The 30 Year Horizon

Volume 7.1: Axiom Hyperdoc Pages
Portions Copyright (c) 2005 Timothy Daly
The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry
Portions Copyright (c) 2004 Martin Dunstan
Portions Copyright (c) 2007 Alfredo Portes
Portions Copyright (c) 2007 Arthur Ralfs
Portions Copyright (c) 2005 Timothy Daly
Portions Copyright (c) 1991-2002,
The Numerical ALgorithms Group Ltd.
All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
S.J. Atkins Henry Baker Martin Baker
Stephen Balzac Yuri Baransky David R. Barton
Gerald Baumgartner Gilbert Baumslag Michael Becker
Nelson H. F. Beebe Jay Belanger David Bindel
Fred Blair Vladimir Bondarenko Mark Botch
Raoul Bourquin Alexandre Bouyer Karen Brama
Peter A. Broadbery Martin Brock Manuel Bronstein
Stephen Buchwald Florian Bunschuh Luanne Burns
William Burge Ralph Byers Quentin Carpent
Robert Caviness Bruce Char Ondrej Certik
Tzu-Yi Chen Chekkai Chin David V. Chudnovsky
Gregory V. Chudnovsky Mark Clements James Cloos
Jia Zhao Cong Josh Cohen Christophe Couil
Don Coppersmith George Corliss Robert Corless
Gary Cornell Meino Cramer Jeremy Du Croz
David Cyganski Nathaniel Daly Timothy Daly Sr.
Timothy Daly Jr. James H. Davenport David Day
James Demmel Didier Deshommes Michael Dewar
Jack Dongarra Jean Della Dora Gabriel Dos Reis
Claire DiCrescendo Sam Dooley Lionel Ducos
Iain Duff Lee Duhem Martin Dunstan
Brian Dupee Dominique Duval Robert Edwards
Heow Eide-Goodman Lars Erickson Richard Fateman
Bertfried Fauser Stuart Feldman John Fletcher
Brian Ford Albrecht Fortenbacher George Frances
Constantine Frangos Timothy Freeman Korriin Fu
Marc Gaetano Rudiger Gebauer Van de Geijn
Kathy Gerber Patricia Gianni Samantha Goldrich
Holger Gollan Teresa Gomez-Diaz Laureano Gonzalez-Vega
Stephen Gortler Johannes Grabmeier Matt Grayson
Klaus Ebbe Grue James Griesmer Vladimir Grinberg
Oswald Gschnitzer Ming Gu Jocelyn Guidry
Gaetan Hache Steve Hague Satoshi Hamaguchi
Sven Hammarling Mike Hansen Richard Hanson
Richard Harke Bill Hart Vilya Harvey
Martin Hassner Arthur S. Hathaway Dan Hatton
Waldek Hebisch Karl Hegbloom Ralf Hemmecke
Henderson Antoine Hersen Roger House
Gernot Hueber Pietro Iglio Alejandro Jakubi
Richard Jenks William Kahan Kai Kaminski
Grant Keady Wilfrid Kendall Tony Kennedy
Ted Kosan Paul Kosinski Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson George L. Legendre Franz Lehner
Frederic Lehobey Michel Levaud Howard Levy
Ren-Cang Li Rudi Loos Michael Lucks
Richard Luczak Cammi Maguire Francois Maltey
Alasdair McAndrew Bob McElrath Michael McGettrick
Edi Meier Ian Meikle David Mentre
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O’Connor Susan Pelzel
Kostas Oikonomou Humberto Ortiz-Zuazaga Summat Oemrawsingh
Bill Page David Parnas Julian A. Padget
Michel Petitot Didier Pinchon Ayalk Pinkus
Frederick H. Pitts Jose Alfredo Portes Gregorio Quintana-Orti
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Albert D. Rich Michael Richardson
Guilherme Reis Huan Ren Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoener Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sina Nick Simicich William Sit
Elena Smirnova Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Robert Sutor Moss E. Sweedler
Eugene Surowitz Max Tegmark T. Doug Telford
James Thatcher Balbir Thomas Mike Thomas
Dylan Thurston Steve Toleque Barry Trager
Temos T. Tsikas Gregory Vanuxem Bernhard Wall
Stephen Watt Jaap Weel Juergen Weiss
M. Weller Mark Wegman James Wen
Thorsten Werther Michael Wester R. Clint Whaley
John M. Wiley Berhard Will Clifton J. Williamson
Stephen Wilson Shmuel Winograd Robert Wisbauer
Sandra Wityak Waldemar Wiwianka Knut Wolf
Liu Xiaojun Clifford Yapp David Yun
Vadim Zhnytikov Richard Zippel Evelyn Zoernack
Bruno Zuercher Dan Zwillinger
2 Special hyperdoc pages

2.1 util.ht ... 103
Names of software and facilities 103
Special hooks to Unix .. 103
HyperDoc menu macros .. 104
Bitmaps and bitmap manipulation macros 105
HyperDoc button objects ... 106
Standard HyperDoc button configurations 106
HyperDoc graphics macros ... 106
TeX and LaTeX compatibility macros 107
Book and .ht page macros ... 109
Browse macros .. 112
Support for output and graph paste-ins 113
Hook for including a local menu item on the rootpage 113
Not Connected to Axiom .. 114
Do You Really Want to Exit? .. 114
Missing Page ... 114
Something is Wrong .. 115
Sorry! .. 115

3 Hyperdoc pages

3.1 rootpage.ht ... 117
Axiom HyperDoc Top Level ... 117
Axiom – The Scientific Computation System 119
System Commands ... 120
Axiom Examples .. 121
Axiom Reference .. 123
NAG Documentation ... 125
3.2 algebra.ht ... 131
Abstract Algebra .. 131
Number Theory .. 132
3.3 alist.ht ... 132
AssociationList .. 132
3.4 array1.ht ... 138
OneDimensionalArray .. 138
3.5 array2.ht ... 143
TwoDimensionalArray .. 143
3.6 basic.ht ... 155
Basic Commands .. 155
Calculus ... 156
3.7 bbtree.ht .. 157
BalancedBinaryTree ... 157
3.8 binary.ht .. 163
BinaryExpansion .. 163
3.9 bmcat.ht .. 168
Bit Map Catalog .. 168
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10 bop.ht</td>
<td>169</td>
</tr>
<tr>
<td>BasicOperator</td>
<td>169</td>
</tr>
<tr>
<td>3.11 bstree.ht</td>
<td>178</td>
</tr>
<tr>
<td>BinarySearchTree</td>
<td>178</td>
</tr>
<tr>
<td>3.12 card.ht</td>
<td>185</td>
</tr>
<tr>
<td>CardinalNumber</td>
<td>185</td>
</tr>
<tr>
<td>3.13 carten.ht</td>
<td>195</td>
</tr>
<tr>
<td>CartesianTensor</td>
<td>195</td>
</tr>
<tr>
<td>3.14 cclass.ht</td>
<td>221</td>
</tr>
<tr>
<td>CharacterClass</td>
<td>221</td>
</tr>
<tr>
<td>3.15 char.ht</td>
<td>228</td>
</tr>
<tr>
<td>Character</td>
<td>228</td>
</tr>
<tr>
<td>CliffordAlgebra</td>
<td>234</td>
</tr>
<tr>
<td>The Complex Numbers as a Clifford Algebra</td>
<td>235</td>
</tr>
<tr>
<td>The Quaternion Numbers as a Clifford Algebra</td>
<td>239</td>
</tr>
<tr>
<td>The Exterior Algebra on a Three Space</td>
<td>244</td>
</tr>
<tr>
<td>The Dirac Spin Algebra</td>
<td>250</td>
</tr>
<tr>
<td>3.16 complex.ht</td>
<td>254</td>
</tr>
<tr>
<td>Complex</td>
<td>254</td>
</tr>
<tr>
<td>3.17 contfrac.ht</td>
<td>262</td>
</tr>
<tr>
<td>ContinuedFraction</td>
<td>262</td>
</tr>
<tr>
<td>3.18 cphelp.ht</td>
<td>279</td>
</tr>
<tr>
<td>Control Panel Bits</td>
<td>279</td>
</tr>
<tr>
<td>3.19 cycles.ht</td>
<td>279</td>
</tr>
<tr>
<td>CycleIndicators</td>
<td>279</td>
</tr>
<tr>
<td>3.20 coverex.ht</td>
<td>304</td>
</tr>
<tr>
<td>Examples Of Axiom Commands</td>
<td>304</td>
</tr>
<tr>
<td>Differentiation</td>
<td>305</td>
</tr>
<tr>
<td>Integration</td>
<td>310</td>
</tr>
<tr>
<td>Laplace Transforms</td>
<td>317</td>
</tr>
<tr>
<td>Limits</td>
<td>320</td>
</tr>
<tr>
<td>Matrices</td>
<td>325</td>
</tr>
<tr>
<td>2-D Graphics</td>
<td>333</td>
</tr>
<tr>
<td>3-D Graphics</td>
<td>335</td>
</tr>
<tr>
<td>Series</td>
<td>337</td>
</tr>
<tr>
<td>Summations</td>
<td>342</td>
</tr>
<tr>
<td>3.21 decimal.ht</td>
<td>348</td>
</tr>
<tr>
<td>Decimal Expansion</td>
<td>348</td>
</tr>
<tr>
<td>3.22 derham.ht</td>
<td>352</td>
</tr>
<tr>
<td>DeRhamComplex</td>
<td>352</td>
</tr>
<tr>
<td>3.23 dfloat.ht</td>
<td>369</td>
</tr>
<tr>
<td>DoubleFloat</td>
<td>369</td>
</tr>
<tr>
<td>3.24 dmp.ht</td>
<td>375</td>
</tr>
<tr>
<td>DistributedMultivariatePoly</td>
<td>375</td>
</tr>
<tr>
<td>3.25 eq.ht</td>
<td>380</td>
</tr>
<tr>
<td>Equation</td>
<td>380</td>
</tr>
</tbody>
</table>
CONTENTS

3.26 eqtbl.htm 386
 EqTable 386

3.27 evalex.htm 389
 Example of Standard Evaluation 389
 Example of Standard Evaluation 390

3.28 exdiff.htm 391
 Computing Derivatives 391
 Derivatives of Functions of Several Variables 392
 Derivatives of Higher Order 393
 Multiple Derivatives I 394
 Multiple Derivatives II 396
 Derivatives of Functions Involving Formal Integrals 396
 Exit 398

3.29 exlap.htm 402
 Laplace transform with a single pole .. 402
 Laplace transform of a trigonometric function 402
 Laplace transform requiring a definite integration 403
 Laplace transform of exponentials 404
 Laplace transform of an exponential integral 405
 Laplace transform of special functions 406

3.30 exint.htm 406
 Integral of a Rational Function 406
 Integral of a Rational Function with a Real Parameter 409
 Integral of a Rational Function with a Complex Parameter 410
 Two Similar Integrands Producing Very Different Results 410
 An Integral Which Does Not Exist 412
 A Trigonometric Function of a Quadratic 413
 Integrating a Function with a Hidden Algebraic Relation 414
 Details for integrating a function with a Hidden Algebraic Relation 415
 An Integral Involving a Root of a Transcendental Function 416
 An Integral of a Non-elementary Function 417

3.31 exlimit.htm 417
 Computing Limits 417
 Limits of Functions with Parameters ... 418
 One-sided Limits 419
 Two-sided Limits 420
 Limits at Infinity 422
 Real Limits vs. Complex Limits 423
 Complex Limits at Infinity 424

3.32 exmatrix.htm 426
 Basic Arithmetic Operations on Matrices 426
 Constructing new Matrices 429
 Trace of a Matrix 433
 Determinant of a Matrix 433
 Inverse of a Matrix 434
 Rank of a Matrix 435
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33</td>
<td>expr.ht</td>
<td>436</td>
</tr>
<tr>
<td>3.33</td>
<td>Expression</td>
<td>436</td>
</tr>
<tr>
<td>3.34</td>
<td>explot2d.ht</td>
<td>449</td>
</tr>
<tr>
<td>3.34</td>
<td>Plotting Functions of One Variable</td>
<td>449</td>
</tr>
<tr>
<td>3.34</td>
<td>Plotting Parametric Curves</td>
<td>449</td>
</tr>
<tr>
<td>3.34</td>
<td>Plotting Using Polar Coordinates</td>
<td>450</td>
</tr>
<tr>
<td>3.34</td>
<td>Plotting Plane Algebraic Curves</td>
<td>451</td>
</tr>
<tr>
<td>3.35</td>
<td>explot3d.ht</td>
<td>451</td>
</tr>
<tr>
<td>3.35</td>
<td>Plotting Functions of Two Variables</td>
<td>451</td>
</tr>
<tr>
<td>3.35</td>
<td>Plotting Parametric Surfaces</td>
<td>452</td>
</tr>
<tr>
<td>3.35</td>
<td>Plotting Parametric Curves</td>
<td>453</td>
</tr>
<tr>
<td>3.36</td>
<td>expose.ht</td>
<td>454</td>
</tr>
<tr>
<td>3.36</td>
<td>Exposure</td>
<td>454</td>
</tr>
<tr>
<td>3.36</td>
<td>System Defined Exposure Groups</td>
<td>455</td>
</tr>
<tr>
<td>3.36</td>
<td>What is an Exposure Group?</td>
<td>456</td>
</tr>
<tr>
<td>3.36</td>
<td>Details on Exposure</td>
<td>457</td>
</tr>
<tr>
<td>3.37</td>
<td>exseries.ht</td>
<td>457</td>
</tr>
<tr>
<td>3.37</td>
<td>Converting Expressions to Series</td>
<td>457</td>
</tr>
<tr>
<td>3.37</td>
<td>Manipulating Power Series</td>
<td>459</td>
</tr>
<tr>
<td>3.37</td>
<td>Functions on Power Series</td>
<td>461</td>
</tr>
<tr>
<td>3.37</td>
<td>Substituting Numerical Values in Power Series</td>
<td>462</td>
</tr>
<tr>
<td>3.38</td>
<td>exsum.ht</td>
<td>464</td>
</tr>
<tr>
<td>3.38</td>
<td>Summing the Entries of a List I</td>
<td>464</td>
</tr>
<tr>
<td>3.38</td>
<td>Summing the Entries of a List II</td>
<td>465</td>
</tr>
<tr>
<td>3.38</td>
<td>Approximating e</td>
<td>466</td>
</tr>
<tr>
<td>3.38</td>
<td>Closed Form Summations</td>
<td>467</td>
</tr>
<tr>
<td>3.38</td>
<td>Sums of Cubes</td>
<td>468</td>
</tr>
<tr>
<td>3.38</td>
<td>Sums of Polynomials</td>
<td>470</td>
</tr>
<tr>
<td>3.38</td>
<td>Sums of General Functions</td>
<td>471</td>
</tr>
<tr>
<td>3.38</td>
<td>Infinite Sums</td>
<td>472</td>
</tr>
<tr>
<td>3.39</td>
<td>farray.ht</td>
<td>472</td>
</tr>
<tr>
<td>3.39</td>
<td>FlexibleArray</td>
<td>472</td>
</tr>
<tr>
<td>3.40</td>
<td>file.ht</td>
<td>480</td>
</tr>
<tr>
<td>3.40</td>
<td>File</td>
<td>480</td>
</tr>
<tr>
<td>3.41</td>
<td>float.ht</td>
<td>487</td>
</tr>
<tr>
<td>3.41</td>
<td>Float</td>
<td>487</td>
</tr>
<tr>
<td>3.41</td>
<td>Introduction to Float</td>
<td>488</td>
</tr>
<tr>
<td>3.41</td>
<td>Conversion Functions</td>
<td>490</td>
</tr>
<tr>
<td>3.41</td>
<td>Output Functions</td>
<td>498</td>
</tr>
<tr>
<td>3.41</td>
<td>An Example: Determinant of a Hilbert Matrix</td>
<td>502</td>
</tr>
<tr>
<td>3.42</td>
<td>fname.ht</td>
<td>507</td>
</tr>
<tr>
<td>3.42</td>
<td>FileName</td>
<td>507</td>
</tr>
<tr>
<td>3.43</td>
<td>fr.ht</td>
<td>516</td>
</tr>
<tr>
<td>3.43</td>
<td>Factored</td>
<td>516</td>
</tr>
<tr>
<td>3.43</td>
<td>Decomposing Factored Objects</td>
<td>518</td>
</tr>
<tr>
<td>3.43</td>
<td>Expanding Factored Objects</td>
<td>523</td>
</tr>
</tbody>
</table>
Arithmetic with Factored Objects .. 525
Creating New Factored Objects .. 532
Factored Objects with Variables ... 536
3.44 fr2.ht ... 539
FactoredFunctions2 .. 539
3.45 frac.ht ... 543
Fraction .. 543
3.46 fparfrac.ht ... 549
FullPartialFracExpansion .. 549
3.47 function.ht ... 560
Functions in Axiom .. 560
Rational Functions .. 561
Algebraic Functions ... 564
Elementary Functions ... 567
Simplification ... 568
3.48 gbf.ht .. 575
GroebnerFactorizationPkg ... 575
3.49 gloss.ht .. 579
Glossary ... 579
3.50 graphics.ht ... 601
Graphics ... 601
Graphics Examples ... 602
Assorted Graphics Examples ... 603
Three Dimensional Graphics .. 605
Functions of One Variable .. 610
Parametric Curves .. 612
Polar Coordinates ... 614
Implicit Curves .. 616
Lists of Points .. 619
Three Dimensional Graphing .. 628
Functions of Two Variables .. 629
Parametric Space Curves ... 631
Parametric Tube Plots .. 633
Parametric Surfaces .. 636
Building 3D Objects .. 638
Two Dimensional Graphics .. 643
Functions of One Variable .. 643
Parametric Curves .. 646
Polar Coordinates ... 648
Implicit Curves .. 650
Lists of Points .. 652
Stand-alone Viewport .. 662
3.51 grpthry.ht .. 664
Group Theory ... 664
Representations of A_6 A_6 ... 665
Representation Theory .. 684
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.52</td>
<td>gstbl.ht</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>GeneralSparseTable</td>
<td>687</td>
</tr>
<tr>
<td>3.53</td>
<td>heap.ht</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>Heap</td>
<td>690</td>
</tr>
<tr>
<td>3.54</td>
<td>hexadec.ht</td>
<td>692</td>
</tr>
<tr>
<td></td>
<td>HexadecimalExpansion</td>
<td>692</td>
</tr>
<tr>
<td>3.55</td>
<td>int.ht</td>
<td>696</td>
</tr>
<tr>
<td></td>
<td>Integer</td>
<td>696</td>
</tr>
<tr>
<td></td>
<td>Basic Functions</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>Primes and Factorization</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>Some Number Theoretic Functions</td>
<td>716</td>
</tr>
<tr>
<td>3.56</td>
<td>intheory.ht</td>
<td>722</td>
</tr>
<tr>
<td></td>
<td>IntegerNumberTheoryFunctions</td>
<td>722</td>
</tr>
<tr>
<td>3.57</td>
<td>kafile.ht</td>
<td>734</td>
</tr>
<tr>
<td></td>
<td>KeyedAccessFile</td>
<td>734</td>
</tr>
<tr>
<td>3.58</td>
<td>kernel.ht</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td>Kernel</td>
<td>743</td>
</tr>
<tr>
<td>3.59</td>
<td>lazm3pk.ht</td>
<td>752</td>
</tr>
<tr>
<td></td>
<td>LazardSetSolvingPackage</td>
<td>752</td>
</tr>
<tr>
<td>3.60</td>
<td>lexp.ht</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>LieExponentials</td>
<td>778</td>
</tr>
<tr>
<td>3.61</td>
<td>lextripk.ht</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>LexTriangularPackage</td>
<td>784</td>
</tr>
<tr>
<td>3.62</td>
<td>lib.ht</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>840</td>
</tr>
<tr>
<td>3.63</td>
<td>link.ht</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>The Axiom Link to NAG Software</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Use of the Link from HyperDoc</td>
<td>845</td>
</tr>
<tr>
<td></td>
<td>C02 Zeros of Polynomials</td>
<td>846</td>
</tr>
<tr>
<td></td>
<td>C05 Roots of One or More Transcendental Equations</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>C06 Summation of Series</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>D01 Quadrature</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>D02 Ordinary Differential Equations</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>D03 Partial Differential Equations</td>
<td>852</td>
</tr>
<tr>
<td></td>
<td>E01 Interpolation</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>E02 Curve and Surface Fitting</td>
<td>854</td>
</tr>
<tr>
<td></td>
<td>E04 Minimizing or Maximizing a Function</td>
<td>856</td>
</tr>
<tr>
<td></td>
<td>F01 Matrix Operations - Including Inversion</td>
<td>857</td>
</tr>
<tr>
<td></td>
<td>F02 Eigenvalues and Eigenvectors</td>
<td>858</td>
</tr>
<tr>
<td></td>
<td>F04 Simultaneous Linear Equations</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td>F07 Linear Equations (LAPACK)</td>
<td>862</td>
</tr>
<tr>
<td></td>
<td>S – Approximations of Special Functions</td>
<td>863</td>
</tr>
<tr>
<td>3.64</td>
<td>list.ht</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td>List</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td>Creating Lists</td>
<td>867</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Axiom Number Types</td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>Fraction</td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>Rational Number</td>
<td>1025</td>
<td></td>
</tr>
<tr>
<td>Integers</td>
<td>1029</td>
<td></td>
</tr>
<tr>
<td>Integer Examples</td>
<td>1034</td>
<td></td>
</tr>
<tr>
<td>Integer Example Proof</td>
<td>1036</td>
<td></td>
</tr>
<tr>
<td>Integer Problems</td>
<td>1037</td>
<td></td>
</tr>
<tr>
<td>Integer Problem Proof</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>Solution to Problem #1</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>Solution to Problem #2</td>
<td>1042</td>
<td></td>
</tr>
<tr>
<td>3.81 oct.ht</td>
<td>1044</td>
<td></td>
</tr>
<tr>
<td>Octonion</td>
<td>1044</td>
<td></td>
</tr>
<tr>
<td>3.82 odpol.ht</td>
<td>1053</td>
<td></td>
</tr>
<tr>
<td>OrderlyDifferentialPolynomial</td>
<td>1053</td>
<td></td>
</tr>
<tr>
<td>3.83 op.ht</td>
<td>1071</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>1071</td>
<td></td>
</tr>
<tr>
<td>3.84 ovar.ht</td>
<td>1082</td>
<td></td>
</tr>
<tr>
<td>OrderedVariableList</td>
<td>1082</td>
<td></td>
</tr>
<tr>
<td>3.85 perman.ht</td>
<td>1085</td>
<td></td>
</tr>
<tr>
<td>Permanent</td>
<td>1085</td>
<td></td>
</tr>
<tr>
<td>3.86 pfr.ht</td>
<td>1088</td>
<td></td>
</tr>
<tr>
<td>PartialFraction</td>
<td>1088</td>
<td></td>
</tr>
<tr>
<td>3.87 poly.ht</td>
<td>1095</td>
<td></td>
</tr>
<tr>
<td>Polynomials</td>
<td>1095</td>
<td></td>
</tr>
<tr>
<td>The Specific Polynomial Types</td>
<td>1096</td>
<td></td>
</tr>
<tr>
<td>Basic Operations On Polynomials</td>
<td>1097</td>
<td></td>
</tr>
<tr>
<td>Polynomial Evaluation and Substitution</td>
<td>1104</td>
<td></td>
</tr>
<tr>
<td>Greatest Common Divisors, Resultants, and Discriminants</td>
<td>1108</td>
<td></td>
</tr>
<tr>
<td>Roots of Polynomials</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>3.88 poly1.ht</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>Polynomial</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>3.89 quat.ht</td>
<td>1134</td>
<td></td>
</tr>
<tr>
<td>Quaternion</td>
<td>1134</td>
<td></td>
</tr>
<tr>
<td>3.90 radix.ht</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>RadixExpansion</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>3.91 reclos.ht</td>
<td>1149</td>
<td></td>
</tr>
<tr>
<td>RealClosure</td>
<td>1149</td>
<td></td>
</tr>
<tr>
<td>3.92 record.ht</td>
<td>1182</td>
<td></td>
</tr>
<tr>
<td>Domain Record(a:A,...,b:B)</td>
<td>1182</td>
<td></td>
</tr>
<tr>
<td>Domain Constructor Record</td>
<td>1183</td>
<td></td>
</tr>
<tr>
<td>3.93 regset.ht</td>
<td>1184</td>
<td></td>
</tr>
<tr>
<td>RegularTriangularSet</td>
<td>1184</td>
<td></td>
</tr>
<tr>
<td>3.94 roman.ht</td>
<td>1213</td>
<td></td>
</tr>
<tr>
<td>RomanNumeral</td>
<td>1213</td>
<td></td>
</tr>
<tr>
<td>3.95 seg.ht</td>
<td>1218</td>
<td></td>
</tr>
<tr>
<td>Segment</td>
<td>1218</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

3.96 segbind.ht ... 1224
 SegmentBinding .. 1224
3.97 set.ht .. 1227
 Set ... 1227
3.98 sint.ht .. 1237
 SingleInteger ... 1237
3.99 sqmatrix.ht ... 1243
 SquareMatrix ... 1243
3.100sregset.ht ... 1247
 SquareFreeRegularTriangularSet 1247
3.101stbl.ht .. 1259
 SparseTable .. 1259
3.102stream.ht .. 1263
 Stream .. 1263
3.103string.ht .. 1269
 String .. 1269
3.104strtbl.ht .. 1284
 StringTable .. 1284
3.105symbol.ht .. 1286
 Symbol ... 1286
3.106table.ht .. 1298
 Table ... 1298
3.107textfile.ht .. 1307
 TextFile .. 1307
3.108topics.ht ... 1313
 Axiom Topics .. 1313
 Solving Equations .. 1315
 Linear Algebra .. 1316
 Calculus .. 1318
3.109type.ht .. 1319
 Category Type .. 1319
3.110union.ht .. 1319
 Domain Union(a:A,...,b:B) ... 1319
 Domain Constructor Union ... 1320
 Domain Union(A,...,B) ... 1321
 Domain Constructor Union ... 1322
3.111uniseg.ht ... 1322
 UniversalSegment ... 1322
3.112up.ht ... 1327
 UnivariatePolynomial ... 1327
3.113oreup.ht .. 1345
 UnivariateSkewPolynomial .. 1345
3.114vector.ht .. 1351
 Vector .. 1351
3.115void.ht ... 1357
 Void .. 1357
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.116</td>
<td>wutset.ht</td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td>WuWenTsunTriangularSet</td>
<td></td>
</tr>
<tr>
<td>3.117</td>
<td>xmpexp.ht</td>
<td>1369</td>
</tr>
<tr>
<td></td>
<td>Some Examples of Domains and Packages</td>
<td></td>
</tr>
<tr>
<td>3.118</td>
<td>xpwmpoly.ht</td>
<td>1374</td>
</tr>
<tr>
<td></td>
<td>XPBWPolynomial</td>
<td></td>
</tr>
<tr>
<td>3.119</td>
<td>xpoly.ht</td>
<td>1395</td>
</tr>
<tr>
<td></td>
<td>XPPolynomial</td>
<td></td>
</tr>
<tr>
<td>3.120</td>
<td>xpr.ht</td>
<td>1402</td>
</tr>
<tr>
<td></td>
<td>XPolynomialRing</td>
<td></td>
</tr>
<tr>
<td>3.121</td>
<td>zdsolve.ht</td>
<td>1412</td>
</tr>
<tr>
<td></td>
<td>ZeroDimensionalSolvePackage</td>
<td></td>
</tr>
<tr>
<td>3.122</td>
<td>zlindep.ht</td>
<td>1463</td>
</tr>
<tr>
<td></td>
<td>IntegerLinearDependence</td>
<td></td>
</tr>
</tbody>
</table>

4 Users Guide Pages (ug.ht)

Users Guide .. 1469

5 Users Guide Chapter 0 (ug00.ht)

What’s New for May 2008 1473
New polynomial domains and algorithms 1474
Enhancements to HyperDoc and Graphics 1475
Enhancements to NAGLink 1476
Enhancements to the Lisp system 1476

6 Users Guide Chapter 1 (ug01.ht)

An Overview of Axiom 1483
Starting Up and Winding Down 1484
Clef ... 1487
Typographic Conventions 1488
The Axiom Language 1489
Arithmetic Expressions 1490
Previous Results 1492
Some Types .. 1494
Symbols, Variables, Assignments, and Declarations | 1497
Conversion .. 1503
Calling Functions 1505
Some Predefined Macros 1508
Long Lines ... 1509
Comments .. 1510
Graphics .. 1510
Numbers .. 1513
Data Structures 1532
Expanding to Higher Dimensions 1548
Writing Your Own Functions 1553
Polynomials .. 1566
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limits</td>
<td>1569</td>
</tr>
<tr>
<td>Series</td>
<td>1573</td>
</tr>
<tr>
<td>Derivatives</td>
<td>1580</td>
</tr>
<tr>
<td>Integration</td>
<td>1587</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>1595</td>
</tr>
<tr>
<td>Solution of Equations</td>
<td>1602</td>
</tr>
<tr>
<td>System Commands</td>
<td>1606</td>
</tr>
</tbody>
</table>

7 Users Guide Chapter 2 (ug02.ht)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Types and Modes</td>
<td>1613</td>
</tr>
<tr>
<td>The Basic Idea</td>
<td>1614</td>
</tr>
<tr>
<td>Domain Constructors</td>
<td>1619</td>
</tr>
<tr>
<td>Writing Types and Modes</td>
<td>1629</td>
</tr>
<tr>
<td>Types with No Arguments</td>
<td>1632</td>
</tr>
<tr>
<td>Types with One Argument</td>
<td>1633</td>
</tr>
<tr>
<td>Types with More Than One Argument</td>
<td>1636</td>
</tr>
<tr>
<td>Modes</td>
<td>1637</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>1638</td>
</tr>
<tr>
<td>Declarations</td>
<td>1641</td>
</tr>
<tr>
<td>Records</td>
<td>1647</td>
</tr>
<tr>
<td>Unions</td>
<td>1656</td>
</tr>
<tr>
<td>Unions Without Selectors</td>
<td>1657</td>
</tr>
<tr>
<td>Unions With Selectors</td>
<td>1664</td>
</tr>
<tr>
<td>The “Any” Domain</td>
<td>1668</td>
</tr>
<tr>
<td>Conversion</td>
<td>1671</td>
</tr>
<tr>
<td>Subdomains Again</td>
<td>1679</td>
</tr>
<tr>
<td>Package Calling and Target Types</td>
<td>1686</td>
</tr>
<tr>
<td>Resolving Types</td>
<td>1696</td>
</tr>
<tr>
<td>Exposing Domains and Packages</td>
<td>1699</td>
</tr>
<tr>
<td>Commands for Snooping</td>
<td>1703</td>
</tr>
</tbody>
</table>

8 Users Guide Chapter 3 (ug03.ht)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Hyperdoc</td>
<td>1707</td>
</tr>
<tr>
<td>Headings</td>
<td>1708</td>
</tr>
<tr>
<td>Key Definitions</td>
<td>1709</td>
</tr>
<tr>
<td>Scroll Bars</td>
<td>1710</td>
</tr>
<tr>
<td>Input Areas</td>
<td>1711</td>
</tr>
<tr>
<td>Radio Buttons and Toggles</td>
<td>1713</td>
</tr>
<tr>
<td>Search Strings</td>
<td>1714</td>
</tr>
<tr>
<td>Logical Searches</td>
<td>1715</td>
</tr>
<tr>
<td>Example Pages</td>
<td>1716</td>
</tr>
<tr>
<td>X Window Resources for Hyperdoc</td>
<td>1717</td>
</tr>
</tbody>
</table>
9 Users Guide Chapter 4 (ug04.ht)
Input Files and Output Styles
Input Files
The .axiom.input File
Common Features of Using Output Formats
Monospace 2D Mathematical Format
TeX Format
IBM Script Formula Format
FORTRAN Format
HTML Format
Immediate and Delayed Assignments
Blocks
if-then-else
Loops
Compiling vs. Interpreting Loops
return in Loops
break in Loops
break vs. => in Loop Bodies
More Examples of break
iterate in Loops
while Loops
for Loops
for i in n..m repeat
for i in n..m by s repeat
for i in n.. repeat
for x in l repeat
“Such that” Predicates
Parallel Iteration
Creating Lists and Streams with Iterators
An Example: Streams of Primes

10 Users Guide Chapter 6 (ug06.ht)
User-Defined Functions, Macros and Rules
Functions vs. Macros
Macros
Introduction to Functions
Declaring the Type of Functions
One-Line Functions
Declared vs. Undeclared Functions
Functions vs. Operations
Delayed Assignments vs. Functions with No Arguments
How Axiom Determines What Function to Use
Compiling vs. Interpreting
Piece-Wise Function Definitions
A Basic Example
Picking Up the Pieces
Predicates
1876

Caching Previously Computed Results
1880

Recurrence Relations
1883

Making Functions from Objects
1889

Functions Defined with Blocks
1898

Free and Local Variables
1906

Anonymous Functions
1921

Some Examples
1922

Declaring Anonymous Functions
1927

Example: A Database
1932

Example: A Famous Triangle
1939

Example: Testing for Palindromes
1944

Rules and Pattern Matching
1949

Graphics
1967

Two-Dimensional Graphics
1968

Plotting Two-Dimensional Functions of One Variable
1969

Plotting 2D Parametric Plane Curves
1972

Plotting Plane Algebraic Curves
1976

Two-Dimensional Options
1978

Color
1983

Palette
1985

Two-Dimensional Control-Panel
1988

Operations for Two-Dimensional Graphics
1991

Addendum: Building Two-Dimensional Graphs
1995

Addendum: Appending a Graph to a Viewport Window Containing a Graph
2015

Three-Dimensional Graphics
2018

Plotting Three-Dimensional Functions of Two Variables
2019

Plotting Three-Dimensional Parametric Space Curves
2022

Plotting 3D Parametric Surfaces
2025

Three-Dimensional Options
2028

The makeObject Command
2038

Building 3D Objects From Primitives
2041

Coordinate System Transformations
2053

Three-Dimensional Clipping
2061

Three-Dimensional Control-Panel
2062

Operations for Three-Dimensional Graphics
2068

Customization using .Xdefaults
2074

Advanced Problem Solving
2077

Numeric Functions
2079

Polynomial Factorization
2101

Integer and Rational Number Coefficients
2102

Finite Field Coefficients
2104
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Algebraic Extension Field Coefficients</td>
<td>2106</td>
</tr>
<tr>
<td>Factoring Rational Functions</td>
<td>2111</td>
</tr>
<tr>
<td>Manipulating Symbolic Roots of a Polynomial</td>
<td>2112</td>
</tr>
<tr>
<td>Using a Single Root of a Polynomial</td>
<td>2113</td>
</tr>
<tr>
<td>Using All Roots of a Polynomial</td>
<td>2117</td>
</tr>
<tr>
<td>Computation of Eigenvalues and Eigenvectors</td>
<td>2123</td>
</tr>
<tr>
<td>Solution of Linear and Polynomial Equations</td>
<td>2130</td>
</tr>
<tr>
<td>Solution of Systems of Linear Equations</td>
<td>2131</td>
</tr>
<tr>
<td>Solution of a Single Polynomial Equation</td>
<td>2135</td>
</tr>
<tr>
<td>Solution of Systems of Polynomial Equations</td>
<td>2140</td>
</tr>
<tr>
<td>Limits</td>
<td>2145</td>
</tr>
<tr>
<td>Laplace Transforms</td>
<td>2152</td>
</tr>
<tr>
<td>Integration</td>
<td>2157</td>
</tr>
<tr>
<td>Working with Power Series</td>
<td>2164</td>
</tr>
<tr>
<td>Creation of Power Series</td>
<td>2166</td>
</tr>
<tr>
<td>Coefficients of Power Series</td>
<td>2172</td>
</tr>
<tr>
<td>Power Series Arithmetic</td>
<td>2175</td>
</tr>
<tr>
<td>Functions on Power Series</td>
<td>2178</td>
</tr>
<tr>
<td>Converting to Power Series</td>
<td>2186</td>
</tr>
<tr>
<td>Power Series from Formulas</td>
<td>2194</td>
</tr>
<tr>
<td>Substituting Numerical Values in Power Series</td>
<td>2201</td>
</tr>
<tr>
<td>Example: Bernoulli Polynomials and Sums of Powers</td>
<td>2203</td>
</tr>
<tr>
<td>Solution of Differential Equations</td>
<td>2211</td>
</tr>
<tr>
<td>Closed-Form Solutions of Linear Differential Equations</td>
<td>2212</td>
</tr>
<tr>
<td>Closed-Form Solutions of Non-Linear DEs</td>
<td>2220</td>
</tr>
<tr>
<td>Power Series Solutions of Differential Equations</td>
<td>2230</td>
</tr>
<tr>
<td>Finite Fields</td>
<td>2235</td>
</tr>
<tr>
<td>Modular Arithmetic and Prime Fields</td>
<td>2237</td>
</tr>
<tr>
<td>Extensions of Finite Fields</td>
<td>2246</td>
</tr>
<tr>
<td>Irreducible Mod Polynomial Representations</td>
<td>2249</td>
</tr>
<tr>
<td>Cyclic Group Representations</td>
<td>2258</td>
</tr>
<tr>
<td>Normal Basis Representations</td>
<td>2264</td>
</tr>
<tr>
<td>Conversion Operations for Finite Fields</td>
<td>2272</td>
</tr>
<tr>
<td>Utility Operations for Finite Fields</td>
<td>2280</td>
</tr>
<tr>
<td>Primary Decomposition of Ideals</td>
<td>2297</td>
</tr>
<tr>
<td>Computation of Galois Groups</td>
<td>2306</td>
</tr>
<tr>
<td>Non-Associative Algebras and Genetic Laws</td>
<td>2325</td>
</tr>
</tbody>
</table>

13 Users Guide Chapter 10 (ug10.ht)

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Programming</td>
<td>2337</td>
</tr>
<tr>
<td>Drawing Ribbons Interactively</td>
<td>2338</td>
</tr>
<tr>
<td>A Ribbon Program</td>
<td>2344</td>
</tr>
<tr>
<td>Coloring and Positioning Ribbons</td>
<td>2347</td>
</tr>
<tr>
<td>Points, Lines, and Curves</td>
<td>2348</td>
</tr>
<tr>
<td>A Bouquet of Arrows</td>
<td>2355</td>
</tr>
<tr>
<td>Drawing Complex Vector Fields</td>
<td>2357</td>
</tr>
</tbody>
</table>
CONTENTS

Drawing Complex Functions .. 2361
Functions Producing Functions 2364
Automatic Newton Iteration Formulas 2366

14 Users Guide Chapter 11 (ug11.ht) 2375
Packages ... 2375
Names, Abbreviations, and File Structure 2377
Syntax ... 2379
Abstract Datatypes .. 2380
Capsules .. 2381
Input Files vs. Packages .. 2382
Compiling Packages .. 2383
Parameters ... 2387
Conditionals ... 2390
Testing ... 2392
How Packages Work .. 2399

15 Users Guide Chapter 12 (ug12.ht) 2403
Categories ... 2403
Definitions .. 2405
Exports ... 2407
Documentation ... 2408
Hierarchies .. 2410
Membership ... 2411
Defaults .. 2412
Axioms ... 2414
Correctness .. 2415
Attributes .. 2416
Parameters ... 2419
Conditionals .. 2420
Anonymous Categories ... 2422

16 Users Guide Chapter 13 (ug13.ht) 2425
Domains .. 2425
Domains vs. Packages ... 2426
Definitions .. 2427
Category Assertions .. 2429
A Demo ... 2431
Browse ... 2435
Representation ... 2436
Multiple Representations .. 2437
Add Domain .. 2438
Defaults .. 2439
Origins ... 2441
Short Forms .. 2442
Example 1: Clifford Algebra 2443
Example 2: Building A Query Facility 2445
A Little Query Language .. 2447
The Database Constructor ... 2450
Query Equations ... 2452
DataLists ... 2454
Index Cards .. 2455
Creating a Database .. 2455
Putting It All Together ... 2456
Example Queries ... 2457

17 Users Guide Chapter 14 (ug14.ht) 2471
Browse ... 2471
The Front Page: Searching the Library 2472
The Constructor Page ... 2474
Constructor Page Buttons ... 2476
Cross Reference ... 2478
Views Of Constructors .. 2482
Giving Parameters to Constructors 2484
Miscellaneous Features of Browse 2485
The Description Page for Operations 2486
Views of Operations ... 2487
Capitalization Convention ... 2490

18 Users Guide Chapter 15 (ug15.ht) 2493
What’s New in Axiom Version 2.0 2493
Important Things to Read First 2494
The NAG Library Link .. 2494
Interpreting NAG Documentation 2495
Using the Link ... 2498
Providing values for Argument Subprograms 2501
General Fortran-generation utilities in Axiom 2505
Some technical information 2530
Interactive Front-end and Language 2531
Library ... 2532
HyperDoc .. 2534
Documentation .. 2535

19 Users Guide Chapter 16 (ug16.ht) 2537
Axiom System Commands ... 2538
Introduction ... 2540
)abbreviation ... 2542
)boot ... 2544
)cd ... 2545
)close ... 2546
)clear ... 2547
)compile ... 2549
CONTENTS

HTXAdvPage1xPatch2A patch ... 2614
21.2 htxadvpage2.ht .. 2615
 Radio buttons .. 2615
21.3 htxadvpage3.ht .. 2618
 Macros .. 2618
21.4 htxadvpage4.ht .. 2619
 Patch and Paste .. 2619
 patch1 patch .. 2622
 Patch1 patch .. 2622
 Patch2 patch .. 2623
21.5 htxadvpage5.ht .. 2623
 Axiom paste-ins .. 2623
21.6 htxadvpage6.ht .. 2626
 Miscellaneous ... 2626
 HTXAdvPage6xPatch1 patch 2628
 HTXAdvPage6xPatch1A patch 2628
 HTXAdvPage6xPatch2 patch 2628
 HTXAdvPage6xPatch2A patch 2629
 HTXAdvPage6xPatch3 patch 2629
 HTXAdvPage6xPatch3A patch 2629
21.7 htxadtoppage.ht .. 2630
 Advanced features in Hyperdoc 2630
21.8 htxformatpage1.ht .. 2631
 Using the special characters 2631
 HTXFormatPage1xPatch1 patch 2632
 HTXFormatPage1xPatch2 patch 2632
21.9 htxformatpage2.ht .. 2633
 Formatting without commands 2633
 HTXFormatPage2xPatch1 patch 2634
 HTXFormatPage2xPatch2 patch 2635
 HTXFormatPage2xPatch2A patch 2635
 HTXFormatPage2xPatch3 patch 2636
 HTXFormatPage2xPatch3A patch 2636
 HTXFormatPage2xPatch4 patch 2637
 HTXFormatPage2xPatch4A patch 2637
21.10 htxformatpage3.ht ... 2637
 Using different fonts ... 2637
 HTXFormatPage3xPatch1 patch 2639
 HTXFormatPage3xPatch2 patch 2640
 HTXFormatPage3xPatch3 patch 2640
 HTXFormatPage3xPatch4 patch 2641
21.11 htxformatpage4.ht ... 2641
 Indentation .. 2641
 HTXFormatPage4xPatch1 patch 2644
 HTXFormatPage4xPatch1A patch 2644
 HTXFormatPage4xPatch2 patch 2644
21.12htxformatpage5.ht
Creating Lists and Tables 2648

21.13htxformatpage6
Boxes and Lines ... 2653

21.14htxformatpage7
Micro-Spacing ... 2655

21.15htxformatpage8
Bitmaps and Images ... 2660

21.16htxformattoppage.ht
Formatting in Hyperdoc 2662

21.17htxintropage1.ht
What Hyperdoc does .. 2663

21.18htxintropage2.ht
How Hyperdoc does it 2664

21.19htxintropage3.ht
A simple text page ... 2666

21.20htxintrotoppage.ht
First Steps .. 2668

21.21htxlinkpage1.ht
Linking to a named page 2669

21.22htxlinkpage2.ht ... 2672
CONTENTS

Standard Pages .. 2672
HTXLinkPage2xPatch1 patch 2674
HTXLinkPage2xPatch1A patch 2674
21.23htxlinkpage3.ht ... 2675
Active Axiom commands 2675
HTXLinkPage3xPatch1 patch 2678
HTXLinkPage3xPatch1A patch 2679
HTXLinkPage3xPatch2 patch 2679
HTXLinkPage3xPatch2A patch 2679
HTXLinkPage3xPatch3 patch 2680
HTXLinkPage3xPatch3A patch 2680
21.24htxlinkpage4.ht ... 2681
Linking to Lisp .. 2681
HTXLinkPage4xPatch1 patch 2685
HTXLinkPage4xPatch1A patch 2686
HTXLinkPage4xPatch2 patch 2686
HTXLinkPage4xPatch2A patch 2686
HTXLinkPage4xPatch3 patch 2687
HTXLinkPage4xPatch3A patch 2687
HTXLinkPage4xPatch4 patch 2688
HTXLinkPage4xPatch4A patch 2688
HTXLinkPage4xPatch5 patch 2688
HTXLinkPage4xPatch5A patch 2689
21.25htxlinkpage5.ht ... 2690
Linking to Unix .. 2690
HTXLinkPage5xPatch1 patch 2691
HTXLinkPage5xPatch1A patch 2692
HTXLinkPage5xPatch2 patch 2692
HTXLinkPage5xPatch2A patch 2692
21.26htxlinkpage6.ht ... 2693
How to use your pages with Hyperdoc 2693
HTXLinkPage6xPatch1 patch 2695
HTXLinkPage6xPatch1A patch 2697
HTXLinkPage6xPatch2 patch 2697
HTXLinkPage6xPatch2A patch 2698
21.27htxlinktoppage.ht ... 2698
Actions in Hyperdoc ... 2698
21.28htxtoppage.ht ... 2699
Extending Hyperdoc ... 2699
21.29htxtrypage.ht ... 2700
Try out Hyperdoc .. 2700
22 NAG Library Routines

22.1 nagaux.ht

- NAG On-line Documentation: summary: 2705
- NAG Documentation: keyword in context: 2744
- NAG Documentation: conversion: 2842

22.2 nagc.ht

- Zeros of Polynomials: 2845
- Roots of a complex polynomial equation: 2849
- Roots of a real polynomial equation: 2854
- Roots of One or More Transcendental Equations: 2860
- Zero of a continuous function in a given interval: 2864
- Solution of a system of nonlinear equations: 2868
- Solution of a system of nonlinear equations: 2872
- Checks the gradients of a set of non-linear functions: 2878
- Discrete Fourier transform of real or complex data values: 2881
- Discrete Fourier transform of m real data values: 2889
- Discrete Fourier transform of a Hermitian sequence: 2892
- Discrete Fourier transform of m complex data values: 2896
- Circular convolution or correlation of two real vectors: 2899
- Discrete Fourier transforms of m sequences: 2903
- Discrete Fourier transforms of m Hermitian sequences: 2908
- Discrete Fourier transforms of m complex sequences: 2912
- Discrete Fourier transform of bivariate complex data: 2916
- Summation of Series: 2921
- Complex conjugate of a sequence of n data values: 2923
- Complex conjugates of m Hermitian sequences: 2925
- Form real and imaginary parts of m Hermitian sequences: 2927

22.3 nagd.ht

- Quadrature: 2930
 - Approximation of the integral over a finite interval: 2943
 - Adaptive integration over a finite integral: 2949
 - Approximate integration with local singular points: 2955
 - Approximate integration over a (semi-)infinite interval: 2961
 - Approximate sine or cosine transform over finite interval: 2967
 - Adaptive integration of weighted function over an interval: 2973
 - Hilbert transform over finite interval: 2979
 - Approximate Sine or Cosine over $[a, \infty]$: 2985
 - Weights and abscissae for Gaussian quadrature formula: 2992
- Multidimensional integrals with finite limits: 2998
- Third-order finite-difference integration: 3003
- Monte Carlo integration over hyper-rectangular regions: 3006
- Ordinary Differential Equations: 3011
- First-order ODE over an interval with initial conditions: 3018
- First-order ODE with initial conditions and user function: 3026
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xxvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order ODE with variable-order, variable-step</td>
<td>3034</td>
</tr>
<tr>
<td>Stiff First-order ODE with variable order and step</td>
<td>3043</td>
</tr>
<tr>
<td>Two-point boundary-value ODE</td>
<td>3052</td>
</tr>
<tr>
<td>Two-point boundary value ODE with deferred correction</td>
<td>3059</td>
</tr>
<tr>
<td>Eigenvalue of regular singular 2nd-order Sturm-Liouville</td>
<td>3067</td>
</tr>
<tr>
<td>Two-point boundary-value ODE equation systems</td>
<td>3090</td>
</tr>
<tr>
<td>Partial differential equations</td>
<td>3104</td>
</tr>
<tr>
<td>Discrete elliptic PDE on rectangular region</td>
<td>3111</td>
</tr>
<tr>
<td>Discrete 2nd-order elliptic PDE on rectangular regions</td>
<td>3119</td>
</tr>
<tr>
<td>Helmholtz equation in 3 dimensions</td>
<td>3132</td>
</tr>
<tr>
<td>22.4 nage.ht (Partial differential equations)</td>
<td>3142</td>
</tr>
<tr>
<td>Interpolation</td>
<td>3142</td>
</tr>
<tr>
<td>Cubic spline interpolant</td>
<td>3147</td>
</tr>
<tr>
<td>Monotonicity-preserving piecewise cubic Hermite interpolant</td>
<td>3152</td>
</tr>
<tr>
<td>Piecewise cubic Hermite interpolant</td>
<td>3155</td>
</tr>
<tr>
<td>Piecewise cubic Hermite interpolant and 1st deriv</td>
<td>3158</td>
</tr>
<tr>
<td>Definite integral of piecewise cubic Hermite interpolant</td>
<td>3161</td>
</tr>
<tr>
<td>Bicubic spline interpolated surface</td>
<td>3163</td>
</tr>
<tr>
<td>Two-D surface interpolating a set of scattered data points</td>
<td>3170</td>
</tr>
<tr>
<td>Evaluate 2D interpolant function from E01SAF</td>
<td>3173</td>
</tr>
<tr>
<td>Generate 2D surface interpolating a scattered data points</td>
<td>3176</td>
</tr>
<tr>
<td>Evaluate 2D interpolating function from E01SEF</td>
<td>3182</td>
</tr>
<tr>
<td>Curve and Surface Fitting</td>
<td>3185</td>
</tr>
<tr>
<td>Least-squares polynomial approximations</td>
<td>3210</td>
</tr>
<tr>
<td>Evaluate polynomial from Chebyshev-series representation</td>
<td>3216</td>
</tr>
<tr>
<td>Constrained weighted least-squares polynomial</td>
<td>3220</td>
</tr>
<tr>
<td>Coefficients of polynomial derivative</td>
<td>3228</td>
</tr>
<tr>
<td>Find coefficients of indefinite integral of polynomial</td>
<td>3233</td>
</tr>
<tr>
<td>Evaluate polynomial in Chebyshev-series representation</td>
<td>3238</td>
</tr>
<tr>
<td>Weighted least-squares approx to data points</td>
<td>3243</td>
</tr>
<tr>
<td>Evaluates a cubic spline from its B-spline representation</td>
<td>3250</td>
</tr>
<tr>
<td>Evaluate cubic spline and 3 derivatives from B-spline</td>
<td>3254</td>
</tr>
<tr>
<td>Definite integral of cubic spline from B-spline</td>
<td>3259</td>
</tr>
<tr>
<td>Cubic spline approximation to an arbitrary set points</td>
<td>3263</td>
</tr>
<tr>
<td>Minimal, weighted least-squares bicubic spline fit</td>
<td>3272</td>
</tr>
<tr>
<td>Bicubic spline approximation to a set of data values</td>
<td>3281</td>
</tr>
<tr>
<td>Bicubic spline approximation to a set of scattered data</td>
<td>3292</td>
</tr>
<tr>
<td>Calculates values of a bicubic spline from B-spline</td>
<td>3304</td>
</tr>
<tr>
<td>Calculates values of a bicubic spline from B-spline</td>
<td>3308</td>
</tr>
<tr>
<td>Calculates l_1 solution to over-determined system equations</td>
<td>3312</td>
</tr>
<tr>
<td>Sorts two-dimensional data into rectangular panels</td>
<td>3318</td>
</tr>
<tr>
<td>Minimizing or Maximizing a Function</td>
<td>3322</td>
</tr>
<tr>
<td>Minimizes a nonlinear function of several variable</td>
<td>3347</td>
</tr>
<tr>
<td>Supply optional parameters to E04DGF from file</td>
<td>3362</td>
</tr>
<tr>
<td>Supply individual optional params to E04DGF</td>
<td>3365</td>
</tr>
<tr>
<td>Finding an unconstrained minimum of a sum of squares</td>
<td>3367</td>
</tr>
</tbody>
</table>
Finding an unconstrained minimum of a sum of squares 3373
Finding a minimum of a function 3380
Solving linear programming problems 3386
Solving linear or quadratic problems 3395
Minimize an arbitrary smooth constrained function 3415
Supply optional parameters to E04UCF from file 3466
Supply individual optional params to E04UCF 3469
Estimates of elements of the variance-covariance matrix 3472

22.5 nagf.ht .. 3478
Linear Algebra ... 3478
Matrix Factorization ... 3482
Factorizes a real sparse matrix ... 3485
Factorizes a real sparse matrix ... 3495
Incomplete Cholesky factorization ... 3501
Cholesky factor of a symmetric positive-definite matrix 3508
QR factorization of the real m by n matrix A 3513
B := QB or B := QT B .. 3518
First ncolq columns of the real m by m orthogonal matrix ... 3523
QR factorization of the complex m by n matrix A 3527
B := QB or B := QH B ... 3532
First ncolq columns of the complex m by m unitary matrix ... 3538
Eigenvalues and Eigenvectors ... 3543
Calculates all the eigenvalues of a real symmetric matrix 3549
Eigenvalues and eigenvectors of a real symmetric matrix 3551
Calculates all the eigenvalues of \(Ax = \lambda B x \) 3554
Eigenvalues and eigenvectors of \(Ax = \lambda B x \) 3557
Calculates all the eigenvalues of a real unsymmetric matrix 3561
Eigenvalues and eigenvectors of a real unsymmetric matrix 3563
Calculates all the eigenvalues of a complex matrix 3566
Eigenvalues and eigenvectors of a complex matrix 3569
Eigenvalues of a complex Hermitian matrix 3572
Eigenvalues/eigenvectors complex Hermitian matrix 3575
Eigenvalues and eigenvectors of a real symmetric matrix 3578
Eigenvalues of generalized eigenproblem \(Ax = \lambda B x \) 3582
Eigenvalues and eigenvectors of real sparse symmetric problem .. 3586
Singular value decomposition of a general real matrix 3600
Singular value decomposition of a general complex matrix 3608
Simultaneous Linear Equations ... 3615
Approximate solution of a set of complex linear equations 3621
Approximate solution of a set of real linear equations 3624
Real symmetric positive-definite linear equations 3627
Set of real linear equations with a single right-hand side 3630
Solution of a set of real sparse linear equations 3634
Real symmetric positive-definite tridiagonal linear equations .. 3637
Solution of a linear least-squares problem, \(Ax = b \) 3642
Sparse symmetric positive-definite system linear equations 3648
Contents

Solves a system of real sparse symmetric linear equations .. 3655
Solution of a system of real linear equations .. 3666
Solves sparse unsymmetric equations .. 3671
Linear Algebra Support Routines ... 3685
Linear Equations (LAPACK) ... 3718
Computes the LU factorization of a real m by n matrix .. 3719
Solves a real system of linear equations ... 3722
Factorization of a real symmetric positive-definite matrix ... 3726
Real symmetric positive-definite system of linear equations 3730
Sort vector of double precision numbers ... 3737
Ranks a vector of double precision numbers ... 3740
Ranks the rows of a matrix of double precision numbers .. 3742
Ranks the columns of a matrix of double precision numbers 3745
Rearranges a vector of double precision numbers ... 3748
Inverts a permutation .. 3751

22.6 nags.h .. 3754
Approximations of Special Functions .. 3754
Exponential function e^z, for complex z .. 3767
Returns the value of the exponential integral E(x) ... 3770
Returns the value of the cosine integral .. 3773
Returns the value of the sine integral .. 3776
Returns the value of the Gamma function ... 3779
Returns a value for the logarithm of the Gamma function ... 3782
Incomplete gamma functions P(a,x) and Q(a,x) ... 3786
Returns the value of the complementary error function .. 3789
Returns the value of the error function erfx ... 3793
Returns the value of the Bessel Function Y_0(x) ... 3795
Returns the value of the Bessel Function Y_1(x) ... 3799
Returns the value of the Bessel Function J_0(x) ... 3804
Returns the value of the Bessel Function J_1(x) ... 3807
Returns a value for the Airy function, Ai(x) .. 3811
Returns a value of the Airy function, Bi(x) ... 3816
Value of the derivative of the Airy function Ai(x) ... 3820
Value for the derivative of the Airy function Bi(x) ... 3824
Values for the Bessel functions Y_{\nu+n}(z) ... 3828
Values for the Bessel functions J_{\nu+n}(z) ... 3833
Value of the Airy function Ai(\nu) or derivative Ai'(\nu) ... 3838
Value of the Airy function Bi(\nu) or derivative Bi'(\nu) ... 3842
Returns a sequence of values for the Hankel functions ... 3846
Returns the value of the modified Bessel Function K_0(x) ... 3852
Returns the value of the modified Bessel Function K_1(x) ... 3855
Returns the value of the modified Bessel Function I_0(x) ... 3859
Returns a value for the modified Bessel Function I_1(x) ... 3863
Sequence of values for the modified Bessel K_{\nu+n}(z) ... 3866
Sequence of values for the modified Bessel I_{\nu+n} .. 3871
Returns a value for the Kelvin function ber x .. 3875
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns a value for the Kelvin function bei x</td>
</tr>
<tr>
<td>Returns a value for the Kelvin function ker x</td>
</tr>
<tr>
<td>Returns a value for the Kelvin function keix</td>
</tr>
<tr>
<td>Returns a value for the Fresnel Integral $S(x)$</td>
</tr>
<tr>
<td>Returns a value for the Fresnel Integral $C(x)$</td>
</tr>
<tr>
<td>Returns a value of an elementary integral</td>
</tr>
<tr>
<td>Value of the symmetrised elliptic integral of first kind</td>
</tr>
<tr>
<td>Value of the symmetrised elliptic integral of second kind</td>
</tr>
<tr>
<td>Value of the symmetrised elliptic integral of third kind</td>
</tr>
</tbody>
</table>

22.7 nagx.h

- Mathematical Constants 3916
- Machine Constants 3917
- Input/Output Utilities 3924
- Value of the current error message unit number 3926
- Value of the current advisory message unit number 3928
- Print a real matrix stored in a two-dimensional array 3931
- Print a complex matrix stored in a 2D array 3934
- Date and Time Utilities 3938
- Returns the current date and time 3940
- From seven-integer format time and date to character string 3941
- Compares two date/time character strings 3944
- Amount of processor time used 3947

23 NAG ASP Example Code

<table>
<thead>
<tr>
<th>23.1 aspex.h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp1 Example Code 3949</td>
</tr>
<tr>
<td>Asp10 Example Code 3949</td>
</tr>
<tr>
<td>Asp12 Example Code 3950</td>
</tr>
<tr>
<td>Asp19 Example Code 3950</td>
</tr>
<tr>
<td>Asp20 Example Code 3953</td>
</tr>
<tr>
<td>Asp24 Example Code 3953</td>
</tr>
<tr>
<td>Asp27 Example Code 3954</td>
</tr>
<tr>
<td>Asp28 Example Code 3954</td>
</tr>
<tr>
<td>Asp29 Example Code 3957</td>
</tr>
<tr>
<td>Asp30 Example Code 3958</td>
</tr>
<tr>
<td>Asp31 Example Code 3959</td>
</tr>
<tr>
<td>Asp33 Example Code 3959</td>
</tr>
<tr>
<td>Asp34 Example Code 3960</td>
</tr>
<tr>
<td>Asp35 Example Code 3960</td>
</tr>
<tr>
<td>Asp4 Example Code 3961</td>
</tr>
<tr>
<td>Asp41 Example Code 3961</td>
</tr>
<tr>
<td>Asp42 Example Code 3962</td>
</tr>
<tr>
<td>Asp49 Example Code 3963</td>
</tr>
<tr>
<td>Asp50 Example Code 3964</td>
</tr>
<tr>
<td>Asp55 Example Code 3965</td>
</tr>
<tr>
<td>Asp6 Example Code 3966</td>
</tr>
</tbody>
</table>
New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We’ve also added a fourth volume for developers. All of these changes represent an experiment in print-on-demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
Chapter 1

Release Notes

1.1 releasenotes.ht

What is new in Axiom
CHAPTER 1. RELEASE NOTES

⇒ “March 2012” (mar2012) 1.1 on page 17
⇒ “January 2012” (jan2012) 1.1 on page 19
⇒ “November 2011” (nov2011) 1.1 on page 22
⇒ “September 2011” (sept2011) 1.1 on page 25
⇒ “July 2011” (july2011) 1.1 on page 27
⇒ “May 2011” (may2011) 1.1 on page 29
⇒ “March 2011” (mar2011) 1.1 on page 32
⇒ “January 2011” (jan2011) 1.1 on page 34
⇒ “November 2010” (nov2010) 1.1 on page 36
⇒ “September 2010” (sept2010) 1.1 on page 38
⇒ “July 2010” (july2010) 1.1 on page 42
⇒ “May 2010” (may2010) 1.1 on page 45
⇒ “March 2010” (mar2010) 1.1 on page 49
⇒ “January 2010” (jan2010) 1.1 on page 52
⇒ “November 2009” (nov2009) 1.1 on page 55
⇒ “September 2009” (sept2009) 1.1 on page 57
⇒ “July 2009” (july2009) 1.1 on page 60
⇒ “May 2009” (may2009) 1.1 on page 62
⇒ “March 2009” (mar2009) 1.1 on page 67
⇒ “January 2009” (jan2009) 1.1 on page 73
⇒ “November 2008” (nov2008) 1.1 on page 78
⇒ “September 2008” (sept2008) 1.1 on page 80
⇒ “July 2008” (july2008) 1.1 on page 83
⇒ “May 2008” (may2008) 1.1 on page 87
⇒ “March 2008” (mar2008) 1.1 on page 88
⇒ “January 2008” (jan2008) 1.1 on page 91
⇒ “November 2007” (nov2007) 1.1 on page 97
⇒ “February 2005” (feb2005) 1.1 on page 101

—— releasenotes.ht ——
1.1. RELEASENOTES.HT

Online Information

Axiom information can be found online at
http://axiom.axiom-developer.org
http://savannah.nongnu.org/projects/axiom
http://sourceforge.net/projects/axiom
August 2014 Release Notes

This release moves Axiom to the latest GCL version. All unused prior versions were removed.

Most of the work involved in this release has involved CATS, working with Albert Rich to develop Axiom tests.

Noweb was removed. Axiom now uses its own literate tools.

The databases are no longer compressed.

Volume 13: Proving Axiom Correct was started

Makefile.pamphlet
VERSION = August 2014

This release moves Axiom to the latest GCL version. All unused prior versions were removed.

Most of the work involved in this release has involved CATS,
1.1. RELEASENOTES.HT

working with Albert Rich to develop Axiom tests.

Noweb was removed. Axiom now uses its own literate tools.

The databases are no longer compressed.

Volume 13: Proving Axiom Correct was started

Makefile.pamphlet

 \texttt{VERSION = August 2014}
 \texttt{TESTSET defaults to regresstests}
 fix missing dvipdfm
 remove noweb

book/

 new directory containing axiom-developer emails
 reduce and categorize emails for history
 create timeline of people joining/leaving

books/

 axiom.sty
 \texttt{document}
 remove all other sources
 add additional macros
 axbook.tgz
 \texttt{fix sinCosExpandRules}
 dvipdfm.def
 added
 tanglec.c
 \texttt{new C function to handle chunks}
 tangle.lisp
 \texttt{add fastxhtml extraction from bookvol11}
 extract (rename from document)
 \texttt{support new chunk syntax}

ps/

 \texttt{move .ps to .eps}
 \texttt{add new images}

books/Makefile

 handle bookheader.tex
 \texttt{fix broken sed regular expression}
 add bookvol13 (Proving Axiom Correct)

books/bookheader.tex

 \texttt{user underline, colored links}
 \texttt{standardize headers, table of contents}

books/bookvol10 (Jenks)

 \texttt{add condata for MAGCDOC}
 \texttt{add graphics, fix typos, add text}
books/bookvol1 (tutorial)
use bookheader.tex
fix typos

books/bookvol2 (users guide)
use bookheader.tex
add category theory chapter
remove noweb

books/bookvol3 (programmers guide)
use bookheader.tex
remove noweb

books/bookvol4 (developers guide)
use bookheader.tex
section on changing GCL versions
document makeHelpFiles
remove autoload files
remove noweb
add HACKPI section

books/bookvol5 (interpreter)
use bookheader.tex
fix GETL for GCL
add Attributes as Categories
add Comparable
add LeftOreRing
add U32Matrix support macros
add bc-matrix code
add support code for U8Vector
add support code for U32Vector
add support code for U8Matrix
add support code for U16Matrix
add U32VectorPolynomialOperations
expose FiniteFieldFactorization
expose MAGCDOC
expose MatrixManipulation
rename functionp to canFuncall?
incremental rewrite of br-con.lisp
merge ht-util.lisp

books/bookvol6 (commands)
use bookheader.tex

books/bookvol7 (hyperdoc)
apply Camm’s patches
remove bibliography
standardize the table of contents
update credits
use bookheader.tex

books/bookvol7.1 (hyperdoc pages)
 standardize the table of contents
 update What’s New Page
 update credits
 use bookheader.tex

books/bookvol8 (graphics)
 apply Camm’s patches
 convert bookvol8 from noweb to chunks
 remove crc test cases
 standardize the table of contents
 update credits
 use bookheader.tex
 remove noweb

books/bookvol8.1 (graphics gallery)
 add CRC standard test cases, section 2.3-2.9

books/bookvol9 (compiler)
 use bookheader.tex
 functionp -> canFuncall?

books/bookvol10 (algebra implementation)
 absorb src/algebra/Makefile
 use bookheader.tex

books/bookvol10.1 (algebra theory)
 add interval arithmetic
 add section on interpolation formulas
 use bookheader.tex

books/bookvol10.2 (categories)
 AGG bug fixed 40355
 CLAGG bug fixed 40021
 MONAD bug fix 40350, add 7236
 GRDSET bug fix 40346
 PTRANFN bug fixed 40357
 REAL bug fix 40345
 add Attributes as Categories
 add Comparable
 add LeftUreRing
 add MAGCDOC
 add enumerate to FINITE
 add matrix initializer function
 fix failing test cases
 fix help documentation and regression tests
 use bookheader.tex
 write help documentation for all categories
CHAPTER 1. RELEASE NOTES

FiniteSetAggregate subset? fixed
BinaryTreeCategory remove finiteAggregate, bug fix 7255

books/bookvol10.3 (domains)
 AFFSP bug fix 30230, 20495; introduce 60076
 BLAS1 bug fixed 40304
 CHAR bug fix 40022
 DFloat bug fix 20073, add 20570
 DFloat bug fixed 40019
 FPS bug fixed 40013
 INBFF bug fixed 20465, add 20571
 INTRVL bug fix 20480, 30143
 ITAYLOR bug fix 20542 pretend
 LIST bug fix 20063, add, add 20569
 MLIFT bug fix 20001, add 20568
 OPTPROB bug fix 40347
 RNUMP removed bug fix 30047
 SINT bug fix 20057 pretend
 SMTS bug fix 20383, 50005, add 20567
 SYMBOL bug fix 20056 pretend
add U16Matrix
add U16Vector
add U32Matrix
add U8Matrix
add U8Vector
add information to SingleInteger
SEXOF bug fix 20501
fix failing test cases
fix help documentation and regression tests
move EFULS EFUPXS from package to domain
update U32Vector domain
use bookheader.tex
write help documentation for all domains

books/bookvol10.4 (packages)
 ATTREG bug fix 40362
 ELTAB bug fix 40360
 FSPECF bug fix 7235, 40077
 GRAY bug fixed 20467
 MAPPAG1 bug fix 40351
 MSYSMDM bug fix 40359
 SOLVERAD bug fix 40043
 SREGSET bug fix 50001
add FiniteFieldFactorization
add MatrixManipulation, add Raoul Bourquin
add U32VectorPolynomialOperations
apply Waldek’s changes to imposeIc in PGCD
comment out bad code in GUESS
document htrigs function in TRMANIP
expand hyperbolic identities
1.1. RELEASENOTES.HT

bug fix "bad reduction" in multivariate poly gcd
bug fix ++X function example in gcd
bug fix OUT.spad warning (bug 329)
bug fix failing test cases
bug fix help documentation and regression tests
move EFULS EFUPXS from package to domain
use bookheader.tex
write help documentation
add reportInstantiations to API package

books/bookvol10.5 (numerics)
 add netlib cephes function covers
 use bookheader.tex

books/bookvol11 (browser)
 use bookheader.tex
 remove noweb

books/bookvol12 (crystal)
 remove noweb

books/bookvol13 (proving axiom correct)
 created

books/bookvolbib (bibliography)
 add references and abstracts
 add subsection Ore Rings
 add subsection Partial Fraction Decomposition
 add subsection Integration
 add subsection Expression Simplification
 add subsection Differential Equations
 add subsection Advanced Documentation
 add subsection Numerics
 add subsection Interval Arithmetic
 add subsection Proving Axiom Correct
 add subsection Category Theory
 add subsection Polynomial GCD
 add subsection Exponential Integral
 add subsection Special Functions
 add subsection Numerical Algorithms
 add subsection Solving Systems of Equations

buglist
 MLIFT fix 20001, add 20568
 AGG fixed 40355
 ATTREG fix 40362
 BLAS1 fixed 40304
 CHAR fix 40022
 CLAGG fixed 40021
 DFL0AT fix 20073, add 20570
CHAPTER 1. RELEASE NOTES

DFLOAT fixed 40019
ELTAB fix 40360
FPS fixed 40013
FSPECF fix 7235, 40077
GRAY fixed 20467
INBFF fixed 20465, add 20571
INTRVL fix 20480, 30143
ITAYLOR fix 20542 pretend
LIST fix 20063, add, add 20569
MAPPKG1 fix 40351
MONAD fix 40350, add 7236
MSYSCMD fix 40359
OPTPROB fix 40347
ORDSET fix 40346
PTRANFN fixed 40357
REAL fix 40345
SINT fix 20057 pretend
SMTS fix 20383, 50005, add 20567
SOLVERAD fix 40043
SREGSET fix 50001
SYMBOL fix 20056 pretend
fix bug 7072/19 D(0°z, z) closed
fix bug 7248: differentiation fix bug in D(1,z)
fix bug 7249: radicalSolve(z^7=1, z)
fix bug 7249: radicalSolve(z^7=1, z) update
fix bug 7251: integrate(1/(1+z^4), z=0..1) :: Complex Float
fix bug 7252: argument(-%i)
fix bug 7253: There are no library operations named 'when'
fix bug 7254: f=n-->sum(sum(1/i,i=1..j),j=1..n) complains
fix bug 7256: acot(-1) values differ
fix bug 7257: normalize(subst(asin(z),z=-1)) division by zero
fix bug 7258: acosh(0.0) invalid argument to acosh
fix bug 20501, SEXOF pretend, 30047 RNUMP
fix bug 30230, 20495; introduce 60076
fix bug 7236
fix bug 329, add todo 330
remove dead items
remove error message for deleted files
add 7142 exp'log(x) Cannot take first of an empty list update
add 7233: fill! operation from U8Vector does not show up
add 7242/7243
add 7244, 7245
add bug 7241, fix the integration routines
add bugs found in tests
add kamke4, kamke6 missing bug
add todo 335: add packages to)d op gcd
add 7232
wish 1011: sum(1/(k+a), k=1..n) by Gosper's method

Wikipedia
1.1. RELEASENOTES.HT

en.wikipedia.org/wiki/Axiom_(computer_algebra_system) update date
en.wikipedia.org/wiki/List_of_computer_algebra_systems update date

faq
 remove noweb
 fix mailing list links

readme
 add Edi Meier
 add Edi Meier
 add Jia Zhao Cong
 add Raoul Bourquin
 update credits

src/Makefile
 clean up src/algebra properly
 convert bookvol8 from noweb to chunks
 fix {OUT} bug
 handle special case files for bookvol11
 rename tangle.c to tanglec.c
 pamphlet extract src using chunk syntax
 pamphlet modified, noweb removed

src/algebra/Makefile
 add Comparable
 add FINITE-
 add LeftOreRing
 add MatrixManipulation
 add U16Matrix
 add U32Matrix
 add U32VectorPolynomialOperations
 add U32Matrix
 add fastxhtml extraction call
 add machinearithmetic.input
 compile FiniteFieldFactorization
 compile MAGCDOC
 fix failing test cases
 set up regression tests
 update graph info for OUT
 modified, noweb removed

src/algebra/libdb.text
 add Attributes as Categories

src/axiom-website/
 AxiomConference.pdf added
 axiom.sty
 CATS/
 charlwood.input added
 rich* added
kamke*.txt added
books/
 add 8.1, 10.5, bibliography
 add bookvol13
community/
 fix mailing list links
documentation.html
 add AxiomConference.pdf
 add Bottorff quote
 add Knuth quote, cleanup
 add Lamport quote
 add McNamara quote
 add Stroustrup quote
 add W.T. Gowers quote
download.html
 add binaries
 add texlive-fonts-extra
patches.html
 add patches
releasenotes.html
 update for August 2014

src/booklets
 Makefile cleanup

src/clef
 Makefile rename tangle to tanglec
 edible.c modified, noweb removed

src/doc
 export endpaper as pdf
 remove axiom.bib
 rename tangle to tanglec
 use books/axiom.sty
 remove noweb
 booklet.c fix mailing list, remove noweb

msgs/
 s2-us.msgs remove .as extension from compiler msg

src/etc
 Makefile remove noweb
 asq.c remove noweb

src/input/
 Makefile add input tests for
 charlwood, cherry, functioncode, machinarithmetic,
 pgcd, polygamma, rich*, romanpolynomials, rsa, segletes
 expetest, subset, tree, trigtests
 Makefile remove noweb
 add many tests
1.1. RELEASENOTES.HT

src/interp
Makefile
 remove noweb
 remove autoload of ht-util
 remove bc-matrix
bc-matrix.lisp removed
br-con.lisp move to bookvol5
debugsys cleanup
g-timer.lisp RNUMP removed
g-utillisp functionp -> canFuncall?
g-util.lisp remove functions
ht-util.lisp deleted, merged with bookvol5
i-coerce.lisp functionp -> canFuncall?
i-funsel.lisp remove functions
i-spec2.lisp. functionp -> canFuncall?
interp-proclaims.lisp functionp -> canFuncall?
regress.lisp improve diff output
sys-pkg.lisp RNUMP removed
temp.text deleted
util.lisp functionp -> canFuncall?
utillisp remove autoload of ht-util
util.lisp remove autoload trigger functions
util.lisp remove bc-matrix autoload triggers
util.lisp remove compression
vmlisp.lisp RNUMP removed

src/scripts
Makefile remove noweb
boxhead removed
boxtail removed
boxup removed
document -> books/extract
showdvi removed
tex/
 axiom.sty removed

src/share
Makefile remove noweb
algebra/compress removed
algebra/browse, category, dependents, interp, operations, users
 add Attributes as Categories
 add LeftOreRing
 enumerate to FINITE
 no compression
 updated
doc/
 hypertex/pages/util.ht deleted, unused

src/sman
CHAPTER 1. RELEASE NOTES

May 2012 Release Notes

The primary work of this release is developing the BLAS1 domain. This is a subtask of developing native BLAS and LAPACK support. These are all checked and tested against the original fortran code.

Makefile.pamphlet

VERSION = March 2012
add <<GCLOPTS-CUSTRELOC>> to all stanzas
1.1. RELEASENOTES.HT

- add ubuntu64 with 64 bit patch
- move to GCL Version gcl-2.6.8pre7

books/bookvol10.3
- change HASHEQ to SXHASH

books/bookvol10.4
- add Frederick H. Pitts to credits
- add LAPACK contributors

books/bookvol10.5
- BLAS1 daxpy dcopy ddot dnrm2 drot drotg dscal dswap dzasum dznrm2
- icamax idamax isamax izamax zaxpy
- add LAPACK reference code
- add missing lapack routines

books/bookvol15
- add Frederick H. Pitts to credits
- add LAPACK contributors
- fix parsing for 64 bit systems
- reset si::*system-directory* to the null string

books/bookvol17.1
- update What’s New Page

books/bookvolbib
- BLAS1 drotg references
- add paper references
- fix typo
- update references

books/bookvolbib.bib
- BLAS1 drotg references
- add LAPACK bibtex reference
- update references

books/ps/
- v71mar2012.eps added
- v71releasenotes.eps add release notes

faq
- add FAQ 53: Axiom won’t build on Fedora
- fix FAQ 22: How do I check out the latest source?

lsp/Makefile.pamphlet
- move to GCL Version gcl-2.6.8pre7

readme
- Frederick H. Pitts <fred.pitts@comcast.net>
- add LAPACK contributors
src/algebra/Makefile
 fix MYUP, etc

src/axiom-website/download.html
 add debian binary
 add ubuntu
 update download list
 update download table

src/axiom-website
 releasenotes.html

src/input/Makefile
 add cohen.input
 add example of spad code
 add simplify.input

src/input
 clements.input add example of spad code
 cohen.input Joel Cohen algebra example
 simplify.input added from sci.math.symbolic

src/interp
 buildom.lisp: change HASHEQ to SXHASH
 sys-pkg.lisp: remove HASHEQ

zips/
 gcl-2.6.8pre7.h.linux.defs.patch port to pre7
 gcl-2.6.8pre7.o.read.d.patch port to pre7
 gcl-2.6.8pre7.tgz lisp fixes from Camm Maquire
 gcl-2.6.8pre7.unixport.init_gcl.lsp.in.patch port to pre7
 gcl-2.6.8pre7.unixport.makefile.patch port patch to pre7
\end{verbatim}
\endscroll
\autobuttons
\end{page}
March 2012 Release Notes

A new volume, Volume 8.1, the Axiom Gallery shows examples of Axiom graphics. These are test cases being collected to show capabilities of the graphics subsystems.

One of the outstanding graphics bugs was 7217 which gave odd values for graphics labels. This was fixed by picking up Waldek’s patch for coercion to InputForm. This had the unfortunate side effect that a large number of Axiom’s 35,000 test cases needed to be updated.

A particularly interesting article on Literate Programming and Reproducible Research was published in the Journal of Statistical Software and was added to the documentation page. (http://www.jstatsoft.org/v46/i03/paper)

There are two new commands,)tangle and)regress.

A new function, getAncestors was added to the API domain.

The buglist was published and several bugs were added.

New references to Axiom were added to the bibliography, including Dav12, Jen79, Dav80
Several people contributed to this release, including James Davenport, Mark Clements, George Legendre, and Waldek Hebisch

bookvol5.pamphlet
 add)tangle and)regress commands

bookvol10.4.pamphlet
 add Mark Clements, George Legendre
 fix 7217 bugs

books/bookvol5
 add Mark Clements, George Legendre
 fix 7217 bugs

books/bookvol18.1
 A new volume, the Axiom Gallery, showing example graphics

books/bookvolbib
 add additional Axiom literature references

books/ps/
 add v81* for graphics gallery

readme
 add Mark Clements, George Legendre

src/algebra
 Makefile fix GUESS, clique1, and clique2 handling

src/axiom-website/
 add jstat article

src/input/
 add testpackage.input
 update pasta.input graphics test cases
 fix 7216 bugs

\end{verbatim}
\endscroll
\autobuttons
\end{page}
January 2012 Release Notes

January 2012 Release

The Jenks book was updated by adding appendix E, and the graphics images from the center of the book.

These people were added to the credits list:
Guilherme Reis, Michael Albaugh, Roger House to credits

Literate documentation was added to the book 9, the compiler
The axiomgraphs were created for the compile command and the parser.

The website was updated with several changes including a global rewrite of the color and fixes for broken links.

Treeshaking of the compiler and interpreter code continues.

bookvol0.pamphlet
 add Appendix E
 add graphics images from middle of book
bookvol10.4.pamphlet
 add Guilherme Reis, Michael Albaugh, Roger House

books/bookvol5
 localize function names
treeshake interpreter
 add Guilherme Reis, Michael Albaugh, Roger House

books/bookvol9
 add comment graphs
code cleanup
 localize function names
treeshake and document compiler

books/bookvolbib
 add additional Axiom literature references

books/ps/
 add v0root.eps, v0hyper.eps, v0page1.eps, v0page2.eps, v0page3.eps
 add v0page4.eps, v0page5.eps, v0page6.eps, v0page7.eps, v0page8.eps
 v9CommentRecording.eps comment recording chapter
 v9CommentSyntaxChecking.eps comment syntax chapter
 v9comdefine.eps document compiler
 v9compiler.eps document compiler

readme
 add Guilherme Reis, Michael Albaugh, Roger House

src/algebra
 Makefile fix autoload

src/axiom-website/
 global background color change to ECEA81
 axiom.png make background transparent
 books.html fix broken links
 litprog.html fix argument count
 litprog.html note HTML escape code flaw

/axiomgraph/
 axiomgraph.tex literate form of js
 index.html add graphs

/axiomgraph/js
 arbor.js add graphs
 axiomcode.js add graphs, parse tree, default compiler
 jquery-1.7.1.js add graphs

/axiomgraph/maps/
 algebra.json add graphs
1.1. RELEASENOTES.HT

comment.json update comment
add compile.json for the compile command
add compiler.json for the compiler
add dstruct.json for data structures
add funsel.json for function selection
nine.json for global compiler
parse.json for parser

/axiomgraph/style/
 axiomgraph.css change background
 axiomicon.png add icon

/hyperdoc
 change page background color

src/doc/
 axiom.sty fix comments

src/input/
 Makefile add i2e.input
 i2e.input demo InputForm to Expression(Integer)
 pasta.input graphics test cases

src/interp
 br-con.lisp localize function names, treeshake compiler
cattable.lisp treeshake compiler
 ht-util.lisp localize function names
 i-funsel.lisp treeshake compiler
 parsing.lisp localize function names, treeshake compiler
 patches.lisp localize function names
 util.lisp treeshake compiler
 vmlisp.lisp localize function names, treeshake compiler

src/scripts/tex/
 axiom.sty fix comments

20111130 tpd src/axiom-website/patches.html 20111130.04.tpd.patch
20111130 tpd src/axiom-website/patches.html 20111130 update patch frontier
20111130 tpd src/axiom-website/releasenotes.html
20111130 tpd books/ps/v71releasenotes.eps add release notes
20111130 tpd books/ps/v71nov2011.eps added
20111130 tpd books/bookvol7.1 update What’s New Page
20111130 tpd Makefile.pamphlet VERSION = November 2011
20111130 tpd Makefile VERSION = November 2011
November 2011 Release Notes

November 2011 Release

Treeshaking the interpreter and compiler continues and a few more files were merged and removed.

