Keys are considered equal only if they are the same instance of a structure. This is useful if the keys are themselves updatable structures. Otherwise, all operations are the same as for type Table. See Table 9.92 on page 780 for general information about tables.

The operation table is here used to create a table where the keys are lists of integers.

e: EqTable(List Integer, Integer) := table()

    table()

    Type: EqTable(List Integer,Integer)

These two lists are equal according to "=" but not according to eq?.

l1 := [1,2,3]

    [1,2,3]

    Type: List PositiveInteger

l2 := [1,2,3]

    [1,2,3]

    Type: List PositiveInteger

Because the two lists are not eq?, separate values can be stored under each.

e.l1 := 111

    111

    Type: PositiveInteger

e.l2 := 222

    222

    Type: PositiveInteger

e.l1

    111

    Type: PositiveInteger
9.22 Equation

The Equation domain provides equations as mathematical objects. These are used, for example, as the input to various solve operations.

Equations are created using the equals symbol, "$=$".

\[
eq 1 := 3x + 4y = 5
\]

\[
4y + 3x = 5
\]

Type: Equation Polynomial Integer

\[
eq 2 := 2x + 2y = 3
\]

\[
2y + 2x = 3
\]

Type: Equation Polynomial Integer

The left- and right-hand sides of an equation are accessible using the operations lhs and rhs.

\[
lhs \ \eq 1
\]

\[
4y + 3x
\]

Type: Polynomial Integer

\[
rhs \ \eq 1
\]

\[
5
\]

Type: Polynomial Integer

Arithmetic operations are supported and operate on both sides of the equation.

\[
eq 1 + \eq 2
\]

\[
6y + 5x = 8
\]

Type: Equation Polynomial Integer
eq1 * eq2

\[ 8y^2 + 14xy + 6x^2 = 15 \]

Type: Equation Polynomial Integer

2*eq2 - eq1

\[ x = 1 \]

Type: Equation Polynomial Integer

Equations may be created for any type so the arithmetic operations will be defined only when they make sense. For example, exponentiation is not defined for equations involving non-square matrices.

eq1**2

\[ 16y^2 + 24xy + 9x^2 = 25 \]

Type: Equation Polynomial Integer

Note that an equals symbol is also used to test for equality of values in certain contexts. For example, \( x+1 \) and \( y \) are unequal as polynomials.

if x+1 = y then "equal" else "unequal"

"unequal"

Type: String

eqpol := x+1 = y

\[ x + 1 = y \]

Type: Equation Polynomial Integer

If an equation is used where a Boolean value is required, then it is evaluated using the equality test from the operand type.

if eqpol then "equal" else "unequal"
If one wants a Boolean value rather than an equation, all one has to do is ask:

eqpol::Boolean

false

Type: Boolean

**9.23 EuclideanGroebnerBasisPackage**

Example to call euclideanGroebner:

\[
\begin{align*}
a1 &: \text{DMP}([y,x], \text{INT}) := (9x^2 + 5x - 3) + y(3x^2 + 2x + 1) \\
a2 &: \text{DMP}([y,x], \text{INT}) := (6x^3 - 2x^2 - 3x + 3) + y(2x^3 - x - 1) \\
a3 &: \text{DMP}([y,x], \text{INT}) := (3x^3 + 2x^2) + y(x^3 + x^2) \\
\end{align*}
\]

an := [a1, a2, a3]

euclideanGroebner(an)

This will return the weak euclidean Groebner basis set. All reductions are total reductions.

You can get more information by providing a second argument. To get the reduced critical pairs do:

\[
euclideanGroebner(an, "redcrit")
\]

You can get other information by calling:

\[
euclideanGroebner(an, "info")
\]

which returns:

\[
\begin{align*}
ci & \Rightarrow \text{Leading monomial for critpair calculation} \\
tci & \Rightarrow \text{Number of terms of polynomial i} \\
cj & \Rightarrow \text{Leading monomial for critpair calculation} \\
tcj & \Rightarrow \text{Number of terms of polynomial j} \\
c & \Rightarrow \text{Leading monomial of critpair polynomial} \\
tc & \Rightarrow \text{Number of terms of critpair polynomial} \\
rc & \Rightarrow \text{Leading monomial of redcritpair polynomial} \\
trc & \Rightarrow \text{Number of terms of redcritpair polynomial} \\
tH & \Rightarrow \text{Number of polynomials in reduction list H} \\
tD & \Rightarrow \text{Number of critpairs still to do}
\end{align*}
\]
The three argument form returns all of the information:

\[ \text{euclideanGroebner(an, "info", "redcrit")} \]

The term ordering is determined by the polynomial type used. Suggested types include

- DistributedMultivariatePolynomial
- HomogeneousDistributedMultivariatePolynomial
- GeneralDistributedMultivariatePolynomial


### 9.24 Exit

A function that does not return directly to its caller has **Exit** as its return type. The operation **error** is an example of one which does not return to its caller. Instead, it causes a return to top-level.

\[ n := 0 \]

Type: NonNegativeInteger

The function **gasp** is given return type **Exit** since it is guaranteed never to return a value to its caller.

\[
gasp(): \text{Exit} =
\]

\[
\begin{align*}
\text{free } n \\
n := n + 1 \\
\text{error } "\text{Oh no!}" 
\end{align*}
\]

Function declaration gasp : () -> Exit has been added to workspace.

Type: Void

The return type of **half** is determined by resolving the types of the two branches of the **if**.

\[
half(k) =
\]

\[
\begin{align*}
\text{if odd? } k \text{ then gasp() } \\
\text{else } k \text{ quo } 2 
\end{align*}
\]
Because `gasp` has the return type `Exit`, the type of `if` in `half` is resolved to be `Integer`.

```
half 4
```

```
Compiling function gasp with type () -> Exit
Compiling function half with type PositiveInteger -> Integer
2
Type: PositiveInteger
```

```
half 3
```

Error signalled from user code in function gasp:
  Oh no!

```
n
1
Type: NonNegativeInteger
```

For functions which return no value at all, use `Void`. Void 9.100 on page 817 for more information.

## 9.25 Expression

`Expression` is a constructor that creates domains whose objects can have very general symbolic forms. Here are some examples:

This is an object of type `Expression Integer`.

```
sin(x) + 3*cos(x)**2

\sin(x) + 3 \cos(x)^2
```

Type: Expression Integer

This is an object of type `Expression Float`.

```
tan(x) - 3.45*x
```

\[ \tan(x) - 3.45\, x \]

Type: Expression Float

This object contains symbolic function applications, sums, products, square roots, and a quotient.

\[
\frac{(\tan \sqrt{7} - \sin \sqrt{11})^2}{(4 - \cos(x - y))}
\]

\[
\frac{-\tan(\sqrt{7})^2 + 2 \sin(\sqrt{11}) \tan(\sqrt{7}) - \sin(\sqrt{11})^2}{\cos(y - x) - 4}
\]

Type: Expression Integer

As you can see, Expression actually takes an argument domain. The coefficients of the terms within the expression belong to the argument domain. Integer and Float, along with Complex Integer and Complex Float are the most common coefficient domains.

The choice of whether to use a Complex coefficient domain or not is important since Axiom can perform some simplifications on real-valued objects

\[ \log(\exp x)@Expression(Integer) \]

\[ x \]

Type: Expression Integer

... which are not valid on complex ones.

\[ \log(\exp x)@Expression(Complex\ Integer) \]

\[ \log(e^x) \]

Type: Expression Complex Integer

Many potential coefficient domains, such as AlgebraicNumber, are not usually used because Expression can subsume them.

\[ \sqrt{3 + \sqrt{2 + \sqrt{-5}}} \]

\[ \sqrt[3]{-5} + 2 + \sqrt{3} \]

Type: AlgebraicNumber
9.25. EXPRESSION

% :: Expression Integer

\[ \sqrt{\sqrt{-5} + 2 + \sqrt{3}} \]

Type: Expression Integer

Note that we sometimes talk about “an object of type Expression.” This is not really correct because we should say, for example, “an object of type Expression Integer” or “an object of type Expression Float.” By a similar abuse of language, when we refer to an “expression” in this section we will mean an object of type Expression R for some domain R.

The Axiom documentation contains many examples of the use of Expression. For the rest of this section, we’ll give you some pointers to those examples plus give you some idea of how to manipulate expressions.

It is important for you to know that Expression creates domains that have category Field. Thus you can invert any non-zero expression and you shouldn’t expect an operation like factor to give you much information. You can imagine expressions as being represented as quotients of “multivariate” polynomials where the “variables” are kernels (see Kernel 9.44 on page 562. A kernel can either be a symbol such as x or a symbolic function application like sin(x + 4). The second example is actually a nested kernel since the argument to sin contains the kernel x.

height mainKernel sin(x + 4)

2

Type: PositiveInteger

Actually, the argument to sin is an expression, and so the structure of Expression is recursive. Kernel 9.44 on page 562 demonstrates how to extract the kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable to expression. At the time of this writing, there were 262 operations with 147 distinct name in Expression Integer. For example, numer and denom extract the numerator and denominator of an expression.

\[ e := (\sin(x) - 4)^2 / (1 - 2y*\sqrt{-y}) \]

\[ \frac{-\sin(x)^2 + 8\sin(x) - 16}{2y\sqrt{-y} - 1} \]

Type: Expression Integer
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ \text{numer } e = \quad -\sin(x)^2 + 8 \sin(x) - 16 \]

Type: \text{SparseMultivariatePolynomial(Integer,Kernel Expression Integer)}

\[ \text{denom } e = \quad 2y \sqrt{-y} - 1 \]

Type: \text{SparseMultivariatePolynomial(Integer,Kernel Expression Integer)}

Use \textbf{D} to compute partial derivatives.

\[
\text{D}(e, x) = \frac{(4y \cos(x) \sin(x) - 16y \cos(x)) \sqrt{-y} - 2 \cos(x) \sin(x) + 8 \cos(x)}{4y \sqrt{-y} + 4y^3 - 1}
\]

Type: \text{Expression Integer}

See section 1.11 on page 40 for more examples of expressions and derivatives.

\[
\text{D}(e, [x, y], [1, 2]) = \frac{\left(\left(-2304y^7 + 960y^4\right) \cos(x) \sin(x) + \left(9216y^7 - 3840y^4\right) \cos(x)\right) \sqrt{-y} + \left(-960y^9 + 2160y^6 - 180y^3 - 3\right) \cos(x) \sin(x) + \left(3840y^9 - 8640y^6 + 720y^3 + 12\right) \cos(x)}{\left(256y^{12} - 1792y^9 + 1120y^6 - 112y^3 + 1\right) \sqrt{-y} - \left(1024y^{11} + 1792y^8 - 448y^5 + 16y^2\right)}
\]

Type: \text{Expression Integer}

See section 1.9 on page 36 and section 1.10 on page 38 for more examples of expressions and calculus. Differential equations involving expressions are discussed in section 8.10 on page 348. Chapter 8 has many advanced examples: see section 8.8 on page 324 for a discussion of Axiom’s integration facilities.

When an expression involves no “symbol kernels” (for example, \(x\)), it may be possible to numerically evaluate the expression.

If you suspect the evaluation will create a complex number, use \textbf{complexNumeric}. 
9.25. EXPRESSION

\[ \text{complexNumeric}(\cos(2 - 3\times \%i)) \]

\[-4.1896256909 \, 688072301 + 9.1092278937 \, 55336598 \, \%i \]

Type: Complex Float

If you know it will be real, use \text{n\^um\^eric}.

\[ \text{numeric}(\tan 3.8) \]

\[ 0.7735560905 \, 0312607286 \]

Type: Float

The \text{n\^um\^eric} operation will display an error message if the evaluation yields a value with an non-zero imaginary part. Both of these operations have an optional second argument \( n \) which specifies that the accuracy of the approximation be up to \( n \) decimal places.

When an expression involves no “symbolic application” kernels, it may be possible to convert it a polynomial or rational function in the variables that are present.

\[ e2 := \cos(x^2 - y + 3) \]

\[ \cos(y - x^2 - 3) \]

Type: Expression Integer

\[ e3 := \text{asin}(e2) - \%pi/2 \]

\[ -y + x^2 + 3 \]

Type: Expression Integer

\[ e3 :: \text{Polynomial Integer} \]

\[ -y + x^2 + 3 \]

Type: Polynomial Integer

This also works for the polynomial types where specific variables and their ordering are given.
e3 :: DMP([x, y], Integer)

\[ x^2 - y + 3 \]

Type: DistributedMultivariatePolynomial([x,y],Integer)

Finally, a certain amount of simplication takes place as expressions are constructed.

\( \sin \frac{\pi}{2} \)

\[ 0 \]

Type: Expression Integer

\( \cos(\frac{\pi}{4}) \)

\[ \frac{\sqrt{2}}{2} \]

Type: Expression Integer

For simplications that involve multiple terms of the expression, use \texttt{simplify}.

\( \tan(x)^6 + 3\tan(x)^4 + 3\tan(x)^2 + 1 \)

\[ \tan(x)^6 + 3\tan(x)^4 + 3\tan(x)^2 + 1 \]

Type: Expression Integer

\texttt{simplify} \ %

\[ \frac{1}{\cos(x)^n} \]

Type: Expression Integer

See section 6.21 on page 208 for examples of how to write your own rewrite rules for expressions.
Factored creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like \(^*\) (multiplication) and \(\text{gcd}\) are relatively easy to do. Others, such as addition, require somewhat more work, and the result may not be completely factored unless the argument domain \(\mathbb{R}\) provides a \text{factor} operation. Each object consists of a unit and a list of factors, where each factor consists of a member of \(\mathbb{R}\) (the base), an exponent, and a flag indicating what is known about the base. A flag may be one of “nil”, “sqfr”, “irred” or “prime”, which mean that nothing is known about the base, it is square-free, it is irreducible, or it is prime, respectively. The current restriction to factored objects of integral domains allows simplification to be performed without worrying about multiplication order.

### Decomposing Factored Objects

In this section we will work with a factored integer.

\[
g := \text{factor}(4312)
\]

\[
2^3 7^2 11
\]

Type: Factored Integer

Let’s begin by decomposing \(g\) into pieces. The only possible units for integers are 1 and \(-1\).

\[
\text{unit}(g)
\]

1

Type: PositiveInteger

There are three factors.

\[
\text{numberOfFactors}(g)
\]

3

Type: PositiveInteger

We can make a list of the bases, …

\[
[\text{nthFactor}(g,i) \text{ for } i \text{ in } 1..\text{numberOfFactors}(g)]
\]

\[\{2, 7, 11\}\]
and the exponents, ... 

\[ \text{[nthExponent}(g,i) \text{ for } i \text{ in } 1..\text{numberOfFactors}(g)] \]

\[ [3, 2, 1] \]

Type: List Integer

and the flags. You can see that all the bases (factors) are prime.

\[ \text{[nthFlag}(g,i) \text{ for } i \text{ in } 1..\text{numberOfFactors}(g)] \]

\[ ["prime", "prime", "prime"] \]

Type: List Union("nil", "sqfr", "irred", "prime")

A useful operation for pulling apart a factored object into a list of records of the components is \text{factorList}.

\text{factorList}(g)

\[ \text{[[flg} = "prime", fctr = 2, xpnt = 3], }\]
\[ \text{[flg} = "prime", fctr = 7, xpnt = 2], }\]
\[ \text{[flg} = "prime", fctr = 11, xpnt = 1]] \]

Type: List Record(flg: Union("nil", "sqfr", "irred", "prime"), fctr: Integer, xpnt: Integer)

If you don’t care about the flags, use \text{factors}.

\text{factors}(g)

\[ \text{[[factor} = 2, exponent = 3], }\]
\[ \text{[factor} = 7, exponent = 2], }\]
\[ \text{[factor} = 11, exponent = 1]] \]

Type: List Record(factor: Integer, exponent: Integer)
Neither of these operations returns the unit.

```
first(%).factor
```

```
2
Type: PositiveInteger
```

### Expanding Factored Objects

Recall that we are working with this factored integer.

```
g := factor(4312)
```

```
23 72 11
Type: Factored Integer
```

To multiply out the factors with their multiplicities, use `expand`.

```
expand(g)
```

```
4312
Type: PositiveInteger
```

If you would like, say, the distinct factors multiplied together but with multiplicity one, you could do it this way.

```
reduce(*,[t.factor for t in factors(g)])
```

```
154
Type: PositiveInteger
```

### Arithmetic with Factored Objects

We’re still working with this factored integer.

```
g := factor(4312)
```
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ 2^3 7^2 11 \]

Type: Factored Integer

We'll also define this factored integer.

\[ f := \text{factor}(246960) \]

\[ 2^4 3^2 5^3 \]

Type: Factored Integer

Operations involving multiplication and division are particularly easy with factored objects.

\[ f * g \]

\[ 2^7 3^2 5^5 11 \]

Type: Factored Integer

\[ f^{**}500 \]

\[ 2^{2000} 3^{1000} 5^{500} 7^{1500} \]

Type: Factored Integer

\[ \gcd(f,g) \]

\[ 2^3 7^2 \]

Type: Factored Integer

\[ \text{lcm}(f,g) \]

\[ 2^8 3^2 5^3 11 \]

Type: Factored Integer

If we use addition and subtraction things can slow down because we may need to compute greatest common divisors.
9.26. FACTORED

\[ f + g = 2^3 \cdot 7^2 \cdot 641 \]

Type: Factored Integer

\[ f - g = 2^3 \cdot 7^2 \cdot 619 \]

Type: Factored Integer

Test for equality with 0 and 1 by using `zero?` and `one?`, respectively.

`zero?(factor(0))`

true

Type: Boolean

`zero?(g)`

false

Type: Boolean

`one?(factor(1))`

true

Type: Boolean

`one?(f)`

false

Type: Boolean

Another way to get the zero and one factored objects is to use package calling (see section 2.9 on page 89).
Creating New Factored Objects

The map operation is used to iterate across the unit and bases of a factored object. See FactoredFunctions2 9.27 on page 506 for a discussion of map.

The following four operations take a base and an exponent and create a factored object. They differ in handling the flag component.

\texttt{nilFactor(24,2)}

\[24^2\]

Type: Factored Integer

This factor has no associated information.

\texttt{nthFlag(\%,1)}

"nil"

Type: Union("nil",...)

This factor is asserted to be square-free.

\texttt{sqfrFactor(30,2)}

\[30^2\]

Type: Factored Integer
This factor is asserted to be irreducible.

\textit{irreducibleFactor}(13,10)

\[ 13^{10} \]

Type: Factored Integer

This factor is asserted to be prime.

\textit{primeFactor}(11,5)

\[ 11^5 \]

Type: Factored Integer

A partial inverse to \textit{factorList} is \textit{makeFR}.

\texttt{h := factor(-720)}

\[ -2^4 \cdot 3^2 \cdot 5 \]

Type: Factored Integer

The first argument is the unit and the second is a list of records as returned by \textit{factorList}.

\texttt{h - makeFR(unit(h),factorList(h))}

\[ 0 \]

Type: Factored Integer

\textbf{Factored Objects with Variables}

Some of the operations available for polynomials are also available for factored polynomials.

\texttt{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63}

\[ (4 \, x^2 - 12 \, x + 9) \, y^2 + (4 \, x^2 - 12 \, x + 9) \, y + 28 \, x^2 - 84 \, x + 63 \]

Type: Polynomial Integer
fp := factor(p)

\[
(2x - 3)^2 (y^2 + y + 7)
\]

Type: Factored Polynomial Integer

You can differentiate with respect to a variable.

D(p,x)

\[
(8x - 12)y^2 + (8x - 12)y + 56x - 84
\]

Type: Polynomial Integer

D(fp,x)

\[
4 (2x - 3) (y^2 + y + 7)
\]

Type: Factored Polynomial Integer

numberOfFactors(%)

3

Type: PositiveInteger

9.27 FactoredFunctions2

The FactoredFunctions2 package implements one operation, map, for applying an operation to every base in a factored object and to the unit.

double(x) == x + x

Type: Void

f := factor(720)

\[
2^4 \cdot 3^2 \cdot 5
\]
Actually, the \texttt{map} operation used in this example comes from \texttt{Factored} itself, since \texttt{double} takes an integer argument and returns an integer result.

\begin{verbatim}
map(double,f)
\end{verbatim}

\begin{verbatim}
2 4^4 6^2 10
\end{verbatim}

If we want to use an operation that returns an object that has a type different from the operation’s argument, the \texttt{map} in \texttt{Factored} cannot be used and we use the one in \texttt{FactoredFunctions2}.

\begin{verbatim}
makePoly(b) == x + b
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

In fact, the “2” in the name of the package means that we might be using factored objects of two different types.

\begin{verbatim}
g := map(makePoly,f)
\end{verbatim}

\begin{verbatim}
(x + 1) (x + 2)^4 (x + 3)^2 (x + 5)
\end{verbatim}

\begin{verbatim}
Type: Factored Polynomial Integer
\end{verbatim}

It is important to note that both versions of \texttt{map} destroy any information known about the bases (the fact that they are prime, for instance).

The flags for each base are set to “nil” in the object returned by \texttt{map}.

\begin{verbatim}
nthFlag(g,1)
\end{verbatim}

\begin{verbatim}
"nil"
\end{verbatim}

\begin{verbatim}
Type: Union("nil",...)
\end{verbatim}

For more information about factored objects and their use, see \texttt{Factored} \texttt{9.26} on page \texttt{499} and section \texttt{8.13} on page \texttt{386}. 


9.28 File

The File(S) domain provides a basic interface to read and write values of type S in files. Before working with a file, it must be made accessible to Axiom with the open operation.

```axiom
ifile:File List Integer:=open("/tmp/jazz1","output")

"/tmp/jazz1"

Type: File List Integer
```

The open function arguments are a FileName and a String specifying the mode. If a full pathname is not specified, the current default directory is assumed. The mode must be one of "input" or "output". If it is not specified, "input" is assumed. Once the file has been opened, you can read or write data.

The operations read and write are provided.

```axiom
write!(ifile, [-1,2,3])

[-1,2,3]

Type: List Integer
```

```axiom
write!(ifile, [10,-10,0,111])

[10,-10,0,111]

Type: List Integer
```

```axiom
write!(ifile, [7])

[7]

Type: List Integer
```

You can change from writing to reading (or vice versa) by reopening a file.

```axiom
reopen!(ifile, "input")

"/tmp/jazz1"
```
read! ifile

[-1, 2, 3]

Type: List Integer

read! ifile

[10, -10, 0, 111]

Type: List Integer

The read operation can cause an error if one tries to read more data than is in the file. To guard against this possibility the readIfCan operation should be used.

readIfCan! ifile

[7]

Type: Union(List Integer, ...)

readIfCan! ifile

"failed"

Type: Union("failed", ...)

You can find the current mode of the file, and the file’s name.

iomode ifile

"input"

Type: String

name ifile

="/tmp/jazz1"
When you are finished with a file, you should close it.

```
close! ifile
"/tmp/jazz1"
```

A limitation of the underlying LISP system is that not all values can be represented in a file. In particular, delayed values containing compiled functions cannot be saved.


### 9.29 FileName

The `FileName` domain provides an interface to the computer’s file system. Functions are provided to manipulate file names and to test properties of files.

The simplest way to use file names in the Axiom interpreter is to rely on conversion to and from strings. The syntax of these strings depends on the operating system.

```
fn: FileName
```

On Linux, this is a proper file syntax:

```
fn := "/tmp/fname.input"
"/tmp/fname.input"
```

Although it is very convenient to be able to use string notation for file names in the interpreter, it is desirable to have a portable way of creating and manipulating file names from within programs.

A measure of portability is obtained by considering a file name to consist of three parts: the `directory`, the `name`, and the `extension`. 
directory fn

"/tmp"

Type: String

name fn

"fname"

Type: String

extension fn

"input"

Type: String

The meaning of these three parts depends on the operating system. For example, on CMS the file “SPADPROF INPUT M” would have directory “M”, name “SPADPROF” and extension “INPUT”.

It is possible to create a filename from its parts.

\[
\text{fn := filename("/u/smwatt/work", "fname", "input")}
\]

"/u/smwatt/work/fname.input"

Type: FileName

When writing programs, it is helpful to refer to directories via variables.

\[
\text{objdir := "/tmp"}
\]

"/tmp"

Type: String

\[
\text{fn := filename(objdir, "table", "spad")}
\]

"/tmp/table.spad"
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

If the directory or the extension is given as an empty string, then a default is used. On AIX, the defaults are the current directory and no extension.

```haskell
fn := filename("", "letter", "")

"letter"
```

Three tests provide information about names in the file system.

The `exists?` operation tests whether the named file exists.

```haskell
exists? "/etc/passwd"

true
```

The operation `readable?` tells whether the named file can be read. If the file does not exist, then it cannot be read.

```haskell
readable? "/etc/passwd"

true
```

```haskell
readable? "/etc/security/passwd"

false
```

```haskell
readable? "/ect/passwd"

false
```
Likewise, the operation `writable?` tells whether the named file can be written. If the file does not exist, the test is determined by the properties of the directory.

```plaintext
writable? " /etc/passwd"

false

Type: Boolean

writable? " /dev/null"

ture

Type: Boolean

writable? " /etc/DoesNotExist"

false

Type: Boolean

writable? " /tmp/DoesNotExist"

ture

Type: Boolean
```

The `new` operation constructs the name of a new writable file. The argument sequence is the same as for `filename`, except that the name part is actually a prefix for a constructed unique name.

The resulting file is in the specified directory with the given extension, and the same defaults are used.

```plaintext
fn := new(objdir, "xxx", "yy")

"/tmp/xxx82404.yy"

Type: FileName
```
9.30 FlexibleArray

The **FlexibleArray** domain constructor creates one-dimensional arrays of elements of the same type. Flexible arrays are an attempt to provide a data type that has the best features of both one-dimensional arrays (fast, random access to elements) and lists (flexibility). They are implemented by a fixed block of storage. When necessary for expansion, a new, larger block of storage is allocated and the elements from the old storage area are copied into the new block.

Flexible arrays have available most of the operations provided by **OneDimensionalArray** (see **OneDimensionalArray 9.65** on page 674 and **Vector 9.99** on page 815). Since flexible arrays are also of category **ExtensibleLinearAggregate**, they have operations `concat!`, `delete!`, `insert!`, `merge!`, `remove!`, `removeDuplicates!`, and `select!`. In addition, the operations `physicalLength` and `physicalLength!` provide user-control over expansion and contraction.

A convenient way to create a flexible array is to apply the operation `flexibleArray` to a list of values.

```lisp
flexibleArray [i for i in 1..6]
```

```
[1, 2, 3, 4, 5, 6]
```

Type: FlexibleArray PositiveInteger

Create a flexible array of six zeroes.

```lisp
f : FARRAY INT := new(6,0)
```

```
[0, 0, 0, 0, 0, 0]
```

Type: FlexibleArray Integer

For \(i = 1 \ldots 6\) set the \(i\)-th element to \(i\). Display \(f\).

```lisp
for i in 1..6 repeat f.i := i; f
```

```
[1, 2, 3, 4, 5, 6]
```

Type: FlexibleArray Integer

Initially, the physical length is the same as the number of elements.

```lisp
physicalLength f
```
Add an element to the end of f.

\( \text{concat!}(f, 11) \)

\[ [1, 2, 3, 4, 5, 6, 11] \]

Type: FlexibleArray Integer

See that its physical length has grown.

\( \text{physicalLength } f \)

10

Type: PositiveInteger

Make f grow to have room for 15 elements.

\( \text{physicalLength!}(f, 15) \)

\[ [1, 2, 3, 4, 5, 6, 11] \]

Type: FlexibleArray Integer

Concatenate the elements of f to itself. The physical length allows room for three more values at the end.

\( \text{concat!}(f, f) \)

\[ [1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11] \]

Type: FlexibleArray Integer

Use insert! to add an element to the front of a flexible array.

\( \text{insert!}(22, f, 1) \)

\[ [22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11] \]
Create a second flexible array from \( f \) consisting of the elements from index 10 forward.

\[
g := f(10..)
\]

\[
[2, 3, 4, 5, 6, 11]
\]

Insert this array at the front of \( f \).

\[
\text{insert!(} g, f, 1 \text{)}
\]

\[
[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]
\]

Merge the flexible array \( f \) into \( g \) after sorting each in place.

\[
\text{merge!(} \text{sort!} f, \text{sort!} g \text{)}
\]

\[
[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11, 11, 11, 11, 22]
\]

Remove duplicates in place.

\[
\text{removeDuplicates!} f
\]

\[
[1, 2, 3, 4, 5, 6, 11, 22]
\]

Remove all odd integers.

\[
\text{select!(} i \mapsto \text{even?} i, f \text{)}
\]

\[
[2, 4, 6, 22]
\]
All these operations have shrunk the physical length of \( f \).

\[
\text{physicalLength } f
\]

\[
8
\]

Type: PositiveInteger

To force Axiom not to shrink flexible arrays call the `shrinkable` operation with the argument `false`. You must package call this operation. The previous value is returned.

\[
\text{shrinkable(}false\text{)}$\text{FlexibleArray(}Integer\text{)}$
\]

\[
\text{true}
\]

Type: Boolean

### 9.31 Float

Axiom provides two kinds of floating point numbers. The domain `Float` (abbreviation `FLOAT`) implements a model of arbitrary precision floating point numbers. The domain `DoubleFloat` (abbreviation `DFLOAT`) is intended to make available hardware floating point arithmetic in Axiom. The actual model of floating point that `DoubleFloat` provides is system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time than hardware floating point.

For more information about Axiom’s numeric and graphic facilities, see section 7 on page 217, section 8.1 on page 289, and `DoubleFloat 9.20` on page 485.

### Introduction to Float

Scientific notation is supported for input and output of floating point numbers. A floating point number is written as a string of digits containing a decimal point optionally followed by the letter “E”, and then the exponent.

We begin by doing some calculations using arbitrary precision floats. The default precision is twenty decimal digits.

\[
1.234
\]
1.234

Type: Float

A decimal base for the exponent is assumed, so the number 1.234E2 denotes $1.234 \cdot 10^2$.

1.234E2

123.4

Type: Float

The normal arithmetic operations are available for floating point numbers.

\[ \text{sqrt}(1.2 + 2.3 / 3.4 ** 4.5) \]

1.0996972790 671286226

Type: Float

**Conversion Functions**

You can use conversion (section 2.7 on page 82) to go back and forth between `Integer`, `Fraction Integer` and `Float`, as appropriate.

\[ i := 3 :: \text{Float} \]

3.0

Type: Float

\[ i :: \text{Integer} \]

3

Type: Integer

\[ i :: \text{Fraction Integer} \]

3
9.3.1. FLOAT

Since you are explicitly asking for a conversion, you must take responsibility for any loss of exactness.

\[ r := \frac{3}{7} :: \text{Float} \]

\[ 0.4285714285\ 7142857143 \]

\[ r :: \text{Fraction Integer} \]

\[ \frac{3}{7} \]

\[ \text{Type: Fraction Integer} \]

This conversion cannot be performed: use \texttt{truncate} or \texttt{round} if that is what you intend.

\[ r :: \text{Integer} \]

\[ \text{Cannot convert from type Float to Integer for value} \]
\[ 0.4285714285\ 7142857143 \]

The operations \texttt{truncate} and \texttt{round} truncate \ldots

\texttt{truncate 3.6}

\[ 3.0 \]

\[ \text{Type: Float} \]

and round to the nearest integral \texttt{Float} respectively.

\texttt{round 3.6}

\[ 4.0 \]

\[ \text{Type: Float} \]
\begin{verbatim}
trunc(-3.6)

-3.0

Type: Float

round(-3.6)

-4.0

Type: Float

The operation \texttt{fractionPart} computes the fractional part of \(x\), that is, \(x - \texttt{truncate } x\).

\texttt{fractionPart 3.6}

0.6

Type: Float

The operation \texttt{digits} allows the user to set the precision. It returns the previous value it was using.

\texttt{digits 40}

20

Type: PositiveInteger

\texttt{sqrt 0.2}

0.4472135954 9995793928 1834733746 2552470881

Type: Float

\texttt{pi()$Float}

3.1415926535 8979323846 2643383279 502884197

Type: Float
\end{verbatim}
The precision is only limited by the computer memory available. Calculations at 500 or more
digits of precision are not difficult.

digits 500

Type: PositiveInteger

pi()$Float

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944
5923078164 0628620899 8628034825 3421170679 8214808651 3282306647
0938446095 5058223172 5359408128 4811174502 8410270193 8521105559
6446229489 5493038196 4428810975 6659334461 2847564823 3786783165
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 91713536436 7892590360
0113305305 4882046652 1384146951 9415116094 3305727036 5759591953
0921861173 8193261179 31051158548 0744623799 6274956735 1885752724
8912279381 830119491

Type: Float

Reset digits to its default value.

digits 20

Type: PositiveInteger

Numbers of type Float are represented as a record of two integers, namely, the mantissa and
the exponent where the base of the exponent is binary. That is, the floating point number
(m,e) represents the number m \cdot 2^e. A consequence of using a binary base is that decimal
numbers can not, in general, be represented exactly.

### Output Functions

A number of operations exist for specifying how numbers of type Float are to be displayed.
By default, spaces are inserted every ten digits in the output for readability.\(^3\)

Output spacing can be modified with the outputSpacing operation. This inserts no spaces
and then displays the value of x.

\(^3\)Note that you cannot include spaces in the input form of a floating point number, though you can use
underscores.
outputSpacing 0; x := sqrt 0.2

0.4472135954995793928
Type: Float

Issue this to have the spaces inserted every 5 digits.

outputSpacing 5; x

0.44721 35954 99957 93928
Type: Float

By default, the system displays floats in either fixed format or scientific format, depending on the magnitude of the number.

y := x/10**10

0.44721 35954 99957 93928 E -10
Type: Float

A particular format may be requested with the operations outputFloating and outputFixed.

outputFloating(); x

0.4472135949995793928 E 0
Type: Float

outputFixed(); y

0.00000 00000 44721 35954 99957 93928
Type: Float

Additionally, you can ask for n digits to be displayed after the decimal point.

outputFloating 2; y
0.45 E - 10

Type: Float

outputFixed 2; x

0.45

Type: Float

This resets the output printing to the default behavior.

outputGeneral()

Type: Void

An Example: Determinant of a Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert matrix. The (i,j)-th entry of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using rational numbers to obtain the exact result.

```
a: Matrix Fraction Integer := matrix [[1/(i+j+1) for j in 0..9] for i in 0..9]
```

This version of \texttt{determinant} uses Gaussian elimination.

```
d:= determinant a
```
Now use hardware floats. Note that a semicolon (;) is used to prevent the display of the matrix.

\[ b: \text{Matrix DoubleFloat} := \text{matrix} \left[ \left[ \frac{1}{i+j+1} \text{DoubleFloat} \right] \text{for} j \text{ in} 0..9 \right] \text{for} i \text{ in} 0..9; \]

The result given by hardware floats is correct only to four significant digits of precision. In the jargon of numerical analysis, the Hilbert matrix is said to be “ill-conditioned.”

\[ \text{determinant } b \]

\[ 2.1643677945721411e-53 \]

Now repeat the computation at a higher precision using \text{Float}.

\[ \text{digits 40} \]

\[ c: \text{Matrix Float} := \text{matrix} \left[ \left[ \frac{1}{i+j+1} \text{Float} \right] \text{for} j \text{ in} 0..9 \right] \text{for} i \text{ in} 0..9; \]
9.32. FRACTION

\text{determinant c}

\begin{align*}
0.21641 \ 79226 \ 43149 \ 18690 \ 60594 \ 98362 \ 26174 \ 36159 \ E \ - \ 52
\end{align*}

\text{Type: Float}

Reset \text{digits} to its default value.

digits 20

\begin{align*}
40
\end{align*}

\text{Type: PositiveInteger}

\section*{9.32 Fraction}

The \text{Fraction} domain implements quotients. The elements must belong to a domain of category \text{IntegralDomain}: multiplication must be commutative and the product of two non-zero elements must not be zero. This allows you to make fractions of most things you would think of, but don’t expect to create a fraction of two matrices! The abbreviation for \text{Fraction} is \text{FRAC}.

Use “/” to create a fraction.

\begin{align*}
a := \frac{11}{12}
\end{align*}

\begin{align*}
\frac{11}{12}
\end{align*}

\text{Type: Fraction Integer}

\begin{align*}
b := \frac{23}{24}
\end{align*}

\begin{align*}
\frac{23}{24}
\end{align*}

\text{Type: Fraction Integer}

The standard arithmetic operations are available.

\begin{align*}
3 - a*b**2 + a + b/a
\end{align*}
526  CHAPTER 9.  SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\frac{313271}{76032}
\]

Type: Fraction Integer

Extract the numerator and denominator by using \texttt{numer} and \texttt{denom}, respectively.

\texttt{numer(a)}

11

Type: PositiveInteger

\texttt{denom(b)}

24

Type: PositiveInteger

Operations like \texttt{max}, \texttt{min}, \texttt{negative?}, \texttt{positive?} and \texttt{zero?} are all available if they are provided for the numerators and denominators. See \texttt{Integer 9.41} on page 545 for examples.

Don’t expect a useful answer from \texttt{factor}, \texttt{gcd} or \texttt{lcm} if you apply them to fractions.

\[
r := \frac{x^2 + 2x + 1}{x^2 - 2x + 1}
\]

\[
\frac{x^2 + 2x + 1}{x^2 - 2x + 1}
\]

Type: Fraction Polynomial Integer

Since all non-zero fractions are invertible, these operations have trivial definitions.

\texttt{factor(r)}

\[
\frac{x^2 + 2x + 1}{x^2 - 2x + 1}
\]

Type: Factored Fraction Polynomial Integer

Use \texttt{map} to apply \texttt{factor} to the numerator and denominator, which is probably what you mean.

\texttt{map(factor,r)}
\[ \frac{(x + 1)^2}{(x - 1)^2} \]

Type: Fraction Factored Polynomial Integer

Other forms of fractions are available. Use `continuedFraction` to create a continued fraction.

\[ \text{continuedFraction}(7/12) \]

\[ \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2} + \frac{1}{2}}} } \]

Type: ContinuedFraction Integer

Use `partialFraction` to create a partial fraction. See `continuedFraction` 9.14 on page 450 and `PartialFraction` 9.69 on page 689 for additional information and examples.

\[ \text{partialFraction}(7,12) \]

\[ 1 - \frac{3}{2} + \frac{1}{3} \]

Type: PartialFraction Integer

Use conversion to create alternative views of fractions with objects moved in and out of the numerator and denominator.

\[ g := \frac{2/3 + 4/5*\text{i}}{5} \]

\[ \frac{2}{3} + \frac{4}{5} \text{i} \]

Type: Complex Fraction Integer

Conversion is discussed in detail in section 2.7 on page 82.

\[ g :: \text{FRAC COMPLEX INT} \]

\[ \frac{10 + 12 \text{i}}{15} \]

Type: Fraction Complex Integer
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.33 FullPartialFractionExpansion

The domain \texttt{FullPartialFractionExpansion} implements factor-free conversion of quotients to full partial fractions.

Our examples will all involve quotients of univariate polynomials with rational number coefficients.

\texttt{Fx := FRAC UP(x, FRAC INT)}

\texttt{Fraction UnivariatePolynomial(x,Fraction Integer)}

\texttt{Type: Domain}

Here is a simple-looking rational function.

\texttt{f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)}

\[
\frac{36}{x^5 - 2x^4 - 2x^3 + 4x^2 + x - 2}
\]

\texttt{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

We use \texttt{fullPartialFraction} to convert it to an object of type \texttt{FullPartialFractionExpansion}.

\texttt{g := fullPartialFraction f}

\[
\frac{4}{x-2} - \frac{4}{x+1} + \sum_{%A^2-1 = 0} \frac{-3 \%A - 6}{(x-%A)^2}
\]

\texttt{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

Use a coercion to change it back into a quotient.

\texttt{g :: Fx}

\[
\frac{36}{x^5 - 2x^4 - 2x^3 + 4x^2 + x - 2}
\]

\texttt{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

Full partial fractions differentiate faster than rational functions.
9.33. FULLPARTIALFRACTIONEXPANSION

\[ g_5 := \text{D}(g, 5) \]

\[ -\frac{480}{(x - 2)^6} + \frac{480}{(x + 1)^6} + \sum_{A^2 - 1} \frac{2160 A + 4320}{(x - A)^2} = 0 \]

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x, Fraction Integer))

\[ f_5 := \text{D}(f, 5) \]

\[ \begin{align*}
& (-544320 x^{10} + 4354560 x^9 - 14696640 x^8 + 28615680 x^7 - \\
& 40085280 x^6 + 46656000 x^5 - 39411360 x^4 + 18247680 x^3 - \\
& 5870880 x^2 + 3317760 x + 246240) \\
& (x^{20} - 12 x^{19} + 53 x^{18} - 76 x^{17} - 159 x^{16} + 676 x^{15} - 391 x^{14} - \\
& 1596 x^{13} + 2527 x^{12} + 1148 x^{11} - 4977 x^{10} + 1372 x^9 + \\
& 4907 x^8 - 3444 x^7 - 2381 x^6 + 2924 x^5 + 276 x^4 - \\
& 1184 x^3 + 208 x^2 + 192 x - 64)
\end{align*} \]

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

We can check that the two forms represent the same function.

\[ g_5::\text{Fx} - f_5 \]

\[ 0 \]

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

Here are some examples that are more complicated.

\[ f : \text{Fx} := (x^{*5} * (x-1)) / ((x^{*2} + x + 1)^{*2} * (x-2)^{*3}) \]

\[ \frac{x^6 - x^5}{x^7 - 4 x^6 + 3 x^5 + 9 x^3 - 6 x^2 - 4 x - 8} \]

Type: Fraction UnivariatePolynomial(x, Fraction Integer)
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ \frac{1952}{x - 2} + \frac{464}{(x - 2)^2} + \frac{32}{(x - 2)^3} + \sum \frac{-179}{2401} \%A + \frac{135}{2401} \]

\[ \sum \frac{37}{1029} \%A + \frac{20}{1029} \]

\[ \%A^2 + \%A + 1 = 0 \]

**Type:** FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x, Fraction Integer))

\[ g := \text{fullPartialFraction } f \]

\[ \frac{1952}{x - 2} + \frac{464}{(x - 2)^2} + \frac{32}{(x - 2)^3} + \sum \frac{-179}{2401} \%A + \frac{135}{2401} \]

\[ \sum \frac{37}{1029} \%A + \frac{20}{1029} \]

\[ \%A^2 + \%A + 1 = 0 \]

**Type:** Fraction UnivariatePolynomial(x, Fraction Integer)

\[ g :: Fx - f \]

\[ 0 \]

**Type:** Fraction UnivariatePolynomial(x, Fraction Integer)

\[ f : Fx := (2*x**7-7*x**5+26*x**3+8*x) / (x**8-5*x**6+6*x**4+4*x**2-8) \]

\[ \frac{2 x^7 - 7 x^5 + 26 x^3 + 8 x}{x^8 - 5 x^6 + 6 x^4 + 4 x^2 - 8} \]

**Type:** Fraction UnivariatePolynomial(x, Fraction Integer)

\[ g := \text{fullPartialFraction } f \]

\[ \sum \frac{\frac{1}{2}}{x - \%A} \]

\[ \sum \frac{\frac{1}{2}}{(x - \%A)^3} \]

\[ \%A^2 + 1 = 0 \]
9.33. FULLPARTIALFRACTIONEXPANSION

Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

f:Fx := x^3 / (x^21 + 2*x^20 + 4*x^19 + 7*x^18 + 10*x^17 + 17*x^16 + 22*x^15 + 30*x^14 + 36*x^13 + 40*x^12 + 47*x^11 + 46*x^10 + 49*x^9 + 43*x^8 + 38*x^7 + 32*x^6 + 23*x^5 + 19*x^4 + 10*x^3 + 7*x^2 + 2*x + 1)

\[
\begin{align*}
& \frac{x^3}{x^{21} + 2x^{20} + 4x^{19} + 7x^{18} + 10x^{17} + 17x^{16} + 22x^{15} + 30x^{14} + 36x^{13} + 40x^{12} + 47x^{11} + 46x^{10} + 49x^{9} + 43x^{8} + 38x^{7} + 32x^{6} + 23x^{5} + 19x^{4} + 10x^{3} + 7x^{2} + 2x + 1} \\
& = \frac{x^3}{36x^{13} + 40x^{12} + 47x^{11} + 46x^{10} + 49x^9 + 43x^8 + 38x^7 + 32x^6 + 23x^5 + 19x^4 + 10x^3 + 7x^2 + 2x + 1}
\end{align*}
\]

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f
\[ \sum \frac{\frac{1}{2} \%A}{x - \%A} + \sum \frac{\frac{1}{2} \%A - \frac{19}{27}}{x - \%A} + \sum \frac{\%A^2 + \%A + 1}{(x - \%A)^2} \]

\[ \sum \frac{\%A^2 + \%A + 1}{x - \%A} \]

\[ \sum \frac{\frac{1}{27} \%A - \frac{1}{27}}{(x - \%A)^2} + \]

\[ \sum \frac{\frac{1}{27} \%A}{x - \%A} \]

\[ \sum \frac{\%A^2 + \%A + 1}{(x - \%A)^3} \]

Type: \texttt{FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

This verification takes much longer than the conversion to partial fractions.

\[ g :: Fx - f \]

0

Type: \texttt{Fraction UnivariatePolynomial(x,Fraction Integer)}

For more information, see the paper: Bronstein, M and Salvy, B. “Full Partial Fraction Decomposition of Rational Functions,” Proceedings of ISSAC’93, Kiev, ACM Press. Also see PartialFraction 9.69 on page 689 for standard partial fraction decompositions.
9.34 GeneralDistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and Homogeneous-
DistributedMultivariatePolynomial, which is abbreviated as HDMP, are very similar to
MultivariatePolynomial except that they are represented and displayed in a non-recursive
manner.

\[(d_1,d_2,d_3) : \text{DMP}([z,y,x], \text{FRAC INT})\]

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders them by
total order refined by reverse lexicographic order.

\[d_1 := -4z + 4y^2x + 16x^2 + 1\]

\[4z + 4y^2x + 16x^2 + 1\]

Type: DistributedMultivariatePolynomial([z,y,x], Fraction Integer)

\[d_2 := 2zy^2 + 4x + 1\]

\[2zy^2 + 4x + 1\]

Type: DistributedMultivariatePolynomial([z,y,x], Fraction Integer)

\[d_3 := 2zx^2 - 2y^2 - x\]

\[2zx^2 - 2y^2 - x\]

Type: DistributedMultivariatePolynomial([z,y,x], Fraction Integer)

These constructors are mostly used in Groebner basis calculations.

groebner [d_1,d_2,d_3]

\[
\begin{array}{cccccccccccc}
1568 & 6 & 1264 & 5 & 6 & 4 & 182 & 3 & 2047 & 2 & 103 & 2857 \\
2745 & 305 & 305 & 549 & 610 & 2745 & 10980 \\
2 & 112 & 6 & 84 & 5 & 1264 & 4 & 13 & 3 & 84 & 2 & 1772 & 2 \\
2745 & 305 & 305 & 549 & 305 & 2745 & 2745 \\
7 & 29 & 6 & 17 & 4 & 11 & 3 & 1 & 2 & 15 & 1 \\
x + -- x + -] \\
4 & 16 & 8 & 32 & 16 & 4
\end{array}
\]
\[\begin{bmatrix}
\frac{1568}{2745} x^6 - \frac{1264}{305} x^5 + \frac{6}{305} x^4 + \frac{182}{549} x^3 - \frac{2947}{610} x^2 - \frac{103}{2745} x - \frac{2857}{10980}, \\
\frac{112}{2745} x^6 - \frac{305}{84} x^5 - \frac{1264}{305} x^4 - \frac{13}{84} x^3 + \frac{305}{1772} x^2 + \frac{2}{2745} x + \frac{2}{2745}, \\
\frac{29}{4} x^6 - \frac{17}{16} x^4 - \frac{11}{8} x^3 + \frac{1}{32} x^2 + \frac{15}{16} x + \frac{1}{4}
\end{bmatrix}\]
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)
Type: Void

\[
n1 := d1
y^2 x^2 - 4 z^2 + 1
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\]

\[
n2 := d2
2 y^2 + 4 x + 1
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\]

\[
n3 := d3
2 x^2 - 2 y^2 - x
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\]

Note that we get a different Groebner basis when we use the HDMP polynomials, as expected.

groebner [n1,n2,n3]
\[
\begin{bmatrix}
y^4 + \frac{3}{2} x^3 - \frac{3}{2} x^2 + \frac{1}{2} z - \frac{1}{8}, \\
z^2 + \frac{1}{2}, y^2 x^2 + 4 x^2 - z + \frac{1}{4}, \\
z x^2 - y^2 - \frac{1}{2} x, z^2 - 4 y^2 + 2 x^2 - \frac{1}{4} z - \frac{3}{2} x
\end{bmatrix}
\]
Type: \text{List \ GeneralDistributedMultivariatePolynomial([z,y,x], \text{Fraction Integer})}

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that as well as accepting a list of variables to specify the variable ordering, it also takes a predicate on exponent vectors to specify the term ordering. With this polynomial type the user can experiment with the effect of using completely arbitrary term orderings. This flexibility is mostly important for algorithms such as Groebner basis calculations which can be very sensitive to term ordering.

See Polynomial 9.72 on page 693
UnivariatePolynomial 9.96 on page 800
MultivariatePolynomial 9.61 on page 666
HomogeneousDistributedMultivariatePolynomial 9.40 on page 543, and
DistributedMultivariatePolynomial 9.19 on page 483

9.35 GeneralSparseTable

Sometimes when working with tables there is a natural value to use as the entry in all but a few cases. The GeneralSparseTable constructor can be used to provide any table type with a default value for entries. See Table 9.92 on page 780 for general information about tables.

Suppose we launched a fund-raising campaign to raise fifty thousand dollars. To record the contributions, we want a table with strings as keys (for the names) and integer entries (for the amount). In a data base of cash contributions, unless someone has been explicitly entered, it is reasonable to assume they have made a zero dollar contribution.

This creates a keyed access file with default entry 0.

\text{patrons: GeneralSparseTable(String, Integer, KeyedAccessFile(Integer), 0) := table();}

Type: GeneralSparseTable(String,Integer,KeyedAccessFile Integer,0)

Now \text{patrons} can be used just as any other table. Here we record two gifts.

\text{patrons."Smith" := 10500}

10500

Type: PositiveInteger

\text{patrons."Jones" := 22000}
Now let us look up the size of the contributions from Jones and Stingy.

patrons."Jones"

22000
Type: PositiveInteger

patrons."Stingy"

0
Type: NonNegativeInteger

Have we met our seventy thousand dollar goal?

reduce(+, entries patrons)

32500
Type: PositiveInteger

So the project is cancelled and we can delete the data base:

)system rm -r kaf*.sdata

9.36 GroebnerFactorizationPackage

Solving systems of polynomial equations with the Gröbner basis algorithm can often be very time consuming because, in general, the algorithm has exponential run-time. These systems, which often come from concrete applications, frequently have symmetries which are not taken advantage of by the algorithm. However, it often happens in this case that the polynomials which occur during the Gröbner calculations are reducible. Since Axiom has an excellent polynomial factorization algorithm, it is very natural to combine the Gröbner and factorization algorithms.

GroebnerFactorizationPackage exports the groebnerFactorize operation which implements a modified Gröbner basis algorithm. In this algorithm, each polynomial that is to be
put into the partial list of the basis is first factored. The remaining calculation is split into as many parts as there are irreducible factors. Call these factors $p_1, \ldots, p_n$. In the branches corresponding to $p_2, \ldots, p_n$, the factor $p_1$ can be divided out, and so on. This package also contains operations that allow you to specify the polynomials that are not zero on the common roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan $C_6H_{12}$, the six carbon atoms each sit in the center of gravity of a tetrahedron that has two hydrogen atoms and two carbon atoms at its corners. We first normalize and set the length of each edge to 1. Hence, the distances of one fixed carbon atom to each of its immediate neighbours is 1. We will denote the distances to the other three carbon atoms by $x$, $y$ and $z$.

A. Dress developed a theory to decide whether a set of points and distances between them can be realized in an $n$-dimensional space. Here, of course, we have $n = 3$.

\[
mfzn : \text{SQMATRIX}(6, \text{DMP}([x,y,z], \text{Fraction INT})) := \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & \frac{8}{3} & x & \frac{8}{3} \\
1 & 1 & 0 & \frac{8}{3} & y \\
1 & \frac{8}{3} & 1 & 0 & \frac{8}{3} \\
1 & x & \frac{8}{3} & 1 & 0 \\
1 & \frac{8}{3} & y & \frac{8}{3} & 1 \\
\end{bmatrix}
\]

Type: SquareMatrix(6, DistributedMultivariatePolynomial([x,y,z], Fraction Integer))

For the cyclohexan, the distances have to satisfy this equation.

\[
\text{eq} := \text{determinant} \text{mfzn}
\]

\[
-x^2 y^2 + \frac{22}{3} x^2 y - \frac{25}{9} x^2 + \frac{22}{3} x y^2 - \frac{388}{9} x y - \frac{250}{27} x - \frac{25}{9} y^2 - \frac{250}{27} y + \frac{14575}{81}
\]

Type: DistributedMultivariatePolynomial([x,y,z], Fraction Integer)

They also must satisfy the equations given by cyclic shifts of the indeterminates.

\[
groebnerFactorize [\text{eq}, \text{eval(eq, [x,y,z], [y,z,x])}, \text{eval(eq, [x,y,z], [z,x,y])}]
\]
\\[
\begin{bmatrix}
  x + y + z - \frac{22}{3} & x + y - \frac{22}{3} & y - \frac{22}{3} & z + \frac{121}{3} \\
  x z^2 - \frac{22}{3} & x + \frac{25}{9} & x + y z^2 - \frac{22}{3} & y z + \frac{25}{9} & y - \frac{22}{3} & z^2 + \frac{388}{9} & z + \frac{250}{27} \\
  y^2 z^2 - \frac{22}{3} & y^2 & y^2 - \frac{22}{3} & y z^2 + \frac{25}{9} & y z + \frac{250}{27} & y + 1 \\
  25 & z^2 + 250 & z & \frac{14575}{81} \\
  x + y - \frac{21994}{5625} & y^2 - \frac{21994}{675} & y + \frac{4427}{675} & z - \frac{463}{87} \\
  x^2 - \frac{1}{2} & x z - \frac{11}{2} & x - \frac{5}{6} & z + \frac{265}{18} & y - z, z^2 - \frac{38}{3} & z + \frac{265}{9} \\
  x - \frac{25}{9}, y - \frac{11}{3}, z - \frac{11}{3} \\
  x - \frac{11}{3}, y - \frac{11}{3}, z - \frac{11}{3} \\
  x + \frac{5}{3}, y + \frac{5}{3}, z + \frac{5}{3} \\
  x - \frac{19}{3}, y + \frac{5}{3}, z + \frac{5}{3}
\end{bmatrix}
\]

Type: List List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

The union of the solutions of this list is the solution of our original problem. If we impose positivity conditions, we get two relevant ideals. One ideal is zero-dimensional, namely \(x = y = z = \frac{11}{3}\), and this determines the “boat” form of the cyclohexan. The other ideal is one-dimensional, which means that we have a solution space given by one parameter. This gives the “chair” form of the cyclohexan. The parameter describes the angle of the “back of the chair.”

\texttt{groebnerFactorize} has an optional \texttt{Boolean}-valued second argument. When it is \texttt{true} partial results are displayed, since it may happen that the calculation does not terminate in a reasonable time. See the source code for \texttt{GroebnerFactorizationPackage} in \texttt{groebf.input} for more details about the algorithms used.
9.37 GroebnerPackage

Example to call groebner:

\[
\begin{align*}
\text{s1} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow 45*p + 35*s - 165*b - 36 \\
\text{s2} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow 35*p + 40*z + 25*t - 27*s \\
\text{s3} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\
\text{s4} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow -9*w + 15*p*t + 20*z*s \\
\text{s5} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow w*p + 2*z*t - 11*b**3 \\
\text{s6} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow 99*w - 11*b*s + 3*b**2 \\
\text{s7} & : \text{DMP}[w,p,z,t,s,b] \Rightarrow b**2 + 33/50*b + 2673/10000
\end{align*}
\]

\[\text{sn7} := [\text{s1}, \text{s2}, \text{s3}, \text{s4}, \text{s5}, \text{s6}, \text{s7}]\]

groebner(sn7, info)

groebner calculates a minimal Groebner Basis all reductions are TOTAL reductions

To get the reduced critical pairs do:

groebner(sn7, "redcrit")

You can get other information by calling:

groebner(sn7, "info")

which returns:

\[
\begin{align*}
\text{ci} & \Rightarrow \text{Leading monomial for critpair calculation} \\
\text{tci} & \Rightarrow \text{Number of terms of polynomial i} \\
\text{cj} & \Rightarrow \text{Leading monomial for critpair calculation} \\
\text{tcj} & \Rightarrow \text{Number of terms of polynomial j} \\
\text{c} & \Rightarrow \text{Leading monomial of critpair polynomial} \\
\text{tc} & \Rightarrow \text{Number of terms of critpair polynomial} \\
\text{rc} & \Rightarrow \text{Leading monomial of redcritpair polynomial} \\
\text{trc} & \Rightarrow \text{Number of terms of redcritpair polynomial} \\
\text{tF} & \Rightarrow \text{Number of polynomials in reduction list F} \\
\text{tD} & \Rightarrow \text{Number of critpairs still to do}
\end{align*}
\]

See GroebnerPackage 9.37 on page 539
DistributedMultivariatePolynomial 9.19 on page 483
HomogeneousDistributedMultivariatePolynomial 9.40 on page 543
EuclideanGroebnerBasisPackage 9.23 on page 491

9.38 Heap

The domain \text{Heap}(S) implements a priority queue of objects of type \text{S} such that the operation \text{extract!} removes and returns the maximum element. The implementation represents heaps
as flexible arrays (see FlexibleArray 9.30 on page 514.) The representation and algorithms give complexity of $O(\log(n))$ for insertion and extractions, and $O(n)$ for construction.

Create a heap of six elements.

\[ h := \text{heap} \{-4, 9, 11, 2, 7, -7\} \]

\[ [11, 7, 9, -4, 2, -7] \]

Type: Heap Integer

Use \text{insert!} to add an element.

\text{insert!}(3, h)

\[ [11, 7, 9, -4, 2, -7, 3] \]

Type: Heap Integer

The operation \text{extract!} removes and returns the maximum element.

\text{extract!} \ h

11

Type: PositiveInteger

The internal structure of \( h \) has been appropriately adjusted.

\( h \)

\[ [9, 7, 3, -4, 2, -7] \]

Type: Heap Integer

Now \text{extract!} elements repeatedly until none are left, collecting the elements in a list.

\[ [\text{extract!}(h) \text{ while not empty?(h)}] \]

\[ [9, 7, 3, 2, -4, -7] \]

Type: List Integer
Another way to produce the same result is by defining a `heapsort` function.

```lisp
heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))
```

Create another sample heap.

```lisp
h1 := heap [17,-4,9,-11,2,7,-7]
```

Type: Heap Integer

Apply `heapsort` to present elements in order.

```lisp
heapsort h1
```

Type: List Integer

### 9.39 HexadecimalExpansion

All rationals have repeating hexadecimal expansions. The operation `hex` returns these expansions of type `HexadecimalExpansion`. Operations to access the individual numerals of a hexadecimal expansion can be obtained by converting the value to `RadixExpansion(16)`. More examples of expansions are available in the `DecimalExpansion 9.17` on page 475, `BinaryExpansion 9.6` on page 415, and `RadixExpansion 9.75` on page 708.

This is a hexadecimal expansion of a rational number.

```lisp
r := hex(22/7)
```

```
3.249
```

Type: HexadecimalExpansion

Arithmetic is exact.

```lisp
r + hex(6/7)
```

Type: Void
The period of the expansion can be short or long . . .

\[ \text{hex}(1/i) \text{ for } i \text{ in } 350..354 \]

\[
\begin{align*}
0.00\text{BB3EE721A54D88}, & 0.00\text{BAB6561}, 0.00\text{BA2E8}, \\
0.00\text{B9A7862A0FF465879D5F}, & 0.00\text{B92143FA36F5E02E4850FE8DBD78} \\
\end{align*}
\]

Type: List HexadecimalExpansion

or very long!

\[ \text{hex}(1/1007) \]

\[
\begin{align*}
0.00\text{41149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CC} \\
A5\text{C071E40926E54E8DDDAE24196C0B2F8A0AAD60DBA57F554C8} \\
53\text{6262210C74F1} \\
\end{align*}
\]

Type: HexadecimalExpansion

These numbers are bona fide algebraic objects.

\[ p := \text{hex}(1/4)*x^2 + \text{hex}(2/3)*x + \text{hex}(4/9) \]

\[ 0.4 \: x^2 + 0.\overline{A} \: x + 0.\overline{1C} \]

Type: Polynomial HexadecimalExpansion

\[ q := D(p, x) \]

\[ 0.8 \: x + 0.\overline{A} \]

Type: Polynomial HexadecimalExpansion

\[ g := \gcd(p, q) \]

\[ x + 1.5 \]

Type: Polynomial HexadecimalExpansion
9.40 HomogeneousDistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and HomogeneousDistributedMultivariatePolynomial, which is abbreviated as HDMP, are very similar to MultivariatePolynomial except that they are represented and displayed in a non-recursive manner.

\[(d_1,d_2,d_3) : \text{DMP}([z,y,x],\text{FRAC INT})\]

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders them by total order refined by reverse lexicographic order.

\[d_1 := -4z + 4y^{**2}x + 16x^{**2} + 1\]

\[-4 z + 4 y^2 x + 16 x^2 + 1\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

\[d_2 := 2z*y^{**2} + 4x + 1\]

\[2 z y^2 + 4 x + 1\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

\[d_3 := 2z*x^{**2} - 2y^{**2} - x\]

\[2 z x^2 - 2 y^2 - x\]

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

These constructors are mostly used in Groebner basis calculations.

\[\text{groebner} \ [d_1,d_2,d_3]\]

\[
\begin{bmatrix}
1568 & -1264 & 6 & 182 & -2047 & -103 & -2857
\\
2745 & 305 & 305 & 13 & 84 & 1772 & 2
\\
y^2 & 112 & 84 & 1264 & 549 & 2745 & x
\\
2745 & 305 & 305 & 84 & 2745 & x & 2
\\
x^7 & 29 & 17 & 11 & 1 & 15 & x & 1
\\
4 & 16 & 8 & 32 & 16 & \frac{1}{4}
\\
\end{bmatrix}
\]

Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\((n1,n2,n3) : \text{HDMP([z,y,x],FRAC INT)}\)

\(\begin{align*}
\text{Type: Void} \\
n1 & := d1 \\
4 y^2 x + 16 x^2 - 4 z + 1 \\
\text{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)} \\
n2 & := d2 \\
2 z y^2 + 4 x + 1 \\
\text{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)} \\
n3 & := d3 \\
2 z x^2 - 2 y^2 - x \\
\text{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\end{align*}\)

Note that we get a different Groebner basis when we use the HDMP polynomials, as expected.
\begin{verbatim}
groebner [n1,n2,n3] \\
groebner [n1,n2,n3] \\
\begin{align*}
\left[ y^4 + 2 x^3 - \frac{3}{2} x^2 + \frac{1}{2} z - \frac{1}{8}, \quad x^4 + \frac{29}{4} x^3 - \frac{1}{8} y^2 - \frac{7}{4} z x - \frac{9}{16} x - \frac{1}{4} \\
z y^2 + 2 x + \frac{1}{2} y^2 x + 4 x^2 - z + \frac{1}{4}, \\
z x^2 - y^2 - \frac{1}{2} x, \quad z^2 - 4 y^2 + 2 x^2 - \frac{1}{4} z - \frac{3}{2} x \right] \\
\end{align*}
\end{verbatim}

\text{Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x], Fraction Integer)}
GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that as well as accepting a list of variables to specify the variable ordering, it also takes a predicate on exponent vectors to specify the term ordering. With this polynomial type the user can experiment with the effect of using completely arbitrary term orderings. This flexibility is mostly important for algorithms such as Groebner basis calculations which can be very sensitive to term ordering.


### 9.41 Integer

Axiom provides many operations for manipulating arbitrary precision integers. In this section we will show some of those that come from Integer itself plus some that are implemented in other packages. More examples of using integers are in the following sections: section 1.4 on page 12, IntegerNumberTheoryFunctions 9.43 on page 556, DecimalExpansion 9.17 on page 475, BinaryExpansion 9.6 on page 415, HexadecimalExpansion 9.39 on page 541, and RadixExpansion 9.75 on page 708.

#### Basic Functions

The size of an integer in Axiom is only limited by the amount of computer storage you have available. The usual arithmetic operations are available.

\[
2^{(5678 - 4856 + 2 \times 17)}
\]

\[
48048107704350081471815409251259243912395261398716822634738566100 \\
88084200076308293086342527091412083743074572278211496076276922026 \\
43343568752733498024953930242542523045817764949544214392905306388 \\
478705146745768073877141698859815495632935288783334250628775936
\]

Type: PositiveInteger

There are a number of ways of working with the sign of an integer. Let’s use this \(x\) as an example.

\[
x := -101
\]

\[-101
\]

Type: Integer
First of all, there is the absolute value function.

\[ \text{abs}(x) \]

101

Type: PositiveInteger

The `sign` operation returns -1 if its argument is negative, 0 if zero and 1 if positive.

\[ \text{sign}(x) \]

\[-1\]

Type: Integer

You can determine if an integer is negative in several other ways.

\[ x < 0 \]

true

Type: Boolean

\[ x \leq -1 \]

true

Type: Boolean

\[ \text{negative?}(x) \]

true

Type: Boolean

Similarly, you can find out if it is positive.

\[ x > 0 \]

false
9.41. INTEGER

Type: Boolean

x >= 1
false

Type: Boolean

positive?(x)
false

Type: Boolean

This is the recommended way of determining whether an integer is zero.

zero?(x)
false

Type: Boolean

This is the recommended way of determining whether an integer is equal to one.

one?(x)
false

Type: Boolean

This syntax is used to test equality using "=". It says that you want a Boolean (true or false) answer rather than an equation.

(x = -101)@Boolean

Use the zero? operation whenever you are testing any mathematical object for equality with zero. This is usually more efficient than using = (think of matrices: it is easier to tell if a matrix is zero by just checking term by term than constructing another “zero” matrix and comparing the two matrices term by term) and also avoids the problem that = is usually used for creating equations.
The operations `odd?` and `even?` determine whether an integer is odd or even, respectively. They each return a `Boolean` object.

`odd?(x)`

```
true
```

Type: Boolean

```
even?(x)
```

```
false
```

Type: Boolean

The operation `gcd` computes the greatest common divisor of two integers.

`gcd(56788,43688)`

```
4
```

Type: PositiveInteger

The operation `lcm` computes their least common multiple.

`lcm(56788,43688)`

```
620238536
```

Type: PositiveInteger

To determine the maximum of two integers, use `max`.

`max(678,567)`

```
678
```

Type: PositiveInteger
To determine the minimum, use `min`.

\[
\text{min}(678, 567)
\]

\[
567
\]

Type: PositiveInteger

The `reduce` operation is used to extend binary operations to more than two arguments. For example, you can use `reduce` to find the maximum integer in a list or compute the least common multiple of all integers in the list.

\[
\text{reduce}(\text{max}, [2, 45, -89, 78, 100, -45])
\]

\[
100
\]

Type: PositiveInteger

\[
\text{reduce}(\text{min}, [2, 45, -89, 78, 100, -45])
\]

\[
-89
\]

Type: Integer

\[
\text{reduce}(\text{gcd}, [2, 45, -89, 78, 100, -45])
\]

\[
1
\]

Type: PositiveInteger

\[
\text{reduce}(\text{lcm}, [2, 45, -89, 78, 100, -45])
\]

\[
1041300
\]

Type: PositiveInteger

The infix operator “/” is not used to compute the quotient of integers. Rather, it is used to create rational numbers as described in Fraction 9.32 on page 525.

\[
13 / 4
\]
The infix operation \texttt{quo} computes the integer quotient.

\begin{verbatim}
13 quo 4
\end{verbatim}

\begin{verbatim}
3
\end{verbatim}

The infix operation \texttt{rem} computes the integer remainder.

\begin{verbatim}
13 rem 4
\end{verbatim}

\begin{verbatim}
1
\end{verbatim}

One integer is evenly divisible by another if the remainder is zero. The operation \texttt{exquo} can also be used. See section \ref{sec:div} on page \pageref{sec:div} for an example.

\begin{verbatim}
zero?(167604736446952 rem 2003644)
\end{verbatim}

\begin{verbatim}
true
\end{verbatim}

The operation \texttt{divide} returns a record of the quotient and remainder and thus is more efficient when both are needed.

\begin{verbatim}
d := divide(13,4)
\end{verbatim}

\begin{verbatim}
[quotient = 3, remainder = 1]
\end{verbatim}

\begin{verbatim}
Type: Record(quotient: Integer, remainder: Integer)
\end{verbatim}

\begin{verbatim}
d.quotient
\end{verbatim}

\begin{verbatim}
3
\end{verbatim}
Records are discussed in detail in section 2.4 on page 72.

d.remainder

1

Type: PositiveInteger

Primes and Factorization

Use the operation factor to factor integers. It returns an object of type Factored Integer. See Factored 9.26 on page 499 for a discussion of the manipulation of factored objects.

factor 102400

2^{12} 5^2

Type: Factored Integer

The operation prime? returns true or false depending on whether its argument is a prime.

prime? 7

true

Type: Boolean

prime? 8

false

Type: Boolean

The operation nextPrime returns the least prime number greater than its argument.

nextPrime 100

101
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

The operation \texttt{prevPrime} returns the greatest prime number less than its argument.

\texttt{prevPrime 100}

\begin{center}
97
\end{center}

Type: PositiveInteger

To compute all primes between two integers (inclusively), use the operation \texttt{primes}.

\texttt{primes(100,175)}

\begin{center}
[173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 107, 103, 101]
\end{center}

Type: List Integer

You might sometimes want to see the factorization of an integer when it is considered a Gaussian integer. See Complex 9.13 on page 447 for more details.

\texttt{factor(2 :: Complex Integer)}

\begin{center}
\(-i (1 + i)^2\)
\end{center}

Type: Factored Complex Integer

\section*{Some Number Theoretic Functions}

Axiom provides several number theoretic operations for integers. More examples are in \texttt{IntegerNumberTheoryFunctions 9.43} on page 556.

The operation \texttt{fibonacci} computes the Fibonacci numbers. The algorithm has running time $O(\log^3(n))$ for argument $n$.

\texttt{[fibonacci(k) for k in 0..]}\begin{center}
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...]
\end{center}

Type: Stream Integer

The operation \texttt{legendre} computes the Legendre symbol for its two integer arguments where the second one is prime. If you know the second argument to be prime, use \texttt{jacobi} instead where no check is made.
[legendre\(i\),11\) for \(i\) in 0..10\]  
\[0,1,-1,1,1,1,-1,-1,1,1\]

Type: List Integer

The operation \texttt{jacobi} computes the Jacobi symbol for its two integer arguments. By convention, 0 is returned if the greatest common divisor of the numerator and denominator is not 1.

[jacobi\(i\),15\) for \(i\) in 0..9\]  
\[0,1,1,0,1,0,0,-1,1,0\]

Type: List Integer

The operation \texttt{eulerPhi} computes the values of Euler’s \(\phi\)-function where \(\phi(n)\) equals the number of positive integers less than or equal to \(n\) that are relatively prime to the positive integer \(n\).

[eulerPhi \(i\) for \(i\) in 1..\]  
\[1,1,2,2,4,2,6,4,6,4,\ldots\]

Type: Stream Integer

The operation \texttt{moebiusMu} computes the Möbius \(\mu\) function.

[moebiusMu \(i\) for \(i\) in 1..\]  
\[1,-1,-1,0,-1,1,-1,0,0,1,\ldots\]

Type: Stream Integer

Although they have somewhat limited utility, Axiom provides Roman numerals.

\(a := \texttt{roman}(78)\)

LXXVIII  

Type: RomanNumeral
b := roman(87)

LXXXVII

Type: RomanNumeral

a + b

CLXV

Type: RomanNumeral

a * b

MMMMMMDCLXXXVI

Type: RomanNumeral

b rem a

IX

Type: RomanNumeral

9.42 IntegerLinearDependence

The elements \( v_1, \ldots, v_n \) of a module \( M \) over a ring \( R \) are said to be linearly dependent over \( R \) if there exist \( c_1, \ldots, c_n \) in \( R \), not all 0, such that \( c_1 v_1 + \ldots + c_n v_n = 0 \). If such \( c_i \)'s exist, they form what is called a linear dependence relation over \( R \) for the \( v_i \)'s.

The package IntegerLinearDependence provides functions for testing whether some elements of a module over the integers are linearly dependent over the integers, and to find the linear dependence relations, if any.

Consider the domain of two by two square matrices with integer entries.

\[ M := \text{SQMATRIX}(2, \text{INT}) \]

SquareMatrix(2, Integer)

Type: Domain
Now create three such matrices.

\[
\begin{bmatrix}
1 & 2 \\
0 & -1 \\
\end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

\[
\begin{bmatrix}
2 & 3 \\
1 & -2 \\
\end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

\[
\begin{bmatrix}
3 & 4 \\
2 & -3 \\
\end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

This tells you whether \(m_1\), \(m_2\) and \(m_3\) are linearly dependent over the integers.

\[
\text{linearlyDependentOverZ? vector } [m_1, m_2, m_3]
\]

true

Type: Boolean

Since they are linearly dependent, you can ask for the dependence relation.

\[
\text{c := linearDependenceOverZ vector } [m_1, m_2, m_3]
\]

\[
[1, -2, 1]
\]

Type: Union(Vector Integer,...)

This means that the following linear combination should be 0.

\[
c.1 * m_1 + c.2 * m_2 + c.3 * m_3
\]
556

CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

When a given set of elements are linearly dependent over \(\mathbb{R}\), this also means that at least one of them can be rewritten as a linear combination of the others with coefficients in the quotient field of \(\mathbb{R}\).

To express a given element in terms of other elements, use the operation `solveLinearlyOverQ`.

\[
\text{solveLinearlyOverQ(vector \([m1, m3]\), m2)}
\]

\[
\begin{bmatrix}
1 & 1 \\
\frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

Type: Union(Vector Fraction Integer,...)

9.43 IntegerNumberTheoryFunctions

The `IntegerNumberTheoryFunctions` package contains a variety of operations of interest to number theorists. Many of these operations deal with divisibility properties of integers.

(Recall that an integer \(a\) divides an integer \(b\) if there is an integer \(c\) such that \(b = a \times c\).)

The operation `divisors` returns a list of the divisors of an integer.

\[
\text{div144 := divisors(144)}
\]

\[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]\n
Type: List Integer

You can now compute the number of divisors of 144 and the sum of the divisors of 144 by counting and summing the elements of the list we just created.

\[
\text{#(div144)}
\]

15

Type: PositiveInteger

\[
\text{reduce(\(+,\text{div144})}
\]
Of course, you can compute the number of divisors of an integer \( n \), usually denoted \( d(n) \), and the sum of the divisors of an integer \( n \), usually denoted \( \sigma(n) \), without ever listing the divisors of \( n \).

In Axiom, you can simply call the operations `numberOfDivisors` and `sumOfDivisors`.

```
numberOfDivisors(144)
```

```
15
```

```
sumOfDivisors(144)
```

```
403
```

The key is that \( d(n) \) and \( \sigma(n) \) are “multiplicative functions.” This means that when \( n \) and \( m \) are relatively prime, that is, when \( n \) and \( m \) have no prime factor in common, then \( d(nm) = d(n) d(m) \) and \( \sigma(nm) = \sigma(n) \sigma(m) \). Note that these functions are trivial to compute when \( n \) is a prime power and are computed for general \( n \) from the prime factorization of \( n \). Other examples of multiplicative functions are \( \sigma_k(n) \), the sum of the \( k \)-th powers of the divisors of \( n \) and \( \varphi(n) \), the number of integers between 1 and \( n \) which are prime to \( n \). The corresponding Axiom operations are called `sumOfKthPowerDivisors` and `eulerPhi`.

An interesting function is \( \mu(n) \), the Möbius \( \mu \) function, defined as follows: \( \mu(1) = 1 \), \( \mu(n) = 0 \), when \( n \) is divisible by a square, and \( \mu = (-1)^k \), when \( n \) is the product of \( k \) distinct primes. The corresponding Axiom operation is `moebiusMu`.

This function occurs in the following theorem:

**Theorem (Möbius Inversion Formula):**
Let \( f(n) \) be a function on the positive integers and let \( F(n) \) be defined by

\[
F(n) = \sum_{d \mid n} f(n)
\]

sum of \( f(n) \) over \( d \mid n \) where the sum is taken over the positive divisors of \( n \). Then the values of \( f(n) \) can be recovered from the values of \( F(n) \):

\[
f(n) = \sum_{d \mid n} \mu(n) F\left(\frac{n}{d}\right)
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

where again the sum is taken over the positive divisors of \( n \).

When \( f(n) = 1 \), then \( F(n) = d(n) \). Thus, if you sum \( \mu(d) \cdot d(n/d) \) over the positive divisors \( d \) of \( n \), you should always get 1.

\[
f_1(n) = \text{reduce}(+,[\mu(d) \cdot \text{numberOfDivisors}(\text{quo}(n,d)) \text{ for } d \text{ in } \text{divisors}(n)])
\]

Type: Void

\[
f_1(200)
\]

\[
1
\]

Type: PositiveInteger

\[
f_1(846)
\]

\[
1
\]

Type: PositiveInteger

Similarly, when \( f(n) = n \), then \( F(n) = \sigma(n) \). Thus, if you sum \( \mu(d) \cdot \sigma(n/d) \) over the positive divisors \( d \) of \( n \), you should always get \( n \).

\[
f_2(n) = \text{reduce}(+,[\mu(d) \cdot \text{sumOfDivisors}(\text{quo}(n,d)) \text{ for } d \text{ in } \text{divisors}(n)])
\]

Type: Void

\[
f_2(200)
\]

\[
200
\]

Type: PositiveInteger

\[
f_2(846)
\]

\[
846
\]
The Möbius inversion formula is derived from the multiplication of formal Dirichlet series. A Dirichlet series is an infinite series of the form:

\[ \sum_{n=1}^{\infty} a(n) n^{-s} \]

When

\[ \sum_{n=1}^{\infty} a(n) n^{-s} \cdot \sum_{n=1}^{\infty} b(n) n^{-s} = \sum_{n=1}^{\infty} c(n) n^{-s} \]

then

\[ c(n) = \sum_{d|n} a(d) b(n/d) \]

Recall that the Riemann ζ function is defined by

\[ \zeta(s) = \prod_p \left(1 - p^{-s}\right)^{-1} = \sigma_{n=1}^{\infty} n^{-s} \]

where the product is taken over the set of (positive) primes. Thus,

\[ \zeta(s)^{-1} = \prod_p (1 - p^{-s}) = \sigma_{n=1}^{\infty} \mu(n) n^{-s} \]

Now if

\[ F(n) = \sum_{(d|n)} f(d) \]

then

\[ \sum_{(d|n)} f(n) n^{-s} \cdot \zeta(s) = \sum F(n) n^{-s} \]

thus

\[ \zeta(s)^{-1} \cdot \sum F(n) n^{-s} = \sum f(n) n^{-s} \]

and

\[ f(n) = \sum_{(d|n)} \mu(d) F(n/d) \]

The Fibonacci numbers are defined by \( F(1) = F(2) = 1 \) and \( F(n) = F(n-1) + F(n-2) \) for \( n = 3, 4, \ldots \).

The operation \texttt{fibonacci} computes the \( n \)-th Fibonacci number.

\texttt{fibonacci(25)}

75025
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

[fibonacci(n) for n in 1..15]

[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]

Type: List Integer

Fibonacci numbers can also be expressed as sums of binomial coefficients.

fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])

Type: Void

fib(25)

75025

Type: PositiveInteger

[fib(n) for n in 1..15]

[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]

Type: List Integer

Quadratic symbols can be computed with the operations legendre and jacobi. The Legendre symbol \( \left( \frac{a}{p} \right) \) is defined for integers \( a \) and \( p \) with \( p \) an odd prime number. By definition, \( \left( \frac{a}{p} \right) = +1 \), when \( a \) is a square \( \pmod{p} \), \( \left( \frac{a}{p} \right) = -1 \), when \( a \) is not a square \( \pmod{p} \), and \( \left( \frac{a}{p} \right) = 0 \), when \( a \) is divisible by \( p \).

You compute \( \left( \frac{a}{p} \right) \) via the command \texttt{legendre(a,p)}.

legendre(3,5)

-1

Type: Integer
The Jacobi symbol \(( \frac{a}{n} )\) is the usual extension of the Legendre symbol, where \(n\) is an arbitrary integer. The most important property of the Jacobi symbol is the following: if \(K\) is a quadratic field with discriminant \(d\) and quadratic character \(\chi\), then \(\chi(n) = (d/n)\). Thus, you can use the Jacobi symbol to compute, say, the class numbers of imaginary quadratic fields from a standard class number formula.

This function computes the class number of the imaginary quadratic field with discriminant \(d\).

\[
h(d) = \text{quo}(\text{reduce}(+, [\text{jacobi}(d,k) \text{ for } k \text{ in } 1..\text{quo}(-d, 2)], 2 - \text{jacobi}(d,2)))
\]

\[
\text{Type: Void}
\]

\[
h(-163)
\]

\[
1
\]

\[
\text{Type: PositiveInteger}
\]

\[
h(-499)
\]

\[
3
\]

\[
\text{Type: PositiveInteger}
\]

\[
h(-1832)
\]

\[
26
\]

\[
\text{Type: PositiveInteger}
\]
9.44 Kernel

A kernel is a symbolic function application (such as $\sin(x + y)$) or a symbol (such as $x$). More precisely, a non-symbol kernel over a set $S$ is an operator applied to a given list of arguments from $S$. The operator has type `BasicOperator` (see `BasicOperator` 9.5 on page 411 and the kernel object is usually part of an expression object (see `Expression` 9.25 on page 493). Kernels are created implicitly for you when you create expressions.

```plaintext
x :: Expression Integer

x

Type: Expression Integer
```

You can directly create a “symbol” kernel by using the `kernel` operation.

```plaintext
kernel x

x

Type: Kernel Expression Integer
```

This expression has two different kernels.

```plaintext
\sin(x) + \cos(x)

\sin(x) + \cos(x)

Type: Expression Integer
```

The operator `kernels` returns a list of the kernels in an object of type `Expression`.

```plaintext
kernels %

[\sin(x), \cos(x)]

Type: List Kernel Expression Integer
```

This expression also has two different kernels.

```plaintext
\sin(x)^2 + \sin(x) + \cos(x)
```
\[ \sin(x)^2 + \sin(x) + \cos(x) \]

Type: Expression Integer

The \( \sin(x) \) kernel is used twice.

kernels %

\[ [\sin(x), \cos(x)] \]

Type: List Kernel Expression Integer

An expression need not contain any kernels.

kernels(1 :: Expression Integer)

[]

Type: List Kernel Expression Integer

If one or more kernels are present, one of them is designated the main kernel.

mainKernel(cos(x) + tan(x))

\( \tan(x) \)

Type: Union(Kernel Expression Integer, ...)

Kernels can be nested. Use \texttt{height} to determine the nesting depth.

height kernel x

1

Type: PositiveInteger

This has height 2 because the \( x \) has height 1 and then we apply an operator to that.

height mainKernel(sin x)

2
Use the operator operation to extract the operator component of the kernel. The operator has type BasicOperator.

operator mainKernel(sin cos (tan x + sin x))

\[ \text{sin} \]

Type: BasicOperator

Use the name operation to extract the name of the operator component of the kernel. The name has type Symbol. This is really just a shortcut for a two-step process of extracting the operator and then calling name on the operator.

name mainKernel(sin cos (tan x + sin x))

\[ \text{sin} \]

Type: Symbol

Axiom knows about functions such as sin, cos and so on and can make kernels and then expressions using them. To create a kernel and expression using an arbitrary operator, use operator.

Now \( f \) can be used to create symbolic function applications.

\[ f := \text{operator } 'f \]

\[ f \]
9.44. KERNEL

Type: BasicOperator

\[ e := f(x, y, 10) \]

\[ f(x, y, 10) \]

Type: Expression Integer

Use the \texttt{is?} operation to learn if the operator component of a kernel is equal to a given operator.

\[ \text{is?}(e, f) \]

true

Type: Boolean

You can also use a symbol or a string as the second argument to \texttt{is?}.

\[ \text{is?}(e, 'f) \]

true

Type: Boolean

Use the \texttt{argument} operation to get a list containing the argument component of a kernel.

\[ \text{argument mainKernel } e \]

\[ [x, y, 10] \]

Type: List Expression Integer

Conceptually, an object of type \texttt{Expression} can be thought of a quotient of multivariate polynomials, where the “variables” are kernels. The arguments of the kernels are again expressions and so the structure recurses. See \texttt{Expression 9.25} on page 493 for examples of using kernels to take apart expression objects.
9.45 KeyedAccessFile

The domain `KeyedAccessFile(S)` provides files which can be used as associative tables. Data values are stored in these files and can be retrieved according to their keys. The keys must be strings so this type behaves very much like the `StringTable(S)` domain. The difference is that keyed access files reside in secondary storage while string tables are kept in memory. For more information on table-oriented operations, see the description of `Table`.

Before a keyed access file can be used, it must first be opened. A new file can be created by opening it for output.

```lisp
ey: KeyedAccessFile(Integer) := open("/tmp/editor.year", "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer
```

Just as for vectors, tables or lists, values are saved in a keyed access file by setting elements.

```lisp
ey."Char" := 1986

1986

Type: PositiveInteger

ey."Caviness" := 1985

1985

Type: PositiveInteger

ey."Fitch" := 1984

1984

Type: PositiveInteger
```

Values are retrieved using application, in any of its syntactic forms.

```lisp
ey."Char"

1986
```
Attempting to retrieve a non-existent element in this way causes an error. If it is not known whether a key exists, you should use the **search** operation.

```plaintext
search("Char", ey)
```

```
1986
```

```
Type: Union(Integer,...)
```

```plaintext
search("Smith", ey)
```

```
"failed"
```

```
Type: Union("failed",...)
```

When an entry is no longer needed, it can be removed from the file.

```plaintext
remove!("Char", ey)
```

```
1986
```

```
Type: Union(Integer,...)
```

The **keys** operation returns a list of all the keys for a given file.

```plaintext
keys ey
```
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

"Fitch", "Caviness"

Type: List String

The # operation gives the number of entries.

#ey

2

Type: PositiveInteger

The table view of keyed access files provides safe operations. That is, if the Axiom program is terminated between file operations, the file is left in a consistent, current state. This means, however, that the operations are somewhat costly. For example, after each update the file is closed.

Here we add several more items to the file, then check its contents.

KE := Record(key: String, entry: Integer)

Record(key: String, entry: Integer)

Type: Domain

reopen!(ey, "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

If many items are to be added to a file at the same time, then it is more efficient to use the write operation.

write!(ey, ["van Hulzen", 1983]$KE)

[key = "van Hulzen", entry = 1983]

Type: Record(key: String, entry: Integer)

write!(ey, ["Calmet", 1982]$KE)
9.45. KEYEDACCESSFILE

\[key = "Calmet", entry = 1982\]

Type: Record(key: String, entry: Integer)

\[key = "Wang", entry = 1981\]

Type: Record(key: String, entry: Integer)

close! ey

"/tmp/editor.year"

Type: KeyedAccessFile Integer

The \texttt{read} operation is also available from the file view, but it returns elements in a random order. It is generally clearer and more efficient to use the \texttt{keys} operation and to extract elements by key.

\texttt{keys ey}

\["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"]

Type: List String

\texttt{members ey}


Type: List Integer

\texttt{)system rm -r /tmp/editor.year}

For more information on related topics, see \texttt{File 9.28} on page 508, \texttt{TextFile 9.93} on page 784, and \texttt{Library 9.48} on page 607.
9.46 LexTriangularPackage

The LexTriangularPackage package constructor provides an implementation of the lexTriangular algorithm (D. Lazard “Solving Zero-dimensional Algebraic Systems”, J. of Symbol. Comput., 1992). This algorithm decomposes a zero-dimensional variety into zero-sets of regular triangular sets. Thus the input system must have a finite number of complex solutions. Moreover, this system needs to be a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring \( R \) of the polynomials, which must be a GcdDomain and their set of variables given by \( \mathbf{ls} \) a List Symbol. The type of the input polynomials must be

\[
\text{NewSparseMultivariatePolynomial}(R, V)
\]

where \( V \) is OrderedVariableList(\( \mathbf{ls} \)). The abbreviation for LexTriangularPackage is LEXTRIPK. The main operations are \( \text{lexTriangular} \) and \( \text{squareFreeLexTriangular} \). The later provide decompositions by means of square-free regular triangular sets, built with the SREGSET constructor, whereas the former uses the REGSET constructor. Note that these constructors also implement another algorithm for solving algebraic systems by means of regular triangular sets; in that case no computations of Groebner bases are needed and the input system may have any dimension (i.e. it may have an infinite number of solutions).

The implementation of the \( \text{lexTriangular} \) algorithm provided in the LexTriangularPackage constructor differs from that reported in “Computations of gcd over algebraic towers of simple extensions” by M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995). Indeed, the \( \text{squareFreeLexTriangular} \) operation removes all multiplicities of the solutions (i.e. the computed solutions are pairwise different) and the \( \text{lexTriangular} \) operation may keep some multiplicities; this later operation runs generally faster than the former.

The interest of the \( \text{lexTriangular} \) algorithm is due to the following experimental remark. For some examples, a triangular decomposition of a zero-dimensional variety can be computed faster via a lexicographical Groebner basis computation than by using a direct method (like that of SREGSET and REGSET). This happens typically when the total degree of the system relies essentially on its smallest variable (like in the Katsura systems). When this is not the case, the direct method may give better timings (like in the Rose system).

Of course, the direct method can also be applied to a lexicographical Groebner basis. However, the \( \text{lexTriangular} \) algorithm takes advantage of the structure of this basis and avoids many unnecessary computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of solutions, see also the ZeroDimensionalSolvePackage. It allows to use both strategies (the lexTriangular algorithm and the direct method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

Since the LEXTRIPK package constructor is limited to zero-dimensional systems, it provides a \( \text{zeroDimensional?} \) operation to check whether this requirement holds. There is also a \( \text{groebner} \) operation to compute the lexicographical Groebner basis of a set of polynomials with type \( \text{NewSparseMultivariatePolynomial}(R, V) \). The elimination ordering is that given by \( \mathbf{ls} \) (the greatest variable being the first element of \( \mathbf{ls} \)). This basis is computed by
9.46. LEXTRIANGULARPACKAGE

the FLGM algorithm (Faugere et al. “Efficient Computation of Zero-Dimensional Groebner Bases by Change of Ordering”, J. of Symbol. Comput., 1993) implemented in the LinGroebnerPackage package constructor. Once a lexicographical Groebner basis is computed, then one can call the operations lexTriangular and squareFreeLexTriangular. Note that these operations admit an optional argument to produce normalized triangular sets. There is also a zeroSetSplit operation which does all the job from the input system; an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the LEXTRIPK constructor by a famous example, the cyclic-6 root system.

Define the coefficient ring.

\[
R := \text{Integer}
\]

\[\text{Integer} \quad \text{Type: Domain}\]

Define the list of variables,

\[
\text{ls} : \text{List Symbol} := [a,b,c,d,e,f]
\]

\[[a,b,c,d,e,f] \quad \text{Type: List Symbol}\]

and make it an ordered set.

\[
V := \text{OVAR}(\text{ls})
\]

\[
\text{OrderedVariableList} [a,b,c,d,e,f] \quad \text{Type: Domain}\]

Define the polynomial ring.

\[
P := \text{NSMP}(R, V)
\]

\[
\text{NewSparseMultivariatePolynomial} (\text{Integer, OrderedVariableList} [a,b,c,d,e,f]) \quad \text{Type: Domain}\]

Define the polynomials.
p1: \( P := a*b*c*d*e*f - 1 \)
\[
f e d c b a - 1
\]
Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

p2: \( P := a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + a*c*d*e*f + b*c*d*e*f \)
\[
(((e + f) d + f e) c + f e d) b + f e d c a + f e d c b
\]
Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

p3: \( P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e + c*d*e*f \)
\[
(((d + f) c + f e) b + f e d) a + e d c b + f e d c
\]
Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

p4: \( P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f \)
\[
((c + f) b + f e) a + d c b + e d c + f e d
\]
Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

p5: \( P := a*b + a*f + b*c + c*d + d*e + e*f \)
\[
(b + f) a + c b + d c + e d + f e
\]
Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

p6: \( P := a + b + c + d + e + f \)
\[
a + b + c + d + e + f
\]
9.46. LEXTRIANGULARPACKAGE

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

lp := [p1, p2, p3, p4, p5, p6]

\[ [f e d c b a - 1, \]
\[ (((((e + f) d + f e) c + f e d) b + f e d c) a + f e d c b, \]
\[ (((d + f) c + f e) b + f e d) a + e d c b + f e d c, \]
\[ ((c + f) b + f e) a + d c b + e d c + f e d, \]
\[ (b + f) a + c b + d c + e d + f e, \]
\[ a + b + c + d + e + f] \]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Now call LEXTRIPK.

lextripack := LEXTRIPK(R,ls)

\[ LexTriangularPackage(Integer, [a, b, c, d, e, f]) \]

Type: Domain

Compute the lexicographical Groebner basis of the system. This may take between 5 minutes and one hour, depending on your machine.

lg := groebner(lp)$lextripack

\[ [a + b + c + d + e + f, \]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ \begin{align*}
396837949823200 & \quad b^2 + 15873517993132800 \quad f \quad b + \\
396837949823200 & \quad d^2 + 15873517993132800 \quad f \quad d + \\
396837949823200 & \quad f^3 e^5 - 15873517993132800 \quad f^4 e^4 + \\
23810276989699200 & \quad f^5 e^7 + (20635573910726400 \quad f^6 + \\
230166010900425600 & \quad e^2 + (-729705987316687 \quad f^{43} + \\
186366746867205421 & \quad f^{37} + 291674853771731104461 \quad f^{31} + \\
365285994691106921745 & \quad f^{25} + 549961185828911895 \quad f^{19} - \\
365048404038768439269 & \quad f^{13} - 292382820431504027669 \quad f^7 - \\
2271898467631865497 & \quad f) \quad e - 3988812642545399 \quad f^{44} + \\
10187423878429609997 & \quad f^{38} + 1594377523424314053637 \quad f^{32} + \\
199473930843991623805 & \quad f^{26} + 1596840088052642815 \quad f^{20} - \\
199349411830116245413 & \quad f^{14} - 1596049742289689815053 \quad f^8 - \\
11488171330159667449 & \quad f^2, \\
(23810276989699200 & \quad c - 23810276989699200 \quad f) \quad b + \\
23810276989699200 & \quad c^2 + 714308309690976800 \quad f \quad c - \\
23810276989699200 & \quad d^2 - 95241107958796800 \quad f \quad d - \\
5557312975964800 & \quad f^3 e^3 + 1746086869724460800 \quad f^4 e^4 - \\
1746086869724460800 & \quad f^5 e^3 + (-2428648252949318400 \quad f^6 - \\
26111937098739870345600 & \quad e^2 + (8305444561289527 \quad f^{43} - \\
21212087151945459641 & \quad f^{37} - 3319815839345138531 \quad f^{31} - \\
415769164621657136445 & \quad f^{25} - 6072721607510764095 \quad f^{19} + \\
4154986709036460221649 & \quad f^{13} + 3327761311138587096749 \quad f^7 + \\
2588534060299841637 & \quad f) \quad e + 45815897629010329 \quad f^{44} - \\
11701376582151891207 & \quad f^{38} - 1831316684897086574187 \quad f^{32} - \\
22999971239649297438915 & \quad f^{26} - 16133250761305157265 \quad f^{20} + \\
22897305857636178256623 & \quad f^{14} + 1832994478186724297923 \quad f^8 + \\
1302585310020240699 & \quad f^2, \\
(793675899656640 & \quad d - 793675899656640 \quad f) \quad b - \\
793675899656640 & \quad f^2 - 793675899656640 \quad f^3 e^5 + \\
23810276989699200 & \quad f^4 e^4 - 23810276989699200 \quad f^5 e^3 + \\
(-337312257354072000 & \quad f^6 - 36905929340337600) \quad e^2 + \\
(1176345388640471 & \quad f^{43} - 300438582891473073 \quad f^{37} - \\
470203502707246105653 & \quad f^{31} - 5888518340244348085 \quad f^{25} - \\
85699308623513535 & \quad f^{19} + 588472674242340526377 \quad f^{13} + \\
47131324155871103517 & \quad f^7 + 3697452459078552381 \quad f) \quad e + \\
6423170513956901 & \quad f^{14} - 16404772137036680803 \quad f^{38} - \\
2567419165227528774463 & \quad f^{32} - 321193809027582172335 \quad f^{26} - \\
2330490332697587485 & \quad f^{20} + 321010010944754864587 \quad f^{14} + \\
2569858315395162617847 & \quad f^8 + 18326089847427735751 \quad f^2; \\
\end{align*} \]
(11905138494849600 \(e - 11905138494849600\) f) b–
3968379498283200 \(f^3\) \(e^5 + 15873517993132800\) \(f^4\) \(e^4–
27778656487982400 \(f^5\) \(e^3 + (-208339923659868000\) \(f^6–
24008695964133600\) \(e^2 + (786029984751110\) \(f^{43–
200751900182245250\) \(f^{37–} – 314188069087380790\) \(f^{31–}
394326675379575250\) \(f^{25–} – 550329120654394950\) \(f^{19}+–
39319640872889612770\) \(f^{13} + 31489232799176495730\) \(f^7 +
240938651514668530\) \(f\) \(e + 4177638546747827\) \(f^{44–}
1066985294602576381\) \(f^{38} – 1669852980419949524601\) \(f^{32}–
209077075287904170745\) \(f^{26} – 1569899763580278795\) \(f^{20}+–
2087864026859015573349\) \(f^{14} + 1671496085945199577969\) \(f^8+–
11940257226216280177\) \(f^2,\)

\((11905138494849600 \(f^6 – 11905138494849600\) b–
15873517993132800 \(f^2\) \(e^5 + 39683794982832000\) \(f^3\) \(e^4–
39683794982832000 \(f^4 \(e^3 + (-68652965320993600\) \(f^{11}–
607162066323729600\) \(f^5\) \(e^2 +\)
(65144531306704 \(f^{12} – 166381280901088652\) \(f^{36–}
26033434502470283472 \(f^{30} – 31696259583860650140\) \(f^{24}+–
97492093167518360\) \(f^{18} + 3222008503691389548\) \(f^{12}+–
25526177666070529808\) \(f^{6} + 138603268355749244\) \(e+c+
16762003607481\) \(f^{13} – 428102417974791473\) \(f^{37–}
66997243801231679313\) \(f^{31} – 8342671622148750485\) \(f^{25}+–
203673895369980765\) \(f^{19} + 8352305632601043245\) \(f^{13}+–
66995789640238066937\) \(f^{7} + 478592855549587901\) \(f,\)

801692872936 \(c^3 + 2405078483808\) \(f^2 c^2–\)
2405078483808 \(f^2\) \(c – 13752945467\) \(f^{45}+\)
35125117815561 \(f^{39} + 5496946957824633\) \(f^{33}+\)
6834659447749117 \(f^{27} – 44484880462461\) \(f^{21}–\)
6873406230093057 \(f^{15} – 5450844938762633\) \(f^9+–\)
1216586044571 \(f^3,\)

(23810276989699920 d – 23810276989699920 f) c+–
23810276989699920 \(d^2 + 7143083996907600\) \(f d+–
7936758996566400 \(f^3 \(e^5 – 2174703982625600\) \(f^4\) \(e^4+–
31747035986265600 \(f^5 \(e^3 + (404774708824886400\) \(f^6+–\)
396837949828320000 \(e^2 + (217470229446701\) \(f^{13}+–\)
315875654596621203 \(f^{37} + 49859486849974751463\) \(f^{31}+–\)
624542545845791047935 \(f^{25} + 931085755769682885\) \(f^{19}–\)
624150663852417063887 \(f^{13} – 499881859388360475647\) \(f^7–\)
3926885313819527351 \(e – 7026011547118141\) \(f^{44}+–\)
179444227051905691243 \(f^{38} + 2808383522593986603543\) \(f^{32}+–\)
3513624142354807530135 \(f^{26} + 2806757006705537685\) \(f^{20}–\)
351135675624190737267 \(f^{14} – 2811332494697103819887\) \(f^8–\)
20315011631522847311 \(f^2,\)
(7936758996566400 e - 7936758996566400 f) c+  
(-4418748183673 f^{43}+  
1128556870456559 f^{37} + 17659986172944451019 f^{31}+  
217374928362606155 f^{25} - 55788292195402895 f^{19}+  
2215291421788292951 f^{13} - 1718142665347430851 f^{7}+  
3025669458230237 f) c + 4418748183673 f^{44} -  
1128556870456559 f^{38} - 17659986172944451019 f^{32} -  
217374928362606155 f^{26} + 55788292195402895 f^{20} +  
2215291421788292951 f^{14} + 1718142665347430851 f^{8} -  
3025669458230237 f^2,  

(721523545142400 e - 721523545142400 f) d+  
5952569247424800 f d^2 -  
5952569247424800 f^2 d - 3968379498283200 f^4 e^5 +  
15873517993132800 f^5 e^4 + 17857707742274400 e^3 +  
(-148814231185620000 f^7 - 162703559429611200 f) e^2 +  
(-390000914678878 f^{14} + 99602704593756434 f^{38} +  
15588632397203423914 f^{12} + 194745956143985421330 f^{26} +  
620573795574430 f^{20} - 19459612653299068786 f^{14} -  
155796887940756922666 f^6 - 103637575907320978 f^2) e -  
374998630035991 f^{45} + 957747106595453993 f^{39} -  
14988155566764891693 f^{33} + 187154171443494641685 f^{27} -  
127190215426348065 f^{21} - 18724153243115040417 f^{15} -  
149719983567976354037 f^9 - 836654081239648061 f^3,  

(5952569247424800 e - 5952569247424800 f) d -  
3968379498283200 f^3 e^5 + 9920948745708000 f^4 e^4 -  
3968379498283200 f^5 e^3 + (-148814231185620000 f^6 -  
150798420934761600 e^2 + (492558110242553 f^{43} -  
125799235960874599 f^{37} + 19688309453938513959 f^{31} -  
246562115745735428055 f^{25} - 325698701993885505 f^{19} +  
246417767983651808111 f^{13} + 197327352068200652911 f^{7} +  
152373796389332143 f) e + 2679481081803026 f^{44} -  
6843392694521906608 f^{38} - 107102045964264913578 f^{32} -  
1339789169692041240060 f^{26} - 852746750910750210 f^{20} +  
1339105101971888401312 f^{14} + 1071900289758712984762 f^{8} +  
75552390720727756 f^2,  

576  

CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES
\begin{align*}
(11905138494849600 f^6 & - 11905138494849600) d - \\
7936758996566400 f^2 e^5 + 31747035986265600 f^3 e^4 - \\
31747035986265600 f^4 e^3 + \\
(-420648226818019200 f^{11} - 404774708824886400 f^5) e^2 + \\
(15336187600889 f^{12} - 39169739565161107 f^{36} - \\
6127176127489690827 f^{30} - 721770874231059615 f^{24} + \\
53862848390722735 f^{18} + 7506804353843507643 f^{12} + \\
588160769782607203 f^6 + 63576108396535879) e + \\
71737781777066 f^{41} - 183218856207557938 f^{37} - \\
286287427132276078 f^{31} - 35625223686939812010 f^{25} + \\
164831339634084390 f^{19} + 3572416042073052642 f^{13} + \\
28627022578664910622 f^7 + 187549987029680506 f, \\
1322793166094400 e^6 - 3968379498283200 f e^5 + \\
3968379498283200 f^2 e^4 - 5291172664377600 f^3 e^3 + \\
(-230166010900425600 f^{10} - 226197631402142400 f^4) e^2 + \\
(-152357364610443885 f^{17} + 38916662606485490415 f^{41} + \\
60906097841360558987335 f^{35} + 7616376934680789697275 f^{29} + \\
2785506675995181125 f^{23} - 76144952817052723145495 f^{17} - \\
60933629892463517546975 f^{11} - 411415071682002547795 f^5) e - \\
209493533143822 f^{42} + 5350459794905060586 f^{36} + \\
8373947964973553146 f^{30} + 104889507084213371570 f^{24} + \\
167117997269207870 f^{18} - 10479372578139061514 f^{12} - \\
83842685189903180394 f^6 - 569978796672974242, \\
(25438330117200 f^6 + 25438330117200) e^3 + \\
(7631499351600 f^7 + 7631499351600 f) e^2 + \\
(-159496655275 f^{14} + 4073543370415745 f^{38} + \\
637527159231148925 f^{32} + 797521176113606525 f^{26} + \\
530440941097175 f^{20} - 797160527306433145 f^{14} - \\
68131232019044965 f^8 - 4510507169740725 f^2) e - \\
6036367804043 f^{45} + 15416903421476909 f^{39} + \\
2412807646192304449 f^{33} + 301767992308013705 f^{27} + \\
142230037411955 f^{21} - 3016560402417843941 f^{15} - \\
2414249368183033161 f^9 - 165616826316763873 f^3, \\
(1387545279120 f^{12} - 1387545279120) e^2 + \\
(4321823003 f^{43} - 11037922310209 f^{37} - \\
172751071947989 f^{31} - 2165150991154425 f^{25} - \\
5114342560755 f^{19} + 2162682824948601 f^{13} + \\
1732620732685741 f^7 + 1350608516033 f) e + \\
24177661775 f^{44} - 61749727185325 f^{38} - \\
9664106795754225 f^{12} - 12090487758628245 f^{26} - \\
8787627233575 f^{20} + 12083693383005405 f^{14} + \\
9672870290826025 f^8 + 68541102808525 f^2, \\
f^{48} - 2554 f^{42} - 399710 f^{36} - 499722 f^{30} + \\
499722 f^{18} + 399710 f^{12} + 2554 f^6 - 1}
\end{align*}
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Apply lexTriangular to compute a decomposition into regular triangular sets. This should not take more than 5 seconds.

```
lexTriangular(lg,false)$lextripack

\[\{f^6 + 1, e^6 - 3 f e^5 + 3 f^2 e^4 - 4 f^3 e^3 + 3 f^4 e^2 - 3 f^5 e - 1, \\
3 d + 2 f^2 e^5 - 4 f^3 e^4 + 4 f^4 e^3 - 2 f^5 e^2 - 2 e + 2 f, c + f, \\
3 b + 2 f^2 e^5 - 5 f^3 e^4 + 5 f^4 e^3 - 10 f^5 e^2 - 4 e + 7 f, \\
[a - f^2 e^5 + 3 f^3 e^4 - 3 f^4 e^3 + 4 f^5 e^2 + 3 e - 3 f], \}
\]

\{f^6 - 1, e - f, d - f, e^2 + 4 f e + f^2, (c - f) b - f c - 5 f^2, a + b + c + 3 f\},

\{f^6 - 1, e - f, d - f, e - f, b^2 + 4 f b + f^2, a + b + 4 f\},

\{f^6 - 1, e - f, d^2 + 4 f d + f^2, (d - f) c - f - 5 f^2, b - f, a + c + d + 3 f\},

\{f^{36} - 2554 f^{30} - 399709 f^{24} - 502276 f^{18} - 399709 f^{12} - 2554 f^6 + 1, \\
(161718564 f^{12} - 161718564) e^2 + (504205 f^{31} + 1287737951) f^{25} + \\
191539391380 f^{19} + 253982817368 f^{13} + 20194070465 f^{7} + 1574134601 f - \\
2818405 f^{12} + 7198203911 f^{26} + 1126548149060 f^{20} + \\
141653056336 f^{14} + 1127377589345 f^8 + 7988820725 f^2, \\
(693772639560 f^6 - 693772639560) d - 462515093040 f^2 e^5 + \\
1850060372160 f^3 e^4 - 1850060372160 f^4 e^3 + (2451329993120 f^{11} - \\
23588269745040 f^{5}) e^2 + (-90810428 f^{30} + 2275181044754 f^{24} + \\
355937263869776 f^{18} + 413736880104344 f^{12} + 342849304487996 f^6 + \\
3704966481878 e - 4163798003 f^{31} + 10634395752169 f^{25} + \\
1664161760192806 f^{19} + 2079424391370694 f^{13} + 1668153656035921 f^{7} + \\
10924274392693 f, (12614047992 f^6 - 12614047992) c - \\
7246825 f^{31} + 185006356599 f^{25} + 2896249516034 f^{19} + \\
3581539649666 f^{13} + 2796477571739 f^7 - 48094301893 f, \\
(693772639560 f^6 - 693772639560) b - 925030186080 f^2 e^5 + \\
2312575465200 f^3 e^4 - 2312575465200 f^4 e^3 + (-4000555547960 f^{11} - \\
3582040617560 f^5) e^2 + (-3781280823 f^{30} + 9657492291789 f^{24} + \\
1511158913397906 f^{18} + 1837290892286154 f^{12} + 1487216006594361 f^6 + \\
807728712093) e - 9736390478 f^{33} + 24866827916734 f^{25} + \\
389149581905296 f^{19} + 487255641871424 f^{13} + 390404788269606 f^7 + \\
27890075838538 f, a + b + c + d + e + f\},
\]

\{f^6 - 1, e^2 + 4 f e + f^2, (e - f) d - f e - 5 f^2, c - f, b - f, a + d + e + 3 f\}
```

Type: List RegularChain(Integer,[a,b,c,d,e,f])
9.46. **LEXTRIANGULARPACKAGE**

Note that the first set of the decomposition is normalized (all initials are integer numbers) but not the second one (normalized triangular sets are defined in the description of the `NormalizedTriangularSetCategory` constructor).

So apply now `lexTriangular` to produce normalized triangular sets.

```
lts := lexTriangular(lg, true) $ lestripack
```

```plaintext
Type: List RegularChain(Integer, [a, b, c, d, e, f])
```

We check that all initials are constant.

\[
\{ \text{init}(p) \text{ for } p \text{ in (ts :: List(P))} \text{ for ts in lts} \}
\]

\[
\begin{align*}
[ & 1, 3, 1, 3, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], \\
& 1387545279120, 1387545279120, 1387545279120, \\
& 1387545279120, 1387545279120, 1, \\
& [1, 1, 1, 1, 1, 1] 
\end{align*}
\]

Type: \text{List List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

Note that each triangular set in \text{lts} is a lexicographical Groebner basis. Recall that a point belongs to the variety associated with \text{lp} if and only if it belongs to that associated with one triangular set \text{ts} in \text{lts}.

By running the \text{squareFreeLexTriangular} operation, we retrieve the above decomposition.

\[
\text{squareFreeLexTriangular}(\text{lg, true})\]$\text{lextripack}$

\[
\begin{align*}
\{ & f^6 + 1, e^6 - 3 f e^5 + 3 f^2 e^4 - 4 f^3 e^3 + 3 f^4 e^2 - 3 f^5 e - 1, \\
& 3 d + f^2 e^5 - 4 f^3 e^4 + 4 f^4 e^3 - 2 f^5 e^2 - 2 e + 2 f, \\
& c + f, 3 b + 2 f^2 e^5 - 5 f^3 e^4 + 5 f^4 e^3 - 10 f^5 e^2 - 4 e + 7 f, \\
& a - f^2 e^5 + 3 f^3 e^4 - 3 f^4 e^3 + 4 f^5 e^2 + 3 e - 3 f \}, \\
\{ & f^6 - 1, e - f, d - f, c^2 + 4 f c + f^2, b + c + 4 f, a - f \}, \\
\{ & f^6 - 1, e - f, d - f, c - f, b^2 + 4 f b + f^2, a + b + 4 f \}, \\
\{ & f^6 - 1, e - f, d^2 + 4 f d + f^2, c + d + 4 f, b - f, a - f \}, \\
\end{align*}
\]
Thus the solutions given by lts are pairwise different.
We count them as follows.

\[
\text{reduce}(+, \{ \text{degree}(ts) \text{ for } ts \text{ in } lts \})
\]

\[
156
\]

Type: PositiveInteger

We can investigate the triangular decomposition lts by using the ZeroDimensionalSolvePackage.
This requires to add an extra variable (smaller than the others) as follows.

\[
\mathsf{ls2} : \text{List Symbol} := \text{concat}(\mathsf{ls}, \text{new()}\Symbol)
\]

\[
[a, b, c, d, e, f, \%A]
\]
Then we call the package.

zdpack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer,[a,b,c,d,e,f],[a,b,c,d,e,f],
Type: Domain

We compute a univariate representation of the variety associated with the input system as follows.

concat [univariateSolve(ts)$zdpack for ts in lts]

[[complexRoots = ?^4 - 13 ?^2 + 49,
coordinates =
[7 a + %A^3 - 6 %A, 21 b + %A^3 + %A,
21 c - 2 %A^3 + 19 %A, 7 d - %A^3 + 6 %A, 21 e - %A^3 - %A,
21 f + 2 %A^3 - 19 %A]] ,

[complexRoots = ?^4 + 11 ?^2 + 49,
coordinates =
[35 a + 3 %A^3 + 19 %A, 35 b + %A^3 + 18 %A, 35 c - 2 %A^3 - %A,
35 d - 3 %A^3 - 19 %A, 35 e - %A^3 - 18 %A, 35 f + 2 %A^3 + %A]] ,

207 ?^4 - 360 ?^3 + 802 ?^2 - 1332 ? + 1369,
coordinates =
[43054532 a + 33782 %A^7 - 546673 %A^6 + 3127348 %A^5 - 6927123 %A^4 +
365212 %A^3 - 25086957 %A^2 + 39582814 %A - 107313172,
43054532 b - 33782 %A^7 + 546673 %A^6 - 3127348 %A^5 +
6927123 %A^4 - 4365212 %A^3 + 25086957 %A^2 -
39582814 %A + 107313172,
21527266 c - 22306 %A^7 + 263139 %A^6 - 1166076 %A^5 + 1821805 %A^4 -
2892788 %A^3 + 10322663 %A^2 - 9026596 %A + 12950740,
43054532 d + 22306 %A^7 - 263139 %A^6 +
1166076 %A^5 - 1821805 %A^4 + 2892788 %A^3 -
10322663 %A^2 + 30553862 %A - 12950740,
43054532 e - 22306 %A^7 + 263139 %A^6 -
1166076 %A^5 + 1821805 %A^4 - 2892788 %A^3 +
10322663 %A^2 - 30553862 %A + 12950740,
21527266 f + 22306 %A^7 - 263139 %A^6 +
1166076 %A^5 - 1821805 %A^4 + 2892788 %A^3 -
10322663 %A^2 + 9026596 %A - 12950740]] ,
coordinates = 
\begin{align*}
&\{43054532\ a + 33782 \ %A^7 + 546673 \ %A^6 + 3127348 \ %A^5 + 6927123 \ %A^4 + 4365212 \ %A^3 + 25086957 \ %A^2 + 39582814 \ %A + 107313172, \\
&43054532\ b - 33782 \ %A^7 - 546673 \ %A^6 - 3127348 \ %A^5 - 6927123 \ %A^4 - 4365212 \ %A^3 - 25086957 \ %A^2 - 39582814 \ %A - 107313172, \\
&21527266\ c - 22306 \ %A^7 - 263139 \ %A^6 - 1166076 \ %A^5 - 1821805 \ %A^4 - 2892788 \ %A^3 - 10322663 \ %A^2 - 9026596 \ %A - 12950740, \\
&43054532\ d + 22306 \ %A^7 + 263139 \ %A^6 + 1166076 \ %A^5 + 1821805 \ %A^4 + 2892788 \ %A^3 + 10322663 \ %A^2 + 30553862 \ %A + 12950740, \\
&43054532\ e - 22306 \ %A^7 - 263139 \ %A^6 - 1166076 \ %A^5 - 1821805 \ %A^4 - 2892788 \ %A^3 - 10322663 \ %A^2 - 30553862 \ %A - 12950740, \\
&21527266\ f + 22306 \ %A^7 + 263139 \ %A^6 + 1166076 \ %A^5 + 1821805 \ %A^4 + 2892788 \ %A^3 + 10322663 \ %A^2 + 9026596 \ %A + 12950740\} ,
\end{align*}

[\text{complexRoots} = ?^4 - ?^2 + 1,
coordinates = 
\begin{align*}
&\{a - %A, b + %A^3 - %A, c + %A^3, d + %A, e - %A^3 + %A, f - %A^3\} ,
\end{align*}

[\text{complexRoots} = ?^8 + 4 ?^6 + 12 ?^4 + 16 ?^2 + 4,
coordinates = 
\begin{align*}
&\{4\ a - 2 \ %A^7 - 7 \ %A^5 - 20 \ %A^3 - 22 \ %A, \\
&4\ b + 2 \ %A^7 + 7 \ %A^5 + 20 \ %A^3 + 22 \ %A, \\
&4\ c + %A^7 + 3 \ %A^5 + 10 \ %A^3 + 10 \ %A, \\
&4\ d + %A^7 + 3 \ %A^5 + 10 \ %A^3 + 6 \ %A, \\
&4\ e - %A^7 - 3 \ %A^5 - 10 \ %A^3 - 6 \ %A, \\
&4\ f - %A^7 - 3 \ %A^5 - 10 \ %A^3 - 10 \ %A\} ,
\end{align*}

[\text{complexRoots} = ?^4 + 6 ?^3 + 30 ?^2 + 36 ? + 36,
coordinates = 
\begin{align*}
&\{30\ a - %A^3 - 5 \ %A^2 - 30 \ %A - 6, \\
&6\ b + %A^3 + 5 \ %A^2 + 24 \ %A + 6, \\
&30\ c - %A^3 - 5 \ %A^2 - 6, \\
&30\ d - %A^3 - 5 \ %A^2 - 30 \ %A - 6, \\
&30\ e - %A^3 - 5 \ %A^2 - 30 \ %A - 6, \\
&30\ f - %A^3 - 5 \ %A^2 - 30 \ %A - 6\} ,
\end{align*}

[\text{complexRoots} = ?^4 - 6 ?^3 + 30 ?^2 - 36 ? - 36,
coordinates = 
\begin{align*}
&\{30\ a - %A^3 + 5 \ %A^2 - 30 \ %A + 6, \\
&6\ b + %A^3 - 5 \ %A^2 + 24 \ %A - 6, \\
&30\ c - %A^3 + 5 \ %A^2 + 6, \\
&30\ d - %A^3 + 5 \ %A^2 - 30 \ %A + 6, \\
&30\ e - %A^3 + 5 \ %A^2 - 30 \ %A + 6, \\
&30\ f - %A^3 + 5 \ %A^2 - 30 \ %A + 6\} ,
\end{align*}
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\text{\texttt{complexRoots = }?^2 + 6 ? + 6,}\\
\text{coordinates = }\\
[a + 1, b - \%A - 5, c + \%A + 1, d + 1, e + 1, f + 1]\text{],}
\]

\[
\text{\texttt{complexRoots = }?^2 - 6 ? + 6,}\\
\text{coordinates = }\\
[a - 1, b - \%A + 5, c + \%A - 1, d - 1, e - 1, f - 1]\text{],}
\]

\[
\text{\texttt{complexRoots = }?^4 + 6 ?^3 + 30 ?^2 + 36 ? + 36,}\\
\text{coordinates = }\\
[6 a + \%A^3 + 5 \%A^2 + 24 \%A + 6,}\\
30 b - \%A^3 - 5 \%A^2 - 6,}\\
30 c - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
30 d - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
30 e - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
30 f - \%A^3 - 5 \%A^2 - 30 \%A - 6]\],}
\]

\[
\text{\texttt{complexRoots = }?^4 - 6 ?^3 + 30 ?^2 - 36 ? + 36,}\\
\text{coordinates = }\\
[6 a + \%A^3 - 5 \%A^2 + 24 \%A - 6,}\\
30 b - \%A^3 + 5 \%A^2 - 6,}\\
30 c - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
30 d - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
30 e - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
30 f - \%A^3 + 5 \%A^2 - 30 \%A + 6]\],}
\]

\[
\text{\texttt{complexRoots = }?^2 + 6 ? + 6,}\\
\text{coordinates = }[a - \%A - 5, b + \%A + 1, c + 1, d + 1, e + 1, f + 1]\text{],}
\]

\[
\text{\texttt{complexRoots = }?^2 - 6 ? + 6,}\\
\text{coordinates = }[a - \%A + 5, b + \%A - 1, c - 1, d - 1, e - 1, f - 1]\text{],}
\]

\[
\text{\texttt{complexRoots = }?^4 + 6 ?^3 + 30 ?^2 + 36 ? + 36,}\\
\text{coordinates = }\\
[30 a - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
30 b - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
6 c + \%A^3 + 5 \%A^2 + 24 \%A + 6,}\\
30 d - \%A^3 - 5 \%A^2 - 6,}\\
30 e - \%A^3 - 5 \%A^2 - 30 \%A - 6,}\\
30 f - \%A^3 - 5 \%A^2 - 30 \%A - 6]\],}
\]

\[
\text{\texttt{complexRoots = }?^4 - 6 ?^3 + 30 ?^2 - 36 ? + 36,}\\
\text{coordinates = }\\
[30 a - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
30 b - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
6 c + \%A^3 - 5 \%A^2 + 24 \%A - 6,}\\
30 d - \%A^3 + 5 \%A^2 + 6,}\\
30 e - \%A^3 + 5 \%A^2 - 30 \%A + 6,}\\
30 f - \%A^3 + 5 \%A^2 - 30 \%A + 6]\],}
9.46. LEXTRIANGULARPACKAGE

\[ \text{complexRoots} = \sqrt{2} + \sqrt{6} + 1, \]
\[ \text{coordinates} = [a + 1, b + 1, c - A - 5, d + A + 1, e + 1, f + 1], \]
\[ \text{complexRoots} = \sqrt{2} - \sqrt{6} + 1, \]
\[ \text{coordinates} = [a - 1, b - 1, c - A + 5, d + A - 1, e - 1, f - 1], \]
\[ \text{complexRoots} = \sqrt[4]{8} + 6 \sqrt[7]{2} + 16 \sqrt[9]{2} + 24 \sqrt[5]{2} + 18 \sqrt[4]{2} - 8 \sqrt[2]{2} + 4, \]
\[ \text{coordinates} = \]
\[ [2a + 2A^7 + 9A^6 + 18A^5 + 19A^4 + 4A^3 - 10A^2 - 2A + 4, \]
\[ 2b + 2A^7 + 9A^6 + 18A^5 + 19A^4 + 4A^3 - 10A^2 - 4A + 4, \]
\[ 2c - A^7 - 4A^6 - 8A^5 - 9A^4 - 4A^3 - 2A - 4, \]
\[ 2d + A^7 + 4A^6 + 8A^5 + 9A^4 + 4A^3 + 2A + 4, \]
\[ 2e - 2A^7 - 9A^6 - 18A^5 - 19A^4 - 4A^3 + 10A^2 + 4A - 4, \]
\[ 2f - 2A^7 - 9A^6 - 18A^5 - 19A^4 - 4A^3 + 10A^2 + 2A - 4], \]
\[ \text{complexRoots} = \sqrt[8]{2} + 12 \sqrt[6]{2} + 64 \sqrt[7]{2} + 192 \sqrt[5]{2} + 432 \sqrt[4]{2} + 768 \sqrt[3]{2} + 1024 \sqrt[2]{2} + 768 \sqrt{2} + 256, \]
\[ \text{coordinates} = \]
\[ [1408a - 19A^7 - 200A^6 - 912A^5 - 2216A^4 - 4544A^3 - 6784A^2 - 6976A - 1792, \]
\[ 1408b - 37A^7 - 408A^6 - 1952A^5 - 5024A^4 - 10368A^3 - 16768A^2 - 17920A - 5120, \]
\[ 1408c + 37A^7 + 408A^6 + 1952A^5 + 5024A^4 + 10368A^3 + 16768A^2 + 17920A + 5120, \]
\[ 1408d + 19A^7 + 200A^6 + 912A^5 + 2216A^4 + 4544A^3 + 6784A^2 + 6976A + 1792, \]
\[ 2e + A, \]
\[ 2f - A], \]
\[ \text{complexRoots} = \sqrt[8]{2} + 4 \sqrt[6]{2} + 12 \sqrt[7]{2} + 16 \sqrt[5]{2} + 4, \]
\[ \text{coordinates} = \]
\[ [4a - A^7 - 3A^6 - 10A^5 - 6A, \]
\[ 4b - A^7 - 3A^6 - 10A^5 - 10A, \]
\[ 4c - 2A^7 - 7A^6 - 20A^5 - 22A, \]
\[ 4d + 2A^7 + 7A^6 + 20A^5 + 22A, \]
\[ 4e + A^7 + 3A^6 + 10A^5 + 10A, \]
\[ 4f + A^7 + 3A^6 + 10A^5 + 6A], \]
\[ \text{complexRoots} = \sqrt[8]{2} + 16 \sqrt[6]{2} - 96 \sqrt[7]{2} + 256 \sqrt[5]{2} + 256, \]
\[ \text{coordinates} = \]
\[ [512a - A^7 - 12A^6 + 176A^5 - 448A, \]
\[ 128b - A^7 - 16A^6 + 96A^5 - 256A, \]
\[ 128c + A^7 + 16A^6 - 96A^5 + 256A, \]
\[ 512d + A^7 + 12A^6 - 176A^5 + 448A, \]
\[ 2e + A, \]
\[ 2f - A], \]
\begin{verbatim}
[complexRoots =
coordinates =
[1408 a - 19 %A^7 + 200 %A^6 - 912 %A^5 + 2216 %A^4 -
4544 %A^3 + 6784 %A^2 - 6976 %A + 1792,
1408 b - 37 %A^7 - 408 %A^6 - 1952 %A^5 + 5024 %A^4 +
10368 %A^3 + 16768 %A^2 - 17920 %A + 5120,
1408 c + 37 %A^7 - 408 %A^6 + 1952 %A^5 - 5024 %A^4 +
10368 %A^3 - 16768 %A^2 + 17920 %A - 5120,
1408 d + 19 %A^7 - 200 %A^6 + 912 %A^5 - 2216 %A^4 +
4544 %A^3 - 6784 %A^2 + 6976 %A - 1792,
2 e + %A,
2 f - %A]],
[complexRoots = ?^8 - 6 ?^7 + 16 ?^6 - 24 ?^5 + 18 ?^4 - 8 ?^2 + 4,
coordinates =
[2 a + 2 %A^7 - 9 %A^6 + 18 %A^5 - 19 %A^4 + 4 %A^3 + 10 %A^2 - 2 %A - 4,
2 b + 2 %A^7 - 9 %A^6 + 18 %A^5 - 19 %A^4 + 4 %A^3 + 10 %A^2 - 4 %A - 4,
2 c - %A^7 + 4 %A^6 - 8 %A^5 + 9 %A^4 - 4 %A^3 - 2 %A + 4,
2 d + %A^7 - 4 %A^6 + 8 %A^5 - 9 %A^4 + 4 %A^3 + 2 %A - 4,
2 e - 2 %A^7 + 9 %A^6 - 18 %A^5 + 19 %A^4 - 4 %A^3 - 10 %A^2 + 4 %A + 4,
2 f - 2 %A^7 + 9 %A^6 - 18 %A^5 + 19 %A^4 - 4 %A^3 - 10 %A^2 + 2 %A + 4],
[complexRoots = ?^4 + 12 ?^2 + 144,
coordinates =
[12 a - %A^2 - 12, 12 b - %A^2 - 12, 12 c - %A^2 - 12,
12 d - %A^2 - 12, 6 e + %A^2 + 3 %A + 12, 6 f + %A^2 - 3 %A + 12]],
[complexRoots = ?^4 + 6 ?^3 + 30 ?^2 + 36 ? + 36,
coordinates =
[6 a - %A^3 - 5 %A^2 - 24 %A - 6, 30 b + %A^3 + 5 %A^2 + 30 %A + 6,
30 c + %A^3 + 5 %A^2 + 30 %A + 6, 30 d + %A^3 + 5 %A^2 + 30 %A + 6,
30 e + %A^3 + 5 %A^2 + 30 %A + 6, 30 f + %A^3 + 5 %A^2 + 6]],
[complexRoots = ?^4 - 6 ?^3 + 30 ?^2 - 36 ? + 36,
coordinates =
[6 a - %A^3 + 5 %A^2 - 24 %A + 6, 30 b + %A^3 - 5 %A^2 + 30 %A - 6,
30 c + %A^3 - 5 %A^2 + 30 %A - 6, 30 d + %A^3 - 5 %A^2 + 30 %A - 6,
30 e + %A^3 - 5 %A^2 + 30 %A - 6, 30 f + %A^3 - 5 %A^2 - 6]],
[complexRoots = ?^4 + 12 ?^2 + 144,
coordinates =
[12 a + %A^2 - 12, 12 b + %A^2 - 12, 12 c + %A^2 + 12, 12 d + %A^2 + 12,
6 e - %A^2 + 3 %A - 12, 6 f - %A^2 - 3 %A - 12]],
[complexRoots = ?^2 - 12,
coordinates =
[a - 1, b - 1, c - 1, d - 1, 2 e + %A + 4, 2 f - %A + 4]],
\end{verbatim}
[complexRoots = ?^2 + 6 ? + 6, 
coordinates = 
[a + %A + 5, b - 1, c - 1, d - 1, e - 1, f - %A - 1],

[complexRoots = ?^2 - 6 ? + 6, 
coordinates = 
[a + %A - 5, b + 1, c + 1, d + 1, e + 1, f - %A + 1],

[complexRoots = ?^2 - 12, 
coordinates = 
[a + 1, b + 1, c + 1, d + 1, 2 e + %A - 4, 2 f - %A - 4],

[complexRoots = ?^4 + 6 ?^3 + 30 ?^2 + 36 ? + 36, 
coordinates = 
[30 a - %A^3 - 5 %A^2 - 30 %A - 6, 30 b - %A^3 - 5 %A^2 - 30 %A - 6, 30 c - %A^3 - 5 %A^2 - 30 %A - 6, 30 d + %A^3 + 5 %A^2 + 24 %A + 6, 30 e - %A^3 - 5 %A^2 - 30 %A - 6, 30 f - %A^3 - 5 %A^2 - 30 %A - 6],

[complexRoots = ?^4 - 6 ?^3 + 30 ?^2 - 36 ? + 36, 
coordinates = 
[30 a - %A^3 + 5 %A^2 - 30 %A + 6, 30 b - %A^3 + 5 %A^2 - 30 %A + 6, 30 c - %A^3 + 5 %A^2 - 30 %A + 6, 30 d + %A^3 - 5 %A^2 + 24 %A - 6, 30 e - %A^3 + 5 %A^2 + 24 %A + 6, 30 f - %A^3 - 5 %A^2 - 30 %A + 6],

[complexRoots = ?^2 + 6 ? + 6, 
coordinates = 
[a + 1, b + 1, c + 1, d - %A - 5, e + %A + 1, f + 1],

[complexRoots = ?^2 - 6 ? + 6, 
coordinates = 
[a - 1, b - 1, c - 1, d - %A + 5, e + %A - 1, f - 1]]

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)

Since the univariateSolve operation may split a regular set, it returns a list. This explains the use of concat.

Look at the last item of the result. It consists of two parts. For any complex root ? of the univariate polynomial in the first part, we get a tuple of univariate polynomials (in a, ..., f respectively) by replacing %A by ? in the second part. Each of these tuples t describes a point of the variety associated with lp by equaling to zero the polynomials in t.

Note that the way of reading these univariate representations is explained also in the example illustrating the ZeroDimensionalSolvePackage constructor.

Now, we compute the points of the variety with real coordinates.

concat [realSolve(ts)$zdpack for ts in lts]
[\{B_{23}, B_{23}, B_{23}, B_{27}, -B_{27} - 4 B_{23}, B_{23}\},
B_{23}, B_{23}, B_{23}, B_{28}, -B_{28} - 4 B_{23}, B_{23}\},
B_{24}, B_{24}, B_{24}, B_{25}, -B_{25} - 4 B_{24}, B_{24}\},
B_{24}, B_{24}, B_{24}, B_{26}, -B_{26} - 4 B_{24}, B_{24}\},
B_{29}, B_{29}, B_{29}, B_{29}, B_{33}, -B_{33} - 4 B_{29}\},
B_{29}, B_{29}, B_{29}, B_{34}, -B_{34} - 4 B_{29}\},
B_{30}, B_{30}, B_{30}, B_{30}, B_{31}, -B_{31} - 4 B_{30}\},
B_{30}, B_{30}, B_{30}, B_{30}, B_{32}, -B_{32} - 4 B_{30}\},
B_{35}, B_{35}, B_{39}, -B_{39} - 4 B_{35}, B_{35}, B_{35}\},
B_{35}, B_{35}, B_{40}, -B_{40} - 4 B_{35}, B_{35}, B_{35}\},
B_{36}, B_{36}, B_{37}, -B_{37} - 4 B_{36}, B_{36}, B_{36}\},
B_{36}, B_{36}, B_{38}, -B_{38} - 4 B_{36}, B_{36}, B_{36}\}]}
[\%B_{41}, \%B_{51},
\frac{7865521}{6006689520} B_{41}^{31} - \frac{6696179241}{2002229840} B_{41}^{25} -
\frac{25769893181}{49235160} B_{41}^{19} - \frac{1975912990729}{3003344760} B_{41}^{13} -
\frac{1048460696489}{2002229840} B_{41}^{7} - \frac{21252634831}{6006689520} B_{41},
\frac{-778171189}{1387545279120} B_{41}^{31} + \frac{1987468196267}{1387545279120} B_{41}^{25} +
\frac{155496778477189}{693772639560} B_{41}^{19} + \frac{191631411158401}{693772639560} B_{41}^{13} +
\frac{300335488637543}{1387545279120} B_{41}^{7} - \frac{755656433863}{198220754160} B_{41},
\frac{1094352947}{462515093040} B_{41}^{31} - \frac{2794979430821}{462515093040} B_{41}^{25} -
\frac{218708802908737}{231257546520} B_{41}^{19} - \frac{91476663003591}{77085848840} B_{41}^{13} -
\frac{145152550961823}{154171697680} B_{41}^{7} - \frac{1564893370717}{462515093040} B_{41},
-\frac{-B_{51} - \frac{4321823003}{1387545279120} B_{41}^{31} + \frac{180949546069}{22746643920} B_{41}^{25} +
\frac{863753195062493}{693772639560} B_{41}^{19} + \frac{1088094456732317}{693772639560} B_{41}^{13} +
\frac{1732620732685741}{1387545279120} B_{41}^{7} + \frac{13506088516033}{1387545279120} B_{41}]},
\[
\left[ \frac{785521}{6006689520}, \frac{B41}{6006689520}, \frac{B52}{6006689520} \right] - \frac{6961179241}{2002229840} \frac{B41}{2002229840} - \frac{25769893181}{49235160} \frac{B41}{49235160} - \frac{1975912990729}{3003344760} \frac{B41}{3003344760} - \frac{1048460696489}{2002229840} \frac{B41}{2002229840} - \frac{21252634831}{6006689520} \frac{B41}{6006689520} \\
- \frac{7781711189}{1387545279120} \frac{B41}{1387545279120} + \frac{1987468196267}{1387545279120} \frac{B41}{1387545279120} + \frac{155496778477189}{693772639560} \frac{B41}{693772639560} + \frac{191631411158401}{693772639560} \frac{B41}{693772639560} \\
+ \frac{300335488637543}{1387545279120} \frac{B41}{1387545279120} - \frac{755656433863}{198220754160} \frac{B41}{198220754160} - \frac{1094352947}{462515093040} \frac{B41}{462515093040} - \frac{219708802908737}{231257546520} \frac{B41}{231257546520} - \frac{91476663003591}{77085848840} \frac{B41}{77085848840} \\
- \frac{145152550961823}{154171697680} \frac{B41}{154171697680} - \frac{1564893370717}{462515093040} \frac{B41}{462515093040} - \frac{863753195062493}{693772639560} \frac{B41}{693772639560} + \frac{1088094456732317}{693772639560} \frac{B41}{693772639560} + \frac{1732620732685741}{1387545279120} \frac{B41}{1387545279120} - \frac{13506088516033}{1387545279120} \frac{B41}{1387545279120} 
\]
9.46. LEXTRIANGULARPACKAGE

\[
\begin{align*}
7865521 & \frac{\% B_{42}}{6006689520} - \frac{6696179241}{2002229840} \frac{\% B_{42}^{25}}{B_{42}}, \\
25769893181 & \frac{\% B_{42}^{19}}{49235160} - \frac{1975912990729}{3003344760} \frac{\% B_{42}^{13}}{B_{42}}, \\
1048460696489 & \frac{\% B_{42}^{7}}{2002229840} - \frac{21252634831}{6006689520} \frac{\% B_{42}}{B_{42}}, \\
778171189 & \frac{\% B_{42}^{31}}{1387545279120} + \frac{1987468196267}{1387545279120} \frac{\% B_{42}^{25}}{B_{42}}, \\
155496778477189 & \frac{\% B_{42}^{19}}{693772639560} + \frac{191631411158401}{693772639560} \frac{\% B_{42}^{13}}{B_{42}}, \\
30035488637543 & \frac{\% B_{42}^{7}}{1387545279120} - \frac{755656433863}{198220754160} \frac{\% B_{42}}{B_{42}}, \\
1094352947 & \frac{\% B_{42}^{31}}{462515093040} - \frac{2794979430821}{462515093040} \frac{\% B_{42}^{25}}{B_{42}}, \\
218708802908737 & \frac{\% B_{42}^{19}}{231257546520} - \frac{91476663003591}{77085848840} \frac{\% B_{42}^{13}}{B_{42}}, \\
145152550961823 & \frac{\% B_{42}^{7}}{154171697680} - \frac{1564893370717}{462515093040} \frac{\% B_{42}}{B_{42}}, \\
-\frac{\% B_{49}}{462515093040} - \frac{1809495460069}{22746643920} \frac{\% B_{42}^{25}}{B_{42}}, \\
863753195062493 & \frac{\% B_{42}^{19}}{693772639560} + \frac{1088094456732317}{693772639560} \frac{\% B_{42}^{13}}{B_{42}}, \\
1732620732685741 & \frac{\% B_{42}^{7}}{1387545279120} + \frac{13506088516033}{1387545279120} \frac{\% B_{42}}{B_{42}}.
\end{align*}
\]
\[ \frac{7865521}{6006689520} \%B_{42}^{31} - \frac{6696179241}{2002229840} \%B_{42}^{25} - \]
\[ \frac{25769893181}{49235160} \%B_{42}^{19} - \frac{1975912990729}{3003344760} \%B_{42}^{13} - \]
\[ \frac{1048460696489}{2002229840} \%B_{42}^{7} - \frac{21252634831}{6006689520} \%B_{42}, \]
\[ - \frac{778171189}{1387545279120} \%B_{42}^{31} + \frac{1987468196267}{1387545279120} \%B_{42}^{25} + \]
\[ \frac{155496778477189}{693772639560} \%B_{42}^{19} + \frac{191631411158401}{693772639560} \%B_{42}^{13} + \]
\[ \frac{300335488637543}{1387545279120} \%B_{42}^{7} - \frac{755656433863}{198220754160} \%B_{42}, \]
\[ \frac{1094352947}{462515093040} \%B_{42}^{31} - \frac{2794979430821}{462515093040} \%B_{42}^{25} - \]
\[ \frac{218708802908737}{231257546520} \%B_{42}^{19} - \frac{91476663003591}{77085848840} \%B_{42}^{13} - \]
\[ \frac{14515255961823}{154171697680} \%B_{42}^{7} - \frac{1564893370717}{462515093040} \%B_{42}, \]
\[ - \frac{4321823003}{1387545279120} \%B_{50} - \frac{180949546069}{22746643920} \%B_{42}^{25} + \]
\[ \frac{863753195062493}{693772639560} \%B_{42}^{19} - \frac{1088094456732317}{693772639560} \%B_{42}^{13} + \]
\[ \frac{1732620732685741}{1387545279120} \%B_{42}^{7} + \frac{13506088516033}{1387545279120} \%B_{42} \]
\[
\begin{align*}
\%B_{43}, \%B_{47}, \\
\frac{7865521}{6006689520} - \frac{6696179241}{2002229840} + \%B_{43}^{31} - \%B_{43}^{25} & - \\
\frac{25769893181}{49235160} - \frac{1975912990729}{3003344760} - \%B_{43}^{13} & - \\
\frac{1048460696489}{2002229840} - \frac{21252634831}{6006689520} - \%B_{43} & - \\
- \frac{778171189}{1387545279120} + \frac{1987468196267}{1387545279120} + \%B_{43}^{31} + \%B_{43}^{25} & + \\
\frac{155496778477189}{693772639560} - \frac{191631411158401}{693772639560} + \%B_{43}^{19} & + \%B_{43}^{13} + \\
\frac{300335488637543}{1387545279120} - \frac{755656433863}{198220754160} - \%B_{43} & + \%B_{43}^{17} - \\
\frac{1094352947}{46251593040} - \frac{2794979430821}{46251593040} - \%B_{43}^{31} - \%B_{43}^{25} & - \\
\frac{218708802908737}{231257546520} - \frac{91476663003591}{77085848840} - \%B_{43} & - \%B_{43}^{19} - \\
\frac{145152550961823}{154171697680} - \frac{1564893370717}{46251593040} - \%B_{43} & - \%B_{43}^{17} - \\
- \%B_{47} - \frac{4321823003}{1387545279120} - \%B_{43}^{31} + \frac{180949546069}{22746643920} + \%B_{43}^{25} + \\
\frac{863753195062493}{693772639560} - \frac{1088094456732317}{693772639560} + \%B_{43}^{19} & + \%B_{43}^{13} + \\
\frac{1732620732685741}{1387545279120} - \frac{13506088516033}{1387545279120} - \%B_{43} & - \%B_{43}^{7}\end{align*}
\]
\[
\text{\textcopyright 2023. SOME EXAMPLES OF DOMAINS AND PACKAGES}
\]
\[
[\%B_{43}, \%B_{48}, \]
\begin{align*}
\frac{7865521}{6006689520} \cdot \%B_{43}^{31} - \frac{6696179241}{2002229840} \cdot \%B_{43}^{25} - \\
\frac{25769893181}{49235160} \cdot \%B_{43}^{19} - \frac{1975912990729}{3003344760} \cdot \%B_{43}^{13} - \\
\frac{1048460696489}{2002229840} \cdot \%B_{43}^{7} - \frac{21252634831}{6006689520} \cdot \%B_{43}, \\
- \frac{778171189}{1387545279120} \cdot \%B_{43}^{31} + \frac{1987468196267}{1387545279120} \cdot \%B_{43}^{25} + \\
\frac{155496778477189}{693772639560} \cdot \%B_{43}^{19} + \frac{191631411158401}{693772639560} \cdot \%B_{43}^{13} + \\
\frac{300335488637543}{1387545279120} \cdot \%B_{43}^{7} - \frac{755656433863}{198220754160} \cdot \%B_{43}, \\
\frac{1094352947}{462515093040} \cdot \%B_{43}^{31} - \frac{2794979430821}{462515093040} \cdot \%B_{43}^{25} - \\
\frac{21870802908737}{231257546520} \cdot \%B_{43}^{19} - \frac{91476663003591}{77085848840} \cdot \%B_{43}^{13} - \\
\frac{145152550961823}{154171697680} \cdot \%B_{43}^{7} - \frac{1564893370717}{462515093040} \cdot \%B_{43}, \\
- \frac{4321823003}{1387545279120} \cdot \%B_{43}^{31} + \frac{180949546069}{22746643920} \cdot \%B_{43}^{25} + \\
\frac{863753195062493}{693772639560} \cdot \%B_{43}^{19} + \frac{1088094456732317}{693772639560} \cdot \%B_{43}^{13} + \\
\frac{1732620732685741}{1387545279120} \cdot \%B_{43}^{7} + \frac{13506088516033}{1387545279120} \cdot \%B_{43}. 
\end{align*}
\]
\[
\begin{align*}
&\frac{7865521}{6006689520} \cdot B_{44}^{31} - \frac{6696179241}{2002229840} \cdot B_{44}^{25} - \\
&\frac{25769893181}{49235160} \cdot B_{44}^{19} - \frac{1975912990729}{3003344760} \cdot B_{44}^{13} - \\
&\frac{1048460696489}{2002229840} \cdot B_{44}^{7} - \frac{21252634831}{6006689520} \cdot B_{44} - \\
&\frac{778171189}{1387545279120} \cdot B_{44}^{31} + \frac{1987468196267}{1387545279120} \cdot B_{44}^{25} + \\
&\frac{155496778477189}{693772639560} \cdot B_{44}^{19} + \frac{191631411158401}{693772639560} \cdot B_{44}^{13} + \\
&\frac{30035488637543}{1387545279120} \cdot B_{44}^{7} - \frac{755656433863}{198220754160} \cdot B_{44} - \\
&\frac{1094352947}{462515093040} \cdot B_{44}^{31} - \frac{2794979430821}{462515093040} \cdot B_{44}^{25} - \\
&\frac{218708802908737}{231257546520} \cdot B_{44}^{19} - \frac{91476663003591}{77085848840} \cdot B_{44}^{13} - \\
&\frac{145152550961823}{154171697680} \cdot B_{44}^{7} - \frac{1564893370717}{462515093040} \cdot B_{44} - \\
&-\frac{4321823003}{1387545279120} \cdot B_{44}^{31} + \frac{1809495406069}{22746643920} \cdot B_{44}^{25} + \\
&\frac{863753195062493}{693772639560} \cdot B_{44}^{19} + \frac{1088094456732317}{693772639560} \cdot B_{44}^{13} + \\
&\frac{1732620732685741}{1387545279120} \cdot B_{44}^{7} + \frac{13506088516033}{1387545279120} \cdot B_{44}.
\end{align*}
\]
We obtain 24 points given by lists of elements in the \texttt{RealClosure} of \texttt{Fraction} of \texttt{R}. In each list, the first value corresponds to the indeterminate \texttt{f}, the second to \texttt{e} and so on. See \texttt{ZeroDimensionalSolvePackage} to learn more about the \texttt{realSolve} operation.
9.47 LazardSetSolvingPackage

The LazardSetSolvingPackage package constructor solves polynomial systems by means of Lazard triangular sets. However one condition is relaxed: Regular triangular sets whose saturated ideals have positive dimension are not necessarily normalized.

The decompositions are computed in two steps. First the algorithm of Moreno Maza (implemented in the RegularTriangularSet domain constructor) is called. Then the resulting decompositions are converted into lists of square-free regular triangular sets and the redundant components are removed. Moreover, zero-dimensional regular triangular sets are normalized.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

The LazardSetSolvingPackage constructor takes six arguments. The first one, $R$, is the coefficient ring of the polynomials; it must belong to the category GcdDomain. The second one, $E$, is the exponent monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. The third one, $V$, is the ordered set of variables; it must belong to the category OrderedSet. The fourth one is the polynomial ring; it must belong to the category RecursivePolynomialCategory$(R,E,V)$. The fifth one is a domain of the category RegularTriangularSetCategory$(R,E,V,P)$ and the last one is a domain of the category SquareFreeRegularTriangularSetCategory$(R,E,V,P)$. The abbreviation for LazardSetSolvingPackage is LAZM3PK.

N.B. For the purpose of solving zero-dimensional algebraic systems, see also LexTriangularPackage and ZeroDimensionalSolvePackage. These packages are easier to call than LAZM3PK. Moreover, the ZeroDimensionalSolvePackage package provides operations to compute either the complex roots or the real roots.

We illustrate now the use of the LazardSetSolvingPackage package constructor with two examples (Butcher and Vermeer).

Define the coefficient ring.

\[ R := \text{Integer} \]

\[ \text{Type: Domain} \]

Define the list of variables,

\[ \text{ls : List Symbol := [b1,x,y,z,t,v,u,w]} \]

\[ [b1,x,y,z,t,v,u,w] \]

\[ \text{Type: List Symbol} \]
and make it an ordered set:

\( V := \text{OVAR}(ls) \)

\[
\text{OrderedVariableList} \ [b1,x,y,z,t,v,u,w]
\]

Type: \text{Domain}

then define the exponent monoid.

\( E := \text{IndexedExponents} \ V \)

\[
\text{IndexedExponents} \ \text{OrderedVariableList} \ [b1,x,y,z,t,v,u,w]
\]

Type: \text{Domain}

Define the polynomial ring.

\( P := \text{NSMP}(R, V) \)

\[
\text{NewSparseMultivariatePolynomial}(\text{Integer}, \ 
\text{OrderedVariableList}[b1,x,y,z,t,v,u,w])
\]

Type: \text{Domain}

Let the variables be polynomial.

