The 30 Year Horizon

Manuel Bronstein William Burge Timothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison Clifton Williamson
Jonathan Steinbach Robert Sutor William Sit
Stephen Watt Jim Wen Barry Trager

Volume 2: Axiom Users Guide
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.

Michael Albaugh
Christian Astleitner
S.J. Atkins
Stephen Balzac
Gerald Baumgartner
Nelson H. F. Beebe
Fred Blair
Raoul Bourquin
Peter A. Broadbery
Stephen Buchwald
William Burge
Robert Caviness
Tzu-Yi Chen
Gregory V. Chudnovsky
Jia Zhao Cong
Don Coppersmith
Gary Cornell
David Cyganski
Timothy Daly Jr.
James Demmel
Jack Dongarra
Claire DiCrescendo
Iain Duff
Brian Dupee
Heow Eide-Goodman
Bertfried Fauser
Brian Ford
Constantine Frangos
Marc Gaetano
Kathy Gerber
Holger Gollan
Stephen Gortler
Klaus Ebbe Grue
Oswald Gschnitzer
Gaetan Hache
Sven Hammarling
Richard Harke
Martin Hassner
Waldek Hebisch

Cyril Alberg
Richard Anderson
Henry Baker
Yurij Baransky
Gilbert Baumslag
Jay Belanger
Vladimir Bondarenko
Alexandre Bouyer
Martin Brock
Florian Bundschuh
Ralph Byers
Bruce Char
Cheekai Chin
Mark Clements
Josh Cohen
George Corliss
Meino Cramer
Nathaniel Daly
James H. Davenport
Didier Deshommes
Jean Della Dora
Sam Dooley
Lee Duhem
Dominique Duval
Lars Erickson
Stuart Feldman
Albrecht Fortenbacher
Timothy Freeman
Rudiger Gebauer
Patricia Gianni
Teresa Gomez-Diaz
Johannes Grabmeier
James Griesmer
Ming Gu
Steve Hague
Mike Hansen
Bill Hart
Arthur S. Hathaway
Karl Hegbloom
Roy Adler
George Andrews
Martin Baker
David R. Barton
Michael Becker
David Bindel
Mark Botch
Karen Braman
Manuel Bronstein
Luanne Burns
Quentin Carpent
Ondrej Certik
David V. Chudnovsky
James Cloos
Christophe Couil
Robert Corless
Jeremy Du Croz
Timothy Daly Sr.
David Day
Michael Dewar
Gabriel Dos Reis
Lionel Ducos
Martin Dunstan
Robert Edwards
Richard Fateman
John Fletcher
George Frances
Korrinn Fu
Van de Geijn
Samantha Goldrich
Laureano Gonzalez-Vega
Matt Grayson
Vladimir Grinberg
Jocelyn Guidry
Satoshi Hamaguchi
Richard Hanson
Vilya Harvey
Dan Hatton
Ralf Hemmecke
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henderson</td>
<td>Antoine Hersen</td>
<td>Roger House</td>
</tr>
<tr>
<td>Gernot Hueber</td>
<td>Pietro Iglio</td>
<td>Alejandro Jakubi</td>
</tr>
<tr>
<td>Richard Jenks</td>
<td>William Kahan</td>
<td>Kai Kaminski</td>
</tr>
<tr>
<td>Grant Keady</td>
<td>Wilfrid Kendall</td>
<td>Tony Kennedy</td>
</tr>
<tr>
<td>Ted Kosan</td>
<td>Paul Kosinski</td>
<td>Klaus Kusche</td>
</tr>
<tr>
<td>Bernhard Kutzler</td>
<td>Tim Lahey</td>
<td>Larry Lambe</td>
</tr>
<tr>
<td>Kaj Laurson</td>
<td>George L. Legendre</td>
<td>Franz Lehner</td>
</tr>
<tr>
<td>Frederic Lehobey</td>
<td>Michel Levaud</td>
<td>Howard Levy</td>
</tr>
<tr>
<td>Ren-Cang Li</td>
<td>Rudiger Loos</td>
<td>Michael Lucks</td>
</tr>
<tr>
<td>Richard Luczak</td>
<td>Cammi Maguire</td>
<td>Francois Maltey</td>
</tr>
<tr>
<td>Alasdair McAndrew</td>
<td>Bob McElrath</td>