Several books and Makefiles were converted to use lisp tangle rather than noweb. This is part of the general process to remove noweb.

Global function rewrites continue, including removing GETREFV and makeprop.

Work was done to improve OpenMath support. The OpenMath semantics CDs were added and the OpenMath parser was enhanced.

More effort was put into literate work. In particular, an example of a literate program using HTML was created and presented at the Clojure/Conj conference.
books/Makefile
 removed noweb, move to lisp tangle
 fix missing index files on PDfs

books/tangle.lisp
 fix .input file algebra extraction

books/bookvol10.2
 missing/unused function cleanup
 remove makeprop
 remove noweb, move to lisp tangle

books/bookvol10.3
 remove GETREFV
 remove makeprop
 remove noweb, move to lisp tangle

books/bookvol10.4
 remove noweb, move to lisp tangle

books/bookvol10.5
 remove noweb, move to lisp tangle

books/bookvol14
 missing/unused function cleanup
 remove makeprop

books/bookvol15
 OpenMath support
 add OpenMath stubs
 missing/unused function cleanup
 remove makeprop
 remove noweb, move to lisp tangle
 treeshake interpreter

books/bookvol7.1
 fix documentation
 update What’s New Page

books/bookvol9
 missing/unused function cleanup
 remove makeprop
 treeshake and merge c-doc.lisp

books/bookvolbib
 Axiom OpenMath references
 add additional references
 add references
books/ps/
 v71releasenotes.eps add release notes
 v71sept2011.eps added

src/algebra/Makfile
 fix .input file algebra extraction
 remove noweb, move to lisp tangle

src/axiom-website/documentation.html
 add Alexander quote
 add Knuth quote
 add litprog.html
 add quote

src/axiom-website/download.html
 update to latest release

src/axiom-website/litprog.html
 added
 add quote
 literate program example update

src/interp/Makfile
 remove apply.lisp
 remove c-doc.lisp
 remove noweb, move to lisp tangle
 remove nruntime.lisp

src/interp
 apply.lisp removed, merged with bookvol9
 buildom.lisp remove GETREFV
 c-doc.lisp removed
 c-util.lisp missing/unused function cleanup
 category.lisp remove GETREFV
 functor.lisp missing/unused function cleanup, remove GETREFV
 g-util.lisp missing/unused function cleanup
 i-eval.lisp remove nruntime.lisp
 i-spec1.lisp treeshake interpreter
 i-spec2.lisp fix AN has sqrt: % -> %
 i-spec2.lisp remove makeprop
 nruncomp.lisp remove GETREFV, treeshake compiler
 nrungo.lisp remove nruntime.lisp, treeshake interpreter, remove GETREFV
 nruntime.lisp removed
 parsing.lisp remove makeprop
 sys-pkg.lisp missing/unused function cleanup, remove GETREFV, makeprop
 template.lisp remove GETREFV
 vmlisp.lisp missing/unused function cleanup, remove GETREFV, makeprop

zips
 add cds.tar.gz OpenMath support. add OpenMath CDs
September 2011 Release Notes

This release continues the task of treeshaking the compiler and interpreter. Nine files were merged and removed. In addition, several passes were made for code cleanup.

The Symbolic Ito Calculus package is being added, starting with the BasicStochasticDifferential and StochasticDifferential domains. More work remains to be done.

The GUESS package is being upgraded.

James Cloos and Wilfrid Kendall were added to the credits.

== “What’s New in Axiom” (releaseNotes) 1.1 on page 1
— releasenotes.ht —

This release continues the task of treeshaking the compiler and interpreter. Nine files were merged and removed. In addition, several passes were made for code cleanup.

The Symbolic Ito Calculus package is being added, starting with the BasicStochasticDifferential and StochasticDifferential domains. More work remains to be done.

The GUESS package is being upgraded.
James Cloos and Wilfrid Kendall were added to the credits.

books/bookvol10.3
 add BasicStochasticDifferential and StochasticDifferential
 remove pairp
 start upgrade of GUESS package

books/bookvol10.4
 remove packageTran

books/bookvol10.5
 add StochasticDifferential

books/bookvol15
 add BasicStochasticDifferential domain
 merge nocompile.lisp, as.lisp, nci.lisp
 treeshake interpreter
 remove pairp, nParseAndInterpretString, packageTran
 use qc(ad)r forms

books/bookvol17
 merge nocompile.lisp

books/bookvol17.1
 update What’s New Page

books/bookvol19
 remove pairp, isPackageFunction
 treeshake compiler
 use qc(ad)r forms

books/bookvolbib
 add Kendall Ken99a, Ken99b literature references to Axiom

books/ps/
 v103basicstochasticdifferential.ps added
 v103stochasticdifferential.ps added
 v71july2011.eps
 v71releasenotes.eps add release notes

src/algebra/Makefile
 BasicStochasticDifferential domain
 add StochasticDifferential
 remove upper GUESS package code

src/axiom-website/download.html add Gentoo notes by James Cloos
src/axiom-website/download.html add ubuntu

src/axiom-website/releasenotes.html
src/doc/axiom.sty
 fix defplist

src/input/Makefile
 document finite field bug
 respect the BUILD=fast variable value

src/input/
 fix broken tests in axiom, cmds, setcmd, unittest1, unittest2
 ffieldbug.input: added

src/interp/Makefile
 remove as.lisp, compiler.lisp, database.lisp, define.lisp, foam_1
 remove g-opt.lisp, nci.lisp, package.lisp, ax.lisp

\end(verbatim)
\endscroll
\autobuttons
\end{page}

July 2011 Release Notes

July 2011 Release

The prior release had a bug that caused it to remember the build location. This was a change introduced by the underlying lisp. This was fixed.

This release continues treeshaking the compiler. The modemap.lisp file has been merged and no longer exists.

This release continues to treeshake the interpreter. The axext_1.lisp file has been removed.

Makefile.pamphlet
 add BUILD=full / BUILD=fast switch

Book Volume 5 [Interpreter]
 treeshake interpreter

⇐ “What’s New in Axiom” (releaseNotes) 1.1 on page 1
 — releasenotes.ht —
July 2011 Release

The prior release had a bug that caused it to remember the build location. This was a change introduced by the underlying lisp. This was fixed.

This release continues treeshaking the compiler. The modemap.lisp file has been merged and no longer exists.

This release continues to treeshake the interpreter. The axext_1.lisp file has been removed.

Makefile.pamphlet
add BUILD=full / BUILD=fast switch

Book Volume 5 (Interpreter)
treeshake interpreter

Book Volume 9 (Compiler)
treeshake compiler

Book Volume 10.3 (Domains)
help and unit tests for RewriteRule

axiom.sty
add /refsdollar and /defsdollar for better cross references

src/interp/Makefile
add (si::reset-sys-paths) per Camm
remove axext_1 aldor support file
remove modemap.lisp
May 2011 Release Notes

This release involved more work treeshaking of the compiler and interpreter. Argument naming conventions were normalized to improve the documentation and clarity.

Time was spent proofreading the books and reducing or eliminating latex warnings. Missing index files were fixed and errors in the Jenks book were fixed.

The website has been updated to make Arthur Ralf’s book available from every page. The website is being rewritten to be IPv6 enabled.

Doug Telford was added to the credits.

Book Volume 0 (Jenks book)
proofread to chapter 1 (pdf page 86)
replace "operator over" by "operate over"
set textlength 400
port changes to Arthur Ralfs HTML version
CHAPTER 1. RELEASE NOTES

Book Volume 1 (Tutorial)
proofread and copyedit
set textlength 400
update HTML image

Book Volume 2
set textlength 400

Book Volume 3
set textlength 400

Book Volume 4
set textlength 400

Book Volume 5 (Interpreter)
add Doug Telford to credits
set textlength 400
treeshake interpreter

Book Volume 6
set textlength 400

Book Volume 7 (Hyperdoc)
set textlength 400

Book Volume 7.1 (Hyperdoc pages)
set textlength 400
update What’s New Page
ps/v71mar2011.eps
ps/v71releasenotes.eps add release notes

Book Volume 8
set textlength 400

Book Volume 9 (Compiler)
ormalize argument names to top level functions
treeshake compiler

Book Volume 10
set textlength 400

Book Volume 10.1
set textlength 400

Book Volume 10.2 (Categories)
set textlength 400

Book Volume 10.3 (Domains)
set textlength 400
1.1. RELEASENOTES.HT

Book Volume 10.4 (Packages)
 set textlength 400

Book Volume 10.5 (Numerics)
 set textlength 400

Book Volume 11
 set textlength 400

Book Volume 12
 set textlength 400

Bibliography
 add several references
 set textlength 400

readme
 add Doug Telford to credits

website
 set up IPv6 address range
 download.html add binaries
 bugreport.html add bug reporting instructions

 The website now has an online version of the Jenks book which is a
 link to Arthur Ralf’s HTML version. This has been updated with the
 proofreading changes for the latex version.

 *.html add online book link to Arthur Ralf’s HTML version
 hyperdoc/axbook/ps/h-root.png port changes
 hyperdoc/axbook/section-0.1.xhtml, section-0.6.xhtml, section-0.7.xhtml

Makefiles
 books/Makefile fix missing index
 books/Makefile set textlength 400

Testing
 Makefile add davis.input
 Makefile add erf.input
 Makefile bug report regression test
 davis.input
 erf.input add examples of erf integration
 telford.input bug report regression test

src/interp/
 define.lisp treeshake compiler
 parsing.lisp treeshake compiler
 vmlisp.lisp treeshake compiler
March 2011 Release Notes

This release involved more work treeshaking the compiler.

Book Volume 5 (Interpreter)
 - add trapNumericErrors
 - fixup seebook xrefs
 - move numericFailure code for plot3d
 - treeshake compiler

Book Volume 9 (Compiler)
add sebook changes
fix special declaration for lines in preparse1
fixup sebook xrefs

treeshake compiler

Book Volume 10.3 (Domains)
fix algebra ++ to --

Bibliography
add Davenport [Dav10], [DSTxx]
add Fateman [Fat05]

tangle.lisp
fix help file extraction

src/scripts/tex/axiom.sty
add \seebook

src/interp/
Makefile
preload bookvol9
g-util.lisp
treeshake compiler
parsing.lisp
treeshake compiler
util.lisp
treeshake compiler
vmlisp.lisp
move numericFailure code for plot3d
remove extra end{chunk}
treeshake compiler

\end{verbatim}
\endscroll
\autobuttons
\end{page}
January 2011 Release Notes

This release concentrated on treeshaking the compiler code into book volume 9. Due to the complexity of this task it will take several releases to complete.

Makefile
- automate making help files

books/bookvol4
- documented debugging technique

books/bookvol5
- document compiler related routines
- cleanup latex

books/bookvol6

books/bookvol7

“What’s New in Axiom” (releaseNotes) 1.1 on page 1
move to lisp tangle

books/bookvol7.1
move to lisp tangle
update What’s New page

books/bookvol9
 cleaning vmlisp
 merge and remove newaux.lisp
 merge and remove postprop.lisp
 move to lisp tangle
 treeshake compiler

books/bookvol10.3
 cleaning vmlisp

books/bookvol10.4
 fixup IntersectionDivisorPackage chunk

books/bookvol12
 add discussion of GTFL

books/bookvolbib
 [Loe09], [Mar07], [Wei03], [Wei06], [Flo63], [Pra73]

books/ps/v71nov2010.eps
update What’s New page

books/ps/v71releasenotes.eps
update What’s New page

src/Makefile
move to lisp tangle

src/axiom-website/download.html
add ubuntu

src/axiom-website/releasenotes.html
add release notes

src/input/Makefile
 clean up failing tests

src/input/
 *.input add \setlength{\textwidth}{400pt}
 fix overfull boxes
 clean up failing tests
 fix long lines
 series.input -- add series to polynomial example
 unit--i-funsel.input -- removed
November 2010 Release Notes

This release concentrated on treeshaking the compiler code into book volume 9. Due to the complexity of this task it will take several releases to complete.

Makefile
- automate making help files

books/bookvol4
- documented debugging technique

books/bookvol5
- document compiler related routines
 - cleanup latex

books/bookvol6

-- "What’s New in Axiom" (releaseNotes) 1.1 on page 1
 — releaseNotes.ht —

\begin{page}{nov2010}{November 2010 Release Notes}
\beginscroll

src/interp
- Makefile convert bookvol5 to lisp tangle
- Makefile merge and remove newaux.lisp
- Makefile move to lisp tangle
- Makefile remove postprop.lisp
- src/interp/br-con.lisp cleaning vmlisp
- src/interp/compiler.lisp treeshake compiler
- src/interp/newaux.lisp remove newaux.lisp
- src/interp/postprop.lisp merged with bookvol9, removed.
- src/interp/regress.lisp handle "ok" on --S
- src/interp/vmlisp.lisp cleaning

\end{verbatim}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
November 2010 Release

This release concentrated on treeshaking the compiler code into book volume 9. Due to the complexity of this task it will take several releases to complete.

Makefile
 automate making help files

books/bookvol4
 documented debugging technique

books/bookvol5
 document compiler related routines
 cleanup latex

books/bookvol6
 added section on research ideas

books/bookvol9
 treeshake compiler code
 document compiler code
 fix |special| bug
 merge and remove fnewmeta
 move meta code into bookvol9 from parsing.lisp

books/bookvolbib
 Chee Keng Yap [Yap00], Chudnovsky and Jenks [CJ86], Eric Weisstein [Wein],
 David and Gregory Chudnovsky [Chu89], Jenks, [Jen69], Kaufmann [KMJ00],
 Linger [LMW79], Wester [Wes99]

src/algebra/Makefile automate making input files

src/doc
 axiom.sty collect all script commands in one place
 axiom.sty consolidate latex macros

src/input
 setcmd.input clean up broken tests

src/interp
 Makefile merge and remove fnewmeta
 apply, br-con, define, info, category, modemap, postprop
 fix |special| bug
 vmlisp fix |special| bug

 compiler, define, fnewmeta, g-boot, interp-proclaims, iterator, modemap,
 parsing, postprop vmlisp treeshake compiler

 fnewmeta.lisp removed
\end{verbatim}
September 2010 Release Notes

September 2010 Release

This release concentrated on treeshaking the compiler code into book volume 9. Due to the complexity of this task it will take several releases to complete.

Additional global changes included collecting all of the Axiom-related latex macros into axiom.sty and removing references to Aldor.

Makefile
 always run help extractions in parallel
 build src/input quietly

books/bookvol0
 remove references to aldor

books/bookvol11
September 2010 Release

This release concentrated on treeshaking the compiler code into book volume 9. Due to the complexity of this task it will take several releases to complete.

Additional global changes included collecting all of the Axiom-related latex macros into axiom.sty and removing references to Aldor.

Makefile
always run help extractions in parallel
build src/input quietly
books/bookvol10
remove references to aldor
books/bookvol11
remove references to aldor
books/bookvol15
expose StreamTensor, U32Vector, U32VectorPolynomialOperations
mark pure common lisp routines
merge pprop, varini
move latex macros to axiom.sty
remove POLYVEC
remove compile, duplicated in vol9
remove memq
remove references to aldor
treeshake
remove $useNewParser
books/bookvol7.1
move latex macros to axiom.sty
remove references to aldor
rewrite \pagehead to \pagetitle
books/bookvol19
cross-reference functions and variables
move latex macros to axiom.sty
remove memq
treeshake the compiler code
remove $useNewParser
books/bookvol10
CHAPTER 1. RELEASE NOTES

- move latex macros to axiom.sty
- move GOPT0 from bookvol10.3

books/bookvol10.1
- move latex macros to axiom.sty

books/bookvol10.2
- move latex macros to axiom.sty

books/bookvol10.3
- add U32Vector, move GOPT0 from bookvol10.4
- move latex macros to axiom.sty

books/bookvol10.4
- add StreamTensor, U32VectorPolynomialOperations
- fix ScriptTensor regression test
- move latex macros to axiom.sty
- remove POLYVEC
- update Chinese Remainder documentation

books/bookvol10.5
- move latex macros to axiom.sty

books/bookvolbib
- Parnas & Madey [PM95], Parnas & Jin [PJ10], GCL92, AS64, NIST10, RF94,
 Hamdy [Ham04], Steele [Ste90], Tim Lahey’s Sage Integration Test Suite

books/ps/
- v103guessoptionfunctions0, v103u32vector, v104streamtensor,
 v104u32vectorpolynomialoperations, v104u32vectorpolynomialoperations

src/algebra
- Makefile help and test for StreamTensor
- Makefile help and test for U32Vector
- Makefile remove references to aldor
- Makefile test and help for POLYVEC
- Makefile remove POLYVEC
- Makefile add help and test for new algebra
- Makefile handle case-insensitive MAC filesystem
- Makefile remove new algebra scaffolding code

src/doc
- axiom.sty collect all script commands in one place
- axiom.sty consolidate latex macros

src/input
- Makefile add guess.input, manuel.input, risch.input
- guess.input test examples of the GUESS package
- kamke3.input clean up broken tests
- manuel.input add Manuel’s integral to test suite
1.1. RELEASENOTES.HT

richlog300-391.input clean up broken tests
richtrig800-899.input clean up broken tests
risch.input illustrate the Risch algorithm
setcmd.input clean up broken tests
test.input clean up broken tests

src/interp
 Makefile merge varini
 Makefile remove nspadaux, mark, pspad1, pspad2, ptrop, wi1, wi2
 *.lisp remove memq
 tree shake compiler -- br-con, cattable, compiler
 remove nspadaux.lisp, mark.lisp, pspad1.lisp, pspad2.lisp,
 remove ptrop.lisp, wi1.lisp, wi2.lisp
 add HTMLFormat code i-output.lisp, vmlisp.lisp

src/scripts/tex
 axiom.sty collect all script commands
 axiom.sty consolidate latex macros

src/axiom-website/
 documentation.html add Knuth quote per W. Sit
 download.html add debian, fedora, mandriva, opensuse, slackware, vector
 download.html update ubuntu yum advice

\end{verbatim}
\endscroll
\autobuttons
\end{page}
July 2010 Release Notes

This release concentrated on the work of Albert Rich and his Rubi pattern matching machinery. All of his integrals from his test suite were converted to a regression test suite. This will form a baseline for the pattern work in future releases. David Parnas has a table-based method of specifying programs. Axiom is trying to synthesize this work with the pattern match work to create pattern specifications using tables. Martin Baker added HTML output to the system. Waldek Hebisch implemented the DoubleFloat representation routines. Martin Rubey implemented Dirichlet.

The symbolic version of the fresnel integrals was added as well as a numeric implementation of the fresnelC and fresnelS functions. The output of these numeric functions were validated against Pearcy’s tables, with the comparison as part of the regression tests. Further work on numeric approximation is ongoing and expected in the next release.

These people were added to the credits list:

Albert D. Rich, David Parnas, Martin Baker
1.1. RELEASENOTES.HT

readme
 update credits list

Makefile
 add Mandriva
 fix environment variables
 segment test set choice from command line

books/axbook.tgz
 rewrite section 8.3.2 for current output

books/bookvol10
 rewrite section 8.3.2 for current output

books/bookvol10.2
 add fresnelS, fresnelC to LFCAT
 add test and help files for all categories

books/bookvol10.3
 add CDFMAT ComplexDoubleFloatMatrix
 add CDFVEC ComplexDoubleFloatVector
 add DIR Dirichlet
 add DFMAT DoubleFloatMatrix
 add DFVEC DoubleFloatVector
 add HTMLFORM HTMLFormat
 add fresnelS, fresnelC to EXPR

books/bookvol10.4
 add EXP3D Export3D
 add GDRAW GnuDraw
 add fresnelC, fresnelS numeric computation to DFSFUN
 add fresnelS, fresnelC symbolics to LF, COMMONOP, LIMITPS

books/bookvol10.5
 start of numeric analysis of BLAS/LAPACK
 tighten array type declarations in BLAS
 use simple-array, not simple-vector type in BLAS

books/bookvol14
 document the Makefile build process

books/bookvol5
 change)version to include *build-version* info
 add macros to support algebra
 add Albert D. Rich, David Parnas, Martin Baker to credits

books/bookvol6
 fix deleted variable from axiom script
 remove AXIOMXLROOT reference
books/bookvol7.1
document HTMLFormat

books/bookvol8
add 3D graphic file format table

books/bookvolbib
Adams [AL94], Brunelli [Bru99], Burcin [ES10], Dewar [Dew94], Golub [GL89],
Higham [Hig92], Householder [Hou81], Jenks [JT18], [JT18a], [JT18b], [JWS87],
Lecerf [Le96], Losch [Los60], Luke [Luk169], [Luk269], Pearcey [Pea56],
Press [PTVF95], Taivalsaari [Tai96]

src/algebra/Makefile
add help and test for new algebra
handle case-insensitive MAC filesystem
remove new algebra scaffolding code

src/doc/Makefile
cleanly latex pure latex files

src/input/Makefile add TESTSET=notests
add derivefail, exampleagcode, hyperell, paffexample,
rule-based algebraic integration, rule-based rational integration,
rule-based exponential integration, rule-based hyper integration,
rule-based inverse hyperbolic integration, rule-based log integration,
rule-based inverse trig integration, rule-based trig integration

zips
remove aldor.20070901.tgz

src/input
derivefail, examplegcode, hyperell, monitortest, paffexample,
richalgebraic000-099, richalgebraic100-199, richalgebraic200-299,
richalgebraic300-399, richalgebraic400-461, richerror000-078,
richexponential, richhyper000-099, richhyper100-199, richhyper100-199,
richhyper1000-1098, richhyper200-299, richhyper300-399,
richhyper400-499, richhyper500-599, richhyper600-699, richhyper700-799,
richhyper800-899, richhyper900-999, richintfunc000-032,
richinvhyper000-099, richinvhyper100-199, richinvhyper200-296,
richinvtrig000-092, richlog000-099, richlog100-199, richlog200-299,
richlog300-391, richrational.input, richspecfunc000-022,
richtrig000-099, richtrig100-199, richtrig200-299, richtrig300-399,
richtrig400-499, richtrig500-599, richtrig600-699, richtrig700-799,
richtrig800-899, richtrig900-920

src/interp
i-output.lisp, vmlisp.lisp HTMLFormat support code

src/share/algebra/
browse, category, compress, interp, operation, users daase updated
May 2010 Release Notes

This release concentrated on adding new algebra.
A new package was added for factoring over finite fields.
A new volume Axiom Numerics was added, including BLAS and LAPACK in lisp.
A new volume Axiom Bibliography was added for literature citations.
GCL was upgraded, thanks to Camm Maquire.

These people were added to the credits list:

Nelson H. F. Beebe, Gaetan Hache, Bill Hart, Kaj Laurson,
Patrice Naudin, Claude Quitte, Steve Toleque

readme
update credits list
These people were added to the credits list:

Nelson H. F. Beebe, Gaetan Hache, Bill Hart, Kaj Laurson, Patrice Naudin, Claude Quitte, Steve Toleque

readme
update credits list

Makefile
GCLVERSION gcl-2.6.8pre4 change
clean books from src/algebra
merge all fedoraN stanzas into fedora

books/Makefile
add Axiom Bibliography book
add bookvol10.5 add Axiom Algebra Numerics

books/bookvol14 Axiom Developers Guide
document how to make graphs in algebra books
document process to add new algebra
document steps for adding algebra

books/bookvol15 Axiom Interpreter
add Naudin, Laurson, Hache to credits
change .spad.pamphlet to just .pamphlet
Add new algebra to exposure list
fix)describe to accept abbreviations

books/bookvol7.1 Axiom Hyperdoc Pages
add mar2010 what’s new page

books/bookvol10.2 Axiom Categories
add AFSPCAT AffineSpaceCategory
add BLMETCT BlowUpMethodCategory
add DIVCAT DivisorCategory
add DSTRCAT DesingTreeCategory
add INFCLCT InfinitelyClosePointCategory
add LOCPOWC LocalPowerSeriesCategory
add PACEXTC PseudoAlgebraicClosureGfAlgExtOfRationalNumberCategory
add PACFFC PseudoAlgebraicClosureGfFiniteFieldCategory
add PACPERC PseudoAlgebraicClosureGfPerfectFieldCategory
add PACRATC PseudoAlgebraicClosureGfRationalNumberCategory
add PLACESC PlacesCategory
add PRSPCAT ProjectiveSpaceCategory
add SETCATD SetCategoryWithDegree

books/bookvol10.3 Axiom Domains
add AFFPL AffinePlane
add AFFPLPS AffinePlaneOverPseudoAlgebraicClosureGfFiniteField
1.1. RELEASENOTES.HT

add AFFSP AffineSpace
add BLHN BlowUpWithHamburgerNoether
add BLQT BlowUpWithQuadTrans
add DIV Divisor
add DSTREE DesingTree
add ICP InfClPt
add INFCLSPS InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField
add INFCLSPT InfinitlyClosePoint
add NSDPS NeitherSparseOrDensePowerSeries
add PACEXT PseudoAlgebraicClosureOfAlgExtOfRationalNumber
add PACOFF PseudoAlgebraicClosureOfFiniteField
add PACRAT PseudoAlgebraicClosureOfRationalNumber
add PLACES Places
add PLACESPS PlacesOverPseudoAlgebraicClosureOfFiniteField
add PLCS Plcs
add PROJPL ProjectivePlane
add PROJPLPS ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField
add PROJSP ProjectiveSpace
add UTSZ UnivariateTaylorSeriesCZero
document and test Interval

books/bookvol10.4 Axiom Packages
add AFALGGRO AffineAlgebraicSetComputeWithGroebnerBasis
add AFALGRES AffineAlgebraicSetComputeWithResultant
add BLUPPACK BlowUpPackage
add DTP DesingTreePackage
add FACTEXT FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber
add FACTRN FactorisationOverPseudoAlgebraicClosureOfRationalNumber
add FFFACTSE FiniteFieldFactorizationWithSizeParseBySideEffect
add FFSQFR FiniteFieldSquareFreeDecomposition
add GPAFF GeneralPackageForAlgebraicFunctionField
add INTDIVP IntersectionDivisorPackage
add INTERGB InterfaceGroebnerPackage
add INTFRSP InterpolateFormsPackage
add LISYSER LinearSystemFromPowerSeriesPackage
add LOP LinesOpPack
add LPARSPT LocalParametrizationOfSimplePointPackage
add NPOLYGON NewtonPolygon
add PAFF PackageForAlgebraicFunctionField
add PAFFFF PackageForAlgebraicFunctionFieldOverFiniteField
add PARAMP ParametrizationPackage
add PFURP PackageForPoly
add PLPKCRV PolynomialPackageForCurve
add PRJALGPK ProjectiveAlgebraicSetPackage
add RFP RootsFindingPackage

books/bookvol10.5 Axiom Numerics
BLAS1 regress, help, and function documentation
add BLAS1 dasum function
add BLAS1 daxpy
add BLAS1 dcopy

books/bookvolbib Axiom Bibliography
 Buh05 DLMF Mah05 Sei95 Seixx Sch92 SCC92 WJST90
 Du95, Ga95, Ha95, Ha96, HI96, HL95, LR88, St93
 add Assia Mahboubi [Mah05]
 add Soren L. Buhl [Buh05]
 add citation SDJ07
 rename and align biblio with bookvol10.1

faq
 FAQ 52: Who was User?

lsp/Makefile.pamphlet
 GCLVERSION gcl-2.6.8pre4

src/Makefile
 add Volume 10.5 Axiom Numerics
 change .spad.pamphlet to .pamphlet

src/algebra/Makefile
 help and test files for all new algebra
 remove unused .as.pamphlet files
 axtimer.as, ffrac.as, herm.as, interval.as, invnode.as,
 invrender.as, invtypes.as, invutils.as, iviews.as,
 mlift.spad.jhd, ndftip.as, nepip.as, noptip.as, nqip.as,
 nrc.as, nsfip.as removed

src/input/Makefile
 remove duplicate curl.input invocation
 add curry.input, davenport.input, liska.input, paff.input, zimmer.input
 fix biquat.input, chthoorem.input, chthoorem.input, cmds.input,
 complexfactor.input, dfloat.input, dftrig.input, dop.input,
 e1.input, e1.input, en.input, gamma.input, grphry.input,
 getbl.input, ico.input, numericgamma.input, test.input,
 unit-i-funsel.input, unitest1.input, unitest2.input, unitest2.input

src/interp/Makefile
 add Volume 10.5 Axiom Numerics

src/share/algebra
 update browse.daase, category.daase, compress.daase, users.daase,
 dependents.daase, interp.daase, libdb.text, operation.daase

zips
 gcl-2.6.8pre4.tgz added, fix for ubuntu 9.10
 gcl-2.6.8pre4.h.linux.defs.patch added
 gcl-2.6.8pre4.o.read.d.patch added
 gcl-2.6.8pre4.uniexport.init_gcl.lsp.in.patch
March 2010 Release Notes

March 2010 Release

This release concentrated on treeshaking more code into the volume. Support for last break quit was added. Additional do was added for branch cuts and clifford algebras. The first new volume (10.5) on Numerics was added. An example of unix to fulfill the long-term goal of unicode I/O support.

This release is an interim step in the process of merging the source code into a single volume. Due to the size and complex task it will take several releases.

Three people were added to the credits list:
 John P. Fletcher <J.P.Fletcher@aston.ac.uk>
 Nathaniel Daly <nathaniel.daly@gmail.com>
 Ted Kosan <ted.kosan@gmail.com>

⇐ “What’s New in Axiom” (releaseNotes) 1.1 on page 1 — releasenotes.ht —
volume. Support for \texttt{)set break quit} was added. Additional documentation
was added for branch cuts and clifford algebras. The first draft of a
new volume (10.5) on Numerics was added. An example of unicode was tested
to fulfill the long-term goal of unicode I/O support.

This release is an interim step in the process of merging the interpreter
source code into a single volume. Due to the size and complexity of the
task it will take several releases.

Three people were added to the credits list:
 John P. Fletcher <J.P.Fletcher@aston.ac.uk>
 Nathaniel Daly <nathaniel.daly@gmail.com
 Ted Kosan <ted.kosan@gmail.com>

The Axiom website was completely rewritten based on a new style css
provided by Nate. This change was also made to axiom-developer.com.

There is a new set option "\texttt{)set break quit}" per Ralf Hemmecke.
This will cause the interpreter to quit on failure. Documentation
was added to the books.

books/bookvol4 Axiom Developers Guide
 add \texttt{)set break quit}

books/bookvol5 Axiom Interpreter
 add \texttt{)set break quit}
 add support for IndexedBits
 begin documentation of macex
 merge and remove lisp files from src/interp
 remove non-common lisp macros
 rewrite to common lisp functions

books/bookvol7.1 Axiom Hyperdoc Pages
 add jan2010 what's new page
 books/ps/v71jan2010.eps added
 books/ps/v71releasenotes.eps updated for January 2010

books/bookvol8 Axiom Graphics
 redefine R1 in view3D for ARM processor

books/bookvol10 Axiom Algebra Implementation
 A new section on Elementary Functions branch cuts based on the
 Numerical Mathematics Consortium was added.

books/bookvol10.1 Axiom Algebra Theory
 A new chapter on the Clifford algebra was added.
 A quote on quaternions from Altman was added

books/bookvol10.3 Axiom Domains
 defstream function and KAFILE test bug fixed
1.1. RELEASENOTES.HT

fix IndexedBits range error
remove non-common lisp macros
rewrite to common lisp functions

books/bookvol10.4 Axiom Packages
add Ted Kosan to credits
fix broken credit test

books/bookvol10.5 Axiom Numerics
first draft of numerics volume

faq
FAQ 51: How can I do unicode in xterm?

src/algebra/Makefile
unit test IndexedBits

src/input/Makefile
add monitortest
remove redundant kafile.input

src/input/
cachedf.input fix tests for)set break quit
kafile.input redundant with KAFILE test, removed
monitortest.input unit test monitor code
pmint.input add comments
pmint.input update pmint with code
setcmd.input add)set break quit
textfile.input --I out failing test
unittest2.input add Nate Daly to credits
wester.input reformat into regression test file

src/interp
remove compat.lisp, cparse.lisp, intint.lisp, macex.lisp,
monitor.lisp, pf2sex.lisp, ptrees.lisp, serror.lisp
remove MAKESTRING macro from all files
remove non common lisp macros
remove unused functions

g-error.lisp add)set break quit
htcheck.lisp add README from compat.lisp
nci.lisp pick up functions from intint
patches.lisp move global variables to bookvol15
posit.lisp move position functions to bookvol15
util.lisp move global variables to bookvol15
varini.lisp pick up functions from intint
vmlisp.lisp add)set break quit
January 2010 Release Notes

This release concentrated on treeshaking more code into the Interpreter volume. Ten files have been merged and removed. Call graphs were generated for all C code and added to the documentation. Several new functions were added, including flush, machineFraction, and integerDecode.

This release is an interim step in the process of merging the interpreter source code into a single volume. Due to the size and complexity of the task it will take several releases.

Volume 0: Jenks
Lee Duham fix typos

Volume I: Tutorial
Lee Duham fix typos

← “What’s New in Axiom” (releaseNotes) 1.1 on page 1
— releasesnotes.ht —

This release concentrated on treeshaking more code into the Interpreter volume. Ten files have been merged and removed. Call graphs were generated for all C code and added to the documentation. Several new functions were added, including flush, machineFraction, and integerDecode.
This release is an interim step in the process of merging the interpreter source code into a single volume. Due to the size and complexity of the task it will take several releases.

Volume 0: Jenks
- Lee Duhum fix typos

Volume 1: Tutorial
- Lee Duhum fix typos

Volume 5: Interpreter
- `describe` no longer needs `cat`, `dom`, `pkg` args
- add Lee Duhum to credits list
- add banner and cleanup `globals`
- add `DoubleFloat` trig macros
- support `DFLOAT machineFraction`, `integerDecode`
- do not set `si::*system-directory*` in restart
- fix `)display all output bug`
- merge `fname.lisp`, `alql.lisp`, `i-syscmd`, `i-toplev`, `pathname.lisp`
- merge `daase.lisp`, `exposed.lsp`

Volume 7: Hyperdoc
- add call graph for `ex2ht`, `htadd`, `hthits`, `hypertex`, `spadbuf`

Volume 8: Graphics
- add call graph for `view2d`, `view3d`, `viewalone`, `viewman`

Volume 10.2 Categories
- `latex` cleanup
- `FileCategory` add `flush`

Volume 10.3 Domains
- `DoubleFloat` add `dfloat machineFraction`, `integerDecode`
- `DoubleFloat` rewrite `doublefloat` to use typed macros
- `File` add `flush`

Volume 10.4 Packages
- document `RepeatedSquaring`
- fix API regression

`lsp/Makefile` add `compiler::link` per Camm Maguire

`src/algebra`
- remove `exposed.lisp`

`src/axiom-website`
- add `fedora 10` `nov2009 build`
- add `nov2009` builds
- move `CVS` instruction to `git`
- `axbook` add Stack and Queue
axbook fix typos

src/input
 add ackerman to test function caching
 add dftrig to test DoubleFloat trig changes
 rewrite dfloat, dop, e1, ei, en, numericgamma using machineFraction
 r20bugs, setcmd, unittest1, unittest2 fix broken tests
 zimmbon fix typo in bibliography

src/interp
 remove alql, cformat, daase, fname, i-sysmc, i-toplev, intfile, pathname, packtran

other src files
 add call graph information edible.c, asq.c
 src/docmsgs/s2-us.msgs remove S2IZ0049D
 src/share/docmsgs/s2-us.msgs removed

\end{verbatim}
\endscroll
\autobuttons
\end{page}
November 2009 Release Notes

Summary: November 2009 release

The major changes are:
A new)describe command, boot language removal, and more motion toward a fully literate system.

The)describe command was added.

The)describe function was added to Volume 5 (Interpreter)
The)describe function was documented in Volume 2 (Users Guide)
The Description field for the Categories, Domains, and Packages were cleanup up and reformatted in Volumes 10.2 (Categories) 10.3 (Domains) and 10.4 (Packages)

Boot Language removal

All of the boot-converted lisp files were reformatted from their compiler generated output. These files are being merged into Volume 5 (Interpreters) and Volume 9 (Compiler) as appropriate. This work will continue for the next few releases.

All or portions of the following files were merged into Volume 5 (Interpreter):
astr, cstream.lisp, dq, incl, int-top, i-syscmd, msg, nci, obey, osyscmd, parini, patches, pile, scan
All of the boot-converted lisp files were reformatted from their compiler generated output. These files are being merged into Volume 5 (Interpreter) and Volume 9 (Compiler) as appropriate. This work will continue for the next few releases.

All or portions of the following files were merged into Volume 5 (Interpreter):
- astr, cstream.lisp, dq, incl, int-top, i-syscmd, msg, nci,
- obey, osyscmd, parini, patches, pile, scan

The src/boot subdirectory is gone, including the files:
- Makefile, boot-proclains, boothdr, bootstrap, btinc12, btpile2,
- btscan2, ccl-boostsys, ccl-depsys.lsp, exports.lisp, npextra, ptyout,
- tyextra, typars, typrops, tytree1, sys-pkg, vmlisp, ptrees, wi2

The bootsys image is no longer part of the build process

Patch ports from Fricas and Open-Axiom

The Tuples patch was picked up and applied.
The SXHASH function is the hash default in SetCategory
The function ListOfTerms was renamed to listOfTerms

Input file changes

New input files have been added to show how to compute results using Axiom or to create regression tests for fixes:
- complexfactor, rubey, zimmbron, branchcut, cachedf, finitegraph,
- newtonlisp, nonlinhomodiffeq, distexpr, numericgamma, donsimple
- solverperf, tuplebug, unit-macro, testprob, unittest2

lexp was removed and moved to the LEXP algebra file
dop and gstbl had minor fixes

New Help files and Function examples were added

There are new help files:
- describe, AlgebraicallyClosedField, RationalFunctionSum,
- RadicalSolvePackage, PartialFractionPackage, Product,
- OrderedFreeMonoid

Website update:
The developer.html page was rewritten. An old Scratchpad group
photo was added to the site.

Work continues on re-hosting the axiom-developer.org domain.

We now own axiom-developer.com and axiom-developer.net which will be re-targetted to the new host as soon as it is available.

Interpreter changes:

Axiom will sit in a single package in the near future.
The VMLISP package was partially removed from the system.
Work continues on this path.

The util.ht file is created earlier in the parallel build so there are fewer compiler messages about documentation.

Research:

A Cohen algebra domain is being developed to enable symbolic manipulation of expressions with explanations and controlled simplification.
A major project milestone has been achieved with this release. Axiom is implemented in lisp, removing all code in Boot.

The major effort in this release has been the boot to lisp rewrite. There are several follow-on phases which are "in-process" but only partially complete with this release. These include:

- source cleanup -
 - generating warning-free compiles which involves cleaning up the boot-to-lisp artifacts
 - generating unit tests
 - unit tests are being developed for each of the translated files to ensure that the rewrite does not introduce bugs

- file merge
 - the individual files are being prepared to merge into the interpreter and compiler volumes.

- global variable handling
 - the system uses many globals which are being either explained or rewritten to reduce coupling

- data structure extraction
 - the various data structures used by the compiler and interpreter are being identified and explained

- API vs implementation
 - the functions used externally vs the functions used internally are being identified

- code refactoring
 - the generated lisp code is being rewritten into human form without changing the behavior

The target goal is to have the code cleanly merged into the interpreter and compiler volumes in a logical way that form chapters related to function.

Additional changes in this release include:

- Add Steven Segletes to credits. He was the author of the paper that supplied the coefficients for computing E1. He has contributed a later, unpublished paper which has more accurate coefficients. This is in-plan to implement.

- Barry Trager contributed an example of computing Shannon Matrices. This has been added to the input/regression suite.
1.1. RELEASENOTES.HT

The .dvi files for the interpreter are no longer being built. The individual pamphlets will shortly disappear.

Debugsys is no longer built. I am the only user of it and I can build it when needed.

Bootsys is no longer built. It is no longer needed.

The Makefiles now use the := rather than = assignment limiting re-evals

Parallel Make is now the default since the documentation build is now independent of the interpreter build

\end{verbatim}
\endscroll
\autobuttons
\end{page}
July 2009 Release Notes

The syntactic conversion from the prior #1 form to the +-> form is complete except for the GUESS package. Both forms still work but the #1 form is discouraged.

All algebra files from src/algebra are now in books.

Work has concentrated on the hyperdoc browser.
* The browser files which get autoloded into the interpreter were merged and removed in preparation for being rewritten into book form.
* Glossary files were missing from the build and were added.

Work has started on a new CATS collection of verified algebraic identities, the tspiesz set. See http://sites.google.com/site/tspiesz

Volume 5: Axiom Interpreter
* set message autoload now defaults to off

Volume 7 Axiom Hyperdoc
* htscreen moved to $AXIOM/bin

Volume 10.1 Axiom Algebra Theory
* add chapter on quaternions

Volume 10.3 Domains
* Any now has regression and help files
* MathMLFormat domain moved from Volume 10.4
* TexFormat has regression and help files
* TexFormat fix for horizontal fractions
* Quaternion was added from src/algebra

"What’s New in Axiom" (releaseNotes) 1.1 on page 1
— releasenotes.ht —
* Glossary files were missing from the build and were added.

Work has started on a new CATS collection of verified algebraic identities, the tpiezas set. See http://sites.google.com/site/tpiezas

Volume 5: Axiom Interpreter
* set message autoload now defaults to off

Volume 7 Axiom Hyperdoc
* htsearch moved to $AXIOM/bin

Volume 10.1 Axiom Algebra Theory
* add chapter on quaternions

Volume 10.3 Domains
* Any now has regression and help files
* MathMLFormat domain moved from Volume 10.4
* TexFormat has regression and help files
* TexFormat fix for horizontal fractions
* Quaternion was added from src/algebra

Volume 10.4 Packages
* IntegerNumberTheoryFunctions fix divisors regression
* Waldek’s QUATCT2 algebra was added, including a help file, regression tests and command examples.

Makefile
* make help files in parallel
* make xhtml pages in parallel
* make books documentation in parallel

interpreter
* src/interp/i-output.boot fix horizontal fractions

axiom-website
* download.html add mandriva
* download.html add may2009 binaries

input files
* ffdemo.input fix steps 27, 57 due to divisors change
* numbers.input fix random zero failure
* spline.input explain how to compute 2D splines
* tpiezas001.input CATS tests of algebraic identities
* tpiezas002.input CATS tests of algebraic identities
May 2009 Release Notes

Axiom now supports latex chunk syntax in pamphlets, thus
Axiom pamphlets can now be pure latex.
Axiom can now read pamphlet files and extract latex chunks directly.
All input files were converted to the new format.

This change has several long term implications. Once all of the
pamphlet files are pure latex we no longer need the NOWEAVE function.
Once Axiom can read all of its input formats, that is,)read and)compile
work directly on their pamphlet forms we will no longer need NOTANGLE.
At that point, we no longer need noweb.

This release sees the introduction of new domains and packages
as well as more documentation. The original Jenks books has been
modified to include new documentation, more help files were added,
and the id op function documentation was expanded.

More effort has been applied to collecting interpreter and compiler
code into literate form in book volume 5.

A new effort to collect the compiler code into book volume 9 started.

The compiler was modified (by Waldem) to allow \texttt{\&
\&} in place of \texttt{#} syntax.
This conversion is nearly complete, with only a few packages remaining
to be converted. Lisp code to regression check the algebra changes
written so the generated algebra is parsed and highlighted.

A method for running Axiom on Windows was developed and documented
on the home page of the website.

\begin{page}{may2009}{May 2009 Release Notes}
\beginscroll
\begin{verbatim}
May 2009 Release Notes
Axiom now supports latex chunk syntax in pamphlets, thus
Axiom pamphlets can now be pure latex.
Axiom can now read pamphlet files and extract latex chunks directly.
All input files were converted to the new format.

This change has several long term implications. Once all of the
pamphlet files are pure latex we no longer need the NOWEAVE function.
Once Axiom can read all of its input formats, that is,)read and)compile
\end{verbatim}
\end{scroll}
\end{page}
work directly on their pamphlet forms we will no longer need NOTANGLE. At that point, we no longer need noweb.

This release sees the introduction of new domains and packages as well as more documentation. The original Jenks books has been modified to include new documentation, more help files were added, and the)d op function documentation was expanded.

More effort has been applied to collecting interpreter and compiler code into literate form in book volume 5.

A new effort to collect the compiler code into book volume 9 started.

The compiler was modified (by Waldek) to allow +-> in place of #1 syntax. This conversion is nearly complete, with only a few packages remaining to be converted. Lisp code to regression check the algebra changes was written so the generated algebra is parsed and highlighted.

A method for running Axiom on Windows was developed and documented on the home page of the website.

Unit testing of interpreter and compiler changes was added to the regression testing. This will expand in future versions as changes are made so ensure that things continue to function.

Volume 0: Axiom Jenks and Sutor
 Richard Jenks bio was added

 Section 9: Examples of Domains and Packages expanded
 ApplicationProgramInterface (API)
 Dequeue (DEQUEUE)
 EuclideanGroebnerBasisPackage
 GeneralDistributedMultivariatePolynomial
 GroebnerPackage
 HomogeneousDistributedMultivariatePolynomial
 NottinghamGroup
 Permutation
 RealSolvePackage
 TwoDimensionalViewport

 Cross references were fixed

 More spelling typo fixes

Volume 4: Axiom Developers Guide
 A section was added explaining how to find anonymous function signatures

Volume 5: Axiom Interpreter
 Michael Becker was added to the credit list
\)set debug is now a new top level command to collect all of
the developer-level commands to enable/disable internal messages
and tracing functions.

\defunsec macro was added to handle section titles with docstrings

More interpreter code was moved from other files into this book

All regression test numbering was fixed to conform to the new,
stronger regression test. Thus \(--S\) requires the "of NN" phrase
or a FAILED message will be raised.

The compiler root was moved to volume 9: Axiom Compiler

Volume 7: Axiom Hyperdoc
Fixup verbatim breakage

Volume 7.1: Axiom Hyperdoc Pages
Update What’s New for March 2009

Volume 9: Axiom Compiler
The compiler code is being collected from other parts of the
system into this book. In particular,
 - The root functions for the compiler were added
 - The top level loop code of the compiler was added
 - The next layer of compiler code was added

Volume 10.2: Axiom Algebra Categories
There was a general change to allow +-> syntax in algebra and
this was made to all existing categories

MatrixCategory now has regression test cases, a help page,
and \)d op function examples

Document binomial category

Volume 10.3: Axiom Algebra Domains
There was a general change to allow +-> syntax in algebra and
this was made to all existing domains

SparseMultivariateTaylorSeries now has regression test cases, a help page,
and \)d op function examples

Permutation now has regression test cases, a help page,
and \)d op function examples

The regression tests now conform to the new, stronger
regression test requirements

Volume 10.4: Axiom Algebra Packages
There was a general change to allow +-> syntax in algebra and this was made to some existing packages. There is more to be done.

Bezier package was added, including regression test cases, a help page, and \texttt{\textbackslash d op} function examples

Combinatorial\texttt{Function} now has regression test cases, a help page, and \texttt{\textbackslash d op} function examples

Elementary\texttt{Function} now has regression test cases, a help page, and \texttt{\textbackslash d op} function examples

IntegerCombinatoric\texttt{Functions} now has regression test cases, a help page, and \texttt{\textbackslash d op} function examples

LazardSetSolving\texttt{Package} now has regression test cases, a help page, and \texttt{\textbackslash d op} function examples

The regression tests now conform to the new, stronger regression test requirements

Volume 12: Axiom Crystal
Add Gelernter’s observations on Layout and Linking

Bug fixes
7191: set *system-directory* dynamically (20090413.03.tpd.patch)
7192: \texttt{\textbackslash edit} now works because SPADEDIT added (20090414.02.tpd.patch)
7197: fix hyperdoc/graphics failure (20090530.01.tpd.patch)

Makefile changes
Top Level Makfile
The BOOKS environment shell variable was added to ENV
Makefile.slackware chunk exists
Makefile reports regression failures after builds

lisp/Makfile
Build tangle into the lisp image

src/Makfile
Copy bookvol9, the compiler, to src/interp at build time

src/algebra/Makfile
Add Bezier package
Add LazardSetSolving\texttt{Package}.help
Add Matrix\texttt{Category}.\texttt{input}, .\texttt{help}
Add help, regress for Elementary\texttt{Function}
Add input, help, examples for SparseMultivariate\texttt{TaylorSeries}
Fix LazardSetSolving\texttt{Package} typo
Move egrep to grep -E since egrep might not be installed
Move help to bookvol5
src/doc/Makefile
 Move help to bookvol5

src/input/Makefile
 Add FRAC regression test
 Add unittest* files for regression testing non-algebra changes
 Change input files to latex tangle
 Fix regress format to conform to the new, improved regression testing

src/interp/Makefile
 Build bookvol9, the compiler from book sources
 The old gclweb code was rewritten into tangle.lisp, gclweb was removed
 Move help to bookvol5
 More interpreter code was moved to bookvol5, the interpreter
 Debugsys has been updated to stop loading deleted files
 Several files were merged, rewritten, and removed:
 apply.boot, bootlex.lisp, comp.lisp, compiler.boot, cstream.boot,
 def.lisp, i-util.boot, incl.boot, int-top.boot, metalex.lisp,
 nci.lisp, parse.boot, parsing.lisp, postpar.boot, preparse.lisp,
 server.boot, seq.lisp, sockio.lisp, spad.lisp, spaderror.lisp,
 util.lisp, vmlisp.lisp

faq
faq 50: Cannot find libXpm.a

readme
 Add Michael Becker to credit list

books/
 tangle.lisp lisp version of tangle command
 ps/v71mar2009.ps hypertex march 2009 release notes pic
 ps/v71releasenotes.ps hypertex what's new page pic

src/interp
 Rewrite apply.boot to apply.lisp
 Regression tests, regress.lisp, now checks for the "of NN" phrase

src/algebra
 Add Bezier package to exposed.lsp

src/axiom-website
 Add March 2009 column
 Add slackware column
 Axiom on Windows as html instructions
 Add March release notes
 Add binaries

src/doc/
Add chunk environment to axiom.sty
Old book sources were removed
The spadhelp file was removed and added to the interpreter book

src/input/
All of the .input files were modified to use latex tangle

src/scripts/tex/
axiom.sty contains new latex macros

zips
Old GCL versions were removed
gcl-2.6.8pre.tgz removed
gcl-2.6.7.tgz removed

March 2009 Release Notes

March 2009 Release Notes

There were two major changes in this release.

First is the completion of the first phase of Book Volume 10.4: Axiom Packages, which collects all of the packages into one document. The side effect is to remove almost all of the remaining algebra files leaving src/algebra nearly empty.

Second is the start of Book Volume 5: Axiom Interpreter which will consolidate all of the interpreter functions and document them in book form. A side effect of this consolidation will be the ultimate removal of all boot code, with the further side effect of removing bootstraps from the build step and boot translation time.

While consolidating the interpreter code a parallel effort will be ongoing to build Book Volume 9: Axiom Compiler. The idea is to split the compiler code from the interpreter code so the compiler can be documented and upgraded.
March 2009 Release Notes

There were two major changes in this release.

First is the completion of the first phase of Book Volume 10.4: Axiom Packages, which collects all of the packages into one document. The side effect is to remove almost all of the remaining algebra files leaving src/algebra nearly empty.

Second is the start of Book Volume 5: Axiom Interpreter which will consolidate all of the interpreter functions and document them in book form. A side effect of this consolidation will be the ultimate removal of all boot code, with the further side effect of removing bootsys from the build step and boot translation time.

While consolidating the interpreter code a parallel effort will be ongoing to build Book Volume 9: Axiom Compiler. The idea is to split the compiler code from the interpreter code so the compiler can be documented and upgraded.

Book Volume 0: Axiom Jenks book
Add }include documentation

The original book did not document the }include command. This is now documented.

Add UnivariateSkewPolynomial

This domain was added to the domain examples

Book Volume 4: Axiom Developers Guide
Hyperdoc

A Hyperdoc tutorial on making new pages was written

A tutorial on spadhelp was added

Book Volume 5: Axiom Interpreter
Command Handling

The top level commands that start with open parenthesis are all kept in the $setOptions data structure. This structure was documented. Each command has a handler routine which was integrated with the
1.1. RELEASENOTES.HT

structure in the proper place.

New latex macros

The \defun and \defmacro macros were added to ensure that there is a uniform handling of subsections and cross references for all functions and macros.

The \defdollar macro was added to handle $\$foo$ variables in both index and cross reference.

The \cmdhead macro was added to provide uniform handling of each of the top level commands in the $\$setOptions$ data structure.

Unit testing

To ensure that changes did not break behavior two new regression test routines were added, unittest1 and setcmd. These test the top level command behavior.

Trace functions added

The trace.boot code was added.

Book Volume 7: Axiom Hyperdoc
Documentation

Add Scott Morrison’s original hypertex plan notes

Book Volume 10.1: Axiom Algebra Theory
Documentation

Add tutorial chapter on Singular Value Decomposition

Book Volume 10.3 Axiom Domains
Algebra fixes

Johannes Grabmeier fixed the outputFixed behavior in Float.

A regression test chunk was added to the Float domain.

UnivariateSkewPolynomial was documented. A regression test, help file, and examples were added.

Heap was documented. A regression test, help file, and examples were added.

Dequeue was documented. A regression test, help file, and examples were added.
Queue was documented. A regression test, help file, and examples were added.

ArrayStack was documented. A regression test, help file, and examples were added.

Stack was documented. A regression test, help file, and examples were added.

NottinghamGroup was added, including regression and help files. Originally written by Martin Rubey.

Regression tests

The)sys rm now uses the -f flag to force deletion on all regression test files

Book Volume 10.4 Axiom Packages
New Algebra

All packages were moved into this volume. Almost all of the remaining algebra files were deleted.

ApplicationProgramInterface (API) was added. It exposes the Axiom internal functions at the algebra level.

UnivariateSkewPolynomial now has help, input, and examples

Documentation

The nag man pages were added to the related domain documentation

Export lists were added for all packages.

Regression tests

The)sys rm now uses the -f flag to force deletion on all regression test files.

Boot to Lisp rewrite

Deleted boot files

setvars.boot is gone. The code has been rewritten and added to book volume 5. The code was rewritten and/or reformatted. All compile-time warnings were eliminated.

setvart.boot is gone. The code has been rewritten and added to book volume 5. The code was rewritten and/or reformatted. All compile-time warnings were eliminated.
trace.boot is gone. The code has been rewritten and added to book volume 5. The code was rewritten and/or reformatted. All compile-time warnings were eliminated.

Regression test cleanup

)set break resume

A subtle bug in regression testing caused by early exit of a test left some of the regression tests reporting success when there should have been failure. This was fixed by adding a)set break resume command to allow Axiom to continue the testing in the presence of an internal fault.

new

setcmd.input was added to regression test changes to the)set top level command

unittest1.input was added to regression test other top level commands

dop.input was added to unit test)d op example output

frame.input was added to unit test frame handling

removed

bags.input was distributed among the algebra regression test files and bags.input was removed.

Bug fixes

Bug 7183. The library handling code was repaired. Functions which do not exist were removed (e.g. input-libraries). The element values of the data structure are now pathnames.

Bug 7182.)set mes auto did not indicate the current value.

Bug 7180:)set compiler input add foo triggers a call to open-library which was a CCL function and no longer implemented. The elements of the data structure were changed.

Bug 7179. Suprious sensitivity to)abb in documentation caused breakage because this was assumed to be an)abbreviation command.

Bug 7178. Missing function inspect in ArrayStack

Bug 7177. Missing function map! in ArrayStack
Bug 7176. Missing function parts in ArrayStack

Bug 7175. Missing function map in ArrayStack

Bug 7174. Missing function map! in Stack

Bug 7173. Missing function parts in Stack

Bug 7172. map was missing from Stack(Integer)

Bug 7170:)d op output failure due to X in algebra comments. The X symbol is now a marker for)d op examples and the use of X in comments is ambiguous.

Bug 7141:)cd relative does not work

Interpreter (src/interp)
 Documentation

 document mmCost calculation

Help files
 Documentation

 The help file list is now dynamically generated from the algebra books.

readme
 Quote

 Add Doron Zeilberger quote about builders of CA systems.

Website
 Download

 Add fedora10 as a supported platform

 Add vector as a supported platform

Lisp
 New patch

 read-char-no-hang was changed by Camm to ignore newlines but Axiom's browser needs them to be recognized. A patch was added to back out Camm's change.

\end{verbatim}
\endscroll
\autobuttons
\end{page}
January 2009 Release Notes

One major theme of this release was restructuring the system to move all domains to literate form in book volume 10.3

A second major theme was the first Axiom youtube tutorial video.

Book Volume 0: Axiom Reference

Remove obsolete references to SmallFloat

Book Volume 1: Axiom Tutorial

Remove obsolete references to SmallFloat

Book Volume 4: Axiom Developers Guide
Add section on generating graphviz graphs

Book Volume 7.1: Axiom Hyperdoc

Give a complete path to htadd

Book Volume 10.3 Axiom Domains

All domains have been removed from the algebra subdirectory and are now in literate form in book volume 10.3. Some domains include a help file, a regression test suite, and --X function examples for the)display command. Future work will extend this set.

Each domain has a fully indexed list of functions exported. This allows hyperlinked access to functions.

Each domain includes a graph segment that shows the list of categories, domains, and packages that provide immediate support in the prior build layer.

Each domain includes a dotabb chunk which contains the source code necessary to recreate the graph.

Domains which were associated with other domains in the same original spad file have hyperlinks to connect them.

Book Volume 11: Axiom Browser

Lighten Bayou theme background image

Axiom Website (src/axiom-website)

The axiom website is now under git control. The source tree is in src/axiom-website in the distribution.

The build order graph exists. It contains a graph of all the constraints for each level. A line in the graph connects each category, domain, and package to every category, domain, and package in the prior layer that is required for the build. Multilayer constraints are not shown (although the data is in src/algebra/Makefile chunks) because the graph would be too complex.

http://axiom-developer.org/axiom-website/hp.svg

The Computer Algebra Test Suite (CATS) has a new test suite for ordinary differential equations (kamke*)

http://axiom-developer.org/axiom-website/CATS
The Ubuntu download now advises XTerm.metaSendsEscape: true due to misconfiguration of the meta key in emacs.
http://axiom-developer.org/axiom-website/documentation.html

A new binary for vector linux was added
http://axiom-developer.org/axiom-website/download.html

A new binary for doyen thumbdrive was added
(work by Jose Alfredo Portes)
http://axiom-developer.org/axiom-website/download.html

The screenshots were recreated so the sources would be available.
for matrixinmatrix.jpg, heatequation.jpg, axiomfirefox.jpg
http://axiom-developer.org/axiom-website/screenshots.html

The Axiom Information Sources video page was added, including a link to the youtube video, a local copy, and the supporting PDF.
http://axiom-developer.org/axiom-website/videos.html

A broken link to Book Volume 0: Axiom Reference was fixed.

Algebra (src/algebra)

All domains were removed from spad files and moved to Book Volume 10.3 Axiom Domains

The Makefile now contains the information necessary to construct the build order graph as literate chunks.

The layers were restructured. Files were moved to ensure that each file was at its lowest possible layer.

The Guess package was added. However, due to nonstandard package files the guess function does not yet work properly. These packages are being rewritten.

The Guess package has circular references. A new clique mechanism was added to the Makefile to handle this.

Automatic regression test files associated with the algebra sources were reviewed for conforming to regression standards.

integer.spad was reverted to remove an algebra change that causes a regression (cherry picked from Fricas in 2007)

Interpreter (src/interp)

Tim Lahey added to)credits
Karl Hegbloom added to)credits

htcheck.boot moves util.ht to the mnt/doc directory

setq.lisp no longer had redundant release data information

nrunfast.boot Float has exp : Float -> Float now works
This change was cherry-picked from Fricas.

Testing (src/input)

All regression test files were reviewed and cleaned to conform to a standard setup.

A parallel build race condition was fixed in the Makefile

xpbwpoly.input was removed as it is now associated with its source domain and automatically generated.

hyperbolicrules.input was added

Tim Lahey submitted a fix for bugs in schaum17.input

A cherry-picked patch from Fricas in 2007 was removed because it causes an algebra regression. The regression test file was corrected.

fixed.input was converted to a regression test file

Build process

The lsp/Makefile was updated for GCL pre3 patches

An ubuntu64 chunk was added as a system target

src/Makefile outputs util.ht before compiles (bug 7146)

books/Makefile uses bash SHELL to fix echo behavior. The standard sh echo behaves badly.

books/Makefile now has amssymb in preamble for toc.tex

GCL (zips)

Axiom now includes GCL pre3, the latest snapshot of GCL. This can be chosen as an option for building in the top level Makefile.pamphlet
The lisp/Makefile was updated for GCL pre3 patches

faq

FAQ 49: How do I get the lastest GCL?

readme

Tim Lahey added
Karl Hegbloom added

The date information for releases was removed as it is available elsewhere

A John Gorka quote was added:
"What matters the most is what you do for free" -- John Gorka

Wikipedia

http://en.wikipedia.org/wiki/Axiom_computer_algebra_system

Add information about Documentation

Add link to youtube video
 http://www.youtube.com/watch?v=CV8y3UrpadY

New screenshots were added

Youtube

Axiom Information Sources video was created and uploaded
 http://www.youtube.com/watch?v=CV8y3UrpadY
To date there have been 498 views

Launchpad

Gain administrative access to launchpad.net for Axiom (Page)
 https://launchpad.net/axiom
November 23, 2008 Release Notes

Axiom website

New patch tracking has been added:
* <http://axiom-developer.org/axiom-website/patches.html>

Volumes have been significantly updated:

Book Volume 10.2 Axiom Categories completed

The effort here is to create fully indexed, cross-referenced, graphical documentation for Axiom categories in a standalone form. This is a "live" literate document which contains the actual source code used to build the system.

1.1. RELEASENOTES.HT

Book Volume 10.3 Axiom Domains started

This volume will contain the Axiom domains.

Rosetta documentation

Fix the Magnus URL

Input Files

There is a new effort to automatically extract the algebra examples in order to regression test the user API to the algebra. In addition there is ongoing test work.

* New input files (Jakubi, Maltey, Rubey, Page, Daly)
 dhmatrix, reclos2
* Changed input files (Hebisch, Daly)
 sae, r20bugs

Build changes

* Testing is now run in parallel

\end{verbatim}
\end{scroll}
\autobuttons
\end{page}
September 23, 2008 Release Notes

Axiom website
The effort here is to improve the support for offline literate documentation. The primary changes are the inclusion of graphs and additional book volumes.

* <http://axiom-developer.org/axiom-website/documentation.html>
 Contains the new algebra volumes and subvolumes.
* <http://axiom-developer.org/axiom-website/bookvol10.2abb.html>
 Contains a "clickable" graph that indexes into the algebra.

Graphviz, PDF, and HTML integration
The effort here is to unify these three technologies in a way that simplifies the user interface and improves documentation.
* Graphviz is used if available but not required
* Algebra graphs are automatically generated at build time from algebra source files
* Graphviz graphs now properly hyperlink into PDF files allowing any node in a graph to link to any document page

Book volume 0 (Jenks and Sutor)
* http://axiom-developer.org/axiom-website/bookvol0.pdf
* replace \over with \frac

Book volume 7.1 (Hyperdoc pages)
The effort here is to create a literate document that contains all of the "live" pages used in hyperdoc. The PDF is being constructed so that a user can effectively "browse" the static hyperdoc pages, which are included, without a running Axiom.
* The source for all of the pages is now contained in this book.
* Hyperdoc now fetches the pages directly from the book.
* The hyper page directory and all files are gone.
* Some of the static page images are now inside the PDF
* Pages have href links allowing "in-pdf" navigation of pages

Book volume 10 (Algebra)
The effort here is to create a way to describe and deeply document the algebra. This volume was split to better handle the structure of Axiom's information.
* Split into 5 volumes
 - 10 Implementation
 - 10.1 Theory
 - 10.2 Categories
 - 10.3 Domains
 - 10.4 Packages

Book volume 10.2 (Algebra Categories)
The effort here is to create fully indexed, cross-referenced, graphical documentation for Axiom categories in a standalone
form. This is a "live" literate document which contains the actual source code used to build the system.

* Contains 60 categories so far
* Has partial graphs for each category
* Has list of exported functions
* Has information about source of functions
* Has index cross reference by function and category
* Has PDF href links so that URLs work:
 <http://axiom-developer.org/axiom-website/bookvol10.2.pdf#nameddest=AGG>
* Has forward/backward links between categories
* Automatically generates "clickable" graphs:
 <http://axiom-developer.org/axiom-website/bookvol10.2abb.html>
* Graph clicking automatically opens to the proper source code

New algebra examples (Daly, Tsikas)
The effort here is to create "real time" documentation that gives the end user an example of how to construct the proper arguments and call a function. This puts examples into the system so users don't need to consult other documents.

*)d op someop shows examples of function usage
* about 100 new function examples were added
* new comment syntax added to allow automatic API testing

Input Files
There is a new effort to automatically extract the algebra examples in order to regression test the user API to the algebra. In addition there is ongoing test work.

* New input files (Hemmecke, Stumbo, Cyganski, Daly)
 bini, biquat, ifthenelse, liu, overload, sqrt3, typetower
* Changed input files (Hemmecke, Stumbo, Cyganski, Daly)
 bern, function, linalg, regset, test, tutchap2

Build changes
* graphics does not depend on compress, done at build time
* firefox html pages are now built before tests are run
Algebra changes

* FLAGG (FiniteLinearAggregate) -- removed a duplicate function

Interpreter changes (Page)

* add cost function to bottomUp output

July 23, 2008 Release Notes

The July 2008 release marks the second large-scale change to literate Axiom distribution. The original change was to make file into a pamphlet document. This second change draws Axiom tighter collections, called books (for obvious reasons).

There is a new "books" directory which contains 14 books, and which are new:

bookvol0: The reconstructed Jenks and Sutor book
bookvol1: The published tutorial volume
bookvol2: Users Guide
bookvol3: Programmers Guide
bookvol4: Developers Guide
bookvol5: Interpreter
bookvol6: Command
bookvol7: Hyperdoc

⇐ “What’s New in Axiom” (releaseNotes) 1.1 on page 1
The July 2008 release marks the second large-scale change toward a literate Axiom distribution. The original change was to make every file into a pamphlet document. This second change draws Axiom into tighter collections, called books (for obvious reasons).

There is a new “books” directory which contains 14 books, most of which are new:

- bookvol0: The reconstructed Jenks and Sutor book
- bookvol1: The published tutorial volume
- bookvol2: Users Guide
- bookvol3: Programmers Guide
- bookvol4: Developers Guide
- bookvol5: Interpreter
- bookvol6: Command
- bookvol7: Hyperdoc
- bookvol7.1 Hyperdoc Pages
- bookvol8: Graphics
- bookvol9: Compiler
- bookvol10: Algebra
- bookvol11: Browser
- bookvol12: Crystal

All of these books now exist. Portions of the current system have been moved completely into book form (Graphics and Hyperdoc) so the old files have been removed from the src tree. Both Graphics and Hyperdoc are now built directly from their book. Work will follow on other parts of the system.

These books are online at: <http://axiom.axiom-developer.org/axiom-website/documentation.html>

There is an interesting side-effect of using literate technology. Once you combine C and .h files into a single document so that each file is a separate chunk it becomes obvious that there is no need for local include files. The lines that read:

```c
#include "foo.h"
```

become

```c
begin{chunk}{foo.h}
```

and get expanded inline. Once you do this it also becomes obvious that many include files get included multiple times (a clear waste of disk I/O and preparser time). Further it becomes clear that there
is no need for creating tiny .o files since all of the source can be combined into one C file using chunks.

These approaches were used to reduce the compile-time overhead for both the graphics and the hyperdoc functions.

In addition to consolidating the source files for Graphics into bookvol8 there were several other changes:

* the functions for graphics, that is, viewman, view2d, view3d and viewalone are now built as single C files.
* the graphics code was reorganized into chapters of related code
* there is the beginnings of documentation
* there is the beginnings of a test suite based on the CRC Handbook of Curves and Surfaces
* the book is hyperlinked (Bill Page, Frederic Lehbey, Anatoly Raportirenko)
* redundant code was eliminated
* the code is fully indexed
* the src/graph subdirectory is gone

In addition to consolidating the source files for Hyperdoc into bookvol7 there were several other changes:

* the functions for hyperdoc, that is, spadbuf, ex2ht, htadd, hthits and hypertex are now built as single C files
* the hyperdoc code was reorganized into chapters of related code
* there is the beginnings of documentation
* redundant code was eliminated
* scroll wheel handling was added (Gregory Vanuxen)
* the book is hyperlinked (Bill Page, Frederic Lehbey, Anatoly Raportirenko)
* the code is fully indexed
*)hd now works to start or restart Hyperdoc (Jose Alfredo Portes)
* the src/hyper subdirectory is gone

In addition to consolidating the hyperdoc pages into bookvol7.1 there were several other changes:

* the pages are hyperlinked
* new latex macros were written to simplify page handling
* images of hyperdoc pages were added
* forward and backward hyperlinks between pages images works making it possible to "browse" the hyperdoc pages using only the single PDF file (Bill Page, Frederic Lehbey, Anatoly Raportirenko)
* the pages are fully indexed
* the src/hyper/pages subdirectory is gone

A combined table of contents PDF is now automatically generated which covers all of the volumes. This makes it easier to find the topic of interest.

In addition there were several other changes.

* Some fixes were made for different platforms
 In particular, Fedora9 breaks the build and needs work

* The configure script was replaced by instructions
 The standard (export AXIOM) works everywhere so the configure script is useless for guessing.

* the FAQ was updated about git
 Since the May 2008 release the primary Gold source code platform is github. The FAQ was updated to reflect this.

* the FAQ was updated about X11
 X11 has moved yet again so more notes are needed

* move axbook to books
 The hyperlinked version of Jenks is now built from the books dir

* add Ralf Hemmecke's documentation to ax.boot
* add Monoid multiply to DirectProduct (Ralf Hemmecke)
* add Monoid multiply regression test
May 27, 2008 Release Notes

COMPUTER ALGEBRA TEST SUITE

A large part of the effort for these two months has involved detailed test cases of Axiom’s integration routines against Schaum’s Handbook of Mathematical Formulas. Of the 619 integrals, the detailed results are:

- 419 Schaums and Axiom agree
- 137 No closed form solution
- 60 Cannot simplify
- 2 Typos found in Schaums
- 1 Axiom bug

The Axiom bug was in src/algebra/intef.spad.pamphlet. There was a fix applied to this code for a previously identified bug but the previous fix was incorrect.

In addition, there were
src/input/danzwill2.input.pamphlet added for the MIT Integration tests
src/input/mapleok.input.pamphlet to fix typos
src/input/kamke1.input.pamphlet had ode97 removed due to running time
src/input/kamke2.input.pamphlet ode104, ode105 removed for running time

DOCUMENTATION
Max Tegmark’s 'toe' diagram, src/doc/toe.gif

PORTING

```
GCLOPTS-CUSTRELOC disable-locbfd for MACOSXPPC
```

\end{verbatim}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
Summary: March 2008 release

Axiom is now available at github, a git-based code repository. This site will have the Gold version of Axiom, that is, only code that changes at each two-month release. To get a clone type:

git-clone git://github.com/daly/axiom.git

USER VISIBLE CHANGES

One primary focus of this release has been extending the Firefox toward being a full Axiom user interface (as opposed to a simple hyperdoc replacement). The Firefox console page has new, AJAX based, dropdown menus which are planned to be dynamically updated to display available functions for the last computed type. This should make it much easier to find the applicable functions by category and type. They are currently static in this release.

* Firefox Pages
 o Dropdown menus were added to the Axiom console page
 o More hyperdoc pages were translated to Firefox/html
 o Bitmaps and graphics are now properly handled in pages
 o A minor mathml fix was applied (for invisible times)

* Refcard
 o An Axiom reference card of Axiom commands was created (src/doc/refcard)

* Examples
 o It is often difficult to figure the exact arguments required to call any given function in Axiom. The)display operation command used to only show the available modemaps. This command has now been changed.
)display operation foo
 now shows examples of function calls for foo.

* Help
 o The plot routines have new help files and documentation

PORTING

o Axiom was ported to MAC-OSX

o The binary download page now has binaries for Ubuntu, OpenSUSE, Redhat9, Redhat72, Debian, MACOSX at
\end{verbatim}
<http://axiom.axiom-developer.org/axiom-website/download.html>

- Binaries for the this release will be available shortly.

INTERNALS

* Compiler changes
 - hashtables were used to speed up compiles

* Algebra changes
 - There are new special functions, \(E_i, E_n, E_{i1}, E_{i2}, E_{i3}, E_{i4}, E_{i5}, E_{i6} \)
 - The prime and BasicSieve functions are faster
 - The Brent/Pollard algorithm was documented
 - Bad gcd reductions are checked (heugcd regression test file added)
 - The plot routines have new help files and documentation

* Makefile changes
 - Bi-capital SVN copies are no longer made

* Interpreter changes
 - Book Volume 5 has new documentation on the display function
 - The display function code has been translated and moved to book volume 5
 - \(\pi \) has a higher internal precision
 - Mappings are now properly hashed for Aldor

CATS (Computer Algebra Test Suite)

- The differential equations regression tests are being checked against Mathematica, Maple, and Maxima. This has happened for the kamke2.input regression test file and will happen for the other regression tests.

- Complex Gamma, \(\log\Gamma \), and \(\log(\Gamma) \) have additional tests and documentation.
January 25, 2008 Release Notes

Summary: January 2008 release

There have been two major concentrations of effort in this release.

The first concentration is on the new Firefox Hyperdoc and the second concentration was the verification of Axiom against published standards.

Firefox Hyperdoc

The Firefox Hyperdoc has been integrated with the rest of the interpreter. The new)browse command causes Axiom to listen and serve hyperdoc pages on port 8085.

The interpreter was changed to add the)browse command. As a
CHAPTER 1. RELEASE NOTES

side-effect new documentation was added to the interpreter volume (bookvol5) to explain top-level command handling. In addition, lisp and boot code was rewritten as part of the literate change.

New sections were added to cover the beginning of the Computer Algebra Test Suite (CATS) subsection which brings a focus on compliance with published standards.

Arthur Ralf's mathml-enabled version of the Jenks book is fully integrated into the Firefox Hyperdoc. Arthur also fixed some rendering and ambiguity issues.

axbook.tgz fix the user/group settings
axserver.spad fix lastType output re: errors
bookvol5 browse and top-level command handling
bookvol11 add standards compliance for gamma
gammacomplexinverse.png added
gammacomplex.png added
gammareal3.png added
loggamma.png added
mathml.spad fix ambiguity bug in mathml output
mathml.spad fix hex(10) mathml rendering
mathml.spad fix F,3 mathml rendering
mathml.spad remove code to eat %%
psi.png added

Standards Verification

The Computer Algebra Test Suite (CATS) effort checks the results that Axiom generates against published results. Axiom has an extensive set of regression tests (the KAMKE suite) for ordinary differential equations, for integration (the SCHAUM suite), and for numeric special functions (the ABRAMOWITZ suite). In addition, results have been checked against Mathematica, Maple, and Maxima.

asinatan.input regression for the functions asin and atan
asinhatanh.input regression for the functions asinh and atanh
besselk.input regression for the function besselK
e1.input regression for the function E1
en.input regression for the function En
exp.input regression for the function exp
gamma.input regression for the function gamma
log.input regression for the functions log
pfaffian.input regression for the function pfaffian
seccsc.input regression for the functions sec and csc
sincos.input regression for the functions sin and cos
1.1. RELEASENOTES.HT

sinhcosh.input regression for the functions sinh and cosh
tancot.input regression for the functions tan and cot
tanhcoth.input regression for the functions tanh and coth

New Functions Added

Axiom is missing various special functions found in other computer algebra systems. This release adds two new ones, the Exponential Integral E1 and the higher order Exponential Integral En. These have been tested against the published results.

special.spad E1 added
special.spad En added

Bugs Fixed

There are 15 bug fixes in this release:

bug 7015: fix hex(10) mathml rendering
bug 7016: remove code to eat %%
bug 7019: fix F,3 mathml rendering
bug 7023: discardGraph free corrected
bug 7042: ignore regression test gensym
bug 7045: wrong Makefile for Xpm fix
bug 7052: spurious remake of axbook
bug 7054: /home/silver path in bookvol11
bug 7057: ambiguity in mathml
bug 7089/343: FreeAbelianGroup order
bug 7090/355 handle besselK
bug 7093: Function name fix
bug 7100/149: numlock in hyperdoc
bug 7101/204: MoreSystemCommand unnecessary loading
bug 7102/412: Equality testing in TableAggregate

Regression test fixes

As changes happen in the system the regression tests are updated to reflect the new conditions. Changing the category of PositiveInteger caused (a + -bi) to print as (a - bi). New builds raised gensym faults which were fixed. And new builds change random numbers so the tests that depend on them are marked "ok" despite failures due to randomness.
The FreeAbelianGroup bug is tested.

- acplot.spad: Fix output form of negative numbers
- calculus2.input: Fix function names
- classtalk.input: Ignore gensyms
- collect.input: Fix function names
- dfloat.input: Handle negative number output
- easter.input: Fix function names
- elemnum.input: Handle negative number output
- exlap.input: Fix function names
- exsum.input: Fix function names
- free.input: Added to test bug
- grpthry.input: Mark random generation failures ok
- grpthry.input: Fix function names
- ic0.input: Mark random generation failures ok
- intg0.input: Ignore gensyms
- is.input: Type declare function
- kamke3.input: Mark random generation failures ok
- knot2.input: Fix function names
- lodo.spad: Ignore regression test gensym
- maplecok.input: Ignore gensyms
- mathml.input: Handle new mathml sub/sup change
- ndftip.input: Fix missing blank lines
- pmint.input: Rewritten
- repa6.input: Fix function names
- r20bugs.input: Change spacing
- sf.spad: Fix output form of negative numbers
- tbagg.input: Regression for equality testing in TableAggregate

Algebra file changes

The fundamental change was a supposedly transparent move of the category for PositiveInteger. This had the effect of changing the output form and broke several regression tests. Some mathml issues were fixed. The new functions E1 and En were added. The FreeAbelianGroup bug was fixed.

- axserver.spad: Fix lastType output re: errors
- acplot.spad: Fix output form of negative numbers
- combfunc.spad: Fix bold font handling
- integer.spad: Category change for PositiveInteger
- sf.spad: Fix output form of negative numbers
- spf.spad: Handle besselK
- op.spad: Handle besselK
- combfunc.spad: Handle besselK
- free.spad: Fix FreeAbelianGroup bug
- special.spad: Add E1
special.spad add En
mathml.spad fix ambiguity bug in mathml output
mathml.spad fix hex(10) mathml rendering
mathml.spad fix F,3 mathml rendering
mathml.spad remove code to eat %%

Interpreter changes

The primary changes are the addition of bookvol11 for the Firefox
Hyperdoc and the literate documentation of the top level command
handling in bookvol5 (the interpreter) along with rewrites of the
lisp/boot code.

boottfuns.lisp move $systemCommands to bookvol5
bookvol5 browse and top-level command handling
bookvol11 added
http.lisp mathObject2String for hex(10)
incl.boot move incBiteOff to bookvol5
intint.lisp move setCurrentLine to bookvol5
int-top.boot move ncloopCommand, etc. to bookvol5
i-syscmd.boot move $SYSCOMMANDS to bookvol5
Makefile wrong Makefile for Xpm fix
makegraph.c discardGraph free corrected
nci.lisp move ncloopInclude to bookvol5
setq.lisp move command initialization to bookvol5

Documentation changes

bookvol5 explain top level input handling (lisp/boot rewrite)
combfunc.spad fix bold font handling
axiom.sty add binom

Patches released

20071129.01.tpd.patch
20071129.02.tpd.patch
20071205.01.tpd.patch
20071206.01.tpd.patch
20071208.01.tpd.patch
20071215.01.tpd.patch
20071215.02.tpd.patch
20071215.03.gxv.patch
20071216.01.tpd.patch
20071216.02.tpd.patch
20071216.03.acr.patch
20071217.01.acr.patch
20071217.02.tpd.patch
20071218.01.acr.patch
20071225.01.sxw.patch
20071228.01.tpd.patch
20071229.01.jap.patch
20071230.01.acr.patch
20071230.02.tpd.patch
20071230.03.tpd.patch
20080102.01.tpd.patch
20080103.01.tpd.patch
20080104.01.tpd.patch
20080104.02.tpd.patch
20080106.01.tpd.patch
20080107.01.tpd.patch
20080107.02.tpd.patch
20080107.03.tpd.patch
20080116.01.tpd.patch
20080119.01.tpd.patch
20080119.02.tpd.patch
20080119.03.tpd.patch
20080120.01.gxv.patch
20080120.02.tpd.patch
20080120.03.tpd.patch

\end{verbatim}
\end{scroll}
\autobuttons
\end{page}
November 23, 2007 Release Notes

Summary: November 2007 release

All of the golden sources are up to date.
savannah.nongnu.org/projects/axiom CVS
sourceforge.net/projects/axiom CVS
arch@axiom-developer.org ARCH (axiom--main--1--patch-54)
git@axiom-developer.org GIT

ADD NEW CREDITS
New patches were posted by Arthur and Alfredo so their tlas were
added to the changelog

20071001 acr Arthur C. Ralfs <arthur@mathbrane.ca>
20070914 jap Jose Alfredo Portes <doyenatccny@gmail.com>

PORT TO DIFFERENT SYSTEMS
As part of the new axiom website there is a binary release page. The stanzas for these supported systems were added.

20071119 tpd Makefile.pamphlet add fedora6,7,8 stanzas

NEW Axiom WEBSITE: http://axiom-developer.org STARTED. The new Axiom website (currently at axiom.axiom-developer.org) has been started. It will include the binary release page.

REMOVE OLD REGRESSION SYSTEM
The previous regression test system was removed. A new combined regression test and help documentation system was built to replace this mechanism.

20070901 tpd src/input/Makefile remove ALGEBRA variable
20070901 tpd src/algebra/perm.spad remove TEST mechanism
20070901 tpd src/algebra/view2d.spad remove TEST mechanism
20070901 tpd src/algebra/fr.spad remove TEST mechanism

FIX BOOK DOCUMENTATION
Minor typos have been discovered in the book during documentation.