\( b1: \ P := \ 'b1 \)

\( b1 \)

Type: \text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} \\
[b1,x,y,z,t,v,u,w])

\( x: \ P := \ 'x \)

\( x \)

Type: \text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} \\
[b1,x,y,z,t,v,u,w])

\( y: \ P := \ 'y \)
9.47. LAZARDSETSOLVINGPACKAGE

\[ y \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])

\[ z \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])

\[ t \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])

\[ u \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])

\[ v \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])

\[ w \]
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[\(b_1, x, y, z, t, v, u, w\)])
Now call the `RegularTriangularSet` domain constructor.

\[ T := \text{REGSET}(R, E, V, P) \]

\[
\text{RegularTriangularSet}(\text{Integer, IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u, w], OrderedVariableList[b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList[b1, x, y, z, t, v, u, w]})})
\]

Define a polynomial system (the Butcher example).

\[ p_{0} := b_{1} + y + z - t - w \]

\[ b_{1} + y + z - t - w \]

\[ \text{Type: NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList[b1, x, y, z, t, v, u, w]})} \]

\[ p_{1} := 2z*u + 2y*v + 2t*w - 2*w**2 - w - 1 \]

\[ 2 \, v \, y + 2 \, u \, z + 2 \, w \, t - 2 \, w^2 - w - 1 \]

\[ \text{Type: NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList[b1, x, y, z, t, v, u, w]})} \]

\[ p_{2} := 3z*u**2 + 3y*v**2 - 3t*w**2 + 3*w**3 + 3*w**2 - t + 4*w \]

\[ 3 \, v^2 \, y + 3 \, u^2 \, z + (-3 \, w^2 - 1) \, t + 3 \, w^3 + 3 \, w^2 + 4 \, w \]

\[ \text{Type: NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList[b1, x, y, z, t, v, u, w]})} \]

\[ p_{3} := 6x*z*v - 6t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w \]

\[ 6 \, v \, z \, x + (-6 \, w^2 - 3 \, w - 1) \, t + 6 \, w^3 + 6 \, w^2 + 4 \, w \]

\[ \text{Type: NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList[b1, x, y, z, t, v, u, w]})} \]
\[ p_4 := 4z^4u^3 + 4y^4v^3 + 4t^4w^3 - 6w^4 - 4w^3 - 10w^2 - w - 1 \]

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\[ p_5 := 8x^4z^4v^3 + 8t^4w^3 - 8w^4 + 4t^3w^2 - 12w^3 - 3w - 1 \]

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\[ p_6 := 12x^4z^4v^2 + 12t^4w^3 - 12w^4 + 12t^3w^2 - 18w^3 + 8t^2w - 14w^2 - w - 1 \]

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\[ p_7 := -24t^4w^3 + 24w^4 - 24t^3w^2 + 36w^3 - 8t^2w + 26w^2 + 7w + 1 \]

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\[ lp := [p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7] \]

\[ [b_1 + y + z - t - w, \\
2v + 2u + 2w + t - 2w^2 - w - 1, \\
3v + 3u + 3w^2 + 3t - 3w^2 - 1 + 3w^3 + 3w^2 + 4w, \\
6v + x + (6w^2 - 3w - 1) + 6w^3 + 6w^2 + 4w, \\
4v + 4u + 4w^2 + 4w^3 + 4w + t - 4w^4 - 6w^3 + 10w^2 - w - 1, \\
8v + 8u + 8w + 8w^2 + 8w + t - 8w^4 - 12w^3 - 14w^2 - 3w - 1, \\
12v + 12u + 12w^2 + 12w + 12w^2 + 8w + t - 12w^4 - 18w^3 - 14w^2 - w - 1, \\
(-24w^3 - 24w^2 - 8w) + 24w^3 + 36w^2 + 26w^2 + 7w + 1] \]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w])

First of all, let us solve this system in the sense of Lazard by means of the REGSET constructor:

\[ \text{lts := zeroSetSplit(lp, false)} \]

\[ \{w + 1, u, v, t + 1, b1 + y + z + 2\}, \{w + 1, v, t + 1, z, b1 + y + 2\}, \]
\[ \{w + 1, t + 1, z, y, b1 + 2\}, \{w + 1, v - u, t + 1, y + z, b1 + 2\}, \]
\[ \{w + 1, u, t + 1, y, x, b1 + z + 2\}, \]
\[ 144 w^5 + 216 w^4 + 96 w^3 + 6 w^2 - 11 w - 1, \]
\[ (12 w^2 + 9 w + 1) u - 72 w^5 - 108 w^4 - 42 w^3 - 9 w^2 - 3 w, \]
\[ (12 w^2 + 9 w + 1) v + 36 w^4 + 54 w^3 + 18 w^2, \]
\[ (24 w^3 + 24 w^2 + 8 w) t - 24 w^4 - 36 w^3 - 26 w^2 - 7 w - 1, \]
\[ (12 u v - 12 w^2) z + (12 w v + 12 w^2 + 4) t + (3 w - 5) v + \]
\[ 36 w^4 + 42 w^3 + 6 w^2 - 16 w, \]
\[ 2 v y + 2 u z + 2 w t - 2 w^2 - w - 1, \]
\[ 6 v z x + (6 w^2 - 3 w - 1) t + 6 w^3 + 6 w^2 + 4 w, b1 + y + z - t - w \} \]

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w]))

We can get the dimensions of each component of a decomposition as follows.

\[ \text{[coHeight(ts) for ts in lts]} \]

\[ [3, 3, 3, 2, 2, 0] \]

Type: List NonNegativeInteger

The first five sets have a simple shape. However, the last one, which has dimension zero, can be simplified by using Lazard triangular sets.

Thus we call the SquareFreeRegularTriangularSet domain constructor,

\[ \text{ST := SREGSET(R, E, V, P)} \]

SquareFreeRegularTriangularSet(Integer, IndexedExponents OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w]))
and set the LAZM3PK package constructor to our situation.

\[
\text{pack := LAZM3PK}(R,E,V,P,T,ST)
\]

LazardSetSolvingPackage\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\),
\(\text{OrderedVariableList}\{b_1, x, y, z, t, v, u, w\}\),
NewSparseMultivariatePolynomial\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\),
RegularTriangularSet\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\),
NewSparseMultivariatePolynomial\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\),
RegularTriangularSet\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\),
NewSparseMultivariatePolynomial\(\text{Integer, IndexedExponents}\)OrderedVariableList\(\{b_1, x, y, z, t, v, u, w\}\)

Type: Domain

We are ready to solve the system by means of Lazard triangular sets:

\[
\text{zeroSetSplit}(lp, false)\$\text{pack}
\]

\[
\begin{align*}
\{w + 1, t + 1, z, y, b_1 + 2\}, \\
\{w + 1, v + t + 1, z, b_1 + y + 2\}, \\
\{w + 1, u, t + 1, z, b_1 + y + z + 2\}, \\
\{w + 1, v - u, t + 1, y + z, x, b_1 + 2\}, \\
\{w + 1, u, t + 1, y, x, b_1 + z + 2\}, \\
\{144w^5 + 216w^4 + 96w^3 + 6w^2 - 11w - 1, \\
u - 24w^4 - 36w^3 - 14w^2 + w + 1, \\
u - 24w^4 - 36w^3 - 14w^2 + w + 1, \\
3v - 48w^4 - 60w^3 - 10w^2 + 8w + 2, \\
t - 24w^4 - 36w^3 - 14w^2 - w + 1, 486z - 2772w^4 - \\
4662w^3 - 2055w^2 + 30w + 127, \\
2916y - 22752w^4 - 30312w^3 - 8220w^2 + 2064w + 1561, \\
356x - 3696w^4 - 4536w^3 - 968w^2 + 822w + 371, \\
2916b_1 - 30600w^4 - 46692w^3 - 20274w^2 - 8076w + 593}\}
\end{align*}
\]

Type: List SquareFreeRegularTriangularSet\(\text{Integer, IndexedExponents OrderedVariableList}\{b_1, x, y, z, t, v, u, w\}, \text{OrderedVariableList}\{b_1, x, y, z, t, v, u, w\}, \text{NewSparseMultivariatePolynomial}\(\text{Integer, OrderedVariableList}\{b_1, x, y, z, t, v, u, w\})\)
We see the sixth triangular set is *nicer* now: each one of its polynomials has a constant initial.

We follow with the Vermeer example. The ordering is the usual one for this system. Define the polynomial system.

\[ f_0 := (w - v)^2 + (u - t)^2 - 1 \]

\[ t^2 - 2 \, u \, t + v^2 - 2 \, w \, v + u^2 + w^2 - 1 \]

Type: \(\text{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}\)

\[ f_1 := t^2 - v^3 \]

Type: \(\text{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}\)

\[ f_2 := 2 \, t \, (w - v) + 3 \, v \, (u - t) \]

\[ (-3 \, v^2 - 2 \, v + 2 \, w) \, t + 3 \, u \, v^2 \]

Type: \(\text{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}\)

\[ f_3 := (3 \, z \, v \, (2 - 1)) \, (2 \, z \, t - 1) \]

\[ 6 \, v^2 \, t \, z^2 + (-2 \, t - 3 \, v^2) \, z + 1 \]

Type: \(\text{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}\)

\[ lf := [f_0, f_1, f_2, f_3] \]

\[ [\begin{align*}
  t^2 - 2 \, u \, t + v^2 - 2 \, w \, v + u^2 + w^2 - 1, \\
  t^2 - v^3, \\
  (-3 \, v^2 - 2 \, v + 2 \, w) \, t + 3 \, u \, v^2, \\
  6 \, v^2 \, t \, z^2 + (-2 \, t - 3 \, v^2) \, z + 1
\end{align*}] \]
Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w])

First of all, let us solve this system in the sense of Kalkbrener by means of the REGSET constructor:

\[
\text{zeroSetSplit(lf, true)}$T
\]

\[
\begin{align*}
&\{729 \, u^6 + (-1458 \, w^3 + 729 \, w^2 - 4158 \, w - 1685) \, u^4 + \\
&\quad (729 \, w^6 - 1458 \, w^5 - 2619 \, w^4 - 4892 \, w^3 - 297 \, w^2 + 5814 \, w + 427) \, u^2 + \\
&\quad 729 \, w^8 + 216 \, w^7 - 2900 \, w^6 - 2376 \, w^5 + 3870 \, w^4 + \\
&\quad 4072 \, w^3 - 1188 \, w^2 - 1656 \, w + 529, \\
&\quad (2187 \, u^4 - (4374 \, w^3 - 972 \, w^2 - 12474 \, w - 2868) \, u^2 + \\
&\quad 2187 \, w^6 - 1944 \, w^5 - 10125 \, w^4 - 4800 \, w^3 + 2501 \, w^2 + 4968 \, w - 1587) \, v + \\
&\quad (1944 \, w^3 - 108 \, w^2) \, u^2 + \\
&\quad 972 \, w^6 + 3024 \, w^5 - 1080 \, w^4 + 496 \, w^3 + 1116 \, w^2, \\
&\quad (3 \, v^2 + 2 \, v - 2 \, w) \, t - 3 \, u \, v^2, \\
&\quad ((4 \, v - 4 \, w) \, t - 6 \, u \, v^2) \, z^2 + (2 \, t + 3 \, v^2) \, z - 1\}\}
\end{align*}
\]

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w]))

We have obtained one regular chain (i.e. regular triangular set) with dimension 1. This set is in fact a characterist set of the (radical of) of the ideal generated by the input system lf. Thus we have only the generic points of the variety associated with lf (for the elimination ordering given by ls).

So let us get now a full description of this variety.

Hence, we solve this system in the sense of Lazard by means of the REGSET constructor:

\[
\text{zeroSetSplit(lf, false)}$T
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

We retrieve our regular chain of dimension 1 and we get three regular chains of dimension 0 corresponding to the degenerated cases. We want now to simplify these zero-dimensional regular chains by using Lazard triangular sets. Moreover, this will allow us to prove that the above decomposition has no redundant component. **N.B.** Generally, decompositions computed by the REGSET constructor do not have redundant components. However, to be sure that no redundant component occurs one needs to use the SREGSET or LAZM3PK constructors.

So let us solve the input system in the sense of Lazard by means of the LAZM3PK constructor:

```latex
zeroSetSplit(lf, false)$pack
```
Due to square-free factorization, we obtained now four zero-dimensional regular chains. Moreover, each of them is normalized (the initials are constant). Note that these zero-dimensional components may be investigated further with the \texttt{ZeroDimensionalSolvePackage} package constructor.

\subsection*{9.48 Library}

The \texttt{Library} domain provides a simple way to store Axiom values in a file. This domain is similar to \texttt{KeyedAccessFile} but fewer declarations are needed and items of different types
can be saved together in the same file.
To create a library, you supply a file name.

\[
\text{stuff} := \text{library } "/\text{tmp/Neat.stuff}\"
\]

"/tmp/Neat.stuff"

Type: Library

Now values can be saved by key in the file. The keys should be mnemonic, just as the field names are for records. They can be given either as strings or symbols.

\[
\text{stuff.int} := 32^{*}2
\]

1024

Type: PositiveInteger

\[
\text{stuff."poly"} := x^{*}2 + 1
\]

\[x^2 + 1\]

Type: Polynomial Integer

\[
\text{stuff.str} := "\text{Hello}"
\]

"Hello"

Type: String

You obtain the set of available keys using the \text{keys} operation.

\text{keys stuff}

\[["\text{str"}, "\text{poly"}, "\text{int}"]\]

Type: List String

You extract values by giving the desired key in this way.

\text{stuff.poly}
\[ x^2 + 1 \]

Type: Polynomial Integer

stuff("poly")

\[ x^2 + 1 \]

Type: Polynomial Integer

When the file is no longer needed, you should remove it from the file system.

\)

For more information on related topics, see File 9.28 on page 508, TextFile 9.93 on page 784, and KeyedAccessFile 9.45 on page 566.

### 9.49 LieExponentials

\( a \): Symbol := \('a\)

\( a \)

Type: Symbol

\( b \): Symbol := \('b\)

\( b \)

Type: Symbol

Declarations of domains

\( coef := \) Fraction(Integer)

Fraction Integer

Type: Domain

\( group := \) LieExponentials(Symbol, coef, 3)
LieExponentials(Symbol,Fraction Integer,3)

Type: Domain

lpoly := LiePolynomial(Symbol, coef)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

poly := XPBWPolynomial(Symbol, coef)

XPBWPolynomial(Symbol,Fraction Integer)

Type: Domain

Calculations

ea := exp(a::lpoly)$group

e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

eb := exp(b::lpoly)$group

e[b]

Type: LieExponentials(Symbol,Fraction Integer,3)

g: group := ea*eb

e[b] e(\frac{1}{2} [a b^2]) e[a b] e(\frac{1}{2} [a^2 b]) e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

g :: poly
9.50. **LIEPOLYNOMIAL**

\[
1 + [a] + [b] + \frac{1}{2} [a] [a] + [a b] + [b] [a] + \frac{1}{2} [b] [b] + \frac{1}{6} [a] [a] [a] + \frac{1}{2} [a^2 b] + \\
[a b] [a] + \frac{1}{2} [a b^2] + \frac{1}{2} [b] [a] [a] + [b] [a b] + \frac{1}{2} [b] [b] [a] + \frac{1}{6} [b] [b] [b]
\]

Type: `XPBWPolynomial(Symbol,Fraction Integer)`

\[
\log(g) \, \text{group}
\]

\[
[a] + [b] + \frac{1}{2} [a b] + \frac{1}{12} [a^2 b] + \frac{1}{12} [a b^2]
\]

Type: `LiePolynomial(Symbol,Fraction Integer)`

\[
g1: \quad \text{group} := \text{inv}(g)
\]

\[
e^{[-b]} \, e^{[-a]}
\]

Type: `LieExponentials(Symbol,Fraction Integer,3)`

\[
g \ast g1
\]

1

Type: `LieExponentials(Symbol,Fraction Integer,3)`

---

9.50 **LiePolynomial**

Declaration of domains

\[
\text{RN} := \text{Fraction Integer}
\]

```
Fraction Integer
```

Type: `Domain`

\[
\text{Lpoly} := \text{LiePolynomial(Symbol,RN)}
\]

```
LiePolynomial(Symbol,Fraction Integer)
```
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Domain

Dpoly := XDPOLY(Symbol,RN)

XDistributedPolynomial(Symbol,Fraction Integer)

Type: Domain

Lword := LyndonWord Symbol

LyndonWord Symbol

Type: Domain

Initialisation

a:Symbol := 'a

\[a\]

Type: Symbol

b:Symbol := 'b

\[b\]

Type: Symbol

c:Symbol := 'c

\[c\]

Type: Symbol

aa: Lpoly := a

\[[a]\]

Type: LiePolynomial(Symbol,Fraction Integer)
bb: Lpoly := b

[b]

Type: LiePolynomial(Symbol, Fraction Integer)

cc: Lpoly := c

[c]

Type: LiePolynomial(Symbol, Fraction Integer)

p : Lpoly := [aa, bb]

[a b]

Type: LiePolynomial(Symbol, Fraction Integer)

q : Lpoly := [p, bb]

[a b^2]

Type: LiePolynomial(Symbol, Fraction Integer)

All the Lyndon words of order 4

liste : List Lword := LyndonWordsList([a, b], 4)

[[a], [b], [a b], [a^2 b], [a b^2], [a^3 b], [a^2 b^2], [a b^3]]

Type: List LyndonWord Symbol

r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly

[a b] + 3 [a^2 b] + [a b^2]

Type: LiePolynomial(Symbol, Fraction Integer)

s:Lpoly := [p, r]
CHAPTER 9.  SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ -3 \left[a^2 b a b\right] + \left[a b a b^2\right] \]

Type: LiePolynomial(Symbol,Fraction Integer)

t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5)

\[ 2 \left[a b\right] - 5 \left[a b^2\right] - 3 \left[a^2 b a b\right] + \left[a b a b^2\right] \]

Type: LiePolynomial(Symbol,Fraction Integer)

degree t

5

Type: PositiveInteger

mirror t

\[ -2 \left[a b\right] - 5 \left[a b^2\right] - 3 \left[a^2 b a b\right] + \left[a b a b^2\right] \]

Type: LiePolynomial(Symbol,Fraction Integer)

Jacobi Relation

Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [ [p,q]$Lpoly, r] + [ [q,r]$Lpoly, p] + [ [r,p]$Lpoly, q]

Function declaration Jacobi : (LiePolynomial(Symbol, Fraction Integer), LiePolynomial(Symbol,Fraction Integer), LiePolynomial(Symbol,Fraction Integer)) -> LiePolynomial(Symbol,Fraction Integer) has been added to workspace.

Type: Void

Tests

test: Lpoly := Jacobi(a,b,b)

0
Type: LiePolynomial(Symbol, Fraction Integer)

test: Lpoly := Jacobi(p, q, r)

0
Type: LiePolynomial(Symbol, Fraction Integer)

test: Lpoly := Jacobi(r, s, t)

0
Type: LiePolynomial(Symbol, Fraction Integer)

Evaluation

eval(p, a, p)$Lpoly

\[ [a b^2] \]
Type: LiePolynomial(Symbol, Fraction Integer)

eval(p, [a, b], [2*bb, 3*aa])$Lpoly

\[ -6 [a b] \]
Type: LiePolynomial(Symbol, Fraction Integer)

r: Lpoly := [p, c]

\[ [a b c] + [a c b] \]
Type: LiePolynomial(Symbol, Fraction Integer)

r1: Lpoly := eval(r, [a, b, c], [bb, cc, aa])$Lpoly

\[ -[a b c] \]
Type: LiePolynomial(Symbol, Fraction Integer)
r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly

\[-[a\ c\ b]\]

Type: LiePolynomial(Symbol,Fraction Integer)

\(r + r1 + r2\)

\(0\)

Type: LiePolynomial(Symbol,Fraction Integer)

### 9.51 LinearOrdinaryDifferentialOperator

LinearOrdinaryDifferentialOperator(A, diff) is the domain of linear ordinary differential operators with coefficients in a ring A with a given derivation.

#### Differential Operators with Series Coefficients

**Problem:** Find the first few coefficients of \(\exp(x)/x^{\ast\ast}i\) of Dop phi where

\[
Dop := D^{\ast\ast}3 + G/x^{\ast\ast}2 \ast D + H/x^{\ast\ast}3 - 1
\]

\[
\phi := \text{sum}(s[i]*\exp(x)/x^{\ast\ast}i, i = 0..)
\]

**Solution:**

Define the differential.

\[
Dx: \quad \text{LODO(EXPR INT, f +-> D(f, x))}
\]

Type: Void

\[
Dx := D()
\]

\(D\)

Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)

Now define the differential operator Dop.
Dop := Dx**3 + G/x**2*Dx + H/x**3 - 1
\[
D^3 + \frac{G}{x^2} D + \frac{-x^3 + H}{x^3}
\]

Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)

n == 3

Type: Void

phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n])

Type: Void

phi1 == Dop(phi) / exp x

Type: Void

phi2 == phi1 *x**(n+3)

Type: Void

phi3 == retract(phi2)@(POLY INT)

Type: Void

pans == phi3 ::UP(x,POLY INT)

Type: Void

pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1]
leq == solve(pans1, [subscript(s, [i]) for i in 1..n])

Evaluate this for several values of \( n \).

\[
\begin{align*}
\text{leq} & \\
\text{Compiling body of rule n to compute value of type PositiveInteger} \\
\text{Compiling body of rule phi to compute value of type Expression Integer} \\
\text{Compiling body of rule phi1 to compute value of type Expression Integer} \\
\text{Compiling body of rule phi2 to compute value of type Expression Integer} \\
\text{Compiling body of rule phi3 to compute value of type Polynomial Integer} \\
\text{Compiling body of rule pans to compute value of type UnivariatePolynomial(x,Polynomial Integer)} \\
\text{Compiling body of rule pans1 to compute value of type List Polynomial Integer} \\
\text{Compiling body of rule leq to compute value of type List List Equation Fraction Polynomial Integer} \\
\text{Compiling function G83347 with type Integer -> Boolean} \\
\end{align*}
\]

\( n = 4 \)

\[
\begin{align*}
\left[\begin{array}{c}
s_1 = \frac{s_0 G}{3}, \\
s_2 = \frac{3 s_0 H + s_0 G^2 + 6 s_0 G}{18}, \\
s_3 = \frac{(9 s_0 G + 54 s_0) H + s_0 G^3 + 18 s_0 G^2 + 72 s_0 G}{162}
\end{array}\right]
\end{align*}
\]

Type: List List Equation Fraction Polynomial Integer

\[
\begin{align*}
\text{leq} & \\
\text{Compiling body of rule n to compute value of type PositiveInteger} \\
\text{Compiling body of rule phi to compute value of type Expression Integer} \\
\text{Compiling body of rule phi1 to compute value of type Expression Integer} \\
\text{Compiling body of rule phi2 to compute value of type Expression Integer} \\
\text{Compiling body of rule phi3 to compute value of type Polynomial Integer} \\
\text{Compiling body of rule pans to compute value of type UnivariatePolynomial(x,Polynomial Integer)} \\
\text{Compiling body of rule pans1 to compute value of type List Polynomial Integer} \\
\text{Compiling body of rule leq to compute value of type List List Equation Fraction Polynomial Integer} \\
\text{Compiling function G83347 with type Integer -> Boolean} \\
\end{align*}
\]

\[
\begin{align*}
\left[\begin{array}{c}
s_1 = \frac{s_0 G}{3}, \\
s_2 = \frac{3 s_0 H + s_0 G^2 + 6 s_0 G}{18}, \\
s_3 = \frac{(9 s_0 G + 54 s_0) H + s_0 G^3 + 18 s_0 G^2 + 72 s_0 G}{162}
\end{array}\right]
\end{align*}
\]
Type: List List Equation Fraction Polynomial Integer

\( n=7 \)

Compiled code for \( n \) has been cleared.
Compiled code for \( \text{leq} \) has been cleared.
Compiled code for \( \text{pans1} \) has been cleared.
Compiled code for \( \phi2 \) has been cleared.
Compiled code for \( \phi \) has been cleared.
Compiled code for \( \phi3 \) has been cleared.
Compiled code for \( \phi1 \) has been cleared.
Compiled code for \( \text{pans} \) has been cleared.
1 old definition(s) deleted for function or rule \( n \)

Type: Void

\( \text{leq} \)

Compiling body of rule \( n \) to compute value of type PositiveInteger

+++ |*0;n|1;G82322| redefined

Compiling body of rule \( \phi \) to compute value of type Expression Integer

+++ |*0;\phi|1;G82322| redefined

Compiling body of rule \( \phi1 \) to compute value of type Expression Integer

+++ |*0;\phi1|1;G82322| redefined

Compiling body of rule \( \phi2 \) to compute value of type Expression Integer

+++ |*0;\phi2|1;G82322| redefined

Compiling body of rule \( \phi3 \) to compute value of type Polynomial Integer

+++ |*0;\phi3|1;G82322| redefined

Compiling body of rule \( \text{pans} \) to compute value of type
\( \text{UnivariatePolynomial}(x,\text{Polynomial Integer}) \)

+++ |*0;pans|1;G82322| redefined

Compiling body of rule \( \text{pans1} \) to compute value of type List Polynomial Integer

+++ |*0;pans1|1;G82322| redefined
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Compiling body of rule leq to compute value of type List List
Equation Fraction Polynomial Integer

+++ |*0;leq;1;G82322| redefined

$$s_1 = \frac{s_0 \ G}{3},$$

$$s_2 = 3 \ s_0 \ H + s_0 \ G^2 + \frac{6 \ s_0 \ G}{18},$$

$$s_3 = (9 \ s_0 \ G + 54 \ s_0) \ H + s_0 \ G^3 + 18 \ s_0 \ G^2 + \frac{72 \ s_0 \ G}{162},$$

$$s_4 = \left(\frac{27 \ s_0 \ H^2 + (18 \ s_0 \ G^2 + 378 \ s_0 \ G + 1296 \ s_0) \ H +}{s_0 \ G^4 + 36 \ s_0 \ G^3 + 396 \ s_0 \ G^2 + 1296 \ s_0 \ G}{1944}\right),$$

$$s_5 = \left(\frac{(135 \ s_0 \ G + 2268 \ s_0) \ H^2 +}{(30 \ s_0 \ G^3 + 1350 \ s_0 \ G^2 + 16416 \ s_0 \ G + 38880 \ s_0) \ H +}{s_0 \ G^5 + 60 \ s_0 \ G^4 + 1188 \ s_0 \ G^3 + 9504 \ s_0 \ G^2 + 25920 \ s_0 \ G}{29160}\right),$$

$$s_6 = \left(\frac{405 \ s_0 \ H^3 +}{(405 \ s_0 \ G^2 + 18468 \ s_0 \ G + 174960 \ s_0) \ H^2 +}{(45 \ s_0 \ G^4 + 3510 \ s_0 \ G^3 + 88776 \ s_0 \ G^2 + 777600 \ s_0 \ G +}{1166400 \ s_0) \ H +}{s_0 \ G^6 + 90 \ s_0 \ G^5 + 2628 \ s_0 \ G^4 + 27864 \ s_0 \ G^3 + 90720 \ s_0 \ G^2}{524880}\right),$$
9.52. LINEARORDINARYDIFFERENTIALOPERATOR1

\[s_7 = \left( \begin{array}{c}
(2835 \, s_0 \, G + 91854 \, s_0) \, H^3 + \\
(945 \, s_0 \, G^3 + 81648 \, s_0 \, G^2 + 2082996 \, s_0 \, G + 14171760 \, s_0) \, H^2 + \\
(63 \, s_0 \, G^5 + 7560 \, s_0 \, G^4 + 317520 \, s_0 \, G^3 + 5554008 \, s_0 \, G^2 + \\
34058880 \, s_0 \, G) \, H + \\
s_0 \, G^7 + 126 \, s_0 \, G^6 + 4788 \, s_0 \, G^5 + 25272 \, s_0 \, G^4 - 1744416 \, s_0 \, G^3 - \\
26827200 \, s_0 \, G^2 - 97977600 \, s_0 \, G
\end{array} \right) \div 11022480\]

Type: List List Equation Fraction Polynomial Integer

9.52 LinearOrdinaryDifferentialOperator1

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary differential operators with coefficients in the differential ring A.

Differential Operators with Rational Function Coefficients

This example shows differential operators with rational function coefficients. In this case operator multiplication is non-commutative and, since the coefficients form a field, an operator division algorithm exists.

We begin by defining RFZ to be the rational functions in x with integer coefficients and Dx to be the differential operator for d/dx.

RFZ := Fraction UnivariatePolynomial('x, Integer)

Type: Domain

x : RFZ := 'x
\textbf{CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES}

\begin{align*}
   x \\
   \text{Type: Fraction \textit{UnivariatePolynomial}(x,\text{Integer})}
\end{align*}

\begin{align*}
   \text{Dx : LODO1 RFZ} & := \text{D()} \\
   D \\
   \text{Type: LinearOrdinaryDifferentialOperator1 Fraction \textit{UnivariatePolynomial}(x,\text{Integer})}
\end{align*}

Operators are created using the usual arithmetic operations.

\begin{align*}
   \text{b : LODO1 RFZ} & := 3 \ast x \ast 2 \ast \text{Dx} \ast 2 + 2 \ast \text{Dx} + \frac{1}{x} \\
   & = 3 \frac{x^2}{D^2} + 2 \frac{D}{D} + \frac{1}{x} \\
   \text{Type: LinearOrdinaryDifferentialOperator1 Fraction \textit{UnivariatePolynomial}(x,\text{Integer})}
\end{align*}

\begin{align*}
   \text{a : LODO1 RFZ} & := \text{b} \ast (5 \ast x \ast \text{Dx} + 7) \\
   & = 15 \frac{x^3}{D^3} + (51 \frac{x^2}{D} + 10 \frac{x}{D}) \frac{D^2}{D^2} + 29 \frac{D}{D} + \frac{7}{x} \\
   \text{Type: LinearOrdinaryDifferentialOperator1 Fraction \textit{UnivariatePolynomial}(x,\text{Integer})}
\end{align*}

Operator multiplication corresponds to functional composition.

\begin{align*}
   \text{p := x} \ast 2 + \frac{1}{x} \ast 2 \\
   & = \frac{x^4 + 1}{x^2} \\
   \text{Type: Fraction \textit{UnivariatePolynomial}(x,\text{Integer})}
\end{align*}

Since operator coefficients depend on \( x \), the multiplication is not commutative.

\begin{align*}
   \text{(a*b - b*a)*p} \\
   & = \frac{-75 x^4 + 540 x - 75}{x^4}
\end{align*}
When the coefficients of operator polynomials come from a field, as in this case, it is possible to define operator division. Division on the left and division on the right yield different results when the multiplication is non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs satisfying:

leftDivide(a, b) = [q, r] such that a = b * q + r
rightDivide(a, b) = [q, r] such that a = q * b + r

In both cases, the degree of the remainder, r, is less than the degree of b.

\[ ld := \text{leftDivide}(a, b) \]

\[ \begin{align*}
\text{quotient} & = 5x D + 7, \\
\text{remainder} & = 0
\end{align*} \]

\[ \text{Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x, Integer), remainder: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x, Integer))} \]

\[ a = b \times ld.\text{quotient} + ld.\text{remainder} \]

\[ 15 x^3 D^3 + (51 x^2 + 10 x) D^2 + 29 D + \frac{7}{x} = \]

\[ 15 x^3 D^3 + (51 x^2 + 10 x) D^2 + 29 D + \frac{7}{x} \]

\[ \text{Type: Equation LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x, Integer)} \]

The operations of left and right division are so-called because the quotient is obtained by dividing a on that side by b.

\[ rd := \text{rightDivide}(a, b) \]

\[ \begin{align*}
\text{quotient} & = 5x D + 7, \\
\text{remainder} & = 10 D + \frac{5}{x}
\end{align*} \]

\[ \text{Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x, Integer), remainder: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x, Integer))} \]
\[ a = \text{rd.quotient} \ast b + \text{rd.remainder} \]

\[
15 x^3 D^3 + (51 x^2 + 10 x) D^2 + 29 D + \frac{7}{x} =
\]

\[
15 x^3 D^3 + (51 x^2 + 10 x) D^2 + 29 D + \frac{7}{x}
\]

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Operations \text{rightQuotient} and \text{rightRemainder} are available if only one of the quotient or remainder are of interest to you. This is the quotient from right division.

\text{rightQuotient}(a,b)

\[ 5 x D + 7 \]

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

This is the remainder from right division. The corresponding “left” functions \text{leftQuotient} and \text{leftRemainder} are also available.

\text{rightRemainder}(a,b)

\[ 10 D + \frac{5}{x} \]

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

For exact division, the operations \text{leftExactQuotient} and \text{rightExactQuotient} are supplied. These return the quotient but only if the remainder is zero. The call \text{rightExactQuotient}(a,b) would yield an error.

\text{leftExactQuotient}(a,b)

\[ 5 x D + 7 \]

Type: Union(LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer),...)

The division operations allow the computation of left and right greatest common divisors (\text{leftGcd} and \text{rightGcd}) via remainder sequences, and consequently the computation of left and right least common multiples (\text{rightLcm} and \text{leftLcm}).
\[ e := \text{leftGcd}(a, b) \]
\[
3 x^2 D^2 + 2 D + \frac{1}{x}
\]

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

Note that a greatest common divisor doesn’t necessarily divide \( a \) and \( b \) on both sides. Here the left greatest common divisor does not divide \( a \) on the right.

\[ \text{leftRemainder}(a, e) \]
\[
0
\]

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

\[ \text{rightRemainder}(a, e) \]
\[
10 D + \frac{5}{x}
\]

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

Similarly, a least common multiple is not necessarily divisible from both sides.

\[ f := \text{rightLcm}(a, b) \]
\[
15 x^3 D^3 + \left(51 x^2 + 10 x\right) D^2 + 29 D + \frac{7}{x}
\]

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

\[ \text{rightRemainder}(f, b) \]
\[
10 D + \frac{5}{x}
\]

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
leftRemainder(f, b)

0

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

9.53 LinearOrdinaryDifferentialOperator2

LinearOrdinaryDifferentialOperator2(A, M) is the domain of linear ordinary differential operators with coefficients in the differential ring A and operating on M, an A-module. This includes the cases of operators which are polynomials in D acting upon scalar or vector expressions of a single variable. The coefficients of the operator polynomials can be integers, rational functions, matrices or elements of other domains.

Differential Operators with Constant Coefficients

This example shows differential operators with rational number coefficients operating on univariate polynomials.

We begin by making type assignments so we can conveniently refer to univariate polynomials in x over the rationals.

Q := Fraction Integer

Fraction Integer

Type: Domain

PQ := UnivariatePolynomial('x, Q)

UnivariatePolynomial(x,Fraction Integer)

Type: Domain

x: PQ := 'x

x

Type: UnivariatePolynomial(x,Fraction Integer)
Now we assign \( Dx \) to be the differential operator \( D \) corresponding to \( \frac{d}{dx} \).

\[
Dx : \text{LDO2}(Q, PQ) := D()
\]

\[
D
\]

Type: \text{LinearOrdinaryDifferentialOperator2}(\text{Fraction Integer}, \text{UnivariatePolynomial}(x,\text{Fraction Integer}))

New operators are created as polynomials in \( D() \).

\[
a := Dx + 1
\]

\[
D + 1
\]

Type: \text{LinearOrdinaryDifferentialOperator2}(\text{Fraction Integer}, \text{UnivariatePolynomial}(x,\text{Fraction Integer}))

\[
b := a + 1/2*Dx**2 - 1/2
\]

\[
\frac{1}{2} D^2 + D + \frac{1}{2}
\]

Type: \text{LinearOrdinaryDifferentialOperator2}(\text{Fraction Integer}, \text{UnivariatePolynomial}(x,\text{Fraction Integer}))

To apply the operator \( a \) to the value \( p \) the usual function call syntax is used.

\[
p := 4*x**2 + 2/3
\]

\[
4 x^2 + \frac{2}{3}
\]

Type: \text{UnivariatePolynomial}(x,\text{Fraction Integer})

\[
 a p
\]

\[
4 x^2 + 8 x + \frac{2}{3}
\]

Type: \text{UnivariatePolynomial}(x,\text{Fraction Integer})

Operator multiplication is defined by the identity \((a*b) p = a(b(p))\)
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[(a \cdot b) \cdot p = a \cdot b \cdot p\]

\[
2 \cdot x^2 + 12 \cdot x + \frac{37}{3} = 2 \cdot x^2 + 12 \cdot x + \frac{37}{3}
\]

Type: Equation UnivariatePolynomial(x,Fraction Integer)

Exponentiation follows from multiplication.

\[
c := (1/9) \cdot b \cdot (a + b)^2
\]

\[
\frac{1}{72}D^6 + \frac{5}{36}D^5 + \frac{13}{24}D^4 + \frac{19}{18}D^3 + \frac{79}{72}D^2 + \frac{7}{12}D + \frac{1}{8}
\]

Type: LinearOrdinaryDifferentialOperator2( Fraction Integer,

UnivariatePolynomial(x,Fraction Integer))

Finally, note that operator expressions may be applied directly.

\[
(a^2 - 3/4 \cdot b + c) \cdot (p + 1)
\]

\[
3 \cdot x^2 + \frac{44}{3} \cdot x + \frac{541}{36}
\]

Type: UnivariatePolynomial(x,Fraction Integer)

Differential Operators with Matrix Coefficients Operating on Vectors

This is another example of linear ordinary differential operators with non-commutative multiplication. Unlike the rational function case, the differential ring of square matrices (of a given dimension) with univariate polynomial entries does not form a field. Thus the number of operations available is more limited.

In this section, the operators have three by three matrix coefficients with polynomial entries.

\[
PZ := \text{UnivariatePolynomial}(x,\text{Integer})
\]

UnivariatePolynomial(x,Integer)

Type: Domain

\[
x:PZ := 'x
\]
The operators act on the vectors considered as a \text{Mat}-module.

\text{Vect} := \text{DPMM}(3, \text{PZ}, \text{Mat}, \text{PZ})

\text{modo} := \text{LODO2}(\text{Mat}, \text{Vect})

The matrix \( m \) is used as a coefficient and the vectors \( p \) and \( q \) are operated upon.

\( m : \text{Mat} := \text{matrix} [ [x^2,1,0],[1,x^4,0],[0,0,4x^2] ] \)

\[ \begin{bmatrix} x^2 & 1 & 0 \\ 1 & x^4 & 0 \\ 0 & 0 & 4x^2 \end{bmatrix} \]

\text{Type: SquareMatrix(3,UnivariatePolynomial(x,Integer))}
p: Vect := directProduct [3*x**2+1, 2*x, 7*x**3+2*x]

\[
[3 \, x^2 + 1, 2 \, x, 7 \, x^3 + 2 \, x]
\]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

q: Vect := m * p

\[
[3 \, x^4 + x^2 + 2 \, x, 2 \, x^5 + 3 \, x^2 + 1, 28 \, x^5 + 8 \, x^3]
\]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

Now form a few operators.

Dx : Modo := D()

\[D\]

Type: LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))))

a : Modo := Dx + m

\[
D + \begin{bmatrix}
  x^2 & 1 & 0 \\
  1 & x^4 & 0 \\
  0 & 0 & 4 \, x^2
\end{bmatrix}
\]

Type: LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3, UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))))

b : Modo := m*Dx + 1
Type: LinearOrdinaryDifferentialOperator2( SquareMatrix(3, UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer), SquareMatrix(3, UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer)))

These operators can be applied to vector values.

a p

\[ \begin{bmatrix} 3 x^4 + x^2 + 8 x, 2 x^5 + 3 x^2 + 3, 28 x^5 + 8 x^3 + 21 x^2 + 2 \end{bmatrix} \]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer), SquareMatrix(3, UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer))

b p

\[ \begin{bmatrix} 6 x^3 + 3 x^2 + 3, 2 x^4 + 8 x, 84 x^4 + 7 x^3 + 8 x^2 + 2 x \end{bmatrix} \]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer), SquareMatrix(3, UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer))
(a + b + c) (p + q)

\[
\begin{align*}
10 x^8 + 12 x^7 + 16 x^6 + 30 x^5 + 85 x^4 + 94 x^3 + 40 x^2 + 40 x + 17, \\
10 x^{12} + 10 x^9 + 12 x^8 + 92 x^7 + 6 x^6 + 32 x^5 + 72 x^4 + 28 x^3 + 49 x^2 + 32 x + 19, \\
2240 x^8 + 224 x^7 + 1280 x^6 + 3508 x^5 + 492 x^4 + 751 x^3 + 98 x^2 + 18 x + 4
\end{align*}
\]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer), SquareMatrix(3, UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer))

### 9.54 List

A is a finite collection of elements in a specified order that can contain duplicates. A list is a convenient structure to work with because it is easy to add or remove elements and the length need not be constant. There are many different kinds of lists in Axiom, but the default types (and those used most often) are created by the `List` constructor. For example, there are objects of type `List Integer`, `List Float` and `List Polynomial Fraction Integer`. Indeed, you can even have `List List List Boolean` (that is, lists of lists of lists of Boolean values). You can have lists of any type of Axiom object.

#### Creating Lists

The easiest way to create a list with, for example, the elements 2, 4, 5, 6 is to enclose the elements with square brackets and separate the elements with commas.

The spaces after the commas are optional, but they do improve the readability.

\[ [2, 4, 5, 6] \]

\[ [2, 4, 5, 6] \]

Type: List PositiveInteger

To create a list with the single element 1, you can use either \([1]\) or the operation `list`.

\[ [1] \]

\[ [1] \]

Type: List PositiveInteger
Once created, two lists \( k \) and \( m \) can be concatenated by issuing \texttt{append}(k, m). \texttt{append} does \textit{not} physically join the lists, but rather produces a new list with the elements coming from the two arguments.

\begin{verbatim}
append([1,2,3],[5,6,7])
\end{verbatim}

\[ [1, 2, 3, 5, 6, 7] \]

Type: List PositiveInteger

Use \texttt{cons} to append an element onto the front of a list.

\begin{verbatim}
cons(10,[9,8,7])
\end{verbatim}

\[ [10, 9, 8, 7] \]

Type: List PositiveInteger

### Accessing List Elements

To determine whether a list has any elements, use the operation \texttt{empty?}.

\begin{verbatim}
empty? [x+1]
\end{verbatim}

\[ \text{false} \]

Type: Boolean

Alternatively, equality with the list constant \texttt{nil} can be tested.

\begin{verbatim}
([] = nil)
\end{verbatim}

\[ \text{true} \]

Type: Boolean
We'll use this in some of the following examples.

\[ k := [4,3,7,3,8,5,9,2] \]

\[ [4,3,7,3,8,5,9,2] \]

Type: List PositiveInteger

Each of the next four expressions extracts the first element of \( k \).

\texttt{first k}

\begin{verbatim}
  \texttt{4}
\end{verbatim}

Type: PositiveInteger

\texttt{k.first}

\begin{verbatim}
  \texttt{4}
\end{verbatim}

Type: PositiveInteger

\texttt{k.1}

\begin{verbatim}
  \texttt{4}
\end{verbatim}

Type: PositiveInteger

\texttt{k(1)}

\begin{verbatim}
  \texttt{4}
\end{verbatim}

Type: PositiveInteger

The last two forms generalize to \( k.i \) and \( k(i) \), respectively, where \( 1 \leq i \leq n \) and \( n \) equals the length of \( k \).

This length is calculated by "#".

\texttt{n := \#k}
Performing an operation such as \texttt{k.i} is sometimes referred to as \textit{indexing into \textit{k}} or \textit{elting into \textit{k}}. The latter phrase comes about because the name of the operation that extracts elements is called \texttt{elt}. That is, \texttt{k.3} is just alternative syntax for \texttt{elt(k,3)}. It is important to remember that list indices begin with 1. If we issue \texttt{k := [1,3,2,9,5]} then \texttt{k.4} returns 9. It is an error to use an index that is not in the range from 1 to the length of the list.

The last element of a list is extracted by any of the following three expressions.

\begin{verbatim}
last k
\end{verbatim}

\begin{verbatim}
k.last
\end{verbatim}

\begin{verbatim}
k.(#k)
\end{verbatim}

This form computes the index of the last element and then extracts the element from the list.

Changing List Elements

We’ll use this in some of the following examples.

\texttt{k := [4,3,7,3,8,5,9,2]}

\begin{verbatim}
[4,3,7,3,8,5,9,2]
\end{verbatim}

Type: List PositiveInteger
List elements are reset by using the \texttt{k.1} form on the left-hand side of an assignment. This expression resets the first element of \texttt{k} to 999.

\[ \texttt{k.1 := 999} \]

999

\texttt{Type: PositiveInteger}

As with indexing into a list, it is an error to use an index that is not within the proper bounds. Here you see that \texttt{k} was modified.

\[ \texttt{k} \]

\[ [999, 3, 7, 8, 5, 9, 2] \]

\texttt{Type: List PositiveInteger}

The operation that performs the assignment of an element to a particular position in a list is called \texttt{setelt}. This operation is \textit{destructive} in that it changes the list. In the above example, the assignment returned the value 999 and \texttt{k} was modified. For this reason, lists are called objects: it is possible to change part of a list (mutate it) rather than always returning a new list reflecting the intended modifications. Moreover, since lists can share structure, changes to one list can sometimes affect others.

\[ \texttt{k := [1,2]} \]

\[ [1,2] \]

\texttt{Type: List PositiveInteger}

\[ \texttt{m := cons(0,k)} \]

\[ [0,1,2] \]

\texttt{Type: List Integer}

Change the second element of \texttt{m}.

\[ \texttt{m.2 := 99} \]

99
See, \( m \) was altered.

\[ m = [0, 99, 2] \]

But what about \( k \)? It changed too!

\[ k = [99, 2] \]

**Other Functions**

An operation that is used frequently in list processing is that which returns all elements in a list after the first element.

\[ k := [1, 2, 3] \]

\[ [1, 2, 3] \]

Use the `rest` operation to do this.

\[ \text{rest } k \]

\[ [2, 3] \]

To remove duplicate elements in a list \( k \), use `removeDuplicates`.

\[ \text{removeDuplicates } [4, 3, 4, 3, 5, 3, 4] \]

\[ [4, 3, 5] \]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List PositiveInteger

To get a list with elements in the order opposite to those in a list \( k \), use \texttt{reverse}.

\texttt{reverse \[1,2,3,4,5,6\]}

\[6, 5, 4, 3, 2, 1\]

Type: List PositiveInteger

To test whether an element is in a list, use \texttt{member?: member?(a,k)} returns \texttt{true} or \texttt{false} depending on whether \( a \) is in \( k \) or not.

\texttt{member?(1/2, [3/4, 5/6, 1/2])}

\texttt{true}

Type: Boolean

\texttt{member?(1/12, [3/4, 5/6, 1/2])}

\texttt{false}

Type: Boolean

As an exercise, the reader should determine how to get a list containing all but the last of the elements in a given non-empty list \( k \).

\textbf{Dot, Dot}

Certain lists are used so often that Axiom provides an easy way of constructing them. If \( n \) and \( m \) are integers, then \texttt{expand \[n..m\]} creates a list containing \( n, n+1, \ldots, m \). If \( n > m \) then the list is empty. It is actually permissible to leave off the \( m \) in the dot-dot construction (see below).

The dot-dot notation can be used more than once in a list construction and with specific elements being given. Items separated by dots are called \textit{segments}.

\[1..3, 10, 20..23\]

\[1..3, 10..10, 20..23\]

\footnote{\texttt{reverse(rest(reverse(k)))} works.}
Segments can be expanded into the range of items between the endpoints by using `expand`.

```
expand [1..3,10,20..23]
```

```
[1, 2, 3, 10, 20, 21, 22, 23]
```

What happens if we leave off a number on the right-hand side of “..”?

```
expand [1..]
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...]
```

What is created in this case is a Stream which is a generalization of a list. See Stream 9.88 on page 765 for more information.

### 9.55 LyndonWord

**Initialisations**

```
a:Symbol := 'a
```

```
a
```

Type: Symbol

```
b:Symbol := 'b
```

```
b
```

Type: Symbol

```
c:Symbol := 'c
```

```
c
```
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Symbol

\texttt{lword} := \texttt{LyndonWord(Symbol)}

\texttt{LyndonWord Symbol}

Type: Domain

\texttt{magma} := \texttt{Magma(Symbol)}

\texttt{Magma Symbol}

Type: Domain

\texttt{word} := \texttt{OrderedFreeMonoid(Symbol)}

\texttt{OrderedFreeMonoid Symbol}

Type: Domain

All Lyndon words of with a, b, c to order 3

\texttt{LyndonWordsList1([a,b,c],3)$lword}

\[
\begin{array}{c}
[[[a],[b],[c]],[[a b],[a c],[b c]], \\
[[a^2 b],[a^2 c],[a b^2],[a b c],[a c b],[a c^2],[b^2 c],[b c^2]]]
\end{array}
\]

Type: OneDimensionalArray List LyndonWord Symbol

All Lyndon words of with a, b, c to order 3 in flat list

\texttt{LyndonWordsList([a,b,c],3)$lword}

\[
\begin{array}{c}
[[a],[b],[c],[a b],[a c],[b c],[a^2 b],[a^2 c],[a b^2], \\
[a b c],[a c b],[a c^2],[b^2 c],[b c^2]]
\end{array}
\]

Type: List LyndonWord Symbol

All Lyndon words of with a, b to order 5
lw := LyndonWordsList([a,b],5)

\[
\begin{array}{c}
\begin{align*}
[a], [b], [a b], [a^2 b], [a b^2], [a^3 b], [a^2 b^2], [a b^3], [a b^4], \\
[a^3 b^2], [a^2 b a b], [a^2 b^3], [a b a b^2], [a b^4]
\end{align*}
\end{array}
\]
Type: List LyndonWord Symbol

w1 : word := lw.4 :: word

\[
a^2 b
\]
Type: OrderedFreeMonoid Symbol

w2 : word := lw.5 :: word

\[
a b^2
\]
Type: OrderedFreeMonoid Symbol

Let’s try factoring

factor(a::word)$lword

\[
[[a]]
\]
Type: List LyndonWord Symbol

factor(w1*w2)$lword

\[
[[a^2 b a b^2]]
\]
Type: List LyndonWord Symbol

factor(w2*w2)$lword

\[
[[a b^2], [a b^2]]
\]
Type: List LyndonWord Symbol
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

$$\text{factor}(w_2 \cdot w_1)$$

$$[[a \cdot b^2], [a^2 \cdot b]]$$

Type: List LyndonWord Symbol

Checks and coercions

$$\text{lyndon?}(w_1)$$

true

Type: Boolean

$$\text{lyndon?}(w_1 \cdot w_2)$$

true

Type: Boolean

$$\text{lyndon?}(w_2 \cdot w_1)$$

false

Type: Boolean

$$\text{lyndonIfCan}(w_1)$$

$$[a^2 \cdot b]$$

Type: Union(LyndonWord Symbol,...)

$$\text{lyndonIfCan}(w_2 \cdot w_1)$$

"failed"

Type: Union("failed",...)

$$\text{lyndon}(w_1)$$
9.56. MAGMA

\[ a^2 b \]

Type: LyndonWord Symbol

\text{lyndon}(w1*w2)\text{\$lword}

\[ a^2 b a b^2 \]

Type: LyndonWord Symbol

9.56 Magma

Initialisations

\text{x:Symbol := 'x}

\( x \)

Type: Symbol

\text{y:Symbol := 'y}

\( y \)

Type: Symbol

\text{z:Symbol := 'z}

\( z \)

Type: Symbol

\text{word := OrderedFreeMonoid(Symbol)}

\text{OrderedFreeMonoid Symbol}

Type: Domain
tree := Magma(Symbol)

Magma Symbol

Type: Domain

Let’s make some trees

a:tree := x*x

[\(x, x\)]

Type: Magma Symbol

b:tree := y*y

[\(y, y\)]

Type: Magma Symbol

c:tree := a*b

[\([x, x], [y, y]\)]

Type: Magma Symbol

Query the trees

left c

[\(x, x\)]

Type: Magma Symbol

right c

[\(y, y\)]

Type: Magma Symbol
length c

4

Type: PositiveInteger

Coerce to the monoid

c::word

$x^2 y^2$

Type: OrderedFreeMonoid Symbol

Check ordering

a < b

true

Type: Boolean

a < c

true

Type: Boolean

b < c

true

Type: Boolean

Navigate the tree

first c

x

Type: Symbol
rest c

\[ [x, [y, y]] \]

Type: Magma Symbol

rest rest c

\[ [y, y] \]

Type: Magma Symbol

Check ordering

ax:tree := a*x

\[ [[x, x], x] \]

Type: Magma Symbol

xa:tree := x*a

\[ [x, [x, x]] \]

Type: Magma Symbol

xa < ax

true

Type: Boolean

lexico(xa,ax)

false

Type: Boolean
9.57 MakeFunction

It is sometimes useful to be able to define a function given by the result of a calculation.

Suppose that you have obtained the following expression after several computations and that you now want to tabulate the numerical values of \( f \) for \( x \) between -1 and +1 with increment 0.1.

\[
\text{expr} := (x - \exp(x) + 1)^2 \times (\sin(x^2) \times x + 1)^3
\]

\[
(x^3 \times e^{x^2} + (-2 \times x^4 - 2 \times x^3) \times e^x + x^5 + 2 \times x^4 + x^3) \times \sin(x^2)^3 +
\]

\[
(3 \times e^{x^2} \times (6 \times x^2 - 6 \times x^3) \times e^x + 3 \times x^4 + 6 \times x^3 + 3 \times x^2) \times \sin(x^2)^2 +
\]

\[
(3 \times e^{x^2} \times (6 \times x^2 - 6 \times x) \times e^x + 3 \times x^3 + 6 \times x^2 + 3 \times x) \times \sin(x^2) + e^{x^2} +
\]

\[
(-2 \times x - 2) \times e^x + x^2 + 2 \times x + 1
\]

Type: Expression Integer

You could, of course, use the function \texttt{eval} within a loop and evaluate \texttt{expr} twenty-one times, but this would be quite slow. A better way is to create a numerical function \( f \) such that \( f(x) \) is defined by the expression \texttt{expr} above, but without retyping \texttt{expr}! The package \texttt{MakeFunction} provides the operation \texttt{function} which does exactly this.

Issue this to create the function \( f(x) \) given by \texttt{expr}.

\[
\text{function(expr, f, x)}
\]

\[ f \]

Type: Symbol

To tabulate \texttt{expr}, we can now quickly evaluate \( f \) 21 times.

\[
\text{tbl} := [f(0.1 \times i - 1) \text{ for } i \text{ in } 0..20];
\]
Type: List Float

Use the list [x1, ..., xn] as the third argument to function to create a multivariate function f(x1, ..., xn).

\[ e := (x - y + 1)^2 \cdot (x^2 \cdot y + 1)^2 \]

\[ x^4 \cdot y^4 + (-2 \cdot x^5 - 2 \cdot x^4 + 2 \cdot x^2) \cdot y^3 + (x^6 + 2 \cdot x^5 + x^4 - 4 \cdot x^3 - 4 \cdot x^2 + 1) \cdot y^2 + (2 \cdot x^4 + 4 \cdot x^3 + 2 \cdot x^2 - 2 \cdot x - 2) \cdot y + x^2 + 2 \cdot x + 1 \]

Type: Polynomial Integer

function(e, g, [x, y])

\[ g \]

Type: Symbol

In the case of just two variables, they can be given as arguments without making them into a list.

function(e, h, x, y)

\[ h \]

Type: Symbol

Note that the functions created by function are not limited to floating point numbers, but can be applied to any type for which they are defined.

m1 := squareMatrix [ [1, 2], [3, 4] ]
Function are objects of type Mapping. In this section we demonstrate some library operations from the packages MappingPackage1, MappingPackage2, and MappingPackage3 that manipulate and create functions. Some terminology: a nullary function takes no arguments, a unary function takes one argument, and a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an integer exponent.

\[
\text{power}(q: \text{FRAC}\ \text{INT},\ n: \text{INT}) : \text{FRAC}\ \text{INT} = q^n
\]

Function declaration power : (Fraction Integer,Integer) -> Fraction Integer has been added to workspace.

\[
\text{Type: Void}
\]

\[
\text{power}(2,3)
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Compiling function power with type (Fraction Integer,Integer) -> Fraction Integer

8

Type: Fraction Integer

The twist operation transposes the arguments of a binary function. Here rewop(a, b) is power(b, a).

rewop := twist power

rewop := twist power

theMap(...)  

Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 2^3.

rewop(3, 2)

8

Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT

Type: Void

The curryRight operation creates a unary function from a binary one by providing a constant argument on the right.

square := curryRight(power, 2)

square := curryRight(power, 2)

theMap(...)  

Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeft operation provides a constant argument on the left.

square 4
The \texttt{constantRight} operation creates (in a trivial way) a binary function from a unary one: \texttt{constantRight}(f) is the function \( g \) such that \( g(a,b) = f(a) \).

\begin{verbatim}
squirrel:= constantRight(square)\$MAPPKG3(FRAC INT,FRAC INT,FRAC INT)
\end{verbatim}

\begin{verbatim}
theMap(...)
\end{verbatim}

Type: \(((\text{Fraction Integer},\text{Fraction Integer}) \to \text{Fraction Integer})\)

Likewise, \texttt{constantLeft}(f) is the function \( g \) such that \( g(a,b) = f(b) \).

squirrel(1/2, 1/3)

\[
\frac{1}{4}
\]

Type: \text{Fraction Integer}

The \texttt{curry} operation makes a unary function nullary.

\begin{verbatim}
sixteen := curry(square, 4/1)
\end{verbatim}

\begin{verbatim}
theMap(...)
\end{verbatim}

Type: \((() \to \text{Fraction Integer})\)

\begin{verbatim}
sixteen()
\end{verbatim}

\[
16
\]

Type: \text{Fraction Integer}

The "*" operation constructs composed functions.

\begin{verbatim}
square2:=square*square
\end{verbatim}

\begin{verbatim}
theMap(...)
\end{verbatim}
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: \((\text{Fraction Integer} \to \text{Fraction Integer})\)

\[
square2 \ 3
\]

\[
81
\]

Type: \(\text{Fraction Integer}\)

Use the "**" operation to create functions that are \(n\)-fold iterations of other functions.

\[
sc(x: \text{FRAC INT}): \text{FRAC INT} == x + 1
\]

Function declaration \(sc : \text{Fraction Integer} \to \text{Fraction Integer}\) has been added to workspace.

Type: \(\text{Void}\)

This is a list of \texttt{Mapping} objects.

\[
\text{incfns} := [sc**i for i in 0..10]
\]

\[
[\text{theMap}(...), \text{theMap}(...), \text{theMap}(...), \text{theMap}(...), \text{theMap}(...),
\text{theMap}(...), \text{theMap}(...), \text{theMap}(...), \text{theMap}(...), \text{theMap}(...)]
\]

Type: \(\text{List (Fraction Integer} \to \text{Fraction Integer})\)

This is a list of applications of those functions.

\[
[f \ 4 \ for \ f \ in \ \text{incfns}]
\]

\[
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
\]

Type: \(\text{List Fraction Integer}\)

Use the \texttt{recur} operation for recursion:

\[
g := \text{recur f means} \ g(n,x) == f(n,f(n-1,...f(1,x))).
\]

\[
\text{times}(n:\text{NNI}, \ i:\text{INT}) : \text{INT} == n*i
\]

Function declaration \(\text{times} : (\text{NonNegativeInteger}, \text{Integer}) \to \text{Integer}\) has been added to workspace.
r := recur(times)

theMap(...)

Type: ((NonNegativeInteger, Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)

theMap(...)

Type: (NonNegativeInteger -> Integer)

fact 4

24

Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==
  raiser := square**n
  raiser m

Type: Void

This is $3^2$.

mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger, PositiveInteger) -> Fraction Integer

6561

Type: Fraction Integer
Here `shiftfib` is a unary function that modifies its argument.

```
shiftfib(r: List INT) : INT ==
t := r.1
r.1 := r.2
r.2 := r.2 + t
t
```

Function declaration `shiftfib : List Integer -> Integer` has been added to workspace.

By currying over the argument we get a function with private state.

```
fibinit: List INT := [0, 1]

[0, 1]
```

`fibs := curry(shiftfib, fibinit)`

```
theMap(...) Type: (() -> Integer)
```

```
[fibs() for i in 0..30]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040]
```

Type: List Integer

### 9.59 Matrix

The `Matrix` domain provides arithmetic operations on matrices and standard functions from linear algebra. This domain is similar to the `TwoDimensionalArray` domain, except that the entries for `Matrix` must belong to a `Ring`. 
Creating Matrices

There are many ways to create a matrix from a collection of values or from existing matrices. If the matrix has almost all items equal to the same value, use `new` to create a matrix filled with that value and then reset the entries that are different.

```lisp
m : Matrix(Integer) := new(3,3,0)

Type: Matrix Integer
```

To change the entry in the second row, third column to 5, use `setelt`.

```lisp
setelt(m,2,3,5)

5

Type: PositiveInteger
```

An alternative syntax is to use assignment.

```lisp
m(1,2) := 10

10

Type: PositiveInteger
```

The matrix was *destructively modified*.

```lisp
m

Type: Matrix Integer
```

If you already have the matrix entries as a list of lists, use `matrix`.

```lisp
matrix [[1,2,3,4],[0,9,8,7]]
```
If the matrix is diagonal, use **diagonalMatrix**.

\[ dm := \text{diagonalMatrix} [1, x^2, x^3, x^4, x^5] \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & x^2 & 0 & 0 & 0 \\
0 & 0 & x^3 & 0 & 0 \\
0 & 0 & 0 & x^4 & 0 \\
0 & 0 & 0 & 0 & x^5
\end{bmatrix}
\]

Type: Matrix Polynomial Integer

Use **setRow** and **setColumn** to change a row or column of a matrix.

\[ \text{setRow!(dm, 5, vector [1, 1, 1, 1, 1])} \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & x^2 & 0 & 0 & 0 \\
0 & 0 & x^3 & 0 & 0 \\
0 & 0 & 0 & x^4 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

Type: Matrix Polynomial Integer

\[ \text{setColumn!(dm, 2, vector [y, y, y, y, y])} \]

\[
\begin{bmatrix}
1 & y & 0 & 0 & 0 \\
0 & y & 0 & 0 & 0 \\
0 & y & x^3 & 0 & 0 \\
0 & y & 0 & x^4 & 0 \\
1 & y & 1 & 1 & 1
\end{bmatrix}
\]

Type: Matrix Polynomial Integer

Use **copy** to make a copy of a matrix.

\[ cdm := \text{copy}(dm) \]
This is useful if you intend to modify a matrix destructively but want a copy of the original.

\[
\text{setelt(dm,4,1,1-x**7)}
\]

\[-x^7 + 1\]

\[
\text{Type: Polynomial Integer}
\]

Use \texttt{subMatrix} to extract part of an existing matrix. The syntax is \texttt{subMatrix}\( (m, \text{firstrow}, \text{lastrow}, \text{firstcol}, \text{lastcol} \)\).

\[
\text{subMatrix(dm,2,3,2,4)}
\]

\[
\begin{bmatrix}
  y & 0 & 0 \\
  y & x^3 & 0
\end{bmatrix}
\]

\[
\text{Type: Matrix Polynomial Integer}
\]

To change a submatrix, use \texttt{setsubMatrix}.

\[
d := \text{diagonalMatrix} [1.2,-1.3,1.4,-1.5]
\]

\[
\begin{bmatrix}
  1.2 & 0.0 & 0.0 & 0.0 \\
  0.0 & -1.3 & 0.0 & 0.0 \\
  0.0 & 0.0 & 1.4 & 0.0 \\
  0.0 & 0.0 & 0.0 & -1.5
\end{bmatrix}
\]
If \( e \) is too big to fit where you specify, an error message is displayed. Use \texttt{subMatrix} to extract part of \( e \), if necessary.

\[
e := \text{matrix} [ [6.7,9.11],[\text{-}31.33,67.19] ]
\]

This changes the submatrix of \( d \) whose upper left corner is at the first row and second column and whose size is that of \( e \).

\[
\text{setsubMatrix!}(d,1,2,e)
\]

Matrices can be joined either horizontally or vertically to make new matrices.

\[
a := \text{matrix} [ [1/2,1/3,1/4],[1/5,1/6,1/7] ]
\]

\[
\begin{bmatrix}
\frac{3}{5} & \frac{3}{7} & \frac{3}{11} \\
\frac{3}{13} & \frac{3}{17} & \frac{3}{19}
\end{bmatrix}
\]

Type: Matrix Fraction Integer

Use **horizConcat** to append them side to side. The two matrices must have the same number of rows.

**horizConcat**(a,b)

\[
\begin{bmatrix}
1 & 1 & 1 & 3 & 3 & 3 \\
2 & 3 & 4 & 5 & 7 & 11 \\
1 & 1 & 1 & 3 & 3 & 3 \\
5 & 6 & 7 & 13 & 17 & 19
\end{bmatrix}
\]

Type: Matrix Fraction Integer

Use **vertConcat** to stack one upon the other. The two matrices must have the same number of columns.

**vertConcat**(a,b)

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 3 & 4 \\
5 & 6 & 7 \\
3 & 3 & 3 \\
5 & 7 & 11 \\
3 & 3 & 3 \\
13 & 17 & 19
\end{bmatrix}
\]

Type: Matrix Fraction Integer

The operation **transpose** is used to create a new matrix by reflection across the main diagonal.

**transpose** **vab**
Operations on Matrices

Axiom provides both left and right scalar multiplication.

\[
m := \text{matrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]

Type: Matrix Integer

\[4 \times m \times (-5)\]

\[
\begin{bmatrix}
-20 & -40 \\
-60 & -80
\end{bmatrix}
\]

Type: Matrix Integer

You can add, subtract, and multiply matrices provided, of course, that the matrices have compatible dimensions. If not, an error message is displayed.

\[
n := \text{matrix}(\begin{bmatrix} 1,0,-2 \\ -3,5,1 \end{bmatrix})
\]

Type: Matrix Integer

This following product is defined but \(n \times m\) is not.

\[m \times n\]
The operations `nrows` and `ncols` return the number of rows and columns of a matrix. You can extract a row or a column of a matrix using the operations `row` and `column`. The object returned is a `Vector`.

Here is the third column of the matrix \( \mathbf{n} \).

\[
\text{vec} := \text{column}(\mathbf{n}, 3)
\]

\[
\begin{bmatrix}
-2 \\
1 
\end{bmatrix}
\]

You can multiply a matrix on the left by a “row vector” and on the right by a “column vector.”

\[
\text{vec} \ast \mathbf{m}
\]

\[
\begin{bmatrix}
1 \\
0 
\end{bmatrix}
\]

Of course, the dimensions of the vector and the matrix must be compatible or an error message is returned.

\[
\mathbf{m} \ast \text{vec}
\]

\[
\begin{bmatrix}
0 \\
-2 
\end{bmatrix}
\]

The operation `inverse` computes the inverse of a matrix if the matrix is invertible, and returns "failed" if not.

This Hilbert matrix is invertible.

\[
\text{hilb} := \text{matrix}([ \frac{1}{i + j} \text{ for } i \text{ in } 1..3 \text{ for } j \text{ in } 1..3])
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\begin{bmatrix}
\frac{1}{2} & 1 & 1 & 1 \\
2 & \frac{3}{4} & 4 \\
1 & 1 & 1 & 1 \\
3 & 4 & \frac{5}{6} \\
1 & \frac{4}{5} & 1 & 1 \\
4 & \frac{5}{6} & 1 & 1
\end{bmatrix}
\]

Type: Matrix Fraction Integer

\[
\text{inverse(hilb)}
\]

\[
\begin{bmatrix}
72 & -240 & 180 \\
-240 & 900 & -720 \\
180 & -720 & 600
\end{bmatrix}
\]

Type: Union(Matrix Fraction Integer,...)

This matrix is not invertible.

\[
\text{mm} := \text{matrix}([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16]])
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}
\]

Type: Matrix Integer

\[
\text{inverse(mm)}
\]

"failed"

Type: Union("failed",...)

The operation \text{determinant} computes the determinant of a matrix provided that the entries of the matrix belong to a \text{CommutativeRing}.

The above matrix \text{mm} is not invertible and, hence, must have determinant 0.

\[
\text{determinant(mm)}
\]

0
The operation **trace** computes the trace of a *square* matrix.

\[ \text{trace}(mm) = 34 \]

Type: **NonNegativeInteger**

The operation **rank** computes the *rank* of a matrix: the maximal number of linearly independent rows or columns.

\[ \text{rank}(mm) = 2 \]

Type: **PositiveInteger**

The operation **nullity** computes the *nullity* of a matrix: the dimension of its null space.

\[ \text{nullity}(mm) = 2 \]

Type: **PositiveInteger**

The operation **nullSpace** returns a list containing a basis for the null space of a matrix. Note that the nullity is the number of elements in a basis for the null space.

\[ \text{nullSpace}(mm) = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{bmatrix} \]

Type: **List Vector Integer**

The operation **rowEchelon** returns the row echelon form of a matrix. It is easy to see that the rank of this matrix is two and that its nullity is also two.

\[ \text{rowEchelon}(mm) \]
9.60 Multiset

The domain \texttt{Multiset(R)} is similar to \texttt{Set(R)} except that multiplicities (counts of duplications) are maintained and displayed. Use the operation \texttt{multiset} to create multisets from lists. All the standard operations from sets are available for multisets. An element with multiplicity greater than one has the multiplicity displayed first, then a colon, and then the element.

Create a multiset of integers.

\begin{verbatim}
s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
\end{verbatim}

\{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2\}

Type: Multiset PositiveInteger

The operation \texttt{insert!} adds an element to a multiset.

\begin{verbatim}
insert!(3,s)
\end{verbatim}

\{7, 2: 5, 4: 3, 1, 10, 6, 4: 4, 2: 2\}

Type: Multiset PositiveInteger

Use \texttt{remove!} to remove an element. If a third argument is present, it specifies how many instances to remove. Otherwise all instances of the element are removed. Display the resulting multiset.

\begin{verbatim}
remove!(3,s,1); s
\end{verbatim}

\{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2\}

Type: Multiset PositiveInteger
remove!(5, s); s

\{7, 3: 3, 1, 10, 6, 4: 4, 2: 2\}

Type: Multiset PositiveInteger

The operation *count* returns the number of copies of a given value.

\text{count}(5, s)

0

Type: NonNegativeInteger

A second multiset.

t := multiset [2, 2, 2, -9]

\{-9, 3: 2\}

Type: Multiset Integer

The *union* of two multisets is additive.

U := union(s, t)

\{7, 3: 3, 1, -9, 10, 6, 4: 4, 5: 2\}

Type: Multiset Integer

The *intersect* operation gives the elements that are in common, with additive multiplicity.

I := intersect(s, t)

\{5: 2\}

Type: Multiset Integer

The *difference* of s and t consists of the elements that s has but t does not. Elements are regarded as indistinguishable, so that if s and t have any element in common, the *difference* does not contain that element.
difference(s, t)

\{7, 3: 3, 1, 10, 6, 4: 4\}

Type: Multiset Integer

The symmetricDifference is the union of difference(s, t) and difference(t, s).

S := symmetricDifference(s, t)

\{7, 3: 3, 1, -9, 10, 6, 4: 4\}

Type: Multiset Integer

Check that the union of the symmetricDifference and the intersect equals the union of the elements.

(U = union(S, I)) @ Boolean

true

Type: Boolean

Check some inclusion relations.

t1 := multiset [1, 2, 2, 3]; [t1 < t, t1 < s, t < s, t1 <= s]

[false, true, false, true]

Type: List Boolean

9.61 MultivariatePolynomial

The domain constructor MultivariatePolynomial is similar to Polynomial except that it specifies the variables to be used. Polynomial are available for MultivariatePolynomial. The abbreviation for MultivariatePolynomial is MPOLY. The type expressions

\text{MultivariatePolynomial([x,y], Integer)}

and

\text{MPOLY([x,y], INT)}

refer to the domain of multivariate polynomials in the variables x and y where the coefficients are restricted to be integers. The first variable specified is the main variable and the display of the polynomial reflects this.

This polynomial appears with terms in descending powers of the variable x.
m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2

\[ x^4 - 2 y^3 x^3 + (y^6 + 6 y) x^2 - 6 y^4 x + 9 y^2 \]

Type: MultivariatePolynomial([x,y],Integer)

It is easy to see a different variable ordering by doing a conversion.

m :: MPOLY([y,x],INT)

\[ x^2 y^6 - 6 x y^4 - 2 x^3 y^3 + 9 y^2 + 6 x^2 y + x^4 \]

Type: MultivariatePolynomial([y,x],Integer)

You can use other, unspecified variables, by using Polynomial in the coefficient type of MPOLY.

p : MPOLY([x,y],POLY INT)

Type: Void

p := (a**2*x - b*y**2 + 1)**2

\[ a^4 x^2 + (-2 a^2 b y^2 + 2 a^2) x + b^2 y^4 - 2 b y^2 + 1 \]

Type: MultivariatePolynomial([x,y],Polynomial Integer)

Conversions can be used to re-express such polynomials in terms of the other variables. For example, you can first push all the variables into a polynomial with integer coefficients.

p :: POLY INT

\[ b^2 y^4 + (-2 a^2 b x - 2 b) y^2 + a^4 x^2 + 2 a^2 x + 1 \]

Type: Polynomial Integer

Now pull out the variables of interest.

% :: MPOLY([a,b],POLY INT)

\[ x^2 a^4 + (-2 x y^2 b + 2 x) a^2 + y^4 b^2 - 2 y^2 b + 1 \]
Multivariate polynomials may be combined with univariate polynomials to create types with special structures.

$q : \text{UP}(x, \text{FRAC MPOLY}([y,z],\text{INT}))$

This is a polynomial in $x$ whose coefficients are quotients of polynomials in $y$ and $z$.

$q := (x^2 - x*(z+1)/y +2)^2$

\[x^4 + \frac{-2z - 2}{y} x^3 + \frac{4y^2 + z^2 + 2z + 1}{y^2} x^2 + \frac{-4z - 4}{y} x + 4\]

Type: UnivariatePolynomial($x$,Fraction
MultivariatePolynomial([y,z],Integer))

Use conversions for structural rearrangements. $z$ does not appear in a denominator and so it can be made the main variable.

$q :: \text{UP}(z, \text{FRAC MPOLY}([x,y],\text{INT}))$

\[\frac{x^2}{y^2} z^2 + \frac{-2y x^3 + 2x^2 - 4y x}{y^2} z + \frac{y^2 x^4 - 2y x^3 + (4y^2 + 1) x^2 - 4y x + 4y^2}{y^2}\]

Type: UnivariatePolynomial($z$,Fraction
MultivariatePolynomial([x,y],Integer))

Or you can make a multivariate polynomial in $x$ and $z$ whose coefficients are fractions in polynomials in $y$.

$q :: \text{MPOLY}([x,z], \text{FRAC UP}(y,\text{INT}))$
9.62. **NONE**

\[ x^4 + \left(-\frac{2}{y} z - \frac{2}{y^2}\right)x^3 + \left(\frac{1}{y^2} z^2 + \frac{2}{y^2} z + \frac{4z^2+1}{y^2}\right)x^2 + \left(-\frac{4}{y} z - \frac{4}{y^2}\right)x + 4 \]

Type: MultivariatePolynomial([x,z],Fraction

\[ \text{UnivariatePolynomial}(y,\text{Integer}) \]

A conversion like \( q :: \text{MPOLY}([x,y], \text{FRAC UP}(z,\text{INT})) \) is not possible in this example because \( y \) appears in the denominator of a fraction. As you can see, Axiom provides extraordinary flexibility in the manipulation and display of expressions via its conversion facility.

For more information on related topics, see **Polynomial** 9.72 on page 693, **UnivariatePolynomial** 9.96 on page 800, and **DistributedMultivariatePolynomial** 9.19 on page 483.

9.62 **None**

The **None** domain is not very useful for interactive work but it is provided nevertheless for completeness of the Axiom type system.

Probably the only place you will ever see it is if you enter an empty list with no type information.

[ ]

[ ]

Type: List None

Such an empty list can be converted into an empty list of any other type.

[ ] :: List Float

[ ]

Type: List Float

If you wish to produce an empty list of a particular type directly, such as List NonNegative-Integer, do it this way.

[ ]$List(\text{NonNegativeInteger})

[ ]

Type: List NonNegativeInteger
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.63 NottinghamGroup

If \( F \) is a finite field with \( p^n \) elements, then we may form the group of all formal power series \( \{ t(1 + a_1 t + a_2 t + \cdots) \} \) where \( w(0) = 0 \) and \( w'(0) = 1 \) and \( a_i \in F \). The group operation is substitution (composition). This is called the Nottingham Group.

The Nottingham Group is the projective limit of finite p-groups. Every finite p-group can be embedded in the Nottingham Group.

\[ x := \text{monomial}(1, 1) \]

\[ \text{Type: UnivariateFormalPowerSeries(PrimeField(1783))} \]

\[ s := \text{retract(sin} \ x) \]

\[ x + 297 x^3 + 1679 x^5 + 427 x^7 + 316 x^9 + O(x^{11}) \]

\[ \text{Type: NottinghamGroup(PrimeField(1783))} \]

\[ s^{-2} \]

\[ x + 594 x^3 + 535 x^5 + 1166 x^7 + 1379 x^9 + O(x^{11}) \]

\[ \text{Type: NottinghamGroup(PrimeField(1783))} \]

\[ s^{-1} \]

\[ x + 1486 x^3 + 847 x^5 + 207 x^7 + 1701 x^9 + O(x^{11}) \]

\[ \text{Type: NottinghamGroup(PrimeField(1783))} \]

\[ s^{-1}*s \]

\[ x + O(x^{11}) \]

\[ \text{Type: NottinghamGroup(PrimeField(1783))} \]

\[ s*s^{-1} \]

\[ x + O(x^{11}) \]

\[ \text{Type: NottinghamGroup(PrimeField(1783))} \]
The Octonions, also called the Cayley-Dixon algebra, defined over a commutative ring are an eight-dimensional non-associative algebra. Their construction from quaternions is similar to the construction of quaternions from complex numbers (see Quaternion 9.73 on page 703). As Octonion creates an eight-dimensional algebra, you have to give eight components to construct an octonion.

\[
\text{oci1 := octon(1,2,3,4,5,6,7,8)}
\]

\[
1 + 2\,i + 3\,j + 4\,k + 5\,E + 6\,I + 7\,J + 8\,K
\]

Type: Octonion Integer

\[
\text{oci2 := octon(7,2,3,-4,5,6,-7,0)}
\]

\[
7 + 2\,i + 3\,j - 4\,k + 5\,E + 6\,I - 7\,J
\]

Type: Octonion Integer

Or you can use two quaternions to create an octonion.

\[
\text{oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))}
\]

\[
-7 - 12\,i + 3\,j - 10\,k + 5\,E + 6\,I + 9\,J
\]

Type: Octonion Integer

You can easily demonstrate the non-associativity of multiplication.

\[
(\text{oci1 * oci2}) * \text{oci3} - \text{oci1} * (\text{oci2 * oci3})
\]

\[
2696\,i - 2928\,j - 4072\,k + 16\,E - 1192\,I + 832\,J + 2616\,K
\]

Type: Octonion Integer

As with the quaternions, we have a real part, the imaginary parts \(i, j, k\), and four additional imaginary parts \(E, I, J, K\). These parts correspond to the canonical basis \((1,i,j,k,E,I,J,K)\).

For each basis element there is a component operation to extract the coefficient of the basis element for a given octonion.
A basis with respect to the quaternions is given by $(1, E)$. However, you might ask, what then are the commuting rules? To answer this, we create some generic elements.

We do this in Axiom by simply changing the ground ring from Integer to Polynomial Integer.

\[
q : \text{Quaternion Polynomial Integer} := \text{quatern}(q_1, q_i, q_j, q_k)
\]

\[q_1 + q_i i + q_j j + q_k k\]

Type: Quaternion Polynomial Integer

\[E : \text{Octonion Polynomial Integer} := \text{octon}(0,0,0,0,1,0,0,0)\]

\[E\]

Type: Octonion Polynomial Integer

Note that quaternions are automatically converted to octonions in the obvious way.

\[q \ast E\]

\[q_1 E + q_i I + q_j J + q_k K\]

Type: Octonion Polynomial Integer

\[E \ast q\]

\[q_1 E - q_i I - q_j J - q_k K\]

Type: Octonion Polynomial Integer

\[q \ast 1$(Octonion Polynomial Integer)\]
Finally, we check that the \texttt{norm}, defined as the sum of the squares of the coefficients, is a multiplicative map.

\begin{verbatim}
\begin{verbatim}
o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK)
   o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K
   Type: Octonion Polynomial Integer

norm o
   ok^2 + oj^2 + oi^2 + ok^2 + oJ^2 + oI^2 + oE^2 + oI2
   Type: Polynomial Integer

   p1 + pi i + pj j + pk k + pE E + pI I + pJ J + pK K
   Type: Octonion Polynomial Integer

Since the result is 0, the norm is multiplicative.

norm(o*p)-norm(p)*norm(o)
   0
   Type: Polynomial Integer
\end{verbatim}
\end{verbatim}
9.65 OneDimensionalArray

The OneDimensionalArray domain is used for storing data in a one-dimensional indexed data structure. Such an array is a homogeneous data structure in that all the entries of the array must belong to the same Axiom domain. Each array has a fixed length specified by the user and arrays are not extensible. The indexing of one-dimensional arrays is one-based. This means that the “first” element of an array is given the index 1. See also Vector 9.99 on page 815 and FlexibleArray 9.30 on page 514.

To create a one-dimensional array, apply the operation oneDimensionalArray to a list.

\[
\text{oneDimensionalArray } [i^2 \text{ for } i \text{ in } 1..10] \\
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] \\
\text{Type: OneDimensionalArray PositiveInteger}
\]

Another approach is to first create \( a \), a one-dimensional array of 10 0's. OneDimensionalArray has the convenient abbreviation ARRAY1.

\[
a : \text{ARRAY1 INT := new}(10,0) \\
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\
\text{Type: OneDimensionalArray Integer}
\]

Set each \( i \)th element to \( i \), then display the result.

\[
\text{for } i \text{ in } 1..10 \text{ repeat } a.i := i; a \\
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] \\
\text{Type: OneDimensionalArray Integer}
\]

Square each element by mapping the function \( i \mapsto i^2 \) onto each element.

\[
\text{map!}(i \mapsto i^2,a); a \\
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] \\
\text{Type: OneDimensionalArray Integer}
\]

Reverse the elements in place.
reverse! a

[100, 81, 64, 49, 36, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Swap the 4th and 5th element.

swap!(a, 4, 5); a

[100, 81, 64, 36, 49, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Sort the elements in place.

sort! a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Create a new one-dimensional array \( b \) containing the last 5 elements of \( a \).

\( b := a(6..10) \)

[36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Replace the first 5 elements of \( a \) with those of \( b \).

copyInto!(a, b, 1)

[36, 49, 64, 81, 100, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.66 Operator

Given any ring \( R \), the ring of the \texttt{Integer}-linear operators over \( R \) is called \texttt{Operator}(\( R \)). To create an operator over \( R \), first create a basic operator using the operation \texttt{operator}, and then convert it to \texttt{Operator}(\( R \)) for the \( R \) you want.

We choose \( R \) to be the two by two matrices over the integers.

\[ R := \texttt{SQMATRIX}(2, \text{INT}) \]

\texttt{SquareMatrix}(2,\text{Integer})

Type: Domain

Create the operator \texttt{tilde} on \( R \).

\[ t := \texttt{operator}("tilde") :: \texttt{OP}(R) \]

\texttt{tilde}

Type: \texttt{Operator SquareMatrix}(2,\text{Integer})

Since \texttt{Operator} is unexposed we must either package-call operations from it, or expose it explicitly. For convenience we will do the latter.

Expose \texttt{Operator}.

\texttt{)}set expose add constructor \texttt{Operator}

\texttt{Operator is now explicitly exposed in frame G82322}

To attach an evaluation function (from \( R \) to \( R \)) to an operator over \( R \), use \texttt{evaluate}(\texttt{op}, \texttt{f}) where \texttt{op} is an operator over \( R \) and \texttt{f} is a function \( R \rightarrow R \). This needs to be done only once when the operator is defined. Note that \texttt{f} must be \texttt{Integer}-linear (that is, \( f(ax+y) = a f(x) + f(y) \) for any integer \( a \), and any \( x \) and \( y \) in \( R \)).

We now attach the transpose map to the above operator \( t \).

\texttt{evaluate}(t, \texttt{m +-> transpose m})

\texttt{tilde}

Type: \texttt{Operator SquareMatrix}(2,\text{Integer})
Operators can be manipulated formally as in any ring: + is the pointwise addition and \(*\) is composition. Any element \(x\) of \(R\) can be converted to an operator \(op_x\) over \(R\), and the evaluation function of \(op_x\) is left-multiplication by \(x\).

Multiplying on the left by this matrix swaps the two rows.

\[
s : R := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

Can you guess what is the action of the following operator?

\[
rho := t \ast s
\]

\[
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Type: Operator SquareMatrix(2,Integer)

Hint: applying \(rho\) four times gives the identity, so \(rho^{\ast 4} - 1\) should return 0 when applied to any two by two matrix.

\[
z := rho^{\ast 4} - 1
\]

\[
-1 + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Type: Operator SquareMatrix(2,Integer)

Now check with this matrix.

\[
m : R := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]

Type: SquareMatrix(2,Integer)

\[
z m
\]
As you have probably guessed by now, \( \rho \) acts on matrices by rotating the elements clockwise.

\[
\rho m = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}
\]

\( \rho \rho m \)

\[
\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}
\]

\( (\rho^3) m \)

\[
\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}
\]

Do the swapping of rows and transposition commute? We can check by computing their bracket.

\[
b := t \ast s - s \ast t
\]

\[-\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tilde{t} + \tilde{t} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[
\text{Type: Operator SquareMatrix}(2, \text{Integer})
\]

Now apply it to \( m \).

\[
b m
\]
Next we demonstrate how to define a differential operator on a polynomial ring. This is the recursive definition of the \( n \)-th Legendre polynomial.

\[
L_n =
\begin{cases}
  n = 0 & \Rightarrow 1 \\
  n = 1 & \Rightarrow x \\
  \frac{(2n-1)}{n} x L(n-1) - \frac{n-1}{n} L(n-2)
\end{cases}
\]

Create the differential operator \( \frac{d}{dx} \) on polynomials in \( x \) over the rational numbers.

\[
dx := \text{operator}("D") :: \text{OP}(\text{POLY FRAC INT})
\]

\[
D
\]

Type: Operator Polynomial Fraction Integer

Now attach the map to it.

\[
evaluate(dx, p \rightarrow D(p, 'x))
\]

\[
D
\]

Type: Operator Polynomial Fraction Integer

This is the differential equation satisfied by the \( n \)-th Legendre polynomial.

\[
E_n = (1 - x^2) \cdot dx^2 - 2 \cdot x \cdot dx + n(n+1)
\]

Type: Void

Now we verify this for \( n = 15 \). Here is the polynomial.

\[
L_{15}
\]
Here is the operator.

\[ E \ 15 \]

\[ 240 - 2x D - (x^2 - 1) D^2 \]

Type: Operator Polynomial Fraction Integer

Here is the evaluation.

\[(E \ 15)(L \ 15)\]

0

Type: Polynomial Fraction Integer

### 9.67 OrderedVariableList

The domain `OrderedVariableList` provides symbols which are restricted to a particular list and have a definite ordering. Those two features are specified by a `List Symbol` object that is the argument to the domain.

This is a sample ordering of three symbols.

\[ \text{ls:List Symbol:= ['}x','a','z'] \]

\[ [x,a,z] \]

Type: List Symbol

Let's build the domain

\[ Z:\text{OVAR ls} \]

OrderedVariableList \([x,a,z] \)
How many variables does it have?

\[ \text{size()} \]

3

They are (in the imposed order)

\[ \text{lv:=[index(i::PI)} \text{ for i in 1..size()}\]

\[ [x, a, z] \]

Check that the ordering is right

\[ \text{sorted?} (> , \text{lv}) \]

true

9.68 OrderlyDifferentialPolynomial

Many systems of differential equations may be transformed to equivalent systems of ordinary differential equations where the equations are expressed polynomially in terms of the unknown functions. In Axiom, the domain constructors OrderlyDifferentialPolynomial (abbreviated ODPOL) and SequentialDifferentialPolynomial (abbreviation SDPOL) implement two domains of ordinary differential polynomials over any differential ring. In the simplest case, this differential ring is usually either the ring of integers, or the field of rational numbers. However, Axiom can handle ordinary differential polynomials over a field of rational functions in a single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only difference being the choice of a different ranking, which is an ordering of the derivatives of the indeterminates. The first domain uses an orderly ranking, that is, derivatives of higher order are ranked higher, and derivatives of the same order are ranked alphabetically. The second domain uses a sequential ranking, where derivatives are ordered first alphabetically by the differential indeterminates,
and then by order. A more general domain constructor,  
\texttt{DifferentialSparseMultivariatePolynomial} (abbreviation \texttt{DSMP})  
allows both a user-provided list of differential indeterminates as well as a user-defined rank-  
ing. We shall illustrate \texttt{ODPOL(FRAC INT)}, which constructs a domain of ordinary differential  
polynomials in an arbitrary number of differential indeterminates with rational numbers as  
coefficients.

\begin{verbatim}
dpol := ODPOL(FRAC INT)

OrderlyDifferentialPolynomial Fraction Integer

Type: Domain
\end{verbatim}

A differential indeterminate \( w \) may be viewed as an infinite sequence of algebraic indeter-  
minates, which are the derivatives of \( w \). To facilitate referencing these, Axiom provides the  
operation \texttt{makeVariable} to convert an element of type \texttt{Symbol} to a map from the natural  
numbers to the differential polynomial ring.

\begin{verbatim}
w := makeVariable('w)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)
\end{verbatim}

\begin{verbatim}
z := makeVariable('z)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)
\end{verbatim}

The fifth derivative of \( w \) can be obtained by applying the map \( w \) to the number \( 5 \). Note that  
the order of differentiation is given as a subscript (except when the order is 0).

\begin{verbatim}
w.5

w5

Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}

\begin{verbatim}
w 0
\end{verbatim}
The first five derivatives of \( z \) can be generated by a list.

\[
[z.1 \text{ for } i \text{ in } 1..5]
\]

\[
[z_1, z_2, z_3, z_4, z_5]
\]

The usual arithmetic can be used to form a differential polynomial from the derivatives.

\[
f := w.4 - w.1 \times w.1 \times z.3
\]

\[
w_4 - w_1^2 z_3
\]

The operation \( D \) computes the derivative of any differential polynomial.

\[
D(f)
\]

\[
w_5 - w_1^2 z_4 - 2 w_1 w_2 z_3
\]

The same operation can compute higher derivatives, like the fourth derivative.

\[
D(f,4)
\]

\[
w_8 - w_1^2 z_7 - 8 w_1 w_2 z_6 + (-12 w_1 w_3 - 12 w_2^2) z_5 - 2 w_1 z_3 w_5 + (8 w_1 \times 24 w_2 w_3) z_4 - 8 w_2 z_3 w_4 - 6 w_3^2 z_3
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation makeVariable creates a map to facilitate referencing the derivatives of \( f \), similar to the map \( w \).

\[
df := \text{makeVariable}(f)dpol
\]

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)

The fourth derivative of \( f \) may be referenced easily.

\[
df.4
\]

\[
\begin{align*}
& w_8 - w_1^2 z_7 - 8 w_1 w_2 z_6 + (-12 w_1 w_3 - 12 w_2^2) z_5 - 2 w_1 z_3 w_5 + \\
& (-8 w_1 w_4 - 24 w_2 w_3) z_4 - 8 w_2 z_3 w_4 - 6 w_3^2 z_3
\end{align*}
\]

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation order returns the order of a differential polynomial, or the order in a specified differential indeterminate.

\[
\text{order}(g)
\]

2

Type: PositiveInteger

\[
\text{order}(g, \ 'w')
\]

2

Type: PositiveInteger

The operation differentialVariables returns a list of differential indeterminates occurring in a differential polynomial.

\[
\text{differentialVariables}(g)
\]
The operation `degree` returns the degree, or the degree in the differential indeterminate specified.

\[ \text{degree}(g) \]
\[ z_2^2 z_1^3 \]

Type: IndexedExponents OrderlyDifferentialVariable Symbol

The operation `weights` returns a list of weights of differential monomials appearing in differential polynomial, or a list of weights in a specified differential indeterminate.

\[ \text{weights}(g) \]
\[ [7, 2] \]

Type: List NonNegativeInteger

\[ \text{weights}(g, 'w) \]
\[ [2] \]

Type: List NonNegativeInteger

The operation `weight` returns the maximum weight of all differential monomials appearing in the differential polynomial.

\[ \text{weight}(g) \]
\[ 7 \]
A differential polynomial is \textit{isobaric} if the weights of all differential monomials appearing in it are equal.

\hspace{1cm} \texttt{isobaric?(g)}

\hspace{1cm} \texttt{false}

To substitute \textit{differentially}, use \texttt{eval}. Note that we must coerce \texttt{'w} to \texttt{Symbol}, since in \texttt{ODPOL}, differential indeterminates belong to the domain \texttt{Symbol}. Compare this result to the next, which substitutes \textit{algebraically} (no substitution is done since \texttt{w.0} does not appear in \texttt{g}).

\hspace{1cm} \texttt{eval(g,['w::Symbol'],[f])}

\hspace{1cm} \texttt{-w_6 + w_1^2 z_5 + 4 w_1 w_2 z_4 + (2 w_1 w_3 + 2 w_2^2) z_3 + z_1^3 z_2^2}

\hspace{1cm} \text{Type: OrderlyDifferentialPolynomial Fraction Integer}

\hspace{1cm} \texttt{eval(g,variables(w.0),[f])}

\hspace{1cm} \texttt{z_1^3 z_2^2 - w_2}

\hspace{1cm} \text{Type: OrderlyDifferentialPolynomial Fraction Integer}

Since \texttt{OrderlyDifferentialPolynomial} belongs to \texttt{PolynomialCategory}, all the operations defined in the latter category, or in packages for the latter category, are available.

\hspace{1cm} \texttt{monomials(g)}

\hspace{1cm} \texttt{[z_1^3 z_2^2, -w_2]}

\hspace{1cm} \text{Type: List OrderlyDifferentialPolynomial Fraction Integer}

\hspace{1cm} \texttt{variables(g)}

\hspace{1cm} \texttt{[z_2, w_2, z_1]}

\hspace{1cm} \text{Type: List OrderlyDifferentialVariable Symbol}
\[ \text{gcd}(f, g) \]

\[ 1 \]

Type: OrderlyDifferentialPolynomial Fraction Integer

\[ \text{groebner}([f, g]) \]

\[ [w_4 - w_1^2 z_3, z_1^3 z_2^2 - w_2] \]

Type: List OrderlyDifferentialPolynomial Fraction Integer

The next three operations are essential for elimination procedures in differential polynomial rings. The operation **leader** returns the leader of a differential polynomial, which is the highest ranked derivative of the differential indeterminates that occurs.

\[ \text{lg} := \text{leader}(g) \]

\[ z_2 \]

Type: OrderlyDifferentialVariable Symbol

The operation **separant** returns the separant of a differential polynomial, which is the partial derivative with respect to the leader.

\[ \text{sg} := \text{separant}(g) \]

\[ 2 z_1^3 z_2 \]

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation **initial** returns the initial, which is the leading coefficient when the given differential polynomial is expressed as a polynomial in the leader.

\[ \text{ig} := \text{initial}(g) \]

\[ z_1^3 \]

Type: OrderlyDifferentialPolynomial Fraction Integer

Using these three operations, it is possible to reduce \( f \) modulo the differential ideal generated by \( g \). The general scheme is to first reduce the order, then reduce the degree in the leader. First, eliminate \( z_3 \) using the derivative of \( g \).
\[ g_1 := D \, g \]
\[ 2 \, z_1^3 \, z_2 \, z_3 - w_3 + 3 \, z_1^2 \, z_2^3 \]
Type: OrderlyDifferentialPolynomial Fraction Integer

Find its leader.
\[ \text{lg} \, g_1 := \text{leader} \, g_1 \]
\[ \text{lg} \]
\[ Type: \text{OrderlyDifferentialVariable Symbol} \]

Differentiate \( f \) partially with respect to this leader.
\[ \text{pdf} := D( f, \text{lg} ) \]
\[ -w_1^2 \]
Type: OrderlyDifferentialPolynomial Fraction Integer

Compute the partial remainder of \( f \) with respect to \( g \).
\[ \text{prf} := \text{sg} \, \ast \, f - \text{pdf} \, \ast \, g_1 \]
\[ 2 \, z_1^3 \, z_2 \, w_4 - w_1^2 \, w_3 + 3 \, w_1^2 \, z_1^2 \, z_2^3 \]
Type: OrderlyDifferentialPolynomial Fraction Integer

Note that high powers of \( \text{lg} \) still appear in \( \text{prf} \). Compute the leading coefficient of \( \text{prf} \) as a polynomial in the leader of \( g \).
\[ \text{lcf} := \text{leadingCoefficient univariate}( \text{prf}, \text{lg} ) \]
\[ 3 \, w_1^2 \, z_1^2 \]
Type: OrderlyDifferentialPolynomial Fraction Integer

Finally, continue eliminating the high powers of \( \text{lg} \) appearing in \( \text{prf} \) to obtain the (pseudo) remainder of \( f \) modulo \( g \) and its derivatives.
\[ \text{ig} \, \ast \, \text{prf} - \text{lcf} \, \ast \, g \, \ast \, \text{lg} \]
\[ 2 \, z_1^6 \, z_2 \, w_4 - w_1^2 \, z_1^3 \, w_3 + 3 \, w_1^2 \, z_1^2 \, w_2 \, z_2 \]
Type: OrderlyDifferentialPolynomial Fraction Integer
9.69 PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients where the denominators of the summands are powers of primes. For example, the rational number $\frac{1}{6}$ is decomposed into $\frac{1}{2} - \frac{1}{3}$.

You can compute partial fractions of quotients of objects from domains belonging to the category EuclideanDomain. For example, Integer, Complex Integer, and UnivariatePolynomial(x, Fraction Integer) all belong to EuclideanDomain. In the examples following, we demonstrate how to decompose quotients of each of these kinds of object into partial fractions. Issue the system command \texttt{)show PartialFraction} to display the full list of operations defined by \texttt{PartialFraction}.

It is necessary that we know how to factor the denominator when we want to compute a partial fraction. Although the interpreter can often do this automatically, it may be necessary for you to include a call to \texttt{factor}. In these examples, it is not necessary to factor the denominators explicitly.

The main operation for computing partial fractions is called \texttt{partialFraction} and we use this to compute a decomposition of $\frac{1}{10!}$. The first argument to \texttt{partialFraction} is the numerator of the quotient and the second argument is the factored denominator.

\begin{verbatim}
partialFraction(1,factorial 10)
\end{verbatim}

\[
\frac{159}{2^8} - \frac{23}{3^4} - \frac{12}{5^2} + \frac{1}{7}
\]

Type: PartialFraction Integer

Since the denominators are powers of primes, it may be possible to expand the numerators further with respect to those primes. Use the operation \texttt{padicFraction} to do this.

\begin{verbatim}
f := padicFraction(%)\end{verbatim}

\[
\frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} - \frac{2}{3^2} - \frac{1}{3^3} - \frac{2}{3^4} - \frac{2}{5} - \frac{2}{5^2} + \frac{1}{7}
\]

Type: PartialFraction Integer

The operation \texttt{compactFraction} returns an expanded fraction into the usual form. The compacted version is used internally for computational efficiency.

\begin{verbatim}
compactFraction(f)
\end{verbatim}

\footnotetext{Most people first encounter partial fractions when they are learning integral calculus. For a technical discussion of partial fractions, see, for example, Lang’s Algebra.}
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

You can add, subtract, multiply and divide partial fractions. In addition, you can extract the parts of the decomposition. `numberOfFractionalTerms` computes the number of terms in the fractional part. This does not include the whole part of the fraction, which you get by calling `wholePart`. In this example, the whole part is just 0.

```
nnumberOfFractionalTerms(f)
```

```
12
```

Type: PositiveInteger

The operation `nthFractionalTerm` returns the individual terms in the decomposition. Notice that the object returned is a partial fraction itself. `firstNumer` and `firstDenom` extract the numerator and denominator of the first term of the fraction.

```
nnthFractionalTerm(f,3)
```

```
1
25
```

Type: PartialFraction Integer

Given two gaussian integers (see Complex 9.13 on page 447), you can decompose their quotient into a partial fraction.

```
partialFraction(1,- 13 + 14 * %i)
```

```
-(1 / (1 + 2 %i)) + (4 / (3 + 8 %i))
```

Type: PartialFraction Complex Integer

To convert back to a quotient, simply use a conversion.

```
% :: Fraction Complex Integer
```

```
-(i / (14 + 13 %i))
```

Type: Fraction Complex Integer
To conclude this section, we compute the decomposition of
\[
\frac{1}{(x + 1)(x + 2) (x + 3) (x + 4)}
\]
The polynomials in this object have type \texttt{UnivariatePolynomial(x, Fraction Integer)}. We use the \texttt{primeFactor} operation (see \texttt{Factored 9.26} on page 499) to create the denominator in factored form directly.

\[
u : \text{FR UP(x, FRAC INT)} := \text{reduce(*,[primeFactor(x+i,i) for i in 1..4])}
\]
\[
(x + 1) (x + 2)^2 (x + 3)^3 (x + 4)^4
\]
\textbf{Type: Factored UnivariatePolynomial(x,Fraction Integer)}

These are the compact and expanded partial fractions for the quotient.

\[
\text{partialFraction}(1,u)
\]
\[
\frac{1}{648} \frac{x + 1}{x + 1} + \frac{1}{648} \frac{x + 7}{(x + 2)^2} + \frac{17}{5} \frac{x^2 - 12 x - 139}{(x + 3)^3} + \frac{607}{324} \frac{x^3 + 10115}{324} \frac{x^2 + 391}{4} x + \frac{44179}{324} \frac{x}{(x + 4)^4}
\]
\textbf{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)}

\[
padicFraction \%
\]
\[
\frac{1}{648} \frac{x + 1}{x + 1} + \frac{1}{648} \frac{x + 7}{(x + 2)^2} - \frac{17}{5} \frac{x^2 - 12 x - 139}{(x + 3)^3} - \frac{1}{2} \frac{x}{(x + 3)^4} + \frac{607}{324} \frac{x}{x + 4} + \frac{403}{432} \frac{x}{(x + 4)^2} + \frac{13}{36} \frac{x}{(x + 4)^3} + \frac{1}{12} \frac{x}{(x + 4)^4}
\]
\textbf{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)}

All see \texttt{FullPartialFractionExpansion 9.33} on page 528 for examples of factor-free conversion of quotients to full partial fractions.
9.70 Permanent

The package Permanent provides the function permanent for square matrices. The permanent of a square matrix can be computed in the same way as the determinant by expansion of minors except that for the permanent the sign for each element is 1, rather than being 1 if the row plus column indices is positive and -1 otherwise. This function is much more difficult to compute efficiently than the determinant. An example of the use of permanent is the calculation of the $n$-th derangement number, defined to be the number of different possibilities for $n$ couples to dance but never with their own spouse.

Consider an $n$ by $n$ matrix with entries 0 on the diagonal and 1 elsewhere. Think of the rows as one-half of each couple (for example, the males) and the columns the other half. The permanent of such a matrix gives the desired derangement number.

```axiom
kn n ==
 r : MATRIX INT := new(n,n,1)
 for i in 1..n repeat
 r.i.i := 0
 r

Type: Void
```

Here are some derangement numbers, which you see grow quite fast.

```axiom
permanent(kn(5) :: SQMATRIX(5,INT))
```

Compiling function kn with type PositiveInteger -> Matrix Integer

```
44
```

Type: PositiveInteger

```axiom
[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13]
```

Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving :: SQMATRIX(n,INT)
Axiom will attempt to step through and interpret the code.

```
[0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932]
```

Type: List NonNegativeInteger
9.71 Permutation

We represent a permutation as two lists of equal length representing preimages and images of moved points. Fixed points do not occur in either of these lists. This enables us to compute the set of fixed points and the set of moved points easily.

```
p := coercePreimagesImages([1,2,3],[1,2,3])
1
Type: Permutation PositiveInteger

movedPoints p
{}
Type: Set PositiveInteger

even? p
true
Type: Boolean

p := coercePreimagesImages([0,1,2,3],[3,0,2,1])$PERM ZMOD 4
(1 0 3)
Type: Permutation IntegerMod 4

fixedPoints p
{2}
Type: Set IntegerMod 4

q := coercePreimagesImages([0,1,2,3],[1,0])$PERM ZMOD 4
(1 0)
Type: Permutation IntegerMod 4

fixedPoints(p*q)
{2,0}
Type: Set IntegerMod 4

even?(p*q)
false
Type: Boolean
```

9.72 Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polynomials with an arbitrary number of unspecified variables.

It is used to create the default polynomial domains in Axiom. Here the coefficients are integers.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ x + 1 \]

\[ x + 1 \]

Type: Polynomial Integer

Here the coefficients have type Float.

\[ z - 2.3 \]

\[ z - 2.3 \]

Type: Polynomial Float

And here we have a polynomial in two variables with coefficients which have type Fraction Integer.

\[ y^{**2} - z + 3/4 \]

\[ -z + y^2 + \frac{3}{4} \]

Type: Polynomial Fraction Integer

The representation of objects of domains created by Polynomial is that of recursive univariate polynomials.\(^6\)

This recursive structure is sometimes obvious from the display of a polynomial.

\[ y **2 + x*y + y \]

\[ y^2 + (x + 1) \ y \]

Type: Polynomial Integer

In this example, you see that the polynomial is stored as a polynomial in y with coefficients that are polynomials in x with integer coefficients. In fact, you really don’t need to worry about the representation unless you are working on an advanced application where it is critical. The polynomial types created from DistributedMultivariatePolynomial and NewDistributedMultivariatePolynomial (discussed in DistributedMultivariatePolynomial 9.19 on page 483) are stored and displayed in a non-recursive manner.

You see a “flat” display of the above polynomial by converting to one of those types.

\(^6\)The term univariate means “one variable.” multivariate means “possibly more than one variable.”
9.72. POLYNOMIAL

% :: DMP([y,x],INT)

\[ y^2 + y \ x + y \]

Type: DistributedMultivariatePolynomial([y,x],Integer)

We will demonstrate many of the polynomial facilities by using two polynomials with integer coefficients.

By default, the interpreter expands polynomial expressions, even if they are written in a factored format.

\[ p := (y-1)^2 \times x \times z \]

\[ (x \ y^2 - 2 \ x \ y + x) \ z \]

Type: Polynomial Integer

See Factored 9.26 on page 499 to see how to create objects in factored form directly.

\[ q := (y-1) \times x \times (z+5) \]

\[ (x \ y - x) \ z + 5 \ x \ y - 5 \ x \]

Type: Polynomial Integer

The fully factored form can be recovered by using factor.

\[ \text{factor}(q) \]

\[ x \ (y - 1) \ (z + 5) \]

Type: Factored Polynomial Integer

This is the same name used for the operation to factor integers. Such reuse of names is called and makes it much easier to think of solving problems in general ways. Axiom facilities for factoring polynomials created with Polynomial are currently restricted to the integer and rational number coefficient cases. There are more complete facilities for factoring univariate polynomials: see section 8.2 on page 301.

The standard arithmetic operations are available for polynomials.

\[ p - q^{**2} \]
(\(-x^2 y^2 + 2 x^2 y - x^2\) \(z^2\) + \\
(\((-10 x^2 + x) y^2 + (20 x^2 - 2 x) y - 10 x^2 + x\) \(z\) - \\
25 x^2 y^2 + 50 x^2 y - 25 x^2)

Type: Polynomial Integer

The operation \texttt{gcd} is used to compute the greatest common divisor of two polynomials.

\texttt{gcd(p,q)}

\(x y - x\)

Type: Polynomial Integer

In the case of \(p\) and \(q\), the \(\texttt{gcd}\) is obvious from their definitions. We factor the \(\texttt{gcd}\) to show this relationship better.

\texttt{factor %}

\(x (y - 1)\)

Type: Factored Polynomial Integer

The least common multiple is computed by using \texttt{lcm}.

\texttt{lcm(p,q)}

\((x y^2 - 2 x y + x) z^2 + (5 x y^2 - 10 x y + 5 x) z\)

Type: Polynomial Integer

Use \texttt{content} to compute the greatest common divisor of the coefficients of the polynomial.

\texttt{content p}

1

Type: PositiveInteger

Many of the operations on polynomials require you to specify a variable. For example, \texttt{resultant} requires you to give the variable in which the polynomials should be expressed.

This computes the resultant of the values of \(p\) and \(q\), considering them as polynomials in the variable \(z\). They do not share a root when thought of as polynomials in \(z\).
resultant(p,q,z)

\[ 5x^2y^3 - 15x^2y^2 + 15x^2y - 5x^2 \]

Type: Polynomial Integer

This value is 0 because as polynomials in \( x \) the polynomials have a common root.

resultant(p,q,x)

0

Type: Polynomial Integer

The data type used for the variables created by Polynomial is Symbol. As mentioned above, the representation used by Polynomial is recursive and so there is a main variable for nonconstant polynomials.

The operation mainVariable returns this variable. The return type is actually a union of Symbol and "failed".

mainVariable p

\( z \)

Type: Union(Symbol,...)

The latter branch of the union is be used if the polynomial has no variables, that is, is a constant.

mainVariable(1 :: POLY INT)

"failed"

Type: Union("failed",...)

You can also use the predicate ground? to test whether a polynomial is in fact a member of its ground ring.

ground? p

false
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Boolean

ground?(1 :: POLY INT)

true

Type: Boolean

The complete list of variables actually used in a particular polynomial is returned by variables. For constant polynomials, this list is empty.

variables p

[z, y, x]

Type: List Symbol

The degree operation returns the degree of a polynomial in a specific variable.

degree(p, x)

1

Type: PositiveInteger

degree(p, y)

2

Type: PositiveInteger

degree(p, z)

1

Type: PositiveInteger

If you give a list of variables for the second argument, a list of the degrees in those variables is returned.

degree(p, [x, y, z])
The minimum degree of a variable in a polynomial is computed using \texttt{minimumDegree}.

\begin{verbatim}
minimumDegree(p, z)
\end{verbatim}

1

Type: PositiveInteger

The total degree of a polynomial is returned by \texttt{totalDegree}.

\begin{verbatim}
totalDegree p
\end{verbatim}

4

Type: PositiveInteger

It is often convenient to think of a polynomial as a leading monomial plus the remaining terms.

\begin{verbatim}
leadingMonomial p
\end{verbatim}

\begin{verbatim}
x y^2 z
\end{verbatim}

Type: Polynomial Integer

The \texttt{reductum} operation returns a polynomial consisting of the sum of the monomials after the first.

\begin{verbatim}
reductum p
\end{verbatim}

\begin{verbatim}
(-2 x y + x) z
\end{verbatim}

Type: Polynomial Integer

These have the obvious relationship that the original polynomial is equal to the leading monomial plus the reductum.

\begin{verbatim}
p - leadingMonomial p - reductum p
\end{verbatim}
The value returned by `leadingMonomial` includes the coefficient of that term. This is extracted by using `leadingCoefficient` on the original polynomial.

```
leadingCoefficient p
```

```
1
```

The operation `eval` is used to substitute a value for a variable in a polynomial.

```
p
```

```
(x y^2 - 2 x y + x) z
```

```
Type: Polynomial Integer
```

This value may be another variable, a constant or a polynomial.

```
eval(p, x, w)
```

```
(w y^2 - 2 w y + w) z
```

```
Type: Polynomial Integer
```

```
eval(p, x, 1)
```

```
(y^2 - 2 y + 1) z
```

```
Type: Polynomial Integer
```

Actually, all the things being substituted are just polynomials, some more trivial than others.

```
eval(p, x, y**2 - 1)
```

```
(y^4 - 2 y^3 + 2 y - 1) z
```

```
Type: Polynomial Integer
```
Derivatives are computed using the \texttt{D} operation.

\[
\texttt{D(p,x)}
\]

\[
(y^2 - 2 \ y + 1) \ z
\]

Type: Polynomial Integer

The first argument is the polynomial and the second is the variable.

\[
\texttt{D(p,y)}
\]

\[
(2 \ x \ y - 2 \ x) \ z
\]

Type: Polynomial Integer

Even if the polynomial has only one variable, you must specify it.

\[
\texttt{D(p,z)}
\]

\[
x \ y^2 - 2 \ x \ y + x
\]

Type: Polynomial Integer

Integration of polynomials is similar and the \texttt{integrate} operation is used.

Integration requires that the coefficients support division. Consequently, Axiom converts polynomials over the integers to polynomials over the rational numbers before integrating them.

\[
\texttt{integrate(p,y)}
\]

\[
\left(\frac{1}{3} \ x \ y^3 - x \ y^2 + x \ y \right) \ z
\]

Type: Polynomial Fraction Integer

It is not possible, in general, to divide two polynomials. In our example using polynomials over the integers, the operation \texttt{monicDivide} divides a polynomial by a monic polynomial (that is, a polynomial with leading coefficient equal to 1). The result is a record of the quotient and remainder of the division.

You must specify the variable in which to express the polynomial.

\[
\texttt{qr := monicDivide(p,x+1,x)}
\]
\[\text{quotient} = (y^2 - 2y + 1)z, \text{remainder} = (-y^2 + 2y - 1)z\]

Type: Record(quotient: Polynomial Integer, remainder: Polynomial Integer)

The selectors of the components of the record are \textit{quotient} and \textit{remainder}. Issue this to extract the remainder.

\texttt{qr\.remainder}

\[(-y^2 + 2y - 1)z\]

Type: Polynomial Integer

Now that we can extract the components, we can demonstrate the relationship among them and the arguments to our original expression \(\text{qr := monicDivide}(p, x+1, x)\).

\[
p - ((x+1) \ast \text{qr\.quotient} + \text{qr\.remainder})
\]

0

Type: Polynomial Integer

If the "/" operator is used with polynomials, a fraction object is created. In this example, the result is an object of type \textit{Fraction Polynomial Integer}.

\[
p/q
\]

\[
\frac{(y - 1)z}{z + 5}
\]

Type: Fraction Polynomial Integer

If you use rational numbers as polynomial coefficients, the resulting object is of type \textit{Polynomial Fraction Integer}.

\[
(2/3) \ast x**2 - y + 4/5
\]

\[-y + \frac{2}{3}x^2 + \frac{4}{5}\]

Type: Polynomial Fraction Integer

This can be converted to a fraction of polynomials and back again, if required.
\[ \frac{-15 \, y + 10 \, x^2 + 12}{15} \]

Type: Fraction Polynomial Integer

\[ -y + \frac{2}{3} \, x^2 + \frac{4}{5} \]

Type: Polynomial Fraction Integer

To convert the coefficients to floating point, map the \texttt{numeric} operation on the coefficients of the polynomial.

\[ \text{map(numeric,\%)} \]

\[-1.0 \, y + 0.66666666666666667 \, x^2 + 0.8 \]

Type: Polynomial Float

For more information on related topics, see \texttt{UnivariatePolynomial 9.96 on page 800}, \texttt{MultivariatePolynomial 9.61 on page 666}, and \texttt{DistributedMultivariatePolynomial 9.19 on page 483}. You can also issue the system command \texttt{)show Polynomial} to display the full list of operations defined by \texttt{Polynomial}.

## 9.73 Quaternion

The domain constructor \texttt{Quaternion} implements quaternions over commutative rings. For information on related topics, see \texttt{Complex 9.13 on page 447} and \texttt{Octonion 9.64 on page 671}. You can also issue the system command \texttt{)show Quaternion} to display the full list of operations defined by \texttt{Quaternion}.

The basic operation for creating quaternions is \texttt{quatern}. This is a quaternion over the rational numbers.

\[ q := \text{quatern}(2/11,-8,3/4,1) \]

\[ \frac{2}{11} - 8 \, i + \frac{3}{4} \, j + k \]

Type: Quaternion Fraction Integer
The four arguments are the real part, the \( i \) imaginary part, the \( j \) imaginary part, and the \( k \) imaginary part, respectively.

\[ [\text{real } q, \text{imagI } q, \text{imagJ } q, \text{imagK } q] \]

\[
\begin{bmatrix}
2/11, -8/4, 3/4, 1
\end{bmatrix}
\]

Type: List Fraction Integer

Because \( q \) is over the rationals (and nonzero), you can invert it.

\( \text{inv } q \)

\[
\frac{352}{126993} + \frac{15488}{126993} i - \frac{484}{42331} j - \frac{1936}{126993} k
\]

Type: Quaternion Fraction Integer

The usual arithmetic (ring) operations are available

\( q \times 6 \)

\[
\frac{-2029490709319345}{7256313856} - \frac{48251690851}{1288408} i + \frac{144755072553}{41229056} j + \frac{48251690851}{10307264} k
\]

Type: Quaternion Fraction Integer

\( r := \text{quatern}(-2,3,23/9,-89); q + r \)

\[\frac{-20}{11} - 5 i + \frac{119}{36} j - 88 k\]

Type: Quaternion Fraction Integer

In general, multiplication is not commutative.

\( q \times r - r \times q \)

\[\frac{-2495}{18} - 1418 j - \frac{817}{18} k\]

Type: Quaternion Fraction Integer
There are no predefined constants for the imaginary $i$, $j$, and $k$ parts, but you can easily define them.

\[
\begin{align*}
i &= \text{quatern}(0,1,0,0); \\
j &= \text{quatern}(0,0,1,0); \\
k &= \text{quatern}(0,0,0,1)
\end{align*}
\]

These satisfy the normal identities.

\[
\begin{align*}
[i*i, j*j, k*k, i*j, j*k, k*i, q*i] \\
&= [-1, -1, -1, i, j, 8 + \frac{2}{11} i + j - \frac{3}{4} k]
\end{align*}
\]

The norm is the quaternion times its conjugate.

\[
\begin{align*}
norm q &= \frac{126993}{1936} \\
&= \text{Quaternion Fraction Integer}
\end{align*}
\]

\[
\begin{align*}
\text{conjugate q} &= \frac{2}{11} + 8 i - \frac{3}{4} j - k \\
&= \text{Quaternion Fraction Integer}
\end{align*}
\]

\[
\begin{align*}
q * \% &= \frac{126993}{1936} \\
&= \text{Quaternion Fraction Integer}
\end{align*}
\]
9.74 Queue

A queue is an aggregate structure which allows insertion at the back of the queue, deletion at the front of the queue and inspection of the front element. Queues are similar to a line of people where you can join the line at the back, leave the line at the front, or see the person in the front of the line.

Queues can be created from a list of elements using the queue function.

\[ a\text{:Queue INT:= queue \{1,2,3,4,5\} } \]

Type: Queue Integer

An empty queue can be created using the empty function.

\[ a\text{:Queue INT:= empty()} \]

Type: Queue Integer

The empty? function will return true if the queue contains no elements.

\[ \text{empty? \ a} \]

true

Type: Boolean

Queues modify their arguments so they use the exclamation mark "!" as part of the function name.

The dequeue! operation removes the front element of the queue and returns it. The queue is one element smaller. The extract! does the same thing with a different name.

\[ a\text{:Queue INT:= queue \{1,2,3,4,5\} } \]

Type: Queue Integer

dequeue! a
The `enqueue!` function adds a new element to the back of the queue and returns the element that was pushed. The queue is one element larger. The `insert!` function does the same thing with a different name.

```lisp
a:Queue INT := queue [1,2,3,4,5]

[1,2,3,4,5]
Type: Queue Integer
```

```lisp
enqueue!(9,a)

9
Type: PositiveInteger
```

```lisp
a

[1,2,3,4,5,9]
Type: Queue Integer
```

To read the top element without changing the queue use the `front` function.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

front a

1

Type: PositiveInteger

a

[1, 2, 3, 4, 5]

Type: Queue Integer

For more information on related topics, see Stack section 9.87 on page 763.

9.75 RadixExpansion

It possible to expand numbers in general bases.
Here we expand 111 in base 5. This means

\[ 10^2 + 10^1 + 10^0 = 4 \cdot 5^2 + 2 \cdot 5^1 + 5^0 \]

111::RadixExpansion(5)

421

Type: RadixExpansion 5

You can expand fractions to form repeating expansions.

(5/24)::RadixExpansion(2)

0.00111

Type: RadixExpansion 2

(5/24)::RadixExpansion(3)

0.0112

Type: RadixExpansion 3
(5/24)::RadixExpansion(8)

0.152

Type: RadixExpansion 8

(5/24)::RadixExpansion(10)

0.2083

Type: RadixExpansion 10

For bases from 11 to 36 the letters A through Z are used.

(5/24)::RadixExpansion(12)

0.26

Type: RadixExpansion 12

(5/24)::RadixExpansion(16)

0.35

Type: RadixExpansion 16

(5/24)::RadixExpansion(36)

0.7I

Type: RadixExpansion 36

For bases greater than 36, the digits are separated by blanks.

(5/24)::RadixExpansion(38)

0.7 34 31 25 12

Type: RadixExpansion 38
The `RadixExpansion` type provides operations to obtain the individual ragits. Here is a rational number in base 8.

\[ a := (76543/210)::\text{RadixExpansion}(8) \]

\[ 554.37307 \]

Type: `RadixExpansion 8`

The operation `wholeRagits` returns a list of the ragits for the integral part of the number.

\[ w := \text{wholeRagits} a \]

\[ [5, 5, 4] \]

Type: `List Integer`

The operations `prefixRagits` and `cycleRagits` return lists of the initial and repeating ragits in the fractional part of the number.

\[ f0 := \text{prefixRagits} a \]

\[ [3] \]

Type: `List Integer`

\[ f1 := \text{cycleRagits} a \]

\[ [7, 3, 0, 7] \]

Type: `List Integer`

You can construct any radix expansion by giving the whole, prefix and cycle parts. The declaration is necessary to let Axiom know the base of the ragits.

\[ u::\text{RadixExpansion}(8):=\text{wholeRadix}(w)+\text{fractRadix}(f0, f1) \]

\[ 554.37307 \]

Type: `RadixExpansion 8`

If there is no repeating part, then the list \([0]\) should be used.
v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])

0.123B0

Type: RadixExpansion 12

If you are not interested in the repeating nature of the expansion, an infinite stream of ragits can be obtained using `fractRagits`.

fractRagits(u)

[3, 7, 3, 0, 7, 7]

Type: Stream Integer

Of course, it’s possible to recover the fraction representation:

a :: Fraction(Integer)

\[
\frac{76543}{210}
\]

Type: Fraction Integer

More examples of expansions are available in `DecimalExpansion 9.17` on page 475, `BinaryExpansion 9.6` on page 415, and `HexadecimalExpansion 9.39` on page 541.

### 9.76 RealClosure

The Real Closure 1.0 package provided by Renaud Rioboo (Renaud.Rioboo@lip6.fr) consists of different packages, categories and domains:

- The package `RealPolynomialUtilitiesPackage` which needs a `Field F` and a `UnivariatePolynomialCategory` domain with coefficients in `F`. It computes some simple functions such as Sturm and Sylvester sequences (`sturmSequence`, `sylvesterSequence`).

- The category `RealRootCharacterizationCategory` provides abstract functions to work with “real roots” of univariate polynomials. These resemble variables with some functionality needed to compute important operations.

- The category `RealClosedField` provides common operations available over real closed fields. These include finding all the roots of a univariate polynomial, taking square (and higher) roots, ...
The domain `RightOpenIntervalRootCharacterization` is the main code that provides the functionality of `RealRootCharacterizationCategory` for the case of archimedean fields. Abstract roots are encoded with a left closed right open interval containing the root together with a defining polynomial for the root.

The `RealClosure` domain is the end-user code. It provides usual arithmetic with real algebraic numbers, along with the functionality of a real closed field. It also provides functions to approximate a real algebraic number by an element of the base field. This approximation may either be absolute (`approximate`) or relative (`relativeApprox`).

CAVEATS
Since real algebraic expressions are stored as depending on "real roots" which are managed like variables, there is an ordering on these. This ordering is dynamical in the sense that any new algebraic takes precedence over older ones. In particular every creation function raises a new "real root". This has the effect that when you type something like `sqrt(2) + sqrt(2)` you have two new variables which happen to be equal. To avoid this name the expression such as in `s2 := sqrt(2) ; s2 + s2`

Also note that computing times depend strongly on the ordering you implicitly provide. Please provide algebraics in the order which seems most natural to you.

LIMITATIONS
This packages uses algorithms which are published in [1] and [2] which are based on field arithmetics, in particular for polynomial gcd related algorithms. This can be quite slow for high degree polynomials and subresultants methods usually work best. Beta versions of the package try to use these techniques in a better way and work significantly faster. These are mostly based on unpublished algorithms and cannot be distributed. Please contact the author if you have a particular problem to solve or want to use these versions.

Be aware that approximations behave as post-processing and that all computations are done exactly. They can thus be quite time consuming when depending on several "real roots".

REFERENCES

EXAMPLES
We shall work with the real closure of the ordered field of rational numbers.

```plaintext
Ran := RECLOS(FRAC INT)
```

`RealClosure Fraction Integer` 

Type: Domain

Some simple signs for square roots, these correspond to an extension of degree 16 of the rational numbers. Examples provided by J. Abbot.
9.76. REALCLOSURE

\[ \text{fourSquares}(a:\text{Ran}, b:\text{Ran}, c:\text{Ran}, d:\text{Ran}): \text{Ran} = \sqrt{a} + \sqrt{b} - \sqrt{c} - \sqrt{d} \]

Function declaration \text{fourSquares} : (\text{RealClosure Fraction Integer}, \text{RealClosure Fraction Integer}, \text{RealClosure Fraction Integer}, \text{RealClosure Fraction Integer}) \rightarrow \text{RealClosure Fraction Integer} has been added to workspace.

Type: \text{Void}

These produce values very close to zero.

\[ \text{squareDiff1} := \text{fourSquares}(73, 548, 60, 586) \]

\[ -\sqrt{586} - \sqrt{60} + \sqrt{548} + \sqrt{73} \]

Type: \text{RealClosure Fraction Integer}

\[ \text{recip(squareDiff1)} \]

\( \left( \left( 54602 \sqrt{548} + 149602 \sqrt{73} \right) \sqrt{60} + 49502 \sqrt{73} \sqrt{548} + 9900895 \right) \sqrt{586} + \]

\( \left( 154702 \sqrt{73} \sqrt{548} + 30941947 \right) \sqrt{60} + 10238421 \sqrt{548} + 28051871 \sqrt{73} \)

Type: \text{Union(RealClosure Fraction Integer, \ldots)}

\[ \text{sign(squareDiff1)} \]

\( 1 \)

Type: \text{PositiveInteger}

\[ \text{squareDiff2} := \text{fourSquares}(165, 778, 86, 990) \]

\[ -\sqrt{990} - \sqrt{86} + \sqrt{778} + \sqrt{165} \]

Type: \text{RealClosure Fraction Integer}

\[ \text{recip(squareDiff2)} \]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\left( \left( \sqrt{778} + 1209010 \sqrt{165} \right) \sqrt{86} + 401966 \sqrt{165} \sqrt{778} + 144019431 \right) \sqrt{990} + \\
\left( 1363822 \sqrt{165} \sqrt{778} + 488640503 \right) \sqrt{86} + 162460913 \sqrt{778} + 352774119 \sqrt{165}
\]

Type: Union(RealClosure Fraction Integer,...)

\[\text{sign(squareDiff2)}\]

1

Type: PositiveInteger

\[\text{squareDiff3 := fourSquares(217,708,226,692)}\]

\[-\sqrt{692} - \sqrt{226} + \sqrt{708} + \sqrt{217}\]

Type: RealClosure Fraction Integer

\[\text{recip(squareDiff3)}\]

\[\left( \left( -34102 \sqrt{708} - 61598 \sqrt{217} \right) \sqrt{226} - 34802 \sqrt{217} \sqrt{708} - 13641141 \right) \sqrt{692} + \\
\left( -60898 \sqrt{217} \sqrt{708} - 23869841 \right) \sqrt{226} - 13486123 \sqrt{708} - 24359809 \sqrt{217}\]

Type: Union(RealClosure Fraction Integer,...)

\[\text{sign(squareDiff3)}\]

-1
\[ \text{squareDiff4} := \text{fourSquares}(155, 836, 162, 820) \]
\[ -\sqrt{820} - \sqrt{162} + \sqrt{836} + \sqrt{155} \]

\[ \text{recip(squareDiff4)} \]
\[ \left( \left( -37078 \sqrt{836} - 86110 \sqrt{155} \right) \sqrt{162} - 37906 \sqrt{155} \sqrt{836} - 13645107 \right) \sqrt{820} + \]
\[ \left( -85282 \sqrt{155} \sqrt{836} - 30699151 \right) \sqrt{162} - 13513901 \sqrt{836} - 31384703 \sqrt{155} \]

\[ \text{sign(squareDiff4)} \]
\[ -1 \]

\[ \text{squareDiff5} := \text{fourSquares}(591, 772, 552, 818) \]
\[ -\sqrt{818} - \sqrt{552} + \sqrt{772} + \sqrt{591} \]

\[ \text{recip(squareDiff5)} \]
\[ \left( \left( 70922 \sqrt{772} + 81058 \sqrt{591} \right) \sqrt{552} + 68542 \sqrt{591} \sqrt{5772} + 46297673 \right) \sqrt{818} + \]
\[ \left( 83438 \sqrt{591} \sqrt{772} + 56359389 \right) \sqrt{552} + 47657051 \sqrt{772} + 54468081 \sqrt{591} \]
Type: Union(RealClosure Fraction Integer,...)

\[
\text{sign(squareDiff5)}
\]

1

Type: PositiveInteger

\[
squareDiff6 := \text{fourSquares}(434,1053,412,1088)
\]

\[
-\sqrt{1088} - \sqrt{412} + \sqrt{1053} + \sqrt{434}
\]

Type: RealClosure Fraction Integer

\[
\text{recip(squareDiff6)}
\]

\[
\left(\left(\frac{115442}{\sqrt{1053} + 179818 \sqrt{434}}\right) \sqrt{412} + 112478 \sqrt{434} \sqrt{1053} + 76037291\right) \sqrt{1088} + \\
\left(\frac{182782}{\sqrt{434} \sqrt{1053} + 123564147}\right) \sqrt{412} + 77290639 \sqrt{1053} + 120391609 \sqrt{434}
\]

Type: Union(RealClosure Fraction Integer,...)

\[
\text{sign(squareDiff6)}
\]

1

Type: PositiveInteger

\[
squareDiff7 := \text{fourSquares}(514,1049,446,1152)
\]

\[
-\sqrt{1152} - \sqrt{446} + \sqrt{1049} + \sqrt{514}
\]

Type: RealClosure Fraction Integer
recip(squareDiff7)

\[ \left( \left( 349522 \sqrt{1049} + 499322 \sqrt{514} \right) \sqrt{446} + \\
325582 \sqrt{514} \sqrt{1049} + 239072537 \right) \sqrt{1152} + \\
\left( 523262 \sqrt{514} \sqrt{1049} + 384227549 \right) \sqrt{446} + \\
250534873 \sqrt{1049} + 357910443 \sqrt{514} \]

Type: \text{Union(RealClosure Fraction Integer,...)}

sign(squareDiff7)

1

Type: \text{PositiveInteger}

squareDiff8 := fourSquares(190,1751,208,1698)

\[ -\sqrt{1698} - \sqrt{208} + \sqrt{1751} + \sqrt{190} \]

Type: \text{RealClosure Fraction Integer}

recip(squareDiff8)

\[ \left( \left( -214702 \sqrt{1751} - 651782 \sqrt{190} \right) \sqrt{208} - \\
224642 \sqrt{190} \sqrt{1751} - 129571901 \right) \sqrt{1698} + \\
\left( -641842 \sqrt{190} \sqrt{1751} - 370209881 \right) \sqrt{208} - \\
127595865 \sqrt{1751} - 387349387 \sqrt{190} \]

Type: \text{Union(RealClosure Fraction Integer,...)}

sign(squareDiff8)
Type: Integer

This should give three digits of precision

\[
\text{relativeApprox(squareDiff8,10**(-3))::Float}
\]

\[-0.23405277715937700123E-10\]

Type: Float

The sum of these 4 roots is 0

\[
l := \text{allRootsOf((x**2-2)**2-2)$Ran}
\]

\[
[\%A33,\%A34,\%A35,\%A36]
\]

Type: List RealClosure Fraction Integer

Check that they are all roots of the same polynomial

\[
\text{removeDuplicates map(mainDefiningPolynomial,l)}
\]

\[
[?^4 - 4 ?^2 + 2]
\]

Type: List Union(SparseUnivariatePolynomial RealClosure Fraction Integer, "failed")

We can see at a glance that they are separate roots

\[
\text{map(mainCharacterization,l)}
\]

\[
[[-2, -1[, [-1, 0[, [0, 1[, [1, 2]]]
\]

Type: List Union( RightOpenIntervalRootCharacterization( RealClosure Fraction Integer, SparseUnivariatePolynomial RealClosure Fraction Integer), "failed")

Check the sum and product

\[
[\text{reduce(+,l),reduce(*,l)-2}]
\]
A more complicated test that involves an extension of degree 256. This is a way of checking nested radical identities.

\[(s2, s5, s10) := (\sqrt{2}\text{Ran}, \sqrt{5}\text{Ran}, \sqrt{10}\text{Ran})\]

\[\sqrt{10}\]

Type: RealClosure Fraction Integer

\[\text{eq1 := } \sqrt{s10+3}\sqrt{s5+2} - \sqrt{s10-3}\sqrt{s5-2} = \sqrt{10\cdot s2 + 10}\]

Type: Equation RealClosure Fraction Integer

\[\text{eq1::Boolean}\]

true

Type: Boolean

\[\text{eq2 := } \sqrt{s5+2}\sqrt{s2+1} - \sqrt{s5-2}\sqrt{s2-1} = \sqrt{2\cdot s10 + 2}\]

Type: Equation RealClosure Fraction Integer

\[\text{eq2::Boolean}\]

true

Type: Boolean

Some more examples from J. M. Arnaudies
s3 := sqrt(3)$\Ran$

\[ \sqrt{3} \]

Type: RealClosure Fraction Integer

s7 := sqrt(7)$\Ran$

\[ \sqrt{7} \]

Type: RealClosure Fraction Integer

e1 := sqrt(2*s7-3*s3,3)

\[ \sqrt{2\sqrt{7} - 3\sqrt{3}} \]

Type: RealClosure Fraction Integer

e2 := sqrt(2*s7+3*s3,3)

\[ \sqrt{2\sqrt{7} + 3\sqrt{3}} \]

Type: RealClosure Fraction Integer

This should be null

e2-e1-s3

0

Type: RealClosure Fraction Integer

A quartic polynomial

pol : UP(x,$\Ran$) := x**4+(7/3)*x**2+30*x-(100/3)

\[ x^4 + \frac{7}{3} x^2 + 30 x - \frac{100}{3} \]

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)
Add some cubic roots

\[ r_1 := \sqrt[3]{7633} \]

\[ \sqrt[3]{7633} \]

Type: RealClosure Fraction Integer

\[ \alpha := \sqrt[3]{5r_1 - 436} / 3 \]

\[ \frac{1}{3} \sqrt[3]{5 \sqrt[3]{7633} - 436} \]

Type: RealClosure Fraction Integer

\[ \beta := -\sqrt[3]{5r_1 + 436} / 3 \]

\[ -\frac{1}{3} \sqrt[3]{5 \sqrt[3]{7633} + 436} \]

Type: RealClosure Fraction Integer

this should be null

\[ \text{pol.}(\alpha + \beta - 1/3) \]

0

Type: RealClosure Fraction Integer

A quintic polynomial

\[ q_1 : \quad \text{UP}(x, \text{Ran}) := x^5 + 10x^3 + 20x + 22 \]

\[ x^5 + 10x^3 + 20x + 22 \]

Type: UnivariatePolynomial(x, RealClosure Fraction Integer)

Add some cubic roots

\[ r_2 := \sqrt[3]{153} \]

\[ \sqrt[3]{153} \]

Type: RealClosure Fraction Integer
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ \sqrt{153} \]

Type: RealClosure Fraction Integer

\[ \alpha_2 := \sqrt{r^2-11,5} \]

\[ \sqrt{153} - 11 \]

Type: RealClosure Fraction Integer

\[ \beta_2 := -\sqrt{r^2+11,5} \]

\[ -\sqrt{153} + 11 \]

Type: RealClosure Fraction Integer

this should be null

\[ qo1(\alpha_2+\beta_2) \]

0

Type: RealClosure Fraction Integer

Finally, some examples from the book Computer Algebra by Davenport, Siret and Tournier (page 77). The last one is due to Ramanujan.

\[ dst1:=\sqrt{9+4*s2}=1+2*s2 \]

\[ \sqrt{4 \sqrt{2} + 9} = 2 \sqrt{2} + 1 \]

Type: Equation RealClosure Fraction Integer

\[ dst1::Boolean \]

true

Type: Boolean
s6: Ran := \sqrt{6} \\
\sqrt{6} \\
Type: RealClosure Fraction Integer

dst2 := \sqrt{5} + 2s6 + \sqrt{5} - 2s6 = 2s3 \\
\sqrt{2\sqrt{5} + 5} + \sqrt{2\sqrt{5} + 5} = 2\sqrt{3} \\
Type: Equation RealClosure Fraction Integer

dst2::Boolean \\
true \\
Type: Boolean

s29: Ran := \sqrt{29} \\
\sqrt{29} \\
Type: RealClosure Fraction Integer

dst4 := \sqrt{16 - 2s29 + 2\sqrt{55 - 10s29}} = \sqrt{22 + 2s5} - \sqrt{11 + 2s29} + s5 \\
\sqrt{2\sqrt{-10\sqrt{29} + 55} - 2\sqrt{29} + 16} = -\sqrt{2\sqrt{29} + 11} + \sqrt{2\sqrt{5} + 22} + \sqrt{5} \\
Type: Equation RealClosure Fraction Integer

dst4::Boolean \\
true \\
Type: Boolean

dst6 := \sqrt{(112 + 70s2) + (46 + 34s2)s5} = (5 + 4s2) + (3s2)s5
\[
\sqrt{(34 \sqrt{2} + 46)} \sqrt{5} + 70 \sqrt{2} + 112 = (\sqrt{2} + 3) \sqrt{5} + 4 \sqrt{2} + 5
\]

Type: Equation RealClosure Fraction Integer

dst6::Boolean

\[\text{true} \]

Type: Boolean

\[f3: \text{Ran} := \sqrt{(3,5)} \]

\[\sqrt{3} \]

Type: RealClosure Fraction Integer

\[f25: \text{Ran} := \sqrt{(1/25,5)} \]

\[\sqrt{\frac{1}{25}} \]

Type: RealClosure Fraction Integer

\[f32: \text{Ran} := \sqrt{(32/5,5)} \]

\[\sqrt{\frac{32}{5}} \]

Type: RealClosure Fraction Integer

\[f27: \text{Ran} := \sqrt{(27/5,5)} \]

\[\sqrt{\frac{27}{5}} \]

Type: RealClosure Fraction Integer

dst5 := sqrt((f32-f27,3)) = f25*(1+f3-f3**2)
\[
\sqrt[3]{-\frac{\sqrt{27}}{5}} + \sqrt[5]{\frac{32}{5}} = (-\sqrt[2]{3} + \sqrt[2]{3} + 1) \sqrt[5]{\frac{1}{25}}
\]

Type: Equation RealClosure Fraction Integer

dst5::Boolean

true

Type: Boolean

9.77 RealSolvePackage

\[p := 4x^3 - 3x^2 + 2x - 4\]

\[4x^3 - 3x^2 + 2x - 4\]

Type: Polynomial(Integer)

ans1 := solve(p,0.01)$REALSOLV

[1.11328125]

Type: List(Float)

ans2 := solve(p::POLY(FRAC(INT)),0.01)$REALSOLV

[1.11328125]

Type: List(Float)

R := Integer

Integer

Type: Domain

ls : List Symbol := [x,y,z,t]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ x, y, z, t \]  
Type: List(Symbol)

\[ x, y, z, t, %A \]  
Type: List(Symbol)

pack := ZDSOLVE(R, ls, ls2)  
ZeroDimensionalSolvePackage(Integer, [x, y, z, t], [x, y, z, t, %A])  
Type: Domain

\[ x^2y + yz \]  
Type: Polynomial(Integer)

\[ x^2y^2z + x + z \]  
Type: Polynomial(Integer)

\[ x^2y^2z^2 + z + 1 \]  
Type: Polynomial(Integer)

lp := [p1, p2, p3]  
\[ [(x^2 + 1)yz, (x^2y^2 + 1)z + x, x^2y^2z^2 + z + 1] \]  
Type: List(Polynomial(Integer))
The `RegularTriangularSet` domain constructor implements regular triangular sets. These particular triangular sets were introduced by M. Kalkbrener (1991) in his PhD Thesis under the name regular chains. Regular chains and their related concepts are presented in the paper “On the Theories of Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of Symbolic Computation). The `RegularTriangularSet` constructor also provides a new method (by the third author) for solving polynomial system by means of regular chains. This method has two ways of solving. One has the same specifications as Kalkbrener’s algorithm (1991) and the other is closer to Lazard’s method (Discr. App. Math, 1991). Moreover, this new method removes redundant component from the decompositions when this is not too expensive. This is always the case with square-free regular chains. So if you want to obtain decompositions without redundant components just use the `SquareFreeRegularTriangularSet` domain constructor or the `LazardSetSolvingPackage` package constructor. See also the `LexTriangularPackage` and `ZeroDimensionalSolvePackage` for the case of algebraic systems with a finite number of (complex) solutions.

One of the main features of regular triangular sets is that they naturally define towers of simple extensions of a field. This allows to perform with multivariate polynomials the same kind of operations as one can do in an `EuclideanDomain`.

The `RegularTriangularSet` constructor takes four arguments. The first one, R, is the coefficient ring of the polynomials; it must belong to the category `GcdDomain`. The second one, E, is the exponent monoid of the polynomials; it must belong to the category `OrderedAbelianMonoidSup`. The third one, V, is the ordered set of variables; it must belong to the category `OrderedSet`. The last one is the polynomial ring; it must belong to the category `RecursivePolynomialCategory(R,E,V)`. The abbreviation for `RegularTriangularSet` is `REGSET`. See also the constructor `RegularChain` which only takes two arguments, the coefficient ring and the ordered set of variables; in that case, polynomials are necessarily built with the `NewSparseMultivariatePolynomial` domain constructor.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

We shall explain now how to use the constructor REGSET and how to read the decomposition of a polynomial system by means of regular sets.

Let us give some examples. We start with an easy one (Donati-Traverso) in order to understand the two ways of solving polynomial systems provided by the REGSET constructor.

Define the coefficient ring.

\[ R := \text{Integer} \]

\text{Integer}

Type: Domain

Define the list of variables,

\[ ls : \text{List Symbol} := [x,y,z,t] \]

\([x,y,z,t]\)

Type: List Symbol

and make it an ordered set;

\[ V := \text{OVAR}(ls) \]

\text{OrderedVariableList \{x,y,z,t\}}

Type: Domain

then define the exponent monoid.

\[ E := \text{IndexedExponents} V \]

\text{IndexedExponents OrderedVariableList \{x,y,z,t\}}

Type: Domain

Define the polynomial ring.

\[ P := \text{NSMP}(R, V) \]

\text{NewSparseMultivariatePolynomial(Integer,OrderedVariableList \{x,y,z,t\})}
Let the variables be polynomial.

\( x: \mathbb{P} := 'x \)

\( x \)

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList \([x,y,z,t]\))

\( y: \mathbb{P} := 'y \)

\( y \)

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList \([x,y,z,t]\))

\( z: \mathbb{P} := 'z \)

\( z \)

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList \([x,y,z,t]\))

\( t: \mathbb{P} := 't \)

\( t \)

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList \([x,y,z,t]\))

Now call the \texttt{RegularTriangularSet} domain constructor.

\[ T := \text{REGSET}(R,E,V,P) \]

\[
\text{RegularTriangularSet}(\text{Integer}, \\
\text{IndexedExponentsOrderedVariableList}[x,y,z,t], \\
\text{OrderedVariableList}[x,y,z,t], \\
\text{NewSparseMultivariatePolynomial}(\text{Integer}, \\
\text{OrderedVariableList}[x,y,z,t]))
\]
Define a polynomial system.

\[ p_1 := x^{31} - x^6 - x - y \]

\[ p_2 := x^8 - z \]

\[ p_3 := x^{10} - t \]

\[ \text{lp} := [p_1, p_2, p_3] \]

First of all, let us solve this system in the sense of Kalkbrener.

\[ \text{zeroSetSplit(lp)} \]

\[ \{[z^5 - t^4, t z y^2 + 2 z^3 y - t^8 + 2 t^5 + t^3 - t^2, (t^4 - t) x - t y - z^2] \} \]
And now in the sense of Lazard (or Wu and other authors).

\[
lts := \text{zeroSetSplit}(\text{lps}, \text{false})\$
\]

\[
\{(z^5 - t^4, t z y^2 + 2 z^3 y - t^8 + 2 t^5 + t^3 - t^2, (t^4 - t) x - t y - z^2),
\{t^3 - 1, z^3 - t, t z y^2 + 2 z^3 y + 1, z x^2 - t\}, \{t, z, y, x\}\}
\]

Type: List RegularTriangularSet( Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial( Integer, OrderedVariableList [x,y,z,t]))

We can see that the first decomposition is a subset of the second. So how can both be correct?

Recall first that polynomials from a domain of the category \text{RecursivePolynomialCategory}
are regarded as univariate polynomials in their main variable. For instance the second polynomial
in the first set of each decomposition has main variable \text{y} and its initial (i.e. its leading coefficient
w.r.t. its main variable) is \text{t z}.

Now let us explain how to read the second decomposition. Note that the non-constant
initials of the first set are \text{t^4} and \text{t z}. Then the solutions described by this first set are
the common zeros of its polynomials that do not cancel the polynomials \text{t^4} - \text{t} and \text{t y z}.
Now the solutions of the input system \text{lps} satisfying these equations are described by the second
and the third sets of the decomposition. Thus, in some sense, they can be considered as
degenerated solutions. The solutions given by the first set are called the generic points
of the system; they give the general form of the solutions. The first decomposition only provides
these generic points. This latter decomposition is useful when they are many degenerated
solutions (which is sometimes hard to compute) and when one is only interested in general
informations, like the dimension of the input system.

We can get the dimensions of each component of a decomposition as follows.

\[
[\text{coHeight(ts)} ~ \text{for ts in lts}]
\]

\[
[1, 0, 0]
\]

Type: List NonNegativeInteger

Thus the first set has dimension one. Indeed \text{t} can take any value, except \text{0} or any third root
of \text{1}, whereas \text{z} is completely determined from \text{t}, \text{y} is given by \text{z} and \text{t}, and finally \text{x}
is given by the other three variables. In the second and the third sets of the second decomposition
the four variables are completely determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume some mathematical
knowledge. However, for the non-expert user, the above explanations will be sufficient
to understand the other features of the \text{RSEGSET} constructor.
The input system \( \mathbf{lp} \) is decomposed in the sense of Kalkbrener as finitely many regular sets \( \mathbf{T}_1, \ldots, \mathbf{T}_s \) such that the radical ideal generated by \( \mathbf{lp} \) is the intersection of the radicals of the saturated ideals of \( \mathbf{T}_1, \ldots, \mathbf{T}_s \). In other words, the affine variety associated with \( \mathbf{lp} \) is the union of the closures (w.r.t. Zarisky topology) of the regular-zeros sets of \( \mathbf{T}_1, \ldots, \mathbf{T}_s \).

**N. B.** The prime ideals associated with the radical of the saturated ideal of a regular triangular set have all the same dimension; moreover these prime ideals can be given by characteristic sets with the same main variables. Thus a decomposition in the sense of Kalkbrener is unmixed dimensional. Then it can be viewed as a lazy decomposition into prime ideals (some of these prime ideals being merged into unixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular sets. The input system \( \mathbf{lp} \) is decomposed in the sense of Lazard as finitely many regular triangular sets \( \mathbf{T}_1, \ldots, \mathbf{T}_s \) such that the affine variety associated with \( \mathbf{lp} \) is the union of the regular-zeros sets of \( \mathbf{T}_1, \ldots, \mathbf{T}_s \). Thus a decomposition in the sense of Lazard is also a decomposition in the sense of Kalkbrener; the converse is false as we have seen before.

When the input system has a finite number of solutions, both ways of solving provide similar decompositions as we shall see with this second example (Caprasse).