<td>Michael McGetrick</td>
</tr>
<tr>
<td>Edi Meier</td>
<td>Ian Meikle</td>
<td>David Mentre</td>
</tr>
<tr>
<td>Victor S. Miller</td>
<td>Gerard Milmeister</td>
<td>Mohammed Mobarak</td>
</tr>
<tr>
<td>H. Michael Moeller</td>
<td>Michael Monagan</td>
<td>Marc Moreno-Maza</td>
</tr>
<tr>
<td>Scott Morrison</td>
<td>Joel Moses</td>
<td>Mark Murray</td>
</tr>
<tr>
<td>William Naylor</td>
<td>Patrice Naudin</td>
<td>C. Andrew Neff</td>
</tr>
<tr>
<td>John Nelder</td>
<td>Godfrey Nolan</td>
<td>Arthur Norman</td>
</tr>
<tr>
<td>Jinzhong Niu</td>
<td>Michael O’Connor</td>
<td>Summat Oemrawsingh</td>
</tr>
<tr>
<td>Kostas Oikonomou</td>
<td>Humberto Ortiz-Zuazaga</td>
<td>Julian A. Padget</td>
</tr>
<tr>
<td>Bill Page</td>
<td>David Parnas</td>
<td>Susan Pelzel</td>
</tr>
<tr>
<td>Michel Petitot</td>
<td>Didier Pinchon</td>
<td>Ayal Pinkus</td>
</tr>
<tr>
<td>Frederick H. Pitts</td>
<td>Jose Alfredo Portes</td>
<td>Gregorio Quintana-Orti</td>
</tr>
<tr>
<td>Claude Quitte</td>
<td>Arthur C. Ralsfs</td>
<td>Norman Ramsey</td>
</tr>
<tr>
<td>Anatoly Raportirenko</td>
<td>Albert D. Rich</td>
<td>Michael Richardson</td>
</tr>
<tr>
<td>Guilherme Reis</td>
<td>Huan Ren</td>
<td>Renaud Stumbo</td>
</tr>
<tr>
<td>Jean Rivlin</td>
<td>Nicolas Robidoux</td>
<td>Simon Robinson</td>
</tr>
<tr>
<td>Raymond Rogers</td>
<td>Michael Rothstein</td>
<td>Martin Rubey</td>
</tr>
<tr>
<td>Philip Santas</td>
<td>Alfred Scheerhorn</td>
<td>William Schelter</td>
</tr>
<tr>
<td>Gerhard Schneider</td>
<td>Martin Schoenert</td>
<td>Marshall Schor</td>
</tr>
<tr>
<td>Frithjof Schulze</td>
<td>Fritz Schwarz</td>
<td>Steven Segletes</td>
</tr>
<tr>
<td>V. Sina</td>
<td>Nick Simicich</td>
<td>William Sit</td>
</tr>
<tr>
<td>Elena Smirnova</td>
<td>Jonathan Steinbach</td>
<td>Fabio Stumbo</td>
</tr>
<tr>
<td>Christine Sundaresan</td>
<td>Robert Sutor</td>
<td>Moss E. Sweedler</td>
</tr>
<tr>
<td>Eugene Surowitz</td>
<td>Max Tegmark</td>
<td>T. Doug Telford</td>
</tr>
<tr>
<td>James Thatcher</td>
<td>Balbir Thomas</td>
<td>Mike Thomas</td>
</tr>
<tr>
<td>Dylan Thurston</td>
<td>Steve Toleque</td>
<td>Barry Trager</td>
</tr>
<tr>
<td>Themos T. Tsikas</td>
<td>Gregory Vanuxem</td>
<td>Bernhard Wall</td>
</tr>
<tr>
<td>Stephen Watt</td>
<td>Jaap Weel</td>
<td>Juergen Weiss</td>
</tr>
<tr>
<td>M. Weller</td>
<td>Mark Wegman</td>
<td>James Wen</td>
</tr>
<tr>
<td>Thorsten Werther</td>
<td>Michael Wester</td>
<td>R. Clint Whaley</td>
</tr>
<tr>
<td>John M. Wiley</td>
<td>Berhard Will</td>
<td>Clifton J. Williamson</td>
</tr>
<tr>
<td>Stephen Wilson</td>
<td>Shmuel Winograd</td>
<td>Robert Wisbauer</td>
</tr>
<tr>
<td>Sandra Wityak</td>
<td>Waldemar Wiwianka</td>
<td>Knut Wolf</td>
</tr>
<tr>
<td>Liu Xiaojun</td>
<td>Clifford Yapp</td>
<td>David Yun</td>
</tr>
<tr>
<td>Vadim Zhychnikov</td>
<td>Richard Zippel</td>
<td>Evelyn Zoernack</td>
</tr>
<tr>
<td>Bruno Zuercher</td>
<td>Dan Zwillinger</td>
<td></td>
</tr>
</tbody>
</table>
Contents