20070905 tpd src/doc/book remove duplicate upperCase, lowerCase typo
20070903 tpd src/doc/bookvol4 fix typos
20070902 tpd src/doc/book MultiSet -> Multiset
20080829 tpd src/doc/book.pamphlet correct typo

FIX BUGS
Various bugs have been found and fixed.

20071101 tpd src/interp/i-output.boot fix bugs 7010 (209), 7011
20070920 tpd src/input/Makefile add bug101.input regression test
20070920 tpd src/input/bug101.input test laplace(log(z),z,w) bug 101
20070920 wxh src/algebra/laplace.spad fix laplace(log(z),z,w) bug 101
20070916 tpd src/input/Makefile add bug103.input regression test
20070916 tpd src/input/bug103.input test solve(z^2, z) bug fix
20070916 tpd src/algebra/polycat.spad solve(z^2, z) bug fix
20070916 tpd src/algebra/caten minor edit for regression cleanup
20070914 tpd merge bug100 branch
20070915 tpd src/input/Makefile add bug100.input regression test
20070915 tpd src/input/bug100.input test integrate((z^a+1)^b, z) infinite loop
20070915 wxh src/algebra/intef.spad fix integrate((z^a+1)^b, z) infinite loop
20070915 tpd src/algebra/caten minor edit for regression cleanup
20070914 wxh src/hyper/hyper fix bad bracing of)hd change
20070914 tpd src/algebra/fraction.spad remove double)spool command
20070914 tpd src/algebra/kl.spad remove double)spool command
1.1. RELEASENOTES.HT

20070914 tpd src/algebra/lindspad remove double)spool command
20070914 tpd src/algebra/radix.spad remove double)spool command

ENABLE DYNAMIC RESTART OF HYPERDOC
Hyperdoc can now be started dynamically or restarted if killed.

20070914 jap adapt changes for)hd restart to Axiom sources
20070914 wxh src/sman/bookvol6 enable restart of hyperdoc with)hd
20070914 wxh src/include/sman.h1 enable restart of hyperdoc with)hd
20070914 wxh src/hyper/hyper enable restart of hyperdoc with)hd

SET UP THE NEW FIREFOX BASED HYPERDOC
Hyperdoc is going away. A new version of hyperdoc is being built
which uses html/javascript/mathml. These files change the interpreter
and algebra to support the new hyperdoc machinery.

20071019 acr src/interp/http.lisp use new return values
20071019 acr src/algebra/axserver.spad use new return values
20071014 acr src/algebra/axserver.spad use getContentType(pathvar)
20071013 acr license/license.ralfs license rewrite
20071013 acr src/interp/http.lisp faster page service
20071013 acr src/algebra/axserver.spad faster page service
20071001 tpd src/algebra/exposed.lisp add ([AxiomServer] . AXSERV) to basic
20071001 tpd src/algebra/Makdefile add axserver.spad
20071001 acr src/algebra/axserver.spad axserver socket connection code
20071001 tpd src/interp/Makdefile add http.lisp
20071001 acr src/interp/http.lisp axserver socket connection code
20071001 acr license/license.ralfs added

REGRESSION TEST CALCULUS
A new regression test suite for calculus is being built. The first
of these files has been added to the system.

20070913 tpd src/input/Makdefile schaum1.input added
20070913 tpd src/input/schaum1.input added

REGRESSION TEST ORDINARY DIFFERENTIAL EQUATIONS
A regression test suite for ordinary differential equations was built.

20071005 tpd src/input/Makdefile kamke7.input regression test added
20071005 tpd src/input/kamke7.input ODE regression test added
20071005 tpd src/input/Makdefile kamke6.input regression test added
20071005 tpd src/input/kamke6.input ODE regression test added
20071005 tpd src/input/Makdefile kamke5.input regression test added
20071005 tpd src/input/kamke5.input ODE regression test added
20071005 tpd src/input/Makdefile kamke4.input regression test added
REGRESSION TEST PFAFFIAN
Martin added the pfaffian regression test. It was added and removed due to documentation license issues. New documentation is being written.

ADD PORTIONS OF THE GUESS PACKAGE
The newton.spad file is actually part of the ffgg.spad file so it was removed. The very top level spad functions in GUESS still do not work properly.

FIX BUILD PROCESS
The build process was not properly suppressing output by default.

ADD ALDOR RELEASE
The aldor release has been added to zips. It will soon be part of the build mechanism but separately maintained like GCL.
20070901 tpd zips/aldor.20070901.tgz added

ADD)HELP FACILITY
The)help facility was recovered. The documentation is now integrated into the spad files and used both for help documentation and algebra regression testing.

Feature Complete Release Feb 2005

The February 2005 release is the first complete release of the Axiom system since it was first made available as open source. This release includes the full complement of algebra, the graphics subsystem, and the hyperdoc system.
This full release runs on Linux and Solaris 9. The algebra runs on Windows.
This release includes the full complement of algebra, the graphics subsystem, and the hyperdoc system.

This full release runs on Linux and Solaris 9. The algebra runs on Windows.
Chapter 2

Special hyperdoc pages

2.1 util.ht

This file contains macros for the Axiom HyperDoc hypertext facility. Most of the macros for the system are here though there may be some in individual .ht files that are of a local nature.

Names of software and facilities

--- util.ht ---

\newcommand{\Browse}{Browse}
\newcommand{\Language}{Axiom}
\newcommand{\SpadName}{\Language}
\newcommand{\LangName}{\Language}
\newcommand{\HyperName}{HyperDoc}
\newcommand{\Clef}{Clef}
\newcommand{\Lisp}{Common LISP}
\newcommand{\naglib}{NAG Foundation Library}
\newcommand{\GoBackToWork}
{\vspace{2}\newline
\{Click on \ \UpButton{} \ to go back to what you were doing.\}}

Special hooks to Unix

All unix commands should be done as macros defined here so we don’t have to go hunting when moving between Unix versions.
HyperDoc menu macros

% Example:
%
% \beginmenu
% \menulink{Thing One}{PageOne} la da di da da ...
% \menulink{Thin Two}{PageTwo} do da day ...
% \item \ACmdMacro{Thing Three} la di da ...
% \endmenu
%
% The menu environment

\newcommand{\beginmenu} \beginitems[MenuDotBitmap] \endmenu
\newcommand{\endmenu} \enditems

% This is the usual format for a menu item.

\newcommand{\menuitemstyle}[1] {MenuDotBitmap#1}

%% Often-used menu item forms

% These two simply do links
\newcommand{\menudownlink}[2] {\item\downlink{menuitemstyle(#1)}{#2}}
\newcommand{\menuuplink}[2] {\item\uplink{menuitemstyle(#1)}{#2}}

% This will cause lower level links to have a HOME button
\newcommand{\menumemolink}[2] {\item\memolink{menuitemstyle(#1)}{#2}}

% This opens a new window for the linked page.
\newcommand{\menumwindowlink}[2] {\item\windowlink{menuitemstyle(#1)}{#2}}

% These execute lisp commands in various flavors
\newcommand{\menulispcommand}[2]
Bitmaps and bitmap manipulation macros

— util.ht —

\newcommand{\htbmdir}{\env{AXIOM}/doc/bitmaps}
\newcommand{\htbmfile}[1]{\htbmdir /#1.bitmap}
\newcommand{\htbitmap}[1]{\inputbitmap{\htbmfile{#1}}}
\newcommand{\ControlBitmap}[1]{\controlbitmap{\htbmfile{#1}}}

% next group of bitmaps frequently appear in the titlebar
\newcommand{\ContinueBitmap}{\ControlBitmap{continue}}
\newcommand{\DoItBitmap}{\ControlBitmap{doit}}
\newcommand{\ExitBitmap}{\ControlBitmap{exit3d}}
\newcommand{\HelpBitmap}{\ControlBitmap{help3d}}
\newcommand{\ReturnBitmap}{\ControlBitmap{home3d}}
\newcommand{\NoopBitmap}{\ControlBitmap{noop3d}}
\newcommand{\UpBitmap}{\ControlBitmap{up3d}}
\newcommand{\MenuDotBitmap}{\htbitmap{menudot}}

% Including control panel pixmaps for help pages:
\newcommand{\helpbit}[1]{1}
{\centerline{\inputpixmap{\env{AXIOM}/doc/pixmaps/#1}}}

HyperDoc button objects

— util.ht —

\newcommand{\ContinueButton}[1]{\downlink{Click here}{#1} to continue.}
\newcommand{\ExitButton}[1]{\memolink{\ExitBitmap}{#1}}
\newcommand{\HelpButton}[1]{\memolink{\HelpBitmap}{#1}}
\newcommand{\StdHelpButton}{\HelpButton{ugHyperPage}}
\newcommand{\StdExitButton}{\ExitButton{ProtectedQuitPage}}
\newcommand{\UpButton}{\upbutton{UpBitmap}{UpPage}}
\newcommand{\ReturnButton}{\returnbutton{\ReturnBitmap}{ReturnPage}}
\newcommand{\on}[1]{{\inputbox[1]{#1}{\htbmfile{pick}}
\htbmfile{unpick}}}
\newcommand{\off}[1]{{\inputbox[0]{#1}{\htbmfile{pick}}
\htbmfile{unpick}}}

Standard HyperDoc button configurations

— util.ht —

\newcommand{\autobutt}[1]{\helppage{#1}}
\newcommand{\autobuttons}{}
\newcommand{\exitbuttons}{}
\newcommand{\autobuttLayout}[1]{\centerline{#1}}
\newcommand{\autobuttMaker}[1]{\autobuttLayout{\HelpButton{#1}}}
\newcommand{\riddlebuttons}[1]{\autobuttLayout{\link{\HelpBitmap}{#1}}}

% Macro for downward compatibility (?).
\newcommand{\simplebox}[2]{{\inputbox[1][#1][#2]{\htbitmap{xbox}}{\htbitmap{xopenbox}}}}

HyperDoc graphics macros

— util.ht —

% Including viewport bitmaps within \HyperName pages:
2.1. UTIL.HT

% Creating a real live viewport:
\newcommand{\viewportbutton}[2]{\unixcommand{#1}{viewalone #2}}
\newcommand{\axiomViewportbutton}[2]{\unixcommand{#1}{viewalone \$AXIOM/doc/viewports/{#2}}}
\newcommand{\spadviewportbutton}[2]{\axiomViewportbutton{#1}{#2}}

% Making active viewport buttons:
\newcommand{\viewportasbutton}[1]{\unixcommand{\inputimage{{#1}.view/image}}{viewalone {#1}}}
\newcommand{\axiomViewportasbutton}[1]{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/{#1}.view/image}}{viewalone \$AXIOM/doc/viewports/{#1}}}
\newcommand{\spadviewportasbutton}[1]{\axiomViewportasbutton{#1}}

TeX and LaTeX compatibility macros

— util.ht —

%%% Begin macros that are needed because HD uses the wrong names
\newcommand{\center}[1]{\centerline{#1}}
\newcommand{\box}[1]{\fbox{#1}}
%%% End macros that are needed because HD uses the wrong names

\newcommand{\LARGE}{}
\newcommand{\LaTeX}{LaTeX}
\newcommand{\Large}{}
\newcommand{\TeX}{TeX}
\newcommand{\allowbreak}{}
\newcommand{\aleph}{\inputbitmap{\htbmdir{}/aleph.bitmap}}
\newcommand{\alpha}{\inputbitmap{\htbmdir{}/alpha.bitmap}}
\newcommand{\angle}{\inputbitmap{\htbmdir{}/angle.bitmap}}
\newcommand{\backslash}{\inputbitmap{\htbmdir{}/backslash.bitmap}}
\newcommand{\beta}{\inputbitmap{\htbmdir{}/beta.bitmap}}
\newcommand{\bigbreak}{\newline\newline}
\newcommand{\bot}{\inputbitmap{\htbmdir{}/bot.bitmap}}
\newcommand{\Omega}{\inputbitmap{\htbmdir{}/omega-cap.bitmap}}
\newcommand{\parallel}{\inputbitmap{\htbmdir{}/parallel.bitmap}}
\newcommand{\partial}{\inputbitmap{\htbmdir{}/partial.bitmap}}
\newcommand{\phi}{\inputbitmap{\htbmdir{}/phi.bitmap}}
\newcommand{\Phi}{\inputbitmap{\htbmdir{}/phi-cap.bitmap}}
\newcommand{\pi}{\inputbitmap{\htbmdir{}/pi.bitmap}}
\newcommand{\Pi}{\inputbitmap{\htbmdir{}/pi-cap.bitmap}}
\newcommand{\prime}{\inputbitmap{\htbmdir{}/prime.bitmap}}
\newcommand{\prod}{\inputbitmap{\htbmdir{}/prod.bitmap}}
\newcommand{\protect}{}
\newcommand{\psi}{\inputbitmap{\htbmdir{}/psi.bitmap}}
\newcommand{\Psi}{\inputbitmap{\htbmdir{}/psi-cap.bitmap}}
\newcommand{\quad}{\inputbitmap{\htbmdir{}/quad.bitmap}}
\newcommand{\Re}{\inputbitmap{\htbmdir{}/re-cap.bitmap}}
\newcommand{\rho}{\inputbitmap{\htbmdir{}/rho.bitmap}}
\newcommand{\sc}{\rm}
\newcommand{\sf}{\bf}
\newcommand{\sigma}{\inputbitmap{\htbmdir{}/sigma.bitmap}}
\newcommand{\Sigma}{\inputbitmap{\htbmdir{}/sigma-cap.bitmap}}
\newcommand{\small}{}
\newcommand{\sum}{\inputbitmap{\htbmdir{}/sum.bitmap}}
\newcommand{\surd}{\inputbitmap{\htbmdir{}/surd.bitmap}}
\newcommand{\tau}{\inputbitmap{\htbmdir{}/tau.bitmap}}
\newcommand{\theta}{\inputbitmap{\htbmdir{}/theta.bitmap}}
\newcommand{\Theta}{\inputbitmap{\htbmdir{}/theta-cap.bitmap}}
\newcommand{\times}{\inputbitmap{\htbmdir{}/times.bitmap}}
\newcommand{\top}{\inputbitmap{\htbmdir{}/top.bitmap}}
\newcommand{\triangle}{\inputbitmap{\htbmdir{}/triangle.bitmap}}
\newcommand{\upsilon}{\inputbitmap{\htbmdir{}/upsilon.bitmap}}
\newcommand{\Upsilon}{\inputbitmap{\htbmdir{}/upsilon-cap.bitmap}}
\newcommand{\vbox}{\[#1\]}
\newcommand{\wp}{\inputbitmap{\htbmdir{}/wp.bitmap}}
\newcommand{\xi}{\inputbitmap{\htbmdir{}/xi.bitmap}}
\newcommand{\Xi}{\inputbitmap{\htbmdir{}/xi-cap.bitmap}}
\newcommand{\zeta}{\inputbitmap{\htbmdir{}/zeta.bitmap}}
\newcommand{\bs}{\\}

Book and .ht page macros

— util.ht —

\newcommand{\beginImportant}{\horizontalline}
\newcommand{\endImportant}{\horizontalline}

%
% following handles things like "i-th" but uses "-th"
\newcommand{\eth}[1]{\{#1\}-th}}
%
\newcommand{\texnewline}{}
\newcommand{\texbreak}{}
\newcommand{\Gallery}{\{Axiom Images\}}
\newcommand{\exptypeindex}[1]{}
\newcommand{\gotoevenpage}{}
\newcommand{\ignore}[1]{}
\newcommand{\ind}{\newline\tab{3}}
\newcommand{\labelSpace}[1]{}
\newcommand{\mathOrSpad}[1]{\spad{#1}}
\newcommand{\menuspadref}[2]{\menudownlink{#1}{#2Page}}
\newcommand{\menuxmpref}[1]{\menudownlink{`#1'}{#1XmpPage}}
% comment and then \spadcommand or spadsrc
\newcommand{\noOutputXtc}[2]{\xtc{#1}{#2}}
\newcommand{\inputbitmap}[1]{\input\htbmdir{}/#1.bitmap}
\newcommand{\not=}{\inputbitmap{not=.bitmap}}
\newcommand{\notequal}{\inputbitmap{notequal.bitmap}}
% comment and then \spadcommand or spadsrc
\newcommand{\nullXtc}[2]{\xtc{#1}{#2}}
\newcommand{\nullspadcommand}[1]{\spadcommand}
% Use this instead of \par for now.
\newcommand{\pp}{\newline}
% comment and then \spadcommand or spadsrc
\newcommand{\psXtc}[3]{\xtc{#1}{#2}}
\newcommand{\ref}[1]{(see the graph)}
\newcommand{\showBlurb}[1]{Issue the system command \spadcmd{)show #1} to display the full list of operations defined by \spadtype{#1}.}
\newcommand{\smath}[1]{\mathOrSpad{#1}}
\newcommand{\spadFileExt}{.spad}
\newcommand{\spadkey}[1]{}\newcommand{\spadref}[1]{\it #1}
\newcommand{\spadsig}[2]{\spadtype{#1} \tt -> \spadtype{#2}}
\newcommand{\axiomSig}[2]{\axiomType{#1} \tt -> \axiomType{#2}}
\newcommand{\axiomIndex}{1}
\newcommand{\syscmdIndex}[1]{}
\newcommand{\syscmdcmd}[1]{}
\newcommand{\threeDim}{three-dimensional}
\newcommand{\void}{the unique value of \spadtype{Void}}
\newcommand{\xdefault}[1]{\{#1\} \tt "$#1$"}.}
\newcommand{\xmpLine}[2]{{\tt #1}\newline} % have to improve someday
\newcommand{\xmpref}[1]{\downlink{`#1'}{#1XmpPage}}
% comment and then \spadcommand or spadsrc
\newcommand{\xtc}[2]{#1 #2}
% glossary terms
\newcommand{\spadgloss}[1]{\lispdownlink{#1}{(|htGloss| '|#1|)}}
\newcommand{\spadglossSee}[2]{\lispdownlink{#1}{(|htGloss| '|#2|)}}

% use this for syntax punctuation: \axiomSyntax{:}
\newcommand{\axiomSyntax}[1]{'``{\tt #1}''}
\newcommand{\spadSyntax}[1]{\axiomSyntax{#1}}

% constructors
\newcommand{\axiomType}[1]{\lispdownlink{#1}{(|spadType| '|#1|)}}
\newcommand{\spadtype}[1]{\axiomType{#1}}

% things that browse can't handle
\newcommand{\nonLibAxiomType}[1]{{\it #1}}
\newcommand{\pspadtype}[1]{\nonLibAxiomType{#1}}

\newcommand{\axiom} [1]{{\tt #1}} % note font
\newcommand{\spad} [1]{{\tt \axiom{#1}}}
\newcommand{\spadvar} [1]{{\tt \axiom{#1}}}
\newcommand{\s} [1]{{\tt \axiom{#1}}}
\newcommand{\httex}[2]{{#1}}
\newcommand{\texht}[2]{{#2}}

% Function names:
% The X versions below are used because Axiom function names that end
% in "!" cause problems for makeindex for had-copy.
% Example: \spadfunFromX{reverse}{List} prints as reverse!
% In the "From" versions, the first arg is function name,
% second is constructor where exported.
% Use the "op" flavors of "-", "+", "*" etc, otherwise the "fun" flavors
\newcommand{\userfun} [1]{{\bf #1}} % example, non-library function names
\newcommand{\fakeAxiomFun}[1]{{\bf #1}} % not really a library function
\newcommand{\pspadfun} [1]{{\bf \fakeAxiomFun{#1}}}
\newcommand{\axiomFun} [1]{{\lispdownlink{#1}{(|oPage| '|#1|)}}}
\newcommand{\spadfun} [1]{{\lispdownlink{#1}{(|spadFun| '|#1|)}}}
\newcommand{\axiomFunX}[1]{{\lispdownlink{#1!}{(|oPage| '|#1|)}}}
\newcommand{\spadfunX}[1]{{\lispdownlink{#1!}{(|spadFun| '|#1|)}}}
\newcommand{\axiomFunFrom}[2]{{\lispdownlink{#1}{(|oPageFrom| '|#1| '|#2|)}}}
\newcommand{\spadfunFrom}[2]{{\lispdownlink{#1}{(|spadFunFrom| '|#1| '|#2|)}}}
\newcommand{\axiomFunFromX}[2]{{\lispdownlink{#1!}{(|oPageFrom| '|#1| '|#2|)}}}
\newcommand{\spadfunFromX}[2]{{\lispdownlink{#1!}{(|spadFunFrom| '|#1| '|#2|)}}}

ewcommand{\axiomOp}{[1]{\lispdownlink{#1}{(|oPage| '}|#1|)}}
\newcommand{\spadop}{[1]{\axiomOp{#1}}}
\newcommand{\axiomOpX}{[1]{\axiomOp{#1!}}}
\newcommand{\axiomOpFrom}{[2]{\lispdownlink{#1}{(|oPageFrom| '}|#1| '}|#2|)}}
\newcommand{\spadopFrom}{[2]{\axiomOpFrom{#1}{#2}}}
\newcommand{\axiomOpFromX}{[2]{\axiomOpFrom{#1!}{#2}}}
\newcommand{\spadopFromX}{[2]{\axiomOpFrom{#1!}{#2}}}
\newcommand{\spadsyscom}{[1]{\tt #1}}
\newcommand{\spadcmd}{[1]{\spadsyscom{#1}}}
\newcommand{\spadsys}{[1]{\spadsyscom{#1}}}

% Following macros should be phased out in favor of ones above:
\newcommand{\gloss}{[1]{\lispdownlink{#1}{(|htGloss| '}|#1|)}}
\newcommand{\spadglos}{[1]{\lispdownlink{#1}{(|htGloss| '}|#1|)}}
\newcommand{\glossSee}{[2]{\lispdownlink{#1}{(|htGloss| '}|#2|)}}

——

Browse macros

— util.ht —

\newcommand{\undocumented}{[0]{is not documented yet}}
\newcommand{\aliascon}{[2]{\lispdownlink{#1}{(|conPage| '}|#2|)}}
\newcommand{\aliasdom}{[2]{\lispdownlink{#1}{(|conPage| '}|#2|)}}
\newcommand{\andexample}{[1]{\indent{5}\spadcommand{#1}\indent{0}\newline}}
\newcommand{\blankline}{\vspace{1}\newline}
\newcommand{\con}{[1]{\lispdownlink{#1}{(|conPage| '|#1|)}}}
\newcommand{\conf}{[2]{\lispdownlink{#1}{(|conPage| '}|#2|)}}
% generalizes "con" to allow arbitrary title and form
\newcommand{\ops}{[3]{\lispdownlink{#1}{(|conOpPage| #2 '}{#3)}}}
% does lisplink to operation page of a constructor or form
% #1 is constructor name or form, without fences, e.g. "Matrix(Integer)"
% #2 is page number, extracted from $curPage (see fromHeading/dbOpsForm)
% #3 is constructor name or form, with fences, e.g. "(|Matrix| (|Integer|))"
\newcommand{\dlink}{[2]{\downlink{#2}{#1}}}
\newcommand{\dox}{[1]{\lispdownlink{#1}{(|conPage| '}|#1|)}}
\newcommand{\example}{[1]{\newline\indent{5}\spadcommand{#1}\indent{0}\newline}}
\newcommand{\lisp}{[2]{\lispdownlink{#2}{#1}}}
Support for output and graph paste-ins

— util.ht —

Hook for including a local menu item on the rootpage

— util.ht —
\newcommand{\localinfo}{}

Not Connected to Axiom

\begin{page}{SpadNotConnectedPage}{Not Connected to Axiom}
\beginscroll
Hyperdoc isn’t connected to Axiom, therefore cannot execute the button you pressed.
\%\GoBackToWork\endscroll
\end{page}

Do You Really Want to Exit?

\begin{page}{ProtectedQuitPage}{Do You Really Want to Exit?}
\beginscroll
{Click again on \ExitButton{QuitPage} \ to terminate Hyperdoc.}
\vspace{1}\newline
\centerline{OR}\GoBackToWork\\endscroll
\end{page}

Missing Page

\begin{page}{}
\end{page}
2.1. UTIL.HT

\begin{page}\{UnknownPage\}\{Missing Page\}
\beginscroll
\pp
The page you requested was not found in the Hyperdoc database.
\GoBackToWork{}
\endscroll
\end{page}

Something is Wrong

— util.ht —

\begin{page}\{ErrorPage\}\{Something is Wrong\}
\beginscroll
\{For some reason the page you tried to link to cannot be formatted.\}
\GoBackToWork{}
\endscroll
\autobuttons
\end{page}

Sorry!

— util.ht —

\begin{page}\{Unlinked\}\{Sorry!\}
\beginscroll
\{This link is not implemented yet.\}
\GoBackToWork{}
\endscroll
\autobuttons
\end{page}
Chapter 3

Hyperdoc pages

The hyperdoc pages can be viewed as a forest of rooted pages. The main routine in hypertex will look for a page called “RootPage”.

3.1 rootpage.ht

Axiom HyperDoc Top Level

What would you like to do?
- Basic Commands: Solve problems by filling in templates.
- Reference: Scan on-line documentation for Axiom.
- Topics: Learn how to use Axiom, by topic.
- Browse: Browse through the Axiom library.
- Examples: See examples of use of the library.
- Settings: Display and change the system environment.
- About AXIOM: See some basic information about Axiom.
- What’s New: Enhancements in this version of Axiom.
CHAPTER 3. HYPERDOC PAGES

⇒ “Basic Commands” (BasicCommand) 3.6 on page 155
⇒ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “Topics” (TopicPage) 3.108 on page 1313
⇒ “Browse” (Man0Page) 3.71 on page 962
⇒ “Examples” (TopExamplePage) 3.1 on page 121
⇒ “Settings” (TopSettingsPage) 3.1 on page 120
⇒ “About Axiom” (RootPageLogo) 3.1 on page 119
⇒ “What’s New” (releaseNotes) 1.1 on page 1

— rootpage.ht —

\begin{page}\{RootPage\}\{Axiom HyperDoc Top Level\}
\beginscroll
\centerline{\inputbitmap{\htbdir{}\axiom1.bitmap}}
\horizontalline
\newline\tab{0}
What would you like to do?

\begin{menu}
\menuwindowlink{Basic Commands}\{BasicCommand\}
\tab{16}Solve problems by filling in templates.
\menuwindowlink{Reference}\{TopReferencePage\}
\tab{16}Scan on-line documentation for Axiom.
\menuwindowlink{Topics}\{TopicPage\}
\tab{16}Learn how to use Axiom, by topic.
\menuwindowlink{Browse}\{Man0Page\}
\tab{16}Browse through the Axiom library.
\menuwindowlink{Examples}\{TopExamplePage\}
\tab{16}See examples of use of the library.
\menuwindowlink{Settings}\{TopSettingsPage\}
\tab{16}Display and change the system environment.
\%\menuwindowlink{NAG Link}\{htxl\}
\%\tab{16} Link to NAG Numerical Library.
\%\menuwindowlink{\inputbitmap{\htbdir{}\anna.xbm.tiny}}\{UXANNA\}
\%\tab{16} The Axiom/NAG Numerical Analyst Expert System
\menuwindowlink{About Axiom}\{RootPageLogo\}
\tab{16}See some basic information about Axiom.
\%\menuwindowlink{What’s New}\{ugWhatsNewTwoTwoPage\}
\menuwindowlink{What’s New}\{releaseNotes\}
\tab{16}Enhancements in this version of Axiom.
Axiom – The Scientific Computation System

Axiom is now free and open source software released under the Modified BSD license. For further information visit http://axiom.axiom-developer.org
AXIOM was originally developed by the Research Division of the International Business Machines Corporation, Yorktown Heights, New York, USA.
System Commands

System commands are used to perform Axiom environment management and change Axiom system variables.

- **Commands** System commands that control your environment.
- **Settings** Change an Axiom variable.

<= “Root Page” (RootPage) 3.1 on page 117
=> “Commands” (ugSysCmdPage) 19 on page 2538

The “Settings” link is implemented in lisp.

— rootpage.ht —
System commands are used to perform Axiom environment management and change Axiom system variables.

System commands that control your environment.

Change an Axiom variable.

Axiom Examples

What would you like to see?
- Graphics Examples of Axiom Graphics
- Domains Examples of use of Axiom domains and packages
- Operations Examples of Axiom Operations, by topic

← “Root Page” (RootPage) 3.1 on page 117
⇒ “Graphics” (GraphicsExamplePage) 3.50 on page 602
⇒ “Domains” (ExamplesExposedPage) 3.117 on page 1369
⇒ “Operations” (ExampleCoverPage) 3.20 on page 304

— rootpage.ht —

\begin{page}{TopExamplePage}{Axiom Examples}
CHAPTER 3. HYPERDOC PAGES

\beginscroll
What would you like to see?
\beginmenu
\item\menudownlink{Graphics}{GraphicsExamplePage}
\tab{12}Examples of Axiom Graphics
\item\menudownlink{Domains}{ExamplesExposedPage}
\tab{12}Examples of use of Axiom domains and packages
\item\menudownlink{Operations}{ExampleCoverPage}
\tab{12}Examples of Axiom Operations, by topic
\endmenu
\endscroll
\autobuttons
\end{page}

\beginmenu
\item\menudownlink{Graphics}{GraphicsExamplePage}
\tab{12}Examples of Axiom Graphics
\item\menudownlink{Domains}{ExamplesExposedPage}
\tab{12}Examples of use of Axiom domains and packages
\item\menudownlink{Operations}{ExampleCoverPage}
\tab{12}Examples of Axiom Operations, by topic
\endmenu
\endscroll
\autobuttons
\end{page}
3.1. ROOTPAGE.HT

Axiom Reference

0.1. Aldor compiler – Enhancements and Additions
0.2. New polynomial domains and algorithms
0.3. Enhancements to HyperDoc and Graphics
0.4. Enhancements to NAGLink
0.5. Enhancements to the Lisp system

“All that’s New” (ugWhatsNewTwoTwoPage) 5 on page 1473
“Glossary” (GlossaryPage) 3.49 on page 579
“HyperDoc” (HTXTopPage) 21.28 on page 2699
“Search” (RefSearchPage) 3.71 on page 951

— rootpage.ht —

To select an item, move the cursor with the mouse to any word in “this font” (YouTriedIt) and click the left mouse button.
CHAPTER 3. HYPERDOC PAGES

\menumemolink{Axiom Book}{UsersGuidePage} \tab{12}The on-line version of the Jenks/Sutor book.

%\menumemolink{\asharp{} Guide}{AsUsersGuidePage} %\tab{12}The on-line \asharp{} Users Guide.

\menumemolink{NAG Library}{FoundationLibraryDocPage} \tab{12}The on-line \naglib{} documentation.

\menumemolink{Topics}{TopicPage} \tab{12}Learn how to use Axiom, by topic.

\menumemolink{Language}{ugLangPage} \tab{12}Introduction to the Axiom language.

\menumemolink{Examples}{ExamplesExposedPage} \tab{12}Examples for exposed domains and packages

\menumemolink{Commands}{ugSysCmdPage} \tab{12}System commands that control your workspace.

%\menumemolink{Operations}{NoPageYet} \tab{12} %A guide to useful operations

%\menulispcommand{System Variables}{(|htsv|)}\tab{12} %\tab{16}View and change a system-defined variable

\menumemolink{Glossary}{GlossaryPage}\tab{12} A glossary of Axiom terms.

\menumemolink{Hyperdoc}{HTXTopPage} \tab{12} How to write your own Hyperdoc pages.

\menumemolink{Search}{RefSearchPage} \tab{12} Reference pages for occurrences of a string.
\endmenu
\endscroll
\autobuttons
\end{page}
3.1. ROOTPAGE.HT

NAG Documentation

Essential Introduction to the NAG Foundation Library

Foundation Library Chapter Manual Pages

- C02 Zeros of Polynomials
 - c02aff c02agf
- C05 Roots of One or More Transcendental Equations
 - c05adf c05nbf c05pbf c05zaf
- C06 Summation of Series
 - c06saf c06scaf c06sff c06srf c06gaf c06gaf
 - c06sbf c06sckf c06sckf c06sgf c06sgf
- D01 Quadrature
 - d01ajf d01alf d01amf d01aqf d01baf d01gaf
 - d01akf d01amf d01apf d01asf d01asf d01asf
 - d01gaf d01gaf d01gaf d01gaf d01gaf d01gaf

D02 Ordinary Differential Equations

D03 Partial Differential Equations

⇐ “Reference” (TopReferencePage) 3.1 on page 123

— rootpage.ht —
CHAPTER 3. HYPERDOC PAGES

{\downlink{c05zaf}{manpageXXc05zaf}}
\indentrel{-8}
\item\downlink{\menuitemstyle{C06}}
{manpageXXc06}\tab{8} Summation of Series
\indentrel{8}\newline
\table{
\downlink{c06eaf}{manpageXXc06eaf}
\downlink{c06ebf}{manpageXXc06ebf}
\downlink{c06ecf}{manpageXXc06ecf}
\downlink{c06ekf}{manpageXXc06ekf}
\downlink{c06fpf}{manpageXXc06fpf}
\downlink{c06fqp}{manpageXXc06fqp}
\downlink{c06frf}{manpageXXc06frf}
\downlink{c06fuf}{manpageXXc06fuf}
\downlink{c06gbf}{manpageXXc06gbf}
\downlink{c06gcf}{manpageXXc06gcf}
\downlink{c06gqf}{manpageXXc06gqf}
\downlink{c06gsf}{manpageXXc06gsf}
}\indentrel{-8}
\item\downlink{\menuitemstyle{D01}}{manpageXXd01}\tab{8} Quadrature
\indentrel{8}\newline
\table{
\downlink{d01ajf}{manpageXXd01ajf}
\downlink{d01akf}{manpageXXd01akf}
\downlink{d01alf}{manpageXXd01alf}
\downlink{d01amf}{manpageXXd01amf}
\downlink{d01anf}{manpageXXd01anf}
\downlink{d01apf}{manpageXXd01apf}
\downlink{d01aqf}{manpageXXd01aqf}
\downlink{d01asf}{manpageXXd01asf}
\downlink{d01bbf}{manpageXXd01bbf}
\downlink{d01fch}{manpageXXd01fch}
\downlink{d01gaf}{manpageXXd01gaf}
\downlink{d01gbf}{manpageXXd01gbf}
}\indentrel{-8}
\item\downlink{\menuitemstyle{D02}}
{manpageXXd02}\tab{8} Ordinary Differential Equations
\indentrel{8}\newline
\table{
\downlink{d02bbf}{manpageXXd02bbf}
\downlink{d02bhf}{manpageXXd02bhf}
\downlink{d02cfj}{manpageXXd02cfj}
\downlink{d02ejf}{manpageXXd02ejf}
\downlink{d02gaf}{manpageXXd02gaf}
\downlink{d02gbf}{manpageXXd02gbf}
\downlink{d02kef}{manpageXXd02kef}
\downlink{d02raf}{manpageXXd02raf}
}\indentrel{-8}
\item\downlink{\menuitemstyle{D03}}
{manpageXXd03}\tab{8} Partial Differential Equations
3.1. ROOTPAGE.HT

\indentrel{8}\newline
\table{
 \{downlink{d03edf}{manpageXXd03edf}}
 \{downlink{d03eef}{manpageXXd03eef}}
 \{downlink{d03faf}{manpageXXd03faf}}
}\indentrel{-8}
\item\downlink{\menuitemstyle{E01}}{manpageXXe01}\tab{8} Interpolation
\indentrel{8}\newline
\table{
 \{downlink{e01baf}{manpageXXe01baf}}
 \{downlink{e01bef}{manpageXXe01bef}}
 \{downlink{e01bff}{manpageXXe01bff}}
 \{downlink{e01bgf}{manpageXXe01bgf}}
 \{downlink{e01bhf}{manpageXXe01bhf}}
 \{downlink{e01daf}{manpageXXe01daf}}
 \{downlink{e01saf}{manpageXXe01saf}}
 \{downlink{e01sbf}{manpageXXe01sbf}}
 \{downlink{e01sef}{manpageXXe01sef}}
 \{downlink{e01sff}{manpageXXe01sff}}
}\indentrel{-8}
\item\downlink{\menuitemstyle{E02}}{manpageXXe02}\tab{8} Curve and Surface Fitting
\indentrel{8}\newline
\table{
 \{downlink{e02adf}{manpageXXe02adf}}
 \{downlink{e02aef}{manpageXXe02aef}}
 \{downlink{e02agf}{manpageXXe02agf}}
 \{downlink{e02ahf}{manpageXXe02ahf}}
 \{downlink{e02ajf}{manpageXXe02ajf}}
 \{downlink{e02akf}{manpageXXe02akf}}
 \{downlink{e02baf}{manpageXXe02baf}}
 \{downlink{e02bbf}{manpageXXe02bbf}}
 \{downlink{e02bcf}{manpageXXe02bcf}}
 \{downlink{e02bdf}{manpageXXe02bdf}}
 \{downlink{e02bef}{manpageXXe02bef}}
 \{downlink{e02daf}{manpageXXe02daf}}
 \{downlink{e02dcf}{manpageXXe02dcf}}
 \{downlink{e02ddf}{manpageXXe02ddf}}
 \{downlink{e02def}{manpageXXe02def}}
 \{downlink{e02dff}{manpageXXe02dff}}
 \{downlink{e02gaf}{manpageXXe02gaf}}
 \{downlink{e02zaf}{manpageXXe02zaf}}
}\indentrel{-8}
\item\downlink{\menuitemstyle{E04}}{manpageXXe04}\tab{8} Minimizing or Maximizing a Function
\indentrel{8}\newline
\table{
 \{downlink{e04dgf}{manpageXXe04dgf}}
 \{downlink{e04djf}{manpageXXe04djf}}
 \{downlink{e04dkf}{manpageXXe04dkf}}
CHAPTER 3. HYPERDOC PAGES

{\downlink{e04fdf}{manpageXXe04fdf}}
{\downlink{e04gcf}{manpageXXe04gcf}}
{\downlink{e04jaf}{manpageXXe04jaf}}
{\downlink{e04mbf}{manpageXXe04mbf}}
{\downlink{e04naf}{manpageXXe04naf}}
{\downlink{e04ucf}{manpageXXe04ucf}}
{\downlink{e04udf}{manpageXXe04udf}}
{\downlink{e04uef}{manpageXXe04uef}}
{\downlink{e04ycf}{manpageXXe04ycf}}

\item{\downlink{F}{manpageXXf}} Linear Algebra
\item{\downlink{F01}} Matrix Operations, Including Inversion
\item{\downlink{F02}} Eigenvalues and Eigenvectors
\item{\downlink{F04}} Simultaneous Linear Equations

\table{
{\downlink{f01brf}{manpageXXf01brf}}
{\downlink{f01bsf}{manpageXXf01bsf}}
{\downlink{f01maf}{manpageXXf01maf}}
{\downlink{f01mcf}{manpageXXf01mcf}}
{\downlink{f01qcf}{manpageXXf01qcf}}
{\downlink{f01qdf}{manpageXXf01qdf}}
{\downlink{f01qef}{manpageXXf01qef}}
{\downlink{f01rcf}{manpageXXf01rcf}}
{\downlink{f01rdf}{manpageXXf01rdf}}
{\downlink{f01ref}{manpageXXf01ref}}
}

\table{
{\downlink{f02aaf}{manpageXXf02aaf}}
{\downlink{f02abf}{manpageXXf02abf}}
{\downlink{f02adf}{manpageXXf02adf}}
{\downlink{f02aef}{manpageXXf02aef}}
{\downlink{f02aff}{manpageXXf02aff}}
{\downlink{f02agf}{manpageXXf02agf}}
{\downlink{f02ajf}{manpageXXf02ajf}}
{\downlink{f02akf}{manpageXXf02akf}}
{\downlink{f02auf}{manpageXXf02auf}}
{\downlink{f02axf}{manpageXXf02axf}}
{\downlink{f02bbf}{manpageXXf02bbf}}
{\downlink{f02bjf}{manpageXXf02bjf}}
{\downlink{f02fjf}{manpageXXf02fjf}}
{\downlink{f02wef}{manpageXXf02wef}}
{\downlink{f02xef}{manpageXXf02xef}}
}

\table{
3.1. ROOTPAGE.HT

\item \downlink{f04adf}{manpageXXf04adf}
\item \downlink{f04ar}{manpageXXf04arf}
\item \downlink{f04asf}{manpageXXf04asf}
\item \downlink{f04atf}{manpageXXf04atf}
\item \downlink{f04axf}{manpageXXf04axf}
\item \downlink{f04faf}{manpageXXf04faf}
\item \downlink{f04jgf}{manpageXXf04jgf}
\item \downlink{f04maf}{manpageXXf04maf}
\item \downlink{f04mbf}{manpageXXf04mbf}
\item \downlink{f04mcf}{manpageXXf04mcf}
\item \downlink{f04qaf}{manpageXXf04qaf}

\item \downlink{f07adf}{manpageXXf07adf}
\item \downlink{f07aef}{manpageXXf07aef}
\item \downlink{f07fdf}{manpageXXf07fdf}
\item \downlink{f07fef}{manpageXXf07fef}

\item \downlink{s01eaf}{manpageXXs01eaf}
\item \downlink{s13aaf}{manpageXXs13aaf}
\item \downlink{s13acf}{manpageXXs13acf}
\item \downlink{s13adf}{manpageXXs13adf}
\item \downlink{s14aaf}{manpageXXs14aaf}
\item \downlink{s14abf}{manpageXXs14abf}
\item \downlink{s14baf}{manpageXXs14baf}
\item \downlink{s15adf}{manpageXXs15adf}
\item \downlink{s15aef}{manpageXXs15aef}
\item \downlink{s17acf}{manpageXXs17acf}
\item \downlink{s17adf}{manpageXXs17adf}
\item \downlink{s17aaf}{manpageXXs17aaf}
\item \downlink{s17aff}{manpageXXs17aff}
\item \downlink{s17agf}{manpageXXs17agf}
\item \downlink{s17ahf}{manpageXXs17ahf}
\item \downlink{s17ajf}{manpageXXs17ajf}
\item \downlink{s17akf}{manpageXXs17akf}
\item \downlink{s17dcf}{manpageXXs17dcf}
\item \downlink{s17def}{manpageXXs17def}
\item \downlink{s17dgf}{manpageXXs17dgf}
\item \downlink{s17dhf}{manpageXXs17dhf}
\item \downlink{s17dif}{manpageXXs17dif}
\item \downlink{s18acf}{manpageXXs18acf}
\item \downlink{s18adf}{manpageXXs18adf}
\item \downlink{s18aef}{manpageXXs18aef}
Introduction to NAG On-Line Documentation

Keywords in Context

List of all \naglib{} Routines

Converting from the Workstation Library
3.2 algebra.ht

Abstract Algebra

Axiom provides various facilities for treating topics in abstract algebra.

- **Number Theory**
 Topics in algebraic number theory.
- **Group Theory**
 Permutation groups; representation theory.

\begin{page}{AlgebraPage}{Abstract Algebra}
\beginscroll
Axiom provides various facilities for treating topics in abstract algebra.
\beginmenu
\menulink{Number Theory}{NumberTheoryPage}
Topics in algebraic number theory.
\menulink{Group Theory}{GroupTheoryPage}
Permutation groups; representation theory.
\endmenu
\endscroll
\autobuttons
\end{page}
Number Theory

⇒ “Galois Groups” (ugProblemGaloisPage) 12 on page 2306
⇒ “Number Theory Functions” (IntNumberTheoryFnsXmpPage) 3.56 on page 722

3.3 alist.ht

AssociationList

⇒ “Table” (TableXmpPage) 3.106 on page 1298
⇒ “List” (ListXmpPage) 3.64 on page 866

The \spadtype{AssociationList} constructor provides a general structure for associative storage. This type provides association lists in which data objects can be saved according to keys of any type. For a given association list, specific types must be chosen for the keys and entries. You can think of the representation of an association list as a list of records with key and entry fields.
Association lists are a form of table and so most of the operations available for \spadtype{Table} are also available for \spadtype{AssociationList}. They can also be viewed as lists and can be manipulated accordingly.

\begin{verbatim}
\spad{Data := Record(monthsOld : Integer, gender : String)}
\end{verbatim}

This is a \spadtype{Record} type with age and gender fields.

\begin{verbatim}
\spad{al := AssociationList(String,Data)}
\end{verbatim}

In this expression, \spad{al} is declared to be an association list whose keys are strings and whose entries are the above records.

\begin{verbatim}
\spad{al := table()}
\end{verbatim}

The \spadfunFrom{table}{AssociationList} operation is used to create an empty association list.

\begin{verbatim}
\spad{al."bob" := [407,"male"]}
\end{verbatim}

You can use assignment syntax to add things to the association list.

\begin{verbatim}
\spad{al."judith" := [366,"female"]}
\end{verbatim}

Perhaps we should have included a species field.

\begin{verbatim}
\spad{al."smokie" := [200,"female"]}
\end{verbatim}

Now look at what is in the association list.

\begin{verbatim}
\spad{al}
\end{verbatim}

Note that the last-added \{key, entry\} pair is at the beginning of the list.

\begin{verbatim}
\spad{al."katie" := [23,"female"]}
\end{verbatim}

You can reset the entry for an existing key.

\begin{verbatim}
\spad{al}"katie" := [23,"female"]
\end{verbatim}
Use \spadfunFrom{delete}{AssociationList} to destructively remove an element of the association list.

Use \spadfunFrom{delete}{AssociationList} to return a copy of the association list with the element deleted. The second argument is the index of the element to delete.

\spadpaste{delete!(al,1) \free{al6}\bound{al7}}

For more information about tables, see \downlink{`Table'}{TableXmpPage}\ignore{Table}.

For more information about lists, see \downlink{`List'}{ListXmpPage}\ignore{List}.

\showBlurb{AssociationList}
\endscroll
\autobuttons
\end{page}

\begin{patch}{AssociationListXmpPagePatch1}
\begin{paste}{AssociationListXmpPageFull1}{AssociationListXmpPageEmpty1}
\pastebutton{AssociationListXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{
Data := Record(monthsOld : Integer, gender : String)\bound{Data }}
\indentrel{3}\begin{verbatim}
(1) Record(monthsOld: Integer,gender: String)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{AssociationListXmpPageEmpty1}
\begin{paste}{AssociationListXmpPageEmpty1}{AssociationListXmpPagePatch1}
\pastebutton{AssociationListXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{
Data := Record(monthsOld : Integer, gender : String)\bound{Data }}
\end{paste}
\end{patch}

\begin{patch}{AssociationListXmpPagePatch2}
\begin{paste}{AssociationListXmpPageFull2}{AssociationListXmpPageEmpty2}
\pastebutton{AssociationListXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{
al : AssociationList(String,Data)\free{Data }\bound{a1 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{AssociationListXmpPageEmpty2}
\begin{paste}{AssociationListXmpPageEmpty2}{AssociationListXmpPagePatch2}
\end{patch}
3.3. **ALIST.HT**

```
\begin{paste}{AssociationListXmpPageFull3}{AssociationListXmpPageEmpty3}
\begin{verbatim}
3) table()
Type: AssociationList(String,Record(monthsOld: Integer,gender: String))
\end{verbatim}
\end{paste}

\begin{paste}{AssociationListXmpPageFull4}{AssociationListXmpPageEmpty4}
\begin{verbatim}
4) [monthsOld= 407,gender= "male"]
Type: Record(monthsOld: Integer,gender: String)
\end{verbatim}
\end{paste}

\begin{paste}{AssociationListXmpPageFull5}{AssociationListXmpPageEmpty5}
\begin{verbatim}
5) [monthsOld= 366,gender= "female"]
Type: Record(monthsOld: Integer,gender: String)
\end{verbatim}
\end{paste}
```

```
\begin{paste}{AssociationListXmpPageFull2}{AssociationListXmpPageEmpty2}
\begin{verbatim}
al := table()
\end{verbatim}
\end{paste}
```

```
\begin{paste}{AssociationListXmpPageFull3}{AssociationListXmpPageEmpty3}
\begin{verbatim}
al := table()
\end{verbatim}
\end{paste}
```

```
\begin{paste}{AssociationListXmpPageFull4}{AssociationListXmpPageEmpty4}
\begin{verbatim}
al := table()
\end{verbatim}
\end{paste}
```

```
\begin{paste}{AssociationListXmpPageFull5}{AssociationListXmpPageEmpty5}
\begin{verbatim}
al := table()
\end{verbatim}
\end{paste}
```
al."judith" := [366,"female"]$Data\free{al2 }\bound{al3 }
\end{paste}\end{patch}
\begin{patch}{AssociationListXmpPagePatch6}
\begin{paste}{AssociationListXmpPageFull6}{AssociationListXmpPageEmpty6}
\pastebutton{AssociationListXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{
al."katie" := [24,"female"]$Data\free{al3 }\bound{al4 }}
\indentrel{3}\begin{verbatim}
(6) [monthsOld= 24,gender= "female"]
Type: Record(monthsOld: Integer,gender: String)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{AssociationListXmpPageEmpty6}
\begin{paste}{AssociationListXmpPageEmpty6}{AssociationListXmpPagePatch6}
\pastebutton{AssociationListXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{
al."katie" := [24,"female"]$Data\free{al3 }\bound{al4 }}
\end{paste}\end{patch}
\begin{patch}{AssociationListXmpPagePatch7}
\begin{paste}{AssociationListXmpPageFull7}{AssociationListXmpPageEmpty7}
\pastebutton{AssociationListXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{
al."smokie" := [200,"female"]$Data\free{al4 }\bound{al5 }}
\indentrel{3}\begin{verbatim}
(7) [monthsOld= 200,gender= "female"]
Type: Record(monthsOld: Integer,gender: String)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{AssociationListXmpPageEmpty7}
\begin{paste}{AssociationListXmpPageEmpty7}{AssociationListXmpPagePatch7}
\pastebutton{AssociationListXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{
al."smokie" := [200,"female"]$Data\free{al4 }\bound{al5 }}
\end{paste}\end{patch}
\begin{patch}{AssociationListXmpPagePatch8}
\begin{paste}{AssociationListXmpPageFull8}{AssociationListXmpPageEmpty8}
\pastebutton{AssociationListXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{al\free{al5 }}
\indentrel{3}\begin{verbatim}
(8)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\texttt{table "smokie"= [monthsOld= 200,gender= "female"],}
"katie" = [monthsOld = 24, gender = "female"],
"judith" = [monthsOld = 366, gender = "female"],
"bob" = [monthsOld = 407, gender = "male"]
Type: AssociationList(String, Record(monthsOld: Integer, gender: String))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{AssociationListXmpPagePatch9}
\begin{paste}{AssociationListXmpPageFull9}{AssociationListXmpPageEmpty9}
\pastebutton{AssociationListXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{al."katie" := [23,"female"]$Data\free{al5 }\bound{al6 }}
\indentrel{3}\begin{verbatim}
(9) [monthsOld = 23, gender = "female"]
Type: Record(monthsOld: Integer, gender: String)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{AssociationListXmpPagePatch10}
\begin{paste}{AssociationListXmpPageFull10}{AssociationListXmpPageEmpty10}
\pastebutton{AssociationListXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{delete!(al,1)$Data\free{al6 }\bound{al7 }}
\indentrel{3}\begin{verbatim}
(10)
 table
 "katie" = [monthsOld = 23, gender = "female"],
 "judith" = [monthsOld = 366, gender = "female"],
 "bob" = [monthsOld = 407, gender = "male"]
Type: AssociationList(String, Record(monthsOld: Integer, gender: String))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.4 array1.ht

OneDimensionalArray

⇒ “Vector” (VectorXmpPage) 3.114 on page 1351
⇒ “FlexibleArray” (FlexibleArrayXmpPage) 3.39 on page 472

To create a one-dimensional array, apply the operation \spadfun{oneDimensionalArray} to a list.
\spadpaste{oneDimensionalArray [i**2 for i in 1..10]}

Another approach is to first create \spad{a}, a one-dimensional array of 10 \spad{0}'s. \spad{OneDimensionalArray} has the convenient abbreviation \spad{ARRAY1}.
\spadpaste{a : ARRAY1 INT := new(10,0)}

Set each \spad{i}th element to \spad{i}, then display the result.
\spadpaste{a}
3.4. **ARRAY1.HT**

\spadpaste{for i in 1..10 repeat a.i := i; a\bound{a1}\free{a}}

\xtc{
Square each element by mapping the function
\texttt{$i \mapsto i^2$} onto each element.
}\{
\spadpaste{map!(i +-> i ** 2,a); a\bound{a3}\free{a2}}
\}

\xtc{
Reverse the elements in place.
}\{
\spadpaste{reverse! a\bound{a4}\free{a3}}
\}

\xtc{
Swap the \spad{4}th and \spad{5}th element.
}\{
\spadpaste{swap!(a,4,5); a\bound{a5}\free{a4}}
\}

\xtc{
Sort the elements in place.
}\{
\spadpaste{sort! a \bound{a6}\free{a5}}
\}

\xtc{
Create a new one-dimensional array \spad{b} containing the
last 5 elements of \spad{a}.
}\{
\spadpaste{b := a(6..10)\bound{b}\free{a6}}
\}

\xtc{
Replace the first 5 elements of \spad{a} with those of \spad{b}.
}\{
\spadpaste{copyInto!(a,b,1)\free{b}}
\}

\endscroll
\autobuttons
\end{page}
\begin{patch}{OneDimensionalArrayXmpPageEmpty1}
\begin{paste}{OneDimensionalArrayXmpPageEmpty1}
{OneDimensionalArrayXmpPagePatch1}
\pastebutton{OneDimensionalArrayXmpPageEmpty1}\{\showpaste\}
\tab{5}\spadcommand{oneDimensionalArray \[i**2 \text{ for } i \text{ in } 1..10\]}
\end{paste}\end{patch}

\begin{patch}{OneDimensionalArrayXmpPagePatch2}
\begin{paste}{OneDimensionalArrayXmpPageFull2}
{OneDimensionalArrayXmpPagePatch2}
\pastebutton{OneDimensionalArrayXmpPageEmpty2}\{\hidepaste\}
\tab{5}\spadcommand{a : ARRAY1 INT := new(10,0)\bound{a }}
\indentrel{3}\begin{verbatim}
(2) \[0,0,0,0,0,0,0,0,0,0\]
Type: OneDimensionalArray Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OneDimensionalArrayXmpPagePatch3}
\begin{paste}{OneDimensionalArrayXmpPageFull3}
{OneDimensionalArrayXmpPagePatch3}
\pastebutton{OneDimensionalArrayXmpPageEmpty3}\{\hidepaste\}
\tab{5}\spadcommand{\text{for } i \text{ in } 1..10 \text{ repeat } a.i := i; a} \bound{a1 } \free{a }
\indentrel{3}\begin{verbatim}
(3) \[1,2,3,4,5,6,7,8,9,10\]
Type: OneDimensionalArray Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OneDimensionalArrayXmpPagePatch4}
\begin{paste}{OneDimensionalArrayXmpPageFull4}
{OneDimensionalArrayXmpPagePatch4}
\pastebutton{OneDimensionalArrayXmpPageEmpty4}\{\hidepaste\}
\tab{5}\spadcommand{\text{map!(}i \leftrightarrow i ** 2, a\text{)}; a} \bound{a2 } \free{a2}}
3.4. ARRAY1.HT

\begin{verbatim}
(4) [1,4,9,16,25,36,49,64,81,100]
 Type: OneDimensionalArray Integer
\end{verbatim}

\begin{verbatim}
(5) [100,81,64,49,36,25,16,9,4,1]
 Type: OneDimensionalArray Integer
\end{verbatim}

\begin{verbatim}
(6) [100,81,64,39,25,16,9,4,1]
 Type: OneDimensionalArray Integer
\end{verbatim}
\begin{verbatim}
(7) [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
Type: OneDimensionalArray Integer
\end{verbatim}

\begin{verbatim}
(8) [36, 49, 64, 81, 100]
Type: OneDimensionalArray Integer
\end{verbatim}

\begin{verbatim}
(9) [36, 49, 64, 81, 100, 36, 49, 64, 81, 100]
Type: OneDimensionalArray Integer
\end{verbatim}
3.5 \texttt{array2.ht}

TwoDimensionalArray

⇒ “The Any Domain” (ugTypesAnyNonePage) 7 on page 1668
⇒ “Matrix” (MatrixXmpPage) 3.75 on page 984
⇒ “OneDimensionalArray” (OneDimensionalArrayXmpPage) 3.4 on page 138

The \spadtype{TwoDimensionalArray} domain is used for storing data in
a \twodim{} data structure indexed by row and by column. Such an
array is a homogeneous data structure in that all the entries of the
array must belong to the same Axiom domain (although see
\downlink{``The Any Domain''}{ugTypesAnyNonePage} in Section 2.6
\ignore{ugTypesAnyNone}). Each array has a fixed
number of rows and columns specified by the user and arrays are not
extensible. In Axiom, the indexing of two-dimensional arrays is
one-based. This means that both the ‘‘first’’ row of an array and the
‘‘first’’ column of an array are given the index \spad{1}. Thus, the
entry in the upper left corner of an array is in position
\spad{(1,1)}.

The operation \spadfunFrom{new}{TwoDimensionalArray} creates an array
with a specified number of rows and columns and fills the components
of that array with a specified entry. The arguments of this operation
specify the number of rows, the number of columns, and the entry.

This creates a five-by-four array of integers, all of whose entries are
zero.

This creates a five-by-four array of integers, all of whose entries are
zero.

The entries of this array can be set to other integers using
the operation \spadfunFrom{setelt}{TwoDimensionalArray}.
Issue this to set the element in the upper left corner of this array to \spad{17}.

\spadpaste{setelt(arr,1,1,17) \free{arr}\bound{arr1}}
\xtc{
Now the first element of the array is \spad{17}.
}{
\spadpaste{arr \free{arr1}}
}
\xtc{
Likewise, elements of an array are extracted using the operation \spadfunFrom{elt}{TwoDimensionalArray}.
}{
\spadpaste{elt(arr,1,1) \free{arr1}}
}
\xtc{
Another way to use these two operations is as follows. This sets the element in position \spad{(3,2)} of the array to \spad{15}.
}{
\spadpaste{arr(3,2) := 15 \free{arr1}\bound{arr2}}
}
\xtc{
This extracts the element in position \spad{(3,2)} of the array.
}{
\spadpaste{arr(3,2) \free{arr2}}
}

The operations \spadfunFrom{elt}{TwoDimensionalArray} and \spadfunFrom{setelt}{TwoDimensionalArray} come equipped with an error check which verifies that the indices are in the proper ranges. For example, the above array has five rows and four columns, so if you ask for the entry in position \spad{(6,2)} with \spad{arr(6,2)} Axiom displays an error message.

If there is no need for an error check, you can call the operations \spadfunFrom{qelt}{TwoDimensionalArray} and \spadfunFromX{qsetelt}{TwoDimensionalArray} which provide the same functionality but without the error check. Typically, these operations are called in well-tested programs.

\xtc{
The operations \spadfunFrom{row}{TwoDimensionalArray} and \spadfunFrom{column}{TwoDimensionalArray} extract rows and columns, respectively, and return objects of \spadtype{OneDimensionalArray} with the same underlying element type.
}{
\spadpaste{row(arr,1) \free{arr2}}
}
\xtc{
}
\spadpaste{column(arr,1) \free{arr2}}
You can determine the dimensions of an array by calling the operations \texttt{\texttt{\texttt{nrows}}} and \texttt{\texttt{\texttt{ncols}}}, which return the number of rows and columns, respectively.

\begin{verbatim}
\spadpaste{nrows(arr) \free{arr2}}
\end{verbatim}

\begin{verbatim}
\spadpaste{ncols(arr) \free{arr2}}
\end{verbatim}

To apply an operation to every element of an array, use \texttt{\texttt{map}}. This creates a new array. This expression negates every element.

\begin{verbatim}
\spadpaste{map(-,arr) \free{arr2}}
\end{verbatim}

This creates an array where all the elements are doubled.

\begin{verbatim}
\spadpaste{map((x \mapsto x + x),arr) \free{arr2}}
\end{verbatim}

To change the array destructively, use \texttt{\texttt{map!}} instead of \texttt{\texttt{map}}. If you need to make a copy of any array, use \texttt{\texttt{copy}}.

\begin{verbatim}
\spadpaste{arrc := copy(arr) \bound{arrc}\free{arr2}}
\end{verbatim}

\begin{verbatim}
\spadpaste{map!(-,arrc) \free{arrc}}
\end{verbatim}

\begin{verbatim}
\spadpaste{arrc \free{arrc}}
\end{verbatim}

\begin{verbatim}
\spadpaste{arr \free{arr2}}
\end{verbatim}
Use `\spadfunFrom{member?}{TwoDimensionalArray}` to see if a given element is in an array.

```spad
\spadpaste{member?(17,arr) \free{arr2}}
\xtc{
\spadpaste{member?(10317,arr) \free{arr2}}
\xtc{
To see how many times an element appears in an array, use
\spadfunFrom{count}{TwoDimensionalArray}.

```spad
\spadpaste{count(17,arr) \free{arr2}}
\xtc{
\spadpaste{count(0,arr) \free{arr2}}
\xtc{
For more information about the operations available for `TwoDimensionalArray`, issue `\spadcmd{)show TwoDimensionalArray}`.
For information on related topics, see `Matrix` and `OneDimensionalArray`.
```
```
3.5. ARRAY2.HT

\begin{patch}{TwoDimensionalArrayXmpPageEmpty1}
\begin{paste}{TwoDimensionalArrayXmpPageEmpty1}
{TwoDimensionalArrayXmpPagePatch1}
\pastebutton{TwoDimensionalArrayXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{arr : ARRAY2 INT := new(5,4,0)\bound{arr}}
\end{paste}\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPagePatch2}
\begin{paste}{TwoDimensionalArrayXmpPageFull2}
{TwoDimensionalArrayXmpPageEmpty2}
\pastebutton{TwoDimensionalArrayXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{setelt(arr,1,1,17)\free{arr}\bound{arr1}}
\indentrel{3}\begin{verbatim}
(2) 17
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPagePatch3}
\begin{paste}{TwoDimensionalArrayXmpPageFull3}
{TwoDimensionalArrayXmpPageEmpty3}
\pastebutton{TwoDimensionalArrayXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{arr\free{arr1}}
\indentrel{3}\begin{verbatim}
17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(3) 0 0 0 0
0 0 0 0
0 0 0 0
Type: TwoDimensionalArray Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{TwoDimensionalArrayXmpPagePatch4}
\begin{paste}{TwoDimensionalArrayXmpPageFull4}
{TwoDimensionalArrayXmpPageEmpty4}
\pastebutton{TwoDimensionalArrayXmpPageFull4}\{hidepaste\}
\tab{5}\spadcommand{elt(arr,1,1)\free{arr1}}
\indentrel{3}\begin{verbatim}
(4) 17
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPageEmpty4}
\begin{paste}{TwoDimensionalArrayXmpPageEmpty4}
{TwoDimensionalArrayXmpPagePatch4}
\pastebutton{TwoDimensionalArrayXmpPageEmpty4}\{showpaste\}
\tab{5}\spadcommand{elt(arr,1,1)\free{arr1}}
\end{paste}
\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPagePatch5}
\begin{paste}{TwoDimensionalArrayXmpPageFull5}
{TwoDimensionalArrayXmpPageEmpty5}
\pastebutton{TwoDimensionalArrayXmpPageEmpty5}\{hidepaste\}
\tab{5}\spadcommand{arr(3,2) := 15\free{arr1}\bound{arr2}}
\indentrel{3}\begin{verbatim}
(5) 15
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPageEmpty5}
\begin{paste}{TwoDimensionalArrayXmpPageEmpty5}
{TwoDimensionalArrayXmpPagePatch5}
\pastebutton{TwoDimensionalArrayXmpPageEmpty5}\{showpaste\}
\tab{5}\spadcommand{arr(3,2) := 15\free{arr1}\bound{arr2}}
\end{paste}
\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPagePatch6}
\begin{paste}{TwoDimensionalArrayXmpPageFull6}
{TwoDimensionalArrayXmpPageEmpty6}
\pastebutton{TwoDimensionalArrayXmpPageEmpty6}\{hidepaste\}
\tab{5}\spadcommand{arr(3,2)\free{arr2}}
\indentrel{3}\begin{verbatim}
(6) 15
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TwoDimensionalArrayXmpPageEmpty6}
\begin{paste}{TwoDimensionalArrayXmpPageEmpty6}
\end{paste}
\end{patch}
3.5. ARRAY2.HT

\spadcommand{arr(3,2)}

\begin{verbatim}
(7) \[17,0,0,0\]
Type: OneDimensionalArray Integer
\end{verbatim}

\spadcommand{column(arr,1)}

\begin{verbatim}
(8) \[17,0,0,0,0\]
Type: OneDimensionalArray Integer
\end{verbatim}

\spadcommand{nrows(arr)}

\begin{verbatim}
(9) 5
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(10) 4
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
-17 0 0 0
 0 0 0 0
(11) 0 -15 0 0
 0 0 0 0
 0 0 0 0
Type: TwoDimensionalArray Integer
\end{verbatim}
3.5. ARRAY2.HT

\begin{verbatim}
34 0 0 0
0 0 0 0
12) 0 30 0 0
0 0 0 0
0 0 0 0
Type: TwoDimensionalArray Integer
\end{verbatim}

\begin{verbatim}
17 0 0 0
0 0 0 0
13) 0 15 0 0
0 0 0 0
0 0 0 0
Type: TwoDimensionalArray Integer
\end{verbatim}
\begin{spadcommand}
arrc := copy(arr) \\bound{arrc} \free{arr2}
\end{spadcommand}
\begin{verbatim}
-17 0 0 0
0 0 0 0
(14) 0 -15 0 0
0 0 0 0
0 0 0 0
\end{verbatim}
Type: TwoDimensionalArray Integer
\end{verbatim}
\indentrel{-3}
\end{spadcommand}
\begin{spadcommand}
arrc \free{arrc}
\end{spadcommand}
\begin{verbatim}
-17 0 0 0
0 0 0 0
(15) 0 -15 0 0
0 0 0 0
0 0 0 0
\end{verbatim}
Type: TwoDimensionalArray Integer
\end{verbatim}
\indentrel{-3}
\end{spadcommand}
\begin{spadcommand}
arrc \free{arrc}
\end{spadcommand}
\begin{verbatim}
-17 0 0 0
0 0 0 0
(15) 0 -15 0 0
0 0 0 0
0 0 0 0
\end{verbatim}
Type: TwoDimensionalArray Integer
\end{verbatim}
\indentrel{-3}
\end{spadcommand}
\texttt{arrayc\textbackslash free\{arrc \}}

\begin{verbatim}
17 0 0 0
0 0 0 0
(16) 0 15 0 0
0 0 0 0
0 0 0 0
\end{verbatim}

Type: \texttt{TwoDimensionalArray Integer}

\texttt{member?(17,\textbackslash free\{arr2 \})}

\begin{verbatim}
(17) true
\end{verbatim}

Type: \texttt{Boolean}
\begin{verbatim}
(18) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(19) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(20) 18
Type: PositiveInteger
\end{verbatim}
3.6 basic.ht

Basic Commands

<table>
<thead>
<tr>
<th>Calculus</th>
<th>Compute integrals, derivatives, or limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Create a matrix</td>
</tr>
<tr>
<td>Draw</td>
<td>Create 2D or 3D plots</td>
</tr>
<tr>
<td>Series</td>
<td>Create a power series</td>
</tr>
<tr>
<td>Solve</td>
<td>Solve an equation or system of equations</td>
</tr>
</tbody>
</table>

← “Root Page” (RootPage) 3.1 on page 117
⇒ “Calculus” (Calculus) 3.6 on page 156
⇒ “Matrix” (LispFunctions) 3.71 on page 952
⇒ “Draw” (LispFunctions) 3.71 on page 952
⇒ “Series” (LispFunctions) 3.71 on page 952
⇒ “Solve” (LispFunctions) 3.71 on page 952

— basic.ht —
CHAPTER 3. HYPERDOC PAGES

Compute integrals, derivatives, or limits
\menulispmemolink{Matrix}{(|bcMatrix|)}\tab{10}
Create a matrix
%\menulispmemolink{Operations}{(|bcExpand|)}
% Expand, factor, simplify, substitute, etc.
\menulispmemolink{Draw}{(|bcDraw|)}\tab{10}
Create 2D or 3D plots.
\menulispmemolink{Series}{(|bcSeries|)}\tab{10}
Create a power series
\menulispmemolink{Solve}{(|bcSolve|)}\tab{10}
Solve an equation or system of equations.
\endmenu
\endscroll
\autobuttons
\end{page}

Calculus

What would you like to do?
\n\boutline{Differentiate}
\boutline{Do an Indefinite Integral}
\boutline{Do a Definite Integral}
\boutline{Find a limit}
\boutline{Do a summation}

⇐ "Basic Commands" (BasicCommand) 3.6 on page 155
⇒ "Differentiate" (LispFunctions) 3.71 on page 952
⇒ "Do an Indefinite Integral" (LispFunctions) 3.71 on page 952
⇒ "Do a Definite Integral" (LispFunctions) 3.71 on page 952
⇒ "Find a Limit" (LispFunctions) 3.71 on page 952
3.7. **BBTREE.HT**

⇒ “Do a summation” (LispFunctions) 3.71 on page 952

— basic.ht —

\begin{page}{Calculus}{Calculus}
\beginscroll
What would you like to do?
\beginmenu
\menulispdownlink{Differentiate}{(|bcDifferentiate|)}\space{}\{}\{bcDifferentiate\}\space{}
\menulispdownlink{Do an Indefinite Integral}{(|bcIndefiniteIntegrate|)}\space{}\{}\{bcIndefiniteIntegrate\}\space{}
\menulispdownlink{Do a Definite Integral}{(|bcDefiniteIntegrate|)}\space{}\{}\{bcDefiniteIntegrate\}\space{}
\menulispdownlink{Find a limit}{(|bcLimit|)}\space{}\{}\{bcLimit\}\space{}
\menulispdownlink{Do a summation}{(|bcSum|)}\space{}\}%\{bcSum\}\space{}
\menulispdownlink{Compute a product}{(|bcProduct|)}\space{}\{}\{bcProduct\}\space{}
\endmenu
\endscroll
\autobuttons
\end{page}

3.7 **bbtree.ht**

BalancedBinaryTree

— bbtree.ht —

\begin{page}{BalancedBinaryTreeXmpPage}{BalancedBinaryTree}
\beginscroll
\spadtype{BalancedBinaryTrees(S)} is the domain of balanced binary trees with elements of type \spad{S} at the nodes. A binary tree is either \spadfun{empty} or else consists of a \spadfun{node} having a \spadfun{value} and two branches, each branch a binary tree. A balanced binary tree is one that is balanced with respect its leaves. One with \texttt{\$2^k\$} leaves is perfectly ‘‘balanced’’: the tree has minimum depth, and the \spadfun{left} and \spadfun{right} branch of every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called ‘‘divide-and-conquer’’ algorithms. Conceptually, the data for a problem is initially placed at the root of the tree. The original data is then split into two subproblems, one for each subtree. And so on. Eventually, the problem is solved at the leaves
of the tree. A solution to the original problem is obtained by some mechanism that can reassemble the pieces. In fact, an implementation of the Chinese Remainder Algorithm using balanced binary trees was first proposed by David Y. Y. Yun at the IBM T. J. Watson Research Center in Yorktown Heights, New York, in 1978. It served as the prototype for polymorphic algorithms in Axiom.

In what follows, rather than perform a series of computations with a single expression, the expression is reduced modulo a number of integer primes, a computation is done with modular arithmetic for each prime, and the Chinese Remainder Algorithm is used to obtain the answer to the original problem.

We illustrate this principle with the computation of $12^2 = 144$.$12 \times 2 = 144$.

\begin{verbatim}
A list of moduli.
\}
\spadpaste{lm := [3,5,7,11] \bound{lm}}
\}
\xtc{The expression \spad{modTree(n, lm)}
creates a balanced binary tree with leaf values
\spad{n \mod m} for each modulus \spad{m} in \spad{lm}.
\}
\spadpaste{modTree(12,lm) \free{lm}}
\}
\xtc{Operation \spad{modTree} does this using operations on balanced binary trees.
We trace its steps.
Create a balanced binary tree \spad{t} of zeros with four leaves.
\}
\spadpaste{t := balancedBinaryTree(#lm, 0) \bound{t} \free{lm}}
\}
\xtc{The leaves of the tree are set to the individual moduli.
\}
\spadpaste{setleaves!(t, lm) \bound{t1} \free{t}}
\}
\xtc{Use \spad{mapUp} to do a bottom-up traversal of \spad{t}, setting each interior node to the product of the values at the nodes of its children.
\}
\spadpaste{mapUp!(t, *) \bound{t2} \free{t1}}
\}
\xtc{The value at the node of every subtree is the product of the moduli of the leaves of the subtree.
\}
\end{verbatim}
3.7. BBTREE.HT

}\{
\spadpaste{t \text{ free}(t2)}
\}
\xtc{
Operation \spadfunX{mapDown}\spad{(t,a,fn)} replaces the value
\spad{v} at each node of \spad{t} by \spad{fn(a,v)}.
}\{
\spadpaste{mapDown!(t,12,_\text{rem})\text{ free}(t3)}
\}
\xtc{
The operation \spadfun{leaves} returns the leaves of the resulting
tree.
In this case, it returns the list of \spad{12 \text{ mod } m} for each
modulus \spad{m}.
}\{
\spadpaste{leaves \text{ free}(t4)}
\}
\xtc{
Compute the square of the images of \spad{12} modulo each \spad{m}.
}\{
\spadpaste{squares := [x**2 \text{ rem } m \text{ for } x \text{ in } \text{ free}(t5) \text{ for } m \text{ in lm}]\text{ free}(t6)}
\}
\xtc{
Call the Chinese Remainder Algorithm to get the
answer for \texttt{12^2}.
}\{
\spadpaste{chineseRemainder(\text{ free}(t6))}
\}
\end{scroll}
\autobuttons
\end{page}

\begin{patch}{BalancedBinaryTreeXmpPagePatch1}
\begin{paste}{BalancedBinaryTreeXmpPageFull1}
{BalancedBinaryTreeXmpPageEmpty1}
\pastebutton{BalancedBinaryTreeXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{lm := [3,5,7,11]\text{ free}(lm)}
\indentrel{3}\begin{verbatim}
(1) [3,5,7,11]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{BalancedBinaryTreeXmpPageEmpty1}
\begin{paste}{BalancedBinaryTreeXmpPageEmpty1}
{BalancedBinaryTreeXmpPagePatch1}
\pastebutton{BalancedBinaryTreeXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{lm := [3,5,7,11]\text{ free}(lm)}
\end{paste}
\end{patch}
(2) \[[0, 2, 5, 1] \]

Type: List Integer

\((3) \) \[[[0, 0, 0], 0, [0, 0, 0]] \]

Type: BalancedBinaryTree NonNegativeInteger

\((4) \) \[[[3, 0, 5], 0, [7, 0, 11]] \]

Type: BalancedBinaryTree NonNegativeInteger
3.7. BBTREE.HT

{BalancedBinaryTreeXmpPagePatch4}
\end{patch}
\begin{patch}{BalancedBinaryTreeXmpPagePatch5}
\begin{paste}{BalancedBinaryTreeXmpPageFull5}
\begin{verbatim}
(5) 1155
Type: PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{BalancedBinaryTreeXmpPagePatch6}
\begin{paste}{BalancedBinaryTreeXmpPageFull6}
(6) \([3,15,5],1155,[7,77,11]\]
Type: BalancedBinaryTree NonNegativeInteger
\end{paste}
\end{patch}
\begin{patch}{BalancedBinaryTreeXmpPagePatch7}
\begin{paste}{BalancedBinaryTreeXmpPageFull7}
(7) \([0,12,2],12,[5,12,1]\]
Type: BalancedBinaryTree NonNegativeInteger
\end{paste}
\end{patch}
\begin{patch}{BalancedBinaryTreeXmpPagePatch7}
\begin{paste}{BalancedBinaryTreeXmpPageEmpty7}
\pastebutton{BalancedBinaryTreeXmpPageEmpty7}\end{paste}
\indentrel{-3}\begin{verbatim}
\indentrel{-3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{BalancedBinaryTreeXmpPagePatch8}
\begin{paste}{BalancedBinaryTreeXmpPageFull8}
\begin{verbatim}
(8) [0,2,5,1]
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{BalancedBinaryTreeXmpPagePatch9}
\begin{paste}{BalancedBinaryTreeXmpPageFull9}
\begin{verbatim}
(9) [0,4,4,1]
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{BalancedBinaryTreeXmpPagePatch10}
\begin{paste}{BalancedBinaryTreeXmpPageFull10}
\indentrel{-3}\end{patch}
3.8. BINARY.HT

\begin{verbatim}
(10) 144
Type: PositiveInteger
\end{verbatim}

3.8 binary.ht

BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access the individual bits of a binary expansion can be obtained by converting the value to \texttt{RadixExpansion(2)}. More examples of expansions are available in \texttt{DecimalExpansion}, \texttt{HexadecimalExpansion}, and \texttt{RadixExpansion}.

The expansion (of type \texttt{BinaryExpansion}) of a rational number is returned by the \texttt{binary} operation:

- \begin{itemize}
 - \texttt{r := binary(22/7)}
 \texttt{Arithmetic is exact.}
 - \texttt{r + binary(6/7)}
 The period of the expansion can be short or long ...
 - \texttt{binary(1/1007)}
 These numbers are bona fide algebraic objects.
\end{itemize}

\begin{itemize}
 - \texttt{p := binary(1/4) *x**2 + binary(2/3) *x + binary(4/9)}
\end{itemize}
All rational numbers have repeating binary expansions. Operations to access the individual bits of a binary expansion can be obtained by converting the value to \spadtype{RadixExpansion(2)}. More examples of expansions are available in \downlink{`DecimalExpansion'}{DecimalExpansionXmpPage} \ignore{DecimalExpansion}, \downlink{`HexadecimalExpansion'}{HexExpansionXmpPage} \ignore{HexadecimalExpansion}, and \downlink{`RadixExpansion'}{RadixExpansionXmpPage} \ignore{RadixExpansion}.

\xtc{The expansion (of type \spadtype{BinaryExpansion}) of a rational number is returned by the \spadfunFrom{binary}{BinaryExpansion} operation.}{
\spadpaste{r := binary(22/7) \bound{r}}}
\xtc{Arithmetic is exact.}{
\spadpaste{r + binary(6/7) \free{r}}}\xtc{The period of the expansion can be short or long \ldots}{
\spadpaste{[binary(1/i) for i in 102..106]}}\xtc{or very long.}{
\spadpaste{binary(1/1007)}}\xtc{These numbers are bona fide algebraic objects.}{
\spadpaste{p := binary(1/4)**2 + binary(2/3)*x + binary(4/9) \bound{p}}}
\xtc{}{
\spadpaste{q := D(p, x) \free{p} \bound{q}}}\xtc{}{
\spadpaste{g := gcd(p, q) \free{p q} \bound{g}}}
\begin{patch}{BinaryExpansionXmpPagePatch1}
\begin{paste}{BinaryExpansionXmpPageFull1}{BinaryExpansionXmpPageEmpty1}
\pastebutton{BinaryExpansionXmpPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{r := binary(22/7) \bound{r}}
\begin{verbatim}
\hspace{1cm}
(1) 11.001
Type: BinaryExpansion
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{BinaryExpansionXmpPageEmpty1}
\begin{paste}{BinaryExpansionXmpPageEmpty1}{BinaryExpansionXmpPagePatch1}
\pastebutton{BinaryExpansionXmpPageEmpty1}{\showpaste}
\indentrel{3}\spadcommand{r := binary(22/7) \bound{r}}
\end{paste}
\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch2}
\begin{paste}{BinaryExpansionXmpPageFull2}{BinaryExpansionXmpPageEmpty2}
\pastebutton{BinaryExpansionXmpPageFull2}{\hidepaste}
\indentrel{3}\spadcommand{r + binary(6/7) \free{r}}
\begin{verbatim}
\hspace{1cm}
(2) 100
Type: BinaryExpansion
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{BinaryExpansionXmpPageEmpty2}
\begin{paste}{BinaryExpansionXmpPageEmpty2}{BinaryExpansionXmpPagePatch2}
\pastebutton{BinaryExpansionXmpPageEmpty2}{\showpaste}
\indentrel{3}\spadcommand{r + binary(6/7) \free{r}}
\end{paste}
\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch3}
\begin{paste}{BinaryExpansionXmpPageFull3}{BinaryExpansionXmpPageEmpty3}
\pastebutton{BinaryExpansionXmpPageFull3}{\hidepaste}
\indentrel{3}\spadcommand{\{binary(1/i) for i in 102..106\}}
\begin{verbatim}
\hspace{1cm}
(3)
\end{verbatim}
\end{paste}
\end{patch}
0.0
OVERBAR
 00000100110101001000000000000111111111111000000
 00011
]

Type: List BinaryExpansion
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch4}
\begin{paste}{BinaryExpansionXmpPageFull4}{BinaryExpansionXmpPageEmpty4}
\pastebutton{BinaryExpansionXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{\[\text{binary}(1/\text{i}) \text{ for } \text{i} \text{ in } 102..106\]}
\end{paste}\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch5}
\begin{paste}{BinaryExpansionXmpPageFull5}{BinaryExpansionXmpPageEmpty5}
\pastebutton{BinaryExpansionXmpPageFull5}{\hidepaste}
p := \text{binary}(1/4)*x**2 + \text{binary}(2/3)*x + \text{binary}(4/9)\text{\textbackslash bound\{}p \text{\textbackslash}}
\indentrel{3}\begin{verbatim}
 2 -- ------
(5) \[0.01x + 0.10x + 0.011100 \]
Type: Polynomial BinaryExpansion
\[
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch5}
\begin{paste}{BinaryExpansionXmpPageFull5}{BinaryExpansionXmpPageEmpty5}
\pastebutton{BinaryExpansionXmpPageFull5}{\showpaste}
\tab{5}\spadcommand{
p := \text{binary}(1/4)*x**2 + \text{binary}(2/3)*x + \text{binary}(4/9)\\text{bound}(p)}
\end{paste}\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch6}
\begin{paste}{BinaryExpansionXmpPageFull6}{BinaryExpansionXmpPageEmpty6}
\pastebutton{BinaryExpansionXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{q := \text{D}(p, x)\\text{free}(p)\\text{bound}(q)}
\indentrel{3}\begin{verbatim}
\(_{\text{--}}\)
(6) \[0.1x + 0.10 \]
Type: Polynomial BinaryExpansion
\[
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{BinaryExpansionXmpPagePatch7}
\begin{paste}{BinaryExpansionXmpPageFull7}{BinaryExpansionXmpPageEmpty7}
\pastebutton{BinaryExpansionXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{g := \text{gcd}(p, q)\\text{free}(p \ q)\\text{bound}(g)}
\indentrel{3}\begin{verbatim}
\(_{\text{--}}\)
(7) \[x + 1.01 \]
Type: Polynomial BinaryExpansion
\[
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.9 bmcat.ht

Bit Map Catalog

--- bmcat.ht ---

\begin{page}{BitMaps}{Bit Map Catalog}
\beginscroll
\space{} \{\inputbitmap{htbmdir/xfbox.bitmap}\} xfbox \space{4}
\space{} \{\inputbitmap{htbmdir/xfcirc.bitmap}\} xfcirc \space{4}
\space{} \{\inputbitmap{htbmdir/xnobox.bitmap}\} Xnobox \space{2}
\space{} \{\inputbitmap{htbmdir/xnocirc.bitmap}\} xnocirc \space{2}
\newline
\space{} \{\inputbitmap{htbmdir/xfullfbox.bitmap}\} xfullfbox
\space{} \{\inputbitmap{htbmdir/xfullfcirc.bitmap}\} xfullfcirc
\space{} \{\inputbitmap{htbmdir/xfullbox.bitmap}\} xfullbox
\space{} \{\inputbitmap{htbmdir/xfullcirc.bitmap}\} xfullcirc
\newline
\space{} \{\inputbitmap{htbmdir/xgreyfbox.bitmap}\} xgreyfbox
\space{} \{\inputbitmap{htbmdir/xgreyfcirc.bitmap}\} xgreyfcirc
\space{} \{\inputbitmap{htbmdir/xgreybox.bitmap}\} xgreybox
\space{} \{\inputbitmap{htbmdir/xgreycirc.bitmap}\} xgreycirc
\newline
\space{} \{\inputbitmap{htbmdir/xopenfbox.bitmap}\} xopenfbox
\space{} \{\inputbitmap{htbmdir/xopenfcirc.bitmap}\} xopenfcirc
\space{} \{\inputbitmap{htbmdir/xopenbox.bitmap}\} xopenbox
\space{} \{\inputbitmap{htbmdir/xopencirc.bitmap}\} xopencirc
\newline
\space{} \{\inputbitmap{htbmdir/xtickfbox.bitmap}\} xtickfbox
\space{} \{\inputbitmap{htbmdir/xtickfcirc.bitmap}\} xtickfcirc
\space{} \{\inputbitmap{htbmdir/xtickbox.bitmap}\} xtickbox
\space{} \{\inputbitmap{htbmdir/xtickcirc.bitmap}\} xtickcirc
\newline
\space{} \{\inputbitmap{htbmdir/xxfbox.bitmap}\} xxfbox \space{3}
\space{} \{\inputbitmap{htbmdir/xxfcirc.bitmap}\} xxfcirc \space{3}
\space{} \{\inputbitmap{htbmdir/xxbox.bitmap}\} xxbox \space{3}
\space{} \{\inputbitmap{htbmdir/xxcirc.bitmap}\} xxcirc \space{3}
\horizontalline
\space{} \{\inputbitmap{htbmdir/xnoface.bitmap}\} xnoface
\space{} \{\inputbitmap{htbmdir/xhappy.bitmap}\} xhappy
\space{} \{\inputbitmap{htbmdir/xsad.bitmap}\} xsad
\space{} \{\inputbitmap{htbmdir/xdesp.bitmap}\} xdesp
\space{} \{\inputbitmap{htbmdir/xperv.bitmap}\} xperv
\horizontalline
\space{} \{\inputbitmap{htbmdir/exit.bitmap}\} exit
\space{} \{\inputbitmap{htbmdir/help3.bitmap}\} help3
\newline
\space{} \{\inputbitmap{htbmdir/down3.bitmap}\} down3
\end{scroll}
\end{page}
BasicOperator

A basic operator is an object that can be symbolically applied to a list of arguments from a set, the result being a kernel over that set or an expression. In addition to this section, please see \downlink{`Expression'}{ExpressionXmpPage}\ignore{Expression} and \downlink{`Kernel'}{KernelXmpPage}\ignore{Kernel} for additional information and examples.