Define a polynomial system.

\[
f_1 := y^{\ast}2z + 2x + y + t - 2x - z
\]

\((2t + y - 2) x + z y^2 - z\)

Type: NewSparseMultivariatePolynomial(DerivedVariableList 
\[x,y,z,t\])

\[
f_2 := -x^{\ast}3z + 4x y^{\ast}2z + 4x^{\ast}2y + t - 2y^{\ast}3t + 4x^{\ast}2 - 10y^{\ast}2 + 4x + z - 10y + t + 2
\]

\(-z x^3 + (4t + y + 4) x^2 + (4z y^2 + 4z) x + 2t y^3 - 10y^2 - 10t y + 2\)

Type: NewSparseMultivariatePolynomial(DerivedVariableList 
\[x,y,z,t\])

\[
f_3 := 2y z + t + x + t^2 - 2 - x - z
\]

\((t^2 - 1) x + 2t z y - 2z\)

Type: NewSparseMultivariatePolynomial(DerivedVariableList 
\[x,y,z,t\])

\[
f_4 := -x^{\ast}3z + 4y^{\ast}2z + 4x^{\ast}2t + 2y + t^2 + 3 + 4x z + 4t^2 - 10y + t - 10t^2 + 22
\]
\(-z^3 + (4 t^2 + 4) z\) \(x + (4 t z^2 + 2 t^3 - 10 t) y + 4 z^2 - 10 t^2 + 2\)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList \([x, y, z, t]\])

\[l_1 := [f1, f2, f3, f4]\]

\[(2 t y - 2) x + z y^2 - z,\]

\(-z x^3 + (4 t y + 4) x^2 + (4 z y^2 + 4 z) x + 2 t y^3 - 10 y^2 - 10 t y + 2,\]

\((t^2 - 1) x + 2 t z y - 2 z,\)

\((-z^3 + (4 t^2 + 4) z) x + (4 t z^2 + 2 t^3 - 10 t) y + 4 z^2 - 10 t^2 + 2]\)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList \([x, y, z, t]\])

First of all, let us solve this system in the sense of Kalkbrener.

\[\text{zeroSetSplit}(l_1)\]

\[\{t^2 - 1, z^8 - 16 z^6 + 256 z^2 - 256, t y - 1, (z^3 - 8 z) x - 8 z^2 + 16\},\]

\[\{3 t^2 + 1, z^2 - 7 t^2 - 1, y + t, x + z\},\]

\[\{t^8 - 10 t^6 + 10 t^2 - 1, z, (t^3 - 5 t) y - 5 t^2 + 1, x\},\]

\[\{t^2 + 3, z^2 - 4, y + t, x - z\}\]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList \([x, y, z, t]\), OrderedVariableList \([x, y, z, t]\),
NewSparseMultivariatePolynomial(Integer, OrderedVariableList \([x, y, z, t]\]))

And now in the sense of Lazard (or Wu and other authors).

\[\text{lts2} := \text{zeroSetSplit}(l_1, \text{false})\]

\[\{t^8 - 10 t^6 + 10 t^2 - 1, z, (t^3 - 5 t) y - 5 t^2 + 1, x\},\]

\[\{t^2 - 1, z^8 - 16 z^6 + 256 z^2 - 256, t y - 1, (z^3 - 8 z) x - 8 z^2 + 16\},\]

\[\{3 t^2 + 1, z^2 - 7 t^2 - 1, y + t, x + z\},\]

\[\{t^2 + 3, z^2 - 4, y + t, x - z\}\]
Up to the ordering of the components, both decompositions are identical.
Let us check that each component has a finite number of solutions.

\[
\text{[coHeight}(ts) \text{ for } ts \text{ in } lts2]
\]

\[0, 0, 0, 0\]

Type: List NonNegativeInteger

Let us count the degrees of each component,

\[
degrees := \text{[degree}(ts) \text{ for } ts \text{ in } lts2]
\]

\[8, 16, 4, 4\]

Type: List NonNegativeInteger

and compute their sum.

\[
\text{reduce}(+, degrees)
\]

32

Type: PositiveInteger

We study now the options of the \texttt{zeroSetSplit} operation. As we have seen yet, there is an optional second argument which is a boolean value. If this value is \texttt{true} (this is the default) then the decomposition is computed in the sense of Kalkbrener, otherwise it is computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that case the first optional argument must be present). This second option allows you to get some information during the computations.

Therefore, we need to understand a little what is going on during the computations. An important feature of the algorithm is that the intermediate computations are managed in some sense like the processes of a Unix system. Indeed, each intermediate computation may generate other intermediate computations and the management of all these computations is a crucial task for the efficiency. Thus any intermediate computation may be suspended, killed or resumed, depending on algebraic considerations that determine priorities for these
processes. The goal is of course to go as fast as possible towards the final decomposition which means to avoid as much as possible unnecessary computations.

To follow the computations, one needs to set to true the second argument. Then a lot of numbers and letters are displayed. Between a [ and a ] one has the state of the processes at a given time. Just after [ one can see the number of processes. Then each process is represented by two numbers between < and >. A process consists of a list of polynomial ps and a triangular set ts; its goal is to compute the common zeros of ps that belong to the regular-zeros set of ts. After the processes, the number between pipes gives the total number of polynomials in all the sets ps. Finally, the number between braces gives the number of components of a decomposition that are already computed. This number may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how this information is displayed.

Define a polynomial system.

\[ u : R := 2 \]

\[ \text{Type: Integer} \]

\[ q1 := 2*(u-1)*2 + 2*(x-z)*2 + y**2*(x-1)*2 - 2*u*x + 2*y*t*(1-x)*(1-z) + 2*u*z*t*(t-y) + u**2*t**2*(1-2*z) + 2*u*t**2*(z-x) + 2*u*t*y*(z-1) + 2*u*z*x*(y+1) + (u**2-2*u)*z**2*t**2 + 2*u**2*z**2*t + 4*u*(1-u)*z + t**2*(z-x)**2 \]

\[ (y^2 - 2 t y + t^2) x^2 + \]

\[ (-2 y^2 + ((2 t + 4) z + 2 t) y + (-2 t^2 + 2) z - 4 t^2 - 2) x + \]

\[ y^2 + (-2 t z - 4 t) y + (t^2 + 10) z^2 - 8 z + 4 t^2 + 2 \]

\[ \text{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList } \]

\[ [x,y,z,t]) \]

\[ q2 := t*(2*z+1)*(x-z) + y*(z+2)*(1-x) + u*(u-2)*t + u*(1-2*u)*z*t + u*y*(x+u-z*x-1) + u*(u+1)*z**2*t \]

\[ (-3 z y + 2 t z + t) x + (z + 4) y + 4 t z^2 - 7 t z \]

\[ \text{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList } \]

\[ [x,y,z,t]) \]

\[ q3 := -u**2*(z-1)**2 + 2*z*(z-x)-2*(x-1) \]
\[( -2 \ z - 2) \ x - 2 \ z^2 + 8 \ z - 2\]

Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\[q_4 := u^{**2}+4*(z-x**2)+3*y**2*(x-1)**2-3*t**2*(z-x)**2+3*u**2*t**2*(z-2)+6*u*t*y*(z+x+z*x-1)\]

\[(3 \ y^2 - 3 \ t^2 - 4) \ x^2 + (-6 \ y^2 + (12 \ t \ z + 12 \ t) \ y + 6 \ t^2 \ z) \ x + 3 \ y^2 +\]

\[(12 \ t \ z - 12 \ t) \ y + (9 \ t^2 + 4) \ z^2 + (-24 \ t^2 - 4) \ z + 12 \ t^2 + 4\]

Type: \texttt{NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\[lq := [q_1, q_2, q_3, q_4]\]

\[
\begin{align*}
(y^2 - 2 \ t \ y + t^2) & \ x^2 + \\
-2 \ y^2 + ((2 \ t + 4) \ z + 2 \ t) & \ y + (-2 \ t^2 + 2) \ z - 4 \ t^2 - 2) \ x + y^2 + \\
(-2 \ t \ z - 4 \ t) & \ y + (t^2 + 10) \ z^2 - 8 \ z + 4 \ t^2 + 2, \\
(-3 \ z \ y + 2 \ t \ z + t) & \ x + (z + 4) \ y + 4 \ t \ z^2 - 7 \ t \ z, \\
(-2 \ z - 2) & \ x - 2 \ z^2 + 8 \ z - 2, (3 \ y^2 - 3 \ t^2 - 4) \ x^2 + \\
(-6 \ y^2 + (12 \ t \ z + 12 \ t) \ y + 6 \ t^2 \ z) & \ x + 3 \ y^2 + \\
(12 \ t \ z - 12 \ t) & \ y + (9 \ t^2 + 4) \ z^2 + (-24 \ t^2 - 4) \ z + 12 \ t^2 + 4]
\end{align*}
\]

Type: \texttt{List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

Let us try the information option. N.B. The timing should be between 1 and 10 minutes, depending on your machine.

\[\text{zeroSetSplit(lq,\text{true, true})}\]

\[
\begin{align*}
[1 & <4,0> \rightarrow \ |4|; \ {0}]\WW[2 & <5,0>,<3,1> \rightarrow \ |8|; \ {0}]\WW[2 & <4,1>,<3,1> \rightarrow \ |7|; \ {0}]\WW[1 & <3,1> \rightarrow \ |3|; \ {0}]\GG[2 & <4,1>,<4,1> \rightarrow \ |8|; \ {0}]\WW[3 & <5,1>,<4,1>,<3,2> \rightarrow \ |12|; \ {0}]\GG[3 & <4,2>,<4,1>,<3,2> \rightarrow \ |11|; \ {0}]\GGw[3 & <4,1>,<3,2>,<5,2> \rightarrow \ |12|; \ {0}]\GGw[3 & <3,2>,<3,2>,<5,2> \rightarrow \ |11|; \ {0}]\GGw\WWw
\end{align*}
\]
9.78. REGULARTRIANGULARSET

<2,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,4>,<3,4> → |26|; {1}
[9 <1,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,4>,<3,4> → |25|;
{1}] [8 <3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,4>,<3,4> → |24|; {1}]
W[8 <2,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,4>,<3,4> → |23|; {1}][8
<1,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,4>,<3,4> → |22|; {1}][7 <4,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> → |21|; {1}][7 <3,4>,<2,3>,
<3,3>,<3,3>,<3,4>,<3,4> → |20|; {1}][7 <1,4>,<4,3>,<3,3>,
<3,3>,<3,4>,<3,4> → |19|; {1}][7 <3,4>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> → |18|; {1}][6 <2,4>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> → |17|; {1}][6 <3,4>,<3,3>,<3,3>,<3,4>,<3,4>
<3,4> → |16|; {1}][5 <3,3>,<3,3>,<3,3>,<3,4>,<3,4> → |15|; {1}][5
<2,4>,<3,3>,<3,3>,<3,4>,<3,4> → |14|; {1}][5 <2,3>,<3,3>,
<3,3>,<3,4>,<3,4> → |13|; {1}][5 <1,4>,<3,3>,<3,3>,<3,4>,
<3,4> → |12|; {1}][4 <3,3>,<3,3>,<3,4>,<3,4> → |11|; {1}][4
<2,4>,<3,3>,<3,3>,<3,4>,<3,4> → |10|; {1}][4 <1,4>,<3,3>,
<3,3>,<3,4>,<3,4> → |9|; {1}][3 <3,3>,<3,3>,<3,4>,<3,4> → 
|8|; {1}][3 <1,4>,<3,3>,<3,4>,<3,4> → |7|; {1}][3 <3,3>,<3,3>,
<3,4>,<3,4> → |6|; {1}][3 <1,4>,<3,4>,<3,4> → |5|; {1}][2 <2,4>,
<3,3>,<3,4>,<3,4> → |4|; {1}][2 <1,4>,<3,3>,<3,4>,<3,4> → |
|3|; {1}][1 <2,4>,<3,3>,<3,4>,<3,4> → |2|; {1}][1 <1,4>,<3,3>,
<3,4>,<3,4> → |1|; {1}]

*** QCMPACK Statistics ***
Table size: 36
Entries reused: 255

*** REGSETGCD: Gcd Statistics ***
Table size: 125
Entries reused: 0

*** REGSETGCD: Inv Set Statistics ***
Table size: 30
Entries reused: 0

\[
\begin{align*}
&960725655771966 t^{24} + 386820897948702 t^{23} + \\
&89068171986081 t^{22} + 270496689394928 t^{21} + \\
&3730433340228204 t^{20} + 792478281710207 t^{19} + \\
&931267940354990 t^{18} + 13101273653130910 t^{17} + \\
&1561425042711858 t^{16} + 1662649057259119 t^{15} + \\
&190699288479805763 t^{14} + 24339173367625275 t^{13} + \\
&18053231314960135 t^{12} + 35288089030975378 t^{11} + \\
&\ldots
\end{align*}
\]
135054975746756285 t^{10} + 34733736952488540 t^9 + 75947600354493972 t^8 + 1977255692457088 t^7 + 2887155873575428 t^6 + 5576152439081664 t^5 + 6321711820352692 t^4 + 438314209312320 t^3 + 581105748367008 t^2 - 60254467992576 t + 1449115951104,

(2660421086949130238551265737052082361668474181372891857784 t^{23} + 443104378424686086067948995289666423869355685501773265295 t^{22} + 27907839328670123467914132435898832715532136052895490930124 t^{21} + 3390276361413232465107617176615543054620626391823613392185226 t^{20} + 94147817950354056755541986452202352803719793196473813874341292 t^{19} + 115478551946794754224211069749673949352585747674184320988144390 t^{18} + 13436095665659789988170165669941321646721566003356417214432 t^{17} + 232338138681478735093355161717564085989910297800663566699334 t^{16} + 869574020537672336950845440508790740850931336484983573386433 t^{15} + 3156554305876934194614869699265542417500651034608204769699 t^{14} + 1271400990287717487442065952547731879554823888955386072264931 t^{13} + 3194508991138636736044802529694079540198337049550503295852156025 t^{12} + 3738735704288144509871371560232845884439102270778010470931960 t^{11} + 2529399751239141202614460143577113158756190553299204569288592 t^{10} + 5210239009846067123469262799870052773410471135950175008046524 t^9 + 1508387989969302971625987056860827042740318676023871349121988 t^8 + 352087234692993012638368627075775955348176912567083907510000 t^7 + 607994502003956810139653379256888691101244247440034969288588 t^6 + 109063485243390088889199137562479860231696977823469934933603680 t^5 + 1405819430871907102294432537538335402102838994019667487458352 t^4 + 880715279503204500725366671269507748878347828884933605202432 t^3 + 135852489433640932292788171175977768016065765482378657129440 t^2 - 1395728344288262265055894607400314082516600749975645620320 t + 33463769297318929927275832570930847259211712855749713920 z + 8567157484043952879756725964566833932149637101090521164936 t^{23} + 1497923984621071984570837403272894249879519251667250945721 t^{22} + 77258371836458221574108615821597641381230030741907370421550 t^{21} + 110886254126854214499814907086812211184505565676434742191654 t^{20} + 21325049446067868652197744801068260537831578962150173267327 t^{19} +
9.78. **REGULARTRIANGULARSET**

\[
\begin{align*}
3668929075160666195729177894178343514501987898410131431699882 t^{18} + \\
1713889066710018278940124368482363147654509395678200448872 t^{17} + \\
7192430746914602166602334773102248314492771645523139658986 t^{16} - \\
1287986478696900728287996563630902919596631431047362453385 t^{15} + \\
953010853412459930642331329211340485602879080526430270671 t^{14} - \\
13296096245675492874538687646300437824658458709144441096603 t^{13} + \\
947580658141145263830855487532333106881690568644274968644143 t^{12} + \\
80323468792513345886165985564084927606298794799856265539336 t^{11} + \\
73382027592928651659946223429075160400626174302614595173333825 t^{10} + \\
130809462848036735116436961311197166888053885564019720187108 t^9 + \\
4268059455741255498880229598973705747098216067697754352634748 t^8 + \\
892893528658514095791318775904093300103045601514470613580600 t^7 + \\
1679152575460683956631925852181341501981598137465328797013652 t^6 + \\
269757457679299803789671541433578355441131582805914080493936 t^5 + \\
38095152786645752903535802890128272480813453726802029021092244 t^4 + \\
1978554529422849506399888269730141312725035339452913286656 t^3 + \\
36477412057384782942366635303396637763303928174930579017852 t^2 - \\
372212879279038648713080422224976273210890229485838670848 t + \\
89079724853114348361230634484013862024728599906874105856,
\end{align*}
\]

\[
\begin{align*}
(3 z^3 - 11 z^2 + 8 z + 4) y + 2 t z^3 + 4 t z^2 - 5 t z - t;
\end{align*}
\]

\[
\begin{align*}
(z + 1) x + z^2 - 4 z + 1
\end{align*}
\]

Type: List RegularTriangularSet( Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

Between a sequence of processes, thus between a ] and a [ you can see capital letters W, G, I and lower case letters i, w. Each time a capital letter appears a non-trivial computation has been performed and its result is put in a hash-table. Each time a lower case letter appears a needed result has been found in an hash-table. The use of these hash-tables generally speed up the computations. However, on very large systems, it may happen that these hash-tables become too big to be handle by your Axiom configuration. Then in these exceptional cases, you may prefer getting a result (even if it takes a long time) than getting nothing. Hence you need to know how to prevent the RSEGSET constructor from using these hash-tables. In that case you will be using the zeroSetSplit with five arguments. The first one is the input system lp as above. The second one is a boolean value hash? which is true if you want to use hash-tables. The third one is boolean value clos? which is true if you want to solve your system in the sense of Kalkbrener, the other way remaining that of Lazard. The fourth argument is boolean value info? which is true if you want to display information during the computations. The last one is boolean value prep? which is true if you want to use some heuristics that are performed on the input system before starting the real algorithm. The value of this flag is true when you are using zeroSetSplit with less than five arguments. Note that there is no available signature for zeroSetSplit with four arguments.
We finish this section by some remarks about both ways of solving, in the sense of Kalkbrener or in the sense of Lazard. For problems with a finite number of solutions, there are theoretically equivalent and the resulting decompositions are identical, up to the ordering of the components. However, when solving in the sense of Lazard, the algorithm behaves differently. In that case, it becomes more incremental than in the sense of Kalkbrener. That means the polynomials of the input system are considered one after another whereas in the sense of Kalkbrener the input system is treated more globally.

This makes an important difference in positive dimension. Indeed when solving in the sense of Kalkbrener, the *Primeidealkettensatz* of Krull is used. That means any regular triangular containing more polynomials than the input system can be deleted. This is not possible when solving in the sense of Lazard. This explains why Kalkbrener's decompositions usually contain less components than those of Lazard. However, it may happen with some examples that the incremental process (that cannot be used when solving in the sense of Kalkbrener) provide a more efficient way of solving than the global one even if the *Primeidealkettensatz* is used. Thus just try both, with the various options, before concluding that you cannot solve your favorite system with `zeroSetSplit`. There exist more options at the development level that are not currently available in this public version.

### 9.79 RomanNumeral

The Roman numeral package was added to Axiom in MCMLXXXVI for use in denoting higher order derivatives.

For example, let $f$ be a symbolic operator.

\[
f := \text{operator} \ 'f\]

\[f\]

Type: BasicOperator

This is the seventh derivative of $f$ with respect to $x$.

\[D(f \ x, x, 7)\]

\[f^{(vii)}(x)\]

Type: Expression Integer

You can have integers printed as Roman numerals by declaring variables to be of type `RomanNumeral` (abbreviation `ROMAN`).

\[a := \text{roman}(1978 - 1965)\]
This package now has a small but devoted group of followers that claim this domain has shown its efficacy in many other contexts. They claim that Roman numerals are every bit as useful as ordinary integers.

In a sense, they are correct, because Roman numerals form a ring and you can therefore construct polynomials with Roman numeral coefficients, matrices over Roman numerals, etc.

\[ x : \text{UTS(ROMAN,}'x,0) := x \]

\[ x \]

Type: UnivariateTaylorSeries(RomanNumeral,x,0)

Was Fibonacci Italian or ROMAN?

\[ \text{recip}(1 - x - x**2) \]

\[ I + x + II x^2 + III x^3 + V x^4 + VIII x^5 + XIII x^6 + XXI x^7 + \]

\[ XXXIV x^8 + LV x^9 + LXXXIX x^{10} + O(x^{11}) \]

Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)

You can also construct fractions with Roman numeral numerators and denominators, as this matrix Hilberticus illustrates.

\[ m : \text{MATRIX FRAC ROMAN} \]

Type: Void

\[ m := \text{matrix [ } [1/(i + j) \text{ for } i \text{ in 1..3}] \text{ for } j \text{ in 1..3} \]

\[
\begin{bmatrix}
\frac{1}{I} & \frac{1}{I} & \frac{1}{I} \\
\frac{1}{II} & \frac{1}{II} & \frac{1}{II} \\
\frac{1}{III} & \frac{1}{III} & \frac{1}{III} \\
\end{bmatrix}
\]

Type: Matrix Fraction RomanNumeral
Note that the inverse of the matrix has integral Roman entries.

\[
\text{inverse } m = \\
\begin{bmatrix}
LXXII & \text{-CCXL} & CLXXX \\
\text{-CCXL} & CM & \text{-DCCXX} \\
CLXXX & \text{-DCCXX} & DC
\end{bmatrix}
\]

Type: \text{Union(Matrix Fraction RomanNumeral,...)}

Unfortunately, the spoil-sports say that the fun stops when the numbers get big—mostly because the Romans didn’t establish conventions about representing very large numbers.

\[y := \text{factorial 10}\]

3628800

Type: \text{PositiveInteger}

You work it out!

\[\text{roman } y\]

\[(((I)))(((I)))(((I)))(((I)))(((I)))(((I)))(((I)))(((I)))(((I)))\]

\[(((I)))(((I)))((((I)))MMMMMDCC\]

Type: \text{RomanNumeral}

Issue the system command \text{)show RomanNumeral} to display the full list of operations defined by \text{RomanNumeral}.

9.80 Segment

The Segment domain provides a generalized interval type. Segments are created using the \text{..} construct by indicating the (included) end points.

\[s := 3..10\]

3..10

Type: \text{Segment PositiveInteger}
The first end point is called the \texttt{lo} and the second is called \texttt{hi}.

\texttt{lo} s

\begin{verbatim}
3
\end{verbatim}

\texttt{Type: PositiveInteger}

These names are used even though the end points might belong to an unordered set.

\texttt{hi} s

\begin{verbatim}
10
\end{verbatim}

\texttt{Type: PositiveInteger}

In addition to the end points, each segment has an integer “increment.” An increment can be specified using the “by” construct.

\texttt{t := 10..3 by -2}

\begin{verbatim}
10..3 by 2
\end{verbatim}

\texttt{Type: Segment PositiveInteger}

This part can be obtained using the \texttt{incr} function.

\texttt{incr} s

\begin{verbatim}
1
\end{verbatim}

\texttt{Type: PositiveInteger}

Unless otherwise specified, the increment is \texttt{1}.

\texttt{incr} \texttt{t}

\begin{verbatim}
-2
\end{verbatim}

\texttt{Type: Integer}

A single value can be converted to a segment with equal end points. This happens if segments and single values are mixed in a list.
1 := [1..3, 5, 9, 15..11 by -1]

[1..3, 5..5, 9..9, 15..11 by -1]

Type: List Segment PositiveInteger

If the underlying type is an ordered ring, it is possible to perform additional operations. The `expand` operation creates a list of points in a segment.

`expand s`

[3, 4, 5, 6, 7, 8, 9, 10]

Type: List Integer

If \( k > 0 \), then `expand(l..h by k)` creates the list \([l, l+k, \ldots, lN]\) where \( lN \leq h < lN+k \). If \( k < 0 \), then \( lN \geq h > lN+k \).

`expand t`

[10, 8, 6, 4]

Type: List Integer

It is also possible to expand a list of segments. This is equivalent to appending lists obtained by expanding each segment individually.

`expand l`

[1, 2, 3, 5, 9, 15, 14, 13, 12, 11]

Type: List Integer

For more information on related topics, see `SegmentBinding` 9.81 on page 746 and `UniversalSegment` 9.98 on page 813.

### 9.81 SegmentBinding

The `SegmentBinding` type is used to indicate a range for a named symbol. First give the symbol, then an `=` and finally a segment of values.

\[ x = a..b \]
9.81. SEGMENTBINDING

\[ x = a..b \]

Type: SegmentBinding Symbol

This is used to provide a convenient syntax for arguments to certain operations.

\[ \sum(i^2, i = 0..n) \]

\[ \frac{2n^3 + 3n^2 + n}{6} \]

Type: Fraction Polynomial Integer

\[ \text{draw}(x^2, x = -2..2) \]

The left-hand side must be of type Symbol but the right-hand side can be a segment over any type.

\[ \text{sb} := y = 1/2..3/2 \]

\[ y = \left( \frac{1}{2} \right) .. \left( \frac{3}{2} \right) \]

Type: SegmentBinding Fraction Integer

The left- and right-hand sides can be obtained using the variable and segment operations.
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

variable(sb)

\( y \)

Type: Symbol

segment(sb)

\( \left( \frac{1}{2} \right) \cdot \left( \frac{3}{2} \right) \)

Type: Segment Fraction Integer

For more information on related topics, see Segment 9.80 on page 744 and UniversalSegment 9.98 on page 813.

9.82 Set

The **Set** domain allows one to represent explicit finite sets of values. These are similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values . . .

\[ s := \text{set} \{ x**2 - 1, y**2 - 1, z**2 - 1 \} \]

\( \{ x^2 - 1, y^2 - 1, z^2 - 1 \} \)

Type: Set Polynomial Integer

or by using a collect form, just as for lists. In either case, the set is formed from a finite collection of values.

\[ t := \text{set} \{ x**i - i+1 \text{ for } i \text{ in } 2..10 \mid \text{prime? } i \} \]

\( \{ x^2 - 1, x^3 - 2, x^5 - 4, x^7 - 6 \} \)

Type: Set Polynomial Integer

The basic operations on sets are **intersect**, **union**, **difference**, and **symmetricDifference**.

\[ i := \text{intersect}(s,t) \]
\{x^2 - 1\}

Type: Set Polynomial Integer

\begin{align*}
u & := \text{union}(s, t) \\
& \{x^2 - 1, x^3 - 2, x^5 - 4, x^7 - 6, y^2 - 1, z^2 - 1\}
\end{align*}

Type: Set Polynomial Integer

The set \text{difference}(s, t) contains those members of \(s\) which are not in \(t\).

\text{difference}(s, t)

\{y^2 - 1, z^2 - 1\}

Type: Set Polynomial Integer

The set \text{symmetricDifference}(s, t) contains those elements which are in \(s\) or \(t\) but not in both.

\text{symmetricDifference}(s, t)

\{x^3 - 2, x^5 - 4, x^7 - 6, y^2 - 1, z^2 - 1\}

Type: Set Polynomial Integer

Set membership is tested using the \texttt{member?} operation.

\texttt{member?}(y, s)

\texttt{false}

Type: Boolean

\texttt{member?}((y+1)*(y-1), s)

\texttt{true}

Type: Boolean
The `subset?` function determines whether one set is a subset of another.

```
subset?(i, s)

true

Type: Boolean
```

```
subset?(u, s)

false

Type: Boolean
```

When the base type is finite, the absolute complement of a set is defined. This finds the set of all multiplicative generators of PrimeField 11—the integers mod 11.

```
gs := set [g for i in 1..11 | primitive?(g := i::PF 11)]

{2, 6, 7, 8}

Type: Set PrimeField 11
```

The following values are not generators.

```
complement gs

{1, 3, 4, 5, 9, 10, 0}

Type: Set PrimeField 11
```

Often the members of a set are computed individually; in addition, values can be inserted or removed from a set over the course of a computation.

There are two ways to do this:

```
a := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger
```

One is to view a set as a data structure and to apply updating operations.
insert!(32, a)
\{1, 4, 9, 16, 25, 32\}
Type: Set PositiveInteger

remove!(25, a)
\{1, 4, 9, 16, 32\}
Type: Set PositiveInteger

The other way is to view a set as a mathematical entity and to create new sets from old.

b := b0 := set [i**2 for i in 1..5]
\{1, 4, 9, 16, 25\}
Type: Set PositiveInteger

b := union(b, 32)
\{1, 4, 9, 16, 25, 32\}
Type: Set PositiveInteger

b := difference(b, 25)
\{1, 4, 9, 16, 32\}
Type: Set PositiveInteger

b0
\{1, 4, 9, 16, 25\}
Type: Set PositiveInteger

For more information about lists, see List 9.54 on page 632.
9.83 SingleInteger

The SingleInteger domain is intended to provide support in Axiom for machine integer arithmetic. It is generally much faster than (bignum) Integer arithmetic but suffers from a limited range of values. Since Axiom can be implemented on top of various dialects of Lisp, the actual representation of small integers may not correspond exactly to the host machines integer representation.

In the CCL implementation of Axiom (Release 2.1 onwards) the underlying representation of SingleInteger is the same as Integer. The underlying Lisp primitives treat machine-word sized computations specially.

You can discover the minimum and maximum values in your implementation by using min and max.

\[
\text{min()} \text{\$SingleInteger} \quad -134217728 \\
\text{max()} \text{\$SingleInteger} \quad 134217727
\]

To avoid confusion with Integer, which is the default type for integers, you usually need to work with declared variables (section 2.3 on page 69).

\[
a := 1234 :: \text{SingleInteger} \quad 1234 \\
b := 124 \text{\$SingleInteger} \quad 124
\]
You can add, multiply and subtract `SingleInteger` objects, and ask for the greatest common divisor (gcd).

\[ \text{gcd}(a, b) \]

\[ 2 \]

Type: `SingleInteger`

The least common multiple (lcm) is also available.

\[ \text{lcm}(a, b) \]

\[ 76508 \]

Type: `SingleInteger`

Operations `mulmod`, `addmod`, `submod`, and `invmod` are similar—they provide arithmetic modulo a given small integer. Here is $5 \times 6 \mod 13$.

\[ \text{mulmod}(5, 6, 13) \]

\[ 4 \]

Type: `SingleInteger`

To reduce a small integer modulo a prime, use `positiveRemainder`.

\[ \text{positiveRemainder}(37, 13) \]

\[ 11 \]

Type: `SingleInteger`

Operations `And`, `Or`, `xor`, and `Not` provide bit level operations on small integers.

\[ \text{And}(3, 4) \]

\[ 0 \]

Type: `SingleInteger`
Use \texttt{shift(int,numToShift)} to shift bits, where \texttt{i} is shifted left if \texttt{numToShift} is positive, right if negative.

\begin{verbatim}
shift(1,4)$SingleInteger
16
  Type: SingleInteger
shift(31,-1)$SingleInteger
15
  Type: SingleInteger
\end{verbatim}

Many other operations are available for small integers, including many of those provided for \texttt{Integer}. To see the other operations, use the Browse HyperDoc facility (section 14 on page 931).

\section*{9.84 \texttt{SparseTable}}

The \texttt{SparseTable} domain provides a general purpose table type with default entries.

Here we create a table to save strings under integer keys. The value "Try again!" is returned if no other value has been stored for a key.

\begin{verbatim}
t: SparseTable(Integer, String, "Try again!") := table()

  table()
  Type: SparseTable(Integer, String, Try again!)
\end{verbatim}

Entries can be stored in the table.

\begin{verbatim}
t.3 := "Number three"

  "Number three"
  Type: String

  t.4 := "Number four"
\end{verbatim}
"Number four"

Type: String

These values can be retrieved as usual, but if a look up fails the default entry will be returned.

t.3

"Number three"

Type: String

t.2

"Try again!"

Type: String

To see which values are explicitly stored, the keys and entries functions can be used.

keys t

[4, 3]

Type: List Integer

entries t

["Number four", "Number three"]

Type: List String

If a specific table representation is required, the GeneralSparseTable constructor should be used. The domain SparseTable(K, E, dflt) is equivalent to GeneralSparseTable(K, E, Table(K,E), dflt). For more information, see Table 9.92 on page 780 and GeneralSparseTable 9.35 on page 535.
9.85  **SquareMatrix**

The top level matrix type in Axiom is `Matrix` (see Matrix 9.59 on page 654, which provides basic arithmetic and linear algebra functions. However, since the matrices can be of any size it is not true that any pair can be added or multiplied. Thus `Matrix` has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in other algebraic contexts. In this case, `SquareMatrix` should be used. The domain `SquareMatrix(n,R)` gives the ring of \( n \times n \) square matrices over \( R \).

Since `SquareMatrix` is not normally exposed at the top level, you must expose it before it can be used.

```
)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame G82322
```

Once `SQMATRIX` has been exposed, values can be created using the `squareMatrix` function.

```
m := squareMatrix [[1,-%i],[%i,4]]

\[
\begin{bmatrix}
1 & -i \\
 i & 4 \\
\end{bmatrix}
\]

Type: SquareMatrix(2,Complex Integer)
```

The usual arithmetic operations are available.

```
m*m - m

\[
\begin{bmatrix}
1 & -4i \\
i & 13 \\
\end{bmatrix}
\]

Type: SquareMatrix(2,Complex Integer)
```

Square matrices can be used where ring elements are required. For example, here is a matrix with matrix entries.

```
mm := squareMatrix [[m, 1], [1-m, m**2]]

\[
\begin{bmatrix}
1 & -i \\
i & 4 \\
0 & i \\
i & -3 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
2 & -5i \\
5 & 17 \\
\end{bmatrix}
\]
```
Or you can construct a polynomial with square matrix coefficients.

\[ p := (x + m)^2 \]

\[ x^2 + \begin{bmatrix} 2 & -2 \, i \\ 2 \, i & 8 \end{bmatrix} x + \begin{bmatrix} 2 & -5 \, i \\ 5 \, i & 17 \end{bmatrix} \]

Type: Polynomial SquareMatrix(2,Complex Integer)

This value can be converted to a square matrix with polynomial coefficients.

\[ p :: SquareMatrix(2, ?) \]

\[ \begin{bmatrix} x^2 + 2 \, x + 2 & -2 \, i \, x - 5 \, i \\ 2 \, i \, x + 5 \, i & x^2 + 8 \, x + 17 \end{bmatrix} \]

Type: SquareMatrix(2,Polynomial Complex Integer)

For more information on related topics, see section 2.2 on page 67, section 2.11 on page 94, and Matrix 9.59 on page 654.

9.86 SquareFreeRegularTriangularSet

The SquareFreeRegularTriangularSet domain constructor implements square-free regular triangular sets. See the RegularTriangularSet domain constructor for general regular triangular sets. Let \( T \) be a regular triangular set consisting of polynomials \( t_1, \ldots, t_m \) ordered by increasing main variables. The regular triangular set \( T \) is square-free if \( T \) is empty or if \( t_1, \ldots, t_{m-1} \) is square-free and if the polynomial \( t_m \) is square-free as a univariate polynomial with coefficients in the tower of simple extensions associated with \( t_1, \ldots, t_{m-1} \).

The main interest of square-free regular triangular sets is that their associated towers of simple extensions are product of fields. Consequently, the saturated ideal of a square-free regular triangular set is radical. This property simplifies some of the operations related to regular triangular sets. However, building square-free regular triangular sets is generally more expensive than building general regular triangular sets.

As the RegularTriangularSet domain constructor, the SquareFreeRegularTriangularSet domain constructor also implements a method for solving polynomial systems by means of regular triangular sets. This is in fact the same method with some adaptations to take into account the fact that the computed regular chains are square-free. Note that it is also possible to pass from a decomposition into general regular triangular sets to a decomposition into square-free regular triangular sets. This conversion is used internally by the LazardSetSolvingPackage package constructor.
N.B. When solving polynomial systems with the SquareFreeRegularTriangularSet domain constructor or the LazardSetSolvingPackage package constructor, decompositions have no redundant components. See also LexTriangularPackage and ZeroDimensionalSolvePackage for the case of algebraic systems with a finite number of (complex) solutions.

We shall explain now how to use the constructor SquareFreeRegularTriangularSet. This constructor takes four arguments. The first one, \( R \), is the coefficient ring of the polynomials; it must belong to the category GcdDomain. The second one, \( E \), is the exponent monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. The third one, \( V \), is the ordered set of variables; it must belong to the category OrderedSet. The last one is the polynomial ring; it must belong to the category RecursivePolynomialCategory(\( R, E, V \)). The abbreviation for SquareFreeRegularTriangularSet is SREGSET.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

Let us illustrate the use of this constructor with one example (Donati-Traverso). Define the coefficient ring.

\[
R := \text{Integer}
\]

\( \text{Integer} \)

Type: Domain

Define the list of variables,

\[
\text{ls} : \text{List Symbol} := [x,y,z,t]
\]

\( [x,y,z,t] \)

Type: List Symbol

and make it an ordered set;

\[
V := \text{OVAR(\text{ls})}
\]

OrderedVariableList \( [x,y,z,t] \)

Type: Domain

then define the exponent monoid.

\[
E := \text{IndexedExponents V}
\]
Define the polynomial ring.

\[ P := \text{NSMP}(R, V) \]

\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} [x,y,z,t])

Type: Domain

Let the variables be polynomial.

\[ x: P := 'x \]

\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} [x,y,z,t])

Type: Domain

\[ y: P := 'y \]

\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} [x,y,z,t])

Type: Domain

\[ z: P := 'z \]

\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} [x,y,z,t])

Type: Domain

\[ t: P := 't \]

\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList} [x,y,z,t])

Type: Domain
Now call the \texttt{SquareFreeRegularTriangularSet} domain constructor.

\begin{verbatim}
ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x,y,z,t],
OrderedVariableList[x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x,y,z,t]))

Type: Domain
\end{verbatim}

Define a polynomial system.

\begin{verbatim}
p1 := x ** 31 - x ** 6 - x - y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[x,y,z,t])

p2 := x ** 8 - z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[x,y,z,t])

p3 := x ** 10 - t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[x,y,z,t])

lp := [p1, p2, p3]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList
[x,y,z,t])
\end{verbatim}
First of all, let us solve this system in the sense of Kalkbrener.

```
zeroSetSplit(lp)$ST

\[\{ z^5 - t^4, t z y^2 + 2 z^3 y - t^8 + 2 t^5 + t^3 - t^2, (t^4 - t) x - t y - z^2 \} \]

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))
```

And now in the sense of Lazard (or Wu and other authors).

```
zeroSetSplit(lp,false)$ST

\[\{ z^5 - t^4, t z y^2 + 2 z^3 y - t^8 + 2 t^5 + t^3 - t^2, (t^4 - t) x - t y - z^2 \}, \{ t^3 - 1, z^5 - t, t y + z^2, z x^2 - t \}, \{ t, z, y, x \} \]

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))
```

Now to see the difference with the `RegularTriangularSet` domain constructor, we define:

```
T := REGSET(R,E,V,P)
```

```
RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x,y,z,t],
OrderedVariableList[x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x,y,z,t]))
```

Type: Domain

and compute:

```
lts := zeroSetSplit(lp,false)$T

\[\{ z^5 - t^4, t z y^2 + 2 z^3 y - t^8 + 2 t^5 + t^3 - t^2, (t^4 - t) x - t y - z^2 \}, \{ t^3 - 1, z^5 - t, t y + z^2, z x^2 - t \}, \{ t, z, y, x \} \]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))
```
If you look at the second set in both decompositions in the sense of Lazard, you will see that the polynomial with main variable $y$ is not the same.

Let us understand what has happened.

We define:

$$ts := lts.2$$

$$\{t^3 - 1, z^5 - t, t z y^2 + 2 z^3 y + 1, z x^2 - t\}$$

Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

$$pol := select(ts, 'y)$$

$$t z y^2 + 2 z^3 y + 1$$

Type: Union( NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]), ...)

$$tower := collectUnder(ts, 'y)$$

$$\{t^3 - 1, z^5 - t\}$$

Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

$$pack := RegularTriangularSetGcdPackage(R,E,V,P,T)$$

RegularTriangularSetGcdPackage(Integer, IndexedExponentsOrderedVariableList[x,y,z,t], OrderedVariableList[x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList[x,y,z,t]), RegularTriangularSet(Integer, IndexedExponentsOrderedVariableList[x,y,z,t], OrderedVariableList[x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList[x,y,z,t])))
Then we compute:

toseSquareFreePart(pol,tower)$pack

\[
\begin{align*}
\text{val} &= t + y + z^2, \\
\text{tower} &= \{t^3 - 1, z^5 - t\}
\end{align*}
\]

Type: List Record(val: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]), tower: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t])))

### 9.87 Stack

A stack is an aggregate structure which allows insertion, deletion, and inspection of the “top” element. Stacks are similar to any pile of paper where you can only add to the pile, remove the top paper from the pile, or read the top paper.

Stacks can be created from a list of elements using the `stack` function.

\[ \text{a:Stack INT:= stack [1,2,3,4,5]} \]

\[ \begin{align*}
[1,2,3,4,5] \\
\text{Type: Stack Integer}
\end{align*} \]

An empty stack can be created using the `empty` function.

\[ \text{a:Stack INT:= empty()} \]

\[ \text{[]} \]

\[ \text{Type: Stack Integer} \]

The `empty?` function will return `true` if the stack contains no elements.

\[ \text{empty? a} \]

\[ \text{true} \]
Stacks modify their arguments so they use the exclamation mark “!” as part of the function name.

The **pop!** function removes the top element of the stack and returns it. The stack is one element smaller. The **extract!** function does the same thing with a different name.

```lisp
a: Stack INT := stack [1,2,3,4,5]
[1,2,3,4,5]
Type: Stack Integer

pop! a
1
Type: PositiveInteger

a
[2,3,4,5]
Type: Stack Integer
```

The **push!** operation adds a new top element to the stack and returns the element that was pushed. The stack is one element larger. The **insert!** does the same thing with a different name.

```lisp
a: Stack INT := stack [1,2,3,4,5]
[1,2,3,4,5]
Type: Stack Integer

push!(9,a)
9
Type: PositiveInteger
```
To read the top element without changing the stack use the \texttt{top} function.

\begin{verbatim}
a:Stack INT:= stack [1,2,3,4,5]

[1,2,3,4,5]

Type: Stack Integer
tag a

1

Type: PositiveInteger
\end{verbatim}

For more information on related topics, see Queue section \texttt{9.74} on page 706.

\section{Stream}

A \texttt{Stream} object is represented as a list whose last element contains the wherewithal to create the next element, should it ever be required.

Let \texttt{ints} be the infinite stream of non-negative integers.

\begin{verbatim}
ints := [i for i in 0..]

[0,1,2,3,4,5,6,7,8,9,..]

Type: Stream NonNegativeInteger
\end{verbatim}
By default, ten stream elements are calculated. This number may be changed to something else by the system command \texttt{set streams calculate}. For the display purposes of this book, we have chosen a smaller value.

More generally, you can construct a stream by specifying its initial value and a function which, when given an element, creates the next element.

\[
f : \text{List INT} \to \text{List INT}
\]

Type: \text{Void}

\[
f \ x = [x.1 + x.2, x.1]
\]

Type: \text{Void}

\[
fibs := [i.2 \text{ for } i \text{ in } \text{generate}(f, [1, 1])]
\]

You can create the stream of odd non-negative integers by either filtering them from the integers, or by evaluating an expression for each integer.

\[
[i \text{ for } i \text{ in ints | odd? } i]
\]

\[
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, \ldots]
\]

Type: \text{Stream NonNegativeInteger}

\[
odds := [2\times i+1 \text{ for } i \text{ in ints}]
\]

\[
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, \ldots]
\]

Type: \text{Stream NonNegativeInteger}

You can accumulate the initial segments of a stream using the \texttt{scan} operation.
9.88. STREAM

\hspace{1cm} \text{scan(0,+,odds)}

\[ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \ldots] \]
Type: Stream NonNegativeInteger

The corresponding elements of two or more streams can be combined in this way.

\[ [i*j \text{ for } i \text{ in ints for } j \text{ in odds}] \]

\[ [0, 3, 10, 21, 36, 55, 78, 105, 136, 171, \ldots] \]
Type: Stream NonNegativeInteger

\hspace{1cm} \text{map(*,ints,odds)}

\[ [0, 3, 10, 21, 36, 55, 78, 105, 136, 171, \ldots] \]
Type: Stream NonNegativeInteger

Many operations similar to those applicable to lists are available for streams.

\hspace{1cm} \text{first ints}

0
Type: NonNegativeInteger

\hspace{1cm} \text{rest ints}

\[ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots] \]
Type: Stream NonNegativeInteger

\hspace{1cm} \text{fibs 20}

6765
Type: PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFunctions3 export some useful stream manipulation operations. For more information, see section 5.5 on page 146, section 8.9 on page 328, ContinuedFraction 9.14 on page 450, and List 9.54 on page 632.
9.89 String

The type String provides character strings. Character strings provide all the operations for a one-dimensional array of characters, plus additional operations for manipulating text. For more information on related topics, see Character 9.10 on page 434 and CharacterClass 9.11 on page 437. You can also issue the system command \texttt{)show String} to display the full list of operations defined by String.

String values can be created using double quotes.

\begin{verbatim}
hello := "Hello, I'm Axiom!"

"Hello, I'm Axiom!"

Type: String
\end{verbatim}

Note, however, that double quotes and underscores must be preceded by an extra underscore.

\begin{verbatim}
said := "Jane said, "Look!""

"Jane said, "Look!"

Type: String
\end{verbatim}

\begin{verbatim}
saw := "She saw exactly one underscore: _." 

"She saw exactly one underscore: _." 

Type: String
\end{verbatim}

It is also possible to use new to create a string of any size filled with a given character. Since there are many new functions it is necessary to indicate the desired type.

\begin{verbatim}
gasp: String := new(32, char "x")

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Type: String
\end{verbatim}

The length of a string is given by “#”.

#gasp
Indexing operations allow characters to be extracted or replaced in strings. For any string $s$, indices lie in the range $1..#s$.

```
hello.2
```

Type: Character

Indexing is really just the application of a string to a subscript, so any application syntax works.

```
hello 2
```

Type: Character

If it is important not to modify a given string, it should be copied before any updating operations are used.

```
hullo := copy hello

"Hello, I'm Axiom!"
```

Type: String

```
hullo.2 := char "u"; [hello, hullo]

["Hello, I'm Axiom!","Hullo, I'm Axiom!"]
```
Operations are provided to split and join strings. The `concat` operation allows several strings to be joined together.

```plaintext
saidsw := concat ["alpha","---","omega"]

"alpha---omega"
```

Type: List String

There is a version of `concat` that works with two strings.

```plaintext
concat("hello ","goodbye")

"hello goodbye"
```

Type: String

Juxtaposition can also be used to concatenate strings.

```plaintext
"This " "is " "several " "strings " "concatenated."

"This is several strings concatenated."
```

Type: String

Substrings are obtained by giving an index range.

```plaintext
hello(1..5)

"Hello"
```

Type: String

```plaintext
hello(8..)

"I'm Axiom!"
```

Type: String
A string can be split into several substrings by giving a separation character or character class.

\[
\text{split(} \text{hello, char " ")}
\]

\[
["Hello,","I\'m","Axiom!"]
\]

Type: List String

\[
\text{other := complement alphanumeric();}
\]

Type: CharacterClass

\[
\text{split(} \text{saidsaw, other)}
\]

\[
["alpha","omega"]
\]

Type: List String

Unwanted characters can be trimmed from the beginning or end of a string using the operations \text{trim}, \text{leftTrim} and \text{rightTrim}.

\[
\text{trim("## ++ relax ++ ##", char "}\text{#")}
\]

\[
" ++ relax ++ "
\]

Type: String

Each of these functions takes a string and a second argument to specify the characters to be discarded.

\[
\text{trim("## ++ relax ++ ##", other)}
\]

"relax"

Type: String

The second argument can be given either as a single character or as a character class.

\[
\text{leftTrim ("## ++ relax ++ ##", other)}
\]
"relax ++ ##"

Type: String

rightTrim("## ++ relax ++ ##", other)

"## ++ relax"

Type: String

Strings can be changed to upper case or lower case using the operations `upperCase`, and `lowerCase`.

`upperCase hello`

"HELLO, I’M Axiom!"

Type: String

The versions with the exclamation mark change the original string, while the others produce a copy.

`lowerCase hello`

"hello, i’m axiom!"

Type: String

Some basic string matching is provided. The function `prefix?` tests whether one string is an initial prefix of another.

`prefix?("He", "Hello")`

true

Type: Boolean

`prefix?("Her", "Hello")`

false
A similar function, `suffix?`, tests for suffixes.

```
suffix?('', "Hello")
```

true

```
suffix?("LO", "Hello")
```

false

The function `substring?` tests for a substring given a starting position.

```
substring?("ll", "Hello", 3)
```

true

```
substring?("ll", "Hello", 4)
```

false

A number of `position` functions locate things in strings. If the first argument to `position` is a string, then `position(s, t, i)` finds the location of `s` as a substring of `t` starting the search at position `i`.

```
n := position("nd", "underground", 1)
```

2

```
n := position("nd", "underground", n+1)
```

Type: Boolean

Type: Boolean

Type: Boolean

Type: Boolean

Type: Boolean

Type: Boolean

Type: PositiveInteger
If s is not found, then 0 is returned (minIndex(s)-1 in IndexedString).

\[ n := \text{position("nd", "underground", n+1)} \]

0

Type: NonNegativeInteger

To search for a specific character or a member of a character class, a different first argument is used.

position(char "d", "underground", 1)

3

Type: PositiveInteger

position(hexDigit(), "underground", 1)

3

Type: PositiveInteger

9.90 StringTable

This domain provides a table type in which the keys are known to be strings so special techniques can be used. Other than performance, the type StringTable(S) should behave exactly the same way as Table(String,S). See Table 9.92 on page 780 for general information about tables.

This creates a new table whose keys are strings.

\[ t: \text{StringTable(Integer)} := \text{table()} \]

\[ \text{table()} \]

Type: StringTable Integer
9.91. Symbol

Symbols are one of the basic types manipulated by Axiom. The Symbol domain provides ways to create symbols of many varieties.

The simplest way to create a symbol is to “single quote” an identifier.

X: Symbol := 'x

x

Type: Symbol

This gives the symbol even if x has been assigned a value. If x has not been assigned a value, then it is possible to omit the quote.

XX: Symbol := x

x

Type: Symbol

Declarations must be used when working with symbols, because otherwise the interpreter tries to place values in a more specialized type Variable.
A := 'a

\[ a \]

Type: Variable a

B := b

\[ b \]

Type: Variable b

The normal way of entering polynomials uses this fact.

\[ x^2 + 1 \]

\[ x^2 + 1 \]

Type: Polynomial Integer

Another convenient way to create symbols is to convert a string. This is useful when the name is to be constructed by a program.

"Hello"::Symbol

\[ Hello \]

Type: Symbol

Sometimes it is necessary to generate new unique symbols, for example, to name constants of integration. The expression new() generates a symbol starting with %.

new()$Symbol

\[ %A \]

Type: Symbol

Successive calls to new produce different symbols.
The expression `new("s")` produces a symbol starting with %s.

```
new("xyz")$Symbol
```

A symbol can be adorned in various ways. The most basic thing is applying a symbol to a list of subscripts.

```
X[i,j]
```

```
x_{i,j}
```

Somewhat less pretty is to attach subscripts, superscripts or arguments.

```
U := subscript(u, [1,2,1,2])
```

```
u_{1,2,1,2}
```

```
V := superscript(v, [n])
```

```
v^n
```

```
P := argscript(p, [t])
```

```
p(t)
```

Type: Symbol
It is possible to test whether a symbol has scripts using the `scripted?` test.

```plaintext
scripted? U
true
Type: Boolean
```

```plaintext
scripted? X
false
Type: Boolean
```

If a symbol is not scripted, then it may be converted to a string.

```plaintext
string X
"x"
Type: String
```

The basic parts can always be extracted using the `name` and `scripts` operations.

```plaintext
name U
u
Type: Symbol
```

```plaintext
scripts U
[sub = [1, 2, 1, 2], sup = [], presup = [], presub = [], args = []]
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List OutputForm, presub: List OutputForm, args: List OutputForm)
```

```plaintext
name X
x
```
The most general form is obtained using the *script* operation. This operation takes an argument which is a list containing, in this order, lists of subscripts, superscripts, presuperscripts, presubscripts and arguments to a symbol.

\[ M := \text{script}(\text{Mammoth}, \left[ [i,j],[k,l],[0,1],[2],[u,v,w] \right]) \]

\[ 0_{1}^{2} \text{Mammoth}_{i,j}^{k,l}(u,v,w) \]

If trailing lists of scripts are omitted, they are assumed to be empty.

\[ N := \text{script}(\text{Nut}, \left[ [i,j],[k,l],[0,1] \right]) \]

\[ 0_{1}^{1} \text{Nut}_{i,j}^{k,l}(u,v) \]
9.92 Table

The Table constructor provides a general structure for associative storage. This type provides hash tables in which data objects can be saved according to keys of any type. For a given table, specific types must be chosen for the keys and entries.

In this example the keys to the table are polynomials with integer coefficients. The entries in the table are strings.

\[
t: \text{Table(Polynomial Integer, String)} := \text{table()}
\]

\[
\text{table()}
\]

Type: Table(Polynomial Integer, String)

To save an entry in the table, the \text{setelt} operation is used. This can be called directly, giving the table a key and an entry.

\[
\text{setelt}(t, x^2 - 1, "Easy to factor")
\]

"Easy to factor"

Type: String

Alternatively, you can use assignment syntax.

\[
t(x^3 + 1) := "Harder to factor"
\]

"Harder to factor"

Type: String

\[
t(x) := "The easiest to factor"
\]

"The easiest to factor"

Type: String

Entries are retrieved from the table by calling the \text{elt} operation.

\[
\text{elt}(t, x)
\]

"The easiest to factor"
This operation is called when a table is “applied” to a key using this or the following syntax.

```
t.x
```

"The easiest to factor"

```
t x
```

"The easiest to factor"

Parentheses are used only for grouping. They are needed if the key is an infixed expression.

```
t.(x**2 - 1)
```

"Easy to factor"

Note that the `elt` operation is used only when the key is known to be in the table—otherwise an error is generated.

```
t (x**3 + 1)
```

"Harder to factor"

You can get a list of all the keys to a table using the `keys` operation.

```
keys t
```

```
[x, x^3 + 1, x^2 - 1]
```

Type: List Polynomial Integer
If you wish to test whether a key is in a table, the `search` operation is used. This operation returns either an entry or "failed".

```plaintext
search(x, t)

"The easiest to factor"
Type: Union(String,...)
```

```plaintext
search(x**2, t)

"failed"
Type: Union("failed",...)
```

The return type is a union so the success of the search can be tested using `case`.

```plaintext
search(x**2, t) case "failed"

true
Type: Boolean
```

The `remove!` operation is used to delete values from a table.

```plaintext
remove!(x**2-1, t)

"Easy to factor"
Type: Union(String,...)
```

If an entry exists under the key, then it is returned. Otherwise `remove` returns "failed".

```plaintext
remove!(x-1, t)

"failed"
Type: Union("failed",...)
```

The number of key-entry pairs can be found using the `#` operation.

```plaintext
#t
```
Just as `keys` returns a list of keys to the table, a list of all the entries can be obtained using the `members` operation.

```
members t

["The easiest to factor","Harder to factor"]
```

Type: List String

A number of useful operations take functions and map them on to the table to compute the result. Here we count the entries which have “Hard” as a prefix.

```
count(s: String +-> prefix?("Hard", s), t)
```

1

Type: PositiveInteger

Other table types are provided to support various needs.

- **AssociationList** gives a list with a table view. This allows new entries to be appended onto the front of the list to cover up old entries. This is useful when table entries need to be stacked or when frequent list traversals are required. See [AssociationList 9.3](#) on page 406 for more information.

- **EqTable** gives tables in which keys are considered equal only when they are in fact the same instance of a structure. See [EqTable 9.21](#) on page 488 for more information.

- **StringTable** should be used when the keys are known to be strings. See [StringTable 9.90](#) on page 774 for more information.

- **SparseTable** provides tables with default entries, so lookup never fails. The General-SparseTable constructor can be used to make any table type behave this way. See [SparseTable 9.84](#) on page 754 for more information.

- **KeyedAccessFile** allows values to be saved in a file, accessed as a table. See [KeyedAccessFile 9.45](#) on page 566 for more information.
9.93 TextFile

The domain TextFile allows Axiom to read and write character data and exchange text with other programs. This type behaves in Axiom much like a File of strings, with additional operations to cause new lines. We give an example of how to produce an upper case copy of a file.

This is the file from which we read the text.

f1: TextFile := open("/etc/group", "input")

"/etc/group"

Type: TextFile

This is the file to which we write the text.

f2: TextFile := open("/tmp/MOTD", "output")

"/tmp/MOTD"

Type: TextFile

Entire lines are handled using the readLine and writeLine operations.

l := readLine! f1

"root:x:0:root"

Type: String

writeLine!(f2, upperCase l)

"ROOT:X:0:ROOT"

Type: String

Use the endOfFile? operation to check if you have reached the end of the file.

while not endOfFile? f1 repeat
  s := readLine! f1
  writeLine!(f2, upperCase s)
The file f1 is exhausted and should be closed.

```
close! f1

"/etc/group"
```

It is sometimes useful to write lines a bit at a time. The write operation allows this.

```
write!(f2, "-The-")

"-The-"
```

```
write!(f2, "-End-")

"-End-"
```

This ends the line. This is done in a machine-dependent manner.

```
writeLine! f2

"
```

Finally, clean up.

```
)system rm /tmp/MOTD
```

For more information on related topics, see File 9.28 on page 508, KeyedAccessFile 9.45 on page 566, and Library 9.48 on page 607.
9.94 **TwoDimensionalArray**

The `TwoDimensionalArray` domain is used for storing data in a two dimensional data structure indexed by row and by column. Such an array is a homogeneous data structure in that all the entries of the array must belong to the same Axiom domain (although see section 2.6 on page 81. Each array has a fixed number of rows and columns specified by the user and arrays are not extensible. In Axiom, the indexing of two-dimensional arrays is one-based. This means that both the “first” row of an array and the “first” column of an array are given the index 1. Thus, the entry in the upper left corner of an array is in position \((1,1)\).

The operation `new` creates an array with a specified number of rows and columns and fills the components of that array with a specified entry. The arguments of this operation specify the number of rows, the number of columns, and the entry.

This creates a five-by-four array of integers, all of whose entries are zero.

\[
\text{arr} : \text{ARRAY2 INT} := \text{new}(5,4,0)
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Type: TwoDimensionalArray Integer

The entries of this array can be set to other integers using the operation `setelt`.

Issue this to set the element in the upper left corner of this array to 17.

\[
\text{setelt(arr,1,1,17)}
\]

17

Type: PositiveInteger

Now the first element of the array is 17.

\[
\text{arr}
\]

\[
\begin{bmatrix}
17 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Likewise, elements of an array are extracted using the operation elt.

\[
\text{elt(arr,1,1)} \quad 17
\]

Type: PositiveInteger

Another way to use these two operations is as follows. This sets the element in position \((3,2)\) of the array to 15.

\[
\text{arr(3,2) := 15} \quad 15
\]

Type: PositiveInteger

This extracts the element in position \((3,2)\) of the array.

\[
\text{arr(3,2)} \quad 15
\]

Type: PositiveInteger

The operations elt and setelt come equipped with an error check which verifies that the indices are in the proper ranges. For example, the above array has five rows and four columns, so if you ask for the entry in position \((6,2)\) with arr(6,2) Axiom displays an error message. If there is no need for an error check, you can call the operations qelt and qsetelt which provide the same functionality but without the error check. Typically, these operations are called in well-tested programs.

The operations row and column extract rows and columns, respectively, and return objects of OneDimensionalArray with the same underlying element type.

\[
\text{row(arr,1)} \quad [17, 0, 0, 0]
\]

Type: OneDimensionalArray Integer
column(arr,1)

\[[17, 0, 0, 0, 0]\]

Type: OneDimensionalArray Integer

You can determine the dimensions of an array by calling the operations `nrows` and `ncols`, which return the number of rows and columns, respectively.

nrows(arr)

5

Type: PositiveInteger

ncols(arr)

4

Type: PositiveInteger

To apply an operation to every element of an array, use `map`. This creates a new array. This expression negates every element.

map(-, arr)

\[
\begin{bmatrix}
-17 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -15 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Type: TwoDimensionalArray Integer

This creates an array where all the elements are doubled.

map((x +-> x + x), arr)

\[
\begin{bmatrix}
34 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 30 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Type: TwoDimensionalArray Integer

To change the array destructively, use `map` instead of `map`. If you need to make a copy of any array, use `copy`.

```lisp
arrc := copy(arr)
```

```
[17 0 0 0
 0 0 0 0
 0 15 0 0
 0 0 0 0
 0 0 0 0
]
```

Type: TwoDimensionalArray Integer

```lisp
map!(-, arrc)
```

```
[-17 0 0 0
 0 0 0 0
 0 -15 0 0
 0 0 0 0
 0 0 0 0
]
```

Type: TwoDimensionalArray Integer

```lisp
arrc
```

```
[-17 0 0 0
 0 0 0 0
 0 -15 0 0
 0 0 0 0
 0 0 0 0
]
```

Type: TwoDimensionalArray Integer

```lisp
arr
```

```
[17 0 0 0
 0 0 0 0
 0 15 0 0
 0 0 0 0
 0 0 0 0
]
```
Type: TwoDimensionalArray Integer

Use member? to see if a given element is in an array.

member?(17, arr)

true

Type: Boolean

member?(10317, arr)

false

Type: Boolean

To see how many times an element appears in an array, use count.

count(17, arr)

1

Type: PositiveInteger

count(0, arr)

18

Type: PositiveInteger

For more information about the operations available for TwoDimensionalArray, issue )show TwoDimensionalArray. For information on related topics, see Matrix 9.59 on page 654 and OneDimensionalArray 9.65 on page 674.

9.95 TwoDimensionalViewport

We want to graph $x^3 * (a + b * x)$ on the interval $x = -1..1$ so we clear out the workspace. We assign values to the constants

a:=0.5
We draw the first case of the graph

\[ y_1 := \text{draw}(x^3*(a+b*x), x=-1..1, 	ext{title}=="2.2.10 explicit") \]

TwoDimensionalViewport: "2.2.10 explicit"  
Type: TwDimensionalViewport

which results in the image:
Graph with 1point list

We extract its points

pointLists gi
Now we create a second graph with a changed parameter

\[ b := 1.0 \]

\[ 1.0 \]

We draw it

\[ y2 := \text{draw}(x^3*(a+b*x), x=-1..1) \]

TwoDimensionalViewport: "Axiom2D"

We fetch this new graph

\[ g2 := \text{getGraph}(y2, 1) \]
Graph with 1 point list

We get the points from this graph

pointLists g2
\[
\begin{array}{c}
\begin{bmatrix}
-1.0, 0.5, 1.0, 3.0, \\
0.5833333333333337, 0.40339566454475323, 1.0, 3.0, \\
-0.9166666666666667, 0.32093942901234584, 1.0, 3.0, \\
-0.8750000000000011, 0.25122070312500017, 1.0, 3.0, \\
-0.8333333333333338, 0.19290123456790137, 1.0, 3.0, \\
-0.79166666666666685, 0.14471510898919768, 1.0, 3.0, \\
-0.75000000000000022, 0.10546875000000019, 1.0, 3.0, \\
-0.7083333333333359, 7.404091917438288E-2, 1.0, 3.0, \\
-0.6666666666666696, 4.938271604938288E-2, 1.0, 3.0, \\
-0.62500000000000033, 3.0517578125000125E-2, 1.0, 3.0, \\
-0.5833333333333337, 1.6541280864197649E-2, 1.0, 3.0, \\
-0.54166666666666707, 6.6219376929013279E-3, 1.0, 3.0, \\
-0.50000000000000044, 5.5511151231257827E-17, 1.0, 3.0, \\
-0.4583333333333376, -4.01174286254287E-3, 1.0, 3.0, \\
-0.41666666666666707, -6.0281635802469957E-3, 1.0, 3.0, \\
-0.37500000000000039, -6.5917968750000035E-3, 1.0, 3.0, \\
-0.3333333333333337, -6.1728395061728461E-3, 1.0, 3.0, \\
-0.29166666666666702, -5.1691502700617377E-3, 1.0, 3.0, \\
-0.25000000000000033, -3.90625000000000104E-3, 1.0, 3.0, \\
-0.2083333333333368, -2.637321563580349E-3, 1.0, 3.0, \\
-0.16666666666666702, -1.543209876543218E-3, 1.0, 3.0, \\
-0.12500000000000036, -7.3242187500000564E-4, 1.0, 3.0, \\
-0.83333333333333703E-2, -2.4112654320987957E-4, 1.0, 3.0, \\
-0.416666666666667039E-2, -3.315489969135889E-5, 1.0, 3.0, \\
-3.7470027081099033E-16, -2.6304013894372324E-47, 1.0, 3.0, \\
4.61666666666666629E-2, 3.9183063271603852E-5, 1.0, 3.0, \\
8.333333333333333954E-2, 3.3757716049382237E-4, 1.0, 3.0, \\
0.12499999999999961, 1.2207031249999879E-3, 1.0, 3.0, \\
0.16666666666666627, 3.0864197530636957E-3, 1.0, 3.0, \\
0.20833333333333293, 6.404923804123045E-3, 1.0, 3.0, \\
0.2499999999999958, 1.171874999999934E-2, 1.0, 3.0, \\
0.29166666666666624, 1.9642771026234473E-2, 1.0, 3.0, \\
0.33333333333333293, 3.086419753064071E-2, 1.0, 3.0, \\
0.37499999999999961, 4.6142578124999847E-2, 1.0, 3.0, \\
0.4166666666666663, 6.309799382715848E-2, 1.0, 3.0, \\
0.45833333333333298, 9.2270085841049135E-2, 1.0, 3.0, \\
0.4999999999999967, 0.1249999999999971, 1.0, 3.0, \\
0.5416666666666663, 0.16554844232253049, 1.0, 3.0, \\
0.58333333333333293, 0.21503665123456736, 1.0, 3.0, \\
0.6249999999999956, 0.27465820312499928, 1.0, 3.0, \\
0.6666666666666619, 0.345679012456781, 1.0, 3.0, \\
0.7083333333333328, 0.4294373121141858, 1.0, 3.0, \\
0.7499999999999944, 0.52734374999999845, 1.0, 3.0, \\
0.7916666666666607, 0.64088119695215873, 1.0, 3.0, \\
0.8333333333333327, 0.77160493827160281, 1.0, 3.0, \\
0.8749999999999933, 0.92114257812499756, 1.0, 3.0, \\
0.9166666666666596, 1.0911940586419722, 1.0, 3.0, \\
0.95833333333333259, 1.2835316599151199, 1.0, 3.0, \\
1.0, 1.5, 1.0, 3.0
\end{bmatrix}
\end{array}
\]
and we put these points, g2 onto the first graph y1 as graph 2

\texttt{putGraph(y1,g2,2)}

And now we do the whole sequence again

\texttt{b:=2.0}

\begin{verbatim}
2.0
\end{verbatim}

\texttt{y3:=draw(x^3*(a+b*x),x=-1..1)}

TwoDimensionalViewport: "Axiom2D"

which results in the image:
g3 := getGraph(y3, 1)

Graph with 1 point list

Type: GraphImage

pointLists g3
9.95. TWODIMENSIONALVIEWPORT

```
[[
[-1.0, 1.5, 1.0, 3.0],
[-0.9583333333333337, 1.2468593267746917, 1.0, 3.0],
[-0.9166666666666664, 1.0270061728395066, 1.0, 3.0],
[-0.8750000000000011, 0.83740234375000044, 1.0, 3.0],
[-0.8333333333333348, 0.67515432098765471, 1.0, 3.0],
[-0.7916666666666685, 0.53751326195987703, 1.0, 3.0],
[-0.7500000000000022, 0.4218750000000056, 1.0, 3.0],
[-0.7083333333333359, 0.32578004436728447, 1.0, 3.0],
[-0.6666666666666696, 0.24691358024691412, 1.0, 3.0],
[-0.6250000000000033, 0.18310546875000044, 1.0, 3.0],
[-0.5833333333333337, 0.1323302469135807, 1.0, 3.0],
[-0.5416666666666667, 0.270712770617648E − 2, 1.0, 3.0],
[-0.5000000000000044, 6.2500000000000278E − 2, 1.0, 3.0],
[-0.4583333333333376, 4.0117428626543411E − 2, 1.0, 3.0],
[-0.4166666666666667, 2.4112654320987775E − 2, 1.0, 3.0],
[-0.3750000000000039, 1.3183593750000073E − 2, 1.0, 3.0],
[-0.3333333333333337, 6.172895061728877E − 3, 1.0, 3.0],
[-0.2916666666666662, 2.0676601080247183E − 3, 1.0, 3.0],
[-0.2500000000000033, 1.0408340855860843E − 17, 1.0, 3.0],
[-0.2083333333333368, −7.5352044753086191E − 4, 1.0, 3.0],
[-0.1666666666666667, −7.7160493827160663E − 4, 1.0, 3.0],
[-0.1250000000000036, −8.4828125000000282E − 4, 1.0, 3.0],
[-0.8333333333333370, −1.9290123456790339E − 4, 1.0, 3.0],
[-4.1666666666666667, −3.0140817901235325E − 5, 1.0, 3.0],
[−3.7470027081099033E − 16, −2.6304013894372305E − 47, 1.0, 3.0],
4.1666666666666667, −2.419714506172727E − 5, 1.0, 3.0],
[8.3333333333333295E − 2, 3.8580246913579681E − 4, 1.0, 3.0],
0.1249999999999961, 1.4648437499999848E − 3, 1.0, 3.0],
0.1666666666666667, 3.8580246913579933E − 3, 1.0, 3.0],
0.20833333333333293, 8.2887249228394497E − 3, 1.0, 3.0],
0.2499999999999958, 1.5624999999999991E − 2, 1.0, 3.0],
0.2916666666666664, 2.6879581404320851E − 2, 1.0, 3.0],
0.33333333333333293, 4.3209876543290694E − 2, 1.0, 3.0],
0.3749999999999961, 6.5917968749999764E − 2, 1.0, 3.0],
0.4166666666666663, 9.6450617283950296E − 2, 1.0, 3.0],
0.45833333333333298, 0.13639925733024652, 1.0, 3.0],
0.4999999999999967, 0.1874999999999956, 1.0, 3.0],
0.5416666666666663, 0.2516336233024633, 1.0, 3.0],
0.58333333333333293, 0.33082561728394977, 1.0, 3.0],
0.6249999999999956, 0.42724609374999883, 1.0, 3.0],
0.6666666666666619, 0.5432098765432084, 1.0, 3.0],
0.70833333333333282, 0.68117645640431912, 1.0, 3.0],
0.7499999999999944, 0.84374999999999756, 1.0, 3.0],
0.7916666666666607, 1.0336793499228365, 1.0, 3.0],
0.8333333333333327, 1.2538580246913544, 1.0, 3.0],
0.8749999999999933, 1.50732421874996, 1.0, 3.0],
0.9166666666666596, 1.7972608024691306, 1.0, 3.0],
0.9583333333333259, 2.1269953221450555, 1.0, 3.0],
[1.0, 2.5, 1.0, 3.0]}}
```
and put the third graph's points g3 onto the first graph y1 as graph 3

\texttt{putGraph(y1,g3,3)}

which results in the image:

\texttt{vp:=makeViewport2D(y1)}

\texttt{TwoDimensionalViewport: "2.2.10 explicit"}

which shows all of the graphs in a single image.

\section*{9.96 \texttt{UnivariatePolynomial}}

The domain constructor \texttt{UnivariatePolynomial} (abbreviated UP) creates domains of univariate polynomials in a specified variable. For example, the domain \texttt{UP(a1,POLY FRAC INT)}
provides polynomials in the single variable \( a1 \) whose coefficients are general polynomials with rational number coefficients.

**Restriction:**

Axiom does not allow you to create types where \texttt{UnivariatePolynomial} is contained in the coefficient type of \texttt{Polynomial}. Therefore, \texttt{UP(x,POLY INT)} is legal but \texttt{POLY UP(x,INT)} is not.

\texttt{UP(x,INT)} is the domain of polynomials in the single variable \( x \) with integer coefficients.

\[(p,q) : \texttt{UP(x,INT)}\]

\[
p := (3*x-1)**2 * (2*x + 8)
\]

\[
18 x^3 + 60 x^2 - 46 x + 8
\]

\[
\text{Type: UnivariatePolynomial(x,Integer)}
\]

\[
q := (1 - 6*x + 9*x**2)**2
\]

\[
81 x^4 - 108 x^3 + 54 x^2 - 12 x + 1
\]

\[
\text{Type: UnivariatePolynomial(x,Integer)}
\]

The usual arithmetic operations are available for univariate polynomials.

\[
p**2 + p*q
\]

\[
1458 x^7 + 3240 x^6 - 7074 x^5 + 10584 x^4 - 9282 x^3 + 4120 x^2 - 878 x + 72
\]

\[
\text{Type: UnivariatePolynomial(x,Integer)}
\]

The operation \texttt{leadingCoefficient} extracts the coefficient of the term of highest degree.

\[
\texttt{leadingCoefficient p}
\]
The operation `degree` returns the degree of the polynomial. Since the polynomial has only one variable, the variable is not supplied to operations like `degree`.

```
degree p
```

3

Type: PositiveInteger

The reductum of the polynomial, the polynomial obtained by subtracting the term of highest order, is returned by `reductum`.

```
reductum p
```

```
60 x^2 - 46 x + 8
```

Type: UnivariatePolynomial(x,Integer)

The operation `gcd` computes the greatest common divisor of two polynomials.

```
gcd(p,q)
```

```
9 x^2 - 6 x + 1
```

Type: UnivariatePolynomial(x,Integer)

The operation `lcm` computes the least common multiple.

```
lcm(p,q)
```

```
162 x^5 + 432 x^4 - 756 x^3 + 408 x^2 - 94 x + 8
```

Type: UnivariatePolynomial(x,Integer)

The operation `resultant` computes the resultant of two univariate polynomials. In the case of `p` and `q`, the resultant is 0 because they share a common root.

```
resultant(p,q)
```
To compute the derivative of a univariate polynomial with respect to its variable, use \texttt{D}.

\begin{verbatim}
D p
\end{verbatim}

\begin{verbatim}
54 x^2 + 120 x - 46
\end{verbatim}

Univariate polynomials can also be used as if they were functions. To evaluate a univariate polynomial at some point, apply the polynomial to the point.

\begin{verbatim}
p(2)
\end{verbatim}

\begin{verbatim}
300
\end{verbatim}

The same syntax is used for composing two univariate polynomials, i.e. substituting one polynomial for the variable in another. This substitutes \texttt{q} for the variable in \texttt{p}.

\begin{verbatim}
p(q)
\end{verbatim}

\begin{verbatim}
9565938 x^{12} - 38263752 x^{11} + 70150212 x^{10} - 77944680 x^9 + 58852170 x^8 -
32227632 x^7 + 13349448 x^6 - 4280688 x^5 + 1058184 x^4 -
192672 x^3 + 23328 x^2 - 1536 x + 40
\end{verbatim}

This substitutes \texttt{p} for the variable in \texttt{q}.
To obtain a list of coefficients of the polynomial, use \texttt{coefficients}.

\begin{verbatim}
l := coefficients p
\end{verbatim}

\begin{verbatim}
[18, 60, -46, 8]
\end{verbatim}

From this you can use \texttt{gcd} and \texttt{reduce} to compute the content of the polynomial.

\begin{verbatim}
reduce(gcd, 1)
\end{verbatim}

2

Alternatively (and more easily), you can just call \texttt{content}.

\begin{verbatim}
content p
\end{verbatim}

2

Note that the operation \texttt{coefficients} omits the zero coefficients from the list. Sometimes it is useful to convert a univariate polynomial to a vector whose \textit{i}-th position contains the degree \textit{i}-1 coefficient of the polynomial.

\begin{verbatim}
ux := (x**4+2*x+3)::UP(x, INT)
\end{verbatim}

\begin{verbatim}
x^4 + 2 x + 3
\end{verbatim}

To get a complete vector of coefficients, use the operation \texttt{vectorise}, which takes a univariate polynomial and an integer denoting the length of the desired vector.

\begin{verbatim}
vectorise(ux, 5)
\end{verbatim}

\begin{verbatim}
[3, 2, 0, 0, 1]
\end{verbatim}
It is common to want to do something to every term of a polynomial, creating a new polynomial in the process. This is a function for iterating across the terms of a polynomial, squaring each term.

\[
squareTerms(p) = \text{reduce}(+, [t**2 \text{ for } t \text{ in monomials } p])
\]

Recall what \( p \) looked like.

\[
p = 18x^3 + 60x^2 - 46x + 8
\]

We can demonstrate \( squareTerms \) on \( p \).

\[
squareTerms p
\]

Compiling function \( squareTerms \) with type

\[
\text{UnivariatePolynomial}(x, \text{Integer}) \rightarrow \text{UnivariatePolynomial}(x, \text{Integer})
\]

\[
324x^6 + 3600x^4 + 2116x^2 + 64
\]

When the coefficients of the univariate polynomial belong to a field,\(^7\) it is possible to compute quotients and remainders.

\[
(r, s) : \text{UP}(a1, \text{FRAC INT})
\]

\[
\text{Type: Void}
\]

\(^7\)For example, when the coefficients are rational numbers, as opposed to integers. The important property of a field is that non-zero elements can be divided and produce another element. The quotient of the integers 2 and 3 is not another integer.
\[ r := a1^2 - \frac{2}{3} \]

\[ a1^2 - \frac{2}{3} \]

Type: UnivariatePolynomial(a1,Fraction Integer)

\[ s := a1 + 4 \]

\[ a1 + 4 \]

Type: UnivariatePolynomial(a1,Fraction Integer)

When the coefficients are rational numbers or rational expressions, the operation \texttt{quo} computes the quotient of two polynomials.

\[ r \text{ \texttt{quo} } s \]

\[ a1 - 4 \]

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation \texttt{rem} computes the remainder.

\[ r \text{ \texttt{rem} } s \]

\[ \frac{46}{3} \]

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation \texttt{divide} can be used to return a record of both components.

\[ d := \texttt{divide}(r, s) \]

\[ \left[ \text{quotient} = a1 - 4, \text{remainder} = \frac{46}{3} \right] \]

Type: Record( quotient: UnivariatePolynomial(a1,Fraction Integer), remainder: UnivariatePolynomial(a1,Fraction Integer))

Now we check the arithmetic!
\[ r = (d.\text{quotient} \ast s + d.\text{remainder}) \]

\[ 0 \]

\[ \text{Type: UnivariatePolynomial}(a1, \text{Fraction Integer}) \]

It is also possible to integrate univariate polynomials when the coefficients belong to a field.

\[ \text{integrate } r \]

\[ \frac{1}{3} a1^3 - \frac{2}{3} a1 \]

\[ \text{Type: UnivariatePolynomial}(a1, \text{Fraction Integer}) \]

\[ \text{integrate } s \]

\[ \frac{1}{2} a1^2 + 4 a1 \]

\[ \text{Type: UnivariatePolynomial}(a1, \text{Fraction Integer}) \]

One application of univariate polynomials is to see expressions in terms of a specific variable. We start with a polynomial in \( a1 \) whose coefficients are quotients of polynomials in \( b1 \) and \( b2 \).

\[ t : \text{UP}(a1, \text{FRAC POLY INT}) \]

\[ \text{Type: Void} \]

Since in this case we are not talking about using multivariate polynomials in only two variables, we use \text{Polynomial}. We also use \text{Fraction} because we want fractions.

\[ t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3) \]

\[ a1^2 - \frac{1}{b2} a1 + \frac{b1^2 - b1}{b2 + 3} \]

\[ \text{Type: UnivariatePolynomial}(a1, \text{Fraction Polynomial Integer}) \]

We push all the variables into a single quotient of polynomials.
u : FRAC POLY INT := t

\[
\frac{a_1^2 b_2^2 + (b_1^2 - b_1 + 3 \ a_1^2 - a_1) \ b_2 - 3 \ a_1}{b_2^2 + 3 \ b_2}
\]

Type: Fraction Polynomial Integer

Alternatively, we can view this as a polynomial in the variable This is a mode-directed conversion: you indicate as much of the structure as you care about and let Axiom decide on the full type and how to do the transformation.

\[
\frac{1}{b_2 + 3} \ b_1^2 - \frac{1}{b_2 + 3} \ b_1 + \frac{a_1^2 \ b_2 - a_1}{b_2}
\]

Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)

See section 8.2 on page 301 for a discussion of the factorization facilities in Axiom for univariate polynomials. For more information on related topics, see section 1.8 on page 35, section 2.7 on page 82, Polynomial 9.72 on page 693, MultivariatePolynomial 9.61 on page 696, and DistributedMultivariatePolynomial 9.19 on page 483.

9.97 UnivariateSkewPolynomial

Skew or Ore polynomial rings provide a unified framework to compute with differential and difference equations.

In the following, let \( A \) be an integral domain, equipped with two endomorphisms \( \sigma \) and \( \delta \) where:

- \( \sigma : A \rightarrow A \) is an injective ring endomorphism
- \( \delta : A \rightarrow A \), the pseudo-derivation with respect to \( \sigma \), is an additive endomorphism with

\[
\delta(ab) = \sigma(a)\delta(b) + \delta(a)b
\]

for all \( a, b \) in \( A \)

The skew polynomial ring \( [\Delta; \sigma, \delta] \) is the ring of polynomials in \( \Delta \) with coefficients in \( A \), with the usual addition, while the product is given by

\[
\Delta a = \sigma(a)\Delta + \delta(a) \quad \text{for } a \in A
\]

The two most important examples of skew polynomial rings are:
\textbf{9.97. UNIVARIATESKEWPOLYNOMIAL} 809

- $K(x)[D, 1, \delta]$, where 1 is the identity on $K$ and $\delta$ is the usual derivative, is the ring of differential polynomials

- $K_n[E, n, \mapsto n + 1, 0]$ is the ring of linear recurrence operators with polynomial coefficients

The UnivariateSkewPolynomialCategory (OREPCAT) provides a unified framework for polynomial rings in a non-central indeterminate over some coefficient ring $R$. The commutation relations between the indeterminate $x$ and the coefficient $t$ is given by

$$xr = \sigma(r)x + \delta(r)$$

where $\sigma$ is a ring endomorphism of $R$ and $\delta$ is a $\sigma$-derivation of $R$ which is an additive map from $R$ to $R$ such that

$$\delta(rs) = \sigma(r)\delta(s) + \delta(r)s$$

In case $\sigma$ is the identity map on $R$, a $\sigma$-derivation of $R$ is just called a derivation. Here are some examples

We start with a linear ordinary differential operator. First, we define the coefficient ring to be expressions in one variable $x$ with fractional coefficients:

$$F := \text{EXPR(FRAC(INT))}$$

Define $Dx$ to be a derivative $d/dx$:

$$Dx : F \rightarrow F : f \mapsto D(f, [\text{'x}])$$

Define a skew polynomial ring over $F$ with identity endomorphism as $\sigma$ and derivation $d/dx$ as $\delta$:

$$D0 := \text{OREUP('d,F,1,Dx)}$$

$$u : D0 := (\text{operator 'u})(x)$$

$$u(x)$$

$$d : D0 := 'd$$

$$d$$

$$a : D0 := u**3*d**3+u**2*d**2+u*d+1$$

$$u(x)^3 \ d^3 + u(x)^2 \ d^2 + u(x) \ d + 1$$
b:D0:=(u+1)*d**2+2*d

\[(u(x) + 1) \, d^2 + 2 \, d\]

r:=rightDivide(a,b)

\[
\begin{align*}
\text{quotient} & = \frac{u(x)^3}{u(x) + 1} \, d + \frac{-u(x)^3 \, u'(x) - u(x)^3 + u(x)^2}{u(x)^2 + 2 \, u(x) + 1} \\
\text{remainder} & = \frac{2 \, u(x)^3 \, u'(x) + 3 \, u(x)^3 + u(x)}{u(x)^2 + 2 \, u(x) + 1} \, d + 1
\end{align*}
\]

r.quotient

\[
\frac{u(x)^3}{u(x) + 1} \, d + \frac{-u(x)^3 \, u'(x) - u(x)^3 + u(x)^2}{u(x)^2 + 2 \, u(x) + 1}
\]

r.remainder

\[
\frac{2 \, u(x)^3 \, u'(x) + 3 \, u(x)^3 + u(x)}{u(x)^2 + 2 \, u(x) + 1} \, d + 1
\]

A second example

)clear all

As a second example, we consider the so-called Weyl algebra.

Define the coefficient ring to be an ordinary polynomial over integers in one variable \( t \)

R:=UP(’t,INT)

Define a skew polynomial ring over \( R \) with identity map as \( \sigma \) and derivation \( d/dt \) as \( \delta \). The resulting algebra is then called a Weyl algebra. This is a simple ring over a division ring that is non-commutative, similar to the ring of matrices.

R:=UP(’t,INT)

W:=OREUP(’x,R,1,D)

t:W:='t

\( t \)
Let

\[ a := (t-1) \times x^4 + (t^3 + 3t + 1) \times x^2 + 2t \times x + t^3 \]

\[ b := (6t^4 + 2t^2) \times x^3 + 3t^2 \times x^2 \]

Then

\[ a \times b \]

\[ a^3 \]

A third example

As a third example, we construct a difference operator algebra over the ring of EXPR(INT) by using an automorphism \( S \) defined by a “shift” operation \( S:EXPR(INT) \rightarrow EXPR(INT) \)

\[ s(e)(n) = e(n+1) \]

and an \( S \)-derivation defined by \( DF:EXPR(INT) \rightarrow EXPR(INT) \) as

\[ DF(e)(n) = e(n+1) - e(n) \]

Define \( S \) to be a “shift” operator, which acts on expressions with the discrete variable \( n \):
S:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])

Define DF to be a “difference” operator, which acts on expressions with a discrete variable n:

DF:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])-e

Then define the difference operator algebra D0:

D0:=OREUP('D,EXPR(INT),morphism S,DF)

u:=(operator 'u)[n]

L:D0:='D+u

L**2

A fourth example

)clear all

As a fourth example, we construct a skew polynomial ring by using an inner derivation δ induced by a fixed y in R:

δ(r) = yr - ry

First we should expose the constructor SquareMatrix so it is visible in the interpreter:

)set expose add constructor SquareMatrix

Define R to be the square matrix with integer entries:

R:=SQMATRIX(2,INT)

y:R:=matrix [ [1,1],[0,1] ]
Define the inner derivative $\delta$:

\[ \delta: \mathbb{R} \rightarrow \mathbb{R} := r \mapsto y \cdot r - r \cdot y \]

Define $S$ to be a skew polynomial determined by $\sigma = 1$ and $\delta$ as an inner derivative:

\[ S := \text{OREUP}('x, \mathbb{R}, 1, \delta) \]

\[ x : S := 'x \]

\[ a : S := \text{matrix} \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \]

\[ x^2 \cdot a = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} x^2 + \begin{bmatrix} 2 & -2 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \]

### 9.98 UniversalSegment

The `UniversalSegment` domain generalizes `Segment` by allowing segments without a “hi” end point.

\[ \text{pints := 1..} \]

\[ 1.. \]

\[ \text{Type: UniversalSegment PositiveInteger} \]

\[ \text{nevens := (0..) by -2} \]

\[ 0.. \text{by } -2 \]

\[ \text{Type: UniversalSegment NonNegativeInteger} \]
Values of type `Segment` are automatically converted to type `UniversalSegment` when appropriate.

```
useg: UniversalSegment(Integer) := 3..10
```

```
3..10
```

```
Type: UniversalSegment Integer
```

The operation `hasHi` is used to test whether a segment has a hi end point.

```
hasHi pints
```

```
false
```

```
Type: Boolean
```

```
hasHi nevens
```

```
false
```

```
Type: Boolean
```

```
hasHi useg
```

```
true
```

```
Type: Boolean
```

All operations available on type `Segment` apply to `UniversalSegment`, with the proviso that expansions produce streams rather than lists. This is to accommodate infinite expansions.

```
expand pints
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...]
```

```
Type: Stream Integer
```

```
expand nevens
```

```
[0, -2, -4, -6, -8, -10, -12, -14, -16, -18, ...]
```
9.99 Vector

The Vector domain is used for storing data in a one-dimensional indexed data structure. A vector is a homogeneous data structure in that all the components of the vector must belong to the same Axiom domain. Each vector has a fixed length specified by the user; vectors are not extensible. This domain is similar to the OneDimensionalArray domain, except that when the components of a Vector belong to a Ring, arithmetic operations are provided. For more examples of operations that are defined for both Vector and OneDimensionalArray, see OneDimensionalArray on page 674.

As with the OneDimensionalArray domain, a Vector can be created by calling the operation new, its components can be accessed by calling the operations elt and qelt, and its components can be reset by calling the operations setelt and qsetelt.

This creates a vector of integers of length 5 all of whose components are 12.

\[
\begin{align*}
u & : \text{VECTOR INT} := \text{new}(5,12) \\
& \quad [12,12,12,12,12]
\end{align*}
\]

This is how you create a vector from a list of its components.

\[
\begin{align*}
v & : \text{VECTOR INT} := \text{vector}([1,2,3,4,5]) \\
& \quad [1,2,3,4,5]
\end{align*}
\]
#(v)

5

Type: PositiveInteger

This is the standard way to use \texttt{elt} to extract an element. Functionally, it is the same as if you had typed \texttt{elt(v,2)}.

\texttt{v.2}

2

Type: PositiveInteger

This is the standard way to use \texttt{setelt} to change an element. It is the same as if you had typed \texttt{setelt(v,3,99)}.

\texttt{v.3 := 99}

99

Type: PositiveInteger

Now look at \texttt{v} to see the change. You can use \texttt{qelt} and \texttt{qsetelt} (instead of \texttt{elt} and \texttt{setelt}, respectively) but only when you know that the index is within the valid range.

\texttt{v}

[1, 2, 99, 4, 5]

Type: Vector Integer

When the components belong to a Ring, Axiom provides arithmetic operations for Vector. These include left and right scalar multiplication.

\texttt{5 * v}

[5, 10, 495, 20, 25]

Type: Vector Integer
9.100. Void

When an expression is not in a value context, it is given type Void. For example, in the expression

\[ r := (a; b; \text{if } c \text{ then } d \text{ else } e; f) \]
values are used only from the subexpressions \( c \) and \( f \): all others are thrown away. The subexpressions \( a, b, d \) and \( e \) are evaluated for side-effects only and have type \( \text{Void} \). There is a unique value of type \( \text{Void} \).

You will most often see results of type \( \text{Void} \) when you declare a variable.

\[
a : \; \text{Integer}
\]

\[
\text{Type: Void}
\]

Usually no output is displayed for \( \text{Void} \) results. You can force the display of a rather ugly object by issuing \( \text{\texttt{\textbackslash set message void on}} \).

\[
\text{\texttt{\textbackslash set message void on}}
\]

\[
b : \; \text{Fraction Integer}
\]

\[
"()"
\]

\[
\text{Type: Void}
\]

\[
\text{\texttt{\textbackslash set message void off}}
\]

All values can be converted to type \( \text{Void} \).

\[
3 :: \text{Void}
\]

\[
\text{Type: Void}
\]

Once a value has been converted to \( \text{Void} \), it cannot be recovered.

\[
\% :: \; \text{PositiveInteger}
\]

Cannot convert from type \( \text{Void} \) to \( \text{PositiveInteger} \) for value "()"
9.101 WuWenTsunTriangularSet

The WuWenTsunTriangularSet domain constructor implements the characteristic set method of Wu Wen Tsun. This algorithm computes a list of triangular sets from a list of polynomials such that the algebraic variety defined by the given list of polynomials decomposes into the union of the regular-zero sets of the computed triangular sets. The constructor takes four arguments. The first one, $R$, is the coefficient ring of the polynomials; it must belong to the category IntegralDomain. The second one, $E$, is the exponent monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. The third one, $V$, is the ordered set of variables; it must belong to the category OrderedSet. The last one is the polynomial ring; it must belong to the category RecursivePolynomialCategory$(R,E,V)$. The abbreviation for WuWenTsunTriangularSet is WUTSET.

Let us illustrate the facilities by an example.

Define the coefficient ring.

\[
R := \text{Integer}
\]

\[
\text{Integer}
\]

Define the list of variables,

\[
l_s : \text{List Symbol} := [x,y,z,t]
\]

\[
[x, y, z, t]
\]

Define the list of variables,

\[
l_s : \text{List Symbol} := [x,y,z,t]
\]

\[
[x, y, z, t]
\]

and make it an ordered set;

\[
V := \text{OVAR}(l_s)
\]

\[
\text{OrderedVariableList [x,y,z,t]}
\]

then define the exponent monoid.

\[
E := \text{IndexedExponents} V
\]

\[
\text{IndexedExponents OrderedVariableList [x,y,z,t]}
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Domain

Define the polynomial ring.

\[ P := \text{NSMP}(R, V) \]

\[
\text{NewSparseMultivariatePolynomial}(\text{Integer}, \text{OrderedVariableList } [x, y, z, t])
\]

Type: Domain

Let the variables be polynomial.

\[ x : P ::= 'x \]

\[ x \]

Type: NewSparseMultivariatePolynomial(\text{Integer}, \text{OrderedVariableList } [x, y, z, t])

\[ y : P ::= 'y \]

\[ y \]

Type: NewSparseMultivariatePolynomial(\text{Integer}, \text{OrderedVariableList } [x, y, z, t])

\[ z : P ::= 'z \]

\[ z \]

Type: NewSparseMultivariatePolynomial(\text{Integer}, \text{OrderedVariableList } [x, y, z, t])

\[ t : P ::= 't \]

\[ t \]

Type: NewSparseMultivariatePolynomial(\text{Integer}, \text{OrderedVariableList } [x, y, z, t])

Now call the \texttt{WuWenTsunTriangularSet} domain constructor.
\( T := \text{WUTSET}(R,E,V,P) \)

\[
\begin{align*}
\text{WuWenTsunTriangularSet}(\text{Integer, IndexedExponentsOrderedVariableList}[x,y,z,t], \\
\text{OrderedVariableList}[x,y,z,t], \\
\text{NewSparseMultivariatePolynomial}(\text{Integer, OrderedVariableList}[x,y,z,t]))
\end{align*}
\]

Type: Domain

Define a polynomial system.

\( p_1 := x^{31} - x^6 - x - y \)

\( x^{31} - x^6 - x - y \)

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( p_2 := x^8 - z \)

\( x^8 - z \)

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( p_3 := x^{10} - t \)

\( x^{10} - t \)

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( lp := [p_1, p_2, p_3] \)

\( [x^{31} - x^6 - x - y, x^8 - z, x^{10} - t] \)

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Compute a characteristic set of the system.
chapteristicSet(lp)$T

\{z^5 - t^4,
 t^4 z^2 y^2 + 2 t^3 z^4 y + (-t^7 + 2 t^4 - t) z^6 + t^6 z,
 (t^3 - 1) z^3 x - z^3 y - t^3\}\n
Type: Union( WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[x,y,z,t])),...)

Solve the system.

zeroSetSplit(lp)$T

[\{(t,z,y,x),\{t^3 - 1, z^5 - t^4, z^3 y + t^3, z x^2 - t\},
 z^5 - t^4, t^4 z^2 y^2 + 2 t^3 z^4 y + (-t^7 + 2 t^4 - t) z^6 + t^6 z,
 (t^3 - 1) z^3 x - z^3 y - t^3\}]\n
Type: List WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

The RegularTriangularSet and SquareFreeRegularTriangularSet
domain constructors, the LazardSetSolvingPackage package
constructors as well as, SquareFreeRegularTriangularSet and
ZeroDimensionalSolvePackage package constructors also provide
operations to compute triangular decompositions of algebraic varieties.

These five constructor use a special kind of characteristic sets, called regular triangular
sets. These special characteristic sets have better properties than the general ones. Regular
triangular sets and their related concepts are presented in the paper “On the Theories of
Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of
Symbolic Computation). The decomposition algorithm (due to the third author) available
in the four above constructors provide generally better timings than the characteristic set
method. In fact, the WUTSET constructor remains interesting for the purpose of manipulating
characteristic sets whereas the other constructors are more convenient for solving polynomial
systems.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.
9.102 XPBWPolynomial

Initialisations

\[ a \text{:=} 'a \]

\[ a \text{ Type: Symbol} \]

\[ b \text{:=} 'b \]

\[ b \text{ Type: Symbol} \]

\[ \text{RN} := \text{Fraction(Integer)} \]

\[ \text{Fraction Integer} \text{ Type: Domain} \]

\[ \text{word} := \text{OrderedFreeMonoid Symbol} \]

\[ \text{OrderedFreeMonoid Symbol} \text{ Type: Domain} \]

\[ \text{lword} := \text{LyndonWord(Symbol)} \]

\[ \text{LyndonWord Symbol} \text{ Type: Domain} \]

\[ \text{base} := \text{PoincareBirkhoffWittLyndonBasis Symbol} \]

\[ \text{PoincareBirkhoffWittLyndonBasis Symbol} \text{ Type: Domain} \]
dpoly := XDistributedPolynomial(Symbol, RN)  
XDistributedPolynomial(Symbol,Fraction Integer)  
Type: Domain

rpoly := XRecursivePolynomial(Symbol, RN)  
XRecursivePolynomial(Symbol,Fraction Integer)  
Type: Domain

lpoly := LiePolynomial(Symbol, RN)  
LiePolynomial(Symbol,Fraction Integer)  
Type: Domain

poly := XPBWPolynomial(Symbol, RN)  
XPBWPolynomial(Symbol,Fraction Integer)  
Type: Domain

liste : List lword := LyndonWordsList([a,b], 6)  

Type: List LyndonWord Symbol

Let’s make some polynomials

O$poly

0
1$poly$

1
Type: XPBWPolynomial(Symbol,Fraction Integer)

p : poly := a

[a]
Type: XPBWPolynomial(Symbol,Fraction Integer)

q : poly := b

[b]
Type: XPBWPolynomial(Symbol,Fraction Integer)

pq: poly := p*q

[a b] + [b] [a]
Type: XPBWPolynomial(Symbol,Fraction Integer)

Coerce to distributed polynomial

pq :: dpoly

a b
Type: XDistributedPolynomial(Symbol,Fraction Integer)

Check some polynomial operations

mirror pq

[b] [a]
listOfTerms pq

\[
[[k = [b][a], c = 1], [k = [a][b], c = 1]]
\]

Type: List Record(k: PoincareBirkhoffWittLyndonBasis Symbol, c: Fraction Integer)

reductum pq

\[ [a][b] \]

Type: XPBWPolynomial(Symbol, Fraction Integer)

leadingMonomial pq

\[ [b][a] \]

Type: PoincareBirkhoffWittLyndonBasis Symbol

coefficients pq

\[ [1, 1] \]

Type: List Fraction Integer

leadingTerm pq

\[ [k = [b][a], c = 1] \]

Type: Record(k: PoincareBirkhoffWittLyndonBasis Symbol, c: Fraction Integer)

degree pq

2

Type: PositiveInteger
pq4:=exp(pq,4)

\[ 1 + [a \ b] + [b] \ a + \frac{1}{2} \ [a \ b] \ [a \ b] + \frac{1}{2} \ [a \ b^2] \ [a] + \frac{1}{2} \ [b] \ [a^2 \ b] + \]
\[
\frac{3}{2} \ [b] \ [a \ b] \ [a] + \frac{1}{2} \ [b] \ [b] \ [a] \ [a]
\]

Type: XPBWPolynomial(Symbol,Fraction Integer)

\( \log(pq4,4) - pq \)

0

Type: XPBWPolynomial(Symbol,Fraction Integer)

Calculations with verification in XDistributedPolynomial.

lp1 :lpoly := LiePoly liste.10

\[ [a^3 \ b^2] \]

Type: LiePolynomial(Symbol,Fraction Integer)

lp2 :lpoly := LiePoly liste.11

\[ [a^2 \ b \ a \ b] \]

Type: LiePolynomial(Symbol,Fraction Integer)

lp :lpoly := [lp1, lp2]

\[ [a^3 \ b^2 \ a^2 \ b \ a \ b] \]

Type: LiePolynomial(Symbol,Fraction Integer)

lpd1: dpoly := lp1

\[ a^3 \ b^2 - 2 \ a^2 \ b \ a \ b - a^2 \ b^2 \ a + 4 \ a \ b \ a \ b \ a - a \ b^2 \ a^2 - 2 \ b \ a \ b \ a^2 + b^2 \ a^3 \]

Type: XDistributedPolynomial(Symbol,Fraction Integer)
Calculations with verification in XRecursivePolynomial.

\[
p := 3 \times lp
\]

\[
3 \left[ a^3 b^2 a^2 b a b \right]
\]
9.102. XPBW POLYNOMIAL

Type: XPBWPolynomial(Symbol,Fraction Integer)

q := lp1

\[a^3 b^2\]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pq := p * q

\[3 [a^3 b^2 a^2 b a b] [a^3 b^2]\]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pr:rpoly := p :: rpoly

\[a (a b b (a (a b (a b 3 + b a (-3)) + b) (a b (-9) + b a 12) + b a a (-3))) + b a (a b 6 + b a (-9)) + b a a 3) + b (a b (a (a b (-3) + b b a 9) + b (a (a b 18 + b a (-36)) + b a a 9)) + b (a a (a b (-12) + b a 18) + b a a a (-3)) + b a (a (a b b 3 + b a b (-9)) + b a a b 9) + b (a (a b (-6) + b a 9) + b a a a (-9)) + b a a a (-3)) + b (a b a a (-18) + b a a 9)) + b (a (a b b (-12) + b a b 36) + b a a b (-36)) + b (a (a a 24 + b a (-36)) + b a a 36) + b a a a (-9)) + b a a a 3)) + b (a (a b (a (a b b (-9))) + b a a a (a (a b 3 + b a b (-9))) + b a a a (-9)) + b a a (a (a b (-6) + b a 9) + b a a (-9)) + b a a a 3))) + b (a (a b a a 3))) + b (a b b (-6) + b (a b 12 + b a 6) + b (a b a (-24) + b a a 6)) + b b a b (-6) + b a a a (-6)) + b a a (a (a b b 9 + b (a b (-18) + b a (-36)) + b a b a a (-9))) + b (a b a a (-18) + b a a a (-9))) + b a a (a (a b b (-3) + b b a 9) + b b a a (-3))) + b a a (a (a b b (-3) + b a b 18) + b a a a (-3))) + b a a a (a (a b 3 + b a a (-3)) + b (a (a b (-9) + b a 12) + b a a (-3))) + b a a a (-3)) + b a (a (a b b (-9) + b a a (-9)) + b a a 3))

Type: XRecursivePolynomial(Symbol,Fraction Integer)

qr:rpoly := q :: rpoly
a (a b b 1 + b (a b (-2) + b a (-1))) +
b (a b a 4 + b a a (-1)) +
b (a b a a (-2) + b a a a)

Type: XRecursivePolynomial(Symbol,Fraction Integer)

pq :: rpol - pr*qr

0

Type: XRecursivePolynomial(Symbol,Fraction Integer)

9.103 XPolynomial

The XPolynomial domain constructor implements multivariate polynomials whose set of variables is Symbol. These variables do not commute. The only parameter of this constructor is the coefficient ring which may be non-commutative. However, coefficients and variables commute. The representation of the polynomials is recursive. The abbreviation for XPolynomial is XPOLY.

Constructors like XPolynomialRing, XRecursivePolynomial as well as XDistributedPolynomial, LiePolynomial and XPEWPolynomial implement multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the XPOLY domain constructor.

Define a polynomial ring over the integers.

poly := XPolynomial(Integer)

XPolynomial Integer

Type: Domain

Define a first polynomial,

pr: poly := 2*x + 3*y-5

-5 + x 2 + y 3

Type: XPolynomial Integer
and a second one.

\[
\text{pr2: poly := pr*pr} \\
25 + x (-20 + x 4 + y 6) + y (-30 + x 6 + y 9)
\]

Type: XPolynomial Integer

Rewrite \( \text{pr} \) in a distributive way,

\[
\text{pd := expand pr} \\
-5 + 2 x + 3 y
\]

Type: XDistributedPolynomial(Symbol,Integer)

compute its square,

\[
\text{pd2 := pd*pd} \\
25 - 20 x - 30 y + 4 x^2 + 6 x y + 6 y x + 9 y^2
\]

Type: XDistributedPolynomial(Symbol,Integer)

and checks that:

\[
\text{expand(pr2) - pd2} \\
0
\]

Type: XDistributedPolynomial(Symbol,Integer)

We define:

\[
\text{qr := pr**3} \\
-125 + x (150 + x (-60 + x 8 + y 12) + y (-90 + x 12 + y 18)) + y (225 + x (-90 + x 12 + y 18) + y (-135 + x 18 + y 27))
\]

Type: XPolynomial Integer
and:

\[
qd := pd**3
\]

\[
-125 + 150 \, x + 225 \, y - 60 \, x^2 - 90 \, x \, y - 90 \, y \, x - 135 \, y^2 + 8 \, x^3 + 12 \, x^2 \, y + 12 \, x \, y \, x + 18 \, x \, y^2 + 12 \, y \, x^2 + 18 \, y \, x \, y + 18 \, y^2 \, x + 27 \, y^3
\]

Type: XDistributedPolynomial(Symbol,Integer)

We truncate \(qd\) at degree 3:

\[
\text{trunc}(qd,2)
\]

\[
-125 + 150 \, x + 225 \, y - 60 \, x^2 - 90 \, x \, y - 90 \, y \, x - 135 \, y^2
\]

Type: XDistributedPolynomial(Symbol,Integer)

The same for \(qr\):

\[
\text{trunc}(qr,2)
\]

\[
-125 + x \,(150 + x \,(-60) + y \,(-90)) + y \,(225 + x \,(-90) + y \,(-135))
\]

Type: XPolynomial Integer

We define:

\(\text{Word} := \text{OrderedFreeMonoid Symbol}\)

OrderedFreeMonoid Symbol

Type: Domain

and:

\(w : \text{Word} := x \, y^*2\)

\(x \, y^2\)

Type: OrderedFreeMonoid Symbol
We can compute the right-quotient of \( qr \) by \( r \):

\[
r \text{quo}(qr, w)
\]

and the shuffle-product of \( pr \) by \( r \):

\[
sh(pr, w::poly)
\]

\[
x (x y y 4 + y (x y 2 + y (-5 + x 2 + y 9))) + y x y y 3
\]

The \texttt{XPolynomialRing} domain constructor implements generalized polynomials with coefficients from an arbitrary \texttt{Ring} (not necessarily commutative) and whose exponents are words from an arbitrary \texttt{OrderedMonoid} (not necessarily commutative too). Thus these polynomials are (finite) linear combinations of words.

This constructor takes two arguments. The first one is a \texttt{Ring} and the second is an \texttt{OrderedMonoid}. The abbreviation for \texttt{XPolynomialRing} is \texttt{XPR}.

Other constructors like \texttt{XPolynomial}, \texttt{XRecursivePolynomial}, \texttt{XDistributedPolynomial}, \texttt{LiePolynomial} and \texttt{XPBWPolynomial} implement multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the \texttt{XPR} domain constructor.

Define the free ordered monoid generated by the symbols.

\[
\text{Word} := \text{OrderedFreeMonoid(Symbol)}
\]

\[
\text{OrderedFreeMonoid Symbol}
\]

Type: Domain

Define the linear combinations of these words with integer coefficients.

\[
poly := \text{XPR(Integer,Word)}
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

Then we define a first element from poly.

\[ p: \text{poly} := 2 \times x - 3 \times y + 1 \]

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

And a second one.

\[ q: \text{poly} := 2 \times x + 1 \]

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

We compute their sum,

\[ p + q \]

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

their product,

\[ p \times q \]

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

and see that variables do not commute.

\[ (p+q)^2 - p^2 - q^2 - 2p*q \]

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
Now we define a ring of square matrices,

\[ M := \text{SquareMatrix}(2, \text{Fraction Integer}) \]

\[ \text{SquareMatrix}(2, \text{Fraction Integer}) \]

\[ \text{Type: Domain} \]

and the linear combinations of words with these matrices as coefficients.

\[ \text{poly1} := \text{XPR}(M, \text{Word}) \]

\[ \text{XPolynomialRing}(\text{SquareMatrix}(2, \text{Fraction Integer}), \text{OrderedFreeMonoidSymbol}) \]

\[ \text{Type: Domain} \]

Define a first matrix,

\[ m1: M := \text{matrix} \left[ \left[ i*\text{j}^2 \right] \text{for } i \text{ in } 1..2 \right] \text{for } j \text{ in } 1..2 \]

\[
\begin{bmatrix}
1 & 2 \\
4 & 8 \\
\end{bmatrix}
\]

\[ \text{Type: SquareMatrix}(2, \text{Fraction Integer}) \]

a second one,

\[ m2: M := m1 - 5/4 \]

\[
\begin{bmatrix}
-\frac{1}{4} & 2 \\
4 & \frac{27}{4} \\
\end{bmatrix}
\]

\[ \text{Type: SquareMatrix}(2, \text{Fraction Integer}) \]

and a third one.

\[ m3: M := m2**2 \]

\[
\begin{bmatrix}
\frac{129}{16} & \frac{13}{26} \\
\frac{857}{16} & \frac{13}{26} \\
\end{bmatrix}
\]
Define a polynomial,

\[ \text{pm:poly1 := m1*x + m2*y + m3*z - 2/3} \]

\[
\begin{bmatrix}
-\frac{2}{3} & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & \frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
+ \begin{bmatrix}
\frac{1}{4} & 2 & \frac{27}{4} \\
\frac{1}{2} & \frac{16}{26} & \frac{857}{16}
\end{bmatrix}
\]

Type: \text{XPolynomialRing( SquareMatrix(2,Fraction Integer), OrderedFreeMonoid Symbol)}

a second one, \n
\[ \text{qm:poly1 := pm - m1*x} \]

\[
\begin{bmatrix}
-\frac{2}{3} & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & \frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
+ \begin{bmatrix}
\frac{1}{4} & 2 & \frac{27}{4} \\
\frac{1}{2} & \frac{16}{26} & \frac{857}{16}
\end{bmatrix}
\]

Type: \text{XPolynomialRing( SquareMatrix(2,Fraction Integer), OrderedFreeMonoid Symbol)}

and the following power.

\[ \text{qm**3} \]

\[
\begin{bmatrix}
-\frac{8}{27} & 0 & 0 \\
0 & -\frac{8}{27} & 0 \\
0 & 0 & -\frac{8}{27}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
+ \begin{bmatrix}
\frac{1}{9} & \frac{8}{3} & \frac{32}{9} \\
\frac{1}{3} & \frac{8}{9} & \frac{32}{9}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
+ \begin{bmatrix}
\frac{43}{9} & \frac{104}{9} & \frac{52}{9} \\
\frac{104}{3} & \frac{857}{12} & \frac{52}{3}
\end{bmatrix}
\]

Type: \text{XPolynomialRing( SquareMatrix(2,Fraction Integer), OrderedFreeMonoid Symbol)}
Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)

9.105 ZeroDimensionalSolvePackage

The ZeroDimensionalSolvePackage package constructor provides operations for computing symbolically the complex or real roots of zero-dimensional algebraic systems. The package provides no multiplicity information (i.e. some returned roots may be double or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible regular chains. These representations are computed by the univariateSolve operation (by calling the InternalRationalUnivariateRepresentationPackage package constructor which does the job).

Real roots are given by means of tuples of coordinates lying in the RealClosure of the coefficient ring. They are computed by the realSolve and positiveSolve operations. The former computes all the solutions of the input system with real coordinates whereas the later concentrate on the solutions with (strictly) positive coordinates. In both cases, the computations are performed by the RealClosure constructor.

Both computations of complex roots and real roots rely on triangular decompositions. These decompositions can be computed in two different ways. First, by applying the zeroSetSplit operation from the REGSET domain constructor. In that case, no Groebner bases are computed. This strategy is used by default. Secondly, by applying the zeroSetSplit from LEXTRIPK. To use this later strategy with the operations univariateSolve, realSolve and positiveSolve one just needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

The ZeroDimensionalSolvePackage constructor takes three arguments. The first one $R$ is the coefficient ring; it must belong to the categories OrderedRing, EuclideanDomain, CharacteristicZero and RealConstant. This means essentially that $R$ is Integer or Fraction(Integer). The second argument $ls$ is the list of variables involved in the systems to solve. The third one MUST BE concat($ls,s$) where $s$ is an additional symbol used for the univariate representations. The abbreviation for ZeroDimensionalSolvePackage is ZDSOLVE.

We illustrate now how to use the constructor ZDSOLVE by two examples: the Arnborg and Lazard system and the $L$-3 system (Aubry and Moreno Maza). Note that the use of this package is also demonstrated in the example of the LexTriangularPackage constructor.

Define the coefficient ring.

$R := \text{Integer}$
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Define the lists of variables:

\[ \text{ls : List Symbol} := [x, y, z, t] \]

\[ [x, y, z, t] \]

Type: List Symbol

and:

\[ \text{ls2 : List Symbol} := [x, y, z, t, \text{new()}$Symbol] \]

\[ [x, y, z, t, \%A] \]

Type: List Symbol

Call the package:

\[ \text{pack := ZDSOLVE(R,ls,ls2)} \]

\[ \text{ZeroDimensionalSolvePackage(Integer,[x, y, z, t],[x, y, z, t}, \%A)] \]

Type: Domain

Define a polynomial system (Arnborg-Lazard)

\[ \text{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y + x*z + y*z} \]

\[ x \ y \ z^2 + (x \ y^2 + (x^2 + x + 1) \ y + x) \ z + x \ y \]

Type: Polynomial Integer

\[ \text{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z} \]

\[ x \ y^2 \ z^2 + (x^2 \ y^2 + (x^2 + x + 1) \ y + 1) \ z + x \]

Type: Polynomial Integer

\[ \text{p3 := x**2*y**2*z**2 + x**2*y**2*z**2 + x*y**2*z + x*y*z + x*z + z + 1} \]

Type: Polynomial Integer
\[ x^2 y^2 z^2 + ((x^2 + x) y^2 + x y + x + 1) z + 1 \]

Type: Polynomial Integer

\[ \text{l}p := [p1, p2, p3] \]

\[ [x y z^2 + (x y^2 + (x^2 + x + 1) y + x) z + x y, \]
\[ x y^2 z^2 + (x^2 y^2 + (x^2 + x + 1) y + 1) z + x, \]
\[ x^2 y^2 z^2 + ((x^2 + x) y^2 + x y + x + 1) z + 1] \]

Type: List Polynomial Integer

Note that these polynomials do not involve the variable \( t \); we will use it in the second example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

\[ \text{triangSolve(l)p}$pack \]
We can see easily from this decomposition (consisting of a single regular chain) that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

\[
\left\{ z^{20} - 6 z^{19} - 41 z^{18} + 71 z^{17} + 106 z^{16} + 92 z^{15} + 197 z^{14} + 145 z^{13} + 257 z^{12} + 278 z^{11} + 201 z^{10} + 278 z^9 + 257 z^8 + 145 z^7 + 197 z^6 + 92 z^5 + 106 z^4 + 71 z^3 - 41 z^2 - 6 z + 1, \\
(14745844 z^{19} + 50357474 z^{18} - 130948857 z^{17} - 185261586 z^{16} - 180077775 z^{15} - 338007307 z^{14} - 275379623 z^{13} - 543190404 z^{12} - 474597456 z^{11} - 366147695 z^{10} - 481433567 z^9 - 430613166 z^8 - 261878358 z^7 - 326073537 z^6 - 163008796 z^5 - 177213227 z^4 - 104356755 z^3 + 65241699 z^2 + 9237732 z - 1567348 \right) \ y + 1917314 z^{19} + 6508991 z^{18} - 16973165 z^{17} - 24000259 z^{16} - 23349192 z^{15} - 43786426 z^{14} - 35696474 z^{13} - 58724172 z^{12} - 61480792 z^{11} - 47452440 z^{10} - 62378085 z^9 - 55776527 z^8 - 33940618 z^7 - 42233406 z^6 - 21122875 z^5 - 22958177 z^4 - 13504569 z^3 + 8448317 z^2 + 1195888 z - 202934, \\
((z^3 - 2 z) y^2 + (-z^3 - z^2 - 2 z - 1) y - z^2 - z + 1) x + z^2 - 1 \right\}
\]

Type: List RegularChain(Integer, [x, y, z, t])

We can see easily from this decomposition (consisting of a single regular chain) that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

\[
\text{univariateSolve(1p)$pack}
\]
We see that the zeros of our regular chain are split into three components. This is due to the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible univariate polynomial \( p(\xi) \) which defines a simple algebraic extension of the field of fractions of \( \mathbb{R} \). The second one consists of multivariate polynomials \( \text{pol1}(x,\%A) \), \( \text{pol2}(y,\%A) \) and \( \text{pol3}(z,\%A) \). Each of these polynomials involve two variables: one is an indeterminate \( x \), \( y \) or \( z \) of the input system \( \text{lp} \) and the other is \( \%A \) which represents any root of \( p(\xi) \). Recall that this \( \%A \) is the last element of the third parameter of \text{ZDSOLVE}. Thus any complex root \( \xi \) of \( p(\xi) \) leads to a solution of the input system \( \text{lp} \) by replacing \( \%A \) by this \( \xi \) in \( \text{pol1}(x,\%A) \), \( \text{pol2}(y,\%A) \) and \( \text{pol3}(z,\%A) \). Note that the polynomials \( \text{pol1}(x,\%A) \), \( \text{pol2}(y,\%A) \) and \( \text{pol3}(z,\%A) \) have degree one w.r.t. \( x \), \( y \) or \( z \) respectively. This is always the case for all univariate representations. Hence the operation \text{univariateSolve} replaces a system of multivariate polynomials by a list of univariate polynomials, what justifies its name. Another example of univariate representations illustrates the \text{LexTriangularPackage} package constructor.

We now compute the solutions with real coordinates:

\[ lr := \text{realSolve(lp)} \]
\[
\begin{align*}
[&\% B_1, \\
1184459 & \% B_1^{19} - \frac{2335702}{548457} \% B_1^{18} - \frac{5460230}{182819} \% B_1^{17} + \frac{79900378}{1645371} \% B_1^{16} + \\
43953929 & \% B_1^{15} + \frac{13420192}{182819} \% B_1^{14} + \frac{553986}{3731} \% B_1^{13} + \frac{193381378}{1645371} \% B_1^{12} + \\
35978916 & \% B_1^{11} + \frac{358660781}{1645371} \% B_1^{10} + \frac{271667666}{1645371} \% B_1^9 + \frac{118784873}{548457} \% B_1^8 + \\
337505020 & \% B_1^7 + \frac{1389370}{11193} \% B_1^6 + \frac{688291}{4459} \% B_1^5 + \frac{3378002}{42189} \% B_1^4 + \\
140671876 & \% B_1^3 + \frac{32325724}{548457} \% B_1^2 - \frac{8270}{343} \% B_1 - \frac{9741532}{1645371}, \\
- & \frac{91729}{705159} \% B_1^{19} + \frac{487915}{705159} \% B_1^{18} + \frac{4114333}{705159} \% B_1^{17} - \frac{1276987}{235053} \% B_1^{16} - \\
13243117 & \% B_1^{15} - \frac{16292173}{705159} \% B_1^{14} - \frac{26536060}{705159} \% B_1^{13} - \frac{722714}{18081} \% B_1^{12} - \\
5382578 & \% B_1^{11} - \frac{15449995}{235053} \% B_1^{10} - \frac{14279770}{235053} \% B_1^9 - \frac{6603890}{100737} \% B_1^8 - \\
409930 & \% B_1^7 - \frac{37340389}{705159} \% B_1^6 - \frac{34893715}{705159} \% B_1^5 - \frac{26686318}{705159} \% B_1^4 - \\
801511 & \% B_1^3 - \frac{17206178}{705159} \% B_1^2 - \frac{4406102}{705159} \% B_1 + \frac{377534}{705159}].
\end{align*}
\]
\[
\begin{align*}
1184459 & \frac{B_2^{19}}{1645371} - \frac{2335702}{548457} \frac{B_2^{18}}{182819} - \frac{5460230}{182819} \frac{B_2^{17}}{1645371} + \frac{79900378}{1645371} \frac{B_2^{16}}{1645371} + \\
43953929 & \frac{B_2^{15}}{548457} + \frac{13420192}{182819} \frac{B_2^{14}}{3731} + \frac{553986}{1645371} \frac{B_2^{13}}{1645371} + \frac{193381378}{1645371} \frac{B_2^{12}}{1645371} + \\
3578916 & \frac{B_2^{11}}{182819} + \frac{35860781}{1645371} \frac{B_2^{10}}{1645371} + \frac{271667666}{1645371} \frac{B_2^9}{548457} + \frac{118784873}{548457} \frac{B_2^8}{548457} + \\
33750520 & \frac{B_2^7}{1645371} + \frac{1389370}{11193} \frac{B_2^6}{4459} + \frac{688291}{4459} \frac{B_2^5}{42189} + \frac{3378002}{42189} \frac{B_2^4}{42189} + \\
140671876 & \frac{B_2^3}{1645371} + \frac{32325724}{548457} \frac{B_2^2}{343} - \frac{8270}{343} \frac{B_2^2}{1645371}, \\
91729 & \frac{B_2^{19}}{705159} + \frac{487915}{705159} \frac{B_2^{18}}{18081} - \frac{1276987}{18081} \frac{B_2^{17}}{235053} + \frac{9741532}{235053} \frac{B_2^{16}}{235053} - \\
13243117 & \frac{B_2^{15}}{705159} - \frac{16292173}{705159} \frac{B_2^{14}}{235053} - \frac{26536060}{705159} \frac{B_2^{13}}{18081} - \frac{722714}{18081} \frac{B_2^{12}}{100737} - \\
5382578 & \frac{B_2^{11}}{100737} - \frac{15449995}{235053} \frac{B_2^{10}}{235053} - \frac{14279770}{235053} \frac{B_2^9}{100737} - \frac{6603890}{100737} \frac{B_2^8}{100737} - \\
409930 & \frac{B_2^7}{6027} - \frac{37340398}{705159} \frac{B_2^6}{705159} - \frac{34893715}{705159} \frac{B_2^5}{705159} - \frac{26686318}{705159} \frac{B_2^4}{705159} - \\
801511 & \frac{B_2^3}{26117} - \frac{17206678}{705159} \frac{B_2^2}{705159} - \frac{4406102}{705159} \frac{B_2}{705159} + \frac{377534}{705159}, \\
\end{align*}
\]
\[ \frac{1184459}{1645371} \cdot B_{3^9} - \frac{2335702}{548457} \cdot B_{3^{18}} - \frac{5460230}{182819} \cdot B_{3^{17}} + \frac{79900378}{1645371} \cdot B_{3^{16}} + \]

\[ \frac{43953929}{548457} \cdot B_{3^{15}} + \frac{13420192}{182819} \cdot B_{3^{14}} + \frac{553986}{3731} \cdot B_{3^{13}} + \frac{193381378}{1645371} \cdot B_{3^{12}} + \]

\[ \frac{35978916}{182819} \cdot B_{3^{11}} + \frac{358660781}{1645371} \cdot B_{3^{10}} + \frac{271667666}{1645371} \cdot B_{3^9} + \frac{118784873}{548457} \cdot B_{3^8} + \]

\[ \frac{337505020}{1645371} \cdot B_{3^7} + \frac{1389370}{11193} \cdot B_{3^6} + \frac{688291}{4459} \cdot B_{3^5} + \frac{3378002}{42189} \cdot B_{3^4} + \]

\[ \frac{140671876}{1645371} \cdot B_{3^3} + \frac{32325724}{548457} \cdot B_{3^2} - \frac{8270}{343} \cdot B_{3} - \frac{9741532}{1645371} \cdot B_{3}, \]

\[ - \frac{91729}{705159} \cdot B_{3^{19}} + \frac{487915}{705159} \cdot B_{3^{18}} + \frac{4114333}{705159} \cdot B_{3^{17}} - \frac{1276987}{235053} \cdot B_{3^{16}} - \]

\[ \frac{13243117}{705159} \cdot B_{3^{15}} - \frac{16292173}{705159} \cdot B_{3^{14}} - \frac{26536060}{705159} \cdot B_{3^{13}} - \frac{722714}{18081} \cdot B_{3^{12}} - \]

\[ \frac{5382578}{100737} \cdot B_{3^{11}} - \frac{15449995}{235053} \cdot B_{3^{10}} - \frac{14279770}{235053} \cdot B_{3^9} - \frac{6603890}{100737} \cdot B_{3^8} - \]

\[ \frac{409930}{6027} \cdot B_{3^7} - \frac{37340389}{705159} \cdot B_{3^6} - \frac{34893715}{705159} \cdot B_{3^5} - \frac{26686318}{705159} \cdot B_{3^4} - \]

\[ \frac{801511}{26117} \cdot B_{3^3} - \frac{17206178}{705159} \cdot B_{3^2} - \frac{4406102}{705159} \cdot B_{3} + \frac{377534}{705159} \]
\[ \begin{align*}
\frac{1184459}{1645371} \cdot B_{4}^{19} & - \frac{2335702}{548457} \cdot B_{4}^{18} - \frac{5460230}{182819} \cdot B_{4}^{17} + \frac{79900378}{1645371} \cdot B_{4}^{16} + \\
\frac{43953929}{548457} \cdot B_{4}^{15} & + \frac{13420192}{182819} \cdot B_{4}^{14} + \frac{553986}{3731} \cdot B_{4}^{13} + \frac{193381378}{1645371} \cdot B_{4}^{12} + \\
\frac{35978916}{182819} \cdot B_{4}^{11} & + \frac{358660781}{1645371} \cdot B_{4}^{10} + \frac{271667666}{1645371} \cdot B_{4}^{9} + \frac{118784873}{548457} \cdot B_{4}^{8} + \\
\frac{33750520}{1645371} \cdot B_{4}^{7} & + \frac{1389370}{11193} \cdot B_{4}^{6} + \frac{688291}{4459} \cdot B_{4}^{5} + \frac{3378002}{42189} \cdot B_{4}^{4} + \\
\frac{140671876}{1645371} \cdot B_{4}^{3} & + \frac{32325724}{548457} \cdot B_{4}^{2} - \frac{8270}{343} \cdot B_{4} - \frac{9741532}{1645371}, \\
\frac{91729}{705159} \cdot B_{4}^{19} & + \frac{487915}{705159} \cdot B_{4}^{18} + \frac{4114333}{705159} \cdot B_{4}^{17} - \frac{1276987}{235053} \cdot B_{4}^{16} - \\
\frac{13243117}{705159} \cdot B_{4}^{15} & - \frac{16292173}{705159} \cdot B_{4}^{14} - \frac{26536060}{705159} \cdot B_{4}^{13} - \frac{722714}{18081} \cdot B_{4}^{12} - \\
\frac{5382578}{100737} \cdot B_{4}^{11} & - \frac{15449995}{235053} \cdot B_{4}^{10} - \frac{14279770}{235053} \cdot B_{4}^{9} - \frac{6603990}{100737} \cdot B_{4}^{8} - \\
\frac{409930}{6027} \cdot B_{4}^{7} & - \frac{37340389}{705159} \cdot B_{4}^{6} - \frac{34893715}{705159} \cdot B_{4}^{5} - \frac{26686318}{705159} \cdot B_{4}^{4} - \\
\frac{801511}{26117} \cdot B_{4}^{3} & - \frac{17206178}{705159} \cdot B_{4}^{2} - \frac{4406102}{705159} \cdot B_{4} + \frac{377534}{705159},
\end{align*} \]
\[
\begin{align*}
1184459 & \quad B_5^{16} - \frac{2335702}{548457} \quad B_5^{18} - \frac{5460230}{182819} \quad B_5^{17} + \frac{79900378}{1645371} \quad B_5^{16} + \frac{182819}{548457} \quad B_5^{15} + \\
43953929 & \quad \frac{13420192}{182819} \quad B_5^{14} + \frac{553986}{3731} \quad B_5^{13} + \frac{193381378}{1645371} \quad B_5^{12} + \\
35978916 & \quad \frac{358660781}{1645371} \quad B_5^{10} + \frac{271667666}{1645371} \quad B_5^{9} + \frac{118784873}{548457} \quad B_5^{8} + \\
337505020 & \quad \frac{337505020}{1645371} \quad B_5^{6} + \frac{1389370}{11193} \quad B_5^{5} + \frac{688291}{4459} \quad B_5^{5} + \frac{3378002}{42189} \quad B_5^{4} + \\
140671876 & \quad \frac{140671876}{1645371} \quad B_5^{3} + \frac{32325724}{548457} \quad B_5^{2} - \frac{8270}{343} \quad B_5^{1} - \frac{9741532}{1645371}, \\
- & \quad \frac{91729}{705159} \quad B_5^{19} + \frac{487915}{705159} \quad B_5^{18} + \frac{4114333}{705159} \quad B_5^{17} - \frac{1276987}{235053} \quad B_5^{16} - \\
13243117 & \quad \frac{13243117}{705159} \quad B_5^{15} - \frac{16292173}{705159} \quad B_5^{14} - \frac{26536060}{705159} \quad B_5^{13} - \frac{722714}{18081} \quad B_5^{12} - \\
5382578 & \quad \frac{5382578}{100737} \quad B_5^{11} - \frac{15449995}{235053} \quad B_5^{10} - \frac{14279770}{235053} \quad B_5^{9} - \frac{6603890}{100737} \quad B_5^{8} - \\
409930 & \quad \frac{409930}{6027} \quad B_5^{7} - \frac{37340389}{705159} \quad B_5^{6} - \frac{34893715}{705159} \quad B_5^{5} - \frac{26686318}{705159} \quad B_5^{4} - \\
801511 & \quad \frac{801511}{26117} \quad B_5^{3} - \frac{17206178}{705159} \quad B_5^{2} - \frac{4406102}{705159} \quad B_5^{1} + \frac{377534}{705159}, \\
\end{align*}
\]
\[ \begin{align*}
&1184459 \cdot \% B_6^{19} - \frac{2335702}{548457} \cdot \% B_6^{18} - \frac{5460230}{182819} \cdot \% B_6^{17} + \frac{79900378}{1645371} \cdot \% B_6^{16} + \\
&43953929 \cdot \% B_6^{15} + \frac{13420192}{182819} \cdot \% B_6^{14} + \frac{553986}{3731} \cdot \% B_6^{13} + \frac{193381378}{1645371} \cdot \% B_6^{12} + \\
&35978916 \cdot \% B_6^{11} + \frac{358660781}{1645371} \cdot \% B_6^{10} + \frac{271667666}{1645371} \cdot \% B_6^9 + \frac{118784873}{548457} \cdot \% B_6^8 + \\
&337505020 \cdot \% B_6^7 + \frac{1893370}{11193} \cdot \% B_6^6 + \frac{688291}{4459} \cdot \% B_6^5 + \frac{3378002}{42189} \cdot \% B_6^4 + \\
&140671876 \cdot \% B_6^3 + \frac{32325724}{548457} \cdot \% B_6^2 - \frac{8270}{343} \cdot \% B_6 - \frac{9741532}{1645371}, \\
&-\frac{91729}{705159} \cdot \% B_6^{19} + \frac{487915}{705159} \cdot \% B_6^{18} + \frac{4114333}{705159} \cdot \% B_6^{17} - \frac{1276987}{235053} \cdot \% B_6^{16} - \\
&\frac{13243117}{705159} \cdot \% B_6^{15} - \frac{16292173}{705159} \cdot \% B_6^{14} - \frac{26536060}{705159} \cdot \% B_6^{13} - \frac{722714}{18081} \cdot \% B_6^{12} - \\
&\frac{5382578}{100737} \cdot \% B_6^{11} - \frac{15449995}{235053} \cdot \% B_6^{10} - \frac{14279770}{235053} \cdot \% B_6^9 - \frac{6603890}{100737} \cdot \% B_6^8 - \\
&\frac{409930}{6027} \cdot \% B_6^7 - \frac{37340389}{705159} \cdot \% B_6^6 - \frac{34893715}{705159} \cdot \% B_6^5 - \frac{26686318}{705159} \cdot \% B_6^4 - \\
&\frac{801511}{26117} \cdot \% B_6^3 - \frac{17206178}{705159} \cdot \% B_6^2 - \frac{4406102}{705159} \cdot \% B_6 + \frac{377534}{705159}. \end{align*} \]
\[ \frac{1184459}{1645371} \cdot \frac{B^{19}}{B^7} - \frac{2335702}{548457} \cdot \frac{B^{18}}{B^7} - \frac{5460230}{182819} \cdot \frac{B^{17}}{B^7} + \frac{79900378}{1645371} \cdot \frac{B^{16}}{B^7} + \]
\[ \frac{43953929}{548457} \cdot \frac{B^{15}}{B^7} + \frac{13420192}{182819} \cdot \frac{B^{14}}{B^7} + \frac{553986}{3731} \cdot \frac{B^{13}}{B^7} + \frac{193381378}{1645371} \cdot \frac{B^{12}}{B^7} + \]
\[ \frac{35978916}{182819} \cdot \frac{B^{11}}{B^7} + \frac{358660781}{1645371} \cdot \frac{B^{10}}{B^7} + \frac{271667666}{1645371} \cdot \frac{B^9}{B^7} + \frac{118784873}{548457} \cdot \frac{B^8}{B^7} + \]
\[ \frac{337505020}{1645371} \cdot \frac{B^7}{B^7} + \frac{1389370}{11193} \cdot \frac{B^6}{B^7} + \frac{688291}{4459} \cdot \frac{B^5}{B^7} + \frac{3378002}{42189} \cdot \frac{B^4}{B^7} + \]
\[ \frac{140671876}{1645371} \cdot \frac{B^3}{B^7} + \frac{32325724}{548457} \cdot \frac{B^2}{B^7} - \frac{8270}{343} \cdot \frac{B^1}{B^7} + \frac{9741532}{1645371}, \]
\[ \frac{91729}{705159} \cdot \frac{B^{19}}{B^7} + \frac{487915}{705159} \cdot \frac{B^{18}}{B^7} + \frac{4114333}{705159} \cdot \frac{B^{17}}{B^7} - \frac{1276987}{235053} \cdot \frac{B^{16}}{B^7} - \]
\[ \frac{13243117}{705159} \cdot \frac{B^{15}}{B^7} - \frac{16292173}{705159} \cdot \frac{B^{14}}{B^7} - \frac{26536060}{705159} \cdot \frac{B^{13}}{B^7} + \frac{722714}{18081} \cdot \frac{B^{12}}{B^7} - \]
\[ \frac{5382578}{100737} \cdot \frac{B^{11}}{B^7} - \frac{15449995}{235053} \cdot \frac{B^{10}}{B^7} - \frac{14279770}{235053} \cdot \frac{B^9}{B^7} - \frac{6603890}{100737} \cdot \frac{B^8}{B^7} - \]
\[ \frac{409930}{6027} \cdot \frac{B^7}{B^7} - \frac{37340389}{705159} \cdot \frac{B^6}{B^7} - \frac{34893715}{705159} \cdot \frac{B^5}{B^7} - \frac{26686318}{705159} \cdot \frac{B^4}{B^7} - \]
\[ \frac{801511}{26117} \cdot \frac{B^3}{B^7} - \frac{17206178}{705159} \cdot \frac{B^2}{B^7} - \frac{4406102}{705159} \cdot \frac{B^1}{B^7} + \frac{377534}{705159}, \]
The number of real solutions for the input system is:

\[ \# \text{lr} \]

8

Type: PositiveInteger

Each of these real solutions is given by a list of elements in \texttt{RealClosure(R)}. In these 8 lists, the first element is a value of \(z\), the second of \(y\) and the last of \(x\). This is logical since by setting the list of variables of the package to \([x,y,z,t]\) we mean that the elimination ordering on the variables is \(t < z < y < x\). Note that each system treated by the \texttt{ZDSOLVE} package constructor needs only to be zero-dimensional w.r.t. the variables involved in the system it-self and not necessarily w.r.t. all the variables used to define the package.
We can approximate these real numbers as follows. This computation takes between 30 sec. and 5 min, depending on your machine.

\[
[ \text{approximate}(r, 1/1000000) \ \text{for} \ r \ \text{in point} ] \ \text{for point in lr}
\]

\[
\begin{bmatrix}
10048059 \\
2097152
\end{bmatrix}
\]

\[
\begin{bmatrix}
4503057283025245488516511580964858266350831006937537204652580554470686 \\
56449495775009168672018894380904083548179317859386276276245515189 \\
357079304877442429148870882984032418920031436123314880208082144373 \\
37907551124363291986489542170422894957129001611949880795702366386 \\
54430039202714897968826671232335604349152343406892427528041733857 \\
481738118927706614331296681216,
\end{bmatrix}
\]

\[
\begin{bmatrix}
10048059 \\
2097152
\end{bmatrix}
\]

\[
\begin{bmatrix}
4503057283025245488516511580964858266350831006937537204652580554470686 \\
56449495775009168672018894380904083548179317859386276276245515189 \\
357079304877442429148870882984032418920031436123314880208082144373 \\
37907551124363291986489542170422894957129001611949880795702366386 \\
54430039202714897968826671232335604349152343406892427528041733857 \\
481738118927706614331296681216,
\end{bmatrix}
\]

\[
\begin{bmatrix}
210626076882347507389478868048601659624960714869068553876363871502 \\
06396808586496507900558895056468933094470970999378021873290953589 \\
87852472490207175049366048812070515661873782451465853306001120926463 \\
5166381351543559822005030528398108683711061484230702609121129792 \\
987689628568183047905476005638076266490561846205530604781619178201 \\
15887037891380881895,
\end{bmatrix}
\]

\[
\begin{bmatrix}
-261134617679192778969861769323775771923825996306354178192275233 \\
04401898996668072928334890768623593207412592598673381593224350480 \\
929483752303023737323680668167446173001727271335311571242897 \\
116522540005052225306839819160045891437572266102768589900087901348 \\
199149092214703598397139401952343320408139928153188829495755451 \\
639634176193083957754479714023146923426903492193805559384,
\end{bmatrix}
\]
\[
\begin{align*}
&\begin{pmatrix}
35725945502759172212096588296157882729985170546756032395758198141 \\
0060340917352828265906219023044696394197103892303452627329316373 \\
757450061978982286110976997087250466235373
\end{pmatrix} \\
&\begin{pmatrix}
10395482635959836877071248430260558008145511201705922005223665 \\
917594096594864423391410294529502651799899601048118758225302053465 \\
051315812439017247289173865014702966308864
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
&\begin{pmatrix}
1715967 \\
2097152
\end{pmatrix} \\
&\begin{pmatrix}
-421309353784303521084839517977082390377261503969586224828989843 \\
660603065067635937456481377349837660312126782256580143620693951995 \\
146518222580524697287410022543952491
\end{pmatrix} \\
&\begin{pmatrix}
9441814414185347458649929034342240524365974709662536639306419607 \\
958058825584931994019169917659443264824644113518738538881478673 \\
40190387560582036419585662304768
\end{pmatrix} \\
&\begin{pmatrix}
763583334712644222515625424410831225347475669008589338834162172 \\
50190499437634673087609042485208919919925302105720971453919892731 \\
3890725914035
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
&\begin{pmatrix}
26241887640860971997842976104780663393423046789585156022785809785 \\
037845492057884990196406022669660268915801035435676250390186298871 \\
4128491675648
\end{pmatrix} \\
&\begin{pmatrix}
-437701 \\
2097152
\end{pmatrix} \\
&\begin{pmatrix}
16831069086384958832212732326542259135629863131819510314152570161 \\
44149747345532815072136486835557964678160350777199075077835213366 \\
484533654913883623741304759
\end{pmatrix} \\
&\begin{pmatrix}
16831068680952133890017099827059136389630776687312261111677851880 \\
04907425226298680325887810962614140298597366984264878998083770687 \\
9999845423831649008099328,
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
&\begin{pmatrix}
4961550109835010186422680131422108735958714801003670639709768096 \\
64691282670847283444311723917219104249213450966312411133
\end{pmatrix} \\
&\begin{pmatrix}
4961549872757738315509192078210509895287971186110971262363840408 \\
29376592619431317025486746479271836349216048242215424
\end{pmatrix} \\
&\begin{pmatrix}
222801 \\
2097152
\end{pmatrix} \\
&\begin{pmatrix}
-8994848804042826510759512197069142713604569254197827557300186 \\
52137592158813771669612634910165522019514299493229913718324170586 \\
7672383477
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
&\begin{pmatrix}
11678999866502637217776510069188858527089699602299347696908357524 \\
57077779416435209473767866507769405888942764587718542432456259924 \\
56372224,
\end{pmatrix}
\end{align*}
\]
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[
\begin{pmatrix}
-238970488813315687832080154437380839561277150920849101984745299 \\
188550954651952546783901661359399969388664006328357055232115503787 \\
1291458703265
\end{pmatrix}
\]

\[
\begin{pmatrix}
53554872736549963260904328686899319059882254446854114332215938336 \\
811929575628336714686542903407469936562859255991176021204461834431 \\
45479421952
\end{pmatrix}
\]

\[
\begin{pmatrix}
765693 \\
2097152
\end{pmatrix}
\]

\[
\begin{pmatrix}
855896921981671626787324476117187918088724698958616670140213765754 \\
32200230325168578611867833084020332883765433952341870491749518340 \\
7725128990003910693073148561
\end{pmatrix}
\]

\[
\begin{pmatrix}
2941442445530107909764284113763934998155802159458569179064525354 \\
957230138568189417023032287798901412962367211381542319972389173221 \\
56711965244463931719406159488
\end{pmatrix}
\]

\[
\begin{pmatrix}
20576182305825721012476503248602425611113025815435888084392366 \\
276754938224165936271229077761280019292142057440894808195734638858 \\
2762224643325187889489699015
\end{pmatrix}
\]

\[
\begin{pmatrix}
2671592033257355380979523535014502205763137598908350970917225206 \\
4274198791791906288683989602896371475967836029248394290426164715377 \\
777753241806199536656
\end{pmatrix}
\]

\[
\begin{pmatrix}
5743879 \\
2097152
\end{pmatrix}
\]

\[
\begin{pmatrix}
1076288816968908647955546394773570208171456724942618614023663123 \\
54746896085043426397139807254659272621588334497979686174553978787 \\
562900072984768000608343355318980169340872720504761255989232757563 \\
830528689853535421809482771058917542602890060914949620874083007858 \\
36669535017662481488372463225
\end{pmatrix}
\]

\[
\begin{pmatrix}
3131768957080317946468461940023552044190376613455849862285496319 \\
1619660161621978176511553253229474652964827643058321089497093745664 \\
6057582314688858119555602908515218838883200318658407649939942600632 \\
6058982861230923159669129707986381319851571942927230340622934039 \\
234867030420681530440845099008,
\end{pmatrix}
\]

\[
\begin{pmatrix}
-211328669918575091836412047556545843787017248986548599438982813 \\
53352644446652845575264927349316917314078270143295503473341817207 \\
6098720545849008700756416053431789468836611952973998050294416266 \\
855009812796195049621022194287808935697492585059442776850225178975 \\
8706572831632503615
\end{pmatrix}
\]

\[
\begin{pmatrix}
16276155849379875802429906624347104580891144661684597180435138394 \\
083725255339080070363695955022160112110871032630095510260277694 \\
140873911481262211681397816825874380753225914661319397574572005223 \\
498356896428563444801856203827237878735446016061415180109356172 \\
051706396253618176
\end{pmatrix}
\]
We can also concentrate on the solutions with real (strictly) positive coordinates:

\[ lpr := \text{positiveSolve}(lp) \]$\text{pack}$

\[
\begin{bmatrix}
19739877 \\
2097152
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2997249936827033037990158048615209492150403875070717770128576 \\
672019253507942224789535660243598602143101547801638027716111603721 \\
287487778035809782483194292548243826858850136293417053217025823335 \\
0918096017899370298595353049004604933989738737030854310473990888 \\
0814853911321084645824588006153947774169948729587596021075021589 \\
194881447685487103135303129546733219013370267109820002822030051075 \\
1860718592845703027780739779652581386276239286996106809728032675
\end{bmatrix}
\]

\[
\begin{bmatrix}
23084332748522785907289100811918110239065044113214322646123967948 \\
7393331927068906072138193417464789363602022258191766329376317868514 \\
550147660272062590222522505551741832688896883806660025744317660472 \\
402920931967294751602472688341211418033188487286614443449272872851 \\
128970807675528648950565858640331785659103870650061128015164035227 \\
410373609905656054476949527059227070359304494125751955547088792595 \\
9552929201108585608125566354585249741554031675979542656381353984
\end{bmatrix}
\]

\[
\begin{bmatrix}
-512819826354828489096276739786894008060938410663308045940796633 \\
5845009264109499052049825316250847230100470305024497436552303892581 \\
05928931293158470135392762143543439867426304729399122850103385199 \\
069649023156604837194333795070826240101727587499829661127731837 \\
229464207165379104365545741460828470130554391262041935488514073 \\
5941057758960628222645756846183151294397397471516692046506185060 \\
3762875162561984705241258728283913914642913955
\end{bmatrix}
\]

\[
\begin{bmatrix}
2288281938778439330531208793181290471183632092553689903863908242 \\
43509463442624977308064743898773914492160779468265385174118890917 \\
117418681451149783372814918224976758683587927394664730856622562872 \\
092037244418004814057028371983106422912757671957746144438159967135 \\
0262939174978359004147060127752372996488627746274867224800632688 \\
088893249815804249493434733760375939980268208429048596781777514 \\
446574997827872616963053217673201717237252096
\end{bmatrix}
\]

Type: List List RealClosure Fraction Integer

Thus we have checked that the input system has no solution with strictly positive coordinates. Let us define another polynomial system \((L-3)\).
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

\[ f_0 := x^3 + y + z + t - 1 \]
\[ z + y + x^3 + t - 1 \]
\[ \text{Type: Polynomial Integer} \]

\[ f_1 := x + y^3 + z + t - 1 \]
\[ z + y^3 + x + t - 1 \]
\[ \text{Type: Polynomial Integer} \]

\[ f_2 := x + y + z^3 + t - 1 \]
\[ z^3 + y + x + t - 1 \]
\[ \text{Type: Polynomial Integer} \]

\[ f_3 := x + y + z + t^3 - 1 \]
\[ z + y + x + t^3 - 1 \]
\[ \text{Type: Polynomial Integer} \]

\[ lf := [f_0, f_1, f_2, f_3] \]

\[ \begin{bmatrix} 
  z + y + x^3 + t - 1, z + y^3 + x + t - 1, \\
  z^3 + y + x + t - 1, z + y + x + t^3 - 1 
\end{bmatrix} \]
\[ \text{Type: List Polynomial Integer} \]

First compute a decomposition into regular chains (i.e. regular triangular sets).