1 Axiom and Category Theory .. 1
 1.1 Covariance and Contravariance 1
 1.2 Axiom Type Lattice .. 2
 1.3 Terms to Understand ... 2
 1.4 Category Definition .. 3
 1.5 Monoids and Groups ... 4

2 Axiom Implementation Details ... 5
 2.1 Makefile ... 5

3 Writing Spad Code .. 7
 3.1 The Description: label and the)describe command 7
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
Chapter 1

Axiom and Category Theory

1.1 Covariance and Contravariance

Axiom has an order relation between types. The types can be in one of five possible relationships.

A type can be more general than another type. For example, Integer is more general than PositiveInteger.

A type can be more specific than another type. Conversely PositiveInteger is more specific than Integer.

A type can be equal to another type.

A type can be converted or coerced to another type. For example, Fraction(Polynomial(Integer)) can be coerced to Polynomial(Fraction(Integer)).

A type can be unrelated to another type. String and Expression are not related.

Covariance is converting from a wider type to a narrower type. For instance, converting from Matrix(Float) to Matrix(Integer).

Contravariance is converting from a narrower type to a wider type. For instance, converting from Matrix(Integer) to Matrix(Float).

Invariance means that one type cannot convert to another. For instance, a Matrix(Float) which contains numbers which cannot be represented as Integers cannot be converted to a Matrix(Integer).

These facts form an order relation, which by definition is reflexive, transitive and antisymmetric.

Reflexive means that Integer = Integer.

Transitive means that PositiveInteger < Integer < Float implies that PositiveInteger < Float.

Antisymmetric means that PositiveInteger < Float implies not(Float < PositiveInteger).
1.2 Axiom Type Lattice

The types in Axiom form a lattice based on the order relationship. It is a lattice because Axiom supports multiple inheritance.

References of interest include:

- Steve Awodey “Category Theory”
- “Introduction to Category Theory”
 www.youtube.com/watch?v=eu0rj5C20tg
 staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/addaxiom.pdf
- Dana Scott “Data Types as Lattices”
 www.cs.ox.ac.uk/files/3287/PRG05.pdf
- Roland Backhouse and Marcel Bijsterveld “Category Theory as Coherently Constructive Lattice Theory” November 1994

1.3 Terms to Understand

Suppose we wish to join Complex with Polynomial(Integer). What would elements of this combination look like?

The union of the two is a co-product of topological spaces.

The simple combination is not simply adding elements since

\[i + x^2 \]

is not a valid combination.

We need the algebraic co-product, known as the tensor product. We end up with a domain of Complex(Polynomial(Integer)).

```plaintext
-> a:Complex(POLY(INT))::%i+3*x
3x + %i
Type: Complex(Polynomial(Integer))
-> a::POLY(COMPLEX(INT))
```

3x + %i

Type: Polynomial(Complex(Integer))

1.4 Category Definition

A category has four parts. We need a set of objects, usually represented as dots. We need a set of arrows (maps, morphisms), from dot to dot. We need a way to compose arrows in an associative manner. We need an identity arrow from a dot to itself.

The set of all arrows from dot A to dot B is written as \(\text{Hom}_c(A, B) \) or, sometimes \(C(A, B) \). Notice that the set \(C(A, B) \) is disjoint from \(C(A, D) \) since each arrow has a unique domain and co-domain.

For the example of the category Set, the objects are sets and the arrows are functions between sets. For the category Ring, the objects are rings and the arrows are ring homomorphisms. Similarly for the category Group, the dots are groups and the arrows are group homomorphisms. For a fixed Ring \(R \), the category \(R\text{-Mod} \) has dots which are left \(R \)-modules and the arrows are \(R \)-module homomorphisms. We can also look at the category \(\text{Mod-}R \) which has dots of right \(R \)-modules and arrows which are \(R \)-module homomorphisms. For the category \(K \), if \(K \) is a field, the dots are \(K \)-vector spaces and the arrows are \(K \)-linear transformations.