You create an object of type \axiomType{BasicOperator} by using the \axiomFunFrom{operator}{BasicOperator} operation. This first form of this operation has one argument and it must be a symbol. The symbol should be quoted in case the name has been used as an identifier to which a value
has been assigned.

A frequent application of \axiomType{BasicOperator} is the creation of an operator to represent the unknown function when solving a differential equation.

Let \axiom{y} be the unknown function in terms of \axiom{x}.

\begin{spad}
\texttt{y := operator 'y \bound{y}}
\end{spad}

This is how you enter the equation \axiom{y'' + y' + y = 0}.

\begin{spad}
\texttt{deq := D(y x, x, 2) + D(y x, x) + y x = 0\bound{e1}\free{y}}
\end{spad}

To solve the above equation, enter this.

\begin{spad}
\texttt{solve(deq, y, x) \free{e1}\free{y}}
\end{spad}

See \downlink{``Solution of Differential Equations''}{ugProblemDEQPage} in Section 8.10\ignore{ugProblemDEQ} for this kind of use of \axiomType{BasicOperator}.

Use the single argument form of \axiomFunFrom{operator}{BasicOperator} (as above) when you intend to use the operator to create functional expressions with an arbitrary number of arguments.

\begin{spad}
\texttt{nary? y \free{y}}
\end{spad}

Use the two-argument form when you want to restrict the number of arguments in the functional expressions created with the operator.

\begin{spad}
\texttt{opOne := operator('opOne, 1) \bound{opOne}}
\end{spad}
You can attached named properties to an operator. These are rarely used at the top-level of the Axiom interactive environment but are used with Axiom library source code.

By default, an operator has no properties.

The interface for setting and getting properties is somewhat awkward because the property values are stored as values of type `axiomType{None}`.

Attach a property by using `axiomFunFrom{setProperty}{BasicOperator}`.

You can also use a string as the name to be tested against.
We know the property value has type \axiomType{String}.

Use \axiomFunFrom{deleteProperty!}{BasicOperator} to destructively remove a property.

Use \axiomFunFrom{deleteProperty!}{BasicOperator} to destructively remove a property.

```
spadpaste{properties y \free{y spy}}
spadpaste{property(y, "use") :: None pretend String \free{y spy}}
deleteProperty!(y, "use") \free{y spy}\bound{dpy}
spadpaste{properties y \free{dpy}}
```

```
tab{5}spadcommand{y := operator 'y\bound{y}}
indentrel{3}\begin{verbatim}
(1) y
Type: BasicOperator
\end{verbatim}
```

```
tab{5}spadcommand{y := operator 'y\bound{y}}
```

```
tab{5}spadcommand{deq := D(y x, x, 2) + D(y x, x) + y x = 0\bound{e1} \free{y}}
indentrel{3}\begin{verbatim}
(2) y (x) + y (x) + y(x)= 0
Type: Equation Expression Integer
\end{verbatim}
```

```
3.10. **BOP.HT**

\begin{verbatim}
\texttt{deq := D(y \times, x, 2) + D(y \times, x) + y \times = 0; bound\{e1 \}; free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{solve(deq, y, x) free\{e1 \}; free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{\(3\)}
\texttt{[particular= 0,}
\texttt{\quad x \times}
\texttt{\quad - -}
\texttt{\quad x^3 \quad 2 \quad 2 \quad x^3}
\texttt{\quad basis= [cos()]\%e ,\%e sin()]]}
\end{verbatim}

\begin{verbatim}
\texttt{solve(deq, y, x) free\{e1 \}; free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{nary? y free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{nary? y free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{\(4\)}
\texttt{true}
\end{verbatim}

\begin{verbatim}
\texttt{nary? y free\{y \} \}}
\end{verbatim}

\begin{verbatim}
\texttt{nary? y free\{y \} \}}
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

```
\begin{verbatim}
(5) false
Type: Boolean
\end{verbatim}
```

```
\begin{verbatim}
(6) opOne
Type: BasicOperator
\end{verbatim}
```

```
\begin{verbatim}
(7) false
Type: Boolean
\end{verbatim}
```

```
\begin{verbatim}
(8) opOne
Type: BasicOperator
\end{verbatim}
```
(8)  true
  Type: Boolean

(9)  1
  Type: Union(NonNegativeInteger,...)

(10) opOne
  Type: Symbol
\begin{verbatim}
(12) true
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(13) table()
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(14) y
\end{verbatim}
\indentrel{-3}
.setProperty(y, "use", "unknown function" :: None) \free{y \bound{spy}}
\end{verbatim}

```
(15) table("use"= NONE)
Type: AssociationList(String,None)
```

```
(16) "unknown function"
Type: String
```

```
(17) y
Type: BasicOperator
```

}\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

```
3.10. BOP.HT
```

177


3.11 bstree.ht

BinarySearchTree

— bstree.ht —

\spadtype{BinarySearchTree(R)} is the domain of binary trees with elements of type \spad{R}, ordered across the nodes of the tree. A non-empty binary search tree has a value of type \spad{R}, and \spadfun{right} and \spadfun{left} binary search subtrees. If a subtree is empty, it is displayed as a period (‘.’).

\xtc{
Define a list of values to be placed across the tree.
The resulting tree has \spad{8} at the root; all other elements are in the left subtree.
A convenient way to create a binary search tree is to apply the operation \texttt{binarySearchTree} to a list of elements.

Another approach is to first create an empty binary search tree of integers.

Insert the value \texttt{8}. This establishes \texttt{8} as the root of the binary search tree. Values inserted later that are less than \texttt{8} get stored in the \texttt{left} subtree, others in the \texttt{right} subtree.

Insert the value \texttt{3}. This number becomes the root of the \texttt{left} subtree of \texttt{t1}.

For optimal retrieval, it is thus important to insert the middle elements first.

The leaves of the binary search tree are those which have empty \texttt{left} and \texttt{right} subtrees.

The operation \texttt{split(k,t)} returns a \texttt{record} containing the two subtrees: one with all elements ‘‘less’’ than \texttt{k}, another with elements ‘‘greater’’ than \texttt{k}.

Define \texttt{insertRoot} to insert new elements by creating a new node.
The new node puts the inserted value between its 'less' tree and 'greater' tree.

\begin{spadsrc}
insertRoot(x, t) ==
  a := split(x, t)
  node(a.less, x, a.greater)
\end{spadsrc}

Function \userfun{buildFromRoot} builds a binary search tree from a list of elements \spad{ls} and the empty tree \spad{emptybst}.

\begin{spadpaste}
buildFromRoot ls == reduce(insertRoot,ls,emptybst)
\end{spadpaste}

Apply this to the reverse of the list \spad{lv}.

\begin{spadpaste}
rt := buildFromRoot reverse lv
\end{spadpaste}

Have Axiom check that these are equal.

\begin{spadpaste}
(t = rt)@Boolean
\end{spadpaste}
3.11. BSTREE.HT

\begin{verbatim}
(2) [[[1,2,,3,\ldots],[4,5,6,7]],8,\ldots]
\end{verbatim}

Type: BinarySearchTree PositiveInteger

\begin{verbatim}
(3) []
\end{verbatim}

Type: BinarySearchTree Integer

\begin{verbatim}
(4) 8
\end{verbatim}

Type: BinarySearchTree Integer
\begin{patch}{BinarySearchTreeXmpPageEmpty5}
\begin{paste}{BinarySearchTreeXmpPageEmpty5}{BinarySearchTreeXmpPagePatch5}
\pastebutton{BinarySearchTreeXmpPageEmpty5}{showpaste}
\tab{5}\spadcommand{insert!(3,t1)\free{t1}}
\end{paste}
\end{patch}

\begin{patch}{BinarySearchTreeXmpPagePatch6}
\begin{paste}{BinarySearchTreeXmpPageFull6}{BinarySearchTreeXmpPageEmpty6}
\pastebutton{BinarySearchTreeXmpPageFull6}{hidepaste}
\tab{5}\spadcommand{leaves t\free{t}}
\indentrel{3}\begin{verbatim}
(6) [1,4,5,7]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{BinarySearchTreeXmpPagePatch7}
\begin{paste}{BinarySearchTreeXmpPageFull7}{BinarySearchTreeXmpPageEmpty7}
\pastebutton{BinarySearchTreeXmpPageFull7}{hidepaste}
\tab{5}\spadcommand{split(3,t)\free{t}}
\indentrel{3}\begin{verbatim}
(7)
[less= [1,2..],greater= [[..3,[4,5,[5,6,7]]],8..]]
Type: Record(less: BinarySearchTree PositiveInteger,
greater: BinarySearchTree PositiveInteger)
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
3.11. BSTREE.HT

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{patch}{BinarySearchTreeXmpPagePatch11}
\begin{paste}{BinarySearchTreeXmpPageFull11}
{BinarySearchTreeXmpPageEmpty11}
\end{patch}

\begin{patch}{BinarySearchTreeXmpPageEmpty11}
\begin{paste}{BinarySearchTreeXmpPageEmpty11}
{BinarySearchTreeXmpPagePatch11}
\end{patch}

\begin{patch}{BinarySearchTreeXmpPagePatch12}
\begin{paste}{BinarySearchTreeXmpPageFull12}
{BinarySearchTreeXmpPageEmpty12}
\end{patch}

\begin{patch}{BinarySearchTreeXmpPageEmpty12}
\begin{paste}{BinarySearchTreeXmpPageEmpty12}
{BinarySearchTreeXmpPagePatch12}
\end{patch}

\begin{verbatim}
(11) [[[1,2,,],3,[4,5,[5,6,7]],8,,],8,,]
Type: BinarySearchTree Integer
\end{verbatim}

\begin{verbatim}
(12) true
Type: Boolean
\end{verbatim}
The \texttt{CardinalNumber} domain can be used for values indicating the cardinality of sets, both finite and infinite. For example, the \texttt{dimension} operation in the category \texttt{VectorSpace} returns a cardinal number.

The non-negative integers have a natural construction as cardinals:
\[
0 = \#\emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad \ldots, \quad n = \{i \mid 0 \leq i < n\}.
\]

The fact that \texttt{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers:
\begin{verbatim}
\spadtype{CardinalNumber} c0 := 0 :: CardinalNumber
\spadtype{CardinalNumber} c1 := 1 :: CardinalNumber
\spadtype{CardinalNumber} c2 := 2 :: CardinalNumber
\spadtype{CardinalNumber} c3 := 3 :: CardinalNumber
\end{verbatim}
They can also be obtained as the named cardinal \texttt{Aleph}(n).
\begin{verbatim}
\spad{A0 := Aleph 0}
\end{verbatim}

\begin{page}{CardinalNumberXmpPage}{CardinalNumber}
\beginscroll

The \texttt{CardinalNumber} domain can be used for values indicating the cardinality of sets, both finite and infinite. For example, the \texttt{dimension} operation in the category \texttt{VectorSpace} returns a cardinal number.

The non-negative integers have a natural construction as cardinals:
\begin{verbatim}
0 = \#\emptyset, 1 = \{0\}, 2 = \{0, 1\}, \ldots, n = \{i \mid 0 \leq i < n\}.
\end{verbatim}

The fact that \texttt{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.
\begin{verbatim}
c0 := 0 :: CardinalNumber \bound{c0}
c1 := 1 :: CardinalNumber
\end{verbatim}

\end{scroll}
\end{page}
\spad{c1 := 1 :: CardinalNumber \bound{c1}}
\xtc{
\spad{c2 := 2 :: CardinalNumber \bound{c2}}
}
\xtc{
\spad{c3 := 3 :: CardinalNumber \bound{c3}}
}
\xtc{
They can also be obtained as the named cardinal \spad{Aleph(n)}.
}
\spad{A0 := Aleph 0 \bound{A0}}
\xtc{
\spad{A1 := Aleph 1 \bound{A1}}
}
\xtc{
The \spadfunFrom{finite?}{CardinalNumber} operation tests whether a value is a finite cardinal, that is, a non-negative integer.
}
\spad{finite? c2 \free{c2}}
\xtc{
\spad{finite? A0 \free{A0}}
}
\xtc{
Similarly, the \spadfunFrom{countable?}{CardinalNumber} operation determines whether a value is a countable cardinal, that is, finite or \spad{Aleph(0)}.
}
\spad{countable? c2 \free{c2}}
\xtc{
\spad{countable? A0 \free{A0}}
}
\xtc{
\spad{countable? A1 \free{A1}}
}
Arithmetic operations are defined on cardinal numbers as follows: If \spad{x = \#X} and \spad{y = \#Y} then
\indent{0}
\spad{x+y = \#(X+Y)}
3.12. **CARD.HT**

\tab{20} cardinality of the disjoint union \newline
\spad{x-y = #(X-Y)}

\tab{20} cardinality of the relative complement \newline
\spad{x\setminus y = #(X\setminus Y)}

\tab{20} cardinality of the Cartesian product \newline
\spad{x\times y = #(X\times Y)}

\tab{20} cardinality of the set of maps from \spad{Y} to \spad{X} \newline
\xtc{Here are some arithmetic examples.}
\spadpaste{[c2 + c2, c2 + A1] \free{c2 A1}}

\xtc{Subtraction is a partial operation: it is not defined\newline when subtracting a larger cardinal from a smaller one, nor\newline when subtracting two equal infinite cardinals.}
\spadpaste{[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1] \free{c1,c2,c3,A0,A1}}

\xtc{\begin{verbatim}
2**Aleph i = Aleph(i+1)
\end{verbatim}\newline
and is independent of the axioms of set theory.}
\footnote{Goedel,\newline{{it The consistency of the continuum hypothesis,}},\newlineAnn. Math. Studies, Princeton Univ. Press, 1940.}
\xtc{The \spadtype{CardinalNumber} domain provides an operation to assert\newlinewhether the hypothesis is to be assumed.}
\spadpaste{generalizedContinuumHypothesisAssumed true \bound{GCH}}

\xtc{When the generalized continuum hypothesis\newline is assumed, exponentiation to a transfinite power is allowed.}
\spadpaste{[c0**0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1] \free{c0,c1,c2,A0,A1,GCH}}
Three commonly encountered cardinal numbers are

\indent{0}
\spad{a = \#}\text{\bf Z} \tab{20} countable infinity \newline
\spad{c = \#}\text{\bf R} \tab{20} the continuum \newline
\spad{f = \#\{g\mid g: [0,1] \rightarrow \{\text{\bf R}\}\}} \newline

\xtc{In this domain, these values are obtained under the generalized continuum hypothesis in this way.}
\spadpaste{a := \text{Aleph 0} \free{GCH}\bound{a}}
\xtc{}
\spadpaste{c := 2 ** a \free{a} \bound{c}}
\xtc{}
\spadpaste{f := 2 ** c \free{c} \bound{f}}
\endscroll

\xtc{In this domain, these values are obtained under the generalized continuum hypothesis in this way.}
\begin{verbatim}
0
Type: CardinalNumber
\end{verbatim}
\begin{verbatim}
(3) 2
Type: CardinalNumber
\end{verbatim}
\begin{verbatim}
(4) 3
Type: CardinalNumber
\end{verbatim}
\begin{verbatim}
(5) Aleph(0)
Type: CardinalNumber
\end{verbatim}
\begin{patch}{CardinalNumberXmpPageEmpty5}
\begin{paste}{CardinalNumberXmpPageEmpty5}{CardinalNumberXmpPagePatch5}
\pastebutton{CardinalNumberXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{A0 := \text{Aleph } 0\free{A0}}
\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPagePatch6}
\begin{paste}{CardinalNumberXmpPageFull6}{CardinalNumberXmpPageEmpty6}
\pastebutton{CardinalNumberXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{A1 := \text{Aleph } 1\free{A1}}
\indentrel{3}\begin{verbatim}
(6) \text{Aleph(1)}
Type: \text{CardinalNumber}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPageEmpty6}
\begin{paste}{CardinalNumberXmpPageEmpty6}{CardinalNumberXmpPagePatch6}
\pastebutton{CardinalNumberXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{A1 := \text{Aleph } 1\free{A1}}
\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPagePatch7}
\begin{paste}{CardinalNumberXmpPageFull7}{CardinalNumberXmpPageEmpty7}
\pastebutton{CardinalNumberXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{\text{finite? } c2\free{c2}}
\indentrel{3}\begin{verbatim}
(7) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPageEmpty7}
\begin{paste}{CardinalNumberXmpPageEmpty7}{CardinalNumberXmpPagePatch7}
\pastebutton{CardinalNumberXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{\text{finite? } c2\free{c2}}
\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPagePatch8}
\begin{paste}{CardinalNumberXmpPageFull8}{CardinalNumberXmpPageEmpty8}
\pastebutton{CardinalNumberXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{\text{finite? } A0\free{A0}}
\indentrel{3}\begin{verbatim}
(8) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CardinalNumberXmpPageEmpty8}
3.12. CARD.HT

\begin{paste}{CardinalNumberXmpPageFull8}{CardinalNumberXmpPageEmpty8}\end{paste}
\spadcommand{finite? A0}\free{A0}
\end{patch}

\begin{patch}{CardinalNumberXmpPagePatch9}
\begin{paste}{CardinalNumberXmpPageFull9}{CardinalNumberXmpPageEmpty9}\end{paste}
\spadcommand{countable? c2}\free{c2}
(9) true
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{CardinalNumberXmpPagePatch10}
\begin{paste}{CardinalNumberXmpPageFull10}{CardinalNumberXmpPageEmpty10}\end{paste}
\spadcommand{countable? A0}\free{A0}
(10) true
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CardinalNumberXmpPagePatch11}
\begin{paste}{CardinalNumberXmpPageFull11}{CardinalNumberXmpPageEmpty11}\end{paste}
\spadcommand{countable? A1}\free{A1}
(11) false
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
(12) [4, \aleph(1)]
Type: List CardinalNumber
\end{verbatim}
\begin{verbatim}
(13) [0, 2, 4, 0, \aleph(1), \aleph(1), \aleph(1)]
Type: List CardinalNumber
\end{verbatim}
\begin{verbatim}
(14) [1, 2, 4, 1, \aleph(1), \aleph(1)]
Type: List CardinalNumber
\end{verbatim}
\begin{verbatim}
(15) [1, 0, "failed", Aleph(1), Aleph(1), "failed"]
Type: List Union(CardinalNumber, "failed")
\end{verbatim}

(16) true
Type: Boolean
\end{verbatim}

(17) [0, 1, Aleph(1), Aleph(1), Aleph(2), Aleph(1), Aleph(2)]
Type: List CardinalNumber
\end{verbatim}
\begin{paste}{CardinalNumberXmpPageEmpty17}{CardinalNumberXmpPagePatch17}
\pastebutton{CardinalNumberXmpPageEmpty17}{\showpaste}
\spadcommand{
[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]
\free{c0 c1 c2 A0 A1 GCH }}
\end{paste}

\begin{paste}{CardinalNumberXmpPageFull18}{CardinalNumberXmpPageEmpty18}
\pastebutton{CardinalNumberXmpPageFull18}{\hidepaste}
\spadcommand{a := Aleph 0\free{GCH }\bound{a }}
\verbatim
(18) Aleph(0)
\end{verbatim}

\begin{paste}{CardinalNumberXmpPageFull19}{CardinalNumberXmpPageEmpty19}
\pastebutton{CardinalNumberXmpPageFull19}{\hidepaste}
\spadcommand{c := 2**a\free{a }\bound{c }}
\verbatim
(19) Aleph(1)
\end{verbatim}

\begin{paste}{CardinalNumberXmpPageFull20}{CardinalNumberXmpPageEmpty20}
\pastebutton{CardinalNumberXmpPageFull20}{\hidepaste}
\spadcommand{f := 2**c\free{c }\bound{f }}
\verbatim
(20) Aleph(2)
\end{verbatim}

\end{verbatim}
3.13. \texttt{CARTEN.HT}

\begin{verbatim}
\spadcommand{f := 2**c\free{c \bound{f }}}
\end{verbatim}

---

3.13 \texttt{carten.ht}

CartesianTensor

--- carten.ht ---

\begin{verbatim}
\spadtype{CartesianTensor(i0,dim,R)} provides Cartesian tensors with components belonging to a commutative ring \spad{R}. Tensors can be described as a generalization of vectors and matrices. This gives a concise \textit{tensor algebra} for multilinear objects supported by the \spad{CartesianTensor} domain. You can form the inner or outer product of any two tensors and you can add or subtract tensors with the same number of components. Additionally, various forms of traces and transpositions are useful.

The \spad{CartesianTensor} constructor allows you to specify the minimum index for subscripting. In what follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the integers, with indices starting at 1.\}{
\spadpaste{CT := CARTEN(i0 := 1, 2, Integer) \bound{CT i0}}}

\subsection*{Forming tensors}

Scalars can be converted to tensors of rank zero.\}{
\spadpaste{t0: CT := 8 \free{CT}\bound{t0}}}
\end{verbatim}
Vectors (mathematical direct products, rather than one dimensional array structures) can be converted to tensors of rank one.

```spad
v: DirectProduct(2, Integer) := directProduct [3,4]
Tv: CT := v
```

Matrices can be converted to tensors of rank two.

```spad
m: SquareMatrix(2, Integer) := matrix [[1,2],[4,5]]
m: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]]
```

In general, a tensor of rank \(k\) can be formed by making a list of rank \(k-1\) tensors or, alternatively, a \(k\)-deep nested list of lists.

```spad
t1: CT := [2, 3]
t2: CT := [t1, t1]
t3: CT := [t2, t2]
```
3.13. CARTEN.HT

\tt: CT := [t3, t3]; tt := [tt, tt] \free{CT t3}\bound{tt}
\tt{rank tt \free{tt}}

\subsubsection{Multiplication}
%\head{subsection}{Multiplication}{ugxCartenMult}

Given two tensors of rank \spad{k1} and \spad{k2}, the outer
\spadfunFrom{product}{CartesianTensor} forms a new tensor of rank
\spad{k1+k2}.
\tt{Here}
\spad{Tmn(i,j,k,l) = T_m(i,j) \ T_n(k,l).}
\spad{Tmn := product(Tm, Tn)\free{Tm Tn}\bound{Tmn}}

The inner product (\spadfunFrom{contract}{CartesianTensor}) forms a tensor
\spadfunFrom{contract}{CartesianTensor} of rank \spad{k1+k2-2}.
This product generalizes the vector dot product and matrix-vector product
by summing component products along two indices.
\tt{Here we sum along the second index of \spad{Tm} and the
first index of \spad{Tv}.}
\spad{Tmv(i) = sum Tm(i,j) * Tv(j) for j in 1..dim.}
\spad{Tmv := contract(Tm,2,Tv,1)\free{Tm Tv}\bound{Tmv}}

The multiplication operator \spadopFrom{*}{CartesianTensor} is scalar
multiplication or an inner product depending on the ranks of the
arguments.
\tt{If either argument is rank zero it is treated as scalar multiplication.
Otherwise, \spad{a*b} is the inner product summing the last index of
\spad{a} with the first index of \spad{b}.}
\spad{Tm*Tv \free{Tm Tv}}
This definition is consistent with the inner product on matrices and vectors.

\[ T_{mv} = m * v \]

\subsubsection{Selecting Components}
\%\head{subsection}{Selecting Components}{ugxCartenSelect}

\labelSpace{2pc}
\xtc{
For tensors of low rank (that is, four or less), components can be selected by applying the tensor to its indices.
}{
\spadpaste{t0()} \free{t0}}
\xtc{
}{
\spadpaste{t1(1+1)} \free{t1}}
\xtc{
}{
\spadpaste{t2(2,1)} \free{t2}}
\xtc{
}{
\spadpaste{t3(2,1,2)} \free{t3}}
\xtc{
}{
\spadpaste{Tmn(2,1,2,1)} \free{Tmn}}
\xtc{
A general indexing mechanism is provided for a list of indices.
}{
\spadpaste{t0[]} \free{t0}}
\xtc{
}{
\spadpaste{t1[2]} \free{t1}}
\xtc{
}{
\spadpaste{t2[2,1]} \free{t2}}
\xtc{
The general mechanism works for tensors of arbitrary rank, but is somewhat less efficient since the intermediate index list must be created.
}{
}
A “contraction” between two tensors is an inner product, as we have seen above.
You can also contract a pair of indices of a single tensor.
This corresponds to a “trace” in linear algebra.
The expression \( \text{contract}(t, k1, k2) \) forms a new tensor by summing the diagonal given by indices in position \( k1 \) and \( k2 \).
This is the tensor given by
\[
\sum_{k=1}^{\dim} T_{mn}(k,k,i,j).
\]
Since \( T_{mn} \) is the outer product of matrix \( m \) and matrix \( n \), the above is equivalent to this.

\[
\text{trace}(m) \ast n
\]
\spadpaste{contract(Tmn,2,4) = m * transpose(n) \free{Tmn m n}}
}\xtc{
}\spadpaste{contract(Tmn,3,4) = trace(n) * m \free{Tmn m n}}
}

\subsubsection{Transpositions}
%\head{subsection}{Transpositions}{ugxCartenTranspos}

You can exchange any desired pair of indices using the \spadfunFrom{transpose}{CartesianTensor} operation.

\xtc{
Here the indices in positions one and three are exchanged, that is,
\texht{$tT_{mn}(i,j,k,l) = T_{mn}(k,j,i,l).$}{% \spad{tTmn(i,j,k,l) = Tmn(k,j,i,l).}}}
}\spadpaste{tTmn := transpose(Tmn,1,3) \free{tTmn}}
\xtc{
If no indices are specified, the first and last index are exchanged.
}\spadpaste{transpose Tmn \free{Tmn}}
\xtc{
This is consistent with the matrix transpose.
}\spadpaste{transpose Tm = transpose m \free{Tm m}}

If a more complicated reordering of the indices is required, then the \spadfunFrom{reindex}{CartesianTensor} operation can be used. This operation allows the indices to be arbitrarily permuted.
\xtc{
This defines
\texht{$rT_{mn}(i,j,k,l) = T_{mn}(i,l,j,k).$}{% \spad{rTmn(i,j,k,l) = Tmn(i,l,j,k).}}}
}\spadpaste{rTmn := reindex(Tmn, [1,4,2,3]) \free{rTmn}}

\subsubsection{Arithmetic}
%\head{subsection}{Arithmetic}{ugxCartenArith}

\xtc{
Tensors of equal rank can be added or subtracted so arithmetic expressions can be used to produce new tensors.
Two specific tensors have properties which depend only on the dimension.

The Kronecker delta satisfies
\[
\begin{array}{|c|}
\hline
i=j & 1 \\
\hline
i\neq j & 0 \\
\hline
\end{array}
\]

This can be used to reindex via contraction.

The Levi Civita symbol determines the sign of a permutation of indices.
\[
\epsilon(i_1, \ldots, i_{\text{dim}}) = +1 \text{ if } i_1, \ldots, i_{\text{dim}} \text{ is an even permutation of } i_0, \ldots, i_0+\text{dim}-1
\]
= -1 if $i_1, \ldots, i_{\text{dim}}$ is an odd permutation of $i_0, \ldots, i_0+\text{dim}-1$
= 0 if $i_1, \ldots, i_{\text{dim}}$ is not a permutation of $i_0, \ldots, i_0+\text{dim}-1$

This property can be used to form determinants.

\spadpaste{contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m \free{epsilon Tm m}}

\subsubsection{Properties of the CartesianTensor domain}

\spadtype{GradedModule(R,E)} denotes “\spad{E}-graded \spad{R}-module”,
that is, a collection of \spad{R}-modules indexed by an abelian monoid \spad{E}.

An element \spad{g} of \spad{G[s]} for some specific \spad{s}
in \spad{E} is said to be an element of \spad{G} with
\spadfunFrom{degree}{GradedModule} \spad{s}.

Sums are defined in each module \spad{G[s]} so two elements of
\spad{G} can be added if they have the same degree.

Morphisms can be defined and composed by degree to give the
mathematical category of graded modules.

\spadtype{GradedAlgebra(R,E)} denotes “\spad{E}-graded \spad{R}-algebra.”

A graded algebra is a graded module together with a degree preserving
\spad{R}-bilinear map, called the \spadfunFrom{product}{GradedAlgebra}.

\begin{verbatim}
degree(product(a,b))= degree(a) + degree(b)
product(r*a,b) = product(a,r*b) = r*product(a,b)
product(a1+a2,b) = product(a1,b) + product(a2,b)
product(a,b1+b2) = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)
\end{verbatim}

The domain \spadtype{CartesianTensor(i0, dim, R)} belongs
to the category \spadtype{GradedAlgebra(R, NonNegativeInteger)}.
The non-negative integer \spadfunFrom{degree}{GradedAlgebra} is the tensor rank
and the graded algebra \spadfunFrom{product}{GradedAlgebra} is the tensor outer product.
The graded module addition captures the notion that
only tensors of equal rank can be added.

If \spad{V} is a vector space of dimension \spad{dim} over \spad{R},
then the tensor module \spad{T[k](V)} is defined as
\begin{verbatim}
\[ T[0](V) = R \]
\[ T[k](V) = T[k-1](V) \ast V \]

where \texttt{\spad{*}} denotes the \texttt{\spad{R}}-module tensor
\texttt{\spadfunFrom{product}{GradedAlgebra}}.
\texttt{\spadtype{CartesianTensor(i0,dim,R)}} is the graded algebra in which
the degree \texttt{\spad{k}} module is \texttt{\spad{T[k](V)}}.

\subsubsection{Tensor Calculus}

It should be noted here that often tensors are used in the context of
tensor-valued manifold maps. This leads to the notion of covariant
and contravariant bases with tensor component functions transforming
in specific ways under a change of coordinates on the manifold. This
is no more directly supported by the \texttt{\spad{CartesianTensor}} domain
than it is by the \texttt{\spad{Vector}} domain. However, it is possible
to have the components implicitly represent component maps by choosing
a polynomial or expression type for the components. In this case, it
is up to the user to satisfy any constraints which arise on the basis
of this interpretation.

\begin{patch}{CartesianTensorXmpPagePatch1}
\begin{paste}{CartesianTensorXmpPageFull1}{CartesianTensorXmpPageEmpty1}
\pastebutton{CartesianTensorXmpPageFull1}{\hidepaste}
\indentrel{5}\spadcommand{CT := CARTEN(i0 := 1, 2, Integer)\bound{CT i0 }}
\indentrel{3}\begin{verbatim}
(1) CartesianTensor(1,2,Integer)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch2}
\begin{paste}{CartesianTensorXmpPageFull2}{CartesianTensorXmpPageEmpty2}
\pastebutton{CartesianTensorXmpPageFull2}{\hidepaste}
\indentrel{5}\spadcommand{t0: CT := 8\free{CT }\bound{t0 }}
\indentrel{3}\begin{verbatim}
(2) 8
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
204

CHAPTER 3. HYPERDOC PAGES

\begin{patch}{CartesianTensorXmpPageEmpty2}
\begin{paste}{CartesianTensorXmpPageEmpty2}{CartesianTensorXmpPagePatch2}
\pastebutton{CartesianTensorXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{t0: CT := 8\free{CT }\bound{t0 }}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch3}
\begin{paste}{CartesianTensorXmpPageFull3}{CartesianTensorXmpPageEmpty3}
\pastebutton{CartesianTensorXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{rank t0\free{t0 }}
\indentrel{3}\begin{verbatim}
(3) 0
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty3}
\begin{paste}{CartesianTensorXmpPageEmpty3}{CartesianTensorXmpPagePatch3}
\pastebutton{CartesianTensorXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{rank t0\free{t0 }}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch4}
\begin{paste}{CartesianTensorXmpPageFull4}{CartesianTensorXmpPageEmpty4}
\pastebutton{CartesianTensorXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{v: DirectProduct(2, Integer) := directProduct [3,4]\bound{v }}
\indentrel{3}\begin{verbatim}
(4) [3,4]
Type: DirectProduct(2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty4}
\begin{paste}{CartesianTensorXmpPageEmpty4}{CartesianTensorXmpPagePatch4}
\pastebutton{CartesianTensorXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{v: DirectProduct(2, Integer) := directProduct [3,4]\bound{v }}
\indentrel{3}\begin{verbatim}
(4) [3,4]
Type: DirectProduct(2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch5}
\begin{paste}{CartesianTensorXmpPageFull5}{CartesianTensorXmpPageEmpty5}
\pastebutton{CartesianTensorXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{Tv: CT := v\free{v CT }\bound{Tv }}
\indentrel{3}\begin{verbatim}
(5) [3,4]
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{CartesianTensorXmpPageEmpty5}
\begin{paste}{CartesianTensorXmpPageEmpty5}{CartesianTensorXmpPagePatch5}
\pastebutton{CartesianTensorXmpPageEmpty5}{\showpaste}
\tab{5}\texttt{\spadcommand{Tv: CT := v\free{v CT}\bound{Tv} \}}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch6}
\begin{paste}{CartesianTensorXmpPageFull6}{CartesianTensorXmpPageEmpty6}
\pastebutton{CartesianTensorXmpPageFull6}{\hidepaste}
\tab{5}\texttt{\spadcommand{m: SquareMatrix(2, Integer) := matrix \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}\bound{m} \}}
\indentrel{3}\begin{verbatim}
1 2
4 5
\end{verbatim}
\indentrel{-3}\texttt{Type: SquareMatrix(2,Integer) \}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch7}
\begin{paste}{CartesianTensorXmpPageFull7}{CartesianTensorXmpPageEmpty7}
\pastebutton{CartesianTensorXmpPageFull7}{\hidepaste}
\tab{5}\texttt{\spadcommand{Tm: CT := m\free{CT m}\bound{Tm} \}}
\indentrel{3}\begin{verbatim}
1 2
4 5
\end{verbatim}
\indentrel{-3}\texttt{Type: CartesianTensor(1,2,Integer) \}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch8}
\begin{paste}{CartesianTensorXmpPageFull8}{CartesianTensorXmpPageEmpty8}
\pastebutton{CartesianTensorXmpPageFull8}{\hidepaste}
\tab{5}\texttt{\spadcommand{n: SquareMatrix(2, Integer) := matrix \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}\bound{n} \}}
\end{paste}\end{patch}
\indentrel{3}\begin{verbatim}
2 3
0 1
\end{verbatim}
Type: SquareMatrix(2,Integer)
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty8}
\begin{paste}{CartesianTensorXmpPageEmpty8}{CartesianTensorXmpPagePatch8}
\pastebutton{CartesianTensorXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{
n: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]]\bound{n }}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch9}
\begin{paste}{CartesianTensorXmpPageFull9}{CartesianTensorXmpPageEmpty9}
\pastebutton{CartesianTensorXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{Tn: CT := n\bound{Tn } free \{CT n \}}
\indentrel{3}\begin{verbatim}
2 3
0 1
\end{verbatim}
Type: CartesianTensor(1,2,Integer)
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch10}
\begin{paste}{CartesianTensorXmpPageFull10}{CartesianTensorXmpPageEmpty10}
\pastebutton{CartesianTensorXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{t1: CT := [2, 3]\free\{CT \} \bound{t1 }}
\indentrel{3}\begin{verbatim}
(10) [2,3]
\end{verbatim}
Type: CartesianTensor(1,2,Integer)
\indentrel{-3}\end{paste}\end{patch}
3.13. CARTEN.HT

\begin{verbatim}
(11) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(12)
  2 3
Type: CartesianTensor(1,2,Integer)
\end{verbatim}

\begin{verbatim}
(13) [ , ]
  2 3 2 3
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\begin{verbatim}
2 3 2 3 2 3 2 3
(14) [ , ]
2 3 2 3 2 3 2 3

Type: CartesianTensor(1,2,Integer)
\end{verbatim}

(15) 5
Type: PositiveInteger
\end{verbatim}

(16)
3.13. CARTEN.HT

\[
\begin{array}{ccc}
  8 & 12 & 10 \\
  0 & 4 & 5 \\
\end{array}
\]

Type: CartesianTensor(1,2,Integer)

\begin{verbatim}
Tmn := product(Tm, Tn)
\end{verbatim}

\begin{verbatim}
17) [11,32]
\end{verbatim}

Type: CartesianTensor(1,2,Integer)

\begin{verbatim}
Tmv := contract(Tm,2,Tv,1)
\end{verbatim}

\begin{verbatim}
18) [11,32]
\end{verbatim}

Type: CartesianTensor(1,2,Integer)

\begin{verbatim}
Tm*Tv
\end{verbatim}

\begin{verbatim}
Tmv = m * v
\end{verbatim}
\begin{verbatim}
(19)  [11,32]= [11,32]
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageEmpty19}
\begin{paste}{CartesianTensorXmpPageEmpty19}{CartesianTensorXmpPagePatch19}
\pastebutton{CartesianTensorXmpPageEmpty19}{\showpaste}
\begin{tab}{5}\spadcommand{Tmv = m \times v \free{Tmv m v }}\end{tab}
\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPagePatch20}
\begin{paste}{CartesianTensorXmpPageFull20}{CartesianTensorXmpPageEmpty20}
\pastebutton{CartesianTensorXmpPageFull20}{\hidepaste}
\begin{tab}{5}\spadcommand{t0() \free{t0 }}\end{tab}
\indentrel{3}\begin{verbatim}
(20) 8
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageEmpty20}
\begin{paste}{CartesianTensorXmpPageEmpty20}{CartesianTensorXmpPagePatch20}
\pastebutton{CartesianTensorXmpPageEmpty20}{\showpaste}
\begin{tab}{5}\spadcommand{t0() \free{t0 }}\end{tab}
\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPagePatch21}
\begin{paste}{CartesianTensorXmpPageFull21}{CartesianTensorXmpPageEmpty21}
\pastebutton{CartesianTensorXmpPageFull21}{\hidepaste}
\begin{tab}{5}\spadcommand{t1(1+1) \free{t1 }}\end{tab}
\indentrel{3}\begin{verbatim}
(21) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageEmpty21}
\begin{paste}{CartesianTensorXmpPageEmpty21}{CartesianTensorXmpPagePatch21}
\pastebutton{CartesianTensorXmpPageEmpty21}{\showpaste}
\begin{tab}{5}\spadcommand{t1(1+1) \free{t1 }}\end{tab}
\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPagePatch22}
\begin{paste}{CartesianTensorXmpPageFull22}{CartesianTensorXmpPageEmpty22}
\pastebutton{CartesianTensorXmpPageFull22}{\hidepaste}
\begin{tab}{5}\spadcommand{t2(2,1) \free{t2 }}\end{tab}
\indentrel{3}\begin{verbatim}
(22) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(23) 3
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(24) 0
Type: NonNegativeInteger
\end{verbatim}
\begin{verbatim}
(25) 8
Type: PositiveInteger
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{CartesianTensorXmpPageEmpty25}
\begin{paste}{CartesianTensorXmpPageEmpty25}{CartesianTensorXmpPagePatch25}
\pastebutton{CartesianTensorXmpPageEmpty25}{\showpaste}
\tab{5}\spadcommand{t0[]}\free{t0}{}
\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch26}
\begin{paste}{CartesianTensorXmpPageFull26}{CartesianTensorXmpPageEmpty26}
\pastebutton{CartesianTensorXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{t1[2]}\free{t1}{}
\indentrel{3}\begin{verbatim}(26) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty27}
\begin{paste}{CartesianTensorXmpPageEmpty27}{CartesianTensorXmpPagePatch27}
\pastebutton{CartesianTensorXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{t2[2,1]}\free{t2}{}
\indentrel{3}\begin{verbatim}(27) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch28}
\begin{paste}{CartesianTensorXmpPageFull28}{CartesianTensorXmpPageEmpty28}
\pastebutton{CartesianTensorXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{t3[2,1,2]}\free{t3}{}
\indentrel{3}\begin{verbatim}(28) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{paste}{CartesianTensorXmpPageEmpty28}{CartesianTensorXmpPagePatch28}
\spadcommand{t3[2,1,2]\free{t3}}
\end{paste}

\begin{patch}{CartesianTensorXmpPagePatch29}
\begin{paste}{CartesianTensorXmpPageFull29}{CartesianTensorXmpPageEmpty29}
\spadcommand{Tmn[2,1,2,1]\free{Tmn}}
\indentrel{3}\begin{verbatim}
(29) 0
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty29}
\begin{paste}{CartesianTensorXmpPageEmpty29}{CartesianTensorXmpPagePatch29}
\spadcommand{Tmn[2,1,2,1]\free{Tmn}}
\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch30}
\begin{paste}{CartesianTensorXmpPageFull30}{CartesianTensorXmpPageEmpty30}
\spadcommand{cTmn := contract(Tmn,1,2)\free{Tmn}\bound{cTmn}}
\indentrel{3}\begin{verbatim}
12 18
(30)
0 6
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty30}
\begin{paste}{CartesianTensorXmpPageEmpty30}{CartesianTensorXmpPagePatch30}
\spadcommand{cTmn := contract(Tmn,1,2)\free{Tmn}\bound{cTmn}}
\end{paste}
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch31}
\begin{paste}{CartesianTensorXmpPageFull31}{CartesianTensorXmpPageEmpty31}
\spadcommand{trace(m) * n\free{m n}}
\indentrel{3}\begin{verbatim}
12 18
(31)
0 6
Type: SquareMatrix(2,Integer)
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
\begin{patch}{CartesianTensorXmpPageEmpty31}
\begin{paste}{CartesianTensorXmpPageEmpty31}{CartesianTensorXmpPagePatch31}
\pastebutton{CartesianTensorXmpPageEmpty31}{\showpaste}
\tab{5}\spadcommand{trace(m) * n\free{m n }}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch32}
\begin{paste}{CartesianTensorXmpPageFull32}{CartesianTensorXmpPageEmpty32}
\pastebutton{CartesianTensorXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{contract(Tmn,1,2) = trace(m) * n\free{Tmn m n }}
\indentrel{3}\begin{verbatim}
12 18 12 18
(32) =
0 6 0 6
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}\indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch33}
\begin{paste}{CartesianTensorXmpPageFull33}{CartesianTensorXmpPageEmpty33}
\pastebutton{CartesianTensorXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{contract(Tmn,1,3) = transpose(m) * n\free{Tmn m n }}
\indentrel{3}\begin{verbatim}
2 7 2 7
(33) =
4 11 4 11
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}\indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch34}
\begin{paste}{CartesianTensorXmpPageFull34}{CartesianTensorXmpPageEmpty34}
\pastebutton{CartesianTensorXmpPageFull34}{\hidepaste}
\tab{5}\spadcommand{contract(Tmn,1,4) = transpose(m) * transpose(n)\free{Tmn m n }}
\indentrel{3}\begin{verbatim}
14 4 14 4
\end{verbatim}
\end{patch}
\begin{verbatim}
| 3.13. CARTEN.HT |
\end{verbatim}

\begin{verbatim}
(34) = 
\begin{pmatrix}
19 & 5 \\
19 & 5 \\
\end{pmatrix}
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}

\begin{verbatim}
contract(Tmn,1,4) = transpose(m) * transpose(n)
\end{verbatim}

\begin{verbatim}
(35) = 
\begin{pmatrix}
2 & 5 & 2 & 5 \\
8 & 17 & 8 & 17 \\
\end{pmatrix}
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}

\begin{verbatim}
contract(Tmn,2,3) = m * n
\end{verbatim}

\begin{verbatim}
(36) = 
\begin{pmatrix}
8 & 2 & 8 & 2 \\
23 & 5 & 23 & 5 \\
\end{pmatrix}
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}

\begin{verbatim}
contract(Tmn,2,4) = m * transpose(n)
\end{verbatim}

\begin{verbatim}
contract(Tmn,2,4) = m * transpose(n)
\end{verbatim}

\begin{verbatim}
contract(Tmn,2,4) = m * transpose(n)
\end{verbatim}
\begin{verbatim}
3 6 3 6
(37) =
12 15 12 15
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}

\begin{verbatim}
2 8 4 10
(38) =
0 1 0 2
0 4 0 5
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
3.13. CARTEN.HT

\begin{verbatim}
1 4 2 5
\end{verbatim}
Type: CartesianTensor(1,2,Integer)
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch40}
\begin{verbatim}
1 4 1 4
2 5 2 5
\end{verbatim}
(40) =
Type: Equation CartesianTensor(1,2,Integer)
\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch41}
\begin{verbatim}
2 0 3 1
4 0 6 2
8 0 12 4
10 0 15 5
\end{verbatim}
Type: CartesianTensor(1,2,Integer)
\end{patch}
\spadcommand{tt := transpose(Tm)*Tn - Tn*transpose(Tm)\free{Tm Tn} \bound{tt2} }

\verbatim
- 6 - 16
2 6
\end{verbatim}

\indentrel{-3}

\indentrel{3}

(42)

\indentrel{-3}

Type: CartesianTensor(1,2,Integer)

\end{verbatim}

\indentrel{-3}

\indentrel{3}

(43) \[- 4, - 11\]

\indentrel{-3}

Type: CartesianTensor(1,2,Integer)

\indentrel{-3}

\indentrel{3}

(44)

\indentrel{-3}

\indentrel{3}

(44)
3.13. CARTEN.HT

Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageFull44}{CartesianTensorXmpPageEmpty44}
\pastebutton{CartesianTensorXmpPageFull44}{\hidepaste}
\tab{5}\spadcommand{reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)\free{Tm Tn}}
\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageFull45}{CartesianTensorXmpPageEmpty45}
\pastebutton{CartesianTensorXmpPageFull45}{\hidepaste}
\tab{5}\spadcommand{delta: CT := kroneckerDelta()\free{CT} \bound{delta}}
\indentrel{3}\begin{verbatim}
1 0
0 1
(45)
Type: CartesianTensor(1,2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CartesianTensorXmpPageFull46}{CartesianTensorXmpPageEmpty46}
\pastebutton{CartesianTensorXmpPageFull46}{\hidepaste}
\tab{5}\spadcommand{contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])\free{Tmn delta}}
\indentrel{3}\begin{verbatim}
2 4 0 0 2 4 0 0
3 6 1 2 3 6 1 2
12 15 4 5 12 15 4 5
(46)
\end{verbatim}
\indentrel{3}\begin{verbatim}
8 10 0 0 8 10 0 0
Type: Equation CartesianTensor(1,2,Integer)
\end{verbatim}
\end{patch}
contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])
\end{paste}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch47}
\begin{paste}{CartesianTensorXmpPageFull47}{CartesianTensorXmpPageEmpty47}
\pastebutton{CartesianTensorXmpPageFull47}{\hidepaste}
\tab{5}\spadcommand{
epsilon:CT := leviCivitaSymbol()
\free{CT }\bound{epsilon }}
\indentrel{3}\begin{verbatim}
0 1
- 1 0
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty47}
\begin{paste}{CartesianTensorXmpPageEmpty47}{CartesianTensorXmpPagePatch47}
\pastebutton{CartesianTensorXmpPageEmpty47}{\showpaste}
\tab{5}\spadcommand{
contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m
\free{epsilon Tm m }}
\indentrel{3}\begin{verbatim}
- 6= - 6
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CartesianTensorXmpPagePatch48}
\begin{paste}{CartesianTensorXmpPageFull48}{CartesianTensorXmpPageEmpty48}
\pastebutton{CartesianTensorXmpPageFull48}{\hidepaste}
\tab{5}\spadcommand{
contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m
\free{epsilon Tm m }}
\indentrel{3}\begin{verbatim}
- 6= - 6
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CartesianTensorXmpPageEmpty48}
\begin{paste}{CartesianTensorXmpPageEmpty48}{CartesianTensorXmpPagePatch48}
\pastebutton{CartesianTensorXmpPageEmpty48}{\showpaste}
\tab{5}\spadcommand{
contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m
\free{epsilon Tm m }}
\end{paste}\end{patch}\end{patch}
3.14 cclass.ht

CharacterClass

--- cclass.ht ---

\begin{page}{CharacterClassXmpPage}{CharacterClass}
\beginscroll

The CharacterClass domain allows classes of characters to be defined and manipulated efficiently.

\xtc{Character classes can be created by giving either a string or a list of characters.}
\spadpaste{cl1 := charClass [char "a", char "e", char "i", char "o", char "u", char "y"] \bound{cl1}}
\xtc{}
\spadpaste{cl2 := charClass "bcdfghjklmnpqrstuvwxyz" \bound{cl2}}
\xtc{A number of character classes are predefined for convenience.}
\spadpaste{digit()}\}
\xtc{\}
\spadpaste{hexDigit()}\}
\xtc{\}
\spadpaste{upperCase()}\}
\xtc{\}
\spadpaste{lowerCase()}\}
\xtc{\}
\spadpaste{alphabetic()}\}
\xtc{\}
\spadpaste{alphanumeric()}}
You can quickly test whether a character belongs to a class.
\spadpaste{member?(char "a", cl1) \free{cl1}}
\spadpaste{member?(char "a", cl2) \free{cl2}}

Classes have the usual set operations because the \spadtype{CharacterClass} domain belongs to the category \spadtype{FiniteSetAggregate(Character)}.
\spadpaste{intersect(cl1, c12) \free{cl1 cl2}}
\spadpaste{union(cl1,cl2) \free{cl1 cl2}}
\spadpaste{difference(cl1,cl2) \free{cl1 cl2}}
\spadpaste{intersect(complement(cl1),cl2) \free{cl1 cl2}}

You can modify character classes by adding or removing characters.
\spadpaste{insert!(char "a", cl2) \free{cl2}\bound{cl22}}
\spadpaste{remove!(char "b", cl2) \free{cl22}\bound{cl23}}

For more information on related topics, see \downlink{`Character'}{CharacterXmpPage} and \downlink{`String'}{StringXmpPage}.
\showBlurb{CharacterClass}
\endscroll
\autobuttons
\end{page}
\begin{patch}{CharacterClassXmpPagePatch1}
\begin{paste}{CharacterClassXmpPageFull1}{CharacterClassXmpPageEmpty1}
3.14.  \textsc{CClass.HT}.

\begin{verbatim}
(1) "aeiouy"
Type: CharacterClass
\end{verbatim}

\begin{verbatim}
(2) "bcdfghjklmnpqrstvwxzy"
Type: CharacterClass
\end{verbatim}

\begin{verbatim}
(3) "0123456789"
Type: CharacterClass
\end{verbatim}
\begin{patch}{CharacterClassXmpPagePatch4}
\begin{paste}{CharacterClassXmpPageFull4}{CharacterClassXmpPageEmpty4}
\pastebutton{CharacterClassXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{hexDigit()}
\indentrel{3}\begin{verbatim}
(4) "0123456789ABCDEFabcdef"
Type: CharacterClass
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPageEmpty4}
\begin{paste}{CharacterClassXmpPageEmpty4}{CharacterClassXmpPagePatch4}
\pastebutton{CharacterClassXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{hexDigit()}
\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPagePatch5}
\begin{paste}{CharacterClassXmpPageFull5}{CharacterClassXmpPageEmpty5}
\pastebutton{CharacterClassXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{upperCase()}
(5) "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Type: CharacterClass
\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPageEmpty5}
\begin{paste}{CharacterClassXmpPageEmpty5}{CharacterClassXmpPagePatch5}
\pastebutton{CharacterClassXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{upperCase()}
\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPagePatch6}
\begin{paste}{CharacterClassXmpPageFull6}{CharacterClassXmpPageEmpty6}
\pastebutton{CharacterClassXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{lowerCase()}
(6) "abcdefghijklmnopqrstuvwxyz"
Type: CharacterClass
\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPageEmpty6}
\begin{paste}{CharacterClassXmpPageEmpty6}{CharacterClassXmpPagePatch6}
\pastebutton{CharacterClassXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{lowerCase()}
\end{paste}\end{patch}

\begin{patch}{CharacterClassXmpPagePatch7}
\begin{paste}{CharacterClassXmpPageFull7}{CharacterClassXmpPageEmpty7}
\end{patch}\end{patch}
3.14. CCLASS.HT

```spad
\spadcommand{alphabetic()}
\begin{verbatim}
(7)
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
\end{verbatim}
\indentrel{-3} \end{paste}

\spadcommand{alphanumeric()}
\begin{verbatim}
(8)
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
\end{verbatim}
\indentrel{-3} \end{paste}