\[ lts := \text{triangSolve}(lf) \text{pack} \]

\[ \begin{bmatrix} 
  \{t^2 + t + 1, z^3 - z - t^3 + t, (3 z + 3 t^3 - 3) y^2 + (3 z^2 + (6 t^3 - 6) z + 3 t^6 - 6 t^3 + 3) y + (3 t^3 - 3) z^2 + (3 t^6 - 6 t^3 + 3) z + t^9 - 3 t^6 + 5 t^3 - 3 t, \\
  x + y + z\}, \{t^{16} - 6 t^{15} + 9 t^{14} + 4 t^7 + 15 t^4 - 54 t^2 + 27, \\
  \end{bmatrix} \]
(4907232 \, t^{15} + 40893984 \, t^{14} - 115013088 \, t^{13} + 22805712 \, t^{12} + 36330336 \, t^{11} +
162959040 \, t^{10} - 159859440 \, t^9 - 156802608 \, t^8 + 117168768 \, t^7 +
126282384 \, t^6 - 129351600 \, t^5 + 306646992 \, t^4 + 475302816 \, t^3 -
1006837776 \, t^2 - 237269088 \, t + 480716208) \, z +
48 \, t^{54} - 912 \, t^{51} + 8232 \, t^{48} - 72 \, t^{46} - 46848 \, t^{45} + 1152 \, t^{43} + 186324 \, t^{42} -
3780 \, t^{40} - 543144 \, t^{39} - 3168 \, t^{38} - 21384 \, t^{37} + 1175251 \, t^{36} + 41184 \, t^{35} +
278003 \, t^{34} - 1843242 \, t^{33} - 301815 \, t^{32} - 1440726 \, t^{31} + 1912012 \, t^{30} +
1444286 \, t^{29} + 4696262 \, t^{28} - 922481 \, t^{27} - 4816188 \, t^{26} - 10583524 \, t^{25} -
208751 \, t^{24} + 11472138 \, t^{23} + 16762859 \, t^{22} - 857663 \, t^{21} - 19328175 \, t^{20} -
18270421 \, t^{19} + 4914903 \, t^{18} + 22483044 \, t^{17} + 12926517 \, t^{16} - 8605511 \, t^{15} -
17455518 \, t^{14} - 5014597 \, t^{13} + 8108814 \, t^{12} + 8465535 \, t^{11} + 190542 \, t^{10} -
4305624 \, t^9 - 2226123 \, t^8 + 661905 \, t^7 + 1169775 \, t^6 + 226260 \, t^5 -
209952 \, t^4 - 141183 \, t^3 + 27216 \, t,
(3 \, z + 3 \, t^3 - 3) \, y^2 + (3 \, z^2 + (6 \, t^3 - 6) \, z + 3 \, t^6 - 6 \, t^3 + 3) \, y + (3 \, t^3 - 3) \, z^2 +
(3 \, t^6 - 6 \, t^3 + 3) \, z + t^9 - 3 \, t^6 + 5 \, t^3 - 3 \, t + x + y + z + t^3 - 1),
\{t, z - 1, y^2 - 1, x + y\}, \{t - 1, z, y^2 - 1, x + y\}, \{t - 1, z^2 - 1, z + 1, x + y\},
\{t^{16} - 6 \, t^{13} + 9 \, t^{10} + 4 \, t^7 + 15 \, t^4 - 54 \, t^2 + 27,
(4907232 \, t^{29} + 40893984 \, t^{28} - 115013088 \, t^{27} - 1730448 \, t^{26} - 168139584 \, t^{25} +
73802480 \, t^{24} - 195372288 \, t^{23} + 315849456 \, t^{22} - 2567279232 \, t^{21} +
937147968 \, t^{20} + 102657696 \, t^{19} + 4780488240 \, t^{18} - 2893767996 \, t^{17} -
561716052 \, t^{16} - 3427651728 \, t^{15} + 500110084 \, t^{14} + 8720098416 \, t^{13} +
233172960 \, t^{12} - 499046544 \, t^{11} - 16243306272 \, t^{10} - 9748123200 \, t^9 +
3927244320 \, t^8 + 25257280896 \, t^7 + 10348032096 \, t^6 - 17128672128 \, t^5 -
14755488768 \, t^4 + 544086720 \, t^3 + 10848188736 \, t^2 + 1423614528 \, t -
2884297248) \, z -
48 \, t^{68} + 1152 \, t^{65} - 13560 \, t^{62} + 360 \, t^{60} + 103656 \, t^{59} - 7560 \, t^{57} - 572820 \, t^{56} +
71316 \, t^{54} + 2414556 \, t^{53} - 2736 \, t^{52} - 402876 \, t^{51} - 7985131 \, t^{50} - 49248 \, t^{49} +
1431133 \, t^{48} + 20977409 \, t^{47} + 521487 \, t^{46} - 2697635 \, t^{45} - 43763654 \, t^{44} -
3755673 \, t^{43} - 2093410 \, t^{42} - 71546495 \, t^{41} + 19699032 \, t^{40} + 3502508 \, t^{39} -
89623786 \, t^{38} - 77798760 \, t^{37} - 138654191 \, t^{36} + 87596128 \, t^{35} + 235642497 \, t^{34} +
349067642 \, t^{33} - 93299834 \, t^{32} - 551563167 \, t^{31} - 630995176 \, t^{30} +
186818962 \, t^{29} + 995427468 \, t^{28} + 828416204 \, t^{27} - 393919231 \, t^{26} -
1076617485 \, t^{25} + 1609479791 \, t^{24} + 595738126 \, t^{23} + 1198787136 \, t^{22} +
4342832069 \, t^{21} + 2075938757 \, t^{20} - 4390835799 \, t^{19} - 4822843033 \, t^{18} +
6932747668 \, t^{17} + 6172196988 \, t^{16} + 1141517740 \, t^{15} - 4981677585 \, t^{14} +
981985280 \, t^{13} + 740429976 \, t^{12} - 157295760 \, t^{11} + 29124027630 \, t^{10} +
14856038208 \, t^9 + 16184101410 \, t^8 - 26935440354 \, t^7 - 3574164258 \, t^6 +
10271338974 \, t^5 + 11191425264 \, t^4 + 6869861262 \, t^3 - 9780477840 \, t^2 -
3586674168 \, t + 2884297248,
(3 z^3 + (6 t^3 - 6) z^2 + (6 t^6 - 12 t^3 + 3) \ z + 2 \ t^9 - 6 \ t^6 + t^3 + 3 \ t) \ y + \\
(3 t^3 - 3) z^3 + (6 t^6 - 12 t^3 + 6) z^2 + (4 t^9 - 12 t^6 + 11 t^3 - 3) \ z + \\
t^{12} - 4 \ t^9 + 5 \ t^6 - 2 \ t^3, x + y + z + t^3 - 1 \), \\
\{t - 1, z^2 - 1, y, x + z\}, \{t^8 + t^7 + t^6 - 2 t^5 - 2 t^4 - 2 t^3 + 19 t^2 + 19 t - 8, \\
(2395770 \ t^7 + 3934440 \ t^6 - 3902067 \ t^5 - 10084164 \ t^4 - 1010448 \ t^3 + 32386932 \ t^2 + \\
22413225 \ t - 10432368) \ z - 463519 \ t^7 + 3586833 \ t^6 + 9494955 \ t^5 - 8539305 \ t^4 - \\
33283098 \ t^3 + 35479377 \ t^2 + 46263256 \ t - 17419896, \\
(3 z^4 + (9 t^3 - 9) z^3 + (12 t^6 - 24 t^3 + 9) z^2 + (-152 t^3 + 219 t - 67) z - \\
41 t^6 + 57 t^4 + 25 t^3 - 57 t + 16) \ y + (3 t^3 - 3) z^4 + (9 t^6 - 18 t^3 + 9) z^3 + \\
(-181 t^3 + 270 t - 89) z^2 + (-92 t^6 + 135 t^4 + 49 t^3 - 135 t + 43) z + \\
27 t^7 - 27 t^6 - 54 t^4 + 396 t^3 - 486 t + 144, x + y + z + t^3 - 1 \}, \\
\{t, z - t^3 + 1, y - 1, x - 1\}, \{t - 1, z, y, x\}, \{t, z - 1, y, x\}, \{t, z, y - 1, x\}, \\
\{t, z, y, x - 1\] \\
Type: List RegularChain(Integer,[x,y,z,t])

Then we compute a univariate representation.

univariateSolve(lf)$pack
\[
\begin{align*}
\text{complexRoots} = ?, \text{coordinates} &= [x - 1, y - 1, z + 1, t - \%A], \\
\text{complexRoots} = ?, \text{coordinates} &= [x, y - 1, z, t - \%A], \\
\text{complexRoots} = ? - 1, \text{coordinates} &= [x, y, z, t - \%A], \\
\text{complexRoots} = ?, \text{coordinates} &= [x - 1, y, z, t - \%A], \\
\text{complexRoots} = ?, \text{coordinates} &= [x, y, z, t - \%A], \\
\text{complexRoots} = ? - 2, \text{coordinates} &= [x - 1, y + 1, z, t - 1], \\
\text{complexRoots} = ?, \text{coordinates} &= [x + 1, y - 1, z, t], \\
\text{complexRoots} = ? - 1, \text{coordinates} &= [x - 1, y + 1, z - 1, t], \\
\text{complexRoots} = ? + 1, \text{coordinates} &= [x + 1, y - 1, z - 1, t], \\
\text{complexRoots} = \gamma^3 - 2 \gamma^3 + 3 \gamma^2 - 3, \text{coordinates} &= \{2 \ x + \%A^3 + \%A - 1, \\
2 \ y + \%A^3 + \%A - 1, z - \%A^3, t - \%A\}, \\
\text{complexRoots} = \gamma^3 + 3 \gamma^3 - 2 \gamma^2 + 3 \gamma - 3, \text{coordinates} &= [x - \%A, \\
y - \%A, z + \%A^3 + 2 \%A - 1, t - \%A], \\
\text{complexRoots} = \gamma^3 + 2 \gamma^3 + 3 \gamma^2 - 3, \text{coordinates} &= [2 \ x - \%A^3 - \%A - 1, \\
y + \%A, 2 \ z - \%A^3 - \%A - 1, t + \%A], \\
\text{complexRoots} = \gamma^3 + \gamma^4 + 2 \gamma^3 + 8 \gamma^2 + 9 \gamma + 3, \text{coordinates} &= \{2 \ x - \%A^3 + \\
2 \ y, y + \%A^3 - 4 \%A + 1, 2 \ z - \%A^3 + 2 \%A - 1, 2 \ t - \%A^3 + 2 \%A - 1\}, \\
\text{complexRoots} = \gamma^4 - 3 \gamma^3 + 4 \gamma^2 - 6 \gamma + 13, \text{coordinates} &= \{9 \ x - 2 \%A^3 + \\
4 \%A^2 - \%A + 2 \ y, y + \%A^3 - 2 \%A^2 + 5 \%A - 19, z + \%A^3 - 2 \%A^2 + \\
5 \%A - 1, 9 \ t + \%A^3 - 2 \%A^3 - 4 \%A - 1\}], \\
\text{complexRoots} = \gamma^4 - 11 \gamma^2 + 37, \text{coordinates} &= \{3 \ x - \%A^2 + 76.6 \ y + \%A^2 + \\
3 \%A - 7, 3 \ z - \%A^2 + 7.6 \ t + \%A^2 - 3 \%A - 7\}], \\
\text{complexRoots} = ?, \text{coordinates} &= [x - 1, y, z - 1, t + 1], \\
\text{complexRoots} = ? + 2, \text{coordinates} &= [x, y, z - 1, t + 1], \\
\text{complexRoots} = ? - 2, \text{coordinates} &= [x, y - 1, z + 1, t - 1], \\
\text{complexRoots} = ?, \text{coordinates} &= [x, y + 1, z - 1, t - 1], \\
\text{complexRoots} = ?, \text{coordinates} &= [x + 1, y, z - 1, t - 1], \\
\text{complexRoots} = ? + 5 \gamma^3 + 16 \gamma^2 + 30 \gamma + 57, \text{coordinates} &= \{151 \ x + 15 \%A^3 + \\
54 \%A^2 + 104 \%A^2 + 93, 151 \ y - 10 \%A^3 - 36 \%A^2 - 19 \%A - 62, \\
151 \ z - 5 \%A^3 - 18 \%A^2 - 85 \%A - 31, 151 \ t - 5 \%A^2 - 18 \%A^2 - 85 \%A - 31\}], \\
\text{complexRoots} = ?^3 + \gamma^3 - 2 \gamma^2 + 3, \text{coordinates} &= \{x - \%A^3 + 2 \%A + 1, \\
y + \%A^3 - \%A - 1, z - \%A, t + \%A^3 - \%A - 1\}], \\
\text{complexRoots} = ?^3 + 2 \gamma^3 - 8 \gamma^2 + 48, \text{coordinates} &= \{8 \ x - \%A^3 + 4 \%A - 8, \\
2 \ y + \%A^3 - 8 \%A + 8, 8 \ t - \%A^3 + 4 \%A - 8\}], \\
\text{complexRoots} = ?^3 + \gamma^4 - 2 \gamma^3 - 4 \gamma^2 + 5 \gamma + 8, \text{coordinates} &= [3 \ x + \%A^3 - 1, 3 \ y + \%A^3 - 1, 3 \ z + \%A^3 - 1, t - \%A], \\
\text{complexRoots} = ?^3 + 3 \gamma - 1, \text{coordinates} &= [x - \%A, y - \%A, z - \%A, t - \%A]\}
\end{align*}
\]
Type: List Record( complexRoots: SparseUnivariatePolynomial Integer, 
        coordinates: List Polynomial Integer)

Note that this computation is made from the input system \( \text{If} \).
However it is possible to reuse a pre-computed regular chain as follows:

\[
\{ t^2 + t + 1, z^3 - z - t^3 + t, \\
(3 z + 3 t^3 - 3) y^2 + (3 z^2 + (6 t^3 - 6) z + 3 t^6 - 6 t^3 + 3) y + \\
(3 t^3 - 3) z^2 + (3 t^6 - 6 t^3 + 3) z + t^9 - 3 t^6 + 5 t^3 - 3 t, x + y + z \}
\]

Type: RegularChain(Integer,[x,y,z,t])

\( \text{univariateSolve(ts)} \)\( \$\text{pack} \)

\[
[ \text{complexRoots} = ?^4 + 5 ?^3 + 16 ?^2 + 30 ? + 57, \\
\text{coordinates} = [151 x + 15 \% A^3 + 54 \% A^2 + 104 \% A + 93, \\
151 y - 10 \% A^3 - 36 \% A^2 - 19 \% A - 62, \\
151 z - 5 \% A^3 - 18 \% A^2 - 85 \% A - 31, \\
151 t - 5 \% A^3 - 18 \% A^2 - 85 \% A - 31]],
\]

[ \text{complexRoots} = ?^4 - ?^3 - 2 ?^2 + 3, \\
\text{coordinates} = [x - \% A^3 + 2 \% A + 1, y + \% A^3 - \% A - 1, \\
z - \% A, t + \% A^3 - \% A - 1]],
\]

[ \text{complexRoots} = ?^4 + 2 ?^3 - 8 ?^2 + 48, \\
\text{coordinates} = [8 x - \% A^3 + 4 \% A - 8, 2 y + \% A, \\
8 z + \% A^3 - 8 \% A + 8, 8 t - \% A^3 + 4 \% A - 8]],
\]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer, 
        coordinates: List Polynomial Integer)

\( \text{realSolve(ts)} \)\( \$\text{pack} \)

\[
[]
\]

Type: List List RealClosure Fraction Integer

We compute now the full set of points with real coordinates:
lr2 := realSolve(lf)$pack

\[[0, -1, 1, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],
[1, 0, %B37, -%B37], [1, 0, %B38, -%B38],
[0, 1, %B35, -%B35], [0, 1, %B36, -%B36], [-1, 0, 1, 1],
\left[ \begin{array}{c}
%B32, \frac{1}{27} \%B32^{15} + \frac{2}{27} \%B32^{14} + \frac{1}{27} \%B32^{13} - \frac{4}{27} \%B32^{12} - \frac{11}{27} \%B32^{11} -
\frac{4}{27} \%B32^{10} + \frac{1}{27} \%B32^{9} + \frac{14}{27} \%B32^{8} + \frac{1}{27} \%B32^{7} + \frac{2}{9} \%B32^{6} + \\
\frac{1}{3} \%B32^{5} + \frac{2}{9} \%B32^{4} + \%B32^{3} + \frac{4}{3} \%B32^{2} - \%B32 - 2,
- \frac{1}{54} \%B32^{15} - \frac{1}{27} \%B32^{14} - \frac{1}{54} \%B32^{13} + \frac{2}{27} \%B32^{12} + \frac{11}{54} \%B32^{11} + \\
\frac{2}{27} \%B32^{10} - \frac{1}{54} \%B32^{9} - \frac{7}{27} \%B32^{8} - \frac{1}{54} \%B32^{7} - \frac{1}{9} \%B32^{6} - \\
\frac{1}{6} \%B32^{5} - \frac{1}{9} \%B32^{4} - \%B32^{3} - \frac{2}{3} \%B32^{2} + \frac{1}{2} \%B32 + \frac{3}{2},
- \frac{1}{54} \%B32^{15} - \frac{1}{27} \%B32^{14} - \frac{1}{54} \%B32^{13} + \frac{2}{27} \%B32^{12} + \frac{11}{54} \%B32^{11} + \\
\frac{2}{27} \%B32^{10} - \frac{1}{54} \%B32^{9} - \frac{7}{27} \%B32^{8} - \frac{1}{54} \%B32^{7} - \frac{1}{9} \%B32^{6} - \\
\frac{1}{6} \%B32^{5} - \frac{1}{9} \%B32^{4} - \%B32^{3} - \frac{2}{3} \%B32^{2} + \frac{1}{2} \%B32 + \frac{3}{2} \right],
\left[ \begin{array}{c}
%B33, \frac{1}{27} \%B33^{15} + \frac{2}{27} \%B33^{14} + \frac{1}{27} \%B33^{13} - \frac{4}{27} \%B33^{12} - \frac{11}{27} \%B33^{11} -
\frac{4}{27} \%B33^{10} + \frac{1}{27} \%B33^{9} + \frac{14}{27} \%B33^{8} + \frac{1}{27} \%B33^{7} + \frac{2}{9} \%B33^{6} + \\
\frac{1}{3} \%B33^{5} + \frac{2}{9} \%B33^{4} + \%B33^{3} + \frac{4}{3} \%B33^{2} - \%B33 - 2,
- \frac{1}{54} \%B33^{15} - \frac{1}{27} \%B33^{14} - \frac{1}{54} \%B33^{13} + \frac{2}{27} \%B33^{12} + \frac{11}{54} \%B33^{11} + \\
\frac{2}{27} \%B33^{10} - \frac{1}{54} \%B33^{9} - \frac{7}{27} \%B33^{8} - \frac{1}{54} \%B33^{7} - \frac{1}{9} \%B33^{6} - \\
\frac{1}{6} \%B33^{5} - \frac{1}{9} \%B33^{4} - \%B33^{3} - \frac{2}{3} \%B33^{2} + \frac{1}{2} \%B33 + \frac{3}{2} \right].\]
\[-\frac{1}{54} \%B33^{15} - \frac{1}{27} \%B33^{14} - \frac{1}{54} \%B33^{13} + \frac{2}{27} \%B33^{12} + \frac{11}{54} \%B33^{11} +
\]
\[
\frac{2}{27} \%B33^{10} - \frac{1}{54} \%B33^{9} - \frac{7}{27} \%B33^{8} - \frac{1}{54} \%B33^{7} - \frac{1}{9} \%B33^{6} -
\]
\[
\frac{1}{6} \%B33^{5} - \frac{1}{9} \%B33^{4} - \%B33^{3} - \frac{2}{3} \%B33^{2} + \frac{1}{2} \%B33 + \frac{3}{2},
\]
\[
\left[ \%B34, \frac{1}{27} \%B34^{15} + \frac{2}{27} \%B34^{14} + \frac{1}{27} \%B34^{13} - \frac{4}{27} \%B34^{12} - \frac{11}{27} \%B34^{11} -
\right]
\]
\[
\frac{4}{27} \%B34^{10} + \frac{1}{27} \%B34^{9} + \frac{14}{27} \%B34^{8} + \frac{1}{27} \%B34^{7} + \frac{2}{9} \%B34^{6} +
\]
\[
\frac{1}{3} \%B34^{5} + \frac{2}{9} \%B34^{4} + \%B34^{3} + \frac{4}{3} \%B34^{2} - \%B34 - 2,
\]
\[
-\frac{1}{54} \%B34^{15} - \frac{1}{27} \%B34^{14} - \frac{1}{54} \%B34^{13} + \frac{2}{27} \%B34^{12} + \frac{11}{54} \%B34^{11} +
\]
\[
\frac{2}{27} \%B34^{10} - \frac{1}{54} \%B34^{9} - \frac{7}{27} \%B34^{8} - \frac{1}{54} \%B34^{7} - \frac{1}{9} \%B34^{6} -
\]
\[
\frac{1}{6} \%B34^{5} - \frac{1}{9} \%B34^{4} - \%B34^{3} - \frac{2}{3} \%B34^{2} + \frac{1}{2} \%B34 + \frac{3}{2},
\]
\[
-\frac{1}{54} \%B34^{15} - \frac{1}{27} \%B34^{14} - \frac{1}{54} \%B34^{13} + \frac{2}{27} \%B34^{12} + \frac{11}{54} \%B34^{11} +
\]
\[
\frac{2}{27} \%B34^{10} - \frac{1}{54} \%B34^{9} - \frac{7}{27} \%B34^{8} - \frac{1}{54} \%B34^{7} - \frac{1}{9} \%B34^{6} -
\]
\[
\frac{1}{6} \%B34^{5} - \frac{1}{9} \%B34^{4} - \%B34^{3} - \frac{2}{3} \%B34^{2} + \frac{1}{2} \%B34 + \frac{3}{2},
\]
\[
[-1, 1, 0, 1], [-1, 1, 1, 0],
\]
\[
\left[ \%B23, -\frac{1}{54} \%B23^{15} - \frac{1}{27} \%B23^{14} - \frac{1}{54} \%B23^{13} + \frac{2}{27} \%B23^{12} + \frac{11}{54} \%B23^{11} +
\right]
\]
\[
\frac{2}{27} \%B23^{10} - \frac{1}{54} \%B23^{9} - \frac{7}{27} \%B23^{8} - \frac{1}{54} \%B23^{7} - \frac{1}{9} \%B23^{6} -
\]
\[
\frac{1}{6} \%B23^{5} - \frac{1}{9} \%B23^{4} - \%B23^{3} - \frac{2}{3} \%B23^{2} + \frac{1}{2} \%B23 + \frac{3}{2},
\]
\[
\%B30, -\%B30 + \frac{1}{54} \%B23^{15} + \frac{1}{27} \%B23^{14} + \frac{1}{54} \%B23^{13} - \frac{2}{27} \%B23^{12} - \frac{11}{54} \%B23^{11} -
\]
\[
\frac{2}{27} \%B23^{10} + \frac{1}{54} \%B23^{9} + \frac{7}{27} \%B23^{8} + \frac{1}{54} \%B23^{7} + \frac{1}{9} \%B23^{6} +
\]
\[
\frac{1}{6} \%B23^{5} + \frac{1}{9} \%B23^{4} + \frac{2}{3} \%B23^{2} - \frac{1}{2} \%B23 - \frac{1}{2},
\]
\[
\]
\[
\begin{align*}
\%B23, & - \frac{1}{54} \%B23^{15} - \frac{1}{27} \%B23^{14} - \frac{1}{54} \%B23^{13} + \frac{2}{27} \%B23^{12} + \frac{11}{54} \%B23^{11} + \\
& \frac{2}{27} \%B23^{10} - \frac{1}{54} \%B23^{9} - \frac{7}{27} \%B23^{8} - \frac{1}{54} \%B23^{7} - \frac{1}{9} \%B23^{6} - \\
& \frac{1}{6} \%B23^{5} - \frac{1}{9} \%B23^{4} - \%B23^{3} - \frac{2}{3} \%B23^{2} + \frac{1}{2} \%B23 + \frac{3}{2}, \\
\%B31, & - \%B31 + \frac{1}{54} \%B23^{15} + \frac{1}{27} \%B23^{14} + \frac{1}{54} \%B23^{13} - \frac{2}{27} \%B23^{12} - \\
& \frac{11}{54} \%B23^{11} - \frac{2}{27} \%B23^{10} + \frac{1}{54} \%B23^{9} + \frac{7}{27} \%B23^{8} + \frac{1}{54} \%B23^{7} + \\
& \frac{1}{9} \%B23^{6} + \frac{1}{6} \%B23^{5} + \frac{1}{9} \%B23^{4} + \frac{2}{3} \%B23^{2} - \frac{1}{2} \%B23 + \frac{1}{2}, \\
\%B24, & - \frac{1}{54} \%B24^{15} - \frac{1}{27} \%B24^{14} - \frac{1}{54} \%B24^{13} + \frac{2}{27} \%B24^{12} + \frac{11}{54} \%B24^{11} + \\
& \frac{2}{27} \%B24^{10} - \frac{1}{54} \%B24^{9} - \frac{7}{27} \%B24^{8} - \frac{1}{54} \%B24^{7} - \frac{1}{9} \%B24^{6} - \\
& \frac{1}{6} \%B24^{5} - \frac{1}{9} \%B24^{4} - \%B24^{3} - \frac{2}{3} \%B24^{2} + \frac{1}{2} \%B24 + \frac{3}{2}, \\
\%B28, & - \%B28 + \frac{1}{54} \%B24^{15} + \frac{1}{27} \%B24^{14} + \frac{1}{54} \%B24^{13} - \frac{2}{27} \%B24^{12} - \frac{11}{54} \%B24^{11} - \\
& \frac{2}{27} \%B24^{10} + \frac{1}{54} \%B24^{9} + \frac{7}{27} \%B24^{8} + \frac{1}{54} \%B24^{7} + \frac{1}{9} \%B24^{6} + \\
& \frac{1}{6} \%B24^{5} + \frac{1}{9} \%B24^{4} + \frac{2}{3} \%B24^{2} - \frac{1}{2} \%B24 - \frac{1}{2}, \\
\%B24, & - \frac{1}{54} \%B24^{15} - \frac{1}{27} \%B24^{14} - \frac{1}{54} \%B24^{13} + \frac{2}{27} \%B24^{12} + \frac{11}{54} \%B24^{11} + \\
& \frac{2}{27} \%B24^{10} - \frac{1}{54} \%B24^{9} - \frac{7}{27} \%B24^{8} - \frac{1}{54} \%B24^{7} - \frac{1}{9} \%B24^{6} - \\
& \frac{1}{6} \%B24^{5} - \frac{1}{9} \%B24^{4} - \%B24^{3} - \frac{2}{3} \%B24^{2} + \frac{1}{2} \%B24 + \frac{3}{2}, \\
\%B29, & - \%B29 + \frac{1}{54} \%B24^{15} + \frac{1}{27} \%B24^{14} + \frac{1}{54} \%B24^{13} - \frac{2}{27} \%B24^{12} - \frac{11}{54} \%B24^{11} - \\
& \frac{2}{27} \%B24^{10} + \frac{1}{54} \%B24^{9} + \frac{7}{27} \%B24^{8} + \frac{1}{54} \%B24^{7} + \frac{1}{9} \%B24^{6} + \\
& \frac{1}{6} \%B24^{5} + \frac{1}{9} \%B24^{4} + \frac{2}{3} \%B24^{2} - \frac{1}{2} \%B24 - \frac{1}{2}, 
\end{align*}
\]
The number of real solutions for the input system is:

\[
\begin{align*}
% B_{25}, & -\frac{1}{54} B_{25}^{15} - \frac{1}{27} B_{25}^{14} - \frac{1}{54} B_{25}^{13} + \frac{2}{27} B_{25}^{12} + \frac{11}{54} B_{25}^{11} + \\
\frac{2}{27} B_{25}^{10} - & \frac{1}{54} B_{25}^{9} - \frac{7}{27} B_{25}^{8} - \frac{1}{54} B_{25}^{7} - \frac{1}{9} B_{25}^{6} - \\
\frac{1}{6} B_{25}^{5} - & \frac{1}{9} B_{25}^{4} - B_{25}^{3} - \frac{2}{3} B_{25}^{2} + \frac{1}{2} B_{25} + \frac{3}{2}, \\
% B_{26}, & - B_{26} + \frac{1}{54} B_{25}^{15} + \frac{1}{27} B_{25}^{14} + \frac{1}{54} B_{25}^{13} - \frac{2}{27} B_{25}^{12} - \frac{11}{54} B_{25}^{11} - \\
\frac{2}{27} B_{25}^{10} + & \frac{1}{54} B_{25}^{9} + \frac{7}{27} B_{25}^{8} + \frac{1}{54} B_{25}^{7} + \frac{1}{9} B_{25}^{6} + \\
\frac{1}{6} B_{25}^{5} + & \frac{1}{9} B_{25}^{4} + \frac{2}{3} B_{25}^{2} - \frac{1}{2} B_{25} - \frac{1}{2}, \\
\frac{2}{27} B_{25}^{10} - & \frac{1}{54} B_{25}^{9} - \frac{7}{27} B_{25}^{8} - \frac{1}{54} B_{25}^{7} - \frac{1}{9} B_{25}^{6} - \\
\frac{1}{6} B_{25}^{5} - & \frac{1}{9} B_{25}^{4} - B_{25}^{3} - \frac{2}{3} B_{25}^{2} + \frac{1}{2} B_{25} + \frac{3}{2}. \\
% B_{27}, & - B_{27} + \frac{1}{54} B_{25}^{15} + \frac{1}{27} B_{25}^{14} + \frac{1}{54} B_{25}^{13} - \frac{2}{27} B_{25}^{12} - \frac{11}{54} B_{25}^{11} - \\
\frac{2}{27} B_{25}^{10} + & \frac{1}{54} B_{25}^{9} + \frac{7}{27} B_{25}^{8} + \frac{1}{54} B_{25}^{7} + \frac{1}{9} B_{25}^{6} + \\
\frac{1}{6} B_{25}^{5} + & \frac{1}{9} B_{25}^{4} + \frac{2}{3} B_{25}^{2} - \frac{1}{2} B_{25} - \frac{1}{2} \\
[1, & % B_{21}, - % B_{21}, 0], [1, % B_{22}, - % B_{22}, 0], [1, % B_{19}, 0, - % B_{19}], [1, % B_{20}, 0, - % B_{20}], \\
% B_{17}, & - \frac{1}{3} B_{17}^{3} + \frac{1}{3}, - \frac{1}{3} B_{17}^{3} + \frac{1}{3}, - \frac{1}{3} B_{17}^{3} + \frac{1}{3}, \\
% B_{18}, & - \frac{1}{3} B_{18}^{3} + \frac{1}{3}, - \frac{1}{3} B_{18}^{3} + \frac{1}{3}, - \frac{1}{3} B_{18}^{3} + \frac{1}{3}.
\end{align*}
\]

Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

#1r2
Another example of computation of real solutions illustrates the LexTriangularPackage package constructor.

We concentrate now on the solutions with real (strictly) positive coordinates:

\[
lpr2 := \text{positiveSolve}(1f)\text{\$pack }
\]

\[
\begin{bmatrix}
\frac{1}{3}B40, -\frac{1}{3}B40^3 + \frac{1}{3}, -\frac{1}{3}B40^3 + \frac{1}{3}, -\frac{1}{3}B40^3 + \frac{1}{3}
\end{bmatrix}
\]

Type: List List RealClosure Fraction Integer

Finally, we approximate the coordinates of this point with 20 exact digits:

\[
\text{[approximate}(r,1/10**21)::\text{Float for } r \text{ in } lpr2.1]
\]

\[
[0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291]
\]

Type: List Float
CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES
Chapter 10

Interactive Programming

Programming in the interpreter is easy. So is the use of Axiom’s graphics facility. Both are rather flexible and allow you to use them for many interesting applications. However, both require learning some basic ideas and skills.

All graphics examples in the gallery section are either produced directly by interactive commands or by interpreter programs. Four of these programs are introduced here. By the end of this chapter you will know enough about graphics and programming in the interpreter to not only understand all these examples, but to tackle interesting and difficult problems on your own. The appendix on graphics lists all the remaining commands and programs used to create these images.

10.1 Drawing Ribbons Interactively

We begin our discussion of interactive graphics with the creation of a useful facility: plotting ribbons of two-graphs in three-space. Suppose you want to draw the two-dimensional graphs of $f_i(x), 1 \leq i \leq n$, all over some fixed range of $x$. One approach is to create a two-dimensional graph for each one, then superpose one on top of the other. What you will more than likely get is a jumbled mess. Even if you make each function a different color, the result is likely to be confusing.

A better approach is to display each of the $f_i(x)$ in three dimensions as a “ribbon” of some appropriate width along the $y$-direction, laying down each ribbon next to the previous one. A ribbon is simply a function of $x$ and $y$ depending only on $x$.

We illustrate this for $f_i(x)$ defined as simple powers of $x$ for $x$ ranging between $-1$ and $1$. Draw the ribbon for $z = x^2$.

\[
\text{draw}(x**2,x=-1..1,y=0..1)
\]
Now that was easy! What you get is a “wire-mesh” rendition of the ribbon. That’s fine for now. Notice that the mesh-size is small in both the $x$ and the $y$ directions. Axiom normally computes points in both these directions. This is unnecessary. One step is all we need in the $y$-direction. To have Axiom economize on $y$-points, we re-draw the ribbon with option $\text{var2Steps} == 1$.

Re-draw the ribbon, but with option $\text{var2Steps} == 1$ so that only 1 step is computed in the $y$ direction.

$\text{vp} := \text{draw}(x^2, x=-1..1, y=0..1, \text{var2Steps}==1)$

The operation has created a viewport, that is, a graphics window on your screen. We assigned the viewport to $\text{vp}$ and now we manipulate its contents.

Graphs are objects, like numbers and algebraic expressions. You may want to do some experimenting with graphs. For example, say

$\text{showRegion}(\text{vp}, \text{"on"})$

to put a bounding box around the ribbon. Try it! Issue $\text{rotate}(\text{vp}, -45, 90)$ to rotate the figure $-45$ longitudinal degrees and 90 latitudinal degrees.
Here is a different rotation. This turns the graph so you can view it along the $y$-axis.

\[ \text{rotate}(vp, 0, -90) \]

There are many other things you can do. In fact, most everything you can do interactively using the three-dimensional control panel (such as translating, zooming, resizing, coloring, perspective and lighting selections) can also be done directly by operations (see section 7 on page 217 for more details).

When you are done experimenting, say \textit{reset($vp$)} to restore the picture to its original position and settings.

Let’s add another ribbon to our picture—one for $x^3$. Since $y$ ranges from 0 to 1 for the first ribbon, now let $y$ range from 1 to 2. This puts the second ribbon next to the first one.

How do you add a second ribbon to the viewport? One method is to extract the “space” component from the viewport using the operation \texttt{subspace}. You can think of the space component as the object inside the window (here, the ribbon). Let’s call it \texttt{sp}. To add the second ribbon, you draw the second ribbon using the option \texttt{space == sp}.

Extract the space component of \texttt{vp}.

\[ \text{sp := subspace}(vp) \]

Add the ribbon for $x^3$ alongside that for $x^2$.

\[ \text{vp := draw}(x^3,x=-1..1,y=1..2,\text{var2Steps}=1, \text{space}=\text{sp}) \]
$x^3, x = -1.1, y = 1.2, var2Steps == 1, space == sp$

Unless you moved the original viewport, the new viewport covers the old one. You might want to check that the old object is still there by moving the top window.

Let’s show quadrilateral polygon outlines on the ribbons and then enclose the ribbons in a box.

Show quadrilateral polygon outlines.

```
drawStyle(vp,"shade");outlineRender(vp,"on")
```

Enclose the ribbons in a box.

```
rotate(vp,20,-60); showRegion(vp,"on")
```
This process has become tedious! If we had to add two or three more ribbons, we would have to repeat the above steps several more times. It is time to write an interpreter program to help us take care of the details.
drawRibbons(flist, xrange) ==
sp := createThreeSpace() Create empty space $sp$.
y0 := 0 The initial ribbon position.
for f in flist repeat For each function $f$,
    makeObject(f, xrange, y=y0..y0+1, create and add a ribbon
    space==sp, var2Steps == 1) for $f$ to the space $sp$.
y0 := y0 + 1 The next ribbon position.
vp := makeViewport3D(sp, "Ribbons") Create viewport.
drawStyle(vp, "shade") Select shading style.
outlineRender(vp, "on") Show polygon outlines.
showRegion(vp,"on") Enclose in a box.
n := # flist The number of ribbons
zoom(vp,n,1,n) Zoom in x- and z-directions.
rotate(vp,0,75) Change the angle of view.
vp Return the viewport.

Figure 10.1: The first drawRibbons function.

10.2 A Ribbon Program

The above approach creates a new viewport for each additional ribbon. A better approach is to build one object composed of all ribbons before creating a viewport. To do this, use makeObject rather than draw. The operations have similar formats, but draw returns a viewport and makeObject returns a space object.

We now create a function drawRibbons of two arguments: flist, a list of formulas for the ribbons you want to draw, and xrange, the range over which you want them drawn. Using this function, you can just say

drawRibbons([x**2, x**3], x=-1..1)

to do all of the work required in the last section. Here is the drawRibbons program. Invoke your favorite editor and create a file called ribbon.input containing the following program.

Here are some remarks on the syntax used in the drawRibbons function (consult section 6 on page 153 for more details). Unlike most other programming languages which use semicolons, parentheses, or begin-end brackets to delineate the structure of programs, the structure of an Axiom program is determined by indentation. The first line of the function definition always begins in column 1. All other lines of the function are indented with respect to the first line and form a pile (see section 5.2 on page 123).

The definition of drawRibbons consists of a pile of expressions to be executed one after another. Each expression of the pile is indented at the same level. Lines 4-7 designate one single expression: since lines 5-7 are indented with respect to the others, these lines are treated as a continuation of line 4. Also since lines 5 and 7 have the same indentation level, these lines designate a pile within the outer pile.
10.3. COLORING AND POSITIONING RIBBONS

The last line of a pile usually gives the value returned by the pile. Here it is also the value returned by the function. Axiom knows this is the last line of the function because it is the last line of the file. In other cases, a new expression beginning in column one signals the end of a function.

The line `drawStyle(vp, "shade")` is given after the viewport has been created to select the draw style. We have also used the `zoom` option. Without the zoom, the viewport region would be scaled equally in all three coordinate directions.

Let’s try the function `drawRibbons`. First you must read the file to give Axiom the function definition.

Read the input file.

`)read ribbon`

Draw ribbons for $x, x^2, \ldots, x^5$ for $-1 \leq x \leq 1$

`drawRibbons([x**i for i in 1..5], x=-1..1)`

10.3 Coloring and Positioning Ribbons

Before leaving the ribbon example, we make two improvements. Normally, the color given to each point in the space is a function of its height within a bounding box. The points at the bottom of the box are red, those at the top are purple.

To change the normal coloring, you can give an option `colorFunction == function`. When Axiom goes about displaying the data, it determines the range of colors used for all points within the box. Axiom then distributes these numbers uniformly over the number of hues. Here we use the simple color function $((x, y) \mapsto i$ for the $i$-th ribbon.

Also, we add an argument `yrange` so you can give the range of $y$ occupied by the ribbons. For example, if the `yrange` is given as $y = 0..1$ and there are 5 ribbons to be displayed, each ribbon would have width 0.2 and would appear in the range $0 \leq y \leq 1$. 
drawRibbons(flist, xrange, yrange) ==
sp := createThreeSpace() Create empty space $sp$.
num := # flist The number of ribbons.
yVar := variable yrange The ribbon variable.
y0:Float := lo segment yrange The first ribbon coordinate.
width:Float := (hi segment yrange - y0)/num The width of a ribbon.
for f in flist for color in 1..num repeat For each function $f$,
makeObject(f, xrange, yVar = y0..y0+width, create and add ribbon to
var2Steps == 1, colorFunction == (x,y) +-> color, _
space == sp) $sp$ of a different color.
y0 := y0 + width The next ribbon coordinate.
vp := makeViewport3D(sp, "Ribbons") Create viewport.
drawStyle(vp, "shade") Select shading style.
outlineRender(vp, "on") Show polygon outlines.
showRegion(vp, "on") Enclose in a box.
vp Return the viewport.

Figure 10.2: The final drawRibbons function.

Refer to lines 4-9. Line 4 assigns to yVar the variable part of the yrange (after all, it need
not be y). Suppose that yrange is given as $t = a..b$ where a and b have numerical values.
Then line 5 assigns the value of a to the variable y0. Line 6 computes the width of the ribbon
by dividing the difference of a and b by the number, num, of ribbons. The result is assigned
to the variable width. Note that in the for-loop in line 7, we are iterating in parallel; it is
not a nested loop.

10.4 Points, Lines, and Curves

What you have seen so far is a high-level program using the graphics facility. We now turn
to the more basic notions of points, lines, and curves in three-dimensional graphs. These
facilities use small floats (objects of type DoubleFloat) for data. Let us first give names to
the small float values 0 and 1.
The small float 0.

zero := 0.0@DFLOAT

The small float 1.

one := 1.0@DFLOAT

The @ sign means “of the type.” Thus zero is 0.0 of the type DoubleFloat. You can also
say 0.0 :: DFLOAT.
Points can have four small float components: \(x, y, z\) coordinates and an optional color. A “curve” is simply a list of points connected by straight line segments.

Create the point \textit{origin} with color zero, that is, the lowest color on the color map.

\[
\text{origin} := \text{point} \{\text{zero, zero, zero, zero}\}
\]

Create the point \textit{unit} with color zero.

\[
\text{unit} := \text{point} \{\text{one, one, one, zero}\}
\]

Create the curve (well, here, a line) from \textit{origin} to \textit{unit}.

\[
\text{line} := \{\text{origin, unit}\}
\]

We make this line segment into an arrow by adding an arrowhead. The arrowhead extends to, say, \(p_3\) on the left, and to, say, \(p_4\) on the right. To describe an arrow, you tell Axiom to draw the two curves \([p_1, p_2, p_3]\) and \([p_2, p_4]\). We also decide through experimentation on values for \textit{arrowScale}, the ratio of the size of the arrowhead to the stem of the arrow, and \textit{arrowAngle}, the angle between the arrowhead and the arrow.

Invoke your favorite editor and create an input file called \textit{arrows.input}.

This input file first defines the values of \textit{arrowAngle} and \textit{arrowScale}, then defines the function \textit{makeArrow}(\(p_1, p_2\)) to draw an arrow from point \(p_1\) to \(p_2\).

\[
\text{arrowScale} := 0.2\text{DFLOAT}
\]

\[
\text{arrowAngle} := \pi - 0.01\text{DFLOAT}
\]

\[
\text{makeArrow}(p_1, p_2) ==
\]

\[
\delta := p_2 - p_1
\]

\[
\text{len} := \text{arrowScale} \times \text{length} \delta
\]

\[
\theta := \text{atan}(\delta.1, \delta.2)
\]

\[
c_1 := \text{len} \times \cos(\theta + \text{arrowAngle})
\]

\[
s_1 := \text{len} \times \sin(\theta + \text{arrowAngle})
\]

\[
c_2 := \text{len} \times \cos(\theta - \text{arrowAngle})
\]

\[
s_2 := \text{len} \times \sin(\theta - \text{arrowAngle})
\]

\[
z := p_2.3 \times (1 - \text{arrowScale})
\]

\[
p_3 := \text{point} \{p_2.1 + c_1, p_2.2 + s_1, z, p_2.4\}
\]

\[
p_4 := \text{point} \{p_2.1 + c_2, p_2.2 + s_2, z, p_2.4\}
\]

\[
\left[\text{\{\text{\{p_1, p_2, p_3, p_4\}}\}}\right]
\]

Read the file and then create an arrow from the point \textit{origin} to the point \textit{unit}.

Read the input file defining \textit{makeArrow}.
Construct the arrow (a list of two curves).

\[
\text{arrow := makeArrow(origin,unit)}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0.69134628604607973, 0.842733077659504, 0.8000000000000004, 0.0, 0 \\
0.842733077659504, 0.69134628604607973, 0.8000000000000004, 0.0, 0
\end{bmatrix}
\]

Type: List List Point DoubleFloat

Create an empty object \(sp\) of type \(ThreeSpace\).

\[sp := \text{createThreeSpace}()\]

Type: ThreeSpace DoubleFloat

Add each curve of the arrow to the space \(sp\).

\[\text{for a in arrow repeat sp := curve(sp,a)}\]

Type: Void

Create a three-dimensional viewport containing that space.

\[vp := \text{makeViewport3D(sp,"Arrow")}\]

\[\text{makeViewport3D(sp,"Arrow")}\]

Here is a better viewing angle.
10.5 A Bouquet of Arrows

Let’s draw a “bouquet” of arrows. Each arrow is identical. The arrowheads are uniformly placed on a circle parallel to the $xy$-plane. Thus the position of each arrow differs only by the angle $\theta$, $0 \leq \theta < 2\pi$, between the arrow and the $x$-axis on the $xy$-plane.

Our bouquet is rather special: each arrow has a different color (which won’t be evident here, unfortunately). This is arranged by letting the color of each successive arrow be denoted by $\theta$. In this way, the color of arrows ranges from red to green to violet. Here is a program to draw a bouquet of $n$ arrows.

```lisp
drawBouquet(n,title) ==
 angle := 0.0D0
 sp := createThreeSpace()
 for i in 0..n-1 repeat
 start := point [0.0D0,0.0D0,0.0D0,angle]
 end := point [cos angle, sin angle, 1.0D0, angle]
 arrow := makeArrow(start,end)
 for a in makeArrow(start,end) repeat
 curve(sp,a)
 angle := angle + 2*%pi/n
 makeViewport3D(sp,title)

read the input file.

)read bouquet
```

rotate(vp, 200, -60)

![Diagram of a bouquet of arrows]

rotate(vp, 200, -60)
A bouquet of a dozen arrows.

drawBouquet(12,"A Dozen Arrows")

10.6 Diversion: When Things Go Wrong

10.7 Drawing Complex Vector Fields

We now put our arrows to good use drawing complex vector fields. These vector fields give a representation of complex-valued functions of complex variables. Consider a Cartesian coordinate grid of points \((x, y)\) in the plane, and some complex-valued function \(f\) defined on this grid. At every point on this grid, compute the value of \(f(x + iy)\) and call it \(z\). Since \(z\) has both a real and imaginary value for a given \((x, y)\) grid point, there are four dimensions to plot. What do we do? We represent the values of \(z\) by arrows planted at each grid point. Each arrow represents the value of \(z\) in polar coordinates \((r, \theta)\). The length of the arrow is proportional to \(r\). Its direction is given by \(\theta\).

The code for drawing vector fields is in the file \texttt{vectors.input}. We discuss its contents from top to bottom.

Before showing you the code, we have two small matters to take care of. First, what if the function has large spikes, say, ones that go off to infinity? We define a variable \texttt{clipValue} for this purpose. When \(r\) exceeds the value of \texttt{clipValue}, then the value of \texttt{clipValue} is used instead of that for \(r\). For convenience, we define a function \texttt{clipFun(x)} which uses \texttt{clipValue} to “clip” the value of \(x\).

\[
\text{clipValue} : \text{DFLOAT} := 6 \quad \text{Maximum value allowed}
\]

\[
\text{clipFun}(x) == \min(\max(x,-\text{clipValue}),\text{clipValue})
\]
Notice that we identify \textit{clipValue} as a small float but do not declare the type of the function \textit{clipFun}. As it turns out, \textit{clipFun} is called with a small float value. This declaration ensures that \textit{clipFun} never does a conversion when it is called.

The second matter concerns the possible “poles” of a function, the actual points where the spikes have infinite values.

Axiom uses normal \texttt{DoubleFloat} arithmetic which does not directly handle infinite values. If your function has poles, you must adjust your step size to avoid landing directly on them (Axiom calls \texttt{error} when asked to divide a value by 0, for example).

We set the variables \texttt{realSteps} and \texttt{imagSteps} to hold the number of steps taken in the real and imaginary directions, respectively. Most examples will have ranges centered around the origin. To avoid a pole at the origin, the number of points is taken to be odd.

\begin{verbatim}
realSteps: INT := 25 Number of real steps
imagSteps: INT := 25 Number of imaginary steps
\end{verbatim}

Now define the function \texttt{drawComplexVectorField} to draw the arrows. It is good practice to declare the type of the main function in the file. This one declaration is usually sufficient to ensure that other lower-level functions are compiled with the correct types.

\begin{verbatim}
C := Complex DoubleFloat
S := Segment DoubleFloat
drawComplexVectorField: (C -> C, S, S) -> VIEW3D
\end{verbatim}

The first argument is a function mapping complex small floats into complex small floats. The second and third arguments give the range of real and imaginary values as segments like \texttt{a::b}. The result is a three-dimensional viewport. Here is the full function definition:

\begin{verbatim}
drawComplexVectorField(f, realRange, imagRange) ==
  -- The real step size
  delReal := (hi(realRange)-lo(realRange))/realSteps
  -- The imaginary step size
  delImag := (hi(imagRange)-lo(imagRange))/imagSteps
  sp := createThreeSpace() Create empty space $sp$
  real := lo(realRange) The initial real value
  for i in 1..realSteps+1 repeat Begin real iteration
    imag := lo(imagRange) initial imaginary value
    for j in 1..imagSteps+1 repeat Begin imaginary iteration
      z := f complex(real,imag) value of $f$ at the point
      arg := argument z direction of the arrow
\end{verbatim}
As a first example, let us draw \( f(z) = \sin(z) \). There is no need to create a user function: just pass the \( \sin \) from \texttt{Complex DoubleFloat}.

Read the file.

\)

Draw the complex vector field of \( \sin(x) \).

\[
\text{drawComplexVectorField(sin,-2..2,-2..2)}
\]

10.8 Drawing Complex Functions

Here is another way to graph a complex function of complex arguments. For each complex value \( z \), compute \( f(z) \), again expressing the value in polar coordinates \( (r, \theta) \). We draw the complex valued function, again considering the \( (x, y) \)-plane as the complex plane, using \( r \) as the height (or \( z \)-coordinate) and \( \theta \) as the color. This is a standard plot—we learned how to do this in section 7 on page 217 — but here we write a new program to illustrate the creation of polygon meshes, or grids.
Call this function `drawComplex`. It displays the points using the “mesh” of points. The function definition is in three parts.

\[
drawComplex: (C -> C, S, S) -> VIEW3D
\]
\[
drawComplex(f, realRange, imagRange) ==
\]
\[
-- The real step size
delReal := (hi(realRange)-lo(realRange))/realSteps
-- The imaginary step size
delImag := (hi(imagRange)-lo(imagRange))/imagSteps
-- Initial list of list of points $l1p$
l1p:List List Point DFLOAT := []
\]

Variables `delReal` and `delImag` give the step sizes along the real and imaginary directions as computed by the values of the global variables `realSteps` and `imagSteps`. The mesh is represented by a list of lists of points `l1p`, initially empty. Now [] alone is ambiguous, so to set this initial value you have to tell Axiom what type of empty list it is. Next comes the loop which builds `l1p`.

\[
real := lo(realRange)
\]
\[
for i in 1..realSteps+1 repeat Begin real iteration
im\[ag := lo(imagRange)
lp := [[]$(List Point DFLOAT)$ initial list of points $l1p$
\]
\[
for j in 1..imagSteps+1 repeat Begin imaginary iteration
z := f complex(real,imag) value of $f$ at the point
pt := point [real,imag,
        clipFun sqrt norm z, Create a point
        argument z]
lp := cons(pt,lp) Add the point to $l1p$
imag := imag + delImag The next imaginary value
real := real + delReal The next real value
l1p := cons(lp, l1p) Add $l1p$ to $l1p$
\]

The code consists of both an inner and outer loop. Each pass through the inner loop adds one list `lp` of points to the list of lists of points `l1p`. The elements of `lp` are collected in reverse order.

\[
makeViewport3D(mesh(l1p), "Complex Function") Create a mesh and display
\]

The operation `mesh` then creates an object of type `ThreeSpace(DoubleFloat)` from the list of lists of points. This is then passed to `makeViewport3D` to display the image.
Now add this function directly to your `vectors.input` file and re-read the file using `readvectors`. We try `drawComplex` using a user-defined function $f$.

Read the file.

```plaintext
)read vectors
```

This one has a pole at $z = 0$.

$$f(z) = \exp(1/z)$$

Draw it with an odd number of steps to avoid the pole.

```plaintext
drawComplex(f,-2..2,-2..2)
```

10.9 Functions Producing Functions

In section 6.14 on page 182, you learned how to use the operation `function` to create a function from symbolic formulas. Here we introduce a similar operation which not only creates functions, but functions from functions.

The facility we need is provided by the package `MakeUnaryCompiledFunction(E,S,T)`. This package produces a unary (one-argument) compiled function from some symbolic data generated by a previous computation.\(^1\) The $E$ tells where the symbolic data comes from; the $S$ and $T$ give Axiom the source and target type of the function, respectively. The compiled function produced has type $S \to T$. To produce a compiled function with definition $p(x) \equiv expr$, call `compiledFunction(expr,x)` from this package. The function you get has no name. You must assign the function to the variable $p$ to give it that name.

Do some computation.

\(^1\) `MakeBinaryCompiledFunction` is available for binary functions.
Convert this to an anonymous function of $x$. Assign it to the variable $p$ to give the function a name.

$$p := \text{compiledFunction}(\% , x) \text{MakeUnaryCompiledFunction(POLY FRAC INT,DFLOAT,DFLOAT)}$$

Apply the function.

$$p(\sin(1.3))$$

For a more sophisticated application, read on.

# 10.10 Automatic Newton Iteration Formulas

This setting is needed to get Newton’s iterations to converge.

```plaintext
)set streams calculate 10
```

We resume our continuing saga of arrows and complex functions. Suppose we want to investigate the behavior of Newton’s iteration function in the complex plane. Given a function $f$, we want to find the complex values $z$ such that $f(z) = 0$.

The first step is to produce a Newton iteration formula for a given $f$: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. We represent this formula by a function $g$ that performs the computation on the right-hand side, that is, $x_{n+1} = g(x_n)$.

The type `Expression Integer` (abbreviated `EXPR INT`) is used to represent general symbolic expressions in Axiom. To make our facility as general as possible, we assume $f$ has this type.

Given $f$, we want to produce a Newton iteration function $g$ which, given a complex point $x_n$, delivers the next Newton iteration point $x_{n+1}$.

This time we write an input file called `newton.input`. We need to import `MakeUnaryCompiledFunction` (discussed in the last section), call it with appropriate types, and then define the function `newtonStep` which references it. Here is the function `newtonStep`:

```plaintext
C := Complex DoubleFloat
complexFunPack := MakeUnaryCompiledFunction(EXPR INT,C,C) Package for making functions
newtonStep(f) == Newton’s iteration function
```
fun := complexNumericFunction f  
  Function for $f$

deriv := complexDerivativeFunction(f,1)  
  Function for $f'$

(x:C):C +-> Return the iterator function

x - fun(x)/deriv(x)

complexNumericFunction f ==
  v := theVariableIn f function
  compiledFunction(f, v)$complexFunPack

complexDerivativeFunction(f,n) ==
  v := theVariableIn f function
  df := D(f,v,n)
  compiledFunction(df, v)$complexFunPack

theVariableIn f ==
  vl := variables f
  nv := # vl
  nv > 1 => error "Expression is not univariate."
  nv = 0 => 'x
  first vl
  Returns the variable in $f$

Do you see what is going on here? A formula $f$ is passed into the function newtonStep. First, the function turns $f$ into a compiled program mapping complex numbers into complex numbers. Next, it does the same thing for the derivative of $f$. Finally, it returns a function which computes a single step of Newton's iteration.

The function complexNumericFunction extracts the variable from the expression $f$ and then turns $f$ into a function which maps complex numbers into complex numbers. The function complexDerivativeFunction does the same thing for the derivative of $f$. The function theVariableIn extracts the variable from the expression $f$, calling the function error if $f$ has more than one variable. It returns the dummy variable $x$ if $f$ has no variables.

Let's now apply newtonStep to the formula for computing cube roots of two.

Read the input file with the definitions.

)read newton

)read vectors

The cube root of two.

f := x**3 - 2

Get Newton's iteration formula.

g := newtonStep f
Let $a$ denote the result of applying Newton’s iteration once to the complex number $1 + \%i$.

$$a := g(1.0 + \%i)$$

Now apply it repeatedly. How fast does it converge?

$$[(a := g(a)) \text{ for } i \text{ in } 1..]$$

Check the accuracy of the last iterate.

$$a**3$$

In MappingPackage1, we show how functions can be manipulated as objects in Axiom. A useful operation to consider here is $\ast$, which means composition. For example $g \ast g$ causes the Newton iteration formula to be applied twice. Correspondingly, $g \ast n$ means to apply the iteration formula $n$ times.

Apply $g$ twice to the point $1 + \%i$.

$$(g*g) (1.0 + \%i)$$

Apply $g$ 11 times.

$$(g**11) (1.0 + \%i)$$

Look now at the vector field and surface generated after two steps of Newton’s formula for the cube root of two. The poles in these pictures represent bad starting values, and the flat areas are the regions of convergence to the three roots.

The vector field.

```axiom```
```
drawComplexVectorField(g**3,-3..3,-3..3)
```

The surface.

```axiom```
```
drawComplexVectorField(g^3, -3..3, -3..3)
```
drawComplex(g**3,-3..3,-3..3)

Here and throughout the book we should use the terminology “type of a function”, rather than talking about source and target. A function is just an object that has a mapping type.
Chapter 11

Packages

Packages provide the bulk of Axiom’s algorithmic library, from numeric packages for computing special functions to symbolic facilities for differential equations, symbolic integration, and limits.

In section 10 on page 865, we developed several useful functions for drawing vector fields and complex functions. We now show you how you can add these functions to the Axiom library to make them available for general use.

The way we created the functions in section 10 on page 865 is typical of how you, as an advanced Axiom user, may interact with Axiom. You have an application. You go to your editor and create an input file defining some functions for the application. Then you run the file and try the functions. Once you get them all to work, you will often want to extend them, add new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application, you may want to add them to your local Axiom library. To do this, you embed these function definitions in a package and add that package to the library.

To introduce new packages, categories, and domains into the system, you need to use the Axiom compiler to convert the constructors into executable machine code. An existing compiler in Axiom is available on an “as-is” basis. A new, faster compiler will be available in version 2.0 of Axiom.

11.1 Names, Abbreviations, and File Structure

Each package has a name and an abbreviation. For a package of the complex draw functions from section 10 on page 865, we choose the name DrawComplex and abbreviation DRAWCX.\(^1\) To be sure that you have not chosen a name or abbreviation already used by the system, issue the system command )show for both the name and the abbreviation.

\(^1\)An abbreviation can be any string of between two and seven capital letters and digits, beginning with a letter. See section 2.2 on page 68 for more information.
Once you have named the package and its abbreviation, you can choose any new filename you like with extension “.spad” to hold the definition of your package. We choose the name drawpak.spad. If your application involves more than one package, you can put them all in the same file. Axiom assumes no relationship between the name of a library file, and the name or abbreviation of a package.

Near the top of the “.spad” file, list all the abbreviations for the packages using )abbrev, each command beginning in column one. Macros giving names to Axiom expressions can also be placed near the top of the file. The macros are only usable from their point of definition until the end of the file.

Consider the definition of DrawComplex in figure 11.1 on page 897. After the macro definition $S \rightarrow \text{Segment DoubleFloat}$

the name $S$ can be used in the file as a shorthand for Segment DoubleFloat. The abbreviation command for the package

)abbrev package DRAWCX DrawComplex

is given after the macros (although it could precede them).

### 11.2 Syntax

The definition of a package has the syntax:

\[
\text{PackageForm} : \text{Exports} \equiv \text{Implementation}
\]

The syntax for defining a package constructor is the same as that for defining any function in Axiom. In practice, the definition extends over many lines so that this syntax is not practical. Also, the type of a package is expressed by the operator $\text{with}$ followed by an explicit list of operations. A preferable way to write the definition of a package is with a $\text{where}$ expression:

The definition of a package usually has the form:

\[
\text{PackageForm} : \text{Exports} \equiv \text{Implementation where}
\]

\[
\text{Exports} \equiv \text{with}
\]

\[
\text{list of exported operations}
\]

\[
\text{Implementation} \equiv \text{add}
\]

\[
\text{list of function definitions for exported operations}
\]

The DrawComplex package takes no parameters and exports five operations, each a separate item of a pile. Each operation is described as a declaration: a name, followed by a colon (:) followed by the type of the operation. All operations have types expressed as mappings with the syntax

\[
\text{source} \rightarrow \text{target}
\]

\footnote{The interpreter also allows $\text{macro}$ for macro definitions.}
11.3 Abstract Datatypes

A constructor as defined in Axiom is called an abstract datatype in the computer science literature. Abstract datatypes separate “specification” (what operations are provided) from “implementation” (how the operations are implemented). The Exports (specification) part of a constructor is said to be “public” (it provides the user interface to the package) whereas the Implementation part is “private” (information here is effectively hidden—programs cannot take advantage of it).

The Exports part specifies what operations the package provides to users. As an author of a package, you must ensure that the Implementation part provides a function for each operation in the Exports part.³

An important difference between interactive programming and the use of packages is in the handling of global variables such as realSteps and imagSteps. In interactive programming, you simply change the values of variables by assignment. With packages, such variables are local to the package—their values can only be set using functions exported by the package. In our example package, we provide two functions setRealSteps and setImagSteps for this purpose.

Another local variable is clipValue which can be changed using the exported operation setClipValue. This value is referenced by the internal function clipFun that decides whether to use the computed value of the function at a point or, if the magnitude of that value is too large, the value assigned to clipValue (with the appropriate sign).

11.4 Capsules

The part to the right of add in the Implementation part of the definition is called a capsule. The purpose of a capsule is:

- to define a function for each exported operation, and
- to define a local environment for these functions to run.

What is a local environment? First, what is an environment? Think of the capsule as an input file that Axiom reads from top to bottom. Think of the input file as having a )clear all at the top so that initially no variables or functions are defined. When this file is read, variables such as realSteps and arrowSize in DrawComplex are set to initial values. Also, all the functions defined in the capsule are compiled. These include those that are exported (like drawComplex), and those that are not (like makeArrow). At the end, you get a set of name-value pairs: variable names (like realSteps and arrowSize) are paired with assigned values, while operation names (like drawComplex and makeArrow) are paired with function values.

This set of name-value pairs is called an environment. Actually, we call this environment the “initial environment” of a package: it is the environment that exists immediately after the

³The DrawComplex package enhances the facility described in section 10.8 on page 878 by allowing a complex function to have arrows emanating from the surface to indicate the direction of the complex argument.
package is first built. Afterwards, functions of this capsule can access or reset a variable in
the environment. The environment is called local since any changes to the value of a variable
in this environment can be seen only by these functions.

Only the functions from the package can change the variables in the local environment.
When two functions are called successively from a package, any changes caused by the first
function called are seen by the second.

Since the environment is local to the package, its names don’t get mixed up with others in
the system or your workspace. If you happen to have a variable called realSteps in your
workspace, it does not affect what the DrawComplex functions do in any way.

The functions in a package are compiled into machine code. Unlike function definitions
in input files that may be compiled repeatedly as you use them with varying argument
types, functions in packages have a unique type (generally parameterized by the argument
parameters of a package) and a unique compilation residing on disk.

The capsule itself is turned into a compiled function. This so-called capsule function is what
builds the initial environment spoken of above. If the package has arguments (see below),
then each call to the package constructor with a distinct pair of arguments builds a distinct
package, each with its own local environment.

11.5 Input Files vs. Packages

A good question at this point would be “Is writing a package more difficult than writing an
input file?”

The programs in input files are designed for flexibility and ease-of-use. Axiom can usually
work out all of your types as it reads your program and does the computations you request.
Let’s say that you define a one-argument function without giving its type. When you first
apply the function to a value, this value is understood by Axiom as identifying the type for
the argument parameter. Most of the time Axiom goes through the body of your function
and figures out the target type that you have in mind. Axiom sometimes fails to get it right.
Then—and only then—do you need a declaration to tell Axiom what type you want.

Input files are usually written to be read by Axiom—and by you. Without suitable docu-
mentation and declarations, your input files are likely incomprehensible to a colleague—and
to you some months later!

Packages are designed for legibility, as well as run-time efficiency. There are few new concepts
you need to learn to write packages. Rather, you just have to be explicit about types and type
conversions. The types of all functions are pre-declared so that Axiom—and the reader—
knows precisely what types of arguments can be passed to and from the functions (certainly
you don’t want a colleague to guess or to have to work this out from context!). The types
of local variables are also declared. Type conversions are explicit, never automatic.\footnote{There is one exception to this rule: conversions from a subdomain to a domain are automatic. After all, the objects both have the domain as a common type.}

In summary, packages are more tedious to write than input files. When writing input files,
you can casually go ahead, giving some facts now, leaving others for later. Writing packages requires forethought, care and discipline.

### 11.6 Compiling Packages

Once you have defined the package `DrawComplex`, you need to compile and test it. To compile the package, issue the system command `)compile drawpak`. Axiom reads the file `drawpak.spad` and compiles its contents into machine binary. If all goes well, the file `DRAWCX.nrlib` is created in your local directory for the package. To test the package, you must load the package before trying an operation.

Compile the package.

`)compile drawpak`

Expose the package.

`)expose DRAWCX`

Use an odd step size to avoid a pole at the origin.

`setRealSteps 51`

`setImagSteps 51`

Define \( f \) to be the Gamma function.

\[
 f(z) = \text{Gamma}(z)
\]

Clip values of function with magnitude larger than 7.

`setClipValue 7`

Draw the \textbf{Gamma} function.

`drawComplex(f,-\%pi..\%pi,-\%pi..\%pi, false)`
11.7 Parameters

The power of packages becomes evident when packages have parameters. Usually these parameters are domains and the exported operations have types involving these parameters.

In section 2 on page 57, you learned that categories denote classes of domains. Although we cover this notion in detail in the next chapter, we now give you a sneak preview of its usefulness.

In section 6.15 on page 186, we defined functions \texttt{bubbleSort(m)} and \texttt{insertionSort(m)} to sort a list of integers. If you look at the code for these functions, you see that they may be used to sort any structure \textit{m} with the right properties. Also, the functions can be used to sort lists of any elements—not just integers. Let us now recall the code for \textit{bubbleSort}.

\begin{verbatim}
bubbleSort(m) ==
n := #m
for i in 1..(n-1) repeat
  for j in n..(i+1) by -1 repeat
    if m.j < m.(j-1) then swap!(m,j,j-1)
m
\end{verbatim}

What properties of “lists of integers” are assumed by the sorting algorithm? In the first line, the operation \# computes the maximum index of the list. The first obvious property is that \textit{m} must have a finite number of elements. In Axiom, this is done by your telling Axiom that \textit{m} has the “attribute” \texttt{finiteAggregate}. An \textit{attribute} is a property that a domain either has or does not have. As we show later in section 12.9 on page 906, programs can query domains as to the presence or absence of an attribute.

The operation \texttt{swap} swaps elements of \textit{m}. Using Browse, you find that \texttt{swap} requires its elements to come from a domain of category \texttt{IndexedAggregate} with attribute \texttt{shallowlyMutable}.

This attribute means that you can change the internal components of \textit{m} without changing its external structure. Shallowly-mutable data
11.7. PARAMETERS

structures include lists, streams, one- and two-dimensional arrays, vectors, and matrices.

The category IndexedAggregate designates the class of aggregates whose elements can be accessed by the notation \( m.s \) for suitable selectors \( s \). The category IndexedAggregate takes two arguments: \( \text{Index} \), a domain of selectors for the aggregate, and \( \text{Entry} \), a domain of entries for the aggregate. Since the sort functions access elements by integers, we must choose \( \text{Index} = \text{Integer} \). The most general class of domains for which bubbleSort and insertionSort are defined are those of category IndexedAggregate(Integer,Entry) with the two attributes shallowlyMutable and finiteAggregate.

Using Browse, you can also discover that Axiom has many kinds of domains with attribute shallowlyMutable. Those of class IndexedAggregate(Integer,Entry) include Bits, FlexibleArray, OneDimensionalArray, List, String, and Vector, and also HashTable and EqTable with integer keys. Although you may never want to sort all such structures, we nonetheless demonstrate Axiom’s ability to do so.

Another requirement is that \( \text{Entry} \) has an operation \(<\). One way to get this operation is to assume that \( \text{Entry} \) has category OrderedSet. By definition, will then export a \(<\) operation. A more general approach is to allow any comparison function \( f \) to be used for sorting. This function will be passed as an argument to the sorting functions.

Our sorting package then takes two arguments: a domain \( S \) of objects of any type, and a domain \( A \), an aggregate of type IndexedAggregate(Integer, \( S \)) with the above two attributes. Here is its definition using what are close to the original definitions of bubbleSort and insertionSort for sorting lists of integers. The symbol \(!\) is added to the ends of the operation names. This uniform naming convention is used for Axiom operation names that destructively change one or more of their arguments.

```
SortPackage(S,A) : Exports == Implementation where
 S: Object
 A: IndexedAggregate(Integer,S)
 with (finiteAggregate; shallowlyMutable)

Exports == with
 bubbleSort!: (A,(S,S) -> Boolean) -> A
 insertionSort!: (A, (S,S) -> Boolean) -> A

Implementation == add
 bubbleSort!(m,f) ==
 n := #m
 for i in 1..(n-1) repeat
 for j in n..(i+1) by -1 repeat
 if f(m.j,m.(j-1)) then swap!(m,j,j-1)
 m
 insertionSort!(m,f) ==
 for i in 2..#m repeat
 j := i
 while j > 1 and f(m.j,m.(j-1)) repeat
 swap!(m,j,j-1)
```

11.8 Conditionals

When packages have parameters, you can say that an operation is or is not exported depending on the values of those parameters. When the domain of objects $S$ has an $<$ operation, we can supply one-argument versions of bubbleSort and insertionSort which use this operation for sorting. The presence of the operation $<$ is guaranteed when $S$ is an ordered set.

```
swap!(m,j,j-1)
j := (j - 1) pretend PositiveInteger
```

Exports == with
```plaintext
 bubbleSort!: (A,(S,S) -> Boolean) -> A
 insertionSort!: (A, (S,S) -> Boolean) -> A

 if S has OrderedSet then
 bubbleSort!: A -> A
 insertionSort!: A -> A
```

In addition to exporting the one-argument sort operations conditionally, we must provide conditional definitions for the operations in the Implementation part. This is easy: just have the one-argument functions call the corresponding two-argument functions with the operation $<$ from $S$.

```
Implementation == add
...
 if S has OrderedSet then
 bubbleSort!(m) == bubbleSort!(m,$<S)
 insertionSort!(m) == insertionSort!(m,$<S)
```

In section 6.15 on page 186, we give an alternative definition of bubbleSort using first and rest that is more efficient for a list (for which access to any element requires traversing the list from its first node). To implement a more efficient algorithm for lists, we need the operation setelt which allows us to destructively change the first and rest of a list. Using Browse, you find that these operations come from category UnaryRecursiveAggregate. Several aggregate types are unary recursive aggregates including those of List and AssociationList. We provide two different implementations for bubbleSort! and insertionSort!: one for list-like structures, another for array-like structures.
Implementation == add
... 
if A has UnaryRecursiveAggregate(S) then
  bubbleSort!(m,fn) ==
  empty? m => m
  l := m
  while not empty? (r := l.rest) repeat
    r := bubbleSort! r
    x := l.first
    if fn(r.first,x) then
      l.first := r.first
      r.first := x
      l.rest := r
      l := l.rest
    m
insertionSort!(m,fn) ==
...

The ordering of definitions is important. The standard definitions come first and then the predicate

A has UnaryRecursiveAggregate(S)

is evaluated. If true, the special definitions cover up the standard ones.
Another equivalent way to write the capsule is to use an if ~ then ~ else expression:

if A has UnaryRecursiveAggregate(S) then
  ...
else
  ...

11.9 Testing

Once you have written the package, embed it in a file, for example, sortpak.spad. Be sure to include an )abbrev command at the top of the file:

)abbrev package SORTPAK SortPackage

Now compile the file (using )compile sortpak.spad).
Expose the constructor. You are then ready to begin testing.

)expose SORTPAK
Define a list.

\[ l := [1,7,4,2,11,-7,3,2] \]

Since the integers are an ordered set, a one-argument operation will do.

\[ \text{bubbleSort!}(l) \]

Re-sort it using “greater than.”

\[ \text{bubbleSort!}(l, (x, y) \rightarrow x > y) \]

Now sort it again using \(<\) on integers.

\[ \text{bubbleSort!}(l, <\text{Integer}) \]

A string is an aggregate of characters so we can sort them as well.

\[ \text{bubbleSort!} \ "Mathematical Sciences" \]

Is \(<\) defined on booleans?

\[ \text{false} < \text{true} \]

Good! Create a bit string representing ten consecutive boolean values \texttt{true}.

\[ u : \text{Bits} := \text{new}(10, \text{true}) \]

Set bits 3 through 5 to \texttt{false}, then display the result.

\[ u(3..5) := \text{false}; u \]

Now sort these booleans.

\[ \text{bubbleSort!} u \]

Create an “eq-table”, a table having integers as keys and strings as values.

\[ t : \text{EqTable(Integer, String)} := \text{table}() \]

Give the table a first entry.
11.10. How Packages Work

Recall that packages as abstract datatypes are compiled independently and put into the library. The curious reader may ask: “How is the interpreter able to find an operation such as \texttt{bubbleSort}!? Also, how is a single compiled function such as \texttt{bubbleSort}! able to sort data of different types?”

After the interpreter loads the package \texttt{SortPackage}, the four operations from the package become known to the interpreter. Each of these operations is expressed as a \textit{modemap} in which the type of the operation is written in terms of symbolic domains.

See the modmaps for \texttt{bubbleSort}!.

\texttt{)display op bubbleSort!}

There are 2 exposed functions called \texttt{bubbleSort}!:

\begin{enumerate}
\item \texttt{D1 -> D1 from SortPackage(D2,D1)}
  if \texttt{D2 has ORDSET and D2 has OBJECT and D1 has IndexedAggregate(Integer, D2) with finiteAggregate shallowlyMutable}
\item \texttt{(D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)}
  if \texttt{D3 has OBJECT and D1 has IndexedAggregate(Integer,D3) with finiteAggregate shallowlyMutable}
\end{enumerate}
What happens if you ask for `bubbleSort!([1, -5, 3])`? There is a unique modemap for an operation named `bubbleSort!` with one argument. Since `[1, -5, 3]` is a list of integers, the symbolic domain $D_1$ is defined as `List(Integer)`. For some operation to apply, it must satisfy the predicate for some $D_2$. What $D_2$? The third expression of the `and` requires $D_1$ has `IndexedAggregate(Integer, D2)` with two attributes. So the interpreter searches for an `IndexedAggregate` among the ancestors of `List (Integer)` (see section 12.4 on page 902). It finds one: `IndexedAggregate(Integer, Integer)`. The interpreter tries defining $D_2$ as `Integer`. After substituting for $D_1$ and $D_2$, the predicate evaluates to `true`. An applicable operation has been found!

Now Axiom builds the package `SortPackage(List(Integer), Integer)`. According to its definition, this package exports the required operation: `bubbleSort! : List Integer -> List Integer`. The interpreter then asks the package for a function implementing this operation. The package gets all the functions it needs (for example, `rest` and `swap`) from the appropriate domains and then it returns a `bubbleSort!` to the interpreter together with the local environment for `bubbleSort!`. The interpreter applies the function to the argument `[1, -5, 3]`. The `bubbleSort!` function is executed in its local environment and produces the result.
### 11.10. HOW PACKAGES WORK

C	Complex DoubleFloat	All constructors used in a file
S	Segment DoubleFloat	must be spelled out in full
INT	Integer	unless abbreviated by macros
DFLOAT	DoubleFloat	like these at the top of
VIEW3D	ThreeDimensionalViewport	a file
CURVE	List List Point DFLOAT	

```plaintext
)abbrev package DRAWCX DrawComplex
Identify kinds and abbreviations
Type definition begins here

DrawComplex(): Exports == Implementation where

Exports == with
 drawComplex: (C -> C,S,S,Boolean) -> VIEW3D Exported Operations
 drawComplexVectorField: (C -> C,S,S) -> VIEW3D
 setRealSteps: INT -> INT
 setImagSteps: INT -> INT
 setClipValue: DFLOAT -> DFLOAT

-- Implementation part begins
Implementation == add
 arrowScale : DFLOAT := (0.2)::DFLOAT --relative size Local variable 1
 arrowAngle : DFLOAT := pi()-pi()/(20::DFLOAT) Local variable 2
 realSteps : INT := 11 --# real steps Local variable 3
 imagSteps : INT := 11 --# imaginary steps Local variable 4
 clipValue : DFLOAT := 10::DFLOAT --maximum vector length Local variable 5

 setRealSteps(n) == realSteps := n Exported function definition 1
 setImagSteps(n) == imagSteps := n Exported function definition 2
 setClipValue(c) == clipValue := c Exported function definition 3

 clipFun: DFLOAT -> DFLOAT --Clip large magnitudes.
 clipFun(x) == min(max(x, -clipValue), clipValue) Local function definition 1

 makeArrow: (Point DFLOAT,Point DFLOAT,DFLOAT,DFLOAT) -> CURVE
 makeArrow(p1, p2, len, arg) == ... Local function definition 2

 drawComplex(f, realRange, imagRange, arrows?) == ...
 Exported function definition 4
```

**Figure 11.1:** The DrawComplex package.
Chapter 12

Categories

This chapter unravels the mysteries of categories—what they are, how they are related to domains and packages, how they are defined in Axiom, and how you can extend the system to include new categories of your own.

We assume that you have read the introductory material on domains and categories in section 2.1 on page 59. There you learned that the notion of packages covered in the previous chapter are special cases of domains. While this is in fact the case, it is useful here to regard domains as distinct from packages.

Think of a domain as a datatype, a collection of objects (the objects of the domain). From your “sneak preview” in the previous chapter, you might conclude that categories are simply named clusters of operations exported by domains. As it turns out, categories have a much deeper meaning. Categories are fundamental to the design of Axiom. They control the interactions between domains and algorithmic packages, and, in fact, between all the components of Axiom.

Categories form hierarchies as shown on the inside cover pages of this book. The inside front-cover pages illustrate the basic algebraic hierarchy of the Axiom programming language. The inside back-cover pages show the hierarchy for data structures.

Think of the category structures of Axiom as a foundation for a city on which superstructures (domains) are built. The algebraic hierarchy, for example, serves as a foundation for constructive mathematical algorithms embedded in the domains of Axiom. Once in place, domains can be constructed, either independently or from one another.

Superstructures are built for quality—domains are compiled into machine code for run-time efficiency. You can extend the foundation in directions beyond the space directly beneath the superstructures, then extend selected superstructures to cover the space. Because of the compilation strategy, changing components of the foundation generally means that the existing superstructures (domains) built on the changed parts of the foundation (categories) have to be rebuilt—that is, recompiled.

Before delving into some of the interesting facts about categories, let’s see how you define them in Axiom.
12.1 Definitions

A category is defined by a function with exactly the same format as any other function in Axiom.

The definition of a category has the syntax:

\[
\text{CategoryForm: Category == Extensions [ with Exports ]}
\]

The brackets \([\ )\] here indicate optionality.

The first example of a category definition is \(\text{SetCategory}\), the most basic of the algebraic categories in Axiom.

\[
\text{SetCategory(): Category == Join(Type,CoercibleTo OutputForm) with}
\]

\[
"=" : ($, $) \to \text{Boolean}
\]

The definition starts off with the name of the category (\(\text{SetCategory}\)); this is always in column one in the source file. All parts of a category definition are then indented with respect to this first line.

In section 2 on page 57, we talked about \(\text{Ring}\) as denoting the class of all domains that are rings, in short, the class of all rings. While this is the usual naming convention in Axiom, it is also common to use the word “Category” at the end of a category name for clarity. The interpretation of the name \(\text{SetCategory}\) is, then, “the category of all domains that are (mathematical) sets.”

The name \(\text{SetCategory}\) is followed in the definition by its formal parameters enclosed in parentheses \(()\). Here there are no parameters. As required, the type of the result of this category function is the distinguished name \(\text{Category}\).

Then comes the \(\text{==}\). As usual, what appears to the right of the \(\text{==}\) is a definition, here, a category definition. A category definition always has two parts separated by the reserved word \(\text{with}\).

The first part tells what categories the category extends. Here, the category extends two categories: \(\text{Type}\), the category of all domains, and \(\text{CoercibleTo(OutputForm)}\). The operation \(\text{Join}\) is a system-defined operation that forms a single category from two or more other categories.

Every category other than \(\text{Type}\) is an extension of some other category. If, for example, \(\text{SetCategory}\) extended only the category \(\text{Type}\), the definition here would read “\(\text{Type with ...}\)” In fact, the \(\text{Type}\) is optional in this line; “\(\text{with ...}\)” suffices.
12.2 Exports

To the right of the with is a list of all the exports of the category. Each exported operation has a name and a type expressed by a declaration of the form “name: type”.

Categories can export symbols, as well as 0 and 1 which denote domain constants.\footnote{The numbers 0 and 1 are operation names in Axiom.} In the current implementation, all other exports are operations with types expressed as mappings with the syntax

\[ \text{source} \rightarrow \text{target} \]

The category SetCategory has a single export: the operation \(=\) whose type is given by the mapping \((\$, $) \rightarrow \text{Boolean}\). The $ in a mapping type always means “the domain.” Thus the operation \(=\) takes two arguments from the domain and returns a value of type Boolean.

The source part of the mapping here is given by a tuple consisting of two or more types separated by commas and enclosed in parentheses. If an operation takes only one argument, you can drop the parentheses around the source type. If the mapping has no arguments, the source part of the mapping is either left blank or written as \(()\). Here are examples of formats of various operations with some contrived names.

\[
\begin{align*}
\text{someIntegerConstant} &: \$ \\
\text{aZeroArgumentOperation}: () &\rightarrow \text{Integer} \\
\text{aOneArgumentOperation}: \text{Integer} &\rightarrow \$ \\
\text{aTwoArgumentOperation}: (\text{Integer},\$) &\rightarrow \text{Void} \\
\text{aThreeArgumentOperation}: (\$,\text{Integer},\$) &\rightarrow \text{Fraction}(\$)
\end{align*}
\]

12.3 Documentation

The definition of SetCategory above is missing an important component: its library documentation. Here is its definition, complete with documentation.

```plaintext
++ Description:
++ \bs{axiomType\{SetCategory\}} is the basic category
++ for describing a collection of elements with
++ \bs{axiomOp\{=\}} (equality) and a \bs{axiomFun\{coerce\}}
++ to \bs{axiomType\{OutputForm\}}.

SetCategory(): Category ==
 Join(Type, CoercibleTo OutputForm) with
 "=": (\$, \$) \rightarrow \text{Boolean}
 ++ \bs{axiom\{x = y\}} tests if \bs{axiom\{x\}} and
 ++ \bs{axiom\{y\}} are equal.
```
Documentary comments are an important part of constructor definitions. Documentation is given both for the category itself and for each export. A description for the category precedes the code. Each line of the description begins in column one with \texttt{++}. The description starts with the word \texttt{Description:}. All lines of the description following the initial line are indented by the same amount.

Surround the name of any constructor (with or without parameters) with \texttt{\textbf{}}. Similarly, surround an operator name with \texttt{\texttt{}}, an Axiom operation with \texttt{\textbf{}}, and a variable or Axiom expression with \texttt{$$}. Library documentation is given in a \TeX-like language so that it can be used both for hard-copy and for Browse. These different wrappings cause operations and types to have mouse-active buttons in Browse. For hard-copy output, wrapped expressions appear in a different font. The above documentation appears in hard-copy as:

\begin{verbatim}
SetCategory is the basic category for describing a collection of elements with
\hspace{1cm} (equality) and a \texttt{coerce} to \texttt{OutputForm}.
\end{verbatim}

and

\begin{verbatim}
x = y tests if \(x\) and \(y\) are equal.
\end{verbatim}

For our purposes in this chapter, we omit the documentation from further category descriptions.

### 12.4 Hierarchies

A second example of a category is \texttt{SemiGroup}, defined by:

\begin{verbatim}
SemiGroup(): Category == SetCategory with
    \hspace{1cm} \texttt{*}: ($,$) \rightarrow $
    \hspace{1cm} \texttt{**}: ($,$ PositiveInteger) \rightarrow $
\end{verbatim}

This definition is as simple as that for \texttt{SetCategory}, except that there are two exported operations. Multiple exported operations are written as a \texttt{pile}, that is, they all begin in the same column. Here you see that the category mentions another type, \texttt{PositiveInteger}, in a signature. Any domain can be used in a signature.

Since categories extend one another, they form hierarchies. Each category other than \texttt{Type} has one or more parents given by the one or more categories mentioned before the \texttt{with} part.

\footnote{Other information such as the author’s name, date of creation, and so on, can go in this area as well but are currently ignored by Axiom.}
of the definition. \texttt{SemiGroup} extends \texttt{SetCategory} and \texttt{SetCategory} extends both \texttt{Type} and \texttt{CoercibleTo (OutputForm)}. Since \texttt{CoercibleTo (OutputForm)} also extends \texttt{Type}, the mention of \texttt{Type} in the definition is unnecessary but included for emphasis.

### 12.5 Membership

We say a category designates a class of domains. What class of domains? That is, how does \texttt{Axiom} know what domains belong to what categories? The simple answer to this basic question is key to the design of \texttt{Axiom}:

\begin{quote}
Domains belong to categories by assertion.
\end{quote}

When a domain is defined, it is asserted to belong to one or more categories. Suppose, for example, that an author of domain \texttt{String} wishes to use the binary operator \( \ast \) to denote concatenation. Thus "hello " \( \ast \) "there" would produce the string "hello there". Actually, concatenation of strings in \texttt{Axiom} is done by juxtaposition or by using the operation \texttt{concat}. The expression "hello " "there" produces the string "hello there". The author of \texttt{String} could then assert that \texttt{String} is a member of \texttt{SemiGroup}. According to our definition of \texttt{SemiGroup}, strings would then also have the operation \( \ast\ast \) defined automatically. Then "---" \( \ast\ast \) 4 would produce a string of eight dashes "---------". Since \texttt{String} is a member of \texttt{SemiGroup}, it also is a member of \texttt{SetCategory} and thus has an operation \( = \) for testing that two strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this book. Any domain that is a member of a category extending \texttt{SemiGroup} is a member of \texttt{SemiGroup} (that is, it is a semigroup). In particular, any domain asserted to be a \texttt{Ring} is a semigroup since \texttt{Ring} extends \texttt{Monoid}, that, in turn, extends \texttt{SemiGroup}. The definition of \texttt{Integer} in \texttt{Axiom} asserts that \texttt{Integer} is a member of category \texttt{IntegerNumberSystem}, that, in turn, asserts that it is a member of \texttt{EuclideanDomain}. Now \texttt{EuclideanDomain} extends \texttt{PrincipalIdealDomain} and so on. If you trace up the hierarchy, you see that \texttt{EuclideanDomain} extends \texttt{Ring}, and, therefore, \texttt{SemiGroup}. Thus \texttt{Integer} is a semigroup and also exports the operations \( \ast \) and \( \ast\ast \).

### 12.6 Defaults

We actually omitted the last part of the definition of \texttt{SemiGroup} in section 12.4 on page 902. Here now is its complete \texttt{Axiom} definition.

\begin{verbatim}
SemiGroup(): Category == SetCategory with
  "*": ($, $) -> $
  "**": ($, PositiveInteger) -> $

add
  import RepeatedSquaring($)
\end{verbatim}
The add part at the end is used to give “default definitions” for exported operations. Once you have a multiplication operation \(*\), you can define exponentiation for positive integer exponents using repeated multiplication:

\[ x^n = x \cdot x \cdot \ldots \cdot x \]

\( n \) times

This definition for \(*\) is called a default definition. In general, a category can give default definitions for any operation it exports. Since SemiGroup and all its category descendants in the hierarchy export \(*\), any descendant category may redefine \(*\) as well.

A domain of category SemiGroup (such as Integer) may or may not choose to define its own \(*\) operation. If it does not, a default definition that is closest (in a “tree-distance” sense of the hierarchy) to the domain is chosen.

The part of the category definition following an add operation is a capsule, as discussed in the previous chapter. The line

\[
\text{import RepeatedSquaring($)}
\]

references the package RepeatedSquaring($), that is, the package RepeatedSquaring that takes “this domain” as its parameter. For example, if the semigroup Polynomial (Integer) does not define its own exponentiation operation, the definition used may come from the package RepeatedSquaring (Polynomial (Integer)). The next line gives the definition in terms of expt from that package.

The default definitions are collected to form a “default package” for the category. The name of the package is the same as the category but with an ampersand (\&) added at the end. A default package always takes an additional argument relative to the category. Here is the definition of the default package SemiGroup\& as automatically generated by Axiom from the above definition of SemiGroup.

\[
\text{SemiGroup\&_($): Exports == Implementation where}
\text{ }$
\text{ }$
\text{ }: SemiGroup}
\text{ }$
\text{Exports == with}
\text{ }$
\text{"\*: ($, PositiveInteger) -> $}
\text{Implementation == add}
\text{ }$
\text{ import RepeatedSquaring($)}
\text{ }$
\text{x:}$ ** n:PositiveInteger == expt(x,n)
\]
12.7 Axioms

In the previous section you saw the complete Axiom program defining \texttt{SemiGroup}. According to this definition, semigroups (that is, are sets with the operations \texttt{*} and \texttt{**}.

You might ask: “Aside from the notion of default packages, isn’t a category just a macro, that is, a shorthand equivalent to the two operations \texttt{*} and \texttt{**} with their types?” If a category were a macro, every time you saw the word \texttt{SemiGroup}, you would rewrite it by its list of exported operations. Furthermore, every time you saw the exported operations of \texttt{SemiGroup} among the exports of a constructor, you could conclude that the constructor exported \texttt{SemiGroup}.

A category is \textit{not} a macro and here is why. The definition for \texttt{SemiGroup} has documentation that states:

\begin{quote}
Category \texttt{SemiGroup} denotes the class of all multiplicative semigroups, that is, a set with an associative operation \texttt{*}.
Axioms:
\begin{itemize}
  \item \texttt{associative("*") : \{\$,\$/\}\rightarrow\$} -- \((x*y)*z = x*(y*z)\)
\end{itemize}
\end{quote}

According to the author's remarks, the mere exporting of an operation named \texttt{*} and \texttt{**} is not enough to qualify the domain as a \texttt{SemiGroup}. In fact, a domain can be a semigroup only if it explicitly exports a \texttt{**} and a \texttt{*} satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical theorems. There are numerous axioms from \texttt{Ring}, for example, that are well-understood from the literature. No attempt is made to list them all. Nonetheless, all such mathematical facts are implicit by the use of the name \texttt{Ring}.

12.8 Correctness

While such statements are only comments, Axiom can enforce their intention simply by shifting the burden of responsibility onto the author of a domain. A domain belongs to category \texttt{Ring} only if the author asserts that the domain belongs to \texttt{Ring} or to a category that extends \texttt{Ring}.

This principle of assertion is important for large user-extendable systems. Axiom has a large library of operations offering facilities in many areas. Names such as \texttt{norm} and \texttt{product}, for example, have diverse meanings in diverse contexts. An inescapable hindrance to users would be to force those who wish to extend Axiom to always invent new names for operations. Axiom allows you to reuse names, and then use context to disambiguate one from another.

Here is another example of why this is important. Some languages, such as \texttt{APL}, denote the \texttt{Boolean} constants \texttt{true} and \texttt{false} by the integers 1 and 0. You may want to let infix operators \texttt{+} and \texttt{*} serve as the logical operators \texttt{or} and \texttt{and}, respectively. But note this: \texttt{Boolean} is not a ring. The \textit{inverse axiom} for \texttt{Ring} states:
Every element \(x\) has an additive inverse \(y\) such that \(x + y = 0\).

\textbf{Boolean} is not a ring since \texttt{true} has no inverse—there is no inverse element \(a\) such that \(1 + a = 0\) (in terms of booleans, \(\texttt{(true or a) = false}\)). Nonetheless, Axiom could easily and correctly implement \texttt{Boolean} this way. \texttt{Boolean} simply would not assert that it is of category \texttt{Ring}. Thus the “\(^*\)” for \texttt{Boolean} values is not confused with the one for \texttt{Ring}. Since the \texttt{Polynomial} constructor requires its argument to be a ring, Axiom would then refuse to build the domain \texttt{Polynomial(Boolean)}. Also, Axiom would refuse to wrongfully apply algorithms to \texttt{Boolean} elements that presume that the ring axioms for “\(^*\)” hold.

12.9 Attributes

Most axioms are not computationally useful. Those that are can be explicitly expressed by what Axiom calls an \textit{attribute}. The attribute \texttt{commutative("*")}, for example, is used to assert that a domain has commutative multiplication. Its definition is given by its documentation:

A domain \(R\) has \texttt{commutative("*")} if it has an operation “\(^*\)”:\((R,R) \rightarrow R\) such that \(x * y = y * x\).

Just as you can test whether a domain has the category \texttt{Ring}, you can test that a domain has a given attribute.

Do polynomials over the integers have commutative multiplication?

\texttt{Polynomial Integer has commutative("*")}

Do matrices over the integers have commutative multiplication?

\texttt{Matrix Integer has commutative("*")}

Attributes are used to conditionally export and define operations for a domain (see section 13.3 on page 912. Attributes can also be asserted in a category definition.

After mentioning category \texttt{Ring} many times in this book, it is high time that we show you its definition:

\begin{verbatim}
Ring(): Category ==
  Join(Rng,Monoid,LeftModule($: Rng)) with
   characteristic: -> NonNegativeInteger
   coerce: Integer -> $
   unitsKnown
   add
   n:Integer
   coerce(n) == n * 1$$
\end{verbatim}
There are only two new things here. First, look at the $$ on the last line. This is not a typographic error! The first $ says that the 1 is to come from some domain. The second $ says that the domain is “this domain.” If $ is Fraction(Integer), this line reads coerce(n) => n * 1$Fraction(Integer).

The second new thing is the presence of attribute “unitsKnown”. Axiom can always distinguish an attribute from an operation. An operation has a name and a type. An attribute has no type. The attribute unitsKnown asserts a rather subtle mathematical fact that is normally taken for granted when working with rings. Because programs can test for this attribute, Axiom can correctly handle rather more complicated mathematical structures (ones that are similar to rings but do not have this attribute).

12.10 Parameters

Like domain constructors, category constructors can also have parameters. For example, category MatrixCategory is a parameterized category for defining matrices over a ring R so that the matrix domains can have different representations and indexing schemes. Its definition has the form:

MatrixCategory(R,Row,Col): Category ==
  TwoDimensionalArrayCategory(R,Row,Col) with ...

The category extends TwoDimensionalArrayCategory with the same arguments. You cannot find TwoDimensionalArrayCategory in the algebraic hierarchy listing. Rather, it is a member of the data structure hierarchy, given inside the back cover of this book. In particular, TwoDimensionalArrayCategory is an extension of HomogeneousAggregate since its elements are all one type.

The domain Matrix(R), the class of matrices with coefficients from domain R, asserts that it is a member of category MatrixCategory(R, Vector(R), Vector(R)). The parameters of a category must also have types. The first parameter to MatrixCategory R is required to be a ring. The second and third are required to be domains of category FiniteLinearAggregate(R). In practice, examples of categories having parameters other than domains are rare.

Adding the declarations for parameters to the definition for MatrixCategory, we have:

R: Ring

3With this axiom, the units of a domain are the set of elements x that each have a multiplicative inverse y in the domain. Thus 1 and −1 are units in domain Integer. Also, for Fraction Integer, the domain of rational numbers, all non-zero elements are units.

4This is another extension of HomogeneousAggregate that you can see in the data structure hierarchy.
(Row, Col): FiniteLinearAggregate(R)

MatrixCategory(R, Row, Col): Category ==
   TwoDimensionalArrayCategory(R, Row, Col) with ...

12.11 Conditionals

determinant As categories have parameters, the actual operations exported by a category can depend on these parameters. As an example, the operation from category MatrixCategory is only exported when the underlying domain $R$ has commutative multiplication:

if $R$ has commutative("*") then
determinant: $\rightarrow R$

Conditionals can also define conditional extensions of a category. Here is a portion of the definition of QuotientFieldCategory:

QuotientFieldCategory(R) : Category == ... with ...
   if $R$ has OrderedSet then OrderedSet
   if $R$ has IntegerNumberSystem then
      ceiling: $\rightarrow R$
   ...

Think of category QuotientFieldCategory(R) as denoting the domain Fraction(R), the class of all fractions of the form $a/b$ for elements of $R$. The first conditional means in English: “If the elements of $R$ are totally ordered ($R$ is an OrderedSet), then so are the fractions $a/b$.”

The second conditional is used to conditionally export an operation ceiling which returns the smallest integer greater than or equal to its argument. Clearly, “ceiling” makes sense for integers but not for polynomials and other algebraic structures. Because of this conditional, the domain Fraction(Integer) exports an operation ceiling: Fraction Integer $\rightarrow$ Integer, but Fraction Polynomial Integer does not.

Conditionals can also appear in the default definitions for the operations of a category. For example, a default definition for ceiling within the part following the add reads:

if $R$ has IntegerNumberSystem then
   ceiling x == ...

Here the predicate used is identical to the predicate in the Exports part. This need not be the case. See section 11.8 on page 892 for a more complicated example.
12.12 Anonymous Categories

The part of a category to the right of a with is also regarded as a category—an “anonymous category.” Thus you have already seen a category definition in section 11 on page 885. The Exports part of the package DrawComplex (section 11.3 on page 887) is an anonymous category. This is not necessary. We could, instead, give this category a name:

```
DrawComplexCategory(): Category == with
 drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
 drawComplexVectorField: (C -> C,S,S) -> VIEW3D
 setRealSteps: INT -> INT
 setImagSteps: INT -> INT
 setClipValue: DFLOAT-> DFLOAT
```

and then define DrawComplex by:

```
DrawComplex(): DrawComplexCategory == Implementation
 where
 ...
```

There is no reason, however, to give this list of exports a name since no other domain or package exports it. In fact, it is rare for a package to export a named category. As you will see in the next chapter, however, it is very common for the definition of domains to mention one or more category before the with.

)read alql.boot

)load DLIST ICARD DBASE QEQUAT MTHING OPQUERY )update
Chapter 13

Domains

We finally come to the domain constructor. A few subtle differences between packages and domains turn up some interesting issues. We first discuss these differences then describe the resulting issues by illustrating a program for the QuadraticForm constructor. After a short example of an algebraic constructor, CliffordAlgebra, we show how you use domain constructors to build a database query facility.

13.1 Domains vs. Packages

Packages are special cases of domains. What is the difference between a package and a domain that is not a package? By definition, there is only one difference: a domain that is not a package has the symbol $ appearing somewhere among the types of its exported operations. The $ denotes “this domain.” If the $ appears before the $ in the type of a signature, it means the operation takes an element from the domain as an argument. If it appears after the $, then the operation returns an element of the domain.

If no exported operations mention $, then evidently there is nothing of interest to do with the objects of the domain. You might then say that a package is a “boring” domain! But, as you saw in section 11 on page 885, packages are a very useful notion indeed. The exported operations of a package depend solely on the parameters to the package constructor and other explicit domains.

To summarize, domain constructors are versatile structures that serve two distinct practical purposes: Those like Polynomial and List describe classes of computational objects; others, like SortPackage, describe packages of useful operations. As in the last chapter, we focus here on the first kind.

13.2 Definitions

The syntax for defining a domain constructor is the same as for any function in Axiom:
CHAPTER 13. DOMAINS

DomainForm : Exports == Implementation

As this definition usually extends over many lines, a where expression is generally used instead.

A recommended format for the definition of a domain is:

DomainForm : Exports == Implementation where
optional type declarations
Exports == [Category Assertions] with
list of exported operations
Implementation == [Add Domain] add
[Rep := Representation]
list of function definitions for exported operations

Note: The brackets [ ] here denote optionality.

A complete domain constructor definition for QuadraticForm is shown in figure 13.1 on page 913. Interestingly, this little domain illustrates all the new concepts you need to learn.

A domain constructor can take any number and type of parameters. QuadraticForm takes a positive integer \( n \) and a field \( K \) as arguments. Like a package, a domain has a set of explicit exports and an implementation described by a capsule. Domain constructors are documented in the same way as package constructors.

Domain QuadraticForm\((n, K)\), for a given positive integer \( n \) and domain \( K \), explicitly exports three operations:

- \( \text{quadraticForm}(A) \) creates a quadratic form from a matrix \( A \).
- \( \text{matrix}(q) \) returns the matrix \( A \) used to create the quadratic form \( q \).
- \( q.v \) computes the scalar \( v^TAv \) for a given vector \( v \).

Compared with the corresponding syntax given for the definition of a package, you see that a domain constructor has three optional parts to its definition: Category Assertions, Add Domain, and Representation.

13.3 Category Assertions

The Category Assertions part of your domain constructor definition lists those categories of which all domains created by the constructor are unconditionally members. The word “unconditionally” means that membership in a category does not depend on the values of the parameters to the domain constructor. This part thus defines the link between the domains and the category hierarchies given on the inside covers of this book. As described in section 12.8 on page 905, it is this link that makes it possible for you to pass objects of the domains as arguments to other operations in Axiom.

Every QuadraticForm domain is declared to be unconditionally a member of category AbelianGroup. An abelian group is a collection of elements closed under addition. Every object \( x \) of an abelian group has an additive inverse \( y \) such that \( x + y = 0 \). The exports
13.3. CATEGORY ASSERTIONS

\(\text{13.3. CATEGORY ASSERTIONS}\)

\(\text{913}\)

\(\text{Figure 13.1: The QuadraticForm domain.}\)

of an abelian group include 0, +, -, and scalar multiplication by an integer. After asserting that \text{QuadraticForm} domains are abelian groups, it is possible to pass quadratic forms to algorithms that only assume arguments to have these abelian group properties.

In section 12.11 on page 908, you saw that \text{Fraction}(R),
a member of \text{QuotientFieldCategory}(R), is a member of
\text{OrderedSet} if \(R\) is a member of \text{OrderedSet}. Likewise,
from the \text{Exports} part of the definition of \text{ModMonic}(R, S),

\text{UnivariatePolynomialCategory}(R) with
\text{if} R \text{ has Finite then Finite}
...
you see that ModMonic(R, S) is a member of Finite is R is.
TheExports part of a domain definition is the same kind of expression that can appear to the right of an == in a category definition. If a domain constructor is unconditionally a member of two or more categories, a Join form is used. TheExports part of the definition of FlexibleArray(S) reads, for example:

\[
\text{Join(ExtensibleLinearAggregate(S), OneDimensionalArrayAggregate(S)) with...}
\]

13.4 A Demo

Before looking at the Implementation part of QuadraticForm, let’s try some examples.

Build a domain QF.

\[
\text{QF := QuadraticForm(2,Fraction Integer)}
\]

Define a matrix to be used to construct a quadratic form.

\[
\text{A := matrix \begin{bmatrix} -1, & 1/2 \\ 1/2, & 1 \end{bmatrix}}
\]

Construct the quadratic form. A package call $\text{QF}$ is necessary since there are other QuadraticForm domains.

\[
\text{q : QF := quadraticForm(A)}
\]

Looks like a matrix. Try computing the number of rows. Axiom won’t let you.

\[
\text{nrows q}
\]

Create a direct product element v. A package call is again necessary, but Axiom understands your list as denoting a vector.

\[
\text{v := directProduct([2,-1])}$DirectProduct(2,Fraction Integer)
\]

Compute the product $v^T Av$.

\[
\text{q.v}
\]

What is 3 times q minus q plus q?

\[
3\ast q - q + q
\]
13.5  Browse

The Browse facility of HyperDoc is useful for investigating the properties of domains, packages, and categories. From the main HyperDoc menu, move your mouse to Browse and click on the left mouse button. This brings up the Browse first page. Now, with your mouse pointer somewhere in this window, enter the string “quadraticform” into the input area (all lower case letters will do). Move your mouse to Constructors and click. Up comes a page describing QuadraticForm.

From here, click on Description. This gives you a page that includes a part labeled by “Description.”. You also see the types for arguments \( n \) and \( K \) displayed as well as the fact that QuadraticForm returns an AbelianGroup. You can go and experiment a bit by selecting Field with your mouse. Eventually, use the button several times to return to the first page on QuadraticForm.

Select Operations to get a list of operations for QuadraticForm. You can select an operation by clicking on it to get an individual page with information about that operation. Or you can select the buttons along the bottom to see alternative views or get additional information on the operations. Then return to the page on QuadraticForm.

Select Cross Reference to get another menu. This menu has buttons for Parents, Ancestors, and others. Clicking on Parents, you see that QuadraticForm has one parent AbelianMonoid.

13.6  Representation

The Implementation part of an Axiom capsule for a domain constructor uses the special variable \( \text{Rep} \) to identify the lower level data type used to represent the objects of the domain. The \( \text{Rep} \) for quadratic forms is \( \text{SquareMatrix}(n, K) \). This means that all objects of the domain are required to be \( n \) by \( n \) matrices with elements from \( K \).

The code for quadraticForm in figure 13.1 on page 913 checks that the matrix is symmetric and then converts it to \( \$ \), which means, as usual, “this domain.” Such explicit conversions are generally required by the compiler. Aside from checking that the matrix is symmetric, the code for this function essentially does nothing. The \( m :: \$ \) on line 28 coerces \( m \) to a quadratic form. In fact, the quadratic form you created in step (3) of section 13.4 on page 914 is just the matrix you passed it in disguise! Without seeing this definition, you would not know that. Nor can you take advantage of this fact now that you do know! When we try in the next step of section 13.4 on page 914 to regard \( q \) as a matrix by asking for nrows, the number of its rows, Axiom gives you an error message saying, in effect, “Good try, but this won’t work!”

The definition for the matrix function could hardly be simpler: it just returns its argument after explicitly coercing its argument to a matrix. Since the argument is already a matrix, this coercion does no computation.

Within the context of a capsule, an object of \( \$ \) is regarded both as a quadratic form and
as a matrix.\footnote{In case each of $\$\$ and $\text{Rep}$ have the same named operation available, the one from $\$$ takes precedence. Thus, if you want the one from $\text{Rep}$, you must package call it using a $\$\text{Rep}$ suffix.} This makes the definition of $q.v$ easy—it just calls the \texttt{dot} product from \texttt{DirectProduct} to perform the indicated operation.

\section{Multiple Representations}

To write functions that implement the operations of a domain, you want to choose the most computationally efficient data structure to represent the elements of your domain.

A classic problem in computer algebra is the optimal choice for an internal representation of polynomials. If you create a polynomial, say $3x^2 + 5$, how does Axiom hold this value internally? There are many ways. Axiom has nearly a dozen different representations of polynomials, one to suit almost any purpose. Algorithms for solving polynomial equations work most efficiently with polynomials represented one way, whereas those for factoring polynomials are most efficient using another. One often-used representation is a list of terms, each term consisting of exponent-coefficient records written in the order of decreasing exponents. For example, the polynomial $3x^2 + 5$ is represented by the list \[
\left[\left[e : 2, c : 3\right], \left[e : 0, c : 5\right]\right].
\]

What is the optimal data structure for a matrix? It depends on the application. For large sparse matrices, a linked-list structure of records holding only the non-zero elements may be optimal. If the elements can be defined by a simple formula $f(i,j)$, then a compiled function for $f$ may be optimal. Some programmers prefer to represent ordinary matrices as vectors of vectors. Others prefer to represent matrices by one big linear array where elements are accessed with linearly computable indexes.

While all these simultaneous structures tend to be confusing, Axiom provides a helpful organizational tool for such a purpose: categories. \texttt{PolynomialCategory}, for example, provides a uniform user interface across all polynomial types. Each kind of polynomial implements functions for all these operations, each in its own way. If you use only the top-level operations in \texttt{PolynomialCategory} you usually do not care what kind of polynomial implementation is used.

Within a given domain, however, you define (at most) one representation.\footnote{You can make that representation a \texttt{Union} type, however. See section \ref{section:unions} on page \pageref{section:unions} for examples of unions.} If you want to have multiple representations (that is, several domains, each with its own representation), use a category to describe the \texttt{Exports}, then define separate domains for each representation.

\section{Add Domain}

The capsule part of \texttt{Implementation} defines functions that implement the operations exported by the domain—usually only some of the operations. In our demo in section \ref{section:demo-13.4} on page \pageref{section:demo-13.4}, we asked for the value of $3 \ast q - q + q$. Where do the operations $\ast$, $+$, and $-$ come from? There is no definition for them in the capsule!
13.9.  DEFAULTS

The Implementation part of a definition can optionally specify an “add-domain” to the left of an add (for QuadraticForm, defines \texttt{SquareMatrix(n,K)} is the add-domain). The meaning of an add-domain is simply this: if the capsule part of the Implementation does not supply a function for an operation, Axiom goes to the add-domain to find the function. So do *, + and − (from QuadraticForm) come from \texttt{SquareMatrix(n,K)}?

13.9 Defaults

In section 11 on page 885, we saw that categories can provide default implementations for their operations. How and when are they used? When Axiom finds that \texttt{QuadraticForm(2, Fraction Integer)} does not implement the operations *, +, and −, it goes to \texttt{SquareMatrix(2,Fraction Integer)} to find it. As it turns out, \texttt{SquareMatrix(2, Fraction Integer)} does not implement any of these operations!

What does Axiom do then? Here is its overall strategy. First, Axiom looks for a function in the capsule for the domain. If it is not there, Axiom looks in the add-domain for the operation. If that fails, Axiom searches the add-domain of the add-domain, and so on. If all those fail, it then searches the default packages for the categories of which the domain is a member. In the case of QuadraticForm, it searches \texttt{AbelianGroup}, then its parents, grandparents, and so on. If this fails, it then searches the default packages of the add-domain. Whenever a function is found, the search stops immediately and the function is returned. When all fails, the system calls \texttt{error} to report this unfortunate news to you. To find out the actual order of constructors searched for QuadraticForm, consult Browse: from the QuadraticForm, click on Cross Reference, then on Lineage.

Let’s apply this search strategy for our example $3 \times q - q + q$. The scalar multiplication comes first. Axiom finds a default implementation in \texttt{AbelianGroup}. Remember from section 12.6 on page 903 that \texttt{Semigroup} provides a default definition for $x^n$ by repeated squaring? \texttt{AbelianGroup} similarly provides a definition for $nx$ by repeated doubling.

But the search of the defaults for QuadraticForm fails to find any + or * in the default packages for the ancestors of QuadraticForm. So it now searches among those for \texttt{SquareMatrix}. Category \texttt{MatrixCategory}, which provides a uniform interface for all matrix domains, is a grandparent of \texttt{SquareMatrix} and has a capsule defining many functions for matrices, including matrix addition, subtraction, and scalar multiplication. The default package \texttt{MatrixCategory&} is where the functions for + and − (from QuadraticForm) come from.

You can use Browse to discover where the operations for QuadraticForm are implemented. First, get the page describing QuadraticForm. With your mouse somewhere in this window, type a “2”, press the \texttt{Tab} key, and then enter “Fraction Integer” to indicate that you want the domain \texttt{QuadraticForm(2, Fraction Integer)}. Now click on Operations to get a table of operations and on * to get a page describing the * operation. Finally, click on implementation at the bottom.
13.10 Origins

Aside from the notion of where an operation is implemented, a useful notion is the origin or “home” of an operation. When an operation (such as quadraticForm) is explicitly exported by a domain (such as QuadraticForm), you can say that the origin of that operation is that domain. If an operation is not explicitly exported from a domain, it is inherited from, and has as origin, the (closest) category that explicitly exports it. The operations + and − (from AbelianMonoid) of QuadraticForm, for example, are inherited from AbelianMonoid. As it turns out, AbelianMonoid is the origin of virtually every + operation in Axiom!

Again, you can use Browse to discover the origins of operations. From the Browse page on QuadraticForm, click on Operations, then on origins at the bottom of the page.

The origin of the operation is the only place where on-line documentation is given. However, you can re-export an operation to give it special documentation. Suppose you have just invented the world’s fastest algorithm for inverting matrices using a particular internal representation for matrices. If your matrix domain just declares that it exports MatrixCategory, it exports the inverse operation, but the documentation the user gets from Browse is the standard one from MatrixCategory. To give your version of inverse the attention it deserves, simply export the operation explicitly with new documentation. This redundancy gives inverse a new origin and tells Browse to present your new documentation.

13.11 Short Forms

In Axiom, a domain could be defined using only an add-domain and no capsule. Although we talk about rational numbers as quotients of integers, there is no type RationalNumber in Axiom. To create such a type, you could compile the following “short-form” definition:

\[
\text{RationalNumber}() \equiv \text{Fraction}(\text{Integer})
\]

The Exports part of this definition is missing and is taken to be equivalent to that of Fraction(Integer). Because of the add-domain philosophy, you get precisely what you want. The effect is to create a little stub of a domain. When a user asks to add two rational numbers, Axiom would ask RationalNumber for a function implementing this +. Since the domain has no capsule, the domain then immediately sends its request to Fraction (Integer).

The short form definition for domains is used to define such domains as MultivariatePolynomial:

\[
\text{MultivariatePolynomial}(v1: \text{List Symbol}, R: \text{Ring}) \equiv \\
\text{SparseMultivariatePolynomial}(R, \\
\text{OrderedVariableList} v1)
\]
13.12 Example 1: Clifford Algebra

Now that we have QuadraticForm available, let’s put it to use. Given some quadratic form $Q$ described by an $n$ by $n$ matrix over a field $K$, the domain $\text{CliffordAlgebra}(n, K, Q)$ defines a vector space of dimension $2^n$ over $K$. This is an interesting domain since complex numbers, quaternions, exterior algebras and spin algebras are all examples of Clifford algebras.

The basic idea is this: the quadratic form $Q$ defines a basis $e_1, e_2, \ldots, e_n$ for the vector space $K^n$—the direct product of $K$ with itself $n$ times. From this, the Clifford algebra generates a basis of $2^n$ elements given by all the possible products of the $e_i$ in order without duplicates, that is, 1, $e_1$, $e_2$, $e_1 e_2$, $e_3$, $e_1 e_3$, $e_2 e_3$, $e_1 e_2 e_3$, and so on.

The algebra is defined by the relations

$$
e_i e_i = Q(e_i)$$
$$e_i e_j = -e_j e_i \quad \text{for } i \neq j$$

Now look at the snapshot of its definition given in figure 13.2 on page 920. Lines 9-10 show part of the definitions of the Exports. A Clifford algebra over a field $K$ is asserted to be a ring, an algebra over $K$, and a vector space over $K$. Its explicit exports include $e(n)$, which returns the $n$-th unit element.

The Implementation part begins by defining a local variable $\text{Qeelist}$ to hold the list of all $q.v$ where $v$ runs over the unit vectors from 1 to the dimension $n$. Another local variable $\text{dim}$ is set to $2^n$, computed once and for all. The representation for the domain is $\text{PrimitiveArray}(K)$, which is a basic array of elements from domain $K$. Line 18 defines $\text{New}$ as shorthand for a more lengthy expression $\text{new}(\text{dim}, 0$K$)$. Rep, which computes a primitive array of length $2^n$ filled with 0’s from domain $K$.

Lines 19-22 define the sum of two elements $x$ and $y$ straightforwardly. First, a new array of all 0’s is created, then filled with the sum of the corresponding elements. Indexing for primitive arrays starts at 0. The definition of the product of $x$ and $y$ first requires the definition of a local function $\text{addMonomProd}$. Axiom knows it is local since it is not an exported function. The types of all local functions must be declared.

The Implementation part begins by defining a local variable $\text{Qeulist}$ to hold the list of all $q.v$ where $v$ runs over the unit vectors from 1 to the dimension $n$. Another local variable $\text{dim}$ is set to $2^n$, computed once and for all. The representation for the domain is $\text{PrimitiveArray}(K)$, which is a basic array of elements from domain $K$. Line 18 defines $\text{New}$ as shorthand for the more lengthy expression $\text{new}(\text{dim}, 0$K$)$. Rep, which computes a primitive array of length $2^n$ filled with 0’s from domain $K$.

Lines 19-22 define the sum of two elements $x$ and $y$ straightforwardly. First, a new array of all 0’s is created, then filled with the sum of the corresponding elements. Indexing for
NNI ==> NonNegativeInteger  
PI  ==> PositiveInteger

CliffordAlgebra(n,K,q): Exports == Implementation where  
n: PI  
K: Field  
q: QuadraticForm(n, K)

Exports == Join(Ring,Algebra(K),VectorSpace(K)) with  
e: PI -> $

Implementation == add

Qeelist :=  
  [q.unitVector(i::PI) for i in 1..n]
dim := 2**n
Rep := PrimitiveArray K
New ==> new(dim, 0$K)$Rep
x + y ==
  z := New
  for i in 0..dim-1 repeat z.i := x.i + y.i
  z
addMonomProd: (K, NNI, K, NNI, $) -> $
addMonomProd(c1, b1, c2, b2, z) == ...
x * y ==
  z := New
  for ix in 0..dim-1 repeat
    if x.ix ~= 0 then for iy in 0..dim-1 repeat
      if y.iy ~= 0
        then addMonomProd(x.ix,ix,y.iy,iy,z)
  z
...

Figure 13.2: Part of the CliffordAlgebra domain.

primitive arrays starts at 0. The definition of the product of x and y first requires the 
definition of a local function addMonomProd. Axiom knows it is local since it is not an 
exported function. The types of all local functions must be declared.

13.13 Example 2: Building A Query Facility

We now turn to an entirely different kind of application, building a query language for a 
database.

Here is the practical problem to solve. The Browse facility of Axiom has a database for
all operations and constructors which is stored on disk and accessed by HyperDoc. For our purposes here, we regard each line of this file as having eight fields: class, name, type, nargs, exposed, kind, origin, and condition. Here is an example entry:

```
"o"'determinant'"$->R'1'x'd'Matrix(R)'has(R,commutative("*"))
```

In English, the entry means:

The operation **determinant**: $ \rightarrow R$ with 1 argument, is **exposed** and is exported by domain **Matrix(R)** if R has **commutative("*")**.

Our task is to create a little query language that allows us to get useful information from this database.

## A Little Query Language

First we design a simple language for accessing information from the database. We have the following simple model in mind for its design. Think of the database as a box of index cards. There is only one search operation—it takes the name of a field and a predicate (a boolean-valued function) defined on the fields of the index cards. When applied, the search operation goes through the entire box selecting only those index cards for which the predicate is `true`. The result of a search is a new box of index cards. This process can be repeated again and again.

The predicates all have a particularly simple form: `symbol = pattern`, where `symbol` designates one of the fields, and `pattern` is a “search string”—a string that may contain a “*” as a wildcard. Wildcards match any substring, including the empty string. Thus the pattern "*ma*t" matches "mat", "doormat" and "smart".

To illustrate how queries are given, we give you a sneak preview of the facility we are about to create.

Extract the database of all Axiom operations.

```plaintext
ops := getDatabase("o")
```

How many exposed three-argument map operations involving streams?

```plaintext
ops.(name="map").(nargs="3").(type="*Stream*")
```

As usual, the arguments of `elt (. )` associate to the left. The first `elt` produces the set of all operations with name `map`. The second `elt` produces the set of all map operations with three arguments. The third `elt` produces the set of all three-argument map operations having a type mentioning `Stream`.

Another thing we’d like to do is to extract one field from each of the index cards in the box and look at the result. Here is an example of that kind of request.

What constructors explicitly export a **determinant** operation?
The first \texttt{elt} produces the set of all index cards with name \texttt{determinant}. The second \texttt{elt} extracts the \texttt{origin} component from each index card. Each origin component is the name of a constructor which directly exports the operation represented by the index card. Extracting a component from each index card produces what we call a \texttt{datalist}. The third \texttt{elt, sort}, causes the datalist of origins to be sorted in alphabetic order. The fourth, \texttt{unique}, causes duplicates to be removed.

Before giving you a more extensive demo of this facility, we now build the necessary domains and packages to implement it.

### The Database Constructor

We work from the top down. First, we define a database, our box of index cards, as an abstract datatype. For sake of illustration and generality, we assume that an index card is some type \( S \), and that a database is a box of objects of type \( S \). Here is the Axiom program defining the \texttt{Database} domain.

```axiom
PI ==> PositiveInteger
Database(S): Exports == Implementation where
 S: Object with
 elt: ($, Symbol) -> String
 display: $ -> Void
 fullDisplay: $ -> Void

Exports == with
 elt: ($,QueryEquation) -> $ Select by an equation
 elt: ($, Symbol) -> DataList String Select by a field name
 "+": ($,$) -> $ Combine two databases
 "-": ($,$) -> $ Subtract one from another
 display: $ -> Void A brief database display
 fullDisplay: $ -> Void A full database display
 fullDisplay: ($,PI,PI) -> Void A selective display
 coerce: $ -> OutputForm Display a database
Implementation == add
```

The domain constructor takes a parameter \( S \), which stands for the class of index cards. We describe an index card later. Here think of an index card as a string which has the eight fields mentioned above.

First, we tell Axiom what operations we are going to require from index cards. We need an \texttt{elt} to extract the contents of a field (such as \texttt{name} and \texttt{type}) as a string. For example, \texttt{c.name} returns a string that is the content of the \texttt{name} field on the index card \( c \). We need to
13.13. EXAMPLE 2: BUILDING A QUERY FACILITY

display an index card in two ways: **display** shows only the name and type of an operation; **fullDisplay** displays all fields. The display operations return no useful information and thus have return type **Void**.

Next, we tell Axiom what operations the user can apply to the database. This part defines our little query language. The most important operation is `db . field = pattern` which returns a new database, consisting of all index cards of `db` such that the `field` part of the index card is matched by the string pattern called `pattern`. The expression `field = pattern` is an object of type **QueryEquation** (defined in the next section).

Another **elt** is needed to produce a **DataList** object. Operation `+` is to merge two databases together; `-` is used to subtract away common entries in a second database from an initial database. There are three display functions. The **fullDisplay** function has two versions: one that prints all the records, the other that prints only a fixed number of records. A **coerce** to **OutputForm** creates a display object.

The **Implementation** part of Database is straightforward.

```plaintext
Implementation == add
 s: Symbol
 Rep := List S
 elt(db,equation) == ...
 elt(db,key) == [x.key for x in db]::DataList(String)
 display(db) == for x in db repeat display x
 fullDisplay(db) == for x in db repeat fullDisplay x
 fullDisplay(db, n, m) == for x in db for i in 1..m
 repeat
 if i >= n then fullDisplay x
 x+y == removeDuplicates! merge(x,y)
 x-y == mergeDifference(copy(x::Rep),
 y::Rep)$MergeThing(S)
 coerce(db): OutputForm == (#db):: OutputForm
```

The database is represented by a list of elements of `S` (index cards). We leave the definition of the first **elt** operation (on line 4) until the next section. The second **elt** collects all the strings with field name `key` into a list. The **display** function and first **fullDisplay** function simply call the corresponding functions from `S`. The second **fullDisplay** function provides an efficient way of printing out a portion of a large list. The `+` is defined by using the existing **merge** operation defined on lists, then removing duplicates from the result. The `-` operation requires writing a corresponding subtraction operation. A package **MergeThing** (not shown) provides this.

The **coerce** function converts the database to an **OutputForm** by computing the number of index cards. This is a good example of the independence of the representation of an Axiom object from how it presents itself to the user. We usually do not want to look at a database—but do care how many “hits” we get for a given query. So we define the output representation of a database to be simply the number of index cards our query finds.
Query Equations

The predicate for our search is given by an object of type QueryEquation. Axiom does not have such an object yet so we have to invent it.

```lisp
QueryEquation(): Exports == Implementation where
 Exports == with
 equation: (Symbol, String) -> $
 variable: $ -> Symbol
 value: $ -> String

 Implementation == add
 Rep := Record(var:Symbol, val:String)
 equation(x, s) == [x, s]
 variable q == q.var
 value q == q.val
```

Axiom converts an input expression of the form \( a = b \) to \( \text{equation}(a, b) \). Our equations always have a symbol on the left and a string on the right. The Exports part thus specifies an operation equation to create a query equation, and variable and value to select the left- and right-hand sides. The Implementation part uses Record for a space-efficient representation of an equation.

Here is the missing definition for the elt function of Database in the last section:

```lisp
elt(db,eq) ==
 field := variable eq
 value := value eq
 [x for x in db | matches?(value,x.field)]
```

Recall that a database is represented by a list. Line 4 simply runs over that list collecting all elements such that the pattern (that is, value) matches the selected field of the element.

DataLists

Type DataList is a new type invented to hold the result of selecting one field from each of the index cards in the box. It is useful to make datalists extensions of lists—lists that have special elt operations defined on them for sorting and removing duplicates.

```lisp
DataList(S:OrderedSet) : Exports == Implementation where
 Exports == ListAggregate(S) with
```
elt: ($,"unique") -> $  
elt: ($,"sort") -> $  
elt: ($,"count") -> NonNegativeInteger  
coerce: List S -> $

The Exports part asserts that datalists belong to the category ListAggregate. Therefore, you can use all the usual list operations on datalists, such as first, rest, and concat. In addition, datalists have four explicit operations. Besides the three elt operations, there is a coerce operation that creates datalists from lists.

The Implementation part needs only to define four functions. All the rest are obtained from List(S).

Index Cards

An index card comes from a file as one long string. We define functions that extract substrings from the long string. Each field has a name that is passed as a second argument to elt.

IndexCard() == Implementation where
Exports == with
  elt: ($, Symbol) -> String  
display: $ -> Void  
fullDisplay: $ -> Void  
coerce: String -> $
Implementation == String add ...

We leave the Implementation part to the reader. All operations involve straightforward string manipulations.

Creating a Database

We must not forget one important operation: one that builds the database in the first place! We’ll name it getDatabase and put it in a package. This function is implemented by calling the Common Lisp function getBrowseDatabase(s) to get appropriate information from Browse. This operation takes a string indicating which lines you want from the database:
“o” gives you all operation lines, and “k”, all constructor lines. Similarly, “c”, “d”, and “p” give you all category, domain and package lines respectively.

OperationsQuery(): Exports == Implementation where
   Exports == with
      getDatabase: String -> Database(IndexCard)

   Implementation == add
      getDatabase(s) == getBrowseDatabase(s)$Lisp

We do not bother creating a special name for databases of index cards. Database (IndexCard) will do. Notice that we used the package OperationsQuery to create, in effect, a new kind of domain: Database(IndexCard).

Putting It All Together

To create the database facility, you put all these constructors into one file.\(^3\) At the top of the file put )abbrev commands, giving the constructor abbreviations you created.

---

\(^3\)You could use separate files, but we are putting them all together because, organizationally, that is the logical thing to do.
With all this in `alql.spad`, for example, compile it using

```
)compile alql
```

and then load each of the constructors:

```
)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY
```

You are ready to try some sample queries.

**Example Queries**

Our first set of queries give some statistics on constructors in the current Axiom system.

How many constructors does Axiom have?

```
ks := getDatabase "k"
```

Break this down into the number of categories, domains, and packages.

```
[ks.(kind=k) for k in ["c","d","p"]]
```

What are all the domain constructors that take no parameters?

```
elt(ks.(kind="d")(nargs="0"),name)
```

How many constructors have “Matrix” in their name?

```
mk := ks.(name="*Matrix*")
```

What are the names of those that are domains?

```
elt(mk.(kind="d"),name)
```
How many operations are there in the library?

\( o := \text{getDatabase "o"} \)

Break this down into categories, domains, and packages.

\([o.(\text{kind=k}) \text{ for k in ["c","d","p"] }] \)

The query language is helpful in getting information about a particular operation you might like to apply. While this information can be obtained with Browse, the use of the query database gives you data that you can manipulate in the workspace.

How many operations have “eigen” in the name?

\( \text{eigens := o.(name="*eigen\")} \)

What are their names?

\( \text{elt(eigens,name)} \)

Where do they come from?

\( \text{elt(elt(elt(eigens,origin),sort),unique)} \)

The operations + and - are useful for constructing small databases and combining them. However, remember that the only matching you can do is string matching. Thus a pattern such as "*Matrix*" on the type field matches any type containing Matrix, MatrixCategory, SquareMatrix, and so on.

How many operations mention “Matrix” in their type?

\( \text{tm := o.(type="*Matrix\")} \)

How many operations come from constructors with “Matrix” in their name?

\( \text{fm := o.(origin="*Matrix\")} \)

How many operations are in \( fm \) but not in \( tm \)?

\( fm - tm \)

Display the operations that both mention “Matrix” in their type and come from a constructor having “Matrix” in their name.
13.13. EXAMPLE 2: BUILDING A QUERY FACILITY

fullDisplay(fm-%)

How many operations involve matrices?

\[ m := tm+fm \]

Display 4 of them.

fullDisplay(m, 202, 205)

How many distinct names of operations involving matrices are there?

\[ \text{elt(elt(elt(m, name), unique), count)} \]
Chapter 14

Browse

This chapter discusses the Browse component of HyperDoc. We suggest you invoke Axiom and work through this chapter, section by section, following our examples to gain some familiarity with Browse.

14.1 The Front Page: Searching the Library

To enter Browse, click on Browse on the top level page of HyperDoc to get the front page of Browse.

Figure 14.1: The Browse front page.

To use this page, you first enter a search string into the input area at the top, then click on
one of the buttons below. We show the use of each of the buttons by example.

**Constructors**

First enter the search string `Matrix` into the input area and click on **Constructors**. What you get is the **constructor page** for `Matrix`. We show and describe this page in detail in section 14.2 on page 935. By convention, Axiom does a case-insensitive search for a match. Thus `matrix` is just as good as `Matrix`, has the same effect as `MaTrix`, and so on. We recommend that you generally use small letters for names however. A search string with only capital letters has a special meaning (see section 14.3 on page 952).

Click on **Constructors** to return to the Browse front page.

Use the symbol “*” in search strings as a *wild card*. A wild card matches any substring, including the empty string. For example, enter the search string `*matrix*` into the input area and click on **Constructors**. What you get is a table of all constructors whose names contain the string “matrix.”

All constructors containing the string are listed, whether exposed or unexposed. You can hide the names of the unexposed constructors by clicking on the `*unexposed` button in the **Views** panel at the bottom of the window. (The button will change to **exposed only**.)

One of the names in this table is `Matrix`. Click on `Matrix`. What you get is again the constructor page for `Matrix`. As you see, Browse gives you a large network of information in which there are many ways to reach the same pages.

Again click on the **Constructors** to return to the table of constructors whose names contain

---

1 To get only categories, domains, or packages, rather than all constructors, you can click on the corresponding button to the right of **Constructors**.
14.1. THE FRONT PAGE: SEARCHING THE LIBRARY

matrix.

Below the table is a Views panel. This panel contains buttons that let you view constructors in different ways. To learn about views of constructors, skip to section 14.2 on page 945.

Click on to return to the Browse front page.

Operations

Enter *matrix into the input area and click on Operations. This time you get a table of operations whose names end with matrix or Matrix.

Figure 14.3: Table of operations matching *matrix .

If you select an operation name, you go to a page describing all the operations in Axiom of that name. At the bottom of an operation page is another kind of Views panel, one for operation pages. To learn more about these views, skip to section 14.3 on page 949.

Click on to return to the Browse front page.

Attributes

This button gives you a table of attribute names that match the search string. Enter the search string * and click on Attributes to get a list of all system attributes.

Click on to return to the Browse front page.

Again there is a Views panel at the bottom with buttons that let you view the attributes in different ways.
CHAPTER 14. BROWSE

Figure 14.4: Table of Axiom attributes.

**General**

This button does a general search for all constructor, operation, and attribute names matching the search string. Enter the search string *matrix* into the input area. Click on General to find all constructs that have matrix as a part of their name.

Figure 14.5: Table of all constructs matching *matrix*.

The summary gives you all the names under a heading when the number of entries is less than 10.

Click on to return to the Browse front page.
14.2 THE CONSTRUCTOR PAGE

Documentation

Again enter the search key *matrix* and this time click on Documentation. This search matches any constructor, operation, or attribute name whose documentation contains a substring matching matrix.

Figure 14.6: Table of constructs with documentation matching *matrix*.

Click on to return to the Browse front page.

Complete

This search combines both General and Documentation.

14.2 The Constructor Page

In this section we look in detail at a constructor page for domain Matrix. Enter matrix into the input area on the main Browse page and click on Constructors.

The header part tells you that Matrix has abbreviation MATRIX and one argument called R that must be a domain of category Ring. Just what domains can be arguments of Matrix? To find this out, click on the R on the second line of the heading. What you get is a table of all acceptable domain parameter values of R, or a table of rings in Axiom.

Click on to return to the constructor page for Matrix.
If you have access to the source code of Axiom, the third line of the heading gives you the name of the source file containing the definition of \texttt{Matrix}. Click on it to pop up an editor window containing the source code of \texttt{Matrix}.

We recommend that you leave the editor window up while working through this chapter as you occasionally may want to refer to it.
Figure 14.9: Table of acceptable domain parameters to Matrix.

Figure 14.10: Source code for Matrix.

Constructor Page Buttons

We examine each button on this page in order.

Description

Click here to bring up a page with a brief description of constructor Matrix. If you have access to system source code, note that these comments can be found directly over the constructor definition.
Figure 14.11: Description page for Matrix.

Operations

Click here to get a table of operations exported by Matrix. You may wish to widen the window to have multiple columns as below.

Figure 14.12: Table of operations from Matrix.

If you click on an operation name, you bring up a description page for the operations. For a detailed description of these pages, skip to section 14.3 on page 949.
Attributes

Click here to get a table of the two attributes exported by Matrix: finiteAggregate and shallowlyMutable. These are two computational properties that result from Matrix being regarded as a data structure.

Example pages have several examples of Axiom commands. Each example has an active button to its left. Click on it! A pre-computed answer is pasted into the page immediately following the command. If you click on the button a second time, the answer disappears. This button thus acts as a toggle: “now you see it; now you don’t.”

Note also that the Axiom commands themselves are active. If you want to see Axiom execute the command, then click on it! A new Axiom window appears on your screen and the command is executed.

At the end of the page is generally a menu of buttons that lead you to further sections. Select one of these topics to explore its contents.
Exports

Click here to see a page describing the exports of Matrix exactly as described by the source code.

As you see, Matrix declares that it exports all the operations and attributes exported by category MatrixCategory(R, Row, Col). In addition, two operations, diagonalMatrix and inverse, are explicitly exported.

To learn a little about the structure of Axiom, we suggest you do the following exercise.
Otherwise, go on to the next section.

Matrix explicitly exports only two operations. The other operations are thus exports of MatrixCategory. In general, operations are usually not explicitly exported by a domain. Typically they are inherited from several different categories. Let’s find out from where the operations of Matrix come.

1. Click on MatrixCategory, then on Exports. Here you see that MatrixCategory explicitly exports many matrix operations. Also, it inherits its operations from TwoDimensionalArrayCategory.

2. Click on TwoDimensionalArrayCategory, then on Exports. Here you see explicit operations dealing with rows and columns. In addition, it inherits operations from HomogeneousAggregate.

3. Click on and then click on Object, then on Exports, where you see there are no exports.

4. Click on repeatedly to return to the constructor page for Matrix.

Related Operations

Click here bringing up a table of operations that are exported by packages but not by Matrix itself.

Figure 14.16: Related operations of Matrix.

To see a table of such packages, use the Relatives button on the Cross Reference page described next.
Cross Reference

Click on the Cross Reference button on the main constructor page for Matrix. This gives you a page having various cross reference information stored under the respective buttons.

Figure 14.17: Cross-reference page for Matrix.

Parents

The parents of a domain are the same as the categories mentioned under the Exports button on the first page. Domain Matrix has only one parent but in general a domain can have any number.

Ancestors

The ancestors of a constructor consist of its parents, the parents of its parents, and so on. Did you perform the exercise in the last section under Exports? If so, you see here all the categories you found while ascending the Exports chain for Matrix.

Relatives

The relatives of a domain constructor are package constructors that provide operations in addition to those exported by the domain.

Try this exercise.

1. Click on Relatives, bringing up a list of packages.
2. Click on LinearSystemMatrixPackage bringing up its constructor page.2

3. Click on Operations. Here you see rank, an operation also exported by Matrix itself.

4. Click on rank. This rank has two arguments and thus is different from the rank from Matrix.

5. Click on to return to the list of operations for the package LinearSystemMatrixPackage.

6. Click on solve to bring up a solve for linear systems of equations.

7. Click on several times to return to the cross reference page for Matrix.

Dependents

The dependents of a constructor are those domains or packages that mention that constructor either as an argument or in its exports.

If you click on Dependents two entries may surprise you: RectangularMatrix and SquareMatrix. This happens because Matrix, as it turns out, appears in signatures of operations exported by these domains.

Lineage

The term lineage refers to the search order for functions. If you are an expert user or curious about how the Axiom system works, try the following exercise. Otherwise, you best skip this button and go on to Clients.

Clicking on Lineage gives you a list of domain constructors: InnerIndexedTwoDimensionalArray, MatrixCategory&, TwoDimensionalArrayCategory&, HomogeneousAggregate&, Aggregate&. What are these constructors and how are they used?

We explain by an example. Suppose you create a matrix using the interpreter, then ask for its rank. Axiom must then find a function implementing the rank operation for matrices. The first place Axiom looks for rank is in the Matrix domain.

If not there, the lineage of Matrix tells Axiom where else to look. Associated with the matrix domain are five other lineage domains. Their order is important. Axiom first searches the first one, InnerIndexedTwoDimensionalArray. If not there, it searches the second MatrixCategory&. And so on.

Where do these lineage constructors come from? The source code for Matrix contains this syntax for the function body of Matrix: InnerIndexedTwoDimensionalArray is a special domain

2You may want to widen your HyperDoc window to make what follows more legible.
implemented for matrix-like domains to provide efficient implementations of two-dimensional arrays.

For example, domains of category TwoDimensionalArrayCategory can have any integer as their minIndex. Matrices and other members of this special "inner" array have their minIndex defined as 1.

```
InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)
 add ...
```

where the "..." denotes all the code that follows. In English, this means: "The functions for matrices are defined as those from InnerIndexedTwoDimensionalArray domain augmented by those defined in '...'," where the latter take precedence.

This explains InnerIndexedTwoDimensionalArray. The other names, those with names ending with an ampersand & are default packages for categories to which Matrix belongs. Default packages are ordered by the notion of "closest ancestor."

**Clients**

A client of Matrix is any constructor that uses Matrix in its implementation. For example, Complex is a client of Matrix; it exports several operations that take matrices as arguments or return matrices as values.\(^3\)

**Benefactors**

A benefactor of Matrix is any constructor that Matrix uses in its implementation. This information, like that for clients, is gathered from run-time structures.\(^4\)

Cross reference pages for categories have some different buttons on them. Starting with the constructor page of Matrix, click on Ring producing its constructor page. Click on Cross Reference, producing the cross-reference page for Ring. Here are buttons Parents and Ancestors similar to the notion for domains, except for categories the relationship between parent and child is defined through category extension.

**Children**

Category hierarchies go both ways. There are children as well as parents. A child can have any number of parents, but always at least one. Every category is therefore a descendant of exactly one category: Object.

\(^3\)A constructor is a client of Matrix if it handles any matrix. For example, a constructor having internal (unexported) operations dealing with matrices is also a client.

\(^4\)The benefactors exclude constructors such as PrimitiveArray whose operations macro-expand and so vanish from sight!
14.2. THE CONSTRUCTOR PAGE

Descendants

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take parameters. Where a parameterized category fits into a hierarchy may depend on values of its parameters. In general, the set of categories in Axiom forms a directed acyclic graph, that is, a graph with directed arcs and no cycles.

Domains

This produces a table of all domain constructors that can possibly be rings (members of category Ring). Some domains are unconditional rings. Others are rings for some parameters and not for others. To find out which, select the conditions button in the views panel. For example, DirectProduct(n, R) is a ring if R is a ring.

Views Of Constructors

Below every constructor table page is a Views panel. As an example, click on Cross Reference from the constructor page of Matrix, then on Benefactors to produce a short table of constructor names.

The Views panel is at the bottom of the page. Two items, names and conditions, are in italics. Others are active buttons. The active buttons are those that give you useful alternative views on this table of constructors. Once you select a view, you notice that the button turns off (becomes italicized) so that you cannot reselect it.

names

This view gives you a table of names. Selecting any of these names brings up the constructor page for that constructor.

abbrs

This view gives you a table of abbreviations, in the same order as the original constructor names. Abbreviations are in capitals and are limited to 7 characters. They can be used interchangeably with constructor names in input areas.

kinds

This view organizes constructor names into the three kinds: categories, domains and packages.
files

This view gives a table of file names for the source code of the constructors in alphabetic order after removing duplicates.

parameters

This view presents constructors with the arguments. This view of the benefactors of Matrix shows that Matrix uses as many as five different List domains in its implementation.

filter

This button is used to refine the list of names or abbreviations. Starting with the names view, enter m* into the input area and click on filter. You then get a shorter table with only the names beginning with m.

documentation

This gives you documentation for each of the constructors.

conditions

This page organizes the constructors according to predicates. The view is not available for your example page since all constructors are unconditional. For a table with conditions, return to the Cross Reference page for Matrix, click on Ancestors, then on conditions in the view panel. This page shows you that CoercibleTo(OutputForm) and SetCategory are ancestors of Matrix(R) only if R belongs to category SetCategory.

Giving Parameters to Constructors

Notice the input area at the bottom of the constructor page. If you leave this blank, then the information you get is for the domain constructor Matrix(R), that is, Matrix for an arbitrary underlying domain R.

In general, however, the exports and other information do usually depend on the actual value of R. For example, Matrix exports the inverse operation only if the domain R is a Field. To see this, try this from the main constructor page:

1. Enter Integer into the input area at the bottom of the page.

2. Click on Operations, producing a table of operations. Note the number of operation names that appear at the top of the page.

3. Click on to return to the constructor page.
4. Use the [Delete] or [Backspace] keys to erase Integer from the input area.

5. Click on Operations to produce a new table of operations. Look at the number of operations you get. This number is greater than what you had before. Find, for example, the operation inverse.

6. Click on inverse to produce a page describing the operation inverse. At the bottom of the description, you notice that the Conditions line says “R has Field.” This operation is not exported by Matrix(Integer) since Integer is not a field.

Try putting the name of a domain such as Fraction Integer (which is a field) into the input area, then clicking on Operations. As you see, the operation inverse is exported.

14.3 Miscellaneous Features of Browse

The Description Page for Operations

From the constructor page of Matrix, click on Operations to bring up the table of operations for Matrix.

Find the operation inverse in the table and click on it. This takes you to a page showing the documentation for this operation.

Figure 14.18: Operation inverse from Matrix.

Here is the significance of the headings you see.
**Arguments**

This lists each of the arguments of the operation in turn, paraphrasing the *signature* of the operation. As for signatures, a $\$\$ is used to designate *this domain*, that is, Matrix(R).

**Returns**

This describes the return value for the operation, analogous to the *Arguments* part.

**Origin**

This tells you which domain or category explicitly exports the operation. In this example, the domain itself is the *Origin*.

**Conditions**

This tells you that the operation is exported by Matrix(R) only if “R has Field,” that is, “R is a member of category Field.” When no *Conditions* part is given, the operation is exported for all values of R.

**Description**

Here are the ++ comments that appear in the source code of its *Origin*, here Matrix. You find these comments in the source code for Matrix.

Figure 14.19: Operations map from Matrix.

Click on to return to the table of operations. Click on map. Here you find three different operations named map. This should not surprise you. Operations are identified by
name and *signature*. There are three operations named map, each with different signatures. What you see is the *descriptions* view of the operations. If you like, select the button in the heading of one of these descriptions to get *only* that operation.

**Where**

This part qualifies domain parameters mentioned in the arguments to the operation.

**Views of Operations**

We suggest that you go to the constructor page for Matrix and click on Operations to bring up a table of operations with a Views panel at the bottom.

**names**

This view lists the names of the operations. Unlike constructors, however, there may be several operations with the same name. The heading for the page tells you the number of unique names and the number of distinct operations when these numbers are different.

**filter**

As for constructors, you can use this button to cut down the list of operations you are looking at. Enter, for example, m* into the input area to the right of filter then click on filter. As usual, any logical expression is permitted. For example, use *

*! or *?

to get a list of destructive operations and predicates.

**documentation**

This gives you the most information: a detailed description of all the operations in the form you have seen before. Every other button summarizes these operations in some form.

**signatures**

This views the operations by showing their signatures.

**parameters**

This views the operations by their distinct syntactic forms with parameters.
CHAPTER 14. BROWSE

origins
This organizes the operations according to the constructor that explicitly exports them.

conditions
This view organizes the operations into conditional and unconditional operations.

usage
This button is only available if your user-level is set to development. The usage button produces a table of constructors that reference this operation.\(^5\)

implementation
This button is only available if your user-level is set to development. If you enter values for all domain parameters on the constructor page, then the implementation button appears in place of the conditions button. This button tells you what domains or packages actually implement the various operations.\(^6\)

With your user-level set to development, we suggest you try this exercise. Return to the main constructor page for Matrix, then enter Integer into the input area at the bottom as the value of \(R\). Then click on Operations to produce a table of operations. Note that the conditions part of the Views table is replaced by implementation. Click on implementation. After some delay, you get a page describing what implements each of the matrix operations, organized by the various domains and packages.

generalize
This button only appears for an operation page of a constructor involving a unique operation name.

From an operations page for Matrix, select any operation name, say rank. In the views panel, the filter button is replaced by generalize. Click on it! What you get is a description of all Axiom operations named rank.\(^7\)

all domains
This button only appears on an operation page resulting from a search from the front page of Browse or from selecting generalize from an operation page for a constructor.

---

\(^5\)Axiom requires an especially long time to produce this table, so anticipate this when requesting this information.

\(^6\)This button often takes a long time; expect a delay while you wait for an answer.

\(^7\)If there were more than 10 operations of the name, you get instead a page with a Views panel at the bottom and the message to Select a view below. To get the descriptions of all these operations as mentioned above, select the description button.
Figure 14.20: Implementation domains for Matrix.

Note that the filter button in the Views panel is replaced by all domains. Click on it to produce a table of all domains or packages that export a rank operation.

We note that this table specifically refers to all the rank operations shown in the preceding page. Return to the descriptions of all the rank operations and select one of them by clicking on the button in its heading. Select all domains. As you see, you have a smaller table of constructors. When there is only one constructor, you get the constructor page for that constructor.
Figure 14.22: Table of all domains that export \texttt{rank}.

\textbf{Capitalization Convention}

When entering search keys for constructors, you can use capital letters to search for abbreviations. For example, enter \texttt{UTS} into the input area and click on \texttt{Constructors}. Up comes a page describing \texttt{UnivariateTaylorSeries} whose abbreviation is \texttt{UTS}.

Constructor abbreviations always have three or more capital letters. For short constructor names (six letters or less), abbreviations are not generally helpful as their abbreviation is typically the constructor name in capitals. For example, the abbreviation for \texttt{Matrix} is \texttt{MATRIX}.

Abbreviations can also contain numbers. For example, \texttt{POLY2} is the abbreviation for constructor \texttt{PolynomialFunctions2}. For default packages, the abbreviation is the same as the abbreviation for the corresponding category with the “&” replaced by “-”. For example, for the category default package \texttt{MatrixCategory&} the abbreviation is \texttt{MATCAT-} since the corresponding category \texttt{MatrixCategory} has abbreviation \texttt{MATCAT}. 
Chapter 15

What’s New in Axiom Version 2.0

Many things have changed in this new version of Axiom and we describe many of the more important topics here.

15.1 Important Things to Read First

If you have any private .spad files (that is, library files which were not shipped with Axiom) you will need to recompile them. For example, if you wrote the file regress.spad then you should issue )compile regress.spad before trying to use it.

The internal representation of Union has changed. This means that Axiom data saved with Release 1.x may not be readable by this Release. If you cannot recreate the saved data by recomputing in Release 2.0, please contact NAG for assistance.

15.2 The NAG Library Link

The Nag Library link allows you to call NAG Fortran routines from within Axiom, passing Axiom objects as parameters and getting them back as results.

The Nag Library and, consequently, the link are divided into chapters, which cover different areas of numerical analysis. The statistical and sorting chapters of the Library, however, are not included in the link and various support and utility routines (mainly the F06 and X chapters) have been omitted.

Each chapter has a short (at most three-letter) name; for example, the chapter devoted to the solution of ordinary differential equations is called D02. When using the link via the HyperDoc interface, you will be presented with a complete menu of these chapters. The names of individual routines within each chapter are formed by adding three letters to the
chapter name, so for example the routine for solving ODEs by Adams method is called d02cjf.

Interpreting NAG Documentation

Information about using the Nag Library in general, and about using individual routines in particular, can be accessed via HyperDoc. This documentation refers to the Fortran routines directly; the purpose of this subsection is to explain how this corresponds to the Axiom routines.

For general information about the Nag Library users should consult Essential Introduction to the NAG Foundation Library. The documentation is in ASCII format, and a description of the conventions used to represent mathematical symbols is given in Introduction to NAG On-Line Documentation. Advice about choosing a routine from a particular chapter can be found in the Chapter Documents.

Correspondence Between Fortran and Axiom types

The NAG documentation refers to the Fortran types of objects; in general, the correspondence to Axiom types is as follows.

- Fortran INTEGER corresponds to Axiom Integer.
- Fortran DOUBLE PRECISION corresponds to Axiom DoubleFloat.
- Fortran COMPLEX corresponds to Axiom Complex DoubleFloat.
- Fortran LOGICAL corresponds to Axiom Boolean.
- Fortran CHARACTER*(*) corresponds to Axiom String.

(Exceptionally, for NAG EXTERNAL parameters – ASPs in link parlance – REAL and COMPLEX correspond to MachineFloat and MachineComplex, respectively; see section 15.2 on page 956.)

The correspondence for aggregates is as follows.

- A one-dimensional Fortran array corresponds to a Matrix with one column.
- A two-dimensional Fortran ARRAY corresponds to a Matrix.
- A three-dimensional Fortran ARRAY corresponds to a ThreeDimensionalMatrix.

Higher-dimensional arrays are not currently needed for the Nag Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs correspond to special ASP domains in Axiom. See section 15.2 on page 956.
Classification of NAG parameters

NAG parameters are classified as belonging to one (or more) of the following categories: Input, Output, Workspace or External procedure. Within External procedures a similar classification is used, and parameters may also be Dummies, or User Workspace (data structures not used by the NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values for Input and External parameters.

The order of the parameters is, in general, different from the order specified in the Nag Library documentation. The Browser description for each routine helps in determining the correspondence. As a rule of thumb, Input parameters come first followed by Input/Output parameters. The External parameters are always found at the end.

IFAIL

NAG routines often return diagnostic information through a parameter called ifail. With a few exceptions, the principle is that on input ifail takes one of the values $1, 0, 1$. This determines how the routine behaves when it encounters an error:

- a value of 1 causes the NAG routine to return without printing an error message;
- a value of 0 causes the NAG routine to print an error message and abort;
- a value of -1 causes the NAG routine to return and print an error message.

The user is STRONGLY ADVISED to set ifail to 1 when using the link. If ifail has been set to 1 or 1 on input, then its value on output will determine the possible cause of any error. A value of 0 indicates successful completion, otherwise it provides an index into a table of diagnostics provided as part of the routine documentation (accessible via Browse).