In Axiom the dots are Types (such as Integer or Character) and the arrows are functions between them with signature:

\[f : \text{Integer} \rightarrow \text{Character} \]

Relations between categories is called a functor. A functor \(F \) takes things in category \(C \) into things in category \(D \). We need a function on objects which maps objects of \(C \) to objects of \(D \). We need a function on arrows which take arrows of \(C \) to arrows of \(D \).

The categories \(C \) and \(D \) well defined structure. They have a domain and co-domain of arrows. They have identity arrows. There is a rule of composition of arrows. These form commutative diagrams.

First we have to make sure the functor \(F \) maintains the domain and co-domain structure of \(C \). When we apply functor \(F \) to \(C \) we need to preserve all of the structure so \(F \) has to be defined on all of these properties. If we look at two dots in category \(C \) and a function \(f \) which is an arrow in \(C \)

\[f \\
A \longrightarrow B \]

then the functor \(F \) has to operate on everything so we get:

\[Ff \\
FA \longrightarrow FB \]

This means that if \(\text{dom} \) is the domain function in \(C \) then the functor \(F \) commutes with \(\text{dom} \). That is, applying \(F(\text{dom}(f)) = \text{dom}(F(f)) \).
Next we have to make sure the functor F maintains the identity arrow of C. From the above we know that $F(\text{id}(x)) = \text{id}(F(x))$.

Finally we have to make sure that the rule for composition of arrows in C is preserved. So the functor F has to make sure that what composes in C also composes with the same diagram in D.

Some standard functors are the identity functor 1_c which just maps C to C. We can form a functor which forgets properties so that the category Group could map to its underlying set. We can lift a category by forgetting properties, for example, lifting the category of Abelian Group C to Group D by “forgetting” the commutative property of C. Similarly the category Ring or the category Module can be mapped to the underlying Abelian Group. There is also the Constant functor which maps all of the dots in C to a single dot in D and all of the arrows in C to the identity arrow in D.

The category CommutativeRing R can be mapped to a Group with the functor GL_n which is the group of invertible NxN matrices with entries in the CommutativeRing R.

1.5 Monoids and Groups

Given a single element set and a set of arrows from that element to itself we know from the associative property that $(fg)h = f(gh)$ and from the identity property that $ef = f = fe$.

A 1-object category is a monoid. A 1-object category where all of the arrows are invertible is a group.

If we restrict the category so there is at most one arrow between any two objects in the set then we have an ordered set.

A functor F from category C to category D consists of

- object function takes objects of C to objects of D
- arrow function takes arrows of C to arrows of D

Structurally we have 3 things to preserve.

- domains and co-domains of arrows. In order to preserve structure the functor F has to commute with the domain and co-domain functions. That is, $F(\text{dom}(f)) = \text{dom}(F(f))$ and $F(\text{co} - \text{dom}(f)) = \text{co} - \text{dom}(F(f))$.
- identity arrows. The functor F must preserve identity so $F(\text{id}(x)) = \text{id}(F(x))$.
- composition properties of arrows. The functor F must take commuting diagrams to commuting diagrams.
Chapter 2

Axiom Implementation Details

2.1 Makefile

This book is actually a literate program\cite{2} and can contain executable source code. In particular, the Makefile for this book is part of the source of the book and is included below. Axiom uses the “noweb” literate programming system by Norman Ramsey\cite{6}.
Chapter 3

Writing Spad Code

3.1 The Description: label and the)describe command

The describe command will print out the comments associated with Axiom source code elements. For the category, domain, and package sections the text is taken from the Description: keyword.

This information is stored in a database and can be queried with

)lisp (getdatabase '|Integer| 'documentation)

for the Integer domain. However, this information has other uses in the system so it contains tags and control information. Most tags are removed by the describe function since the output is intended to be displayed in ASCII on the terminal.