\spadcommand{member?(char "a", cl1)\free{cl1}}
\begin{verbatim}
(9) true
\end{verbatim}
\indentrel{-3} \end{paste}
```
\begin{verbatim}
(10) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(11) "y"
Type: CharacterClass
\end{verbatim}

\begin{verbatim}
(12) "abcdefghijklmnopqrstuvwxyz"
Type: CharacterClass
\end{verbatim}
\tab{5}\spadcommand{difference(c1,c2)\free{c1 c2 }}
\indentrel{3}\begin{verbatim}
(13) "aeiou"
Type: CharacterClass
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{CharacterClassXmpPageEmpty13}
\begin{paste}{CharacterClassXmpPageEmpty13}{CharacterClassXmpPagePatch13}
\pastebutton{CharacterClassXmpPageEmpty13}{\showpaste}
\end{paste}
\begin{patch}{CharacterClassXmpPagePatch14}
\begin{paste}{CharacterClassXmpPageFull14}{CharacterClassXmpPageEmpty14}
\pastebutton{CharacterClassXmpPageFull14}{\hidepaste}
\end{paste}
\begin{patch}{CharacterClassXmpPageEmpty14}
\begin{paste}{CharacterClassXmpPageEmpty14}{CharacterClassXmpPagePatch14}
\pastebutton{CharacterClassXmpPageEmpty14}{\showpaste}
\indentrel{3}\begin{verbatim}
(14) "bcdfghjklmnpqrstvwxz"
Type: CharacterClass
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{CharacterClassXmpPagePatch15}
\begin{paste}{CharacterClassXmpPageFull15}{CharacterClassXmpPageEmpty15}
\pastebutton{CharacterClassXmpPageFull15}{\hidepaste}
\indentrel{3}\begin{verbatim}
(15) "abcdgfhjklmnpqrstvwxyz"
Type: CharacterClass
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{CharacterClassXmpPagePatch16}
\begin{paste}{CharacterClassXmpPageFull16}{CharacterClassXmpPageEmpty16}
\pastebutton{CharacterClassXmpPageFull16}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
3.15 char.ht

Character

⇒ “CharacterClass” (CharacterClassXmpPage) 3.14 on page 221
⇒ “String” (StringXmpPage) 3.103 on page 1269
3.15. \textit{CHAR.HT} \hfill 229

\spadpaste{quote()}
}
\xtc{
This is the escape character that allows quotes and other characters
within strings.
}
\spadpaste{escape()}
}
\xtc{
Characters are represented as integers in a machine-dependent way.
The integer value can be obtained using the \spadfunFrom{ord}{Character}
operation.
It is always true that \spad{\text{char(ord } c \text{) } = c} and \spad{\text{ord(char } i \text{) } = i},
provided that \spad{i} is in the range \spad{0..size()}\$Character-1\}.
}
\spadpaste{[ord c for c in chars] \free{chars}}
}
\xtc{
The \spadfunFrom{lowerCase}{Character} operation converts an upper case
letter to the corresponding lower case letter.
If the argument is not an upper case letter, then it is returned
unchanged.
}
\spadpaste{[upperCase c for c in chars] \free{chars}}
}
\xtc{
Likewise, the \spadfunFrom{upperCase}{Character} operation converts lower
case letters to upper case.
}
\spadpaste{[lowerCase c for c in chars] \free{chars}}
}
\xtc{
A number of tests are available to determine whether characters
belong to certain families.
}
\spadpaste{[alphabetic? c for c in chars] \free{chars}}
}
\xtc{
}
\spadpaste{[upperCase? c for c in chars] \free{chars}}
}
\xtc{
}
\spadpaste{[lowerCase? c for c in chars] \free{chars}}
}
\xtc{
}
\spadpaste{[digit? c for c in chars] \free{chars}}
\spadpaste{\[\text{hexDigit? } c \text{ for } c \text{ in chars} \]} \free{\text{chars}}

\spadpaste{\[\text{alphanumeric? } c \text{ for } c \text{ in chars} \]} \free{\text{chars}}

\begin{patch}{CharacterXmpPagePatch1}
\begin{paste}{CharacterXmpPageFull1}{CharacterXmpPageEmpty1}
\pastebutton{CharacterXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{
chars := \[\text{char } "a", \text{char } "A", \text{char } "X", \text{char } "8", \text{char } "+"\]\bound{\text{chars}}}
\indentrel{3}\begin{verbatim}
(1) \[a,A,X,8,+
\]
Type: \text{List Character}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CharacterXmpPagePatch2}
\begin{paste}{CharacterXmpPageFull2}{CharacterXmpPageEmpty2}
\pastebutton{CharacterXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{\space()}
\indentrel{3}\begin{verbatim}
(2)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CharacterXmpPagePatch3}
\begin{paste}{CharacterXmpPageFull3}{CharacterXmpPageEmpty3}
\pastebutton{CharacterXmpPageFull3}{\hidepaste}
\end{patch}
3.15. \textit{CHAR.HT}

\begin{verbatim}
(3) "
Type: Character
\end{verbatim}

(4) _
Type: Character

(5) [97,65,88,56,43]
Type: List Integer

\end{verbatim}

\begin{verbatim}
[upperCase c for c in chars]\free{chars }
\end{verbatim}

(6) \([A,A,X,8,+]\) 

Type: List Character

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CharacterXmpPageEmpty6}
\begin{paste}{CharacterXmpPageEmpty6}{CharacterXmpPagePatch6}
\pastebutton{CharacterXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{[\text{upperCase} c \text{ for } c \text{ in chars}]\free{chars}}
\end{paste}\end{patch}

\begin{patch}{CharacterXmpPagePatch7}
\begin{paste}{CharacterXmpPageFull7}{CharacterXmpPageEmpty7}
\pastebutton{CharacterXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{[\text{lowerCase} c \text{ for } c \text{ in chars}]\free{chars}}
\indentrel{3}\begin{verbatim}
(7) \[a,a,x,8,+]\nType: List Character
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CharacterXmpPageEmpty7}
\begin{paste}{CharacterXmpPageEmpty7}{CharacterXmpPagePatch7}
\pastebutton{CharacterXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{[\text{lowerCase} c \text{ for } c \text{ in chars}]\free{chars}}
\indentrel{-3}\end{patch}

\begin{patch}{CharacterXmpPagePatch8}
\begin{paste}{CharacterXmpPageFull8}{CharacterXmpPageEmpty8}
\pastebutton{CharacterXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{[\text{alphanumeric?} c \text{ for } c \text{ in chars}]\free{chars}}
\indentrel{3}\begin{verbatim}
(8) \[true,true,true,false,false]\nType: List Boolean
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{CharacterXmpPageEmpty8}
\begin{paste}{CharacterXmpPageEmpty8}{CharacterXmpPagePatch8}
\pastebutton{CharacterXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{[\text{alphanumeric?} c \text{ for } c \text{ in chars}]\free{chars}}
\indentrel{-3}\end{patch}

\begin{patch}{CharacterXmpPagePatch9}
\begin{paste}{CharacterXmpPageFull9}{CharacterXmpPageEmpty9}
\pastebutton{CharacterXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{[\text{uppercase} c \text{ for } c \text{ in chars}]\free{chars}}
\indentrel{3}\begin{verbatim}
(9) \[false,true,true,false]\nType: List Boolean
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
(10) [true,false,false,false,false]
Type: List Boolean
\end{verbatim}

\begin{verbatim}
(11) [false,false,false,true,false]
Type: List Boolean
\end{verbatim}

\begin{verbatim}
(12) [true,true,false,true,false]
Type: List Boolean
\end{verbatim}
CliffordAlgebra

⇒ “The Complex Numbers as a Clifford Algebra” (ugxCliffordComplexPage) 3.15 on page 235
⇒ “The Quaternion Numbers as a Clifford AlgebraNo” (ugxCliffordQuaternPage) 3.15 on page 239
⇒ “The Exterior Algebra on a Three Space” (ugxCliffordExteriorPage) 3.15 on page 244
⇒ “The Dirac Spin Algebra” (ugxCliffordDiracPage) 3.15 on page 250

— clif.ht —
\{ 1, \\
e(i) \ 1 \leq i \leq n, \\
e(i_1)e(i_2) \ 1 \leq i_1 < i_2 \leq n, \\
\ldots, \\
e(1)e(2)\ldots e(n) \} \\
\text{is a basis for the Clifford algebra.}

The algebra is defined by the relations
\begin{verbatim}
e(i)*e(i) = Q(e(i)) \\
e(i)*e(j) = -e(j)*e(i), \ i \neq j
\end{verbatim}

Examples of Clifford Algebras are

gaussians (complex numbers), quaternions, 

exterior algebras and spin algebras.

\begin{menu}
\menudownlink{{9.10.1. The Complex Numbers as a Clifford Algebra}}
\{ugxCliffordComplexPage\}
\menudownlink{{9.10.2. The Quaternion Numbers as a Clifford Algebra}}
\{ugxCliffordQuaternPage\}
\menudownlink{{9.10.3. The Exterior Algebra on a Three Space}}
\{ugxCliffordExteriorPage\}
\menudownlink{{9.10.4. The Dirac Spin Algebra}}
\{ugxCliffordDiracPage\}
\end{menu}

\begin{scroll}
\xtc{
This is the field over which we will work, rational functions with 

integer coefficients.
}
\end{scroll}

The Complex Numbers as a Clifford Algebra

⇒ “Complex” (ComplexXmpPage) 3.16 on page 254

— clif.ht —
\texttt{K := Fraction Polynomial Integer \bound{K}}

\texttt{We use this matrix for the quadratic form.}

\texttt{m := matrix \{-1\} \bound{m}}

\texttt{We get complex arithmetic by using this domain.}

\texttt{C := CliffordAlgebra(1, K, quadraticForm m) \free{K m} \bound{C}}

\texttt{Here is \spad{i}, the usual square root of \spad{-1.}}

\texttt{i: C := e(1) \bound{i} \free{C}}

\texttt{Here are some examples of the arithmetic.}

\texttt{x := a + b * i \bound{x} \free{i}}

\texttt{y := c + d * i \bound{y} \free{i}}

\texttt{See \downlink{`Complex'}\{ComplexXmpPage\}ignore\{Complex\} for examples of Axiom's constructor implementing complex numbers.}

\texttt{x * y \free{x y}}

\begin{patch}{ugxCliffordComplexPagePatch1}
\begin{paste}{ugxCliffordComplexPageFull1}{ugxCliffordComplexPageEmpty1}
tab{5}\spadcommand{K := Fraction Polynomial Integer \bound{K}}
\indentrel{3}\begin{verbatim}
(1) Fraction Polynomial Integer
Type: Domain
\end{verbatim}
\end{patch}

\begin{verbatim}
K := Fraction Polynomial Integer
\end{verbatim}
\begin{verbatim}
m := matrix \[-1\]
\end{verbatim}
\begin{verbatim}
C := CliffordAlgebra(1, K, quadraticForm m)
\end{verbatim}
\begin{verbatim}
i: C := e(1)
\end{verbatim}
\begin{patch}{ugxCliffordComplexPageEmpty4}
\begin{paste}{ugxCliffordComplexPageFull4}{ugxCliffordComplexPageEmpty4}
\pastebutton{ugxCliffordComplexPageFull4}{\showpaste}
\tab{5}\spadcommand{i: C := e(1)\bound{i}\free{C}}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordComplexPagePatch5}
\begin{paste}{ugxCliffordComplexPageFull5}{ugxCliffordComplexPageEmpty5}
\pastebutton{ugxCliffordComplexPageFull5}{\hidepaste}
\tab{5}\spadcommand{x := a + b * i\bound{x}\free{i}}
\indentrel{3}\begin{verbatim}
(5) a + b e
1
Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordComplexPagePatch6}
\begin{paste}{ugxCliffordComplexPageFull6}{ugxCliffordComplexPageEmpty6}
\pastebutton{ugxCliffordComplexPageFull6}{\hidepaste}
\tab{5}\spadcommand{y := c + d * i\bound{y}\free{i}}
\indentrel{3}\begin{verbatim}
(6) c + d e
1
Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordComplexPagePatch7}
\begin{paste}{ugxCliffordComplexPageFull7}{ugxCliffordComplexPageEmpty7}
\pastebutton{ugxCliffordComplexPageFull7}{\hidepaste}
\tab{5}\spadcommand{x * y\free{x y}}
\indentrel{3}\begin{verbatim}
(7) - b d + a c + (a d + b c)e
1
Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\end{paste}\end{patch}
The Quaternion Numbers as a Clifford Algebra

⇒ “Quaternion” (QuaternionXmpPage) 3.89 on page 1134

— clif.ht —

This is the field over which we will work, rational functions with integer coefficients.
\spadpaste{K := Fraction Polynomial Integer \free{K}}

We use this matrix for the quadratic form.
\spadpaste{m := matrix [[-1,0],[0,-1]] \free{m}}

The resulting domain is the quaternions.
\spadpaste{H := CliffordAlgebra(2, K, quadraticForm m) \free{K m}}

We use Hamilton’s notation for \spad{i}, \spad{j}, \spad{k}.
\spadpaste{i: H := e(1) \free{H}}
\spadpaste{j: H := e(2) \free{H}}
\spadpaste{k: \( H := i * j \) \( \free{H, i, j} \) \( \bound{k} \) }
\xtc{}
\{\spadpaste{x := a + b * i + c * j + d * k \( \free{i, j, k} \) \( \bound{x} \) }
\xtc{}
\{\spadpaste{y := e + f * i + g * j + h * k \( \free{i, j, k} \) \( \bound{y} \) }
\xtc{}
\{\spadpaste{x + y \( \free{x, y} \) }
\xtc{}
\{\spadpaste{x * y \( \free{x, y} \) }
\xtc{}
See \downlink{`Quaternion'}{QuaternionXmpPage} \ignore{Quaternion} for examples of Axiom's constructor implementing quaternions.
\}
\spadpaste{y * x \( \free{x, y} \) }
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxCliffordQuaternPagePatch1}
\begin{paste}{ugxCliffordQuaternPageFull1}{ugxCliffordQuaternPageEmpty1}
\pastebutton{ugxCliffordQuaternPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{K := Fraction Polynomial Integer \( \bound{K} \) }
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxCliffordQuaternPageEmpty1}
\begin{paste}{ugxCliffordQuaternPageEmpty1}{ugxCliffordQuaternPagePatch1}
\pastebutton{ugxCliffordQuaternPageEmpty1}{\showpaste}
\indentrel{5}\spadcommand{m := matrix \([-1, 0], [0, -1]\) \( \bound{m} \) }
\indentrel{3}\begin{verbatim}
(2)
\indentrel{-3}
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{ugxCliffordQuaternPagePatch2}
\begin{paste}{ugxCliffordQuaternPageFull2}{ugxCliffordQuaternPageEmpty2}
\pastebutton{ugxCliffordQuaternPageFull2}{\showpaste}
\begin{verbatim}
(3)
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ugxCliffordQuaternPagePatch3}
\begin{paste}{ugxCliffordQuaternPageFull3}{ugxCliffordQuaternPageEmpty3}
\pastebutton{ugxCliffordQuaternPageFull3}{\hidepaste}
\begin{verbatim}
(4) e
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ugxCliffordQuaternPagePatch4}
\begin{paste}{ugxCliffordQuaternPageFull4}{ugxCliffordQuaternPageEmpty4}
\pastebutton{ugxCliffordQuaternPageFull4}{\hidepaste}
\end{paste}
\end{patch}
\begin{patch}{ugxCliffordQuaternPagePatch5}
\begin{paste}{ugxCliffordQuaternPageFull5}{ugxCliffordQuaternPageEmpty5}
\pastebutton{ugxCliffordQuaternPageFull5}{\hidepaste}
\tab{5}\spadcommand{j: H := e(2)\free{H }\bound{j }}
\indentrel{3}\begin{verbatim}
(5) e
2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPageEmpty5}
\begin{paste}{ugxCliffordQuaternPageEmpty5}{ugxCliffordQuaternPagePatch5}
\pastebutton{ugxCliffordQuaternPageEmpty5}{\showpaste}
\tab{5}\spadcommand{j: H := e(2)\free{H }\bound{j }}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPagePatch6}
\begin{paste}{ugxCliffordQuaternPageFull6}{ugxCliffordQuaternPageEmpty6}
\pastebutton{ugxCliffordQuaternPageFull6}{\hidepaste}
\tab{5}\spadcommand{k: H := i * j\free{i i j }\bound{k }}
\indentrel{3}\begin{verbatim}
(6) e e
1 2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPageEmpty6}
\begin{paste}{ugxCliffordQuaternPageEmpty6}{ugxCliffordQuaternPagePatch6}
\pastebutton{ugxCliffordQuaternPageEmpty6}{\showpaste}
\tab{5}\spadcommand{k: H := i * j\free{H i j }\bound{k }}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPagePatch7}
\begin{paste}{ugxCliffordQuaternPageFull7}{ugxCliffordQuaternPageEmpty7}
\pastebutton{ugxCliffordQuaternPageFull7}{\hidepaste}
\tab{5}\spadcommand{x := a + b * i + c * j + d * k\free{i j k }\bound{x }}
\indentrel{3}\begin{verbatim}
(7) a + b e + c e + d e e
1 2 1 2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPageEmpty7}
\begin{paste}{ugxCliffordQuaternPageEmpty7}{ugxCliffordQuaternPagePatch7}
\pastebutton{ugxCliffordQuaternPageEmpty7}{\showpaste}
\tab{5}\spadcommand{x := a + b * i + c * j + d * k\free{i j k }\bound{x }}
\end{paste}\end{patch}
\begin{patch}{ugxCliffordQuaternPagePatch8}
\begin{paste}{ugxCliffordQuaternPageFull8}{ugxCliffordQuaternPageEmpty8}
\tab{5}\spadcommand{y := e + f * i + g * j + h * k\free{i j k }\bound{y }}
\indentrel{3}\begin{verbatim}
(8) e + f e + g e + h e e
1 2 1 2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPagePatch9}
\begin{paste}{ugxCliffordQuaternPageFull9}{ugxCliffordQuaternPageEmpty9}
\tab{5}\spadcommand{x + y\free{x y }}
\indentrel{3}\begin{verbatim}
(9) e + a + (f + b)e + (g + c)e + (h + d)e e
1 2 1 2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxCliffordQuaternPagePatch10}
\begin{paste}{ugxCliffordQuaternPageFull10}{ugxCliffordQuaternPageEmpty10}
\tab{5}\spadcommand{x * y\free{x y }}
\indentrel{3}\begin{verbatim}
(10) - d h - c g - b f + a e + (c h - d g + a f + b e)e
1
+ (- b h + a g + d f + c e)e
2
+ (a h + b g - c f + d e)e e
1 2
Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
The Exterior Algebra on a Three Space

\begin{page}{ugxCliffordExteriorPage}{The Exterior Algebra on a Three Space}
\begin{scroll}

\labelSpace{4pc}
\xtc{This is the field over which we will work, rational functions with integer coefficients.}
\{\spadpaste{K := Fraction Polynomial Integer \text{\textbackslash bound}{K}}\}
\xtc{\}
\end{scroll}
\end{page}
If we chose the three by three zero quadratic form, we obtain the exterior algebra on $\text{e}(1), \text{e}(2), \text{e}(3)$.

\spad{Ext := CliffordAlgebra(3, K, quadraticForm 0) \free{K}}

This is a three dimensional vector algebra.
We define $\text{i}$, $\text{j}$, $\text{k}$ as the unit vectors.

\spad{i: Ext := e(1) \free{Ext}\bound{i}}
\spad{j: Ext := e(2) \free{Ext}\bound{j}}
\spad{k: Ext := e(3) \free{Ext}\bound{k}}

Now it is possible to do arithmetic.

\spad{x := x1*i + x2*j + x3*k \free{i j k}\bound{x}}
\spad{y := y1*i + y2*j + y3*k \free{i j k}\bound{y}}

On an $\text{spad{n}}$ space, a grade $\text{spad{p}}$ form has a dual $\text{spad{n-p}}$ form. In particular, in three space the dual of a grade two element identifies $\text{e1*e2->e3, e2*e3->e1, e3*e1->e2}$.

\spad{dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j + coefficient(a,[1,2]) * k \free{i j k}\bound{dual2}}

The vector cross product is then given by this.

\spad{dual2(x*y) \free{x y dual2}}
\begin{verbatim}
(1) Fraction Polynomial Integer     Type: Domain
\end{verbatim}
\begin{verbatim}
(2) CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)
     Type: Domain
\end{verbatim}
\begin{verbatim}
(3) e
     1
     Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
3.15. CHAR.HT

\begin{patch}{ugxCliffordExteriorPageEmpty3}
\begin{paste}{ugxCliffordExteriorPageEmpty3}{ugxCliffordExteriorPagePatch3}
pastebutton{ugxCliffordExteriorPageEmpty3}{\showpaste}
\indentrel{5}\texttt{spadcommand}\begin{verbatim}
i: Ext := e(1) \free{Ext } \bound{i }
\end{verbatim}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch4}
\begin{paste}{ugxCliffordExteriorPageFull4}{ugxCliffordExteriorPageEmpty4}
pastebutton{ugxCliffordExteriorPageFull4}{\hidepaste}
\indentrel{5}\texttt{spadcommand}\begin{verbatim}
j: Ext := e(2) \free{Ext } \bound{j }
\end{verbatim}\indentrel{-3}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch5}
\begin{paste}{ugxCliffordExteriorPageFull5}{ugxCliffordExteriorPageEmpty5}
pastebutton{ugxCliffordExteriorPageFull5}{\hidepaste}
\indentrel{5}\texttt{spadcommand}\begin{verbatim}
k: Ext := e(3) \free{Ext } \bound{k }
\end{verbatim}\indentrel{-3}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch6}
\begin{paste}{ugxCliffordExteriorPageFull6}{ugxCliffordExteriorPageEmpty6}
pastebutton{ugxCliffordExteriorPageFull6}{\hidepaste}
\indentrel{5}\texttt{spadcommand}\begin{verbatim}
x := x1*i + x2*j + x3*k \free{i,j,k} \bound{x}
\end{verbatim}\indentrel{-3}\end{patch}
\indentrel{-3}\endasamethread
\begin{patch}{ugxCliffordExteriorPageEmpty6}
\begin{paste}{ugxCliffordExteriorPageFull6}{ugxCliffordExteriorPagePatch6}
\pastebutton{ugxCliffordExteriorPageFull6}{\showpaste}
\tab{5}\spadcommand{x := x1*\textit{i} + x2*\textit{j} + x3*\textit{k}\free{\textit{i j k}}\bound{x}}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch7}
\begin{paste}{ugxCliffordExteriorPageFull7}{ugxCliffordExteriorPageEmpty7}
\pastebutton{ugxCliffordExteriorPageFull7}{\hidepaste}
\tab{5}\spadcommand{y := y1*\textit{i} + y2*\textit{j} + y3*\textit{k}\free{\textit{i j k}}\bound{y}}
\indentrel{3}\begin{verbatim}
(7) y1 \textit{e} + y2 \textit{e} + y3 \textit{e}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordExteriorPageEmpty7}
\begin{paste}{ugxCliffordExteriorPageEmpty7}{ugxCliffordExteriorPagePatch7}
\pastebutton{ugxCliffordExteriorPageEmpty7}{\showpaste}
\tab{5}\spadcommand{x + y\free{x y}}
\indentrel{3}\begin{verbatim}
(8) (y1 + x1)e + (y2 + x2)e + (y3 + x3)e
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch8}
\begin{paste}{ugxCliffordExteriorPageFull8}{ugxCliffordExteriorPageEmpty8}
\pastebutton{ugxCliffordExteriorPageFull8}{\hidepaste}
\tab{5}\spadcommand{x * y + y * x\free{x y}}
\indentrel{3}\begin{verbatim}
(9) 0
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordExteriorPageEmpty8}
\begin{paste}{ugxCliffordExteriorPageEmpty8}{ugxCliffordExteriorPagePatch8}
\pastebutton{ugxCliffordExteriorPageEmpty8}{\showpaste}
\indentrel{-3}\endasamethread
\end{paste}\end{patch}

\begin{patch}{ugxCliffordExteriorPagePatch9}
\begin{paste}{ugxCliffordExteriorPageFull9}{ugxCliffordExteriorPageEmpty9}
\pastebutton{ugxCliffordExteriorPageFull9}{\hidepaste}
\tab{5}\spadcommand{x + y + y + x\free{x y}}
\indentrel{3}\begin{verbatim}
(9) 0
\end{verbatim}
\end{paste}\end{patch}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxCliffordExteriorPageEmpty9}
\begin{paste}{ugxCliffordExteriorPageEmpty9}{ugxCliffordExteriorPagePatch9}
\tab{5}\spadcommand{x \ast y + y \ast x \free{x \ y}}
\end{paste}\end{patch}
\begin{patch}{ugxCliffordExteriorPagePatch10}
\begin{paste}{ugxCliffordExteriorPageFull10}{ugxCliffordExteriorPageEmpty10}
\tab{5}\spadcommand{
dual2 a == coefficient(a, [2, 3]) \ast i + coefficient(a, [3, 1]) \ast _

j + coefficient(a, [1, 2]) \ast k \free{i \ j \ k} \bound{dual2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxCliffordExteriorPageEmpty10}
\begin{paste}{ugxCliffordExteriorPageEmpty10}{ugxCliffordExteriorPagePatch10}
\tab{5}\spadcommand{
dual2 a == coefficient(a, [2, 3]) \ast i + coefficient(a, [3, 1]) \ast _

j + coefficient(a, [1, 2]) \ast k \free{i \ j \ k} \bound{dual2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxCliffordExteriorPagePatch11}
\begin{paste}{ugxCliffordExteriorPageFull11}{ugxCliffordExteriorPageEmpty11}
\tab{5}\spadcommand{\dual2(x \ast y) \free{x \ y \ dual2}}
\indentrel{3}\begin{verbatim}
(11)
(x2 y3 - x3 y2)e + (- x1 y3 + x3 y1)e

1 2
+
(x1 y2 - x2 y1)e

3
Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxCliffordExteriorPageEmpty11}
\begin{paste}{ugxCliffordExteriorPageEmpty11}{ugxCliffordExteriorPagePatch11}
\tab{5}\spadcommand{\dual2(x \ast y) \free{x \ y \ dual2}}
\indentrel{-3}\end{paste}\end{patch}
The Dirac Spin Algebra

\begin{page}{ugxCliffordDiracPage}{The Dirac Spin Algebra}\beginscroll
\labelSpace{4pc}

\xtc{
In this section we will work over the field of rational numbers.
}
\spadpaste{K := Fraction Integer \bound{K}}

\xtc{
We define the quadratic form to be the Minkowski space-time metric.
}
\spadpaste{g := matrix([[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]] \bound{g}}

\xtc{
We obtain the Dirac spin algebra

used in Relativistic Quantum Field Theory.
}
\spadpaste{D := CliffordAlgebra(4,K, quadraticForm g) \free{K g}\bound{D}}

\xtc{
The usual notation for the basis is \texht{$\gamma$}{\spad{gamma}}

with a superscript.

For Axiom input we will use \spad{gam(i)}:
}
\spadpaste{gam := [e(i)\$D for i in 1..4] \free{D}\bound{gam}}

There are various contraction identities of the form
\begin{verbatim}
g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) = 
\quad 2*(gam(s)gam(m)gam(n)gam(r) + \quad gam(r)*gam(n)*gam(m)*gam(s))
\end{verbatim}

where a sum over \spad{l} and \spad{t} is implied.

\xtc{
Verify this identity for particular values of \spad{m,n,r,s}.
}
\spadpaste{m := 1; n:= 2; r := 3; s := 4; \bound{m,n,r,s}}

\xtc{
}
\spadpaste{lhs := reduce(+, [reduce(+, [g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4]) for t in 1..4]) \bound{lhs}\free{g gam m n r s}}
}
\xtc{
\spadpaste{rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)
\bound{rhs}\free{lhs g gam m n r s}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxCliffordDiracPagePatch1}
\begin{paste}{ugxCliffordDiracPageFull1}{ugxCliffordDiracPageEmpty1}
\pastebutton{ugxCliffordDiracPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{K := Fraction Integer\bound{K}}
(1) Fraction Integer
Type: Domain
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxCliffordDiracPagePatch2}
\begin{paste}{ugxCliffordDiracPageFull2}{ugxCliffordDiracPageEmpty2}
\pastebutton{ugxCliffordDiracPageFull2}{\hidepaste}
\indentrel{3}\spadcommand{g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]\bound{g}}
(2)
\begin{verbatim}
1  0  0  0
0  -1  0  0
0  0  -1  0
0  0  0  -1
\end{verbatim}
Type: Matrix Integer
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]
\end{paste}\end{patch}

\begin{patch}{ugxCliffordDiracPagePatch3}
\begin{paste}{ugxCliffordDiracPageFull3}{ugxCliffordDiracPageEmpty3}
\tab{5}\spadcommand{D := CliffordAlgebra(4,K, quadraticForm g)\free{K g }\bound{D }}
\indentrel{3}\begin{verbatim}
(3) CliffordAlgebra(4,Fraction Integer,MATRIX)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxCliffordDiracPageEmpty3}
\begin{paste}{ugxCliffordDiracPageEmpty3}{ugxCliffordDiracPagePatch3}
\tab{5}\spadcommand{D := CliffordAlgebra(4,K, quadraticForm g)\free{K g }\bound{D }}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordDiracPagePatch4}
\begin{paste}{ugxCliffordDiracPageFull4}{ugxCliffordDiracPageEmpty4}
\tab{5}\spadcommand{gam := [e(i)$D for i in 1..4]\free{D }\bound{gam }}
\indentrel{3}\begin{verbatim}
(4) [e ,e ,e ,e ]
1 2 3 4
Type: List CliffordAlgebra(4,Fraction Integer,MATRIX)
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxCliffordDiracPageEmpty4}
\begin{paste}{ugxCliffordDiracPageEmpty4}{ugxCliffordDiracPagePatch4}
\tab{5}\spadcommand{gam := [e(i)$D for i in 1..4]\free{D }\bound{gam }}
\end{paste}\end{patch}

\begin{patch}{ugxCliffordDiracPagePatch5}
\begin{paste}{ugxCliffordDiracPageFull5}{ugxCliffordDiracPageEmpty5}
\tab{5}\spadcommand{m := 1; n:= 2; r := 3; s := 4;\bound{m n r s }}
\indentrel{3}\begin{verbatim}
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxCliffordDiracPageEmpty5}
\begin{paste}{ugxCliffordDiracPageEmpty5}{ugxCliffordDiracPagePatch5}
\end{paste}\end{patch}
\begin{verbatim}
(6) - 4 e e e \\
\indent\indent 1 2 3 4 \\
\text{Type: CliffordAlgebra}(4,\text{Fraction Integer},\text{MATRIX})
\end{verbatim}

\begin{verbatim}
(7) - 4 e e e \\
\indent\indent 1 2 3 4 \\
\text{Type: CliffordAlgebra}(4,\text{Fraction Integer},\text{MATRIX})
\end{verbatim}
3.16 complex.ht

Complex

The \spadtype{Complex} constructor implements complex objects over a
commutative ring \spad{R}. Typically, the ring \spad{R} is \spadtype{Integer},
\spadtype{Fraction Integer}, \spadtype{Float} or \spadtype{DoubleFloat}. \spad{R}
can also be a symbolic type, like \spadtype{Polynomial Integer}. For more information
about the numerical and graphical aspects of complex numbers, see "Numeric Functions"
in Section 8.1.

Complex objects are created by the \spad{complex} operation.

\begin{verbatim}
a := complex(4/3,5/2)
b := complex(4/3,-5/2)
\end{verbatim}

The standard arithmetic operations are available.

\begin{verbatim}
a + b
a - b
a * b
\end{verbatim}

If \spad{R} is a field, you can also divide the complex objects.

\begin{verbatim}
a / b
\end{verbatim}

Use a conversion (``Conversion'' in Section 2.7) to view the
last object as a fraction of complex integers.
\spad{b := \text{complex}(4/3,-5/2)}

The standard arithmetic operations are available.

\spad{a + b}

\spad{a - b}

\spad{a * b}

If \spad{R} is a field, you can also divide the complex objects.

\spad{a / b}

Use a conversion \downlink{``Conversion''}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert} to view the last object as a fraction of complex integers.

\spad{\text{\%} :: \text{Fraction Complex Integer}}

The predefined macro \spad{\text{\%i}} is defined to be \spad{\text{\text{complex}(0,1)}}.

\spad{3.4 + 6.7 \times \text{\%i}}

You can also compute the \spad{\text{conjugate}}{Complex} and \spad{\text{norm}}{Complex} of a complex number.

\spad{\text{conjugate a}}

\spad{\text{norm a}}

The \spad{\text{real}}{Complex} and \spad{\text{imag}}{Complex} operations are provided to extract the real and imaginary parts, respectively.

\spad{\text{real a}}
The domain \spadtype{Complex Integer} is also called the Gaussian integers. If \spad{R} is the integers (or, more generally, a \spadtype{EuclideanDomain}), you can compute greatest common divisors.
\spad{gcd(13 - 13\%i,31 + 27\%i)}
You can also compute least common multiples.
\spad{lcm(13 - 13\%i,31 + 27\%i)}
You can \spadfunFrom{factor}{Complex} Gaussian integers.
\spad{factor(13 - 13\%i)}

\spad{factor complex(2,0)}
\begin{verbatim}
4  5
(2) - %i
3  2
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
8
(3)
3
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(4) 5%i
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(5)
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
289
(5)
36
Type: Complex Fraction Integer
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
161 240
(6) - + \%i
289 289
Type: Complex Fraction Integer
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
- 15 + 8\%i
(7)
15 + 8\%i
Type: Fraction Complex Integer
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{patch}{ComplexXmpPageEmpty7}
\begin{paste}{ComplexXmpPageEmpty7}{ComplexXmpPagePatch7}
\pastebutton{ComplexXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{\% :: Fraction Complex Integer\free{adb}}
end{paste}\end{patch}

\begin{patch}{ComplexXmpPagePatch8}
\begin{paste}{ComplexXmpPageFull8}{ComplexXmpPageEmpty8}
\pastebutton{ComplexXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{3.4 + 6.7 \%i}
\indentrel{3}\begin{verbatim}
(8) 3.4 + 6.7 \%i
Type: Complex Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ComplexXmpPagePatch9}
\begin{paste}{ComplexXmpPageFull9}{ComplexXmpPageEmpty9}
\pastebutton{ComplexXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{conjugate a\free{a}}
\indentrel{3}\begin{verbatim}
(9) - \%i
4 5
3 2
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ComplexXmpPagePatch10}
\begin{paste}{ComplexXmpPageFull10}{ComplexXmpPageEmpty10}
\pastebutton{ComplexXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{norm a\free{a}}
\indentrel{3}\begin{verbatim}
(10) 36
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
4
(11)
3
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
5
(12)
2
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
(13) 5 + %i
\end{verbatim}
3.16. *COMPLEX.HT*

Type: Complex Integer
3.17 contfrac.ht

ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics for well over three hundred years. Axiom implements continued fractions for fractions of any Euclidean domain. In practice, this usually means rational numbers. In this section we demonstrate some of the operations available for manipulating both finite and infinite continued fractions. It may be helpful if you review 'Stream' to remind yourself of some of the operations with streams.

The ContinuedFraction domain is a field and therefore you can add, subtract, multiply and divide the fractions. The continuedFraction operation converts its fractional argument to a continued fraction.

\[ \frac{c := \text{continuedFraction}(314159/100000)}{\frac{3 + \frac{1}{7 + \frac{1}{}}}{}{}} \]

This display is a compact form of the bulkier

\[
\frac{3 + \frac{1}{7 + \frac{1}{}}}{}
\]

Continued fractions have been a fascinating and useful tool in mathematics for well over three hundred years. Axiom implements
continued fractions for fractions of any Euclidean domain. In practice, this usually means rational numbers. In this section we demonstrate some of the operations available for manipulating both finite and infinite continued fractions. It may be helpful if you review \downlink{`Stream'}{StreamXmpPage}\ignore{Stream} to remind yourself of some of the operations with streams.

The \spadtype{ContinuedFraction} domain is a field and therefore you can add, subtract, multiply and divide the fractions.

% This display is a compact form of the bulkier
\texht{\narrowDisplay{3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{25 + \frac{1}{1 + \frac{1}{7 + \frac{1}{4}}}}}}}}}

You can write any rational number in a similar form. The fraction will be finite and you can always take the ''numerators'' to be \spad{1}. That is, any rational number can be written as a simple, finite continued fraction of the form

\texht{a_1 + \frac{1}{\ldots + \frac{1}{a_n}}}

\begin{verbatim}
a(1) + 1

\begin{verbatim}
\end{verbatim}

The \texttt{$a_i$} are called partial quotients and the operation \spadfunFrom{partialQuotients}{ContinuedFraction} creates a stream of them.
\end{verbatim}

By considering more and more of the fraction, you get the \spadfunFrom{convergents}{ContinuedFraction}. For example, the first convergent is \texttt{$a_1$}, the second is \texttt{$a_1 + 1/a_2$} and so on.
\end{verbatim}

Since this is a finite continued fraction, the last convergent is the original rational number, in reduced form. The result of \spadfunFrom{approximants}{ContinuedFraction} is always an infinite stream, though it may just repeat the \texttt{"last"} value.
\end{verbatim}

Inverting \spad{c} only changes the partial quotients of its fraction by inserting a \spad{0} at the beginning of the list.
3.17. CONTFRAC.HT

\spadpaste{pq := partialQuotients(1/c) \free{c}\bound{pq}}
}
\xtc{
Do this to recover the original continued fraction from this list of
partial quotients.
The three-argument form of the
\spadfunFrom{continuedFraction}{ContinuedFraction} operation takes an
element which is the whole part of the fraction, a stream of elements
which are the numerators of the fraction, and a stream of elements which
are the denominators of the fraction.
}
\spadpaste{continuedFraction(first pq,repeating [1],rest pq) \free{pq}}
}
\xtc{
The streams need not be finite for
\spadfunFrom{continuedFraction}{ContinuedFraction}.
Can you guess which irrational number has the following continued
fraction?
See the end of this section for the answer.
}
\spadpaste{z:=continuedFraction(3,repeating [1],repeating [3,6]) \bound{z}}
}
%

In 1737 Euler discovered the infinite continued fraction expansion
\begin{verbatim}
    e - 1  1
----- = ---------------------------------
    2  1 + 1
           6 + 1
                 10 + 1
                     14 + ...
\end{verbatim}

We use this expansion to compute rational and floating point
approximations of \spad{e}.\footnote{For this and other interesting
expansions, see C. D. Olds, \it Continued Fractions,}
134--139.}
By looking at the above expansion, we see that the whole part is \texttt{0} and the numerators are all equal to \texttt{1}. This constructs the stream of denominators.

\begin{verbatim}
\spadpaste{dens:Stream Integer := cons(1,generate((x+-x+4),6))}
\end{verbatim}

Therefore this is the continued fraction expansion for \( (e - 1) / 2 \).

\begin{verbatim}
\spadpaste{cf := continuedFraction(0,repeating [1],dens)}
\end{verbatim}

These are the rational number convergents.

\begin{verbatim}
\spadpaste{ccf := convergents cf} \end{verbatim}

You can get rational convergents for \spad{e} by multiplying by \spad{2} and adding \spad{1}.

\begin{verbatim}
\spadpaste{eConvergents := [2*e + 1 for e in ccf]} \end{verbatim}

You can also compute the floating point approximations to these convergents.

\begin{verbatim}
\spadpaste{eConvergents :: Float} \end{verbatim}

In about 1658, Lord Brouncker established the following expansion for \( 4 / \pi \).

\begin{verbatim}
1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \frac{81}{\ddots}}}}} \end{verbatim}
Let's use this expansion to compute rational and floating point approximations for $\pi$.

\begin{verbatim}
1 + 1
-----------------------
2 + 9
-------------------
2 + 25
---------------
2 + 49
-----------
2 + 81
-------
2 + ...
\end{verbatim}

As you can see, the values are converging to $\pi = 3.14159265358979323846...$, but not very quickly.

You need not restrict yourself to continued fractions of integers. Here is an expansion for a quotient of Gaussian integers.

\begin{verbatim}
continuedFraction((-122 + 597*\%i)/(4 - 4*\%i))
\end{verbatim}

This is an expansion for a quotient of polynomials in one variable with rational number coefficients.
\spadpaste{r : Fraction UnivariatePolynomial(x,Fraction Integer)
\bound{rdec}}
}
\xtc{
\spadpaste{r := ((x - 1) * (x - 2)) / ((x-3) * (x-4)) \free{rdec}
\bound{r}}
}
\xtc{
}\{\spadpaste{continuedFraction r \free{r}}
\}

To conclude this section, we give you evidence that
\texht{narrowDisplay{z =\begin{verbatim}3 + 1
-----------------------
3 + 1
-------------------
6 + 1
---------------
3 + 1
-------------
6 + 1
-------
3 + ...
\end{verbatim}}
}
is the expansion of \texht{\sqrt{11}}{the square root of \spad{11}}.\%
\xtc{
}\{\spadpaste{[i*i for i in convergents(z) :: Stream Float] \free{z}}
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ContinuedFractionXmpPagePatch1}
\begin{paste}{ContinuedFractionXmpPageFull1}{ContinuedFractionXmpPageEmpty1}
\pastebutton{ContinuedFractionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{c := continuedFraction(314159/100000)\bound{c}}
\indentrel{3}\begin{verbatim}(1) 1 1 1 1 1 1
\end{verbatim}
\end{patch}
\begin{verbatim}
3 + + + + + +
  7 15 1 25 1 7
+
  1
4
\end{verbatim}

Type: ContinuedFraction Integer
\spadcommand{\texttt{convergents \texttt{c}}}\\
\begin{verbatim}
(4) [3, \ldots, ]
\end{verbatim}
Type: Stream Fraction Integer
\indentrel{-3}

\spadcommand{\texttt{approximants \texttt{c}}}\\
\begin{verbatim}
(5) [0,3,7,15,1,25,1,7,4]
\end{verbatim}
Type: Stream Integer
\indentrel{-3}

\spadcommand{\texttt{\texttt{partialQuotients(1/c)}}}\\
\begin{verbatim}
(5) [0,3,7,15,1,25,1,7,4]
\end{verbatim}
Type: Stream Integer
\indentrel{-3}

\spadcommand{\texttt{\texttt{continuedFraction(first pq, repeating [1], rest pq)}}}
\begin{verbatim}
(6)
  1 1 1 1 1 1
+ + + + +
  3 7 15 1 25 1
+ 1 1
+ 7 4
\end{verbatim}

\begin{verbatim}
(7)
  1 1 1 1 1 1
3 + + + + +
  3 6 3 6 3 6
+ 1 1 1
+ + + + ...
  3 6 3 6
\end{verbatim}

Type: ContinuedFraction Integer

\begin{verbatim}
(8)
  1 1 1 1 1 1
3 + + + + +
  3 6 3 6 3 6
+ 1 1 1
+ + + + ...
  3 6 3 6
\end{verbatim}

Type: ContinuedFraction Integer
\spadcommand{
dens: Stream Integer := cons(1, generate((x+->x+4), 6))}
\begin{verbatim}
(8) [1, 6, 10, 14, 18, 22, 26, 30, 34, 38, ...]
Type: Stream Integer
\end{verbatim}
\end{patch}
\begin{patch}
\spadcommand{
cf := continuedFraction(0, repeating [1], \$dens\$)}
\indentrel{3}\begin{verbatim}
(9)
1 1 1 1 1 1
+ + + + +
1 6 10 14 18 22
+
1 1 1 1
+ + + + ...
26 30 34 38
Type: ContinuedFraction Integer
\end{verbatim}
\end{patch}
\begin{patch}
\spadcommand{
ccf := convergents cf}
\indentrel{3}\end{patch}
\begin{verbatim}
(10)
6  61  860  15541  342762  8927353
[0, 1, , , , , , , ,
  7  71  1001  18089  398959  10391023
268163352  9126481321
, , ...]
312129649  10622799089
Type: Stream Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ContinuedFractionXmpPagePatch11}
\begin{paste}{ContinuedFractionXmpPageFull11}
\indentrel{-3}\begin{verbatim}
(11)
19  193  2721  49171  1084483  28245729
[1, 3, , , , , , , ,
  7  71  1001  18089  398959  10391023
848456353  28875761731
, , ...]
312129649  10622799089
Type: Stream Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(12) \[1.0, 3.0, 2.71428571428571, 2.71830985915492957, 2.718281718281718, 2.7182818287356957267, 2.7182818284585634113, 2.7182818284590458514, 2.7182818284590452348, 2.7182818284590452354, \ldots\]

Type: Stream Float

(13) \[2.7182818284590452354\]

Type: Float

(14) \[
\begin{array}{ccccccc}
1 & 9 & 25 & 49 & 81 \\
1 & + & + & + & + \\
2 & 2 & 2 & 2 & 2 \\
121 & 169 & 225 & 289 & 361 \\
\end{array}
\]
\begin{verbatim}
+ + + + + ...
\end{verbatim}

Type: ContinuedFraction Integer

\begin{verbatim}
(15)
3 15 105 3465 45045 45045 765765 45045 14549535
[1,,,,,,,,,,...
2 13 76 263 2578 36979 33976 622637 11064338
\end{verbatim}

Type: Stream Fraction Integer
Type: Stream Fraction Integer
\indentrel{-3}\end{patch}\end{verbatim}

\begin{patch}{ContinuedFractionXmpPageEmpty16}
\begin{paste}{ContinuedFractionXmpPageEmpty16}
{ContinuedFractionXmpPagePatch16}
\pastebutton{ContinuedFractionXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{piConvergents := [4/p for p in ccf]\bound{piConvergents }\free{ccf1 }}
\end{paste}
\end{patch}

\begin{patch}{ContinuedFractionXmpPage PATCH17}
\begin{paste}{ContinuedFractionXmpPageFull17}
{ContinuedFractionXmpPageEmpty17}
\pastebutton{ContinuedFractionXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{piConvergents :: Stream Float\free{piConvergents }}
\end{paste}
\end{patch}

\begin{patch}{ContinuedFractionXmpPage Patch18}
\begin{paste}{ContinuedFractionXmpPageFull18}
{ContinuedFractionXmpPageEmpty18}
\pastebutton{ContinuedFractionXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{continuedFraction((- 122 + 597*\%i)/(4 - 4*\%i)))}
\indentrel{3}\begin{verbatim}
(18) - 90 + 59%i + +
   1 - 2%i  - 1 + 2%i
Type: ContinuedFraction Complex Integer
\end{verbatim}
\end{paste}
\end{patch}
Continued Fraction

\begin{patch}{ContinuedFractionXmpPagePatch18}
\begin{paste}{ContinuedFractionXmpPageFull18}
\begin{verbatim}
continuedFraction((-122 + 597*\%i)/(4 - 4*\%i))
\end{verbatim}
\end{patch}

\begin{patch}{ContinuedFractionXmpPagePatch19}
\begin{paste}{ContinuedFractionXmpPageFull19}
\begin{verbatim}
r : Fraction UnivariatePolynomial(x,Fraction Integer)\bound{rdec }
\end{verbatim}
\end{patch}

\begin{patch}{ContinuedFractionXmpPagePatch20}
\begin{paste}{ContinuedFractionXmpPageFull20}
\begin{verbatim}
r := ((x - 1) * (x - 2)) / ((x-3) * (x-4))\free{rdec }\bound{r }
\end{verbatim}
\end{patch}
\spadcommand{continuedFraction r}
\begin{verbatim}
1 1
(21) 1 + +
 1 9 16 40
 x - x -
 4 8 3 3
\end{verbatim}
Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}

\[ [i*i for i in convergents(z) :: Stream Float] \]
\begin{verbatim}
(22)
 9.0, 11.11111111111111111111, 10.99445983379501385, 10.99996076398799786, 11.0000069792931039, 10.99999996501583446, 11.00000000000001753603304, 10.99999999999209999531, 11.000000000000000044006066, ...
\end{verbatim}
Type: Stream Float

3.18 cphelp.ht

Control Panel Bits

— cphelp.ht —

\begin{page}{CPHelp}{Control Panel Bits}
\beginscroll

Here are some stuff from a Three Dimensional Viewport’s Control Panel
newline

Main Control Panel: newline newline

Rotate: \helpbit{rotate3D}
Zoom: \helpbit{zoom3D}
Translate up/down left/right in the window: \helpbit{translate3D}
Changing the color of the rendered surface: \helpbit{color3D}
Turn the axes on and off: \helpbit{axes3D}
Display surface as a transparent wire mesh: \helpbit{transparent3D}
Display surface with hidden surface removed and the core dumped:
\helpbit{opaque3D}
Display rendered surface: \helpbit{render3D}
Show region within which the function is defined: \helpbit{region3D}
Change position of light source: \helpbit{lighting3D}
Change Perspective/Clipping of surface: \helpbit{volume3D}
Reset to original viewpoint: \helpbit{reset3D}
Show grid lines on the rendered surface: \helpbit{outline3D}
Hide the menu: \helpbit{hide3D}
Close the viewport: \helpbit{close3D}

\newline
\newline
\endscroll
\autobuttons
\end{page}

---

3.19 cycles.ht

CycleIndicators

— cycles.ht —
This section is based upon the paper
J. H. Redfield, ‘‘The Theory of Group-Reduced Distributions’’,
and is an application of group theory to enumeration problems.
It is a development of the work by P. A. MacMahon on the

The theory is based upon the power sum symmetric functions
\[ \sum_{i=1}^{n} x_i \]
which are the sum of the \[ x_i \] powers of the variables.
The cycle index of a permutation is an expression that specifies
the sizes of the cycles of a permutation, and
may be represented as a partition.
A partition of a non-negative integer \[ n \] is a collection
of positive integers called its parts whose sum is \[ n \].
For example, the partition
\[ (3^2 \ 2 \ 1^2) \]
will be used to represent
\[ (s_3)^2 s_2 (s_1)^2 \]
and will indicate that the permutation has two cycles of length 3,
one of length 2 and two of length 1.
The cycle index of a permutation group is the sum of the cycle indices
of its permutations divided by the number of permutations.
The cycle indices of certain groups are provided.

We first expose something from the library.
}{
\spadpaste{expose EVALCYC}
}

The operation \spadfun{complete} returns the cycle index of the
symmetric group of order \spad{n} for argument \spad{n}.
Alternatively, it is the \[ n \] complete homogeneous symmetric
function expressed in terms of power sum symmetric functions.
}{
\spadpaste{complete 1}
}{
\spadpaste{complete 2}
}{
\spadpaste{complete 3}
}{
\spadpaste{complete 7}
}
The operation \texttt{elementary} computes the \texttt{elementary symmetric function} for argument \texttt{n.}
\begin{verbatim}
\spad{elementary 7}
\end{verbatim}

The operation \texttt{alternating} returns the cycle index of the alternating group having an even number of even parts in each cycle partition.
\begin{verbatim}
\spad{alternating 7}
\end{verbatim}

The operation \texttt{cyclic} returns the cycle index of the cyclic group.
\begin{verbatim}
\spad{cyclic 7}
\end{verbatim}

The operation \texttt{dihedral} is the cycle index of the dihedral group.
\begin{verbatim}
\spad{dihedral 7}
\end{verbatim}

The operation \texttt{graphs} for argument \texttt{n} returns the cycle index of the group of permutations on the edges of the complete graph with \texttt{n} nodes induced by applying the symmetric group to the nodes.
\begin{verbatim}
\spad{graphs 5}
\end{verbatim}

The cycle index of a direct product of two groups is the product of the cycle indices of the groups. Redfield provided two operations on two cycle indices which will be called \texttt{cup} and \texttt{cap} here. The \texttt{cup} of two cycle indices is a kind of scalar product that combines monomials for permutations with the same cycles. The \texttt{cap} operation provides the sum of the coefficients of the result of the \texttt{cup} operation which will be an integer that enumerates what Redfield called group-reduced distributions.

We can, for example, represent \texttt{complete 2 * complete 2} as the set of objects \texttt{a a b b} and \texttt{complete 2 * complete 1 * complete 1} as \texttt{c c d e.}

This integer is the number of different sets of four pairs.
For example,
\begin{verbatim}
a a b b  a a b b a a b b  
c c d e  c d e c e d  d e c c
\end{verbatim}

This integer is the number of different sets of four pairs no two pairs being equal.

In this case the configurations enumerated are easily constructed, however the theory merely enumerates them providing little help in actually constructing them.

Here are the number of 6-pairs, first from \spad{a a a b b c}, second from \spad{d d e e f g}.

Here it is again, but with no equal pairs.

The number of 6-triples, first from \spad{a a a b b c}, second from \spad{d d e e f g}, third from \spad{h h i i j j}.

The number of 6-triples, first from \spad{a a a b b c}, second from \spad{d d e e f g}, third from \spad{h h i i j j}.
The cycle index of vertices of a square is dihedral 4.
\spadpaste{square:=dihedral 4}
\xtc{
The number of different squares with 2 red vertices and 2 blue vertices.
\spadpaste{cap(complete 2**2,square)}
\xtc{
The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.
\spadpaste{cap(complete 3*complete 2**2,dihedral 7)}
\xtc{
The number of graphs with 5 nodes and 7 edges.
\spadpaste{cap(graphs 5,complete 7*complete 3)}
\xtc{
The cycle index of rotations of vertices of a cube.
\spadpaste{s(x) == powerSum(x)}
\xtc{
\spadpaste{cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)}
\xtc{
The number of cubes with 4 red vertices and 4 blue vertices.
\spadpaste{cap(complete 4**2,cube)}
\xtc{
The number of labeled graphs with degree sequence \spad{2 2 2 1 1} with no loops or multiple edges.
\spadpaste{cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))}
\xtc{
Again, but with loops allowed but not multiple edges.
\spadpaste{cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))}
\xtc{
Again, but with multiple edges allowed, but not loops
Again, but with both multiple edges and loops allowed.

Having constructed a cycle index for a configuration we are at liberty to evaluate the \( s_i \) components any way we please. For example we can produce enumerating generating functions.

This is done by providing a function \( f \) on an integer \( i \) to the value required of \( s_i \), and then evaluating \( \text{eval}(f, \text{cycleindex}) \).

For the integers 0 and 1, or two colors.

For the integers \( 0, 1, 2, \ldots \) we have this.
\texttikz{\text{The coefficient of $x^n$ is the number of graphs with 5 nodes and $n$ edges.}}\{\text{eval(ZeroOrOne, graphs 5) free(zo)}\}\\
\texttikz{The coefficient of $x^n$ is the number of necklaces with $n$ red beads and $n-8$ green beads.} \{\text{eval(ZeroOrOne,dihedral 8) free(zo)}\}\\
\texttikz{The coefficient of $x^n$ is the number of partitions of $n$ into 4 or fewer parts.} \{\text{eval(Integers,complete 4) free(i)}\}\\
\texttikz{The coefficient of $x^n$ is the number of partitions of $n$ into 4 boxes containing ordered distinct parts.} \{\text{eval(Integers,elementary 4) free(i)}\}\\
\texttikz{The coefficient of $x^n$ is the number of different cubes with $n$ red vertices and $8-n$ green ones.} \{\text{eval(ZeroOrOne,cube) free(zo)}\}\\
\texttikz{The coefficient of $x^n$ is the number of different cubes with integers on the vertices whose sum is $n$.} \{\text{eval(Integers,cube) free(i)}\}\\
\texttikz{The coefficient of $x^n$ is the number of graphs with 5 nodes and with integers on the edges whose sum is $n$. In other words, the enumeration is of multigraphs with 5 nodes and $n$ edges.} \{\text{eval(Integers,graphs 5) free(i)}\}\\
\texttikz{Graphs with 15 nodes enumerated with respect to number of edges.}
Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red beads.

The operation \texttt{SFunction} is the S-function or Schur function of a partition written as a descending list of integers expressed in terms of power sum symmetric functions.

In this case the argument partition represents a tableau shape. For example \texttt{[3,2,2,1]} represents a tableau with three boxes in the first row, two boxes in the second and third rows, and one box in the fourth row.

counts the number of different tableaux of shape \texttt{[3, 2, 2, 1]} filled with objects with an ascending order in the columns and a non-descending order in the rows.

This is the number filled with \texttt{[a a b b c c d d].}

The configurations enumerated above are:

\begin{verbatim}
a a b  a a c  a a d 
b c  b b  b b 
c d  c d  c c 
d  d  d 
\end{verbatim}

This is the number of tableaux filled with \texttt{[1..8].}

The coefficient of $x^n$ is the number of column strict reverse plane partitions of \texttt{n} of shape \texttt{[3 2 2 1].}
\begin{verbatim}
0 0 0
1 1
2 2
3
\end{verbatim}
\end{scroll}
\autobuttons
\end{page}

\begin{patch}{CycleIndicatorsXmpPagePatch1}
\begin{paste}{CycleIndicatorsXmpPageFull1}{CycleIndicatorsXmpPageEmpty1}
\tab{5}\spadcommand{)expose EVALCYC}
\indentrel{3}\begin{verbatim}
(1) (1)
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPageEmpty1}
\begin{paste}{CycleIndicatorsXmpPageEmpty1}{CycleIndicatorsXmpPagePatch1}
\pastebutton{CycleIndicatorsXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{complete 1}
\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch2}
\begin{paste}{CycleIndicatorsXmpPageFull2}{CycleIndicatorsXmpPageEmpty2}
\tab{5}\spadcommand{complete 2}
\indentrel{3}\begin{verbatim}
(2) (2) + (1)
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPageEmpty2}
\begin{paste}{CycleIndicatorsXmpPageEmpty2}{CycleIndicatorsXmpPagePatch2}
\pastebutton{CycleIndicatorsXmpPageEmpty2}{\showpaste}
\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch3}
\begin{paste}{CycleIndicatorsXmpPageFull3}{CycleIndicatorsXmpPageEmpty3}
\tab{5}\spadcommand{complete 2}
\indentrel{3}\begin{verbatim}
1 1 2
(2) (2) + (1 )
2 2
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
\end{paste}\end{patch}
\begin{verbatim}
1 1 1 3
(3) (3) + (2 1) + (1 )
3 2 6
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}

\begin{verbatim}
1 1 1 1 2 1
(7) + (6 1) + (5 2) + (5 1 ) + (4 3)
7 6 10 10 12
+ 1 1 3 1 2 1 2
(4 2 1) + (4 1 ) + (3 1 ) + (3 2 )
8 24 18 24
+ 1 2 1 4 1 3 1 2 3
(3 2 1 ) + (3 1 ) + (2 1 ) + (2 1 )
12 72 48 48
+ 1 5 1 7
(2 1 ) + (1 )
240 5040
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
3.19. CYCLES.HT

\begin{patch}{CycleIndicatorsXmpPageEmpty5}
\begin{paste}{CycleIndicatorsXmpPageEmpty5}{CycleIndicatorsXmpPagePatch5}
\pastebutton{CycleIndicatorsXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{complete 7}
\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch6}
\begin{paste}{CycleIndicatorsXmpPageFull6}{CycleIndicatorsXmpPageEmpty6}
\pastebutton{CycleIndicatorsXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{elementary 7}
\indentrel{3}\begin{verbatim}
(5)  
  1 1 1 1 2 1
(7) - (6 1) - (5 2) + (5 1) - (4 3)
  7 6 10 10 12
+
  1 1 3 1 2 1 2
(4 2 1) - (4 1) + (3 1) + (3 2)
  8 24 18 24
+
  1 2 1 4 1 3 1 2 3
- (3 2 1) + (3 1) - (2 1) + (2 1)
  12 72 48 48
+
  1 5 1 7
- (2 1) + (1)
  240 5040
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch7}
\begin{paste}{CycleIndicatorsXmpPageFull7}{CycleIndicatorsXmpPageEmpty7}
\pastebutton{CycleIndicatorsXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{alternating 7}
\indentrel{3}\begin{verbatim}
(6)  
  2 1 2 1 1 2 1 2
(7) + (5 1) + (4 2 1) + (3 1) + (3 2)
  7 5 4 9 12
+
  1 4 1 2 3 1 7
(3 1) + (2 1) + (1)
\end{verbatim}
\end{patch}
CHAPTER 3. HYPERDOC PAGES

```
Type: SymmetricPolynomial Fraction Integer
```

```
indentrel{-3}
```

```
\begin{patch}{CycleIndicatorsXmpPageEmpty7}
\begin{paste}{CycleIndicatorsXmpPageFull7}{CycleIndicatorsXmpPageEmpty7}
\pastebutton{CycleIndicatorsXmpPageFull7}{\showpaste}
\tab{5}\spadcommand{alternating 7}
\end{paste}
\end{patch}
```

```
\begin{patch}{CycleIndicatorsXmpPagePatch8}
\begin{paste}{CycleIndicatorsXmpPageFull8}{CycleIndicatorsXmpPageEmpty8}
\pastebutton{CycleIndicatorsXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{cyclic 7}
\indentrel{3}\begin{verbatim}
6 1 7
(7) (7) + (1)
7 7
\end{verbatim}
\indentrel{-3}
\end{patch}
```

```
\begin{patch}{CycleIndicatorsXmpPagePatch9}
\begin{paste}{CycleIndicatorsXmpPageFull9}{CycleIndicatorsXmpPageEmpty9}
\pastebutton{CycleIndicatorsXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{dihedral 7}
\indentrel{3}\begin{verbatim}
3 1 3 1 7
(8) (7) + (2 1) + (1)
7 2 14
\end{verbatim}
\indentrel{-3}
\end{patch}
```

```
\begin{patch}{CycleIndicatorsXmpPagePatch10}
\begin{paste}{CycleIndicatorsXmpPageFull10}{CycleIndicatorsXmpPageEmpty10}
\pastebutton{CycleIndicatorsXmpPageFull10}{\hidepaste}
```

```
3.19. CYCLES.HT

\begin{verbatim}
(9) 1 1 2 1 2 1 3 1 4 2
 6 5 4 6 8
 +
 1 3 4 1 10
 (2 1) + (1)
 12 120
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}

\begin{verbatim}
(10) 4
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
(11) 2
Type: Fraction Integer
\end{verbatim}
\begin{verbatim}
(12) 24
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
(13) 8
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
(14) 8
Type: Fraction Integer
\end{verbatim}
\begin{paste}{CycleIndicatorsXmpPageEmpty15}{CycleIndicatorsXmpPagePatch15}
\tab{5}\spadcommand{
cap(complete 3*complete 2*complete 1,elementary 2**2*elementary 1**2)}
\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch16}
\begin{paste}{CycleIndicatorsXmpPageFull16}{CycleIndicatorsXmpPageEmpty16}
\pastebutton{CycleIndicatorsXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{
eval(cup(complete 3*complete 2*complete 1,
 cup(complete 2**2*complete 1**2,complete 2**3)))}
\indentrel{3}\begin{verbatim}
(15) 1500
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch17}
\begin{paste}{CycleIndicatorsXmpPageFull17}{CycleIndicatorsXmpPageEmpty17}
\pastebutton{CycleIndicatorsXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{square:=dihedral 4}
\indentrel{3}\begin{verbatim}
1 3 2 1 2 1 4
(16) (4) + (2 1) + (2 1) + (1)
 4 8 4 8
Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch18}
\begin{paste}{CycleIndicatorsXmpPageFull18}{CycleIndicatorsXmpPageEmpty18}
\pastebutton{CycleIndicatorsXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{\ncap(complete 2**2,\text{square})}
(17) 2
\indentrel{-3}\end{paste}
\end{patch}

\begin{verbatim}
(18) 18
\end{verbatim}

Type: Fraction Integer

\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch19}
\begin{paste}{CycleIndicatorsXmpPageFull19}{CycleIndicatorsXmpPageEmpty19}
\pastebutton{CycleIndicatorsXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{cap(graphs 5,complete 7*complete 3)}
\indentrel{3}\begin{verbatim}
(19) 4
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch21}
\begin{paste}{CycleIndicatorsXmpPageFull21}{CycleIndicatorsXmpPageEmpty21}
\pastebutton{CycleIndicatorsXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{s(x) == powerSum(x)}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{CycleIndicatorsXmpPageEmpty21}
\begin{paste}{CycleIndicatorsXmpPageEmpty21}{CycleIndicatorsXmpPagePatch21}
\pastebutton{CycleIndicatorsXmpPageEmpty21}{\showpaste}
\tab{5}\spadcommand{s(x) == powerSum(x)}
\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch22}
\begin{paste}{CycleIndicatorsXmpPageFull22}{CycleIndicatorsXmpPageEmpty22}
\pastebutton{CycleIndicatorsXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{
cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)}
\indentrel{3}\begin{verbatim}
1 2 1 2 2 3 4 1 8
(21) (4) + (3 1) + (2) + (1)
 4 3 8 24
\end{verbatim}
\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch23}
\begin{paste}{CycleIndicatorsXmpPageFull23}{CycleIndicatorsXmpPageEmpty23}
\pastebutton{CycleIndicatorsXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{cap(complete 4**2,cube)}
\indentrel{3}\begin{verbatim}
(22) 7
\end{verbatim}
\end{patch}

\begin{patch}{CycleIndicatorsXmpPagePatch24}
\begin{paste}{CycleIndicatorsXmpPageFull24}{CycleIndicatorsXmpPageEmpty24}
\pastebutton{CycleIndicatorsXmpPageFull24}{\hidepaste}
\tab{5}\spadcommand{cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))}
\indentrel{3}\begin{verbatim}
(23) 7
\end{verbatim}
\end{patch}
\begin{verbatim}
(24) 17
\end{verbatim}

Type: Fraction Integer

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{CycleIndicatorsXmpPagePatch25\}
\begin{paste}\{CycleIndicatorsXmpPageFull25\}\{CycleIndicatorsXmpPageEmpty25\}
\pastebutton{CycleIndicatorsXmpPageFull25}{\hidepaste}
\tab{5}\spadcommand{
\cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2)))}
\indentrel{3}\begin{verbatim}
(25) 10
\end{verbatim}

Type: Fraction Integer

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{CycleIndicatorsXmpPagePatch26\}
\begin{paste}\{CycleIndicatorsXmpPageFull26\}\{CycleIndicatorsXmpPageEmpty26\}
\pastebutton{CycleIndicatorsXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{
\cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2)))}
\indentrel{3}\begin{verbatim}
(26) 10
\end{verbatim}

Type: Fraction Integer

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{CycleIndicatorsXmpPagePatch27\}
\begin{paste}\{CycleIndicatorsXmpPageFull27\}\{CycleIndicatorsXmpPageEmpty27\}
\pastebutton{CycleIndicatorsXmpPageFull27}{\hidepaste}
\tab{5}\spadcommand{
cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))}
\indentrel{3}\begin{verbatim}
(26) 23
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{paste}{CycleIndicatorsXmpPageFull28}{CycleIndicatorsXmpPageEmpty28}
\pastebutton{CycleIndicatorsXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{x: ULS(FRAC INT,'x,0) := 'x\bound{x}}
\indentrel{3}\begin{verbatim}
(27) x
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{paste}{CycleIndicatorsXmpPageFull30}{CycleIndicatorsXmpPageEmpty30}
\pastebutton{CycleIndicatorsXmpPageEmpty30}{\showpaste}
\tab{5}\spadcommand{Integers: INT -> ULS(FRAC INT, 'x, 0)\bound{idec}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
CHAPTER 3. HYPERDOC PAGES

```
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{CycleIndicatorsXmpPageEmpty30}
\begin{paste}{CycleIndicatorsXmpPageFull30}{CycleIndicatorsXmpPageEmpty30}\{\showpaste\}
\tab{5}\spadcommand{Integers: INT -> ULS(FRAC INT, 'x, 0)\bound{idec }}
\end{paste}\end{patch}
\begin{patch}{CycleIndicatorsXmpPagePatch31}
\begin{paste}{CycleIndicatorsXmpPageFull31}{CycleIndicatorsXmpPageEmpty31}\{\hidepaste\}
\tab{5}\spadcommand{ZeroOrOne n == 1+x**n\free{x zodec }\bound{zo }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{CycleIndicatorsXmpPagePatch32}
\begin{paste}{CycleIndicatorsXmpPageFull32}{CycleIndicatorsXmpPageEmpty32}\{\hidepaste\}
\tab{5}\spadcommand{Integers n == 1/(1-x**n)\free{x idec }\bound{i }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
```

```
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
```

```
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
```

```
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
```

```
\indentrel{3}\begin{verbatim}
\end{verbatim}
```
3.19. *CYCLES.HT*

\begin{verbatim}
5 10 11
(33) 1 + x + x + O(x)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}

(34)
2 3 4 5 6 7 8 9
1 + x + 2x + 4x + 6x + 6x + 6x + 4x + 2x + x +
10 11
x + O(x)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}
\indentrel{3}\begin{verbatim}
2 3 4 5 6 7 8
(35) 1 + x + 4x + 5x + 8x + 5x + 4x + x + x
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{CycleIndicatorsXmpPageEmpty36}
\begin{paste}{CycleIndicatorsXmpPageFull36}{CycleIndicatorsXmpPageEmpty36}
\pastebutton{CycleIndicatorsXmpPageFull36}{
\showpaste}
\indentrel{3}\begin{verbatim}
(36)
2 3 4 5 6 7 8
1 + x + 2x + 3x + 5x + 6x + 9x + 11x + 15x
+ 9 10 11
18x + 23x + O(x)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{CycleIndicatorsXmpPageEmpty37}
\begin{paste}{CycleIndicatorsXmpPageFull37}{CycleIndicatorsXmpPageEmpty37}
\pastebutton{CycleIndicatorsXmpPageFull37}{
\hidepaste}
\indentrel{3}\begin{verbatim}
(37)
6 7 8 9 10 11 12 13
x + x + 2x + 3x + 5x + 6x + 9x + 11x
+ 14 15 16 17
15x + 18x + 23x + O(x)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
2 3 4 5 6 7 8
1 + x + 3x + 7x + 3x + x + x
\end{verbatim}

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

\begin{verbatim}
2 3 4 5 6 7
1 + x + 4x + 7x + 37x + 85x + 151x
+ 890x + 848x + O(x)
\end{verbatim}

Type: UnivariateLaurentSeries(Fraction Integer,x,0)
$1 + x + 3x + 7x + 17x + 35x + 76x + 149x + 891011$
$291x + 539x + 974x + O(x)$
Type: UnivariateLaurentSeries($\text{Fraction Integer}, x, 0$)

\begin{verbatim}
(41) 1 + x + 2x + 5x + 11x + 26x + 68x + 177x + 891011
496x + 1471x + 4583x + O(x)
Type: UnivariateLaurentSeries($\text{Fraction Integer}, x, 0$)
\end{verbatim}

(42) 49958972383320
Type: Fraction Integer
\begin{verbatim}
 1 1 2 1 2 1
 12 12 16 12
+ 1 4 1 2 1 2 2 1 2
 24 36 36 24
+ 1 3 1 5 1 4 1 3 2
 36 72 192 48
+ 1 2 4 1 6 1 8
 96 144 576
\end{verbatim}

Type: SymmetricPolynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{verbatim}
 3
\end{verbatim}

Type: Fraction Integer
\end{verbatim}
\end{patch}

\begin{verbatim}
 3
\end{verbatim}

Type: Fraction Integer
\end{verbatim}
\end{patch}
Examples Of Axiom Commands

⇒ “Differentiation” (Menuexdiff) 3.20 on page 305
⇒ “Integration” (Menuexint) 3.20 on page 310
⇒ “Laplace Transforms” (Menuexlap) 3.20 on page 317
3.20. COVEREX.HT

⇒ “Limits” (Menuexlimit) 3.20 on page 320
⇒ “Matrices” (Menuexmatrix) 3.20 on page 325
⇒ “2-D Graphics” (Menuexplot2d) 3.20 on page 333
⇒ “3-D Graphics” (Menuexplot3d) 3.20 on page 335
⇒ “Series” (Menuexseries) 3.20 on page 337
⇒ “Summations” (Menuexsum) 3.20 on page 342

— coverex.ht —

\begin{page}{ExampleCoverPage}{Examples Of Axiom Commands}
\beginscroll\table{
\{\downlink{Differentiation}{Menuexdiff}\}
\{\downlink{Integration}{Menuexint}\}
\{\downlink{Laplace Transforms}{Menuexlap}\}
\{\downlink{Limits}{Menuexlimit}\}
\{\downlink{Matrices}{Menuexmatrix}\}
\{\downlink{2-D Graphics}{Menuexplot2d}\}
\{\downlink{3-D Graphics}{Menuexplot3d}\}
\{\downlink{Series}{Menuexseries}\}
\{\downlink{Summations}{Menuexsum}\}
}\endscroll\end{page}

——

Differentiation

⇒ “Computing Derivatives” (ExDiffBasic) 3.28 on page 391
⇒ “Derivatives of Functions of Several Variables” (ExDiffSeveralVariables) 3.28 on page 392
⇒ “Derivatives of Higher Order” (ExDiffHigherOrder) 3.28 on page 393
⇒ “Multiple Derivatives I” (ExDiffMultipleI) 3.28 on page 394
⇒ “Multiple Derivatives II” (ExDiffMultipleII) 3.28 on page 396
⇒ “Derivatives of Functions Involving Formal Integrals” (ExDiffFormalIntegral) 3.28 on page 396

— coverex.ht —

\begin{page}{Menuexdiff}{Differentiation}
\beginscroll\begin{menu}
\menudownlink{Computing Derivatives}{ExDiffBasic}
\spadpaste{differentiate(sin(x) * exp(x**2),x)}
\menudownlink{Derivatives of Functions of Several Variables}{ExDiffSeveralVariables}
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),y)}
\menudownlink{Derivatives of Higher Order}{ExDiffHigherOrder}
\spadpaste{differentiate(exp(x**2),x,4)}
\menudownlink{Multiple Derivatives I}{ExDiffMultipleI}
\endscroll\end{menu}\end{page}
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y])}
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y,y])}
\menudownlink{Multiple Derivatives II}{ExDiffMultipleII}
\spadpaste{differentiate(cos(z)/(x**2 + y**3),[x,y,z],[1,2,3])}
\menudownlink{Derivatives of Functions Involving Formal Integrals}{ExDiffFormalIntegral}
\spadpaste{f := integrate(sqrt(1 + t**3),t) \free{f}}
\spadpaste{differentiate(f,t) \free{f}}
\spadpaste{differentiate(f * t**2,t) \free{f}}
\endmenu
\endscroll
\begin{patch}{MenuexdiffPatch1}
\begin{paste}{MenuexdiffFull1}{MenuexdiffEmpty1}
\pastebutton{MenuexdiffFull1}{\hidepaste}
\tab{5}\spadcommand{differentiate(sin(x) * exp(x**2),x)}
\begin{verbatim}
 2 2
2x %e sin(x) + cos(x)%e
Type: Expression Integer
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{MenuexdiffEmpty1}
\begin{paste}{MenuexdiffEmpty1}{MenuexdiffPatch1}
\pastebutton{MenuexdiffEmpty1}{\showpaste}
\tab{5}\spadcommand{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\end{paste}
\end{patch}
\begin{patch}{MenuexdiffPatch2}
\begin{paste}{MenuexdiffFull2}{MenuexdiffEmpty2}
\pastebutton{MenuexdiffFull2}{\hidepaste}
\tab{6}\spadcommand{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\begin{verbatim}
 2 2
(- 2x sin(x) + (y + x)cos(x))tan(y)
Type: Expression Integer
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{MenuexdiffEmpty2}
\begin{paste}{MenuexdiffEmpty2}{MenuexdiffPatch2}
\pastebutton{MenuexdiffEmpty2}{\showpaste}
\tab{6}\spadcommand{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\end{paste}
\end{patch}
\begin{verbatim}
(3) 2 2 2
 \((y + x^2)\sin(x)\tan(y) - 2y \sin(x)\tan(y) \)
+ 2 2
 \((y + x^2)\sin(x) \)
/
 4 2 2 4
 \(y + 2xy + x \)

Type: Expression Integer
\end{verbatim}

\begin{verbatim}
(4) \((16x^4 + 48x^2 + 12)e \)

Type: Expression Integer
\end{verbatim}
\begin{verbatim}
6 2 4 4 2 6
y + 3x y + 3x y + x
\end{verbatim}

Type: Expression Integer

\begin{verbatim}
2 3 4 2 2 4
(- 40x y + 8x)sin(x) + (6y + 4x y - 2x)cos(x)
8 2 6 4 6 2 8
y + 4x y + 6x y + 4x y + x
\end{verbatim}

Type: Expression Integer
\begin{verbatim}
\texttt{t}
\end{verbatim}

(8) $3 \int \frac{1}{\sqrt{1 + t^3}} \, dt$

Type: Union(Expression Integer,...)

\begin{verbatim}
\texttt{3} \int \frac{1}{\sqrt{1 + t^3}} \, dt
\end{verbatim}

(9) $t + 1$

Type: Expression Integer

\begin{verbatim}
\texttt{t} \int \frac{1}{\sqrt{1 + t^3}} \, dt
\end{verbatim}

(10) $2t \int \frac{1}{\sqrt{1 + t^3}} \, dt + t$

Type: Expression Integer
Integration

⇒ “Integral of a Rational Function” (ExIntRationalFunction) 3.30 on page 406
⇒ “Integral of a Rational Function with a Real Parameter” (ExIntRationalWithRealParameter) 3.30 on page 409
⇒ “Integral of a Rational Function with a Complex Parameter” (ExIntRationalWithComplexParameter) 3.30 on page 410
⇒ “Two Similar Integrands Producing Very Different Results” (ExIntTwoSimilarIntegrands) 3.30 on page 410
⇒ “An Integral Which Does Not Exist” (ExIntNoSolution) 3.30 on page 412
⇒ “A Trigonometric Function of a Quadratic” (ExIntTrig) 3.30 on page 413
⇒ “Integrating a Function with a Hidden Algebraic Relation” (ExIntAlgebraicRelation) 3.30 on page 414
⇒ “Details for integrating a function with a Hidden Algebraic Relation” (ExIntAlgebraicRelationExplain) 3.30 on page 415
⇒ “An Integral Involving a Root of a Transcendental Function” (ExIntRadicalOfTranscendental) 3.30 on page 416
⇒ “An Integral of a Non-elementary Function” (ExIntNonElementary) 3.30 on page 417

— coverex.ht —
3.20. COVEREX.HT

\spadpaste{\integrate(x^3 / (a+b*x)^{(1/3)},x)}
\spadpaste{\integrate(1 / (x^3 * (a+b*x)^{(1/3)}),x)}
\menudownlink{An Integral Which Does Not Exist}{ExIntNoSolution}
\spadpaste{\integrate(\log(1 + \sqrt(a*x + b)) / x,x)}
\menudownlink{A Trigonometric Function of a Quadratic}{ExIntTrig}
\spadpaste{\integrate((\sinh(1+\sqrt(x+b))+2*\sqrt(x+b))/
(\sqrt(x+b)*(x+cosh(1+\sqrt(x+b))))),x)}
\menudownlink{Integrating a Function with a Hidden Algebraic Relation}{ExIntAlgebraicRelation}
\spadpaste{\integrate(\tan(\atan(x)/3),x)}
\menudownlink{Details for integrating a function with a Hidden Algebraic Relation}{ExIntAlgebraicRelationExplain}
\menudownlink{An Integral Involving a Root of a Transcendental Function}{ExIntRadicalOfTranscendental}
\spadpaste{\integrate((x + 1) / (x * (x + \log(x))^{(3/2)}),x)}
\menudownlink{An Integral of a Non-elementary Function}{ExIntNonElementary}
\spadpaste{\integrate(\exp(-x**2) * \text{erf}(x) /
(\text{erf}(x)**3 - \text{erf}(x)**2 - \text{erf}(x) + 1),x)}
\endmenu}
\endscroll
\end{page}

\begin{patch}{MenuexintPatch1}
\begin{paste}{MenuexintFull1}{MenuexintEmpty1}
\pastebutton{MenuexintFull1}{\hidepaste}
\tab{5}\spadcommand{\integrate((x^2+2*x+1)/((x+1)**6+1),x)}
\indentrel{3}\begin{verbatim}
3 2
atan(x + 3x + 3x + 1)
(1)
3
Type: Union(Expression Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MenuexintEmpty1}
\begin{paste}{MenuexintEmpty1}{MenuexintPatch1}
\pastebutton{MenuexintEmpty1}{\showpaste}
\tab{5}\spadcommand{\integrate((x^2+2*x+1)/((x+1)**6+1),x)}
\end{paste}
\end{patch}

(2)
\begin{patch}{MenuexintPatch2}
\begin{paste}{MenuexintFull2}{MenuexintEmpty2}
\pastebutton{MenuexintFull2}{\hidepaste}
\tab{5}\spadcommand{\integrate(1/(x**3+x+1),x)\text{bound}{i}}
\indentrel{3}\begin{verbatim}
2
- 93%CE0 + 12
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(- 31\%CEO)
\1
 *
 log

 2
 - 93\%CEO + 12 2
 (62\%CEO + 31) + 62\%CEO
 \1
 +
 - 31\%CEO + 18x - 4
 +

 2
 - 93\%CEO + 12
 (- - \%CEO)
 \1
 *
 log

 2
 - 93\%CEO + 12
 (- 62\%CEO - 31)
 \1
 +
 2
 62\%CEO - 31\%CEO + 18x - 4
 +
 2
 2\%CEO log(- 62\%CEO + 31\%CEO + 9x + 4)
 /
 2

 Type: Union(Expression Integer,...)
\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexintEmpty2}
\begin{paste}{MenuexintEmpty2}{MenuexintPatch2}
\pastebutton{MenuexintEmpty2}{\showpaste}
\tab{5}\spadcommand{integrate(1/(x**3+x+1),x)\bound{i }}
\end{paste}\end{patch}

\begin{patch}{MenuexintPatch3}
\begin{paste}{MenuexintFull3}{MenuexintEmpty3}
\pastebutton{MenuexintFull3}{\hidepaste}
\tab{5}\spadcommand{definingPolynomial(tower(\.2::EXPR INT)\free{i }}
\indentrel{3}\begin{verbatim}
31\%CEO - 3\%CEO - 1
\end{verbatim}
\indentrel{3}\begin{verbatim}
(3)
\end{verbatim}
\end{patch}
3.20. COVEREX.HT

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexintPatch4}
\begin{paste}{MenuexintFull4}{MenuexintEmpty4}
\pastebutton{MenuexintFull4}{\hidepaste}
\tab{5}\spadcommand{integrate(1/(x**2 + a),x)}
\indentrel{3}\begin{verbatim}
2
\hspace{2pt}(x - a)\hspace{2pt}-\hspace{2pt}a + 2a x
\log() \hspace{2pt}x\hspace{2pt}a
\hspace{2pt}2 \hspace{2pt}atan() \hspace{2pt}x + a \hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexintEmpty4}
\begin{paste}{MenuexintEmpty4}{MenuexintPatch4}
\pastebutton{MenuexintEmpty4}{\showpaste}
\tab{5}\spadcommand{integrate(1/(x**2 + a),x)}
\end{paste}\end{patch}

\begin{patch}{MenuexintPatch5}
\begin{paste}{MenuexintFull5}{MenuexintEmpty5}
\pastebutton{MenuexintFull5}{\hidepaste}
\tab{5}\spadcommand{complexIntegrate(1/(x**2 + a),x)}
\end{paste}\end{patch}

\begin{verbatim}
x\hspace{2pt}-\hspace{2pt}a + a \hspace{2pt}x\hspace{2pt}-\hspace{2pt}a - a
\log() - \log()
\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
x\hspace{2pt}-\hspace{2pt}a + a \hspace{2pt}x\hspace{2pt}-\hspace{2pt}a - a
\log() - \log()
\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
x\hspace{2pt}-\hspace{2pt}a + a \hspace{2pt}x\hspace{2pt}-\hspace{2pt}a - a
\log() - \log()
\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

5
\begin{verbatim}
2\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
\hspace{2pt}-\hspace{2pt}a \hspace{2pt}-\hspace{2pt}a
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MenuexintEmpty5}
\begin{paste}{MenuexintEmpty5}{MenuexintPatch5}
\pastebutton{MenuexintEmpty5}{\showpaste}
\tab{5}\spadcommand{complexIntegrate(1/(x**2 + a),x)}
\end{paste}\end{patch}

\begin{patch}{MenuexintPatch6}
\begin{paste}{MenuexintFull6}{MenuexintEmpty6}
\pastebutton{MenuexintFull6}{\hidepaste}
\tab{5}\spadcommand{integrate(x**3 / (a+b*x)**(1/3),x)}
\indentrel{3}\begin{verbatim}
(6)
(120b x - 135a b x + 162a b x - 243a)b x + a
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexintEmpty6}
\begin{paste}{MenuexintEmpty6}{MenuexintPatch6}
\pastebutton{MenuexintEmpty6}{\showpaste}
\tab{5}\spadcommand{integrate(x**3 / (a+b*x)**(1/3),x)}
\end{paste}\end{patch}

\begin{patch}{MenuexintPatch7}
\begin{paste}{MenuexintFull7}{MenuexintEmpty7}
\pastebutton{MenuexintFull7}{\hidepaste}
\tab{5}\spadcommand{integrate(1 / (x**3 * (a+b*x)**(1/3)),x)}
\indentrel{3}\begin{verbatim}
(7)
 2 2
2b x \3
 *
 332 32 3
 log(\a \b x + a + \a \b x + a + a)
+
 2 2 32 3
 4b x \3 log(\a \b x + a - a)
+
 32 3
 2 2 \2\3 \a \b x + a + a\3
 12b x atan() 3a
+
 332
\end{verbatim}
\end{patch}
3.20. COVEREX.HT

\begin{verbatim}
(12 b x - 9 a) / \ a \ b x + a
/ 2 2 3
18 a x \ a
\end{verbatim}

Type: Union(Expression Integer, ...)

\begin{verbatim}
(8) d%N
%N
\end{verbatim}

Type: Union(Expression Integer, ...)

\begin{verbatim}
(9)
- 2cosh(x + b + 1) - 2x
21og()

\end{verbatim}

\begin{verbatim}
\sinh(x + b) + \cosh(x + b)
\end{verbatim}

Type: Union(Expression Integer, ...)

\begin{verbatim}
\end{verbatim}
\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MenuexintEmpty9}
\begin{paste}{MenuexintEmpty9}{MenuexintPatch9}
\pastebutton{MenuexintEmpty9}{\showpaste}
\spadcommand{
integrate((\sinh(1+\sqrt{x+b})+2*\sqrt{x+b})/_
 (\sqrt{x+b}*(x+\cosh(1+\sqrt{x+b}))),x)}
\end{paste}\end{patch}
\begin{patch}{MenuexintPatch10}
\begin{paste}{MenuexintFull10}{MenuexintEmpty10}
\pastebutton{MenuexintFull10}{\hidepaste}
\spadcommand{integrate(\tan(\atan(x)/3),x)}
\indentrel{3}\begin{verbatim}
\indentrel{-3}
\end{verbatim}
\end{patch}
\begin{patch}{MenuexintEmpty10}
\begin{paste}{MenuexintEmpty10}{MenuexintPatch10}
\pastebutton{MenuexintEmpty10}{\showpaste}
\spadcommand{integrate(\tan(\atan(x)/3),x)}
\end{patch}
\begin{patch}{MenuexintPatch11}
\begin{paste}{MenuexintFull11}{MenuexintEmpty11}
\pastebutton{MenuexintFull11}{\hidepaste}
\spadcommand{integrate((x + 1) / (x * (x + \log x)**(3/2)),x)}
\indentrel{3}\begin{verbatim}
(10)
\indentrel{-3}
\end{verbatim}
\end{patch}
\begin{patch}{MenuexintPatch11}
\begin{paste}{MenuexintFull11}{MenuexintEmpty11}
\pastebutton{MenuexintFull11}{\hidepaste}
\spadcommand{integrate((x + 1) / (x * (x + \log x)**(3/2)),x)}
\indentrel{3}\begin{verbatim}
(11) -
\indentrel{-3}
\end{verbatim}
\end{patch}
\end{verbatim}
Laplace Transforms

⇒ “Laplace transform with a single pole” (ExLapSimplePole) 3.29 on page 402
⇒ “Laplace transform of a trigonometric function” (ExLapTrigTrigh) 3.29 on page 402
⇒ “Laplace transform requiring a definite integration” (ExLapDefInt) 3.29 on page 403
⇒ “Laplace transform of exponentials” (ExLapExpExp) 3.29 on page 404
⇒ “Laplace transform of an exponential integral” (ExLapSpecial1) 3.29 on page 405
⇒ “Laplace transform of special functions” (ExLapSpecial2) 3.29 on page 406

— coverex.ht —
CHAPTER 3. HYPERDOC PAGES

{ExLapDefInt}
\spadpaste{laplace(2/t * (1 - cos(a*t)), t, s)}
\menudownlink{Laplace transform of exponentials}{ExLapExpExp}
\spadpaste{laplace((exp(a*t) - exp(b*t))/t, t, s)}
\menudownlink{Laplace transform of an exponential integral}{ExLapSpecial1}
\spadpaste{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\menudownlink{Laplace transform of special functions}{ExLapSpecial2}
\spadpaste{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
\endmenu\endscroll
\end{page}

\begin{patch}{MenuexlapPatch1}
\begin{paste}{MenuexlapFull1}{MenuexlapEmpty1}
\tab{5}\spadcommand{laplace(t**4 * exp(-a*t) / factorial(4), t, s)}
\indentrel{3}\begin{verbatim}
1
$\frac{5 4 2 3 3 2 4 5}{s + 5a s + 10a s + 10a s + 5a s + a}$
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MenuexlapEmpty1}
\begin{paste}{MenuexlapEmpty1}{MenuexlapPatch1}
\pastebutton{MenuexlapEmpty1}{\showpaste}
\tab{5}\spadcommand{laplace(t**4 * exp(-a*t) / factorial(4), t, s)}
\end{paste}
\end{patch}

\begin{patch}{MenuexlapPatch2}
\begin{paste}{MenuexlapFull2}{MenuexlapEmpty2}
\tab{5}\spadcommand{laplace(sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t), t, s)}
\indentrel{3}\begin{verbatim}
3
$\frac{4a}{s + 4a}$
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MenuexlapEmpty2}
\begin{paste}{MenuexlapEmpty2}{MenuexlapPatch2}
\pastebutton{MenuexlapEmpty2}{\showpaste}
\tab{5}\spadcommand{laplace(sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t), t, s)}
\end{paste}
\end{patch}
\begin{patch}{MenuexlapPatch3}
\begin{paste}{MenuexlapFull3}{MenuexlapEmpty3}
\pastebutton{MenuexlapFull3}{\hidepaste}
\tab{5}\spadcommand{\text{laplace}(2/t * (1 - \cos(a*t)), t, s)}
\indentrel{3}\begin{verbatim}
2 2
(3) \log(s + a) - 2\log(s)
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexlapEmpty3}
\begin{paste}{MenuexlapEmpty3}{MenuexlapPatch3}
\pastebutton{MenuexlapEmpty3}{\showpaste}
\tab{5}\spadcommand{\text{laplace}(2/t * (1 - \cos(a*t)), t, s)}
\end{paste}\end{patch}

\begin{patch}{MenuexlapPatch4}
\begin{paste}{MenuexlapFull4}{MenuexlapEmpty4}
\pastebutton{MenuexlapFull4}{\hidepaste}
\tab{5}\spadcommand{\text{laplace}((\exp(a*t) - \exp(b*t))/t, t, s)}
\indentrel{3}\begin{verbatim}
(4) - \log(s - a) + \log(s - b)
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexlapEmpty4}
\begin{paste}{MenuexlapEmpty4}{MenuexlapPatch4}
\pastebutton{MenuexlapEmpty4}{\showpaste}
\tab{5}\spadcommand{\text{laplace}((\exp(a*t) - \exp(b*t))/t, t, s)}
\end{paste}\end{patch}

\begin{patch}{MenuexlapPatch5}
\begin{paste}{MenuexlapFull5}{MenuexlapEmpty5}
\pastebutton{MenuexlapFull5}{\hidepaste}
\tab{5}\spadcommand{\text{laplace}(\exp(a*t+b)*\text{Ei}(c*t), t, s)}
\indentrel{3}\begin{verbatim}
 b s + c - a
 %\text{log}()
 c
 (5)
 s - a
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexlapEmpty5}
\begin{paste}{MenuexlapEmpty5}{MenuexlapPatch5}
\pastebutton{MenuexlapEmpty5}{\showpaste}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{MenuexlapPatch6}
\begin{paste}{MenuexlapFull6}{MenuexlapEmpty6}
\pastebutton{MenuexlapFull6}{\hidepaste}
\tab{5}\spadcommand{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\indentrel{3}\begin{verbatim}
2 2
s + b d
a log() + 2c atan()
2 s
b
(6)
2s
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MenuexlapEmpty6}
\begin{paste}{MenuexlapEmpty6}{MenuexlapPatch6}
\pastebutton{MenuexlapEmpty6}{\showpaste}
\tab{5}\spadcommand{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
\end{paste}
\end{patch}

—

Limits

⇒ “Computing Limits” (ExLimitBasic) 3.31 on page 417
⇒ “Limits of Functions with Parameters” (ExLimitParameter) 3.31 on page 418
⇒ “One-sided Limits” (ExLimitOneSided) 3.31 on page 419
⇒ “Two-sided Limits” (ExLimitTwoSided) 3.31 on page 420
⇒ “Limits at Infinity” (ExLimitInfinite) 3.31 on page 422
⇒ “Real Limits vs. Complex Limits” (ExLimitRealComplex) 3.31 on page 423
⇒ “Complex Limits at Infinity” (ExLimitComplexInfinite) 3.31 on page 424

— coverex.ht —

\begin{page}{Menuexlimit}{Limits}
\beginscroll
\begin{menu}
\menudownlink{Computing Limits}{ExLimitBasic}
\spadpaste{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
\menudownlink{Limits of Functions with Parameters}{ExLimitParameter}
\spadpaste{limit(sinh(a*x)/tan(b*x),x = 0)}
\menudownlink{One-sided Limits}{ExLimitOneSided}
\spadpaste{limit(x * log(x),x = 0,"right")}
\end{menu}
\endscroll
\end{page}
\spadpaste{\text{limit}(x * \log(x), x = 0)}
\begin{menuitem}{Two-sided Limits}{ExLimitTwoSided}
\spadpaste{\text{limit}(\sqrt{y^2}/y, y = 0)}
\spadpaste{\text{limit}((1 - \cos(t))/t, t = 0)}
\begin{menuitem}{Limits at Infinity}{ExLimitInfinite}
\spadpaste{\text{limit}(\sqrt{3x^2 + 1}/(5x), x = \%plusInfinity)}
\spadpaste{\text{limit}(\sqrt{3x^2 + 1}/(5x), x = \%minusInfinity)}
\begin{menuitem}{Real Limits vs. Complex Limits}{ExLimitRealComplex}
\spadpaste{\text{limit}(z * \sin(1/z), z = 0)}
\spadpaste{\text{complexLimit}(z * \sin(1/z), z = 0)}
\begin{menuitem}{Complex Limits at Infinity}{ExLimitComplexInfinite}
\spadpaste{\text{complexLimit}((2 + z)/(1 - z), z = \%infinity)}
\spadpaste{\text{limit}(\sin(x)/x, x = \%plusInfinity)}
\spadpaste{\text{complexLimit}(\sin(x)/x, x = \%infinity)}
\end{menuitem}\end{scroll}
\end{menuitem}
code
\begin{patch}{MenuexlimitPatch1}
\begin{paste}{MenuexlimitFull1}{MenuexlimitEmpty1}
\spadcommand{\text{limit}((x^2 - 3x + 2)/(x^2 - 1), x = 1)}
\verbatim
1
2
1
2
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{MenuexlimitEmpty1}
\begin{paste}{MenuexlimitEmpty1}{MenuexlimitPatch1}
\spadcommand{\text{limit}((x^2 - 3x + 2)/(x^2 - 1), x = 1)}
\end{paste}
\end{patch}
\begin{patch}{MenuexlimitPatch2}
\begin{paste}{MenuexlimitFull2}{MenuexlimitEmpty2}
\spadcommand{\text{limit}(\sinh(a*x)/\tan(b*x), x = 0)}
\verbatim
a
b
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{MenuexlimitEmpty2}
\begin{paste}{MenuexlimitEmpty2}{MenuexlimitPatch2}
\spadcommand{\text{limit}(\sinh(a*x)/\tan(b*x), x = 0)}
\verbatim
a
b
\end{verbatim}
\end{paste}
\end{patch}
\begin{spadcommand}
limit(sinh(a*x)/tan(b*x),x = 0)
\end{spadcommand}

\begin{verbatim}
(3) 0
Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}

\begin{spadcommand}
limit(x * log(x),x = 0,"right")
\end{spadcommand}

\begin{verbatim}
(4) [leftHandLimit= "failed",rightHandLimit= 0]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed"),...),...)
\end{verbatim}

\begin{spadcommand}
limit(sqrt(y**2)/y,y = 0)
\end{spadcommand}

\begin{verbatim}
(5) [leftHandLimit= -1,rightHandLimit= 1]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed"),...),...)
\end{verbatim}
\begin{verbatim}
limit(sqrt(1 - cos(t))/t, t = 0)
\end{verbatim}

1 1
\(\text{Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed"),...)}\)

\begin{verbatim}
limit(sqrt(3*x**2 + 1)/(5*x), x = \%plusInfinity)
\end{verbatim}

3
\(\text{Type: Union(OrderedCompletion Expression Integer,...)}\)

\begin{verbatim}
limit(sqrt(3*x**2 + 1)/(5*x), x = \%minusInfinity)
\end{verbatim}

3
\(\text{Type: Union(OrderedCompletion Expression Integer,...)}\)
\begin{verbatim}
spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = %minusInfinity)}
\end{verbatim}
\begin{verbatim}
spadcommand{limit(z * sin(1/z),z = 0)}
\end{verbatim}
\begin{verbatim}
spadcommand{complexLimit((2 + z)/(1 - z),z = %infinity)}
\end{verbatim}
Matrices

⇒ “Basic Arithmetic Operations on Matrices” (ExMatrixBasicFunction) 3.32 on page 426
⇒ “Constructing new Matrices” (ExConstructMatrix) 3.32 on page 429
⇒ “Trace of a Matrix” (ExTraceMatrix) 3.32 on page 433
⇒ “Determinant of a Matrix” (ExDeterminantMatrix) 3.32 on page 433
3.32 on page 434
⇒ “Inverse of a Matrix” (ExInverseMatrix) 3.32 on page 434
⇒ “Rank of a Matrix” (ExRankMatrix) 3.32 on page 435
— coverex.ht —
\begin{verbatim}
1 0 2
(2) 20 30 10
0 200 100
Type: Matrix Integer
\end{verbatim}

\begin{verbatim}
1 2 3
(3) 2 4 6
Type: Matrix Integer
\end{verbatim}

\begin{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
2 0 4
(4)
6 6 2
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
40 662 321
(7)
78 1318 648
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
1 0 0 0 0
0 2 0 0 0
(9) 0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
\end{verbatim}
\end{verbatim}
\begin{verbatim}
1 2 3
(10) 6 7 8
11 12 13
\end{verbatim}

Type: Matrix Integer

\begin{verbatim}
1 2 3 11 12 13
(11)
6 7 8 55 77 88
\end{verbatim}

Type: Matrix Integer

\begin{verbatim}
1 2 3 11 12 13
\end{verbatim}
3.20. COVEREX.HT

\indentrel{3}\begin{verbatim}
1 2 3
6 7 8
11 12 13
55 77 88
\end{verbatim}

Type: Matrix Integer
\indentrel{-3}\end{patch}
\begin{patch}{MenuexmatrixEmpty12}
\begin{paste}{MenuexmatrixEmpty12}{MenuexmatrixPatch12}
\pastebutton{MenuexmatrixEmpty12}{\showpaste}
\tab{5}\spadcommand{vertConcat(matrix([^\{1,2,3^]\},matrix([^\{11,12,13^]\},[55,77,88])))}
\end{paste}\end{patch}
\begin{patch}{MenuexmatrixPatch13}
\begin{paste}{MenuexmatrixFull13}{MenuexmatrixEmpty13}
\pastebutton{MenuexmatrixFull13}{\hidepaste}
\tab{5}\spadcommand{b:=matrix([^\{0,1,2,3,4^]\},[5,6,7,8,9],[10,11,12,13,14])}\free{b}
\indentrel{3}\begin{verbatim}
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
\end{verbatim}
\end{patch}
\begin{patch}{MenuexmatrixEmpty13}
\begin{paste}{MenuexmatrixEmpty13}{MenuexmatrixPatch13}
\pastebutton{MenuexmatrixEmpty13}{\showpaste}
\tab{5}\spadcommand{b:=matrix([^\{0,1,2,3,4^]\},[5,6,7,8,9],[10,11,12,13,14])}\free{b}
\end{patch}
\begin{patch}{MenuexmatrixPatch14}
\begin{paste}{MenuexmatrixFull14}{MenuexmatrixEmpty14}
\pastebutton{MenuexmatrixFull14}{\hidepaste}
\tab{5}\spadcommand{setsubMatrix!(b,1,1,transpose(subMatrix(b,1,3,1,3)))}\free{b}
\indentrel{3}\begin{verbatim}
0 5 10 3 4
1 6 11 8 9
2 7 12 13 14
\end{verbatim}
\end{patch}
\begin{verbatim}
2 3
(15) z + y + u + 1
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(16) - 48
Type: Integer
\end{verbatim}

\begin{verbatim}
2 5
- - 1
7 7
\end{verbatim}
3.20. **COVEREX.HT**

\[
\begin{pmatrix}
8 & 6 \\
1 & -1 \\
7 & 7
\end{pmatrix}
\]

Type: Union(Matrix Fraction Integer,...)

\[
\begin{pmatrix}
1,2,1 \\
-2,3,4 \\
-1,5,6
\end{pmatrix}
\]

\[
\text{Type: PositiveInteger}
\]

\[
\begin{pmatrix}
0,4,1 \\
5,3,-7 \\
-5,5,9
\end{pmatrix}
\]

\[
\text{Type: PositiveInteger}
\]

2-D Graphics

⇒ “Plotting Functions of One Variable” (ExPlot2DFunctions) 3.34 on page 449
⇒ “Plotting Parametric Curves” (ExPlot2DParametric) 3.34 on page 449
⇒ “Plotting Using Polar Coordinates” (ExPlot2DPolar) 3.34 on page 450
⇒ “Plotting Plane Algebraic Curves” (ExPlot2DAlgebraic) 3.34 on page 451

\[
\text{draw}(\sin(\tan(x)) - \tan(\sin(x)),x = 0..6)
\]
\graphpaste{draw\left(\text{curve}(9 \ast \sin\left(3\ast t/4\right),8 \ast \sin\left(t\right)),t = -4\ast \pi .. 4\ast \pi\right)}
\menudownlink{Plotting Using Polar Coordinates}{ExPlot2DPolar}
\graphpaste{draw\left(\text{sin}\left(4\ast t/7\right),t = 0 .. 14\ast \pi,\text{coordinates} == \text{polar}\right)}
\menudownlink{Plotting Plane Algebraic Curves}{ExPlot2DAlgebraic}
\graphpaste{draw\left(\text{y}**2 + y - \left(\text{x}**3 - \text{x}\right) = 0, \text{x}, \text{y}, \text{range} == \left[-2 .. 2, -2 .. 1\right]\right)}
\endmenu\endscroll
\end{page}

\begin{patch}{Menuexplot2dPatch1}
\begin{paste}{Menuexplot2dFull1}{Menuexplot2dEmpty1}
\pastebutton{Menuexplot2dFull1}{\hidepaste}
\tab{5}\spadgraph{draw\left(\text{sin}\left(\text{tan}\left(\text{x}\right)\right) - \text{tan}\left(\text{sin}\left(\text{x}\right)\right),\text{x} = 0 .. 6\right)}
\center{\unixcommand{\inputimage{\environ{AXIOM}/doc/viewports/menuexplot2d1.view/image}}{viewalone\space{1}\environ{AXIOM}/doc/viewports/menuexplot2d1}}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dEmpty1}
\begin{paste}{Menuexplot2dEmpty1}{Menuexplot2dPatch1}
\pastebutton{Menuexplot2dEmpty1}{\showpaste}
\tab{5}\spadgraph{draw\left(\text{sin}\left(\text{tan}\left(\text{x}\right)\right) - \text{tan}\left(\text{sin}\left(\text{x}\right)\right),\text{x} = 0 .. 6\right)}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dPatch2}
\begin{paste}{Menuexplot2dFull2}{Menuexplot2dEmpty2}
\pastebutton{Menuexplot2dFull2}{\hidepaste}
\tab{5}\spadgraph{draw\left(\text{curve}(9 \ast \sin\left(3\ast t/4\right),8 \ast \sin\left(t\right)),t = -4\ast \pi .. 4\ast \pi\right)}
\center{\unixcommand{\inputimage{\environ{AXIOM}/doc/viewports/menuexplot2d2.view/image}}{viewalone\space{1}\environ{AXIOM}/doc/viewports/menuexplot2d2}}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dEmpty2}
\begin{paste}{Menuexplot2dEmpty2}{Menuexplot2dPatch2}
\pastebutton{Menuexplot2dEmpty2}{\showpaste}
\tab{5}\spadgraph{draw\left(\text{curve}(9 \ast \sin\left(3\ast t/4\right),8 \ast \sin\left(t\right)),t = -4\ast \pi .. 4\ast \pi\right)}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dPatch3}
\begin{paste}{Menuexplot2dFull3}{Menuexplot2dEmpty3}
\pastebutton{Menuexplot2dFull3}{\hidepaste}
\tab{5}\spadgraph{draw\left(\text{sin}\left(4\ast t/7\right),t = 0 .. 14\ast \pi,\text{coordinates} == \text{polar}\right)}
\center{\unixcommand{\inputimage{\environ{AXIOM}/doc/viewports/menuexplot2d3.view/image}}{viewalone\space{1}\environ{AXIOM}/doc/viewports/menuexplot2d3}}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dEmpty3}
\begin{paste}{Menuexplot2dEmpty3}{Menuexplot2dPatch3}
\pastebutton{Menuexplot2dEmpty3}{\showpaste}
\tab{5}\spadgraph{draw\left(\text{sin}\left(4\ast t/7\right),t = 0 .. 14\ast \pi,\text{coordinates} == \text{polar}\right)}
\end{paste}\end{patch}

\begin{patch}{Menuexplot2dPatch4}
\begin{paste}{Menuexplot2dFull4}{Menuexplot2dEmpty4}
\pastebutton{Menuexplot2dFull4}{\hidepaste}
3.20. COVEREX.HT

3-D Graphics

⇒ “Plotting Functions of Two Variables” (ExPlot3DFunctions) 3.35 on page 451
⇒ “Plotting Parametric Surfaces” (ExPlot3DParametricSurface) 3.35 on page 452
⇒ “Plotting Parametric Curves” (ExPlot3DParametricCurve) 3.35 on page 453

— coverex.ht —

3-D Graphics

⇒ “Plotting Functions of Two Variables” (ExPlot3DFunctions) 3.35 on page 451
⇒ “Plotting Parametric Surfaces” (ExPlot3DParametricSurface) 3.35 on page 452
⇒ “Plotting Parametric Curves” (ExPlot3DParametricCurve) 3.35 on page 453

— coverex.ht —
3.20. COVEREX.HT

Series

⇒ “Converting Expressions to Series” (ExSeriesConvert) 3.37 on page 457
⇒ “Manipulating Power Series” (ExSeriesManipulate) 3.37 on page 459
⇒ “Functions on Power Series” (ExSeriesFunctions) 3.37 on page 461
⇒ “Substituting Numerical Values in Power Series” (ExSeriesSubstitution) 3.37 on page 462

\begin{page}{Menuexseries}{Series}
\beginscroll\beginmenu
\menudownlink{Converting Expressions to Series}{ExSeriesConvert}
\spadpaste{series(sin(a*x),x = 0)}
\spadpaste{series(sin(a*x),a = %pi/4)}
\menudownlink{Manipulating Power Series}{ExSeriesManipulate}
\spadpaste{f := series(1/(1-x),x = 0) \bound{f}}
\spadpaste{f ** 2 \free{f}}
\menudownlink{Functions on Power Series}{ExSeriesFunctions}
\spadpaste{f := series(1/(1-x),x = 0) \bound{f1}}
\spadpaste{g := log(f) \free{f1} \bound{g}}
\spadpaste{exp(g) \free{g}}
\menudownlink{Substituting Numerical Values in Power Series}
{ExSeriesSubstitution}
\spadpaste{f := taylor(exp(x)) \bound{f2}}
\spadpaste{eval(f,1.0) \free{f2}}
\endmenu\endscroll
\end{page}

\begin{patch}{MenuexseriesPatch1}
\begin{paste}{MenuexseriesFull1}{MenuexseriesEmpty1}
\pastebutton{MenuexseriesFull1}{\hidepaste}
\begin{verbatim}
(1) 3 5 7 9
 a 3 a 5 a 7 a 9
 a x - x + x - x + x
 6 120 5040 362880
+
 11
 a 11 12
- x + O(x)
 39916800
\end{verbatim}
\end{paste}
\end{patch}
\begin{verbatim}
(2)
 %pi x %pi x %pi
sin() + x cos()(a -)
 4 4 4
 +
 2 %pi x 3 %pi x
x sin() x cos()
 4 %pi 2 4 %pi 3
 - (a -) - (a -)
 2 4 6 4
 +
 4 %pi x 5 %pi x
x sin() x cos()
 4 %pi 4 4 %pi 5
 (a -) + (a -)
 24 4 120 4
 +
 6 %pi x 7 %pi x
x sin() x cos()
 4 %pi 6 4 %pi 7
 - (a -) - (a -)
 720 4 5040 4
 +
 8 %pi x 9 %pi x
x sin() x cos()
 4 %pi 8 4 %pi 9
 (a -) + (a -)
 40320 4 362880 4
 +
 10 %pi x
x sin()
 4 %pi 10 %pi 11
 - (a -) + O((a -)
 3628800 4 4
\end{verbatim}

Type: UnivariatePuiseuxSeries(Expression Integer,a,\pi/4)
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\begin{patch}{MenuexseriesEmpty2}
\begin{paste}{MenuexseriesEmpty2}{MenuexseriesPatch2}
pastebutton{MenuexseriesEmpty2}{\showpaste}
\tab{5}\spadcommand{series(sin(a*x),a = \%pi/4)}
\end{paste}\end{patch}

\begin{patch}{MenuexseriesPatch3}
\begin{paste}{MenuexseriesFull3}{MenuexseriesEmpty3}
pastebutton{MenuexseriesFull3}{\hidepaste}
\tab{5}\spadcommand{f := series(1/(1-x),x = 0)\bound{f }}
\indentrel{3}\begin{verbatim}
(3)
 2 3 4 5 6 7 8 9 10
 1 + x + x + x + x + x + x + x + x + x + x
 + 11
0(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexseriesEmpty3}
\begin{paste}{MenuexseriesEmpty3}{MenuexseriesPatch3}
pastebutton{MenuexseriesEmpty3}{\showpaste}
\tab{5}\spadcommand{f := series(1/(1-x),x = 0)\bound{f }}
\end{paste}\end{patch}

\begin{patch}{MenuexseriesPatch4}
\begin{paste}{MenuexseriesFull4}{MenuexseriesEmpty4}
pastebutton{MenuexseriesFull4}{\hidepaste}
\tab{5}\spadcommand{f ** 2\free{f }}
\indentrel{3}\begin{verbatim}
(4)
 2 3 4 5 6 7 8
 1 + 2x + 3x + 4x + 5x + 6x + 7x + 8x + 9x + 10x + 11x + 0(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexseriesEmpty4}
\begin{paste}{MenuexseriesEmpty4}{MenuexseriesPatch4}
pastebutton{MenuexseriesEmpty4}{\showpaste}
\tab{5}\spadcommand{f ** 2\free{f }}
\end{paste}\end{patch}
\begin{patch}{MenuexseriesPatch5}
\begin{paste}{MenuexseriesFull5}{MenuexseriesEmpty5}
\pastebutton{MenuexseriesFull5}{\hidepaste}
\indentrel{3}\texttt{\spadcommand{f := series(1/(1-x),x = 0)\bound{f1}}}
\end{patch}
\begin{patch}{MenuexseriesEmpty5}
\begin{paste}{MenuexseriesEmpty5}{MenuexseriesPatch5}
\pastebutton{MenuexseriesEmpty5}{\showpaste}
\indentrel{3}\texttt{\spadcommand{f := series(1/(1-x),x = 0)\bound{f1}}}
\end{patch}
\begin{patch}{MenuexseriesPatch6}
\begin{paste}{MenuexseriesFull6}{MenuexseriesEmpty6}
\pastebutton{MenuexseriesFull6}{\hidepaste}
\indentrel{3}\texttt{\spadcommand{g := log(f)\free{f1}\bound{g}}}
\end{patch}
\begin{patch}{MenuexseriesEmpty6}
\begin{paste}{MenuexseriesEmpty6}{MenuexseriesPatch6}
\pastebutton{MenuexseriesEmpty6}{\showpaste}
\indentrel{3}\texttt{\spadcommand{g := log(f)\free{f1}\bound{g}}}
\end{patch}
\begin{patch}{MenuexseriesPatch7}
\begin{paste}{MenuexseriesFull7}{MenuexseriesEmpty7}
\pastebutton{MenuexseriesFull7}{\hidepaste}
\indentrel{3}\texttt{\spadcommand{exp(g)\free{g}}}
\begin{verbatim}
(7) 2 3 4 5 6 7 8 9 10
 1 + x + x + x + x + x + x + x + x + x
+ 11
 0(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}

\begin{verbatim}
(8) 1 2 1 3 1 4 1 5 1 6
 1 + x + x + x + x + x + x
 2 6 24 120 720
+ 1 7 1 8 1 9 1 10 11
 x + x + x + x + 0(x)
5040 40320 362880 3628800
Type: UnivariateTaylorSeries(Expression Integer,x,0)
\end{verbatim}

\begin{verbatim}
(9) 1.0, 2.0, 2.5, 2.666666666 666666667, 2.7083333333
 3333333.3, 2.7166666666 666666667, 2.7180555555
 555555556, 2.7182539682 53968254, 2.7182787698
 412698413, 2.7182815255 731922399, ...
Type: Stream Expression Float
\end{verbatim}
Summations

⇒ “notitle” (ExSumListEntriesI) 3.38 on page 464
⇒ “notitle” (ExSumListEntriesII) 3.38 on page 465
⇒ “notitle” (ExSumApproximateE) 3.38 on page 466
⇒ “notitle” (ExSumClosedForm) 3.38 on page 467
⇒ “notitle” (ExSumCubes) 3.38 on page 468
⇒ “notitle” (ExSumPolynomial) 3.38 on page 470
⇒ “notitle” (ExSumGeneralFunction) 3.38 on page 471
⇒ “notitle” (ExSumInfinite) 3.38 on page 472

— coverex.ht —
\begin{tab}\begin{verbatim}
(1) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
Type: List PositiveInteger
\end{verbatim}\end{tab}
\begin{tab}\begin{verbatim}
(2) 120
Type: PositiveInteger
\end{verbatim}\end{tab}
\begin{tab}\begin{verbatim}
(3) [25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
Type: List PositiveInteger
\end{verbatim}\end{tab}
\begin{spadcommand}{n**2 for \text{n in 5..20}}\end{spadcommand}

$$\text{(4) 2840}$$

\begin{verbatim}
(4) 2840
\end{verbatim}

\begin{spadcommand}{reduce(+,[n**2 for \text{n in 5..20}])}\end{spadcommand}

\begin{verbatim}
(5) 2.7182818284 590452354
\end{verbatim}

\begin{spadcommand}{s := \text{sum}(k**2,k = a..b)}\text{\text{\textbackslash bound}}{s}\end{spadcommand}

$$\text{(6) 6}$$

\begin{verbatim}
6
\end{verbatim}

\text{Type: Fraction Polynomial Integer}
\begin{verbatim}
(7) 5525
Type: Fraction Polynomial Integer
\end{verbatim}

\begin{verbatim}
(8) 5525
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(9) 4
n + 2n + n
Type: Fraction Polynomial Integer
\end{verbatim}
\begin{paste}{MenuexsumEmpty9}{MenuexsumPatch9}
\pastebutton{MenuexsumEmpty9}{\showpaste}
\tab{5}\spadcommand{sum(k**3,k = 1..n)}
\end{paste}\end{patch}

\begin{patch}{MenuexsumPatch10}
\begin{paste}{MenuexsumFull10}{MenuexsumEmpty10}
\pastebutton{MenuexsumFull10}{\hidepaste}
\tab{5}\spadcommand{sum(k,k = 1..n) ** 2}
\indentrel{3}\begin{verbatim}
4 3 2
n + 2n + n
(10)
4
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexsumEmpty10}
\begin{paste}{MenuexsumEmpty10}{MenuexsumPatch10}
\pastebutton{MenuexsumEmpty10}{\showpaste}
\tab{5}\spadcommand{sum(k,k = 1..n) ** 2}
\end{paste}\end{patch}

\begin{patch}{MenuexsumPatch11}
\begin{paste}{MenuexsumFull11}{MenuexsumEmpty11}
\pastebutton{MenuexsumFull11}{\hidepaste}
\tab{5}\spadcommand{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\indentrel{3}\begin{verbatim}
(11)
3 2 3 2
(128b + 48b + 4b - 54a + 27a - 3a)d +
2 2 2 2
(192b + 48b - 108a + 36a)c + 192b + 48b - 108a +
36a /
2
(2c + 2)d
Type: Union(Fraction Polynomial Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MenuexsumEmpty11}
\begin{paste}{MenuexsumEmpty11}{MenuexsumPatch11}
\pastebutton{MenuexsumEmpty11}{\showpaste}
\tab{5}\spadcommand{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\end{paste}\end{patch}
\begin{verbatim}
2 n
(n x + (- n - 1)x)x + x
(12)
2
x - 2x + 1
\end{verbatim}

Type: Expression Integer

\begin{verbatim}
3
(13)
\end{verbatim}

Type: Union(OrderedCompletion Fraction Polynomial Integer,...)
3.21 decimal.ht

Decimal Expansion

All rationals have repeating decimal expansions. Operations to access the individual digits of a decimal expansion can be obtained by converting the value to `RadixExpansion(10)`.