Using the Link

The easiest way to use the link is via the HyperDoc interface . You will be presented with a set of fill-in forms where you can specify the parameters for each call. Initially, the forms contain example values, demonstrating the use of each routine (these, in fact, correspond to the standard NAG example program for the routine in question). For some parameters, these values can provide reasonable defaults; others, of course, represent data. When you change a parameter which controls the size of an array, the data in that array are reset to a “neutral” value – usually zero.

When you are satisfied with the values entered, clicking on the “Continue” button will display the Axiom command needed to run the chosen NAG routine with these values. Clicking on the “Do It” button will then cause Axiom to execute this command and return the result in the parent Axiom session, as described below. Note that, for some routines, multiple HyperDoc “pages” are required, due to the structure of the data. For these, returning to an earlier page causes HyperDoc to reset the later pages (this is a general feature of HyperDoc);
in such a case, the simplest way to repeat a call, varying a parameter on an earlier page, is probably to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal Axiom session (that is, using the Axiom interpreter). Such calls return an object of type Result. As not all parameters in the underlying NAG routine are required in the Axiom call (and the parameter ordering may be different), before calling a NAG routine you should consult the description of the Axiom operation in the Browser. (The quickest route to this is to type the routine name, in lower case, into the Browser's input area, then click on Operations.) The parameter names used coincide with NAG’s, although they will appear here in lower case. Of course, it is also possible to become familiar with the Axiom form of a routine by first using it through the HyperDoc interface.

As an example of this mode of working, we can find a zero of a function, lying between 3 and 4, as follows:

\[
\text{answer} := \text{c05adf}(3.0, 4.0, 1.0e-5, 0.0, -1, \text{sin}(X) :: \text{ASP1(F)})
\]

By default, Result only displays the type of returned values, since the amount of information returned can be quite large. Individual components can be examined as follows:

\[
\text{answer} . \ x
\]

\[
\text{answer} . \ \text{ifail}
\]

In order to avoid conflict with names defined in the workspace, you can also get the values by using the String type (the interpreter automatically coerces them to Symbol):

\[
\text{answer} "x"
\]

It is possible to have Axiom display the values of scalar or array results automatically. For more details, see the commands showScalarValues and showArrayValues.

There is also a .input file for each NAG routine, containing Axiom interpreter commands to set up and run the standard NAG example for that routine.

\)read \text{c05adf.input}\)

Providing values for Argument Subprograms

There are a number of ways in which users can provide values for argument subprograms (ASPs). At the top level the user will see that NAG routines require an object from the Union of a Filename and an ASP.

For example \text{c05adf} requires an object of type Union(fn: FileName, fp: Asp F)
The user thus has a choice of providing the name of a file containing Fortran source code, or of somehow generating the ASP within Axiom. If a filename is specified, it is searched for in the local machine, i.e., the machine that Axiom is running on.

Providing ASPs via FortranExpression

The FortranExpression domain is used to represent expressions which can be translated into Fortran under certain circumstances. It is very similar to Expression except that only operators which exist in Fortran can be used, and only certain variables can occur. For example the instantiation FortranExpression([X],[M],MachineFloat) is the domain of expressions containing the scalar X and the array M.

This allows us to create expressions like:

\[
\text{f : FortranExpression([X],[M],MachineFloat) := sin(X)+M[3,1]}
\]

but not

\[
\text{f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y}
\]

Those ASPs which represent expressions usually export a \text{coerce} from an appropriate instantiation of FortranExpression (or perhaps Vector FortranExpression etc.). For convenience there are also retractions from appropriate instantiations of Expression, Polynomial and Fraction Polynomial.

Providing ASPs via FortranCode

FortranCode allows us to build arbitrarily complex ASPs via a kind of pseudo-code. It is described fully in section 15.2 on page 958.

Every ASP exports two \text{coerce} functions: one from FortranCode and one from List FortranCode. There is also a \text{coerce} from Record( localSymbols: SymbolTable, code: List FortranCode) which is used for passing extra symbol information about the ASP.

So for example, to integrate the function abs(x) we could use the built-in abs function. But suppose we want to get back to basics and define it directly, then we could do the following:

\[
\text{d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0), assign(F,-X), assign(F,X))) result}
\]

The \text{cond} operation creates a conditional clause and the \text{assign} an assignment statement.
CHAPTER 15. WHAT'S NEW IN AXIOM VERSION 2.0

Providing ASPs via FileName

Suppose we have created the file “asp.f” as follows:

```fortran
DOUBLE PRECISION FUNCTION F(X)
 DOUBLE PRECISION X
 F=4.0D0/(X*X+1.0D0)
 RETURN
END
```

and wish to pass it to the NAG routine `d01ajf` which performs one-dimensional quadrature. We can do this as follows:

```
d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")
```

General Fortran-generation utilities in Axiom

This section describes more advanced facilities which are available to users who wish to generate Fortran code from within Axiom. There are facilities to manipulate templates, store type information, and generate code fragments or complete programs.

Template Manipulation

A template is a skeletal program which is “fleshed out” with data when it is processed. It is a sequence of active and passive parts: active parts are sequences of Axiom commands which are processed as if they had been typed into the interpreter; passive parts are simply echoed verbatim on the Fortran output stream.

Suppose, for example, that we have the following template, stored in the file “test.tem”:

```plaintext
-- A simple template
beginVerbatim
 DOUBLE PRECISION FUNCTION F(X)
 DOUBLE PRECISION X
endVerbatim
outputAsFortran("F",f)
beginVerbatim
 RETURN
END
endVerbatim
```

The passive parts lie between the two tokens `beginVerbatim` and `endVerbatim`. There are two active statements: one which is simply an Axiom (--) comment, and one which produces an assignment to the current value of `f`. We could use it as follows:

```
(4) -> f := 4.0/(1+X**2)
```
15.2. THE NAG LIBRARY LINK

(4) \[ \frac{4}{2X + 1} \]

(5) \[ \text{processTemplate "test.tem"} \]

\[
\begin{align*}
\text{DOUBLE PRECISION FUNCTION } & F(X) \\
\text{DOUBLE PRECISION } & X \\
F & = \frac{4.0D0}{(X \times X + 1.0D0)} \\
\text{RETURN} \\
\text{END}
\end{align*}
\]

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced below.) Note that the Fortran assignment \( F = \frac{4.0D0}{(X \times X + 1.0D0)} \) automatically converted 4.0 and 1 into DOUBLE PRECISION numbers; in general, the Axiom Fortran generation facility will convert anything which should be a floating point object into either a Fortran REAL or DOUBLE PRECISION object.

Which alternative is used is determined by the command

\)set fortran precision\)

It is sometimes useful to end a template before the file itself ends (e.g. to allow the template to be tested incrementally or so that a piece of text describing how the template works can be included). It is of course possible to “comment-out” the remainder of the file. Alternatively, the single token `endInput` as part of an active portion of the template will cause processing to be ended prematurely at that point.

The `processTemplate` command comes in two flavours. In the first case, illustrated above, it takes one argument of domain `FileName`, the name of the template to be processed, and writes its output on the current Fortran output stream. In general, a filename can be generated from `directory`, `name` and `extension` components, using the operation `filename`, as in

```
processTemplate filename("","test","tem")
```

There is an alternative version of `processTemplate`, which takes two arguments (both of domain `FileName`). In this case the first argument is the name of the template to be processed, and the second is the file in which to write the results. Both versions return the location of the generated Fortran code as their result (“CONSOLE” in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or statement. For example you might want to generate a Fortran Comment describing your data set. For this kind of application we provide three functions as follows:
fortranLiteral  write string on the Fortran output stream

fortranCarriageReturn  writes a carriage return on the Fortran output stream

fortranLiteralLine  writes a string followed by a return on the Fortran output stream

So we could create our comment as follows:

m := matrix [ [1,2,3],[4,5,6] ]

fortranLiteralLine concat ["C The Matrix has ", nrows(m)::String, " rows and ", ncols(m)::String, " columns"]

or, alternatively:

fortranLiteral "C The Matrix has ">

fortranLiteral(nrows(m)::String)

fortranLiteral " rows and ">

fortranLiteral(ncols(m)::String)

fortranLiteral " columns"

fortranCarriageReturn()

We should stress that these functions, together with the outputAsFortran function are the only sure ways of getting output to appear on the Fortran output stream. Attempts to use Axiom commands such as output or writeln may appear to give the required result when displayed on the console, but will give the wrong result when Fortran and algebraic output are sent to differing locations. On the other hand, these functions can be used to send helpful messages to the user, without interfering with the generated Fortran.
15.2. THE NAG LIBRARY LINK

Manipulating the Fortran Output Stream

Sometimes it is useful to manipulate the Fortran output stream in a program, possibly without being aware of its current value. The main use of this is for gathering type declarations (see “Fortran Types” below) but it can be useful in other contexts as well. Thus we provide a set of commands to manipulate a stack of (open) output streams. Only one stream can be written to at any given time. The stack is never empty—its initial value is the console or the current value of the Fortran output stream, and can be determined using

\texttt{topFortranOutputStack()}

(see below). The commands available to manipulate the stack are:

- \texttt{clearFortranOutputStack} resets the stack to the console
- \texttt{pushFortranOutputStack} pushes a \texttt{FileName} onto the stack
- \texttt{popFortranOutputStack} pops the stack
- \texttt{showFortranOutputStack} returns the current stack
- \texttt{topFortranOutputStack} returns the top element of the stack

These commands are all part of \texttt{FortranOutputStackPackage}.

Fortran Types

When generating code it is important to keep track of the Fortran types of the objects which we are generating. This is useful for a number of reasons, not least to ensure that we are actually generating legal Fortran code. The current type system is built up in several layers, and we shall describe each in turn.

\textbf{FortranScalarType}

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, INTEGER, and CHARACTER. It is possible to coerce a \texttt{String} or \texttt{Symbol} into the domain, test whether two objects are equal, and also apply the predicate functions \texttt{real?} etc.

\textbf{FortranType}

This domain represents “full” types: i.e., datatype plus array dimensions (where appropriate) plus whether or not the parameter is an external subprogram. It is possible to coerce an object of \texttt{FortranScalarType} into the domain or construct one from an element of \texttt{FortranScalarType}, a list of \texttt{Polynomial Integer}s (which can of course be simple integers.
or symbols) representing its dimensions, and a Boolean declaring whether it is external or not. The list of dimensions must be empty if the Boolean is true. The functions scalarTypeOf, dimensionsOf and external? return the appropriate parts, and it is possible to get the various basic Fortran Types via functions like fortranReal.

For example:

\begin{verbatim}
type:=construct(real,[i,10],false)$FortranType
\end{verbatim}

or

\begin{verbatim}
type:=[real,[i,10],false]$FortranType
\end{verbatim}

scalarTypeOf type

dimensionsOf type

external? type

fortranLogical()

\begin{verbatim}
construct(integer,[],true)$FortranType
\end{verbatim}

SymbolTable

This domain creates and manipulates a symbol table for generated Fortran code. This is used by FortranProgram to represent the types of objects in a subprogram. The commands available are:

- empty: creates a new SymbolTable
- declare: creates a new entry in a table
- fortranTypeOf: returns the type of an object in a table
- parametersOf: returns a list of all the symbols in the table
- typeList: returns a list of all objects of a given type
- typeLists: returns a list of lists of all objects sorted by type
- externalList: returns a list of all EXTERNAL objects
- printTypes: produces Fortran type declarations from a table
symbols := empty()$SymbolTable

declare!(X, fortranReal(), symbols)

declare!(M, construct(real, [i,j], false)$FortranType, symbols)

declare!([i,j], fortranInteger(), symbols)

symbols

fortranTypeOf(i, symbols)

typeList(real, symbols)

printTypes symbols

TheSymbolTable

This domain creates and manipulates one global symbol table to be used, for example, during template processing. It is also used when linking to external Fortran routines. The information stored for each subprogram (and the main program segment, where relevant) is:

- its name;
- its return type;
- its argument list;
- and its argument types.

Initially, any information provided is deemed to be for the main program segment.

Issuing the following command indicates that from now on all information refers to the subprogram $F$.

newSubProgram $F$

It is possible to return to processing the main program segment by issuing the command:
endSubProgram()

The following commands exist:

- **returnType** declares the return type of the current subprogram.
- **returnTypeOf** returns the return type of a subprogram.
- **argumentList** declares the argument list of the current subprogram.
- **argumentListOf** returns the argument list of a subprogram.
- **declare** provides type declarations for parameters of the current subprogram.
- **symbolTableOf** returns the symbol table of a subprogram.
- **printHeader** produces the Fortran header for the current subprogram.

In addition there are versions of these commands which are parameterised by the name of a subprogram, and others parameterised by both the name of a subprogram and by an instance of TheSymbolTable.

```plaintext
newSubProgram F

argumentList!(F,[X])

returnType!(F,real)

declare!(X,fortranReal(),F)

printHeader F
```

**Advanced Fortran Code Generation**

This section describes facilities for representing Fortran statements, and building up complete subprograms from them.
Switch

This domain is used to represent statements like $x < y$. Although these can be represented directly in Axiom, it is a little cumbersome, since Axiom evaluates the last statement, for example, to \texttt{true} (since $x$ is lexicographically less than $y$).

Instead we have a set of operations, such as \texttt{LT} to represent $<$, to let us build such statements. The available constructors are:

\begin{verbatim}
  LT <
  GT >
  LE <=
  GE >=
  EQ ==
  AND and
  OR or
  NOT not
\end{verbatim}

So for example:

\texttt{LT(x,y)}

FortranCode

This domain represents code segments or operations: currently assignments, conditionals, blocks, comments, gotos, continues, various kinds of loops, and return statements.

For example we can create quite a complicated conditional statement using assignments, and then turn it into Fortran code:

\begin{verbatim}
c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))
\end{verbatim}

\texttt{printCode c}

The Fortran code is printed on the current Fortran output stream.

FortranProgram

This domain is used to construct complete Fortran subprograms out of elements of \texttt{FortranCode}. It is parameterised by the name of the target subprogram (a \texttt{Symbol}), its return type (from Union(\texttt{FortranScalarType},\texttt{void})), its arguments (from List \texttt{Symbol}), and its symbol table (from \texttt{SymbolTable}). One can \texttt{coerce} elements of either \texttt{FortranCode} or \texttt{Expression} into it.

First of all we create a symbol table:
symbols := empty()$SymbolTable

Now put some type declarations into it:

\texttt{declare![X,Y],fortranReal(),symbols}}

Then (for convenience) we set up the particular instantiation of \texttt{FortranProgram}

\texttt{FP := FortranProgram(F,real,[X,Y],symbols)}}

Create an object of type \texttt{Expression(Integer)}:

\texttt{asp := X*sin(Y)}}

Now \texttt{coerce} it into \texttt{FP}, and print its Fortran form:

\texttt{outputAsFortran(asp::FP)}}

We can generate a \texttt{FortranProgram} using \texttt{FortranCode}. For example:

Augment our symbol table:

\texttt{declare!(Z,fortranReal(),symbols)}}

and transform the conditional expression we prepared earlier:

\texttt{outputAsFortran([c,returns()]:FP)}}

\textbf{Some technical information}

The model adopted for the link is a server-client configuration – Axiom acting as a client via a local agent (a process called \texttt{nagman}). The server side is implemented by the \texttt{nagd} daemon process which may run on a different host. The \texttt{nagman} local agent is started by default whenever you start Axiom. The \texttt{nagd} server must be started separately. Instructions for installing and running the server are supplied in by NAG. Use the \texttt{)set naglink host} system command to point your local agent to a server in your network.

On the Axiom side, one sees a set of \texttt{packages} (ask Browse for \texttt{Nag*}) for each chapter, each exporting operations with the same name as a routine in the Nag Library. The arguments and return value of each operation belong to standard Axiom types.

The \texttt{man} pages for the Nag Library are accessible via the description of each operation in Browse (among other places).
In the implementation of each operation, the set of inputs is passed to the local agent nagman, which makes a Remote Procedure Call (RPC) to the remote nagd daemon process. The local agent receives the RPC results and forwards them to the Axiom workspace where they are interpreted appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran routine in the Nag Library, a C main() routine is supplied. Its job is to assemble the RPC input (numeric) data stream into the appropriate Fortran data structures for the routine, call the Fortran routine from C and serialize the results into an RPC output data stream.

Many Nag Library routines accept ASPs (Argument Subprogram Parameters). These specify user-supplied Fortran routines (e.g. a routine to supply values of a function is required for numerical integration). How are they handled? There are new facilities in Axiom to help. A set of Axiom domains has been provided to turn values in standard Axiom types (such as Expression Integer) into the appropriate piece of Fortran for each case (a filename pointing to Fortran source for the ASP can always be supplied instead). Ask Browse for Asp* to see these domains. The Fortran fragments are included in the outgoing RPC stream, but nagd intercepts them, compiles them, and links them with the main() C program before executing the resulting program on the numeric part of the RPC stream.

15.3 Interactive Front-end and Language

The leave keyword has been replaced by the break keyword for compatibility with the new Axiom extension language. See section 5.4 on page 130 for more information.

Curly braces are no longer used to create sets. Instead, use set followed by a bracketed expression. For example,

set [1,2,3,4]

Curly braces are now used to enclose a block (see section section 5.2 on page 123 for more information). For compatibility, a block can still be enclosed by parentheses as well.

“Free functions” created by the Aldor compiler can now be loaded and used within the Axiom interpreter. A free function is a library function that is implemented outside a domain or category constructor.

New coercions to and from type Expression have been added. For example, it is now possible to map a polynomial represented as an expression to an appropriate polynomial type.

Various messages have been added or rewritten for clarity.

15.4 Library

The FullPartialFractionExpansion domain has been added. This domain computes factor-free full partial fraction expansions. See section FullPartialFractionExpansion for
examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hyperelliptic functions. This brings a major speedup for some classes of algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonometric functions. This brings a speedup and an improvement in the answer quality.

The SmallFloat domain has been renamed DoubleFloat and SmallInteger has been renamed SingleInteger. The new abbreviations as DFLOAT and SINT, respectively. We have defined the macro SF, the old abbreviation for SmallFloat, to expand to DoubleFloat and modified the documentation and input file examples to use the new names and abbreviations. You should do the same in any private Axiom files you have.

There are many new categories, domains and packages related to the NAG Library Link facility. See the file src/algebra/exposed.lsp for a list of constructors in the naglink Axiom exposure group.

We have made improvements to the differential equation solvers and there is a new facility for solving systems of first-order linear differential equations. In particular, an important fix was made to the solver for inhomogeneous linear ordinary differential equations that corrected the calculation of particular solutions. We also made improvements to the polynomial and transcendental equation solvers including the ability to solve some classes of systems of transcendental equations.

The efficiency of power series have been improved and left and right expansions of \(\tan(f(x))\) at \(x = a\) pole of \(f(x)\) can now be computed. A number of power series bugs were fixed and the GeneralUnivariatePowerSeries domain was added. The power series variable can appear in the coefficients and when this happens, you cannot differentiate or integrate the series. Differentiation and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used to treat certain exponential singularities. Previously, such singularities were treated in an ad hoc way and only a few cases were covered. Now Axiom can do things like

\[
\lim_{x \to \infty} \left( \frac{(x+1)^{x+1}}{x^x} - \frac{x^x}{(x-1)^{x-1}} \right), \quad x = \pm\infty
\]

in a systematic way. It only does one level of nesting, though. In other words, we can handle \(\exp(\text{some function with pole})\), but not \(\exp(\exp(\text{some function with pole}))\).

The computation of integral bases has been improved through careful use of Hermite row reduction. A P-adic algorithm for function fields of algebraic curves in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite integrals to InputForm; binomial coefficients are displayed in a new way; some new simplifications of radicals have been implemented; the operation complexForm for converting to rectangular

...
coordinates has been added; symmetric product operations have been added to `LinearOrdinaryDifferentialOperator`.

## 15.5 HyperTex

The buttons on the titlebar and scrollbar have been replaced with ones which have a 3D effect. You can change the foreground and background colors of these “controls” by including and modifying the following lines in your `.Xdefaults` file.

```
Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black
```

For various reasons, HyperDoc sometimes displays a secondary window. You can control the size and placement of this window by including and modifying the following line in your `.Xdefaults` file.

```
Axiom.hyperdoc.FormGeometry: =950x450+100+0
```

This setting is a standard X Window System geometry specification: you are requesting a window 950 pixels wide by 450 deep and placed in the upper left corner.

Some key definitions have been changed to conform more closely with the CUA guidelines. Press F9 to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the X Window System. Use the second button to paste in something you have previously copied or cut. An example of how you can use this is that you can paste the type from an Axiom computation into the main Browser input box.

## 15.6 Documentation

We describe here a few additions to the on-line version of the Axiom book which you can read with HyperDoc.

A section has been added to the graphics chapter, describing how to build two-dimensional graphs from lists of points. An example is given showing how to read the points from a file. See section 7.1 on page 237 for details.

A further section has been added to that same chapter, describing how to add a two-dimensional graph to a viewport which already contains other graphs. See section 7.1 on page 244 for details.

Chapter 3 and the on-line HyperDoc help have been unified.

An explanation of operation names ending in “?” and “!” has been added to the first chapter. See the end of the section 1.3 on page 10 for details.

An expanded explanation of using predicates has been added to the sixth chapter. See the example involving `evenRule` in the middle of the section 6.21 on page 208 for details.
CHAPTER 15. WHAT'S NEW IN AXIOM VERSION 2.0

Documentation for the )compile, )library and )load commands has been greatly changed. This reflects the ability of the )compile to now invoke the Aldor compiler, the impending deletion of the )load command and the new )library command. The )library command replaces )load and is compatible with the compiled output from both the old and new compilers.
Appendix A

Axiom System Commands

This chapter describes system commands, the command-line facilities used to control the Axiom environment. The first section is an introduction and discusses the common syntax of the commands available.

A.1 Introduction

System commands are used to perform Axiom environment management. Among the commands are those that display what has been defined or computed, set up multiple logical Axiom environments (frames), clear definitions, read files of expressions and commands, show what functions are available, and terminate Axiom.

Some commands are restricted: the commands

)set userlevel interpreter
)set userlevel compiler
)set userlevel development

set the user-access level to the three possible choices. All commands are available at development level and the fewest are available at interpreter level. The default user-level is interpreter. In addition to the )set command (discussed in section A.23 on page 994 you can use the HyperDoc settings facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus examples of related commands. The syntax descriptions are intended to be easy to read and do not necessarily represent the most compact way of specifying all possible arguments and options; the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first available column of the input line (that is, immediately after the input prompt, if any). System commands may be issued directly to Axiom or be included in .input files.

A system command argument is a word that directly follows the command name and is not
followed or preceded by a right parenthesis. A system command option follows the system command and is directly preceded by a right parenthesis. Options may have arguments: they directly follow the option. This example may make it easier to remember what is an option and what is an argument:

```latex
)syscmd arg1 arg2)opt1 opt1arg1 opt1arg2)opt2 opt2arg1 ...
```

In the system command descriptions, optional arguments and options are enclosed in brackets ("[") and "]"). If an argument or option name is in italics, it is meant to be a variable and must have some actual value substituted for it when the system command call is made. For example, the syntax pattern description

```latex
)read fileName [quietly]
```

would imply that you must provide an actual file name for `fileName` but need not use the `quietly` option. Thus

```latex
)read matrix.input
```

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper or lower case. The case of actual arguments may be significant, depending on the particular situation (such as in file names). System command names and options may be abbreviated to the minimum number of starting letters so that the name or option is unique. Thus

```latex
)s Integer
```

is not a valid abbreviation for the `set` command, because both `set` and `show` begin with the letter “s”. Typically, two or three letters are sufficient for disambiguating names. In our descriptions of the commands, we have used no abbreviations for either command names or options.

In some syntax descriptions we use a vertical line `|` to indicate that you must specify one of the listed choices. For example, in

```latex
)set output fortran on | off
```

only `on` and `off` are acceptable words for following `boot`. We also sometimes use “...” to indicate that additional arguments or options of the listed form are allowed. Finally, in the syntax descriptions we may also list the syntax of related commands.

### A.2 )abbreviation

**User Level Required:** compiler

**Command Syntax:**
A.2. )ABBREVIATION

)abbreviation query [nameOrAbbrev]
)abbreviation category abbrev fullname []quiet]
)abbreviation domain abbrev fullname []quiet]
)abbreviation package abbrev fullname []quiet]
)abbreviation remove nameOrAbbrev

Command Description:
This command is used to query, set and remove abbreviations for category, domain and package constructors. Every constructor must have a unique abbreviation.

This abbreviation is part of the name of the subdirectory under which the components of the compiled constructor are stored. Furthermore, by issuing this command you let the system know what file to load automatically if you use a new constructor. Abbreviations must start with a letter and then be followed by up to seven letters or digits. Any letters appearing in the abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the name associated with a particular abbreviation or the abbreviation for a constructor. If no abbreviation or name is given, the names and corresponding abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category, domain or package. The following add abbreviations to the system for a category, domain and package, respectively:

)abbreviation domain SET Set
)abbreviation category COMPCAT ComplexCategory
)abbreviation package LIST2MAP ListToMap

If the )quiet option is used, no output is displayed from this command. You would normally only define an abbreviation in a library source file. If this command is issued for a constructor that has already been loaded, the constructor will be reloaded next time it is referenced. In particular, you can use this command to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only used to correct a previous command that set an abbreviation for a constructor name. If, in fact, the
abbreviation does exist, you are prompted for confirmation of the removal request. Either of the following commands will remove the abbreviation \texttt{VECTOR2} and the constructor name \texttt{VectorFunctions2} from the system:

\texttt{)abbreviation remove VECTOR2}
\texttt{)abbreviation remove VectorFunctions2}

Also See: \texttt{)compile}

\textbf{A.3 } \texttt{)browse}

\textbf{User Level Required:} interpreter

\textbf{Command Syntax:}

\texttt{)browse}

\textbf{Command Description:}

The \texttt{)browse} command changes the interpreter command loop to listen for http connections on IP address 127.0.0.1 port 8085.

In order to access the new pages start Firefox. Assuming the path to the file \texttt{rootpage.xhtml} is:

\texttt{/spad/mnt/linux/doc/hypertext/rootpage.xhtml}

you would visit the URL:

\texttt{127.0.0.1:8085/spad/mnt/linux/doc/hypertext/rootpage.xhtml}

Note that it may be necessary to install fonts into the Firefox browser in order to see correct mathML mathematics output. See the faq file for details.

\textbf{A.4 } \texttt{)cd}

\textbf{User Level Required:} interpreter

\textbf{Command Syntax:}

\texttt{)cd directory}

\textbf{Command Description:}

This command sets the Axiom working current directory. The current directory is used for looking for input files (for \texttt{)read}), Axiom library source files (for \texttt{)compile}), saved history environment files (for \texttt{)history )restore}), compiled Axiom library files (for \texttt{)library}), and files to edit (for \texttt{)edit}). It is also used for writing spool files (via \texttt{)spool}), writing history input files (via \texttt{)history )write}) and history environment files (via \texttt{)history )save}), and compiled Axiom library files (via \texttt{)compile}).

If issued with no argument, this command sets the Axiom current directory to your home directory. If an argument is used, it must be a valid directory name. Except for the “")
A.5  )CLOSE

at the beginning of the command, this has the same syntax as the operating system cd command.

Also See: )compile, )edit, )history, )library, )read, and )spool.

A.5  )close

User Level Required: interpreter

Command Syntax:

)close

)close )quietly

Command Description:

This command is used to close down interpreter client processes. Such processes are started by HyperDoc to run Axiom examples when you click on their text. When you have finished examining or modifying the example and you do not want the extra window around anymore, issue

)close

to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client process, Axiom will offer to close down the entire Axiom session and return you to the operating system by displaying something like

This is the last Axiom session. Do you want to kill Axiom?

Type “y” (followed by the Return key) if this is what you had in mind. Type “n” (followed by the Return key) to cancel the command.

You can use the )quietly option to force Axiom to close down the interpreter client process without closing down the entire Axiom session.

Also See: )quit and )pquit.

A.6  )clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all
APPENDIX A. AXIOM SYSTEM COMMANDS

)clear properties obj1 [obj2 ...]
)clear value all
)clear value obj1 [obj2 ...]
)clear mode all
)clear mode obj1 [obj2 ...]

**Command Description:**
This command is used to remove function and variable declarations, definitions and values from the workspace. To empty the entire workspace and reset the step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all
)clear p x
)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all
)clear v all

This retains whatever declarations the objects had. To remove definitions and values for the specific objects x, y and f, issue

)clear value x y f
)clear v x y f

To remove the declarations of everything while leaving the definitions and values, issue

)clear mode all
)clear m all
A.7. )COMPILE

To remove declarations for the specific objects \( x, y \) and \( f \), issue

\( )\text{clear mode} \ x \ y \ f \)
\( )\text{clear} \ m \ x \ y \ f \)

The )display names and )display properties commands may be used to see what is currently in the workspace.

The command

\( )\text{clear completely} \)

does everything that )clear all does, and also clears the internal system function and constructor caches.

Also See: )display, )history, and )undo.

A.7 )compile

User Level Required: compiler

Command Syntax:

\[ )\text{compile} \]
\[ )\text{compile} \ \text{fileName} \]
\[ )\text{compile} \ \text{fileName}.\text{spad} \]
\[ )\text{compile} \ \text{directory/fileName}.\text{spad} \]
\[ )\text{compile} \ \text{fileName} \ )\text{quiet} \]
\[ )\text{compile} \ \text{fileName} \ )\text{noquiet} \]
\[ )\text{compile} \ \text{fileName} \ )\text{break} \]
\[ )\text{compile} \ \text{fileName} \ )\text{nobreak} \]
\[ )\text{compile} \ \text{fileName} \ )\text{library} \]
\[ )\text{compile} \ \text{fileName} \ )\text{nolibrary} \]
\[ )\text{compile} \ \text{fileName} \ )\text{vartrace} \]
\[ )\text{compile} \ \text{fileName} \ )\text{constructor nameOrAbbrev} \]

Command Description:

You use this command to invoke the Axiom library compiler. This compiles files with file extension .spad with the Axiom system compiler. The command first looks in the standard system directories for files with extension .spad.

Should you not want the )library command automatically invoked, call )compile with the )nolibrary option. For example,
By default, the \texttt{library} system command exposes all domains and categories it processes. This means that the Axiom interpreter will consider those domains and categories when it is trying to resolve a reference to a function. Sometimes domains and categories should not be exposed. For example, a domain may just be used privately by another domain and may not be meant for top-level use. The \texttt{library} command should still be used, though, so that the code will be loaded on demand. In this case, you should use the \texttt{nolibrary} option on \texttt{compile} and the \texttt{noexpose} option in the \texttt{library} command. For example,

\texttt{\textbackslash compile mycode\textbackslash nolibrary}

\texttt{\textbackslash library mycode\textbackslash noexpose}

Once you have established your own collection of compiled code, you may find it handy to use the \texttt{dir} option on the \texttt{library} command. This causes \texttt{library} to process all compiled code in the specified directory. For example,

\texttt{\textbackslash library\textbackslash dir /u/jones/quantum}

You must give an explicit directory after \texttt{dir}, even if you want all compiled code in the current working directory processed.

\texttt{\textbackslash library\textbackslash dir .}

You can compile category, domain, and package constructors contained in files with file extension \texttt{.spad}. You can compile individual constructors or every constructor in a file. The full filename is remembered between invocations of this command and \texttt{edit} commands. The sequence of commands

\texttt{\textbackslash compile matrix.spad\textbackslash edit\textbackslash compile}

will call the compiler, edit, and then call the compiler again on the file matrix.spad. If you do not specify a directory, the working current directory (see description of command \texttt{cd}) is searched for the file. If the file is not found, the standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each constructor should have an \texttt{abbreviation} command in the file in which it is defined. We suggest that you place the \texttt{abbreviation} commands at the top of the file in the order in which the constructors are defined. The list of commands serves as a table of contents for the file.

The \texttt{library} option causes directories containing the compiled code for each constructor to be created in the working current directory. The name of such a directory consists of the constructor abbreviation and the \texttt{nrlib} file extension. For example, the directory containing the compiled code for the \texttt{MATRIX} constructor is called \texttt{MATRIX.nrlib}. The \texttt{nolibrary} option says that such files should not be created.
A.8  \textit{\texttt{\textasciitilde\texttt{DISPLAY}}}

The \texttt{\textasciitilde\texttt{vartrace}} option causes the compiler to generate extra code for the constructor to support conditional tracing of variable assignments. (see section A.19 on page 991). Without this option, this code is suppressed and one cannot use the \texttt{\textasciitilde\texttt{vars}} option for the trace command.

The \texttt{\textasciitilde\texttt{constructor}} option is used to specify a particular constructor to compile. All other constructors in the file are ignored. The constructor name or abbreviation follows \texttt{\textasciitilde\texttt{constructor}}. Thus either

\begin{verbatim}
\texttt{\textasciitilde\texttt{compile matrix.spad \textasciitilde\texttt{constructor RectangularMatrix}}}
\end{verbatim}

or

\begin{verbatim}
\texttt{\textasciitilde\texttt{compile matrix.spad \textasciitilde\texttt{constructor RMATRIX}}}
\end{verbatim}

compiles the \texttt{RectangularMatrix} constructor defined in \texttt{matrix.spad}.

The \texttt{\textasciitilde\texttt{break}} and \texttt{\textasciitilde\texttt{nobreak}} options determine what the compiler does when it encounters an error. \texttt{\textasciitilde\texttt{break}} is the default and it indicates that processing should stop at the first error. The value of the \texttt{\textasciitilde\texttt{set break}} variable then controls what happens.

\texttt{Also See: \textasciitilde\texttt{abbreviation}, \textasciitilde\texttt{edit}, and \textasciitilde\texttt{library}}.

\section*{A.8 \texttt{\textasciitilde display}}

\textbf{User Level Required:} interpreter

\textbf{Command Syntax:}

\begin{verbatim}
\texttt{\textasciitilde\texttt{display all}}
\texttt{\textasciitilde\texttt{display properties}}
\texttt{\textasciitilde\texttt{display properties all}}
\texttt{\textasciitilde\texttt{display properties \{obj1 \[obj2 \ldots\]}}
\texttt{\textasciitilde\texttt{display value all}}
\texttt{\textasciitilde\texttt{display value \{obj1 \[obj2 \ldots\]}}
\texttt{\textasciitilde\texttt{display mode all}}
\texttt{\textasciitilde\texttt{display mode \{obj1 \[obj2 \ldots\]}}
\texttt{\textasciitilde\texttt{display names}}
\end{verbatim}
APPENDIX A. AXIOM SYSTEM COMMANDS

)display operations opName

Command Description:
This command is used to display the contents of the workspace and signatures of functions with a given name.\(^1\)

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you do not wish to see everything about the objects and need only be reminded of their names.

The commands

)display all
)display properties
)display properties all

all do the same thing: show the values and types and declared modes of all variables in the workspace. If you have defined functions, their signatures and definitions will also be displayed.

To show all information about a particular variable or user functions, for example, something named d, issue

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

)display mode d

All modemaps for a given operation may be displayed by using )display operations. A modemap is a collection of information about a particular reference to an operation. This includes the types of the arguments and the return value, the location of the implementation and any conditions on the types. The modemap may contain patterns. The following displays the modemaps for the operation complex:

) d op complex

Also See: )clear, )history, )set, )show, and )what.

\(^1\) A signature gives the argument and return types of a function.
A.9  )edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the )read and )compile commands to remember the name of the file on which you are working. By specifying the name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By default, the editor is vi, but if you have an EDITOR shell environment variable defined, that editor will be used. When Axiom is running under the X Window System, it will try to open a separate xterm running your editor if it thinks one is necessary. For example, under the Korn shell, if you issue

export EDITOR=emacs

then the emacs editor will be used by )edit.

If you do not specify a file name, the last file you edited, read or compiled will be used. If there is no “last file” you will be placed in the editor editing an empty unnamed file.

It is possible to use the )system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: )system, )compile, and )read.

A.10  )fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by Axiom developers to leave the Axiom system and return to the underlying Common Lisp system. To return to Axiom, issue the “(|spad|)” function call to Common Lisp.

Also See: )pquit and )quit.
A.11 )frame

User Level Required: interpreter

Command Syntax:

\)
frame new frameName
\)
frame drop [frameName]
\)
frame next
\)
frame last
\)
frame names
\)
frame import frameName [objectName1 [objectName2 ...]]
\)
set message frame on | off
\)
set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you get when you start the system. You can have as many frames as you want, within the limits of your computer's storage, paging space, and so on. Each frame has its own step number, environment and history. You can have a variable named a in one frame and it will have nothing to do with anything that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty strange names, since they are generated automatically. To find out the names of all frames, issue

\)
frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

\)
frame new quark

The history facility can be turned on by issuing either )set history on or )history )on. If the history facility is on and you are saving history information in a file rather than in the Axiom environment then a history file with filename quark.axh will be created as you enter commands. If you wish to go back to what you were doing in the “initial” frame, use

\)
frame next

or

\)
frame last
to cycle through the ring of available frames to get back to “initial”.
If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.
If you do use frames with the history facility on and writing to a file, you may want to delete
some of the older history files. These are directories, so you may want to issue a command
like rm -r quark.axh to the operating system.
You can bring things from another frame by using)frame import. For example, to bring
the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.
There are two)frame set flags to make it easier to tell where you are.

)frame set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)frame set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.
Also See: )history and )set.

A.12 )help

User Level Required: interpreter
Command Syntax:

)frame help

)frame help commandName

Command Description:
This command displays help information about system commands. If you issue
then this very text will be shown. You can also give the name or abbreviation of a system
command to display information about it. For example,

)help clear

will display the description of the )clear system command.

All this material is available in the Axiom User Guide and in HyperDoc. In HyperDoc,
choose the Commands item from the Reference menu.

A.13 )history

User Level Required: interpreter

Command Syntax:

)history )on
)history )off
)history )write historyInputFileName
)history )show [n] [both]
)history )save savedHistoryName
)history )restore [savedHistoryName]
)history )reset
)history )change n
)history )memory
)history )file
%
%%(n)
)set history on | off

Command Description:

The history facility within Axiom allows you to restore your environment to that of another
session and recall previous computational results. Additional commands allow you to review
previous input lines and to create an .input file of the lines typed to Axiom.

Axiom saves your input and output if the history facility is turned on (which is the default). This information is saved if either of
has been issued. Issuing either

```plaintext
)set history on
)history on
```

will discontinue the recording of information.

Whether the facility is disabled or not, the value of % in Axiom always refers to the result of the last computation. If you have not yet entered anything, % evaluates to an object of type `Variable('%)`. The function %% may be used to refer to other previous results if the history facility is enabled. In that case, %%(n) is the output from step n if n ≥ 0. If n < 0, the step is computed relative to the current step. Thus %%(−1) is also the previous step, %%(−2), is the step before that, and so on. If an invalid step number is given, Axiom will signal an error.

The environment information can either be saved in a file or entirely in memory (the default). Each frame (section A.11 on page 981) has its own history database. When it is kept in a file, some of it may also be kept in memory for efficiency. When the information is saved in a file, the name of the file is of the form `FRAME.axh` where “FRAME” is the name of the current frame. The history file is placed in the current working directory (see section A.4 on page 974). Note that these history database files are not text files (in fact, they are directories themselves), and so are not in human-readable format.

The options to the `)history` command are as follows:

```plaintext
)change n will set the number of steps that are saved in memory to n. This option only has effect when the history data is maintained in a file. If you have issued `)history memory` (or not changed the default) there is no need to use `)history change`.

)on will start the recording of information. If the workspace is not empty, you will be asked to confirm this request. If you do so, the workspace will be cleared and history data will begin being saved. You can also turn the facility on by issuing `)set history on`.

)off will stop the recording of information. The `)history show` command will not work after issuing this command. Note that this command may be issued to save time, as there is some performance penalty paid for saving the environment data. You can also turn the facility off by issuing `)set history off`.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than saved in a file. Note that if you are computing with very large objects it may not be practical to keep this data in memory.

)reset will flush the internal list of the most recent workspace calculations so that the data structures may be garbage collected by the underlying Common Lisp system. Like `)history change`, this option only has real effect when history data is being saved in a file.
\textbf{APPENDIX A. AXIOM SYSTEM COMMANDS}

\texttt{)restore [savedHistoryName] } completely clears the environment and restores it to a saved session, if possible. The \texttt{)save} option below allows you to save a session to a file with a given name. If you had issued \texttt{)history }\texttt{)save jacob} the command \texttt{)history }\texttt{)restore jacob} would clear the current workspace and load the contents of the named saved session. If no saved session name is specified, the system looks for a file called \texttt{last.axh}.

\texttt{)save savedHistoryName} is used to save a snapshot of the environment in a file. This file is placed in the current working directory (see section \textbf{A.4} on page \pageref{A.4}). Use \texttt{)history} \texttt{)restore} to restore the environment to the state preserved in the file. This option also creates an input file containing all the lines of input since you created the workspace frame (for example, by starting your Axiom session) or last did a \texttt{)clear all} or \texttt{)clear completely}.

\texttt{)show [n] [both]} can show previous input lines and output results. \texttt{)show} will display up to twenty of the last input lines (fewer if you haven’t typed in twenty lines). \texttt{)show n} will display up to \textit{n} of the last input lines. \texttt{)show both} will display up to five of the last input lines and output results. \texttt{)show n both} will display up to \textit{n} of the last input lines and output results.

\texttt{)write historyInputFile} creates an \texttt{.input} file with the input lines typed since the start of the session/frame or the last \texttt{)clear all} or \texttt{)clear completely}. If \texttt{historyInputFileName} does not contain a period (\texttt{"."}) in the filename, \texttt{.input} is appended to it. For example, \texttt{)history }\texttt{)write chaos} and \texttt{)history} \texttt{)write chaos.input} both write the input lines to a file called \texttt{chaos.input} in your current working directory. If you issued one or more \texttt{)undo} commands, \texttt{)history} \texttt{)write} eliminates all input lines backtracked over as a result of \texttt{)undo}. You can edit this file and then use \texttt{)read} to have Axiom process the contents.

\textbf{Also See:} \texttt{)frame}, \texttt{)read}, \texttt{)set}, and \texttt{)undo}.

\textbf{A.14 \texttt{)include}}

\textbf{User Level Required:} interpreter

\textbf{Command Syntax:}

\texttt{)include filename}

\textbf{Command Description:}

The \texttt{)include} command can be used in \texttt{.input} files to place the contents of another file inline with the current file. The path can be an absolute or relative pathname.

\textbf{A.15 \texttt{)library}}

\textbf{User Level Required:} interpreter
A.16)LISP

Command Syntax:

)library libName1 [libName2 ...]
)library)dir dirName
)library)only objName1 [objlib2 ...]
)library)noexpose

Command Description:

This command replaces the)load system command that was available in Axiom releases before version 2.0. The)library command makes available to Axiom the compiled objects in the libraries listed.

For example, if you)compile dopler.spad in your home directory, issue)library dopler to have Axiom look at the library, determine the category and domain constructors present, update the internal database with various properties of the constructors, and arrange for the constructors to be automatically loaded when needed. If the)noexpose option has not been given, the constructors will be exposed (that is, available) in the current frame.

If you compiled a file with the old system compiler, you will have an nrlib present, for example, DOPLER.nrlib, where DOPLER is a constructor abbreviation. The command)library DOPLER will then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use)library)dir dirName where dirName is an explicit directory. You may specify "." as the directory, which means the current directory from which you started the system or the one you set via the)cd command. The directory name is required.

You may only want to tell the system about particular constructors within a library. In this case, use the)only option. The command)library dopler)only Test1 will only cause the Test1 constructor to be analyzed, autoloaded, etc..

Finally, each constructor in a library are usually automatically exposed when the)library command is used. Use the)noexpose option if you not want them exposed. At a later time you can use)set expose add constructor to expose any hidden constructors.

Note for Axiom beta testers: At various times this command was called)local and)with before the name)library became the official name.

Also See:)cd ,)compile ,)frame , and)set .

A.16)lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:
This command is used by Axiom system developers to have single expressions evaluated by the Common Lisp system on which Axiom is built. The \textit{lispExpression} is read by the Common Lisp reader and evaluated. If this expression is not complete (unbalanced parentheses, say), the reader will wait until a complete expression is entered.

Since this command is only useful for evaluating single expressions, the \textit{)fin} command may be used to drop out of Axiom into Common Lisp.

\textbf{Also See:} \textit{)system}, \textit{)boot}, and \textit{)fin}.

\section*{A.17 \textit{)regress}}

\textbf{User Level Required:} development

\textbf{Command Syntax:}

\begin{verbatim}
)regress filename
)regress filename.output
)regress /path/filename
)regress /path/filename.output
\end{verbatim}

\begin{verbatim}
)regress matrix
)regress matrix.output
)regress /path/to/file/matrix
)regress /path/to/file/matrix.output
\end{verbatim}

\textbf{Command Description:}

The \texttt{)regress} command will run the \texttt{regress} function that was compiled as part of the \texttt{lisp} image build process. This function expects an input filename, possibly containing a path prefix.

If the filename contains a period then we consider it a fully formed filename, otherwise we append ‘‘.output’’, which is the default file extension.

\begin{verbatim}
)regress matrix
)regress matrix.output
)regress /path/to/file/matrix
)regress /path/to/file/matrix.output
\end{verbatim}

will test the contents of the file matrix.output.

The idea behind regression testing is to check that the results we currently get match the results we used to get. In order to do that we create input files with a special comment format that contains the prior results. These are easy to create as all you need to do is run the Axiom function, capture the results, and turn them input specially formed comments using the -- comment.

A regression file caches the result of an Axiom function so we can automate the testing process. It is a file of many tests,
each with their own output.

The regression file format uses the Axiom -- comment syntax to keep a copy of the expected output from an Axiom command. This expected output is compared character by character against the actual output.

The regression file is broken into numbered blocks, delimited by a --S for the beginning and a --E for the end. The total number of blocks is also given so missing or failed tests also raise an error.

There are 4 special kinds of -- comments in regression files:

--S n of M this is test n of M tests in this file
--E n this marks the end of test n
--R any output this marks the actual expected output line
--I any output this line is compared but ignored

A regression test file looks like:

)set break resume
)spool foo.output
)set message type off
)clear all

--S 1 of 3
2+3
--R this is the exact Axiom output
--R (1) 5
--E 1

--S 2 of 3
2+3
--R this should fail to match
--R (2) 7
--E 2

--S 3 of 3
2+3
--R this fails to match but we
--I (3) 7 use --I to ignore this line
--E 3

We can now run this file with

)read foo.input

Note that when this file is run it will create a spool file called "foo.output" because of the lines:

)spool foo.output
The "foo.output" file contains the console image of the result. It will look like:

When we run the)regress foo.output we see:

Tests either pass or fail. A passing test generates the message:
A.18)TANGLE

A failing test will give a reversed printout of the expected vs actual output as well as a FAILED message, as in:

MISMATCH
expected:" (2) 7"
got:" (2) 5"
FAILED foo 2 of 3

The last line of output is a summary:

regression result FAILED 1 of 3 stanzas file foo

Also See:)tangle

A.18)tangle

User Level Required: development
Command Syntax:

)tangle filename
)tangle filename.output
)tangle /path/filename
)tangle /path/filename.output

Command Description:

This command is used to tangle pamphlet files.

)tangle matrix.input.pamphlet

will tangle the contents of the file matrix.input.pamphlet into matrix.input. The ‘‘.input.pamphlet’’ is optional.

Also See:)regress

A.19)trace

User Level Required: development
Command Syntax:
APPENDIX A. AXIOM SYSTEM COMMANDS

This command has the same arguments as options as the)trace command.

Command Description:
This command is used by Axiom system developers to trace Common Lisp or BOOT functions. It is not supported for general use.

Also See:)boot,)lisp, and)trace.

A.20)pquit

User Level Required: interpreter

Command Syntax:

```
)pquit
```

Command Description:
This command is used to terminate Axiom and return to the operating system. Other than by redoing all your computations or by using the)history)restore command to try to restore your working environment, you cannot return to Axiom in the same state.

)pquit differs from the)quit in that it always asks for confirmation that you want to terminate Axiom (the “p” is for “protected”). When you enter the)pquit command, Axiom responds

```
Please enter y or yes if you really want to leave the interactive environment and return to the operating system:
```

If you respond with y or yes, you will see the message

```
You are now leaving the Axiom interactive environment.
Issue the command axiom to the operating system to start a new session.
```

and Axiom will terminate and return you to the operating system (or the environment from which you invoked the system). If you responded with something other than y or yes, then the message

```
You have chosen to remain in the Axiom interactive environment.
```

will be displayed and, indeed, Axiom would still be running.

Also See:)fin,)history,)close,)quit, and)system.

A.21)quit

User Level Required: interpreter

Command Syntax:
A.22.)READ

)quit

)set quit protected | unprotected

Command Description:
This command is used to terminate Axiom and return to the operating system. Other than
by redoing all your computations or by using the)history)restore command to try to
restore your working environment, you cannot return to Axiom in the same state.
)quit differs from the)pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise,)quit will make Axiom terminate and return you to the oper-
ating system (or the environment from which you invoked the system).
The default setting is)set quit protected so that)quit and)pquit behave in the same
way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign)quit to be executed when you press, say, a
function key.

Also See:)fin,)history,)close,)pquit, and)system.

A.22)read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName])quiet)ifthere

Command Description:
This command is used to read .input files into Axiom. The command

)read matrix.input

will read the contents of the file matrix.input into Axiom. The “.input” file extension is
optional. See section 4.1 on page 109 for more information about .input files.
This command remembers the previous file you edited, read or compiled. If you do not
specify a file name, the previous file will be read.
The)ifthere option checks to see whether the .input file exists. If it does not, the)read
command does nothing. If you do not use this option and the file does not exist, you are
asked to give the name of an existing .input file.
The `)quiet` option suppresses output while the file is being read.

Also See: `)compile`, `)edit`, and `)history`.

A.23 `)set`

User Level Required: interpreter

Command Syntax:

```
)set
)set label1 [... labelN]
)set label1 [... labelN] newValue
```

Command Description:

The `)set` command is used to view or set system variables that control what messages are displayed, the type of output desired, the status of the history facility, the way Axiom user functions are cached, and so on. Since this collection is very large, we will not discuss them here. Rather, we will show how the facility is used. We urge you to explore the `)set` options to familiarize yourself with how you can modify your Axiom working environment. There is a HyperDoc version of this same facility available from the main HyperDoc menu.

The `)set` command is command-driven with a menu display. It is tree-structured. To see all top-level nodes, issue `)set` by itself.

```
)set
```

Variables with values have them displayed near the right margin. Subtrees of selections have “...” displayed in the value field. For example, there are many kinds of messages, so issue `)set message` to see the choices.

```
)set message
```

The current setting for the variable that displays whether computation times are displayed is visible in the menu displayed by the last command. To see more information, issue

```
)set message time
```

This shows that time printing is on now. To turn it off, issue

```
)set message time off
```

As noted above, not all settings have so many qualifiers. For example, to change the `)quit` command to being unprotected (that is, you will not be prompted for verification), you need only issue

```
)set quit unprotected
```

Also See: `)quit`.
A.24)show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev
)show nameOrAbbrev)operations
)show nameOrAbbrev)attributes

Command Description: This command displays information about Axiom domain, package and category constructors. If no options are given, the)operations option is assumed. For example,

)show POLY
)show POLY)operations
)show Polynomial
)show Polynomial)operations

each display basic information about the Polynomial domain constructor and then provide a listing of operations. Since Polynomial requires a Ring (for example, Integer) as argument, the above commands all refer to an unspecified ring R. In the list of operations, $ means Polynomial(R).

The basic information displayed includes the signature of the constructor (the name and arguments), the constructor abbreviation, the exposure status of the constructor, and the name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbreviated domain name may be used. For example,

)show POLY INT
)show POLY INT)operations
)show Polynomial Integer
)show Polynomial Integer)operations

are among the combinations that will display the operations exported by the domain Polynomial(Integer) (as opposed to the general domain constructor Polynomial). Attributes may be listed by using the)attributes option.

Also See:)display,)set, and)what.

A.25)spool

User Level Required: interpreter

Command Syntax:
The command `)spool [fileName]` is used to save (spool) all Axiom input and output into a file, called a spool file. You can only have one spool file active at a time. To start spooling, issue this command with a filename. For example,

`)spool integrate.out`

To stop spooling, issue `)spool` with no filename.

If the filename is qualified with a directory, then the output will be placed in that directory. If no directory information is given, the spool file will be placed in the current directory. The current directory is the directory from which you started Axiom or is the directory you specified using the `)cd` command.

Also See: `)cd`.

A.26 `)synonym`

User Level Required: interpreter

Command Syntax:

```plaintext
)synonym
)synonym synonym fullCommand
)what synonyms
```

Command Description:

This command is used to create short synonyms for system command expressions. For example, the following synonyms might simplify commands you often use.

```plaintext
)synonym save       history  )save
)synonym restore    history  )restore
)synonym mail       system mail
)synonym ls         system ls
)synonym fortran    set output fortran
```

Once defined, synonyms can be used in place of the longer command expressions. Thus

```plaintext
)fortran on
```

is the same as the longer

```plaintext
)set fortran output on
```
To list all defined synonyms, issue either of

)`synonyms
)`what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)`what synonyms ap

Also See:)set and)what.

A.27)system

User Level Required: interpreter

Command Syntax:

)`system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while remaining in Axiom. The cmdExpression is passed to the operating system for execution.

To get an operating system shell, issue, for example,)system sh. When you enter the key combination, \[\text{Ctrl}D\] (pressing and holding the \[\text{Ctrl}\] key and then pressing the \[D\] key) the shell will terminate and you will return to Axiom. We do not recommend this way of creating a shell because Common Lisp may field some interrupts instead of the shell. If possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to Axiom. If this happens, you may have no other choice than to restart Axiom and restore the environment via)history)restore, if possible.

Also See:)boot,)fin,)lisp,)pquit, and)quit.

A.28)trace

User Level Required: interpreter

Command Syntax:

)`trace
)`trace)off
)`trace function [options]
)`trace constructor [options]

(appendix AXIOM SYSTEM COMMANDS

)trace domainOrPackage [options]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN]

)nonquietly

)nt

)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN]

)vars

)vars var1 [... varN]

)within executingFunction

Command Description:
This command is used to trace the execution of functions that make up the Axiom system,
functions defined by users, and functions from the system library. Almost all options are
available for each type of function but exceptions will be noted below.
To list all functions, constructors, domains and packages that are traced, simply issue

A.28.)TRACE

)trace

To untrace everything that is traced, issue

)trace)off

When a function is traced, the default system action is to display the arguments to the function and the return value when the function is exited. Note that if a function is left via an action such as a THROW, no return value will be displayed. Also, optimization of tail recursion may decrease the number of times a function is actually invoked and so may cause less trace information to be displayed.

Other information can be displayed or collected when a function is traced and this is controlled by the various options. Most options will be of interest only to Axiom system developers. If a domain or package is traced, the default action is to trace all functions exported. Individual interpreter, lisp or boot functions can be traced by listing their names after)trace. Any options that are present must follow the functions to be traced.

)trace f

traces the function f. To untrace f, issue

)trace f)off

Note that if a function name contains a special character, it will be necessary to escape the character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular constructor, give the constructor name or abbreviation after)trace.

)trace MATRIX
)trace List Integer

The first command traces all domains currently instantiated with Matrix. If additional domains are instantiated with this constructor (for example, if you have used Matrix(Integer) and Matrix(Float)), they will be automatically traced. The second command traces List(Integer). It is possible to trace individual functions in a domain or package. See the)ops option below.

The following are the general options for the)trace command.

)break after causes a Common Lisp break loop to be entered after exiting the traced function.

)break before causes a Common Lisp break loop to be entered before entering the traced function.
`break` is the same as `break before`.

`count` causes the system to keep a count of the number of times the traced function is entered. The total can be displayed with `trace stats` and cleared with `trace stats reset`.

`count n` causes information about the traced function to be displayed for the first `n` executions. After the `n-th` execution, the function is untraced.

`depth n` causes trace information to be shown for only `n` levels of recursion of the traced function. The command

```plaintext
)trace fib )depth 10
```

will cause the display of only 10 levels of trace information for the recursive execution of a user function `fib`.

`math` causes the function arguments and return value to be displayed in the Axiom monospace two-dimensional math format.

`nonquietly` causes the display of additional messages when a function is traced.

`nt` This suppresses all normal trace information. This option is useful if the `count` or `timer` options are used and you are interested in the statistics but not the function calling information.

`off` causes untracing of all or specific functions. Without an argument, all functions, constructors, domains and packages are untraced. Otherwise, the given functions and other objects are untraced. To immediately retrace the untraced functions, issue `trace restore`.

`only listOfDataToDisplay` causes only specific trace information to be shown. The items are listed by using the following abbreviations:

- `a` display all arguments
- `v` display return value
- `1` display first argument
- `2` display second argument
- `15` display the 15th argument, and so on

`restore` causes the last untraced functions to be retraced. If additional options are present, they are added to those previously in effect.

`stats` causes the display of statistics collected by the use of the `count` and `timer` options.

`stats reset` resets to 0 the statistics collected by the use of the `count` and `timer` options.
A.29.)UNDO

)timer causes the system to keep a count of execution times for the traced function. The total can be displayed with)trace)stats and cleared with)trace)stats reset.

)varbreak var1 [... varN] causes a Common Lisp break loop to be entered after the assignment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the traced function. Note that library code must have been compiled (see section A.7 on page 977 using the)vartrace option in order to support this option.

)vars var1 [... varN] causes the display of the value of any of the specified variables after they are assigned in the traced function. Note that library code must have been compiled (see section A.7 on page 977 using the)vartrace option in order to support this option.

)within executingFunction causes the display of trace information only if the traced function is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [op1 [... opN]] causes local functions of the constructor to be traced. Note that to untrace an individual local function, you must use the fully qualified internal name, using the escape character _ before the semicolon.

)trace FRAC)local
)trace FRAC_;cancelGcd)off

)ops op1 [... opN] By default, all operations from a domain or package are traced when the domain or package is traced. This option allows you to specify that only particular operations should be traced. The command

)trace Integer)ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special characters, it is necessary to escape them with an underscore.

Also See:)boot,)lisp, and)ltrace.

A.29)undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer
APPENDIX A. AXIOM SYSTEM COMMANDS

)undo integer [option]
)undo)redo

where option is one of
)
 after
 before

Command Description:
This command is used to restore the state of the user environment to an earlier point in the interactive session. The argument of an)undo is an integer which must designate some step number in the interactive session.

)undo n
)undo n)after

These commands return the state of the interactive environment to that immediately after step n. If n is a positive number, then n refers to step nummber n. If n is a negative number, it refers to the n-th previous command (that is, undoes the effects of the last −n commands).

A)clear all resets the)undo facility. Otherwise, an)undo undoes the effect of)clear with options properties, value, and mode, and that of a previous undo. If any such system commands are given between steps n and n + 1 (n > 0), their effect is undone for)undo m for any 0 < m ≤ n..

The command)undo is equivalent to)undo -1 (it undoes the effect of the previous user expression). The command)undo 0 undoes any of the above system commands issued since the last user expression.

)undo n)before

This command returns the state of the interactive environment to that immediately before step n. Any)undo or)clear system commands given before step n will not be undone.

)undo)redo

This command reads the file redo.input created by the last)undo command. This file consists of all user input lines, excluding those backtracked over due to a previous)undo.

Also See:)history. The command)history)write will eliminate the “undone” command lines of your program.

A.30)what

User Level Required: interpreter

Command Syntax:
A.30.)WHAT

```lisp
)what categories pattern1 [pattern2 ...]
)what commands  pattern1 [pattern2 ...]
)what domains  pattern1 [pattern2 ...]
)what operations pattern1 [pattern2 ...]
)what packages  pattern1 [pattern2 ...]
)what synonym  pattern1 [pattern2 ...]
)what things  pattern1 [pattern2 ...]
)apropos  pattern1 [pattern2 ...]
```

Command Description:

This command is used to display lists of things in the system. The patterns are all strings and, if present, restrict the contents of the lists. Only those items that contain one or more of the strings as substrings are displayed. For example,

```lisp
)what synonym
```

displays all command synonyms,

```lisp
)what synonym ver
```

displays all command synonyms containing the substring "ver",

```lisp
)what synonym ver pr
```

displays all command synonyms containing the substring "ver" or the substring "pr". Output similar to the following will be displayed