The Description: keyword is in the comment block just after the abbreviation command. It is freeform and the paragraph will be reflowed automatically to allow for about 60 characters per line, adjusted for spaces. The Description: section should be written after the keyword in the “++” comments as in:

)abbrev package D03AGNT d03AgentsPackage
 ++ Description:
 ++ This package does some interesting stuff. We can write multiple
 ++ lines but they should all line up with the first character of
 ++ the Description keyword. Special \spad{terms} will be removed.
 ++
 ++ The above line will force a newline. So will ending a line with \br
 ++ \tab{5}This will allow primitive formatting\br
 ++ \tab{5}So you can align text\br
 ++ \tab{10}Start in column 11\tab{5}and skip 5 spaces\br
 ++ \tab{10}End in column 11\tab{7}and count out the needed spaces\br
 ++ \tab{5} note that the last line will not need the \br command
As the comment says, the Description should all be aligned under the “D” in Description. You can indent using `\tab{n}` which will insert n spaces. You can force a newline in two ways. Either include a blank line (with the “++” comments) or use the `\br` keyword.

Due to lousy parsing algorithms for comments there are various ways this can all go wrong. There should not be any macros between the Description: section and the beginning of the definition. This is wrong. It will cause the

\(\)describe package d03AgentsPackage

\()abbrev package D03AGNT d03AgentsPackage
++ Description:
++ This description does not work

\text{LEDF} \implies \text{List Expression DoubleFloat}

d03AgentsPackage(): \text{E} \equiv \text{I}

In the Description: section the `\tab{n}` function will be transformed into n spaces. If you end each line with a `\br` you can control alignment.

\(++ \) Description:
++ This is an example of a table alignment\br
++ \tab{5}First Item\tab{5} This will line up with the following line\br
++ \tab{5}Second Item\tab{4} This will line up with the following line\br
++ \tab{5}Third Item\tab{5} This will line up with the following line

If the main body of the category, domain, or package begins with properties rather than functions the Description will be incorrectly recorded. This is a known bug finding the end of the Description section. For instance, this

\(++ \) Description:
++ The category of Lie Algebras.
++ It is used by the domains of non-commutative algebra,
++ LiePolynomial and XPBWPolynomial.

\text{LieAlgebra}(R: \text{CommutativeRing}): \text{Category} \equiv \text{Module}(R) \text{ with}

\text{NullSquare}
++ \text{axiom}\{\text{NullSquare}\} \text{ means that } \text{axiom}\{(x,x) = 0\} \text{ holds.}

\text{JacobiIdentity}
++ \text{axiom}\{\text{JacobiIdentity}\} \text{ means that}
++ \text{axiom}\{(x,[y,z])+[y,[z,x]]+[z,[x,y]] = 0\} \text{ holds.}

\text{construct}: (\$,$) \rightarrow \$
++ \text{axiom}\{\text{construct}(x,y)\} \text{ returns the Lie bracket of } \text{axiom}\{x\}
++ \text{and } \text{axiom}\{y\}.

will give the output
3.1. THE DESCRIPTION: LABEL AND THE)DESCRIBE COMMAND

{JacobiIdentity} means that \[[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0 \] holds.

but reordering it to read:

++ Description:
++ The category of Lie Algebras.
++ It is used by the domains of non-commutative algebra,
++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with
 construct: ($,$) -> $
 \text{construct}(x,y)$ returns the Lie bracket of \text{x} and \text{y}.
NullSquare
 \text{NullSquare} means that \text{[x,x] = 0} holds.
JacobiIdentity
 \text{JacobiIdentity} means that
 \text{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

will give the output

The category of Lie Algebras. It is used by the domains of non-commutative algebra, LiePolynomial and XPBWPolynomial.

which is correct.

__ * __

PROJECT=bookvol2
TANGLE=/usr/local/bin/NOTANGLE
WEAVE=/usr/local/bin/NOWEAVE
LATEX=/usr/bin/latex
MAKEINDEX=/usr/bin/makeindex

all:
\${WEAVE} -t8 -delay \${PROJECT}.pamphlet >\${PROJECT}.tex
\${LATEX} \${PROJECT}.tex 2>/dev/null 1>/dev/null
\${MAKEINDEX} \${PROJECT}.idx
\${LATEX} \${PROJECT}.tex 2>/dev/null 1>/dev/null

Bibliography

 http://axiom.axiom-developer.org

 http://www.aldor.org

 http://www.eecs.harvard.edu/~nr/noweb

[7] Daly, Timothy, "The Axiom Literate Documentation"
 http://axiom.axiom-developer.org/axiom-website/documentation.html