More examples of expansions are available in `BinaryExpansion`, `HexadecimalExpansion`, and `RadixExpansion`. Issue the system command `show DecimalExpansion` to display the full list of operations defined by `DecimalExpansion`.

The operation `decimal` is used to create this expansion of type `DecimalExpansion`.

```
r := decimal(22/7)
Arithmetic is exact.
```

The period of the expansion can be short or long...

```
{decimal(1/i) for i in 350..354}
```

or very long.

```
decimal(1/2049)
```

The operation `spadfunFrom(decimal)` is used to create...
this expansion of type \spadtype{DecimalExpansion}.
){
\spadpaste{r := decimal(22/7) \bound{r}}
}
\xtc{
Arithmetic is exact.
}{
\spadpaste{r + decimal(6/7) \free{r}}
}
\xtc{
The period of the expansion can be short or long \ldots
}{
\spadpaste{[decimal(1/i) for i in 350..354] }
}
\xtc{
or very long.
}{
\spadpaste{decimal(1/2049) }
}
\xtc{
These numbers are bona fide algebraic objects.
}{
\spadpaste{p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9) \bound{p}}
}
\xtc{
}{
\spadpaste{q := differentiate(p, x) \free{p}\bound{q}}
}
\xtc{
}{
\spadpaste{g := gcd(p, q) \free{p q} \bound{g}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{DecimalExpansionXmpPagePatch1}
\begin{paste}{DecimalExpansionXmpPageFull1}{DecimalExpansionXmpPageEmpty1}
\pastebutton{DecimalExpansionXmpPageFull1}{\hidepaste}
\end{patch}

\begin{patch}{DecimalExpansionXmpPageEmpty1}
\begin{paste}{DecimalExpansionXmpPageEmpty1}{DecimalExpansionXmpPagePatch1}

\begin{verbatim}

| 1 | 3.142857 |
\end{verbatim}

\begin{verbatim}
Type: DecimalExpansion

\end{verbatim}
\spad{r := decimal(22/7)}
\(\text{Type: DecimalExpansion}\)

\(\text{Type: List DecimalExpansion}\)

\spad{\[decimal(1/i) \text{ for } i \text{ in } 350..354\]}
\(\frac{0.25x + 0.6x + 0.4}{0.5x + 0.6} \)
3.22 derham.ht

DeRhamComplex

--- derham.ht ---

The domain constructor \spadtype{DeRhamComplex} creates the class of differential forms of arbitrary degree over a coefficient ring. The De Rham complex constructor takes two arguments: a ring, \spad{coefRing}, and a list of coordinate variables.

\xtc{}
This is the ring of coefficients.
\{\spadpaste{coefRing := Integer \bound{coefRing}}\}
\xtc{}
These are the coordinate variables.
This is the De Rham complex of Euclidean three-space using coordinates \(x, y\) and \(z\).

This complex allows us to describe differential forms having expressions of integers as coefficients. These coefficients can involve any number of variables, for example, \(f(x,t,r,u,z)\).

As we've chosen to work with ordinary Euclidean three-space, expressions involving these forms are treated as functions of \(x, y\) and \(z\) with the additional arguments \(t, r\) and \(u\) regarded as symbolic constants.

Here are some examples of coefficients.

\[
R := \text{Expression (}\text{coefRing})
\]

\[
f := x^2y^2z - 5x^3y^2z^5
\]

\[
g := z^2y\cos(z) - 7\sin(x^3y^2)z^2
\]

\[
h := xy^2z - 2x^3y^2z^2
\]

We now define the multiplicative basis elements for the exterior algebra over \(R\).

\[
dx := \text{generator(1)}
\]

\[
dy := \text{generator(2)}
\]

\[
dz := \text{generator(3)}
\]
This is an alternative way to give the above assignments.

\begin{verbatim}
\spadpaste{[dx,dy,dz] := [generator(i)\der for i in 1..3] \free{der}
\bound{dxyz}}
\end{verbatim}

Now we define some one-forms.

\begin{verbatim}
\spadpaste{alpha : \der := f*dx + g*dy + h*dz \bound{alpha}
\free{der f g h dxyz}}
\end{verbatim}

\begin{verbatim}
\spadpaste{beta : \der := \cos(tan(x*y*z)+x*y*z)*dx + x*dy
\bound{beta}\free{der f g h dxyz}}
\end{verbatim}

A well-known theorem states that the composition of
\spadfunFrom{exteriorDifferential}{DeRhamComplex}
with itself is the zero map for continuous forms.
Let's verify this theorem for \spad{alpha}.

\begin{verbatim}
\spadpaste{exteriorDifferential alpha; \free{alpha}\bound{ed}}
\end{verbatim}

We suppressed the lengthy output of the last expression, but nevertheless, the
composition is zero.

\begin{verbatim}
\spadpaste{exteriorDifferential \% \free{ed}}
\end{verbatim}

Now we check that \spadfunFrom{exteriorDifferential}{DeRhamComplex}
is a "graded derivation" \spad{D,} that is, \spad{D} satisfies:
\begin{verbatim}
D(a*b) = D(a)*b + (-1)**degree(a)*a*D(b)
\end{verbatim}

\begin{verbatim}
\spadpaste{gamma := alpha * beta \bound{gamma}\free{alpha}\free{beta}}
\end{verbatim}

We try this for the one-forms \spad{alpha} and \spad{beta}.

\begin{verbatim}
\spadpaste{exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha * exteriorDifferential(beta)) \free{alpha beta gamma}}
\end{verbatim}
Now we define some "basic operators" (see \downlink{`Operator'}\ignore{OperatorXmpPage}).

\spadpaste{a : BOP := operator('a) \bound{ao}}

\xtc{
\spadpaste{b : BOP := operator('b) \bound{bo}}
}
\xtc{
\spadpaste{c : BOP := operator('c) \bound{co}}
}

We also define some indeterminate one- and two-forms using these operators.

\spadpaste{sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz \bound{sigma}\free{ao bo co dxyz}}

\xtc{
\spadpaste{theta := a(x,y,z) * dx * dy + b(x,y,z) * dx *
dz + c(x,y,z) * dy * dz \bound{theta}\free{ao bo co dxyz}}
}

This allows us to get formal definitions for the "gradient" ... \ldots

\spadpaste{totalDifferential(a(x,y,z))\$der \free{ao der}}

the "curl" ... \ldots

\spadpaste{exteriorDifferential sigma \free{sigma}}

... \ldots

\spadpaste{exteriorDifferential theta \free{theta}}

Note that the De Rham complex is an algebra with unity. This element \spad{1} is the basis for elements for zero-forms, that is, functions in our space.

\spadpaste{one : der := 1 \bound{one}\free{der}}
To convert a function to a function lying in the De Rham complex, multiply the function by "one."

\spadpaste{g1 : der := a([x,t,y,u,v,z,e]) * one \free{der one ao}\bound{g1}}

A current limitation of Axiom forces you to write functions with more than four arguments using square brackets in this way.

\spadpaste{h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one \free{der one ao}\bound{h1}}

Now note how the system keeps track of where your coordinate functions are located in expressions.

\spadpaste{exteriorDifferential g1 \free{g1}}

\spadpaste{exteriorDifferential h1 \free{h1}}

In this example of Euclidean three-space, the basis for the De Rham complex consists of the eight forms: \spad{1}, \spad{dx}, \spad{dy}, \spad{dz}, \spad{dx*dy}, \spad{dx*dz}, \spad{dy*dz}, and \spad{dx*dy*dz}.

\spadpaste{coefficient(gamma, dx*dy) \free{gamma dxyz}}

\spadpaste{coefficient(gamma, one) \free{gamma one}}

\spadpaste{coefficient(g1,one) \free{g1 one}}

In this example of Euclidean three-space, the basis for the De Rham complex consists of the eight forms: \spad{1}, \spad{dx}, \spad{dy}, \spad{dz}, \spad{dx*dy}, \spad{dx*dz}, \spad{dy*dz}, and \spad{dx*dy*dz}.

\spadpaste{coefficient(gamma, dx*dy) \free{gamma dxyz}}

\spadpaste{coefficient(gamma, one) \free{gamma one}}

\spadpaste{coefficient(g1,one) \free{g1 one}}
3.22. **DERHAM.HT**

Type: Domain

```spad
\begin{verbatim}
(2) [x,y,z]
Type: List Symbol
\end{verbatim}

Type: Domain

```
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch4}
\begin{paste}{DeRhamComplexXmpPageFull4}{DeRhamComplexXmpPageEmpty4}
\pastebutton{DeRhamComplexXmpPageFull4}{\showpaste}
\tab{5}\spadcommand{R := Expression coefRing\free{coefRing }\bound{R }}
\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch5}
\begin{paste}{DeRhamComplexXmpPageFull5}{DeRhamComplexXmpPageEmpty5}
\pastebutton{DeRhamComplexXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{f : R := x**2*y*z-5*x**3*y**2*z**5\free{R }\bound{f }}
\indentrel{3}\begin{verbatim}
3 2 5 2
(5) - 5x y z + x y z
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch6}
\begin{paste}{DeRhamComplexXmpPageFull6}{DeRhamComplexXmpPageEmpty6}
\pastebutton{DeRhamComplexXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2\free{R }\bound{g }}
\indentrel{3}\begin{verbatim}
2 3 2 2
(6) - 7z sin(x y) + y z cos(z)
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch7}
\begin{paste}{DeRhamComplexXmpPageFull7}{DeRhamComplexXmpPageEmpty7}
\pastebutton{DeRhamComplexXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{h : R :=x*y*z-2*x**3*y*z**2\free{R }\bound{h }}
\indentrel{3}\begin{verbatim}
3 2
(7) - 2x y z + x y z
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch7}
\begin{paste}{DeRhamComplexXmpPageFull7}{DeRhamComplexXmpPageEmpty7}
\pastebutton{DeRhamComplexXmpPageFull7}{\showpaste}
\tab{5}\spadcommand{h : R :=x*y*z-2*x**3*y*z**2\free{R \} \bound{h}}
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch8}
\begin{paste}{DeRhamComplexXmpPageFull8}{DeRhamComplexXmpPageEmpty8}
\pastebutton{DeRhamComplexXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{dx : der := \text{generator}(1)\free{der \} \bound{dx}}
\indentrel{3}(8) dx
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch9}
\begin{paste}{DeRhamComplexXmpPageFull9}{DeRhamComplexXmpPageEmpty9}
\pastebutton{DeRhamComplexXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{dy : der := \text{generator}(2)\free{der \} \bound{dy}}
\indentrel{3}(9) dy
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch10}
\begin{paste}{DeRhamComplexXmpPageFull10}{DeRhamComplexXmpPageEmpty10}
\pastebutton{DeRhamComplexXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{dz : der := \text{generator}(3)\free{der \} \bound{dz}}
\indentrel{3}(10) dz
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPageEmpty10}
\begin{paste}{DeRhamComplexXmpPageEmpty10}{DeRhamComplexXmpPagePatch10}
\pastebutton{DeRhamComplexXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{dz : der := generator(3)\free{der }\bound{dz }}
\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch11}
\begin{paste}{DeRhamComplexXmpPageFull11}{DeRhamComplexXmpPageEmpty11}
\pastebutton{DeRhamComplexXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{[dx,dy,dz] := [generator(i)$der for i in 1..3]\free{der }\bound{dxyz }}
\indentrel{3}\begin{verbatim}
(11) [dx,dy,dz]
Type: List DeRhamComplex(Integer,[x,y,z])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch12}
\begin{paste}{DeRhamComplexXmpPageFull12}{DeRhamComplexXmpPageEmpty12}
\pastebutton{DeRhamComplexXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{alpha : der := f*dx + g*dy + h*dz\bound{alpha }\free{der f g h dxyz }}
\indentrel{3}\begin{verbatim}
(12) 3 2
(- 2x y z + x y z)dz
+ 2 3 2 2 3 2 5 2
(- 7z sin(x y) + y z cos(z))dy + (- 5x y z + x y z)dx
Type: DeRhamComplex(Integer,[x,y,z])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch13}
\begin{paste}{DeRhamComplexXmpPageFull13}{DeRhamComplexXmpPageEmpty13}
\pastebutton{DeRhamComplexXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy\bound{beta }\free{der f g h dx y z}}
\indentrel{3}\begin{verbatim}
(13) x dy + cos(tan(x y z) + x y z)dx
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.22. DERHAM.HT

```spadcommand
beta : der := cos(tan(x*y*z) + x*y*z)*dx + x*dy
end(paste)
```

```verbatim
Type: DeRhamComplex(Integer,[x,y,z])
```

```spadcommand
exteriorDifferential alpha;
```

```verbatim
(1) 0
Type: DeRhamComplex(Integer,[x,y,z])
```

```spadcommand
gamma := alpha * beta
```

```verbatim
(2x y z - x y z)dy dz
```

(16)
\[
3 \quad 2 \\
(2x \quad y \quad z - x \quad y \quad z) \cos(tan(x \quad y \quad z) + x \quad y \quad z) \,dx \,dz \\
+ \\
2 \quad 3 \quad 2 \\
(7z \sin(x \quad y) - y \quad z \cos(x)) \\
* \\
\cos(tan(x \quad y \quad z) + x \quad y \quad z) \\
+ \\
4 \quad 2 \quad 5 \quad 3 \\
- 5x \quad y \quad z + x \quad y \quad z \\
* \\
dx \,dy \\
\text{Type: DeRhamComplex(Integer, [x,y,z])}
\]
\spadcommand{a : BOP := operator('a)}
(19) \hspace{1em} \text{Type: BasicOperator}

\spadcommand{b : BOP := operator('b)}
(20) \hspace{1em} \text{Type: BasicOperator}

\spadcommand{c : BOP := operator('c)}
(21) \hspace{1em} \text{Type: DeRhamComplex(Integer,[x,y,z])}

\spadcommand{sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz}
(21) \hspace{1em} \text{Type: DeRhamComplex(Integer,[x,y,z])}
\begin{patch}{DeRhamComplexXmpPagePatch22}
\begin{paste}{DeRhamComplexXmpPageFull22}{DeRhamComplexXmpPageEmpty22}
\pastebutton{DeRhamComplexXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{\text{theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz}}
\bound{\text{theta}}\free{\text{ao bo co dxyz}}
\indentrel{3}\begin{verbatim}
\text{(22) c(x,y,z)dy dz + b(x,y,z)dx dz + a(x,y,z)dx dy}
\text{Type: \text{DeRhamComplex(Integer, [x,y,z])}}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPageEmpty22}
\begin{paste}{DeRhamComplexXmpPageEmpty22}{DeRhamComplexXmpPagePatch22}
\pastebutton{DeRhamComplexXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{\text{theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz}}
\bound{\text{theta}}\free{\text{ao bo co dxyz}}
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch23}
\begin{paste}{DeRhamComplexXmpPageFull23}{DeRhamComplexXmpPageEmpty23}
\pastebutton{DeRhamComplexXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{\text{totalDifferential(a(x,y,z)) \$der\free{\text{ao der}}}}
\indentrel{3}\begin{verbatim}
\text{(23) a (x,y,z)dz + a (x,y,z)dy + a (x,y,z)dx}
,3 ,2 ,1
\text{,3 ,2 ,1}
\text{Type: \text{DeRhamComplex(Integer, [x,y,z])}}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{DeRhamComplexXmpPageEmpty23}
\begin{paste}{DeRhamComplexXmpPageEmpty23}{DeRhamComplexXmpPagePatch23}
\pastebutton{DeRhamComplexXmpPageEmpty23}{\showpaste}
\tab{5}\spadcommand{\text{totalDifferential(a(x,y,z)) \$der\free{\text{ao der}}}}
\indentrel{3}\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch24}
\begin{paste}{DeRhamComplexXmpPageFull24}{DeRhamComplexXmpPageEmpty24}
\pastebutton{DeRhamComplexXmpPageFull24}{\hidepaste}
\tab{5}\spadcommand{\text{exteriorDifferential sigma \free{\text{sigma}}}}
\indentrel{3}\begin{verbatim}
\text{(24) c (x,y,z) - b (x,y,z))dy dz}
,2 ,3
\text{ + c (x,y,z) - a (x,y,z)dx dz}
,1 ,3
\text{ + b (x,y,z) - a (x,y,z)dx dy}
,1 ,2
\text{Type: \text{DeRhamComplex(Integer, [x,y,z])}}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
(25) (c (x,y,z) - b (x,y,z) + a (x,y,z))dx dy dz
 \(,1\) \(,2\) \(,3\)
Type: DeRhamComplex(Integer,[x,y,z])
\end{verbatim}

\begin{verbatim}
(26) 1
Type: DeRhamComplex(Integer,[x,y,z])
\end{verbatim}

\begin{verbatim}
(27) a(x,t,y,u,v,z,e)
Type: DeRhamComplex(Integer,[x,y,z])
\end{verbatim}
\begin{patch}{DeRhamComplexXmpPageFull27}{DeRhamComplexXmpPageEmpty27}
\begin{paste}{DeRhamComplexXmpPageFull27}{DeRhamComplexXmpPagePatch27}
\spadcommand{g1 : der := a([x,t,y,u,v,z,e]) * one\free{der one ao }\bound{g1 }}
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch28}{DeRhamComplexXmpPageFull28}
\begin{paste}{DeRhamComplexXmpPageFull28}{DeRhamComplexXmpPageEmpty28}
\spadcommand{h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one\free{der one ao }\bound{h1 }}
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPageFull29}{DeRhamComplexXmpPageEmpty29}
\begin{paste}{DeRhamComplexXmpPageFull29}{DeRhamComplexXmpPageEmpty29}
\spadcommand{exteriorDifferential g1\free{g1 }}
\end{paste}
\end{patch}
\begin{patch}{DeRhamComplexXmpPagePatch30}{DeRhamComplexXmpPageFull30}
\begin{paste}{DeRhamComplexXmpPageFull30}{DeRhamComplexXmpPageEmpty30}
\spadcommand{exteriorDifferential h1\free{h1 }}
\end{paste}
\end{patch}
\[(30)\]
\[
a (x,y,t,x,z,y,r,u,x)dz,
\]
\[
+ a (x,y,t,x,z,y,r,u,x),
\]
\[
+ a (x,y,t,x,z,y,r,u,x),
\]
\[
\times dy,
\]
\[
+ a (x,y,t,x,z,y,r,u,x),
\]
\[
+ a (x,y,t,x,z,y,r,u,x),
\]
\[
+ a (x,y,t,x,z,y,r,u,x) + a (x,y,t,x,z,y,r,u,x)
\]
\[
* dx
\]

Type: \text{DeRhamComplex(Integer,\{x,y,z\})}

\[(31)\]
\[
2 \quad 2
\]
\[
(7z \sin(x \, y) - y \, z \cos(z)) \cos(\tan(x \, y \, z) + x \, y \, z)
\]
\[
+ 4 \quad 3
\]
\[
- 5x \, y \, z + x \, y \, z
\]

Type: \text{Expression Integer}
\tab{5}\spadcommand{coefficient(gamma, dx*dy)\free{gamma dxyz }}
\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch32}
\begin{paste}{DeRhamComplexXmpPageFull32}{DeRhamComplexXmpPageEmpty32}\pastebutton{DeRhamComplexXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{coefficient(gamma, one)\free{gamma one }}
\indentrel{3}\begin{verbatim}
(32) 0
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch33}
\begin{paste}{DeRhamComplexXmpPageFull33}{DeRhamComplexXmpPageEmpty33}\pastebutton{DeRhamComplexXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{coefficient(g1,one)\free{g1 one }}
\indentrel{3}\begin{verbatim}
(33) a(x,t,y,u,v,z,e)
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DeRhamComplexXmpPagePatch33}
\begin{paste}{DeRhamComplexXmpPageFull33}{DeRhamComplexXmpPageEmpty33}\pastebutton{DeRhamComplexXmpPageFull33}{\showpaste}
\tab{5}\spadcommand{coefficient(g1,one)\free{g1 one }}
\end{paste}\end{patch}
Axiom provides two kinds of floating point numbers. The domain \texttt{Float} (abbreviation \texttt{FLOAT}) implements a model of arbitrary precision floating point numbers. The domain \texttt{DoubleFloat} (abbreviation \texttt{DFLOAT}) is intended to make available hardware floating point arithmetic in Axiom. The actual model of floating point \texttt{DoubleFloat} that provides is system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits.

Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost.

The usual arithmetic and elementary functions are available for \texttt{DoubleFloat}. Use \texttt{show DoubleFloat} to get a list of...
Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time than hardware floating point.

The usual arithmetic and elementary functions are available for \spad{DoubleFloat}. Use \spad{)show DoubleFloat} to get a list of operations or the Hyperdoc \Browse{} facility to get more extensive documentation about \spad{DoubleFloat}.

\xtc{
 By default, floating point numbers that you enter into Axiom are of type \spad{Float}.
}{
\spad{2.71828}
}

You must therefore tell Axiom that you want to use \spad{DoubleFloat} values and operations. The following are some conservative guidelines for getting Axiom to use \spad{DoubleFloat}.

\xtc{
 To get a value of type \spad{DoubleFloat}, use a target with \spad{)spadSyntax}, \ldots
}{
\spad{2.71828@DoubleFloat}
}

\xtc{
 a conversion, \ldots
}{
\spad{2.71828 :: DoubleFloat}
}

\xtc{
 or an assignment to a declared variable.
}{
\spad{eApprox : DoubleFloat := 2.71828 \bound{eApprox}}
}

\xtc{
 You also need to declare functions that work with \spad{DoubleFloat}.
}{
\spad{avg : List DoubleFloat -> DoubleFloat \bound{avgDec}}
}

\xtc{
}{
\begin{spadsrc}\begin{verbatim}
bound{avg}free{avgDec}
\end{verbatim}\end{spadsrc}

avg 1 ==
 empty? 1 => 0 :: DoubleFloat
reduce(_+,1) / #1
\end{spadsrc}
}

xtc{
}\spadpaste{avg [] \free{avg}}
}

xtc{
}\spadpaste{avg [3.4,9.7,-6.8] \free{avg}}
}

xtc{Use package-calling for operations from \spadtype{DoubleFloat} unless the arguments themselves are already of type \spadtype{DoubleFloat}.}
}

\spadpaste{cos(3.1415926)\$DoubleFloat}
}

\spadpaste{cos(3.1415926 :: DoubleFloat)}
}

By far, the most common usage of \spadtype{DoubleFloat} is for functions to be graphed.
For more information about Axiom's numerical and graphical facilities, see \downlink{``Graphics''}{ugGraphPage} in Section 7. \ignore{ugGraph}, \downlink{``Numeric Functions''}{ugProblemNumericPage} in Section 8.1\ignore{ugProblemNumeric}, and \downlink{`Float'}{FloatXmpPage}\ignore{Float}.
endscroll
autobuttons
endpage

\begin{patch}{DoubleFloatXmpPagePatch1}
\begin{paste}{DoubleFloatXmpPageFull1}{DoubleFloatXmpPageEmpty1}
pastebutton{DoubleFloatXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{2.71828}
\indentrel{3}\begin{verbatim}
(1) 2.71828
Type: Float
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{DoubleFloatXmpPagePatch2}
\begin{paste}{DoubleFloatXmpPageFull2}{DoubleFloatXmpPageEmpty2}
\pastebutton{DoubleFloatXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{2.71828@DoubleFloat}
\indentrel{3}\begin{verbatim}
\begin{verbatim}
(2) 2.71828
Type: DoubleFloat
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DoubleFloatXmpPagePatch3}
\begin{paste}{DoubleFloatXmpPageFull3}{DoubleFloatXmpPageEmpty3}
\pastebutton{DoubleFloatXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{2.71828 :: DoubleFloat}
\indentrel{3}\begin{verbatim}
(3) 2.71828
Type: DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DoubleFloatXmpPagePatch4}
\begin{paste}{DoubleFloatXmpPageFull4}{DoubleFloatXmpPageEmpty4}
\pastebutton{DoubleFloatXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{eApprox : DoubleFloat := 2.71828\bound{eApprox }}
\indentrel{3}\begin{verbatim}
(4) 2.71828
Type: DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}
\spadcommand{avg [3.4,9.7,-6.8]} \\
\begin{verbatim}
(8) 2.1
Type: DoubleFloat
\end{verbatim}

\spadcommand{cos(3.1415926 :: DoubleFloat)} \\
\begin{verbatim}
(9) - 0.999999999999999
Type: DoubleFloat
\end{verbatim}

\spadcommand{cos(3.1415926 :: DoubleFloat)} \\
\begin{verbatim}
(10) - 0.999999999999999
Type: DoubleFloat
\end{verbatim}
3.24 dmp.ht

DistributedMultivariatePoly

⇒ “notitle” (ugIntroVariablesPage) 6 on page 1566
⇒ “notitle” (ugTypesConvertPage) 7 on page 1671
⇒ “notitle” (PolynomialXmpPage) 3.88 on page 1110
⇒ “notitle” (UnivariatePolyXmpPage) 3.112 on page 1327
⇒ “notitle” (MultivariatePolyXmpPage) 3.77 on page 1011

\begin{page}{DistributedMultivariatePolyXmpPage}
{DistributedMultivariatePoly}
\beginscroll
\texht{
Homo-gen-eous-Dis-tributed-Multi-var-i-ate-Pol-y-nomial
}
\spadtype{DistributedMultivariatePoly} and
\spadtype{HomogeneousDistributedMultivariatePoly}, abbreviated
\spadtype{DMP} and \spadtype{HDMP}, respectively, are very similar to
\spadtype{MultivariatePolynomial} except that they are represented and
displayed in a non-recursive manner.
\xtc{
}(d1,d2,d3) : DMP([z,y,x],FRAC INT) \bound{d1dec d2dec d3dec})
}
\xtc{
The constructor
\spadtype{DMP} orders its monomials lexicographically while
\spadtype{HDMP} orders them by total order refined by reverse
lexicographic order.
}(d1 := -4*z + 4*y**2*x + 16*x**2 + 1 \bound{d1}\free{d1dec})
}
\xtc{
}(d2 := 2*z*y**2 + 4*x + 1 \bound{d2}\free{d2dec})
}
\xtc{
}(d3 := 2*z*x**2 - 2*y**2 - x \bound{d3}\free{d3dec})
}
These constructors are mostly used in \texttt{Gröbner} basis calculations.

\spadpaste{groebner [d1,d2,d3] ree{d1 d2 d3}}

Note that we get a different \texttt{Gröbner} basis when we use the \spadtype{HDMP} polynomials, as expected.

\spadpaste{groebner [n1,n2,n3] ree{n}}

\spadtype{GeneralDistributedMultivariatePoly} is somewhat more flexible in the sense that as well as accepting a list of variables to specify the variable ordering, it also takes a predicate on exponent vectors to specify the term ordering. With this polynomial type the user can experiment with the effect of using completely arbitrary term orderings. This flexibility is mostly important for algorithms such as \texttt{Gröbner} basis calculations which can be very sensitive to term ordering.

For more information on related topics, see \downlink{``Polynomials''}{ugIntroVariablesPage} in Section 1.9\ignore{ugIntroVariables}, \downlink{``Conversion''}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert}, \downlink{`Polynomial'}{PolynomialXmpPage}\ignore{Polynomial}, \downlink{`UnivariatePolynomial'}{UnivariatePolyXmpPage}\ignore{UnivariatePolynomial}, and \downlink{`MultivariatePolynomial'}{MultivariatePolyXmpPage}\ignore{MultivariatePolynomial}.

\showBlurb{DistributedMultivariatePoly}
\spadcommand{(d1,d2,d3) : DMP([z,y,x],FRAC INT)
bound{d1dec d2dec d3dec }}

\begin{verbatim}
Type: Void
\end{verbatim}

\spadcommand{d1 := -4*z + 4*y**2*x + 16*x**2 + 1
bound{d1 }
free{d1dec }}

\begin{verbatim}
2 2
(2) - 4z + 4y x + 16x + 1
Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\end{verbatim}

\spadcommand{d2 := 2*z*y**2 + 4*x + 1
bound{d2 }
free{d2dec }}

\begin{verbatim}
2
(3) 2z y + 4x + 1
Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\end{verbatim}
\tab{5}\spadcommand{d3 := 2*z*x**2 - 2*y**2 - x}\free{d3 dec }
\begin{verbatim}
2 2
(4) 2z x - 2y - x
Type: DistributedMultivariatePolynomial([z,y,x],\text{Fraction Integer})
\end{verbatim}

\begin{verbatim}
(5)
[1568 6 1264 5 6 4 182 3 2047 2
 z - x - x + x + x - x
 2745 305 305 549 610
+
 103 2857
 - x -
 2745 10980
,
 2 112 6 84 5 1264 4 13 3 84 2
 y + x - x - x - x + x
 2745 305 305 549 305
+
 1772 2
 x +
 2745 2745
,
 7 29 6 17 4 11 3 1 2 15 1
 x + x - x - x + x + x +
 4 16 8 32 16 4
Type: List DistributedMultivariatePolynomial([z,y,x],\text{Fraction Integer})
\end{verbatim}

\begin{verbatim}
\end{verbatim}
\begin{verbatim}
\end{verbatim}
\begin{verbatim}
\end{verbatim}
\begin{patch}{DistributedMultivariatePolynomialXmpPagePatch6}
\begin{paste}{DistributedMultivariatePolynomialXmpPageFull6}{DistributedMultivariatePolynomialXmpPageEmpty6}
\pastebutton{DistributedMultivariatePolynomialXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{(n1,n2,n3) : HDMP([z,y,x],FRAC INT)\bound{ndec }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DistributedMultivariatePolynomialXmpPageEmpty6}
\begin{paste}{DistributedMultivariatePolynomialXmpPageEmpty6}{DistributedMultivariatePolynomialXmpPagePatch6}
\pastebutton{DistributedMultivariatePolynomialXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{(n1,n2,n3) := (d1,d2,d3)\free{ndec }\bound{n }\free{d1 d2 d3 }}
\end{paste}\end{patch}

\begin{patch}{DistributedMultivariatePolynomialXmpPagePatch7}
\begin{paste}{DistributedMultivariatePolynomialXmpPageFull7}{DistributedMultivariatePolynomialXmpPageEmpty7}
\pastebutton{DistributedMultivariatePolynomialXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{(n1,n2,n3) := (d1,d2,d3)\free{ndec }\bound{n }\free{d1 d2 d3 }}
\indentrel{3}\begin{verbatim}
2 2
(7) 2x x - 2y - x
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{DistributedMultivariatePolynomialXmpPageEmpty7}
\begin{paste}{DistributedMultivariatePolynomialXmpPageEmpty7}{DistributedMultivariatePolynomialXmpPagePatch7}
\pastebutton{DistributedMultivariatePolynomialXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{(n1,n2,n3) := (d1,d2,d3)\free{ndec }\bound{n }\free{d1 d2 d3 }}
\end{paste}\end{patch}

\begin{patch}{DistributedMultivariatePolynomialXmpPagePatch8}
\begin{paste}{DistributedMultivariatePolynomialXmpPageFull8}{DistributedMultivariatePolynomialXmpPageEmpty8}
\pastebutton{DistributedMultivariatePolynomialXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{groebner [n1,n2,n3]\free{n }}
\indentrel{3}\begin{verbatim}
(8) 4 3 3 2 1 1
[y + 2x - x + z - ,
 2 2 8
4 29 3 1 2 7 9 1 2 1
x + x - y - z x - x - , z y + 2x + ,
 4 8 4 16 4 2
2 2 1 2 2 1
y x + 4x - z + , z x - y - x,
 4 2
2 2 2 1 3
z - 4y + 2x - z - x]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.25 eq.ht

Equation

--- eq.ht ---

The \texttt{Equation} domain provides equations as mathematical objects. These are used, for example, as the input to various \texttt{solve} operations.

\begin{verbatim}
\spadcommand{eq1 := 3*x + 4*y = 5 \bound{eq1}}
\spadcommand{eq2 := 2*x + 2*y = 3 \bound{eq2}}
\end{verbatim}

The left- and right-hand sides of an equation are accessible using the operations \texttt{lhs} and \texttt{rhs}.

\begin{verbatim}
\spadcommand{lhs eq1 \free{eq1}}
\spadcommand{rhs eq1 \free{eq1}}
\end{verbatim}
Arithmetic operations are supported and operate on both sides of the equation.

\spadpaste{eq1 + eq2 \free{eq1 eq2}}
\xtc{
\spadpaste{eq1 * eq2 \free{eq1 eq2}}
}\xtc{
\spadpaste{2*eq2 - eq1 \free{eq1 eq2}}
}\xtc{
Equations may be created for any type so the arithmetic operations will be defined only when they make sense. For example, exponentiation is not defined for equations involving non-square matrices.
\spadpaste{eq1**2 \free{eq1}}
}\xtc{
Note that an equals symbol is also used to test for equality of values in certain contexts. For example, \spad{x+1} and \spad{y} are unequal as polynomials.
\spadpaste{if x+1 = y then "equal" else "unequal"}
\xtc{
\spadpaste{eqpol := x+1 = y \bound{eqpol}}
}\xtc{
If an equation is used where a \spad{Boolean} value is required, then it is evaluated using the equality test from the operand type.
\spadpaste{if eqpol then "equal" else "unequal" \free{eqpol}}
}\xtc{
If one wants a \spad{Boolean} value rather than an equation, all one has to do is ask!
\spadpaste{eqpol::Boolean \free{eqpol}}}
\begin{patch}{EquationXmpPagePatch1}
\begin{paste}{EquationXmpPageFull1}{EquationXmpPageEmpty1}
\pastebutton{EquationXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{eq1 := 3*x + 4*y = 5\bound{eq1}}
\indentrel{3}\begin{verbatim}
(1) 4y + 3x = 5
Type: Equation Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EquationXmpPagePatch2}
\begin{paste}{EquationXmpPageFull2}{EquationXmpPageEmpty2}
\pastebutton{EquationXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{eq2 := 2*x + 2*y = 3\bound{eq2}}
\indentrel{3}\begin{verbatim}
(2) 2y + 2x = 3
Type: Equation Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EquationXmpPagePatch3}
\begin{paste}{EquationXmpPageFull3}{EquationXmpPageEmpty3}
\pastebutton{EquationXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{lhs eq1 \free{eq1}}
\indentrel{3}\begin{verbatim}
(3) 4y + 3x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EquationXmpPagePatch4}
\begin{paste}{EquationXmpPageFull4}{EquationXmpPageEmpty4}
\pastebutton{EquationXmpPageFull4}{\hidepaste}
\end{patch}\end{patch}
\textbf{3.25. EQ.HT}

\begin{verbatim}
(4) 5
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(5) 6y + 5x = 8
Type: Equation Polynomial Integer
\end{verbatim}

\begin{verbatim}
(6) 8y + 14x y + 6x = 15
Type: Equation Polynomial Integer
\end{verbatim}

\(x = 1 \)

Type: Equation Polynomial Integer

\(2 \) \(2 \)

\(16y + 24x^2 + 9x = 25 \)

Type: Equation Polynomial Integer

(9) "unequal"

Type: String
(10) \(x + 1 = y \)

Type: Equation Polynomial Integer

(11) "unequal"

Type: String

(12) false

Type: Boolean
3.26 eqtbl.ht

EqTable

⇒ “notitle” (TableXmpPage) 3.106 on page 1298

— eqtbl.ht —

\begin{page}{EqTableXmpPage}{EqTable}
\beginscroll

The \spadtype{EqTable} domain provides tables where the keys are compared using \spadfunFrom{eq?}{EqTable}.

Keys are considered equal only if they are the same instance of a structure.

This is useful if the keys are themselves updatable structures.

Otherwise, all operations are the same as for type \spadtype{Table}.

See \downlink{`Table'}{TableXmpPage} for general information about tables.

\showBlurb{EqTable}

\xtc{

The operation \spadfunFrom{table}{EqTable} is here used to create a table where the keys are lists of integers.
}
\spadpaste{e: EqTable(List Integer, Integer) := table() \bound{e}}
\xtc{

These two lists are equal according to \spadopFrom{=}{List}, but not according to \spadfunFrom{eq?}{List}.
}
\spadpaste{l1 := [1,2,3] \bound{l1}}
\xtc{

\spadpaste{l2 := [1,2,3] \bound{l2}}
\xtc{

Because the two lists are not \spadfunFrom{eq?}{List}, separate values can be stored under each.
}
\spadpaste{e.l1 := 111 \free{e l1} \bound{e1}}
\xtc{

\spadpaste{e.l2 := 222 \free{e1 l2} \bound{e2}}
\xtc{

| eqtbl.ht |

\begin{page}{EqTableXmpPage}{EqTable}
\beginscroll

The \spadtype{EqTable} domain provides tables where the keys are compared using \spadfunFrom{eq?}{EqTable}.

Keys are considered equal only if they are the same instance of a structure.

This is useful if the keys are themselves updatable structures.

Otherwise, all operations are the same as for type \spadtype{Table}.

See \downlink{`Table'}{TableXmpPage} for general information about tables.

\showBlurb{EqTable}

\xtc{

The operation \spadfunFrom{table}{EqTable} is here used to create a table where the keys are lists of integers.
}
\spadpaste{e: EqTable(List Integer, Integer) := table() \bound{e}}
\xtc{

These two lists are equal according to \spadopFrom{=}{List}, but not according to \spadfunFrom{eq?}{List}.
}
\spadpaste{l1 := [1,2,3] \bound{l1}}
\xtc{

\spadpaste{l2 := [1,2,3] \bound{l2}}
\xtc{

Because the two lists are not \spadfunFrom{eq?}{List}, separate values can be stored under each.
}
\spadpaste{e.l1 := 111 \free{e l1} \bound{e1}}
\xtc{

\spadpaste{e.l2 := 222 \free{e1 l2} \bound{e2}}
\xtc{

| eqtbl.ht |
\spadpaste{e.l1 \free{e2 l1}}

\autobuttons
\end{page}

\begin{patch}{EqTableXmpPagePatch1}
\begin{paste}{EqTableXmpPageFull1}{EqTableXmpPageEmpty1}
\pastebutton{EqTableXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{e: EqTable(List Integer, Integer) := table()\bound{e }}\indentrel{3}\begin{verbatim}
(1) table()
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{EqTableXmpPageEmpty1}
\begin{paste}{EqTableXmpPageEmpty1}{EqTableXmpPagePatch1}
\pastebutton{EqTableXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{e: EqTable(List Integer, Integer) := table()\bound{e }}\indentrel{3}\begin{verbatim}
(1) table()
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{EqTableXmpPagePatch2}
\begin{paste}{EqTableXmpPageFull2}{EqTableXmpPageEmpty2}
\pastebutton{EqTableXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{l1 := [1,2,3]\bound{l1 }}\indentrel{3}\begin{verbatim}
(2) [1,2,3]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{EqTableXmpPageEmpty2}
\begin{paste}{EqTableXmpPageEmpty2}{EqTableXmpPagePatch2}
\pastebutton{EqTableXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{l1 := [1,2,3]\bound{l1 }}\indentrel{3}\begin{verbatim}
(2) [1,2,3]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{EqTableXmpPagePatch3}
\begin{paste}{EqTableXmpPageFull3}{EqTableXmpPageEmpty3}
\pastebutton{EqTableXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{l2 := [1,2,3]\bound{l2 }}\indentrel{3}\begin{verbatim}
(3) [1,2,3]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{EqTableXmpPageEmpty3}
\begin{paste}{EqTableXmpPageEmpty3}{EqTableXmpPagePatch3}
\pastebutton{EqTableXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{l2 := [1,2,3]\bound{l2 }}\indentrel{3}\begin{verbatim}
(3) [1,2,3]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
388

CHAPTER 3. HYPERDOC PAGES

\pastebutton{EqTableXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{l2 := [1,2,3]\bound{l2 }}
\end{paste}\end{patch}

\begin{patch}{EqTableXmpPagePatch4}
\begin{paste}{EqTableXmpPageFull4}{EqTableXmpPageEmpty4}
\pastebutton{EqTableXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{e.l1 := 111\free{e l1 }\bound{e1 }}
\indentrel{3}\begin{verbatim}
(4) 111
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EqTableXmpPageEmpty4}
\begin{paste}{EqTableXmpPageEmpty4}{EqTableXmpPagePatch4}
\pastebutton{EqTableXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{e.l2 := 222\free{e1 l2 }\bound{e2 }}
\indentrel{3}\begin{verbatim}
(5) 222
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EqTableXmpPagePatch6}
\begin{paste}{EqTableXmpPageFull6}{EqTableXmpPageEmpty6}
\pastebutton{EqTableXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{e.l1\free{e2 l1 }}
\indentrel{3}\begin{verbatim}
(6) 111
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{EqTableXmpPageEmpty6}
\begin{paste}{EqTableXmpPageEmpty6}{EqTableXmpPagePatch6}
\pastebutton{EqTableXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{e.l1\free{e2 l1 }}
\indentrel{-3}\end{paste}\end{patch}
3.27 evalex.ht

Example of Standard Evaluation

--- evalex.ht ---

\begin{page}{PrefixEval}{Example of Standard Evaluation}
\beginscroll
We illustrate the general evaluation of \texttt{\em a} for some prefix operator \texttt{\em op} and operand \texttt{\em a} by the example: \texttt{\em \cos(2)}.

The evaluation steps are as follows:

1. \texttt{\em a} evaluates to a value of some type.

2. \texttt{\em op} is chosen based on the type of \texttt{\em a}.

3. If the argument type of the function is different from that of \texttt{\em a},
then the system coerces

\begin{verbatim}
\%\downlink{coerces}{Coercion} \begin{enumerate}
\item \texttt{\em a} to the argument type.
\end{enumerate}
\end{verbatim}

4. The function is then applied to the value of \texttt{\em a} to produce the value

\begin{verbatim}
Try it:
\example{\cos(2)}
\endscroll
\autobuttons
\end{page}
Example of Standard Evaluation

--- evalex.ht ---

We illustrate the general evaluation of $a \ op \ b$ for some infix operator $\ op$ with operands a and b by the example: $2 + 3.4$. The evaluation steps are as follows:

1. a and b are evaluated, each producing a value and a type.

 Example: 2 evaluates to 2 of type `Integer'; 3.4 evaluates to 3.4 of type `Float'.

2. Axiom then chooses a function $\ op$ based on the types of a and b.

 Example: The function $+: (D,D) \to D$ is chosen requiring a common type D for both arguments to $+$. An operation called $\ resolve$ determines the 'smallest common type' $\ Float$.

3. If the argument types for the function are different from those of a and b, then the system coerces a and b to the argument types.
Example: The integer 2 is coerced to the float 2.0.

The function is then applied to the values of a and b to produce the value for a op b.

Example: The function +: (D,D) -> D, where D = spadtype(Float) is applied to 2.0 and 3.4 to produce 5.4.

Try it:

\example{2 + 3.4}

Try it:

\example{2 + 3.4}

3.28 exdiff.ht

Computing Derivatives

--- exdiff.ht ---

To compute a derivative, you must specify an expression and a variable of differentiation.

For example, to compute the derivative of sin(x) * exp(x**2) with respect to the variable x, issue the following command:

\spadpaste{differentiate(sin(x) * exp(x**2),x)}
\begin{patch}{ExDiffBasicPatch1}
\begin{paste}{ExDiffBasicFull1}{ExDiffBasicEmpty1}
\pastebutton{ExDiffBasicFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
2 2
x x
(1) 2x %e sin(x) + cos(x)%e
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExDiffBasicEmpty1}
\begin{paste}{ExDiffBasicEmpty1}{ExDiffBasicPatch1}
\pastebutton{ExDiffBasicEmpty1}{\showpaste}
\indentrel{3}\spadcommand{differentiate(sin(x) * exp(x**2),x)}
\end{paste}\end{patch}

Derivatives of Functions of Several Variables

\begin{page}{ExDiffSeveralVariables}
{Derivatives of Functions of Several Variables}
\beginscroll
Partial derivatives are computed in the same way as derivatives of functions of one variable: you specify the function and a variable of differentiation. For example:
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\spadpaste{differentiate(sin(x) * tan(y)/(x**2 + y**2),y)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExDiffSeveralVariablesPatch1}
\begin{paste}{ExDiffSeveralVariablesFull1}{ExDiffSeveralVariablesEmpty1}
\pastebutton{ExDiffSeveralVariablesFull1}{\hidepaste}
\indentrel{3}\spadcommand{differentiate(sin(x) * tan(y)/(x**2 + y**2),x)}
\indentrel{-3}\end{paste}\end{patch}
(1) \[y + 2x y + x \]

\text{Type: Expression Integer}

\begin{verbatim}
(2) 2 2 2
2 2
(y + x)\sin(x)\tan(y) - 2y \sin(x)\tan(y)
+
2 2
(y + x)\sin(x)
/
4 2 2 4
y + 2x y + x
\end{verbatim}

\text{Type: Expression Integer}

Derivatives of Higher Order

To compute a derivative of higher order (e.g. a second or third derivative), pass the order as the third argument of the function 'differentiate'.

For example, to compute the fourth derivative of $\exp(x^2)$, issue the following command:
\spadpaste{differentiate(exp(x**2),x,4)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExDiffHigherOrderPatch1}
\begin{paste}{ExDiffHigherOrderFull1}{ExDiffHigherOrderEmpty1}
\pastebutton{ExDiffHigherOrderFull1}{\hidepaste}
\tab{5}\spadcommand{differentiate(exp(x**2),x,4)}
\indentrel{3}\begin{verbatim}
2
4 2 x
(1) (16x + 48x + 12)\%e
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExDiffHigherOrderEmpty1}
\begin{paste}{ExDiffHigherOrderEmpty1}{ExDiffHigherOrderPatch1}
\pastebutton{ExDiffHigherOrderEmpty1}{\showpaste}
\tab{5}\spadcommand{differentiate(exp(x**2),x,4)}\end{paste}\end{patch}

Multiple Derivatives I

— exdiff.ht —

\begin{page}{ExDiffMultipleI}{Multiple Derivatives I}
\beginscroll
When given a function of several variables, you may take derivatives repeatedly and with respect to different variables. The following command differentiates the function $\sin(x)/(x^2 + y^2)$ first with respect to x and then with respect to y:
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y])}
As you can see, we first specify the function and then a list of the variables of differentiation. Variables may appear on the list more than once. For example, the following command differentiates the same function with respect to x and then twice with respect to y:
\spadpaste{differentiate(sin(x)/(x**2 + y**2),[x,y,y])}
\endscroll
\autobuttons
\begin{patch}{ExDiffMultipleIPatch1}
\begin{paste}{ExDiffMultipleIFull1}{ExDiffMultipleIEmpty1}
\pastebutton{ExDiffMultipleIFull1}{\hidepaste}
\indentrel{5}\texttt{spadcommand}\{differentiate(sin(x)/(x**2 + y**2),[x,y])\}
\indentrel{3}\begin{verbatim}
3 2
8x y \sin(x) + (-2y \ -2x y)\cos(x)
(1)
6 \ 2 \ 4 \ 4 \ 2 \ 6
y + 3x y + 3x y + x
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExDiffMultipleIEmpty1}
\begin{paste}{ExDiffMultipleIEmpty1}{ExDiffMultipleIPatch1}
\pastebutton{ExDiffMultipleIEmpty1}{\showpaste}
\indentrel{5}\texttt{spadcommand}\{differentiate(sin(x)/(x**2 + y**2),[x,y])\}
\end{paste}
\end{patch}

\begin{patch}{ExDiffMultipleIPatch2}
\begin{paste}{ExDiffMultipleIFull2}{ExDiffMultipleIEmpty2}
\pastebutton{ExDiffMultipleIFull2}{\hidepaste}
\indentrel{5}\texttt{spadcommand}\{differentiate(sin(x)/(x**2 + y**2),[x,y,y])\}
\indentrel{3}\begin{verbatim}
(2)
2 3
(-40x y + 8x)\sin(x) + (6y + 4x y - 2x)\cos(x)
8 \ 2 \ 6 \ 4 \ 4 \ 2 \ 8
y + 4x y + 6x y + 4x y + x
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExDiffMultipleIEmpty2}
\begin{paste}{ExDiffMultipleIEmpty2}{ExDiffMultipleIPatch2}
\pastebutton{ExDiffMultipleIEmpty2}{\showpaste}
\indentrel{5}\texttt{spadcommand}\{differentiate(sin(x)/(x**2 + y**2),[x,y,y])\}
\end{paste}
\end{patch}
Multiple Derivatives II

You may also compute multiple derivatives by specifying a list of variables together with a list of multiplicities. For example, to differentiate \(\cos(z)/(x^2 + y^3) \) first with respect to \(x \), then twice with respect to \(y \), then three times with respect to \(z \), issue the following command:

\[
\text{differentiate}(\cos(z)/(x^2 + y^3), [x,y,z],[1,2,3])
\]

Derivatives of Functions Involving Formal Integrals
When a function does not have a closed-form antiderivative, Axiom returns a formal integral. A typical example is

\begin{spad}
f := \int \sqrt{1 + t^3} \, dt\end{spad}

This formal integral may be differentiated, either by itself or in any combination with other functions:

\begin{spad}
differentiate(f, t)\end{spad}

\begin{spad}
differentiate(f * t^2, t)\end{spad}

}\end{scroll}

\begin{spad}
t^3
\int \\frac{1}{\sqrt{1 + t^3}} \, dt
\text{Type: Union(Expression Integer,...)}
\end{spad}

(1) \, \frac{1}{2} \ln |1 + \sqrt{2}t^3| + 1 \, dt

\begin{spad}
differentiate(f, t)
\text{Type: Expression Integer}
\end{spad}

(2) \, t + 1

\begin{spad}
differentiate(f, t)
\text{Type: Expression Integer}
\end{spad}
Exit

--- exit.ht ---

A function that does not return directly to its caller has \spadtype{Exit} as its return type.
The operation \spadfun{error} is an example of one which does not return to its caller.
Instead, it causes a return to top-level.

\begin{spadsrc}
 gasp(): Exit ==
 \begin{verbatim}
 free n
 n := n + 1
 error "Oh no!"
 \end{verbatim}
\end{spadsrc}
The return type of \spadfun{half} is determined by resolving the types of the two branches of the \spad{if}.

\begin{spadsrc}
\begin{verbatim}
half(k) ==
 if odd? k then gasp()
 else k quo 2
\end{verbatim}
\end{spadsrc}

Because \spadfun{gasp} has the return type \spadtype{Exit}, the type of \spad{if} in \spadfun{half} is resolved to be \spadtype{Integer}.

\begin{spadpaste}
\spad{half 4}
\end{spadpaste}

\begin{spadpaste}
\spad{half 3}
\end{spadpaste}

For functions which return no value at all, use \spadtype{Void}. See \downlink{``User-Defined Functions, Macros and Rules''}{ugUserPage} in Section 6 and \downlink{`Void'}{VoidXmpPage} for more information.

\showBlurb{Exit}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
(4) 2
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(5) 1
Type: NonNegativeInteger
\end{verbatim}
3.29 exlap.ht

Laplace transform with a single pole

— exlap.ht —

\begin{page}{ExLapSimplePole}{Laplace transform with a single pole}
\beginscroll
The Laplace transform of $t^n e^{-a t}$ has a pole of order $n+1$ at $x = a$ and no other pole. We divide by $n!$ to get a monic denominator in the answer.
\spadpaste{laplace(t**4 * exp(-a*t) / factorial(4), t, s)}
\endscroll
\end{page}

\begin{patch}{ExLapSimplePolePatch1}
\begin{paste}{ExLapSimplePoleFull1}{ExLapSimplePoleEmpty1}
\pastebutton{ExLapSimplePoleFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
1
(1)
 5 4 2 3 3 2 4 5
s + 5a s + 10a s + 10a s + 5a s + a
Type: Expression Integer
\end{verbatim}
\end{patch}

\begin{patch}{ExLapSimplePoleEmpty1}
\begin{paste}{ExLapSimplePoleEmpty1}{ExLapSimplePolePatch1}
\pastebutton{ExLapSimplePoleEmpty1}{\showpaste}
\end{paste}
\end{patch}

——

Laplace transform of a trigonometric function

— exlap.ht —

\begin{page}{ExLapTrigTrigh}{Laplace transform of a trigonometric function}
\beginscroll
Rather than looking up into a table, we use the normalizer to rewrite the trigs and hyperbolic trigs to complex exponentials and logarithms.
\end{scroll}
\end{page}
Laplace transform requiring a definite integration

\begin{page}{ExLapDefInt}
\{Laplace transform requiring a definite integration\}
\beginscroll
When powers of t appear in the denominator, computing the laplace transform requires integrating the result of another laplace transform between a symbol and infinity. We use the full power of Axiom’s integrator in such cases.
\spadpaste{laplace(2/t \times (1 - \cos(a \cdot t)), t, s)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExLapDefIntPatch1}
\begin{paste}{ExLapDefIntFull1}{ExLapDefIntEmpty1}
\pastebutton{ExLapDefIntFull1}{\hidepaste}
\tab{5}\spadcommand{laplace(2/t \times (1 - \cos(a \cdot t)), t, s)}
\indentrel{3}\begin{verbatim}
3
4a
(1)
4 4
s + 4a
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\[
\frac{2}{2}
\]
\[
\log(s + a) - 2\log(s)
\]
Type: Expression Integer

\begin{verbatim}
(1) - \log(s - a) + \log(s - b)
\end{verbatim}
Type: Expression Integer

Laplace transform of exponentials

— exlap.ht —

This is another example where it is necessary to integrate the result of another laplace transform.

```spadcommand
laplace((\exp(a*t) - \exp(b*t))/t, t, s)
```

\begin{verbatim}
(1) - \log(s - a) + \log(s - b)
\end{verbatim}
Type: Expression Integer

Laplace transform of an exponential integral

\begin{page}{ExLapSpecial1}
\{Laplace transform of an exponential integral\}
We can handle some restricted cases of special functions, linear exponential integrals among them.
\beginscroll
\spadpaste{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExLapSpecial1Patch1}
\begin{paste}{ExLapSpecial1Full1}{ExLapSpecial1Empty1}
\pastebutton{ExLapSpecial1Full1}{\hidepaste}
\tab{5}\spadcommand{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\indentrel{3}\begin{verbatim}
b\quad s + c - a
\%
\quad s - a
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExLapSpecial1Empty1}
\begin{paste}{ExLapSpecial1Empty1}{ExLapSpecial1Patch1}
\pastebutton{ExLapSpecial1Empty1}{\showpaste}
\tab{5}\spadcommand{laplace(exp(a*t+b)*Ei(c*t), t, s)}
\end{paste}
\end{patch}

\begin{patch}{ExLapSpecial2Patch1}
\begin{paste}{ExLapSpecial2Full1}{ExLapSpecial2Empty1}
\pastebutton{ExLapSpecial2Full1}{\hidepaste}
\tab{5}\spadcommand{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
\indentrel{3}\begin{verbatim}
2\quad 2
s + b\quad d
a\log() + 2c\atan()
\%
2\quad s\quad b
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExLapSpecial2Empty1}
\begin{paste}{ExLapSpecial2Empty1}{ExLapSpecial2Patch1}
\pastebutton{ExLapSpecial2Empty1}{\showpaste}
\tab{5}\spadcommand{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
\end{paste}
\end{patch}
Laplace transform of special functions

3.30 exint.ht

Integral of a Rational Function

406 CHAPTER 3. HYPERDOC PAGES
For example, if a symbol like $\%\%F0$ appears in the result of this last integration, then $\text{definingPolynomial} \ %\%F0$ will return the polynomial that $\%\%F0$ is a root of. The next command isolates the algebraic number from the expression and displays its defining polynomial.

\tabspaste{definingPolynomial(tower(\%).2::EXPR INT) \free{i}}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ExIntRationalFunctionPatch1}
\begin{paste}{ExIntRationalFunctionFull1}{ExIntRationalFunctionEmpty1}
\pastebutton{ExIntRationalFunctionFull1}{\hidepaste}
\begin{verbatim}
3 2
atan(x + 3x + 3x + 1)
(1)
Type: \text{Union(Expression Integer,...)}
\end{verbatim}
\end{patch}

\begin{patch}{ExIntRationalFunctionEmpty1}
\begin{paste}{ExIntRationalFunctionEmpty1}{ExIntRationalFunctionPatch1}
\pastebutton{ExIntRationalFunctionEmpty1}{\showpaste}
\tabspaste{integrate((x**2+2*x+1)/((x+1)**6+1),x) \bound{i}}
\indentrel{3}\begin{verbatim}
2
- 93\%H0 + 12
\ \ - \%H0
\ \ 31
*
log

2
- 93\%H0 + 12 2
(62\%H0 + 31) + 62\%H0
\ \ 31
+
- 31\%H0 + 18x - 4
\end{verbatim}
\end{patch}

\begin{patch}{ExIntRationalFunctionPatch2}
\begin{paste}{ExIntRationalFunctionFull2}{ExIntRationalFunctionEmpty2}
\pastebutton{ExIntRationalFunctionFull2}{\hidepaste}
\tabspaste{integrate(1/(x**3+x+1),x) \bound{i}}
\indentrel{3}\begin{verbatim}
2
atan(x + 3x + 3x + 1)
(1)
Type: \text{Union(Expression Integer,...)}
\end{verbatim}
\end{patch}
\begin{verbatim}
+ \\
\indentrel{-3} \text{ Type: Union(Expression Integer,...) }
\end{verbatim}
\end{patch}
\begin{patch}{ExIntRationalFunctionEmpty2}
\begin{paste}{ExIntRationalFunctionEmpty2}{ExIntRationalFunctionPatch2}
\pastebutton{ExIntRationalFunctionEmpty2}{\showpaste}
\tab{5}\spadcommand{integrate(1/(x**3+x+1),x)\bound{i }}
\end{paste}
\end{patch}
\begin{patch}{ExIntRationalFunctionPatch3}
\begin{paste}{ExIntRationalFunctionFull3}{ExIntRationalFunctionEmpty3}
\pastebutton{ExIntRationalFunctionFull3}{\hidepaste}
\tab{5}\spadcommand{definingPolynomial(tower(\%).2::EXPR INT)\free{i }}
\indentrel{-3}\begin{verbatim}
31%%H0 - 3%%H0 - 1 \\
\indentrel{3} \text{ Type: Expression Integer }
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}
Integral of a Rational Function with a Real Parameter

When real parameters are present, the form of the integral can depend on the signs of some expressions. Rather than query the user or make sign assumptions, Axiom returns all possible answers.

\begin{verbatim}
 integrate(1/(x**2 + a),x)
\end{verbatim}

The integrate command generally assumes that all parameters are real.

\begin{verbatim}
 \(\begin{array}{l}
 \frac{2}{a} - \frac{a}{x} + 2a x \\
 \log(x) + \frac{2}{a} \tan^{-1}\left(\frac{x + a}{\sqrt{-a}}\right)
\end{array}\)
\end{verbatim}

Type: Union(List Expression Integer,...)
Integral of a Rational Function with a Complex Parameter

If the parameter is complex instead of real, then the notion of sign is undefined and there is a unique answer. You can request this answer by prepending the word ‘complex’ to the command name:

\spadpaste{complexIntegrate(1/(x**2 + a),x)}

\vspace*{10pt}

Two Similar Integrands Producing Very Different Results
The following two examples illustrate the limitations of table based approaches. The two integrands are very similar, but the answer to one of them requires the addition of two new algebraic numbers. This one is the easy one:
\begin{verbatim}
integrate(x**3 / (a+b*x)**(1/3),x)
\end{verbatim}

The next one looks very similar but the answer is much more complicated. Only an algorithmic approach is guaranteed to find what new constants must be added in order to find a solution:
\begin{verbatim}
integrate(1 / (x**3 * (a+b*x)**(1/3)),x)
\end{verbatim}

\begin{verbatim}
(1)
(120b x - 135a b x + 162a b x - 243a)b x + a
4
440b
Type: Union(Expression Integer,...)
\end{verbatim}

\begin{verbatim}
(2)
2 2
2b x \3
*
332 32 3
log(\a \b x + a + \a \b x + a + a)
+
\end{verbatim}
An Integral Which Does Not Exist

Most computer algebra systems use heuristics or table-driven approaches to integration. When these systems cannot determine the answer to an integration problem, they reply "I don’t know". Axiom uses a complete algorithm for integration. It will conclusively prove that an integral cannot be expressed in terms of elementary functions. When Axiom returns an integral sign, it has proved that no answer exists as an elementary function.

```
integrate(log(1 + sqrt(a*x + b)) / x, x)
```

— exint.ht —

\begin{patch}{ExIntNoSolutionPatch1}
\begin{paste}{ExIntNoSolutionFull1}{ExIntNoSolutionEmpty1}
\pastebutton{ExIntNoSolutionFull1}{\hidepaste}
\end{patch}
A Trigonometric Function of a Quadratic

— exint.ht —

Axiom can handle complicated mixed functions way beyond what you can find in tables:
\spadpaste{integrate((\sinh(1+\sqrt{x+b})+2*\sqrt{x+b})/\\(\sqrt{x+b}*(x+\cosh(1+\sqrt{x+b})))),x)}

Whenever possible, Axiom tries to express the answer using the functions present in the integrand.

— exint.ht —
Integrating a Function with a Hidden Algebraic Relation

⇒ “notitle” (ExIntAlgebraicRelationExplain) 3.30 on page 415
— exint.ht —
\begin{verbatim}
(1) \[\begin{align*}
\tan(x) & \quad \tan(x) \\
8\log(3\tan() - 1) - 3\tan() & \quad 3 \\
+ & \ \\
18x \tan() & \quad 3 \\
/ & \ \\
18
\end{align*} \]
\end{verbatim}

Type: Union(Expression Integer,...)

Details for integrating a function with a Hidden Algebraic Relation

--- exint.ht ---

Steps taken for integration of:
\begin{verbatim}
\em f := \tan(\atan(x)/3))
\end{verbatim}
\begin{itemize}
\item 1. Replace \em f by an equivalent algebraic function \em g
satisfying the algebraic relation:
\begin{verbatim}
\em g**3 - 3*x*g - 3*g + x = 0
\end{verbatim}
\item 2. Integrate \em g using using this algebraic relation; this produces:
\begin{verbatim}
(24g**2 - 8)log(3g**2 - 1) + (81x**2 + 24)g**2 + 72xg - 27x**2 - 16
/ (54g**2 - 18)
\end{verbatim}
\item 3. Rationalize the denominator, producing:
\begin{verbatim}
(8log(3g**2-1) - 3g**2 + 18xg + 15)/18
\end{verbatim}
\item 4. Replace \em g by the initial \em f to produce the final result:
\begin{verbatim}
(8log(3tan(atan(x/3))**2-1) - 3tan(atan(x/3))**2 -
\end{verbatim}
An Integral Involving a Root of a Transcendental Function

\begin{page}{ExIntRadicalOfTranscendental}
{An Integral Involving a Root of a Transcendental Function}
\beginscroll
This is an example of a mixed function where
the algebraic layer is over the transcendental one.
\spadpaste{integrate((x + 1) / (x * (x + log x)**(3/2)),x)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExIntRadicalOfTranscendentalPatch1}
\begin{paste}{ExIntRadicalOfTranscendentalFull1}{ExIntRadicalOfTranscendentalEmpty1}
\pastebutton{ExIntRadicalOfTranscendentalFull1}{\hidepaste}
\tab{5}\spadcommand{integrate((x + 1) / (x * (x + log x)**(3/2)),x)}
\indentrel{3}\begin{verbatim}
2\log(x) + x
(1) -
\indentrel{-3}
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ExIntRadicalOfTranscendentalEmpty1}
\begin{paste}{ExIntRadicalOfTranscendentalEmpty1}{ExIntRadicalOfTranscendentalPatch1}
\pastebutton{ExIntRadicalOfTranscendentalEmpty1}{\showpaste}
\tab{5}\spadcommand{integrate((x + 1) / (x * (x + log x)**(3/2)),x)}
\end{paste}
\end{patch}
3.31. EXLIMIT.HT

An Integral of a Non-elementary Function

--- exint.ht ---

\begin{page}{ExIntNonElementary}{An Integral of a Non-elementary Function}
\beginscroll
While incomplete for non-elementary functions, Axiom can handle some of them:
\spadpaste{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExIntNonElementaryPatch1}
\begin{paste}{ExIntNonElementaryFull1}{ExIntNonElementaryEmpty1}
\pastebutton{ExIntNonElementaryFull1}{\hidepaste}
\tab{5}\spadcommand{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
\indentrel{3}\begin{verbatim}
erf(x) - 1
(\erf(x) - 1)\pi \log() - 2\pi
\erf(x) + 1
(1)
8\erf(x) - 8
\text{Type: Union(Expression Integer,...)}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExIntNonElementaryEmpty1}
\begin{paste}{ExIntNonElementaryEmpty1}{ExIntNonElementaryPatch1}
\pastebutton{ExIntNonElementaryEmpty1}{\showpaste}
\tab{5}\spadcommand{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
\end{paste}
\end{patch}

3.31 exlimit.ht

Computing Limits

⇒ “notitle” (ExLimitTwoSided) 3.31 on page 420
⇒ “notitle” (ExLimitOneSided) 3.31 on page 419
--- exlimit.ht ---

\begin{page}{ExLimitBasic}{Computing Limits}
To compute a limit, you must specify a functional expression, a variable, and a limiting value for that variable. For example, to compute the limit of \((x^2 - 3x + 2)/(x^2 - 1)\) as \(x\) approaches 1, issue the following command:

\[
\text{limit}((x^2 - 3x + 2)/(x^2 - 1), x = 1)
\]

\% answer := -1/2

Since you have not specified a direction, Axiom will attempt to compute a two-sided limit. Sometimes the limit when approached from the left is different from the limit from the right.

\[
\text{limit}((x^2 - 3x + 2)/(x^2 - 1), x = 1)
\]

\% answer := -1/2

Limits of Functions with Parameters

You may also take limits of functions with parameters. The limit will be expressed in terms of those parameters. Here’s an example:

\[
\text{limit}((x^2 - 3x + 2)/(x^2 - 1), x = 1)
\]
3.31. EXLIMIT.HT

One-sided Limits

-- exlimit.ht --

\begin{page}{ExLimitOneSided}{One-sided Limits}
\beginscroll

If you have a function which is only defined on one side of a particular value, you may wish to compute a one-sided limit. For instance, the function \spad{\log(x)} is only defined to the right of zero, i.e. for \spad{x > 0}.

Thus, when computing limits of functions involving \spad{\log(x)}, you probably will want a 'right-hand' limit.

Here's an example:
\spadpaste{limit(x * \log(x),x = 0,"right")}

% answer := 0

When you do not specify \spad{right} or \spad{left} as an optional fourth argument, the function \spadfun{limit} will try to compute a two-sided limit.

In the above case, the limit from the left does not exist, as Axiom will indicate when you try to take a two-sided limit:
\spadpaste{limit(x * \log(x),x = 0)}

% answer := [left = "failed",right = 0]
\endscroll
Two-sided Limits

--- exlimit.ht ---

A function may be defined on both sides of a particular value, but will
tend to different limits as its variable tends to that value from the
left and from the right.

We can construct an example of this as follows:
Since $\sqrt{y^2}$ is simply the absolute value of y, the function $\sqrt{y^2}/y$ is simply the sign (+1 or -1) of the real number y. Therefore, $\sqrt{y^2}/y = -1$ for $y < 0$ and $\sqrt{y^2}/y = +1$ for $y > 0$.

Watch what happens when we take the limit at $y = 0$.

```
limit(sqrt(y**2)/y,y = 0)
```

% answer := [left = -1, right = 1]

The answer returned by Axiom gives both a 'left-hand' and a 'right-hand' limit.

Here's another example, this time using a more complicated function:

```
limit(sqrt(1 - cos(t))/t,t = 0)
```

% answer := [left = -sqrt(1/2), right = sqrt(1/2)]

[endscroll]

\begin{patch}{ExLimitTwoSidedPatch1}
\begin{paste}{ExLimitTwoSidedFull1}{ExLimitTwoSidedEmpty1}
\pastebutton{ExLimitTwoSidedFull1}{\hidepaste}
\tab{5}\spadcommand{limit(sqrt(y**2)/y,y = 0)}
\indentrel{3}\begin{verbatim}
(1) \[leftHandLimit= -1, rightHandLimit= 1\]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExLimitTwoSidedEmpty1}
\begin{paste}{ExLimitTwoSidedEmpty1}{ExLimitTwoSidedPatch1}
\pastebutton{ExLimitTwoSidedEmpty1}{\showpaste}
\tab{5}\spadcommand{limit(sqrt(y**2)/y,y = 0)}
\end{paste}\end{patch}

\begin{patch}{ExLimitTwoSidedPatch2}
\begin{paste}{ExLimitTwoSidedFull2}{ExLimitTwoSidedEmpty2}
\pastebutton{ExLimitTwoSidedFull2}{\hidepaste}
\tab{5}\spadcommand{limit(sqrt(1 - cos(t))/t,t = 0)}
\indentrel{3}\begin{verbatim}
1 1
(2) \[leftHandLimit= -1/2, rightHandLimit= 1/2\]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExLimitTwoSidedEmpty2}
\begin{paste}{ExLimitTwoSidedEmpty2}{ExLimitTwoSidedPatch2}
\pastebutton{ExLimitTwoSidedEmpty2}{\showpaste}
\tab{5}\spadcommand{limit(sqrt(1 - cos(t))/t,t = 0)}
\end{paste}\end{patch}
Limits at Infinity

<table>
<thead>
<tr>
<th>Limits at Infinity</th>
</tr>
</thead>
</table>

You can compute limits at infinity by passing either 'plus infinity' or 'minus infinity' as the third argument of the function `limit`. To do this, use the constants `\plusInfinity` and `\minusInfinity`. Here are two examples:

\begin{verbatim}
\spad{limit(sqrt(3*x**2 + 1)/(5*x),x = \plusInfinity)}
\spad{limit(sqrt(3*x**2 + 1)/(5*x),x = \minusInfinity)}
\end{verbatim}

\begin{verbatim}
(1) 5
Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}

\begin{verbatim}
(2) -
\end{verbatim}
3.31. EXLIMIT.HT

5

Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExLimitInfiniteEmpty2}
\begin{paste}{ExLimitInfiniteEmpty2}{ExLimitInfinitePatch2}
\pastebutton{ExLimitInfiniteEmpty2}{\showpaste}
\tab{5}\spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%minusInfinity)}
\end{paste}\end{patch}

Real Limits vs. Complex Limits

--- exlimit.ht ---

\begin{page}{ExLimitRealComplex}{Real Limits vs. Complex Limits}
\beginscroll
When you use the function \spadfun{limit}, you will be taking the limit of a real function of a real variable.
For example, you can compute
\spadpaste{limit(z * sin(1/z),z = 0)}
Axiom returns \spad{0} because as a function of a real variable
\spad{sin(1/z)} is always between \spad{-1} and \spad{1}, so \spad{z * sin(1/z)}
tends to \spad{0} as \spad{z} tends to \spad{0}.
However, as a function of a complex variable, \spad{sin(1/z)} is badly behaved around \spad{0}.
(one says that \spad{sin(1/z)} has an 'essential singularity' at \spad{z = 0}).
When viewed as a function of a complex variable, \spad{z * sin(1/z)}
does not approach any limit as \spad{z} tends to \spad{0} in the complex plane.
Axiom indicates this when we call the function \spadfun{complexLimit}:
\spadpaste{complexLimit(z * sin(1/z),z = 0)}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExLimitRealComplexPatch1}
\begin{paste}{ExLimitRealComplexFull1}{ExLimitRealComplexEmpty1}
\pastebutton{ExLimitRealComplexFull1}{\hidepaste}
\tab{5}\spadcommand{limit(z * sin(1/z),z = 0)}
\indentrel{3}\begin{verbatim}
(1) 0
Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{ExLimitRealComplexEmpty1}
\begin{paste}{ExLimitRealComplexEmpty1}{ExLimitRealComplexPatch1}
\pastebutton{ExLimitRealComplexEmpty1}{\showpaste}
\tab{5}\spadcommand{limit(z * \sin(1/z),z = 0)}
\end{paste}\end{patch}

\begin{patch}{ExLimitRealComplexPatch2}
\begin{paste}{ExLimitRealComplexFull2}{ExLimitRealComplexEmpty2}
\pastebutton{ExLimitRealComplexFull2}{\hidepaste}
\tab{5}\spadcommand{complexLimit(z * \sin(1/z),z = 0)}
\indentrel{3}\begin{verbatim}
(2) "failed"
\end{verbatim}
\end{patch}

\begin{patch}{ExLimitRealComplexEmpty2}
\begin{paste}{ExLimitRealComplexEmpty2}{ExLimitRealComplexPatch2}
\pastebutton{ExLimitRealComplexEmpty2}{\showpaste}
\tab{5}\spadcommand{complexLimit(z * \sin(1/z),z = 0)}
\end{patch}

Complex Limits at Infinity

— exlimit.ht —

\begin{page}{ExLimitComplexInfinite}{Complex Limits at Infinity}
\beginscroll
You may also take complex limits at infinity, i.e. limits of a function of \spad{z} as \spad{z} approaches infinity on the Riemann sphere. Use the symbol \spad{\%infinity} to denote 'complex infinity'. Also, to compute complex limits rather than real limits, use the function \spadfun{complexLimit}. Here is an example:
\spadpaste{complexLimit((2 + z)/(1 - z),z = \%infinity)}
In many cases, a limit of a real function of a real variable will exist when the corresponding complex limit does not.
For example:
\spadpaste{limit(sin(x)/x,x = \%plusInfinity)}
\spadpaste{complexLimit(sin(x)/x,x = \%infinity)}
\endscroll
\autobuttons
\end{page}
\begin{patch}{ExLimitComplexInfinitePatch1}
\begin{paste}{ExLimitComplexInfiniteFull1}{ExLimitComplexInfiniteEmpty1}
\pastebutton{ExLimitComplexInfiniteFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) - 1
Type: OnePointCompletion Fraction Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ExLimitComplexInfinitePatch2}
\begin{paste}{ExLimitComplexInfiniteFull2}{ExLimitComplexInfiniteEmpty2}
\pastebutton{ExLimitComplexInfiniteFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
(2) 0
Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\end{patch}

\begin{patch}{ExLimitComplexInfinitePatch3}
\begin{paste}{ExLimitComplexInfiniteFull3}{ExLimitComplexInfiniteEmpty3}
\pastebutton{ExLimitComplexInfiniteFull3}{\hidepaste}
\indentrel{3} "failed"
\end{patch}
3.32 exmatrix.ht

Basic Arithmetic Operations on Matrices

--- exmatrix.ht ---

\begin{page}{ExMatrixBasicFunction}
{Basic Arithmetic Operations on Matrices}
\beginscroll
You can create a matrix using the function \spadfun{matrix}. The function takes a list of lists of elements of the ring and produces a matrix whose \spad{i}th row contains the elements of the \spad{i}th list. For example:
\spadpaste{m1 := matrix([[1,-2,1],[4,2,-4]]) \bound{m1}}
\spadpaste{m2 := matrix([[1,0,2],[20,30,10],[0,200,100]]) \bound{m2}}
\spadpaste{m3 := matrix([[1,2,3],[2,4,6]]) \bound{m3}}
Some of the basic arithmetic operations on matrices are:
\spadpaste{m1 + m3 \free{m1} \free{m3}}
\spadpaste{100 * m1 \free{m1}}
\spadpaste{m1 * m2 \free{m1} \free{m2}}
\spadpaste{-m1 + m3 * m2 \free{m1} \free{m2} \free{m3}}
You can also multiply a matrix and a vector provided that the matrix and vector have compatible dimensions.
\spadpaste{m3 *vector([1,0,1]) \free{m3}}
However, the dimensions of the matrices must be compatible in order for Axiom to perform an operation - otherwise an error message will occur.
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExMatrixBasicFunctionPatch1}
\begin{paste}{ExMatrixBasicFunctionFull1}{ExMatrixBasicFunctionEmpty1}
\pastebutton{ExMatrixBasicFunctionFull1}{\hidepaste}
\tab{5}\spadcommand{m1 := matrix([[1,-2,1],[4,2,-4]])\bound{m1}}
\verbatim{3\begin{verbatim}
 1 - 2 1
 4 2 - 4
\end{verbatim}}
\verbatim{1
 \textbf{Type: Matrix Integer}}
\verbatim{3\end{verbatim}}
\indentrel{-3}\end{patch}

\begin{patch}{ExMatrixBasicFunctionEmpty1}
\begin{paste}{ExMatrixBasicFunctionEmpty1}{ExMatrixBasicFunctionPatch1}
\pastebutton{ExMatrixBasicFunctionEmpty1}{\showpaste}
\tab{5}\spadcommand{m1 := matrix([[1,-2,1],[4,2,-4]])\bound{m1}}
\verbatim{1\end{verbatim}}
\indentrel{-3}\end{patch}
\begin{patch}{ExMatrixBasicFunctionPatch2}
\begin{paste}{ExMatrixBasicFunctionFull2}{ExMatrixBasicFunctionEmpty2}
\pastebutton{ExMatrixBasicFunctionFull2}{\hidepaste}
\tab{5}\spadcommand{m2 := matrix([1,0,2],[20,30,10],[0,200,100])}\bound{m2 }
\indentrel{3}\begin{verbatim}
(2) 20 30 10
0 200 100
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionPatch3}
\begin{paste}{ExMatrixBasicFunctionFull3}{ExMatrixBasicFunctionEmpty3}
\pastebutton{ExMatrixBasicFunctionFull3}{\hidepaste}
\tab{5}\spadcommand{m3 := matrix([1,2,3],[2,4,6])}\bound{m3 }
\indentrel{3}\begin{verbatim}
(3) 2 4 6
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionPatch4}
\begin{paste}{ExMatrixBasicFunctionFull4}{ExMatrixBasicFunctionEmpty4}
\pastebutton{ExMatrixBasicFunctionFull4}{\hidepaste}
\tab{5}\spadcommand{m1 + m3\free{m1 }\free{m3 }}
\indentrel{3}\begin{verbatim}
(4) 2 0 4
6 6 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExMatrixBasicFunctionEmpty4}
\begin{paste}{ExMatrixBasicFunctionEmpty4}{ExMatrixBasicFunctionPatch4}
\pastebutton{ExMatrixBasicFunctionEmpty4}{\showpaste}
\tab{5}\spadcommand{m1 + m3\free{m1 }\free{m3 }}
\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionPatch5}
\begin{paste}{ExMatrixBasicFunctionFull5}{ExMatrixBasicFunctionEmpty5}
\pastebutton{ExMatrixBasicFunctionFull5}{\hidepaste}
\tab{5}\spadcommand{100 * m1\free{m1 }}
\indentrel{3}\begin{verbatim}
100 - 200 100
(5)
400 200 - 400
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionEmpty5}
\begin{paste}{ExMatrixBasicFunctionEmpty5}{ExMatrixBasicFunctionPatch5}
\pastebutton{ExMatrixBasicFunctionEmpty5}{\showpaste}
\tab{5}\spadcommand{100 * m1\free{m1 }}
\end{patch}

\begin{patch}{ExMatrixBasicFunctionPatch6}
\begin{paste}{ExMatrixBasicFunctionFull6}{ExMatrixBasicFunctionEmpty6}
\pastebutton{ExMatrixBasicFunctionFull6}{\hidepaste}
\tab{5}\spadcommand{m1 * m2\free{m1 }\free{m2 }}
\indentrel{3}\begin{verbatim}
- 39 140 82
(6)
44 - 740 - 372
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionEmpty6}
\begin{paste}{ExMatrixBasicFunctionEmpty6}{ExMatrixBasicFunctionPatch6}
\pastebutton{ExMatrixBasicFunctionEmpty6}{\showpaste}
\tab{5}\spadcommand{m1 * m2\free{m1 }\free{m2 }}
\end{paste}\end{patch}

\begin{patch}{ExMatrixBasicFunctionPatch7}
\begin{paste}{ExMatrixBasicFunctionFull7}{ExMatrixBasicFunctionEmpty7}
\pastebutton{ExMatrixBasicFunctionFull7}{\hidepaste}
\tab{5}\spadcommand{-m1 + m3 * m2\free{m1 }\free{m2 }\free{m3 }}
\indentrel{3}\begin{verbatim}
 40 662 321
(7)
78 1318 648
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.32. **EXMATRIX.HT**

Constructing new Matrices

exmatrix.ht

A number of functions exist for constructing new matrices from existing ones.