```
------------- System Command Synonyms -------------

user-defined synonyms satisfying patterns:
  ver pr

)apr ........................... )what things
)apropos  ..................... )what things
)prompt  ....................... )set message prompt
)version  .......................... )lisp *yearweek*
```

Several other things can be listed with the)what command:

- **categories** displays a list of category constructors.
- **commands** displays a list of system commands available at your user-level. Your user-level is set via the)set userlevel command. To get a description of a particular command, such as “)what”, issue)help what.
domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recommended that you qualify this command with one or more patterns, as there are thousands of operations available. For example, say you are looking for functions that involve computation of eigenvalues. To find their names, try)what operations eig. A rather large list of operations is loaded into the workspace when this command is first issued. This list will be deleted when you clear the workspace via)clear all or)clear completely. It will be re-created if it is needed again.

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings as substrings.

The command synonym)apropos is equivalent to)what things.

Also See:)display,)set, and)show.
Appendix B

Categories

This is a listing of all categories in the Axiom library at the time this book was produced. Use the Browse facility (described in section 14 on page 931) to get more information about these constructors.

<table>
<thead>
<tr>
<th>CategoryName</th>
<th>CategoryAbbreviation</th>
<th>Category</th>
<th>op_j</th>
<th>op_1...op_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Category1...CategoryN with</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This sample entry will help you read the following table:

CategoryName is the full category name, e.g., Integer.
CategoryAbbreviation is the category abbreviation, e.g., INT.
Category_j is a category to which the category belongs.
op_j is an operation exported by the category.

AbelianGroup{ABELGRP}: CancellationAbelianMonoid with * ~
AbelianMonoidRing{AMR}: Algebra BiModule Characteristic:NonZero Characteristic:Zero CommutativeRing IntegralDomain Ring with / coefficient degree leadingCoefficient leadingMonomial map monomial monomial? reductum
AbelianMonoid{ABELMON}: AbelianSemiGroup with * Zero zero?
AbelianSemiGroup{ABELSG}: SetCategory with * +
Aggregate{AGG}: Object with # copy empty empty? eq? less? more? size?
AlgebraicallyClosedField{ACF}: Field RadicalCategory with rootOf rootsOf zeroOf zerosOf
AlgebraicallyClosedFunctionSpace {ACFS}: AlgebraicallyClosedField FunctionSpace with rootOf rootsOf zeroOf zerosOf
Algebra{ALGEBRA}: Module Ring with coerce
ArcHyperbolicFunctionCategory{AHYP}: with acosh acoth acsch asech asinh atanh
ArcTrigonometricFunctionCategory{ATRIG}: with acos acot acsc asec asin atan

1005
AssociationListAggregate\{ALAGG\}: ListAggregate TableAggregate with assoc
AttributeRegistry\{ATTREG\}: with
BagAggregate\{BGAGG\}: HomogeneousAggregate with bag extract! insert! inspect
BiModule\{BMODULE\}: LeftModule RightModule with
BinaryRecursiveAggregate\{BRAGG\}: RecursiveAggregate with elt left right setelt setleft! setright!
BinaryTreeCategory\{BTCAT\}: BinaryRecursiveAggregate with node
BitAggregate\{BTAGG\}: OneDimensionalArrayAggregate OrderedSet with ^ and nand nor not or xor
CachableSet\{CACHSET\}: OrderedSet with position setPosition
CancelltionAbelianMonoid\{CABMON\}: AbelianMonoid with -
CharacteristicNonZero\{CHARNZ\}: Ring with chartRoot
CharacteristicZero\{CHARZ\}: Ring with
CoercibleTo\{KOERCE\}: with coerce
Collection\{CLAGG\}: ConvertibleTo HomogeneousAggregate with construct find reduce remove removeDuplicates select
CombinatorialFunctionCategory\{CFCAT\}: with binomial factorial permutation
CombinatorialOpsCategory\{COMBOPC\}: CombinatorialFunctionCategory with factorials product summation
CommutativeRing\{COMRING\}: BiModule Ring with
ComplexCategory
{COMPCAT\}: CharacteristicNonZero CharacteristicZero CommutativeRing ConvertibleTo DifferentialExtension EuclideanDomain Field FullyEvalableOver FullyLinearlyExplicitRingOver FullyRetractableTo IntegralDomain MonogenicAlgebra OrderedSet PolynomialFactorizationExplicit RadicalCategory TranscendentalFunctionCategory with abs argument complex conjugate exquo imag imaginary norm polarCoordinates rational? rationalIfCan real
ConvertibleTo\{KONVERT\}: with convert
DequeueAggregate\{DQAGG\}: QueueAggregate StackAggregate with bottom! dequeue extractBottom! extractTop! height insertBottom! insertTop! reverse! top!
DictionaryOperations\{DIOPS\}: BagAggregate Collection with dictionary remove! select!
Dictionary\{DIAGG\}: DictionaryOperations with
DifferentialExtension
{DIFEXT\}: DifferentialRing PartialDifferentialRing Ring with D differentiate
DifferentialPolynomialCategory
\{DPOLCAT\}: DifferentialExtension Evalable InnerEvalable PolynomialCategory RetractableTo with degree differentialVariables initial isobaric? leader makeVariable order separar weight weights

DifferentialRing\{DIFRING\}: Ring with D differentiate

DifferentialVariableCategory\{DVARCAT\}: OrderedSet RetractableTo with D coerce differentiate makeVariable order variable weight

DirectProductCategory
\{DIRPCAT\}: AbelianSemiGroup Algebra BiModule CancellationAbelianMonoid CoercibleTo CommutativeRing DifferentialExtension Finite FullyLinearlyExplicitRingOver FullyRetractableTo IndexedAggregate OrderedAbelianMonoidSup OrderedRing VectorSpace with * directProduct dot unitVector

DivisionRing\{DIVRING\}: Algebra EntireRing with ** inv

DoublyLinkedAggregate\{DLAGG\}: RecursiveAggregate with concat! head last next previous setnext! setprevious! tail

ElementaryFunctionCategory\{ELEMFUN\}: with ** exp log

EltableAggregate\{ELTAGG\}: Eltable with elt qelt qsetelt! setelt

Eltable\{ELTAB\}: with elt

EntireRing\{ENTIRER\}: BiModule Ring with

EuclideanDomain\{EUCDOM\}: PrincipalIdealDomain with divide euclideanSize extendedEuclidean quo rem sizeLess?

Evalable\{EVALAB\}: with eval

ExpressionSpace\{ES\}: Evalable InnerEvalable OrderedSet RetractableTo with belong? box definingPolynomial distribute elt eval freeOf? height is? kernel kernels mainKernel map minPoly operator operators paren subst tower

ExtensibleLinearAggregate\{ELAGG\}: LinearAggregate with concat! delete! insert! merge! remove! removeDuplicates! select!

ExtensionField\{XF\}: CharacteristicZero Field FieldOfPrimeCharacteristic RetractableTo VectorSpace with Frobenius algebraic? degree extensionDegree inGroundField? transcendenceDegree transcendent?

FieldOfPrimeCharacteristic\{FPC\}: CharacteristicNonZero Field with discreteLog order primeFrobenius

Field\{FIELD\}: DivisionRing EuclideanDomain UniqueFactorizationDomain with /

FileCategory\{FILECAT\}: SetCategory with close! iomode name open read! reopen! write!

FileNameCategory\{FNCAT\}: SetCategory with coerce directory exists? extension fileName name new readable? writable?
FiniteAbelianMonoidRing\{FAMR\}: AbelianMonoidRing FullyRetractableTo with coefficients content exquo ground ground? mapExponents minimumDegree numberOfMonomials primitivePart

FiniteAlgebraicExtensionField \{FAXF\}: ExtensionField FiniteFieldCategory RetractableTo with basis coordinates createNormalElement definingPolynomial degree extensionDegree generator minimalPolynomial norm normal? normalElement represents trace

FiniteFieldCategory \{FFIELDC\}: FieldOfPrimeCharacteristic Finite StepThrough with charthRoot conditionP createPrimitiveElement discreteLog factorsOfCyclicGroupSize order primitive? primitiveElement representationType tableForDiscreteLogarithm

FiniteLinearAggregate \{FLAGG\}: LinearAggregate OrderedSet with copyInto! merge position reverse reverse! sort sort! sorted?

FiniteRankAlgebra \{FINRALG\}: Algebra CharacteristicNonZero CharacteristicZero with characteristicPolynomial coordinates discriminant minimalPolynomial norm rank regularRepresentation represents trace traceMatrix

FiniteSetAggregate \{FSAGG\}: Dictionary Finite SetAggregate with cardinality complement max min universe

Finite \{FINITE\}: SetCategory with index lookup random size

FloatingPointSystem \{FPS\}: RealNumberSystem with base bits decreasePrecision digits exponent float increasePrecision mantissa max order precision

FramedAlgebra \{FRAMALG\}: FiniteRankAlgebra with basis convert coordinates discriminant regularRepresentation represents traceMatrix

FramedNonAssociativeAlgebra \{FRNAALG\}: FiniteRankNonAssociativeAlgebra with apply basis conditionsForIdempotents convert coordinates elt leftDiscriminant leftRankPolynomial leftRegularRepresentation leftTraceMatrix represents rightDiscriminant rightRankPolynomial rightRegularRepresentation rightTraceMatrix structuralConstants
FreeAbelianMonoidCategory
{FAMONC}: CancellationAbelianMonoid RetractableTo with * + coefficient highCommonTerms mapCoef mapGen nthCoef nthFactor size terms

FullyEvalableOver{FEVALAB}: Eltable Evalable InnerEvalable with map
FullyLinearlyExplicitRingOver{FLINEXP}: LinearlyExplicitRingOver with
FullyPatternMatchable{FPATMAB}: Object PatternMatchable with
FullyRetractableTo{FRETRCT}: RetractableTo with

FunctionSpace{FS}: AbelianGroup AbelianMonoid Algebra CharacteristicNonZero CharacteristicZero ConvertibleTo ExpressionSpace Field FullyLinearlyExplicitRingOver FullyPatternMatchable FullyRetractableTo Group Monoid PartialDifferentialRing Patternable RetractableTo Ring with ** / applyQuote coerce convert denom denominator eval ground ground? isExpt isMult isPlus isPower isTimes numerator univariate variables

GcdDomain{GCDDOM}: IntegralDomain with gcd lcm

GradedAlgebra{GRALG}: GradedModule with One product

GradedModule{GRMOD}: RetractableTo SetCategory with * + ~ Zero degree

Group{GROUP}: Monoid with ** / commutator conjugate inv

HomogeneousAggregate{HOAGG}: Aggregate SetCategory with any? count every? map map! member? members parts

HyperbolicFunctionCategory{HYPCAT}: with cosh coth csch sech sinh tanh

IndexedAggregate{IXAGG}: EltableAggregate HomogeneousAggregate with entries entry? fill! first index? indices maxIndex minIndex swap!

IndexedDirectProductCategory{IDPC}: SetCategory with leadingCoefficient leadingCoefficient leadingSupport map monomial reductum

InnerEvalable{IEVALAB}: with eval

IntegerNumberSystem{INS}: CharacteristicZero CombinatorialFunctionCategory ConvertibleTo DifferentialRing EuclideanDomain LinearlyExplicitRingOver OrderedRing PatternMatchable RealConstant RetractableTo StepThrough UniqueFactorizationDomain with
addmod base bit? copy dec even? hash inc invmod length mask mulmod odd? positiveRemainder powmod random rational rational? rationalIfCan shift submod symmetricRemainder

IntegralDomain\{INTDOM\}: Algebra CommutativeRing EntireRing with associates? exquo unit? unitCanonical unitNormal

KeyedDictionary\{KDG\}: Dictionary with key? keys remove! search

LazyStreamAggregate\{LZSTAGG\}: StreamAggregate with complete explicitEntries? explicitlyEmpty? extend first lazy? lazyEvaluate numberOfComputedEntries remove rst select

LeftAlgebra\{LALG\}: LeftModule Ring with coerce

LeftModule\{LMODULE\}: AbelianGroup with *

LinearAggregate\{LNAGG\}: Collection IndexedAggregate with concat delete elt insert map new setelt

LinearlyExplicitRingOver\{LINEXP\}: Ring with reducedSystem

LiouvillianFunctionCategory\{LFCAT\}: PrimitiveFunctionCategory TranscendentalFunctionCategory with Ci Ei Si dilog erf li

ListAggregate\{LSAGG\}: ExtensibleLinearAggregate FiniteLinearAggregate StreamAggregate with list

ModularAlgebraicGcdOperations\{MAGDOC\}: with canonicalIfCan degree MPtoMPT packExps packModulus pseudoRem repack1 zero?

Module\{MODULE\}: BiModule with

MonadWithUnit\{MONADWU\}: Monad with ** One leftPower leftRecip one? recip rightPower rightRecip

Monad\{MONAD\}: SetCategory with * ** leftPower rightPower

MonogenicAlgebra\{MONOGEN\}: CommutativeRing ConvertibleTo DifferentialExtension Field Finite

FiniteFieldCategory FramedAlgebra FullyLinearlyExplicitRingOver FullyRetractableTo

with convert definingPolynomial derivationCoordinates generator lift reduce

MonogenicLinearOperator\{MLO\}: Algebra BiModule Ring with coefficient degree leadingCoefficient minimumDegree monomial reductum

Monoid\{MONOID\}: SemiGroup with ** One one? recip

MultiDictionary\{MDAGG\}: DictionaryOperations with duplicates insert! removeDuplicates!
MultisetAggregate\{MSAGG\}: MultiDictionary SetAggregate with
MultivariateTaylorSeriesCategory
\{MTSCAT\}: Evalable InnerEvalable PartialDifferentialRing
PowerSeriesCategory RadicalCategory
TranscendentalFunctionCategory
with coefficient extend integrate monomial order polynomial
NonAssociativeAlgebra\{NAALG\}: Module NonAssociativeRng with plenaryPower
NonAssociativeRing\{NASRING\}: MonadWithUnit NonAssociativeRng with characteristic coerce
NonAssociativeRng\{NARNG\}: AbelianGroup Monad
with antiCommutator associator commutator
Object\{OBJECT\}: with
OctonionCategory\{OC\}: Algebra CharacteristicNonZero
CharacteristicZero ConvertibleTo Finite FullyEvalableOver
FullyRetractableTo OrderedSet
with abs conjugate imagE imagI imagJ imagK imagi imagj imagk inv norm octon rational rational? rationalIfCan real
OneDimensionalArrayAggregate\{A1AGG\}: FiniteLinearAggregate with
OrderedAbelianGroup
\{OAGROUP\}: AbelianGroup OrderedCancellationAbelianMonoid with
OrderedAbelianMonoidSup\{OAMONS\}: OrderedCancellationAbelianMonoid with sup
OrderedAbelianMonoid\{OAMON\}: AbelianMonoid OrderedAbelianSemigroup with
OrderedAbelianSemigroup\{OASGP\}: AbelianMonoid OrderedSet with
OrderedCancellationAbelianMonoid\{OCAMON\}: CancellationAbelianMonoid Ordered-AbelianMonoid with
OrderedFinite\{ORDFIN\}: Finite OrderedSet with
OrderedMonoid\{ORDMON\}: Monoid OrderedSet with
OrderedMultisetAggregate\{OMAGG\}: MultisetAggregate PriorityQueueAggregate with min
OrderedRing\{ORDRING\}: OrderedAbelianGroup OrderedMonoid Ring with abs negative? positive? sign
OrderedSet\{ORDSET\}: SetCategory with < max min
PAdicIntegerCategory\{PADICCT\}: CharacteristicZero EuclideanDomain with approximate complete digits extend moduloP modulus order quotientByP sqrt
PartialDifferentialRing\{PDRING\}: Ring with D differentiate
PartialTranscendentalFunctions
\{PTRANFN\}: with acoshCan acoshHCan acotHCan acotHCan acothHCan asecHCan
APPENDIX B. CATEGORIES

\begin{verbatim}
acschIfCan asecIfCan asechIfCan asinIfCan asinhIfCan atanIfCan atanhIfCan cosIfCan coshIfCan cotIfCan cothIfCan
cscIfCan cschIfCan expIfCan logIfCan nthRootIfCan secIfCan
sechIfCan sinhIfCan tanIfCan tanhIfCan

Patternable\{PATAB\}: ConvertibleTo Object with

PatternMatchable\{PATMAB\}: SetCategory with patternMatch

PermutationCategory\{PERMCAT\}: Group OrderedSet
 with < cycle cycles elt eval orbit

PlottablePlaneCurveCategory\{PPCURVE\}: CoercibleTo
 with listBranches xRange yRange

PlottableSpaceCurveCategory\{PSCURVE\}: CoercibleTo
 with listBranches xRange yRange zRange

PointCategory\{PTCAT\}: VectorCategory with convert cross dimension extend length point

PolynomialCategory\{POLYCAT\}: ConvertibleTo Evalable FiniteAbelianMonoidRing FullyLinearlyExplicitRingOver GcdDomain InnerEvalable OrderedSet PartialDifferentialRing PatternMatchable PolynomialFactorizationExplicit RetractableTo with coefficient content degree discriminant isExpt isPlus isTimes mainVariable minimumDegree monicDivide monomial monomials multivariate primitiveMonomials primitivePart resultant squareFree squareFreePart totalDegree univariate variables

PolynomialFactorizationExplicit\{PFECAT\}: UniqueFactorizationDomain with charthRoot conditionP factorPolynomial factorSquareFreePolynomial

PowerSeriesCategory\{PSCAT\}: AbelianMonoidRing with complete monomial pole? variables

PrimitiveFunctionCategory\{PRIMCAT\}: with integral

PrincipalIdealDomain\{PID\}: GcdDomain with expressIdealMember principalIdeal

PriorityQueueAggregate\{PRQAGG\}: BagAggregate with max merge merge!

QuaternionCategory\{QUATCAT\}: Algebra CharacteristicNonZero CharacteristicZero ConvertibleTo DifferentialExtension DivisionRing EntireRing FullyEvalableOver FullyLinearlyExplicitRingOver FullyRetractableTo OrderedSet with abs conjugate imagI imagJ imagK norm quaternion rational rationalIfCan real

QueueAggregate\{QUAGG\}: BagAggregate with back dequeue! enqueue! front length rotate!

QuotientFieldCategory\{QFCAT\}: Algebra CharacteristicNonZero CharacteristicZero ConvertibleTo DifferentialExtension Field FullyEvalableOver FullyLinearlyExplicitRingOver FullyPatternMatchable OrderedRing OrderedSet Patternable PolynomialFactorizationExplicit
\end{verbatim}
RealConstant RetractableTo StepThrough
with / ceiling denom denominator floor fractionPart numer numerator random wholePart

RadicalCategory[RADCAT]: with ** nthRoot sqrt

RealConstant[REAL]: ConvertibleTo with

RealNumberSystem[RNS]: CharacteristicZero ConvertibleTo Field OrderedRing Pattern-Matchable RadicalCategory RealConstant RetractableTo with abs ceiling floor fractionPart norm round truncate wholePart

RectangularMatrixCategory
{RMATCAT}: BiModule HomogeneousAggregate Module with / antisymmetric? column diagonal? elt exquo listOfLists map matrix maxColIndex maxRowIndex minColIndex minRowIndex ncols nrows nullSpace nullity qelt rank row rowEchelon square? symmetric?

RecursiveAggregate[RCAGG]: HomogeneousAggregate with children cyclic? elt leaf? leaves node? nodes setchildren! setelt setvalue! value

RetractableTo[RETRACT]: with coerce retract retractIfCan

RightModule[RMODULE]: AbelianGroup with *

Ring[RING]: LeftModule Monoid Rng with characteristic coerce

Rng[RNG]: AbelianGroup SemiGroup with

SegmentCategory[SEGCAT]: SetCategory with BY SEGMENT convert hi high incr lo low segment

SegmentExpansionCategory[SEGXCAT]: SegmentCategory with expand map

SemiGroup[SGROUP]: SetCategory with * **

SetAggregate[SETAGG]: Collection SetCategory with < brace difference intersect subset? symmetricDifference union

SetCategory[SETCAT]: CoercibleTo Object with =

SpecialFunctionCategory[SPFCAT]: with Beta Gamma abs airyAi airyBi besselI besselJ besselK besselY digamma polygamma

SquareMatrixCategory[SMATCAT]: Algebra BiModule DifferentialExtension FullyLinearlyExplicitRingOver FullyRetractableTo Module RectangularMatrixCategory with * ** determinant diagonal diagonalMatrix diagonalProduct inverse minordet scalarMatrix trace

StackAggregate[SKAGG]: BagAggregate with depth pop! push! top

StepThrough[STEP]: SetCategory with init nextItem

StreamAggregate[STAGG]: LinearAggregate UnaryRecursiveAggregate with explicitlyFinite? possiblyInfinite?
APPENDIX B. CATEGORIES

StringAggregate\{SRAGG\}: *OneDimensionalArrayAggregate with* coerce elt leftTrim lowerCase lowerCase! match match? position prefix? replace rightTrim split substring? suffix? trim upperCase upperCase!

StringCategory\{STRICAT\}: *StringAggregate with* string

TableAggregate\{TBAGG\}: *IndexedAggregate* KeyedDictionary with* map setelt table

ThreeSpaceCategory\{SPACEC\}: *SetCategory with* check closedCurve closedCurve? coerce components composite copies copy create3Space curve curve? enterPointData llip llprop lp lprop merge mesh mesh? modifyPointData numberOfComponents numberOfComposites objects point point? polygon polygon? subspace

TranscendentalFunctionCategory
{TRANFUN}\{: ArcHyperbolicFunctionCategory ArcTrigonometricFunctionCategory ElementaryFunctionCategory HyperbolicFunctionCategory TrigonometricFunctionCategory with pi

TrigonometricFunctionCategory\{TRIGCAT\}: *with* cos cot csc sec sin tan

TwoDimensionalArrayCategory\{ARR2CAT\}: *HomogeneousAggregate with* column elt fill! map map! maxColIndex maxRowIndex minColIndex minRowIndex ncols new nrows parts qelt qsetelt! row setColumn! setRow! setelt

UnaryRecursiveAggregate\{URAGG\}: *RecursiveAggregate with* concat concat! cycleEntry cycleLength cycleSplit! cycleTail elt first last rest second setelt setfirst! setlast! setrest! split! tail third

UniqueFactorizationDomain\{UFD\}: *GcdDomain with* factor prime? squareFree squareFreePart

UnivariateLaurentSeriesCategory
{ULSCAT}\{: Field RadicalCategory TranscendentalFunctionCategory UnivariatePowerSeriesCategory with integrate multiplyCoefficients rationalFunction

UnivariateLaurentSeriesConstructorCategory
{ULSCCAT}\{: QuotientFieldCategory RetractableTo UnivariateLaurentSeriesCategory with coerce degree laurent removeZeroes taylor taylorIfCan taylorRep

UnivariatePolynomialCategory
{UPOLYC}\{: DifferentialExtension DifferentialRing Eltable EuclideanDomain PolynomialCategory StepThrough with D composite differentiate discriminant divideExponents elt integrate makeSUP monicDivide multiplyExponents order pseudoDivide pseudoQuotient pseudoRemainder resultant separate subResultantGcd unmakeSUP vectorise

UnivariatePowerSeriesCategory
{UPSCAT}\{: DifferentialRing Eltable PowerSeriesCategory with approximate center elt eval extend multiplyExponents order series terms truncate variable

UnivariatePuiseuxSeriesCategory
{UPXSCAT}\{: Field RadicalCategory TranscendentalFunctionCategory UnivariatePowerSeriesCategory with integrate multiplyExponents
UnivariatePuiseuxSeriesConstructorCategory
{UPXSCCA}: RetractableTo UnivariatePuiseuxSeriesCategory with coerce degree laurent laurentIfCan laurentRep puiseux rationalPower

UnivariateTaylorSeriesCategory
{UTSCAT}: RadicalCategory TranscendentalFunctionCategory UnivariatePowerSeriesCategory with ** coefficients integrate multiplyCoefficients polynomial quoByVar series

VectorCategory{VECTCAT}: OneDimensionalArrayAggregate with * + - dot zero

VectorSpace{VSPACE}: Module with / dimension
Appendix C

Domains

This is a listing of all domains in the Axiom library at the time this book was produced. Use the Browse facility (described in section 14 on page 931) to get more information about these constructors.

<table>
<thead>
<tr>
<th>DomainName</th>
<th>DomainAbbreviation</th>
<th>Category1...CategoryN</th>
<th>op1...opM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DomainName</td>
<td>is the full domain name, e.g., Integer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DomainAbbreviation</td>
<td>is the domain abbreviation, e.g., INT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category_i</td>
<td>is a category to which the domain belongs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>op_j</td>
<td>is an operation exported by the domain.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AlgebraGivenByStructuralConstants

{ALGSC}: FramedNonAssociativeAlgebra LeftModule with 0 * ** + - = JacobiIdentity? JordanAlgebra? alternative? antiAssociative? antiCommutative? antiCommutator apply associative? associator associatorDependence basis coerce commutative? commutator conditionsForIdempotents convert coordinates elt flexible? jordanAdmissible? leftAlternative? leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlgebra? noncommutativeJordanAlgebra? plenaryPower powerAssociative? rank recip represents rightAlternative? rightCharacteristicPolynomial rightDiscriminant rightMinimalPolynomial rightNorm rightPower rightRankPolynomial rightRecip rightRegularRepresentation rightTrace rightTraceMatrix rightUnit rightUnits someBasis structuralConstants unit zero?

integralMatrix integralMatrixAtInfinity integralRepresents inv inverseIntegralMatrix inverseIntegralMatrixAtInfinity knownInfBasis lcm lift minimalPolynomial multiEuclidean nonSingularModel norm normalizeAtInfinity numberOfComponents one? prime? primitivePart principalIdeal quo ramified? ramifiedAtInfinity? rank rationalPoint? rationalPoints recip reduce reduceBasisAtInfinity reducedSystem regularRepresentation rem represents retract retractIfCan singular? singularAtInfinity? sizeLess? squareFree squareFreePart trace traceMatrix unit? unitCanonical unitNormal yCoordinates zero?

Algorithm

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - / < = D associates? box characteristic coerce definingPolynomial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max min minPoly multiEuclidean nthRoot numerator one? operator operators paren prime? principalIdeal quo recip reduce reducedSystem rem retrace retraceIfCan rootOf rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce
AssociatedLieAlgebra\(_{\text{LIE}}\): CoercibleTo

FiniteRankNonAssociativeAlgebra FramedNonAssociativeAlgebra

NonAssociativeAlgebra with \(0 \ast \ast \ast + - = \) JacobiIdentity?

JordanAlgebra? alternative? antiAssociative? antiCommutative?

antiCommutator apply associative? associator associatorDependence

basis coerce commutative? commutator conditionsForIdempotents

cvnt coordinates elt flexible? jordanAdmissible?

leftAlternative? leftCharacteristicPolynomial leftDiscriminant

leftMinimalPolynomial leftNorm leftPower leftRankPolynomial

leftRecip leftRegularRepresentation leftTrace leftTraceMatrix

leftUnit leftUnits lieAdmissible? lieAlgebra?

noncommutativeJordanAlgebra? plenaryPower powerAssociative?

rank recip represents rightAlternative?

rightCharacteristicPolynomial rightDiscriminant

rightMinimalPolynomial rightNorm rightPower rightRankPolynomial

rightRecip rightRegularRepresentation rightTrace

rightTraceMatrix rightUnit rightUnits someBasis

structuralConstants unit zero?

keys last leaf? less? list map map! mapDown! mapUp! member? members more? node node? nodes parts right

setchildren! setelt setleaves! setleft! setright! setvalue! size? sort sort! sorted? split! swap!

table tail third value

BalancedBinaryTree\(_{\text{BBTREE}}\): BinaryTreeCategory with \# = any? balancedBinaryTree

map map! mapDown! mapUp! member? members more? node node? nodes parts right

setchildren! setelt setleaves! setleft! setright! setvalue! size? value

BalancedPAdicInteger\(_{\text{BPADIC}}\): PAdicIntegerCategory with \(0 1 \ast \ast \ast + - = \) approximate

associates? characteristic coerce complete digits divide euclideanSize expressIdealMember exquo extend extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order principalIdeal quo quotientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal zero?

BalancedPAdicRational\(_{\text{BPADICRT}}\): QuotientFieldCategory with \(0 1 \ast \ast \ast + - / = \) D approximate

associates? characteristic coerce continuedFraction denom denominator differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor fractionPart gcd inv lcm map multiEuclidean numerator one? prime? principalIdeal quo recip reducedSystem rem removeZeroes retract retractIfCan sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?
BasicOperator\{BOP\}: \textit{OrderedSet with } \prec = \text{arity assert coerce comparison copy deleteProperty! display equality has? input is? max min name nary? nullary? operator properties property setProperties setProperty unary? weight}

BinaryExpansion\{BINARY\}: \textit{QuotientFieldCategory with } 0 \in \{\ast \ast \ast \ast \ast \} \text{ D } \text{ abs associates? binary ceiling characteristic coercent denom denominator differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor floor fractionPart gcd init inv lcm map max min multiEuclidean negative? nextItem numer numerator one? patternMatch positive? principalIdeal quo random recip reducedSystem rem retract retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?}

BinaryTree\{BTREE\}: \textit{BinaryTreeCategory with } \# = \text{any? binaryTree children coerce copy count cyclic? elt empty empty? eq? every? leaves left less? map map! member? members more? node node? nodes parts right setchildren! setelt setleft! setright! setvalue! size? value}

Bits\{BITS\}: \textit{BitAggregate with } \# < = \sim \text{ and any? bits coerce concat construct convert copy copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index? indices insert less? map map! max maxIndex member? members merge min minIndex more? nand new nor not or parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! xor}

Boolean\{BOOLEAN\}: \textit{ConvertibleTo Finite OrderedSet with } \prec = \sim \text{ and coerce convert false implies index lookup max min nand nor or random size true xor}

CardinalNumber\{CARD\}: \textit{CancellationAbelianMonoid Monoid OrderedSet RetractableTo with } 0 \in \{\ast \ast \ast \ast \ast \} \text{ Aleph coerce countable? finite? generalizedContinuumHypothesisAssumed generalizedContinuumHypothesisAssumed? max min one? recip retract retractIfCan zero?}

CartesianTensor\{CARTEN\}: \textit{GradedAlgebra with } 0 \ast \ast \ast \ast \ast = \text{coerce contract degree elt kroneckerDelta leviCivitaSymbol product rank ravel reindex retract retractIfCan transpose unravel}

CharacterClass\{CCLASS\}: \textit{ConvertibleTo FiniteSetAggregate SetCategory with } \# <= \text{ alphabetic alphanumeric any? bag brace cardinality charClass coerce complement construct convert copy count dictionary difference digit empty empty? eq? every? extract! find hexDigit index insert! inspect intersect less? lookup lowerCase map map! max member? members min more? parts random reduce remove remove! removeDuplicates select select!}
size size? subset? symmetricDifference union universe upperCase

Character\(\text{CHAR}\): OrderedFinite with \(<\ = \) alphabetic? alphanumeric? char coerce digit? escape hexDigit? index lookup lowerCase lowerCase? max min ord quote random size space upperCase upperCase?

CliffordAlgebra\(\text{CLIF}\): Algebra Ring VectorSpace with 0 1 \(*\ \#\ +\ -\ /\ =\ \) characteristic coefficient coerce dimension e monomial one? recip zero?

Color\(\text{COLOR}\): AbelianSemigroup with \(+\ =\ \) blue coerce color green hue numberOfHues red yellow

Commutator\(\text{COMM}\): SetCategory with \(=\ \) coerce mkcomm

Complex\(\text{COMPLEX}\): ComplexCategory with 0 1 \(*\ \#\ +\ -\ /\ =\ \) D abs acos acosh acot acoth acsc acsch argument asec asech asin asinh associates? atan atanh basis characteristic characteristicPolynomial charthRoot coerce complex conditionP conjugate convert coordinates cos csc csch cot coth createPrimitiveElement csc csch definingPolynomial derivationCoordinates differentiate discreteLog discriminant divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial factorsOfCyclicGroupSize gcd gcdd Polyno- mial generator imag imaginary index init inv lcm lift log lookup map max min minimalPolynomial multiEuclidean nextItem norm nthRoot one? order pi polarCoordinates prime? primeFrobenius primitive? primitiveElement principalIdeal quo random rank rational rational? rationalIfCan real recip reducedSystem regularRepresentation rem representationType represents retract retractIfCan sec sech sinh sizeLess? solveLinearPolynomialEquation sqrt squareFree squareFreePart squareFreePolynomial tableForDiscreteLogarithm tan tanh trace traceMatrix unit? unitCanonical unitNormal zero?

ContinuedFraction\(\text{CONTFRAC}\): Algebra Field with 0 1 \(*\ \#\ +\ -\ /\ =\ \) approximants associates? characteristic coerce complete continuedFraction convergents denominators divide euclideanSize expr essIdealMember exquo extendedEuclidean factor gcd inv lcm multiEuclidean numerators one? partialDenominators partialNumerators partialQuotients prime? principalIdeal quo recip reducedContinuedFraction reducedForm rem sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?

Database\(\text{DBASE}\): SetCategory with \(+\ -\ =\ \) coerce display elt fullDisplay

DoubleFloat\(\text{DFLOAT}\): ConvertibleTo DifferentialRing FloatingPointSystem Transcenden- tialFunctionCategory with 0 1 \(*\ \#\ +\ -\ /\ =\ \) D abs acos acosh acot acoth acsc acsch asin asinh associates? atan atanh base bits ceiling characteristic coerce convert cos csc csch cot coth csc csch decreasePrecision differentiate digits divide euclideanSize exp exp1 exponent expressIdealMember exquo extendedEuclidean factor float floor fractionPart gcd hash increasePrecision inv lcm log log10 log2 mantissa max min multiEuclidean negative? norm nthRoot one? order patternMatch pi positive? precision prime? principalIdeal quo rationalApproximation recip rem retract retractIfCan round sec sech sinh sizeLess? sqrt squareFree squareFreePart tan tanh truncate unit? unitCanonical unitNormal wholePart zero?

DeRhamComplex(DERHAM): LeftAlgebra RetractableTo with 0 1 * ** + - = characteristic coefficient coeR coefficient degree exteriorDifferential generator homogeneous? leadingBasisTerm leadingCoefficient map one? recip reductum retract retractIfCan retractable? totalDifferential zero?

DifferentialSparseMultivariatePolynomial(DSMP): DifferentialPolynomialCategory RetractableTo with 0 1 * ** + - / < = D associates? characteristic chartRoot polynomial coefficients coerce conditionP content convert degree differentialVariables differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric? lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multivariate numberOfMonomials one? order patternMatch prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan separat solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables weight weights zero?
DirectProductMatrixModule \(\text{DPMM}\): DirectProductCategory LeftModule with 0 1 # * ** + - \langle \leq \rangle = \text{D abs any? characteristic coerce copy count differentiate dimension directProduct dot elt empty empty? entries entry? \eq \text{eq}'\text{ every? fill! first index index? indices less? lookup map max maxIndex member? members min minIndex more? negative? one? parts positive? qelt qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap! unitVector zero?}

DirectProductModule \(\text{DPMO}\): DirectProductCategory LeftModule with 0 1 # * ** + - \langle \leq \rangle = \text{D abs any? characteristic coerce copy count differentiate dimension directProduct dot elt empty empty? entries entry? \eq \text{eq}'\text{ every? fill! first index index? indices less? lookup map max maxIndex member? members min minIndex more? negative? one? parts positive? qelt qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap! unitVector zero?}

DirectProduct \(\text{DIRPROD}\): DirectProductCategory with 0 1 # * ** + - \langle \leq \rangle = \text{D abs any? characteristic coerce copy count differentiate dimension directProduct dot elt empty empty? entries entry? \eq \text{eq}'\text{ every? fill! first index index? indices less? lookup map max maxIndex member? members min minIndex more? negative? one? parts positive? qelt qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap! unitVector zero?}

DistributedMultivariatePolynomial \(\text{DMP}\): PolynomialCategory with 0 1 * ** + - \langle \leq \rangle = \text{D associates? characteristic charthRoot coefficient coefficients coerce conditionP const content convert degree differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide monomial monomials multivariate numberOfMonomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum reorder resultant retract retractIfCan solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables zero?

DrawOption \(\text{DROPT}\): SetCategory with = adaptive clip coerce colorFunction coordinate coordinates curveColor option option? pointColor range ranges space style title toScale tubePoints tubeRadius unit var1Steps var2Steps

ElementaryFunctionsUnivariateLaurentSeries \(\text{EFULS}\): PartialTranscendentalFunctions with ** acos acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc acscIfCan acsch acschIfCan asec asecIfCan asech asechIfCan asin asinh asinhIfCan atan atanIfCan atanIfCan atanIfCan cos cosIfCan cosh coshIfCan cot cotIfCan coth cothIfCan cosec cosecIfCan csch cschIfCan exp expIfCan expIfCan log logIfCan nthRootIfCan sec secIfCan sech sechIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan

ElementaryFunctionsUnivariatePuiseuxSeries \(\text{EFUPXS}\): PartialTranscendentalFunctions with ** acos acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc acscIfCan acsch acschIfCan asec asecIfCan asech asechIfCan asin asinh asinhIfCan atan atanIfCan atanIfCan atanIfCan cos cosIfCan cosh coshIfCan cot cotIfCan coth cothIfCan cosec cosecIfCan csch cschIfCan exp expIfCan expIfCan expIfCan log logIfCan nthRootIfCan sec secIfCan sech sechIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan ac-
APPENDIX C. DOMAINS

EqTable{EQTBL}: TableAggregate with # = any? bag coerce construct copy count dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert! inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size? swap! table

Equation{EQ}: CoercibleTo InnerEvalable Object SetCategory with * ** + - = coerce equation eval lhs map rhs

EuclideanModularRing{EMR}: EuclideanDomain with 0 1 * ** + - = associates? characteristic coerce divide euclideanSize exQuo expressIdealMember exquo extendedEuclidean gcd inv lcm modulus multiEuclidean one? principalIdeal quo reduce rem sizeLess? unit? unitCanonical unitNormal zero?

Exit{EXIT}: SetCategory with = coerce

ExtAlgBasis{EAB}: OrderedSet with < = Nul coerce degree exponents max min

FileName{FNAME}: FileNameCategory with = coerce directory exists? extension filename name new readable? writable?

File{FILE}: FileCategory with = close! coerce iomode name open read! readIfCan! reopen! write!
FiniteDivisor[FDIV]: AbelianGroup with 0 * + - = algsplit coerce divisor finiteBasis generator ideal lSpaceBasis mkBasicDiv principal? reduce zero?

FiniteFieldCyclicGroupExtensionByPolynomial[FFCP]: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charRoot coercion conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldCyclicGroupExtension[FFGX]: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charRoot coercion conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldCyclicGroup[FFG]: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charRoot coercion conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldExtensionByPolynomial[FFP]: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charRoot coercion conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?
APPENDIX C. DOMAINS

FiniteFieldExtension\{FFX\}: \textit{FiniteAlgebraicExtensionField} with 0 1 \(*\ ** + - / = \) Frobenius algebraic? associates? basis characteristic charIndex root coerce conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtensionByPolynomial\{FFNB\}: \textit{FiniteAlgebraicExtensionField} with 0 1 \(*\ ** + - / = \) Frobenius algebraic? associates? basis characteristic charIndex root coerce conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix getMultiplicationTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? sizeMultiplication squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtension\{FFNX\}: \textit{FiniteAlgebraicExtensionField} with 0 1 \(*\ ** + - / = \) Frobenius algebraic? associates? basis characteristic charIndex root coerce conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix getMultiplicationTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? sizeMultiplication squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldNormalBasis\{FFN\}: \textit{FiniteAlgebraicExtensionField} with 0 1 \(*\ ** + - / = \) Frobenius algebraic? associates? basis characteristic charIndex root coerce conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix getMultiplicationTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? sizeMultiplication squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?
creteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteField[FF]: FiniteAlgebraicExtensionField with 0 1 ** + - / = Frobenius algebraic? associates? basis characteristic charRoot coerce conditionP coordinates createElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

Float[FLOAT]: CoercibleTo ConvertibleTo DifferentialRing FloatingPointSystem TranscendentalFunctionCategory with 0 1 ** + - / = D abs acos acosh acot acoth acsc acsch asec asech asin asinh associates? atatan tanh base bits ceiling characteristic coerce convert cos cosh cot coth csc csch decreasePrecision differentiate digits divide euclideanSize exp exp1 exponent expressIdealMember exquo extendedEuclidean factor float floor fractionPart gcd increasePrecision inv lcm log log10 log2 mantissa max min multiEuclidean negative? norm normalize nthRoot one? order outputFixed outputFloating outputGeneral outputSpacing patternMatch pi positive? precision prime? principalIdeal quo rationalApproximation recip reerror rem retract retractIfCan round sec sech shift sign sin sinh sizeLess? sqrt squareFree squareFreePart tan tanh truncate unit? unitCanonical unitNormal wholePart zero?

FractionalIdeal[FRIDEAL]: Group with 1 ** / = basis coerce commutator conjugate denomin ideal inv minimize norm numerator one? randomLC recip

Fraction[FRAC]: QuotientFieldCategory with 0 1 ** + - / = D abs associates? ceiling characteristic charRoot coerce conditionP convert denom denominator differentiate divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial floor fractionPart gcd gcdPolynomial init inv lcm map max min multiEuclidean negative? nextItem numerator numerator one? patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial unit? unitCanonical unitNormal wholePart zero?

FramedModule[FRMOD]: Monoid with 1 ** = basis coerce module norm one? recip

FreeAbelianGroup[FAGROUP]: AbelianGroup FreeAbelianMonoidCategory Module OrderedSet with 0 ** - < = coefficient coerce highCommonTerms mapCoef mapGen max
APPENDIX C. DOMAINS

min nthCoef nthFactor retract retractIfCan size terms zero?

FreeAbelianMonoid\{FAMONOID\}: FreeAbelianMonoidCategory with 0 \ast + - = coefficient coerce highCommonTerms mapCoef mapGen nthCoef nthFactor retract retractIfCan size terms zero?

FreeGroup\{FGROUP\}: Group RetractableTo with 1 \ast */ = coerce commutator conjugate factors inv mapExpon mapGen nthExpon nthFactor one? recip retract retractIfCan size

FreeModule\{FM\}: BiModule IndexedDirectProductCategory Module with 0 \ast + - = coerce leadingCoefficient leadingSupport map monomial reductum zero?

FreeMonoid\{FMONOID\}: Monoid OrderedSet RetractableTo with 1 \ast */ < = coerce divide factors lcm hcrf lquo mapExpon mapGen max min nthExpon nthFactor one? overlap recip retract retractIfCan rqo size

FreeNilpotentLie\{FNLA\}: NonAssociativeAlgebra with 0 \ast */ + - = antiCommutator associate coerce commutator deepExpand dimension generator leftPower rightPower shallowExpand zero?

FunctionCalled\{FUNCTION\}: SetCategory with = coerce name

GeneralDistributedMultivariatePolynomial\{GDMP\}: PolynomialCategory with 0 1 \ast */ + - = D associates? characteristic charhRoot coefficient coefficients coerce conditionP const content convert degree discriminate eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multivariate numberOfMonomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum reorder resultant retraction retractIfCan solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables zero?

GeneralSparseTable\{GSTBL\}: TableAggregate with \# = any? bag coerce construct copy count dictionary elt empty empty? entries entry? eq? every? extract! find first index? indices insert! inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size? swap! table

GenericNonAssociativeAlgebra\{GCNAALG\}: FramedNonAssociativeAlgebra LeftModule with 0 \ast */ + - = JacobiIdentity? JordanAlgebra? alternative? antiAssociative? antiCommutative? antiCommutator apply associative? associator associatorDependence basis coerce commutative? commutator conditionsForIdempotents convert coordinates elt flexible? generic genericLeftDiscriminant genericLeftMinimalPolynomial genericLeftNorm genericLeftTrace genericLeftTraceForm genericRightDiscriminant genericRightMinimalPolynomial genericRightNorm genericRightTrace genericRightTraceForm jordanAdmissible? leftAlternative? leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlgebra? noncommutativeJordanAlgebra? plenaryPower powerAssociative? rank recip represents rightAlternative? rightCharacteristicPolynomial rightDiscriminant rightMinimalPolynomial
nomial rightNorm rightPower rightRankPolynomial rightRecip rightRegularRepresentation rightTrace rightTraceMatrix rightUnit rightUnits someBasis structuralConstants unit zero?

GraphImage{GRIMAGE}: SetCategory with = appendPoint coerce component graphImage key makeGraphImage point pointLists putColorInfo ranges units

HashTable{HASHBL}: TableAggregate with # = any? bag coerce construct copy count dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert! inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt qsetelt! reduce remove removeDuplicates search select select! setelt size? swap! table

Heap{HEAP}: PriorityQueueAggregate with # = any? bag coerce copy count dictionary elt empty empty? entries entry? eq? every? extract! heap insert! inspect less? map map! max member? members merge merge! more? parts size?

HexadecimalExpansion{HEXADEC}: QuotientFieldCategory with 0 1 * ** + - / < = D abs associates? ceiling characteristic coerce convert denom denominator differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor floor floorPart gcd hex init inv lcm map max min multiEuclidean negative? nextItem numer numerator one? patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?

IndexCard{ICARD}: OrderedSet with < = coerce display elt fullDisplay max min

IndexedBits{IBITS}: BitAggregate with # < = And Not Or ^ any? coerce concat convert copy copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index? indices insert! inspect keys less? map map! maxIndex member? members merge min minIndex more? naq new nor not or parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! xor

IndexedDirectProductAbelianGroup
{IDPAG}: AbelianGroup IndexedDirectProductCategory with 0 * + - = coerce leadingCoefficient leadingSupport map monomial reductum zero?

IndexedDirectProductAbelianMonoid
{IDPAM}: AbelianMonoid IndexedDirectProductCategory with 0 * + = coerce leadingCoefficient leadingSupport map monomial reductum zero?

IndexedDirectProductObject
{IDPO}: IndexedDirectProductCategory with = coerce leadingCoefficient leadingSupport map monomial reductum

IndexedDirectProductOrderedAbelianMonoidSup
{IDPOAMS}: IndexedDirectProductCategory
OrderedAbelianMonoidSup with 0 * + - < = coerce leadingCoefficient leadingSupport map max min monomial reductum sup zero?

IndexedDirectProductOrderedAbelianMonoid
{IDPOAM}: IndexedDirectProductCategory
OrderedAbelianMonoid with 0 * + < = coerce leadingCoefficient leadingSupport map
max min monomial reductum zero?

IndexedExponents{INDE}: IndexedDirectProductCategory
OrderedAbelianMonoidSup with $0 * + - < = \text{coerce leadingCoefficient leadingSupport map}$
max min monomial reductum sup zero?

IndexedFlexibleArray{IFARRAY}: ExtensibleLinearAggregate OneDimensionalArrayAggregate

IndexedOneDimensionalArray{IARRAY1}: OneDimensionalArrayAggregate with $\# < =$ any? coerce concat construct convert copy copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index? indices insert insert! less? map map! max maxIndex member? members merge min minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap!

IndexedTwoDimensionalArray{IARRAY2}: TwoDimensionalArrayCategory with $\# =$ any? coerce column copy count elt empty empty? eq? every? fill! less? map map! maxColIndex maxRowIndex member? members minColIndex minRowIndex more? ncolumns new nrows parts qelt qsetelt! row rowColumn setColumn! setRow! setelt size?
IndexedVector\{IVECTOR\}: VectorCategory with \# \star \star + - < = any? coerce concat construct convert copy copyInto! count delete dot elt empty empty? entries entry? eq? every? fill! find first index? indices insert less? map map! max maxIndex member? members merge min minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! swap! zero

InfiniteTuple\{ITUPLE\}: CoercibleTo with coerce construct filterUntil filterWhile generate map select

InnerFiniteField\{IFF\}: FiniteAlgebraicExtensionField with 0 1 \star \star ** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce conditionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

InnerFreeAbelianMonoid\{IFAMON\}: FreeAbelianMonoidCategory with 0 \star + - = coefficient coerce highCommonTerms mapCoef mapGen nthCoef nthFactor retract retractIfCan size size terms zero?

InnerIndexedTwoDimensionalArray\{IIARRAY2\}: TwoDimensionalArrayCategory with \# = any? coerce column copy count elt empty empty? eq? every? fill! less? map map! maxColIndex maxRowIndex member? members minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt! row setColumn! setRow! setelt size?

InnerPAdicInteger\{IPADIC\}: PAdicIntegerCategory with 0 1 \star \star ** + - = approximate associates? characteristic coerce complete digits divide euclideanSize expressIdealMember exquo extend extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order principalIdeal quo quotientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal zero?

InnerPrimeField\{IPF\}: ConvertibleTo FiniteAlgebraicExtensionField FiniteFieldCategory with 0 1 \star \star ** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce conditionP convert coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?
InnerTaylorSeries\{ITAYLOR\}: IntegralDomain Ring with 0 1 * ** + - = associates? characteristic coefficients coerce exquo one? order pole? recip series unit? unitCanonical unitNormal zero?

IntegerMod\{ZMOD\}: CommutativeRing ConvertibleTo Finite StepThrough with 0 1 * ** + - = characteristic coerce convert index init lookup nextItem one? random recip rem size zero?

Integer\{INT\}: ConvertibleTo IntegerNumberSystem with 0 1 * ** + - = D abs addmod associates? base binomial bit? characteristic coerce convert copy dec differentiate divide euclideanSize even? expressIdealMember exquo extendedEuclidean factor factorial gcd hash inc init invmod lcm length mask max min mulmod multiEuclidean negative? nextItem odd? one? patternMatch permutation positive? positiveRemainder powmod prime? principalIdeal quo random rational rational? rationalIfCan recip reducedSystem rem retract retractIfCan shift sign sizeLess? squareFree squareFreePart submod symmetricRemainder unit? unitCanonical unitNormal zero?

IntegrationResult\{IR\}: Module RetractableTo with 0 * - = D coerce differentiate elem? integral logpart mkAnswer notelem ratpart retract retractIfCan zero?

Kernel\{KERNEL\}: CachableSet ConvertibleTo Patternable with < = argument coerce convert height is? kernel max min name operator position setPosition symbolIfCan

LaurentPolynomial\{LAUPOL\}: CharacteristicNonZero CharacteristicZero ConvertibleTo DifferentialExtension EuclideanDomain FullyRetractableTo IntegralDomain RetractableTo with 0 1 * ** + - = D associates? characteristic charthRoot coefficient coerce convert degree differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean gcd lcm leadingCoefficient monomial monomial? multiEuclidean one? order principalIdeal quo recip reductum rem retract retractIfCan separate sizeLess? trailingCoefficient unit? unitCanonical unitNormal zero?

LieSquareMatrix\{LSQM\}: CoercibleTo FramedNonAssociativeAlgebra SquareMatrixCategory with 0 1 * ** + - / = D

JacobiIdentity? JordanAlgebra? alternative? antiAssociative?
antiCommutative? antiCommutator antisymmetric? any? apply associative? associate associateDependence basis characteristic coerce column commutative? commutator conditionsForIdempotents convert coordinates copy count determinant diagonal diagonal? every? exquo flexible? inverse jordanAdmissible? leftAlternative? leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits less? lieAdmissible? lieAlgebra? listOfLists map map! matrix maxColIndex maxRowIndex member? members minColIndex minRowIndex minordet more? ncols noncommutativeJordanAlgebra? nrows nullSpace nullity one? parts plenaryPower powerAssociative? qelt rank recip reducedSystem represents retract retractIfCan rightAlternative? rightCharacteristicPolynomial rightDiscriminant rightMinimalPolynomial rightNorm rightPower rightRankPolynomial rightRecip rightRegularRepresentation rightTrace rightTraceMatrix rightUnit rightUnits row rowEchelon scalarMatrix size? someBasis square? structuralConstants symmetric? trace unit zero?

LinearOrdinaryDifferentialOperator[LODO]: MonogenicLinearOperator with 0 1 * ** + - = D characteristic coefficient coerce degree elt leadingCoefficient leftDivide leftExactQuotient leftGcd leftLcm leftQuotient leftRemainder minimumDegree monomial one? recip reductum rightDivide rightExactQuotient rightGcd rightLcm rightQuotient rightRemainder zero?

ListMonoidOps[LMOPS]: RetractableTo SetCategory with * coerce leftMult listOfMonoms makeMulti makeTerm makeUnit mapExpon mapGen nthExpon nthFactor outputForm plus retract retractIfCan reverse reverse! rightMult size

LocalAlgebra[LA]: Algebra OrderedRing with 0 1 * ** + - / < = abs characteristic coerce denom max min negative? numer one? positive? recip sign zero?
Localize\{\text{LO}\}:: Module OrderedAbelianGroup with \(0 \ast + - / < =\) coerce denom max min numer zero?

MakeCachableSet\{\text{MKCHSET}\}:: CachableSet CoercibleTo with \(< =\) coerce max min position setPosition

MakeOrdinaryDifferentialRing\{\text{MKODRING}\}:: CoercibleTo DifferentialRing with \(0 \ast \star\star\ + - =\) D characteristic coerce differentiate one? recip zero?

Matrix\{\text{MATRIX}\}:: MatrixCategory with \# \ast \ast \ast \ast \ast \ast \ast / =\) antisymmetric? any? coerce column copy count determinant diagonal? diagonalMatrix elt empty empty? \(eq\) every? exquo fill! horizConcat inverse less? listOfLists map map! matrix maxColIndex maxRowIndex member? members minColIndex minRowIndex minordet more? ncols new nrows nullSpace nullity parts qelt qsetelt! rank row rowEchelon scalarMatrix setColumn! setRow! setelt setsubMatrix! size? square? squareTop subMatrix swapColumns! swapRows! symmetric? transpose vertConcat zero

ModMonic\{\text{MODMON}\}:: Finite UnivariatePolynomialCategory with \(0 \ast \star\star\ + - / =\) An D UnVectorise Vectorise associates? characteristic charHRoot coefficient coefficients coerce composite computePowers conditionP content degree differentiate discriminant divide divideExponents elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? index init integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial lift lookup mainVariable makeSUP map mapExponents max min minimumDegree modulus monicDivide monicMonomial? monomials multiEuclidean multiplyExponents multivariate nextItem numberOfMonomials one? order pow prime? primitiveMonomials primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRemainder quo random recip reduce reducedSystem reductum rem resultant retract retractIfCan separate setPoly size sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial subResultantGcd totalDegree unit? unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?

ModularField\{\text{MODFIELD}\}:: Field with \(0 \ast \star\star\ + - / =\) associates? characteristic coerce divide euclideanSize exQuo expressIdealMember exquo extendedEuclidean factor gcd inv lcm modulus multiEuclidean one? prime? principalIdeal quo recip reduce rem sizeLess? squareFree squareFreePart squareFreePolynomial subResultantGcd totalDegree unit? unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?

ModularRing\{\text{MODRING}\}:: Ring with \(0 \ast \star\star\ + - =\) characteristic coerce exQuo inv modulus one? recip reduce zero?

MoebiusTransform\{\text{MOEBIUS}\}:: Group with \(1 \ast \star\star\ / =\) coerce commutator conjugate eval inv moebius one? recip scale shift

MonoidRing\{\text{MGRING}\}:: Algebra CharacteristicNonZero CharacteristicZero Finite RetractableTo Ring with \(0 \ast \star\star\ + - =\) characteristic charHRoot coefficient coefficients coerce index leadingCoefficient leadingMonomial lookup map monomial monomial? monomials numberOfMonomials one? random recip reductum retract retractIfCan size terms zero?

Multiset\{\text{MSET}\}:: MultisetAggregate with \# \ast =\) any? bag brace coerce construct convert copy count dictionary difference duplicates empty empty? \(eq\) every? extract! find insert! inspect intersect less? map map! member? members more? multiset parts reduce remove re-
move! removeDuplicates removeDuplicates! select select! size? subset? symmetricDifference union

MultivariatePolynomial[MPOLY]: PolynomialCategory with 0 1 * ** + - / < = D associates? characteristic chartRoot coefficient coefficients coerce condition convert degree differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multivariate numberOfMonomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables zero?

NewDistributedMultivariatePolynomial[NDMP]: PolynomialCategory with 0 1 * ** + - / < = D associates? characteristic chartRoot coefficient coefficients coerce condition convert degree differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multivariate numberOfMonomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables zero?

None[NONE]: SetCategory with = coerce

NonNegativeInteger[NNI]: Monoid OrderedAbelianMonoidSup with 0 1 * ** + - < = coerce divide exquo gcd max min one? quo recip rem sup zero?

Octonion[OCT]: FullyRetractableTo OctonionCategory with 0 1 * ** + - < = abs characteristic chartRoot coerce conjugate convert elt eval imagE imagI imagJ imagK imagi imagj imagk index inv lookup map max min norm octon one? random rational rationalIfCan real recip retract retractIfCan size zero?

OneDimensionalArray[ARRAY1]: OneDimensionalArrayAggregate with # < = any? coerce concat construct convert copy copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index index? indices insert less? map map! max maxIndex member? members merge min minIndex more? new oneDimensionalArray parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap!

OnePointCompletion[ONECOMP]: AbelianGroup FullyRetractableTo OrderedRing SetCategory with 0 1 * ** + - < = abs
<table>
<thead>
<tr>
<th>Domain</th>
<th>Operators/Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td></td>
<td>Algebra CharacteristicNonZero CharacteristicZero Eltable RetractableTo Ring with 0 1 * ** + - = characteristic charthRoot coerce elt evaluate one? opeval recip retract retractIfCan zero?</td>
</tr>
<tr>
<td>OppositeMonogenicLinearOperator</td>
<td></td>
<td>DifferentialRing MonogenicLinearOperator with 0 1 * ** + - = D characteristic coefficient coerce degree differentiate leadingCoefficient minimumDegree monomial one? op po recip reductum zero?</td>
</tr>
<tr>
<td>OrderedCompletion</td>
<td></td>
<td>AbelianGroup FullyRetractableTo OrderedRing SetCategory with 0 1 * ** + - = abs characteristic coerce finite? infinite? max min minusInfinity negative? one? plusInfinity positive? rational rational? rationalIfCan recip retract retractIfCan sign whatInfinity zero?</td>
</tr>
<tr>
<td>OrderedVariableList</td>
<td></td>
<td>ConvertibleTo OrderedFinite with <= coerce convert index lookup max min random size variable</td>
</tr>
<tr>
<td>OrderlyDifferentialPolynomial</td>
<td></td>
<td>DifferentialPolynomialCategory RetractableTo with 0 1 * ** + - / < = D associates? characteristic charthRoot coefficient coefficients coerce conditionP content degree differentialVariables differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric? lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable map mapExponents max min minimumDegree monicDivide monomial monomials multivariate numberOfMonomials one? order prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan separant solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables weight weights zero?</td>
</tr>
<tr>
<td>OrderlyDifferentialVariable</td>
<td></td>
<td>DifferentialVariableCategory with < = D coerce differentiate makeVariable max min order retract retractIfCan variable weight</td>
</tr>
<tr>
<td>OrdinaryDifferentialRing</td>
<td></td>
<td>Algebra DifferentialRing Field with 0 1 * ** + - / = D associates? characteristic coerce differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor gcd inv lcm multiEuclidean one? prime? principalIdeal quo recip rem sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal zero?</td>
</tr>
<tr>
<td>OrdSetInts</td>
<td></td>
<td>OrderedSet with < = coerce max min value</td>
</tr>
<tr>
<td>OutputForm</td>
<td></td>
<td>SetCategory with * ** + - / <= = >= D SEGMENT ^= and assign blankSeparate box brace bracket center coerce commaSeparate differentiate div dot elt empty exquo hconcat height hspace infix infix? int label left matrix message messagePrint</td>
</tr>
</tbody>
</table>
not or outputForm over overbar paren pile post fix prefix presub presuper prime print prod quo quote narrow rem right root rspace scripts semicolon Separate slash string sub subHeight sum super superHeight supersub vconcat vspace width zag

\textbf{PAdicInteger}\{\textsc{PAdIC}\}: \textit{PAdicIntegerCategory with} \(0 1 * ** + - =\) approximate associates? characteristic coerce complete digits divide euclideanSize expressIdealMember exquo extend extendedEuclidean gcd gcd gcdPolynomial gcdPolynomial init inv lcm map max min multiEuclidean negative? nextItem numerator one? patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem removeZeroes retract retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial unit? unitCanonical unitNormal wholePart zero?

\textbf{PAdicRationalConstructor}\{\textsc{PADICRC}\}: \textit{QuotientFieldCategory with} \(0 1 * ** + - / <\) * D absorb approximate associates? characteristic coerce continuedFraction denom denominator differentiate divide elt euclideanSize eval extendedIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial floor fractionPart gcf gcdPolynomial init inv lcm map max min multiEuclidean negative? nextItem numerator one? patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem removeZeroes retract retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial unit? unitCanonical unitNormal wholePart zero?

\textbf{PAdicRational}\{\textsc{PADICRAT}\}: \textit{QuotientFieldCategory with} \(0 1 * ** + - / = D\) approximate associates? characteristic coerce continuedFraction denom denominator differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor fractionPart gcf gcdPolynomial init inv lcm map max min multiEuclidean numerator one? prime? principalIdeal quo random recip reducedSystem rem removeZeroes retract retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?

\textbf{Palette}\{\textsc{PALETTE}\}: \textit{SetCategory with} = bright coerce dark dim hue light pastel shade

\textbf{ParametricPlaneCurve}\{\textsc{PARPCURV}\}: with coordinate curve

\textbf{ParametricSpaceCurve}\{\textsc{PARSCURV}\}: with coordinate curve

\textbf{ParametricSurface}\{\textsc{PARSURF}\}: with coordinate surface

\textbf{PartialFraction}\{\textsc{PFR}\}: \textit{Algebra Field with} \(0 1 * ** + - / =\) associates? characteristic coerce compactFraction denom denominator differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor firstDenom firstNumer gcf inv lcm multiEuclidean nthFractionalTerm numberOfFractionalTerms one? padicFraction padicallyExpand partialFraction prime? principalIdeal quo recip rem sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart zero?

\textbf{Partition}\{\textsc{PRTITION}\}: \textit{ConvertibleTo OrderedCancellationAbelianMonoid with} \(0 * + - <\) * coerce conjugate convert max min partition pdct powers zero?

\textbf{PatternMatchListResult}\{\textsc{PATLRES}\}: \textit{SetCategory with} = atoms coerce failed failed? lists makeResult new

\textbf{PatternMatchResult}\{\textsc{PATRES}\}: \textit{SetCategory with} = addMatch addMatchRestricted coerce construct destruct failed failed? getMatch insertMatch new satisfy? union

\textbf{Pattern}\{\textsc{PATTERN}\}: \textit{RetractableTo SetCategory with} \(0 1 * ** + / =\) addBadValue coerce constant? convert copy depth elt generic? getBadValues hasPredicate? hasTopPredicate?
APPENDIX C. DOMAINS

APPENDIX C. DOMAINS

inR? isExpt isList isOp isPlus isPower isQuotent isTimes multiple? optional? optpair patternVariable predicates quoted? resetBadValues retract retractIfCan setPredicates setTopPredicate symbol? topPredicate variables withPredicates

PermutationGroup{PERMGRP}: SetCategory with < <= = base coerce degree elt generators initializeGroupForWordProblem member? movedPoints orbit orbits order permutationGroup random strongGenerators wordInGenerators wordInStrongGenerators wordsForStrongGenerators

Permutation{PERM}: PermutationCategory with 1 * ** / < = coerces coefficients coerceListOfPairs coerceReimagesImages commutator conjugate cycle cyclePartition cycles degree elt eval even? fixedPoints inv listRepresentation max min movedPoints numberOfCycles odd? one? orbit order recip sign sort

Pi{HACKPI}: CharacteristicZero CoercibleTo ConvertibleTo Field RealConstant RetractableTo with 0 1 * ** + - / = associates? characteristic coerce convert divide euclideanSize expressIdealMember exquo extendedEuclidean factor gcd inv lcm multiEuclidean one? prime? principalIdeal quo recip rem retract retractIfCan sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal zero?

PlaneAlgebraicCurvePlot{ACPLOT}: PlottablePlaneCurveCategory with coerce listBranches makeSketch refine xRange yRange

Plot3D{PLOT3D}: PlottableSpaceCurveCategory with adaptive3D? coerce debug3D listBranches maxPoints3D minPoints3D numFunEvals3D plot pointPlot refine screenResolution3D setAdaptive3D setMaxPoints3D setMinPoints3D setScreenResolution3D tValues xRange yRange zRange zoom

Plot{PLOT}: PlottablePlaneCurveCategory with adaptive? coerce debug listBranches maxPoints minPoints numFunEvals parametric? plot plotPolar pointPlot refine screenResolution setAdaptive setMaxPoints setMinPoints setScreenResolution tRange xRange yRange zoom

Point{POINT}: PointCategory with # * + - < = any? coerce concat construct convert copy copyInto! count cross delete dimension dot elt empty empty? entries entry? eq? every? extend fill! find first index? indices insert length less? map map! max maxIndex member? members merge min minIndex more? new parts point position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! swap! zero

PolynomialIdeals{IDEAL}: SetCategory with * ** + = backOldPos coerce contract dimension element? generalPosition generators groebner groebner? groebnerIdeal ideal in? inRadical? intersect leadingIdeal quotient relationsIdeal saturate zeroDim?
PolynomialRing\{PR\}: FiniteAbelianMonoidRing with 0 1 • • + - / = associates? characteristic charRoot coefficient coefficients coerce content degree exquo ground ground? leadingCoefficient leadingMonomial map mapExponents minimumDegree monomial monomial? numberOfMonomials one? primitivePart recip reductum retract retractIfCan unit? unitCanonical unitNormal zero?

Polynomial\{POLY\}: PolynomialCategory with 0 1 • • + - / < D associates? characteristic charRoot coefficient coefficients coerce conditionP content convert degree discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multivariate numberOfMonomials one? patternMatch prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables zero?

PositiveInteger\{PI\}: AbelianSemigroup Monoid OrderedSet with 1 • • + < = coerce gcd max min one? recip

PrimeField\{PF\}: ConvertibleTo FiniteAlgebraicExtensionField FiniteFieldCategory with 0 1 • • + - / = Frobenius algebraic? associates? basis characteristic charRoot coerce conditionP convert coordinates createNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lookup minimalPolynomial multiEuclidean nextItem norm normalElement one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?

PrimitiveArray\{PRIMARR\}: OneDimensionalArrayAggregate with # < = any? coerce concat construct convert copy copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index? indices insert less? map map! max minIndex member? members merge min minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap!

Product\{PRODUCT\}: AbelianGroup AbelianMonoid CancellationAbelianMonoid Finite Group Monoid OrderedAbelianMonoidSup OrderedSet SetCategory with 0 1 • • + - /

QuadraticForm\{QFORM\}: AbelianGroup with 0 • • + = coerce elt matrix quadraticForm zero?

QuasiAlgebraicSet\{QALGSET\}: CoercibleTo SetCategory with = coerce definingEquations definingInequation empty? idealSimplify quasiAlgebraicSet setStatus simplify

Quaternion\{QUAT\}: QuaternionCategory with 0 1 • • + - < = D abs characteristic charRoot coerce conjugate convert differentiate elt eval imagI imagJ imagK inv map max min
norm one? quatern rational rational? rationalIfCan real recip reducedSystem retract retractIfCan zero?

QueryEquation (`QUERYEQ`): `with` equation value variable

RadixExpansion (`RADIX`): `QuotientFieldCategory with 0 1 * ** + - / < = D abs associates? ceiling characteristic coerce convert cycleRagits denom denominator differentiate divide euclideanSize expressionIdealMember exquo extendedEuclidean factor floor fractRadix fractRagits fractionPart gcd init inv lcm map max min multiEuclidean negative? nextItem numer numerator one? patternMatch positive?

Reference (`REF`): `Object SetCategory with = coerce deref elt ref setelt setref`

RewriteRule (`RULE`): `Eltable RetractableTo SetCategory with = coerce eltlhs pattern quotedOperators retract retractIfCan rhs rule suchThat`

RomanNumeral (`ROMAN`): `IntegerNumberSystem with 0 1 * ** + - < = D abs addmod associates? base binomial bit? characteristic coerce convert copy dec differentiate divide`
euclideanSize even? expressIdealMember exquo extendedEuclidean factor factorial gcd hash inc init invmod lcm length mask max min mulmod multiEuclidean negative? nextItem odd? patternMatch permutation positive? positiveRemainder powmod prime? principalIdeal quo random rational rational? rationalIfCan recip reducedSystem rem retract retractIfCan roman shift sign sizeLess? squareFree squareFreePart submod symmetricRemainder unit? unitCanonical unitNormal zero?

RuleCalled[RULECOLD]: SetCategory with * coerce name
Ruleset[RULESET]: Eltable SetCategory with * coerce elt rules ruleset
ScriptFormulaFormat1[FORMULA1]: Object with coerce
ScriptFormulaFormat1[FORMULA]: SetCategory with * coerce convert display epilogue formula new prologue setEpilogue! setFormula! setPrologue!
SegmentBinding[SEGBIND]: SetCategory with * coerce equation segment variable
Segment[SEG]: SegmentCategory SegmentExpansionCategory with * BY SEGMENT coerce convert expand hi high incr lo low map segment
SemiCancelledFraction[SCFRAC]: ConvertibleTo QuotientFieldCategory with
0 1 * ** + / - < = D
abs associates? ceiling characteristic chartRoot coerce conditionP convert denom denominator differentiate divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial floor fractionPart gcd gcdPolynomial init inv lcm map max min multiEuclidean negative? nextItem normalize numerator one? patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract retractIfCan roman shift sign sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial unit? unitCanonical unitNormal wholePart zero?
SequentialDifferentialPolynomial[SDPOL]: DifferentialPolynomialCategory RetractableTo with
0 1 * ** + / - < = D
associates? characteristic chartRoot coefficient coefficients coerce conditionP content degree differentialVariables differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric? lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable map mapExponents max min minimumDegree monicDivide monomial? monomials multivariate numberOfMonomials one? order prime? primitiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan separant solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate variables weight weights zero?
SequentialDifferentialVariable\(\text{SDVAR}\): DifferentialVariableCategory with
\(< = \text{ D coerce differentiate makeVariable max min order}
\)
\text{retract retractIfCan variable weight}

\text{Set}\{\text{SET}\}: \text{FiniteSetAggregate with} \# < = \text{ any? bag brace cardinality coerce complement construct convert copy count dictionary difference empty empty? eq? every? extract! find index insert! inspect intersect less? lookup map map! max member? members min more? parts random reduce remove removeDuplicates select select! size size? subset? symmetricDifference union universe}

\text{SExpressionOf}\{\text{SEXOF}\}: \text{SExpressionCategory with} \# = \text{ atom? car cdr coerce convert destruct elt eq expr float float? integer integer? list? null? pair? string string? symbol symbol? uequal}

\text{SExpression}\{\text{SEX}\}: \text{SExpressionCategory with} \# = \text{ atom? car cdr coerce convert destruct elt eq expr float float? integer integer? list? null? pair? string string? symbol symbol? uequal}

SimpleAlgebraicExtension\{\text{SAE}\}: MonogenicAlgebra with
\(0 1 * ^ + - / = \text{ D}
\)
associates? basis characteristic characteristicPolynomial chartRoot coerce conditionP convert coordinates createPrimitiveElement definingPolynomial derivationCoordinates differentiate discreteLog discriminant divide euclideanSize expressIdealMember exquo extendedEuclidean factor factorsOfCyclicGroupSize gcd generator index init inv lcm lift lookup minimalPolynomial multiEuclidean nextItem norm one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random rank recip reduce reducedSystem regularRepresentation rem representationType represents retract retractIfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace traceMatrix unit? unitCanonical unitNormal zero?

SingletonAsOrderedSet\{\text{SAOS}\}: OrderedSet with \(< = \text{ coerce create max min}

SingleInteger\{\text{SINT}\}: IntegerNumberSystem with
\(0 1 * ^ + - \text{ = D}
\)
And D Not Or " abs addmod and associates? base binomial bit? characteristic coerce convert copy dec differentiate divide euclideanSize even? expressIdealMember exquo extendedEuclidean factor factorial gcd hash inc init invmod lcm length mask max min mulmod multiEuclidean negative? nextItem not odd? one? or patternMatch permutation positive? positiveRemainder powmod prime? principalIdeal quo random rational rational? rationalIfCan recip reducedSystem rem retract retractIfCan shift sign sizeLess? squareFree squareFreePart submod symmetricRemainder unit? unitCanonical unitNormal xor zero?
SparseMultivariatePolynomial\{SMP\}: PolynomialCategory with
0 1 * ** + - / <

* D associates? characteristic chartRoot coefficient
 coefficients coerce conditionP content convert degree
differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground?
isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial
mainVariable map mapExponents max min minimumDegree monicDivide
 monomial monomial? monomials multivariate numberOfMonomials one?
patternMatch prime? primitiveMonomials primitivePart recip
reducedSystem reductum resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
 squareFreePolynomial totalDegree unit? unitCanonical unitNormal
univariate variables zero?

SparseMultivariateTaylorSeries\{SMTS\}:
MultivariateTaylorSeriesCategory with 0 1 * **
+ - / = D acos acosh acot acoth
acsc acsch asec asinh associates? atan atanh
characteristic chartRoot coefficient coerce complete cos
cosh coth csch csch csubst degree differentiate eval
exp exquo extend integrate integrate leadingCoefficient
leadingMonomial log map monomial monomial? nthRoot one?
order pi pole? polynomial recip reductum sec sech sinh
sqrt tan tanh unit? unitCanonical unitNormal variables zero?

SparseTable\{STBL\}: TableAggregate with # =
any? bag coerce construct copy count dictionary elt empty
empty? entries entry? eq? every? extract! fill! find first
index? indices insert! inspect key? keys less? map map!
maxIndex member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select select!
sqrt setelt size? swap! table

SparseUnivariatePolynomial\{SUP\}: UnivariatePolynomialCategory with 0 1 * ** + -
/ < = D associates? characteristic chartRoot coefficient coefficients coerce composite condi-
tionP content degree differentiate discriminant divide divideExponents elt euclideanSize
eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquare-
FreePolynomial ground ground? init integrate isExpt isPlus isTimes
lcm leadingCoefficient leadingMonomial mainVariable makeSUP map mapExponents max
min minimumDegree monicDivide monomial monomial? monomials multiplyExponents multivariate
nextItem numberOfMonomials one? order outputForm prime?
primitiveMonomials primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRe-
mainder quo recip reducedSystem rem resultant retract retractIfCan separate
sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial
subResultantGcd totalDegree unit? unitCanonical unitNormal univariate unmakeSUP vari-
ables vectorise zero?
SparseUnivariateTaylorSeries\{SUTS\}: \texttt{UnivariateTaylorSeriesCategory} with 0 1 * ** + - / = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh associates? atan atanb center characteristic charthRoot coefficient coefficients coerce complete cos cosh cot coth csc csch degree differentiate elt eval exp exquo extend integrate leadingCoefficient leadingMonomial log map monomial monomial? multiplyCoefficients multiplyExponents nthRoot one? order pi pole? polynomial quoByVar recip reduce reduceOne sec sech series sin sinh sqrt tan tanh terms terms? unit? unitCanonical unitNormal variable variables zero?

StringTable\{STRTBL\}: \texttt{TableAggregate} with # = any? bag coerce construct copy count dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert! inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt qsetelt! reduce remove removeDuplicates search select select! setelt size? swap! table

SubSpaceComponentProperty\{COMPPROP\}: \texttt{SetCategory} with = close closed? coerce copy new solid solid?

SubSpace\{SUBSPACE\}: \texttt{SetCategory} with = addPoint addPoint2 addPointLast birth child children closeComponent coerce deepCopy defineProperty extractClosed extractIndex extractPoint extractProperty internal? leaf? level merge modifyPoint new numberOfChildren
parent pointData root? separate shallowCopy subspace traverse

SuchThat{SUCH}: SetCategory with = coerce construct lhs rhs

Symbol{SYMBOL}: ConvertibleTo OrderedSet PatternMatchable with < = argscript coerce convert elt list max min name new patternMatch resetNew script scripted? scripts string subscript superscript

SymmetricPolynomial{SYMPOLY}: FiniteAbelianMonoidRing with 0 1 * ** + - / = associates? characteristic chartRoot coefficient coefficients coerce content degree exquo ground ground? leadingCoefficient leadingMonomial map mapExponents minimumDegree monomial monomial? numberOfMonomials one? primitivePart recip reductum retract retractIfCan unit? unitCanonical unitNormal zero?

Tableau{TABLEAU}: Object with coerce listOfLists tableau

Table{TABLE}: TableAggregate with # = any? bag coerce construct copy count dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert! inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size? swap! table

TexFormat1{TEX1}: Object with coerce

TexFormat{TEX}: SetCategory with

= coerce convert display epilogue new prologue setEpilogue! setPrologue! setTex! tex

TextFile{TEXTFILE}: FileCategory with = close! coerce endOfFile? iomode name open read! readIfCan! readLine! readLineIfCan! reopen! write! writeLine!

ThreeDimensionalViewport{VIEW3D}: SetCategory with

= axes clipSurface close coerce colorDef controlPanel diagonals dimensions drawStyle eyeDistance hitherPlane intensity key lighting makeViewport3D modifyPointData move options outlineRender perspective reset resize rotate showClipRegion showRegion subspace title translate viewDeltaXDefault viewDeltaYDefault viewPhiDefault viewThetaDefault viewZoomDefault viewport3Default viewport3D write zoom

ThreeSpace{SPACE3}: ThreeSpaceCategory with = check closedCurve closedCurve? coerce components composite composites copy create3Space curve curve? enterPointData lllip

TubePlot\{TUBE\}: \textit{with} closed? getCurve listLoops open? setClosed tube

Tuple\{TUPLE\}: \textit{CoercibleTo SetCategory} with * coeff length select

TwoDimensionalArray\{ARRAY2\}: \textit{TwoDimensionalArrayCategory} with \# = any? coerce column copy count elt empty empty? eq? every? fill! less? map map! maxColIndex maxRowIndex member? members minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt! row setColumn! setRow! setelt size?

TwoDimensionalViewport\{VIEW2D\}: \textit{SetCategory} with * axes close coerce connect controlPanel dimensions getGraph graphState graphStates graphs key makeViewport2D move options points putGraph region reset resize scale show title translate units viewport2D write

UnivariateLaurentSeriesConstructor\{ULSCONS\}: \textit{UnivariateLaurentSeriesConstructorCategory} with 0 1 * ** + - / < = D abs acos acosh acot acoth acsc acsch approximate asec asech asin asinh associates? atan atanh ceiling center characteristic charthRoot coefficient coerce complete conditionP convert cos cosh cot coth csc csch degree denom denominator differentiate divide elt euclideanSize eval exp expressIdealMember exquo extend extendedEuclidean factor factorPolynomial factorSquareFreePolynomial floor fractionPart gcd gcdPolynomial init integrate inv laurent lcm leadingCoefficient leadingMonomial log map max min monomial monomial? multiEuclidean multiplyCoefficients multiplyExponents negative? nextItem nthRoot numerator one? order patternMatch pi pole? positive? principalIdeal quo random rationalFunction recip reducedSystem reductum rem removeZeroes retract retractIfCan sec sech series sign sin sinh sizeLess? solveLinearPolynomialEquation sqrt squareFree squareFreePart squareFreePolynomial tan tanh taylorIfCan taylorRep terms truncate unit? unitCanonical unitNormal variable variables wholePart zero?

UnivariateLaurentSeries\{ULS\}: \textit{UnivariateLaurentSeriesConstructorCategory} with 0 1 * ** + - / < = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh associates? atan atanh ceiling center characteristic charthRoot coefficient coerce complete conditionP convert cos cosh cot coth csc csch degree denom denominator differentiate divide elt euclideanSize eval exp expressIdealMember exquo extend extendedEuclidean factor gcd integrate inv laurent lcm leadingCoefficient leadingMonomial log map max min monomial monomial? multiEuclidean multiplyCoefficients multiplyExponents negative? nextItem nthRoot numerator one? order patternMatch pi pole? positive? principalIdeal quo random rationalFunction recip reducedSystem reductum rem removeZeroes retract retractIfCan sec sech series sign sin sinh sizeLess? sqrt squareFree squareFreePart squareFreePolynomial tan tanh taylorIfCan taylorRep terms truncate unit? unitCanonical unitNormal variable variables wholePart zero?

UnivariatePolynomial\{UP\}: \textit{UnivariatePolynomialCategory} with 0 1 * ** + - / < = D associates? characteristic charthRoot coefficient coefficients coerce composite conditionP content degree differentiate discriminant divide divideExponents elt euclideanSize eval ex-
pressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? init integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable makeSUP map mapExponents max min minimumDegree monicDivide monomial monomial? monomials multiEuclidean multiplyExponents multivariate nextItem numberOfMonomials one? order prime? primitiveMonomials primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRemainder quo rec reduce reductum rem resultant retractIfCan separate sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial subResultantGcd totalDegree unit? unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?

UnivariatePuiseuxSeriesConstructor{UPXSCONS}: with UnivariatePuiseuxSeriesConstructorCategory

UnivariatePuiseuxSeries{UPXS}: with UnivariatePuiseuxSeriesConstructorCategory

UnivariatePuiseuxSeries Constructor{UPXSCONS}:

with UnivariatePuiseuxSeriesConstructor Category

UnivariatePuiseuxSeries{UPXS}: with UnivariatePuiseuxSeriesConstructorCategory

UnivariatePuiseuxSeries Constructor{UPXSCONS}:

UnivariatePuiseuxSeries{UPXS}: with UnivariatePuiseuxSeriesConstructorCategory

UniversalSegment{UNISEG}: Segment Category Segment Expansion Category with = BY SEGMENT coerce convert expand hasHi hi high incr lo low map segment

Variable{VARIABLE}: Coercible To Set Category with = coerce variable
Vector\{VECTOR\}: VectorCategory with \# * + - \< \= any? coerce concat construct convert copy copyInto! count delete dot elt empty empty? entries entry? eq? every? fill! find first index? indices insert less? map map! max maxIndex member? members merge min minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! vector zero

Void\{VOID\}: with coerce void
Appendix D

Packages

This is a listing of all packages in the Axiom library at the time this book was produced. Use the Browse facility (described in section 14 on page 931) to get more information about these constructors.

<table>
<thead>
<tr>
<th>Package Name</th>
<th>Package Abbreviation</th>
<th>Category_1</th>
<th>...</th>
<th>Category_N</th>
<th>op_1</th>
<th>...</th>
<th>op_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlgebraicFunction</td>
<td>AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgebraicHermiteIntegration</td>
<td>INTERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgebraicIntegrate</td>
<td>INTALG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgebraicManipulations</td>
<td>ALGMANIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgebraicMultFact</td>
<td>ALGMFACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgebraPackage</td>
<td>ALGPKG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlgFactor</td>
<td>ALGFAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AnyFunctions1</td>
<td>ANY1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This sample entry will help you read the following table:

PackageNamePackageAbbreviation:Category_1...Category_N with op_1...op_M

where

PackageName is the full package name, e.g., PadeApproximantPackage.

PackageAbbreviation is the package abbreviation, e.g., PADEPAC.

Category_i is a category to which the package belongs.

op_j is an operation exported by the package.
ApplyRules{APPRULE}: with applyRules localUnquote
AttachPredicates{PMPRED}: with suchThat
BalancedFactorisation{BALFACT}: with balancedFactorisation
BasicOperatorFunctions1{BOP1}: with constantOpIfCan constantOperator derivative evaluate
BezoutMatrix{BEZOUT}: with bezoutDiscriminant bezoutMatrix bezoutResultant
BoundIntegerRoots{BOUNDZRO}: with integerBound
CartesianTensorFunctions2{CARTEN2}: with map reshape
ChangeOfVariable{CHVAR}: with chvar eval goodPoint mkIntegral radPoly rootPoly
CharacteristicPolynomialPackage{CHARPOL}: with characteristicPolynomial
CoerceVectorMatrixPackage{CVMP}: with coerce coerceP
CombinatorialFunction{COMBF}: with ** belong? binomial factorial factorials iibinom iidprod iidsum iifact ipow operator permutation product summation
CommonDenominator{CDEN}: with clearDenominator commonDenominator splitDenominator
CommonOperators{COMMONOP}: with operator
CommuteUnivariatePolynomialCategory{COMMUPC}: with swap
ComplexFactors{COMPFAC}: with factor
ComplexFunction2{COMPLEX2}: with map
ComplexIntegerSolveLinearPolynomialEquation{CINTSLPE}: with solveLinearPolynomialEquation
ComplexRootFindingPackage{CRFP}: with complexZeros divisorCascade factor graeffe norm pleskenSplit reciprocalPolynomial rootRadius schwerpunkt setErrorBound startPolynomial
ComplexRootPackage{CMPLXRT}: with complexZeros
ConstantLODE{ODECONST}: with constDsolve
CoordinateSystems{COORDSYS}: with bipolar bipolarCylindrical cartesian conical cylindrical elliptic ellipticCylindrical oblateSpheroidal parabolic parabolicCylindrical paraboloidal polar prolateSpheroidal spherical toroidal
CRAPackage{CRAPACK}: with chineseRemainder modTree multiEuclideanTree
CycleIndicators{CYCLES}: with SFunction alternating cap complete cup cyclic dihedral elementary eval graphs powerSum skewSFunction wreath
CyclicStreamTools\{CSTTOOLS\}: with

computeCycleEntry computeCycleLength cycleElt

CyclotomicPolynomialPackage\{CYCLOTOM\}: with cyclotomic cyclotomicDecomposition cyclotomicFactorization

DegreeReductionPackage\{DEGRED\}: with expand reduce

DiophantineSolutionPackage\{DIOSP\}: with dioSolve

DirectProductFunctions2\{DIRPROD2\}: with map reduce scan

DiscreteLogarithmPackage\{DLP\}: with shanksDiscLogAlgorithm

DisplayPackage\{DISPLAY\}: with bright center copies newLine say sayLength

DistinctDegreeFactorize\{DDFACT\}: with distdfact exptMod factor irreducible? separateDegrees separateFactors tracePowMod

DoubleResultantPackage\{DBLRESP\}: with doubleResultant

DrawNumericHack\{DRAWHACK\}: with coerce

DrawOptionFunctions0\{DROPT0\}: with adaptive clipBoolean coordinate curveColorPalette pointColorPalette ranges space style title toScale tubePoints tubeRadius units var1Steps var2Steps

DrawOptionFunctions1\{DROPT1\}: with option

EigenPackage\{EP\}: with characteristicPolynomial eigenvalues eigenvector eigenvectors intEigen

ElementaryFunctionODESolver\{ODEEF\}: with solve

ElementaryFunctionSign\{SIGNEF\}: with sign

ElementaryFunctionStructurePackage\{EFSTRUC\}: with

normalize realElementary rischNormalize validExponential

ElementaryFunctionsUnivariateTaylorSeries\{EFUTS\}: with ** acos acosh acot acoth acsc acsch asec asech asin asinh atan atanh cos cosh cot coth csc csch exp log sec sech sin sincos sinh sinhcosh tan tanh

ElementaryFunction\{EF\}: with acos acosh acot acoth acsc acsch asec asech asin asinh atan atanh belong? cos cosh cot coth csc csch exp iacos iacosh iacot iiacoth iiacsc iiacsch iiasec iiasech iiasin iiasinh iiatan iiatanh icos iiacosh iiicot iiioth iicsc iiicsch iiicosh iiicth iiisec iiisinh iiisinh iiitan iiitanh log operator pi sec sech sin sinh specialTrigs tan tanh

ElementaryIntegration\{INTEF\}: with lintextendint lintfieldint lintfieldint lintegrate llimitedint

ElementaryRischDE\{RDEEF\}: with rischDE
EllipticFunctionsUnivariateTaylorSeries{ELFUTS}: with cn dn sn snclndn
EquationFunctions2{EQ2}: with map
ErrorFunctions{ERROR}: with error
EuclideanGroebnerBasisPackage{GBEUCLID}: with euclideanGroebner euclideanNormalForm
EvaluateCycleIndicators{EVALCYC}: with eval
ExpressionFunctions2{EXPR2}: with map
ExpressionSpaceFunctions1{ES1}: with map
ExpressionSpaceFunctions2{ES2}: with map
ExpressionSpaceODESolver{EXPRODE}: with seriesSolve
ExpressionToUnivariatePowerSeries{EXPR2UPS}: with laurent puiseux series taylor
ExpressionTubePlot{EXPRTUBE}: with constantToUnaryFunction tubePlot
FactoredFunctions2{FR2}: with map
FactoredFunctions{FACTFUNC}: with log nthRoot
FactoredFunctionUtilities{FRUTIL}: with mergeFactors refine
FactoringUtilities{FACTUTIL}: with completeEval degree lowerPolynomial normalDeriv raisePolynomial ran variables
FindOrderFinite{FORDER}: with order
FiniteDivisorFunctions2{FDIV2}: with map
FiniteFieldFunctions{FFF}: with createMultiplicationMatrix createMultiplicationTable createZechTable sizeMultiplication
FiniteFieldHomomorphisms{FFHOM}: with coerce
FiniteFieldPolynomialPackage2{FFPOLY2}: with rootOfIrreduciblePoly
FiniteFieldPolynomialPackage{FFPOLY}: with

createIrreduciblePoly createNormalPoly createNormalPrimitivePoly
createPrimitiveNormalPoly createPrimitivePoly leastAffineMultiple
nextIrreduciblePoly nextNormalPoly nextNormalPrimitivePoly
nextPrimitiveNormalPoly nextPrimitivePoly normal?
numberOfIrreduciblePoly numberOfNormalPoly numberOfPrimitivePoly
primitive? random reducedQPowers

FiniteFieldSolveLinearPolynomialEquation{FFSLPE}: with solveLinearPolynomialEquation
FiniteLinearAggregateFunctions2{FLAGG2}: with map reduce scan
FiniteLinearAggregateSort{FLASORT}: with heapSort quickSort shellSort
FiniteSetAggregateFunctions2\{FSAGG2\}: with map reduce scan
FloatingComplexPackage\{FLOATCP\}: with complexRoots complexSolve
FloatingRealPackage\{FLOATRP\}: with realRoots solve
FractionalIdealFunctions2\{FRIDEAL2\}: with map
FractionFunctions2\{FRAC2\}: with map
FunctionalSpecialFunction\{FSPECF\}: with Beta Gamma abs airyAi airyBi belong?
besselI besselJ besselK besselY digamma iiGamma iiabs operator polygamma
FunctionFieldCategoryFunctions2\{FFCAT2\}: with map
FunctionFieldIntegralBasis\{FFINTBAS\}: with integralBasis
FunctionSpaceAssertions\{PMASSFS\}: with assert constant multiple optional
FunctionSpaceAttachPredicates\{PMPREDFS\}: with suchThat
FunctionSpaceComplexIntegration\{FSCINT\}: with
complexIntegrate internalIntegrate
FunctionSpaceFunctions2\{FS2\}: with map
FunctionSpaceIntegration\{FSINT\}: with integrate
FunctionSpacePrimitiveElement\{FSPRMELT\}: with primitiveElement
FunctionSpaceReduce\{FSRED\}: with bringDown newReduc
FunctionSpaceSum\{SUMFS\}: with sum
FunctionSpaceToUnivariatePowerSeries\{FS2UPS\}: with exprToGenUPS exprToUPS
FunctionSpaceUnivariatePolynomialFactor\{FSUPFACT\}: with ffactor qfactor
GaussianFactorizationPackage\{GAUSSFAC\}: with factor prime? sumSquares
GeneralHenselPackage\{GHENSEL\}: with HenselLift completeHensel
GeneralPolynomialGcdPackage\{GENPGCD\}: with gcdPolynomial randomR
GenerateUnivariatePowerSeries\{GENUPS\}: with laurent puiseux series taylor
GenExEuclid\{GENEEZ\}: with compBound reduction solveid tablePow testModulus
GenUFactorize\{GENUFACTOR\}: with factor
GenusZeroIntegration\{INTG0\}: with palgLODE0 palgRDE0 palgextint0 palgint0 palglimint0
GosperSummationMethod\{GOSPER\}: with GospersMethod
GraphicsDefaults\{GRDEF\}: with adaptive clipPointsDefault
drawToScale maxPoints minPoints screenResolution
GrayCode\{GRAY\}: with firstSubsetGray nextSubsetGray
GroebnerFactorizationPackage\{GBF\}: with factorGroebnerBasis groebnerFactorize

GroebnerInternalPackage\{GBINTERN\}: with credPol critB critBonD critM critMTonD1 critMonD1 critT critropOrder lprindINFO gbasis hMonic lepol makeCrit minGbasis prinb prinDINFO prinpolINFO prinshINFO redPo redPol sPol updatD updatF virtualDegree

GroebnerPackage\{GB\}: with groebner normalForm

GroebnerSolve\{GROEBSSOL\}: with genericPosition groebSolve testDim

HallBasis\{HB\}: with generate inHallBasis? lfunc

HeuGcd\{HEUGCD\}: with content contprim gcd gcdcofact gcdcofactprim gcdprim lintgcd

IdealDecompositionPackage\{IDECOMP\}: with primaryDecomp prime? radical zeroDimPrimary? zeroDimPrime?

IncrementingMaps\{INCRMAPS\}: with increment incrementBy

InfiniteTupleFunctions2\{ITFUN2\}: with map

InfiniteTupleFunctions3\{ITFUN3\}: with map

Infinity\{INFINITY\}: with infinity minusInfinity plusInfinity

InnerAlgFactor\{IALGFAC\}: with factor

InnerCommonDenominator\{ICDEN\}: with clearDenominator commonDenominator splitDenominator

InnerMatrixLinearAlgebraFunctions\{IMATLIN\}: with determinant inverse nullSpace nullity rank rowEchelon

InnerMatrixQuotientFieldFunctions\{IMATQF\}: with inverse nullSpace nullity rank rowEchelon

InnerMultFac\{INNMFACT\}: with factor

InnerNormalBasisFieldFunctions\{INBFF\}: with * ** / basis dAndcExp expPot index inv lookup minimalPolynomial norm normal? normalElement pol qPot random repSq setFieldInfo trace xn

InnerNumericEigenPackage\{INEP\}: with charpol innerEigenvectors

InnerNumericFloatSolvePackage\{INFSP\}: with innerSolve innerSolve1 makeEq

InnerPolySign\{INPSIGN\}: with signAround

InnerPolySum\{ISUMP\}: with sum

InnerTrigonometricManipulations\{ITRIGMNP\}: with F2FG FG2F GF2FG explogs2trigs trigs2explogs

InputFormFunctions1\{INFORM1\}: with interpret packageCall

IntegerCombinatoricFunctions\{COMBINAT\}: with binomial factorial multinomial partition permutation stirling1 stirling2
IntegerFactorizationPackage \{\text{INTFACT}\}: \text{with \{BasicMethod \text{PollardSmallFactor factor squareFree}\}}

IntegerLinearDependence \{\text{ZLINDEP}\}: \text{with \{linearDependenceOverZ linearlyDependentOverZ? solveLinearlyOverQ\}}

IntegerNumberTheoryFunctions \{\text{INTHEORY}\}: \text{with \{bernoulli chineseRemainder divisors euler eulerPhi fibonacci harmonic jacobi legendre moebiusMu numberOfDivisors sumOfDivisors sumOfKthPowerDivisors\}}

IntegerPrimesPackage \{\text{PRIMES}\}: \text{with \{nextPrime prevPrime prime? primes\}}

IntegerRetractions \{\text{INTRET}\}: \text{with \{integer integer? integerIfCan\}}

IntegerRoots \{\text{IRROOT}\}: \text{with \{approxNthRoot approxSqrt perfectNthPower? perfectNthRoot perfectSqrt perfectSquare?\}}

IntegralBasisTools \{\text{IBATOOL}\}: \text{with \{diagonalProduct idealiser leastPower\}}

IntegrationResultFunctions2 \{\text{IR2}\}: \text{with \{map\}}

IntegrationResultRFToFunction \{\text{IRRF2F}\}: \text{with \{complexExpand complexIntegrate expand integrate split\}}

IntegrationResultToFUnction \{\text{IR2F}\}: \text{with \{complexExpand expand split\}}

IntegrationTools \{\text{INTTOOLS}\}: \text{with \{kmax ksec mkPrim vark varselect\}}

InverseLaplaceTransform \{\text{INVLAPLA}\}: \text{with \{inverseLaplace\}}

IrredPolyOverFiniteField \{\text{IRREDFFX}\}: \text{with \{generateIrredPoly\}}

IrrRepSymNatPackage \{\text{IRSN}\}: \text{with \{dimensionOfIrreducibleRepresentation irreducibleRepresentation\}}

Kovacic \{\text{KOVACIC}\}: \text{with \{kovacic\}}

LaplaceTransform \{\text{LAPLACE}\}: \text{with \{laplace\}}

LeadingCoefficientDetermination \{\text{LEADCDET}\}: \text{with \{distFact polCase\}}

LinearDependence \{\text{LINDEP}\}: \text{with \{linearDependence linearlyDependent? solveLinear\}}

LinearPolynomialEquationByFractions \{\text{LPEFRAC}\}: \text{with \{solveLinearPolynomialEquationByFractions\}}

LinearSystemMatrixPackage \{\text{LSMP}\}: \text{with \{aSolution hasSolution? rank solve\}}

LinearSystemPolynomialPackage \{\text{LSPP}\}: \text{with \{linSolve\}}

LinGroebnerPackage \{\text{LGROBP}\}: \text{with \{anticoord chooseMon computeBasis coordinate groebgen intcompBasis linGenPos minPol totolex transform\}}

LiouvillianFunction \{\text{LF}\}: \text{with \{Ci Ei Si belong? dilog erf integral li operator\}}
ListFunctions2[LIST2]: with map reduce scan
ListFunctions3[LIST3]: with map
ListToMap[LIST2MAP]: with match
MakeBinaryCompiledFunction[MKBCFUNC]: with binaryFunction compiledFunction
MakeFloatCompiledFunction[MKFLCFN]: with makeFloatFunction
MakeFunction[MKFUNC]: with function
MakeRecord[MKRECORD]: with makeRecord
MakeUnaryCompiledFunction[MKUCFUNC]: with compiledFunction unaryFunction
MappingPackage1[MAPPKG1]: with ** coerce fixedPoint id nullary recur
MappingPackage2[MAPPKG2]: with const constant curry diag
MappingPackage3[MAPPKG3]: with * constantLeft constantRight curryLeft curryRight twist
MappingPackageInternalHacks1{MAPHACK1}: with iter recur
MappingPackageInternalHacks2{MAPHACK2}: with arg1 arg2
MappingPackageInternalHacks3{MAPHACK3}: with comp
MatrixCategoryFunctions2{MATCAT2}: with map reduce
MatrixCommonDenominator[MCDEN]: with clearDenominator commonDenominator splitDenominator
MatrixLinearAlgebraFunctions[MATLIN]: with determinant inverse minordet nullSpace nullity rank rowEchelon
MergeThing[MTHING]: with mergeDifference
MeshCreationRoutinesForThreeDimensions[MESH]: with meshFun2Var meshPar1Var meshPar2Var ptFunc
ModularDistinctDegreeFactorizer[MDDFACT]: with ddFact exptMod factor gcd separateFactors
ModularHermitianRowReduction[MHROWRED]: with rowEchelon rowEchelon
MonoidRingFunctions2[MRF2]: with map
MoreSystemCommands[MSYSCMD]: with systemCommand
MPolyCatFunctions2[MPC2]: with map reshape
MPolyCatFunctions3[MPC3]: with map
MPolyCatRationalFunctionFactorizer[MPRFF]: with factor pushdown pushdterm pushucoef pushuconst pushup totalfrac
MRationalFactorize[MRATFAC]: with factor
MultFiniteFactorize[MFINFACT]: with factor
MultipleMap[MMAP]: with map
MultivariateFactorize[MULTFACT]: with factor
MultivariateLifting[MLIFT]: with corrPoly lifting lifting1
MultivariateSquareFree[MULTSQFR]: with squareFree squareFreePrim
NonCommutativeOperatorDivision[NCODIV]: with leftDivide leftExactQuotient leftGcd leftLcm leftQuotient leftRemainder
NoneFunctions1{NONE1}: with coerce
NonLinearFirstOrderODESolver[NODE1]: with solve
NonLinearSolvePackage[NLINSOL]: with solve solveInField
NPCoef[NPCOEF]: with listexp npcoef
NumberFieldIntegralBasis[NFINTBAS]: with discriminant integralBasis
NumberFormats[NUMFMT]: with FormatArabic FormatRoman ScanArabic ScanRoman
NumberTheoreticPolynomialFunctions[NTPOLFN]: with bernoulliB cyclotomic eulerE
NumericalOrdinaryDifferentialEquations[NUMODE]: with rk4 rk4a rk4f rk4qc
NumericalQuadrature[NUMQUAD]: with

aromberg asimpson atrapezoidal romberg rombergo
simpson simpsono trapezoidal trapezoidalo

NumericComplexEigenPackage[NCEP]: with characteristicPolynomial complexEigenvalues complexEigenvectors
NumericContinuedFraction[NCNTFRAC]: with continuedFraction
NumericRealEigenPackage[NREP]: with

characteristicPolynomial realEigenvalues realEigenvectors
NumericTubePlot[NUMTUBE]: with tube
Numeric[NUMERIC]: with complexNumeric numeric
OctonionCategoryFunctions2[OCTCT2]: with map
ODEIntegration[ODEINT]: with expint int
ODETools[ODETOOLS]: with particularSolution variationOfParameters wronskianMatrix
OneDimensionalArrayFunctions2[ARRAY12]: with map reduce scan
OnePointCompletionFunctions2[ONECOMP2]: with map
OperationsQuery[OPQUERY]: with getDatabase
OrderedCompletionFunctions2[ORDCOMP2]: with map
OrderingFunctions{ORDFUNS}: with pureLex reverseLex totalLex
OrthogonalPolynomialFunctions{ORTHPOL}: with ChebyshevU chebyshevT hermiteH
laguerreL legendreP
OutputPackage{OUT}: with output
PadeApproximantPackage{PADEPAC}: with pade
PadeApproximants{PADE}: with pade padecf
ParadoxicalCombinatorsForStreams{YSTREAM}: with Y
PartitionsAndPermutations{PARTPERM}: with conjugate conjugates partitions
permutations sequences shuffle shufflein
PatternFunctions1{PATTERN1}: with addBadValue badValues predicate satisfy?
suchThat
PatternFunctions2{PATTERN2}: with map
PatternMatchAssertions{PMASS}: with assert constant multiple optional
PatternMatchFunctionSpace{PMFS}: with patternMatch
PatternMatchIntegerNumberSystem{PMINS}: with patternMatch
PatternMatchKernel{PMKERNEL}: with patternMatch
PatternMatchListAggregate{PMLSAGG}: with patternMatch
PatternMatchPolynomialCategory{PMPLCAT}: with patternMatch
PatternMatchPushDown{PMDOWN}: with fixPredicate patternMatch
PatternMatchQuotientFieldCategory{PMQFCAT}: with patternMatch
PatternMatchResultFunctions2{PATRES2}: with map
PatternMatchSymbol{PMSYM}: with patternMatch
PatternMatchTools{PMTOOLS}: with patternMatch patternMatchTimes
PatternMatch{PATMATCH}: with Is is?
Permanent{PERMAN}: with permanent
PermutationGroupExamples{PGE}: with abelianGroup alternatingGroup cyclicGroup
dihedralGroup janko2 mathieu11 mathieu12 mathieu22 mathieu23 mathieu24 rubiksGroup
symmetricGroup youngGroup
PiCoercions{PICOERCE}: with coerce
PlotFunctions1{PLOT1}: with plot plotPolar
PlotTools{PLOTTOOL}: with calcRanges
PointFunctions2{PTFUNC2}: with map
PointPackage{PTPACK}: with color hue phiCoord rCoord shade thetaCoord xCoord yCoord zCoord
PointsOfFiniteOrderRational{PFOR}: with order torsion? torsionIfCan
PointsOfFiniteOrderTools{PFTOOLS}: with badNum doubleDisc getGoodPrime mix
polyred
PointsOfFiniteOrder{PFO}: with order torsion? torsionIfCan
PolyToPol{POLTOPOL}: with dmpToNdmp dmpToP ndmpToDmp ndmpToP pToDmp
pToNdmp
PolyGroebner{PGROEB}: with lexGroebner totalGroebner
PolynomialAN2Expression{PAN2EXPR}: with coerce
PolynomialCategoryLifting{POLYLIFT}: with map
PolynomialCategoryQuotientFunctions{POLYCATQ}: with isExpt isPlus isPower is-
Times mainVariable multivariate univariate variables
PolynomialFactorizationByRecursionUnivariate{PFBRU}: with

bivariateSLPEBR factorByRecursion factorSFBRlcUnit
factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion
PolynomialFactorizationByRecursion{PFBR}: with

bivariateSLPEBR factorByRecursion factorSFBRlcUnit
factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion
PolynomialFunctions2{POLY2}: with map
PolynomialGcdPackage{PGCD}: with gcd gcdPrimitive
PolynomialInterpolationAlgorithms{PINTERPA}: with LagrangeInterpolation
PolynomialInterpolation{PINTERP}: with interpolate
PolynomialNumberTheoryFunctions{PNTHEORY}: with bernoulli chebyshevT cheby-
shevU cyclotomic euler fixedDivisor hermite laguerre legendre
PolynomialRoots{POLYROOT}: with froot qroot rroot
PolynomialSolveByFormulas{SOLVEFOR}: with aCubic aLinear aQuadratic aQuartic
aSolution cubic linear mapSolve quadratic quartic solve
PolynomialSquareFree{PSQFR}: with squareFree
PolynomialToUnivariatePolynomial{POLY2UP}: with univariate
PowerSeriesLimitPackage{LIMITPS}: with complexLimit limit
PrimitiveArrayFunctions2{PRIMARR2}: with map reduce scan
PrimitiveElement{PRIMELT}: with primitiveElement
APPENDIX D. PACKAGES

PrimitiveRatDE[ODEPRIM]: with denomLODE
PrimitiveRatRicDE[ODEPRRIC]: with
cchangevar constantCoefficientRicDE denomRicDE
leadingCoefficientRicDE polyRicDE singRicDE
PrintPackage[PRINT]: with print
PureAlgebraicIntegration[INTPAF]: with palgLODE palgRDE palgextint palgint palglimint
PureAlgebraicLODE[ODEPAL]: with algDsolve
QuasiAlgebraicSet2[QALGSET2]: with radicalSimplify
QuaternionCategoryFunctions2[QUATCT2]: with map
RadicalEigenPackage[REP]: with eigenMatrix gramschmidt normalise orthonormalBasis radicalEigenvalues radicalEigenvector radicalEigenvectors
RadicalSolvePackage[SOLVERAD]: with contractSolve radicalRoots radicalSolve
RadixUtilities[RADUTIL]: with radix
RandomNumberSource[RANDSRC]: with randnum reseed size
RationalFactorize[RATFACT]: with factor
RationalFunctionDefiniteIntegration[DEFINTRF]: with integrate
RationalFunctionFactorizer[RFFACTOR]: with factorFraction
RationalFunctionFactor[RFFACT]: with factor
RationalFunctionIntegration[INTRF]: with extendedIntegrate infielddIntegrate intervalIntegrate limitedIntegrate
RationalFunctionLimitPackage[LIMITRF]: with complexLimit limit
RationalFunctionSign[SIGNRF]: with sign
RationalFunctionSum[SUMRF]: with sum
RationalFunction[RF]: with coerce eval mainVariable multivariate univariate variables
RationalIntegration[INTRAT]: with extendedint integrate limitedint
RationalLODE[ODERAT]: with ratDsolve
RationalRetractions[RATRET]: with rational rational? rationalIfCan
RationalRicDE[ODERTRIC]: with changevar constantCoefficientRicDE polyRicDE ricDsolvex singRicDE
RatODETools[RTODETLS]: with genericPolynomial
RealSolvePackage[REALSOLV]: with realSolve solve
RealZeroPackage\{Q\{REAL\}\}: with realZeros refine
RealZeroPackage\{REAL\}: with midpoint midpoints realZeros refine
RectangularMatrixCategoryFunctions\{2\{RMCAT\}\}: with map reduce
ReducedDivisor\{RDIV\}: with order
ReduceLODE\{ODE\}: with reduceLODE
RepeatedDoubling\{REPDB\}: with double
RepeatedSquaring\{REPSQ\}: with expt
RepresentationPackage\{1\{REP\}\}: with antisymmetricTensors createGenericMatrix permutationRepresentation symmetricTensors tensorProduct
RepresentationPackage\{2\{REP\}\}: with

areEquivalent? completeEchelonBasis createRandomElement cyclicSubmodule isAbsolutelyIrreducible? meatAxe scanOneDimSubspaces split standardBasisOfCyclicSubmodule
ResolveLatticeCompletion\{RESLATC\}: with coerce
RetractSolvePackage\{RETSOL\}: with solveRetract
SAERationalFunctionAlgFactor\{SAERFFC\}: with factor
SegmentBindingFunctions\{2\{SEGBIND2\}\}: with map
SegmentFunctions\{2\{SEG2\}\}: with map
SimpleAlgebraicExtensionAlgFactor\{SAEFACT\}: with factor
DoubleFloatSpecialFunctions\{DFLOATSFUN\}: with Beta Gamma airyAi airyBi besselI besselJ besselK besselY digamma hypergeometric0F1 logGamma polygamma
SortedCache\{SCACHE\}: with cache clearCache enterInCache
SparseUnivariatePolynomialFunctions\{2\{SUP\}\}: with map
SpecialOutputPackage\{SPECIAL\}: with outputAsFortran outputAsScript outputAsTex
StorageEfficientMatrixOperations\{MASEFF\}: with ** copy! leftScalarTimes! minus! plus! power! rightScalarTimes! times!
StreamFunctions\{1\{STREAM\}\}: with concat
StreamFunctions\{2\{STREAM\}\}: with map reduce scan
StreamFunctions\{3\{STREAM\}\}: with map
StreamTaylorSeriesOperations\{STTAYLOR\}: with * + - / add diag coerce compose deriv eval evenlambert gderiv generalLambert int integers integrate invmultisect lagrange lambert lazyGintegrate lazyIntegrate mapdiv mapmult monom multisect nlde oddintegers oddLambert power powern recip revert
StreamTranscendentalFunctions: with ** acos acosh acot acoth acsc acsch asec asech asin asinh atan atanb cos cosh cot coth csc csch exp log sec sech sin sincos sinh sinhcosh tan tanh
SubResultantPackage: with primitivePart subresultantVector
SymmetricFunctions: with symFunc
SymmetricGroupCombinatoricFunctions: with coleman inverseColeman listYoungTableaus makeYoungTableau nextColeman nextLatticePermutation nextPartition numberOfImproperPartitions subSet unrankImproperPartitions0 unrankImproperPartitions1
SystemODESolver: with solveInField triangulate
SystemSolvePackage: with solve triangularSystems
TableauxBumpers: with bat bat1 bumprow bumptab bumptab1 inverse lex maxrow m2 slex tab tab1 untab
TangentExpansions: with tanAn tanNa tanSum
ToolsForSign: with direction nonQsign sign
TopLevelDrawFunctionsForAlgebraicCurves: with draw
TopLevelDrawFunctionsForCompiledFunctions: with draw makeObject recolor
TopLevelDrawFunctions: with draw makeObject
TopLevelThreeSpace: with createThreeSpace
TranscendentalHermiteIntegration: with HermiteIntegrate
TranscendentalIntegration: with expextendedint expintegrate expintegratefrac expintegrateprim extendedint primextendedint primintegrate primintegratefrac primintegrateprim extendedint primintegrateprim extendedint
TranscendentalManipulations: with cos2sec cosh2sech cot2tan cot2trig coth2tanh coth2trigh cs2sin csch2sinh expand expandLog expandPower htrigs removeCosSq removeCOSHq removeSinSq removeSINHq sec2cos sech2cosh simplify simplifyExp sin2esc sinh2csch tan2cot tan2trig tanh2coth tanh2trigh
TranscendentalRischDE: with DSPDE SPDE baseRDE expRDE primRDE
TransSolvePackageService: with decomposeFunc unvectorise
TransSolvePackage: with solve
TriangularMatrixOperations \{TRIMAT\}: with LowTriBddDenomInv UpTriBddDenomInv

TrigonometricManipulations \{TRIGMNIP\}: with complexElementary complexNormalize imag real real? trigs

TubePlotTools \{TUBETOOL\}: with * + - cosSinInfo cross dot loopPoints point unitVector

TwoDimensionalPlotClipping \{CLIP\}: with clip clipParametric clipWithRanges

TwoFactorize \{TWOFACT\}: with generalSqFr generalTwoFactor twoFactor

UnivariateFactorize \{UNIFACT\}: with factor factorSquareFree genFact henselFact henselfact quadratic sqroot trueFactors

UnivariateLaurentSeriesFunctions2 \{ULS2\}: with map

UnivariatePolynomialCategoryFunctions2 \{UPOLYC2\}: with map

UnivariatePolynomialCommonDenominator \{UPCDEN\}: with clearDenominator commonDenominator splitDenominator

UnivariatePolynomialFunctions2 \{UP2\}: with map

UnivariatePolynomialSquareFree \{UPSQFREE\}: with BumInSepFFE squareFree squareFreePart

UnivariatePuiseuxSeriesFunctions2 \{UPXS2\}: with map

UnivariateTaylorSeriesFunctions2 \{UTS2\}: with map

UnivariateTaylorSeriesODESolver \{UTSODE\}: with mpsode ode ode1 ode2 stFunc1 stFunc2 stFuncN

UniversalSegmentFunctions2 \{UNISEG2\}: with map

UserDefinedPartialOrdering \{UDPO\}: with getOrder largest less? more? setOrder userOrdered?

UserDefinedVariableOrdering \{UDVO\}: with getVariableOrder resetVariableOrder setVariableOrder

VectorFunctions2 \{VECTOR2\}: with map reduce scan

ViewDefaultsPackage \{VIEWDEF\}: with axesColorDefault lineColorDefault pointColorDefault

pointSizeDefault tubePointsDefault tubeRadiusDefault

unitsColorDefault var1StepsDefault var2StepsDefault

viewDefaults viewPosDefault viewSizeDefault

viewWriteAvailable viewWriteDefault

ViewportPackage \{VIEW\}: with coerce drawCurves graphCurves

WeierstrassPreparation \{WEIER\}: with cfirst clikeUniv crest qqq sts2stst weierstrass

WildFunctionFieldIntegralBasis \{WFFINTBS\}: with integralBasis listSquaredFactors
Appendix E

Operations

This appendix contains a partial list of Axiom operations with brief descriptions. For more details, use the Browse facility of HyperDoc: enter the name of the operation for which you want more information in the input area on the main Browse menu and then click on Operations.

#aggregate
#a returns the number of items in a.

x**y
x ** y returns x to the power y. Also, this operation returns, if x is: 1pc 0 an equation: a new equation by raising both sides of x to the power y.

a float or small float: sign(x) exp(y log(|x|)).

See also InputForm and OutputForm.

x*y
The binary operator * denotes multiplication. Its meaning depends on the type of its arguments: 1pc 0

if x and y are members of a ring (more generally, a domain of category SemiGroup), x * y returns the product of x and y.

if r is an integer and x is an element of a ring, or if r is a scalar and x is a vector, matrix, or direct product: r * x returns the left multiplication of r by x. More generally, if r is an integer and x is a member of a domain of category AbelianMonoid, or r is a member of domain R and x is a domain of category Module(R), GradedModule, or GradedAlgebra defined over R, r * x returns the left multiplication of r by x. Here x can be a vector, a matrix, or a direct product. Similarly, x * n returns the right integer multiple of x.
if a and b are monad elements, the product of a and b (see Monad).
if A and B are matrices, returns the product of A and B. If v is a row vector, $v \ast A$ returns the product of v and A. If v is column vector, $A \ast v$ returns the product of A with column vector v. In each case, the operation calls \texttt{error} if the dimensions are incompatible.
if s is an integer or float and c is a color, $s \ast c$ returns the weighted shade scaled by s.
if s and t are Cartesian tensors, $s \ast t$ is the inner product of the tensors s and t. This contracts the last index of s with the first index of t, that is,
\[t \ast s = \texttt{contract}(t, \texttt{rank} t, s, 1), \]
\[t \ast s = \sum_{k=1}^{N} t([i_1, ..., i_N, k] \ast s[k, j_1, ..., j_M]). \]
if eq is an equation, $r \ast eq$ multiplies both sides of eq by r.
if I and J are ideals, the product of ideals.
See also OutputForm, Monad, LeftModule, RightModule, and FreeAbelianMonoidCategory.

See also InputForm and OutputForm.

$x+y$
The binary operator $+$ denotes addition. Its meaning depends on the type of its arguments. If x and y are: 1pc 0

- members of a ring (more generally, of a domain of category AbelianSemigroup): the sum of x and y.
- matrices: the matrix sum if x and y have the same dimensions, and \texttt{error} otherwise.
- vectors: the component-wise sum if x and y have the same length, and \texttt{error} otherwise.
- colors: a color which additively mixes colors x and y.
- equations: an equation created by adding the respective left- and right-hand sides of x and y.
- elements of graded module or algebra: the sum of x and y in the module of elements of the same degree as x and y.
- ideals: the ideal generated by the union of x and y.

See also FreeAbelianMonoidCategory, InputForm and OutputForm.

$|x|-y$
$-x$ returns the negative (additive inverse) of x, where x is a member of a ring (more generally, a domain of category AbelianGroup). Also, x may be a matrix, a vector, or a member of a graded module.
$x - y$ returns $x + (-y)$.
See also CancellationAbelianMonoid and OutputForm.
The binary operator \div generally denotes binary division. Its precise meaning, however, depends on the type of its arguments: 1pc 0

- x and y are elements of a group: multiplies x by the inverse $\text{inv}(y)$ of y.
- x and y are elements of a field: divides x by y, calling error if $y = 0$.
- x is a matrix or a vector and y is a scalar: divides each element of x by y.
- x and y are floats or small floats: divides x by y.
- x and y are fractions: returns the quotient as another fraction.
- x and y are polynomials: returns the quotient as a fraction of polynomials.

See also AbelianMonoidRing, InputForm and OutputForm.

0
The additive identity element for a ring (more generally, for an AbelianMonoid). Also, for a graded module or algebra, the zero of degree 0 (see GradedModule). See also InputForm.

1
The multiplicative identity element for a ring (more generally, for a Monoid and MonadWithUnit). or a graded algebra. See also InputForm.

$x < y$
The binary operator $<$ denotes the boolean-valued “less than” function. Its meaning depends on the type of its arguments. The operation $x < y$ for x and y: 1pc 0

- elements of a totally ordered set (such as integer and floating point numbers): tests if x is less than y.
- sets: tests if all the elements of x are also elements of y.
- permutations: tests if x is less than y; see Permutation for details. Note: this order relation is total if and only if the underlying domain is of category Finite or OrderedSet.
- permutation groups: tests if x is a proper subgroup of y.

See also OutputForm.

$x = y$
The meaning of binary operator $x = y$ depends on the value expected of the operation. If the value is expected to be: 1pc 0

- a boolean: $x = y$ tests that x and y are equal.
- an equation: $x = y$ creates an equation.

See also OutputForm.

$\text{abelianGroup}(\text{listOfPositiveIntegers})$
$\text{abelianGroup}([p_1, \ldots, p_k])$ constructs the abelian group that is the direct product of cyclic groups with order p_i.

absolutelyIrreducible? ()
absolutelyIrreducible? () F tests if the algebraic function field F remains irreducible over the algebraic closure of the ground field. See FunctionFieldCategory using Browse.

abs (element)
abs (x) returns the absolute value of x, an element of an OrderedRing or a Complex, Quaternion, or Octonion value.

acos (expression)
acosIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acos (x) returns the arccosine of x.
acosIfCan (x) returns acos (x) if possible, and "failed" otherwise.

acosh (expression)
acoshIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acosh (x) returns the hyperbolic arccosine of x.
acoshIfCan (x) returns acosh (x) if possible, and "failed" otherwise.

acoth (expression)
acothIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acoth (x) returns the hyperbolic arccotangent of x.
acothIfCan (x) returns acoth (x) if possible, and "failed" otherwise.

acot (expression)
acotIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acot (x) returns the arccotangent of x.
acotIfCan (x) returns acot (x) if possible, and "failed" otherwise.

acsch (expression)
acschIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acsch (x) returns the hyperbolic arccosecant of x.
acschIfCan (x) returns acsch (x) if possible, and "failed" otherwise.

acsc (expression)
acscIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. acsc (x) returns the arccosecant of x.
acscIfCan (x) returns acsc (x) if possible, and "failed" otherwise.

adaptive ([boolean])
adaptive () tests whether plotting will be done adaptively.
adaptive(true) turns adaptive plotting on; adaptive(false) turns it off. Note: this command can be expressed by the draw option adaptive == b.

addmod(integer, integer, integer)
addmod(a, b, p), 0 ≤ a, b < p > 1, means a + b mod p.

airyAi(complexDoubleFloat)
airyBi(complexDoubleFloat)
airyAi(x) is the Airy function Ai(x) satisfying the differential equation Ai''(x) - xAi(x) = 0.
airyBi(x) is the Airy function Bi(x) satisfying the differential equation Bi''(x) - xBi(x) = 0.

Aleph(nonNegativeInteger)
Aleph(n) provides the named (infinite) cardinal number.

algebraic?()
algebraic?(a) tests whether an element a is algebraic with respect to the ground field F.

alphabetic()}
alphabetic?(character)
alphabetic() returns the class of all characters ch for which alphabetic?(ch) is true.
alphabetic?(ch) tests if ch is an alphabetic character a...z, A...B.

alphanumeric()}
alphanumeric?(character)
alphanumeric() returns the class of all characters ch for which alphanumeric?(ch) is true.
alphanumeric?(ch) tests if ch is either an alphabetic character a...z, A...B or digit 0...9.

alternating(integer)
alternating(n) is the cycle index of the alternating group of degree n. See CycleIndicators for details.

alternatingGroup(listOfIntegers)
alternatingGroup(li) constructs the alternating group acting on the integers in the list li. If n is odd, the generators are in general the (n - 2)-cycle (li.3, ..., li.n) and the 3-cycle (li.1,li.2,li.3). If n is even, the generators are the product of the 2-cycle (li.1,li.2) with (n - 2)-cycle (li.3, ..., li.n) and the 3-cycle (li.1,li.2,li.3). Duplicates in the list will be removed.

alternatingGroup(n) constructs the alternating group An acting on the integers 1,...,n. If n is odd, the generators are in general the (n - 2)-cycle (3, ..., n) and the 3-cycle (1,2,3). If n is even, the generators are the product of the 2-cycle (1,2) with (n - 2)-cycle (3, ..., n) and the 3-cycle (1,2,3) if n is even.

alternative()
alternative($)F$ tests if 2associator(a,a,b) = 0 = 2associator(a,b,b) for all a, b in the
algebra F. Note: in general, $2a = 0$ does not necessarily imply $a = 0$.

\textbf{and} (boolean, boolean)

\textit{x and y} returns the logical \textit{and} of two BitAggregates x and y.

\textit{b1 and b2} returns the logical \textit{and} of Boolean b_1 and b_2.

\textit{si1 and si2} returns the bit-by-bit logical \textit{and} of the small integers si_1 and si_2.

See also OutputForm.

\textbf{approximants} (continuedFraction)

\textbf{approximants} (cf) returns the stream of approximants of the continued fraction cf. If the continued fraction is finite, then the stream will be infinite and periodic with period 1.

\textbf{approximate} (series, integer)

\textbf{approximate} ($s; r$) returns a truncated power series as an expression in the coefficient domain of the power series. For example, if R is Fraction Polynomial Integer and s is a series over R, then \textbf{approximate}($s; r$) returns the power series s truncated after the exponent r term.

\textbf{approximate} (pAdicInteger, integer)

\textbf{approximate} ($x; n$), x a p-adic integer, returns an integer y such that $y = x \mod p^n$ when n is positive, and 0 otherwise.

\textbf{approxNthRoot} (integer, nonNegativeInteger)

\textbf{approxNthRoot} ($n; p$) returns an integer approximation i to $n^{1/p}$ such that $-1 < i - n^{1/p} < 1$.

\textbf{approxSqrt} (integer)

\textbf{approxSqrt} (n) returns an integer approximation i to \sqrt{n} such that $-1 < i - \sqrt{n} < 1$.

A variable precision Newton iteration is used with running time $O(\log(n)^2)$.

\textbf{areEquivalent?} (listOfMatrices, listOfMatrices[], randomElements?, numberOfTries?)

\textbf{areEquivalent?} ($IM; IM', b; numberOfTries$) tests whether the two lists of matrices, assumed of the same square shape, can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators, the representations are equivalent. The algorithm tries $numberOfTries$ times to create elements in the generated algebras in the same fashion. For details, consult HyperDoc.

\textbf{areEquivalent?} ($aG_0; aG_1; numberOfTries$) calls \textbf{areEquivalent?} ($aG_0; aG_1; true; 25$).

\textbf{areEquivalent?} ($aG_0; aG_1$) calls \textbf{areEquivalent?} ($aG_0; aG_1; true; 25$).

\textbf{argscript} (symbol, listOfOutputForms)

\textbf{argscript} ($f; [o_1, \ldots, o_n]$) returns a new symbol with f with scripts o_1, \ldots, o_n.

\textbf{argument} (complexExpression)

\textbf{argument} (c) returns the angle made by complex expression c with the positive real axis.

\textbf{arity} (basicOperator)

\textbf{arity} (op) returns n if op is n-ary, and "failed" if op has arbitrary arity.
\textbf{asec} (\textit{expression})
\textbf{asecIfCan} (\textit{expression})
Argument \textit{x} can be a \texttt{Complex}, \texttt{Float}, \texttt{DoubleFloat}, or \texttt{Expression} value or a series.\textbf{asec}\textit{(x)} returns the arcsecant of \textit{x}.\textbf{asecIfCan}\textit{(x)} returns \textbf{asec}\textit{(x)} if possible, and "\texttt{failed}" otherwise.

\textbf{asech} (\textit{expression})
\textbf{asechIfCan} (\textit{expression})
Argument \textit{x} can be a \texttt{Complex}, \texttt{Float}, \texttt{DoubleFloat}, or \texttt{Expression} value or a series.\textbf{asech}\textit{(x)} returns the hyperbolic arcsecant of \textit{x}.\textbf{asechIfCan}\textit{(x)} returns \textbf{asech}\textit{(x)} if possible, and "\texttt{failed}" otherwise.

\textbf{asin} (\textit{expression})
\textbf{asinIfCan} (\textit{expression})
Argument \textit{x} can be a \texttt{Complex}, \texttt{Float}, \texttt{DoubleFloat}, or \texttt{Expression} value or a series.\textbf{asin}\textit{(x)} returns the arcsine of \textit{x}.\textbf{asinIfCan}\textit{(x)} returns \textbf{asin}\textit{(x)} if possible, and "\texttt{failed}" otherwise.

\textbf{asinh} (\textit{expression})
\textbf{asinhIfCan} (\textit{expression})
Argument \textit{x} can be a \texttt{Complex}, \texttt{Float}, \texttt{DoubleFloat}, or \texttt{Expression} value or a series.\textbf{asinh}\textit{(x)} returns the hyperbolic arcsine of \textit{x}.\textbf{asinhIfCan}\textit{(x)} returns \textbf{asinh}\textit{(x)} if possible, and "\texttt{failed}" otherwise.

\textbf{assign} (\textit{outputForm}, \textit{outputForm})
\textbf{assign} (\textit{f}, \textit{g}) creates an \texttt{OutputForm} object for the assignment \texttt{f:=g}.

\textbf{associates?} (\textit{element}, \textit{element})
\textbf{associates?} (\textit{x,y}) tests whether \textit{x} and \textit{y} are associates, that is, that \textit{x} and \textit{y} differ by a unit factor.

\textbf{associative?} ()
\textbf{associative?} ()F tests if multiplication in \textit{F} is associative, where \textit{F} is a \texttt{FiniteRankNonAssociativeAlgebra}.

\textbf{associatorDependence} ()
\textbf{associatorDependence} ()F computes associator identities for \textit{F}. Consult \texttt{FiniteRankNonAssociativeAlgebra} using Browse for details..

\textbf{associator} (\textit{element}, \textit{element}, \textit{element})
\textbf{associator} (\textit{a,b,c}) returns (\textit{ab})\textit{c} - \textit{a(bc)}, where \textit{a}, \textit{b}, and \textit{c} are all members of a domain of category \texttt{NonAssociateRng}.

\textbf{assoc} (\textit{element}, \textit{associationList})
\textbf{assoc} (\textit{k,al}) returns the element \textit{x} in the \texttt{AssociationList} \textit{al} stored under key \textit{k}, or "\texttt{failed}" if no such element exists.
atan (expression[, phase])
atanIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
atan (x) returns the arctangent of x.
atan (x,y) computes the arc tangent from x with phase y.
atanIfCan (x) returns the atan (x) if possible, and "failed" otherwise.

atan (expression)
atanIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
atan (x) returns the hyperbolic arctangent of x.
atanIfCan (x) returns atan (x) if possible, and "failed" otherwise.

atom? (sExpression)
atom? (s) tests if x is atomic, where x is an SExpression or OutputForm.

antiCommutator (element, element)
antiCommutator (x,y) returns $xy + yx$, where x and y are elements of a non-associative ring, possibly without identity. See NonAssociativeRng using Browse.

antisymmetric? (matrix)
antisymmetric? (m) tests if the matrix m is square and antisymmetric, that is, $m_{i,j} = -m_{j,i}$ for all i and j.

antisymmetricTensors (matrices, positiveInteger)
antisymmetricTensors ($A;n$), where A is an m by m matrix, returns a matrix obtained by applying to A the irreducible, polynomial representation of the general linear group GL_m corresponding to the partition $(1,1,\ldots,1,0,0,\ldots,0)$ of n. A call to error occurs if n is greater than m. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group S_n. The carrier spaces of the representation are the antisymmetric tensors of the n-fold tensor product.
antisymmetricTensors ($lA;n$), where lA is a list of m by m matrices, similarly applies the representation of GL_m to each matrix A of lA, returning a list of matrices.

any? (predicate, aggregate)
any? ($pred;a$) tests if predicate $pred$ (x) is true for any element x of aggregate a. Note: for collections, any? (p,u) = reduce (or, map (p,u), false, true).

any (type, object)
any (type, object) is a technical function for creating an object of Any. Argument type is a LISP form for the type of object.

append (list, list)
append ($l_1;l_2$) appends the elements of list l_1 onto the front of list l_2. See also concat.

axesColorDefault ([palette])
axesColorDefault (p) sets the default color of the axes in a two-dimensional viewport to
the palette p.
axesColorDefault () returns the default color of the axes in a two-dimensional viewport.

back (queue)
back (q) returns the element at the back of the queue, or calls error if q is empty.

bag ([bag])
bag ([x, y, ..., z]) creates a bag with elements x, y, ..., z.

balancedBinaryTree (nonNegativeInteger, element)
balancedBinaryTree (n, s) creates a balanced binary tree with n nodes, each with value s.

base (group)
base (gp) returns a base for the group gp. Consult PermutationGroup using Browse for details.

basis ()
basis ()R returns a fixed basis of R or a subspace of R. See FiniteAlgebraicExtensionField, FramedAlgebra, FramedNonAssociativeAlgebra using HyperDoc for details.

basisOfCenter ()
basisOfCenter ()R returns a basis of the space of all x in R satisfying

\[
\text{commutator} (x, a) = 0 \quad \text{and} \quad \text{associator} (x, a, b) = \text{associator} (a, x, b) = \text{associator} (a, b, x) = 0 \quad \text{for all} \quad a, b \text{ in } R.
\]

Domain R is a domain of category FramedNonAssociativeAlgebra.

basisOfCentroid ()
basisOfCentroid ()R returns a basis of the centroid of R, that is, the endomorphism ring of R considered as (R, R)-bimodule. Domain R is a domain of category FramedNonAssociativeAlgebra.

basisOfCommutingElements ()
basisOfCommutingElements ()R returns a basis of the space of all x of R satisfying

\[
\text{commutator} (x, a) = 0 \quad \text{for all} \quad a \text{ in } R.
\]

Domain R is a domain of category FramedNonAssociativeAlgebra.

basisOfLeftAnnihilator (element)
basisOfRightAnnihilator (element)
These operations return a basis of the space of all x in R of category FramedNonAssociativeAlgebra, satisfying 1pc 0

\[
\text{basisOfLeftAnnihilator} (a): 0 = xa.
\]
\[
\text{basisOfRightAnnihilator} (a): 0 = ax.
\]

basisOfNucleus ()
basisOfRightNucleus ()
Each operation returns a basis of the space of all x of R, a domain of category
FramedNonAssociativeAlgebra, satisfying for all a and b: 1pc 0

$\text{basisOfNucleus}() \subseteq R$:
\[
\text{associator}(a;b;x) = 0.
\]

$\text{basisOfLeftNucleus}() \subseteq R$:
\[
\text{associator}(a;b;x) = 0;
\]

$\text{basisOfMiddleNucleus}() \subseteq R$:
\[
\text{associator}(a;b;x) = 0;
\]

$\text{basisOfRightNucleus}() \subseteq R$:
\[
\text{associator}(a;b;x) = 0.
\]

basisOfLeftNucloid ()
basisOfRightNucloid ()
Each operation returns a basis of the space of endomorphisms of R, a domain of category
FramedNonAssociativeAlgebra, considered as: 1pc 0

$\text{basisOfLeftNucloid}()$: a right module.
$\text{basisOfRightNucloid}()$: a left module.

Note: if R has a unit, the left and right nucloid coincide with the left and right nucleus.

belong? (operator)
$\text{belong?}(\text{op}) \subseteq R$ tests if op is known as an operator to R. For example, R is an Expression
domain or AlgebraicNumber.

bernoulli (integer)
$\text{bernoulli}(n)$ returns the nth Bernoulli number, that is, $B(n,0)$ where $B(n,x)$ is the nth
Bernoulli polynomial.

besselI (complexDoubleFloat, complexDoubleFloat)
besselJ (complexDoubleFloat, complexDoubleFloat)
besselK (complexDoubleFloat, complexDoubleFloat)
besselY (complexDoubleFloat, complexDoubleFloat)

$besselI(v,x)$ is the modified Bessel function of the first kind, $I(v,x)$, satisfying the
differential equation $x^2w''(x) + xw'(x) - (x^2 + v^2)w(x) = 0$.

$besselJ(v,x)$ is the Bessel function of the second kind, $J(v,x)$, satisfying the differential equation $x^2w''(x) + xw'(x) + (x^2 - v^2)w(x) = 0$.

$besselK(v,x)$ is the modified Bessel function of the first kind, $K(v,x)$, satisfying the
differential equation $x^2w''(x) + xw'(x) - (x^2 + v^2)w(x) = 0$. Note: The default
implementation uses the relation $K(v,x) = \pi/2(I(-v,x) - I(v,x))/\sin(v\pi)$ so is not valid
for integer values of v.

$besselY(v,x)$ is the Bessel function of the second kind, $Y(v,x)$, satisfying the differential equation $x^2w''(x) + xw'(x) + (x^2 - v^2)w(x) = 0$. Note: The default implementation uses
the relation $Y(v,x) = (J(v,x)\cos(v\pi) - J(-v,x))/\sin(v\pi)$ so is not valid for integer values
of v.
Beta (complexDoubleFloat, complexDoubleFloat)

Beta(x, y) is the Euler beta function, B(x, y), defined by Beta(x, y) \(\int_0^1 t^{x-1}(1-t)^{y-1} dt \).

Note: this function is defined by Beta(x, y) = \(\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \).

binaryTournament (listOfElements)

binaryTournament(ls) creates a BinaryTournament tree with the elements of ls as values at the nodes.

binaryTree (value)

binaryTree(x) creates a binary tree consisting of one node for which the value is x and the left and right subtrees are empty.

binary (various)

binary(rn) converts rational number rn to a binary expansion.

binary(op, [a₁, ..., aₙ]) returns the input form corresponding to \(a₁op...opaₙ \), where op and the aᵢ’s are of type InputForm.

binomial (integerNumber, integerNumber)

binomial(x, y) returns the binomial coefficient \(C(x, y) = \frac{x!}{y!(x-y)!} \), where \(x \geq y \geq 0 \), the number of combinations of x objects taken y at a time. Arguments x and y can come from any Expression or IntegerNumberSystem domain.

bipolar (x)

bipolar(a) returns a function for transforming bipolar coordinates to Cartesian coordinates; this function maps the point \((u, v)\) to \((x = a \sinh(v)/(\cosh(v) - \cos(u)), y = a \sin(u)/(\cosh(v) - \cos(u)))\).

bipolarCylindrical(a) returns a function for transforming bipolar cylindrical coordinates to Cartesian coordinates; this function maps the point \((u, v, z)\) to \((x = a \sinh(v)/(\cosh(v) - \cos(u)), y = a \sin(u)/(\cosh(v) - \cos(u)), z)\).

biRank (element)

biRank(x)\(\in R \), where R is a domain of category FramedNonAssociativeAlgebra, returns the number of linearly independent elements among x, xbᵢ, bᵢx, bᵢxbⱼ, i, j = 1, ..., n, where b = [b₁, ..., bₙ] is the fixed basis for R. Note: if R has a unit, then doubleRank, weakBiRank and biRank coincide.

bit? (integer, integer)

bit?(i, n) tests if the n\(^{th}\) bit of i is a 1.

bits ()

bits() returns the precision of floats in bits. Also see precision.

blankSeparate (listOfOutputForms)

blankSeparate(lo), where lo is a list of objects of type OutputForm (normally unexposed), returns a single output form consisting of the elements of lo separated by blanks.
blue ()
blue() returns the position of the blue hue from total hues.

bottom! (dequeue)
bottom!(q) removes then returns the element at the bottom (back) of the dequeue q.

box (expression)
box(e), where e is an expression, returns e with a box around it that prevents e from being evaluated when operators are applied to it. For example, log(1) returns 0, but log(box(1)) returns the formal kernel log(1).
box(f₁, ..., fₙ), where the fi are expressions, returns (f₁, ..., fₙ) with a box around them that prevents the fi from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, atan(box[x, 2]) returns the formal kernel atan(x, 2).
box(o), where o is an object of type OutputForm (normally unexposed), returns an output form enclosing o in a box.

brace (outputForm)
brace(o), where o is an object of type OutputForm (normally unexposed), returns an output form enclosing o in braces.

bracket (outputForm)
bracket(o), where o is an object of type OutputForm (normally unexposed), returns an output form enclosing o in brackets.

branchPoint (element)
branchPointAtInfinity? ()
branchPoint?(a)$F tests if x = a is a branch point of the algebraic function field F.
branchPointAtInfinity?(b)$F tests if the algebraic function field F has a branch point at infinity.

bright (color)
bright(c) sets the shade of a hue, c, above dim but below pastel.
bright(ls) sets the font property of a list of strings ls to bold-face type.

cap (symmetricPolynomial, symmetricPolynomial)
cap(s₁, s₂), introduced by Redfield, is the scalar product of two cycle indices, where the sᵢ are SymmetricPolynomials with rational number coefficients. See also cup. See CycleIndicators for details.

cardinality (finiteSetAggregate)
cardinality(u) returns the number of elements of u. Note: cardinality(u) = #u.

car (SExpression)
car(se) returns a₁ when se is the SExpression object (a₁, ..., aₙ).
cdr (sExpression)
cdr (se) returns \((a_2, \ldots, a_n)\) when se is the SExpression object \((a_1, \ldots, a_n)\).

ceiling (floatOrRationalNumber)
Argument \(x\) is a floating point number or fraction of numbers.
\(\text{ceiling}(x)\) returns the smallest integral element above \(x\).

center (stringsOrSeries)
\(\text{center}(s)\) returns the point about which the series \(s\) is expanded.
\(\text{center}(ls, n, s)\) takes a list of strings \(ls\), and centers them within a list of strings which is \(n\) characters long. The remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \(s\).
\(\text{center}(s_1, n, s_2)\) is equivalent to \(\text{center}([s_1], n, s_2)\).

char (character)
\(\text{char}(i)\) returns a Character object with integer code \(i\). Note: \(\text{ord}(\text{char}(i)) = i\).
\(\text{char}(s)\) returns the unique character of a string \(s\) of length one.

characteristic ()
\(\text{characteristic}()\$R\) returns the characteristic of ring \(R\): the smallest positive integer \(n\) such that \(nx = 0\) for all \(x\) in the ring, or zero if no such \(n\) exists.

characteristicPolynomial (matrix [, symbol])
\(\text{characteristicPolynomial}(a)\) returns the characteristic polynomial of the regular representation of \(a\) with respect to any basis.
\(\text{characteristicPolynomial}(m)\) returns the characteristic polynomial of the matrix \(m\) expressed as polynomial with a new symbol as variable.
\(\text{characteristicPolynomial}(m, sy)\) is similar except that the resulting polynomial has variable \(sy\).
\(\text{characteristicPolynomial}(m, r)\), where \(r\) is a member of the coefficient domain of matrix \(m\), evaluates the characteristic polynomial at \(r\). In particular, if \(r\) is the polynomial \('x'\), then it returns the characteristic polynomial expressed as a polynomial in \('x'\).

charClass (strings)
\(\text{charClass}(s)\) creates a character class containing exactly the characters given in the string \(s\).
\(\text{charClass}(ls)\) creates a character class which contains exactly the characters given in the list \(ls\) of strings.

charthRoot (element)
\(\text{charthRoot}(r)\), where \(r\) is an element of domain with \(\text{characteristic} p \neq 0\), returns the \(p^{\text{th}}\) root of \(r\), or "failed" if none exists in the domain.
\(\text{charthRoot}(f)\$R\) takes the \(p^{\text{th}}\) root of finite field element \(f\), where \(p\) is the characteristic of the finite field \(R\). Note: such a root is always defined in finite fields.
chebyshevT \((\text{positiveInteger, element}) \)
chebyshevT \((n, x) \) returns the \(n \)th Chebyshev polynomial of the first kind, \(T_n(x) \), defined by
\[
(1 - tx)/(1 - 2tx + t^2) = \sum_{n=0}^{\infty} T_n(x) t^n.
\]

children (\text{recursiveAggregate})
children \((u) \) returns a list of the children of aggregate \(u \).

chineseRemainder \((\text{listOfElements, listOfModuli}) \)
chineseRemainder \((\text{integer, modulus, integer, modulus}) \)
chineseRemainder \((lv, lm) \) where \(lv \) is a list of values \([v_1, \ldots, v_n]\) and \(lm \) is a list of moduli \([m_1, \ldots, m_n]\), returns \(m \) such that \(m = n_i \mod p_i \); the \(p_i \) must be relatively prime.
chineseRemainder \((n_1, p_1, n_2, p_2) \) is equivalent to chineseRemainder \(([n_1, n_2], [p_1, p_2]) \), where all arguments are integers.

clearDenominator \((\text{fraction}) \)
clearDenominator \(([q_1, \ldots]) \) returns \([p_1, \ldots]\) such that \(q_i = p_i/d \) where \(d \) is a common denominator for the \(q_i \)'s.
clearDenominator \((A) \), where \(A \) is a matrix of fractions, returns matrix \(B \) such that \(A = B/d \) where \(d \) is a common denominator for the elements of \(A \).
clearDenominator \((p) \) returns polynomial \(q \) such that \(p = q/d \) where \(d \) is a common denominator for the coefficients of polynomial \(p \).

clip \((\text{rangeOrBoolean}) \)
clip \((b) \) turns two-dimensional clipping on if \(b \) is \text{true}, and off if \(b \) is \text{false}. This command may be given as a draw option: \text{clip} == b.
clip \(([a..b]) \) defines the range for user-defined clipping. This command may be given as a draw option: \text{range} == [a..b].

clipPointsDefault \(([\text{boolean}]) \)
clipPointsDefault \(() \) tests if automatic clipping is to be done.
clipPointsDefault \((b) \) turns on automatic clipping for \(b = \text{true} \), and off if \(b = \text{false} \). This command may be given as a draw option: \text{clip} == b.

close \((\text{filename}) \)
close \((v) \) closes the viewport window of the given two-dimensional or three-dimensional viewport \(v \) and terminates the corresponding Unix process. Argument \(v \) is a member of domain \text{TwoDimensionalViewport} or \text{ThreeDimensionalViewport}.

close! \((\text{filename}) \)
close! \((fn) \) returns the file \(fn \) closed to input and output.

closedCurve? \((\text{threeSpace}) \)
closedCurve? \((sp) \) tests if the \text{ThreeSpace} object \(sp \) contains a single closed curve component.

closedCurve \(([\text{listsOfPoints}, listOfPoints]) \)
closedCurve \((lpt) \) returns a \text{ThreeSpace} object containing a single closed curve described
by the list of points \textit{lpt} of the form \([p_0, p_1, \ldots, p_n, p_0]\).

\texttt{closedCurve}(sp) \textit{returns a closed curve as a list of points, where} \textit{sp} \textit{must be a ThreeSpace object containing a single closed curve.}

\texttt{closedCurve}(sp, lpt) \textit{returns ThreeSpace object with the closed curve denoted by} \textit{lpt} \textit{added. Argument} \textit{lpt} \textit{is a list of points of the form} \([p_0, p_1, \ldots, p_n, p_0]\).

\textbf{coefficient}(\textit{polynomialOrSeries, nonNegativeInteger})

\textbf{coefficient}(\textit{p, n}) \textit{extracts the coefficient of the monomial with exponent} \textit{n} \textit{from polynomial} \textit{p}, \textit{or returns zero if exponent is not present.}

\textbf{coefficient}(\textit{u, x, n}) \textit{returns the coefficient of variable} \textit{x} \textit{to the power} \textit{n} \textit{in} \textit{u}, \textit{a multivariate polynomial or series.}

\textbf{coefficient}(\textit{u, [x_1, \ldots], [n_1, \ldots]}) \textit{returns the coefficient of} \textit{x_1^{n_1} \cdots x_k^{n_k}} \textit{in} \textit{u}, \textit{a multivariate series or polynomial.}

\textit{Also defined for domain CliffordAlgebra and categories AbelianMonoidRing, FreeAbelianCategory, and MonogenicLinearOperator.}

\textbf{coefficient}(\textit{s, n}) \textit{returns the terms of total degree} \textit{n} \textit{of series} \textit{s} \textit{as a polynomial.}

\textbf{coefficients}(\textit{polynomialOrStream})

\textbf{coefficients}(\textit{p}) \textit{returns the list of non-zero coefficients of polynomial} \textit{p} \textit{starting with the coefficient of the maximum degree.}

\textbf{coefficients}(\textit{s}) \textit{returns a stream of coefficients} \([a_0, a_1, a_2, \ldots] \textit{for the stream} \textit{s}: a_0 + a_1 x + a_2 x^2 + \cdots. \textit{Note: the entries of the stream may be zero.}

\textbf{coerceImages}(\textit{listOfElements})

\textbf{coerceImages}(\textit{ls}) \textit{coerces the list} \textit{ls} \textit{to a permutation whose image is given by} \textit{ls} \textit{and whose preimage is fixed to be} \([1, \ldots, n]\). \textit{Note:} \textbf{coerceImages}(\textit{ls}) = \textbf{coercePreimagesImages}([1, \ldots, n], \textit{ls}).

\textbf{coerceListOfPairs}(\textit{listOfPairsOfElements})

\textbf{coerceListOfPairs}(\textit{lls}) \textit{coerces a list of pairs} \textit{lls} \textit{to a permutation, or calls error if not consistent, that is, the set of the first elements coincides with the set of second elements.}

\textbf{coercePreimagesImages}(\textit{listOfListOfElements})

\textbf{coercePreimagesImages}(\textit{lls}) \textit{coerces the representation} \textit{lls} \textit{of a permutation as a list of preimages and images to a permutation.}

\textbf{coelman}(\textit{listOfIntegers, listOfIntegers, listOfIntegers})

\textbf{coelman}(\textit{alpha, beta, pi}) \textit{generates the Coleman-matrix of a certain double coset of the symmetric group given by an representing element} \textit{pi} \textit{and} \textit{alpha} \textit{and} \textit{beta}. \textit{The matrix has nonnegative entries, row sums} \textit{alpha} \textit{and column sums} \textit{beta. Consult SymmetricGroupCombinatoricFunctions using Browse for details.}

\textbf{color}(\textit{integer})

\textbf{color}(\textit{i}) \textit{returns a color of the indicated hue} \textit{i.}

\textbf{colorDef}(\textit{viewPort, color, color})

\textbf{colorDef}(\textit{v, c_1, c_2}) \textit{sets the range of colors along the colormap so that the lower end of the}
colormap is defined by \(c_1 \) and the top end of the colormap is defined by \(c_2 \) for the given three-dimensional viewport \(v \).

colorFunction (smallFloatFunction)

colorFunction (\(fn \)) specifies the color for three-dimensional plots. Function \(fn \) can take one to three DoubleFloat arguments and always returns a DoubleFloat value. If one argument, the color is based upon the z-component of plot. If two arguments, the color is based on two parameter values. If three arguments, the color is based on the \(x \), \(y \), and \(z \) components. This command may be given as a draw option: colorFunction \(== \) \(fn \).

column (matrix, positiveInteger)

column (\(M; j \)) returns the \(j \)th column of the matrix or TwoDimensionalArrayCategory object \(M \), or calls error if the index is outside the proper range.

commaSeparate (listOfOutputForms)

commaSeparate (\(lo \)), where \(lo \) is a list of objects of type OutputForm (normally unexposed), returns an output form which separates the elements of \(lo \) by commas.

commonDenominator (fraction)

commonDenominator ([\(q_1, \ldots, \ldots \)]) returns a common denominator for the \(q_i \)'s.

commonDenominator (\(A \)), where \(A \) is a matrix of fractions, returns a common denominator for the elements of \(A \).

commonDenominator (\(p \)) returns a common denominator for the coefficients of polynomial \(p \).

commutative ()

commutative ()\(R \) tests if multiplication in the algebra \(R \) is commutative.

commutator (groupElement, groupElement)

commutator (\(p; q \)) computes \(\text{inv}(p) \ast \text{inv}(q) \ast p \ast q \) where \(p \) and \(q \) are members of a Group domain.

commutator (\(a; b \)) returns \(ab - ba \) where \(a \) and \(b \) are members of a NonAssociativeRing domain.

compactFraction (partialFraction)

compactFraction (\(u \)) normalizes the partial fraction \(u \) to a compact representation where it has only one fractional term per prime in the denominator.

comparison (basicOperator, property)

comparison (\(op; p \)) attaches \(p \) as the "\(\%less? \)" property to \(op \). If \(op1 \) and \(op2 \) have the same name, and one of them has a "\(\%less? \)" property \(p \), then \(p(op1, op2) \) is called to decide whether \(op1 \lt op2 \).

compile (symbol, listOfTypes)

compile (\(f; [T_1, \ldots, T_n] \)) forces the interpreter to compile the function with name \(f \) with signature \((T_1, \ldots, T_n) \rightarrow T \), where \(T \) is a type determined by type analysis of the function body of \(f \). If the compilation is successful, the operation returns the name \(f \). The
operation calls error if \(f \) is not defined beforehand in the interpreter, or if the \(T_i \)'s are not valid types, or if the compiler fails. See also function, interpret, lambda, and compiledFunction.

compiledFunction \((\text{expression}, \text{symbol} [, \text{symbol}])\)

Argument \text{expression} may be of any type that is coercible to type \text{InputForm} (most commonly used types). These functions must be package called to define the type of the function produced.

compiledFunction \((\text{expr}, x)P\), where \(P \) is \text{MakeUnaryCompiledFunction}(E, S, T), returns an anonymous function of type \(ST \) defined by defined by \(x \mapsto \text{expr} \). The anonymous function is compiled and directly applicable to objects of type \(S \).

compiledFunction \((\text{expr}, x, y)P\), where \(P \) is \text{MakeBinaryCompiledFunction}(E, A, B, T) returns an anonymous function of type \((A, B) \to T \) defined by \((x, y) \mapsto \text{expr} \). The anonymous function is compiled and is then directly applicable to objects of type \((A, B) \).

See also compile, function, and lambda.

complement \((\text{finiteSetElement})\)

complement \((u)\) returns the complement of the finite set \(u \), that is, the set of all values not in \(u \).

complementaryBasis \((\text{vector})\)

complementaryBasis \((b_1, \ldots, b_n)\) returns the complementary basis \((b'_1, \ldots, b'_n)\) of \((b_1, \ldots, b_n)\) for a domain of category \text{FunctionFieldCategory}.

complete \((\text{streamOrInteger})\)

complete \((u)\) causes all terms of a stream or continued fraction \(u \) to be computed. If not called on a finite stream or continued fraction, this function will compute until interrupted.

complete \((n)\) is the \(n \)th complete homogeneous symmetric function expressed in terms of power sums. Alternatively, it is the cycle index of the symmetric group of degree \(n \). See CycleIndicators for details.

completeEchelonBasis \((\text{vectorOfVectors})\)

completeEchelonBasis \((vv)\) returns a completed basis from \(vv \), a vector of vectors of domain elements. Consult RepresentationPackage2 using Browse for details.

complex \((\text{element}, \text{element})\)

complex \((x, y)\) creates the complex expression \(x + %i*y \).

complexEigenvalues \((\text{matrix}, \text{precision})\)

complexEigenvalues \((m, eps)\) computes the eigenvalues of the matrix \(m \) to precision \(eps \), chosen as a float or a rational number so as to agree with the type of the coefficients of the matrix \(m \).

complexEigenvectors \((\text{matrix}, \text{precision})\)

complexEigenvectors \((m, eps)\) \((m, \text{a matrix})\) returns a list of records, each containing a complex eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All results are expressed as complex floats or rationals with precision \(eps \).
complexElementary (expression, symbol)
complexElementary (e) rewrites e in terms of the two fundamental complex
transcendental elementary functions: log, exp.
complexElementary (e, x) does the same but only rewrites kernels of e involving x.

complexExpand (integrationResult)
complexExpand (ir), where ir is an IntegrationResult, returns the expanded complex
function corresponding to ir.

complexIntegrate (expression, variable)
complexIntegrate (f; x) returns \(\int f(x) \, dx \) where x is viewed as a complex variable.

complexLimit (expression, equation)
complexLimit (f; x = a) computes the complex limit of f as its argument x
approaches a.

complexNormalize (expression, symbol)
complexNormalize (e) rewrites e using the least possible number of complex independent
cernels.
complexNormalize (e, x) rewrites e using the least possible number of complex
independent kernels involving x.

complexNumeric (expression, positiveInteger)
complexNumeric (u) returns a complex approximation of u, where u is a polynomial or
an expression.
complexNumeric (u, n) does the same but requires accuracy to be up to n decimal places.

complexRoots (rationalFunctions, options)
complexRoots (rf; eps) finds all the complex solutions of a univariate rational function
with rational number coefficients with precision given by eps. The complex solutions are
returned either as rational numbers or floats depending on whether eps is a rational
number or a float.
complexRoots (lrf; lv; eps) similarly finds all the complex solutions of a list of rational
functions with rational number coefficients with respect the variables appearing in lv.
Solutions are computed to precision eps and returned as a list of values corresponding to
the order of variables in lv.

complexSolve (eq, x)
See solve (u, v).

complexZeros (polynomial, floatOrRationalNumber)
complexZeros (poly, eps) finds the complex zeros of the univariate polynomial poly to
precision eps. Solutions are returned either as complex floats or rationals depending on the
type of eps.

components (threeSpace)
components (sp) takes the ThreeSpace object sp, and returns a list of ThreeSpace objects,
each having a single component.

composite (*polynomial, polynomial*)

composite (*p, q*), for polynomials *p* and *q*, returns *f* if *p = f(q)*, and "failed" if no such *f* exists.

composite (*lsp*), where *lsp* is a list [*sp₁, sp₂, ..., spₙ*] of ThreeSpace objects, returns a single ThreeSpace object containing the union of all objects in the parameter list grouped as a single composite.

composites (*threeSpace*)

composites (*sp*) takes the ThreeSpace object *sp* and returns a list of ThreeSpace objects, one for each single composite of *sp*. If *sp* has no defined composites (composites need to be explicitly created), the list returned is empty. Note that not all the components need to be part of a composite.

concat (*aggregate, aggregate*)

concat! (*aggregate, aggregate*)

concat (*u, x*) returns list *u* with additional element *x* at the end. Note: equivalent to **concat** (*u, [x]*).

concat (*u, v*) returns an aggregate consisting of the elements of *u* followed by the elements of *v*.

concat (*u*), where *u* is a list of aggregates [*a, b, ..., c*], returns a single aggregate consisting of the elements of *a* followed by those of *b* followed ... by the elements of *c*.

concat! (*u, x*), where *u* is extensible, destructively adds element *x* to the end of aggregate *u*; if *u* is a stream, it must be finite.

concat! (*u, v*) destructively appends *v* to the end of *u*; if *u* is a stream, it must be finite.

conditionP (*matrix*)

conditionP (*M*), given a matrix *M* representing a homogeneous system of equations over a field *F* with characteristic *p*, returns a non-zero vector whose *p*th power is a non-trivial solution to these equations, or "failed" if no such vector exists.

conditionsForIdempotents ()

conditionsForIdempotents () determines a complete list of polynomial equations for the coefficients of idempotents with respect to the *R*-module basis. See also **FramedNonAssociativeAlgebra** for an alternate definition.

conical (*smallFloat, smallFloat*)

conical (*a, b*) returns a function of two parameters for mapping conical coordinates to Cartesian coordinates. The function maps the point (*λ, μ, ν*) to *x* = *λμν/(ab)*, *y* = *λ/a*/((*μν² - a²*)(*ν² - a²*)/((*a² - b²*))), *z* = *λ/b*/((*μν² - b²*)(*μν² - b²*)/((*b² - a²*))).

conjugate (*element, element*)

conjugate (*u*) returns the conjugate of a complex, quaternion, or octonian expression *u*. For example, if *u* is the complex expression *x + y* *i*, **conjugate** (*u*) returns *x - y* *i*.

conjugate (*pt*) returns the conjugate of a partition *pt*. See **PartitionsAndPermutations**
using Browse.

\texttt{conjugate}(p, q) \text{ returns } \text{inv}(q) \ast p \ast q \text{ for elements } p \text{ and } q \text{ of a group. Note: this operation is called right action by conjugation.}

\texttt{conjugates (streamOfPartitions)}
\texttt{conjugates (lp)} \text{ is the stream of conjugates of a stream of partitions } lp.

\texttt{connect (twoDimensionalViewport, positiveInteger, string)}
\texttt{connect (v, n, s)} \text{ displays the lines connecting the graph points in field } n \text{ of the two-dimensional viewport } v \text{ if } s = "on", \text{ and does not display the lines if } s = "off".

\texttt{constant (variableOrfunction)}
\texttt{constantLeft (function, element)}
\texttt{constantRight (function, element)}

These operations add an argument to a function and must be package-called from package \(P \) as indicated. See also \texttt{curry}, \texttt{curryLeft}, \text{ and } \texttt{curryRight}.

\texttt{constant (f)}\$P \text{ returns the function } g \text{ such that } g(a) = f(), \text{ where function } f \text{ has type } \text{ } A \to C \text{ and } a \text{ has type } A. \text{ The function must be package-called from } P = \text{MappingPackage2}(A, C).

\texttt{constantRight (f)}\$P \text{ returns the function } g \text{ such that } g(a, b) = f(a), \text{ where function } f \text{ has type } A \to C \text{ and } b \text{ has type } B. \text{ This function must be package-called from } P = \text{MappingPackage3}(A, B, C).

\texttt{constantLeft (f)}\$P \text{ returns the function } g \text{ such that } g(a, b) = f(b), \text{ where function } f \text{ has type } B \to C \text{ and } a \text{ has type } A. \text{ The function must be package-called from } P = \text{MappingPackage3}(A, B, C).

\texttt{constant (x)} \text{ tells the pattern matcher that } x \text{ should match the symbol } "x" \text{ and no other quantity, or calls error if } x \text{ is not a symbol.}

\texttt{constantOperator (property)}
\texttt{constantOpfCan (f)}

\texttt{constantOperator (f)} \text{ returns a nullary operator } op \text{ such that } op() \text{ always evaluate to } f.
\texttt{constantOpfCan (op)} \text{ returns } f \text{ if } op \text{ is the constant nullary operator always returning } f, \text{ and "failed" otherwise.}

\texttt{construct (element, ..)}
\texttt{construct (x, y, \ldots, z)}\$R \text{ returns the collection of elements } x, y, \ldots, z \text{ from domain } R \text{ ordered as given. This is equivalently written as } [x, y, \ldots, z]. \text{ The qualification } R \text{ may be omitted for domains of type List. Infinite tuples such as } [x, \text{ for } i \text{ in } 1..] \text{ are converted to a Stream object.}

\texttt{cons (element, listOrStream)}
\texttt{cons (x, u)} \text{, where u is a list or stream, creates a new list or stream whose first element is } x \text{ and whose rest is } u. \text{ Equivalent to } \texttt{concat (x, u)}.

\texttt{content (polynomial[, symbol])}
\texttt{content (p)} \text{ returns the greatest common divisor (gcd) of the coefficients of polynomial } p.
content \((p, v)\), where \(p\) is a multivariate polynomial type, returns the \(gcd\) of the coefficients of the polynomial \(p\) viewed as a univariate polynomial with respect to the variable \(v\). For example, if \(p = 7x^2y + 14xy^2\), the \(gcd\) of the coefficients with respect to \(x\) is \(7y\).

\textbf{continuedFraction} \((\text{fractionOrFloat}[\), \text{options}]\)
\textbf{continuedFraction} \((f)\) converts the floating point number \(f\) to a reduced continued fraction.
\textbf{continuedFraction} \((r)\) converts the fraction \(r\) with components of type \(R\) to a continued fraction.
\textbf{continuedFraction} \((r; s; s')\), where \(s\) and \(s'\) are streams over a domain \(R\), constructs a continued fraction in the following way: if \(s = [a_1, a_2, \ldots]\) and \(s' = [b_1, b_2, \ldots]\) then the result is the continued fraction \(r + a_1/(b_1 + a_2/(b_2 + \ldots))\).

\textbf{contract} \((\text{idealOrTensors}[\), \text{options}]\)
\textbf{contract} \((I; l\text{var})\) contracts the ideal \(I\) to the polynomial ring \(F[l\text{var}]\).
\textbf{contract} \((t; i; j)\) is the contraction of tensor \(t\) which sums along the \(i^{th}\) and \(j^{th}\) indices. For example, if \(r = \text{contract}(t, 1, 3)\) for a rank 4 tensor \(t\), then \(r\) is the rank 2 \((= 4 - 2)\) tensor given by \(r(i, j) = \sum_{h=1}^{\dim} t(h, i, h, j)\).
\textbf{contract} \((t; i; s; j)\) is the inner product of tensors \(s\) and \(t\) which sums along the \(k_1^{\text{st}}\) index of \(t\) and the \(k_2^{\text{st}}\) index of \(s\). For example, if \(r = \text{contract}(s, 2, t, 1)\) for rank 3 tensors \(s\) and \(t\), then \(r\) is the rank 4 \((= 3 + 3 - 2)\) tensor given by \(r(i, j, k, l) = \sum_{h=1}^{\dim} s(i, h, j)t(h, k, l)\).

\textbf{contractSolve} \((\text{equation}, \text{symbol})\)
\textbf{contractSolve} \((eq; x)\) finds the solutions expressed in terms of radicals of the equation of rational functions \(eq\) with respect to the symbol \(x\). The result contains new symbols for common subexpressions in order to reduce the size of the output. Alternatively, an expression \(u\) may be given for \(eq\) in which case the equation \(eq\) is defined as \(u = 0\).

\textbf{controlPanel} \((\text{viewport}, \text{string})\)
\textbf{controlPanel} \((v; s)\) displays the control panel of the given two-dimensional or three-dimensional viewport \(v\) if \(s = "\text{on}"\), or hides the control panel if \(s = "\text{off}"\).

\textbf{convergents} \((\text{continuedFraction})\)
\textbf{convergents} \((cf)\) returns the stream of the convergents of the continued fraction \(cf\). If the continued fraction is finite, then the stream will be finite.

\textbf{coordinate} \((\text{curveOrSurface}, \text{nonNegativeInteger})\)
\textbf{coordinate} \((u, n)\) returns the \(n^{th}\) coordinate function for the curve or surface \(u\). See \texttt{ParametericPlaneCurve}, \texttt{ParametricSpaceCurve}, and \texttt{ParametericSurface}, using HyperDoc.

\textbf{coordinates} \((\text{pointOrvector}[\), \text{basis}]\)
\textbf{coordinates} \((pt)\) specifies a change of coordinate systems of point \(pt\). This option is expressed in the form \(\text{coordinates} == pt\).

The following operations return a matrix representation of the coordinates of an argument vector \(v\) of the form \([v_1 \ldots v_n]\) with respect to the basis a domain \(R\). The coordinates of \(v_i\) are contained in the \(i^{th}\) row of the matrix returned.
coordinates \((v, b)\) returns the matrix representation with respect to the basis \(b\) for vector \(v\) of elements from domain \(R\) of category \(\text{FiniteRankNonAssociativeAlgebra}\) or \(\text{FiniteRankAlgebra}\). If a second argument is not given, the basis is taken to be the fixed basis of \(R\).

coordinates \((v)\)\$\(R\), returns a matrix representation for \(v\) with respect to a fixed basis for domain \(R\) of category \(\text{FiniteAlgebraicExtensionField}, \text{FramedNonAssociativeAlgebra}\), or \(\text{FramedAlgebra}\).

copies \((\text{integer}, \text{string})\)
copies \((n, s)\) returns a string composed of \(n\) copies of string \(s\).

copy \((\text{aggregate})\)
copy \((u)\) returns a top-level (non-recursive) copy of an aggregate \(u\). Note: for lists, \(\text{copy}(u) == [x \text{ for } x \text{ in } u]\).

copyInto! \((\text{aggregate}, \text{aggregate}, \text{integer})\)
copyInto! \((u;v;p)\) returns linear aggregate \(u\) with elements of \(u\) replaced by the successive elements of \(v\) starting at index \(p\). Arguments \(u\) and \(v\) can be elements of any \(\text{FiniteLinearAggregate}\).

cos \((\text{expression})\)
cosIfCan \((\text{expression})\)
Argument \(x\) can be a \(\text{Complex}, \text{Float}, \text{DoubleFloat}, \text{or Expression}\) value or a series. \(\text{cos}(x)\) returns the cosine of \(x\).

\(\text{cosIfCan}(x)\) returns \(\text{cos}(x)\) if possible, and "failed" otherwise.

cos2sec \((\text{expression})\)
cos2sec \((e)\) converts every \(\text{cos}(u)\) appearing in \(e\) into \(1/\text{sec}(u)\).

cosh2sech \((\text{expression})\)
cosh2sech \((e)\) converts every \(\text{cosh}(u)\) appearing in \(e\) into \(1/\text{sech}(u)\).

cosh \((\text{expression})\)
coshIfCan \((\text{expression})\)
Argument \(x\) can be a \(\text{Complex}, \text{Float}, \text{DoubleFloat}, \text{or Expression}\) value or a series. \(\text{cosh}(x)\) returns the hyperbolic cosine of \(x\).

\(\text{coshIfCan}(x)\) returns \(\text{cosh}(x)\) if possible, and "failed" otherwise.

cot \((\text{expression})\)
cotIfCan \((\text{expression})\)
Argument \(x\) can be a \(\text{Complex}, \text{Float}, \text{DoubleFloat}, \text{or Expression}\) value or a series. \(\text{cot}(x)\) returns the cotangent of \(x\).

\(\text{cotIfCan}(x)\) returns \(\text{cot}(x)\) if possible, and "failed" otherwise.

cot2tan \((\text{expression})\)
cot2tan \((e)\) converts every \(\text{cot}(u)\) appearing in \(e\) into \(1/\tan(u)\).
\text{cot}^{2}\text{trig}(\text{expression})\text{ converts every }\cot(u)\text{ appearing in }e\text{ into }\cos(u)/\sin(u).

\text{coth}(\text{expression})
\text{cothIfCan}(\text{expression})
Argument x can be a \text{Complex}, \text{Float}, \text{DoubleFloat}, or \text{Expression} value or a series.
\text{coth}(x)\text{ returns the hyperbolic cotangent of }x.
\text{cothIfCan}(x)\text{ returns }\text{coth}(x)\text{ if possible, and }"\text{failed}"\text{ otherwise.}

\text{coth}2\text{tanh}(\text{expression})
\text{coth}2\text{tanh}(\text{expression})\text{ converts every }\coth(u)\text{ appearing in }e\text{ into }1/\tanh(u).

\text{coth}2\text{trigh}(\text{expression})
\text{coth}2\text{trigh}(\text{expression})\text{ converts every }\coth(u)\text{ appearing in }e\text{ into }\cosh(u)/\sinh(u).

\text{count}(\text{predicate, aggregate})
\text{count}(\text{pred, u})\text{ returns the number of elements }x\text{ in }u\text{ such that }\text{pred}(x)\text{ is }\text{true}.\text{ For collections, }\text{count}(p, u) = \text{reduce}(+, [1 \text{ for } x \text{ in } u \mid p(x)], 0).
\text{count}(x, u)\text{ returns the number of occurrences of }x\text{ in }u.\text{ For collections, }\text{count}(x, u) = \text{reduce}(+, [x=y\text{ for } y \text{ in } u], 0).

\text{countable?}(\text{cardinal})
\text{countable?}(u)\text{ tests if the cardinal number }u\text{ is countable, that is, if }u \leq \text{Aleph0}.

\text{createThreeSpace}()
\text{createThreeSpace}(R)\text{ creates a }\text{ThreeSpace}\text{ object capable of holding point, curve, mesh components or any combination of the three. The ring }R\text{ is usually }\text{DoubleFloat}.\text{ If you do not package call this function, }\text{DoubleFloat}\text{ is assumed.}
\text{createThreeSpace}(s)\text{ creates a }\text{ThreeSpace}\text{ object containing objects pre-defined within some }\text{SubSpace}s.

\text{createGenericMatrix}(\text{nonNegativeInteger})
\text{createGenericMatrix}(n)\text{ creates a square matrix of dimension }n\text{ whose entry at the }i\text{-th row and }j\text{-th column is the indeterminate }x_{i,j}\text{ (double subscripted). See }\text{RepresentationPackage1}\text{ using Browse.}

\text{createIrreduciblePoly}(\text{nonNegativeInteger})
\text{createIrreduciblePoly}(n)\text{ }\text{FFPOLY}(GF)\text{ generates a monic irreducible polynomial of degree }n\text{ over the finite field }GF.

\text{createNormalElement}()
\text{createNormalElement}(F)\text{ computes a normal element over the ground field of a finite algebraic extension field }F,\text{ that is, an element }a\text{ such that }a^q, 0 \leq i < \text{extensionDegree}(F)\text{ is an }F\text{-basis, where }q\text{ is the size of the ground field.}

\text{createNormalPrimitivePoly}(\text{element})
\text{createNormalPrimitivePoly}(n)\text{ }\text{FFPOLY}(GF)\text{ generates a normal and primitive
polynomial of degree \(n \) over the field \(GF \).

\texttt{createPrimitiveElement()} \(F \) computes a generator of the (cyclic) multiplicative group of a finite field \(F \).

\texttt{createRandomElement(} \texttt{listOfMatrices, matrix)} \((lm, m) \) creates a random element of the group algebra generated by \(lm \), where \(lm \) is a list of matrices and \(m \) is a matrix. See \texttt{RepresentationPackage2} using Browse.

\texttt{csc2sin(expression)} \(\texttt{csc2sin(expression)} \) converts every \(\text{csc}(u) \) appearing in \(f \) into \(1/\sin(u) \).

\texttt{csch2sinh(expression)} \(\texttt{csch2sinh(expression)} \) converts every \(\text{csch}(u) \) appearing in \(f \) into \(1/\sinh(u) \).

\texttt{csch(expression)} \(\texttt{cschIfCan(expression)} \)

\texttt{Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.}

\texttt{csc(x)} returns the cosecant of \(x \).

\texttt{cscIfCan(x)} returns \(\text{csc}(x) \) if possible, and "failed" otherwise.

\texttt{cup(} \texttt{symmetricPolynomial, symmetricPolynomial)} \(\texttt{cup(s1, s2)} \), introduced by Redfield, is the scalar product of two cycle indices, where the \(s_i \) are of type \texttt{SymmetricPolynomial} with rational number coefficients. See also \texttt{cap}. See \texttt{CycleIndicators} for details.

\texttt{curve(} \texttt{listOfPoints[], options)} \(\texttt{curve([[p_0, p_1, \ldots, p_n]])} \) creates a space curve defined by the list of points \(p_0 \) through \(p_n \) and
returns a ThreeSpace object whose component is the curve.

curve *(sp)* checks to see if the ThreeSpace object *sp* is composed of a single curve defined by a list of points; if so, the list of points defining the curve is returned. Otherwise, the operation calls **error**.

curve *(c1, c2)* creates a plane curve from two component functions *c1* and *c2*. See **ComponentFunction** using Browse.

curve *(sp, [[p0], [p1],..., [pn]])* adds a space curve defined by a list of points *p0* through *pn* to a ThreeSpace object *sp*. Each *pi* is from a domain **PointDomain** *(m, R)*, where *R* is the **Ring** over which the point elements are defined and *m* is the dimension of the points.

curve *(s, [p0, p1,..., pn]*) adds the space curve component designated by the list of points *p0* through *pn* to the ThreeSpace object *sp*.

curve *(c1, c2, c3)* creates a space curve from three component functions *c1*, *c2*, and *c3*.

curve? *(threeSpace)*

curve? *(sp)* tests if the ThreeSpace object *sp* contains a single curve object.

curveColor *(float)*

curveColor *(p)* specifies a color index for two-dimensional graph curves from the palette *p*. This option is expressed in the form **curveColor == p**.

cycle *(listOfPermutations)*

cycle *(ls)* converts a cycle *ls*, a list with no repetitions, to the permutation, which maps *ls.i* to *(ls.(i + 1)) (index modulo the length of the list)*.

cycleEntry *(aggregate)*

cycleEntry *(u)* returns the head of a top-level cycle contained in aggregate *u*, or **empty** () if none exists.

cycleLength *(aggregate)*

cycleLength *(u)* returns the length of a top-level cycle contained in aggregate *u*, or 0 if *u* has no such cycle.

cyclePartition *(permutation)*

cyclePartition *(p)* returns the cycle structure of a permutation *p* including cycles of length 1. The permutation is assumed to be a member of **Permutation(S)** where *S* is a finite set.

cycleRagits *(radixExpansion)*

cycleRagits *(rx)* returns the cyclic part of the ragits of the fractional part of a radix expansion. For example, if *x* = 3/28 = 0.10714285714285..., then **cycleRagits(x)** = [7, 1, 4, 2, 8, 5].

cycleSplit! *(aggregate)*

cycleSplit! *(u)* splits the recursive aggregate (for example, a list) *u* into two aggregates by dropping off the cycle. The value returned is the cycle entry, or **nil** if none exists. For example, if *w* = **concat**(u, v) is the cyclic list where *v* is the head of the cycle, **cycleSplit!** *(w)* will drop *v* off *w*. Thus *w* is destructively changed to *u*, and *v* is returned.
cycles (listOfListofElements)
cycles (lls) coerces a list of list of cycles lls to a permutation. Each cycle, represented as a
list ls with no repetitions, is coerced to the permutation, which maps ls.i to ls.(i+1)
(index modulo the length of the list). These permutations are then multiplied.

cycleTail (aggregate)
cycleTail (u) returns the last node in the cycle of a recursive aggregate (for example, a
list) u, or empty if none exists.
cyclic (integer)
cyclic (n) returns the cycle index of the cyclic group of degree n. CycleIndicators for details.
cyclic? (aggregate)
cyclic? (u) tests if recursive aggregate (for example, a list) u has a cycle.
cyclicGroup (listOfIntegers)
cyclicGroup ([i1;::;ik]) constructs the cyclic group of order k acting on the list of
integers i1, . . . , ik. Note: duplicates in the list will be removed.
cyclicGroup (positiveInteger)
cyclicGroup (n) constructs the cyclic group of order n acting on the integers 1, . . . , n,
n>0.
cyclicSubmodule (listOfMatrices, vector)
cyclicSubmodule (lm, v), where lm is a list of n by n square matrices and v is a vector of
size n, generates a basis in echelon form. Consult RepresentationPackage2 using
Browse for details.
cylindrical (point)
cylindrical (pt) transforms pt from polar coordinates to Cartesian coordinates, by
mapping the point (r,theta,z) to \(x = r \cos(\theta), y = r \sin(\theta), z. \)

D (expression [options])
D (x) returns the derivative of x. This function is a simple differential operator where no
variable needs to be specified.
D (x, [s1;::;sn]) computes successive partial derivatives, that is, \(D(\ldots D(x,s_1)\ldots,s_n). \)
D (u, x) computes the partial derivative of u with respect to x.
D (u, deriv[n]) differentiates u n times using a derivation which extends deriv on R.
Argument n defaults to 1.
D (p, d, x') extends the R-derivation d to an extension R in R[x] where Dx is given by x',
and returns Dp.
D (x, [s1;::;sn],[n1;::;nm]) computes multiple partial derivatives, that is, \(D(\ldots D(x,s_1,n_1)\ldots,s_n,n_m). \)
D (u, x, n) computes multiple partial derivatives, that is, \(n^{th} \) derivative of u with respect
to x.
D (of[n]), where of is an object of type OutputForm (normally unexposed), returns an
output form for the n^{th} derivative of f, for example, f', f'', f''', f^{iv}, and so on.
\(D()\) provides the operator corresponding to the derivation in the differential ring A.

dark (color)
dark (color) returns the shade of the indicated hue of color to its lowest value.

\texttt{ddFact} (\texttt{polynomial}, \texttt{primeInteger})
\texttt{ddFact} \((q;p)\) computes a distinct degree factorization of the polynomial q modulo the prime p, that is, such that each factor is a product of irreducibles of the same degrees.

decimal (\texttt{rationalNumber})
decimal \((\texttt{rn})\) converts a rational number \texttt{rn} to a decimal expansion.

\texttt{declare} (\texttt{listOfInputForms})
\texttt{declare} \((t)\) returns a name f such that f has been declared to the interpreter to be of type t, but has not been assigned a value yet.

decreasePrecision (\texttt{integer})
decreasePrecision \((n)\) decreases the current precision by n decimal digits.

\texttt{definingPolynomial} ()
\texttt{definingPolynomial} \((\texttt{R})\) returns the minimal polynomial for a MonogenicAlgebra domain \texttt{R}, that is, one which \texttt{generator} \((\texttt{R})\) satisfies.
\texttt{definingPolynomial} \((x)\) returns an expression p such that $p(x) = 0$, where x is an AlgebraicNumber or an object of type Expression.

degree (\texttt{polynomial}[\[, \texttt{symbol}\]]\))
The meaning of degree\((u[\[, s]]\)) depends on the type of u. 1pc 0

 if u is a polynomial: degree \((u, x)\) returns the degree of polynomial u with respect to the variable x. Similarly, degree \((u, lv)\), where lv is a list of variables, returns a list of degrees of polynomial u with respect to each of the variables in lv.

 if u is an element of an AbelianMonoidRing or GradedModule domain: degree \((u)\) returns the maximum of the exponents of the terms of u.

 if u is a series: degree \((u)\) returns the degree of the leading term of u.

 if u is an element of a domain of category ExtensionField: degree \((u)\) returns the degree of the minimal polynomial of u if u is algebraic with respect to the ground field F, and $\%\text{infinity}$ otherwise.

 if u is a permutation: degree \((u)\) returns the number of points moved by the permutation.

 if u is a permutation group: degree \((u)\) returns the number of points moved by all permutations of the group u. For additional information on degree, consult Browse.
delete (aggregate, integerOrSegment)

delete(u, i) returns a copy of linear aggregate u with the i th element deleted. Note: for lists, delete(a, i) == concat(a(0..i-1), a(i + 1, ..)).

delete(u, i..j) returns a copy of u with the i th through j th element deleted. Note: for lists, delete(a, i..j) = concat(a(0..i-1), a(j+1..)).

delete!(u, i) destructively deletes the i th element of u.

delete!(u, i..j) destructively deletes elements u.i through u.j of u.

deleteProperty (basicOperator, string)

deleteProperty (op, s) destructively removes property s from op.

denom (expression)

denominator (expression)

Argument x can be from domain Fraction(R) for some domain R, or of type Expression if the result is of type R.
denom(x) returns the denominator of x as an object of domain R; if x is of type Expression, it returns an object of domain SMP(R, Kernel(Expression R)).
denominator(x) returns the denominator of x as an element of Fraction(R); if x is of type Expression, it returns an object of domain Expression(R).

denominators (fractionOrContinuedFraction)

denominator(frac) is the denominator of the fraction frac.
denominators(cf) returns the stream of denominators of the approximants of the continued fraction x. If the continued fraction is finite, then the stream will be finite.

depth (stack)

depth(st) returns the number of elements of stack st.

dequeue (queue)

dequeue! (queue)
dequeue([x, y, ..., z]) creates a queue with first (top or front) element x, second element y, ..., and last (bottom or back) element z.
dequeue!(q) destructively extracts the first (top) element from queue q. The element previously second in the queue becomes the first element. A call to error occurs if q is empty.

derivationCoordinates (vectorOfElements, derivationFunction)

derivationCoordinates(v, ') returns a matrix M such that v' = Mv. Argument v is a vector of elements from R, a domain of category MonogenicAlgebra over a ring R. Argument ' is a derivation function defined on R.

derivative (basicOperator[, property])

derivative(op) returns the value of the "%diff" property of op if it has one, and "failed" otherwise.
derivative(op, dprop) attaches dprop as the "%diff" property of op. Note: if op has a "%diff" property f, then applying a derivation D to op(a) returns f(a)D(a). Argument op
must be unary.

dervative (op, [f1, . . . , fn]) attaches [f1, . . . , fn] as the "%diff" property of op. Note: if op
has such a "%diff" property, then applying a derivation D to op(a1, . . . , an) returns
f1(a1, . . . , an)D(a1) + · · · + fn(a1, . . . , an)D(an).
See also D.

destruct (sExpression)
destruct (se), where se is the SExpression (a1, . . . , an), returns the list [a1, . . . , an].

determinant (matrix)
determinant (m) returns the determinant of the matrix m, or calls error if the matrix is
not square. Note: the underlying coefficient domain of m is assumed to have a
commutative “∗”.

diagonal (matrix)
diagonal (m), where m is a square matrix, returns a vector consisting of the diagonal
elements of m.
diagonal (f), where f is a function of type (A, A) → T is the function g such that
g(a) = f(a, a). See MappingPackage for related functions.

diagonal? (matrix)
diagonal? (m) tests if the matrix m is square and diagonal.

diagonalMatrix (listOfElements)
diagonalMatrix (l), where l is a list or vector of elements, returns a (square) diagonal
matrix with those elements of l on the diagonal.
diagonalMatrix ([m1, . . . , mk]) creates a block diagonal matrix M with block matrices
m1, . . . , mk down the diagonal, with 0 block matrices elsewhere.

diagonalProduct (matrix)
diagonalProduct (m) returns the product of the elements on the diagonal of the matrix
m.

dictionary ()
dictionary ()$R creates an empty dictionary of type R.
dictionary ([x, y, . . . , z]) creates a dictionary consisting of entries x, y, . . . , z.

difference (setAggregate, element)
difference (u, x) returns the set aggregate u with element x removed.
difference (u, v) returns the set aggregate w consisting of elements in set aggregate u but
not in set aggregate v.

differentialVariables (differentialPolynomial)
differentialVariables (p) returns a list of differential indeterminates occurring in a
differential polynomial p.
differentiate [expression [, options]]
See D.

digamma [complexDoubleFloat]
digamma [x] is the function, \(\psi(x) \), defined by \(\psi(x) = \Gamma'(x)/\Gamma(x) \). Argument x is either a small float or a complex small float.

digit ()
digit () returns the class of all characters for which digit? is true.

digit? [character]
digit? [ch] tests if character c is a digit character, that is, one of 0..9.

digits [[positiveInteger]]
digits () returns the current precision of floats in numbers of digits.
digits [n] set the precision of floats to n digits.

dihedral [integer]
dihedral [n] is the cycle index of the dihedral group of degree n.

dihedralGroup [listOfIntegers]
dihedralGroup [[i_1, \ldots, i_k]] constructs the dihedral group of order 2k acting on the integers \(i_1, \ldots, i_k \). Note: duplicates in the list will be removed.
dihedralGroup [n] constructs the dihedral group of order 2n acting on integers 1, \ldots, n.

dilog [expression]
dilog [x] returns the dilogarithm of x, that is, \(\int \log(x)/(1-x)dx \).

dim [color]
dim [c] sets the shade of a hue c, above dark but below bright.

dimension [[various]]
dimension ()$R \subseteq R$ returns the dimensionality of the vector space or rank of Lie algebra R.
dimension [I] gives the dimension of the ideal I.
dimension [s] returns the dimension of the point category s.

dioSolve [equation]
dioSolve [eq] computes a basis of all minimal solutions for a linear homomogeneous Diophantine equation eq, then all minimal solutions of the inhomogeneous equation. Alternatively, an expression u may be given for eq in which case the equation eq is defined as \(u = 0 \).

directory [filename]
directory [f] returns the directory part of the file name.
directProduct (vector)
directProduct (v) converts the vector v to become a direct product
discreteLog (finiteFieldElement)
discreteLog (a) computes the discrete logarithm of a with respect to
primitiveElement () of the field F.
discreteLog (finiteFieldElement, finiteFieldElement)
discreteLog (b, a) computes s such that $b^s = a$ if such an s exists.
discriminant (polynomial, symbol)
discriminant (p, x) returns the discriminant of the polynomial p with respect to
the variable x. If x is univariate, the second argument may be omitted.
discriminant () returns determinant (traceMatrix()) of a FramedAlgebra domain R.
discriminant ([v1, ..., vn]) returns determinant (traceMatrix([v1, ..., vn])) where the v_i each have n elements.
display (text, width)
display (t, w), where t is either IBM SCRIPT Formula Format or TeX text, outputs t so
that each line has length ≤ w. The default value of w is that length set by the system
command)set output length.
display (op, f) attaches f as the "%display" property of op.
display (op) returns the "%display" property of op if it has one attached, and "failed"
otherwise.
Value f either has type OutputForm → OutputForm or else List(OutputForm) →
OutputForm. Argument op must be unary. Note: if op has a "%display" property f of the
former type, then op(a) gets converted to OutputForm as f(a). If f has the latter type,
then op(a1, ..., an) gets converted to OutputForm as $f(a_1, ..., a_n)$.
distance (aggregate, aggregate)
distance (u, v), where u and v are recursive aggregates (for example, lists) returns the
path length (an integer) from node u to v.
distdfact (polynomial, boolean)
distdfact (p, squareFreeFlag) produces the complete factorization of the polynomial p
returning an internal data structure. If argument squareFreeFlag is true, the polynomial
is assumed square free.
distribute (expression, f)
distribute (f, g) expands all the kernels in f that contain g in their arguments and that
are formally enclosed by a box or a paren expression. By default, g is the list of all
kernels in f.
divide (element, element)
divide (x, y) divides x by y producing a record containing a quotient and remainder,
where the remainder is smaller (see sizeLess?) than the divisor y.

divideExponents *(polynomial, nonNegativeInteger)*

divideExponents (p, n) returns a new polynomial resulting from dividing all exponents of the polynomial p by the non negative integer n, or "failed" if no exponent is exactly divisible by n.

divisors *(integer)*

divisors (i) returns a list of the divisors of integer i.

domain *(typeAnyObject)*

domain (a) returns the type of the original object that was converted to Any as object of type $SExpression$.

domainOf *(typeAnyObject)*

domainOf (a) returns a printable form of the type of the original type of a, an object of type Any.

dot *(vector, vector)*

dot (v_1, v_2) computes the inner product of the vectors v_1 and v_2, or calls **error** if x and y are not of the same length.

dot (of), where of is an object of type **OutputForm** (normally unexposed), returns an output form with one dot overhead ($\cdot x$).

doubleRank *(element)*

doubleRank (x), where x is an element of a domain R of category **FramedNonAssociativeAlgebra**, determines the number of linearly independent elements in $b_1 x, \ldots, b_n x$, where $b = [b_1, \ldots, b_n]$ is the fixed basis for R.

doublyTransitive? ()

doublyTransitive? (p) tests if polynomial p, is irreducible over the field K generated by its coefficients, and if $p(X)/(X - a)$ is irreducible over $K(a)$ where $p(a) = 0$.

draw *(functionOrExpression, range [, options]*)

f, g, and h below denote user-defined functions which map one or more **DoubleFloat** values to a **DoubleFloat** value.

draw $(f, a..b)$ draws the two-dimensional graph of $y = f(x)$ as x ranges from $\min (a, b)$ to $\max (a, b)$.

draw $(curve(f, g), a..b)$ draws the two-dimensional graph of the parametric curve $x = f(t), y = g(t)$ as t ranges from $\min (a, b)$ to $\max (a, b)$.

draw $(f, a..b, c..d)$ draws the three-dimensional graph of $z = f(x, y)$ as x ranges from $\min (a, b)$ to $\max (a, b)$ and y ranges from $\min (c, d)$ to $\max (c, d)$.

draw $(curve(f, g, h), a..b)$ draws a three-dimensional graph of the parametric curve $x = f(t), y = g(t), z = h(t)$ as t ranges from $\min (a, b)$ to $\max (a, b)$.

draw $(surface(f, g, h), a..b, c..d)$ draws the three-dimensional graph of the parametric
surface \(x = f(u, v) \), \(y = g(u, v) \), \(z = h(u, v) \) as \(u \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \) and \(v \) ranges from \(\text{min} (c, d) \) to \(\text{max} (c, d) \).

Arguments \(f \), \(g \), and \(h \) below denote an Expression involving the variables indicated as arguments. For example, \(f(x, y) \) denotes an expression involving the variables \(x \) and \(y \).

draw \((f(x), x = a..b) \) draws the two-dimensional graph of \(y = f(x) \) as \(x \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \).

draw \((\text{curve}(f(t), g(t)), t = a..b) \) draws the two-dimensional graph of the parametric curve \(x = f(t) \), \(y = g(t) \) as \(t \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \).

draw \((f(x, y), x = a..b, y = c..d) \) draws the three-dimensional graph of \(z = f(x, y) \) as \(x \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \) and \(y \) ranges from \(\text{min} (c, d) \) to \(\text{max} (c, d) \).

draw \((\text{curve}(f(t), g(t), h(t)), t = a..b) \) draws the three-dimensional graph of the parametric curve \(x = f(t) \), \(y = g(t) \), \(z = h(t) \) as \(t \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \).

draw \((\text{surface}(f(u, v), g(u, v), h(u, v)), u = a..b, v = c..d) \) draws the three-dimensional graph of the parametric surface \(x = f(u, v) \), \(y = g(u, v) \), \(z = h(u, v) \) as \(u \) ranges from \(\text{min} (a, b) \) to \(\text{max} (a, b) \) and \(v \) ranges from \(\text{min} (c, d) \) to \(\text{max} (c, d) \).

Each of the draw operations optionally take options given as extra arguments.

\text{adaptive}==\text{true} \quad \text{turns on adaptive plotting.}

\text{clip}==\text{true} \quad \text{turns on two-dimensional clipping.}

\text{colorFunction}==f \quad \text{specifies the color based on a function.}

\text{coordinates}==p \quad \text{specifies a change of coordinate systems of point} \; p: \text{bipolar, bipolarCylindrical, conical, elliptic, ellipticCylindrical, oblateSpheroidal, parabolic, parabolicCylindrical, paraboloidal, prolateSpheroidal, spherical, and toroidal}

\text{curveColor}==p \quad \text{specifies a color index for two-dimensional graph curves from the pallete} \; p.

\text{pointColor}==p \quad \text{specifies a color index for two-dimensional graph points from the pallete} \; p.

\text{range}==[a..b] \quad \text{provides a user-specified range for implicit curve plots.}

\text{space}==sp \quad \text{adds the current graph to ThreeSpace object} \; sp.

\text{style}==s \quad \text{specifies the drawing style in which the graph will be plotted: wire, solid, shade, smooth.}

\text{title}==s \quad \text{titles the graph with string} \; s.

\text{toScale}==\text{true} \quad \text{causes the graph to be drawn to scale.}

\text{tubePoints}==n \quad \text{specifies the number of points} \; n \text{ defining the circle which creates the tube around a three-dimensional curve. The default value is 6.}

\text{tubeRadius}==r \quad \text{specifies a Float radius} \; r \text{ for a tube plot around a three-dimensional curve.}

\text{unit}==[a..b] \quad \text{marks off the units of a two-dimensional graph in increments} \; a \text{ along the x-axis,} \; b \text{ along the y-axis.}

\text{var1Steps}==n \quad \text{indicates the number of subdivisions} \; n \text{ of the first range variable.}

\text{var2Steps}==n \quad \text{indicates the number of subdivisions} \; n \text{ of the second range variable.}

drawToScale ([\text{boolean}])

drawToScale () \quad \text{tests if plots are currently to be drawn to scale.}
drawToScale (true) causes plots to be drawn to scale. drawToScale (false) causes plots to be drawn to fill up the viewport window. The default setting is false.

duplicates (dictionary)
duplicates (d) returns a list of values which have duplicates in d

Ei (variable)
Ei (x) returns the exponential integral of x: ∫ exp(x)/xdx.

eigenMatrix (matrix)
eigenMatrix (A) returns the matrix B such that BA(inverse B) is diagonal, or "failed" if no such B exists.

eigenvalues (matrix)
eigenvalues (A), where A is a matrix with rational function coefficients, returns the eigenvalues of the matrix A which are expressible as rational functions over the rational numbers.

eigenvector (eigenvalue, matrix)
eigenvector (eigval, A) returns the eigenvectors belonging to the eigenvalue eigval for the matrix A.

eigenvectors (matrix)
eigenvectors (A) returns the eigenvalues and eigenvectors for the matrix A. The rational eigenvalues and the corresponding eigenvectors are explicitly computed. The non-rational eigenvalues are defined via their minimal polynomial. Their corresponding eigenvectors are expressed in terms of a "generic" root of this polynomial.

element? (polynomial, ideal)
element? (f, I) tests if the polynomial f belongs to the ideal I.

elementary (integer)
elementary (n) is the nth elementary symmetric function expressed in terms of power sums. See CycleIndicators for details.

elliptic (scaleFactor)
elliptic (r) returns a function for transforming elliptic coordinates to Cartesian coordinates. The function returned will map the point (u, v) to x = r cosh(u) cos(v), y = r sinh(u) sin(v).

eellipticCylindrical (scaleFactor)
eellipticCylindrical (r) returns a function for transforming elliptic cylindrical coordinates to Cartesian coordinates as a function of the scale factor r. The function returned will map the point (u,v,z) to x = r cosh(u) cos(v), y = r sinh(u) sin(v), z.

egt (structure, various [, . . .])
egt (u,v), usually written as u.v or u(v), regards the structure u as a function and applies
structure u to argument v. Many types export elt with multiple arguments; $\text{elt}(u, v, w \ldots)$ is generally written $u(v, w \ldots)$. The interpretation of u depends on its type. If u is: 1pc 0

an indexed aggregate such as a list, stream, vector, or string: $u.i$, $1 \leq i \leq \text{maxIndex}(u)$, is equivalently written $u(i)$ and returns the i th element of u. Also, $u(i, y)$ returns $u(i)$ if i is an appropriate index for u, and y otherwise.

ea linear aggregate: $u(i..j)$ returns the aggregate of elements of $u(k)$ for $k = i, i + 1, \ldots, j$ in that order.

ea basic operator: $u(x)$ applies the unary operator u to x; similarly, $u[x_1, \ldots, x_n]$ applies the n-ary operator u to x_1, \ldots, x_n. Also, $u(x, y)$, $u(x, y, z)$, and $u(x, y, z, w)$ respectively apply the binary, ternary, or 4-ary operator u to arguments.

ea univariate polynomial or rational function: $u(y)$ evaluates the rational function or polynomial with the distinguished variable replaced by the value of y; this value may either be another rational function or polynomial or a member of the underlying coefficient domain.

ea list: u.first is equivalent to first (u) and returns the first element of list u. Also, u.last is equivalent to last (u) and returns the last element of list u. Both of these call error if u is the empty list. Similarly, u.rest is equivalent to rest (u) and returns the list u beginning at its second element, or calls error if u has less than two elements.

ea library: $u(name)$ returns the entry in the library stored under the key $name$.

ea linear ordinary differential operator: $u(x)$ applies the differential operator u to the value x.

ea matrix or two-dimensional array: $u(i,j[,x])$, $1 \leq i \leq \text{nrows}(u), 1 \leq j \leq \text{ncols}(m)$, returns the element in the i th row and j th column of the matrix m. If the indices are out of range and an extra argument x is provided, then x is returned; otherwise, error is called. Also, $u([i_1, \ldots, i_m], [j_1, \ldots, j_m])$ returns the m-by-n matrix consisting of elements $u(i_k, j_l)$ of u.

ea permutation group: $u(i)$ returns the i-th generator of the group u.

ea point: $u.i$ returns the i th component of the point u.

ea rewrite rule: $u(f[,n])$ applies rewrite rule u to expression f at most n times, where $n = \infty$ by default. When the left-hand side of u matches a subexpression of f, the subexpression is replaced by the right-hand side of u producing a new f. After n iterations or when no further match occurs, the transformed f is returned.

ea ruleset: $u(f[,n])$ applies ruleset u to expression f at most n times, where $n = \infty$ by default. Similar to last case, except that on each iteration, each rule in the ruleset is applied in turn in attempt to find a match.
an SEExpression \((a_1, \ldots, a_n \quad b)\) (where \(b\) denotes the cdr of the last node): \(u.\) returns \(a_i\); similarly \(u.[i_1, \ldots, i_m]\) returns \((a_{i_1}, \ldots, a_{i_m})\).

A univariate series: \(u(r)\) returns the coefficient of the term of degree \(r\) in \(u\).

A symbol: \(u[a_1, \ldots, a_n]\) returns \(u\) subscripted by \(a_1, \ldots, a_n\).

A cartesian tensor: \(u(r)\) gives a component of a rank 1 tensor; \(u([i_1, \ldots, l_n])\) gives a component of a rank \(n\) tensor; \(u()\) gives the component of a rank 0 tensor. Also: \(u(i, j), u(i, j, k),\) and \(u(i, j, k, l)\) gives a component of a rank 2, 3, and 4 tensors respectively.

See also QuadraticForm, FramedNonAssociativeAlgebra, and FunctionFieldCategory.

empty ()
empty ()\(\mathbb{R}\) creates an aggregate of type \(\mathbb{R}\) with 0 elements.

empty? (aggregate)
empty? (u) tests if aggregate \(u\) has 0 elements.

endOfFile? (file)
endOfFile? (f) tests whether the file \(f\) is positioned after the end of all text. If the file is open for output, then this test always returns true.

enqueue! (value, queue)
enqueue! (x; q) inserts \(x\) into the queue \(q\) at the back end.

enterPointData (space, listOfPoints)
enterPointData (s; \([p_0, p_1, \ldots, p_n]\)) adds a list of points from \(p_0\) through \(p_n\) to the ThreeSpace \(s\), and returns the index of the start of the list.

entry? (value, aggregate)
entry? (x, u), where \(u\) is an indexed aggregate (such as a list, vector, or string), tests if \(x\) equals \(u.i\) for some index \(i\).

epilogue (formattedObject)
epilogue (t) extracts the epilogue section of an IBM SCRIPT Formula Format or \(\text{\LaTeX}\) formatted object \(t\).

eq (sExpression, sExpression)
eq(s, t), for SEExpressions \(s\) and \(t\) returns true if EQ\((s, t)\) is true in Common Lisp.

eq? (aggregate, aggregate)
eq? (u, v) tests if two aggregates \(u\) and \(v\) are same objects in the Axiom store.

equality (operator, function)
equality (op, f) attaches \(f\) as the "\%equal?" property to \(op\). Argument \(f\) must be a boolean-valued "equality" function defined on BasicOperator objects. If \(op1\) and \(op2\) have
the same name, and one of them has an "\%equal?" property \(f \), then \(f(op1, op2) \) is called to decide whether \(op1 \) and \(op2 \) should be considered equal.

equation \((\text{expression}_1, \text{expression}_2) \)

equation \((a, b) \) creates the equation \(a = b \).

equation \((v, a..b) \), also written: \(v = a..b \), creates a segment binding value with variable \(v \) and segment \(a..b \).

erf \((\text{variable}) \)

erf \((x) \) returns the error function of \(x \):

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int e^{-x^2} dx.
\]

error \((\text{string}[1..2]) \)

error \((\text{msg}) \) displays error message \(\text{msg} \) and terminates. Argument \(\text{msg} \) is either a string or a list of strings.

error \((\text{name}, \text{msg}) \) is similar except that the error message is preceded by a message saying that the error occurred in a function named \(\text{name} \).

euclideanGroebner \((\text{ideal}[1..2], \text{string}[1..2], \text{string}[1..2]) \)

euclideanGroebner \((lp[1..2], \text{"info"}, \text{"redcrit"}) \) computes a Gröbner basis for a polynomial ideal over a Euclidean domain generated by the list of polynomials \(lp \). If the string "info" is given as a second argument, a summary is given of the critical pairs. If the string "redcrit" is given as a third argument, the critical pairs are printed.

euclideanNormalForm \((\text{polynomial}, \text{groebnerBasis}) \)

euclideanNormalForm \((poly, gb) \) reduces the polynomial \(poly \) modulo the precomputed Gröbner basis \(gb \) giving a canonical representative of the residue class.

euclideanSize \((\text{element}) \)

euclideanSize \((x) \) returns the Euclidean size of the element \(x \), or calls **error** if \(x \) is zero.

eulerPhi \((\text{positiveInteger}) \)

eulerPhi \((n) \) returns the number of integers between 1 and \(n \) (including 1) which are relatively prime to \(n \). This is the Euler phi function \(\phi(n) \), also called the totient function.

euler \((\text{positiveInteger}) \)

euler \((n) \) returns the \(n \)th Euler number. This is \(2^n E(n, 1/2) \), where \(E(n, x) \) is the \(n \)th Euler polynomial.

eval \((\text{expression}[1..2], \text{options}) \)

Many domains have forms of the **eval** defined. Here are some the most common forms.

eval \((f) \) unquotes all the quoted operators in \(f \).

eval \((f, x = v) \) replaces symbol or expression \(x \) by \(v \) in \(f \); if \(x \) is an expression, it must be retractable to a single Kernel.

eval \((f, [x_1 = v_1, \ldots, x_n = v_n]) \) returns \(f \) with symbols or expressions \(x_i \) replaced by \(v_i \) in parallel; if \(x_i \) is an expression, it must be retractable to a single Kernel.

eval \((f, [x_1, \ldots, x_n]) \) unquotes all the quoted operations in \(f \) whose name is one of the
eval \(f; x \) unquotes all quoted operators in \(f \) whose name is \(x \).

eval \(e; s; f \) replaces every subexpression of \(e \) of the form \(s(a_1, \ldots, a_n) \) by \(f(a_1, \ldots, a_n) \).
The function \(f \) can have type \(\text{Expression} \rightarrow \text{Expression} \) if \(s \) is a unary operator; otherwise \(f \) must have signature \(\text{List(Expression)} \rightarrow \text{Expression} \).

eval \(e; [s_1, \ldots, s_n]; [f_1, \ldots, f_n] \), replaces every subexpression of \(e \) of the form \(s_i(a_1, \ldots, a_n) \) by \(f_i(a_1, \ldots, a_n) \). If all the \(s_i \)’s are unary operators, the functions \(f_i \) can have signature \(\text{Expression} \rightarrow \text{Expression} \); otherwise, the \(f_i \) must have signature \(\text{List(Expression)} \rightarrow \text{Expression} \).

eval \(p; el \), where \(p \) is a permutation, returns the image of element \(el \) under \(p \).

eval \(s \), where \(s \) is of type \(\text{SymmetricPolynomial} \) with rational number coefficients, returns the sum of the coefficients of a cycle index. See CycleIndicators for details.

eval \(f; s \), where \(s \) is of type \(\text{SymmetricPolynomial} \) with rational number coefficients and \(f \) is a function of type \(\text{Integer} \rightarrow \text{Algebra Fraction Integer} \), evaluates the cycle index \(s \) by applying the function \(f \) to each integer in a monomial partition, forms their product and sums the results over all monomials. See EvaluateCycleIndicators for details.

evaluate \(\text{operator}, \text{function} \)

evaluate \(\text{op} \) returns the value of the "%eval" property of BasicOperator object \(\text{op} \) if it has one, and "failed" otherwise.

evaluate \(\text{op}; f \) attaches \(f \) as the "%eval" property of \(\text{op} \). If \(\text{op} \) has an "%eval" property \(f \), then applying \(\text{op} \) to a returns the result of \(f(a) \). If \(f \) takes a single argument, then applying \(\text{op} \) to a value \(a \) returns the result \(f(a) \). If \(f \) takes a list of arguments, then applying \(\text{op} \) to \(a_1, \ldots, a_n \) returns the result of \(f(a_1, \ldots, a_n) \).

Argument \(f \) may also be an anonymous function of the form \(u + - > g(u) \). In this case, \(g \) must be additive, that is, \(g(a + b) = g(a) + g(b) \) for any \(a \) and \(b \) in \(R \). This implies that \(g(na) = ng(a) \) for any \(a \) in \(R \) and integer \(n > 0 \).

even? \(\text{integerNumber} \)
even? \(\text{n} \) tests if integer \(n \) is even.
even? \(\text{p} \) tests if permutation \(p \) is an even permutation, that is, that the \(\text{sign}(p) = 1 \).
every? \(\text{predicate}, \text{aggregate} \)
every? \(\text{pred}; u \) tests if \(\text{pred}(x) \) is true for all elements \(x \) of \(u \).

exists? \(\text{file} \)
exists? \(\text{f} \) tests if the file \(f \) exists in the file system.

exp \(\text{expression} \)

expIfCan \(\text{x} \)
exp \(\text{x} \) returns \%e to the power \(x \).
expIfCan \(\text{z} \) returns exp(z) if possible, and "failed" otherwise.

exp1 ()
exp1 ()$R returns exp 1: 2.7182818284... either a float or a small float according to whether \(R = \text{Float} \) or \(R = \text{DoubleFloat} \).
\texttt{expand} \((expression)\)
\texttt{expand} \((f)\) performs the following expansions on \texttt{Expression} \(f : 1\text{pc} 0\)

- Logs of products are expanded into sums of logs.
- Trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions.
- Formal powers of the form \((a/b)^c\) are expanded into \(a^{c}b^{(-c)}\).

\texttt{expand} \((ir)\), where \(ir\) is an \texttt{IntegrationResult}, returns the list of possible real functions corresponding to \(ir\).
\texttt{expand} \((lseg)\), where \(lseg\) is a list of segments, returns a list with all segments expanded. For example, \texttt{expand} \([[1..4, 7..9]] = [1, 2, 3, 4, 7, 8, 9].\)
\texttt{expand} \((l..h \text{ by } k)\) returns a list of explicit elements. For example, \texttt{expand(1..5 by 2)} = [1, 3, 5].
\texttt{expand} \((f)\) returns an unfactored form of factored object \(f\).

\texttt{expandLog} \((expression)\)
\texttt{expandLog} \((f)\) converts every \(\log(a=b)\) appearing in \texttt{Expression} \(f\) into \(\log(a) - \log(b)\).

\texttt{expandPower} \((expression)\)
\texttt{expandPower} \((f)\) converts every power \((a/b)^c\) appearing in \texttt{Expression} \(f\) into \(a^{c}b^{-c}\).

\texttt{explicitEntries?} \((stream)\)
\texttt{explicitEntries?} \((s)\) tests if the stream \(s\) has explicitly computed entries.

\texttt{explicitlyEmpty?} \((stream)\)
\texttt{explicitlyEmpty?} \((s)\) tests if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.

\texttt{explicitlyFinite?} \((stream)\)
\texttt{explicitlyFinite?} \((s)\) tests if the stream \(s\) has a finite number of elements. Note: for many datatypes, \texttt{explicitlyFinite?}(s) = \texttt{not possiblyInfinite?}(s).

\texttt{exponent} \((\text{floatOrFactorized})\)
\texttt{exponent} \((fl)\) returns the \texttt{exponent} part of a float or small float \(fl\).
\texttt{exponent} \((u)\), where \(u\) is a factored object, returns the exponent of the first factor of \(u\), or 0 if the factored object consists solely of a unit.

\texttt{expressIdealMember} \((\text{listOfIdeals, ideal})\)
\texttt{expressIdealMember} \(([f_1, \ldots, f_n], h)\) returns a representation of ideal \(h\) as a linear combination of the ideals \(f_i\) or "failed" if \(h\) is not in the ideal generated by the \(f_i\).

\texttt{exptMod} \((\text{polynomial, nonNegativeInteger, polynomial [, prime]}\)\)
\texttt{exptMod} \((u, k, v[, p])\) raises the polynomial \(u\) to the \(k\)th power modulo the polynomial \(v\). If a prime \(p\) is given, the power is also computed modulo that prime.
exquo (element, element)
exquo(a,b) either returns an element c such that cb = a or "failed" if no such element can be found. Values a and b are members of a domain of category IntegerDomain.
exquo(A,r) returns the exact quotient of the elements of matrix A by coefficient r, or calls error if this is not possible.

extend (stream, integer)
extend(ps,n), where ps is a power series, causes all terms of ps of degree ≤ n to be computed.
extend(st,n), where st is a stream, causes entries to be computed so that st has at least n explicit entries, or so that all entries of st are finite with length ≤ n.

extendedEuclidean (element, element)
Arguments x, y, and z are members of a domain of category EuclideanDomain.
exdEuclidean(x,y) returns a record rec containing three fields: coef1, coef2, and generator where rec.coef1 * x + rec.coef2 * y = rec.generator and rec.generator is a gcd of x and y. The gcd is unique only up to associates if canonicalUnitNormal is not asserted. Note: See principalIdeal for a version of this operation which accepts an arbitrary length list of arguments.
exdEuclidean(x,y,z) either returns a record rec of two fields coef1 and coef2 where rec.coef1 * x + rec.coef2 * y = z, and "failed" if z cannot be expressed as such a linear combination of x and y.

extendedIntegrate (rationalFnct, symbol, rationalFnct)
exdIntegrate(f,x;g) returns fractions [h;c] such that dh/dx = 0 and dh/dx = f - cg if (h,c) exist, and "failed" otherwise.

extensionDegree ()
exdDegree()$F returns the degree of the field extension F if the extension is algebraic, and infinity if it is not.

extension (filename)
exd(filename) returns the type part of the file name fn as a string.

extract! (bag)
extract! (bg) destructively removes a (random) item from bag bg.

extractBottom! (dequeue)
exdBottom! (d) destructively extracts the bottom (back) element from the dequeue d, or calls error if d is empty.

extractTop! (dequeue)
exdTop! (d) destructively extracts the top (front) element from the dequeue d, or calls error if d is empty.

e (positiveInteger)
e(n) produces the appropriate unit element of a CliffordAlgebra.
factor (polynomial[, numbers])

factor (x) returns the factorization of x into irreducibles, where x is a member of any domain of category UniqueFactorizationDomain.

factor (p, lan), where p is a polynomial and lan is a list of algebraic numbers, factors p over the extension generated by the algebraic numbers given by the list lan.

factor (upoly, prime), where upoly is a univariate polynomial and prime is a prime integer, returns the list of factors of upoly modulo the integer prime p, or calls error if upoly is not square-free modulo p.

factorFraction (fraction)

factorFraction (r) factors the numerator and the denominator of the polynomial fraction r.

factorGroebnerBasis (listOfPolynomials[, boolean])

factorGroebnerBasis (basis[, flag]) checks whether the basis contains reducible polynomials and uses these to split the basis. Information about partial results is given if a second argument of true is given.

factorials (expression[, sygobl])

factorials (f[, x]) rewrites the permutations and binomials in f in terms of factorials. If a symbol x is given as a second argument, the operation rewrites only those terms involving x.

factorial (expression)

factorial (n), where n is an integer, returns the integer value of n! = \prod_{i=1}^{n} i.

factorial (n), where n is an expression, returns a formal expression denoting n! Note: n! = n(n-1)! when n > 0; also, 0! = 1.

factorList (factoredForm)

factorList (f), for a factored form f, returns list of records. Each record corresponds to a factor of f and has three fields: flg, fctr, and xpnt. The fctr lists the factor and xpnt, the exponent. The flg is one of the strings: "nil", "sqfr", "irred", or "prime".

factorPolynomial (polynomial)

factorPolynomial (p) returns the factorization of a sparse univariate polynomial p as a factored form.

factors (factoredForm)

factors (u) returns a list of the factors of a factored form u in a form as a list suitable for iteration. Each element in the list is a record containing both a factor and exponent field.

factorsOfCyclicGroupSize ()

factorsOfCyclicGroupSize () returns the factorization of size () – 1

factorSquareFreePolynomial (polynomial)

factorSquareFreePolynomial (p) factors the univariate polynomial p into irreducibles, where p is known to be square free and primitive with respect to its main variable.
fibonacci (nonNegativeInteger)

filename (directory, name, extension)
filename(d, n, e) creates a file name with string d as its directory, string n as its name and string e as its extension.

fill! (aggregate, value)
fill!(a, x) replaces each entry in aggregate a by x. The modified a is returned. If a is a domain of category TwoDimensionalArrayCategory such as a matrix, fill!(a, x) sets every element of a to x.

filterUntil (predicate, stream)
filterUntil(p, s) returns $[x_0, x_1, \ldots, x_n]$, where stream $s = [x_0, x_1, x_2, \ldots]$ and n is the smallest index such that $p(x_n) = true$.

filterWhile (predicate, stream)
filterWhile(pred, s) returns $[x_0, x_1, \ldots, x_{(n-1)}]$ where $s = [x_0, x_1, x_2, \ldots]$ and n is the smallest index such that $p(x_n) = false$.

find (predicate, aggregate)
find(pred, u) returns the first x in u such that pred(x) is true, and "failed" if no such x exists.

findCycle (nonNegativeInteger, stream)
findCycle(n, st) determines if stream st is periodic within n terms. The operation returns a record with three fields: cycle?, prefix, and period. If cycle? has value true, period denotes the period of the cycle, and prefix gives the number of terms in the stream before the cycle begins.

finite? (cardinalNumber)
finite?(f) tests if expression f is finite.
finite?(a) tests if cardinal number a is a finite cardinal, that is, an integer.

finite? (cardinalNumber)
fintegrate (taylorSeries, symbol, coefficient)
fintegrate(s, v, c) integrates the series s with respect to variable v and having c as the constant of integration.

first (aggregate[], nonNegativeInteger)
first(u) returns the first element x of aggregate u.
first(u, n) returns a copy of the first n elements of u.

fixedPoint (function[], positiveInteger)
fixedPoint(f), a function of type $A \rightarrow A$, is the fixed point of function f. That is, fixedPoint(f) = f(fixedPoint(f)).
fixedPoint \((f,n)\), where \(f\) is a function of type \(\text{List}(A) \rightarrow \text{List}(A)\) and \(n\) is a positive integer, is the fixed point of function \(f\) which is assumed to transform a list of length \(n\).

fixedPoints \((\text{permutation})\)

fixedPoints \((p)\) returns the points fixed by the permutation \(p\).

flagFactor \((\text{base}, \text{exponent}, \text{flag})\)

flagFactor \((\text{base}, \text{exponent}, \text{flag})\) creates a factored object with a single factor whose base is asserted to be properly described by the information \(\text{flag}\): one of the strings "nil", "sqfr", "irred", and "prime".

flatten \((\text{inputForm})\)

flatten \((s)\) returns an input form corresponding to \(s\) with all the nested operations flattened to triples using new local variables. This operation is used to optimize compiled code.

flexible? \((\text{})\)

flexible? \((\text{R})\) tests if \(2\text{associator}(a, b, a) = 0\) for all \(a, b\) in a domain \(R\) of category FiniteRankNonAssociativeAlgebra. Note: only this can be tested since, in general, it is not known whether \(2a = 0\) implies \(a = 0\).

flexibleArray \((\text{listOfElements})\)

flexibleArray \((ls)\) creates a flexible array from a list of elements \(ls\).

float? \((\text{sExpression})\)

float? \((s)\) is true if \(s\) is an atom and belongs to Flt.

float \((\text{integer, integer}[, \text{positiveinteger}])\)

float \((a, e)\) returns \(a\text{base}(e)\) as a float.

float \((a, e, b)\) returns \(ab^e\) as a float.

floor \((\text{rationalNumber})\)

floor \((fr)\), where \(fr\) is a fraction, returns the largest integral element below \(fr\).

floor \((fl)\), where \(fl\) is a float, returns the largest integer \(<= fl\).

formula \((\text{formulaFormat})\)

formula \((t)\) extracts the formula section of an IBM SCRIPT Formula formatted object \(t\).

fractionPart \((\text{fraction})\)

fractionPart \((x)\) returns the fractional part of \(x\). Argument \(x\) can be a fraction, a radix (binary, decimal, or hexadecimal) expansion, or a float. Note: \(x = \text{whole}(x) + \text{fractionPart}(x)\).

fractRadix \((\text{listOfIntegers}, \text{listOfIntegers})\)

fractRadix \((pre, cyc)\) creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example, fractRadix \(([1],[6])\) will return 0.16666666\ldots
fractRagits (radixExpansion)

`fractRagits` returns the ragits of the fractional part of a radix expansion as a stream of integers.

freeOf? (expression, kernel)

`freeOf?` tests if expression does not contain any operator whose name is the symbol or kernel.

Frobenius (element)

`Frobenius` returns `a` where `q` is the size of extension field `F`.

front (queue)

`front` returns the element at the front of the queue, or calls `error` if the queue is empty.

frst (stream)

`frst` returns the first element of stream. Warning: this function should only be called after an `empty?` test has been made since there is no error check.

function (expression, name[, options])

Most domains provide an operation which converts objects to type `InputForm`. Argument `e` denotes an object from such a domain. These operations create user-functions from already computed results.

Gamma (smallFloat)

`Gamma` is the Euler gamma function, defined by

\[\Gamma(x) = \int_0^\infty t^{x-1} \exp(-t) dt. \]

gcdPolynomial (polynomial, polynomial)

`gcdPolynomial` returns the `gcd` of the univariate polynomials `p` and `q`.

gcd (element[, element, element])

`gcd` returns the greatest common divisor of `x` and `y`. Arguments `x` and `y` are elements of a domain of category `GcdDomain`.

generalizedContinuumHypothesisAssumed? (bool)

`generalizedContinuumHypothesisAssumed?` tests if the hypothesis is currently assumed.

`generalizedContinuumHypothesisAssumed?` dictates that the hypothesis is or is
not to be assumed, according to whether \texttt{bool} is true or false.

\texttt{generalPosition (ideal, listOfVariables)}

\texttt{generalPosition (I, listvar)} performs a random linear transformation on the variables in \texttt{listvar} and returns the transformed ideal \texttt{I} along with the change of basis matrix.

\texttt{generate (function[, element])}

\texttt{generate (f)}, where \texttt{f} is a function of no arguments, creates an infinite stream all of whose elements are equal to the value of \texttt{f()}. Note: \texttt{generate (f) = [f(), f(), f()\ldots]}.

\texttt{generate (f, x)}, where \texttt{f} is a function of one argument, creates an infinite stream whose first element is \texttt{x} and whose \texttt{n}th element \texttt{(n > 1)} is \texttt{f} applied to the previous element. Note: \texttt{generate (f, x) = [x, f(x), f(f(x))\ldots]}.

See also \texttt{HallBasis}.

\texttt{generator ()}

\texttt{generator ()}\R returns a root of the defining polynomial of a domain of category \texttt{FiniteAlgebraicExtensionField} \texttt{R}. This element generates the field as an algebra over the ground field.

See also \texttt{MonogenicAlgebra} and \texttt{FreeNilpotentLie}.

\texttt{generators (ideal)}

\texttt{generators (I)} returns a list of generators for the ideal \texttt{I}.

\texttt{generators (gp)} returns the generators of a permutation group \texttt{gp}.

\texttt{genus ()}

\texttt{genus ()}\R returns the genus of the algebraic function field \texttt{R}. If \texttt{R} has several absolutely irreducible components, then the genus of one of them is returned.

\texttt{getMultiplicationMatrix ()}

\texttt{getMultiplicationTable ()}

\texttt{getMultiplicationMatrix ()}\R returns a matrix multiplication table for domain \texttt{FiniteFieldNormalBasis(p, n)}, a finite extension field of degree \texttt{n} over the domain \texttt{PrimeField(p)} with \texttt{p} elements. Each element of the matrix is a member of the underlying prime field.

\texttt{getMultiplicationTable ()}\R is similar except that the multiplication table for the normal basis of the field is represented by a vector of lists of records, each record having two fields: \texttt{value}, an element of the prime field over which the domain is built, and \texttt{index}, a small integer. This table is used to perform multiplications between field elements.

\texttt{getVariableOrder ()}

\texttt{getVariableOrder ()} returns \texttt{[[b_1, \ldots, b_m], [a_1, \ldots, a_n]]} such that the ordering on the variables was given by \texttt{setVariableOrder ([b_1, \ldots, b_m], [a_1, \ldots, a_n])}.

\texttt{getZechTable ()}

\texttt{getZechTable ()}\F returns the Zech logarithm table of the field \texttt{F} where \texttt{F} is some domain \texttt{FiniteFieldCyclicGroup(p, extdeg)}. This table is used to perform additions in the field quickly.
grømschmidt \((\text{listOfMatrices})\)

Argument \(lv\) has the form of a list of matrices of elements of type \Expression{}.

grømschmidt \((lv)\) converts the list of column vectors \(lv\) into a set of orthogonal column vectors of Euclidean length 1 using the Gram-Schmidt algorithm.

graphs \((\text{integer})\)

graphs \((n)\) is the cycle index of the group induced on the edges of a graph by applying the symmetric function to the \(n\) nodes. See \CycleIndicators{} for details.

green ()

green () returns the position of the green hue from total hues.

groebner \((\text{listOfPolynomials})\)

groebner \((lp)\) computes a Gröbner basis for a polynomial ideal generated by the list of polynomials \(lp\).

groebner \((I)\) returns a set of generators of ideal \(I\) that are a Gröbner basis for \(I\).

groebner \((lp,infoflag)\) computes a Gröbner basis for a polynomial ideal generated by the list of polynomials \(lp\). Argument \(infoflag\) is used to get information on the computation. If \(infoflag\) is "\text{info}\", then summary information is displayed for each s-polynomial generated. If \(infoflag\) is "\text{redcrit}\", the reduced critical pairs are displayed. To get the display of both kinds of information, use **groebner** \((lp,"\text{info","redcrit}\))

groebner? \((\text{ideal})\)

groebner? \((I)\) tests if the generators of the ideal \(I\) are a Gröbner basis.

groebnerIdeal \((\text{listOfPolynomials})\)

groebnerIdeal \((lp)\) constructs the ideal generated by the list of polynomials \(lp\) assumed to be a Gröbner basis. Note: this operation avoids a Gröbner basis computation.

groebnerFactorize \((\text{listOfPolynomials}[\text{options}])\)

groebnerFactorize \((lp[,bool])\) returns a list of list of polynomials, each inner list denoting a Gröbner basis. The union of the solutions of the bases is the solution of the system of equations given by \(lp\). Information about partial results is printed if a second argument is given with value \text{true}.

groebnerFactorize \((lp,\text{nonZeroRestrictions}[,bool])\), where \text{nonZeroRestrictions} is a list of polynomials, is similar. Here, however, the solutions to the system of equations are computed under the restriction that the polynomials in the second argument do not vanish. Information about partial results is printed if a third argument with value \text{true} is given.

ground \((expression)\)

ground? \((expression)\)

ground \((p)\) retracts expression polynomial \(p\) to the coefficient ring, or calls \error{} if such a retraction is not possible.

ground? \((p)\) tests if an expression or polynomial \(p\) is a member of the coefficient ring. See also **ground?**.
harmonic (positiveInteger)
harmonic (n) returns the n-th harmonic number, defined by $H[n] = \sum_{k=1}^{n} 1/k$.

has (domain, property)
has (R, prop) tests if domain R has property prop. Argument prop is either a category, operation, an attribute, or a combination of these. For example, Integer has Ring and Integer has commutative("*").

has? (operation, property)
has? (op, s) tests if property s is attached to op.

hash (number)
hash (n) returns the hash code for n, an integer or a float.

hasHi (segment)
hasHi (seg) tests whether the segment seg has an upper bound. For example, hasHi (1..) = false.

hasSolution? (matrix, vector)
hasSolution? (A; B) tests if the linear system AX = B has a solution, where A is a matrix and B is a (column) vector.

hconcat (outputForms [], outputForm[])
hconcat (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed), returns an output form for the horizontal concatenation of forms o1 and o2.
hconcat (lof), where lof is a list of objects of type OutputForm (normally unexposed), returns an output form for the horizontal concatenation of the elements of lof.

heap (listOfElements)
heap (ls) creates a Heap of elements consisting of the elements of ls.

heapSort (predicate, aggregate)
heapSort (pred; agg) sorts the aggregate agg with the ordering function pred using the heapsort algorithm.

height (expression)
height (f), where f is an expression, returns the highest nesting level appearing in f. Constants have height 0. Symbols have height 1. For any operator op and expressions f1, ..., fn, op(f1, ..., fn) has height equal to $1 + max(height(f1), ..., height(fn))$.
height (d) returns the number of elements in dequeue d. Note: height (d) = #d.

hermiteH (nonNegativeInteger, element)
hermiteH (n, x) is the n-th Hermite polynomial, $H[n](x)$, defined by $\exp(2tx - t^2) = \sum_{n=0}^{\infty} H[n](x)t^n/n!$.

hexDigit ()
hexDigit () returns the class of all characters for which hexDigit? is true.
APPENDIX E. OPERATIONS

hexDigit? (character)
hexDigit? (c) tests if c is a hexadecimal numeral, that is, one of 0..9, a..f or A..F.

hex (rationalNumber)
hex (r) converts a rational number to a hexadecimal expansion.

hi (segment)
hi (s) returns the second endpoint of segment s. For example, hi(l..h) = h.

horizConcat (matrix, matrix)
horizConcat (x, y) horizontally concatenates two matrices with an equal number of rows. The entries of y appear to the right of the entries of x. The operation calls error if the matrices do not have the same number of rows.

htrigs (expression)
htrigs (f) converts all the exponentials in expression f into hyperbolic sines and cosines.

hue (palette)
hue (p) returns the hue field of the indicated palette p.

hue (color)
hue (c) returns the hue index of the indicated color c.

hypergeometric0F1 (complexDF, complexSF)
hypergeometric0F1 (c; z) is the hypergeometric function 0F1(c; z). Arguments c and z are both either small floats or complex small floats.

ideal (polyList)
ideal (polyList) constructs the ideal generated by the list of polynomials polyList.

imag (expression)
imagI (quaternionOrOctonion)
imagI (octonion)
imag (x) extracts the imaginary part of a complex value or expression x.
imagI (q) extracts the i part of quaternion q. Similarly, operations imagJ, and imagK are used to extract the j and k parts.
imagI (o) extracts the i part of octonion o. Similarly, imagJ, imagk, imagE, imagI, imagJ, and imagK are used to extract other parts.

implies (boolean, boolean)
implies (a, b) tests if boolean value a implies boolean value b. The result is true except when a is true and b is false.

in? (ideal, ideal)
in? (I, J) tests if the ideal I is contained in the ideal J.
inHallBasis (integer, integer, integer, integer)
inHallBasis?(n, leftCandidate, rightCandidate, left) tests to see if a new element should be added to the P. Hall basis being constructed. The list [leftCandidate, wt, rightCandidate] is included in the basis if in the unique factorization of rightCandidate, we have left factor leftOfRight, and leftOfRight <= leftCandidate

increasePrecision (integer)
increasePrecision(n) increases the current precision by n decimal digits.

index (positiveInteger)
index(i) takes a positive integer i less than or equal to size() and returns the i th element of the set. This operation establishes a bijection between the elements of the finite set and 1..size().

index? (index, aggregate)
index?(i, u) tests if i is an index of aggregate u. For example, index?(2, [1, 2, 3]) is true but index?(4, [1, 2, 3]) is false.

infieldIntegrate (rationalFunction, symbol)
infieldIntegrate(f, x), where f is a fraction of polynomials, returns a fraction g such that \(\frac{dg}{dx} = f \) if g exists, and "failed" otherwise.

infinite? (orderedCompletion)
infinite?(x) tests if x is infinite, where x is a member of the ordered completion of a domain. See OrderedCompletion using Browse.

infinity()
infinity() returns infinity denoting +\(\infty \) as a one point completion of the integers. See OnePointCompletion using Browse. See also minusInfinity and plusInfinity.

infix (outputForm, outputForms]

infix(o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a list of objects of type OutputForm, creates a form depicting the nary application of infix operation o to a tuple of arguments lo.
infix(o, a, b), where o, a, and b are objects of type OutputForm (normally unexposed), creates an output form which displays as: a op b.

initial (differentialPolynomial)
initial(p) returns the leading coefficient of differential polynomial p expressed as a univariate polynomial in its leader.

initializeGroupForWordProblem (group[], integer, integer]
initializeGroupForWordProblem(gp[], n, m) initializes the group gp for the word problem. Consult PermutationGroup using Browse for details.

input (operator[], function)
input(op) returns the "$input" property of op if it has one attached, and "failed"
otherwise.

\texttt{input}(\texttt{op}, f)\;\texttt{attaches}\;f\;\texttt{as}\;\texttt{the}\;"\%input"\;\texttt{property}\;of\;\texttt{op}.\;If\;\texttt{op}\;\texttt{has}\;a\;"\%input"\;\texttt{property}\;f,\;then\;\texttt{op}(a_1,\ldots, a_n)\;\texttt{is}\;\texttt{converted}\;to\;\texttt{InputForm}\;using\;f(a_1,\ldots, a_n).\;\texttt{Argument}\;f\;\texttt{must}\;be\;a\;function\;with\;signature\;\texttt{List(InputForm)}\;\rightarrow\;\texttt{InputForm}.

\texttt{inRadical?}(\texttt{polynomial}, \texttt{ideal})
\texttt{inRadical?}(f; I)\;\texttt{tests}\;if\;some\;power\;of\;the\;polynomial\;f\;\texttt{belongs}\;to\;the\;ideal\;I.

\texttt{insert}(x, \texttt{aggregate}[\ ,\ integer])
\texttt{insert}(x, u, i)\;\texttt{returns}\;a\;copy\;of\;u\;\texttt{having}\;x\;\texttt{as}\;its\;i^{th}\;\texttt{element}.
\texttt{insert}(v, u, k)\;\texttt{returns}\;a\;copy\;of\;u\;\texttt{having}\;v\;\texttt{inserted}\;\texttt{beginning}\;at\;the\;i^{th}\;\texttt{element}.
\texttt{insert!}(x, u)\;\texttt{destructively\;inserts}\;\texttt{item}\;x\;\texttt{into}\;\texttt{bag}\;u.
\texttt{insert!}(x, u, i)\;\texttt{destructively\;inserts}\;\texttt{item}\;x\;\texttt{as}\;a\;leaf\;\texttt{into}\;\texttt{binary\;search\;tree\;or\;binary\;tournament}\;u.
\texttt{insert!}(x, u, i)\;\texttt{destructively\;inserts}\;x\;\texttt{into}\;\texttt{aggregate}\;u\;\texttt{at}\;\texttt{position}\;i.
\texttt{insert!}(v, u, i)\;\texttt{destructively\;inserts}\;aggregate\;v\;\texttt{into}\;u\;\texttt{at}\;\texttt{position}\;i.
\texttt{insert!}(x, u, i)\;\texttt{destructively\;inserts}\;n\;\texttt{copies}\;of\;x\;\texttt{into}\;\texttt{dictionary}\;d.

\texttt{insertBottom!}(element, queue)
\texttt{insertBottom!}(x; d)\;\texttt{destructively\;inserts}\;x\;\texttt{into}\;the\;dequeue\;d\;\texttt{at}\;the\;bottom\;(back)\;of\;the\;dequeue.

\texttt{insertTop!}(element, dequeue)
\texttt{insertTop!}(x; d)\;\texttt{destructively\;inserts}\;x\;\texttt{into}\;the\;dequeue\;d\;\texttt{at}\;the\;top\;(front).\;The\;element\;previously\;at\;the\;top\;of\;the\;dequeue\;becomes\;the\;second\;in\;the\;dequeue,\;and\;so\;on.

\texttt{integer}(expression)
\texttt{integer?}(expression)
\texttt{integerIfCan}(expression)
\texttt{integer}(x)\;\texttt{returns}\;x\;\texttt{as}\;an\;integer,\;\texttt{or\;calls}\;\texttt{error}\;\texttt{if\;this\;is\;not\;possible}.
\texttt{integer?}(x)\;\texttt{tests\;if}\;\texttt{expression}\;x\;\texttt{is}\;\texttt{an}\;\texttt{integer}.
\texttt{integerIfCan}(x)\;\texttt{returns}\;\texttt{expression}\;x\;\texttt{as\;of\;type}\;\texttt{Integer}\;\texttt{or\;else}\;"\texttt{failed}"\;\texttt{if\;it\;cannot}.

\texttt{integerPart}(float)
\texttt{integerPart}(fl)\;\texttt{returns}\;the\;integer\;part\;of\;the\;mantissa\;of\;float\;fl.

\texttt{integral}(expression, symbol)
\texttt{integral}(expression, segmentBinding)
\texttt{integral}(f, x)\;\texttt{returns}\;the\;formal\;\texttt{integral}\;\int f dx.
\texttt{integral}(f, x = a..b)\;\texttt{returns}\;the\;formal\;\texttt{definite\;integral}\;\int_a^b f(x)dx.

\texttt{integralBasis}()
\texttt{integralBasisAtInfinity}()
\texttt{Domain\;F}\;\texttt{is}\;\texttt{the}\;\texttt{domain\;of}\;\texttt{functions}\;\texttt{on}\;\texttt{a}\;\texttt{fixed}\;\texttt{curve}.\;\texttt{See}\;\texttt{FunctionFieldCategory}\;\texttt{using}\;\texttt{Browse}.
\texttt{integralBasisAtInfinity}()F\;\texttt{returns}\;the\;local\;\texttt{integral\;basis\;at\;infinity}$.
integralBasis()F returns the integral basis for the curve.

integralCoordinates(function
integralCoordinates(f), where f is a function on a curve defined by domain F, returns the coordinates of f with respect to the integralBasis()F as polynomials A_i together with a common denominator d. Specifically, the operation returns a record having selector num with value $[A_1, \ldots, A_n]$ and selector den with value d such that $f = (A_1 w_1 + \ldots + A_n w_n)/d$ where (w_1, \ldots, w_n) is the integral basis. See FunctionFieldCategory using Browse.

integralDerivationMatrix(function
integralDerivationMatrix(d) extends the derivation d and returns the coordinates of the derivative of f with respect to the integralBasis()F as a matrix of polynomials and a common denominator Q. Specifically, the operation returns a record having selector num with value M and selector den with value Q such that the ith row of M divided by Q form the coordinates of f with respect to integral basis (w_1, \ldots, wn). See FunctionFieldCategory using Browse.

integralMatrix ()
integralMatrixAtInfinity ()
Domain F is a domain of functions on a fixed curve. These operations return a matrix which transform the natural basis to an integral basis. See FunctionFieldCategory using Browse.

integralMatrix() returns M such that $(w_1, \ldots, w_n) = M(1, y, \ldots, y^{n-1})$, where (w_1, \ldots, w_n) is the integral basis returned by integralBasis()F.

integralMatrixAtInfinity()F returns matrix M which transforms the natural basis such that $(v_1, \ldots, v_n) = M(1, y, \ldots, y^{n-1})$ where (v_1, \ldots, v_n) is the local integral basis at infinity returned by integralBasisAtInfinity()F.

integralRepresents(vector, commonDenominator
integralRepresents$([A_1, \ldots, A_n], d)$ is the inverse of the operation integralCoordinates defined for domain F, a domain of functions on a fixed curve. Given the coordinates as polynomials $[A_1, \ldots, A_n]$ over a common denominator d, this operation returns the function represented as$(A_1 w_1 + \ldots + A_n w_n)/d$ where (w_1, \ldots, w_n) is the integral basis returned by integralBasis()F. See FunctionFieldCategory using Browse.

integrate(expression
integrate(expression, variable [, options])
integrate(f) returns the integral of a univariate polynomial or power series f with respect to its distinguished variable.

integrate(f, x) returns the integral of $f(x)dx$, where x is viewed as a real variable.

integrate$(f, x = a..b,"noPole")$ returns the integral of $f(x)dx$ from a to b. If it is not possible to check whether f has a pole for x between a and b, then a third argument "noPole" will make this function assume that f has no such pole. This operation calls error if f has a pole for x between a and b or if a third argument different from "noPole" is
given.

\textbf{interpret} \((\text{inputForm})\)

$\text{interpret } (f)$ passes \(f\) of type \texttt{InputForm} to the interpreter.

$\text{interpret } (f)P$, where \(P\) is the package \texttt{InputFormFunctions1(R)} for some type \(R\), passes \(f\) of type \texttt{InputForm} to the interpreter, and transforms the result into an object of type \(R\).

\textbf{intersect} \((\text{elements}[\cdot, \text{element}])\)

$\text{intersect } (li)$, where \(li\) is a list of ideals, computes the intersection of the list of ideals \(li\).

$\text{intersect } (u,v)$, where \(u\) and \(v\) are sets, returns the set \(w\) consisting of elements common to both sets \(u\) and \(v\). See also \texttt{Multiset}.

$\text{intersect } (I,J)$, where \(I\) and \(J\) are ideals, computes the intersection of the ideals \(I\) and \(J\).

\textbf{inv} \((\text{element})\)

$\text{inv } (x)$ returns the multiplicative inverse of \(x\), where \(x\) is an element of a domain of category \texttt{Group} or \texttt{DivisionRing}, or calls \texttt{error} if \(x\) is 0.

\textbf{inverse} \((\text{matrix})\)

$\text{inverse } (A)$ returns the inverse of the matrix \(A\), or "\texttt{failed}" if the matrix is not invertible, or calls \texttt{error} if the matrix is not square.

\textbf{inverseColeman} \((\text{listOfIntegers}, \text{listOfIntegers}, \text{matrix})\)

$\text{inverseColeman } (alpha, beta, C)$ returns the lexicographically smallest permutation in a double coset of the symmetric group corresponding to a non-negative Coleman-matrix.
Consult \texttt{SymmetricGroupCombinatoricFunctions} using \texttt{Browse} for details.

\textbf{inverseIntegralMatrix} \((\cdot)\)

\textbf{inverseIntegralMatrixAtInfinity} \((\cdot)\)

Domain \(F\) is a domain of functions on a fixed curve. These operations return a matrix which transform an integral basis to a natural basis. See \texttt{FunctionFieldCategory} using \texttt{Browse}.

$\text{inverseIntegralMatrix } ()F$ returns \(M\) such that \(M(w_1,\ldots,w_n) = (1,y,\ldots,y^{n-1})\) where \((w_1,\ldots,w_n)\) is the integral basis returned by \texttt{integralBasis } ()F$. See also \texttt{integralMatrix}.

$\text{inverseIntegralMatrixAtInfinity } ()$ returns \(M\) such that \(M(v_1,\ldots,v_n) = (1,y,\ldots,y^{(n-1)})\) where \((v_1,\ldots,v_n)\) is the local integral basis at infinity returned by \texttt{integralBasisAtInfinity } ()F$. See also \texttt{integralMatrixAtInfinity}.

\textbf{inverseLaplace} \((\text{expression}, \text{symbol}, \text{symbol})\)

$\text{inverseLaplace } (f,s,t)$ returns the Inverse Laplace transform of \(f(s)\) using \(t\) as the new variable, or "\texttt{failed}" if unable to find a closed form.

\textbf{invmod} \((\text{positiveInteger}, \text{positiveInteger})\)

$\text{invmod } (a,b)$, for relatively prime positive integers \(a\) and \(b\) such that \(a < b\), returns \(1/a \mod b\).
iomode (file)

iomode (f) returns the status of the file f as one of the following strings: "input", "output" or "closed".

irreducible? (polynomial)

irreducible? (p) tests whether the polynomial p is irreducible.

irreducibleFactor (element, integer)

irreducibleFactor (base, exponent) creates a factored object with a single factor whose base is asserted to be irreducible (flag = "irred").

irreducibleRepresentation (listOfIntegers, permutations)

irreducibleRepresentation (lambda[, pi]) returns a matrix giving the irreducible representation corresponding to partition lambda, represented as a list of integers, in Young's natural form of the permutation pi in the symmetric group whose elements permute 1, 2, ..., n. If a second argument is not given, the permutation is taken to be the following two generators of the symmetric group, namely (12) (2-cycle) and (12...n) ((n)-cycle).

is? (expression, pattern)

is? (expr, pat) tests if the expression expr matches the pattern pat.

is? (expression, op) tests if expression is a kernel and is its operator is op.

isAbsolutelyIrreducible? (listOfMatrices, integer)

isAbsolutelyIrreducible? (aG, numberOfTries) uses Norton's irreducibility test to check for absolute irreducibility. Consult RepresentationPackage2 using Browse for details.

isExpt (expression[, operator])

isExpt (p[, op]) returns a record with two fields: var denoting a kernel x, and exponent denoting an integer n, if expression p has the form p = x^n and n ≠ 0. If a second argument op is given, x must have the form op(a) for some a.

isMult (expression)

isMult (p) returns a record with two fields: coef denoting an integer n, and var denoting a kernel x, if p has the form n * x and n ≠ 0, and "failed" if this is not possible.

isobaric? (differentialPolynomial)

isobaric? (p) tests if every differential monomial appearing in the differential polynomial p has the same weight.

isPlus (expression)

isPlus (p) returns [m_1, ..., m_n] if p has the form m_1 + ... + m_n for n > 1 and m_i ≠ 0, and "failed" if this is not possible.

isTimes (expression)

isTimes (p) returns [a_1, ..., a_n] if p has the form a_1 * ... * a_n for n > 1 and m_i ≠ 1, and
failed" if this is not possible.

Is (subject, pattern)
Is(expr, pat) matches the pattern pat on the expression expr and returns a list of matches \[v_1 = e_1, \ldots, v_n = e_n\] or "failed" if matching fails. An empty list is returned if either expr is exactly equal to pat or if pat does not match expr.

jacobi (integer, integer)
jacobi(a, b) returns the Jacobi symbol \(J(a/b)\). When \(b\) is odd, \(J(a/b) = \prod_{p \in \text{factors}(b)} L(a/p)\). Note: by convention, 0 is returned if \(\gcd(a, b) \neq 1\).

jacobiIdentity? ()
jacobiIdentity?() tests if \((ab)c + (bc)a + (ca)b = 0\) for all \(a, b, c\) in a domain of FiniteRankNonAssociativeAlgebra. For example, this relation holds for crossed products of three-dimensional vectors.

janko2 ([listOfIntegers])
janko2() constructs the janko group acting on the integers 1, \ldots, 100.
janko2([li]) constructs the janko group acting on the 100 integers given in the list li. The default value of li is \([1, \ldots, 100]\). This operation removes duplicates in the list and calls error if li does not have exactly 100 distinct entries.

jordanAdmissible? ()
jordanAlgebra? ()
jordanAdmissible?() \(F\), where \(F\) is a member of FiniteRankNonAssociativeAlgebra\(R\) over a commutative ring \(R\), tests if 2 is invertible in \(R\) and if the algebra defined by \{a, b\} defined by \((1/2)(ab + ba)\) is a Jordan algebra, that is, satisfies the Jordan identity.
jordanAlgebra?() \(F\) tests if the algebra is commutative, that characteristic() \(F \neq 2\), and \((ab)a^2 - a(ba^2) = 0\) for all \(a\) and \(b\) in the algebra (Jordan identity). Example: for every associative algebra \((A, +, \otimes)\), you can construct a Jordan algebra \((A, +, \cdot)\), where \(a \cdot b := (a \otimes b + b \otimes a)/2\).

kernel (operator, expression)
kernellop; (x) constructs \(op(x)\) without evaluating it.
kernellop; ([f_1, \ldots, f_n]) constructs \(op(f_1, \ldots, f_n)\) without evaluating it.

kernels (expression)
kernels (f) returns the list of all the top-level kernels appearing in expression \(f\), but not the ones appearing in the arguments of the top-level kernels.

key? (key, dictionary)
keys (dictionary)
key? (k, d) tests if \(k\) is a key in dictionary \(d\). Dictionary \(d\) is an element of a domain of category KeyedDictionary\(K, E\), where \(K\) and \(E\) denote the domains of keys and entries.
keys (d) returns the list the keys in table \(d\).
kroneckerDelta(\text{[integer, integer]})

kroneckerDelta() is the rank 2 tensor defined by \text{kroneckerDelta}(i, j) = 1 if \(i = j\), and 0 otherwise.

label(\text{outputForm, outputForm})

label\((o_1, o_2)\), where \(o_1\) and \(o_2\) are objects of type \text{OutputForm} (normally unexposed), returns an output form displaying equation \(o_2\) with label \(o_1\).

laguerreL(\text{nonNegativeInteger, x})

laguerreL(\text{nonNegativeInteger, nonNegativeInteger, x})

laguerreL\((n; x)\) is the \(n\)th Laguerre polynomial, \(L_{\text{n}}(x)\), defined by \(\exp(\frac{t}{1-t})/(1-t) = \sum_{n=0}^{\infty} L_{n}(x)t^{n}/n!\).

laguerreL\((m; n; x)\) is the associated Laguerre polynomial, \(L_{m, n}(x)\), defined as the \(m\)th derivative of \(L_{n}(x)\).

lambda(\text{inputForm, listofSymbols})

\text{lambda}\((i; [x_1; \ldots; x_n])\) returns the input form corresponding to \((x_1; \ldots; x_n)\) if \(n > 1\). See also compiledFunction,atten, and unparse.

laplace(\text{expression, symbol, symbol})

\text{laplace}\((f; t; s)\) returns the Laplace transform of \(f(t)\), defined by \(\int_{t=0}^{\infty} \exp(-st)f(t)dt\). If the transform cannot be computed, the formal object \text{laplace}\((f; t; s)\) is returned.

last(\text{indexedAggregate \[, nonNegativeInteger\]})

\text{last}\((u)\) returns the last element of \(u\).

\text{last}\((u, n)\) returns a copy of the last \(n\) \((n \geq 0)\) elements of \(u\).

laurent(\text{expression})

laurentIfCan(\text{expression})

\text{laurent}\((u)\) converts \(u\) to a Laurent series, or calls error if this is not possible.

\text{laurentIfCan}\((u)\) converts the Puiseux series \(u\) to a Laurent series, or returns "failed" if this is not possible.

\text{laurent}\((f; x = a)\) expands the expression \(f\) as a Laurent series in powers of \((x - a)\).

\text{laurent}\((f; n)\) expands the expression \(f\) as a Laurent series in powers of \(x\); at least \(n\) terms are computed.

\text{laurent}\((n \mapsto a_n, x = a, n_0..[n_1])\) returns a Laurent series defined by \(\sum_{n=n_0}^{n_1} a_n(x-a)^n\), where \(n_1\) is \(\infty\) by default.

\text{laurent}\((a_n, n, x = a, n_0..[n_1])\) returns a Laurent series defined by \(\sum_{n=n_0}^{n_1} a_n(x-a)^n\), where \(n_1\) is \(\infty\) by default.

laurentRep(\text{expression})

laurentRep\((f(x))\) returns \(g(x)\) where the Puiseux series \(f(x) = g(x')\) is represented by \([r, g(x)]\).

lazy?\(\text{stream}\)

lazy?\((s)\) tests if the first node of the stream \(s\) is a lazy evaluation mechanism which could
produce an additional entry to \(s \).

lazyEvaluate \((\text{stream}) \)

lazyEvaluate \((s) \) causes one lazy evaluation of stream \(s \). Caution: \(s \) must be a “lazy node” satisfying \(\text{lazy?} (s) = \text{true} \), as there is no error check. A call to this function may or may not produce an explicit first entry.

lcm \((\text{elements}[, \text{element}]) \)

lcm \((x, y) \) returns the least common multiple of \(x \) and \(y \).

lcm \((lx) \) returns the least common multiple of the elements of the list \(lx \).

ldexquo \((\text{lodOperator}, \text{lodOperator}) \)

ldexquo \((a; b) \) returns \(q \) such that \(a = b * q \), or "failed" if no such \(q \) exists.

leftDivide \((\text{lodOperator}, \text{lodOperator}) \)

leftQuotient \((\text{lodOperator}, \text{lodOperator}) \)

leftRemainder \((\text{lodOperator}, \text{lodOperator}) \)

leftDivide \((a; b) \) returns a record with two fields: “quotient” \(q \) and “remainder” \(r \) such that \(a = bq + r \) and the degree of \(r \) is less than the degree of \(b \). This operation is called “left division.” Operation **leftQuotient** \((a, b) \) returns \(q \), and **leftRemainder** \((a, b) \) returns \(r \).

leader \((\text{differentialPolynomial}) \)

leader \((p) \) returns the derivative of the highest rank appearing in the differential polynomial \(p \), or calls **error** if \(p \) is in the ground ring.

leadingCoefficient \((\text{polynomial}) \)

leadingCoefficient \((p) \) returns the coefficient of the highest degree term of polynomial \(p \). See also IndexedDirectProductCategory and MonogenicLinearOperator.

leadingIdeal \((\text{ideal}) \)

leadingIdeal \((I) \) is the ideal generated by the leading terms of the elements of the ideal \(I \).

leadingMonomial \((\text{polynomial}) \)

leadingMonomial \((p) \) returns the monomial of polynomial \(p \) with the highest degree.

leaf? \((\text{aggregate}) \)

leafValues \((\text{aggregate}) \)

leaves \((\text{aggregate}) \)

These operations apply to a recursive aggregate \(a \). See, for example, BinaryTree.

leaf? \((a) \) tests if \(a \) is a terminal node.

leaves \((a) \) returns the list of values at the leaf nodes in left-to-right order.

left \((\text{binaryRecursiveAggregate}) \)

left \((a) \) returns the left child of binary aggregate \(a \).

leftAlternative? ()

leftAlternative? () \(F \), where \(F \) is a domain of FiniteRankNonAssociativeAlgebra, tests if
2 * associator\((a, a, b) = 0\) for all \(a, b\) in \(F\). Note: in general, you do not know whether
\(2 * a = 0\) implies \(a = 0\).

leftCharacteristicPolynomial \((\text{polynomial})\)

The function **leftCharacteristicPolynomial** \((p)\)\(F\) returns the characteristic polynomial of the left regular representation of \(p\) of domain \(F\) with respect to any basis. Argument \(p\) is a member of a domain of category **FiniteRankNonAssociativeAlgebra**\((R)\) where \(R\) is a commutative ring.

leftDiscriminant \((\text{listOfVectors})\)

The function **leftDiscriminant** \((v_1, \ldots, v_n)\)\(F\) where \(F\) is a domain of category **FramedNonAssociativeAlgebra** over a commutative ring \(R\), returns the determinant of the \(n\)-by-\(n\) matrix whose element at the \(i\)\(^{th}\) row and \(j\)\(^{th}\) column is given by the left trace of the product \(v_i * v_j\). Same as **determinant**\((\text{leftTraceMatrix}(\[v_1, \ldots, v_n]\)))\). If no argument is given, \(v_1, \ldots, v_n\) are taken to elements of the fixed \(R\)-basis.

leftGcd \((\text{lodOperator}, \text{lodOperator})\)

The function **leftGcd** \((a, b)\) computes the value \(g\) of highest degree such that
\(a = aa * g\) and
\(b = bb * g\)
for some values \(aa\) and \(bb\). The value \(g\) is computed using left-division.

leftLcm \((\text{lodOperator}, \text{lodOperator})\)

The function **leftLcm** \((a, b)\) computes the value \(m\) of lowest degree such that
\(m = a * aa = b * bb\)
for some values \(aa\) and \(bb\). The value \(m\) is computed using left-division.

leftMinimalPolynomial \((\text{element})\)

The function **leftMinimalPolynomial** \((a)\) returns the polynomial determined by the smallest non-trivial linear combination of left powers of \(a\), an element of a domain of category **FiniteRankNonAssociativeAlgebra**. Note: the polynomial has no a constant term because, in general, the algebra has no unit.

leftNorm \((\text{element})\)

The function **leftNorm** \((a)\) returns the determinant of the left regular representation of \(a\), an element of a domain of category **FiniteRankNonAssociativeAlgebra**.

leftPower \((\text{monad}, \text{nonNegativeInteger})\)

The function **leftPower** \((a, n)\) returns the \(n\)\(^{th}\) left power of monad \(a\), that is,
\[
\text{leftPower}(a, n) := a \text{leftPower}(a, n - 1).
\]
If the monad has a unit then
\[
\text{leftPower}(a, 0) := 1.
\]
Otherwise, define **leftPower** \((a, 1) = a\) See **Monad** and **MonadWithUnit** for details. See also **leftRecip**.

leftRankPolynomial \((\)\)

The function **leftRankPolynomial** \((\)\)\(F\) calculates the left minimal polynomial of a generic element of an algebra of domain \(F\), a domain of category **FramedNonAssociativeAlgebra** over a commutative ring \(R\). This generic element is an element of the algebra defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.
leftRank (element)
leftRank (x) returns the number of linearly independent elements in xb₁, ..., xbₙ, where b = [b₁, ..., bₙ] is a basis. Argument x is an element of a domain of category FramedNonAssociativeAlgebra over a commutative ring R.

leftRecip (element)
leftRecip (a) returns an element that is a left inverse of a, or "failed", if there is no unit element, such an element does not exist, or the left reciprocal cannot be determined (see unitsKnown).

leftRecip (element)
leftRecip (a) returns an element, which is a left inverse of a, or "failed" if such an element doesn’t exist or cannot be determined (see unitsKnown).

leftRegularRepresentation (element, vectorOfElements)
This operation is defined on a domain F of category NonAssociativeAlgebra. leftRegularRepresentation(a, [v₁, ..., vₙ]) returns the matrix of the linear map defined by left multiplication by a with respect to the basis [v₁, ..., vₙ]. If a second argument is missing, the basis is taken to be the fixed basis for F.

leftTraceMatrix (vectorOfElements)
This operation is defined on a domain F of category NonAssociativeAlgebra. leftTraceMatrix([v]), where v is an optional vector [v₁, ..., vₙ], returns the n-by-n matrix M such that Mᵢ₋ⱼ is the left trace of the product vᵢ * vⱼ of elements from the basis [v₁, ..., vₙ]. If the argument is missing, the basis is taken to be the fixed basis for F.

leftTrace (element)
leftTrace (a) returns the trace of the left regular representation of a, an element of a domain of category FiniteRankNonAssociativeAlgebra.

leftTrim (string, various)
leftTrim (s, c) returns string s with all leading characters c deleted. For example, leftTrim(" abc ", " ") returns "abc ". leftTrim (s, cc) returns s with all leading characters in cc deleted. For example, leftTrim("(abc)", charClass "()") returns "abc ".

leftUnit ()
leftUnits ()
These operations are defined on a domain F of category NonAssociativeAlgebra. leftUnit ()$F returns a left unit of the algebra (not necessarily unique), or "failed" if there is none. leftUnits ()$F returns the affine space of all left units of an algebra F, or "failed" if there is none, where F is a domain of category FiniteRankNonAssociativeAlgebra. The normal result is returned as a record with selector particular for an element of F, and basis for a list of elements of F.
LegendreSymbol ($integer, integer$)

LegendreSymbol (a, p) returns the Legendre symbol $L(a/p)$, $L(a/p) = (-1)^{(p-1)/2} \mod p$
for prime p. This is 0 if $a = 0$, 1 if a is a quadratic residue $\mod p$, and -1 otherwise.

Note: because the primality test is expensive, use Jacobi (a, p) if you know that p is prime.

LegendreP ($nonNegativeInteger, element$)

LegendreP ($n; x$) is the nth Legendre polynomial, $P[n](x)$, defined by

$$P[n](x) = \frac{1}{\sqrt{2\pi x,2}} \sum_{n=0}^{\infty} P[n](x) t^n.$$
limit \(f(x), x = a, \text{"right"} \) computes the corresponding limit as \(x \) approaches \(a \) from the right.

\[\text{limitedIntegrate} \left(f, x, [g_1, \ldots, g_n] \right) \]

returns fractions \([h, [c_1, g_1]] \) such that the \(g_i \)'s are among \([g_1, \ldots, g_n] \), \(dc_i/dx = 0 \), and \(d(h + \sum c_i log g_i)/dx = f \) if possible, "failed" otherwise.

\[\text{linearlyDependenceOverZ?} \left([v_1, \ldots, v_n] \right) \]

returns \(true \) if the \(v_i \)'s are linearly dependent over the integers, and \(false \) otherwise.

\[\text{li}(x) \]

returns the logarithmic integral of \(x \) defined by, \(\int \frac{dx}{\log(x)} \).

\[\text{list}(x) \]

creates a list consisting of the one element \(x \).

\[\text{list?}(s) \]

tests if \(SExpression \) value \(s \) is a Lisp list, possibly the null list.

\[\text{listBranches}(c) \]

returns a list of lists of points representing the branches of the curve \(c \).

\[\text{listRepresentation}(p) \]

produces a representation \(rep \) of the permutation \(p \) as a list of preimages and images \(i \), that is, permutation \(p \) maps \((rep.preimage).k \) to \((rep.image).k \) for all indices \(k \).

\[\text{listYoungTableaus}(lambda) \]

where \(lambda \) is a proper partition, generates the list of all standard tableaus of shape \(lambda \) by means of lattice permutations. The numbers of the
lattice permutation are interpreted as column labels.

\textbf{listOfComponents (threeSpace)}
\textbf{listOfComponents} \((sp)\) returns a list of list of list of points for \texttt{threeSpace} object \(sp\) assumed to be composed of a list of components, each a list of curves, which in turn is each a list of points, or calls \texttt{error} if this is not possible.

\textbf{listOfCurves (sp)} returns a list of list of subspace component properties for \texttt{threeSpace} object \(sp\) assumed to be a list of curves, each of which is a list of subspace components, or calls \texttt{error} if this is not possible.

\textbf{lo (segment)}
\textbf{lo} \((s)\) returns the first endpoint of \(s\). For example, \texttt{lo(l..h)} = \texttt{l}.

\textbf{log (expression)}
\textbf{logIfCan (expression)}
\textbf{log} \((x)\) returns the natural logarithm of \(x\).
\textbf{logIfCan} \((z)\) returns \texttt{log} \((z)\) if possible, and "failed" otherwise.

\textbf{log2 ([float])}
\textbf{log2} \((()\) returns \(ln(2) = 0.6931471805\ldots\).
\textbf{log2} \((x)\) computes the base 2 logarithm for \(x\).

\textbf{log10 ([float])}
\textbf{log10} \((()\) returns \(ln(10) = 2.3025809299\ldots\).
\textbf{log10} \((x)\) computes the base 10 logarithm for \(x\).

\textbf{logGamma (float)}
\textbf{logGamma} \((x)\) is the natural log of \(\Gamma(x)\). Note: this can often be computed even if \(\Gamma(x)\) cannot.

\textbf{lowerCase ([string])}
\textbf{lowerCase? (character)}
\textbf{lowerCase} \((())\) returns the class of all characters for which \texttt{lowerCase?} is \texttt{true}.
\textbf{lowerCase} \((c)\) returns a corresponding lower case alphabetic character \(c\) if \(c\) is an upper case alphabetic character, and \(c\) otherwise.
\textbf{lowerCase} \((s)\) returns the string with all characters in lower case.
\textbf{lowerCase?} \((c)\) tests if character \(c\) is an lower case letter, that is, one of a\ldots z.

\textbf{listOfProperties (threeSpace)}
\textbf{listOfProperties} \((sp)\) returns a list of subspace component properties for \(sp\) of type \texttt{ThreeSpace}, or calls \texttt{error} if this is not possible.

\textbf{listOfPoints (threeSpace)}
\textbf{listOfPoints} \((sp)\), where \(sp\) is a \texttt{ThreeSpace} object, returns the list of points component contained in \(sp\).
mainKernel (expression)
mainKernel (f) returns a kernel of f with maximum nesting level, or "failed" if f has no kernels (that is, f is a constant).

mainVariable (polynomial)
mainVariable (u) returns the variable of highest ordering that actually occurs in the polynomial p, or "failed" if no variables are present. Argument u can be either a polynomial or a rational function.

makeFloatFunction (expression, symbol[, symbol])
Argument expr may be of any type that is coercible to type InputForm (objects of the most common types can be so coerced).
makeFloatFunction (expr, x) returns an anonymous function of type Float → Float defined by \(x \mapsto \text{expr} \).
makeFloatFunction (expr, x, y) returns an anonymous function of type (Float, Float) → Float defined by \((x, y) \mapsto \text{expr} \).

makeVariable (element)
makeVariable (s), where s is a symbol, differential indeterminate, or a differential polynomial, returns a function \(f \) defined on the non-negative integers such that \(f(n) \) returns the \(n \)th derivative of s.
makeVariable (s, n) returns the \(n \)th derivative of a differential indeterminate s as an algebraic indeterminate.

makeObject (functions, range[, range])
Arguments f, g, and h appearing below with arguments (for example, \(f(x, y) \)) denote symbolic expressions involving those arguments.
Arguments f, g, and h appearing below as symbols without arguments denote user-defined functions which map one or more DoubleFloat values to DoubleFloat values.
Values a, b, c, and d denote numerical values.
makeObject (curve(f, g, h), a..b) returns the space sp of the domain ThreeSpace with the addition of the graph of the parametric curve \(x = f(t), y = g(t), z = h(t) \) as \(t \) ranges from min (a, b) to max (a, b).
makeObject (curve(f(t), g(t), h(t)), t = a..b) returns the space sp of the domain ThreeSpace with the addition of the graph of the parametric curve \(x = f(t), y = g(t), z = h(t) \) as \(t \) ranges from min (a, b) to max (a, b).

makeObject (f, a..b, c..d) returns the space sp of the domain ThreeSpace with the addition of the graph of \(z = f(x, y) \) as \(x \) ranges from min (a, b) to max (a, b) and \(y \) ranges from min (c, d) to max (c, d).
makeObject (f(x, y), x = a..b, y = c..d) returns the space sp of the domain ThreeSpace with the addition of the graph of \(z = f(x, y) \) as \(x \) ranges from min (a, b) to max (a, b) and \(y \) ranges from min (c, d) to max (c, d).
makeObject (surface(f, g, h), a..b, c..d) returns the space sp of the domain ThreeSpace
with the addition of the graph of the parametric surface \(x = f(u,v), y = g(u,v), z = h(u,v) \) as \(u \) ranges from \(\min(a,b) \) to \(\max(a,b) \) and \(v \) ranges from \(\min(c,d) \) to \(\max(c,d) \).

\[
\text{makeObject}(\text{surface}(f(u,v), g(u,v), h(u,v)), u = a..b, v = c..d) \text{ returns the space } sp \text{ of the domain } \text{ThreeSpace} \text{ with the addition of the graph of the parametric surface } x = f(u,v), y = g(u,v), z = h(u,v) \text{ as } u \text{ ranges from } \min(a,b) \text{ to } \max(a,b) \text{ and } v \text{ ranges from } \min(c,d) \text{ to } \max(c,d).
\]

\[
\text{makeYoungTableau} \ (\text{listOfIntegers}, \text{listOfIntegers})
\]

\[
\text{makeYoungTableau} \ (\lambda; \text{gitter}) \text{ computes for a given lattice permutation } \text{gitter} \text{ and for an improper partition } \lambda \text{ the corresponding standard tableau of shape } \lambda. \text{ See } \text{listYoungTableaus}.
\]

\[
\text{mantissa} \ (\text{float})
\]

\[
\text{mantissa} \ (x) \text{ returns the mantissa part of } x.
\]

\[
\text{map} \ (\text{function}, \text{structure}[\), \text{structure}])
\]

\[
\text{map!} \ (\text{function}, \text{structure})
\]

\[
\text{map} \ (fn; u) \text{ maps the one-argument function } fn \text{ onto the components of a structure, returning a new structure. Most structures allow } f \text{ to have different source and target domains. Specifically, the function } f \text{ is mapped onto the following components of the structure as follows. If } u \text{ is: } 1pc 0
\]

- a series: the coefficients of the series.
- a polynomial: the coefficients of the non-zero monomials.
- a direct product of elements: the elements.
- an aggregate, tuple, table, or a matrix: all its elements.
- an operation of the form \(op(a_1, \ldots, a_n) \): each \(a_i \), returning \(op(f(a_1), \ldots, f(a_n)) \).
- a fraction: the numerator and denominator.
- complex: the real and imaginary parts.
- a quaternion or octonion: the real and all imaginary parts.
- a finite or infinite series or stream: all the coefficients.
- a factored object: onto all the factors.
- a segment \(a..b \) or a segment binding of the form \(x = a..b \): each of the elements from \(a \) to \(b \).
- an equation: both sides of the equation.

\[
\text{map} \ (fn, u, v) \text{ maps the two argument function } fn \text{ onto the components of a structure, returning a new structure. Arguments } u \text{ and } v \text{ can be matrices, finite aggregates such as lists, tables, and vectors, and infinite aggregates such as streams and series.}
\]

\[
\text{map!} \ (f, u), \text{ where } u \text{ is homogeneous aggregate, destructively replaces each element } x \text{ of } u \text{ by } f(x).
\]

See also \text{match}.
mapCoef (function, freeAbelianMonoid)
mapGen (function, freeAbelianMonoid)
mapCoef (f, m) maps unary function f onto the coefficients of a free abelian monoid of the form $e_1a_1 + \ldots + e_na_n$ returning $f(e_1)a_1 + \ldots + f(e_n)a_n$.
mapGen (fn, m) similarly returns $e_1f(a_1) + \ldots + e_nf(a_n)$. See FreeAbelianMonoidCategory using Browse.

mapDown! (tree, value, function)
These operations make a preorder traversal (node then left branch then right branch) of a tree t of type BalancedBinaryTree(S), destructively mapping values of type S from the root to the leaves of the tree, then returning the modified tree as value; p is a value of type S.
mapDown! (t, p, f), where f is a function of type $(S, S) \rightarrow S$, replaces the successive interior nodes of t as follows. The root value x is replaced by $q = f(x, p)$. Then mapDown! is recursively applied to (l, q, f) and (r, q, f) where l and r are respectively the left and right subtrees of t.
mapDown! (t, p, f), where f is a function of type $(S, S, S) \rightarrow List S$, is similar. The root value of t is first replaced by p. Then f is applied to three values: the value at the current, left, and right node (in that order) to produce a list of two values l and r, which are then passed recursively as the second argument of mapDown! to the left and right subtrees.

mapExponents (function, polynomial)
mapExponents (fn, u) maps function fn onto the exponents of the non-zero monomials of polynomial u.

mapUp! ([tree,]tree, function)
These operations make an endorder traversal (left branch then right branch then node) of a tree t of type BalancedBinaryTree(S), destructively mapping values of type S from the leaves to the root of the tree, then returning the modified tree as value; p is a value of type S.
mapUp! (t, f), where f has type $(S, S) \rightarrow S$, replaces the value at each interior node by $f(l, r)$, where l and r are the values at the immediate left and right nodes.
mapUp! (t, t_1, f) makes an endorder traversal of both t and t_1 (of identical shape) in parallel. The value at each successive interior node of t is replaced by $f(l, r, l_1, r_1)$, where l and r are the values at the immediate left and right nodes of t, and l_1 and r_1 are corresponding values of t_1.

mask (integer)
mask (n) returns $2^n - 1$ (an n-bit mask).

match (string, string, character)
match? (s, t, char) tests if s matches t except perhaps for multiple and consecutive occurrences of character char. Typically char is the blank character.

match (list, list[], option)
match (la, lb, u), where la and lb are lists of equal length, creates a function that can be used by map. The target of a source value x in la is the value y with the corresponding index in lb. Optional argument u defines the target for a source value a which is not in la.
If \(u \) is a value of the source domain, then \(a \) is replaced by \(u \), which must be a member of \(\text{la} \). If \(u \) is a value of the target domain, the value returned by the map for \(a \) is \(u \). If \(u \) is a function \(f \), then the value returned is \(f(a) \). If no third argument is given, an error occurs when such a \(a \) is found.

\[
\text{mathieu11} (\text{listOfIntegers})
\]
\[
\text{mathieu12} (\text{listOfIntegers})
\]
\[
\text{mathieu22} (\text{listOfIntegers})
\]
\[
\text{mathieu23} (\text{listOfIntegers})
\]
\[
\text{mathieu24} (\text{listOfIntegers})
\]
\[
\text{mathieu11} ([l]) \text{ constructs the mathieu group acting on the eleven integers given in the list } l. \text{ Duplicates in the list will be removed and error will be called if } l \text{ has fewer or more than eleven different entries. The default value of } l \text{ is } [1, \ldots, 11]. \text{ Operations } \text{mathieu12}, \text{mathieu22}, \text{ and } \text{mathieu23} \text{ and } \text{mathieu24} \text{ are similar. These operations provide examples of permutation groups in Axiom.}
\]

\[
\text{matrix} (\text{listOfLists})
\]
\[
\text{matrix} (l) \text{ converts the list of lists } l \text{ to a matrix, where the list of lists is viewed as a list of the rows of the matrix.}
\]
\[
\text{matrix} (llo), \text{ where } llo \text{ is a list of list of objects of type OutputForm (normally unexposed), returns an output form displaying } llo \text{ as a matrix.}
\]
\[
\text{max} ([\text{various}])
\]
\[
\text{max} () \text{ returns the largest small integer.}
\]
\[
\text{max} (u) \text{ returns the largest element of aggregate } u.
\]
\[
\text{max} (x, y) \text{ returns the maximum of } x \text{ and } y \text{ relative to a total ordering “<”.}
\]

\[
\text{maxColIndex} (\text{matrix})
\]
\[
\text{maxColIndex} (m) \text{ returns the index of the last column of the matrix or two-dimensional array } m.
\]

\[
\text{maxIndex} (\text{aggregate})
\]
\[
\text{maxIndex} (u) \text{ returns the maximum index } i \text{ of indexed aggregate } u. \text{ For most indexed aggregates (vectors, strings, lists), } \text{maxIndex} (u) \text{ is equivalent to } #u.
\]

\[
\text{maxRowIndex} (\text{matrix})
\]
\[
\text{maxRowIndex} (m) \text{ returns the index of the “last” row of the matrix or two-dimensional array } m.
\]

\[
\text{meatAxe} (\text{listOfListsOfMatrices}, \text{[boolean, integer, integer]})
\]
\[
\text{meatAxe} (aG[, \text{randomElts}, \text{numOfTries}, \text{maxTests}) \text{ tries to split the representation given by } aG \text{ and returns a 2-list of representations. All matrices of argument } aG \text{ are assumed to be square and of equal size. The default values of arguments } \text{randomElts}, \text{numOfTries and } \text{maxTests are } false, 25, \text{ and } 7, \text{ respectively.}
\]

\[
\text{member?} (\text{element, aggregate})
\]
\[
\text{member?} (x, u) \text{ tests if } x \text{ is a member of } u.
\]
member? (pp, gp), where pp is a permutation and gp is a group, tests whether pp is in the group gp.

merge (various)
merge! (various)
merge ([s1, s2, ..., sn]) will create a new ThreeSpace object that has the components of all the ones in the list; groupings of components into composites are maintained.
merge (s1, s2) will create a new ThreeSpace object that has the components of s1 and s2; groupings of components into composites are maintained.
merge ([p, a, b]) returns an aggregate c which merges a and b. The result is produced by examining each element x of a and y of b successively. If \(p(x, y) \) is true, then x is inserted into the result. Otherwise y is inserted. If x is chosen, the next element of a is examined, and so on. When all the elements of one aggregate are examined, the remaining elements of the other are appended. For example, \(\text{merge} (<, [1, 3], [2, 7, 5]) \) returns \([1, 2, 3, 7, 5]\). By default, function \(p \) is \(\leq \).
merge! ([p], u, v) destructively merges the elements u and v into u using comparison function \(p \). Function \(p \) is \(\leq \) by default.

mesh (u, v, w, x)
Argument \(sp \) below is a ThreeSpace object \(sp \). Argument \(lc \) is a list of curves. Each curve is either a list of points (objects of type Point) or else a list of lists of small floats.
mesh (lc) returns a ThreeSpace object defined by \(lc \).
mesh (sp) returns the list of curves contained in space \(sp \).
mesh ([sp,], lc, close1, close2) adds the list of curves \(lc \) to the ThreeSpace object \(sp \). Boolean arguments close1 and close2 tell how the curves and surface are to be closed. If close1 is true, each individual curve will be closed, that is, the last point of the list will be connected to the first point. If close2 is true, the first and last curves are regarded as boundaries and are connected. By default, the argument \(sp \) is empty.

midpoints (listOfIntervals)
These operations are defined on “intervals” represented by records with keys right and left, and rational number values.
midpoints (isolist) returns the list of midpoints for the list of intervals \(isolist \).
midpoint (int) returns the midpoint of the interval \(int \).

min (u, v)
min () returns the element of type SingleInteger.
min (u) returns the smallest element of aggregate \(u \).
min (x, y) returns the minimum of \(x \) and \(y \) relative to total ordering \(< \).

minColIndex (matrix)
minColIndex (m) returns the index of the “first” column of the matrix or two-dimensional array \(m \).

minimalPolynomial (element, positiveInteger)
minimalPolynomial (x[n]) computes the minimal polynomial of \(x \) over the field of
extension degree n over the ground field F. The default value of n is 1.

minimalPolynomial (element)

`minimalPolynomial(a)` returns the minimal polynomial of element a of a finite rank algebra. See `FiniteRankAlgebra` using Browse.

minimumDegree (polynomial, variable)

`minimumDegree(p,v)` gives the minimum degree of polynomial p with respect to v, that is, viewed as a univariate polynomial in v.

`minimumDegree(p,lv)` gives the list of minimum degrees of the polynomial p with respect to each of the variables in the list lv.

See also `FiniteAbelianMonoidRing` and `MonogenicLinearOperator`.

minIndex (aggregate)

`minIndex(aggregate)` returns the minimum index i of aggregate u. Note: the `minIndex` of most system-defined indexed aggregates is 1. See also `PointCategory`.

minordet (matrix)

`minordet(m)` computes the determinant of the matrix m using minors, or calls `error` if the matrix is not square.

minPoly (expression)

`minPoly(k)` returns polynomial p such that $p(k) = 0$.

minRowIndex (matrix)

`minRowIndex(m)` returns the index of the “first” row of the matrix or two-dimensional array m.

minusInfinity ()

`minusInfinity()` returns `%minusInfinity`, the Axiom name for $-\infty$.

modifyPointData (space, nonNegativeInteger, point)

`modifyPointData(sp,i,p)` changes the point at the indexed location i in the ThreeSpace object sp to p. This operation is useful for making changes to existing data.

moduloP (integer)

`moduloP(x)`, such that $p = \text{modulus}($), returns a, where $x = a + bp$ where x is a p-adic integer. See `PAdicIntegerCategory` using Browse.

modulus ()

`modulus(R)` returns the value of the modulus p of a p-adic integer domain R. See `PAdicIntegerCategory` using Browse.

moebiusMu (integer)

`moebiusMu(n)` returns the Moebius function $\mu(n)$, defined as -1, 0 or 1 as follows:

$\mu(n) = 0$ if n is divisible by a square > 1, and $(-1)^k$ if n is square-free and has k distinct prime divisors.
monicDivide (polynomial, polynomial[, variable])
monicDivide(p, q, v) divides the polynomial p by the monic polynomial q, returning the record containing a quotient and remainder. For multivariate polynomials, the polynomials are viewed as a univariate polynomials in v. If p and q are univariate polynomials, then the third argument may be omitted. The operation calls error if q is not monic with respect to v.

monomial (coefficient, exponent[, option])
monomial(coef, exp) creates a term of a univariate polynomial or series object from a coefficient coef and exponent exp. The variable name must be given by context (as through a declaration for the result).
monicDivide(c, [x1, . . . , xk], [n1, . . . , nk]) creates a term cx^{n1} . . . x^{nk} of a multivariate power series or polynomial from coefficient c, variables xj and exponents nj.
monicDivide(c, x, n) creates a term cx^n of a polynomial or series from a coefficient c, variable x, and exponent n.
monicDivide(c, [n1, . . . , nk]) creates a CliffordAlgebra element ce(n1), . . . , ce(nk) from a coefficient c and basis elements c(ij)
monicDivide? (polynomialOrSeries)
monicDivide? (p) tests if polynomial or series p is a single monomial.

monomials (polynomial)
monicDivide(p) returns the list of non-zero monomials of polynomial p, [a1X(1), . . . , anX(n)].

more? (aggregate, nonNegativeInteger)
monicDivide(u, n) tests if u has greater than n elements.

movedPoints (permutation)
movedPoints(p) returns the set of points moved by the permutation p.
movedPoints(gp) returns the points moved by the group gp.

mulmod (integer, integer, integer)
mulmod(a, b, p), where a, b are non-negative integers both < integer p, returns ab mod p.

multiEuclidean (listOfElements, element)
multiEuclidean([f1, . . . , fn], z) returns a list of coefficients [a1, . . . , an] such that z/Πi=1 fi = ∑j=1 an fj. If no such list of coefficients exists, "failed" is returned.

multinomial (integer, listOfIntegers)
multinomial(n, [m1, m2, . . . , mk]) returns the multinomial coefficient n!(m1!m2! . . . mk!).

multiple (expression)
multiple(x) directs the pattern matcher that x should preferably match a multi-term quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher that x should match a list instead of an element of a list. This operation calls error if x is not a symbol.
multiplyCoefficients (function, series)
multiplyCoefficients (f, s) returns $\sum_{n=0}^{\infty} f(n) a_n x^n$ where s is the series $\sum_{n=0}^{\infty} a_n x^n$.

multiplyExponents (various, nonNegativeInteger)
multiplyExponents (p, n), where p is a univariate polynomial or series, returns a new polynomial or series resulting from multiplying all exponents by the non negative integer n.

multiset (listOfElements)
multiset (ls) creates a multiset with elements from ls.

multivariate (polynomial, symbol)
multivariate (p; v) converts an anonymous univariate polynomial p to a polynomial in the variable v.

name (various)
name (f) returns the name part of the file name for file f.
name (op) returns the name of basic operator op.
name (s) returns symbol s without its scripts.

nand (boolean, boolean)
nand (a; b) returns the logical negation of a and b, either booleans or bit aggregates. Note: nand (a; b) = true if and only if one of a and b is false.

nary? (basicOperator)
nary? (op) tests if op accepts an arbitrary number of arguments.

ncols (matrix)
ncols (m) returns the number of columns in the matrix or two-dimensional array m.

new ([various])
new ()R create a new object of type R. When R is an aggregate, new creates an empty object. Other variations are as follows: 1pc 0

new (s), where s is a symbol, returns a new symbol whose name starts with %s.
new (n; x) returns fill! (new(n), x), an aggregate of n elements, each with value x.
new (m; n; r)R creates an m-by-n array or matrix of type R all of whose entries are r.
new (d; pre; e), where d, smathpre, and smathe are strings, constructs the name of a new writable file with d as its directory, pre as a prefix of its name and e as its extension. When d or e is the empty string, a default is used. The operation calls error if a new file cannot be written in the given directory.
newLine ()

`newLine()` sends a new line command to output. See DisplayPackage.

nextColeman (listOfIntegers, listOfIntegers, matrix)

`nextColeman(alpha, beta, C)` generates the next Coleman-matrix of column sums `alpha` and row sums `beta` according to the lexicographical order from bottom-to-top. The first Coleman matrix is created using `C = new(1,1,0)`. Also, `new(1,1,0)` indicates that `C` is the last Coleman matrix. See SymmetricGroupCombinatoricFunctions for details.

nextLatticePermutation (integers, integers, boolean)

`nextLatticePermutation(lambda;latP;constructNotFirst)` generates the lattice permutation according to the proper partition `lambda` succeeding the lattice permutation `latP` in lexicographical order as long as `constructNotFirst` is true. If `constructNotFirst` is `false`, the first lattice permutation is returned. The result `nil` indicates that `latP` has no successor. See SymmetricGroupCombinatoricFunctions for details.

nextPartition (vectorOfIntegers, vectorOfIntegers, integer)

`nextPartition(gamma;part;number)` generates the partition of `number` which follows `part` according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of `gamma`. the first partition is achieved by `part = []`. Also, `[]` indicates that `part` is the last partition. See SymmetricGroupCombinatoricFunctions for details.

nextPrime (positiveInteger)

`nextPrime(n)` returns the smallest prime strictly larger than `n`.

nil ()

`nil()` returns the empty list of type `R`.

nilFactor (element, nonNegativeInteger)

`nilFactor(base;exponent)` creates a factored object with a single factor with no information about the kind of `base`. See Factored for details.

node? (aggregate, aggregate)

`node?(u;v)` tests if node `u` is contained in node `v` (either as a child, a child of a child, etc.).

nodes (recursiveAggregate)

`nodes(a)` returns a list of all the nodes of aggregate `a`.

noncommutativeJordanAlgebra? ()

`noncommutativeJordanAlgebra?()` tests if the algebra `F` is flexible and Jordan admissible. See FiniteRankNonAssociativeAlgebra.

nor (boolean, boolean)

`nor(a,b)` returns the logical `nor` of booleans or bit aggregates `a` and `b`. Note: `nor(a,b) = true` if and only if both `a` and `b` are `false`.
norm (element[], option)
norm(x) returns: 1pc 0

for complex x: \texttt{conjugate}(x) .
for floats: the absolute value.
for quaternions or octonions: the sum of the squares of its coefficients.
for a domain of category \texttt{FiniteRankAlgebra}: the determinant of the
regular representation of x with respect to any basis.
norm(x[p]), where p is a \texttt{positiveInteger} and x is an element of a domain of category
\texttt{FiniteAlgebraExtensionField} over ground field F, returns the norm of x with respect to the
field of extension degree d over the ground field of size. The default value of p is 1. The
operation calls \texttt{error} if p does not divide the extension degree of x. Note:
norm(x,p) = \prod_{i=0}^{d/p} x^{q_i}

normal? (element)
normal? (a), where a is a member of a domain of category
\texttt{FiniteAlgebraicExtensionField} over a \texttt{field}, tests whether the element a is normal over
the ground field F, that is, if a^{q_i}, 0 \leq i \leq \texttt{extensionDegree()} - 1 is an F-basis, where
q = \texttt{size()].

normalElement ()
normalElement ()$\mathbb{R}, where \mathbb{R} is a domain of category \texttt{FiniteAlgebraicExtensionField}
over a \texttt{field}, returns a element, normal over the ground field F, that is,
a^{q_i}, 0 \leq i < \texttt{extensionDegree()} is an F-basis, where q = \texttt{size()]. At the first call, the
element is computed by \texttt{createNormalElement} then cached in a global variable. On
subsequent calls, the element is retrieved by referencing the global variable.

normalForm (polynomial, listofpolynomials)
normalForm(poly, gb) reduces the polynomial poly modulo the precomputed Gröbner
basis gb giving a canonical representative of the residue class.

normalise (element)
normalise(v) returns the column vector v divided by its Euclidean norm; when possible,
the vector v is expressed in terms of radicals.

normalize (element[], option)
normalize(flt) normalizes float flt at current precision.
normalize(f[, x]) rewrites f using the least possible number of real algebraically
independent kernels involving symbol x. If no symbol x is given, the operation rewrites f
using the least possible number of real algebraically independent kernels.
normalizeAtInfinity (vectorOfFunctions)
normalizeAtInfinity (v) makes v normal at infinity, where v is a vector of functions
defined on a curve.
not \(\text{(boolean)}\)
not \(\text{(n)}\) returns the negation of boolean or bit aggregate \(n\).
not \(\text{(n)}\) returns the bit-by-bit logical not of the small integer \(n\).

nrows \(\text{(matrix)}\)
nrows \(\text{(m)}\) returns the number of rows in the matrix or two-dimensional array \(m\).

nthExponent \(\text{(factored, positiveInteger)}\)
nthExponent \(\text{(u; n)}\) returns the exponent of the \(n\) th factor of \(u\), or 0 if \(u\) has no such factor.

nthFactor \(\text{(factor, positiveInteger)}\)
nthFactor \(\text{(u; n)}\) returns the base of the \(n\) th factor of \(u\), or 1 if \(n\) is not a valid index for a factor. If \(u\) consists only of a unit, the unit is returned.

nthFlag \(\text{(factored, positiveInteger)}\)
nthFlag \(\text{(u; n)}\) returns the information flag of the \(n\) th factor of \(u\), "nil" if \(n\) is not a valid index for a factor.

nthFractionalTerm \(\text{(partialFraction, integer)}\)
nthFractionalTerm \(\text{(p; n)}\) extracts the \(n\) th fractional term from the partial fraction \(p\), or 0 if the index \(n\) is out of range.

nthRoot \(\text{(expression, integer)}\)
nnthRootIfCan \(\text{(expression, integer)}\)
Argument \(x\) can be of type \text{Expression, Complex, Float} \text{ and DoubleFloat}, or a series.
nthRoot \(\text{(x; n)}\) returns the \(n\) th root of \(x\). If \(x\) is not an expression, the operation calls error if this is not possible.
nnthRootIfCan \(\text{(z; n)}\) returns the \(n\) th root of \(z\) if possible, and "failed" otherwise.

null? \(\text{(sExpression)}\)
nnull? \(\text{(s)}\) is true if \(s\) is the \text{SExpression} object ()

nullary ()
nullary \(\text{(x)}\), where \(x\) has type \(\text{R}\), returns a function \(f\) of type \(\rightarrow\text{R}\) such that such that \(f()\) returns the value \(c\). See also constant for a similar operation.

nullary? \(\text{(basicOperator)}\)
nnullary? \(\text{(op)}\) tests if basic operator \(\text{op}\) is nullary.

nullity \(\text{(matrix)}\)
nnullity \(\text{(m)}\) returns the dimension of the null space of the matrix \(m\).

nullSpace \(\text{(matrix)}\)
nnullSpace \(\text{(m)}\) returns a basis for the null space of the matrix \(m\).
numberOfComponents(threeSpace)
numberOfComponents(F) returns the number of absolutely irreducible components for a domain \(F \) of functions defined over a curve.
numberOfComponents(sp) returns the number of distinct object components in the ThreeSpace object \(s \) such as points, curves, and polygons.

numberOfComputedEntries(stream)
numberOfComputedEntries(st) returns the number of explicitly computed entries of stream \(st \).

numberOfCycles(permutation)
numberOfCycles(p) returns the number of non-trivial cycles of the permutation \(p \).

numberOfDivisors(integer)
numberOfDivisors(n) returns the number of integers between 1 and \(n \) inclusive which divide \(n \). The number of divisors of \(n \) is often denoted by \(\tau(n) \).

numberOfFactors(factored)
numberOfFactors(u) returns the number of factors in factored form \(u \).

numberOfFractionalTerms(partialFraction)
numberOfFractionalTerms(p) computes the number of fractional terms in \(p \), or 0 if there is no fractional part.

numberOfHues()
numberOfHues() returns the number of total hues. See also totalHues.

numberOfImproperPartitions(integer, integer)
numberOfImproperPartitions(n, m) computes the number of partitions of the nonnegative integer \(n \) in \(m \) nonnegative parts with regarding the order (improper partitions). Example: numberOfImproperPartitions(3, 3) is 10, since [0, 0, 3], [0, 1, 2], [0, 2, 1], [0, 3, 0], [1, 0, 2], [1, 1, 1], [1, 2, 0], [2, 0, 1], [2, 1, 0], [3, 0, 0] are the possibilities. Note: this operation has a recursive implementation.

numberOfMonomials(polynomial)
numberOfMonomials(p) gives the number of non-zero monomials in polynomial \(p \).

numer(fraction)
numerator(fraction)
Argument \(x \) is from domain Fraction(R) for some domain \(R \), or of type Expression. numer(\(x \)) returns the numerator of \(x \) as an object of domain \(R \); if \(x \) is of type Expression, it returns an object of domain SMP(D, Kernel(Expression R)). numerator(\(x \)) returns the numerator of \(x \) as an element of Fraction(R); if \(x \) is of type Expression, it returns an object of domain Expression.
numerators (continuedFraction)
numerators (cf) returns the stream of numerators of the approximants of the continued fraction cf. If the continued fraction is finite, then the stream will be finite.

numeric (expression | n)
numeric (x, n) returns a float approximation of expression x to n decimal digits accuracy.

objectOf (typeAnyObject)
objectOf (a) returns a printable form of an object of type Any.

objects (threeSpace)
objects (sp) returns the ThreeSpace object sp. The result is returned as record with fields: points, the number of points; curves, the number of curves; polygons, the number of polygons; and constructs, the number of constructs.

oblateSpheroidal (function)
oblateSpheroidal (a), where a is a small float, returns a function to map the point (ξ, η, φ) to cartesian coordinates \(x = \sinh(ξ)\sin(η)\cos(φ), \ y = \sinh(ξ)\sin(η)\sin(φ), \ z = \cosh(ξ)\cos(η). \)

octon (element, element [, elements])
octon (q_e, q_E) constructs an octonion whose first 4 components are given by a quaternion q_e and whose last 4 components are given by a quaternion q_E.
octon (r_e, r_i, r_j, r_k, r_E, r_I, r_J, r_K) constructs an octonion from scalars.

odd? (x)
odd? (n) tests if integer n is odd.
odd? (p) tests if p is an odd permutation, that is, sign (p) is -1.

oneDimensionalArray ([integer,] elements)
oneDimensionalArray (ls) creates a one-dimensional array consisting of the elements of list ls.
oneDimensionalArray (n, s) creates a one-dimensional array of n elements, each with value s.

one? (element)
one? (a) tests whether a is the unit 1.

open (file [, string])
open (s[, mode]) returns the file s open in the indicated mode: "input" or "output". Argument mode is "output" by default.

operator (symbol [, nonNegativeInteger])
operator (f, n) makes f into an n-ary operator. If the second argument n is omitted, f has arbitrary arity, that is, f takes an arbitrary number of arguments.
operators (expression)
operators (f) returns a list of all basic operators in f, regardless of level.

optional (symbol)
optional (x) tells the pattern matcher that x can match an identity (0 in a sum, 1 in a product or exponentiation), or calls error if x is not a symbol.

or (boolean, boolean)
a or b returns the logical or of booleans or bit aggregates a and b.
n or m returns the bit-by-bit logical or of the small integers n and m.

orbit (group, elements)
orbit (gp, el) returns the orbit of the element el under the permutation group gp, that is, the set of all points gained by applying each group element to el.
orbit (gp, ls), where ls is a list or unordered set of elements, returns the orbit of ls under the permutation group gp.

orbits (group)
orbits (gp) returns the orbits of the permutation group gp.

ord (character)
ord (c) returns an integer code corresponding to the character c.

order (element)
order (p) returns: 1pc 0
 if p is a float: the magnitude of p (Note: base^{order(x)} ≤ |x| < base^{1+order(x)}).
 if p is a differential polynomial: the maximum number of differentiations of a differential indeterminate among all those appearing in p.
 if p is a differential variable: the number of differentiations of the differential indeterminate appearing in p.
 if p is an element of finite field: the order of an element in the multiplicative group of the field (the function calls error if p is 0).
 if p is a univariate power series: the degree of the lowest order non-zero term in f. (A call to this operation results in an infinite loop if f has no non-zero terms.)
 if p is a q-adic integer: the exponent of the highest power of q dividing p (see PAdicIntegerCategory).
 if p is a permutation: the order of a permutation p as a group element.
 if p is permutation group: the order of the group.

order (p, q) returns the order of the differential polynomial p in differential indeterminate q.
order (p, q) returns the order of multivariate series p viewed as a series in q (this operation results in an infinite loop if f has no non-zero terms).
order \((p, q)\) returns the largest \(n\) such that \(q^n\) divides polynomial \(p\), that is, the order of \(p(x)\) at \(q(x) = 0\).

orthonormalBasis \((\text{matrix})\)

orthonormalBasis \((M)\) returns the orthogonal matrix \(B\) such that \(BMB^{-1}\) is diagonal, or calls error if \(M\) is not a symmetric matrix.

output \((x)\)

output \((x)\) displays \(x\) on the “algebra output” stream defined by \(\text{set output algebra}\).

outputAsFortran \((\text{outputForms})\)

outputAsFortran \((f)\) outputs OutputForm object \(f\) in FORTRAN format to the destination defined by the system command \(\text{set output fortran}\). If \(f\) is a list of OutputForm objects, each expression in \(f\) is output in order.

outputAsFortran \((s, f)\), where \(s\) is a string, outputs \(s = f\), but is otherwise identical.

outputAsTex \((\text{outputForms})\)

outputAsTex \((f)\) outputs OutputForm object \(f\) in Tex format to the destination defined by the system command \(\text{set output tex}\). If \(f\) is a list of OutputForm objects, each expression in \(f\) is output in order.

outputFixed \((\text{[nonNegativeInteger]}))

outputFixed \(([n])\) sets the output mode of floats to fixed point notation, that is, as an integer, a decimal point, and a number of digits. If \(n\) is given, then \(n\) digits are displayed after the decimal point.

outputFloating \((\text{[nonNegativeInteger]}))

outputFloating \(([n])\) sets the output mode to floating (scientific) notation, that is, \(m10^n\) is displayed as \(mEe\). If \(n\) is given, \(n\) digits will be displayed after the decimal point.

outputForm \((\text{various})\)

outputForm \((x)\) creates an object of type OutputForm from \(x\), an object of type Integer, DoubleFloat, String, or Symbol.

outputGeneral \((\text{[nonNegativeInteger]}))

outputGeneral \(([n])\) sets the output mode (default mode) to general notation, that is, numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude. If \(n\) is given, \(n\) digits are displayed after the decimal point.

outputSpacing \((\text{nonNegativeInteger})\)

outputSpacing \((n)\) inserts a space after \(n\) digits on output. outputSpacing \((0)\) means no spaces are inserted. By default, \(n = 10\).

over \((\text{outputForm}, \text{outputForm})\)

over \((o_1, o_2)\), where \(o_1\) and \(o_2\) are objects of type OutputForm (normally unexposed), creates an output form for the vertical fraction of \(o_1\) over \(o_2\).
overbar (outputForm)
overbar(o), where o is an object of type OutputForm (normally unexposed), creates the output form \(o \) with an overbar.

pack! (file)
pack!(f) reorganizes the file \(f \) on disk to recover unused space.

packageCall ()
packageCall(f)$P, where \(P \) is the package InputFormFunctions1(R) for some type \(R \), returns the input form corresponding to \(fR \). See also interpret.

pade (integer, integer, series [, series])
pade(nd, dd, s[, ds]) computes the quotient of polynomials (if it exists) with numerator degree at most \(nd \) and denominator degree at most \(dd \). If a single univariate Taylor series \(s \) is given, the quotient approximate must match the series \(s \) to order \(nd + dd \). If two series \(s \) and \(ds \) are given, \(ns \) is the numerator series of the function and \(ds \) is the denominator series.

padicFraction (partialFraction)
padicFraction(q) expands the fraction \(p \)-adically in the primes \(p \) in the denominator of \(q \). For example, \(\text{padicFraction}(3/(2^2)) = 1/2 + 1/(2^2) \). Use compactFraction to return to compact form.

pair? (SExpression)
pair?(s) tests if \(SExpression \) object is a non-null Lisp object.

parabolic (point)
parabolic(pt) transforms \(pt \) from parabolic coordinates to Cartesian coordinates: the function produced will map the point \((u, v)\) to \(x = 1/2(u^2 - v^2), \ y = uv \).

parabolicCylindrical (point)
parabolicCylindrical(pt) transforms \(pt \) from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \((u, v, z)\) to \(x = 1/2(u^2 - v^2), \ y = uv, \ z \).

paraboloidal (point)
paraboloidal(pt) transforms \(pt \) from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \((u, v, \phi)\) to \(x = uv\cos(\phi), \ y = uv\sin(\phi), \ z = 1/2(u^2 - v^2) \).

paren (expressions)
paren(f) returns \(f \) unless \(f \) is a list \([f_1, \ldots, f_n] \) in which case it returns \((f_1, \ldots, f_n)\). This prevents \(f \) or the constituent \(f_i \) from being evaluated when operators are applied to it. For example, \(\log(1) \) returns 0, but \(\log(paren \ 1) \) returns the formal kernel \(\log((1)) \). Also, \(\text{atan}(paren \ [x, 2]) \) returns the formal kernel \(\text{atan}((x, 2)) \).
Appendix E. Operations

- **partialDenominators** (*continuedFraction*)
 partialDenominators(*x*) extracts the denominators in *x*. If
 \(x = \text{continuedFraction}(b_0, [a_1\ldots], [b_1\ldots])\), then
 \(\text{partialDenominators}(x) = [b_1, b_2\ldots]\).

- **partialFraction** (*element*, *factored*)
 partialFraction(*numer;denom*) is the main function for constructing partial fractions. The second argument *denom* is the denominator and should be factored.

- **partialNumerators** (*continuedFraction*)
 partialNumerators(*x*) extracts the numerators in *x*, if
 \(x = \text{continuedFraction}(b_0, [a_1\ldots], [b_1\ldots])\), then
 \(\text{partialNumerators}(x) = [a_1\ldots]\).

- **partialQuotients** (*continuedFraction*)
 partialQuotients(*x*) extracts the partial quotients in *x*, if
 \(x = \text{continuedFraction}(b_0, [a_1\ldots], [b_1\ldots])\), then
 \(\text{partialQuotients}(x) = [b_0, b_1\ldots]\).

- **particularSolution** (*matrix*, *vector*)
 aSolution(\(M;v\)) finds a particular solution *x* of the linear system \(Mx = v\). The result *x* is returned as a vector, or "failed" if no solution exists.

- **partition** (*integer*)
 partition(*n*) returns the number of partitions of the integer *n*. This is the number of distinct ways that *n* can be written as a sum of positive integers.

- **partitions** (*integer*, *integer*, *integer*)
 partitions(*i;j;n*) is the stream of all partitions whose number of parts and largest part are no greater than *i* and *j*.
 partitions(*n*) is the stream of all partitions of integer *n*.
 partitions(*p;l;n*) is the stream of partitions of *n* whose number of parts is no greater than *p* and whose largest part is no greater than *l*.

- **parts** (*aggregate*)
 parts(*u*) returns a list of the consecutive elements of *u*. Note: if *u* is a list, *parts*(*u*) = *u*.

- **pastel** (*color*)
 pastel(*c*) sets the shade of a hue *c* above "bright" but below "light".

- **pattern** (*rewriteRule*)
 pattern(*r*) returns the pattern corresponding to the left hand side of the rewrite rule *r*.

- **patternMatch** (*expression*, *expression*, *patternMatchResult*)
 patternMatch(*expr;pat;res*) matches the pattern *pat* to the expression *expr*. The argument *res* contains the variables of *pat* which are already matched and their matches. Initially, *res* is the result of *new*(), an empty list of matches.
perfectNthPower? (integer, nonNegativeInteger)
perfectNthPower? (n, r) tests if n is an rth power.

perfectNthRoot (integer[, nonNegativeInteger])
perfectNthRoot (n) returns a record with fields “base” x and “exponent” r such that
n = xr and r is the largest integer such that n is a perfect rth power.
perfectNthRoot (n, r) returns the rth root of n if n is an rth power, and "failed"
otherwise.

perfectSqrt (integer)
perfectSqrt (n) returns the square root of n if n is a perfect square, and "failed"
otherwise.

perfectSquare? (integer)
perfectSquare? (n) tests if n is a perfect square.

permanent (matrix)
permanent (x) returns the permanent of a square matrix x, equivalent to the
determinant except that coefficients have no change of sign.

permutation (integer, integer)
permutation (n, m) returns the number of permutations of n objects taken m at a time.
Note: permutation (n, m) = n!/(n-m)!.

permutationGroup (listPermutations)
permutationGroup (ls) coerces a list of permutations ls to the group generated by this list.

permutationRepresentation (permutations[, n])
permutationRepresentation (pi, n) returns the matrix δ\textsubscript{i,pi(i)} (Kronecker delta) if the
permutation pi is in list notation and permutes 1, 2, . . . , n. Argument pi may either be
permutation or a list of integers describing a permutation by list notation.
permutationRepresentation ([pi\textsubscript{1}, . . . , pi\textsubscript{k}], n) returns the list of matrices
[[δ\textsubscript{i,pi\textsubscript{1}(i)}, . . . , δ\textsubscript{i,pi\textsubscript{k}(i)}]] (Kronecker delta) for permutations pi\textsubscript{1}, . . . , pi\textsubscript{k} of 1, 2, . . . , n.

permutations (integer)
permutations (n) returns the stream of permutations formed from 1, 2, . . . , n.

physicalLength (flexibleArray)
physicalLength! (flexibleArray, positiveInteger)
These operations apply to a flexible array a and concern the “physical length” of a, the
maximum number of elements that a can hold. When a destructive operation (such as
concat!) is applied that increases the number of elements of a beyond this number, new
storage is allocated (generally to be about 50\% larger than current storage allocation) and
the elements from the old storage are copied over to the new storage area.
physicalLength \((a)\) returns the physical length of \(a\).

physicalLength! \((a,n)\) causes new storage to be allocated for the elements of \(a\) with a physical length of \(n\). The maxIndex elements from the old storage area are copied. An error is called if \(n\) is less than maxIndex\((a)\).

\(\pi()\)

\(\pi()\) returns \(\pi\), also denoted by the special symbol \(\%\pi\).

\(\text{pile}(\text{listOfOutputForms})\)

\(\text{pile}(\text{lo})\), where \(\text{lo}\) is a list of objects of type OutputForm (normally unexposed), creates the output form consisting of the elements of \(\text{lo}\) displayed as a pile, that is, each element begins on a new line and is indented right to the same margin.

\(\text{plenaryPower}(\text{element, positiveInteger})\)

Argument \(\text{a}\) is a member of a domain of category NonAssociativeAlgebra

\(\text{plenaryPower}(\text{a}, n)\) is recursively defined to be

\(\text{plenaryPower}(\text{a}, n - 1) * \text{plenaryPower}(\text{a}, n - 1)\) for \(n > 1\) and \(a\) for \(n = 1\).

\(\text{plusInfinity}()\)

\(\text{plusInfinity}()\) returns the constant \(\%\text{plusInfinity}\) denoting \(+\infty\).

\(\text{point}(\text{u}], \text{option}]\)

\(\text{point}(p)\) returns a ThreeSpace object which is composed of one component, the point \(p\).

\(\text{point}(l)\) creates a point defined by a list \(l\).

\(\text{point}(sp)\) checks to see if the ThreeSpace object \(sp\) is composed of only a single point and, if so, returns the point, or calls error if \(sp\) has more than one point.

\(\text{point}(sp,l)\) adds a point component defined by a list \(l\) to the ThreeSpace object \(sp\).

\(\text{point}(sp,i)\) adds a point component into a component list of the ThreeSpace object \(sp\) at the index given by \(i\).

\(\text{point}(sp,p)\) adds a point component defined by the point \(p\) described as a list, to the ThreeSpace object \(sp\).

\(\text{point?}(\text{space})\)

\(\text{point?}(sp)\) queries whether the ThreeSpace object \(sp\), is composed of a single component which is a point.

\(\text{pointColor}(\text{palette})\)

\(\text{pointColor}(v)\) specifies a color \(v\) for two-dimensional graph points. This option is expressed in the form pointColor == \(v\) in the draw command. Argument \(p\) is either a palette or a float.

\(\text{pointColorDefault}(\text{[palette]})\)

\(\text{pointColorDefault}()\) returns the default color of points in a two-dimensional viewport.

\(\text{pointColorDefault}(p)\) sets the default color of points in a two-dimensional viewport to the palette \(p\).
pointSizeDefault ([positiveInteger])
pointSizeDefault () returns the default size of the points in a two-dimensional viewport.
pointSizeDefault (i) sets the default size of the points in a two-dimensional viewport to i.

polarCoordinates (x)
polarCoordinates (x) returns a record with components (r, φ) such that x = re^{iφ}.

polar (point)
polar (pt) transforms point pt from polar coordinates to Cartesian coordinates. The function produced will map the point (r, θ) to x = rcos(θ) , y = rsin(θ).

pole? (series)
pole? (f) tests if the power series f has a pole.

polygamma (k, x)
polygamma (k, x) is the k^{th} derivative of digamma (x), often written ψ(k, x) in the literature.

polygon ([sp,]listOfPoints)
polygon? (space)
polygon ([sp,]lp) adds a polygon defined by lp to the ThreeSpace object sp. Each lp is either a list of points (objects of type Point) or else a list of small floats. If sp is omitted, it is understood to be empty.
polygon (sp) returns ThreeSpace object sp as a list of polygons, or an error if sp is not composed of a single polygon.
polygon? (sp) tests if the ThreeSpace object sp contains a single polygon component.

polynomial (series, integer [, integer])
polynomial (s,k) returns a polynomial consisting of the sum of all terms of series s of degree ≤ k and greater than or equal to 0.
polynomial (s,k1,k2) returns a polynomial consisting of the sum of all terms of Taylor series s of degree d with 0 ≤ k1 ≤ d ≤ k2.

pop! (stack)
pop! (s) returns the top element x from stack s, destructively removing it from s, or calls error if s is empty. Note: Use top (s) to obtain x without removing it from s.

position (aggregate, aggregate [, index])
position (x, a[, n]) returns the index i of the first occurrence of x in a where i ≥ n, and minIndex (a) − 1 if no such x is found. The default value of n is 1.
position (cc, t, i) returns the position j ≥ i in t of the first character belonging to character class cc.

positive? (orderedSetElement)
positive? (x) tests if x is strictly greater than 0.
APPENDIX E. OPERATIONS

positiveRemainder \((\text{integer, integer})\)
positiveRemainder \((a, b)\), where \(b > 1\), yields \(r\) where \(0 \leq r < b\) and \(r = a \mod b\).

possiblyInfinite? \((\text{stream})\)
possiblyInfinite? \((s)\) tests if the stream \(s\) could possibly have an infinite number of elements. Note: for many datatypes, possiblyInfinite? \((s) = \text{not explicitlyFinite?}(s)\).

postfix \((\text{outputForm, outputForm})\)
postfix \((op, a)\), where \(op\) and \(a\) are objects of type \(\text{OutputForm}\) (normally unexposed), creates an output form which prints as: \(a \ op\).

powerAssociative? \((\text{}\)\)
powerAssociative? \((F)\), where \(F\) is a domain of category FiniteRankNonAssociativeAlgebra, tests if all subalgebras generated by a single element are associative.

powerSum \((\text{integer})\)
powerSum \((n)\) is the \(n\)th power sum symmetric function. See CycleIndicators for details.

powmod \((\text{integer, integer, integer})\)
powmod \((a, b, p)\), where \(a\) and \(b\) are non-negative integers, each \(< p\), returns \(a^b \mod p\).

precision \((\text{[positiveInteger]}\)\)
precision \((\text{})\) returns the precision of \(\text{Float}\) values in decimal digits.
precision \((n)\) set the precision in the base to \(n\) decimal digits.

prefix \((\text{outputForm, listOfOutputForms})\)
prefix \((o, lo)\), where \(o\) is an object of type \(\text{OutputForm}\) (normally unexposed) and \(lo\) is a list of objects of type \(\text{OutputForm}\), creates an output form depicting the nary prefix application of \(o\) to a tuple of arguments given by list \(lo\).

prefix? \((\text{string, string})\)
prefix? \((s, t)\) tests if the string \(s\) is the initial substring of \(t\).

prefixRagits \((\text{listOfIntegers})\)
prefixRagits \((rx)\) returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example, if \(x = 3/28 = 0.10714285714285\ldots\), then

\[
\text{prefixRagits}(x) = [1, 0].
\]

presub \((\text{outputForm, outputForm})\)
presub \((o_1, o_2)\), where \(o_1\) and \(o_2\) are objects of type \(\text{OutputForm}\) (normally unexposed), creates an output form for \(o_1\) presubscripted by \(o_2\).

presuper \((\text{outputForm, outputForm})\)
presuper \((o_1, o_2)\), where \(o_1\) and \(o_2\) are objects of type \(\text{OutputForm}\) (normally unexposed), creates an output form for \(o_1\) presuperscripted by \(o_2\).
primaryDecomp (ideal)
primaryDecomp(I) returns a list of primary ideals such that their intersection is the ideal I.

prime (outputForm[, positiveInteger])
prime(o[,n]), where o is an object of type OutputForm (normally unexposed), creates an output form for o following by n primes (that is, a prime like “ ’ ”). By default, n = 1.

prime? (element)
prime?(x) tests if x cannot be written as the product of two non-units, that is, x is an irreducible element. Argument x may be an integer, a polynomial, an ideal, or, in general, any element of a domain of category UniqueFactorizationDomain.

primeFactor (element, integer)
primeFactor(base,exponent) creates a factored object with a single factor whose base is asserted to be prime (flag = "prime").

primeFrobenius (finiteFieldElement[, nonNegativeInteger])
Argument a is a member of a domain of category FieldOfPrimeCharacteristic(p).
primeFrobenius(a[,s]) returns a^p^s. The default value of s is 1.

primes (integer, integer)
primes(a;b) returns a list of all primes p with a ≤ p ≤ b.

primitive? (finiteFieldElement)
primitive?(b) tests whether the element b of a finite field is a generator of the (cyclic) multiplicative group of the field, that is, is a primitive element.

primitiveElement (expressions[, expression])
primitiveElement(a_1,a_2) returns a record with four components: a primitive element a with selector primelt, and three polynomials q_1, q_2, and q with selectors pol1, pol2, and prim. The prime element a is such that the algebraic extension generated by a_1 and a_2 is the same as that generated by a, a_i = q_i(a) and q(a) = 0. The minimal polynomial for a_2 may involve a_1, but the minimal polynomial for a_1 may not involve a_2. This operations uses resultant.

primitiveMonomials (polynomial)
primitiveMonomials(p) gives the list of monomials of the polynomial p with their coefficients removed. Note: primitiveMonomials (sum a_i X^{(i)}) = [X^{(1)},...,X^{(n)}].

primitivePart (polynomial[, symbol])
primitivePart(p[,v]) returns the unit normalized form of polynomial p divided by the content of p with respect to variable v. If no v is given, the content is removed with respect to all variables.

principalIdeal (listOfPolynomials)
principalIdeal([f_1,...,f_n]) returns a record whose “generator” component is a generator
APPENDIX E. OPERATIONS

of the ideal generated by \([f_1, \ldots, f_n]\) whose “coef” component is a list of coefficients \([c_1, \ldots, c_n]\) such that \(generator = \sum_i c_i f_i\).

\texttt{print (outputForm)}
\texttt{print (o)} writes the output form \(o\) on standard output using the two-dimensional formatter.

\texttt{product (element, element)}
\texttt{product (f(n), n = a..b)} returns \(\prod_{n=a}^b f(n)\) as a formal product.
\texttt{product (f(n), n = a..b)} returns the formal product \(P(n)\) verifying \(P(n+1)/P(n) = f(n)\).
\texttt{product (s, t), where s and t are cartesian tensors, returns the outer product of s and t. For example, if r = product (s, t) for rank 2 tensors s and t, then r is a rank 4 tensor given by \(r_{i,j,k,l} = s_{i,j}t_{k,l}\).}
\texttt{product (a; b), where a and b are elements of a graded algebra returns the degree-preserving linear product. See GradedAlgebra for details.}

\texttt{prolateSpheroidal (smallFloat)}
\texttt{prolateSpheroidal (a)} returns a function to transform prolate spheroidal coordinates to Cartesian coordinates. This function will map the point \((\xi; \eta; \phi)\) to \(x = \sinh(\xi)\sin(\eta)\cos(\phi), y = \sinh(\xi)\sin(\eta)\sin(\phi), z = \cosh(\xi)\cos(\eta)\).

\texttt{prologue (text)}
\texttt{prologue (t)} extracts the prologue section of a IBM SCRIPT Formula Formatter or \TeX formatted object \(t\).

\texttt{properties (basicOperator[, prop])}
\texttt{properties (op)} returns the list of all the properties currently attached to \(op\).
\texttt{property (op, s)} returns the value of property \(s\) if it is attached to \(op\), and "failed" otherwise.

\texttt{pseudoDivide (polynomial, polynomial)}
\texttt{pseudoDivide (p; q)} returns \((c; q; r)\), when \(p' := p \text{ leadingCoefficient}(q)^\text{deg}(p) - \text{deg}(q) + 1 = cp\) is pseudo right-divided by \(q\), that is, \(p' = sq + r\).

\texttt{pseudoQuotient (polynomial, polynomial)}
\texttt{pseudoQuotient (p; q)} returns \(r\), the quotient when \(p' := p \text{ leadingCoefficient}(q)^\text{deg}(p) - \text{deg}(q) + 1\) is pseudo right-divided by \(q\), that is, \(p' = sq + r\).

\texttt{pseudoRemainder (polynomial, polynomial)}
\texttt{pseudoRemainder (p; q)} = \(r\), for polynomials \(p\) and \(q\), returns the remainder when \(p' := p \text{ leadingCoefficient}(q)^\text{deg}(p) - \text{deg}(q) + 1\) is pseudo right-divided by \(q\), that is, \(p' = sq + r\).

\texttt{puiseux (expression[, options])}
\texttt{puiseux (f)} returns a Puiseux expansion of the expression \(f\). Note: \(f\) should have only one variable; the series will be expanded in powers of that variable. Also, if \(x\) is a symbol, \texttt{puiseux (x)} returns \(x\) as a Puiseux series.
\texttt{puiseux (f, x = a)} expands the expression \(f\) as a Puiseux series in powers of \((x - a)\).
\textbf{puiseux} \((f, n)\) returns a Puiseux expansion of the expression \(f\). Note: \(f\) should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \(n\).

\textbf{puiseux} \((f, x = a, n)\) expands the expression \(f\) as a Puiseux series in powers of \((x - a)\); terms will be computed up to order at least \(n\).

\textbf{puiseux} \((a(n), n, x = a, r_0...r)\) returns \(\sum_{n=r_0, r_0+2r...} a(n)(x - a)^n \).

\textbf{Note:} Each of the last two commands have alternate forms whose third argument is the finite segment \(r_0...r_1\) producing a similar series with a finite number of terms.

\textbf{push!} \((\text{element}, \text{stack})\)

\textbf{push!} \((x, s)\) pushes \(x\) onto stack \(s\), that is, destructively changing \(s\) so as to have a new first (top) element \(x\).

\textbf{pushdown} \((\text{polynomial}, \text{symbol})\)

\textbf{pushdterm} \((\text{monomial}, \text{symbol})\)

\textbf{pushdterm} \((\text{prf;var})\) pushes all top level occurrences of the variable \(\text{var}\) into the coefficient domain for the polynomial \(\text{prf}\).

\textbf{pushucoef} \((\text{polynomial}, \text{variable})\)

\textbf{pushucoef} \((\text{upoly;var})\) converts the anonymous univariate polynomial \(\text{upoly}\) to a polynomial in \(\text{var}\) over rational functions.

\textbf{pushuconst} \((\text{rationalFunction}, \text{variable})\)

\textbf{pushuconst} \((r;\text{var})\) takes a rational function and raises all occurrences of the variable \(\text{var}\) to the polynomial level.

\textbf{pushup} \((\text{polynomial}, \text{variable})\)

\textbf{pushup} \((\text{prf;var})\) raises all occurrences of the variable \(\text{var}\) in the coefficients of the polynomial \(\text{prf}\) back to the polynomial level.

\textbf{qelt} \((u[, \text{options}])\)

\textbf{qelt} \((u;p[, \text{options}])\) is equivalent to a corresponding \textbf{elt} form except that it performs no check that indices are in range. Use HyperDoc to discover if a given domain has this alternative operation.

\textbf{qsetelt}! \((u, x, y[, z])\)

\textbf{qsetelt}! \((u, x, y[, z])\) is equivalent to a corresponding \textbf{setelt} form except that it performs no check that indices are in range.

\textbf{quadraticForm} \((\text{matrix})\)

\textbf{quadraticForm} \((m)\) creates a quadratic form from a symmetric, square matrix \(m\).

\textbf{quatern} \((\text{element}, \text{element}, \text{element}, \text{element})\)

\textbf{quatern} \((r, i, j, k)\) constructs a quaternion from scalars.
queue ([listOfElements])
queue ()$R returns an empty queue of type $R.$
queue ([x, y, . . . , z]) creates a queue with first (top) element x, second element y, . . . , and
last (bottom) element z.

quickSort (predicate, aggregate)
quickSort (f, agg) sorts the aggregate agg with the ordering predicate f using the
quicksort algorithm.

quo (integer, integer)
a quo b returns the quotient of a and b discarding the remainder.

quoByVar (series)
quoByVar (a0 + a1x + a2x2 + · · ·) returns a1 + a2x + a3x2 + · · ·. Thus, this function
subtracts the constant term and divides by the series variable. This function is used when
Laurent series are represented by a Taylor series and an order.

quote (outputForm)
quote (o), where o is an object of type OutputForm (normally unexposed), creates an
output form o with a prefix quote.

quotedOperators (rewriteRule)
quotedOperators (r), where r is a rewrite rule, returns the list of operators on the
right-hand side of r that are considered quoted, that is, they are not evaluated during any
rewrite, but applied formally to their arguments.

quotient (ideal, polynomial)
quotient (I, f) computes the quotient of the ideal I by the principal ideal generated by the
polynomial f, (I : (f)).
quotient (I, J) computes the quotient of the ideals I and J, (I : J).

radical (ideal)
radical (I) returns the radical of the ideal I.

radicalEigenvalues (matrix)
radicalEigenvalues (m) computes the eigenvalues of the matrix m; when possible, the
eigenvalues are expressed in terms of radicals.

radicalEigenvectors (matrix)
radicalEigenvectors (m) computes the eigenvalues and the corresponding eigenvectors of
the matrix m; when possible, values are expressed in terms of radicals.

radicalEigenvector (eigenvalue, matrix)
radicalEigenvector (c, m) computes the eigenvector(s) of the matrix m corresponding to
the eigenvalue c; when possible, values are expressed in terms of radicals.
radicalOfLeftTraceForm ()
radicalOfLeftTraceForm () returns the basis for the null space of leftTraceMatrix () F, where F is a domain of category FramedNonAssociativeAlgebra. If the algebra is associative, alternative or a Jordan algebra, then this space equals the radical (maximal nil ideal) of the algebra.

radicalRoots (fractions)
radicalRoots (rf, v) finds the roots expressed in terms of radicals of the rational function rf with respect to the symbol v.
radicalRoots (lrf, lv) finds the roots expressed in terms of radicals of the list of rational functions lrf with respect to the list of symbols lv.

radicalSolve (eq, x)
See solve (u, v).

radix (rationalNumber, integer)
radix (rn, b) converts rational number rn to a radix expansion in base b.

ramified? (polynomial)
ramifiedAtInfinity? ()
Domain F is a domain of functions on a fixed curve.
ramified? (p) F tests whether $p(x) = 0$ is ramified.
ramifiedAtInfinity? () tests if infinity is ramified.

random ([u, v])
random () R creates a random element from domain D.
random (gp[, i]) returns a random product of maximal i generators of the permutation group gp. The value of i is 20 by default.

range (listOfSegments)
range (ls), where ls is a list of segments of the form $[a_1..b_1, \ldots, a_n..b_n]$, provides a user-specified range for clipping for the draw command. This command may also be expressed locally to the draw command as the option range $== ls$. The values a_i and b_i are either given as floats or rational numbers.

ranges (listOfSegments)
ranges (l) provides a list of user-specified ranges for the draw command. This command may also be expressed as an option to the draw command in the form ranges $== l$.

rank (matrix)
rank (m) returns the rank of the matrix m. Also:
rank (A, B) computes the rank of the complete matrix $(A|B)$ of the linear system $AX = B$.
rank (t), where t is a Cartesian tensor, returns the tensorial rank of t (that is, the number of indices). See also FiniteRankAlgebra and FiniteRankNonAssociativeAlgebra.
rarrow (outputForm, outputForm)
rarrow (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed), creates a form for the mapping o1 \rightarrow o2.

ratDenom (expression | option)
ratDenom (f[, u]) rationalizes the denominators appearing in f. If no second argument is given, then all algebraic quantities are moved into the numerators. If the second argument is given as an algebraic kernel a, then a is removed from the denominators. Similarly, if u is a list of algebraic kernels [a1, ..., an], the operation removes the ai’s from the denominators in f.

rational? (element)
rationalIfCan (element)
rational (element)
rational? (x) tests if x is a rational number, that is, that it can be converted to type Fraction(Integer). Specifically, if x is complex, a quaternion, or an octonion, it tests that all imaginary parts are 0.
rationalIfCan (x) returns x as a rational number if possible, and "failed" if it is not.
rational (x) returns x as a rational number if possible, and calls error if it is not.

rationalApproximation (float, nonNegativeInteger | positiveInteger)
rationalApproximation (f, n[, b]) computes a rational approximation r to f with relative error < b\(^{-n}\), that is \(|(r - f)/f| < b\(^{-n}\), for some positive integer base b. By default, b = 10. The first argument f is either a float or small float.

rationalFunction (series, integer, integer)
rationalFunction (f, m, n) returns a rational function consisting of the sum of all terms of f of degree d with m \leq d \leq n. By default, n is the maximum degree of f.

rationalPoint? (value, value)
rationalPoint? (a, b)\$F tests if (x = a, y = b) is on the curve defining function field \(F\). See FunctionFieldCategory.

rationalPoints ()
rationalPoints ()\$ returns the list of all the affine rational points on the curve defining function field \(F\). See FunctionFieldCategory.

rationalPower (puiseuxSeries)
rationalPower (f(x)) returns r where the Puiseux series f(x) = g(x^r).

ratPoly (expression)
ratPoly (f) returns a polynomial p such that p has no algebraic coefficients, and p(f) = 0.

rdexquo (lodOperator)
rdexquo (a, b), where a and b are linear ordinary differential operators, returns q such that a = bq, or "failed" if no such q exists.
rightDivide(loidOperator, lodOperator)
rightQuotient(loidOperator, lodOperator)
rightRemainder(loidOperator, lodOperator)

rightDivide(a, b) returns the pair q, r such that a = qb + r and the degree of r is less than
the degree of b. The pair is returned as a record with fields quotient and remainder. This
process is called “right division”. Also: rightQuotient(a, b) returns only q.
rightRemainder(a, b) returns only r.

read!(file)
readIfCan!(file)
read!(f) extracts a value from file f. The state of f is modified so a subsequent call to
read! will return the next element.
readIfCan!(f) returns a value from the file f or "failed" if this is not possible (that is,
either f is not open for reading, or f is at the end of the file).

readable?(file)
readable?(f) tests if the named file exists and can be opened for reading.

readLine!(file)
readLineIfCan!(file)
readLineIfCan!(f) returns a string of the contents of a line from file f, or "failed" if this is not possible (if f is not readable or is positioned at the end of file).
readLine!(f) returns a string of the contents of a line from the file f, and calls error if
this is not possible.

real(x)
real?(expression)

real(x) returns real part of x. Argument x can be an expression or a complex value,
quaternion, or octonion.
real?(f) tests if expression f = real(f).

realEigenvectors(matrix, float)
realEigenvectors(m, eps) returns a list of records, each containing a real eigenvalue,
its algebraic multiplicity, and a list of associated eigenvectors. All these results are computed
to precision eps as floats or rational numbers depending on the type of eps. Argument m is
a matrix of rational functions.

realElementary(expression[i], symbol)
realElementary(f, sy) rewrites the kernels of f involving sy in terms of the 4
fundamental real transcendental elementary functions: log, exp, tan, atan. If sy is omitted,
all kernels of f are rewritten.

realRoots(rationalfunctions, v[i, w])
realRoots(rf, eps) finds the real zeros of a univariate rational function rf with precision
given by eps.
realRoots(lp, lv, eps) computes the list of the real solutions of the list lp of rational
functions with rational coefficients with respect to the variables in lv, with precision eps. Each solution is expressed as a list of numbers in order corresponding to the variables in lv.

realZeros (polynomial, rationalNumber [, option])
realZeros (pol) returns a list of isolating intervals for all the real zeros of the univariate polynomial pol.
realZeros (pol[, eps]) returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol. The default value of eps is ???.

realZeros (pol, int[, eps]) returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol which lie in the interval expressed by the record int. The default value of eps is ???.

recip (element)
recip (x) returns the multiplicative inverse for x, or "failed" if no inverse can be found. See also FiniteRankNonAssociativeAlgebra and MonadWithUnit.

recur (function)
recur (f), where f is a function of type (NonNegativeInteger, R) → R for some domain R, returns the function g such that g(n, x) = f(n, f(n, f(n, ..., f(1, x), ...)). For related functions, see MappingPackage.

red ()
red () returns the position of the red hue from total hues.

reduce (op, aggregate [, identity, element])
reduce (f, u[, ident, a]) reduces the binary operation f across u. For example, if u is [x1, x2, ..., xn] then **reduce** (f, u) returns f(...f(x1, x2),..., xn).

An optional identity element of f provided as a third argument affects the result if u has less than two elements. If u is empty, the third argument is returned if given, and a call to error occurs otherwise. If u has one element and the third argument is given, the value returned is f(ident, x1). Otherwise x1 is returned. Thus both **reduce** (+, u) and **reduce** (+, u, 0) return ∑ni=1 xi. Similarly, **reduce** (*, u) and **reduce** (*, u, 1) return ∏ni=1 xi.

An optional fourth argument z acts as an “absorbing element”. **reduce** (f, u, x, z) reduces the binary operation f across u, stopping when an “absorbing element” z is encountered. For example **reduce** (or, u, false, true) will stop iterating across u returning true as soon as an xi = true is found. Note: if u has one element x, **reduce** (f, u) returns x, or calls error if u is empty.

reduceBasisAtInfinity (basis)
reduceBasisAtInfinity (b1, ..., bn), where the bi are functions on a fixed curve, returns (xibj) for all i, j such that xibj is locally integral at infinity. See FunctionFieldCategory using Browse.

reducedContinuedFraction (element, stream)
reducedContinuedFraction (b0, b) returns a continued fraction constructed as follows. If
b = [b₁, b₂, ...] then the result is the continued fraction \(b₀ + 1/(b₁ + 1/(b₂ + \cdots)) \). That is, the result is the same as \(\text{continuedFraction} \{ b₀, [1, 1, 1, \ldots]; [b₁, b₂, b₃, \ldots] \} \).

\text{reducedForm} \{ \text{continuedFraction} \}
\text{reducedForm} \{ x \} puts the continued fraction \(x \) in reduced form, that is, the function returns an equivalent continued fraction of the form \(\text{continuedFraction} \{ b₀, [1, 1, 1, \ldots]; [b₁, b₂, b₃, \ldots] \} \).

\text{reducedSystem} \{ \text{matrix}, \text{vector} \}
\text{reducedSystem} \{ A, v \} returns a matrix \(B \) such that \(Ax = v \) and \(Bx = v \) have the same solutions. By default, \(v = 0 \).

\text{reductum} \{ \text{polynomial} \}
\text{reductum} \{ p \} returns polynomial \(p \) minus its leading monomial, or zero if handed the zero element. See also \text{IndexedDirectProductCategory} and \text{MonogenicLinearOperator}.

\text{refine} \{ \text{polynomial}, \text{interval}, \text{precision} \}
\text{refine} \{ \text{pol}, \text{int}, \text{tolerance} \} refines the interval \(\text{int} \) containing exactly one root of the univariate polynomial \(\text{pol} \) to size less than the indicated \text{tolerance}. Argument \(\text{int} \) is an interval denoted by a record with selectors \text{left} \ and \text{right} \, each with rational number values. The tolerance is either a rational number or another interval. In the latter case, "failed" is returned if no such isolating interval exists.

\text{regularRepresentation} \{ \text{element}, \text{basis} \}
\text{regularRepresentation} \{ a; \text{basis} \} returns the matrix of the linear map defined by left multiplication by \(a \) with respect to basis \(\text{basis} \). Element \(a \) is a complex element or an element of a domain \(R \) of category \text{FramedAlgebra}. The second argument may be omitted when a fixed basis is defined for \(R \).

\text{reindex} \{ \text{cartesianTensor}, \text{listOfIntegers} \}
\text{reindex} \{ t; [i₁, \ldots, iₖ\text{dim}] \} permutes the indices of cartesian tensor \(t \). For example, if \(r = \text{reindex}(t, [4, 1, 2, 3]) \) for a rank 4 tensor \(t \), then \(r \) is the rank 4 tensor given by \(r(i, j, k, l) = t(l, i, j, k) \).

\text{relationsIdeal} \{ \text{listOfPolynomials} \}
\text{relationsIdeal} \{ \text{polyList} \} returns the ideal of relations among the polynomials in \(\text{polyList} \).

\text{relerror} \{ \text{float}, \text{float} \}
\text{relerror} \{ x, y \}, where \(x \) and \(y \) are floats, computes the absolute value of \(x - y \) divided by \(y \), when \(y \neq 0 \).

\text{rem} \{ \text{element}, \text{element} \}
\(a \ \text{rem} \ b \) returns the remainder of \(a \) and \(b \).

\text{remove} \{ \text{predicate}, \text{aggregate} \}
Argument \(u \) is any extensible aggregate such as a list.
\text{remove} \{ \text{pred}, u \} returns a copy of \(u \) removing all elements \(x \) such that \(p(x) \) is true.
Argument \(u \) may be any homogeneous aggregate including infinite streams. Note: for lists and streams, \(\text{remove}(p, u) = [x \text{ for } x \text{ in } u \mid \text{not } p(x)] \).

\(\text{remove!}(\text{pred}, u) \) destructively removes all elements \(x \) of \(u \) such that \(\text{pred}(x) \) is true.

The value of \(u \) after all such elements are removed is returned.

\(\text{remove!}(k, t) \), where \(t \) is a keyed dictionary, searches the table \(t \) for the key \(k \), removing and returning the entry if there. If \(t \) has no such key, it returns "failed".

\(\text{removeCoshSq}(\text{expression}) \)

\(\text{removeCoshSq}(f) \) converts every \(\cosh(u)^2 \) appearing in \(f \) into \(1 - \sinh(x)^2 \), and also reduces higher powers of \(\cosh(u) \) with that formula.

\(\text{removeDuplicates}(\text{aggregate}) \)

\(\text{removeDuplicates!}(\text{aggregate}) \)

\(\text{removeDuplicates}(u) \) returns a copy of \(u \) with all duplicates removed.

\(\text{removeDuplicates!}(u) \) destructively removes duplicates from \(u \).

\(\text{removeSinhSq}(\text{expression}) \)

\(\text{removeSinhSq}(f) \) converts every \(\sinh(u)^2 \) appearing in \(f \) into \(1 - \cosh(x)^2 \), and also reduces higher powers of \(\sinh(u) \) with that formula.

\(\text{removeSinSq}(\text{expression}) \)

\(\text{removeSinSq}(f) \) converts every \(\sin(u)^2 \) appearing in \(f \) into \(1 - \cos(x)^2 \), and also reduces higher powers of \(\sin(u) \) with that formula.

\(\text{removeZeroes}([\text{integer}, \text{laurentSeries}]) \)

\(\text{removeZeroes}([n, f(x)]) \) removes up to \(n \) leading zeroes from the Laurent series \(f(x) \). If no integer \(n \) is given, all leading zeroes are removed.

\(\text{reopen!}(\text{file, string}) \)

\(\text{reopen!}(f, \text{mode}) \) returns a file \(f \) reopened for operation in the indicated mode: "input" or "output". For example, \(\text{reopen!}(f, "input") \) will reopen the file \(f \) for input.

\(\text{repeating}(\text{listOfElements}, \text{stream}) \)

\(\text{repeating?}(\text{stream}) \)

\(\text{repeating}(l) \) is a repeating stream whose period is the list \(l \).

\(\text{repeating?}(l, s) \) tests if a stream \(s \) is periodic with period \(l \).

\(\text{replace}(\text{string, segment, string}) \)

\(\text{replace}(s, i..j, t) \) replaces the substring \(s(i..j) \) of \(s \) by string \(t \).

\(\text{represents}(\text{listOfElements}, \text{listOfBasisElements}) \)

\(\text{represents}([a^1, \ldots, a^n], [v^1, \ldots, v^n]) \) returns \(a^1v^1 + \cdots + a^nv^n \). Arguments \(v_i \) are elements of a domain of category \text{FiniteRankAlgebra} \text{or FiniteRankNonAssociativeAlgebra} built over a ring \(R \). The \(a_i \) are elements of \(R \). In a framed algebra or finite algebra extension field domain with a fixed basis, \([v_1, \ldots, v_n] \) defaults to the elements of the fixed basis. See \text{FramedAlgebra}, \text{FramedNonAssociateAlgebra}, and \text{FiniteAlgebraicExtensionField}.

See also FunctionFieldCategory.

resetNew ()
resetNew () resets the internal counter that new () uses.

resetVariableOrder ()
resetVariableOrder () cancels any previous use of setVariableOrder and returns to the default system ordering.

rest (aggregate, nonNegativeInteger)
rest (u) returns an aggregate consisting of all but the first element of u (equivalently, the next node of u).
rest (u, n) returns the n-th node of u. Note: rest (u, 0) = u.

resultant (polynomial, polynomial, variable)
resultant (p, q, v) returns the resultant of the polynomials p and q with respect to the variable v. If p and q are univariate polynomials, the variable v defaults to the unique variable.

retract (element)
retractIfCan (element)
retractIfCan (a)@S returns a as an object of type S, or "failed" if this is not possible.
retract (a)@S transforms a into an element of S, or calls error if this is not possible.

retractable? (typeAnyObject)
retractable? (a)@S tests if object a of type Any can be converted into an object of type S.

reverse (linearAggregate)
reverse! (linearAggregate)
reverse (a) returns a copy of linear aggregate a with elements in reverse order.
reverse! (a) destructively puts the elements of linear aggregate a in reverse order.

rightGcd (lodOperator, lodOperator)
rightGcd (a, b), where a and b are linear ordinary differential operators, computes the value g of highest degree such that a = g * aa and b = g * bb for some values aa and bb. The value g is computed using right-division.

rhs (rewriteRuleOrEquation)
rhs (u) returns the right-hand side of the rewrite rule or equation u.

right (binaryRecursiveAggregate)
right (a) returns the right child.

rightAlternative? ()
See leftAlternative?.
rightCharacteristicPolynomial (element)
See leftCharacteristicPolynomial.

rightDiscriminant (basis)
See leftDiscriminant.

rightMinimalPolynomial (element)
See leftMinimalPolynomial.

rightNorm (element)
See leftNorm.

rightPower (Monad, nonNegativeInteger)
See rightPower.

rightRankPolynomial ()
See leftRankPolynomial.

rightRank (basis)
See leftRank.

rightRecip (element)
See leftRecip.

rightRegularRepresentation (element[, basis])
See leftRegularRepresentation.

rightTraceMatrix (basis)
See leftTraceMatrix.

rightTrim (string, various)
See leftTrim.

rightUnits ()
See leftUnits.

rischNormalize (expression, x)
rischNormalize (f, x) returns \([g, [k_1, \ldots, k_n], [h_1, \ldots, h_n]]\) such that \(g = \text{normalize}(f, x)\)
and each \(k_i\) was rewritten as \(h_i\) during the normalization.

rightLcm (lodOperator, lodOperator)
rightLcm (a, b), where \(a\) and \(b\) are linear ordinary differential operators, computes the value \(m\) of lowest degree such that \(m = aa * a = bb * b\) for some values \(aa\) and \(bb\). The value \(m\) is computed using right-division.

roman (integerOrSymbol)
roman (x) creates a roman numeral for integer or symbol x.
\textbf{romberg} \((\text{floatFunction, fourFloats, threeIntegers})\)

\textbf{rombergOpen} \((\text{floatFunction, fourFloats, twoIntegers})\)

\textbf{rombergClose} \((\text{floatFunction, fourFloats, twoIntegers})\)

\textbf{romberg} \((\text{fn, a, b, epsrel, epsabs, nmin, nmax, nint})\) uses an adaptive romberg method to numerically integrate function \(\text{fn}\) over the closed interval from \(a\) to \(b\), with relative accuracy \(\text{epsrel}\) and absolute accuracy \(\text{epsabs}\); the refinement levels for the checking of convergence vary from \(\text{nmin}\) to \(\text{nmax}\). The method is called “adaptive” since it requires an additional parameter \(\text{nint}\) giving the number of subintervals over which the integrator independently applies the convergence criteria using \(\text{nmin}\) and \(\text{nmax}\). This is useful when a large number of points are needed only in a small fraction of the entire interval. Parameter \(\text{fn}\) is a function of type \(\text{Float} \rightarrow \text{Float}\); \(\text{a}\), \(\text{b}\), \(\text{epsrel}\), and \(\text{epsabs}\) are floats; \(\text{nmin}\), \(\text{nmax}\), and \(\text{nint}\) are integers. The operation returns a record containing: \text{value}, an estimate of the integral; \text{error}, an estimate of the error in the computation; \text{totalpts}, the total integral number of function evaluations, and \text{success}, a boolean value that is \text{true} if the integral was computed within the user specified error criterion. See \text{NumericalQuadrature} for details.

\textbf{rombergClosed} \((\text{fn, a, b, epsrel, epsabs, nmin, nmax})\) similarly uses the Romberg method to numerically integrate function \(\text{fn}\) over the closed interval \(a\) to \(b\), but is not adaptive.

\textbf{rombergOpen} \((\text{fn, a, b, epsrel, epsabs, nmin, nmax})\) is similar to \textbf{rombergClosed}, except that it integrates function \(\text{fn}\) over the open interval from \(a\) to \(b\).

\textbf{root} \((\text{outputForm, positiveInteger})\)

\textbf{root} \((\text{o, n})\), where \(o\) and \(n\) are objects of type \text{OutputForm} (normally unexposed), creates an output form for the \(n^{th}\) root of the form \(o\). By default, \(n = 2\).

\textbf{rootOfIrreduciblePoly} \((\text{polynomial})\)

\textbf{rootOfIrreduciblePoly} \((f)\) computes one root of the monic, irreducible polynomial \(f\), whose degree must divide the extension degree of \(F\) over \(GF\). That is, \(f\) splits into linear factors over \(F\).

\textbf{rootOf} \((\text{polynomial, variable})\)

\textbf{rootOf} \((p, y)\) returns \(y\) such that \(p(y) = 0\). The object returned displays as \(\prime y\). The second argument may be omitted when \(p\) is a polynomial in a unique variable \(y\).

\textbf{rootSimp} \((\text{expression})\)

\textbf{rootSimp} \((f)\) transforms every radical of the form \((ab^{m+r})^{1/n}\) appearing in expression \(f\) into \(b^n(ab^r)^{1/n}\). This transformation is not in general valid for all complex numbers \(b\).

\textbf{rootsOf} \((\text{polynomialOrExpression, symbol})\)

\textbf{rootsOf} \((p, y)\) returns the value of \([y_1, \ldots, y_n]\) such that \(p(y_i) = 0\). The \(y_i\) are symbols of the form \(\%y\) with a suffix number which are bound in the interpreter to respective root values. Argument \(p\) is either an expression or a polynomial. Argument \(y\) may be omitted in which case \(p\) must contain exactly one symbol.
rootSplit (expression)
rootSplit (f) transforms every radical of the form \((a/b)^{1/n}\) appearing in \(f\) into \(a^{1/n}/b^{1/n}\).
This transformation is not in general valid for all complex numbers \(a\) and \(b\).

rotate! (queue)
rotate! (q) rotates queue q so that the element at the front of the queue goes to the back of the queue.

round (float)
round (x) computes the integer closest to \(x\).

row (matrix, positiveInteger)
row (m, i) returns the \(i^{th}\) row of the matrix or two-dimensional array \(m\).

rowEchelon (matrix)
rowEchelon (m) returns the row echelon form of the matrix \(m\).

rst (stream)
rst (s) returns a pointer to the next node of stream \(s\). Caution: this function should only
be called after a empty? test returns true since no error check is performed.

rubiksGroup ()
rubiksGroup () constructs the permutation group representing Rubik’s Cube acting on
integers \(10i + j\) for \(1 \leq i \leq 6, 1 \leq j \leq 8\). The faces of Rubik’s Cube are labelled: Front, Right, Up, Down, Left, Back and numbered from 1 to 6. The pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces, represented as a two digit integer \(ij\) where \(i\) is the number of the face and \(j\) is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators representing 90-degree turns of the faces.

rule (various)
Section 6.21 on page 208

rules (ruleset)
rules (r) returns the list of rewrite rules contained in ruleset \(r\).

ruleset (listOfRules)
ruleset ([r1, ..., rn]) creates a ruleset from a list of rewrite rules \(r_1, \ldots, r_n\).

rungaKutta (vector, integer, fourFloats, integer, function)
rungaKuttaFixed (vector, integer, float, float, integer, function)
rungaKutta \((y, n, a, b, eps, h, ncalls, derivs)\) uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation \(dy/dx = f(y, x)\) from \(x_1\) to \(x_2\), where \(y\) is an \(n\)-vector of \(n\) variables. Initial and final values are provided by solution vector \(y\). The local truncation error is kept within \(eps\) by changing the local step size. Argument \(h\) is a trial step size and \(ncalls\) is the maximum number of single steps the
integrator is allowed to take. Argument derivs is a function of type (Vector Float, Vector Float, Float) → Void, which computes the right-hand side of the ordinary differential equation, then replaces the elements of the first argument by updated elements.

rungeKuttaFixed(y, n, x1, x2, ns, derivs) is similar to rungeKutta except that it uses ns fixed steps to integrate the solution vector y from x1 to x2, returning the values in y.

saturate(ideal, polynomial[, listOfVariables])
saturate(I, f[, lvar]) is the saturation of the ideal I with respect to the multiplicative set generated by the polynomial f in the variables given by lvar, a list of variables. Argument lvar may be omitted in which case lvar is taken to be the list of all variables appearing in f.

say(strings)
say(u) sends a string or a list of strings u to output.

sayLength(listOfStrings)
sayLength(ls) returns the total number of characters in the list of strings ls.

scalarMatrix(scalar[, dimension])
scalarMatrix(r[, n]) returns an n-by-n matrix with scalar r on the diagonal and zero elsewhere. The dimension may be omitted if the result is to be an object of type SquareMatrix(n;R) for some n.

scan(binaryFunction, aggregate, element)
scan(f, a, r) successively applies reduce(f, x, r) to more and more leading sub-aggregates x of aggregate a. More precisely, if a is [a1, a2, ...], then scan(f, a, r) returns [reduce(f, [a1], r), reduce(f, [a1, a2], r), ...]. Argument a can be any linear aggregate including streams. For example, if a is a list or an infinite stream of the form [x1, x2, ...], then scan(+, a, 0) returns a list or stream of the form [x1, x1 + x2, ...].

scanOneDimSubspaces(listOfVectors, integer)
scanOneDimSubspaces(basis, n) gives a canonical representative of the n th one-dimensional subspace of the vector space generated by the elements of basis. Consult RepresentationPackage2 using details.

script(symbol, listOfListsOfOutputForms)
script(sy, [a, b, c, d, e]) returns sy with subscripts a, superscripts b, pre-superscripts c, pre-subscripts d, and argument-scripts e. Omitted components are taken to be empty. For example, script(s, [a, b, c]) is equivalent to script(s, [a, b, c, []], []).

scripted?(symbol)
scripted?(sy) tests if sy has been given any scripts.

scripts(symbolOrOutputForm[, listOfOutputForms])
scripts(o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a list [sub, super, presuper, presub] of four objects of type OutputForm (normally unexposed),
creates a form for o with scripts on all four corners.

\textbf{scripts} (s) returns all the scripts of s as a record with selectors \textit{sub}, \textit{sup}, \textit{presup}, \textit{presub}, and \textit{args}, each with a list of output forms as a value.

\textbf{search} \langle key, \ table \rangle

\textbf{search} (k, t) searches the table \(t \) for the key \(k \), returning the entry stored in \(t \) for key \(k \), or "failed" if \(t \) has no such key.

\textbf{sec} \langle \textit{expression} \rangle

\textbf{secIfCan} \langle \textit{expression} \rangle

\textbf{sec} (x) returns the secant of \(x \).

\textbf{secIfCan} (z) returns \textbf{sec} (z) if possible, and "failed" otherwise.

\textbf{sec2cos} \langle \textit{expression} \rangle

\textbf{sec2cos} (f) converts every \textbf{sec} (u) appearing in \(f \) into \(1/\cos(u) \).

\textbf{sech} \langle \textit{expression} \rangle

\textbf{sechIfCan} \langle \textit{expression} \rangle

\textbf{sech} (x) returns the hyperbolic secant of \(x \).

\textbf{sechIfCan} (z) returns \textbf{sech} (z) if possible, and "failed" otherwise.

\textbf{sech2cosh} \langle \textit{expression} \rangle

\textbf{sech2cosh} (f) converts every \textbf{sech} (u) appearing in \(f \) into \(1/\cosh(u) \).

\textbf{second} \langle \textit{aggregate} \rangle

\textbf{second} (u) returns the second element of recursive aggregate \(u \). Note:

\textbf{second} (u) = \textbf{rst} (\textbf{rest} (u)).

\textbf{segment} \langle \textit{integer}[, \textit{integer}] \rangle

\textbf{segment} ([i, j]) returns the segment \(i..j \). If not qualified by a \textbf{by} clause, this notation for integers \(i \) and \(j \) denotes the tuple of integers \(i, i+1, \ldots, j \). When \(j \) is omitted,

\textbf{segment} (i) denotes the half open segment \(i.. \), that is, a segment with no upper bound.

\textbf{segment} (x = bd), where \(bd \) is a binding, returns \(bd \). For example, \textbf{segment} (x = a..b) returns \(a..b \).

\textbf{select} \langle \textit{pred}, \textit{aggregate} \rangle

\textbf{select!} \langle \textit{pred}, \textit{aggregate} \rangle

\textbf{select} (p, u) returns a copy of \(u \) containing only those elements \(x \) such that \(p(x) \) is \textit{true}. For a list \(l \), \textbf{select} (p, l) == \[x \text{ for } x \text{ in } l | p(x) \]. Argument \(u \) may be any finite aggregate or infinite stream.

\textbf{select!} (p, u) destructively changes \(u \) by keeping only values \(x \) such that \(p(x) \) is \textit{true}. Argument \(u \) can be any extensible linear aggregate or dictionary.

\textbf{semicolonSeparate} \langle \textit{listOfOutputForms} \rangle

\textbf{semicolonSeparate} (lo), where \(lo \) is a list of objects of type \textit{OutputForm} (normally unexposed), returns an output form which separates the elements of \(lo \) by semicolons.
separant (differentialPolynomial)

separant (polynomial) returns the partial derivative of the differential polynomial \(p \) with respect to its leader.

separate (polynomial, polynomial)

separate \((p, q)\) returns \((a, b)\) such that polynomial \(p = ab \) and \(a \) is relatively prime to \(q \).

The result produced is a record with selectors primePart and commonPart with value \(a \) and \(b \) respectively.

separateDegrees (polynomial)

separateDegrees \((p)\) splits the polynomial \(p \) into factors. Each factor is a record with selector deg, a non-negative integer, and prod, a product of irreducible polynomials of degree \(\text{deg} \).

separateFactors (listOfRecords, polynomial)

separateFactors \((lfact, p)\) takes the list produced by separateDegrees along with the original polynomial \(p \), and produces the complete list of factors.

separateFactors (listOfRecords, integer)

separateFactors \((ddl, p)\) refines the distinct degree factorization produced by ddFact to give a complete list of factors.

sequences (listOfIntegers)

sequences \(((l_0, l_1, l_2, \ldots, l_n)]\) is the set of all sequences formed from \(l_0 \) 0's, \(l_1 \) 1's, \(l_2 \) 2's, \ldots, \(l_n \) n's.

sequences \((l1, l2)\) is the stream of all sequences that can be composed from the multiset defined from two lists of integers \(l1 \) and \(l2 \). For example, the pair \(([1, 2, 4], [2, 3, 5])\) represents multiset with 1 2, 2 3's, and 4 5's.

series (specifications \([, \ldots]\))

series \((\text{specification})\) returns a series expansion of the expression \(f \). Note: \(f \) must have only one variable. The series will be expanded in powers of that variable.

series \((sy)\), where \(sy \) is a symbol, returns \(sy \) as a series.

series \((st)\), where \(t \) is a stream \([a_0, a_1, a_2, \ldots]\) of coefficients \(a_i \) from some ring, creates the Taylor series \(a_0 + a_1 x + a_2 x^2 + \ldots \). Also, if \(st \) is a stream of elements of type \(\text{Record(k:NonNegativeInteger, c:R)} \), where \(k \) denotes an exponent and \(c \), a non-zero coefficient from some ring \(R \), it creates a stream of non-zero terms. The terms in \(st \) must be ordered by increasing order of exponents.

series \((f, x = a[, n])\) expands the expression \(f \) as a series in powers of \((x - a)\) with \(n \) terms. If \(n \) is missing, the number of terms is governed by the value set by the system command \(\text{set streams calculate} \).

series \((f, n)\) returns a series expansion of the expression \(f \). Note: \(f \) should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \(n \).

series \((i++, >a(i), x = a, m[, n, k])\) creates the series \(\sum_{i=m..n} k \ a(i) (x - a)^i \). Here \(m, n, \ldots \)
and \(k\) are rational numbers. Upper-limit \(n\) and stepsize \(k\) are optional and have default values \(n = \infty\) and \(k = 1\).

\(\text{series}(a(i), i = a, m..[n, k])\) returns \(\sum_{i=m..n} a(n)(x - a)^n\).

\(\text{seriesSolve}(eq, y, x, c)\)

\(eq\) denotes an equation to be solved; alternatively, an expression \(u\) may be given for \(eq\) in which case the equation \(eq\) is defined as \(u = 0\).

\(\text{leq}\) denotes a list \([eq_1 \ldots eq_n]\) of equations; alternatively, a list of expressions \([u_1 \ldots u_n]\) may be given of \(\text{leq}\) in which case the equations \(eq_i\) are defined by \(u_i = 0\).

\(\text{seriesSolve}(eq, y, x = a, [y(a) = b])\) returns a Taylor series solution of \(eq\) around \(x = a\) with initial condition \(y(a) = b\). Note: \(eq\) must be of the form \(f(x, y)y'(x) + g(x, y) = h(x, y)\).

\(\text{seriesSolve}(eq, y, x = a, [b_0, \ldots, b_{(n-1)}])\) returns a Taylor series solution of \(eq\) around \(x = a\) with initial conditions \(y(a) = b_0, y'(a) = b_1, \ldots y^{(n-1)}(a) = b_{(n-1)}\). Equation \(eq\) must be of the form \(f(x, y, y', \ldots, y^{(n-1)}) + y^{(n)}(x) + g(x, y, x', \ldots, y^{(n-1)}) = h(x, y, y', \ldots, y^{(n-1)})\).

\(\text{seriesSolve}(\text{leq}, \{y_1, \ldots, y_n\}, x = a, [y_1(a) = b_1, \ldots, y_n(a) = b_n])\) returns a Taylor series solution of the equations \(\text{leq}\) around \(x = a\) with initial conditions \(y_i(a) = b_i\). Note: each \(eq_i\) must be of the form \(f_i(x, y_1, y_2, \ldots, y_n)y'_i(x) + g_i(x, y_1, y_2, \ldots, y_n) = h(x, y_1, y_2, \ldots, y_n)\).

\(\text{setchildren}(u, v)\) replaces the current children of node \(u\) with the members of \(v\) in left-to-right order.

\(\text{setColumn}(\text{matrix})\)

\(\text{setColumn}(m, j, v)\) sets the \(j^{th}\) column of matrix or two-dimensional array \(m\) to \(v\).

\(\text{setDifference}(\text{list}, \text{list})\)

\(\text{setDifference}(l_1, l_2)\) returns a list of the elements of \(l_1\) that are not also in \(l_2\). The order of elements in the resulting list is unspecified.

\(\text{setelt}(\text{structure}, \text{index}, \text{value}[., \text{option}])\)

\(\text{setelt}(u, x, y)\), also written \(u.x := y\), sets the image of \(x\) to be \(y\) under \(u\), regarded as a function mapping values from the domain of \(x\) to the domain of \(y\). Specifically, if \(u\) is: 1pc 0

\[
\begin{align*}
\text{a list: } u.first := x & \text{ is equivalent to } \text{setfirst}(u, x). \text{ Also, } u.rest := x & \text{ is equivalent to } \text{setrest}(u, x), \text{ and } u.last := x & \text{ is equivalent to } \text{setlast}(u, x).
\end{align*}
\]

\(\text{a linear aggregate, } u(i..j) := x\) destructively replaces each element in the segment \(u(i..j)\) by \(x\). The value \(x\) is returned. Note: This function has the same effect as \(\text{for } k \text { in } i..j \text { repeat } u.k := x; x\). The length of \(u\) is unchanged.

\(\text{a recursive aggregate, } u.value := x\) is equivalent to \(\text{setValue}(u, x)\) and sets the value part of node \(u\) to \(x\). Also, if \(u\) is a \(\text{BinaryTreeAggregate}\),
$u.left := x$ is equivalent to $\text{setleft!}(u, x)$ and sets the left child of u to x.

Similarly, $u.right := x$ is equivalent to $\text{setright!}(u, x)$. See also setchildren!.

A table of category TableAggregate(Key, Entry): $u(k) := e$ is equivalent to $(\text{insert}([k, e], t); e)$, where k is a key and e is an entry.

A library: $u.k := v$ saves the value v in the library u, so that it can later be extracted by $u.k$.

$\text{setelt}(u, i, j, r)$, also written, $u(i, j) := r$, sets the element in the i^{th} row and j^{th} column of matrix or two-dimensional array u to r.

$\text{setelt}(u, \text{rowList}, \text{colList}, r)$, also written $u([i_1, i_2, \ldots, i_m], [j_1, j_2, \ldots, j_n]) := r$, where u is a matrix or two-dimensional array and r is another m by n matrix or array, destructively alters the matrix u: the x_{i_k,j_l} is set to $r(k, l)$.

$\text{setEpilogue!}(\text{formattedObject}, \text{listOfStrings})$

$\text{setEpilogue!}(t; \text{strings})$ sets the epilogue section of a formatted object t to strings. Argument t is either an IBM SCRIPT Formula Formatted or \TeX formatted object.

$\text{setfirst!}(\text{aggregate}, \text{value})$

$\text{setfirst!}(a; x)$ destructively changes the first element of recursive aggregate a to x.

$\text{setFormula!}(\text{formattedObject}, \text{listOfStrings})$

$\text{setFormula!}(t; \text{strings})$ sets the formula section of a formatted object t to strings.

$\text{setIntersection!(list, list)}$

$\text{setIntersection}(l_1, l_2)$ returns a list of the elements that lists l_1 and l_2 have in common. The order of elements in the resulting list is unspecified.

$\text{setlast!}(\text{aggregate}, \text{value})$

$\text{setlast!}(u; x)$ destructively changes the last element of u to x. Note: $u.last := x$ is equivalent.

$\text{setleaves!}(\text{balancedBinaryTree}, \text{listOfElements})$

$\text{setleaves!}(t, ls)$ sets the leaves of balanced binary tree t in left-to-right order to the elements of ls.

$\text{setleft!}(\text{binaryRecursiveAggregate})$

$\text{setleft!}(a; b)$ sets the left child of a to be b.

$\text{setPrologue!}(\text{formattedObject}, \text{listOfStrings})$

$\text{setPrologue!}(t; \text{strings})$ sets the prologue section of a formatted object t to strings. Argument t is either an IBM SCRIPT Formula Formatted or \TeX formatted object.

$\text{setProperties!}(\text{basicOperator}, \text{associationList})$

$\text{setProperties!}(\text{op, al})$ sets the property list of basic operator op to association list l. Note: argument op is modified “in place”, that is, no copy is made.
setProperty! (basicOperator, string, value)
setProperty! (op, s, v) attaches property s to op, and sets its value to v. Argument op is modified “in place”, that is, no copy is made.

setrest! (aggregate, integer, aggregate)
Arguments u and v are finite or infinite aggregates of the same type.
setrest! (u, v) destructively changes the rest of u to v.
setrest! (x, n, y) destructively changes x so that rest (x, n), that is, x after the nth element, equals y. The function will expand cycles if necessary.

setright! (binaryRecursiveAggregate)
setright! (a, x) sets the right child of t to be x.

setRow! (matrix, integer, row)
setRow! (m, i, v) sets the ith row of matrix or two-dimensional array m to v.

setsubMatrix! (matrix, integer, integer, matrix)
setsubMatrix (x, i\textsubscript{1}, j\textsubscript{1}, y) destructively alters the matrix x. Here \(x(i, j) \) is set to \(y(i - i\textsubscript{1} + 1, j - j\textsubscript{1} + 1) \) for \(i = i\textsubscript{1}, \ldots, i\textsubscript{1} + \text{nrows}(y) - 1 \) and \(j = j\textsubscript{1}, \ldots, j\textsubscript{1} + \text{ncols}(y) - 1 \).

setTex! (text, listOfStrings)
setTex! (t, strings) sets the TeX section of a TeX form t to strings.

setUnion (list, list)
setUnion (l\textsubscript{1}, l\textsubscript{2}) appends the two lists l\textsubscript{1} and l\textsubscript{2}, then removes all duplicates. The order of elements in the resulting list is unspecified.

setvalue! (aggregate, value)
setvalue! (u, x) destructively changes the value of node u to x.

setVariableOrder (listOfSymbols, listOfSymbols)
setVariableOrder ([a\textsubscript{1}, \ldots, a\textsubscript{m}], [b\textsubscript{1}, \ldots, b\textsubscript{n}]) defines an ordering on the variables given by \(a\textsubscript{1} > a\textsubscript{2} > \ldots > a\textsubscript{m} > \text{other variables} \) \(b\textsubscript{1} > b\textsubscript{2} > \ldots > b\textsubscript{n} \).
setVariableOrder ([a\textsubscript{1}, \ldots, a\textsubscript{n}]) defines an ordering given by \(a\textsubscript{1} > a\textsubscript{2} > \ldots > a\textsubscript{n} > \text{all other variables} \).

sFunction (listOfIntegers)
sFunction (li) is the S-function of the partition given by list of linteger li, expressed in terms of power sum symmetric functions. See CycleIndicators for details.

shade (palette)
shade (p) returns the shade index of the indicated palette p.

shellSort (sortingFunction, aggregate)
shellSort (f, a) sorts the aggregate a using the shellSort algorithm with sorting function f. Aggregate a can be any finite linear aggregate which is mutable (for example, lists, vectors, and strings). The sorting function f has type \((R, R) \to \text{Boolean}\) where R is the domain of...
the elements of \(a \).

shift \((\text{integerNumber, integer})\)

shift \((a, i)\) shifts integer number or float \(a \) by \(i \) digits.

showAll? ()

showAll? () tests if all computed entries of streams will be displayed according to system command)set streams showall.

showAllElements (stream)

showAllElements \((s)\) creates an output form displaying all the already computed elements of stream \(s \). This command will not result in any further computation of elements of \(s \). Also, the command has no effect if the user has previously entered)set streams showall true.

showTypeInOutput (boolean)

showTypeInOutput \((\text{boolean})\) affects the way objects of Any are displayed. If \(\text{bool} \) is true, the type of the original object that was converted to Any will be printed. If \(\text{bool} \) is false, it will not be printed.

shrinkable (boolean)

shrinkable \((b)R\) tells Axiom that flexible arrays of domain \(R \) are or are not allowed to shrink (reduce their physicalLength) according to whether \(b \) is true or false.

shufflein \((\text{listOfIntegers, streamOfListsOfIntegers})\)

shufflein \((li; sli)\) maps **shuffle** \((li; u)\) onto all members \(u \) of sli, concatenating the results. See PartitionsAndPermutations.

shuffle \((\text{listOfIntegers, listOfIntegers})\)

shuffle \((l1, l2)\) forms the stream of all shuffles of \(l1 \) and \(l2 \), that is, all sequences that can be formed from merging \(l1 \) and \(l2 \). See PartitionsAndPermutations.

sign \((\text{various}, \ldots)\)

sign \((x)\), where \(x \) is an element of an ordered ring, returns 1 if \(x \) is positive, \(-1\) if \(x \) is negative, 0 if \(x \) equals 0.

sign \((p)\), where \(p \) is a permutation, returns 1, if \(p \) is an even permutation, or \(-1\), if it is odd.

sign \((f, x, a, s)\) returns the sign of rational function \(f \) as symbol \(x \) nears \(a \), a real value represented by either a rational function or one of the values %plusInfinity or %minusInfinity. If \(s \) is: 1pc 0

 - the string "left": from the left (below).
 - the string "right": from the right (above).
 - not given: from both sides if \(a \) is finite.

simplify \((\text{expression})\)

simplify \((f)\) performs the following simplifications on \(f \) : 1pc 0
rewrites trigs and hyperbolic trigs in terms of \sin, \cos, \sinh, \cosh.
rewrites \sin^2 and \sinh^2 in terms of \cos and \cosh.
rewrites $e^a e^b$ as e^{a+b}.

simplifyExp (expression)
simplifyExp (f) converts every product $e^a e^b$ appearing in f into e^{a+b}.

simpson (floatFunction, fourFloats, threeIntegers)
simpsonClosed (floatFunction, fourFloats, twoIntegers)
simpsonOpen (floatFunction, fourFloats, twoIntegers)
simpson (fn; a; b; epsrel; epsabs; nmin; nmax; nint) uses the adaptive simpson method to numerically integrate function fn over the closed interval from a to b, with relative accuracy epsrel and absolute accuracy epsabs; the refinement levels for the checking of convergence vary from nmin to nmax. The method is called “adaptive” since it requires an additional parameter nint giving the number of subintervals over which the integrator independently applies the convergence criteria using nmin and nmax. This is useful when a large number of points are needed only in a small fraction of the entire interval. Parameter fn is a function of type Float → Float; a, b, epsrel, and epsabs are floats; nmin, nmax, and nint are integers. The operation returns a record containing: value, an estimate of the integral; error, an estimate of the error in the computation; totalpts, the total integral number of function evaluations, and success, a boolean value which is true if the integral was computed within the user specified error criterion. See NumericalQuadrature for details.
simpsonClosed (fn; a; b; epsrel; epsabs; nmin; nmax) similarly uses the Simpson method to numerically integrate function fn over the closed interval a to b, but is not adaptive.
simpsonOpen (fn; a; b; epsrel; epsabs; nmin; nmax) is similar to simpsonClosed, except that it integrates function fn over the open interval from a to b.

sin (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. sin(x) returns the sine of x if possible, and calls error otherwise. sinIfCan (x) returns sin(x) if possible, and "failed" otherwise.
sin2csc (expression)
sin2csc (f) converts every sin(u) appearing in f into 1/csc(u).

singular? (polynomialOrFunctionField)
singularAtInfinity? ()
singular? (p) tests whether p(x) = 0 is singular.
singular? (a)F tests if $x = a$ is a singularity of the algebraic function field F (a domain of FunctionFieldCategory).
singularAtInfinity? ()F tests if the algebraic function field F has a singularity at infinity.

sinh (expression)
\textbf{sinhIfCan (expression)}

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series. sinh(x) returns the hyperbolic sine of x if possible, and calls \texttt{error} otherwise.

\texttt{sinhIfCan} (x) returns \texttt{sinh} (x) if possible, and "\texttt{failed}" otherwise.

\textbf{sinh2csch (expression)}

\texttt{sinh2csch} (f) converts every \texttt{sinh} (u) appearing in f into 1/csch(u).

\textbf{size ()}

\texttt{size} () returns the number of elements in the domain of category \texttt{Finite}. By definition, each such domain must have a finite number of elements. See also \texttt{FreeAbelianMonoidCategory}.

\textbf{size? (aggregate, nonNegativeInteger)}

\texttt{size?} (a; n) tests if aggregate \texttt{a} has exactly \texttt{n} elements.

\textbf{sizeLess? (element, element)}

\texttt{sizeLess?} (x; y) tests whether \texttt{x} is strictly smaller than \texttt{y} with respect to the \texttt{euclideanSize}.

\textbf{sizeMultiplication ()}

\texttt{sizeMultiplication} () returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.

\textbf{skewSFunction (listOfIntegers, listOfIntegers)}

\texttt{skewSFunction} (li1, li2) is the S-function of the partition difference li1 - li2, expressed in terms of power sum symmetric functions. See \texttt{CycleIndicators} for details.

\textbf{solve (u, v [, w])}

eq denotes an equation to be solved; alternatively, an expression \texttt{u} may be given for \texttt{eq} in which case the equation \texttt{eq} is defined as \texttt{u} = 0.

\texttt{leq} denotes a list \([eq1 \ldots eq_n]\) of equations; alternatively, a list of expressions \([u_1 \ldots u_n]\) may be given for \texttt{leq} in which case the equations \texttt{eq_i} are defined by \texttt{u_i} = 0.

\texttt{epsilon} is either a rational number or a float.

\textbf{complexSolve (eq, epsilon)} finds all the real solutions to precision \texttt{epsilon} of the univariate equation \texttt{eq} of rational functions with respect to the unique variable appearing in \texttt{eq}. The complex solutions are either expressed as rational numbers or floats depending on the type of \texttt{epsilon}.

\textbf{complexSolve ([eq1 \ldots eq_n], epsilon)} computes the real solutions to precision \texttt{epsilon} of a system of equations \texttt{eq_i} involving rational functions. The complex solutions are either expressed as rational numbers or floats depending on the type of \texttt{epsilon}.

\textbf{radicalSolve (eq[, x])} finds solutions expressed in terms of radicals of the equation \texttt{eq} involving rational functions. Solutions will be found with respect to a \texttt{Symbol} given as a second argument to the operation. This second argument may be omitted when \texttt{eq} contains a unique symbol.
radicalSolve \((eq, lv)\) finds solutions expressed in terms of radicals of the system of equations \(eq\) involving rational functions. Solutions are found with respect to a list \(lv\) of Symbols, or with respect to all variables appearing in the equations, if no second argument is given.

\(\text{solve (eq[, x])}\) finds exact symbolic solutions to equation \(eq\) involving either rational functions or expressions of type \(\text{Expression}(R)\). Solutions will be found with respect to a Symbol given as a second argument to the operation. The second argument may be omitted when \(eq\) contains a unique symbol.

\(\text{solve (eq, lv)}\) finds exact solutions to a system of equations \(eq\) involving rational functions or expressions of type \(\text{Expression}(R)\). Solutions are found with respect to a list of Symbols, or with respect to all variables appearing in the equations if no second argument is given.

\(\text{solve (eq, epsilon)}\) finds all the real solutions to precision \(epsilon\) of the univariate equation \(eq\) of rational functions with respect to the unique variable appearing in \(eq\). The real solutions are either expressed as rational numbers or \(\text{floats}\) depending on the type of \(epsilon\).

\(\text{solve ([eq1 \ldots eq_n], epsilon)}\) computes the real solutions to precision \(epsilon\) of a system of equations \(eq_i\) involving rational functions. The real solutions are either expressed as rational numbers or floats depending on the type of \(epsilon\).

\(\text{solve (M, v)}\), where \(M\) is a matrix and \(v\) is a Vector of coefficients, finds a particular solution of the system \(Mx = v\) and a basis of the associated homogeneous system \(MX = 0\).

\(\text{solve (eq, y, x = a, [y0 \ldots y_m])}\) returns either the solution of the initial value problem \(eq\), \(y(a) = y_0, y'(a) = a_1, \ldots\) or "failed" if no solution can be found. Note: an error occurs if the equation \(eq\) is not a linear ordinary equation or of the form \(dy/dx = f(x, y)\).

\(\text{solve (eq, y, x)}\) returns either a solution of the ordinary differential equation \(eq\) or "failed" if no non-trivial solution can be found. If \(eq\) is a linear ordinary differential equation, a solution is of the form \([h, [b_1, \ldots]]\) where \(h\) is a particular solution and \([b_1, \ldots, b_m]\) are linearly independent solutions of the associated homogeneous equation \(f(x, y) = 0\). The value returned is a basis for the solution of the homogeneous equation which are found (note: this is not always a full basis).

See also dioSolve, contractSolve, polSolve, seriesSolve, linSolve.

\(\text{solveLinearlyOverQ (vector)}\)

\(\text{solveLinearlyOverQ ([v_1, \ldots, v_n], u)}\) returns \([c_1, \ldots, c_n]\) such that \(c_1v_1 + \cdots + c_nv_n = u\), or "failed" if no such rational numbers \(c_i\) exist. The elements of the \(v_i\) and \(u\) can be from any extension ring with an explicit linear dependence test, for example, expressions, complex values, polynomials, rational functions, or exact numbers. See LinearExplicitRingOver.

\(\text{solveLinearPolynomialEquation (listOfPolys, poly)}\)

\(\text{solveLinearPolynomialEquation ([f_1, \ldots, f_n], g)}\), where \(g\) is a polynomial and the \(f_i\) are
polynomials relatively prime to one another, returns a list of polynomials a_i such that $g/\prod_i f_i = \sum_i a_i f_i$, or "failed" if no such list of a_i's exists.

\texttt{sort ([predicate,]aggregate)}
\texttt{sort! ([predicate,]aggregate)}

\texttt{sort}([p, [a]) returns a copy of a sorted using total ordering predicate p.
\texttt{sort!}([p, [u]) returns u destructively changed with its elements ordered by comparison function p.

By default, p is the operation \leq. Thus both \texttt{sort (u)} and \texttt{sort! (u)} returns u with its elements in ascending order.

Also: \texttt{sort (lp)} sorts a list of permutations lp according to cycle structure, first according to the length of cycles, second, if S has \texttt{Finite} or S has \texttt{OrderedSet}, according to lexicographical order of entries in cycles of equal length.

\texttt{spherical (point)}
\texttt{spherical (pt)} transforms point pt from spherical coordinates to Cartesian coordinates, mapping (r, θ, ϕ) to $x = r \sin(\phi) \cos(\theta)$, $y = r \sin(\phi) \sin(\theta)$, $z = r \cos(\phi)$.

\texttt{split (element, binarySearchTree)}
\texttt{split (x, t)} splits binary search tree t into two components, returning a record of two components: \texttt{less}, a binary search tree whose components are all less than x; and, \texttt{greater}, a binary search tree with all the rest of the components of t.

\texttt{split! (aggregate, integer)}
\texttt{split! (u, n)} splits u into two aggregates: the first consisting of v, the first n elements of u, and w consisting of all the rest. The value of w is returned. Thus $v = \texttt{first}(u, n)$ and $w := \texttt{rest}(u, n)$. Note: afterwards \texttt{rest (u, n)} returns \texttt{empty ()}.

\texttt{splitDenominator (listOfFractions)}
\texttt{splitDenominator (u)}, where u is a list of fractions $[q_1, \ldots, q_n]$, returns $[[p_1, \ldots, p_n], d]$ such that $q_i = p_i/d$ and d is a common denominator for the q_i's. Similarly, the function is defined for a matrix (respectively, a polynomial) u in which case the q_i are the elements of (respectively, the coefficients of) u.

\texttt{sqfrFactor (element, integer)}
\texttt{sqfrFactor (base, exponent)} creates a factored object with a single factor whose $base$ is asserted to be square-free (flag = "sqfr").

\texttt{sqrt (expression[, option])}
\texttt{sqrt (x)} returns the square root of x.
\texttt{sqrt (x, y)}, where x and y are p-adic integers, returns a square root of x where argument y is a square root of $x \mod p$. See also \texttt{PAdicIntegerCategory}.

\texttt{square? (matrix)}
\texttt{square? (m)} tests if m is a square matrix.
appendix e. operations

squareFree (element)
squareFree \((x) \) returns the square-free factorization of \(x \), that is, such that the factors are pairwise relatively prime and each has multiple prime factors. Argument \(x \) can be a member of any domain of category \texttt{UniqueFactorizationDomain} such as a polynomial or integer.

squareFreePart (element)
squareFreePart \((p) \) returns product of all the prime factors of \(p \) each taken with multiplicity one. Argument \(p \) can be a member of any domain of category \texttt{UniqueFactorizationDomain} such as a polynomial or integer.

squareFreePolynomial (polynomial)
squareFreePolynomial \((p) \) returns the square-free factorization of the univariate polynomial \(p \).

squareTop (matrix)
squareTop \((A) \) returns an \(n \)-by-\(n \) matrix consisting of the first \(n \) rows of the \(m \)-by-\(n \) matrix \(A \). The operation calls \texttt{error} if \(m < n \).

stack (list)
stack \(([x, y, \ldots, z]) \) creates a stack with first (top) element \(x \), second element \(y \), \ldots, and last element \(z \).

standardBasisOfCyclicSubmodule (listOfMatrices, vector)
standardBasisOfCyclicSubmodule \((lm, v) \) returns a matrix representation of cyclic submodule over a ring \(R \), where \(lm \) is a list of matrices and \(v \) is a vector, such that the non-zero column vectors are an \(R \)-basis for \(Av \). See \texttt{RepresentationPackage2} using Browse.

stirling1 (integer, integer)
stirling2 (integer, integer)
stirling1 \((n, m) \) returns the Stirling number of the first kind.
stirling2 \((n, m) \) returns the Stirling number of the second kind.

string? (various)
string \((s) \) converts the symbol \(s \) to a string. An \texttt{error} is called if the symbol is subscripted.

string \((s) \) returns \texttt{SExpression} object \(s \) as an element of \texttt{String} if possible, and otherwise calls \texttt{error}.

strongGenerators (listOfPermutations)
strongGenerators \((gp) \) returns strong generators for the permutation group \(gp \).

structuralConstants (basis)
structuralConstants \((basis) \) calculates the structural constants
[(γ_{i,j,k}) \text{ for } k \in 1..rank(R)] of a domain \(R \) of category \texttt{FramedNonAssociativeAlgebra} over a ring \(R \), defined by: \(v_i v_j = γ_{i,j,1}v_1 + \cdots + γ_{i,j,n}v_n \), where \(v_1, \ldots, v_n \) is the fixed \(R \)-module basis.

style (string)

style(s) specifies the drawing style in which the graph will be plotted by the indicated string \(s \). This option is expressed in the form *style* == s.

sub (outputForm, outputForm)

sub\((o_1, o_2)\), where \(o_1 \) and \(o_2 \) are objects of type \texttt{OutputForm} (normally unexposed), creates an output form for \(o_1 \) subscripted by \(o_2 \).

subMatrix (matrix, integer, integer, integer, integer)

subMatrix\((m, i_1, i_2, j_1, j_2)\) extracts the submatrix \([m(i,j)]\) where the index \(i \) ranges from \(i_1 \) to \(i_2 \) and the index \(j \) ranges from \(j_1 \) to \(j_2 \).

submod (integerNumber, integerNumber, integerNumber)

submod\((a, b, p)\), where \(0 ≤ a < b < p > 1 \), returns \(a - b \mod p \), for integer numbers \(a, b \) and \(p \).

subResultantGcd (polynomial, polynomial)

subResultantGcd\((p, q)\) computes the gcd of the polynomials \(p \) and \(q \) using the \texttt{SubResultant GCD} algorithm.

subscript (symbol, listOfOutputForms)

subscript\((s, [a_1, \ldots, a_n])\) returns symbol \(s \) subscripted by output forms \(a_1, \ldots, a_n \) as a symbol.

subset (integer, integer, integer)

subset\((n, m, k)\) calculates the \(k \)th \(m \)-subset of the set \(0, 1, \ldots, (n-1) \) in the lexicographic order considered as a decreasing map from \(0, \ldots, (m-1) \) into \(0, \ldots, (n-1) \). See \texttt{SymmetricGroupCombinatoricFunctions}.

subset? (set, set)

subset?\((u, v)\) tests if set \(u \) is a subset of set \(v \).

subspace (threeSpace)

subspace\((s)\) returns the space component which holds all the point information in the \texttt{ThreeSpace} object \(s \).

substring? (string, string, integer)

substring?\((s, t, i)\) tests if \(s \) is a substring of \(t \) beginning at index \(i \). Note: substring?\((s, t, 0) = \text{prefix?}(s, t)\).

subst (expression, equations)

subst\((f, k = g)\) formally replaces the kernel \(k \) by \(g \) in \(f \).

subst\((f, [k_1 = g_1, \ldots, k_n = g_n])\) formally replaces the kernels \(k_1, \ldots, k_n \) by \(g_1, \ldots, g_n \) in
APPENDIX E. OPERATIONS

\[f. \]
\text{subst}(f, [k_1, \ldots, k_n], [g_1, \ldots, g_n])\text{ formally replaces kernels }k_i\text{ by }g_i\text{ in }f.

\text{suchThat}(symbol, predicates)
\text{suchThat}(sy, pred)\text{ attaches the predicate }pred\text{ to symbol }sy.\text{ Argument }pred\text{ may also be a list }[p_1, \ldots, p_n]\text{ of predicates }p_i.\text{ In this case, the predicate }pred\text{ attached to }sy\text{ is }p_1\text{ and }\ldots\text{ and }p_n.
\text{suchThat}(r, [a_1, \ldots, a_n], f)\text{ returns the rewrite rule }r\text{ with the predicate }f(a_1, \ldots, an)\text{ attached to it.}

\text{suffix?}(string, string)
\text{suffix?}(s, t)\text{ tests if the string }s\text{ is the final substring of }t.

\text{sum}(rationalFunction, symbolOrSegmentBinding)
\text{sum}(a(n), n)\text{, where }a(n)\text{ is an rational function or expression involving the symbol }n,\text{ returns the indefinite sum }A\text{ of }a\text{ with respect to upward difference on }n,\text{ that is, }A(n + 1) - A(n) = a(n).
\text{sum}(f(n), n = a..b),\text{ where }f(n)\text{, }a,\text{ and }b\text{ are rational functions (or polynomials), computes and returns the sum }f(a) + f(a + 1) + \cdots + f(b)\text{ as a rational function (or polynomial).}

\text{summation}(expression, segmentBinding)
\text{summation}(f, n = a..b)\text{ returns the formal sum }\sum_{n=a}^{b} f(n).

\text{sumOfDivisors}(integer)
\text{sumOfDivisors}(n)\text{ returns the sum of the integers between 1 and integer }n\text{ (inclusive) which divide }n.\text{ This sum is often denoted in the literature by }\sigma(n).

\text{sumOfKthPowerDivisors}(integer, nonNegativeInteger)
\text{sumOfKthPowerDivisors}(n, k)\text{ returns the sum of the }k^{th}\text{ powers of the integers between 1 and }n\text{ (inclusive) which divide }n.\text{ This sum is often denoted in the literature by }\sigma_k(n).

\text{sumSquares}(integer)
\text{sumSquares}(p)\text{ returns the list }[a, b]\text{ such that }a^2 + b^2\text{ is equal to the integer prime }p,\text{ and calls }\text{error}\text{ if this is not possible. It will succeed if }p\text{ is 2 or congruent to }1\mod4.

\text{sup}(element, element)
\text{sup}(x, y)\text{ returns the least element from which both }x\text{ and }y\text{ can be subtracted. The purpose of }\text{sup}\text{ is to act as a supremum with respect to the partial order imposed by the }-\text{ operation on the domain. See }\text{OrderedAbelianMonoidSup}\text{ for details.}

\text{super}(outputForm, outputForm)
\text{super}(o_1, o_2),\text{ where }o_1\text{ and }o_2\text{ are objects of type }\text{OutputForm}\text{ (normally unexposed), creates an output form for }o_1\text{ superscripted by }o_2.
superscript (symbol, listOfOutputForms)
superscript (s, [a1, ..., an]) returns symbol s superscripted by output forms [a1, ..., an].

supersub (outputForm, listOfOutputForms)
supersub (o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a list of output forms of the form [sub1, super1, sub2, super2, ..., subn, supern] creates an output form with each subscript aligned under each superscript.

surface (function, function, function)
surface (c1, c2, c3) creates a surface from three parametric component functions c1, c2, and c3.

swap! (aggregate, index, index)
swap! (u, i, j) interchanges elements i and j of aggregate u. No meaningful value is returned.

swapColumns! (matrix, integer, integer)
swapColumns! (m, i, j) interchanges the i\(^{th}\) and j\(^{th}\) columns of m returning m which is destructively altered.

swapRows! (matrix, integer, integer)
swapRows! (m, i, j) interchanges the i\(^{th}\) and j\(^{th}\) rows of m, returning m which is destructively altered.

symbol? (sExpression)
symbol? (s) tests if SExpression object s is a symbol.

symbol (sExpression)
symbol (s) returns s as an element of type Symbol, or calls error if this is not possible.

symmetric? (matrix)
symmetric? (m) tests if the matrix m is square and symmetric, that is, if each m(i, j) = m(j, i).

symmetricDifference (set, set)
symmetricDifference (u, v) returns the set aggregate of elements x which are members of set aggregate u or set aggregate v but not both. If u and v have no elements in common, symmetricDifference (u, v) returns a copy of u. Note: symmetricDifference (u, v) = union (difference (u, v), difference (v, u))

symmetricGroup (integers)
symmetricGroup (n) constructs the symmetric group \(S_n\) acting on the integers 1, ..., n. The generators are the n-cycle (1, ... , n) and the 2-cycle (1, 2).
symmetricGroup (li), where li is a list of integers, constructs the symmetric group acting on the integers in the list li. The generators are the cycle given by li and the 2-cycle (li(1), li(2)). Duplicates in the list will be removed.
symmetricRemainder (integer, integer)
symmetricRemainder(a, b), where b > 1, yields r where \(-b/2 \leq r < b/2\).

symmetricTensors (matrices, positiveInteger)
symmetricTensors(la; n), where la is a list [a1, ..., ak] of m-by-m square matrices, applies to each matrix ai, the irreducible, polynomial representation of the general linear group GL_m corresponding to the partition (n, 0, ..., 0) of n.

systemCommand (string)
systemCommand(cmd) takes the string cmd and passes it to the runtime environment for execution as a system command. Although various things may be printed, no usable value is returned.

tableau (listOfListofElements)
tableau(ll) converts a list of lists ll to an object of type Tableau.

tableForDiscreteLogarithm (integer)
tableForDiscreteLogarithm(n) returns a table of the discrete logarithms of a0 up to an-1 which, when called with the key lookup(ai), returns i for i in 0..n – 1 for a finite field. This operation calls error if not called for prime divisors of order of multiplicative group.

table ([listOfRecords])
table([p1, p2, ..., pn]) creates a table with keys of type Key and entries of type Entry. Each pair pi is a record with selectors key and entry with values from the corresponding domains Key and Entry.
table($)T creates a empty table of domain T of category TableAggregate.

tail (aggregate)
tail(a) returns the last node of recursive aggregate a.

tan (expression)
tanIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
tan(x) returns the tangent of x.
tanIfCan(x) returns tan(x) if possible, and "failed" otherwise.

tan2cot (expression)
tan2cot(f) converts every tan(u) appearing in f into 1/cot(u).

tan2trig (expression)
tan2trig(f) converts every tan(u) appearing in f into sin(u)/cos(u).

tanh (expression)
tanhIfCan (expression)
Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
tanh(x) returns the hyperbolic tangent of x.
tanhIfCan (x) returns tanh (x) if possible, and "failed" otherwise.

tanh2coth (expression)
tanh2coth (f) converts every tanh (u) appearing in f into 1/coth(u).

tanh2trigh (expression)
tanh2trigh (f) converts every tanh (u) appearing in f into sinh (u)/cosh(u).

taylor (various, ..)
taylor (u) converts the Laurent series u(x) to a Taylor series if possible, and if not, calls error.
taylor (f) converts the expression f into a Taylor expansion of the expression f. Note: f must have only one variable.
taylor (sy), where sy is a symbol, returns sy as a Taylor series.
taylor (n + → a(n), x = a) returns \(\sum_{n=0}^{\infty} a(n)(x-a)^n \).
taylor (f, x = a[n]) expands the expression f as a series in powers of (x-a) with n terms. If n is missing, the number of terms is governed by the value set by the system command set streams calculate.
taylor (i + → a(i), x = a, m..[n,k]) creates the Taylor series \(\sum_{i=m}^{n} by k a(i)(x-a)^i \). Here m, n and k are integers. Upper-limit n and stepsize k are optional and have default values \(n = \infty \) and \(k = 1 \).
taylor (a(i), i, x = a, m..[n,k]) returns \(\sum_{i=m}^{n} by k a(n)(x-a)^n \).

taylorIfCan (laurentSeries)
taylorIfCan (f(x)) converts the Laurent series f(x) to a Taylor series if possible, and returns "failed" if this is not possible.

taylorRep (laurentSeries)
taylorRep (f(x)) returns \(g(x) \), where \(f = x^n g(x) \) is represented by \([n, g(x)] \).

tensorProduct (listOfMatrices, listOfMatrices)
tensorProduct ([a_1, \ldots, a_k], [b_1, \ldots, b_k]) calculates the list of Kronecker products of the matrices \(a_i \) and \(b_i \) for \(1 \leq i \leq k \). If a second argument is missing, the \(b_i \) is defined as the corresponding \(a_i \). Also, tensorProduct (m), where m is a matrix, is defined as tensorProduct ([m], [m]). Note: If each list of matrices corresponds to a group representation (representation of generators) of one group, then these matrices correspond to the tensor product of the two representations.

terms (various)
terms (s) returns a stream of the non-zero terms of series s. Each term is returned as a record with selectors k and c, which correspond to the exponent and coefficient, respectively. The terms are ordered by increasing order of exponents.
terms (m), where m is a free abelian monoid of the form \(e_1 a_1 + \cdots + e_n a_n \), returns \([[a_1, e_1], \ldots, [a_n, e_n]] \). See FreeAbelianMonoidCategory.

tex (formattedObject)
tex (t) extracts the TeX section of a TeX formatted object t.
third (aggregate)
third (u) returns the third element of a recursive aggregate u. Note:
third (u) = first(rest(rest(u))).

title (string)
title (s) specifies string s as the title for a plot. This option is expressed as a option to the
draw command in the form title == s.

top (stack)
top! (deque)
top (s) returns the top element x from s.
top! (d) returns the element at the top (front) of the dequeue.

toroidal (value)
toroidal (element) transforms from toroidal coordinates to Cartesian coordinates:
toroidal (a) is a function that maps the point (u, v, φ) to
x = asinh(v)cos(φ)/(cosh(v) - cos(u)), y = asinh(v)sin(φ)/(cosh(v) - cos(u)),
z = asin(u)/(cosh(v) - cos(u)).

toScale (boolean)
toScale (b) specifies whether or not a plot is to be drawn to scale. This command may be
expressed as an option to the draw command in the form toScale == b.

totalDegree (polynomial, listofVariables)
totalDegree (p[lv]) returns the maximum sum (over all monomials of polynomial p) of
the variables in the list lv. If a second argument is missing, lv is defined to be all the
variables appearing in p.

totalfract (polynomial)
totalfract (prf) takes a polynomial whose coefficients are themselves fractions of
polynomials and returns a record containing the numerator and denominator resulting
from putting prf over a common denominator.

totalGroebner (listOfPolynomials, listofVariables)
totalGroebner (lp, lv) computes the Gröbner basis for the list of polynomials lp with the
terms ordered first by total degree and then refined by reverse lexicographic ordering. The
variables are ordered by their position in the list lv.

tower (expression)
tower (f) returns all the kernels appearing in f, regardless of level.

trace (various, ..)
trace (m) returns the trace of the matrix m, that is, the sum of its diagonal elements.
trace (a) returns the trace of the regular representation of a, an element of an algebra of
finite rank. See FiniteRankAlgebra.
trace (a[d]), where a is an element of a finite algebraic extension field, computes the trace
of a with respect to the field of extension degree d over the ground field of size q. This
operation calls error if d does not divide the extension degree of a. The default value of d is 1. Note: $\text{trace}(a, d) = \sum_{i=0}^{n/d} a^{d^i}$.

$\text{traceMatrix}([\text{basis}])$

$\text{traceMatrix}([v_1, \ldots, v_n])$ is the n-by-n matrix whose i, j element is $Tr(v_i v_j)$. If no argument is given, the v_i are assumed to be elements of the fixed basis.

$\text{tracePowMod}(\text{poly}, \text{nonNegativeInteger}, \text{poly})$

$\text{tracePowMod}(u; k; v)$ returns $\sum_{i=0}^{k} u^{2^i}$, all computed modulo the polynomial v.

$\text{transcendenceDegree}()$

$\text{transcendenceDegree}()$ returns the transcendence degree of the field extension F, or 0 if the extension is algebraic.

$\text{transcendent?} (\text{element})$

$\text{transcendent?} (a)$ tests whether an element a of a domain that is an extension field over a ground field F is transcendental with respect to F.

$\text{transpose} (\text{matrix}[, \text{options}])$

$\text{transpose}(m)$ returns the transpose of the matrix m.

$\text{transpose}(t[i,j])$ exchanges the ith and jth indices of t. For example, if $r = \text{transpose}(t, 2, 3)$ for a rank four tensor t, then r is the rank four tensor given by $r(i,j,k,l) = t(i,k,j,l)$. If i and j are not given, they are assumed the first and last index of t.

$\text{tree}(\text{value}[, \text{listOfChildren}])$

$\text{tree}(x, ls)$ creates an element of Tree with value x at the root node, and immediate children ls in left-to-right order.

$\text{tree}(x)$ is equivalent to $\text{tree}(x,[\text{List}(S)])$ where x has type S.

$\text{trapezoidal}(\text{floatFunction}, \text{fourFloats}, \text{threeIntegers})$

$\text{trapezoidalClosed}(\text{floatFunction}, \text{fourFloats}, \text{twoIntegers})$

$\text{trapezoidalOpen}(\text{floatFunction}, \text{fourFloats}, \text{twoIntegers})$

$\text{trapezoidal}(fn; a; b; \text{epsrel}; \text{epsabs}; \text{nmin}; \text{nmax}; \text{nint})$ uses the adaptive trapezoidal method to numerically integrate function fn over the closed interval from a to b, with relative accuracy epsrel and absolute accuracy epsabs, where the refinement levels for the checking of convergence vary from nmin to nmax. The method is called “adaptive” since it requires an additional parameter nint giving the number of subintervals over which the integrator independently applies the convergence criteria using nmin and nmax; this is useful when a large number of points are needed only in a small fraction of the entire interval. Parameter fn is a function of type $\text{Float} \rightarrow \text{Float}$; a, b, epsrel, and epsabs are floats; nmin, nmax, and nint are integers. The operation returns a record containing: value, an estimate of the integral; error, an estimate of the error in the computation; totalpts, the total integral number of function evaluations, and success, a boolean value that is true if the integral was computed within the user specified error criterion. See $\text{NumericalQuadrature}$ for details.
trapezoidalClosed\((fn, a, b, \text{epsrel}, \text{epsabs}, nmin, nmax)\) similarly uses the trapezoidal method to numerically integrate function \(fn\) over the closed interval \([a, b]\), but is not adaptive.

trapezoidalOpen\((fn, a, b, \text{epsrel}, \text{epsabs}, nmin, nmax)\) is similar to \texttt{trapezoidalClosed}, except that it integrates function \(fn\) over the open interval from \(a\) to \(b\).

\textbf{triangularSystems} \((\text{listOfFractions}, \text{listOfSymbols})\)

\textbf{triangularSystems}\((lf, lv)\) solves the system of equations defined by \(lf\) with respect to the list of symbols \(lv\); the system of equations is obtaining by equating to zero the list of rational functions \(lf\). The result is a list of solutions where each solution is expressed as a “reduced” triangular system of polynomials.

\textbf{trigs} \((\text{expression})\)

\textbf{trigs}\((f)\) rewrites all the complex logs and exponentials appearing in \(f\) in terms of trigonometric functions.

\textbf{trim} \((\text{string, characterOrCharacterClass})\)

\textbf{trim}\((s, c)\) returns \(s\) with all characters \(c\) deleted from right and left ends. For example, \textbf{trim}\((" abc ", \text{char} \ " \")\) returns "abc". Argument \(c\) may also be a character class, in which case \(s\) is returned with all characters in \(cc\) deleted from right and left ends. For example, \textbf{trim}\(("(abc)", \text{charClass} \ "()\")\) returns "abc".

\textbf{truncate} \((\text{various}, \text{options})\)

\textbf{truncate}\((x)\) returns the integer between \(x\) and 0 closest to \(x\).

\textbf{truncate}\((f, m[, n])\) returns a (finite) power series consisting of the sum of all terms of \(f\) of degree \(d\) with \(n \leq d \leq m\). Upper bound \(m\) is \(\infty\) by default.

\textbf{tubePoints} \((\text{positiveInteger})\)

\textbf{tubePoints}\((n)\) speciﬁes the number of points, \(n\), deﬁning the circle that creates the tube around a three-dimensional curve. The default is 6. This option is expressed in the form \textbf{tubePoints} == \(n\).

\textbf{tubePointsDefault} \((\text{positiveInteger})\)

\textbf{tubePointsDefault}(\(i\)) sets the number of points to use when creating the circle to be used in creating a three-dimensional tube plot to \(i\).

\textbf{tubePointsDefault}() returns the number of points to be used when creating the circle to be used in creating a three-dimensional tube plot.

\textbf{tubeRadius} \((\text{float})\)

\textbf{tubeRadius}\((r)\) speciﬁes a radius \(r\) for a tube plot around a three-dimensional curve. This operation may be expressed as an option to the \texttt{draw} command in the form \textbf{tubeRadius} == \(r\).

\textbf{tubeRadiusDefault} \((\text{float})\)

\textbf{tubeRadiusDefault}(\(r\)) sets the default radius for a three-dimensional tube plot to \(r\).

\textbf{tubeRadiusDefault}() returns the radius used for a three-dimensional tube plot.
twist ()
twist(f), where f is a function of type (A, B)C, is the function g such that
\(g(a, b) = f(b, a) \). See MappingPackage for related functions.

unary? (basicOperator)
unary? (op) tests if basic operator op is unary, that is, takes exactly one argument.

union (set, elementOrSet)
union (u, x) returns the set aggregate u with the element x added. If u already contains x,
union (u, x) returns a copy of x.
union (u, v) returns the set aggregate of elements that are members of either set aggregate
u or v. See also Multiset.

unit ([various])
unit () returns a unit of the algebra (necessarily unique), or "failed" if there is none.
unit (u) extracts the unit part of the factored object u.
unit (l) marks off the units on a viewport according to the indicated list l. This option is
expressed in the draw command in the form unit ==[f1, f2].

unit? (element)
unit? (x) tests whether x is a unit, that is, if x is invertible.

unitCanonical (element)
unitCanonical (x) returns unitNormal (x).canonical.

unitNormalize (factored)
unitNormalize (u) normalizes the unit part of the factorization. For example, when
working with factored integers, this operation ensures that the bases are all positive
integers.

unitNormal (element)
unitNormal (x) tries to choose a canonical element from the associate class of x. If
successful, it returns a record with three components “unit”, “canonical” and “associate”.
The attribute canonicalUnitNormal, if asserted, means that the “canonical” element is
the same across all associates of x. If unitNormal (x) = [u, c, a] then ux = c, au = 1.

unitsColorDefault ([palette])
unitsColorDefault (p) sets the default color of the unit ticks in a two-dimensional
viewport to the palette p.
unitsColorDefault () returns the default color of the unit ticks in a two-dimensional
viewport.

unitVector (positiveInteger)
unitVector (n) produces a vector with 1 in position n and zero elsewhere.

univariate (polynomial[, variable])
univariate (p, v) converts the multivariate polynomial p into a univariate polynomial in v
whose coefficients are multivariate polynomials in all the other variables. If v is omitted, then p must involve exactly one variable.

universe ()
universe ()\mathbb{R} returns the universal set for finite set aggregate R.

unparse ($inputForm$)
unparse (f) returns a string s such that the parser would transform s to f, or calls error if f is not the parsed form of a string.

unrankImproperPartitions0 (integer, integer, integer)
unrankImproperPartitions0 (n,m,k) computes the k^{th} improper partition of nonnegative n in m nonnegative parts in reverse lexicographical order. Example: $[0, 0, 3] < [0, 1, 2] < [0, 2, 1] < [0, 3, 0] < [1, 0, 2] < [1, 1, 1] < [1, 2, 0] < [2, 0, 1] < [2, 1, 0] < [3, 0, 0]$. The operation calls error if k is negative or too big. Note: counting of subtrees is done by numberOfImproperPartitions.

unrankImproperPartitions1 (integer, integer, integer)
unrankImproperPartitions1 (n,m,k) computes the k^{th} improper partition of nonnegative n in at most m nonnegative parts ordered as follows: first, in reverse lexicographical order according to their non-zero parts, then according to their positions (i.e. lexicographical order using subSet: $[3, 0, 0] < [0, 3, 0] < [0, 0, 3] < [2, 1, 0] < [2, 0, 1] < [0, 2, 1] < [1, 2, 0] < [1, 0, 2] < [0, 1, 2] < [1, 1, 1]$). Note: counting of subtrees is done by numberOfImproperPartitionsInternal.

unravel (listOfElement)
unravel (t) produces a tensor from a list of components such that unravel (ravel (t)) = t.

upperCase (string)
upperCase? (string)
upperCase! (string)
upperCase! (s) destructively replaces the alphabetic characters in s by upper case characters.
upperCase () returns the class of all characters for which upperCase? is true.
upperCase (c) converts a lower case letter c to the corresponding upper case letter. If c is not a lower case letter, then it is returned unchanged.
upperCase (s) returns the string with all characters in upper case.
upperCase? (c) tests if c is an upper case letter, that is, one of A..Z.

validExponential (listOfKernels, expression, symbol)
validExponential ($[k_1, \ldots, k_n], f, x$) returns g if $\exp (f) = g$ and g involves only $k_1 \ldots k_n$, and "failed" otherwise.

value (recursiveAggregate)
value (a) returns the “value” part of a recursive aggregate a, typically the root of tree. See, for example, BinaryTree.
var1Steps (positiveInteger)

var1Steps(n) indicates the number of subdivisions n of the first range variable. This command may be expressed as an option to the draw command in the form var1Steps == n.

var1StepsDefault ([positiveInteger])

var1StepsDefault() returns the current setting for the number of steps to take when creating a three-dimensional mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (that is, x = 0..10)).

var1StepsDefault(i) sets the number of steps to take when creating a three-dimensional mesh in the direction of the first defined free variable to i (a free variable is considered defined when its range is specified (that is, x = 0..10)).

var2Steps (positiveInteger)

var2Steps(n) indicates the number of subdivisions, n, of the second range variable. This option is expressed in the form var2Steps == n.

var2StepsDefault ([positiveInteger])

variable (various)

variable(f) returns the (unique) power series variable of the power series f.

variable(segb) returns the variable from the left hand side of the SegmentBinding segb. For example, if segb is v = a..b, then variable(segb) returns v.

variable(v) returns s if v is any derivative of the differential indeterminate s.

variables (expression)

variables(f) returns the list of all the variables of expression, polynomial, rational function, or power series f.

vconcat (outputForms[], OutputForm] (normally unexposed))

vconcat(o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed), returns an output form for the vertical concatenation of forms o1 and o2.

vconcat(lo), where lo is a list of objects of type OutputForm (normally unexposed), returns an output form for the vertical concatenation of the elements of lo.

vector (listOfElements)

vector(l) converts the list l to a vector.

vectorise (polynomial, nonNegativeInteger)

vectorise(p, n) returns [a0, a1, ..., an-1] where p = a0 + a1x + ... + an-1x^{n-1} + higher order terms. The degree of polynomial p can be different from n - 1.

vertConcat (matrix, matrix)

vertConcat(x, y) vertically concatenates two matrices with an equal number of columns. The entries of y appear below the entries of x.
viewDefaults() resets all the default graphics settings.

viewPosDefault() \([\text{listOfNonNegativeIntegers}]\)
viewPosDefault([x, y]) sets the default X and Y position of a viewport window. Unless overridden explicitly, newly created viewports will have the X and Y coordinates x, y.
viewPosDefault() returns the default X and Y position of a viewport window unless overridden explicitly, newly created viewports will have these X and Y coordinate.

viewSizeDefault() \([\text{listOfPositiveIntegers}]\)
viewSizeDefault([w;h]) sets the default viewport width to w and height to h.

viewWriteAvailable() returns a list of available methods for writing, such as BITMAP, POSTSCRIPT, etc.

viewWriteDefault() \([\text{listOfStrings}]\)
viewWriteDefault() returns the list of things to write in a viewport data file; a viewAlone file is always generated.
viewWriteDefault(l) sets the default list of things to write in a viewport data file to the strings in l; a viewAlone file is always generated.

void() produces a void object.

weakBiRank() \(\text{element}\)
weakBiRank(x) determines the number of linearly independent elements in the \(b_ib_j,\)
\(i,j = 1, \ldots, n,\) where \(b = [b_1, \ldots, b_n]\) is the fixed basis of a domain of category FramedNonAssociativeAlgebra.

weight() \(u\)
weight(u) returns 1pc 0

if u is a differential polynomial: the maximum weight of all differential monomials appearing in the differential polynomial u.
if u is a derivative: the weight of the derivative u.
if u is a basic operator: the weight attached to u.

weight(p; s) returns the maximum weight of all differential monomials appearing in the differential polynomial p when p is viewed as a differential polynomial in the differential indeterminate s alone.
weight(op; n) attaches the weight n to op.

weights() \(\text{differentialPolynomial\,\, differentialIndeterminate}\)
weights(p; s) returns a list of weights of differential monomials appearing in the differential polynomial p when p is viewed as a differential polynomial in the differential indeterminate s alone. If s is missing, a list of weights of differential monomials appearing
in differential polynomial p.

whatInfinity (orderedCompletion)
whatInfinity (x) returns 0 if x is finite, 1 if x is ∞, and -1 if x is $-\infty$.

wholePart (various)
wholePart (x) returns the whole part of the fraction x, that is, the truncated quotient of the numerator by the denominator.
wholePart (x) extracts the whole part of x. That is, if $x = \text{continuedFraction}(b_0, [a_1, a_2, \ldots], [b_1, b_2, \ldots])$, then wholePart ($x$) = b_0.

wholeRadix (listOfIntegers)
wholeRadix (l) creates an integral radix expansion from a list of ragits. For example, wholeRadix ([1, 3, 4]) returns 134.

wholeRagits (listOfIntegers)
wholeRagits (rx) returns the ragits of the integer part of a radix expansion.

wordInGenerators (permutation, permutationGroup)
wordInGenerators (p, gp) returns the word for the permutation p in the original generators of the permutation group gp, represented by the indices of the list, given by generators.

wordInStrongGenerators (permutation, permutationGroup)
wordInStrongGenerators (p, gp) returns the word for the permutation p in the strong generators of the permutation group gp, represented by the indices of the list, given by strongGenerators.

wordsForStrongGenerators (listOfListsOfIntegers)
wordsForStrongGenerators (gp) returns the words for the strong generators of the permutation group gp in the original generators of gp, represented by their indices in the list of nonnegative integers, given by generators.

wreath (symmetricPolynomial, symmetricPolynomial)
wreath (s_1, s_2) is the cycle index of the wreath product of the two groups whose cycle indices are s_1 and s_2, symmetric polynomials with rational number coefficients.

writable? (file)
writable? (f) tests if the named file can be opened for writing. The named file need not already exist.

write! (file, value)
write! (f, s) puts the value s into the file f. The state of f is modified so that subsequent calls to write! will append values to the end of the file.
writeLine! (textfile [, string])
writeLine! (f) finishes the current line in the file f. An empty string is returned. The call
writeLine! (f) is equivalent to writeLine! (f,"\n").
writeLine! (f, s) writes the contents of the string s and finishes the current line in the file
f. The value of s is returned.

xor (boolean, boolean)
xor (a, b) returns the logical exclusive-or of booleans or bit aggregates a and b.
xor (n, m) returns the bit-by-bit logical xor of the small integers n and m.

xRange (curve)
xRange (c) returns the range of the x-coordinates of the points on the curve c.

yCoordinates (function)
yCoordinates (f), where f is a function defined over a curve, returns the coordinates of f
with respect to the natural basis for the curve. Specifically, the operation returns
[[a_1, \ldots, a_n], d] such that f = (a_1 + \ldots + a_n y^{n-1})/d.

yellow ()
yellow () returns the position of the yellow hue from total hues.

youngGroup (various)
youngGroup ([n_1, \ldots, n_k]) constructs the direct product of the symmetric groups S_{n_1},
\ldots, S_{n_k}.
youngGroup (lambda) constructs the direct product of the symmetric groups given by the
parts of the partition lambda.

yRange (curve)
yRange (c) returns the range of the y-coordinates of the points on the curve c.

zag (outputForm, outputForm)
zag (o_1, o_2), where o_1 and o_2 are objects of type OutputForm (normally unexposed), return
an output form displaying the continued fraction form for o_2 over o_1.

zero (nonNegativeInteger [, nonNegativeInteger])
zero (n) creates a zero vector of length n.
zero (m, n) returns an m-by-n zero matrix.

zero? (element)
zero? (x) tests if x is equal to 0.

zeroDim? (ideal)
zeroDim? (I) tests if the ideal I is zero dimensional, that is, all its associated primes are
maximal.

zeroDimPrimary? (ideal)
zeroDimPrimary? (I) tests if the ideal I is 0-dimensional primary.
zeroDimPrime? (ideal)
zeroDimPrime?(I) tests if the ideal I is a 0-dimensional prime.

zeroOf (polynomial[, symbol])
zeroOf($p(y)$) returns y such that $p(y) = 0$. If possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity that displays as 'y. If no second argument is given, then p must have a unique variable y.

zerosOf (polynomial[, symbol])
zerosOf(p, y) returns $[y_1, \ldots, y_n]$ such that $p(y_i) = 0$. The y_i's are expressed in radicals if possible. Otherwise they are implicit algebraic quantities that display as y_i. The returned symbols y_1, \ldots, y_n are bound in the interpreter to respective root values. If no second argument is given, then p must have a unique variable y.

zRange (curve)
zRange(c) returns the range of the z-coordinates of the points on the curve c.
Appendix F

Programs for Axiom Images

This appendix contains the Axiom programs used to generate the images in the gallery color insert of this book. All these input files are included with the Axiom system. To produce the images on page 6 of the gallery insert, for example, issue the command:

)read images6

These images were produced on an IBM RS/6000 model 530 with a standard color graphics adapter. The smooth shaded images were made from X Window System screen dumps. The remaining images were produced with Axiom-generated PostScript output. The images were reproduced from slides made on an Agfa ChromaScript PostScript interpreter with a Matrix Instruments QCR camera.

F.1 images1.input

)read tknot

Read torus knot program

torusKnot(15,17, 0.1, 6, 700) A (15,17) torus knot
F.2 images2.input

These images illustrate how Newton's method converges when computing the complex cube roots of 2. Each point in the \((x,y)\)-plane represents the complex number \(x + iy\), which is given as a starting point for Newton's method. The poles in these images represent bad starting values. The flat areas are the regions of convergence to the three roots.

\[
\text{Read the programs from Chapter 10}
\]

\[
f := \text{newtonStep}(x^3 - 2) \quad \text{Create a Newton's iteration function for } x^3 = 2
\]

The function \(f^n\) computes \(n\) steps of Newton's method.

\[
\text{clipValue := 4} \quad \text{Clip values with magnitude > 4}
\]

\[
\text{drawComplexVectorField}(f^3, -3..3, -3..3) \quad \text{The vector field for } f^3$
\]

\[
\text{drawComplex}(f^3, -3..3, -3..3) \quad \text{The surface for } f^3$
\]

\[
\text{drawComplex}(f^4, -3..3, -3..3) \quad \text{The surface for } f^4$
\]

F.3 images3.input

\[
\text{for } i \text{ in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250)}
\]

F.4 images5.input

The parameterization of the Etruscan Venus is due to George Frances.

\[
\text{venus(a,r,steps) ==}
\]

\[
\text{surf := (u:D_FLOAT, v:D_FLOAT): Point D_FLOAT ->}
\]

\[
cv := \cos(v)
\]

\[
cu := \cos(u)
\]

\[
su := \sin(u)
\]

\[
x := r \times \cos(2*u) \times cv + sv \times cu
\]

\[
y := r \times \sin(2*u) \times cv - sv \times su
\]

\[
z := a \times cv
\]

\[
\text{point } [x,y,z]
\]

\[
\text{draw(surf, 0..%pi, -%pi..%pi, var1Steps==steps,}
\]

\[
\text{var2Steps==steps, title == "Etruscan Venus")}
\]

\[
\text{venus(5/2, 13/10, 50) \quad The Etruscan Venus}
\]

The Figure-8 Klein Bottle parameterization is from “Differential Geometry and Computer Graphics” by Thomas Banchoff, in Perspectives in Mathematics, Anniversary of Oberwolfasch 1984, Birkhäuser-Verlag, Basel, pp. 43-60.
klein(x,y) ==
cx := cos(x)
cy := cos(y)
sx := sin(x)
sy := sin(y)
sx2 := sin(x/2)
cx2 := cos(x/2)
sq2 := sqrt(2.0@DFLOAT)
point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)),
 sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)),
 -sx2 * (sq2 + cy) + cx2 * sy * cy]

draw(klein, 0..4*%pi, 0..2*%pi, var1Steps==50, Figure-8 Klein bottle
 var2Steps==50,title=="Figure Eight Klein Bottle")

The next two images are examples of generalized tubes.

rotateBy(p, theta) == Rotate a point \(p\) by \(\theta\) around the origin
 c := cos(theta)
s := sin(theta)
 point [p.1*c - p.2*s, p.1*s + p.2*c]

bcircle t == A circle in three-space
 point [3*cos t, 3*sin t, 0]

twist(u, t) == An ellipse that twists around four times as \(t\) revolves once
 theta := 4*t
 p := point [sin u, cos(u)/2]
 rotateBy(p, theta)

ntubeDrawOpt(bcircle, twist, 0..2*%pi, 0..2*%pi, Twisted Torus
 var1Steps == 70, var2Steps == 250)

twist2(u, t) == Create a twisting circle
 theta := t
 p := point [sin u, cos(u)]
 rotateBy(p, theta)

cf(u,v) == sin(21*u) Color function with 21 stripes

ntubeDrawOpt(bcircle, twist2, 0..2*%pi, 0..2*%pi, Striped Torus
 colorFunction == cf, var1Steps == 168,
 var2Steps == 126)

F.5 images6.input

-- The height and color are the real and argument parts
APPENDIX F. PROGRAMS FOR AXIOM IMAGES