If you want to create a matrix whose entries are 0 except on the main diagonal you can use \spadfun{diagonalMatrix}. This function takes a list of ring elements as an argument and returns a square matrix which has these elements on the main diagonal.

Consider the following example:

\spadpaste{diagonalMatrix([1,2,3,2,1])}

The function \spadfun{subMatrix}\(\{\text{a},\text{j},\text{k},\text{l}\}\) constructs a new matrix consisting of rows \text{a} through \text{j} and columns \text{k} through \text{l}.

The function \spadfunX{setsubMatrix} returns the submatrix of \spad{a} starting at row \spad{i} and column \spad{k} with the elements of the matrix \spad{b}.

\spad{b:=matrix([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]) \free{b}} changes the submatrix of \spad{b} consisting of the first 3 rows and columns to its transpose.
\begin{patch}{ExConstructMatrixPatch2}
\begin{paste}{ExConstructMatrixFull2}{ExConstructMatrixEmpty2}
\pastebutton{ExConstructMatrixFull2}{\hidepaste}
\tab{5}\spadcommand{subMatrix(matrix([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]), 1,3,2,4)}
\indentrel{3}\begin{verbatim}
1 2 3
(2) 6 7 8
11 12 13
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExConstructMatrixEmpty2}
\begin{paste}{ExConstructMatrixEmpty2}{ExConstructMatrixPatch2}
\pastebutton{ExConstructMatrixEmpty2}{\showpaste}
\tab{5}\spadcommand{subMatrix(matrix([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]), 1,3,2,4)}
\end{paste}\end{patch}
\begin{patch}{ExConstructMatrixPatch3}
\begin{paste}{ExConstructMatrixFull3}{ExConstructMatrixEmpty3}
\pastebutton{ExConstructMatrixFull3}{\hidepaste}
\tab{5}\spadcommand{horizConcat(matrix([[1,2,3],[6,7,8]]),matrix([[11,12,13],[55,77,88]]))}
\indentrel{3}\begin{verbatim}
1 2 3 11 12 13
(3) 6 7 8 55 77 88
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExConstructMatrixEmpty3}
\begin{paste}{ExConstructMatrixEmpty3}{ExConstructMatrixPatch3}
\pastebutton{ExConstructMatrixEmpty3}{\showpaste}
\tab{5}\spadcommand{horizConcat(matrix([[1,2,3],[6,7,8]]),matrix([[11,12,13],[55,77,88]]))}
\end{paste}\end{patch}
\begin{patch}{ExConstructMatrixPatch4}
\begin{paste}{ExConstructMatrixFull4}{ExConstructMatrixEmpty4}
\pastebutton{ExConstructMatrixFull4}{\hidepaste}
\tab{5}\spadcommand{vertConcat(matrix([[1,2,3],[6,7,8]]),matrix([[11,12,13],[55,77,88]]))}
\indentrel{3}\begin{verbatim}
1 2 3
(4) 6 7 8
11 12 13
55 77 88
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Type: Matrix Integer

\begin{verbatim}
0 1 2 3 4
(5) 5 6 7 8 9
10 11 12 13 14
\end{verbatim}

Type: Matrix Integer

\begin{verbatim}
0 5 10 3 4
(6) 1 6 11 8 9
2 7 12 13 14
\end{verbatim}

Type: Matrix Integer
Trace of a Matrix

If you have a square matrix, then you can compute its ‘trace’. The function \spadfun{trace} computes the sum of all elements on the diagonal of a matrix. For example ‘trace’ for a four by four Vandermonde matrix.

\begin{verbatim}
trace(matrix([[1,x,x**2,x**3], [1,y,y**2,y**3], [1,z,z**2,z**3], [1,u,u**2,u**3]]))
\end{verbatim}

Type: Polynomial Integer

Determinant of a Matrix

The function \spadfun{determinant} computes the determinant of a matrix
over a commutative ring, that is a ring whose multiplication is commutative.
\spadpaste(determinant(matrix([[1,2,3,4],[2,3,2,5],[3,4,5,6],[4,1,6,7]])))
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExDeterminantMatrixPatch1}
\begin{paste}{ExDeterminantMatrixFull1}{ExDeterminantMatrixEmpty1}
\pastebutton{ExDeterminantMatrixFull1}{\hidepaste}
\tab{5}\spadcommand{determinant(matrix([[1,2,3,4],[2,3,2,5],[3,4,5,6],[4,1,6,7]]))}
\indentrel{3}\begin{verbatim}
(1) - 48
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExDeterminantMatrixEmpty1}
\begin{paste}{ExDeterminantMatrixEmpty1}{ExDeterminantMatrixPatch1}
\pastebutton{ExDeterminantMatrixEmpty1}{\showpaste}
\tab{5}\spadcommand{determinant(matrix([[1,2,3,4],[2,3,2,5],[3,4,5,6],[4,1,6,7]]))}
\end{paste}
\end{patch}

Inverse of a Matrix

— exmatrix.ht —

\begin{page}{ExInverseMatrix}{Inverse of a Matrix}
\beginscroll
The function \spadfun{inverse} computes the inverse of a square matrix.
\spadpaste(inverse(matrix([[1,2,1],[-2,3,4],[-1,5,6]])))
(If the inverse doesn’t exist, then Axiom returns ‘failed’.)
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExInverseMatrixPatch1}
\begin{paste}{ExInverseMatrixFull1}{ExInverseMatrixEmpty1}
\pastebutton{ExInverseMatrixFull1}{\hidepaste}
\tab{5}\spadcommand{inverse(matrix([[1,2,1],[-2,3,4],[-1,5,6]]))}
\indentrel{3}\begin{verbatim}
 2 5
- - 1
7 7
Type: Matrix Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
(1) \[
\begin{bmatrix}
8 & 1 & -1 \\
6 & -1 & 1 \\
7 & 7 & 1 \\
\end{bmatrix}
\]
Type: Union(Matrix Fraction Integer,...)

Rank of a Matrix

--- exmatrix.ht ---

The function \texttt{rank} gives you the rank of a matrix:

\spadpaste{rank(matrix([[0,4,1],[5,3,-7],[-5,5,9]]))}

(1) 2
Type: PositiveInteger
3.33 expr.ht

Expression

\begin{page}{ExpressionXmpPage}{Expression}
\beginscroll
\axiomType{Expression} is a constructor that creates domains whose objects can have very general symbolic forms. Here are some examples:
\xtc{
This is an object of type \axiomType{Expression Integer}.
}\spadpaste{\sin(x) + 3*\cos(x)**2}
\xtc{
This is an object of type \axiomType{Expression Float}.
}\spadpaste{\tan(x) - 3.45*x}
\xtc{
This object contains symbolic function applications, sums, products, square roots, and a quotient.
}\spadpaste{((\tan \sqrt{7} - \sin \sqrt{11})**2 / (4 - \cos(x - y)))}
As you can see, \axiomType{Expression} actually takes an argument domain.
The \{it coefficients\} of the terms within the expression belong to the argument domain. \axiomType{Integer} and \axiomType{Float}, along with \axiomType{Complex Integer} and \axiomType{Complex Float} are the most common coefficient domains.
\xtc{
The choice of whether
3.33. **EXPR.HT**

... which are not valid on complex ones.

Many potential coefficient domains, such as \(\textbf{AlgebraicNumber}\), are not usually used because \(\textbf{Expression}\) can subsume them.

Note that we sometimes talk about ‘‘an object of type \(\textbf{Expression}\).’’ This is not really correct because we should say, for example, ‘‘an object of type \(\textbf{Expression\ Integer}\)’’ or ‘‘an object of type \(\textbf{Expression\ Float}\).’’

By a similar abuse of language, when we refer to an ‘‘expression’’ in this section we will mean an object of type \(\textbf{Expression\ R}\) for some domain \(\textbf{R}\).

The Axiom documentation contains many examples of the use of \(\textbf{Expression}\).

For the rest of this section, we’ll give you some pointers to those examples plus give you some idea of how to manipulate expressions.

It is important for you to know that \(\textbf{Expression}\) creates domains that have category \(\textbf{Field}\). Thus you can invert any non-zero expression and you shouldn’t expect an operation like \(\textbf{factor}\) to give you much information.

You can imagine expressions as being represented as quotients of ‘‘multivariate’’ polynomials where the ‘‘variables’’ are kernels (see \texttt{Kernel\ XmpPage}\).

A kernel can either be a symbol such as \(\textbf{x}\) or a symbolic function application like \(\textbf{sin(x + 4)}\).

The second example is actually a nested kernel since the argument to \(\textbf{sin}\) contains the kernel \(\textbf{x}\).
Actually, the argument to \axiomFun{sin} is an expression, and so the structure of \axiomType{Expression} is recursive. \downlink{'Kernel'}{KernelXmpPage}\ignore{Kernel} demonstrates how to extract the kernels in an expression.

Use the Hyperdoc Browse facility to see what operations are applicable to expression. At the time of this writing, there were 262 operations with 147 distinct name in \axiomType{Expression Integer}. For example, \axiomFunFrom{numer}{Expression} and \axiomFunFrom{denom}{Expression} extract the numerator and denominator of an expression.

\xtc{
}\spadpaste{e := (\sin(x) - 4)**2 / (1 - 2*y*sqrt(- y)) \bound{e}}
}
\xtc{
}\spadpaste{numer e \free{e}}
}
\xtc{
}\spadpaste{denom e \free{e}}
}
\xtc{Use \axiomFunFrom{D}{Expression} to compute partial derivatives.
}{
}\spadpaste{D(e, x) \free{e}}
}
\xtc{See \downlink{``Derivatives''}{ugIntroCalcDerivPage} in Section 1.12 \ignore{ugIntroCalcDeriv} for more examples of expressions and derivatives.
}{
}\spadpaste{D(e, [x, y], [1, 2]) \free{e}}
}

See \downlink{``Limits''}{ugIntroCalcLimitsPage} in Section 1.10\ignore{ugIntroCalcLimits} and \downlink{``Series''}{ugIntroSeriesPage} in Section 1.11 \ignore{ugIntroSeries} for more examples of expressions and calculus. Differential equations involving expressions are discussed in \downlink{''Solution of Differential Equations''}{ugProblemDEQPage} in Section 8.10\ignore{ugProblemDEQ}. Chapter 8 has many advanced examples: see \downlink{``Integration''}{ugProblemIntegrationPage} in Section 8.8\ignore{ugProblemIntegration} for a discussion of Axiom's integration facilities.
When an expression involves no "symbol kernels" (for example, \texttt{axiom(x)}), it may be possible to numerically evaluate the expression.

\texttt{axiomFun}\{complexNumeric\}.

\texttt{spadpaste}\{complexNumeric(cos(2 - 3*\%i))\}

If you know it will be real, use \texttt{axiomFun}\{numeric\}.

\texttt{spadpaste}\{numeric(tan 3.8)\}

The \texttt{axiomFun}\{numeric\} operation will display an error message if the evaluation yields a value with a non-zero imaginary part. Both of these operations have an optional second argument \texttt{axiom(n)} which specifies that the accuracy of the approximation be up to \texttt{axiom(n)} decimal places.

When an expression involves no "symbolic application" kernels, it may be possible to convert it to a polynomial or rational function in the variables that are present.

\texttt{spadpaste}\{e2 := cos(x**2 - y + 3) \texttt{\bound{e2}}\}

\texttt{spadpaste}\{e3 := asin(e2) - \%pi/2 \texttt{\free{e2}\bound{e3}}\}

\texttt{spadpaste}\{e3 :: Polynomial Integer \texttt{\free{e3}}\}

This also works for the polynomial types where specific variables and their ordering are given.

\texttt{spadpaste}\{e3 :: DMP([x, y], Integer) \texttt{\free{e3}}\}

Finally, a certain amount of simplification takes place as expressions are constructed.

\texttt{spadpaste}\{sin \%pi\}

\texttt{spadpaste}
For simplications that involve multiple terms of the expression, use \axiomFun{simplify}.

\spadpaste{\tan(x)**6 + 3*\tan(x)**4 + 3*\tan(x)**2 + 1 \bound{tan6}}

See \downlink{``Rules and Pattern Matching''}{ugUserRulesPage} in Section 6.21\ignore{ugUserRules} for examples of how to write your own rewrite rules for expressions.
\spadcommand{(tan(\sqrt 7) - \sin(\sqrt 11))^2 / (4 - \cos(x - y))}
\indentrel{3}\begin{verbatim}
(3)
 2 2
- \tan(\sqrt 7) + 2\sin(\sqrt 11)\tan(\sqrt 7) - \sin(\sqrt 11)
\cos(y - x) - 4
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}
\begin{paste}
\spadcommand{log(exp x)@Expression(Complex Integer)}
\indentrel{3}\begin{verbatim}
(5) \log(\%e^x)
Type: Expression Complex Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ExpressionXmpPageEmpty5}
\begin{paste}{ExpressionXmpPageEmpty5}{ExpressionXmpPagePatch5}
pastebutton{ExpressionXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{\log(exp x)@Expression(Complex Integer)}
\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPagePatch6}
\begin{paste}{ExpressionXmpPageFull6}{ExpressionXmpPageEmpty6}
pastebutton{ExpressionXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{\sqrt{3} + \sqrt{2 + \sqrt{-5}}\bound{\text{algnum1}}}
\indentrel{3}\begin{verbatim}
(6) $-5 + 2 + \sqrt{3}$
Type: AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPageEmpty6}
\begin{paste}{ExpressionXmpPageEmpty6}{ExpressionXmpPagePatch6}
pastebutton{ExpressionXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{\sqrt{3} + \sqrt{2 + \sqrt{-5}}\bound{\text{algnum1}}}
\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPagePatch7}
\begin{paste}{ExpressionXmpPageFull7}{ExpressionXmpPageEmpty7}
pastebutton{ExpressionXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{\% :: Expression Integer\free{\text{algnum1}}}
\indentrel{3}\begin{verbatim}
(7) $-5 + 2 + \sqrt{3}$
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPageEmpty7}
\begin{paste}{ExpressionXmpPageEmpty7}{ExpressionXmpPagePatch7}
pastebutton{ExpressionXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{\% :: Expression Integer\free{\text{algnum1}}}
\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPagePatch8}
\begin{paste}{ExpressionXmpPageFull8}{ExpressionXmpPageEmpty8}
pastebutton{ExpressionXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{\text{height mainKernel sin(x + 4)}}
\indentrel{3}\begin{verbatim}
(8) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
tab{5}\text{\texttt{height mainKernel \texttt{sin}(x + 4)}}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ExpressionXmpPagePatch9}
\begin{paste}{ExpressionXmpPageFull9}{ExpressionXmpPageEmpty9}
\pastebutton{ExpressionXmpPageFull9}{\hidepaste}
\tab{5}\text{\texttt{e := (\texttt{sin}(x) - 4)**2 \ (1 - 2*y*sqrt(- y) \)}\texttt{bound}\{e \}}
\indentrel{3}\begin{verbatim}
2
- \texttt{sin}(x) + 8\texttt{sin}(x) - 16
(9)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ExpressionXmpPagePatch10}
\begin{paste}{ExpressionXmpPageFull10}{ExpressionXmpPageEmpty10}
\pastebutton{ExpressionXmpPageFull10}{\hidepaste}
\tab{5}\text{\texttt{numer e \texttt{free}\{e \}}}
\indentrel{3}\begin{verbatim}
2
(10) - \texttt{sin}(x) + 8\texttt{sin}(x) - 16
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ExpressionXmpPagePatch11}
\begin{paste}{ExpressionXmpPageFull11}{ExpressionXmpPageEmpty11}
\pastebutton{ExpressionXmpPageFull11}{\hidepaste}
\tab{5}\text{\texttt{denom e \texttt{free}\{e \}}}
\end{paste}
\end{patch}
\indentrel{3}\begin{verbatim}
(11) 2y\(- y - 1
Type: SparseMultivariatePolynomial(Integer,Kernel Expression Integer)
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{ExpressionXmpPageEmpty11}
\begin{paste}{ExpressionXmpPageEmpty11}{ExpressionXmpPagePatch11}
\pastebutton{ExpressionXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{denom e\free{e }}
\end{paste}
\end{patch}

\begin{patch}{ExpressionXmpPagePatch12}
\begin{paste}{ExpressionXmpPageFull12}{ExpressionXmpPageEmpty12}
\pastebutton{ExpressionXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{D(e, x)\free{e }}
\end{patch}

\begin{patch}{ExpressionXmpPageEmpty12}
\begin{paste}{ExpressionXmpPageEmpty12}{ExpressionXmpPagePatch12}
\pastebutton{ExpressionXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{D(e, [x, y], [1, 2])\free{e }}
\end{patch}

\begin{verbatim}
(12)
(4y \cos(x) \sin(x) - 16y \cos(x))\(- y
+ \quad - 2\cos(x) \sin(x) + 8\cos(x)
/ \quad 3
4y\(- y + 4y - 1
Type: Expression Integer
\end{verbatim}

\indentrel{3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{verbatim}
(13)
7 \quad 4
(- 2304y + 960y \cos(x) \sin(x)
+ \quad 7 \quad 4
(9216y - 3840y \cos(x)
* \quad \- y
\end{verbatim}
\[\frac{9y^6 - 960y^3 + 2160y^2 - 180y - 3 \cos(x) \sin(x) + 9y^6 - 960y^3 + 2160y^2 - 180y - 3 \cos(x)}{12y^9 - 1792y^6 + 1120y^5 - 112y + 1}\]

\[+\frac{3(840y - 8640y^3 + 720y + 12) \cos(x)}{12y^9 - 1792y^6 + 1120y^5 - 112y + 1} - y^{11/8} - 52 - 1024y + 1792y - 448y + 16y\]

Type: Expression Integer
\begin{paste}{ExpressionXmpPageEmpty15}{ExpressionXmpPagePatch15}
\pastebutton{ExpressionXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{numeric(tan 3.8)}
\end{paste}

\begin{patch}{ExpressionXmpPagePatch16}
\begin{paste}{ExpressionXmpPageFull16}{ExpressionXmpPageEmpty16}
\pastebutton{ExpressionXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{e2 := cos(x**2 - y + 3)\bound{e2 }}
\indentrel{3}\begin{verbatim}
(16) cos(y - x - 3)
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ExpressionXmpPagePatch17}
\begin{paste}{ExpressionXmpPageFull17}{ExpressionXmpPageEmpty17}
\pastebutton{ExpressionXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{e3 := asin(e2) - \%pi/2\free{e2 }\bound{e3 }}
\indentrel{3}\begin{verbatim}
(17) - y + x + 3
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ExpressionXmpPagePatch18}
\begin{paste}{ExpressionXmpPageFull18}{ExpressionXmpPageEmpty18}
\pastebutton{ExpressionXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{e3 := asin(e2) - \%pi/2\free{e2 }\bound{e3 }}
\indentrel{3}\begin{verbatim}
(18) - y + x + 3
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ExpressionXmpPageEmpty18}
\begin{paste}{ExpressionXmpPageEmpty18}{ExpressionXmpPagePatch18}
\pastebutton{ExpressionXmpPageEmpty18}{\showpaste}
\tab{5}\spadcommand{e3 :: Polynomial Integer\free{e3 }\}
\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPagePatch19}
\begin{paste}{ExpressionXmpPageFull19}{ExpressionXmpPageEmpty19}
\pastebutton{ExpressionXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{e3 :: DMP([x, y], Integer)\free{e3 }\}
\indentrel{3}\begin{verbatim}
2
(19) x - y + 3
Type: DistributedMultivariatePolynomial([x,y],Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPageEmpty19}
\begin{paste}{ExpressionXmpPageEmpty19}{ExpressionXmpPagePatch19}
\pastebutton{ExpressionXmpPageEmpty19}{\showpaste}
\tab{5}\spadcommand{e3 :: DMP([x, y], Integer)\free{e3 }\}
\end{patch}

\begin{patch}{ExpressionXmpPagePatch20}
\begin{paste}{ExpressionXmpPageFull20}{ExpressionXmpPageEmpty20}
\pastebutton{ExpressionXmpPageFull20}{\hidepaste}
\tab{5}\spadcommand{\sin %pi\}
\indentrel{3}\begin{verbatim}
(20) 0
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPageEmpty20}
\begin{paste}{ExpressionXmpPageEmpty20}{ExpressionXmpPagePatch20}
\pastebutton{ExpressionXmpPageEmpty20}{\showpaste}
\tab{5}\spadcommand{\sin %pi\}
\end{paste}\end{patch}

\begin{patch}{ExpressionXmpPagePatch21}
\begin{paste}{ExpressionXmpPageFull21}{ExpressionXmpPageEmpty21}
\pastebutton{ExpressionXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{\cos (\%pi / 4)\}
\indentrel{3}\begin{verbatim}
2
(21) 2
Type: Expression Integer
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExpressionXmpPageEmpty21}
\begin{paste}{ExpressionXmpPageEmpty21}{ExpressionXmpPagePatch21}
\pastebutton{ExpressionXmpPageEmpty21}{\showpaste}
\tab{5}\spadcommand{cos(\%pi / 4)}
\end{paste}\end{patch}
\begin{patch}{ExpressionXmpPagePatch22}
\begin{paste}{ExpressionXmpPageFull22}{ExpressionXmpPageEmpty22}
\pastebutton{ExpressionXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1\bound{tan6 }}
\indentrel{3}\begin{verbatim}
6 4 2
(22) tan(x) + 3tan(x) + 3tan(x) + 1
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExpressionXmpPageEmpty22}
\begin{paste}{ExpressionXmpPageEmpty22}{ExpressionXmpPagePatch22}
\pastebutton{ExpressionXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1\bound{tan6 }}
\end{paste}\end{patch}
\begin{patch}{ExpressionXmpPagePatch23}
\begin{paste}{ExpressionXmpPageFull23}{ExpressionXmpPageEmpty23}
\pastebutton{ExpressionXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{simplify \%\free{tan6 }}
\indentrel{3}\begin{verbatim}
1
(23) 6
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ExpressionXmpPageEmpty23}
\begin{paste}{ExpressionXmpPageEmpty23}{ExpressionXmpPagePatch23}
\pastebutton{ExpressionXmpPageEmpty23}{\showpaste}
\tab{5}\spadcommand{simplify \%\free{tan6 }}
\end{paste}\end{patch}
Plotting Functions of One Variable

To plot a function \(y = f(x) \), you need only specify the function and the interval on which it is to be plotted.

\begin{verbatim}
\graphpaste{draw(sin(tan(x)) - tan(sin(x)),x = 0..6)}
\end{verbatim}

Plotting Parametric Curves

To plot a parametric curve defined by \(x = f(t) \), \(y = g(t) \), specify the functions \(f(t) \) and \(g(t) \) as arguments of the function `curve`, then give the interval over which \(t \) is to range.

\begin{verbatim}
\graphpaste{draw(curve(9 * sin(3*t/4),8 * sin(t)),t = -4*\%pi..4*\%pi)}
\end{verbatim}
Plotting Using Polar Coordinates

— explot2d.ht —

To plot the function \(r = f(\theta) \) in polar coordinates, use the option \(\texttt{coordinates == polar} \). As usual, call the function 'draw' and specify the function \(f(\theta) \) and the interval over which \(\theta \) is to range.

\begin{spadgraph}
\texttt{draw(sin(4*t/7),t = 0..14*\%pi,coordinates == polar)}
\end{spadgraph}
3.35. EXPL0T3D.HT

Plotting Plane Algebraic Curves

--- explot2d.ht ---

\begin{page}{ExPlot2DAlgebraic}{Plotting Plane Algebraic Curves}
\beginscroll
Axiom can also plot plane algebraic curves (i.e. curves defined by an equation \emph{f(x,y) = 0}) provided that the curve is non-singular in the region to be sketched. Here's an example:
\graphpaste{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1])}
Here the region of the sketch is \{\em \(-2 \leq x \leq 2, -2 \leq y \leq 1\)\}.
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExPlot2DAlgebraicPatch1}
\begin{paste}{ExPlot2DAlgebraicFull1}{ExPlot2DAlgebraicEmpty1}
\pastebutton{ExPlot2DAlgebraicFull1}{\hidepaste}
\tab{5}\spadgraph{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1])}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/explot2dalgebraic1.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/explot2dalgebraic1}}
\end{paste}
\end{patch}

\begin{patch}{ExPlot2DAlgebraicEmpty1}
\begin{paste}{ExPlot2DAlgebraicEmpty1}{ExPlot2DAlgebraicPatch1}
\pastebutton{ExPlot2DAlgebraicEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1])}
\end{paste}
\end{patch}

3.35 exp0t3d.ht

Plotting Functions of Two Variables

--- explot3d.ht ---

\begin{page}{ExPlot3DFunctions}{Plotting Functions of Two Variables}
\beginscroll
To plot a function \emph{z = f(x,y)}, you need only specify the function and the intervals over which the dependent variables will range.
\end{scroll}
\autobuttons
\end{page}
For example, here's how you plot the function $z = \cos(x \cdot y)$ as the variables x and y both range between -3 and 3:

\graphpaste{draw(cos(x*y),x = -3..3,y = -3..3)}
\endscroll
\autobuttons
\end{page}

Plotting Parametric Surfaces

— explot3d.ht —

\begin{page}{ExPlot3DParametricSurface}{Plotting Parametric Surfaces}
\beginscroll
To plot a parametric surface defined by $x = f(u,v)$, $y = g(u,v)$, and $z = h(u,v)$ as arguments of the function `surface', then give the intervals over which u and v are to range. With parametric surfaces, we can create some interesting graphs. Here's an egg:
\graphpaste{draw(surface(5*sin(u)*cos(v),4*sin(u)*sin(v),3*cos(u)), u=0..\%pi,v=0..2*\%pi)}
Here's a cone:
\graphpaste{draw(surface(u*cos(v),u*sin(v),u),u=0..4,v=0..2*\%pi)}
\endscroll
\autobuttons
\end{page}
Plotting Parametric Curves

--- explot3d.ht ---

To plot a parametric curve defined by \(x = f(t) \), \(y = g(t) \), \(z = h(t) \), specify the functions \(f(t) \), \(g(t) \), and \(h(t) \) as arguments of the function 'curve', then give the interval over which \(t \) is to range.

Here is a spiral:
\[
\text{graphpaste}{\text{draw}(\text{curve}(\cos(t),\sin(t),t),t=0..6)}
\]

Here is the twisted cubic curve:
\[
\text{graphpaste}{\text{draw}(\text{curve}(t,t**2,t**3),t=-3..3)}
\]
Exposure

Exposure determines what part of the Axiom library is available to you when using Axiom.
At any time during your interactive Axiom session, each constructor is either exposed or unexposed.
If a constructor is exposed, its operations are available to the interpreter and therefore to you.
If a constructor is unexposed, the operations are not seen by the interpreter and thus not available to you.

If you are a beginner, you may only want basic parts of the library exposed.
If you are an expert, you may want to have all parts of the
library exposed.
If you have an application that requires
only a segment of the library, you may want to arrange to expose
only that segment for your use.
\par
\endscroll
Additional Information:
\beginmenu
\menulink{What}{ExposureDef}\tab{8}What is an exposure group?
\menulink{System}{ExposureSystem}\tab{8}What exposure groups are
system defined?
% \menulink{User}{ExposureUser}\tab{8}How can I define my own?
\menulink{Details}{ExposureDetails}\tab{8}Some details on exposure
\endmenu
\end{page}

System Defined Exposure Groups

— expose.ht —

\begin{page}{ExposureSystem}{System Defined Exposure Groups}
\beginscroll
Exposure is defined by \em groups.\par
Groups have names.\par
Seven exposure groups are system-defined: \beginmenu
\item \em current The currently active exposure group
\item \em basic The default value of \em current
\item \em category Category constructors not in \em basic
\item \em domain Domain constructors not in \em basic
\item \em package Package constructors not in \em basic
\item \em default Default constructors not in \em basic
\item \em hidden All constructors not in \em basic
\item \em naglink All constructors used in the Axiom NAG Link
\endmenu
\par
When you first use Axiom, the \em current exposure group is
set to \em basic and \em naglink. Using Hyperdoc or the system command
\em expose, you may
change the current exposure group by
adding or dropping constructors or by setting \em current
to an exposure group you have created.
\endscroll
Additional Information:
\beginmenu
\menulink{What}{ExposureDef}\tab{8}What is an exposure group?
What is an Exposure Group?

An exposure group is a list of constructors to be exposed. Those constructors on the list are exposed; those not on the list are not exposed. The library contains 4 kinds of constructors intuitively described as follows:

- **domain**: Describes computational objects and functions defined on these objects
- **package**: Describes functions which will work over a variety of domains
- **category**: Names a set of operations for a category
- **default**: Provides default functions for a category

An exposure group is defined by three lists:

- **groups**: A list of other (more basic) groups
- **additions**: A list of explicit constructors to be included
- **subtractions**: A list of explicit constructors to be dropped

You can define your own exposure groups: give them names and define the three above lists to be anything you like. Using Hyperdoc, you can conveniently edit your exposure groups, install them as the current exposure, and so on.
Details on Exposure

--- expose.ht ---

Exposure is generally defined by the set of domain and package constructors you want to have available. Category and default constructors are generally implied. A category constructor is exposed if mentioned by \emph{any} other constructor (including another category). A default constructor is exposed if its corresponding category constructor is exposed.

\par
If you explicitly add a domain or package constructor, its name will be put in an \emph{Additions} list. The system will also add automatically to the \emph{Additions} list any category explicitly exported by that domain or package. If that category has a corresponding default constructor, that default constructor will also be added as well.

\par
If you like, you can explicitly drop a constructor. Any such name is added to the \emph{Subtractions} list. The system will drop this name from the \emph{Additions} list if it appears.

\par
If the package or domain takes arguments from an unexported domain or declares that its arguments can come from a domain which is a member of an unexported category, these constructors will \emph{not} be added.

3.37 \texttt{exseries.ht}

Converting Expressions to Series

--- exseries.ht ---

You can convert a functional expression to a power series by using the function \texttt{series}. Here's an example:
\spadpaste{series(sin(a*x),x = 0)}

This causes $\sin(a*x)$ to be expanded in powers of $(x - 0)$, that is, in powers of x.

You can have $\sin(a*x)$ expanded in powers of $(a - \pi/4)$ by issuing the following command:

\spadpaste{series(sin(a*x),a = \pi/4)}

\begin{patch}{ExSeriesConvertPatch1}
\begin{paste}{ExSeriesConvertFull1}{ExSeriesConvertEmpty1}
\pastebutton{ExSeriesConvertFull1}\hidepaste
\tab{5}\spadcommand{series(sin(a*x),x = 0)}
\indentrel{3}\begin{verbatim}
(1)
 3 5 7 9
 a 3 a 5 a 7 a 9
a x - x + x - x + x
 6 120 5040 362880
+
 11
 a 11 12
- x + O(x^3)
39916800
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ExSeriesConvertEmpty1}
\begin{paste}{ExSeriesConvertEmpty1}{ExSeriesConvertPatch1}
\pastebutton{ExSeriesConvertEmpty1}\showpaste
\tab{5}\spadcommand{series(sin(a*x),x = 0)}\end{paste}\end{patch}

\begin{patch}{ExSeriesConvertPatch2}
\begin{paste}{ExSeriesConvertFull2}{ExSeriesConvertEmpty2}
\pastebutton{ExSeriesConvertFull2}\hidepaste
\tab{5}\spadcommand{series(sin(a*x),a = \pi/4)}\end{paste}\end{patch}

\begin{patch}{ExSeriesConvertEmpty2}
\begin{paste}{ExSeriesConvertEmpty2}{ExSeriesConvertPatch2}
\pastebutton{ExSeriesConvertEmpty2}\showpaste
\tab{5}\spadcommand{series(sin(a*x),a = \pi/4)}\end{paste}\end{patch}

\begin{patch}{ExSeriesConvertPatch3}
\begin{paste}{ExSeriesConvertFull3}{ExSeriesConvertEmpty3}
\pastebutton{ExSeriesConvertFull3}\hidepaste
\tab{5}\spadcommand{series(sin(a*x),a = \pi/4)}\end{paste}\end{patch}

\begin{patch}{ExSeriesConvertEmpty3}
\begin{paste}{ExSeriesConvertEmpty3}{ExSeriesConvertPatch3}
\pastebutton{ExSeriesConvertEmpty3}\showpaste
\tab{5}\spadcommand{series(sin(a*x),a = \pi/4)}\end{paste}\end{patch}
Manipulating Power Series

Once you have created a power series, you can perform arithmetic operations on that series. First compute the Taylor expansion of \(1/(1-x)\):

\[
f := \text{series}(1/(1-x), x = 0) \quad \text{bound}(f)
\]

Now compute the square of that series:
It’s as easy as 1, 2, 3,...
Functions on Power Series

-- exseries.ht --

The usual elementary functions (\em log, \em exp, trigonometric functions, etc.) are defined for power series.
You can create a power series:
% Warning: currently there are (interpretor) problems with converting % rational functions and polynomials to power series.
spadpaste{f := series(1/(1-x),x = 0) \bound{f1}}
and then apply these functions to the series:
spadpaste{g := log(f) \free{f1} \bound{g}}
spadpaste{exp(g) \free{g}}

\begin{patch}{ExSeriesFunctionsPatch1}
\begin{paste}{ExSeriesFunctionsFull1}{ExSeriesFunctionsEmpty1}
\pastebutton{ExSeriesFunctionsFull1}{\hidepaste}
\tab{5}\spadcommand{f := series(1/(1-x),x = 0)\bound{f1}}
\begin{verbatim}
(1)
1 + x + x + x + x + x + x + x + x + x + x + x + x + x + x
+ 11
O(x)
\end{verbatim}
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{paste}
\end{patch}

\begin{patch}{ExSeriesFunctionsPatch2}
\begin{paste}{ExSeriesFunctionsFull2}{ExSeriesFunctionsEmpty2}
\pastebutton{ExSeriesFunctionsFull2}{\hidepaste}
\tab{5}\spadcommand{g := log(f)\free{f1}\bound{g}}
\end{paste}
\end{patch}
(2)
\[
\begin{array}{cccccccccccc}
1 & 2 & 1 & 3 & 1 & 4 & 1 & 5 & 1 & 6 & 1 & 7 & 1 & 8 \\
\end{array}
\]
\[
\begin{array}{cccccccccccc}
x + x + x + x + x + x + x + x \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
+ \\
1 & 9 & 1 & 10 & 1 & 11 & 12 \\
x + x + x + 0(x) \\
9 & 10 & 11 \\
\end{array}
\]
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\end{patch}
\begin{patch}{ExSeriesFunctionsEmpty2}
\begin{paste}{ExSeriesFunctionsEmpty2}{ExSeriesFunctionsPatch2}
pastebutton{ExSeriesFunctionsEmpty2}{\showpaste}
\tab{5}\spadcommand{g := log(f)\free{f1 }\bound{g}}
\end{paste}\end{patch}
\begin{patch}{ExSeriesFunctionsPatch3}
\begin{paste}{ExSeriesFunctionsFull3}{ExSeriesFunctionsEmpty3}
pastebutton{ExSeriesFunctionsFull3}{\hidepaste}
\tab{5}\spadcommand{exp(g)\free{g}}
\indentrel{3}\begin{verbatim}
(3)
\begin{array}{cccccccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 + x + x + x + x + x + x + x + x + x + x + x \\
+ \\
11 \\
0(x) \\
\end{array}
\end{verbatim}
\end{patch}
\begin{patch}{ExSeriesFunctionsEmpty3}
\begin{paste}{ExSeriesFunctionsEmpty3}{ExSeriesFunctionsPatch3}
pastebutton{ExSeriesFunctionsEmpty3}{\showpaste}
\tab{5}\spadcommand{exp(g)\free{g}}
\end{patch}
\end{page}

Substituting Numerical Values in Power Series

Substituting Numerical Values in Power Series
Here’s a way to obtain numerical approximations of e from the Taylor series expansion of exp(x).

First you create the desired Taylor expansion:

\begin{verbatim}
f := taylor(exp(x))
\end{verbatim}

Now you evaluate the series at the value 1.0:

\begin{verbatim}
eval(f,1.0)
\end{verbatim}

You get a sequence of partial sums.
3.38 exsum.ht

Summing the Entries of a List I

In Axiom, you can create lists of consecutive integers by giving the
first and last entries of the list.
Here’s how you create a list of the integers between $\{1\}$ and $\{15\}$:
\[
\{i \text{ for } i \text{ in } 1..15\}
\]
To sum the entries of a list, simply put $\{+/\}$ in front of the list.
For example, the following command will sum the integers from 1 to 15:
\[
\text{reduce(}+\text{,}\{i \text{ for } i \text{ in } 1..15\})
\]
Summing the Entries of a List II

In Axiom, you can also create lists whose elements are some expression \(f(n) \) as the parameter \(n \) ranges between two integers. For example, the following command will create a list of the squares of the integers between 5 and 20:

\[
\text{\texttt{[n**2 for n in 5..20]}}
\]

You can also compute the sum of the entries of this list:

\[
\text{\texttt{reduce(+, [n**2 for n in 5..20])}}
\]

\[
\text{\texttt{[25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]}}
\]

Type: List PositiveInteger
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{ExSumListEntriesIIEmpty1}{\showpaste}
\begin{paste}{ExSumListEntriesIIFull2}{ExSumListEntriesIIEmpty2}
\spadcommand{\[n**2 \text{ for } n \text{ in } 5..20\]}
\end{paste}
\end{patch}

\begin{patch}{ExSumListEntriesIIPatch2}
\begin{paste}{ExSumListEntriesIIFull2}{ExSumListEntriesIIEmpty2}
\spadcommand{reduce(+,\[n**2 \text{ for } n \text{ in } 5..20\])}
\verbatim{(2) 2840
Type: PositiveInteger}
\end{verbatim}
\end{patch}

\begin{patch}{ExSumListEntriesIIEmpty2}
\begin{paste}{ExSumListEntriesIIEmpty2}{ExSumListEntriesIIPatch2}
\spadcommand{reduce(+,\[n**2 \text{ for } n \text{ in } 5..20\])}
\end{paste}
\end{patch}

\begin{patch}{ExSumApproximateEPatch1}
\begin{paste}{ExSumApproximateEFull1}{ExSumApproximateEEmpty1}
\spadcommand{reduce(+,[1.0/factorial(n) \text{ for } n \text{ in } 0..20])}
\verbatim{(1) 2.7182818284590452354
Type: Float}
\end{verbatim}
\end{patch}

\begin{patch}{ExSumApproximateEEmpty1}
\begin{paste}{ExSumApproximateEEmpty1}{ExSumApproximateEPatch1}
\end{paste}
\end{patch}

Approximating e

— exsum.ht —

\begin{page}{ExSumApproximateE}{Approximating e}
\beginscroll
You can obtain a numerical approximation of the number e by summing the entries of the following list:
\spadpaste{reduce(+,[1.0/factorial(n) \text{ for } n \text{ in } 0..20])}
\endscroll
\autobuttons
\end{page}
Closed Form Summations

In a previous example, we found the sum of the squares of the integers between 5 and 20.

We can also use Axiom to find a formula for the sum of the squares of the integers between a and b, where a and b are integers which will remain unspecified:

```axiom
s := sum(k^2, k = a..b)
```

`(sum(k^2, k = a..b))` returns the sum of `(k^2)` as the index `k` runs from `a` to `b`.

Let's check our answer in one particular case by substituting specific values for `a` and `b` in our formula:

```axiom
eval(s, [a, b], [1, 25])
```

```axiom
reduce(+, [i^2 for i in 1..25])
```

Type: Fraction Polynomial Integer

(1)

\[3^2 b + 3^2 b + b^2 - 2a^2 + 3a - a \]

\[6 \]

Type: Fraction Polynomial Integer
Sums of Cubes

--- exsum.ht ---

Here's a cute example.
First compute the sum of the cubes from 1 to n:
\[
\text{sum}(k^3, k = 1..n)
\]
Then compute the square of the sum of the integers from 1 to n:
\[
\text{sum}(k, k = 1..n)^2
\]
The answers are the same.

\begin{verbatim}
\spadcommand{sum(k**3,k = 1..n)}
\verbatimverbatim
4 3 2
n + 2n + n
(1)
\end{verbatimverbatim}
Type: Fraction Polynomial Integer

\begin{verbatim}
\spadcommand{sum(k,k = 1..n) ** 2}
\verbatimverbatim
4 3 2
n + 2n + n
(2)
\end{verbatimverbatim}
Type: Fraction Polynomial Integer
Sums of Polynomials

\begin{page}{ExSumPolynomial}{Sums of Polynomials}
\beginscroll
Axiom can compute \[\text{sum}(f,k = a..b)\] when \(f\) is any polynomial in \(k\), even one with parameters.
\spadpaste{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExSumPolynomialPatch1}
\begin{paste}{ExSumPolynomialFull1}{ExSumPolynomialEmpty1}
\pastebutton{ExSumPolynomialFull1}{\hidepaste}
\tab{5}\spadcommand{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\indentrel{3}\begin{verbatim}
(1)
3 2 3 2
(128b + 48b + 4b - 54a + 27a - 3a)d
+ 2 2 2 2 2
(192b + 48b - 108a + 36a)c + 192b + 48b - 108a
+ 36a
/ 2
(2c + 2)d
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ExSumPolynomialEmpty1}
\begin{paste}{ExSumPolynomialEmpty1}{ExSumPolynomialPatch1}
\pastebutton{ExSumPolynomialEmpty1}{\showpaste}
\tab{5}\spadcommand{sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b))}
\end{paste}
\end{patch}

\begin{page}{ExSumRationalFunction}{Sums of Rational Functions}
\beginscroll
Axiom can compute \[\text{sum}(f,k = a..b)\] for some rational functions (quotients of polynomials) in \(k\).
\spadpaste{sum(1/(k * (k + 2)),k = 1..n)}
However, the method used (Gosper’s method) does not guarantee an answer
Sums of General Functions

Gosper’s method can also be used to compute \(\sum f(k = a..b) \) for some functions \(f \) which are not rational functions in \(k \).

Here’s an example:
\begin{verbatim}
2 n
((n x + (- n - 1)x)x + x

(1)

2
x - 2x + 1

Type: Expression Integer
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

Infinite Sums

Provide a package for infinite sums

— exsum.ht —

\begin{page}{ExSumInfinite}\{Infinite Sums\}
\beginscroll
In a few cases, we can compute infinite sums by taking limits of finite sums.
For instance, you can compute the sum of \{em \(1/(k \ast (k + 2))\)\} as \{em \(k\)\} ranges from \{em \(1\)\} to \{em \(\infty\)\}.
Use \{em \(\%plusInfinity\)\} to denote ‘plus infinity’.
\spadpaste{\(\text{limit(\sum(1/(k \ast (k + 2)), k = 1..n) , n = \%plusInfinity)\)}\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ExSumInfinitePatch1}
\begin{paste}{ExSumInfiniteFull1}{ExSumInfiniteEmpty1}
\pastebutton{ExSumInfiniteFull1}{\hidepaste}
\tab{5}\spadcommand{\(\text{limit(\sum(1/(k \ast (k + 2)), k = 1..n) , n = \%plusInfinity)\)}\}
\indentrel{3}\begin{verbatim}
3
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

3.39 farray.ht

FlexibleArray

⇒ “notitle” (OneDimensionalArrayXmpPage) 3.4 on page 138
⇒ “notitle” (VectorXmpPage) 3.114 on page 1351

— farray.ht —
Flexible arrays are an attempt to provide a data type that has the best features of both one-dimensional arrays (fast, random access to elements) and lists (flexibility).

When necessary for expansion, a new, larger block of storage is allocated and the elements from the old storage area are copied into the new block.

Flexible arrays have available most of the operations provided by\spadtype{OneDimensionalArray}
(see \downlink{‘OneDimensionalArray’}{OneDimensionalArrayXmpPage} \ignore{OneDimensionalArray} and \downlink{‘Vector’}{VectorXmpPage} \ignore{Vector}).

Since flexible arrays are also of category \spadtype{ExtensibleLinearAggregate}, they have operations \spadfun{concat}, \spadfun{delete}, \spadfun{insert}, \spadfun{merge}, \spadfun{remove}, \spadfun{removeDuplicates}, and \spadfun{select}.

In addition, the operations \spadfun{physicalLength} and \spadfun{physicalLength} provide user-control over expansion and contraction.

A convenient way to create a flexible array is to apply the operation \spadfun{flexibleArray} to a list of values.

\spadpaste{flexibleArray [i for i in 1..6]}

Create a flexible array of six zeroes.
\spadpaste{f : FARRAY INT := new(6,0}\bound{f}}

For \(i=1\ldots6\), set the \(i\)th element to \(i\).
Display \spad{f}.
\spad{for i in 1..6 repeat f.i := i; f\bound{f1}}

Initially, the physical length is the same as the number of elements.
\spad{physicalLength f\free{f1}}
Add an element to the end of \spad{f}.
}\{
\spadpaste{concat!(f,11)\bound{f2}\free{f1}}
}\
\xtc{
See that its physical length has grown.
}\{
\spadpaste{physicalLength f\free{f2}}
}\
\xtc{
Make \spad{f} grow to have room for \spad{15} elements.
}\{
\spadpaste{physicalLength!(f,15)\bound{f3}\free{f2}}
}\
\xtc{
Concatenate the elements of \spad{f} to itself.
The physical length allows room for three more values at the end.
}\{
\spadpaste{concat!(f,f)\bound{f4}\free{f3}}
}\
\xtc{
Use \spadfunX{insert} to add an element to the front of a flexible array.
}\{
\spadpaste{insert!(22,f,1)\bound{f5}\free{f4}}
}\
\xtc{
Create a second flexible array from \spad{f} consisting of the elements from index 10 forward.
}\{
\spadpaste{g := f(10..)\bound{g}\free{f5}}
}\
\xtc{
Insert this array at the front of \spad{f}.
}\{
\spadpaste{insert!(g,f,1)\bound{g1}\free{g f5}}
}\
\xtc{
Merge the flexible array \spad{f} into \spad{g} after sorting each in place.
}\{
\spadpaste{merge!(sort! f, sort! g)\bound{f6}\free{g f5}}
}\
\xtc{
Remove duplicates in place.
}\{
\spadpaste{removeDuplicates! f\bound{f7}\free{f6}}
}\}
\xtc{
Remove all odd integers.
}{
\spadpaste{select!(i +-> even? i,f8)\bound{f8}\free{f7}}
\xtc{
All these operations have shrunk the physical length of \spad{f}.
}\{
\spadpaste{physicalLength f\free{b8}}
\xtc{
To force Axiom not to shrink flexible arrays call the
\spadfun{shrinkable} operation with the argument \axiom{false}.
You must package call this operation.
The previous value is returned.
}\{
\spadpaste{shrinkable(false)\$FlexibleArray(Integer)}
}\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{FlexibleArrayXmpPagePatch1}
\begin{paste}{FlexibleArrayXmpPageFull1}{FlexibleArrayXmpPageEmpty1}
\pastebutton{FlexibleArrayXmpPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
[1,2,3,4,5,6]
Type: FlexibleArray PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{FlexibleArrayXmpPageEmpty1}
\begin{paste}{FlexibleArrayXmpPageEmpty1}{FlexibleArrayXmpPagePatch1}
\pastebutton{FlexibleArrayXmpPageEmpty1}{\showpaste}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FlexibleArrayXmpPagePatch2}
\begin{paste}{FlexibleArrayXmpPageFull2}{FlexibleArrayXmpPageEmpty2}
\pastebutton{FlexibleArrayXmpPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
[0,0,0,0,0,0]
Type: FlexibleArray Integer
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{FlexibleArrayXmpPageEmpty2}
\begin{paste}{FlexibleArrayXmpPageEmpty2}{FlexibleArrayXmpPagePatch2}
\pastebutton{FlexibleArrayXmpPageEmpty2}{\showpaste}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(3) [1,2,3,4,5,6]
Type: FlexibleArray Integer
\end{verbatim}

(4) 6
Type: PositiveInteger

(5) [1,2,3,4,5,6,11]
Type: FlexibleArray Integer
\begin{verbatim}
(6) 10
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(7) [1,2,3,4,5,6,11]
Type: FlexibleArray Integer
\end{verbatim}

\begin{verbatim}
(8) [1,2,3,4,5,6,11,1,2,3,4,5,6,11]
Type: FlexibleArray Integer
\end{verbatim}
\begin{verbatim}
(9) [22,1,2,3,4,5,6,11,1,2,3,4,5,6,11]
Type: FlexibleArray Integer
\end{verbatim}

\begin{verbatim}
(10) [2,3,4,5,6,11]
Type: FlexibleArray Integer
\end{verbatim}

\begin{verbatim}
(11) [2,3,4,5,6,11,22,1,2,3,4,5,6,11,1,2,3,4,5,6,11]
Type: FlexibleArray Integer
\end{verbatim}

3.39. FARRAY.HT

\begin{verbatim}
(12) [1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 11, 11, 11, 11, 22]
Type: FlexibleArray Integer
\end{verbatim}

\spadcommand{merge!(sort! f, sort! g)}

\begin{verbatim}
(13) [1,2,3,4,5,6,11,22]
Type: FlexibleArray Integer
\end{verbatim}

\spadcommand{removeDuplicates! f}

\begin{verbatim}
(14) [2,4,6,22]
Type: FlexibleArray Integer
\end{verbatim}

\spadcommand{physicalLength f}
The \spadtype{File(S)} domain provides a basic interface to read and write values of type \spad{S} in files.
Before working with a file, it must be made accessible to Axiom with the \spadfunFrom{open}{File} operation.

\spadpaste{ifile:File List Integer:=open("/tmp/jazz1","output")
\bound{ifile}}

The \spadfunFrom{open}{File} function arguments are a \spadtype{FileName} and a \spadtype{String} specifying the mode.

If a full pathname is not specified, the current default directory is assumed.

The mode must be one of \spad{"input"} or \spad{"output"}. If it is not specified, \spad{"input"} is assumed.

Once the file has been opened, you can read or write data.

\spadpaste{write!(ifile, [-1,2,3]) \free{ifile1}\bound{ifile1}}
\spadpaste{write!(ifile, [10,-10,0,111]) \free{ifile1}\bound{ifile2}}
\spadpaste{write!(ifile, [7]) \free{ifile2}\bound{ifile3}}

You can change from writing to reading (or vice versa) by reopening a file.

\spadpaste{reopen!(ifile, "input") \free{ifile3}\bound{ifile4}}
\spadpaste{read! ifile \free{ifile4}\bound{ifile5}}
\spadpaste{read! ifile \free{ifile5}\bound{ifile6}}

The \spadfunFrom{read}{File} operation can cause an error if one tries to read more data than is in the file.

To guard against this possibility the \spadfunFrom{readIfCan}{File} operation should be used.

\spadpaste{readIfCan! ifile \free{ifile6}\bound{ifile7}}

You can find the current mode of the file, and the file's name.

\spadpaste{iomode ifile \free{ifile}}

When you are finished with a file, you should close it.

\spadpaste{close! ifile \free{ifile}\bound{ifileA}}

\noOutputXtc{\spadpaste{)system rm /tmp/jazz1 \free{ifileA}}}

A limitation of the underlying LISP system is that not all values can be represented in a file.
In particular, delayed values containing compiled functions cannot be saved.

For more information on related topics, see
\downlink{`TextFile'}{TextFileXmpPage}\ignore{TextFile},
\downlink{`KeyedAccessFile'}{KeyedAccessFileXmpPage}\ignore{KeyedAccessFile},
\downlink{`Library'}{LibraryXmpPage}\ignore{Library}, and
\downlink{`FileName'}{FileNameXmpPage}\ignore{FileName}.
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch2}
\begin{paste}{FileXmpPageFull2}{FileXmpPageEmpty2}
\pastebutton{FileXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{write!(ifile, [-1,2,3])\free{ifile1 }\bound{ifile2 }}
\indentrel{3}\begin{verbatim}
(3) [-1,2,3]
Type: List Integer
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch3}
\begin{paste}{FileXmpPageFull3}{FileXmpPageEmpty3}
\pastebutton{FileXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{write!(ifile, [10,-10,0,111])\free{ifile1 }\bound{ifile2 }}
\indentrel{3}\begin{verbatim}
(3) [10,-10,0,111]
Type: List Integer
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch4}
\begin{paste}{FileXmpPageFull4}{FileXmpPageEmpty4}
\pastebutton{FileXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{write!(ifile, [7])\free{ifile2 }\bound{ifile3 }}
\indentrel{3}\begin{verbatim}
(4) [7]
Type: List Integer
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{FileXmpPageEmpty4}
\begin{paste}{FileXmpPageEmpty4}{FileXmpPagePatch4}
\pastebutton{FileXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{write!(ifile, [7])}\free{ifile2 }\bound{ifile3 }
\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch5}
\begin{paste}{FileXmpPageFull5}{FileXmpPageEmpty5}
\pastebutton{FileXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{reopen!(ifile, "input")}\free{ifile3 }\bound{ifile4 }
\indentrel{3}\begin{verbatim}
(5) "/tmp/jazz1"
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPageEmpty5}
\begin{paste}{FileXmpPageEmpty5}{FileXmpPagePatch5}
\pastebutton{FileXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{reopen!(ifile, "input")}\free{ifile3 }\bound{ifile4 }
\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch6}
\begin{paste}{FileXmpPageFull6}{FileXmpPageEmpty6}
\pastebutton{FileXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{read! ifile}\free{ifile4 }\bound{ifile5 }
\indentrel{3}\begin{verbatim}
(6) [-1, 2, 3]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPageEmpty6}
\begin{paste}{FileXmpPageEmpty6}{FileXmpPagePatch6}
\pastebutton{FileXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{read! ifile}\free{ifile4 }\bound{ifile5 }
\indentrel{3}\begin{verbatim}
(6) [-1, 2, 3]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPagePatch7}
\begin{paste}{FileXmpPageFull7}{FileXmpPageEmpty7}
\pastebutton{FileXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{read! ifile}\free{ifile5 }\bound{ifile6 }
\indentrel{3}\begin{verbatim}
(7) [10, -10, 0, 111]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileXmpPageEmpty7}
\begin{paste}\{FileXmpPageEmpty7\}\{FileXmpPagePatch7\}
\pastebutton{FileXmpPageEmpty7}\{\showpaste\}
\tab{5}\spadcommand{read! ifile\free{ifile5} \bound{ifile6}}
\end{paste}\end{patch}

\begin{patch}\{FileXmpPagePatch8\}
\begin{paste}\{FileXmpPageFull8\}\{FileXmpPageEmpty8\}
\pastebutton{FileXmpPageFull8}\{\hidepaste\}
\tab{5}\spadcommand{readIfCan! ifile\free{ifile6} \bound{ifile7}}
\indentrel{3}\begin{verbatim}
(8) [7]
Type: Union(List Integer,...)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{FileXmpPageEmpty8\}
\begin{paste}\{FileXmpPageEmpty8\}\{FileXmpPagePatch8\}
\pastebutton{FileXmpPageEmpty8}\{\showpaste\}
\tab{5}\spadcommand{readIfCan! ifile\free{ifile6} \bound{ifile7}}
\end{paste}\end{patch}

\begin{patch}\{FileXmpPagePatch9\}
\begin{paste}\{FileXmpPageFull9\}\{FileXmpPageEmpty9\}
\pastebutton{FileXmpPageFull9}\{\hidepaste\}
\tab{5}\spadcommand{readIfCan! ifile\free{ifile7} \bound{ifile8}}
\indentrel{3}\begin{verbatim}
(9) "failed"
Type: Union("failed",...)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{FileXmpPageEmpty9\}
\begin{paste}\{FileXmpPageEmpty9\}\{FileXmpPagePatch9\}
\pastebutton{FileXmpPageEmpty9}\{\showpaste\}
\tab{5}\spadcommand{readIfCan! ifile\free{ifile7} \bound{ifile8}}
\end{paste}\end{patch}

\begin{patch}\{FileXmpPagePatch10\}
\begin{paste}\{FileXmpPageFull10\}\{FileXmpPageEmpty10\}
\pastebutton{FileXmpPageFull10}\{\hidepaste\}
\tab{5}\spadcommand{iomode ifile\free{ifile}}
\indentrel{3}\begin{verbatim}
(10) "input"
Type: String
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{FileXmpPageEmpty10\}
\begin{paste}\{FileXmpPageEmpty10\}\{FileXmpPagePatch10\}
\pastebutton{FileXmpPageEmpty10}\{\showpaste\}
\end{patch}\end{patch}
\begin{patch}{FileXmpPageFull11}{FileXmpPageEmpty11}
\begin{verbatim}
(11) "/tmp/jazz1"
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{FileXmpPageFull12}{FileXmpPageEmpty12}
\begin{verbatim}
(12) "/tmp/jazz1"
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{FileXmpPageFull13}{FileXmpPageEmpty13}
\begin{verbatim}
\end{verbatim}
\indentrel{-3}
\end{patch}
Axiom provides two kinds of floating point numbers. The domain Float (abbreviation FLOAT) implements a model of arbitrary precision floating point numbers. The domain DoubleFloat (abbreviation DFLOAT) is intended to make available hardware floating point arithmetic in Axiom. The actual model of floating point that DoubleFloat provides is system-dependent.

For example, on the IBM system 370 Axiom uses IBM double precision which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time than hardware floating point.

For more information about Axiom’s numeric and graphic facilities, see `Graphics’ in Section 7, `Numeric Functions’ in Section 8.1, and `DoubleFloat'.
The actual model of floating point that \spadtype{DoubleFloat} provides is system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbitrary precision floats allow the user to specify the precision at which arithmetic operations are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision floating-point arithmetic typically takes twenty to two hundred times more time than hardware floating point.

For more information about Axiom’s numeric and graphic facilities, see \downlink{‘‘Graphics’’}{ugGraphPage} in Section 7 \ignore{ugGraph}, \downlink{‘‘Numeric Functions’’}{ugProblemNumericPage} in Section 8.1\ignore{ugProblemNumeric}, and \downlink{‘DoubleFloat’}{DoubleFloatXmpPage}\ignore{DoubleFloat}.

\beginmenu
\menu\downlink{‘‘9.27.1. Introduction to Float’’}{ugxFloatIntroPage}
\menu\downlink{‘‘9.27.2. Conversion Functions’’}{ugxFloatConvertPage}
\menu\downlink{‘‘9.27.3. Output Functions’’}{ugxFloatOutputPage}
\menu\downlink{‘‘9.27.4. An Example: Determinant of a Hilbert Matrix’’}{ugxFloatHilbertPage}
\endmenu

\Autobuttons
\End{page}

\section{Introduction to Float}

— float.ht —

\begin{page}{ugxFloatIntroPage}{Introduction to Float}
\beginscroll

Scientific notation is supported for input and output of floating point numbers. A floating point number is written as a string of digits containing a decimal point optionally followed by the letter ‘‘\tt E’’, and then the exponent.

We begin by doing some calculations using arbitrary precision floats. The default precision is twenty decimal digits.
A decimal base for the exponent is assumed, so the number \spad{1.234E2} denotes $1.234 \cdot 10^2$.

The normal arithmetic operations are available for floating point numbers.
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
(3) 1.0996972790671286226
Type: Float
\end{verbatim}

Conversion Functions

⇒ “notitle” (ugTypesConvertPage) 7 on page 1671

\begin{page}{ugxFloatConvertPage}{Conversion Functions}
\beginscroll
\labelSpace{3pc}
\xtc{
You can use conversion
\\downlink{‘Conversion’}{ugTypesConvertPage}
in Section 2.7\ignore{ugTypesConvert}
to go back and forth between \spadtype{Integer},
\spadtype{Fraction Integer} and \spadtype{Float}, as appropriate.
}\{
\spadpaste{i := 3 :: Float \bound{i}}
}\xtc{
}\{
\spadpaste{i :: Integer \free{i}}
}\xtc{
}\{
\spadpaste{i :: Fraction Integer \free{i}}
}\end{scroll}
\end{page}
Since you are explicitly asking for a conversion, you must take responsibility for any loss of exactness.

\spadpaste{r := 3/7 :: Float \hspace{1em}}

This conversion cannot be performed: use \spadfunFrom{truncate}{Float} or \spadfunFrom{round}{Float} if that is what you intend.

\spadpaste{r :: Integer \hspace{1em}}

The operations \spadfunFrom{truncate}{Float} and \spadfunFrom{round}{Float} truncate \ldots

\spadpaste{truncate 3.6}

and round to the nearest integral \spadtype{Float} respectively.

\spadpaste{round 3.6}

\spadpaste{truncate(-3.6)}

\spadpaste{round(-3.6)}

\spadpaste{fractionPart 3.6}

The operation \spadfunFrom{fractionPart}{Float} computes the fractional part of \spad{x}, that is, \spad{x - truncate x}.

\spadpaste{digits 40 \hspace{1em}}

The operation \spadfunFrom{digits}{Float} allows the user to set the precision. It returns the previous value it was using.
The precision is only limited by the computer memory available. Calculations at 500 or more digits of precision are not difficult.}
}\xtc{\spadpaste{digits 500 \bound{d1000}}}
}\xtc{\spadpaste{pi()\$Float \free{d1000}}}
}\xtc{Reset \spadfunFrom{digits}{Float} to its default value.}
}\xtc{\spadpaste{digits 20}}
}\xtc{Numbers of type \spadtype{Float} are represented as a record of two integers, namely, the mantissa and the exponent where the base of the exponent is binary. That is, the floating point number \spad{(m,e)} represents the number \texht{$m \cdot 2^e$}{\spad{m * 2**e}}. A consequence of using a binary base is that decimal numbers can not, in general, be represented exactly.
\endscroll
\autobuttons
\end{page}
\begin{patch}{ugxFloatConvertPagePatch1}
\begin{paste}{ugxFloatConvertPageFull1}{ugxFloatConvertPageEmpty1}
\pastebutton{ugxFloatConvertPageFull1}{\hidepaste}
\tab{5}\spadcommand{i := 3 :: Float\bound{i}}
\indentrel1\begin{verbatim}
(1) 3.0
\end{verbatim}
\end{patch}
\begin{patch}{ugxFloatConvertPageEmpty1}
\begin{paste}{ugxFloatConvertPageEmpty1}{ugxFloatConvertPagePatch1}
\pastebutton{ugxFloatConvertPageEmpty1}{\showpaste}
\tab{5}\spadcommand{i := 3 :: Float\bound{i}}
\indentrel1 Type: Float
\end{verbatim}
\end{patch}
\end{paste}\end{patch}
\begin{patch}{ugxFloatConvertPagePatch2}
\begin{paste}{ugxFloatConvertPageFull2}{ugxFloatConvertPageEmpty2}
\pastebutton{ugxFloatConvertPageFull2}{\hidepaste}
\begin{verbatim}
(2) 3
Type: Integer
\end{verbatim}
\end{paste}\end{patch}
\begin{patch}{ugxFloatConvertPageEmpty2}
\begin{paste}{ugxFloatConvertPageEmpty2}{ugxFloatConvertPagePatch2}
\pastebutton{ugxFloatConvertPageEmpty2}{\showpaste}
\end{patch}\end{patch}
\begin{patch}{ugxFloatConvertPagePatch3}
\begin{paste}{ugxFloatConvertPageFull3}{ugxFloatConvertPageEmpty3}
\pastebutton{ugxFloatConvertPageFull3}{\hidepaste}
\begin{verbatim}
(3) 3
Type: Fraction Integer
\end{verbatim}
\end{patch}\end{patch}
\begin{patch}{ugxFloatConvertPageEmpty3}
\begin{paste}{ugxFloatConvertPageEmpty3}{ugxFloatConvertPagePatch3}
\pastebutton{ugxFloatConvertPageEmpty3}{\showpaste}
\end{patch}\end{patch}
\begin{patch}{ugxFloatConvertPagePatch4}
\begin{paste}{ugxFloatConvertPageFull4}{ugxFloatConvertPageEmpty4}
\pastebutton{ugxFloatConvertPageFull4}{\hidepaste}
\begin{verbatim}
(4) 0.42857 14285 71428 57143
Type: Float
\end{verbatim}
\end{patch}\end{patch}
\begin{verbatim}
3
(5)
7
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
0.42857 14285 71428 57143
\end{verbatim}

Type: Integer

\begin{verbatim}
(6) 3.0
Type: Float
\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{round 3.6}
\indentrel{3}(7) 4.0
\indentrel{-3}Type: Float
\end{verbatim}

\begin{verbatim}
\tab{5}\spadcommand{truncate(-3.6)}
\indentrel{3}(8) - 3.0
\indentrel{-3}Type: Float
\end{verbatim}

\begin{verbatim}
\tab{5}\spadcommand{round(-3.6)}
\indentrel{3}(9) - 4.0
\indentrel{-3}Type: Float
\end{verbatim}
\tab{5}\spadcommand{fractionPart 3.6} \\
\indentrel{3}\begin{verbatim}
(10) 0.6
Type: Float
\end{verbatim}
\end{paste}

\tab{5}\spadcommand{digits 40}\bound{d40 } \\
\indentrel{3}\begin{verbatim}
(11) 20
Type: PositiveInteger
\end{verbatim}

\tab{5}\spadcommand{sqrt 0.2} \\
\indentrel{3}\begin{verbatim}
(12) 0.44721 35954 99957 93928 18347 33746 25524 70881
Type: Float
\end{verbatim}

\tab{5}\spadcommand{pi()$Float\free{d40 }}
3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float

3.14159 26535 89793 23846 26433 83279 50288 4197
Type: Float
Output Functions

A number of operations exist for specifying how numbers of type \texttt{Float} are to be displayed.
By default, spaces are inserted every ten digits in the output for readability.\footnote{Note that you cannot include spaces in the input form of a floating point number, though you can use underscores.}

Output spacing can be modified with the \spadfunFrom{outputSpacing}{Float} operation.
This inserts no spaces and then displays the value of \spad{x}.
\begin{verbatim}
outputSpacing 0; x := sqrt 0.2 \bound{x}\bound{os0}
\end{verbatim}
By default, the system displays floats in either fixed format or scientific format, depending on the magnitude of the number.

A particular format may be requested with the operations \spadfunFrom{outputFloating}{Float} and \spadfunFrom{outputFixed}{Float}.

Additionally, you can ask for \spad{n} digits to be displayed after the decimal point.

This resets the output printing to the default behavior.

%
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty1}
\begin{paste}{ugxFloatOutputPageEmpty1}{ugxFloatOutputPagePatch1}
\pastebutton{ugxFloatOutputPageEmpty1}{\showpaste}
\tab{5}\spadcommand{outputSpacing 0; x := sqrt 0.2\bound{x} \bound{os0}}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch2}
\begin{paste}{ugxFloatOutputPageFull2}{ugxFloatOutputPageEmpty2}
\pastebutton{ugxFloatOutputPageFull2}{\hidepaste}
\tab{5}\spadcommand{outputSpacing 5; x\bound{os5}\free{x}}
\indentrel{3}\begin{verbatim}
(2) 0.44721 35954 99957 93928
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty2}
\begin{paste}{ugxFloatOutputPageEmpty2}{ugxFloatOutputPagePatch2}
\pastebutton{ugxFloatOutputPageEmpty2}{\showpaste}
\tab{5}\spadcommand{outputSpacing 5; x\bound{os5}\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch3}
\begin{paste}{ugxFloatOutputPageFull3}{ugxFloatOutputPageEmpty3}
\pastebutton{ugxFloatOutputPageFull3}{\hidepaste}
\tab{5}\spadcommand{y := x/10**10\bound{y}\free{x os5}}
\indentrel{3}\begin{verbatim}
(3) 0.44721 35954 99957 93928 E -10
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty3}
\begin{paste}{ugxFloatOutputPageEmpty3}{ugxFloatOutputPagePatch3}
\pastebutton{ugxFloatOutputPageEmpty3}{\showpaste}
\tab{5}\spadcommand{y := x/10**10\bound{y}\free{x os5}}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch4}
\begin{paste}{ugxFloatOutputPageFull4}{ugxFloatOutputPageEmpty4}
\pastebutton{ugxFloatOutputPageFull4}{\hidepaste}
\tab{5}\spadcommand{outputFloating(); x\bound{of}\free{os5 x}}
\indentrel{3}\begin{verbatim}
(4) 0.44721 35954 99957 93928 E 0
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.41. FLOAT.HT

\begin{patch}{ugxFloatOutputPageEmpty4}
\begin{paste}{ugxFloatOutputPageEmpty4}{ugxFloatOutputPagePatch4}
\pastebutton{ugxFloatOutputPageEmpty4}{\showpaste}
\tab{5}\spadcommand{outputFloating(); x\bound{of}\free{os5 x }}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch5}
\begin{paste}{ugxFloatOutputPageFull5}{ugxFloatOutputPageEmpty5}
\pastebutton{ugxFloatOutputPageFull5}{\hidepaste}
\tab{5}\spadcommand{outputFixed(); y\bound{ox}\free{os5 y }}
\indentrel{3}\begin{verbatim}
(5) 0.00000 00000 44721 35954 99957 93928
Type: Float
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty5}
\begin{paste}{ugxFloatOutputPageEmpty5}{ugxFloatOutputPagePatch5}
\pastebutton{ugxFloatOutputPageEmpty5}{\showpaste}
\tab{5}\spadcommand{outputFixed(); y\bound{ox}\free{os5 y }}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch6}
\begin{paste}{ugxFloatOutputPageFull6}{ugxFloatOutputPageEmpty6}
\pastebutton{ugxFloatOutputPageFull6}{\hidepaste}
\tab{5}\spadcommand{outputFloating 2; y\bound{of2}\free{os5 y }}
\indentrel{3}\begin{verbatim}
(6) 0.45 E -10
Type: Float
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty6}
\begin{paste}{ugxFloatOutputPageEmpty6}{ugxFloatOutputPagePatch6}
\pastebutton{ugxFloatOutputPageEmpty6}{\showpaste}
\tab{5}\spadcommand{outputFloating 2; y\bound{of2}\free{os5 y }}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPagePatch7}
\begin{paste}{ugxFloatOutputPageFull7}{ugxFloatOutputPageEmpty7}
\pastebutton{ugxFloatOutputPageFull7}{\hidepaste}
\tab{5}\spadcommand{outputFixed 2; x\bound{ox2}\free{os5 x }}
\indentrel{3}\begin{verbatim}
(7) 0.45
Type: Float
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugxFloatOutputPageEmpty7}
\begin{paste}{ugxFloatOutputPageEmpty7}{ugxFloatOutputPagePatch7}
\end{paste}\end{patch}
An Example: Determinant of a Hilbert Matrix

--- float.ht ---

Consider the problem of computing the determinant of a \texttt{10} by \texttt{10} Hilbert matrix. The $\eth{(i,j)}$ entry of a Hilbert matrix is given by $1/(i+j+1)$.

First do the computation using rational numbers to obtain the exact result.

\begin{verbatim}
\spad{\texttt{a: Matrix Fraction Integer := matrix \lbrack \lbrack 1/(i+j+1) for j in 0..9 \rbrack for i in 0..9 \rbrack}}
\end{verbatim}

This version of \texttt{determinant\{Matrix\}} uses Gaussian elimination.

\spad{\texttt{d:= determinant a \free{a} \bound{d}}}
Now use hardware floats. Note that a semicolon (;) is used to prevent the display of the matrix.

\spadpaste{b: Matrix DoubleFloat := matrix [[1/(i+j+1\$DoubleFloat) for j in 0..9] for i in 0..9]; \bound{b}}

The result given by hardware floats is correct only to four significant digits of precision.
In the jargon of numerical analysis, the Hilbert matrix is said to be ‘ill-conditioned.’

\spadpaste{determinant b \free{b}}

Now repeat the computation at a higher precision using \spadtype{Float}.

\spadpaste{digits 40 \bound{d40}}

\spadpaste{c: Matrix Float := matrix [[1/(i+j+1\$Float) for j in 0..9] for i in 0..9]; \free{d40} \bound{c}}

\spadpaste{determinant c \free{c}}

Reset \spadfunFrom{digits}{Float} to its default value.

\spadpaste{digits 20}

Reset \spadfunFrom{digits}{Float} to its default value.
```
1
  2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 1 1
5 6 7 8 9 10 11 12 13 14
(1)
1 1 1 1 1 1 1 1 1 1
6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1
7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1
8 9 10 11 12 13 14 15 16 17
1 1 1 1 1 1 1 1 1 1
9 10 11 12 13 14 15 16 17 18
1 1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19

Type: Matrix Fraction Integer
```

```
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

```
\begin{patch}{ugxFloatHilbertPageEmpty1}
\begin{paste}{ugxFloatHilbertPageEmpty1}{ugxFloatHilbertPagePatch1}
\pastebutton{ugxFloatHilbertPageEmpty1}{\showpaste}
\begin{patch}{ugxFloatHilbertPagePatch2}
\begin{paste}{ugxFloatHilbertPageFull2}{ugxFloatHilbertPageEmpty2}
```
\spadcommand{d := determinant a \free{a} \bound{d}}

\begin{verbatim}
1
46206893947914691316295628839036278726983680000000000
Type: Fraction Integer
\end{verbatim}

\spadcommand{d :: Float \free{d}}

\begin{verbatim}
0.21641 79226 43149 18691 E -52
Type: Float
\end{verbatim}

\spadcommand{b: Matrix DoubleFloat := matrix [[1/(i+j+1) \DoubleFloat] for j in 0..9] for i in 0..9; \bound{b}}

\begin{verbatim}
Type: Matrix DoubleFloat
\end{verbatim}
\texttt{(5) 2.1643677945721411e-53}

\texttt{(6) 20}

\texttt{Type: PositiveInteger}

\texttt{Type: Matrix Float}
3.42  FNAME.HT

---

3.42  fname.ht

FileName

--- fname.ht ---

The \spadtype{FileName} domain provides an interface to the computer’s file system.
Functions are provided to manipulate file names and to test properties of files.

The simplest way to use file names in the Axiom interpreter is to rely on conversion to and from strings.
The syntax of these strings depends on the operating system.
\xtc{
}\spadpaste{fn: FileName \bound{fndecl}}
}\xtc{
On AIX, this is a proper file syntax:
}\{\spadpaste{fn := "/spad/src/input/fname.input" \free{fndecl}\bound{fn}}
}\}

Although it is very convenient to be able to use string notation for file names in the interpreter, it is desirable to have a portable way of creating and manipulating file names from within programs.
\xtc{
A measure of portability is obtained by considering a file name to consist of three parts: the \{it directory\}, the \{it name\}, and the \{it extension\}.
}\{\spadpaste{directory fn \free{fn}}
}\xtc{
}\spadpaste{name fn \free{fn}}
}\xtc{
}\spadpaste{extension fn \free{fn}}
}\}

The meaning of these three parts depends on the operating system. For example, on CMS the file \spad{"SPADPROF INPUT M"} would have directory \spad{"M"}, name \spad{"SPADPROF"}, and extension \spad{"INPUT"}.
\xtc{
It is possible to create a filename from its parts.
}\{\spadpaste{fn := filename("/u/smwatt/work", "fname", "input") \free{fndecl}\bound{fn1}}
}\xtc{
When writing programs, it is helpful to refer to directories via variables.
}\{\spadpaste{objdir := "/tmp" \bound{objdir}}
}\xtc{
}\{\spadpaste{fn := filename(objdir, "table", "spad") \free{fndecl, objdir}\bound{fn2}}
}
If the directory or the extension is given as an empty string, then a default is used. On AIX, the defaults are the current directory and no extension.

```spadpaste
fn := filename("", "letter", ") \free{fndecl}\bound{fn3}
```

Three tests provide information about names in the file system.

The \spadfunFrom{exists?}{FileName} operation tests whether the named file exists.

```spadpaste
exists? "/etc/passwd"
```

The operation \spadfunFrom{readable?}{FileName} tells whether the named file can be read. If the file does not exist, then it cannot be read.

```spadpaste
readable? "/etc/passwd"
```

Likewise, the operation \spadfunFrom{writable?}{FileName} tells whether the named file can be written. If the file does not exist, the test is determined by the properties of the directory.