```plaintext
-- of the Gamma function, respectively.
gam(x,y) ==
g := Gamma complex(x,y)
point [x,y,max(min(real g, 4), -4), argument g]

draw(gam, -%pi..%pi, -%pi..%pi, title == "Gamma(x + %i*y)", var1Steps == 100, var2Steps == 100)

b(x,y) == Beta(x,y)
draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)")

atf(x,y) ==
a := atan complex(x,y)
point [x,y,real a, argument a]
draw(atf, -3.0..%pi, -3.0..%pi)

The Gamma Function

F.6 images7.input

First we look at the conformal map $z \mapsto z + 1/z$.

)read conformal
-- Read program for drawing conformal maps

-- The coordinate grid for the complex plane
f z == z

-- Mapping 1: Source
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")

-- The map $z \mapsto z + 1/z$
f z == z + 1/z

-- Mapping 1: Target
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")

The map $z \mapsto -(z + 1)/(z - 1)$ maps the unit disk to the right half-plane, as shown on the Riemann sphere.

-- The unit disk
f z == z

-- Mapping 2: Source
```
riemannConformalDraw(f, 0.1..0.99, 0..2*%pi, 7, 11, "polar")

-- The map x mapsto -(z+1)/(z-1)
f z == -(z+1)/(z-1)

-- Mapping 2: Target
riemannConformalDraw(f, 0.1..0.99, 0..2*%pi, 7, 11, "polar")

-- Riemann Sphere Mapping
riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian")

F.7 images8.input

)read dhtri
)read tetra
drawPyramid 4 Sierpinsky's Tetrahedron
Sierpinsky's Tetrahedron

)read antoine
drawRings 2 Antoine's Necklace
Antoine's Necklace

)read scherk
drawScherk(3,3) Scherk's Minimal Surface
Scherk's Minimal Surface

)read ribbonsnew
drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2) Ribbon Plot

F.8 conformal.input

The functions in this section draw conformal maps both on the plane and on the Riemann sphere.

C := Complex DoubleFloat Complex Numbers
S := Segment DoubleFloat Draw ranges
R3 := Point DFLOAT Points in 3-space

conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the coordinate grid under f in the complex plane. The grid may be given in either polar or Cartesian coordinates. Argument f is the function to draw; rRange is the range of the radius (in polar) or real (in Cartesian); tRange is the range of \(\theta \) (in polar) or imaginary (in Cartesian); tSteps, rSteps, are the number of intervals in the \(r \) and \(\theta \) directions; and coord is the coordinate system to use (either "polar" or "cartesian").

conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
-- Function for changing an (x,y)
transformC :=
-- pair into a complex number
cord = "polar" => polar2Complex
cartesian2Complex
cm := makeConformalMap(f, transformC)
-- Create a fresh space
sp := createThreeSpace()
-- Plot the coordinate lines
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
-- Draw the image
makeViewport3D(sp, "Conformal Map")

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the
coordinate grid under f on the Riemann sphere. The grid may be given in either polar or
Cartesian coordinates. Its arguments are the same as those for conformalDraw.

riemannConformalDraw:(C->C,S,S,PI,PI,String)->VIEW3D
riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
-- Function for changing an (x,y)
transformC :=
-- pair into a complex number
cord = "polar" => polar2Complex
cartesian2Complex
-- Create a fresh space
sp := createThreeSpace()
-- Create a fresh space
sp := createThreeSpace()
cm := makeRiemannConformalMap(f, transformC)
-- Plot the coordinate lines
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
curve(sp,[point [0,0,2.0@DFLOAT,0],point [0,0,2.0@DFLOAT,0]])
-- Add an invisible point at the north pole for scaling
makeViewport3D(sp,"Map on the Riemann Sphere")
-- Draw the v coordinate line
space == sp, tubeRadius == .02, tubePoints == 6)
u := u + delU
v := lo vRange
-- Draw coordinate lines in the u direction; curve c fixes the
-- current value of v
for i in 1..vSteps repeat
c := curryRight(f,v)
cf := (t:DFLOAT):DFLOAT +-> 1
makeObject(c,uRange::SEG Float,colorFunction==cf,
-- Draw the u coordinate line
space == sp, tubeRadius == .02, tubePoints == 6)
v := v + delV
void()

-- Map a point in the complex plane to the Riemann sphere
riemannTransform(z) ==
r := sqrt norm z
cosTheta := (real z)/r
sinTheta := (imag z)/r
cp := 4*r/(4+r**2)
sp := sqrt(1-cp*cp)
if r>2 then sp := -sp
point [cosTheta*cp, sinTheta*cp, -sp + 1]

-- Convert Cartesian coordinates to complex Cartesian form
cartesian2Complex(r:DFLOAT, i:DFLOAT):C ==
complex(r, i)

-- Convert polar coordinates to complex Cartesian form
polar2Complex(r:DFLOAT, th:DFLOAT):C ==
complex(r*cos(th), r*sin(th))

-- Convert complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3
-- in the complex plane
makeConformalMap(f, transformC) ==
(u:DFLOAT,v:DFLOAT):R3 +-> z := f transformC(u, v)
point [real z, imag z, 0.0@DFLOAT]

-- Convert a complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3
-- on the Riemann sphere
makeRiemannConformalMap(f, transformC) ==
(u:DFLOAT, v:DFLOAT):R3 +-> riemannTransform f transformC(u, v)

-- Draw a picture of the mapping of the complex plane to
-- the Riemann sphere
riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D
riemannSphereDraw(rRange,tRange,rSteps,tSteps,coord) ==
transformC :=
 coord = "polar" => polar2Complex
cartesian2Complex
-- Coordinate grid function
grid := (u:DFLOAT, v:DFLOAT): R3 +->
z1 := transformC(u, v)
 point [real z1, imag z1, 0]
-- Create a fresh space
sp := createThreeSpace()
-- Draw the flat grid
adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps)
connectingLines(sp, grid, rRange, tRange, rSteps, tSteps)
-- Draw the sphere
makeObject(riemannSphere, 0..2*\%pi, 0..\%pi, space==sp)
f := (z:C):C +-> z
cm := makeRiemannConformalMap(f, transformC)
-- Draw the sphere grid
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
makeViewport3D(sp, "Riemann Sphere")

-- Draw the lines that connect the points in the complex
-- plane to the north pole of the Riemann sphere
connectingLines(sp, f, uRange, vRange, uSteps, vSteps) ==
delU := (hi(uRange) - lo(uRange))/uSteps
delV := (hi(vRange) - lo(vRange))/vSteps
uSteps := uSteps + 1; vSteps := vSteps + 1
u := lo uRange
for i in 1..uSteps repeat
 v := lo vRange
 for j in 1..vSteps repeat
 p1 := f(u, v)
 -- Project p1 onto the sphere
 p2 := riemannTransformComplex(p1.1, p1.2)
 -- Create a line function
 fun := lineFromTo(p1, p2)
 cf := (t:DFLOAT):DFLOAT +-> 3
 -- Draw the connecting line
 makeObject(fun, 0..1, space==sp, tubePoints==4,
 tubeRadius==0.01, colorFunction==cf)
 v := v + delV
 u := u + delU
void()

-- A sphere sitting on the complex plane, with radius 1
riemannSphere(u, v) ==
 sv := sin(v)
 0.99@DFLOAT*(point [cos(u)*sv, sin(u)*sv, cos(v), 0.0@DFLOAT]) +
 point [0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]
-- Create a line function that goes from p1 to p2
F.9 tknot.input

Create a \((p, q)\) torus-knot with radius \(r\) around the curve. The formula was derived by Larry Lambe.

```lisp
)read ntube
torusKnot: (DFLOAT, DFLOAT, DFLOAT, PI, PI) -> VIEW3D
torusKnot(p, q, r, uSteps, tSteps) ==
  -- Function for the torus knot
  knot := (t:DFLOAT):Point DFLOAT +->
    fac := 4/(2.2*DFLOAT-sin(q*t))
    fac * point [cos(p*t), sin(p*t), cos(q*t)]
  -- The cross section
  circle := (u:DFLOAT, t:DFLOAT): Point DFLOAT +->
    r * point [cos u, sin u]
  -- Draw the circle around the knot
  ntubeDrawOpt(knot, circle, 0..2*\%pi, 0..2*\%pi,
    var1Steps == uSteps, var2Steps == tSteps)
```

F.10 ntube.input

The functions in this file create generalized tubes (also known as generalized cylinders). These functions draw a 2-d curve in the normal planes around a 3-d curve.

```lisp
R3 := Point DFLOAT
R2 := Point DFLOAT
S := Segment Float
ThreeCurve := DFLOAT -> R3
TwoCurve := (DFLOAT, DFLOAT) -> R2
Surface := (DFLOAT, DFLOAT) -> R3
FrenetFrame :=
  Record(value:R3,tangent:R3,normal:R3,binormal:R3)
frame: FrenetFrame

ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) draws planeCurve in the normal planes of spaceCurve. The parameter u0..u1 specifies the parameter range for planeCurve and t0..t1
specifies the parameter range for spaceCurve. Additionally, the plane curve function takes a second parameter: the current parameter of spaceCurve. This allows the plane curve to change shape as it goes around the space curve. See section F.4 on page 1190 for an example of this.

\[
\text{ntubeDraw: (ThreeCurve, TwoCurve, S, S) -> VIEW3D}
\]
\[
\text{ntubeDraw(spaceCurve, planeCurve, uRange, tRange) ==}
\]
\[
\text{ntubeDrawOpt(spaceCurve, planeCurve, uRange, tRange, list DROPT)}
\]

\[
\text{ntubeDrawOpt: (ThreeCurve, TwoCurve, S, S, List DROPT) -> VIEW3D}
\]
\[
\text{-- This function is similar to ntubeDraw, but takes}
\]
\[
\text{-- optional parameters that it passes to the draw command}
\]
\[
\text{ntubeDrawOpt(spaceCurve, planeCurve, uRange, tRange, l) ==}
\]
\[
\text{delT:DFLOAT := (hi(tRange) - lo(tRange))/10000}
\]
\[
\text{oldT:DFLOAT := lo(tRange) - 1}
\]
\[
\text{fun := ngeneralTube(spaceCurve, planeCurve, delT, oldT)}
\]
\[
\text{draw(fun, uRange, tRange, l)}
\]

nfrenetFrame(c, t, delT) numerically computes the Frenet frame about the curve c at t. Parameter delT is a small number used to compute derivatives.

\[
\text{nfrenetFrame(c, t, delT) ==}
\]
\[
\text{f0 := c(t)}
\]
\[
f1 := c(t+delT)
\]
\[
t0 := f1 - f0
\]
\[
n0 := f1 + f0
\]
\[
b := \text{cross(t0, n0)}
\]
\[
n := \text{cross(b, t0)}
\]
\[
ln := \text{length n}
\]
\[
lb := \text{length b}
\]
\[
ln = 0 \text{ or } lb = 0 =>
\]
\[
\text{error "Frenet Frame not well defined"}
\]
\[
n := (1/ln)*n
\]
\[
b := (1/lb)*b
\]
\[
[f0, t0, n, b] \text{FrenetFrame}
\]

ngeneralTube(spaceCurve, planeCurve, delT, oldT) creates a function that can be passed to the system axiomFundraw command. The function is a parameterized surface for the general tube around spaceCurve. delT is a small number used to compute derivatives. oldT is used to hold the current value of the t parameter for spaceCurve. This is an efficiency measure to ensure that frames are only computed once for each value of t.

\[
\text{ngeneralTube: (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface}
\]
\[
\text{ngeneralTube(spaceCurve, planeCurve, delT, oldT) ==}
\]
\[
\text{-- Indicate that frame is global}
\]
\[
\text{free frame}
\]
\[
(v:DFLOAT, t: DFLOAT): R3 +->
\]
-- If not already computed compute new frame
if (t $\neq$ oldT) then
  frame := nFrenetFrame(spaceCurve, t, delT)
  oldT := t
p := planeCurve(v, t)
-- Project $p$ into the normal plane
frame.value + p.1*frame.normal + p.2*frame.binormal

F.11 dhtri.input

Create affine transformations (DH matrices) that transform a given triangle into another.

tri2tri: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
  -- Compute a DHMATRIX that transforms t1 to t2, where
  -- t1 and t2 are the vertices of two triangles in 3-space
  tri2tri(t1, t2) ==
    n1 := triangleNormal(t1)
    n2 := triangleNormal(t2)
    tet2tet(concat(t1, n1), concat(t2, n2))

tet2tet: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
  -- Compute a DHMATRIX that transforms t1 to t2, where t1 and t2
  -- are the vertices of two tetrahedrons in 3-space
  tet2tet(t1, t2) ==
    m1 := makeColumnMatrix t1
    m2 := makeColumnMatrix t2
    m2 * inverse(m1)

makeColumnMatrix(t) ==
  m := new(4,4,0)$DHMATRIX(DFLOAT)
  for x in t for i in 1..repeat
    for j in 1..3 repeat
      m(j,i) := x.j
    m(4,i) := 1
  m

-- Put the vertices of a tetrahedron into matrix form
makeColumnMatrix(t) ==
  m := new(4,4,0)$DHMATRIX(DFLOAT)
  for x in t for i in 1..repeat
    for j in 1..3 repeat
      m(j,i) := x.j
    m(4,i) := 1
  m

-- Compute a vector normal to the given triangle, whose
-- length is the square root of the area of the triangle
triangleNormal(t) ==
  a := triangleArea t
  p1 := t.2 - t.1
  p2 := t.3 - t.2
  c := cross(p1, p2)
  len := length(c)
  len = 0 => error "degenerate triangle!"
  c := (1/len)*c
--- Compute the area of a triangle using Heron's formula
triangleArea t ==
a := length(t.2 - t.1)
b := length(t.3 - t.2)
c := length(t.1 - t.3)
s := (a+b+c)/2
sqrt(s*(s-a)*(s-b)*(s-c))

F.12 tetra.input

-- Bring DH matrices into the environment
)set expose add con DenavitHartenbergMatrix

-- Set up the coordinates of the corners of the tetrahedron.
x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT)
x2:DFLOAT := sqrt(3.0@DFLOAT)/6
p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT]
p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT]
p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT]
p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]

-- The base of the tetrahedron
baseTriangle := [p2, p1, p3]

-- The middle triangle inscribed in the base of the tetrahedron
-- The bases of the triangles of the subdivided tetrahedron
mt := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]
bt1 := [mt.1, p1, mt.2]
bt2 := [p2, mt.1, mt.3]
bt3 := [mt.2, p3, mt.3]
bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]

-- Create the transformations that bring the base of the
tetrahedron to the bases of the subdivided tetrahedron

-- Draw a Sierpinsky tetrahedron with n levels of recursive
-- subdivision
drawPyramid(n) ==
s := createThreeSpace()
dh := rotatex(0.0@DFLOAT)
\begin{verbatim}

drawPyramidInner(s, n, dh)
mkeViewport3D(s, "Sierpinsky Tetrahedron")

-- Recursively draw a Sierpinsky tetrahedron
-- Draw the 4 recursive pyramids
drawPyramidInner(s, n, dh) ==
n = 0 => makeTetrahedron(s, dh, n)
drawPyramidInner(s, n-1, dh * tt1)
drawPyramidInner(s, n-1, dh * tt2)
drawPyramidInner(s, n-1, dh * tt3)
drawPyramidInner(s, n-1, dh * tt4)

-- Draw a tetrahedron into the given space with the given
-- color, transforming it by the given DH matrix
makeTetrahedron(sp, dh, color) ==
w1 := dh*p1
w2 := dh*p2
w3 := dh*p3
w4 := dh*p4
polygon(sp, [w1, w2, w4])
polygon(sp, [w1, w3, w4])
polygon(sp, [w2, w3, w4])
void()

\end{verbatim}

F.13 antoine.input

Draw Antoine's Necklace. Thank you to Matthew Grayson at IBM's T.J Watson Research Center for the idea.

-- Bring DH matrices into the environment
)set expose add con DenavitHartenbergMatrix

-- The transformation for drawing a sub ring
torusRot: DHMATRIX(DFLOAT)

-- Draw Antoine's Necklace with n levels of recursive subdivision
-- The number of subrings is 10^n. Do the real work
drawRings(n) ==
s := createThreeSpace()
dh:DHMATRIX(DFLOAT) := identity()
drawRingsInner(s, n, dh)
mkeViewport3D(s, "Antoine's Necklace")

In order to draw Antoine rings, we take one ring, scale it down to a smaller size, rotate it around its central axis, translate it to the edge of the larger ring and rotate it around the edge to a point corresponding to its count (there are 10 positions around the edge of the
larger ring). For each of these new rings we recursively perform the operations, each ring becoming 10 smaller rings. Notice how the DHMATRIX operations are used to build up the proper matrix composing all these transformations.

```lisp
-- Recursively draw Antoine's Necklace
drawRingsInner(s, n, dh) ==
 n = 0 =>
 drawRing(s, dh)
 void()
 t := 0.0@DFLOAT Angle around ring
 p := 0.0@DFLOAT Angle of subring from plane
 tr := 1.0@DFLOAT Amount to translate subring
 inc := 0.1@DFLOAT The translation increment
 for i in 1..10 repeat Subdivide into 10 linked rings
 tr := tr + inc
 inc := -inc
 -- Transform ring in center to a link
 dh' := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*
 rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)
 drawRingsInner(s, n-1, dh')
 t := t + 36.0@DFLOAT
 p := p + 90.0@DFLOAT
 void()

-- Draw a single ring into the given subspace,
-- transformed by the given DHMATRIX
drawRing(s, dh) ==
 free torusRot
 torusRot := dh
 makeObject(torus, 0..2*\%pi, 0..2*\%pi, var1Steps == 6,
 space == s, var2Steps == 15)

-- Parameterization of a torus, transformed by the
-- DHMATRIX in torusRot.
torus(u ,v) ==
 cu := cos(u)/6
 torusRot*point [(1+cu)*cos(v),(1+cu)*sin(v),(sin u)/6]
```

**F.14 scherk.input**


```lisp
-- Offsets for a single piece of Scherk's minimal surface
(xOffset, yOffset):DFLOAT
```
-- Draw Scherk's minimal surface on an m by n patch
drawScherk(m,n) ==
  free xOffset, yOffset
  space := createThreeSpace()
  for i in 0.. m-1 repeat
    xOffset := i*\pi
    for j in 0 .. n-1 repeat
      -- Draw only odd patches
      rem(i+j, 2) = 0 => 'iter
      yOffset := j*\pi
      -- Draw a patch
      drawOneScherk(space)
  makeViewport3D(space, "Scherk’s Minimal Surface")

-- The first patch that makes up a single piece of
-- Scherk's minimal surface
scherk1(u,v) ==
  x := cos(u)/exp(v)
  point [xOffset + acos(x), yOffset + u, v, abs(v)]

-- The second patch
scherk2(u,v) ==
  x := cos(u)/exp(v)
  point [xOffset - acos(x), yOffset + u, v, abs(v)]

-- The third patch
scherk3(u,v) ==
  x := exp(v) * cos(u)
  point [xOffset + u, yOffset + acos(x), v, abs(v)]

-- The fourth patch
scherk4(u,v) ==
  x := exp(v) * cos(u)
  point [xOffset + u, yOffset - acos(x), v, abs(v)]

-- Draw the surface by breaking it into four
-- patches and then drawing the patches
drawOneScherk(s) ==
  makeObject(scherk1,-\pi/2..\pi/2,0..\pi/2,space==s,
                var1Steps == 28, var2Steps == 28)
  makeObject(scherk2,-\pi/2..\pi/2,0..\pi/2,space==s,
                var1Steps == 28, var2Steps == 28)
  makeObject(scherk3,-\pi/2..\pi/2,-\pi/2..0,space==s,
                var1Steps == 28, var2Steps == 28)
  makeObject(scherk4,-\pi/2..\pi/2,-\pi/2..0,space==s,
                var1Steps == 28, var2Steps == 28)
  void()}
Appendix G

Glossary

! (syntax) Suffix character for destructive operations.

, (syntax) a separator for items in a tuple, for example, to separate arguments of a function \( f(x, y) \).

=> (syntax) the expression \( a => b \) is equivalent to if \( a \) then exit \( b \).

? 1. (syntax) a suffix character for Boolean-valued function names, for example, \( odd? \). 2. Prefix character for “optional” pattern variables. For example, the pattern \( f(x + y) \) does not match the expression \( f(7) \), but \( f(?x + y) \) does, with \( x \) matching 0 and \( y \) matching 7. 3. The special type \( ? \) means don’t care. For example, the declaration: \( x : Polynomial? \) means that values assigned to \( x \) must be polynomials over an arbitrary underlying domain.

abstract datatype
a programming language principle used in Axiom where a datatype definition has defined in two parts: (1) a public part describing a set of exports, principally operations that apply to objects of that type, and (2) a private part describing the implementation of the datatype usually in terms of a representation for objects of the type. Programs that create and otherwise manipulate objects of the type may only do so through its exports. The representation and other implementation information is specifically hidden.

abstraction
described functionally or conceptually without regard to implementation.

accuracy
the degree of exactness of an approximation or measurement. In computer algebra systems, computations are typically carried out with complete accuracy using integers or rational numbers of indefinite size. Domain Float provides a function precision to change the precision for floating-point computations. Computations using DoubleFloat have a fixed precision but uncertain accuracy.
add-chain
a hierarchy formed by domain extensions. If domain $A$ extends domain $B$ and domain $B$ extends domain $C$, then $A$ has add-chain $B-C$.

aggregate
a data structure designed to hold multiple values. Examples of aggregates are List, Set, Matrix and Bits.

AKCL
Austin Kyoto Common LISP, a version of KCL produced by William Schelter, Austin, Texas.

algorithm
a step-by-step procedure for a solution of a problem; a program

ancestor
(of a domain or category) a category that is a parent, or a parent of a parent, and so on. See a Cross Reference page of a constructor in Browse.

application
(syntax) an expression denoting “application” of a function to a set of argument parameters. Applications are written as a parameterized form. For example, the form $f(x,y)$ indicates the “application of the function $f$ to the tuple of arguments $x$ and $y$.” See also evaluation and invocation.

apply
See application.

argument
1. (actual argument) a value passed to a function at the time of a function call; also called an actual parameter. 2. (formal argument) a variable used in the definition of a function to denote the actual argument passed when the function is called.

arity
1. (function) the number of arguments. 2. (operator or operation) corresponds to the arity of a function implementing the operator or operation.

assignment
(syntax) an expression of the form $x := e$, meaning “assign the value of $e$ to $x$.” After evaluation, the variable $x$ points to an object obtained by evaluating the expression $e$. If $x$ has a type as a result of a previous declaration, the object assigned to $x$ must have that type. The interpreter must often coerce the value of $e$ to make that happen. For example, the expression $x : \text{Float} := 11$ first declares $x$ to be a float, then forces the interpreter to coerce the integer 11 to 11.0 in order to assign a floating-point value to $x$.

attribute
a name or functional form denoting any useful computational or mathematical property. For example, commutative("*") asserts that * is commutative. Also, finiteAggregate is used to assert that an aggregate has a finite number of immediate components.

basis
(algebra) $S$ is a basis of a module $M$ over a ring if $S$ generates $M$, and $S$ is linearly independent.
benefactor
(of a given domain) a domain or package that the given domain explicitly references (for example, calls functions from) in its implementation. See a Cross Reference page of a constructor in Browse.

binary
operation or function with arity 2.

binding
the association of a variable with properties such as value and type. The top-level environment in the interpreter consists of bindings for all user variables and functions. When a function is applied to arguments, a local environment of bindings is created, one for each formal argument and local variable.

block
(syntax) a control structure where expressions are sequentially evaluated.

body
a function body or loop body.

boolean
objects denoted by the literals true and false; elements of domain Boolean. See also Bits.

built-in function
a function in the standard Axiom library. Contrast user function.

v

cache
1. (noun) a mechanism for immediate retrieval of previously computed data. For example, a function that does a lengthy computation might store its values in a hash table using the function argument as the key. The hash table then serves as a cache for the function (see also set function cache). Also, when recurrence relations that depend upon n previous values are compiled, the previous n values are normally cached (use set functions recurrence to change this). 2. (verb) to save values in a cache.

capsule
the part of the body of a domain constructor that defines the functions implemented by the constructor.

case
(syntax) an operator used to evaluate code conditionally based on the branch of a Union. For example, if value u is Union(Integer,"failed"), the conditional expression ifucaseIntegerthenAelseB evaluates A if u is an integer and B otherwise.

Category
the distinguished object denoting the type of a category; the class of all categories.

category
(basic concept) types denoting classes of domains. Examples of categories are Ring (“the class of all rings”) and Aggregate (“the class of all aggregates”). Categories form a hierarchy (formally, a directed acyclic graph) with the distinguished category Type at the top. Each
category inherits the properties of all its ancestors. Categories optionally provide “default definitions” for operations they export. Categories are defined in Axiom by functions called category constructors. Technically, a category designates a class of domains with common operations and attributes but usually with different functions and representations for its constituent objects. Categories are always defined using the Axiom library language (see also category extension). See also file catdef.spad for definitions of basic algebraic categories in Axiom, aggcat.spad for data structure categories.

category constructor
a function that creates categories, described by an abstract datatype in the Axiom programming language. For example, the category constructor Module is a function that takes a domain parameter $R$ and creates the category “modules over $R$.”

category extension
A category $A$ directly extends a category $B$ if its definition has the form $A \equiv B$with... or $A \equiv \text{Join}(\ldots, B, \ldots)$. In this case, we also say that $B$ is the parent of $A$. We say that a category $A$ extends $B$ if $B$ is an ancestor of $A$. A category $A$ may also directly extend $B$ if $B$ appears in a conditional expression within the Exports part of the definition to the right of a with. See, for example, file catdef.spad for definitions of the algebra categories in Axiom, aggcat.spad for data structure categories.

category hierarchy
hierarchy formed by category extensions. The root category is Type. A category can be defined as a Join of two or more categories so as to have multiple parents. Categories may also be parameterized so as to allow conditional inheritance.

character
1. an element of a character set, as represented by a keyboard key. 2. a component of a string. For example, the 1st element of the string ”hellothere” is the character $h$.

client
(of a given domain) any domain or package that explicitly calls functions from the given domain. See a Cross Reference page of a constructor in Browse.

coercion
an automatic transformation of an object of one type to an object of a similar or desired target type. In the interpreter, coercions and retractions are done automatically by the interpreter when a type mismatch occurs. Compare conversion.

comment
textual remarks imbedded in code. Comments are preceded by a double dash (––). For Axiom library code, stylized comments for on-line documentation are preceded by two plus signs (++)

Common LISP
A version of LISP adopted as an informal standard by major users and suppliers of LISP.

compile-time
the time when category or domain constructors are compiled. Contrast run-time.

compiler
a program that generates low-level code from a higher-level source language. Axiom has
three compilers. A *graphics compiler* converts graphical formulas to a compiled subroutine so that points can be rapidly produced for graphics commands. An *interpreter compiler* optionally compiles user functions when first invoked (use `set functions compile` to turn this feature on). A *library compiler* compiles all constructors (available on an “as-is” basis for Release 1).

**computational object**
In Axiom, domains are objects. This term is used to distinguish the objects that are members of domains rather than the domains themselves.

**conditional**
a *control structure* of the form `if A then B else C`. The *evaluation* of `A` produces `true` or `false`. If `true`, `B` evaluates to produce a value; otherwise `C` evaluates to produce a value. When the value is not required, the `else C` part can be omitted.

**constant**
*(syntax)* a reserved word used in signatures in Axiom programming language to signify that an operation always returns the same value. For example, the signature `0 : constant -> $` in the source code of `AbelianMonoid` tells the Axiom compiler that `0` is a constant so that suitable optimizations might be performed.

**constructor**
a *function* that creates a *category*, *domain*, or *package*.

**continuation**
when a line of a program is so long that it must be broken into several lines, then all but the first line are called *continuation lines*. If such a line is given interactively, then each incomplete line must end with an underscore.

**control structure**
program structures that can specify a departure from normal sequential execution. Axiom has four kinds of control structures: blocks, *case* statements, conditionals, and loops.

**conversion**
the transformation of an object of one *type* to one of another type. Conversions that can be performed automatically by the interpreter are called coercions. These happen when the interpreter encounters a type mismatch and a similar or declared target type is needed. In general, the user must use the infix operation `::` to cause this transformation.

**copying semantics**
the programming language semantics used in PASCAL but *not* in Axiom. See also *pointer semantics* for details.

**data structure**
a structure for storing data in the computer. Examples are lists and hash tables.

**datatype**
equivalent to *domain* in Axiom.

**declaration**
*(syntax)* an expression of the form `x : T` where `T` is some *type*. A declaration forces all values assigned to `x` to be of that type. If a value is of a different type, the interpreter will try to coerce the value to type `T`. Declarations are necessary in case of ambiguity or when a user
wants to introduce an unexposed domain.

**default definition**
a function defined by a category. Such definitions appear in category definitions of the form \( C : Category == \text{add} \)I in an optional implementation part I to the right of the keyword add.

**default package**
an optional package of functions associated with a category. Such functions are necessarily defined in terms of other operations exported by the category.

**definition**
(syntax) 1. An expression of the form \( f(a) == b \) defining function \( f \) with formal arguments \( a \) and body \( b \); equivalent to the statement \( f == (a) + > b \). 2. An expression of the form \( a == b \) where \( a \) is a symbol, equivalent to \( a() == b \). See also macro where a similar substitution is done at parse time.

**delimiter**
a character that marks the beginning or end of some syntactically correct unit in the language, for example, " for strings, blanks for identifiers.

**dependent**
(of a given constructor) another constructor that mentions the given constructor as an argument or among the types of an exported operation. See a Cross Reference page of a constructor in Browse.

**destructive operation**
An operation that changes a component or structure of a value. In Axiom, destructive operations have names ending with an exclamation mark (!). For example, domain List has two operations to reverse the elements of a list, one named reverse that returns a copy of the original list with the elements reversed, another named reverse that reverses the elements in place, thus destructively changing the original list.

**documentation**
1. on-line or hard-copy descriptions of Axiom; 2. text in library code preceded by ++ comments as opposed to general comments preceded by --.

**domain**
(basic concept) a domain corresponds to the usual notion of datatypes. Examples of domains are List Float ("lists of floats"), Fraction Polynomial Integer ("fractions of polynomials of integers"), and Matrix Stream CardinalNumber ("matrices of infinite streams of cardinal numbers"). The term domain actually abbreviates domain of computation. Technically, a domain denotes a class of objects, a class of operations for creating and otherwise manipulating these objects, and a class of attributes describing computationally useful properties. Domains may also define functions for its exported operations, often in terms of some representation for the objects. A domain itself is an object created by a function called a domain constructor. The types of the exported operations of a domain are arbitrary; this gives rise to a special class of domains called packages.

**domain constructor**
a function that creates domains, described by an abstract datatype in the Axiom program-
domain language. Simple domains like Integer and Boolean are created by domain constructors with no arguments. Most domain constructors take one or more parameters, one usually denoting an underlying domain. For example, the domain Matrix(R) denotes “matrices over R.” Domains Mapping, Record, and Union are primitive domains. All other domains are written in the Axiom programming language and can be modified by users with access to the library source code and the library compiler.

domain extension
a domain constructor A is said to extend a domain constructor B if A’s definition has the form A == Badd where Badd is a domain constructor and B’s definition. This intuitively means “functions not defined by A are assumed to come from B.” Successive domain extensions form add-chains affecting the search order for functions not implemented directly by the domain during dynamic lookup.

dot notation
using an infix dot (.) for the operation elt. If u is the list [7, 4, -11] then both u(2) and u.2 return 4. Dot notation nests to the left: f.g.h is equivalent to (f.g).h.

dynamic
that which is done at run-time as opposed to compile-time. For example, the interpreter may build a domain “matrices over integers” dynamically in response to user input. However, the compilation of all functions for matrices and integers is done during compile-time. Constrast static.

dynamic lookup
In Axiom, a domain may or may not explicitly provide function definitions for all its exported operations. These definitions may instead come from domains in the add-chain or from default packages. When a function call is made for an operation in the domain, up to five steps are carried out.

1. If the domain itself implements a function for the operation, that function is returned.
2. Each of the domains in the add-chain are searched; if one of these domains implements the function, that function is returned.
3. Each of the default packages for the domain are searched in order of the lineage. If any of the default packages implements the function, the first one found is returned.
4. Each of the default packages for each of the domains in the add-chain are searched in the order of their lineage. If any of the default packages implements the function, the first one found is returned.
5. If all of the above steps fail, an error message is reported.

empty
the unique value of objects with type Void.

environment
a set of bindings.

evaluation
a systematic process that transforms an expression into an object called the value of the expression. Evaluation may produce side effects.
exit
(reserved word) an operator that forces an exit from the current block. For example, the
block \( (a := 1; \text{if } i > 0 \text{then } \text{exit}; a := 2) \) will prematurely exit at the second statement with
value 1 if the value of \( i \) is greater than zero. See \( \Rightarrow \) for an alternate syntax.

explicit export
1. (of a domain \( D \)) any attribute, operation, or category explicitly mentioned in the type
exports part \( E \) for the domain constructor definition \( D : E \Rightarrow I \) 2. (of a category \( C \)) any
attribute, operation, or category explicitly mentioned in the type specification part \( E \) for the
category constructor definition \( C : \text{Category} \Rightarrow E \)

export
explicit export or implicit export of a domain or category

expose
some constructors are exposed, others unexposed. Exposed domains and packages are recog-
nized by the interpreter. Use \( \text{set expose} \) to control what is exposed. Unexposed construc-
tors will appear in Browse prefixed by a star (\( ^* \)).

expression
1. any syntactically correct program fragment. 2. an element of domain Expression.

extend
see category extension or domain extension.

field
(algebra) a domain that is a ring where every non-zero element is invertible and where
\( xy = yx \); a member of category Field. For a complete list of fields, click on Domains under
Cross Reference for Field in Browse.

file
1. a program or collection of data stored on disk, tape or other medium. 2. an object of a
File domain.

float
a floating-point number with user-specified precision; an element of domain Float. Floats
are literals written either without an exponent (for example, 3.1416), or with an exponent
(for example, 3.12E-12). Use function precision to change the precision of the mantissa
(20 digits by default). See also small float.

formal parameter
(of a function) an identifier bound to the value of an actual argument on invocation. In the
function definition \( f(x, y) \Rightarrow u \), for example, \( x \) and \( y \) are the formal parameters.

frame
the basic unit of an interactive session; each frame has its own step number, environment,
and history. In one interactive session, users can create and drop frames, and have several
active frames simultaneously.

free
(syntax) A keyword used in user-defined functions to declare that a variable is a free variable
of that function. For example, the statement \( \text{freex} \) declares the variable \( x \) within the body
of a function \( f \) to be a free variable in \( f \). Without such a declaration, any variable \( x \) that
appears on the left-hand side of an assignment before it is referenced is regarded as a *local variable* of that function. If the intention of the assignment is to give a value to a *global variable* $x$, the body of that function must contain the statement `freex`. A variable that is a parameter to the function is always local.

**free variable**
(of a function) a variable that appears in a body of a function but is not bound by that function. Contrast with *local variable*.

**function**
implementation of *operation*. A function takes zero or more *argument* parameters and produces a single return value. Functions are objects that can be passed as parameters to functions and can be returned as values of functions. Functions can also create other functions (see also *InputForm*). See also *application* and *invocation*. The terms *operation* and *function* are distinct notions in Axiom. An operation is an abstraction of a function, described by a *name* and a *signature*. A function is created by providing an implementation of that operation by Axiom code. Consider the example of defining a user-function `fact` to compute the factorial of a nonnegative integer. The Axiom statement `fact: Integer > Integer` describes the operation, whereas the statement `fact(n) = reduce(*, [1..n])` defines the function. See also *generic function*.

**function body**
the part of a *function*'s definition that is evaluated when the function is called at *run-time*; the part of the function definition to the right of the `==`.

**garbage collection**
a system function that automatically recycles memory cells from the *heap*. Axiom is built upon *Common LISP* that provides this facility.

**garbage collector**
a mechanism for reclaiming storage in the *heap*.

**Gaussian**
a complex-valued expression, for example, one with both a real and imaginary part; a member of a *Complex* domain.

**generic function**
the use of one function to operate on objects of different types. One might regard Axiom as supporting generic operations but not generic functions. One operation $+ : (D, D) \rightarrow D$ exists for adding elements in a ring; each ring however provides its own type-specific function for implementing this operation.

**global variable**
A variable that can be referenced freely by functions. In Axiom, all top-level user-defined variables defined during an interactive user session are global variables. Axiom does not allow *fluid variables*, that is, variables bound by a function $f$ that can be referenced by functions that $f$ calls.

**Gröbner basis**
(algebra) a special basis for a polynomial ideal that allows a simple test for membership. It is useful in solving systems of polynomial equations.
group
(algebra) a monoid where every element has a multiplicative inverse.

hash table
a data structure designed for fast lookup of information stored under “keys”. A hash table consists of a set of entries, each of which associates a key with a value. Finding the object stored under a key can be fast for a large number of entries since keys are hashed into numerical codes for fast lookup.

heap
1. an area of storage used by data in programs. For example, Axiom will use the heap to hold the partial results of symbolic computations. When cancellations occur, these results remain in the heap until garbage collected. 2. an object of a Heap domain.

history
a mechanism that records input and output data for an interactive session. Using the history facility, users can save computations, review previous steps of a computation, and restore a previous interactive session at some later time. For details, issue the system command )history ? to the interpreter. See also frame.

ideal
(algebra) a subset of a ring that is closed under addition and multiplication by arbitrary ring elements; thus an ideal is a module over the ring.

identifier
(syntax) an Axiom name; a literal of type Symbol. An identifier begins with an alphabetical character, %, ?, or !, and may be followed by any of these or digits. Certain distinguished reserved words are not allowed as identifiers but have special meaning in Axiom.

immutable
an object is immutable if it cannot be changed by an operation; it is not a mutable object. Algebraic objects are generally immutable: changing an algebraic expression involves copying parts of the original object. One exception is an object of type Matrix. Examples of mutable objects are data structures such as those of type List. See also pointer semantics.

implicit export
(of a domain or category) any exported attribute or operation or category that is not an explicit export. For example, Monoid and * are implicit exports of Ring.

index
1. a variable that counts the number of times a loop is repeated. 2. the “address” of an element in a data structure (see also category LinearAggregate).

infix
(syntax) an operator placed between two operands; also called a binary operator. For example, in the expression $a + b$, $+$ is the infix operator. An infix operator may also be used as a prefix. Thus $+(a, b)$ is also permissible in the Axiom language. Infix operators have a precedence relative to one another.

input area
a rectangular area on a HyperDoc screen into which users can enter text.

instantiate
to build a *category, domain, or package* at run-time.

**integer**

a literal object of domain *Integer*, the class of integers with an unbounded number of digits. Integer literals consist of one or more consecutive digits (0-9) with no embedded blanks. Underscores can be used to separate digits in long integers if desirable.

**interactive**

a system where the user interacts with the computer step-by-step.

**interpreter**

the part of Axiom responsible for handling user input during an interactive session. The interpreter parses the user's input expression to create an expression tree, then does a bottom-up traversal of the tree. Each subtree encountered that is not a value consists of a root node denoting an operation name and one or more leaf nodes denoting operands. The interpreter resolves type mismatches and uses type-inferencing and a library database to determine appropriate types for the operands and the result, and an operation to be performed. The interpreter next builds a domain to perform the indicated operation, and invokes a function from the domain to compute a value. The subtree is then replaced by that value and the process continues. Once the entire tree has been processed, the value replacing the top node of the tree is displayed back to the user as the value of the expression.

**invocation**

(of a function) the run-time process involved in evaluating a function application. This process has two steps. First, a local environment is created where formal arguments are locally bound by assignment to their respective actual argument. Second, the function body is evaluated in that local environment. The evaluation of a function is terminated either by completely evaluating the function body or by the evaluation of a return expression.

**iteration**

repeated evaluation of an expression or a sequence of expressions. Iterations use the reserved words *for, while, and repeat.*

**Join**

a primitive Axiom function taking two or more categories as arguments and producing a category containing all of the operations and attributes from the respective categories.

**KCL**

Kyoto Common LISP, a version of *Common LISP* that features compilation of LISP into the *C* Programming Language.

**library**

In Axiom, a collection of compiled modules representing *category or domain* constructors.

**lineage**

the sequence of default packages for a given domain to be searched during dynamic lookup. This sequence is computed first by ordering the category ancestors of the domain according to their *level number*, an integer equal to the minimum distance of the domain from the category. Parents have level 1, parents of parents have level 2, and so on. Among categories with equal level numbers, ones that appear in the left-most branches of Joins in the source code come first. See a Cross Reference page of a constructor in Browse. See also *dynamic*
lookup.

LISP
acronym for List Processing Language, a language designed for the manipulation of non-numerical data. The Axiom library is translated into LISP then compiled into machine code by an underlying LISP system.

list
an object of a List domain.

literal
an object with a special syntax in the language. In Axiom, there are five types of literals: booleans, integers, floats, strings, and symbols.

local
(syntax) A keyword used in user-defined functions to declare that a variable is a local variable of that function. Because of default assumptions on variables, such a declaration is often not necessary but is available to the user for clarity when appropriate.

local variable
(of a function) a variable bound by that function and such that its binding is invisible to any function that function calls. Also called a lexical variable. By default in the interpreter:

1. any variable $x$ that appears on the left-hand side of an assignment is normally regarded a local variable of that function. If the intention of an assignment is to change the value of a global variable $x$, the body of the function must then contain the statement `free x`.

2. any other variable is regarded as a free variable.

An optional declaration `localx` is available to declare explicitly a variable to be a local variable. All formal parameters are local variables to the function.

loop
1. an expression containing a `repeat`. 2. a collection expression having a `for` or a `while`, for example, `[f(i) for i in S]`.

loop body
the part of a loop following the `repeat` that tells what to do each iteration. For example, the body of the loop `forxinSrepeatB is B`. For a collection expression, the body of the loop precedes the initial `for` or `while`.

macro
1. (interactive syntax) An expression of the form `macroa == b` where $a$ is a symbol causes $a$ to be textually replaced by the expression $b$ at parse time. 2. An expression of the form `macrol(a) == b` defines a parameterized macro expansion for a parameterized form $f$. This macro causes a form $f(x)$ to be textually replaced by the expression $c$ at parse time, where $c$ is the expression obtained by replacing $a$ by $x$ everywhere in $b$. See also `definition` where a similar substitution is done during evaluation. 3. (programming language syntax) An expression of the form $a => b$ where $a$ is a symbol.

mode
a type expression containing a question-mark (?). For example, the mode POLY ? designates
the class of all polynomials over an arbitrary ring.

**mutable**
objects that contain pointers to other objects and that have operations defined on them
that alter these pointers. Contrast immutable. Axiom uses pointer semantics as does LISP
in contrast with many other languages such as PASCAL that use copying semantics. See
pointer semantics for details.

**name**
1. a symbol denoting a variable, such as the variable \( x \).
2. a symbol denoting an operation, that is, the operation \( \text{divide} : (\text{Integer}, \text{Integer}) \rightarrow \text{Integer} \).

**nullary**
a function with no arguments, for example, characteristic; operation or function with arity
zero.

**object**
a data entity created or manipulated by programs. Elements of domains, functions, and
domains themselves are objects. The most basic objects are literals; all other objects must be
created by functions. Objects can refer to other objects using pointers and can be mutable.

**object code**
code that can be directly executed by hardware; also known as machine language.

**operand**
an argument of an operator (regarding an operator as a function).

**operation**
an abstraction of a function, described by a signature. For example,
\( \text{fact} : \text{NonNegativeInteger} \rightarrow \text{NonNegativeInteger} \) describes an operation for “the factorial of a (non-negative) integer.”

**operator**
special reserved words in the language such as + and *; operators can be either prefix or
infix and have a relative precedence.

**overloading**
the use of the same name to denote distinct operations; an operation is identified by a
signature identifying its name, the number and types of its arguments, and its return types.
If two functions can have identical signatures, a package call must be made to distinguish
the two.

**package**
a special case of a domain, one for which the exported operations depend solely on the
parameters and other explicit domains (contain no \$). Intuitively, packages are collections
of (polymorphic) functions. Facilities for integration, differential equations, solution of linear
or polynomial equations, and group theory are provided by packages.

**package call**
*(syntax)* an expression of the form \( e \$ P \) where \( e \) is an application and \( P \) denotes some package
(or domain).
package constructor
same as domain constructor.

parameter
see argument.

parameterized datatype
a domain that is built on another, for example, polynomials with integer coefficients.

parameterized form
a expression of the form $f(x, y)$, an application of a function.

parent
(of a domain or category) a category which is explicitly declared in the source code definition for the domain either to the left of the with or as an export of the domain. See category extension. See also a Cross Reference page of a constructor in Browse.

parse
1. (verb) to transform a user input string representing a valid Axiom expression into an internal representation as a tree-structure; the resulting internal representation is then “interpreted” by Axiom to perform some indicated action.

partially ordered set
a set with a reflexive, transitive and antisymmetric binary operation.

pattern matching
1. (on expressions) Given an expression called the “subject” $u$, the attempt to rewrite $u$ using a set of “rewrite rules.” Each rule has the form $A == B$ where $A$ indicates an expression called a “pattern” and $B$ denotes a “replacement.” The meaning of this rule is “replace $A$ by $B$.” If a given pattern $A$ matches a subexpression of $u$, that subexpression is replaced by $B$. Once rewritten, pattern matching continues until no further changes occur.

2. (on strings) the attempt to match a string indicating a “pattern” to another string called a “subject”, for example, for the purpose of identifying a list of names. In Browse, users may enter search strings for the purpose of identifying constructors, operations, and attributes.

pile
alternate syntax for a block, using indentation and column alignment (see also block).

pointer
a reference implemented by a link directed from one object to another in the computer memory. An object is said to refer to another if it has a pointer to that other object. Objects can also refer to themselves (cyclic references are legal). Also more than one object can refer to the same object. See also pointer semantics.

pointer semantics
the programming language semantics used in languages such as LISP that allow objects to be mutable. Consider the following sequence of Axiom statements:

```axiom
x: VectorInteger := [1, 4, 7]
y := x
swap!(x, 2, 3)
```

The function `swap` is used to interchange the second and third value in the list $x$, producing the value $[1, 7, 4]$. What value does $y$ have after evaluation of the third statement? The
answer is different in Axiom than it is in a language with copying semantics. In Axiom, first the vector \([1,2,3]\) is created and the variable \(x\) set to point to this object. Let’s call this object \(V\). Next, the variable \(y\) is made to point to \(V\) just as \(x\) does. Now the third statement interchanges the last 2 elements of \(V\) (the \(!\) at the end of the name \texttt{swap}\) tells you that this operation is destructive, that is, it changes the elements \textit{in place}). Both \(x\) and \(y\) perceive this change to \(V\). Thus both \(x\) and \(y\) then have the value \([1,7,4]\). In PASCAL, the second statement causes a copy of \(V\) to be stored under \(y\). Thus the change to \(V\) made by the third statement does not affect \(y\).

**polymorphic**

a function (for example, one implementing an \textit{algorithm}) defined with categorical types so as to be applicable over a variety of domains (the domains which are members of the categorical types). Every Axiom function defined in a domain or package constructor with a domain-valued parameter is polymorphic. For example, the same matrix + function is used to add “matrices over integers” as “matrices over matrices over integers.”

**postfix**

an \textit{operator} that follows its single \textit{operand}. Postfix operators are not available in Axiom.

**precedence**

\textit{syntax} refers to the so-called \textit{binding power} of an operator. For example, * has higher binding power than + so that the expression \(a + b * c\) is equivalent to \(a + (b * c)\).

**precision**

the number of digits in the specification of a number. The operation \texttt{digits} sets this for objects of \texttt{Float}.

**predicate**

1. a Boolean-valued function, for example, \texttt{odd : Integer → Boolean}. 2. a Boolean-valued expression.

**prefix**

\textit{syntax} an \textit{operator} such as \(-\) that is written \textit{before} its single \textit{operand}. Every function of one argument can be used as a prefix operator. For example, all of the following have equivalent meaning in Axiom: \(f(x)\), \(fx\), and \(f.x\). See also \textit{dot notation}.

**quote**

the prefix \textit{operator} ‘\(^\prime\) meaning \textit{do not evaluate}.

**Record**

\textit{basic domain constructor} a domain constructor used to create an inhomogeneous aggregate composed of pairs of selectors and values. A \texttt{Record} domain is written in the form \texttt{Record}(a1 : D1, \ldots , an : Dn) \((n > 0)\) where \(a1, \ldots , an\) are identifiers called the \textit{selectors} of the record, and \(D1, \ldots , Dn\) are domains indicating the type of the component stored under selector \(an\).

**recurrence relation**

A relation that can be expressed as a function \(f\) with some argument \(n\) which depends on the value of \(f\) at \(k\) previous values. In most cases, Axiom will rewrite a recurrence relation on compilation so as to \textit{cache} its previous \(k\) values and therefore make the computation significantly more efficient.
APPENDIX G. GLOSSARY

**recursion**
use of a self-reference within the body of a function. Indirect recursion is when a function uses a function below it in the call chain.

**recursive**
1. A function that calls itself, either directly or indirectly through another function. 2. self-referential. See also recursive.

**reference**
see pointer

**relative**
(of a domain) A package that exports operations relating to the domain, in addition to those exported by the domain. See a Cross Reference page of a constructor in Browse.

**representation**
a domain providing a data structure for elements of a domain, generally denoted by the special identifier Rep in the Axiom programming language. As domains are abstract datatypes, this representation is not available to users of the domain, only to functions defined in the function body for a domain constructor. Any domain can be used as a representation.

**reserved word**
a special sequence of non-blank characters with special meaning in the Axiom language. Examples of reserved words are names such as for, if, and free, operator names such as + and mod, special character strings such as == and :=.

**retraction**
to move an object in a parameterized domain back to the underlying domain, for example to move the object 7 from a “fraction of integers” (domain Fraction Integer) to “the integers” (domain Integer).

**return**
when leaving a function, the value of the expression following return becomes the value of the function.

**ring**
a set with a commutative addition, associative multiplication, a unit element, where multiplication is distributive over addition and subtraction.

**rule**
(syntax) 1. An expression of the form ruleA == B indicating a “rewrite rule.” 2. An expression of the form rule(R1;...;Rn) indicating a set of “rewrite rules” R1,...,Rn. See pattern matching for details.

**run-time**
the time when computation is done. Contrast with compile-time, and dynamic as opposed to static. For example, the decision of the interpreters to build a structure such as “matrices with power series entries” in response to user input is made at run-time.

**run-time check**
an error-checking that can be done only when the program receives user input; for example, confirming that a value is in the proper range for a computation.
search string
a string entered into an input area on a HyperDoc screen.

selector
an identifier used to address a component value of a Record datatype.

semantics
the relationships between symbols and their meanings. The rules for obtaining the meaning of any syntactically valid expression.

semigroup
(algebra) a monoid which need not have an identity; it is closed and associative.

side effect
action that changes a component or structure of a value. See destructive operation for details.

signature
(syntax) an expression describing the type of an operation. A signature has the form name : source → target, where source is the type of the arguments of the operation, and target is the type of the result.

small float
an object of the domain DoubleFloat for floating-point arithmetic as provided by the computer hardware.

small integer
an object of the domain SingleInteger for integer arithmetic as provided by the computer hardware.

source
the type of the argument of a function; the type expression before the → in a signature. For example, the source of f : (Integer;Integer)→ Integer is (Integer;Integer).

sparse
data structure whose elements are mostly identical (a sparse matrix is one filled mostly with zeroes).

static
that computation done before run-time, such as compilation. Contrast dynamic.

step number
the number that precedes user input lines in an interactive session; the output of user results is also labeled by this number.

stream
an object of Stream(R), a generalization of a list to allow an infinite number of elements. Elements of a stream are computed “on demand.” Streams are used to implement various forms of power series.

string
an object of domain String. Strings are literals consisting of an arbitrary sequence of characters surrounded by double-quotes ("), for example, "Lookhere!".
subdomain
(basic concept) a domain together with a predicate characterizing the members of the domain that belong to the subdomain. The exports of a subdomain are usually distinct from the domain itself. A fundamental assumption however is that values in the subdomain are automatically coerceable to values in the domain. For example, if \( n \) and \( m \) are declared to be members of a subdomain of the integers, then *any binary* operation from \texttt{Integer} is available on \( n \) and \( m \). On the other hand, if the result of that operation is to be assigned to, say, \( k \), also declared to be of that subdomain, a *run-time* check is generally necessary to ensure that the result belongs to the subdomain.

**such that clause**
(syntax) the use of | followed by an expression to filter an iteration.

**suffix**
(syntax) an operator that is placed after its operand. Suffix operators are not allowed in the Axiom language.

**symbol**
objects denoted by identifier literals; an element of domain \texttt{Symbol}. The interpreter, by default, converts the symbol \( x \) into \texttt{Variable(x)}.

**syntax**
rules of grammar and punctuation for forming correct expressions.

**system commands**
top-level Axiom statements that begin with ). System commands allow users to query the database, read files, trace functions, and so on.

**tag**
an identifier used to discriminate a branch of a \texttt{Union} type.

**target**
the type of the result of a function; the type expression following the \( \rightarrow \) in a signature.

**top-level**
refers to direct user interactions with the Axiom interpreter.

**totally ordered set**
algebra) a partially ordered set where any two elements are comparable.

**trace**
use of system function \texttt{)}\texttt{trace} to track the arguments passed to a function and the values returned.

**tuple**
an expression of two or more other expressions separated by commas, for example, 4, 7, 11. Tuples are also used for multiple arguments both for applications (for example, \( f(x, y) \)) and in signatures (for example, \((\texttt{Integer, Integer}) \rightarrow \texttt{Integer}\)). A tuple is not a data structure, rather a syntax mechanism for grouping expressions.

**type**
The type of any category is the unique symbol \texttt{Category}. The type of a domain is any category to which the domain belongs. The type of any other object is either the (unique) domain to
which the object belongs or a subdomain of that domain. The type of objects is in general not unique.

**Type**
a category with no operations or attributes, of which all other categories in Axiom are extensions.

**type checking**
a system function that determines whether the datatype of an object is appropriate for a given operation.

**type constructor**
a domain constructor or category constructor.

**type inference**
when the interpreter chooses the type for an object based on context. For example, if the user interactively issues the definition \( f(x) == (x + \%i) ** 2 \) then issues \( f(2) \), the interpreter will infer the type of \( f \) to be \( \text{Integer} -> \text{ComplexInteger} \).

**unary**
operation or function with arity 1.

**underlying domain**
for a domain that has a single domain-valued parameter, the underlying domain refers to that parameter. For example, the domain “matrices of integers” \( \text{Matrix Integer} \) has underlying domain \( \text{Integer} \).

**Union**
(basic domain constructor) a domain constructor used to combine any set of domains into a single domain. A Union domain is written in the form \( \text{Union}(a1 : D1;...,an : Dn) \) \( (n > 0) \) where \( a1, ..., an \) are identifiers called the tags of the union, and \( D1, ..., Dn \) are domains called the branches of the union. The tags \( ai \) are optional, but required when two of the \( Di \) are equal, for example, \( \text{Union}(\text{inches} : \text{Integer};\text{centimeters} : \text{Integer}) \). In the interpreter, values of union domains are automatically coerced to values in the branches and vice-versa as appropriate. See also case.

**unit**
(algebra) an invertible element.

**user function**
a function defined by a user during an interactive session. Contrast built-in function.

**user variable**
a variable created by the user at top-level during an interactive session.

**value**
1. the result of evaluating an expression. 2. a property associated with a variable in a binding in an environment.
variable
a means of referring to an object, but not an object itself. A variable has a name and an associated binding created by evaluation of Axiom expressions such as declarations, assignments, and definitions. In the top-level environment of the interpreter, variables are global variables. Such variables can be freely referenced in user-defined functions although a free declaration is needed to assign values to them. See local variable for details.

Void
the type given when the value and type of an expression are not needed. Also used when there is no guarantee at run-time that a value and predictable mode will result.

wild card
a symbol that matches any substring including the empty string; for example, the search string “*an*” matches any word containing the consecutive letters “a” and “n”.

workspace
an interactive record of the user input and output held in an interactive history file. Each user input and corresponding output expression in the workspace has a corresponding step number. The current output expression in the workspace is referred to as %. The output expression associated with step number \( n \) is referred to by \( %%(n) \). The \( k \)-th previous output expression relative to the current step number \( n \) is referred to by \( %%(−k) \). Each interactive frame has its own workspace.
Appendix H

License

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Bibliography


http://axiom.axiom-developer.org/axiom-website/documentation.html
Index

** , 289
+->, 196
., 1205
?, 1205
#, 568, 782
%e, 11
%i, 11
%infinity, 11
%minusInfinity, 11
%pi, 11
%plusInfinity, 11
~=, 127
=>, 1205

abbreviation, 68, 972
abbreviation constructor, 68, 885
abbreviation category, 973
abbreviation domain, 973
abbreviation package, 973
abbreviation query, 973
abbreviation remove, 973
abs , 153
abstract datatype, 1205
abstraction, 1205
arity, 1206
Ada, 11
adaptive plotting, 224, 234, 235, 283, 284
add, 887, 904, 917
add-chain, 1206
addmod , 753
aggregate, 1206
Airy function, 292
AKCL, 1206
algebra
  non-associative, 395
algebraic number, 303, 305
AlgebraPackage, 1075
algorithm, 1206
ancestor, 1206
And , 753
anonymous function, 196
antiderivative, 325
Antoine's Necklace, 1201
Any, 81, 93
APL, 63, 905
append , 633
appendPoint , 241
application, 1206
ApplicationProgramInterface, 401
apply, 1206
approximants , 452
approximate , 712
approximation, 311, 316, 343
apropos, 1004
argument, 1206
argument , 565
arithmetic
  modular, 358
arity, 1206
array
  flexible, 23
  one-dimensional, 22
  two-dimensional, 27
ArrayStack, 402
aspSection, 956
assign , 957
assignment, 6, 1206
delayed, 120
immediate, 119
multiple immediate, 122
AssociationList, 406--408
associativity law, 395
attribute, 939, 1206
axiom, 905
axiom, 1

badge, 82
balanced binary tree, 25
BalancedBinaryTree, 409
BasicOperator, 411--414, 564
basis, 1206
  Gröbner, 1178, 1213
  normal, 370
  orthonormal, 312
benefactor, 1207
Bernoulli
  polynomial, 337, 344
Bessel function, 292
binary, 1207
binary, 415
binary search tree, 24
BinaryExpansion, 415
BinarySearchTree, 417
BinaryTree, 1075
binding, 1207
biRank, 1075
bit?, 13
blankSeparate, 204
block, 1207
body, 1207
Boolean, 127, 1207
boolean, 1207
box, 1095
break, 123, 130, 138
Browse, 185, 931
browse, 974
built-in function, 1207
by, 140

C language
  assignment, 120
cache, 1207
capsule, 1207
CardinalNumber, 419--421
Cartesian
  coordinate system, 228, 262
  ovals, 223
CartesianTensor, 423, 426, 427, 431
case, 77, 80, 1207
Category, 1207
category, 14, 63, 84, 899, 1207
  anonymous, 909
  constructor, 899
  defaults, 903
  definition, 900
  membership, 903
category constructor, 1208
category extension, 1208
category hierarchy, 1208
cd, 110, 111, 974, 996
ceiling, 908
center, 204
Character, 434, 435, 1094, 1111, 1125, 1182
character, 1208
character set, 112
CharacterClass, 437
characteristic
  value, 309
  vector, 309
characteristic, 64
clear, 975
Clef, 2
client, 1208
CliffordAlgebra, 439
clipping, 225, 278
clipPointsDefault, 224
close, 105, 975
coefficients, 804
coerce, 243
coaercion, 1208
collection, 147
Color, 229
color, 106, 229
  curve, 226
  multiplication, 229
  point, 226
  shade, 230
colormap, 280
column, 661, 787
command line editor, 2
comment, 1208
Common LISP, 1208
compactFraction, 689, 1141
compile, 927, 974, 977
compile-time, 1208
compiler, 1208
complete, 150
Complex, 447-450
complex
  floating-point number, 289
complex, 447, 980
Complex DoubleFloat, 878
complex numbers, 15
ComplexCategory, 980
complexIntegrate, 326
component, 241, 243
computation timings
  displaying, 994
computational object, 1209
concat
  concat, 21
concat, 60, 91, 157, 587, 770, 903, 925
cond, 957
conditional, 127, 892, 908, 1209
conformal map, 1192, 1193
conjugate, 448
cons, 633
constant, 1209
constant function argument, 176
constantRight, 651
constructor, 1209
  abbreviation, 68, 885
category, 899, 1208
domain, 60, 1210
dominated, 94
hidden, 94
package, 64, 885, 1218
content, 696, 804
continuation, 1209
ContinuedFraction, 450-452
continuedFraction, 450, 452
contract, 426
control structure, 1209
convergents, 451
conversion, 915, 1209
coordinate system, 278
  Cartesian, 228, 262
cylindrical, 275
  parabolic cylindrical, 249
cylindrical coordinate, 274
CoordinateSystems, 273, 275
copy, 656, 789
copying semantics, 1209
correctness, 905
count, 790
countable?, 421
cycle3Space, 267
createIrreduciblePoly, 376, 379
createNormalElement, 1135
createNormalPrimitivePoly, 378
cyclePrimitiveNormalPoly, 378
curry, 651
curryLeft, 650
curryRight, 650
curve
  color, 226
color, 226
  one variable function, 218
cylindrical, 275
cylindrical coordinate system, 275
  parametric plane, 220
cylindrical coordinate system, 275
  parametric space, 247
cylindrical coordinate system, 275
  plane algebraic, 223
cylindrical coordinate system, 275
  smooth, 223
CycleIndicators, 457
cycleRagits, 710
cyclic list, 21
cyclotomic polynomial, 297
cylindrical, 275
cylindrical coordinate system, 275

D, 496, 627, 683, 701, 803
d02cjf, 954
data structure, 1209
datatype, 1209
  parameterized, 1218
ddFact, 1163
decimal, 475
DecimalExpansion, 475
declaration, 6, 1209
default definition, 1210
default definitions, 903
default package, 1210
definition, 1210
INDEX

degree, 433, 434, 623, 685, 698, 802
delayed assignment, 120
delete
   delete, 408
delete, 60, 408
deleteProperty
   deleteProperty, 414
delimiter, 1210
denom, 495, 526
dependent, 1210
Dequeue, 476
DeRhamComplex, 467, 470
derivative, 40
destructive operation, 1210
determinant, 523, 662, 692, 908
diagonalMatrix, 656
difference, 748
differential equation, 348
   partial, 395
differentialVariables, 684
differentiation, 40
   formal, 41
   partial, 41
digit?, 1094
digits, 14, 520, 521, 525, 1219
dimension, 419
directory
   default for searching, 110
   for spool files, 996
DirectProduct, 916
discrete logarithm, 361, 365
display, 979
display operation, 98
DistinctDegreeFactorization, 1163
DistributedMultivariatePolynomial, 483
dithering, 281
divide, 550, 806
divisors, 556
documentation, 901, 1210
domain, 13, 1210
   add, 917
   representation, 915
domain constructor, 1210
domain extension, 1211
dot, 916
dot notation, 1211
DoubleFloat, 485, 1221
DoubleFloatSpecialFunctions, 290
doubleRank, 1075
DrawOption, 264, 274
drawToScale, 225
dynamic, 1211
dynamic lookup, 1211
edit, 974, 980
editing files, 981
eigenvalue, 309
eigenvector, 309
element
   primitive, 361, 367
ElementaryFunctionODESolver, 348
else, 127
e1t, 635, 780, 781, 787, 815, 816
emacs, 981
empty, 1211
empty?, 633
endOfFile?, 784
terries, 755
environment, 887, 1211
eq?, 488
EqTable, 488
equality testing, 127
Equation, 127, 489
equation, 127
differential, 348
   solving, 348
   solving in closed-form, 348
   solving in power series, 356
   linear
   solving, 312
   polynomial
   solving, 315, 317
essential singularity, 321
Etruscan Venus, 1190
EuclideanDomain, 1096, 1169
EuclideanGroebnerBasisPackage, 491
euclideanSize, 1169
Euler
   Beta function, 291, 1192
   gamma function, 290
polynomial, 296
totient function, 296
eulerPhi, 553, 557
eval, 343, 647, 686, 700
evaluation, 1211
even?, 548
exists?, 512
Exit, 492
exit, 1212
exiting Axiom, 2
exp, 454
expand, 501, 639, 746
explicit export, 1212
exponent, 1103
export, 1212
explicit, 1212
implicit, 1214
expose, 1212
exposed
constructor, 94
exposed.lsp, 94
exposure
group, 94
Expression, 215, 326, 493, 495, 496, 562
expression, 1212
ExpressionSpace, 1095
ExpressionToUnivariatePowerSeries, 336
exquo, 78, 550
extend, 1212
exteriorDifferential, 470
factor, 450, 499, 526, 551, 695
Factored, 388, 499--501, 503--505, 691
FactoredFunctions2, 506, 507
factorization, 301
factorList, 500, 505
factors, 500
fibonacci, 181, 552, 559
Fibonacci numbers, 157, 179, 194, 329
Field, 62, 908
field, 62, 1212
finite
conversions, 372
extension of, 362, 364, 367, 370
prime, 358
Galois, 358
Hilbert class, 395
prime, 358
splitting, 387
File, 508, 509
file, 1212
.Xdefaults, 106
.Xdefaults, 234, 282, 286
.axiom.input, 110
agccat.spad, 1208
catdef.spad, 1208
exposed.lsp, 94
history, 983
input, 32, 109, 125, 971, 984, 993
vs. package, 888
where found, 110
sending output to, 111
spool, 996
start-up profile, 110
FileName, 510, 512, 513
filename, 513
fin, 981
finite field, 358, 362, 364, 367, 370
FINITE?, 420
FiniteAlgebraicExtensionField, 1135
FiniteFieldPolynomialPackage, 376, 378--380
first, 20, 634, 892, 925
firstDenom, 690
firstNumer, 690
FlexibleArray, 514
Float, 14, 89, 289, 454, 517, 519--522, 525, 1205, 1212, 1219
float, 1212
floating point, 14
floating-point number, 289
complex, 289
FloatingPointSystem, 1091, 1094, 1103, 1113
fluid variable, 193
font, 106
for, 138, 1215, 1216, 1220
formal parameter, 1212
FORTRAN, 11
assignment, 120
FORTRAN output format, 114
arrays, 117
breaking into multiple statements, 114
data types, 115
integers vs. floats, 115
line length, 114
optimization level, 116
precision, 116
FortranCode, 957
FortranOutputStackPackage, 961
FortranProgram, 965
FortranScalarType, 961
FortranType, 961
FoundationLibraryDoc, 954
Fraction, 17, 64, 79, 89, 92, 525, 526, 702, 908
fraction
partial, 16
fractionPart, 520
fractRagits, 711
frame, 96, 981, 1212
exposure and, 96
frame drop, 983
frame import, 983
frame last, 982
frame names, 982
frame new, 982
frame next, 982
free, 189, 1212, 1220, 1224
free variable, 189, 1213
fullPartialFraction, 528
FullPartialFractionExpansion, 528
function, 29, 1213
Airy Ai, 292
Airy Bi, 292
anonymous, 196
declaring, 198
restrictions, 200
arguments, 154
Bessel, 292
built-in, 1207
caching values, 178
calling, 10
coloring, 261
compiler, 168
complex arctangent, 298
complex exponential, 297
constant argument, 176
declaring, 185, 198
digamma, 291
E1, 291
Ei, 291
Ei1, 291
Ei2, 291
Ei3, 291
Ei4, 291
Ei5, 291
Ei6, 292
elementary, 323
En, 291
Euler Beta, 291, 1192
from an object, 182
Gamma, 290, 1192
hypergeometric, 292
interpretation, 168
made by function, 182
numeric, 289
one-line definition, 160
parameters, 154
piece-wise definition, 29, 170
polygamma, 291
predicate, 176
special, 290
totient, 296
vs. macro, 153
with no arguments, 165
function, 647, 648
function body, 1213
FunctionFieldCategory, 1115, 1116
FunctionSpaceComplexIntegration, 326
FunctionSpaceIntegration, 324
Galois
field, 358
group, 386
gamete, 396
garbage collection, 1213
garbage collector, 1213
Gaussian, 1213
gcd, 499, 526, 548, 696, 802, 804
INDEX

GeneralDistributedMultivariatePolynomial, 533
generalFortran, 958
GeneralSparseTable, 535
generate, 150
GenerateUnivariatePowerSeries, 340
generic function, 1213
genetics, 395
classic, 245
GetGraph, 245
global variable, 189, 1213
GradedAlgebra, 433, 434
GradedModule, 433
Gram-Schmidt algorithm, 1110
graphics, 55, 217
.Xdefaults, 286
  button font, 286
  graph label font, 286
  graph number font, 286
  inverting background, 287
  lighting font, 287
  message font, 287
  monochrome, 287
  PostScript file name, 234, 282, 287
  title font, 287
  unit label font, 287
  volume label font, 287
2D commands
  axes, 235
  close, 236
  connect, 236
  graphs, 236
  key, 236
  move, 236
  options, 236
  points, 236
  resize, 236
  scale, 236
  state of graphs, 236
  translate, 236
2D control-panel, 232
  axes, 234
  box, 234
  buttons, 234
  clear, 233
  drop, 233
  hide, 234
lines, 234
  messages, 233
  multiple graphs, 233
  pick, 233
  points, 234
  ps, 234
  query, 233
  quit, 234
reset, 234
scale, 232
transformations, 232
translate, 232
units, 234
2D defaults
  available viewport writes, 235
2D options
  adaptive, 224
  clip in a range, 225
  clipping, 224
  coordinates, 228
curves, 226
  point color, 226
  range, 227
  set units, 227
to scale, 225
3D commands
  axes, 283
close, 283
draw, 283
  control-panel, 283
define color, 283
deltaX default, 285
deltaY default, 285
diagonals, 283
drawing style, 283
distance, 283
  intensity, 285
  key, 283
depth, 283
  lighting, 283
  modify point data, 284
  move, 284
  outline, 284
  perspective, 284
  phi default, 285
reset, 284
  resize, 284
  rotate, 284
INDEX

scale, 286
scale default, 286
showRegion, 284
subspace, 284
theta default, 286
title, 285
translate, 285
viewport, 285
3D control-panel, 278
axes, 281
bounds, 281
buttons, 280
bw, 281
clip volume, 283
clipping on, 283
color map, 280
eye reference, 282
hide, 282
intensity, 282
light, 282
messages, 280
move xy, 282
move z, 282
outline, 281
perspective, 283
pixmap, 281
ps, 281
quit, 282
reset, 282
rotate, 279
save, 281
scale, 279
shade, 281
show clip region, 283
smooth, 281
solid, 281
transformations, 279
translate, 280
view volume, 282
wire, 281
3D defaults
available viewport writes, 286
reset viewport defaults, 285
tube points, 285
tube radius, 285
var1 steps, 285
var2 steps, 285
viewport position, 286
viewport size, 286
viewport writes, 286
3D options, 260
color function, 261
title, 260
variable steps, 264
advanced
build 3D objects, 267
clip, 278
coordinate systems, 273
color, 229
hue function, 229
multiply function, 229
number of hues, 229
primary color functions, 229
palette, 230
plot3d defaults
adaptive, 283
set adaptive, 284
set max points, 284
set min points, 284
set screen resolution, 284
set 2D defaults
adaptive, 234
axes color, 234
clip points, 234
line color, 235
max points, 235
min points, 235
point color, 235
point size, 235
reset viewport, 235
screen resolution, 235
to scale, 234
units color, 235
viewport position, 235
viewport size, 235
write viewport, 235
three-dimensional, 245
two-dimensional, 218
Xdefaults
2d, 287
GraphicsDefaults, 224, 225
GraphImage, 237, 241, 243
groebner, 570
Gröbner basis, 1178
Gröbner basis, 1213
GroebnerFactorizationPackage, 536, 538
groebnerFactorize, 536, 538
GroebnerPackage, 539
ground?, 697
group, 1214
cyclic, 367
dihedral, 390, 395
exposure, 94
Galois, 386
symmetric, 395

hash table, 1214
hasHi, 814
Heap, 539
heap, 1214
height, 563
help, 983
hex, 541
HexadecimalExpansion, 541
hexDigit?, 1111
hi, 745
Hilbert class field, 395
history, 984, 1214
history ) change, 985
history ) off, 985
history ) on, 985
history ) restore, 974
history ) save, 974
history ) write, 110, 974
hither clipping plane, 282
HomogeneousDistributedMultivariatePolynomial, 543
horizConcat, 659
htxl1, 955, 956
hue, 229
HyperDoc, 2
HyperDoc, 101
HyperDoc, 931
HyperDoc X Window System defaults, 106

IBM Script Formula Format, 113
ideal, 1214
primary decomposition, 383

identifier, 1214
if, 127, 893, 1209, 1220
imag, 449
immediate assignment, 119
immutable, 1214
implicit export, 1214
in, 138
include, 986
incr, 745
indentation, 123, 900
index, 1214
inequality testing, 127
∞ (= %infinity), 11
infix, 1214
initial, 687
input area, 1214
insert, 60
instantiate, 1214
Integer, 13, 15, 64, 78, 87, 153, 545--551
integer, 1215
IntegerLinearDependence, 554, 556
IntegerNumberTheoryFunctions, 181, 552,
  553, 556, 557, 559, 560
IntegerPrimesPackage, 149, 151, 551, 552
integralCoordinates, 1115
integralMatrix, 1116
integralMatrixAtInfinity, 1116
integrate, 324, 327, 701
integration, 43, 324
definite, 327
result as a complex functions, 326
result as list of real functions, 325
interactive, 1215
interpret-code mode, 168
interpreter, 1215
interrupt, 2
intersect, 748
inv, 92
inverse, 661, 947
invmod, 753
invocation, 1215
is?, 413, 565
iterate, 123, 135, 140
iteration, 138, 146, 1215
nested, 143, 148
parallel, 143, 149
asech, 1071
asechIfCan, 1071
asecIfCan, 1071
asin, 1071
asinh, 1071
asinhIfCan, 1071
asinIfCan, 1071
assign, 1071
assoc, 1071
associates?, 1071
associative?, 1071
associator, 1071
associatorDependence, 1071
atan, 1072
atanh, 1072
atanhIfCan, 1072
atanIfCan, 1072
atom?, 1072
axesColorDefault, 1072
back, 1073
bag, 1073
balancedBinaryTree, 1073
base, 1073
basis, 1073
basisOfCenter, 1073
basisOfCentroid, 1073
basisOfCommutingElements, 1073
basisOfLeftAnnihilator, 1073
basisOfLeftNucleus, 1073
basisOfLeftNuclloid, 1074
basisOfMiddleNucleus, 1073
basisOfNucleus, 1073
basisOfRightAnnihilator, 1073
basisOfRightNucleus, 1074
basisOfRightNuclloid, 1074
belong?, 1074
beroulli, 1074
besselI, 1074
besselJ, 1074
besselK, 1074
besselY, 1074
Beta, 1075
binary, 1075
binaryTournament, 1075
binaryTree, 1075
binomial, 1075
bipolar, 1075
bipolarCylindrical, 1075
biRank, 1075
bit?, 1075
bits, 1075
blankSeparate, 1075
blue, 1076
box, 1076
brace, 1076
branch, 1076
branchPoint, 1076
branchPointAtInfinity?, 1076
bright, 1076
cap, 1076, 1088
car, 1076
cardinality, 1076
cdr, 1077, 1100
ceiling, 1077
center, 1077
char, 1077
characteristic, 1077, 1083
characteristicPolynomial, 1077
charClass, 1077
chartRoot, 1077
chebyshevT, 1078
children, 1078
chineseRemainder, 1078
clearDenominator, 1078
clip, 1078
clipPointsDefault, 1078
close, 1078
closedCurve, 1078
closedCurve?, 1078
coefficient, 1079
coefficients, 1079
coerceImages, 1079
coerceListOfPairs, 1079
coercePreimagesImages, 1079
coleman, 1079
color, 1079
colorDef, 1079
colorFunction, 1080
column, 1080
commaSeparate, 1080
commonDenominator, 1080
commutative?, 1080
commutator, 1080
compactFraction, 1080
comparison, 1080
compile, 1080, 1081
compiledFunction, 1081, 1119
complement, 1081
complementaryBasis, 1081
complete, 1081
completeEchelonBasis, 1081
complex, 1081
complexEigenvalues, 1081
complexEigenvectors, 1081
complexElementary, 1082
complexExpand, 1082
complexIntegrate, 1082
complexLimit, 1082
complexNormalize, 1082
complexNumeric, 1082
complexRoots, 1082
complexSolve, 1082
complexZeros, 1082
components, 1082
composite, 1083
composites, 1083
concat, 1072, 1083
conditionP, 1083
conditionsForIdempotents, 1083
conical, 1083
conjugate, 1083
conjugates, 1084
connect, 1084
cos, 1084
count, 1084
constant, 1084, 1088, 1136
countable?, 1087
cylinder, 1088
cylinder? , 1088
cylinderColor, 1088
cylinderColor?, 1088
cylinderHead, 1088
cylinderHead?, 1088
cylinderHeadColor, 1088
cylinderHeadColor?, 1088
cylinderHeadTail, 1088
cylinderHeadTail?, 1088
cylinderTail, 1088
cylinderTail?, 1088
curve, 1088
cycle, 1089
cycleEntry, 1089
cycleLength, 1089
cyclePartition, 1089
cycleRagits, 1089
cycles, 1090
cycleTail, 1090
cyclic, 1090
cyclic?, 1090
cyclicGroup, 1090
copies, 1086
copy, 1086
cos, 1086
cos2sec, 1086
cosh, 1086
cosh2sech, 1086
coshIfCan, 1086
coshIfCan, 1086
cot, 1086
cot2tan, 1086
cot2trig, 1087
coth, 1087
coth2tanh, 1087
coth2trigh, 1087
cothIfCan, 1087
count, 1087
createGenericMatrix, 1087
createIrreduciblePoly, 1087
createNormalElement, 1087
createNormalPrimitivePoly, 1087
createPrimitiveElement, 1088
csc2sin, 1088
csch, 1088
csch2sinh, 1088
cschIfCan, 1088
cschIfCan, 1088
cup, 1076, 1088
curry, 1084, 1088
curryLeft, 1084, 1088
curryRight, 1084, 1088
curve, 1088
curve?, 1089
curveColor, 1089
cycle, 1089
cycleEntry, 1089
cycleLength, 1089
cyclePartition, 1089
cycleRagits, 1089
cycles, 1090
cycleTail, 1090
cyclic, 1090

INDEX
cyclicSubmodule, 1090
cylindrical, 1090
D, 1090, 1094
dark, 1091
ddFact, 1091
decimal, 1091
declare, 1091
decreasePrecision, 1091
definingPolynomial, 1091
degree, 1091
delete, 1092
deleteProperty, 1092
denom, 1092
denominator, 1092
denominators, 1092
depth, 1092
dequeue, 1092
derivationCoordinates, 1092
derivative, 1092
destruct, 1093
determinant, 1093, 1121, 1143
diagonal, 1093
diagonal?, 1093
diagonalMatrix, 1093
diagonalProduct, 1093
dictionary, 1093
difference, 1093
derentialVariables, 1093
differentiate, 1094
digamma, 1094
digit, 1094
digit?, 1094
digits, 1094
dihedral, 1094
dihedralGroup, 1094
dilog, 1094
dim, 1094
dimension, 1094
dioSolve, 1094, 1170
directory, 1094
directProduct, 1095
discreteLog, 1095
discriminant, 1095
display, 1095
distance, 1095
distdfact, 1095
distribute, 1095
divide, 1095
divideExponents, 1095
divisors, 1096
domain, 1096
domainOf, 1096
dot, 1096
doubleRank, 1096
doublyTransitive?, 1096
draw, 1096, 1097, 1144, 1151, 1178, 1180, 1183
drawToScale, 1097
duplicates, 1098
e, 1104
Ei, 1098
eigenMatrix, 1098
eigenvalues, 1098
eigenvector, 1098
eigenvectors, 1098
element?, 1098
elementary, 1098
euclidean, 1098
ellipticCylindrical, 1098
e, 1098
elt, 1098, 1099, 1149
empty, 1100
empty?, 1100, 1160
endOfFile?, 1100
enterPointData, 1100
entry?, 1100
equation, 1100
equation, 1100
equality, 1100
equation, 1101
erf, 1101
error, 1066, 1067, 1072, 1073, 1080, 1081, 1084, 1089, 1092, 1093, 1096, 1099, 1101, 1104, 1105, 1108, 1179, 1182
error, 1066, 1067, 1072, 1073, 1080, 1081, 1084, 1089, 1092, 1093, 1096, 1099, 1101, 1104, 1105, 1108, 1179, 1182
euclideanGroebner, 1101
euclideanNormalForm, 1101
euclideanSize, 1101
euler, 1101
eulerPhi, 1101
eval, 1101
evaluate, 1102
even?, 1102
every?, 1102
exists?, 1102
exp, 1102
exp1, 1102
expand, 1103
expandLog, 1103
expandPower, 1103
expIfCan, 1102
explicitEntries?, 1103
explicitlyEmpty?, 1103
explicitlyFinite?, 1103
exponent, 1103
expressIdealMember, 1103
exptMod, 1103
exquo, 1104
extend, 1104
extendedEuclidean, 1104
extendedIntegrate, 1104
extension, 1104
extensionDegree, 1104
factor, 1105
factorFraction, 1105
factorGroebnerBasis, 1105
factorial, 1105
factorials, 1105
factorList, 1105
factorPolynomial, 1105
factors, 1105
factorsOfCyclicGroupSize, 1105
factorSquareFreePolynomial, 1105
fibonacci, 1106
filename, 1106
filterUntil, 1106
filterWhile, 1106
find, 1106
findCycle, 1106
finite?, 1106
fintegrate, 1106
first, 1084, 1106
fixedPoint, 1106
fixedPoints, 1107
flagFactor, 1107
flatten, 1107, 1119
flexible?, 1107
flexibleArray, 1107
float, 1107
float?, 1107
floor, 1107
formula, 1107
fractionPart, 1107
fractionRadix, 1107
fractionRatigs, 1108
freeOf?, 1108
Frobenius, 1108
front, 1108
fst, 1108
function, 1081, 1108
Gamma, 1108
gcd, 1084, 1108
gcdPolynomial, 1108
generalizedContinuumHypothesisAssumed?, 1108
generalPosition, 1109
generate, 1109
generator, 1109
generators, 1109, 1185
genus, 1109
getMultiplicationMatrix, 1109
getMultiplicationTable, 1109
getVariableOrder, 1109
getZechTable, 1109
gramschmidt, 1110
graphs, 1110
green, 1110
groebner, 1110
groebner?, 1110
groebnerFactorize, 1110
groebnerIdeal, 1110
ground, 1110
ground?, 1110
harmonic, 1111
has, 1111
has?, 1111
hash, 1111
hashHi, 1111
hasSolution?, 1111
hconcat, 1111
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>heap</td>
<td>1111</td>
</tr>
<tr>
<td>heapSort</td>
<td>1111</td>
</tr>
<tr>
<td>height</td>
<td>1111</td>
</tr>
<tr>
<td>hermiteH</td>
<td>1111</td>
</tr>
<tr>
<td>hex</td>
<td>1112</td>
</tr>
<tr>
<td>hexDigit</td>
<td>1111</td>
</tr>
<tr>
<td>hexDigit?</td>
<td>1112</td>
</tr>
<tr>
<td>hi</td>
<td>1112</td>
</tr>
<tr>
<td>horizConcat</td>
<td>1112</td>
</tr>
<tr>
<td>htrigs</td>
<td>1112</td>
</tr>
<tr>
<td>hue</td>
<td>1112</td>
</tr>
<tr>
<td>hypergeometric0F1</td>
<td>1112</td>
</tr>
<tr>
<td>ideal</td>
<td>1112</td>
</tr>
<tr>
<td>imag</td>
<td>1112</td>
</tr>
<tr>
<td>imagE</td>
<td>1112</td>
</tr>
<tr>
<td>imagI</td>
<td>1112</td>
</tr>
<tr>
<td>imagi</td>
<td>1112</td>
</tr>
<tr>
<td>imagJ</td>
<td>1112</td>
</tr>
<tr>
<td>imagj</td>
<td>1112</td>
</tr>
<tr>
<td>imagk</td>
<td>1112</td>
</tr>
<tr>
<td>implies</td>
<td>1112</td>
</tr>
<tr>
<td>in?</td>
<td>1112</td>
</tr>
<tr>
<td>increasePrecision</td>
<td>1113</td>
</tr>
<tr>
<td>index</td>
<td>1113</td>
</tr>
<tr>
<td>index?</td>
<td>1113</td>
</tr>
<tr>
<td>infieldIntegrate</td>
<td>1113</td>
</tr>
<tr>
<td>infinite?</td>
<td>1113</td>
</tr>
<tr>
<td>infinity</td>
<td>1113</td>
</tr>
<tr>
<td>infix</td>
<td>1113</td>
</tr>
<tr>
<td>inHallBasis</td>
<td>1113</td>
</tr>
<tr>
<td>initial</td>
<td>1113</td>
</tr>
<tr>
<td>initializeGroupForWordProblem</td>
<td>1113</td>
</tr>
<tr>
<td>input</td>
<td>1113</td>
</tr>
<tr>
<td>inRadical?</td>
<td>1114</td>
</tr>
<tr>
<td>insert</td>
<td>1114</td>
</tr>
<tr>
<td>integer</td>
<td>1114</td>
</tr>
<tr>
<td>integer?</td>
<td>1114</td>
</tr>
<tr>
<td>integerIfCan</td>
<td>1114</td>
</tr>
<tr>
<td>integerPart</td>
<td>1114</td>
</tr>
<tr>
<td>integral</td>
<td>1114</td>
</tr>
<tr>
<td>integralBasis</td>
<td>1114</td>
</tr>
<tr>
<td>integralBasisAtInfinity</td>
<td>1114</td>
</tr>
<tr>
<td>integralCoordinates</td>
<td>1115</td>
</tr>
<tr>
<td>integralDerivationMatrix</td>
<td>1115</td>
</tr>
<tr>
<td>integralMatrix</td>
<td>1115</td>
</tr>
<tr>
<td>integralMatrixAtInfinity</td>
<td>1115</td>
</tr>
<tr>
<td>integralRepresents</td>
<td>1115</td>
</tr>
<tr>
<td>integrate</td>
<td>1115</td>
</tr>
<tr>
<td>interpret</td>
<td>1081, 1116, 1141</td>
</tr>
<tr>
<td>intersect</td>
<td>1116</td>
</tr>
<tr>
<td>inv</td>
<td>1116</td>
</tr>
<tr>
<td>inverse</td>
<td>1116</td>
</tr>
<tr>
<td>inverseColeman</td>
<td>1116</td>
</tr>
<tr>
<td>inverseIntegralMatrix</td>
<td>1116</td>
</tr>
<tr>
<td>inverseIntegralMatrixAtInfinity</td>
<td>1116</td>
</tr>
<tr>
<td>inverseLaplace</td>
<td>1116</td>
</tr>
<tr>
<td>invmod</td>
<td>1116</td>
</tr>
<tr>
<td>iomode</td>
<td>1117</td>
</tr>
<tr>
<td>irreducible?</td>
<td>1117</td>
</tr>
<tr>
<td>irreducibleFactor</td>
<td>1117</td>
</tr>
<tr>
<td>irreducibleRepresentation</td>
<td>1117</td>
</tr>
<tr>
<td>Is</td>
<td>1118</td>
</tr>
<tr>
<td>is?</td>
<td>1117</td>
</tr>
<tr>
<td>isAbsolutelyIrreducible?</td>
<td>1117</td>
</tr>
<tr>
<td>isExpt</td>
<td>1117</td>
</tr>
<tr>
<td>isMult</td>
<td>1117</td>
</tr>
<tr>
<td>isobaric?</td>
<td>1117</td>
</tr>
<tr>
<td>isPlus</td>
<td>1117</td>
</tr>
<tr>
<td>isTimes</td>
<td>1117</td>
</tr>
<tr>
<td>jacobi</td>
<td>1118</td>
</tr>
<tr>
<td>jacobii</td>
<td>1118</td>
</tr>
<tr>
<td>janko2</td>
<td>1118</td>
</tr>
<tr>
<td>jordanAdmissible?</td>
<td>1118</td>
</tr>
<tr>
<td>jordanAlgebra?</td>
<td>1118</td>
</tr>
<tr>
<td>kernel</td>
<td>1118</td>
</tr>
<tr>
<td>kernels</td>
<td>1118</td>
</tr>
<tr>
<td>key?</td>
<td>1118</td>
</tr>
<tr>
<td>keys</td>
<td>1118</td>
</tr>
<tr>
<td>kroneckerDelta</td>
<td>1119</td>
</tr>
<tr>
<td>label</td>
<td>1119</td>
</tr>
<tr>
<td>laguerreL</td>
<td>1119</td>
</tr>
<tr>
<td>lambda</td>
<td>1081, 1119</td>
</tr>
<tr>
<td>laplace</td>
<td>1119</td>
</tr>
<tr>
<td>last</td>
<td>1119</td>
</tr>
<tr>
<td>laurent</td>
<td>1119</td>
</tr>
<tr>
<td>laurentIfCan</td>
<td>1119</td>
</tr>
<tr>
<td>laurentRep</td>
<td>1119</td>
</tr>
<tr>
<td>lazy?</td>
<td>1119</td>
</tr>
<tr>
<td>lazyEvaluate</td>
<td>1120</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>lcm</td>
<td>1120</td>
</tr>
<tr>
<td>idxquo</td>
<td>1120</td>
</tr>
<tr>
<td>leader</td>
<td>1120</td>
</tr>
<tr>
<td>leadingCoefficient</td>
<td>1120</td>
</tr>
<tr>
<td>leadingIdeal</td>
<td>1120</td>
</tr>
<tr>
<td>leadingMonomial</td>
<td>1120</td>
</tr>
<tr>
<td>leaf?</td>
<td>1120</td>
</tr>
<tr>
<td>leafValues</td>
<td>1120</td>
</tr>
<tr>
<td>leaves</td>
<td>1120</td>
</tr>
<tr>
<td>left</td>
<td>1075</td>
</tr>
<tr>
<td>leftAlternative?</td>
<td>1120</td>
</tr>
<tr>
<td>leftCharacteristicPolynomial</td>
<td>1121</td>
</tr>
<tr>
<td>leftDiscriminant</td>
<td>1121</td>
</tr>
<tr>
<td>leftDivide</td>
<td>1120</td>
</tr>
<tr>
<td>leftGcd</td>
<td>1121</td>
</tr>
<tr>
<td>leftLcm</td>
<td>1121</td>
</tr>
<tr>
<td>leftMinimalPolynomial</td>
<td>1121</td>
</tr>
<tr>
<td>leftNorm</td>
<td>1121</td>
</tr>
<tr>
<td>leftPower</td>
<td>1121</td>
</tr>
<tr>
<td>leftQuotient</td>
<td>1120</td>
</tr>
<tr>
<td>leftRank</td>
<td>1122</td>
</tr>
<tr>
<td>leftRankPolynomial</td>
<td>1121</td>
</tr>
<tr>
<td>leftRecip</td>
<td>1121</td>
</tr>
<tr>
<td>leftRegularRepresentation</td>
<td>1122</td>
</tr>
<tr>
<td>leftRemainder</td>
<td>1120</td>
</tr>
<tr>
<td>leftTrace</td>
<td>1122</td>
</tr>
<tr>
<td>leftTraceMatrix</td>
<td>1122</td>
</tr>
<tr>
<td>leftTrim</td>
<td>1122</td>
</tr>
<tr>
<td>leftUnit</td>
<td>1122</td>
</tr>
<tr>
<td>leftUnits</td>
<td>1122</td>
</tr>
<tr>
<td>LegendreP</td>
<td>1123</td>
</tr>
<tr>
<td>legendreSymbol</td>
<td>1123</td>
</tr>
<tr>
<td>length</td>
<td>1123</td>
</tr>
<tr>
<td>less?</td>
<td>1123</td>
</tr>
<tr>
<td>leviCivitaSymbol</td>
<td>1123</td>
</tr>
<tr>
<td>lexGroebner</td>
<td>1123</td>
</tr>
<tr>
<td>lhs</td>
<td>1123</td>
</tr>
<tr>
<td>li</td>
<td>1124</td>
</tr>
<tr>
<td>library</td>
<td>1123</td>
</tr>
<tr>
<td>lieAdmissible?</td>
<td>1123</td>
</tr>
<tr>
<td>lieAlgebra?</td>
<td>1123</td>
</tr>
<tr>
<td>light</td>
<td>1123</td>
</tr>
<tr>
<td>limit</td>
<td>1123</td>
</tr>
<tr>
<td>limitedIntegrate</td>
<td>1124</td>
</tr>
<tr>
<td>linearDependenceOverZ</td>
<td>1124</td>
</tr>
<tr>
<td>linearlyDependentOverZ?</td>
<td>1124</td>
</tr>
<tr>
<td>linColorDefault</td>
<td>1124</td>
</tr>
<tr>
<td>linSolve</td>
<td>1124</td>
</tr>
<tr>
<td>list?</td>
<td>1124</td>
</tr>
<tr>
<td>listBranches</td>
<td>1124</td>
</tr>
<tr>
<td>listOfComponents</td>
<td>1125</td>
</tr>
<tr>
<td>listOfPoints</td>
<td>1125</td>
</tr>
<tr>
<td>listProperties</td>
<td>1125</td>
</tr>
<tr>
<td>listRepresentation</td>
<td>1124</td>
</tr>
<tr>
<td>listYoungTableaus</td>
<td>1124</td>
</tr>
<tr>
<td>lo</td>
<td>1125</td>
</tr>
<tr>
<td>log</td>
<td>1125</td>
</tr>
<tr>
<td>log10</td>
<td>1125</td>
</tr>
<tr>
<td>log2</td>
<td>1125</td>
</tr>
<tr>
<td>logGamma</td>
<td>1125</td>
</tr>
<tr>
<td>logIfCan</td>
<td>1125</td>
</tr>
<tr>
<td>lowerCase</td>
<td>1125</td>
</tr>
<tr>
<td>lowerCase?</td>
<td>1125</td>
</tr>
<tr>
<td>mainKernel</td>
<td>1126</td>
</tr>
<tr>
<td>mainVariable</td>
<td>1126</td>
</tr>
<tr>
<td>makeFloatFunction</td>
<td>1126</td>
</tr>
<tr>
<td>makeObject</td>
<td>1126</td>
</tr>
<tr>
<td>makeVariable</td>
<td>1126</td>
</tr>
<tr>
<td>makeYoungTableau</td>
<td>1127</td>
</tr>
<tr>
<td>mantissa</td>
<td>1127</td>
</tr>
<tr>
<td>map</td>
<td>1127</td>
</tr>
<tr>
<td>mapCoef</td>
<td>1128</td>
</tr>
<tr>
<td>mapExponents</td>
<td>1128</td>
</tr>
<tr>
<td>mapGen</td>
<td>1128</td>
</tr>
<tr>
<td>mask</td>
<td>1128</td>
</tr>
<tr>
<td>match</td>
<td>1127</td>
</tr>
<tr>
<td>match?</td>
<td>1128</td>
</tr>
<tr>
<td>mathieu11</td>
<td>1129</td>
</tr>
<tr>
<td>mathieu12</td>
<td>1129</td>
</tr>
<tr>
<td>mathieu22</td>
<td>1129</td>
</tr>
<tr>
<td>mathieu23</td>
<td>1129</td>
</tr>
<tr>
<td>mathieu24</td>
<td>1129</td>
</tr>
<tr>
<td>matrix</td>
<td>1129</td>
</tr>
<tr>
<td>max</td>
<td>1129</td>
</tr>
<tr>
<td>maxColIndex</td>
<td>1129</td>
</tr>
<tr>
<td>maxIndex</td>
<td>1129</td>
</tr>
<tr>
<td>maxRowIndex</td>
<td>1129</td>
</tr>
<tr>
<td>meatAxe</td>
<td>1129</td>
</tr>
<tr>
<td>member?</td>
<td>1129</td>
</tr>
</tbody>
</table>
merge, 1130
mesh, 1130
midpoints, 1130
min, 1130
minColIndex, 1130
minimalPolynomial, 1130, 1131
minimumDegree, 1131
minIndex, 1131
minPoly, 1131
minRowIndex, 1131
minusInfinity, 1113, 1131
modifyPointData, 1131
moduloP, 1131
modulus, 1131
moebiusMu, 1131
monicDivide, 1132
monomial, 1132
monomial?, 1132
monomials, 1132
more?, 1132
movedPoints, 1132
mulmod, 1132
multiEuclidean, 1132
multinomial, 1132
multiple, 1132
multiplyCoefficients, 1133
multiplyExponents, 1133
multiset, 1133
multivariate, 1133
name, 1133
nand, 1133
nary?, 1133
ncols, 1133
new, 1133
new(), 1142
newLine, 1134
nextColeman, 1134
nextLatticePermutation, 1134
nextPartition, 1134
nextPrime, 1134
nil, 1134
nilFactor, 1134
node?, 1134
nodes, 1134
noncommutativeJordanAlgebra?, 1134
nor, 1134
norm, 1135
normal?, 1135
normalElement, 1135
normalForm, 1135
normalise, 1135
normalize, 1135
normalizeAtInfinity, 1135
not, 1136
nrows, 1136
nthExponent, 1136
nthFactor, 1136
nthFlag, 1136
nthFractionalTerm, 1136
nthRoot, 1136
nthRootIfCan, 1136
null?, 1136
nullary, 1136
nullary?, 1136
nullity, 1136
nullSpace, 1136
numberOfComponents, 1137
numberOfComputedEntries, 1137
numberOfCycles, 1137
numberOfDivisors, 1137	numberOfFactors, 1137	numberOfFractionalTerms, 1137	numberOfHues, 1137
numberOfImproperPartitions, 1137	numberOfImproperPartitionsInternal, 1182
numberOfMonomials, 1137
nume, 1137
numerator, 1137
numerators, 1138
numeric, 1138
objectOf, 1138
objects, 1138
oblateSpheroidal, 1138
octon, 1138
odd?, 1138
one?, 1138
oneDimensionalArray, 1138
open, 1138
operator, 1138
operators, 1139
optional, 1139
or, 1139
orbit, 1139
orbits, 1139
ord, 1139
order, 1139
orthonormalBasis, 1140
output, 1140
outputAsFortran, 1140
outputAsTex, 1140
outputFixed, 1140
outputFloating, 1140
outputForm, 1140
outputGeneral, 1140
outputSpacing, 1140
over, 1140
overbar, 1141
packageCall, 1141
pade, 1141
padicFraction, 1141
pair?, 1141
parabolic, 1141
parabolicCylindrical, 1141
paraboloidal, 1141
paren, 1141
partialDenominators, 1142
partialFraction, 1142
partialNumerators, 1142
partialQuotients, 1142
particularSolution, 1142
partition, 1142
partitions, 1142
parts, 1142
pastel, 1142
pattern, 1142
patternMatch, 1142
perfectNthPower?, 1143
perfectNthRoot, 1143
perfectSqrt, 1143
perfectSquare?, 1143
permanent, 1143
permutation, 1143
permutationGroup, 1143
permutationRepresentation, 1143
permutations, 1143
physicalLength, 1143, 1167
pi, 1144
pile, 1144
plenaryPower, 1144
plusInfinity, 1113
plusInfinity, 1144
point, 1144
point?, 1144
pointColor, 1144
pointColorDefault, 1144
pointSizeDefault, 1145
polar, 1145
polarCoordinates, 1145
pole?, 1145
polSolve, 1170
polygamma, 1145
polygon, 1145
display, 1145
polygon?, 1145
polynomial, 1145
position, 1145
positive?, 1145
positiveRemainder, 1146
possiblyInfinite?, 1146
postfix, 1146
powerAssociative?, 1146
powerSum, 1146
powmod, 1146
precision, 1075, 1146
prefix, 1146
prefix?, 1146
prefixRagits, 1146
presub, 1146
presuper, 1146
primaryDecomp, 1147
prime, 1147
prime?, 1147
primeFactor, 1147
primeFrobenius, 1147
primes, 1147
primitive?, 1147
primitiveElement, 1147
primitiveMonomials, 1147
primitivePart, 1147
principalIdeal, 1104, 1147
print, 1148
product, 1148
prolateSpheroidal, 1148
prologue, 1148
properties, 1148
pseudoDivide, 1148
pseudoQuotient, 1148
pseudoRemainder, 1148
pseudoDivide?, 1148
pseudoQuotient?, 1148
pseudoRemainder?, 1148
puiseux, 1148
pushdown, 1149
pushdterm, 1149
pushucoef, 1149
pushuconst, 1149
pushup, 1149
qelt, 1149
quadraticForm, 1149
quatern, 1149
queue, 1150
quickSort, 1150
quo, 1150
quoByVar, 1150
quote, 1150
quotedOperators, 1150
quotient, 1150
radical, 1150
radicalEigenvalues, 1150
radicalEigenvector, 1150
radicalEigenvectors, 1150
radicalOfLeftTraceForm, 1151
radicalRoots, 1151
radicalSolve, 1151
radix, 1151
ramified?, 1151
ramifiedAtInfinity?, 1151
random, 1151
range, 1151
ranges, 1151
rank, 1151
rarrow, 1152
ratDenom, 1152
rational, 1152
rational?, 1152
rationalApproximation, 1152
rationalFunction, 1152
rationalIfCan, 1152
rationalPoint?, 1152
rationalPoints, 1152
rationalPower, 1152
ratPoly, 1152
rdexquo, 1152
readable?, 1153
real, 1153
real?, 1153
realEigenvectors, 1153
realElementary, 1153
realRoots, 1153
realZeros, 1154
recip, 1154
recur, 1154
red, 1154
reduce, 1154
reduceBasisAtInfinity, 1154
reducedContinuedFraction, 1154
reducedForm, 1155
reducedSystem, 1155
reductum, 1155
refine, 1155
regularRepresentation, 1155
reindex, 1155
relationsIdeal, 1155
reerror, 1155
rem, 1155
remove, 1155
removeCoshSq, 1156
removeDuplicates, 1156
removeSinhSq, 1156
removeSinSq, 1156
removeZeroes, 1156
repeating, 1156
repeating?, 1156
replace, 1156
represents, 1156
resetNew, 1157
resetVariableOrder, 1157
rest, 1084, 1157
resultant, 1147, 1157
retract, 1157
retractable?, 1157
retractIfCan, 1157
reverse, 1157
rhs, 1157
right, 1075, 1157
<table>
<thead>
<tr>
<th>Trace</th>
<th>1178</th>
</tr>
</thead>
<tbody>
<tr>
<td>TraceMatrix</td>
<td>1179</td>
</tr>
<tr>
<td>TracePowMod</td>
<td>1179</td>
</tr>
<tr>
<td>TranscendenceDegree</td>
<td>1179</td>
</tr>
<tr>
<td>Transcendent?</td>
<td>1179</td>
</tr>
<tr>
<td>Transpose</td>
<td>1179</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>1179</td>
</tr>
<tr>
<td>TrapezoidalClosed</td>
<td>1179, 1180</td>
</tr>
<tr>
<td>TrapezoidalOpen</td>
<td>1179</td>
</tr>
<tr>
<td>Tree</td>
<td>1179</td>
</tr>
<tr>
<td>TriangularSystems</td>
<td>1180</td>
</tr>
<tr>
<td>Trigs</td>
<td>1180</td>
</tr>
<tr>
<td>Trim</td>
<td>1180</td>
</tr>
<tr>
<td>Truncate</td>
<td>1180</td>
</tr>
<tr>
<td>TubePoints</td>
<td>1180</td>
</tr>
<tr>
<td>TubePointsDefault</td>
<td>1180</td>
</tr>
<tr>
<td>TubeRadius</td>
<td>1180</td>
</tr>
<tr>
<td>TubeRadiusDefault</td>
<td>1180</td>
</tr>
<tr>
<td>Twist</td>
<td>1181</td>
</tr>
<tr>
<td>Unary?</td>
<td>1181</td>
</tr>
<tr>
<td>Union</td>
<td>1181</td>
</tr>
<tr>
<td>Unit</td>
<td>1181</td>
</tr>
<tr>
<td>Unit?</td>
<td>1181</td>
</tr>
<tr>
<td>UnitCanonical</td>
<td>1181</td>
</tr>
<tr>
<td>UnitNormal</td>
<td>1181</td>
</tr>
<tr>
<td>UnitNormalize</td>
<td>1181</td>
</tr>
<tr>
<td>UnitsColorDefault</td>
<td>1181</td>
</tr>
<tr>
<td>UnitVector</td>
<td>1181</td>
</tr>
<tr>
<td>Universe</td>
<td>1182</td>
</tr>
<tr>
<td>Unparse</td>
<td>1108, 1119, 1182</td>
</tr>
<tr>
<td>Unravel</td>
<td>1182</td>
</tr>
<tr>
<td>UpperCase</td>
<td>1182</td>
</tr>
<tr>
<td>UpperCase?</td>
<td>1182</td>
</tr>
<tr>
<td>ValidExponential</td>
<td>1182</td>
</tr>
<tr>
<td>Value</td>
<td>1182</td>
</tr>
<tr>
<td>Var1Steps</td>
<td>1183</td>
</tr>
<tr>
<td>Var1StepsDefault</td>
<td>1183</td>
</tr>
<tr>
<td>Var2Steps</td>
<td>1183</td>
</tr>
<tr>
<td>Var2StepsDefault</td>
<td>1183</td>
</tr>
<tr>
<td>Variable</td>
<td>1183</td>
</tr>
<tr>
<td>Variables</td>
<td>1183</td>
</tr>
<tr>
<td>VConcat</td>
<td>1183</td>
</tr>
<tr>
<td>Vector</td>
<td>1183</td>
</tr>
<tr>
<td>Vectorise</td>
<td>1183</td>
</tr>
<tr>
<td>VertConcat</td>
<td>1183</td>
</tr>
<tr>
<td>ViewDefaults</td>
<td>1184</td>
</tr>
<tr>
<td>ViewPosDefault</td>
<td>1184</td>
</tr>
<tr>
<td>ViewSizeDefault</td>
<td>1184</td>
</tr>
<tr>
<td>ViewWriteAvailable</td>
<td>1184</td>
</tr>
<tr>
<td>ViewWriteDefault</td>
<td>1184</td>
</tr>
<tr>
<td>Void</td>
<td>1184</td>
</tr>
<tr>
<td>WeakBiRank</td>
<td>1184</td>
</tr>
<tr>
<td>Weight</td>
<td>1184</td>
</tr>
<tr>
<td>Weights</td>
<td>1184</td>
</tr>
<tr>
<td>WhatInfinity</td>
<td>1185</td>
</tr>
<tr>
<td>WholePart</td>
<td>1185</td>
</tr>
<tr>
<td>WholeRadix</td>
<td>1185</td>
</tr>
<tr>
<td>WholeRagits</td>
<td>1185</td>
</tr>
<tr>
<td>WordInGenerators</td>
<td>1185</td>
</tr>
<tr>
<td>WordInStrongGenerators</td>
<td>1185</td>
</tr>
<tr>
<td>WordsForStrongGenerators</td>
<td>1185</td>
</tr>
<tr>
<td>Wreath</td>
<td>1185</td>
</tr>
<tr>
<td>Writable?</td>
<td>1185</td>
</tr>
<tr>
<td>Xor</td>
<td>1186</td>
</tr>
<tr>
<td>XRange</td>
<td>1186</td>
</tr>
<tr>
<td>YCoordinates</td>
<td>1186</td>
</tr>
<tr>
<td>Yellow</td>
<td>1186</td>
</tr>
<tr>
<td>YoungGroup</td>
<td>1186</td>
</tr>
<tr>
<td>YRange</td>
<td>1186</td>
</tr>
<tr>
<td>Zag</td>
<td>1186</td>
</tr>
<tr>
<td>Zero</td>
<td>1186</td>
</tr>
<tr>
<td>Zero?</td>
<td>1186</td>
</tr>
<tr>
<td>ZeroDim?</td>
<td>1186</td>
</tr>
<tr>
<td>ZeroDimPrimary?</td>
<td>1186</td>
</tr>
<tr>
<td>ZeroDimPrime?</td>
<td>1186</td>
</tr>
<tr>
<td>ZeroOf</td>
<td>1187</td>
</tr>
<tr>
<td>ZerosOf</td>
<td>1187</td>
</tr>
<tr>
<td>ZRange</td>
<td>1187</td>
</tr>
</tbody>
</table>
INDEX

LinearOrdinaryDifferentialOperator1, 62
   makeViewport3D, 266, 267
manpageXXintro, 954
LinearOrdinaryDifferentialOperator2, 62
   manpageXXonline, 954
LinearSystemMatrixPackage, 943
Map, 92, 504, 506, 507, 526, 788, 789
Mapping, 1211
MappingPackage1, 649, 652
MappingPackage2, 651
MappingPackage3, 650, 651
Matrix, 17, 523, 654--659, 661--663, 692,
   932, 939, 943, 947
matrix, 27
   creating, 28
   Hilbert, 28
   symmetric, 312
matrix, 655, 915
MatrixCategory, 908
MatrixCategoryFunctions2, 92
max, 526, 548, 752
member?, 638, 749, 790
members, 783
Mendel's genetic laws, 395
merge, 923
Mersenne number, 161
min, 526, 549, 752
minimal polynomial, 310, 370
minimumDegree, 699
mode, 1216
modemap, 895
Modula 2, 11
modular arithmetic, 358
ModularDistinctDegreeFactorizer, 1163
moebiusMu, 553, 557
monicDivide, 701
monospace 2D output format, 112
mulmod, 753
multiple immediate assignment, 122
Multiset, 664
multiset, 664
MultivariatePolynomial, 666, 918
mutable, 636, 1217
nagDocumentation, 954
nagLinkIntro, 953
nagLinkUsage, 955
NagOrdinaryDifferentialEquationsPackage, 954

List, 20, 21, 60, 186, 488, 587, 632--638,
   768, 804, 892, 923, 925, 1210
list, 632, 1216
   created by iterator, 146
   cyclic, 21
list, 632
literal, 1216
lo, 745
load, 927
local, 1216
local variable, 190, 1216
logarithm
   discrete, 361, 365
loop, 129, 1216
   body, 129
   compilation, 129
   leaving via break, 130
   leaving via return, 129
   mixing modifiers, 146
   nested, 131
loop body, 1216
lowerCase, 435, 772
lowerCase?, 1125
ltrace, 991
LyndonWord, 639

machine code, 170
macro, 154, 886, 1216
   predefined, 11
   vs. function, 153
Magma, 643
mainVariable, 697
MakeBinaryCompiledFunction, 880
makeFR, 505
MakeFunction, 647, 648
makeGraphImage, 237
MakeUnaryCompiledFunction, 880
makeVariable, 682, 684
makeViewport2D, 241
INDEX

nagTechnical, 966
name, 1217
name, 413, 564, 778
ncols, 661, 788
negative?, 526
new, 513, 655, 768, 776, 786, 815, 935
Newton iteration, 881, 1190
nextIrreduciblePoly, 378
nextNormalPoly, 380
nextPrime, 149, 551
nextPrimitivePoly, 380
nil, 633
non-associative algebra, 395
non-singular curve, 223
None, 669
norm, 448, 673
normal basis, 370
Not, 753
NottinghamGroup, 670
nrows, 661, 788
nthFactor, 388
nthFractionalTerm, 690
nullary, 1217
nullity, 663
nullspace, 314
nullSpace, 663
number
  algebraic, 303, 305
  complex floating-point, 289
  floating-point, 289
number theory, 296
numberOfDivisors, 557
numberOfFractionalTerms, 690
numberOfHues(), 229
numberOfImproperPartitions, 1182
NumberTheoreticPolynomialFunctions, 296
numer, 495, 526
numeric operations, 289

object, 1217
object code, 1217
Octonion, 671, 673
odd?, 13, 548
one?, 503
OneDimensionalArray, 674
open, 508
operand, 1217
operation, 1217
destructive, 1205, 1210, 1219, 1221
origin, 918
operation name completion, 3
operator, 676
operator, 42, 214, 348, 1217
operator, 411, 412, 564
Or, 753
ord, 435
order, 684
OrderedVariableList, 680
OrderlyDifferentialPolynomial, 681--687
OrthogonalPolynomialFunctions, 293
orthonormal basis, 312
output, 132, 204
output formats
  common features, 111
  FORTRAN, 114
  IBM Script Formula Format, 113
  line length, 112
  monospace 2D, 112
  sending to file, 111
  sending to screen, 111
  starting, 111
  stopping, 111
\TeX, 113
outputFixed, 522
outputFloating, 522
OutputForm, 96, 132, 203, 204
outputSpacing, 521
overloading, 695, 1217

package, 16, 64, 885, 1217
  constructor, 885
  vs. input file, 888
package call, 1217
package constructor, 1218
padicFraction, 689
Palette, 230
palindrome, 206
panic
  avoiding, 129, 169
parabolic cylindrical coordinate system, 249
parameter, 1218
INDEX

parameterized datatype, 1218
parameterized form, 1218
parameters to a function, 154
parametric plane curve, 220
parametric space curve, 247
parametric surface, 248
paren, 1095
parent, 1218
parentheses
using with types, 65--67
parse, 1218
partial differential equation, 395
partial fraction, 16
PartialFraction, 689, 690, 1141
partialFraction, 689
partially ordered set, 1218
partialQuotients, 451
PASCAL, 11, 1209, 1217, 1219
assignment, 120
Pascal’s triangle, 203
pattern
matching, 209
caveats, 215
variable
matching several terms, 214
predicate, 211
variables, 209
pattern matching, 34, 1218
%%, 4
performance, 170
peril, 88
Permanent, 692
permanent, 692
Permutation, 693
perspective, 283
Phong
illumination model, 281
smooth shading model, 281
$\pi$ (= %pi), 11
piece-wise function definition, 29, 170
pile, 1218
plane algebraic curve, 223
pointer, 1218
pointer semantics, 1218
polymorphic, 1219
Polynomial, 693, 695--701
polynomial, 35
Bernouilli, 296
Bernoulli, 296, 337, 344
Chebyshev
of the first kind, 294
of the second kind, 294
cyclotomic, 297
Euler, 296, 297
factorization, 301
algebraic extension field coefficients, 303
finite field coefficients, 302
integer coefficients, 301
rational number coefficients, 301
Hermite, 295
irreducible, 376
Laguerre, 295
Legendre, 296
minimal, 310, 370
normal, 376
primitive, 376
root finding, 315
root of, 382
position, 773
positive?, 526
positiveRemainder, 753
positiveSolve, 837
postfix, 1219
PostScript, 56, 218, 234, 282, 287
power series, 328, 356
pquit, 992, 993
precedence, 1219
precision, 311, 315, 1219
precision, 1091, 1094, 1113, 1205
predicate, 921, 1219
in function definition, 176
on a pattern variable, 211
prefix, 1219
prefix?, 772
prefixRagits, 710
pretend, 88, 170
prevPrime, 552
primary decomposition of ideal, 383
prime field, 358
prime?, 149, 151, 551
primeFactor, 691
primes, 552
primitive element, 361, 367
principal value, 290
product, 426, 433, 434
prompt, 2
    with frame name, 983
ψ, 291
Puiseux series, 39, 339
putGraph, 245
qelt, 787, 815, 816
qsetelt, 787, 815, 816
QuadraticForm, 915, 918
quadraticForm, 918
quatern, 703
Quaternion, 703
Queue, 706
quit, 110, 992
quo, 550, 806
quote, 9, 72, 80, 1219
QuotientFieldCategory, 908
radical, 17, 306, 310, 315
radix, 12
RadixExpansion, 708, 710, 711
rank, 663, 943
rational function
    factoring, 305
RationalFunctionDefiniteIntegration, 327
read, 109, 974, 993
read, 508, 509, 569
readable?, 512
readIfCan, 509
readLine, 784
real, 449
real?, 961
RealClosure, 711, 712
RealPolynomialUtilitiesPackage, 711
realSolve, 596, 837
RealSolvePackage, 725
Record, 72, 1211, 1219, 1221
Record, 26
record, 418
    difference from union, 80
    selector, 72
recur, 652
recurrence relation, 179, 1219
recursion, 1220
recursive, 1220
reduce, 804
reductum, 699, 802
reference, 1220
regress, 988
RegularTriangularSet, 727, 837
reindex, 431
relative, 1220
relativeApprox, 712
rem, 550, 806
remembering function values, 178
remove
    remove, 782
removeDuplicates, 637
rendering, 260
Rep, 915
repeat, 1215, 1216
representation, 1220
    of a domain, 915
reserved word, 1220
resolve, 93, 168
rest, 20, 637, 892, 925
Result, 956
result
    previous, 4
resultant, 696, 802
retractIfCan, 79
retraction, 1220
return, 123, 129, 1215, 1220
reverse, 638, 1210
rhs, 489
ribbon, 865
Riemann
    sphere, 1192, 1193
rightDivide, 623
rightExactQuotient, 624
rightGcd, 624
rightLcm, 624
rightQuotient, 624
rightRemainder, 624
rightTrim, 771
Ring, 14, 15, 60, 63, 906
ring, 1220
Roman numerals, 13
RomanNumeral, 742
root, 390
  multiple, 307
  numeric approximation, 289
  symbolic, 305
rootOf, 326
round, 519
row, 661, 787
rowEchelon, 663
rule, 8, 208, 210, 1220
ruleset, 210
run-time, 1220
run-time check, 1220
scaling graphs, 286
scan, 766
Scherk's minimal surface, 1193, 1202
script, 779
scripted?, 778
scripts, 778
scroll bar, 103
search, 567, 782
search string, 1221
Segment, 639, 744--746
segment, 138
segment, 747
SegmentBinding, 746, 747
selector, 1221
  quoting, 74, 80
  record, 72
  union, 80
semantics, 1221
  copying, 1209, 1217--1219
  pointer, 1209, 1214, 1217, 1218
SemiGroup, 902, 905
semigroup, 1221
separant, 687
separateDegrees, 1163
series, 328
  arithmetic, 332
  creating, 328
  extracting coefficients, 331
  giving formula for coefficients, 340
  Laurent, 338
lazy evaluation, 331
multiple variables, 337
numerical approximation, 343
power, 38, 356
Puiseux, 39, 339
Taylor, 39, 330, 334, 336, 340
Set, 748--750
set, 994
set expose, 95
set expose add constructor, 96
set expose add group, 95
set expose drop constructor, 96
set expose drop group, 95
set fortran, 114
set fortran exhlen, 114
set fortran ints2float, 115
set fortran optlevel, 114, 116
set fortran precision double, 116
set fortran precision single, 116
set fortran segment, 114
set fortran startindex, 118
set function compile, 170
set function recurrence, 181
set functions cache, 178
set history off, 985
set history on, 985
set message frame, 983
set message prompt frame, 983
set message time, 994
set output, 111
set output algebra, 112
set output characters, 112
set output fortran, 111, 114
set output length, 112
set output script, 113
set output tex, 113
set quit protected, 110, 993
set quit unprotected, 110, 993, 994
set streams calculate, 148, 328, 345
set userlevel, 1003
set userlevel compiler, 971
set userlevel development, 971
set userlevel interpreter, 971
SetCategory, 900
SetColumn, 656
setelt, 636, 655, 780, 786, 787, 815, 816
setProperty, 414
setrest
  setrest, 21
setRow, 656
setSubMatrix, 657
shade, 230
show, 98, 278, 885, 995
showArrayValues, 956
showScalarValues, 956
side effect, 1221
Sierpinsky's Tetrahedron, 1201
sign, 546
signature, 1221
simplification, 34
Simpson's method, 1168
sin, 878
SingleInteger, 752, 753, 1221
singularity
  essential, 321
sizeLess?, 1096
small float, 1221
small integer, 1221
smooth curve, 223
solve, 489, 943
solveLinearlyOverQ, 556
sort
  bubble, 186, 892
  insertion, 187, 892
source, 1221
source code, 936
sparse, 1221
SparseTable, 754, 755
special functions, 290
spherical coordinate system, 263
splitting field, 387
spool, 974, 995
squareFreeLexTriangular, 570, 571, 580
SquareFreeRegularTriangularSet, 757
SquareMatrix, 83, 663, 756
squareMatrix, 756
Stack, 783
start-up profile file, 110
static, 1221
step number, 2, 1221
stopping Axiom, 2
Stream, 150, 157, 765
stream, 1221
  created by iterator, 146
  number of elements computed, 148
  using while, 148
StreamFunctions2, 766
String, 91, 768, 770--773, 903
string, 1221
StringTable, 774
sturmSequence, 711
subdomain, 14, 1222
subMatrix, 657, 658
submod, 753
subset?, 750
subspace, 266, 867
substring?, 773
such that, 170, 211
such that clause, 1222
suffix, 1222
suffix?, 773
summation
  definite, 344
  indefinite, 344
sumOfDivisors, 557
sumOfKthPowerDivisors, 557
surface
  parametric, 248
  two variable function, 245
swap, 1218, 1219
Switch, 965
sylvesterSequence, 711
Symbol, 775, 776, 778, 779
symbol, 1222
  naming, 6
SymbolTable, 962
symmetricDifference, 748
SymmetricGroupCombinatoricFunctions, 1182
symmetry, 395
synonym, 996
syntax, 886, 1222
system, 997
system commands, 1222
Table, 780--783
INDEX

table, 407, 488
tag, 1222
tangle, 991
target, 1222
testing, 893
\TeX output format, 113
TextFile, 784, 785
then, 127
TheSymbolTable, 963
ThreeDimensionalViewport, 266, 267, 282, 283, 286, 867, 871
ThreeSpace, 266--268
timings
displaying, 994
top-level, 1222
toroidal coordinate system, 250
torus knot, 1189
totalDegree, 699
totally ordered set, 1222
trace, 997, 1222
trace, 663
transform
Laplace, 323
transpose, 431, 659
TransSolvePackage, 489
trapezoidal method, 1180
tree, 24
  balanced binary, 25
  binary search, 24
trim, 771
truncate, 519
tube, 263
  points in polygon, 264
  radius, 263
tuple, 901, 1222
twist, 650
TwoDimensionalArray, 786--790
TwoDimensionalViewport, 235, 241, 245, 790
Type, 62, 1208, 1223
type, 1222
  using parentheses, 65--67
type checking, 1223
type constructor, 1223
type inference, 1223
typeOf, 78
ugSysCmdabbreviation, 979
ugSysCmdboot, 988, 991, 992, 997, 1001
ugSysCmdcd, 974, 987, 996
ugSysCmdclear, 975, 980
ugSysCmdclose, 975, 992, 993
ugSysCmdcompile, 974, 975, 977, 981, 987, 993
ugSysCmddisplay, 977, 979, 995, 1004
ugSysCmdedit, 975, 979, 980, 993
ugSysCmdfin, 981, 988, 992, 993, 997
ugSysCmdframe, 981, 986, 987
ugSysCmdhelp, 983
ugSysCmdhistory, 975, 977, 980, 983, 984, 992, 993, 1002
ugSysCmdinclude, 986
ugSysCmdlibrary, 975, 979, 986
ugSysCmdlisp, 987, 992, 997, 1001
ugSysCmdltrace, 991, 1001
ugSysCmdqquit, 975, 981, 992, 993, 997
ugSysCmdquit, 975, 981, 992, 994, 997
ugSysCmdread, 975, 981, 986, 993
ugSysCmdset, 980, 983, 986, 987, 994, 995, 997, 1004
ugSysCmdshow, 980, 986, 1004
ugSysCmdspool, 975, 995
ugSysCmdsysynonym, 996
ugSysCmdsystem, 981, 988, 992, 993, 997
ugSysCmdundo, 977, 986, 1001
ugSysCmdwhat, 980, 995, 997, 1002
ugWhatsNewDocumentation, 969
ugWhatsNewHyperDoc, 969
ugWhatsNewImportant, 953
ugWhatsNewLanguage, 967
ugWhatsNewLibrary, 967
union, 1223
underlying domain, 1223
undo, 1001
Union, 76, 1207, 1211, 1222, 1223
Union, 27
union, 76
  difference from record, 80
  selector, 80
union, 748
unit, 1223
UnivariatePolynomial, 800--804, 806