```spadpaste
writable? "/etc/passwd"
```

```spadpaste
writable? "/dev/null"
```

```spadpaste
writable? "/etc/DoesNotExist"
```

```spadpaste
writable? "/tmp/DoesNotExist"
```
The \spadfunFrom{new}{FileName} operation constructs the name of a new writable file. The argument sequence is the same as for \spadfunFrom{filename}{FileName}, except that the name part is actually a prefix for a constructed unique name.

The resulting file is in the specified directory with the given extension, and the same defaults are used.

\spadpaste{fn := new(objdir, "xxx", "yy")}

\begin{verbatim}
(2) "/spad/src/input/fname.input"
Type: FileName
\end{verbatim}
\spadcommand{directory fn\free{fn }}
\begin{verbatim}
(3) "/spad/src/input"
\end{verbatim}

\spadcommand{name fn\free{fn }}
\begin{verbatim}
(4) "fname"
\end{verbatim}

\spadcommand{extension fn\free{fn }}
\begin{verbatim}
(5) "input"
\end{verbatim}

\spadcommand{fn := filename("/u/swatt/work", "fname", "input")\free{fndecl }}
\begin{verbatim}
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
(6) "/u/smwatt/work/fname.input"
  Type: FileName
\end{verbatim}

\begin{verbatim}
(7) "/tmp"
  Type: String
\end{verbatim}

\begin{verbatim}
(8) "/tmp/table.spad"
  Type: FileName
\end{verbatim}

\begin{verbatim}
(9) "letter"
\end{verbatim}
3.42. FNAME.HT

\textbf{Type: FileName}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileNameXmpPageEmpty9}
\begin{patch}{FileNameXmpPagePatch9}
\begin{paste}{FileNameXmpPageEmpty9}{FileNameXmpPagePatch9}
\pastebutton{FileNameXmpPageEmpty9}{\showpaste}
\indentrel{3}\begin{verbatim}
(10) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileNameXmpPagePatch10}
\begin{paste}{FileNameXmpPageFull10}{FileNameXmpPageEmpty10}
\pastebutton{FileNameXmpPageFull10}{\hidepaste}
\indentrel{3}\begin{verbatim}
(11) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FileNameXmpPagePatch11}
\begin{paste}{FileNameXmpPageFull11}{FileNameXmpPageEmpty11}
\pastebutton{FileNameXmpPageFull11}{\hidepaste}
\indentrel{3}\begin{verbatim}
(12) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(13) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(14) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(15) true
Type: Boolean
\end{verbatim}
\begin{itemize}
\item \textbf{writable? "/dev/null"}
\end{itemize}
\begin{verbatim}
(16)
false
\end{verbatim}
Type: Boolean

\begin{verbatim}
(17)
true
\end{verbatim}
Type: Boolean

\begin{verbatim}
(18)
"/tmp/xxx82222.yy"
\end{verbatim}
Type: FileName
Factored

Factored creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like \(*\) (multiplication) and \(\text{gcd}\) are relatively easy to do. Others, such as addition, require somewhat more work, and the result may not be completely factored unless the argument domain \(\mathbb{R}\) provides a \texttt{factor} operation. Each object consists of a unit and a list of factors, where each factor consists of a member of \(\mathbb{R}\) (the base), an exponent, and a flag indicating what is known about the base. A flag may be one of "nil", "sqfr", "irred" or "prime", which mean that nothing is known about the base, it is square-free, it is irreducible, or it is prime, respectively. The current restriction to factored objects of integral domains allows simplification to be performed without worrying about multiplication order.

- \(\text{\texttt{9.22.1. Decomposing Factored Objects}}\)
- \(\text{\texttt{9.22.2. Expanding Factored Objects}}\)
- \(\text{\texttt{9.22.3. Arithmetic with Factored Objects}}\)
- \(\text{\texttt{9.22.4. Creating New Factored Objects}}\)
- \(\text{\texttt{9.22.5. Factored Objects with Variables}}\)

\begin{enumerate}
\item “Primes and Factorization” (ugxIntegerPrimesPage) 3.55 on page 712
\item “Computation of Galois Groups” (ugxProblemGaloisPage) 12 on page 2306
\item “FactoredFunctions2” (FactoredFnsTwoXmpPage) 3.44 on page 539
\item “Some Examples of Domains and Packages” (ExamplesExposedPage) 3.117 on page 1369
\item “Decomposing Factored Objects” (ugxFactoredDecompPage) 3.43 on page 518
\item “Expanding Factored Objects” (ugxFactoredExpandPage) 3.43 on page 523
\item “Arithmetic with Factored Objects” (ugxFactoredArithPage) 3.43 on page 525
\item “Creating New Factored Objects” (ugxFactoredNewPage) 3.43 on page 532
\item “Factored Objects with Variables” (ugxFactoredVarPage) 3.43 on page 536
\end{enumerate}
\texttt{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like \texttt{\*} (multiplication) and \texttt{gcd} are relatively easy to do. Others, such as addition, require somewhat more work, and the result may not be completely factored unless the argument domain \texttt{R} provides a \texttt{factor} operation.

Each object consists of a unit and a list of factors, where each factor consists of a member of \texttt{R} (the base), an exponent, and a flag indicating what is known about the base. A flag may be one of \texttt{"nil"}, \texttt{"sqfr"}, \texttt{"irred"} or \texttt{"prime"}, which mean that nothing is known about the base, it is square-free, it is irreducible, or it is prime, respectively.

The current restriction to factored objects of integral domains allows simplification to be performed without worrying about multiplication order.

\begin{menu}
\menuitem{9.22.1. Decomposing Factored Objects}
\menuitem{9.22.2. Expanding Factored Objects}
\menuitem{9.22.3. Arithmetic with Factored Objects}
\menuitem{9.22.4. Creating New Factored Objects}
\menuitem{9.22.5. Factored Objects with Variables}
\end{menu}
Decomposing Factored Objects

In this section we will work with a factored integer.

\begin{spad}
g := \text{factor}(4312)\end{spad}

Let's begin by decomposing \( g \) into pieces. The only possible units for integers are 1 and -1.

\begin{spad}
\text{unit}(g)
\end{spad}

There are three factors.

\begin{spad}
\text{numberOfFactors}(g)
\end{spad}

We can make a list of the bases, ...

\begin{spad}
\text{nthFactor}(g, i) \text{ for } i \text{ in } 1 \ldots \text{numberOfFactors}(g)
\end{spad}

and the exponents, ...

\begin{spad}
\text{nthExponent}(g, i) \text{ for } i \text{ in } 1 \ldots \text{numberOfFactors}(g)
\end{spad}

and the flags. You can see that all the bases (factors) are prime.

\begin{spad}
\text{nthFlag}(g, i) \text{ for } i \text{ in } 1 \ldots \text{numberOfFactors}(g)
\end{spad}

A useful operation for pulling apart a factored object into a list of records of the components is \text{factorList}.

\begin{spad}
\text{factorList}(g)
\end{spad}

If you don't care about the flags, use \text{factors}.

\begin{spad}
\text{factors}(g)
\end{spad}

Neither of these operations returns the unit.

\begin{spad}
\text{first}(\text{factors})(g)
\end{spad}

\begin{spad}
\text{factor}(g)
\end{spad}

Let's begin by decomposing \( g \) into pieces. The only possible units for integers are 1 and -1.

\begin{spad}
\text{unit}(g) \text{ free}(g)
\end{spad}

There are three factors.
We can make a list of the bases, \ldots
\spadpaste{[nthFactor(g,i) for i in 1..numberOfFactors(g)] \free{g}}
and the exponents, \ldots
\spadpaste{[nthExponent(g,i) for i in 1..numberOfFactors(g)] \free{g}}
and the flags.
You can see that all the bases (factors) are prime.
\spadpaste{[nthFlag(g,i) for i in 1..numberOfFactors(g)] \free{g}}
A useful operation for pulling apart a factored object into a list of records of the components is \spadfunFrom{factorList}{Factored}.
\spadpaste{factorList(g) \free{g}}
If you don’t care about the flags, use \spadfunFrom{factors}{Factored}.
\spadpaste{factors(g) \free{g}\bound{prev1}}
Neither of these operations returns the unit.
\spadpaste{first(\%).factor \free{prev1}}

\begin{patch}{ugxFactoredDecompPagePatch1}
\begin{paste}{ugxFactoredDecompPageFull1}{ugxFactoredDecompPageEmpty1}
\indentrel{3}\begin{verbatim}
(1) 2 7 11
Type: Factored Integer
\end{verbatim}
\end{patch}
\begin{patch}{ugxFactoredDecompPageEmpty1}
\begin{paste}{ugxFactoredDecompPageEmpty1}{ugxFactoredDecompPagePatch1}
\pastebutton{ugxFactoredDecompPageEmpty1}{\showpaste}
\tab{5}\spadcommand{g := factor(4312)\bound{g}}
\end{paste}\end{patch}

\begin{patch}{ugxFactoredDecompPagePatch2}
\begin{paste}{ugxFactoredDecompPageFull2}{ugxFactoredDecompPageEmpty2}
\pastebutton{ugxFactoredDecompPageFull2}{\hidepaste}
\tab{5}\spadcommand{unit(g)\free{g}}
\indentrel{3}\begin{verbatim}
(2) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredDecompPagePatch3}
\begin{paste}{ugxFactoredDecompPageFull3}{ugxFactoredDecompPageEmpty3}
\pastebutton{ugxFactoredDecompPageFull3}{\hidepaste}
\tab{5}\spadcommand{numberOfFactors(g)\free{g}}
\indentrel{3}\begin{verbatim}
(3) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredDecompPagePatch4}
\begin{paste}{ugxFactoredDecompPageFull4}{ugxFactoredDecompPageEmpty4}
\pastebutton{ugxFactoredDecompPageFull4}{\hidepaste}
\tab{5}\spadcommand{[nthFactor(g,i) for i in 1..numberOfFactors(g)]\free{g}}
\indentrel{3}\begin{verbatim}
(4) [2,7,11]
Type: List Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredDecompPageEmpty4}
\begin{verbatim}
[3, 2, 1]
\end{verbatim}

\begin{verbatim}
["prime", "prime", "prime"]
\end{verbatim}

\begin{verbatim}
[[flg = "prime", fctr = 2, xpnt = 3],
 [flg = "prime", fctr = 7, xpnt = 2],
 [flg = "prime", fctr = 11, xpnt = 1]]
\end{verbatim}
\begin{patch}{ugxFactoredDecompPageEmpty7}
\begin{paste}{ugxFactoredDecompPageEmpty7}{ugxFactoredDecompPagePatch7}
\tab{5}\spadcommand{factorList(g)\free{g}}
\end{paste} \end{patch}

\begin{patch}{ugxFactoredDecompPagePatch8}
\begin{paste}{ugxFactoredDecompPageFull8}{ugxFactoredDecompPageEmpty8}
\pastebutton{ugxFactoredDecompPageFull8}{\hidepaste}
\indentrel{3}\begin{verbatim}
(8)
  [[factor = 2,exponent = 3], [factor = 7,exponent = 2],
   [factor = 11,exponent = 1]]
  Type: List Record(factor: Integer,exponent: Integer)
\end{verbatim}
\end{patch} \end{patch}

\begin{patch}{ugxFactoredDecompPageEmpty8}
\begin{paste}{ugxFactoredDecompPageEmpty8}{ugxFactoredDecompPagePatch8}
\pastebutton{ugxFactoredDecompPageEmpty8}{\showpaste}
\indentrel{3}\begin{verbatim}
(9) 2
\end{verbatim}
\end{patch} \end{patch}

\begin{patch}{ugxFactoredDecompPagePatch9}
\begin{paste}{ugxFactoredDecompPageFull9}{ugxFactoredDecompPageEmpty9}
\pastebutton{ugxFactoredDecompPageFull9}{\hidepaste}
\indentrel{3}\begin{verbatim}
(9) 2
\end{verbatim}
\end{patch} \end{patch}
Expanding Factored Objects

Recall that we are working with this factored integer.
\begin{verbatim}
g := factor(4312) \bound{g}
\end{verbatim}
To multiply out the factors with their multiplicities, use
expand.
\begin{verbatim}
expand(g)
\end{verbatim}
If you would like, say, the distinct factors multiplied
together but with multiplicity one, you could do it this way.
\begin{verbatim}
reduce(*,[t.factor for t in factors(g)])
\end{verbatim}
(1) \(2 \cdot 7 \cdot 11\)  
Type: Factored Integer

\begin{verbatim}
(2) 4312
Type: PositiveInteger
\end{verbatim}

(2) 4312  
Type: PositiveInteger

(3) 154
Type: PositiveInteger
Arithmetic with Factored Objects

We're still working with this factored integer.
\{ \spad{g := \text{factor}(4312)} \}

We'll also define this factored integer.
\{ \spad{f := \text{factor}(246960)} \}

Operations involving multiplication and division are particularly easy with factored objects.
\begin{itemize}
  \item \spad{f \ast g}
  \item \spad{f \ast 500}
  \item \spad{\gcd(f, g)}
  \item \spad{\lcm(f, g)}
\end{itemize}

If we use addition and subtraction things can slow down because we may need to compute greatest common divisors.
\begin{itemize}
  \item \spad{f + g}
  \item \spad{f - g}
\end{itemize}

Test for equality with 0 and 1 by using \code{zero?} and \code{one?}, respectively.
\begin{itemize}
  \item \spad{\text{zero?}(\text{factor}(0))}
  \item \spad{\text{zero?}(g)}
  \item \spad{\text{one?}(\text{factor}(1))}
  \item \spad{\text{one?}(f)}
\end{itemize}

Another way to get the zero and one factored objects is to use package calling (see "\texttt{Package Calling and Target Types}" in Section 2.9).
\begin{itemize}
  \item \spad{0$\text{Factored}(\text{Integer})$}
  \item \spad{1$\text{Factored}(\text{Integer})$}
\end{itemize}
Operations involving multiplication and division are particularly easy with factored objects.

\[
\text{gcd}(f,g)\]

If we use addition and subtraction things can slow down because we may need to compute greatest common divisors.

Test for equality with \spad{0} and \spad{1} by using \spadfunFrom{zero?}{Factored} and \spadfunFrom{one?}{Factored}, respectively.

Another way to get the zero and one factored objects is to use
package calling
(see "Package Calling and Target Types")
{ugTypesPkgCallPage} in Section 2.9\ignore{ugTypesPkgCall}).
\spadpaste{0\$Factored(Integer)}
\xtc{
\spadpaste{1\$Factored(Integer)}}
\endscroll
\autobuttons
\end{page}
\begin{patch}{ugxFactoredArithPagePatch1}
\begin{paste}{ugxFactoredArithPageFull1}{ugxFactoredArithPageEmpty1}
\pastebutton{ugxFactoredArithPageFull1}{\hidepaste}
\tab{5}\spadcommand{g := factor(4312)\bound{g}}
\indentrel{3}\begin{verbatim}
  3 2
(1) 2 7 11
Type: Factored Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxFactoredArithPageEmpty1}
\begin{paste}{ugxFactoredArithPageEmpty1}{ugxFactoredArithPagePatch1}
\pastebutton{ugxFactoredArithPageEmpty1}{\showpaste}
\tab{5}\spadcommand{g := factor(4312)\bound{g}}
\indentrel{-3}\end{patch}
\begin{patch}{ugxFactoredArithPagePatch2}
\begin{paste}{ugxFactoredArithPageFull2}{ugxFactoredArithPageEmpty2}
\pastebutton{ugxFactoredArithPageFull2}{\hidepaste}
\tab{5}\spadcommand{f := factor(246960)\bound{f}}
\indentrel{3}\begin{verbatim}
  4 2 3
(2) 2 3 5 7
Type: Factored Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxFactoredArithPageEmpty2}
\begin{paste}{ugxFactoredArithPageEmpty2}{ugxFactoredArithPagePatch2}
\pastebutton{ugxFactoredArithPageEmpty2}{\showpaste}
\tab{5}\spadcommand{f := factor(246960)\bound{f}}
\indentrel{-3}\end{patch}
\begin{patch}{ugxFactoredArithPagePatch3}
\begin{verbatim}
7 2 5
(3) 2 3 5 7 11
Type: Factored Integer
\end{verbatim}

\begin{verbatim}
2000 1000 500 1500
(4) 2 3 5 7
Type: Factored Integer
\end{verbatim}

\begin{verbatim}
3 2
(5) 2 7
Type: Factored Integer
\end{verbatim}
\begin{verbatim}
type: factored integer
end(verbatim)
\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
3 \ 2
(7) 2 7 641
end(verbatim)
\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
3 \ 2
(8) 2 7 619
end(verbatim)
\end{patch}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxFactoredArithPagePatch9}
\begin{paste}{ugxFactoredArithPageFull9}{ugxFactoredArithPageEmpty9}
\pastebutton{ugxFactoredArithPageFull9}{\hidepaste}
\tab{5}\spadcommand{zero?(factor(0))}
\indentrel{3}\begin{verbatim}
(9) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPageEmpty9}
\begin{paste}{ugxFactoredArithPageEmpty9}{ugxFactoredArithPagePatch9}
\pastebutton{ugxFactoredArithPageEmpty9}{\showpaste}
\tab{5}\spadcommand{zero?(factor(0))}
\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPagePatch10}
\begin{paste}{ugxFactoredArithPageFull10}{ugxFactoredArithPageEmpty10}
\pastebutton{ugxFactoredArithPageFull10}{\hidepaste}
\tab{5}\spadcommand{zero?(g) \free{g}}
\indentrel{3}\begin{verbatim}
(10) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPageEmpty10}
\begin{paste}{ugxFactoredArithPageEmpty10}{ugxFactoredArithPagePatch10}
\pastebutton{ugxFactoredArithPageEmpty10}{\showpaste}
\tab{5}\spadcommand{zero?(g) \free{g}}
\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPagePatch11}
\begin{paste}{ugxFactoredArithPageFull11}{ugxFactoredArithPageEmpty11}
\pastebutton{ugxFactoredArithPageFull11}{\hidepaste}
\tab{5}\spadcommand{one?(factor(1))}
\indentrel{3}\begin{verbatim}
(11) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPageEmpty11}
\begin{paste}{ugxFactoredArithPageEmpty11}{ugxFactoredArithPagePatch11}
\pastebutton{ugxFactoredArithPageEmpty11}{\showpaste}
\tab{5}\spadcommand{one?(factor(1))}
\end{paste}\end{patch}

\begin{patch}{ugxFactoredArithPagePatch12}
\begin{verbatim}
(12) false
Type: Boolean
\end{verbatim}

```
0
```

\begin{verbatim}
(13) 0
Type: Factored Integer
\end{verbatim}

```
1
```

\begin{verbatim}
(14) 1
Type: Factored Integer
\end{verbatim}
Creating New Factored Objects

The \spadfunFrom{map}{Factored} operation is used to iterate across the unit and bases of a factored object. See `FactoredFunctions2` for a discussion of \spadfunFrom{map}{Factored}.

The following four operations take a base and an exponent and create a factored object. They differ in handling the flag component.

\begin{itemize}
\item \texttt{nilFactor(24,2)}
\end{itemize}
This factor has no associated information.

\begin{itemize}
\item \texttt{nthFlag(9,1)}
\end{itemize}
This factor is asserted to be square-free.

\begin{itemize}
\item \texttt{sqrfactor(30,2)}
\end{itemize}
This factor is asserted to be irreducible.

\begin{itemize}
\item \texttt{irreducibleFactor(13,10)}
\end{itemize}
This factor is asserted to be prime.

\begin{itemize}
\item \texttt{primeFactor(11,5)}
\end{itemize}
A partial inverse to \spadfunFrom{factorList}{Factored} is \spadfunFrom{makeFR}{Factored}.

\begin{itemize}
\item \texttt{h := factor(-720)}
\end{itemize}
The first argument is the unit and the second is a list of records as returned by \spadfunFrom{factorList}{Factored}.

\begin{itemize}
\item \texttt{h = makeFR(unit(h),factorList(h))}
\end{itemize}
This factor has no associated information.

\spad{\texttt{\textbf{\textsc{\texttt{nthFlag(\%,1) \free{prev2}}}}}}

\xtc{This factor is asserted to be square-free.}
\spad{\texttt{\texttt{\textbf{\textsc{\texttt{sqfrFactor(30,2) \bound{prev3}}}}}}}

\xtc{This factor is asserted to be irreducible.}
\spad{\texttt{\texttt{\textbf{\textsc{\texttt{irreducibleFactor(13,10) \bound{prev4}}}}}}}

\xtc{This factor is asserted to be prime.}
\spad{\texttt{\texttt{\textbf{\textsc{\texttt{primeFactor(11,5) \bound{prev5}}}}}}}

\xtc{A partial inverse to \spadfunFrom{factorList}{Factored} is \spadfunFrom{makeFR}{Factored}.}
\spad{\texttt{\texttt{\textbf{\textsc{\texttt{\texttt{h := factor(-720) \bound{h}}}}}}}}

\xtc{The first argument is the unit and the second is a list of records as returned by \spadfunFrom{factorList}{Factored}.}
\spad{\texttt{\texttt{\textbf{\textsc{\texttt{\texttt{\texttt{h - makeFR(unit(h),factorList(h)) \free{h}}}}}}}}

\end{scroll}
\autobuttons
\end{page}
\spadcommand{nilFactor(24,2)\bound{prev2 }}

\spadcommand{nthFlag(\%,1)\free{prev2 }}

\indentrel{3}\begin{verbatim}
(2) "nil"
Type: Union("nil",...)
\end{verbatim}

\spadcommand{sqfrFactor(30,2)\bound{prev3 }}

\indentrel{3}\begin{verbatim}
2
(3) 30
Type: Factored Integer
\end{verbatim}

\spadcommand{irreducibleFactor(13,10)\bound{prev4 }}

\indentrel{3}\begin{verbatim}
10
(4) 13
Type: Factored Integer
\end{verbatim}
\begin{verbatim}
5
(5) 11
Type: Factored Integer
\end{verbatim}
\indentrel{-3}}
\end{paste}
\end{patch}
\begin{patch}{ugxFactoredNewPagePatch6}
\begin{paste}{ugxFactoredNewPageFull6}{ugxFactoredNewPageEmpty6}
\indentrel{3}
\begin{verbatim}
4 2
(6) - 2 3 5
Type: Factored Integer
\end{verbatim}
\indentrel{-3}}
\end{paste}
\end{patch}
\begin{patch}{ugxFactoredNewPagePatch7}
\begin{paste}{ugxFactoredNewPageFull7}{ugxFactoredNewPageEmpty7}
\indentrel{3}
\begin{verbatim}
(7) 0
Type: Factored Integer
\end{verbatim}
\indentrel{-3}}
\end{paste}
\end{patch}
Factored Objects with Variables

Some of the operations available for polynomials are also available for factored polynomials.

\begin{verbatim}
\spadcommand{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63}
\spadcommand{fp := factor(p)}
\end{verbatim}

You can differentiate with respect to a variable.

\begin{verbatim}
\spadcommand{D(p,x)}
\spadcommand{D(fp,x)}
\end{verbatim}

\begin{verbatim}
\spadcommand{numberOfFactors()}\end{verbatim}
3.43. FR.HT

\spadpaste{D(fp,x) \free{fp}\bound{prev1}}

\xtc{
\spadpaste{numberOfFactors(\%) \free{prev1}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxFactoredVarPagePatch1}
\begin{paste}{ugxFactoredVarPageFull1}{ugxFactoredVarPageEmpty1}
\pastebutton{ugxFactoredVarPageFull1}{\hidepaste}
\tab{5}\spadcommand{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63\bound{p}}
\indentrel{3}\begin{verbatim}
(1)
2 2 2 2
(4x - 12x + 9)y + (4x - 12x + 9)y + 28x - 84x + 63
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxFactoredVarPageEmpty1}
\begin{paste}{ugxFactoredVarPageEmpty1}{ugxFactoredVarPagePatch1}
\pastebutton{ugxFactoredVarPageEmpty1}{\showpaste}
\tab{5}\spadcommand{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63\bound{p}}
\end{paste}
\end{patch}

\begin{patch}{ugxFactoredVarPagePatch2}
\begin{paste}{ugxFactoredVarPageFull2}{ugxFactoredVarPageEmpty2}
\pastebutton{ugxFactoredVarPageFull2}{\hidepaste}
\tab{5}\spadcommand{fp := factor(p)\free{p}\bound{fp}}
\indentrel{3}\begin{verbatim}
(2) (2x - 3) (y + y + 7)
Type: Factored Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxFactoredVarPageEmpty2}
\begin{paste}{ugxFactoredVarPageEmpty2}{ugxFactoredVarPagePatch2}
\pastebutton{ugxFactoredVarPageEmpty2}{\showpaste}
\tab{5}\spadcommand{fp := factor(p)\free{p}\bound{fp}}
\end{paste}
\end{patch}

\begin{patch}{ugxFactoredVarPagePatch3}
\begin{paste}{ugxFactoredVarPageFull3}{ugxFactoredVarPageEmpty3}
\pastebutton{ugxFactoredVarPageFull3}{\hidepaste}
\tab{5}\spadcommand{D(p,x)\free{p}}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
(3) (8x - 12)y + (8x - 12)y + 56x - 84
Type: Polynomial Integer
\end{verbatim}

\indentrel{-3}
\begin{verbatim}
(4) 4(2x - 3)(y + y + 7)
Type: Factored Polynomial Integer
\end{verbatim}

\indentrel{-3}
\begin{verbatim}
(5) 3
Type: PositiveInteger
\end{verbatim}
FactoredFunctions2

The \texttt{FactoredFunctions2} package implements one operation, \texttt{map}, for applying an operation to every base in a factored object and to the unit.

\begin{verbatim}
  \spadfunFrom{map}{FactoredFunctions2}
\end{verbatim}

Actually, the \texttt{map} operation used in this example comes from \texttt{Factored} itself, since \texttt{double} takes an integer argument and returns an integer result.

\begin{verbatim}
  map(double, f)
\end{verbatim}

If we want to use an operation that returns an object that has a type different from the operation's argument, the \texttt{map} in \texttt{Factored} cannot be used and we use the one in \texttt{FactoredFunctions2}.

\begin{verbatim}
  \spadfunFrom{makePoly}{FactoredFunctions2}
\end{verbatim}

In fact, the '~2' in the name of the package means that we might be using factored objects of two different types.

\begin{verbatim}
  g := map(makePoly, f)
\end{verbatim}

It is important to note that both versions of \texttt{map} destroy any information known about the bases (the fact that they are prime, for instance). The flags for each base are set to `nil' in the object returned by \texttt{map}.

\begin{verbatim}
  nthFlag(g, 1)
\end{verbatim}

For more information about factored objects and their use, see \enquote{Factored} and \enquote{Computation of Galois Groups}' in Section 8.13.
Actually, the \spadfunFrom{map}{FactoredFunctions2} operation used in this example comes from \spadtype{Factored} itself, since \userfun{double} takes an integer argument and returns an integer result.

If we want to use an operation that returns an object that has a type different from the operation's argument, the \spadfunFrom{map}{FactoredFunctions2} in \spadtype{Factored} cannot be used and we use the one in \spadtype{FactoredFunctions2}.

In fact, the ''2'' in the name of the package means that we might be using factored objects of two different types.

It is important to note that both versions of \spadfunFrom{map}{FactoredFunctions2} destroy any information known about the bases (the fact that they are prime, for instance).

The flags for each base are set to ''nil'' in the object returned by \spadfunFrom{map}{FactoredFunctions2}.

For more information about factored objects and their use, see \downlink{`Factored'}{FactoredXmpPage} and \downlink{``Computation of Galois Groups''}{ugProblemGaloisPage} in Section 8.13\ignore{ugProblemGalois}.

\begin{patch}{FactoredFnsTwoXmpPagePatch1}
\begin{paste}{FactoredFnsTwoXmpPageFull1}{FactoredFnsTwoXmpPageEmpty1}
\pastebutton{FactoredFnsTwoXmpPageFull1}{\hidepaste}
\end{patch}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{FactoredFnsTwoXmpPage1}
\begin{paste}{FactoredFnsTwoXmpPage1}{FactoredFnsTwoXmpPagePatch1}
\pastebutton{FactoredFnsTwoXmpPage1}{\showpaste}
\indentrel{3}\spadcommand{double(x) == x + x\bound{double }}
\end{paste}
\end{patch}

\begin{patch}{FactoredFnsTwoXmpPage2}
\begin{paste}{FactoredFnsTwoXmpPage2}{FactoredFnsTwoXmpPagePatch2}
\pastebutton{FactoredFnsTwoXmpPage2}{\hidepaste}
\indentrel{3}\begin{verbatim}
4 2
(2) 2 3 5
Type: Factored Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FactoredFnsTwoXmpPage3}
\begin{paste}{FactoredFnsTwoXmpPage3}{FactoredFnsTwoXmpPagePatch3}
\pastebutton{FactoredFnsTwoXmpPage3}{\showpaste}
\indentrel{3}\begin{verbatim}
4 2
(3) 2 4 6 10
Type: Factored Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FactoredFnsTwoXmpPage4}
\begin{paste}{FactoredFnsTwoXmpPage4}{FactoredFnsTwoXmpPagePatch4}
\pastebutton{FactoredFnsTwoXmpPage4}{\hidepaste}
\indentrel{3}\begin{verbatim}
makePoly(b) == x + b\bound{makePoly }}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
4 2
(5) (x + 1)(x + 2) (x + 3) (x + 5)
Type: Factored Polynomial Integer
\end{verbatim}

\begin{verbatim}
(6) "nil"
Type: Union("nil",...)
\end{verbatim}
3.45  frac.ht

Fraction

⇒ “Integer” (IntegerXmpPage) 3.55 on page 696
⇒ “notitle” (ContinuedFractionXmpPage) 3.17 on page 262
⇒ “notitle” (PartialFractionXmpPage) 3.86 on page 1088

\begin{page}{FractionXmpPage}{Fraction}
\beginscroll

The \spad{Fraction} domain implements quotients. The elements must belong to a domain of category \spad{IntegralDomain}: multiplication must be commutative and the product of two non-zero elements must not be zero. This allows you to make fractions of most things you would think of, but don’t expect to create a fraction of two matrices! The abbreviation for \spad{Fraction} is \spad{FRAC}.

\xtc{
Use \spad{opFrom{/}{Fraction}} to create a fraction.
}{
\spad{a := 11/12 \text{ free}{a}}
}
\xtc{
}{
\spad{b := 23/24 \text{ free}{b}}
}
\xtc{
The standard arithmetic operations are available.
}{
\spad{3 - a*b**2 + a + b/a \text{ free}{a} \text{ free}{b}}
}
\xtc{
Extract the numerator and denominator by using \spad{numer}{Fraction} and \spad{denom}{Fraction}, respectively.
}{
\spad{numer(a) \text{ free}{a}}
}
\xtc{
}{
\spad{denom(b) \text{ free}{b}}
}
Operations like \spad{max}{Fraction}, \spad{min}{Fraction}, \spad{negative?}{Fraction}, \spad{positive?}{Fraction} and \spad{zero?}{Fraction} are all available if they are provided for
the numerators and denominators. See \downlink{'Integer'}{IntegerXmpPage} for examples.

Don’t expect a useful answer from \spadfun{factor}{Fraction}, \spadfun{gcd}{Fraction} or \spadfun{lcm}{Fraction} if you apply them to fractions.

\xtc{}
}\{ \spadpaste{r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1) \bound{r}} \}
\xtc{}
Since all non-zero fractions are invertible, these operations have trivial definitions.
\xtc{}
}\{ \spadpaste{factor(r) \free{r}} \}
\xtc{}
Use \spadfun{map}{Fraction} to apply \spadfun{factor}{Fraction} to the numerator and denominator, which is probably what you mean.
\xtc{}
}\{ \spadpaste{map(factor,r) \free{r}} \}

\xtc{}
Other forms of fractions are available. Use \spadfun{continuedFraction} to create a continued fraction.
\xtc{}
}\{ \spadpaste{continuedFraction(7/12)} \}
\xtc{}
Use \spadfun{partialFraction} to create a partial fraction. See \downlink{'PartialFraction'}{PartialFractionXmpPage} for additional information and examples.
\xtc{}
}\{ \spadpaste{partialFraction(7,12)} \}

\xtc{}
Use conversion to create alternative views of fractions with objects moved in and out of the numerator and denominator.
\xtc{}
}\{ \spadpaste{g := 2/3 + 4/5*\%i \bound{g}} \}
\xtc{}
Conversion is discussed in detail in \downlink{‘Conversion’}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert}.
\{ 
\spadpaste{g :: FRAC COMPLEX INT \free{g}} 
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{FractionXmpPagePatch1}
\begin{paste}{FractionXmpPageFull1}{FractionXmpPageEmpty1}
\pastebutton{FractionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{a := 11/12\bound{a}}
\indentrel{3}\begin{verbatim}
11
(1)
12
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FractionXmpPageEmpty1}
\begin{paste}{FractionXmpPageEmpty1}{FractionXmpPagePatch1}
\pastebutton{FractionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{a := 11/12\bound{a}}
\end{paste}
\end{patch}

\begin{patch}{FractionXmpPagePatch2}
\begin{paste}{FractionXmpPageFull2}{FractionXmpPageEmpty2}
\pastebutton{FractionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{b := 23/24\bound{b}}
\indentrel{3}\begin{verbatim}
23
(2)
24
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FractionXmpPageEmpty2}
\begin{paste}{FractionXmpPageEmpty2}{FractionXmpPagePatch2}
\pastebutton{FractionXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{b := 23/24\bound{b}}
\end{paste}
\end{patch}

\begin{patch}{FractionXmpPagePatch3}
\begin{paste}{FractionXmpPageFull3}{FractionXmpPageEmpty3}
\pastebutton{FractionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{3 - a*b**2 + a + b/a\free{a}\free{b}}
\indentrel{3}\begin{verbatim}
313271
(3)
\end{verbatim}
\end{paste}
\end{patch}
76032

\begin{verbatim}
Type: Fraction Integer
\indentrel{-3}\end{verbatim}

\begin{verbatim}
(4) 11
Type: PositiveInteger
\indentrel{-3}\end{verbatim}

\begin{verbatim}
(5) 24
Type: PositiveInteger
\indentrel{-3}\end{verbatim}

\begin{verbatim}
2
x + 2x + 1
\end{verbatim}
(6) \[ \frac{2}{x - 2x + 1} \]

Type: Fraction Polynomial Integer

(7) \[ \frac{2}{x + 2x + 1} \]

Type: Factored Fraction Polynomial Integer

(8) \[ \frac{2}{x - 2x + 1} \]

Type: Fraction Factored Polynomial Integer
\tab{5}\spadcommand{map(factor,r)\free{r}}
\end{patch}\end{patch}

\begin{patch}{FractionXmpPagePatch9}
\begin{paste}{FractionXmpPageFull9}{FractionXmpPageEmpty9}
\pastebutton{FractionXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{continuedFraction(7/12)}
\indentrel{3}\begin{verbatim}
1 1 1 1
(9) + + +
1 1 2 2
Type: ContinuedFraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FractionXmpPagePatch10}
\begin{paste}{FractionXmpPageFull10}{FractionXmpPageEmpty10}
\pastebutton{FractionXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{partialFraction(7,12)}
\indentrel{3}\begin{verbatim}
3 1
(10) 1 - +
2 3
2
Type: PartialFraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{FractionXmpPagePatch11}
\begin{paste}{FractionXmpPageFull11}{FractionXmpPageEmpty11}
\pastebutton{FractionXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{g := 2/3 + 4/5*\%i\bound{g}}
\indentrel{3}\begin{verbatim}
2 4
(11) + \%i
3 5
Type: Complex Fraction Integer
\end{verbatim}
\end{paste}
\end{patch}
3.46  fparfrac.ht

FullPartialFracExpansion

⇒ “notitle” (PartialFractionXmpPage) 3.86 on page 1088

The domain \spadtype{FullPartialFracExpansion} implements
factor-free conversion of quotients to full partial fractions.

Our examples will all involve quotients of univariate polynomials
with rational number coefficients.

\spadpaste{Fx := FRAC UP(x, FRAC INT) \bound{Fx}}
Here is a simple-looking rational function.
\begin{spad}
f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2) \end{spad}
\begin{spad}
g := fullPartialFraction f \end{spad}
\begin{spad}
Use a coercion to change it back into a quotient.
\end{spad}
\begin{spad}
g :: Fx \end{spad}
\begin{spad}
Full partial fractions differentiate faster than rational
functions.
\end{spad}
\begin{spad}
g5 := D(g, 5) \end{spad}
\begin{spad}
f5 := D(f, 5) \end{spad}
\begin{spad}
We can check that the two forms represent the same function.
\end{spad}
\begin{spad}
g5::Fx - f5 \end{spad}
\begin{spad}
Here are some examples that are more complicated.
\end{spad}
\begin{spad}
f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3) \end{spad}
\begin{spad}
g := fullPartialFraction f \end{spad}
\begin{spad}
g :: Fx - f \end{spad}
\begin{spad}
f : Fx := (2*x**7-7*x**5+26*x**3+8*x) /
\( (x^8-5x^6+6x^4+4x^2-8) \) 
\free{Fx} \bound{f3} 
\xtc{} 
\spadpaste{g := fullPartialFraction f \free{f3} \bound{g3}} 
\xtc{} 
\spadpaste{g :: Fx - f \free{f3 g3 Fx}} 
\xtc{} 
\spadpaste{f:Fx := x^3 / (x^21 + 2x^20 + 4x^19 + 7x^18 + 10x^17 + 17x^16 + 22x^15 + 30x^14 + 36x^13 + 40x^12 + 47x^11 + 46x^10 + 49x^9 + 43x^8 + 38x^7 + 32x^6 + 23x^5 + 19x^4 + 10x^3 + 7x^2 + 2x + 1) \free{Fx} \bound{f4}} 
\xtc{} 
\spadpaste{g := fullPartialFraction f \free{f4} \bound{g4}} 
\xtc{} 
This verification takes much longer than the conversion to partial fractions. 
\spadpaste{g :: Fx - f \free{f4 g4 Fx}} 

For more information, see the paper: 
All see \downlink{PartialFraction}{PartialFractionXmpPage} \ignore{PartialFraction} for standard partial fraction decompositions.
\begin{patch}{FullPartialFractionExpansionXmpPageEmpty1}
\begin{paste}{FullPartialFractionExpansionXmpPageEmpty1}{FullPartialFractionExpansionXmpPagePatch1}
\pastebutton{FullPartialFractionExpansionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{Fx := FRAC UP(x, FRAC INT)\bound{Fx } }
\end{paste}
\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch2}
\begin{paste}{FullPartialFractionExpansionXmpPageFull2}{FullPartialFractionExpansionXmpPageEmpty2}
\pastebutton{FullPartialFractionExpansionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)\bound{f }\free{Fx } }
\indentrel{3}\begin{verbatim}
36
5 4 3 2
x - 2x - 2x + 4x + x - 2
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch3}
\begin{paste}{FullPartialFractionExpansionXmpPageFull3}{FullPartialFractionExpansionXmpPageEmpty3}
\pastebutton{FullPartialFractionExpansionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{g := fullPartialFraction f\bound{g }\free{f } }
\indentrel{3}\begin{verbatim}
4 4 - 3%A - 6
(3) - + >
x - 2x + 1 2
2 (x - %A)
%A - 1= 0
Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch4}
\begin{paste}{FullPartialFractionExpansionXmpPageFull4}{FullPartialFractionExpansionXmpPageEmpty4}
\pastebutton{FullPartialFractionExpansionXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{g :: Fx\free{g } }
\end{paste}
\end{patch}
\verb+(4)+
\begin{verbatim}
  5  4  3  2
x - 2x - 2x + 4x + x - 2
\end{verbatim}
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch4}
\begin{paste}{FullPartialFractionExpansionXmpPageFull4}{FullPartialFractionExpansionXmpPageEmpty4}
\pastebutton{FullPartialFractionExpansionXmpPageFull4}{\showpaste}
\indentrel{3}\begin{verbatim}
  (4)
  480  480 2160%A + 4320
- + + >
  6  6  7
(x - 2) (x + 1) 2 (x - %A)
%A - 1= 0
\end{verbatim}
Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch5}
\begin{paste}{FullPartialFractionExpansionXmpPageFull5}{FullPartialFractionExpansionXmpPageEmpty5}
\pastebutton{FullPartialFractionExpansionXmpPageFull5}{\hidepaste}
\indentrel{3}\begin{verbatim}
  (5)
  10  9  8  7
- 544320x + 4354560x - 14696640x + 28615680x
+ 6  5  4  3
- 40085280x + 46656000x - 39411360x + 18247680x
+ 2
- 5870880x + 3317760x + 246240
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\[\begin{align*}
20 & 19 & 18 & 17 & 16 & 15 \\
& x & -12x & +53x & -76x & -159x & +676x \\
+ & 14 & 13 & 12 & 11 & 10 \\
& -391x & -1596x & +2527x & -1448x & +4977x \\
+ & 9 & 8 & 7 & 6 & 5 & 4 \\
& 1372x & +4907x & -3444x & -2381x & +2924x & +276x \\
+ & 3 & 2 \\
-1184x & +208x & +192x & -64 \\
\end{align*}\]

Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPageEmpty8}
\begin{paste}{FullPartialFractionExpansionXmpPageEmpty8}{FullPartialFractionExpansionXmpPagePatch8}
\pastebutton{FullPartialFractionExpansionXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3)\free{Fx }\bound{f2 }}
\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch9}
\begin{paste}{FullPartialFractionExpansionXmpPageFull9}{FullPartialFractionExpansionXmpPageEmpty9}
\pastebutton{FullPartialFractionExpansionXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{g := fullPartialFraction f\free{f2 }\bound{g2 }}
\indentrel{3}\begin{verbatim}
(9)
  1952  464  32
  2401  343  49
  + + 
  x - 2  2  3
  (x - 2)  (x - 2)
  +
  179  135
  - %A +
  2401  2401
  >
  x - %A
  2
  %A + %A + 1= 0
  +
  37  20
  %A +
  1029  1029
  >
  2
  (x - %A)
\end{verbatim}
Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch10}
\begin{paste}{FullPartialFractionExpansionXmpPageFull10}{FullPartialFractionExpansionXmpPageEmpty10}
\pastebutton{FullPartialFractionExpansionXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{g ::= Fx - f\free{f2 g2 Fx }}
\begin{verbatim}
(10) 0
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(11) 2
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\begin{verbatim}
(13) 0
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(14) 3
x
/
21 20 19 18 17 16 15
x + 2x + 4x + 7x + 10x + 17x + 22x +
14 13 12 11 10 9 8
30x + 36x + 40x + 47x + 46x + 49x + 43x +
7 6 5 4 3 2
38x + 32x + 23x + 19x + 10x + 7x + 2x + 1
Type: Fraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\begin{patch}{FullPartialFractionExpansionXmpPageEmpty14}
\begin{paste}{FullPartialFractionExpansionXmpPageEmpty14}{FullPartialFractionExpansionXmpPagePatch14}
\pastebutton{FullPartialFractionExpansionXmpPageEmpty14}{\showpaste}
\tab{5}\spadcommand{f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 + 10*x**17 + 17*x**16 + 22*x**15 + 30*x**14 + ... 46*x**10 + 49*x**9 + 43*x**8 + 38*x**7 + 32*x**6 + 23*x**5 + 19*x**4 + 10*x**3 + 7*x**2 + 2*x + 1)\free{Fx}\bound{f4}}
\end{paste}\end{patch}

\begin{patch}{FullPartialFractionExpansionXmpPagePatch15}
\begin{paste}{FullPartialFractionExpansionXmpPageFull15}{FullPartialFractionExpansionXmpPageEmpty15}
\pastebutton{FullPartialFractionExpansionXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{g := fullPartialFraction f\free{f4}\bound{g4}}
\indentrel{3}\begin{verbatim}
(15)
  \begin{array}{ccc}
1 & 1 & 19 \\
%A & %A & - \\
2 & 9 & 27 \\
\end{array}
\begin{array}{c}
> + > \\
\end{array}
\begin{array}{ccc}
x - %A & x - %A \\
2 & 2 \\
\end{array}
\begin{array}{c}
%A + 1= 0 & %A + %A + 1= 0 \\
\end{array}
+ \\
\begin{array}{ccc}
1 & 1 & 27 & 27 \\
\end{array}
\begin{array}{c}
> + 2 \\
\end{array}
\begin{array}{c}
%A + %A + 1= 0 \\
\end{array}
+ \\
\begin{array}{c}
\Sigma \\
5 & 2 \\
\end{array}
\begin{array}{c}
%A + %A + 1= 0 \\
\end{array}
, \\
\begin{array}{cccc}
96556567040 & 420961732891 & 3 \\
- %A + %A & 912390759099 & 912390759099 \\
+ & 59101056149 & 2 & 373545875923 \\
- %A - %A & 912390759099 & 912390759099 \\
+ & 529673492498 & \\
912390759099 \\
/ & x - %A \\
+ \\
\Sigma \\
5 & 2 \\
%A + %A + 1= 0 \\
\end{array}
\end{verbatim}
\end{patch}
\[
\frac{5580868}{94070601} - \frac{4204443}{94070601} + \frac{4321919}{94070601} - \frac{84614}{94070601} + \frac{5070620}{94070601} - \frac{1542141}{94070601} - \frac{2}{x - A} + \frac{84614}{94070601} + \frac{5070620}{94070601} - \frac{1542141}{94070601} - \frac{2}{x - A} + \frac{266953}{4529359} + \frac{94070601}{94070601}
\]

\[
\frac{1610957}{94070601} - \frac{2763014}{94070601} + \frac{2016775}{94070601} + \frac{266953}{4529359} + \frac{94070601}{94070601}
\]

\[
\frac{3}{x - A}
\]

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x, Fraction Integer))
3.47 function.ht

Functions in Axiom

In Axiom, a function is an expression in one or more variables. (Think of it as a function of those variables). You can also define a function by rules or use a built-in function. Axiom lets you convert expressions to compiled functions.

- Rational Functions
  - Quotients of polynomials.
- Algebraic Functions
  - Those defined by polynomial equations.
- Elementary Functions
  - The elementary functions of calculus.
- Simplification
  - How to simplify expressions.
- Pattern Matching
  - How to use the pattern matcher.

Additional Topics:
- Operator Algebra
  - The operator algebra facility.

⇐ “Topics” (TopicPage) 3.108 on page 1313
⇒ “Rational Functions” (RationalFunctionPage) 3.47 on page 561
⇒ “Algebraic Functions” (AlgebraicFunctionPage) 3.47 on page 564
⇒ “Elementary Functions” (ElementaryFunctionPage) 3.47 on page 567
⇒ “Simplification” (FunctionSimplificationPage) 3.47 on page 568
⇒ “Pattern Matching” (ugUserRulesPage) 10 on page 1949
⇒ “Operator Algebra” (OperatorXmpPage) 3.83 on page 1071

— function.ht —

\begin{page}\{FunctionPage\}\{Functions in Axiom\}

% In Axiom, a function is an expression in one or more variables. (Think of it as a function of those variables). You can also define a function by rules or use a built-in function. Axiom lets you convert expressions to compiled functions.
\beginscroll
\beginmenu
Rational Functions

To create a rational function, just compute the quotient of two polynomials:
\spadpaste{f := (x - y) / (x + y)\bound{f}}

Use the functions \spadfun{numer} and \spadfun{denom}:
\spadpaste{numer f\free{f}}
\spadpaste{denom f\free{f}}

Since these are polynomials, you can apply all the polynomial operations to them.
You can substitute values or
other rational functions for the variables using
the function \spadfun{eval}. The syntax for \spadfun{eval} is
similar to the one for polynomials:
\spadpaste{eval(f, x = 1/x)ree{f}}
\spadpaste{eval(f, [x = y, y = x])ree{f}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{RationatFunctionPagePatch1}
\begin{paste}{RationatFunctionPageFull1}{RationatFunctionPageEmpty1}
\pastebutton{RationatFunctionPageFull1}{\hidepaste}
\tab{5}\spadcommand{f := (x - y) / (x + y)ound{f}}
\indentrel{3}\begin{verbatim}
- y + x
(1)
y + x
Type: Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RationatFunctionPagePatch2}
\begin{paste}{RationatFunctionPageFull2}{RationatFunctionPageEmpty2}
\pastebutton{RationatFunctionPageFull2}{\hidepaste}
\tab{5}\spadcommand{numer free{f}}
\indentrel{3}\begin{verbatim}
(2) - y + x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RationatFunctionPagePatch3}
\begin{paste}{RationatFunctionPageFull3}{RationatFunctionPageEmpty3}
\pastebutton{RationatFunctionPageFull3}{\hidepaste}
\tab{5}\spadcommand{denom free{f}}
\indentrel{3}\begin{verbatim}
(3) y + x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.47. FUNCTION.HT

\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RationatFunctionPageEmpty3}
\begin{paste}{RationatFunctionPage3}{RationatFunctionPagePatch3}
\pastebutton{RationatFunctionPage3}{\showpaste}
\tab{5}\spadcommand{denom f} \free{f}
\end{paste}\end{patch}
\begin{patch}{RationatFunctionPagePatch4}
\begin{paste}{RationatFunctionPageFull4}{RationatFunctionPageEmpty4}
\pastebutton{RationatFunctionPageFull4}{\hidepaste}
\tab{5}\spadcommand{eval(f, x = 1/x)} \free{f}
\begin{verbatim}
- x y + 1
\end{verbatim}
\begin{verbatim}
(4)
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{RationatFunctionPageEmpty4}
\begin{paste}{RationatFunctionPageFull4}{RationatFunctionPageEmpty4}
\pastebutton{RationatFunctionPageFull4}{\hidepaste}
\tab{5}\spadcommand{eval(f, x = 1/x)} \free{f}
\end{patch}
\begin{patch}{RationatFunctionPagePatch5}
\begin{paste}{RationatFunctionPageFull5}{RationatFunctionPageEmpty5}
\pastebutton{RationatFunctionPageFull5}{\hidepaste}
\tab{5}\spadcommand{eval(f, [x = y, y = x])} \free{f}
\begin{verbatim}
y - x
\end{verbatim}
\begin{verbatim}
(5)
y + x
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{RationatFunctionPageEmpty5}
\begin{paste}{RationatFunctionPageFull5}{RationatFunctionPageEmpty5}
\pastebutton{RationatFunctionPageFull5}{\hidepaste}
\tab{5}\spadcommand{eval(f, [x = y, y = x])} \free{f}
\end{patch}
\end{verbatim}

Algebraic Functions

Algebraic functions are functions defined by algebraic equations. There are two ways of constructing them: using rational powers, or implicitly. For rational powers, use \spad{**}(or the system functions \spad{sqrt} and \spad{nthRoot} for square and nth roots):

\spad{f := \sqrt{1 + x ** (1/3)}}

To define an algebraic function implicitly use \spad{rootOf}. The following line defines a function \spad{y} of \spad{x} satisfying the equation \spad{y**3 = x*y - y**2 - x**3 + 1}:

\spad{y := rootOf(y**3 + y**2 - x*y + x**3 - 1, y)}

You can manipulate, differentiate or integrate an implicitly defined algebraic function like any other Axiom function:

\spad{differentiate(y, x)}

Higher powers of algebraic functions are automatically reduced during calculations:

\spad{(y + 1) ** 3}

But denominators, are not automatically rationalized:

\spad{g := inv f}

Use \spad{ratDenom} to remove the algebraic quantities from the denominator:

\spad{ratDenom g}

-- function.ht --

\begin{verbatim}
3
(1) \x + 1
Type: Expression Integer
\end{verbatim}
3.47. FUNCTION.HT

\begin{patch}{AlgebraicFunctionPagePatch2}
\begin{paste}{AlgebraicFunctionPageFull2}{AlgebraicFunctionPageEmpty2}
\pastebutton{AlgebraicFunctionPageFull2}{\hidepaste}
\tab{5}\spadcommand{y := rootOf(y**3 + y**2 - x*y + x**3 - 1, y)\bound{y}}
\indentrel{3}\begin{verbatim}
(2) y
Type: Expression Integer
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{AlgebraicFunctionPageEmpty2}
\begin{paste}{AlgebraicFunctionPageEmpty2}{AlgebraicFunctionPagePatch2}
\pastebutton{AlgebraicFunctionPageEmpty2}{\showpaste}
\tab{5}\spadcommand{y := rootOf(y**3 + y**2 - x*y + x**3 - 1, y)\bound{y}}
\end{paste}\end{patch}

\begin{patch}{AlgebraicFunctionPagePatch3}
\begin{paste}{AlgebraicFunctionPageFull3}{AlgebraicFunctionPageEmpty3}
\pastebutton{AlgebraicFunctionPageFull3}{\hidepaste}
\tab{5}\spadcommand{differentiate(y, x)\free{y}}
\indentrel{3}\begin{verbatim}
(3) 2
\indentrel{3}y - 3x
\indentrel{3}2
\indentrel{3}3y + 2y - x
Type: Expression Integer
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{AlgebraicFunctionPageEmpty3}
\begin{paste}{AlgebraicFunctionPageEmpty3}{AlgebraicFunctionPagePatch3}
\pastebutton{AlgebraicFunctionPageEmpty3}{\showpaste}
\tab{5}\spadcommand{differentiate(y, x)\free{y}}
\end{paste}\end{patch}

\begin{patch}{AlgebraicFunctionPagePatch4}
\begin{paste}{AlgebraicFunctionPageFull4}{AlgebraicFunctionPageEmpty4}
\pastebutton{AlgebraicFunctionPageFull4}{\hidepaste}
\tab{5}\spadcommand{(y + 1) ** 3\free{y}}
\indentrel{3}\begin{verbatim}
(4) 2y + (x + 3)y - x + 2
Type: Expression Integer
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{AlgebraicFunctionPageEmpty4}
\begin{paste}{AlgebraicFunctionPageEmpty4}{AlgebraicFunctionPagePatch4}
\end{paste}\end{patch}
\spadcommand{(y + 1) ** 3\free y}

\spadcommand{g := inv f\bound g \free y}

\verbatim
1
\endverbatim

\verbatim
3
x + 1
\endverbatim

Type: Expression Integer

\verbatim
32 3 3
(x - x + 1)\x + 1
\endverbatim

Type: Expression Integer

\verbatim
3
x + 1
\endverbatim
Elementary Functions

--- function.ht ---

Axiom has most of the usual functions from calculus built-in:
\spadpaste{f := x * log y * sin(1/(x+y))\bound{f}}
You can substitute values or another elementary functions for
the variables with the function \spadfun{eval}:
\spadpaste{eval(f, [x = y, y = x])\free{f}}
As you can see, the substitutions are made 'in parallel' as in the
case of polynomials. It's also possible to substitute expressions
for kernels instead of variables:
\spadpaste{eval(f, log y = acosh(x + sqrt y))\free{f}}

--- function.htm ---
\begin{patch}{ElementaryFunctionPageEmpty2}
\begin{paste}{ElementaryFunctionPageEmpty2}{ElementaryFunctionPagePatch2}
\pastebutton{ElementaryFunctionPageEmpty2}{\showpaste}
\tab{5}\spadcommand{eval(f, [x = y, y = x])}\free{f}
\end{paste}\end{patch}

\begin{patch}{ElementaryFunctionPagePatch3}
\begin{paste}{ElementaryFunctionPageFull3}{ElementaryFunctionPageEmpty3}
\pastebutton{ElementaryFunctionPageFull3}{\hidepaste}
\tab{5}\spadcommand{eval(f, log y = acosh(x + sqrt y))}\free{f}
\indentrel{3}\begin{verbatim}
1
(3) x sin()acosh(y + x)
y + x
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ElementaryFunctionPageEmpty3}
\begin{paste}{ElementaryFunctionPageEmpty3}{ElementaryFunctionPagePatch3}
\pastebutton{ElementaryFunctionPageEmpty3}{\showpaste}
\tab{5}\spadcommand{eval(f, log y = acosh(x + sqrt y))}\free{f}
\end{paste}\end{patch}

\begin{page}{FunctionSimplificationPage}{Simplification}
\beginscroll
Simplifying an expression often means different things at different times, so Axiom offers a large number of 'simplification' functions.

The most common one, which performs the usual trigonometric simplifications is \spadfun{simplify}:
\spadpaste{f := cos(x)/sec(x) * log(sin(x)**2/(cos(x)**2+sin(x)**2))}\bound{f}
\spadpaste{g := simplify f}\bound{g}\free{f}

If the result of \spadfun{simplify} is not satisfactory, specific transformations are available.

For example, to rewrite \spad{g} in terms of secants and cosecants instead of sines and cosines, issue:
\%
\spadpaste{h := sin2csc \cos2sec g}\bound{h}\free{g}
\end{scroll}

\end{page}
To apply the logarithm simplification rules to \spad{h}, issue:
\spadpaste{expandLog h\free{h}}
Since the square root of \spad{x**2} is the absolute value of \spad{x} and not \spad{x} itself, algebraic radicals are not automatically simplified, but you can specifically request it by calling \spadfun{rootSimp}:
\spadpaste{f1 := sqrt((x+1)**3)\bound{f1}}
\spadpaste{rootSimp f1\free{f1}}
There are other transformations which are sometimes useful. Use the functions \spadfun{complexElementary} and \spadfun{trigs} to go back and forth between the complex exponential and trigonometric forms of an elementary function:
\spadpaste{g1 := sin(x + cos x)\bound{g1}}
\spadpaste{g2 := complexElementary g1\bound{g2}\free{g1}}
\spadpaste{trigs g2\free{g2}}
Similarly, the functions \spadfun{realElementary} and \spadfun{htrigs} convert hyperbolic functions in and out of their exponential form:
\spadpaste{h1 := sinh(x + cosh x)\bound{h1}}
\spadpaste{h2 := realElementary h1\bound{h2}\free{h1}}
\spadpaste{htrigs h2\free{h2}}
Axiom has other transformations, most of which are in the packages
\spadtype{ElementaryFunctionStructurePackage},
\spadtype{TrigonometricManipulations},
\spadtype{AlgebraicManipulations},
and \spadtype{TranscendentalManipulations}.
If you need to apply a simplification rule not built into the system, you can use Axiom’s \downlink{pattern matcher} {ugUserRulesPage}.
\autobuttons
\end{page}
\[ \sin(x) + \cos(x) \]

(1)
\[ \sec(x) \]

Type: Expression Integer

\[ 2 \cos(x) \log(-\cos(x) + 1) \]

(2) \[ \text{Type: Expression Integer} \]

\[ \sec(x)^{-2} \]

(3) \[ \text{Type: Expression Integer} \]
\begin{verbatim}
2
log(sec(x) - 1) - 2log(sec(x))
\end{verbatim}

Type: Expression Integer
\end{verbatim}

\begin{verbatim}
3 2
\x + 3\x + 3\x + 1
\end{verbatim}

Type: Expression Integer
\end{verbatim}

\begin{verbatim}
(6) (x + 1)\x + 1
\end{verbatim}

Type: Expression Integer
\end{verbatim}
\begin{spadcommand}
\spad{\text{rootSimp } f1\text{ }free\{f1\}}
\end{spadcommand}

\begin{spadcommand}
\spad{g1 := \text{sin}(x + \text{cos } x)\text{ }\text{bound}\{g1\}}
\end{spadcommand}

\begin{verbatim}
(7) \text{sin}(\text{cos}(x) + x)
Type: \text{Expression Integer}
\end{verbatim}

\begin{spadcommand}
\spad{g2 := \text{complexElementary } g1\text{ }\text{bound}\{g2\}\text{ }\text{free}\{g1\}}
\end{spadcommand}

\begin{verbatim}
(8) 1
* \\
\text{%e}
** \\
2
\text{x}\text{\textbackslash - 1} + \text{x}\text{\textbackslash - 1}
\text{\textbackslash - 1} (\text{%e}) + 2\text{x}\text{\textbackslash - 1} \text{%e}
+ \\
\text{\textbackslash - 1}
/ \\
\text{x}\text{\textbackslash - 1}
** \\
2\text{%e}
+ \\
2
\[\frac{-1}{x-1} + \frac{2}{x-1} (x e^{-x}) + \frac{-1}{x-1} \]

\[2x e^{-x} + 2 e^{-x}\]

Type: Expression Integer

\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FunctionSimplificationPagePatch9}
\begin{paste}{FunctionSimplificationPageFull9}{FunctionSimplificationPageEmpty9}
\pastebutton{FunctionSimplificationPageFull9}{\hidepaste}
\indentrel{3}\begin{verbatim}
(9) sin(cos(x) + x)
\end{verbatim}
Type: Expression Integer
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FunctionSimplificationPageEmpty9}
\begin{paste}{FunctionSimplificationPageEmpty9}{FunctionSimplificationPagePatch9}
\pastebutton{FunctionSimplificationPageEmpty9}{\showpaste}
\indentrel{5}\spadcommand{trigs g2\free{g2}}
\end{paste}\end{patch}

\begin{patch}{FunctionSimplificationPagePatch10}
\begin{paste}{FunctionSimplificationPageFull10}{FunctionSimplificationPageEmpty10}
\pastebutton{FunctionSimplificationPageFull10}{\hidepaste}
\indentrel{5}\spadcommand{h1 := sinh(x + cosh(x)\bound{h1}}
\indentrel{10}\begin{verbatim}
(10) sinh(cosh(x) + x)
\end{verbatim}
Type: Expression Integer
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{FunctionSimplificationPageEmpty10}
\begin{paste}{FunctionSimplificationPageEmpty10}{FunctionSimplificationPagePatch10}
\pastebutton{FunctionSimplificationPageEmpty10}{\showpaste}
\indentrel{5}\spadcommand{h1 := sinh(x + cosh(x)\bound{h1}}
\end{patch}
\[ h_2 := \text{realElementary} \quad h_1 \quad \text{bound} \quad h_2 \quad \text{free} \quad h_1 \]

\[
\begin{verbatim}
\text{Type: Expression Integer}
\end{verbatim}
\]

\[ h_{\text{trig}} \quad h_2 \quad \text{free} \quad h_2 \]

\[
\text{Type: Expression Integer}
\]

\[ \text{Type: Expression Integer} \]
Solving systems of polynomial equations with the Gröbner basis algorithm can often be very time consuming because, in general, the algorithm has exponential run-time. These systems, which often come from concrete applications, frequently have symmetries which are not taken advantage of by the algorithm. However, it often happens in this case that the polynomials which occur during the Gröbner calculations are reducible. Since Axiom has an excellent polynomial factorization algorithm, it is very natural to combine the Groebner and factorization algorithms.

\spadtype{GroebnerFactorizationPkg} exports the \axiomFunFrom{groebnerFactorize}{GroebnerFactorizationPkg} operation which implements a modified Gröbner basis algorithm. In this algorithm, each polynomial that is to be put into the partial list of the basis is first factored. The remaining calculation is split into as many parts as there are irreducible factors. Call these factors \$p_1, \ldots, p_n\$ to \spad{p1, ..., pn}.

In the branches corresponding to \$p_2, \ldots, p_n\$ to \spad{p2, ..., pn} the factor \$p_1\$ to \spad{p1} can be divided out, and so on. This package also contains operations that allow you to specify the polynomials that are not zero on the common roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan \$\text{C}_6\text{H}_{12}\$ \{C6H12\}, the six carbon atoms each sit in the center of gravity of a tetrahedron that has two hydrogen atoms and two carbon atoms at its corners. We first normalize and set the length of each edge to 1. Hence, the distances of one fixed carbon atom to each of its
immediate neighbours is 1. We will denote the distances to the other three carbon atoms by \(x\), \(y\) and \(z\).

%% reference?

A. Dress developed a theory to decide whether a set of points and distances between them can be realized in an \(n\)-dimensional space. Here, of course, we have \(n = 3\).

For the cyclohexan, the distances have to satisfy this equation.

They also must satisfy the equations given by cyclic shifts of the indeterminates.

The union of the solutions of this list is the solution of our original problem. If we impose positivity conditions, we get two relevant ideals. One ideal is zero-dimensional, namely \(x = y = z = 11/3\), and this determines the ‘‘boat’’ form of the cyclohexan. The other ideal is one-dimensional, which means that we have a solution space given by one parameter. This gives the ‘‘chair’’ form of the cyclohexan. The parameter describes the angle of the ‘‘back of the chair.’’

\(\text{\texttt{axiomFunFrom\{groebnerFactorize\}\{GroebnerFactorizationPkg\}}}\) has an optional \(\text{\texttt{axiomType\{Boolean\}}}\)-valued second argument. When it is \(\text{\texttt{true}}\) partial results are displayed, since it may happen that the calculation does not terminate in a reasonable time. See the source code for \(\text{\texttt{spad\{true\}}}\) in \(\text{\texttt{bf groebf\{spadFileExt\}}}\) for more details about the algorithms used.
\begin{verbatim}
0 1 1 1 1 1
1 0 1 x
3 3
8
1 1 0 1 y
3
(1) 8 8
1 1 0 1
3 3
8
1 x 1 0 1
3
8
1 y 1 0
3 3
Type: SquareMatrix(6,DistributedMultivariatePolynomial([x,y,z],Fraction Integer))
\end{verbatim}

\begin{verbatim}
2 2 22 2 25 2 22 2 388 250
- x y + x y - x + x y - x y - x
3 9 3 9 9 27
+ 25 2 250 14575
- y - y
9 27 81
Type: DistributedMultivariatePolynomial([x,y,z],Fraction Integer)
\end{verbatim}
\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{GroebnerFactorizationPackageXmpPageEmpty2}
\begin{paste}{GroebnerFactorizationPackageXmpPageEmpty2}{GroebnerFactorizationPackageXmpPagePatch2}
\pastebutton{GroebnerFactorizationPackageXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{eq := determinant mfzn\free{mfzn }\bound{eq }}
\end{paste}\end{patch}
\begin{patch}{GroebnerFactorizationPackageXmpPagePatch3}
\begin{paste}{GroebnerFactorizationPackageXmpPageFull3}{GroebnerFactorizationPackageXmpPageEmpty3}
\pastebutton{GroebnerFactorizationPackageXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{groebnerFactorize \[eq, eval(eq, \[x,y,z\], \[y,z,x\]), eval(eq, \[x,y,z\], \[z,x,y\])\]\free{eq }}
\indentrel{3}\begin{verbatim}
(3)
[22 22 22 121
 [x y + x z - x + y z - y - z + ,
 3 3 3 3
 2 22 25 2 22 25
 x z - x z + x + y z - y z + y
 3 9 3 9
   +
 22 2 388 250
   - z + z +
 3 9 27
 ,
 2 2 22 2 25 2 22 2 388 250
 y z - y z + y - y z + y z + y
 3 9 3 9
   +
 25 2 250 14575
 z + z -
 9 27 81
 ]
 ,
 21994 2 21994 4427 463
 [x + y - ,y - y + ,z - ],
 5625 5625 675 87
 2 1 11 5 265 2 38 265
 [x - x z - x z + ,y - z, z - z + ],
 2 2 6 18 3 9
 25 11 11 11 11
 [x - ,y - ,z - ], [x - ,y - ,z - ],
 9 3 3 3 3 3 3 3 3
 5 5 5 19 5 5
 [x + ,y + ,z + ], [x - ,y + ,z + ]
 3 3 3 3 3 3 3 3 3
\end{verbatim}
\end{patch}
\end{verbatim}
Type: List List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{GroebnerFactorizationPackageXmpPageEmpty3}
\begin{paste}{GroebnerFactorizationPackageXmpPageEmpty3}{GroebnerFactorizationPackageXmpPagePatch3}
\pastebutton{GroebnerFactorizationPackageXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]), eval(eq, [x,y,z], [z,x,y])]}\free{eq}}
\end{paste}\end{patch}

3.49 gloss.ht

Glossary

<table>
<thead>
<tr>
<th>gloss.ht</th>
</tr>
</thead>
<tbody>
<tr>
<td>! (syntax) Suffix character for destructive operations.</td>
</tr>
<tr>
<td>, (syntax) a separator for items in a tuple, e.g. to separate arguments of a function f(x,y).</td>
</tr>
<tr>
<td>\rightarrow (syntax) the expression a \rightarrow b is equivalent to if a then exit b.</td>
</tr>
<tr>
<td>? 1. (syntax) a suffix character for Boolean-valued function names, e.g. odd?. 2. Suffix character for pattern variables. 3. The special type ? means don't care. For example, the declaration</td>
</tr>
<tr>
<td>x : Polynomial ?</td>
</tr>
<tr>
<td>means that values assigned to x must be polynomials over an arbitrary underlying domain.</td>
</tr>
<tr>
<td>abstract datatype a programming language principle used in Axiom where a datatype is defined in two parts: (1) a public part describing a set of exports, principally operations</td>
</tr>
</tbody>
</table>

⇐ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “Search” (LispFunctions) 3.71 on page 952

— gloss.ht —
(syntax) a separator for items in a tuple.
\spadignore{e.g.} to separate arguments of a function \spad{f(x,{}y)}.
\item newline{em \menuitemstyle{}\em =>}\space{}
(syntax) the expression \spad{a => b} is equivalent to \spad{if a then \spad{exit} \spad{b}}.
1. (syntax) a suffix character for Boolean-valued \spadfun{function} names, \spadignore{e.g.} \spadfun{odd?}. 2. Suffix character for pattern variables. 3. The special type \spad{?} means \{em don’t care\}. For example, the declaration \center{\spad{x : Polynomial ?}}, \{em means that values assigned to \spad{x} must be polynomials over an arbitrary \spad{underlying domain}.
\item newline{em \menuitemstyle{}\em abstract datatype}\space{}
a programming language principle used in Axiom where a datatype is defined in two parts: \{em a public\} part describing a set of \spad{exports}, \{em principally operations that apply to objects of that type\}, and \{em a private\} part describing the implementation of the datatype usually in terms of a \spad{representation} for objects of the type. Programs which create and otherwise manipulate objects of the type may only do so through its exports. The representation and other implementation information is specifically hidden.
\item newline{em \menuitemstyle{}\em abstraction}\space{}
described functionally or conceptually without regard to implementation
\item newline{em \menuitemstyle{}\em accuracy}\space{}
the degree of exactness of an approximation or measurement. In computer algebra systems, computations are typically carried out with complete accuracy using integers or rational numbers of indefinite size. Domain \spadtype{Float} provides a function \spadfunFrom{precision}{Float} to change the precision for floating point computations. Computations using \spadtype{DoubleFloat} have a fixed precision but uncertain accuracy.
\item newline{em \menuitemstyle{}\em add-chain}\space{}
a hierarchy formed by \spad{domain extensions}. If domain \spad{A} extends domain \spad{B} and domain \spad{B} extends domain \spad{C}, then \spad{A} has \{em add-chain\} \spad{B}-\spad{C}.
\item newline{em \menuitemstyle{}\em aggregate}\space{}
a data structure designed to hold multiple values. Examples of aggregates are \spadtype{List}, \spadtype{Set}, \spadtype{Matrix} and \spadtype{Bits}.
\item newline{em \menuitemstyle{}\em AKCL}\space{}
Austin Kyoto Common LISP, \{em a version of \spad{KCL}\} produced by William Schelter, \{em Austin,\} Texas.
\item newline{em \menuitemstyle{}\em algorithm}\space{}
a step-by-step procedure for a solution of a problem; a program
\item newline{em \menuitemstyle{}\em ancestor}\space{}
(of a domain) a category which is a \spad{parent} of the domain, or a \spad{parent} of a \spad{parent}, and so on.
\item newline{em \menuitemstyle{}\em application}\space{}
(\texttt{application}) an expression denoting "application" of a function to a set of \spad{argument} parameters. Applications are written as a \spad{parameterized form}. For example, \{em the form \spad{f(x,{}y)}\} indicates the "application of the function \spad{f} to the tuple of
arguments \spad{x} and \spad{y}”. See also \spadgloss{evaluation} and \spadgloss{invocation}.

See \spadgloss{application}.

1. (actual argument) a value passed to a function at the time of a \spadglossSee{function call}{application}; also called an \spad{actual parameter}. 2. (formal argument) a variable used in the definition of a function to denote the actual argument passed when the function is called.

1. (function) the number of arguments. 2. (operator or operation) corresponds to the arity of a function implementing the operator or operation.

\item \{\em assignment\} \{\em (syntax)\} an expression of the form \spad{x := e}, meaning “assign the value of \spad{e} to \spad{x}”. After \spadgloss{evaluation}, \spad{\{\em assignment\}} the \spadgloss{variable} \spad{x} \spadglossSee{points}{pointer} to an object obtained by evaluating the expression \spad{e}. If \spad{x} has a \spadgloss{type} as a result of a previous \spadgloss{declaration}, \spad{x} must have that type. An interpreter must often \spadglossSee{coerce}{coercion} the value of \spad{e} to make that happen. For example, in the interpreter, \center{\spad{x : Float := 11}} first \spadglossSee{declares}{declaration} \spad{x} to be a float. This declaration causes the interpreter to coerce 11 to 11.0 in order to assign a floating point value to \spad{x}.

\item \{\em attribute\} \{\em (syntax)\} a name or functional form denoting \{\em any\} useful computational property. For example, \{\em \spadatt{commutative}(\spad{"*"})\} asserts that “\spadfun{\ast} is commutative”. Also, \{\em \spadatt{finiteAggregate}\} is used to assert that an aggregate has a finite number of immediate components.

\item \{\em basis\} \spad{S} is a basis of a module \spad{M} over a \spadgloss{ring} if \spad{S} generates \spad{M}, and \spad{S} is linearly independent

\item \{\em benefactor\} (of a given domain) a domain or package that the given domain explicitly references (for example, \{\em \spadgloss{calls}{calls functions from}\} in its implementation \spad{\{\em operation or function with \spadgloss{arity}\} 2 \spadgloss{arity}\} \spad{\{\em binding\}} the association of a variable with properties such as \spadgloss{value} and \spadgloss{type}. The top-level \spadgloss{environment} in the interpreter consists of bindings for all user variables and functions. Every \spadgloss{function} has an associated set of bindings, \spad{\{\em binding\}} one for each formal \spadgloss{argument} and \spadgloss{local variable}. \spad{\{\em block\}} \spad{\{\em (syntax)\} a control structure where expressions are sequentially \spadglossSee{evaluated}{evaluation}. \spad{\{\em body\}} \spad{\{\em boolean\}}
objects denoted by the \spad{true} and \spad{false}; elements of domain \spad{Boolean}. See also \spad{Bits}.

\item a \spad{function} in the standard Axiom library. Contrast \spad{user function}.

\item (noun) a mechanism for immediate retrieval of previously computed data. For example, a function which does a lengthy computation might store its values in a \spad{hash table} using argument as a key. The hash table then serves as a cache for the function (see also \spad{set function cache}). Also, when \spad{recurrence relations} which depend upon \spad{n} previous values are compiled, the previous \spad{n} values are normally cached (use \spad{set functions recurrence} to change this).

\item (verb) to save values in a cache.

\item the part of the \spad{domain constructor} that defines the functions implemented by the constructor.

\item (syntax) an operator used to conditionally evaluate code based on the branch of a \spad{Union}. For example, if value \spad{u} is \spad{Integer}, the conditional expression \spad{if u case Integer then A else B} evaluate \spad{A} if \spad{u} is an integer and \spad{B} otherwise.

\item the distinguished object denoting the type of a category; the class of all categories.

\item second-order types which serve to define useful "classification worlds" for domains, such as algebraic constructs (e.g. groups, rings, fields), and data structures (e.g. homogeneous aggregates, collections, dictionaries). Examples of categories are \spad{Ring} ("the class of all rings") and \spad{Aggregate} ("the class of all aggregates"). The categories of a given world are arranged in a hierarchy (formally, a directed acyclic graph). Each category inherits the properties of all its ancestors. Thus, for example, the category of ordered rings inherits the properties of the category of rings and those of the ordered sets. Categories provide a database of algebraic knowledge and ensure mathematical correctness, that "matrices of polynomials" is correct but "polynomials of hash tables" is not, that the multiply operation for "polynomials of continued fractions" is commutative, but that for "matrices of power series" is not. Optionally provide "default definitions" for operations they export. Categories are defined in Axiom by functions called \spad{category constructors}. Technically, a category designates a class of domains with common operations and attributes but usually with different functions and representations for its constituent objects. Categories are always defined using the Axiom library language.
Glossary

3.49. GLOSS.HT

(see also \spadgloss{category extension}). See also file \catdef.spad for definitions of basic algebraic categories in Axiom.

\item\newline\em category constructor\newline a function that creates categories,{} described by an abstract datatype in the Axiom programming language. For example,{} the category constructor \spad{Module} is a function which takes a domain parameter \spad{R} and creates the category "modules over \spad{R}".

\item\newline\em category extension\newline created by a category definition,{} an expression usually of the form \spad{A == B with ...}. In English,{} this means "category A is a \spad{B} with the new operations and attributes as given by .... See,{} for example,{} file \catdef.spad for a definitions of the algebra categories in Axiom,{} \aggcat.spad for data structure categories.

\item\newline\em category hierarchy\newline hierarchy formed by category extensions. The root category is \spadtype{Object}. A category can be defined as a \spadgloss{Join} of two or more categories so as to have multiple \spadgloss{parents}. Categories may also have parameterized so as to allow conditional inheritance.

\item\newline\em character\newline 1. an element of a character set,{} as represented by a keyboard key. 2. a component of a string. For example,{} the 0th element of the string \spad{"hello there"} is the character \emph{h}.

\item\newline\em client\newline (of a given domain) any domain or package that explicitly calls functions from the given domain

\item\newline\em coercion\newline an automatic transformation of an object of one \spadgloss{type} to an object of a similar or desired target type. In the interpreter,{} coercions and \spadgloss{retractions} are done automatically by the interpreter when a type mismatch occurs. Compare \spadgloss{conversion}.

\item\newline\em comment\newline textual remarks imbedded in code. Comments are preceded by a double dash ((\em --)). For Axiom library code,{} stylized comments for on-line documentation are preceded by a two plus signs ((\em ++)).

\item\newline\em Common LISP\newline A version of \spadgloss{LISP} adopted as an informal standard by major users and suppliers of LISP

\item\newline\em compile-time\newline the time when category or domain constructors are compiled. Contrast \spadgloss{run-time}.

\item\newline\em compiler\newline a program that generates low-level code from a higher-level source language. Axiom has three compilers. A \em graphics compiler\em converts graphical formulas to a compiled subroutine so that points can be rapidly produced for graphics commands. An \em interpreter compiler\em optionally compiles \spadgloss{user functions} when first \spadglossSee{invoked}{invocation} (use \spad{set functions compile} to turn this feature on). A \em library compiler\em compiles all constructors (not available in Release 1)
In Axiom, domains are objects. This term is used to distinguish the objects which are members of domains rather than domains themselves.

- **Conditional**
  - A control structure of the form `if A then B else C`; The evaluation of `A` produces `true` or `false`. If `true`, `B` evaluates to produce a value; otherwise `C` evaluates to produce a value. When the value is not used, `else C` part can be omitted.

- **Constant**
  - (syntax) a reserved word used in signatures in Axiom programming language to signify that an operation always returns the same value. For example, the signature `0: constant -> $` in the source code of `AbelianMonoid` tells the Axiom compiler that `0` is a constant so that suitable optimizations might be performed.

- **Constructor**
  - A function which creates a category, domain, or package.

- **Continuation**
  - When a line of a program is so long that it must be broken into several lines, all but the first line are called continuation lines. If such a line is given interactively, then each incomplete line must end with an underscore.

- **Control Structure**
  - Program structures which can specify a departure from normal sequential execution. Axiom has four kinds of control structures: blocks, case statements, conditionals, and loops.

- **Conversion**
  - The transformation of an object on one type to one of another type. Conversions performed automatically are called coercions. These happen when the interpreter has a type mismatch and a similar or declared target type is needed. In general, the user must use the infix operation `::` to cause this transformation.

- **Copying Semantics**
  - The programming language semantics used in Pascal but not in Axiom. See also pointer semantics for details.

- **Data Structure**
  - A structure for storing data in the computer. Examples are lists and hash tables.

- **Datatype**
  - Equivalent to domain in Axiom.

- **Declaration**
  - (syntax) an expression of the form `x : T` where `T` is some type. A declaration forces all values of the type `T` to be of that type. If a value is of a different type, the interpreter will try to coerce the value to type `T`. Declarations are necessary in case of ambiguity or when a user wants to introduce an unexposed domain.
3.49. GLOSS.HT

a function defined by a `\spadgloss{category}`. Such definitions appear
category definitions of the form `\spad{C: Category == T add I}` in an
optional implementation part `\spad{I}` to the right of the keyword `\spad{add}`.

A optional `\spadgloss{package}` of `\spadgloss{functions}` associated with
a category. Such functions are necessarily defined in terms over other
functions exported by the category.

**default package**
a optional `\spadgloss{package}` of `\spadgloss{functions}` associated with
a category. Such functions are necessarily defined in terms over other
functions exported by the category.

**definition**

- **(syntax)** 1. An expression of the form `\spad{f(a) == b}` defining
  function `\spad{f}` with `\spadgloss{formal arguments}` `\spad{a}` and
  `\spadgloss{body}` `\spad{b}`; equivalent to the statement
  `\spad{f == (a) +-> b}`. 2. An expression of the form `\spad{a == b}`
  where `\spad{a}` is a `\spadgloss{symbol}`, equivalent to `\spad{a() == b}`.
  See also `\spadgloss{macro}` where a similar substitution is done at
  `\spadgloss{parse}` time.

- **delimiter**
a `\spadgloss{character}` which marks the beginning or end of some
  syntactically correct unit in the language, `\spadignore{e.g.}`
  `\spadSyntax{"} for strings, `\spadignore{e.g.}` blanks for identifiers.

**destructive operation**
An operation which changes a component or structure of a value. In
Axiom, all destructive operations have names which end with an
exclamation mark (`\spad{em !}`). For example, domain `\spad{List}` has
two operations to reverse the elements of a list, one named
`\spadfunFrom{reverse}{List}` which returns a copy of the original list with
the elements reversed, one named `\spadfunFrom{reverse!}{List}` which
reverses the elements `\spad{em in place}` thus destructively changing the
original list.

- **documentation**
  1. on-line or hard copy descriptions of Axiom; 2. text in library
  code preceded by `\spad{++}` comments as opposed to general comments
  preceded by `\spad{--}`.

- **domain**
  (basic concept) A domain corresponds to the usual notion of
  abstract datatypes: that of a set of values and a set of "exported
  operations" for the creation and manipulation of these values. Datatypes
  are parameterized, dynamically constructed, and can combine with others
  in any meaningful way, `\spadignore{e.g.}` "lists of floats"
  (`\spadtype{List Float}`), "fractions of polynomials with integer
  coefficients" (`\spadtype{Fraction Polynomial Integer}`), "matrices
  of infinite \spadgloss{streams} of cardinal numbers"
  (`\spadtype{Matrix Stream CardinalNumber}`). The term `\spad{domain}` is
  actually abbreviated `\spad{domain of computation}`. Technically, a
  domain denotes a class of objects, a class of \spadgloss{operations}
  for creating and other manipulating these objects, and a class of
  \spadgloss{attributes} describing computationally useful properties.
  Domains also provide \spadgloss{functions} for each operation often in
terms of some \spadgloss{representation} for the objects. A domain
itself is an \spadgloss{object} created by a \spadgloss{function}
called a \spadgloss{domain constructor}. 

a function that creates domains, described by an abstract datatype in the Axiom programming language. Simple domains like \spad{Integer} and \spad{Boolean} are created by domain constructors with no arguments. Most domain constructors take one or more parameters, one usually denoting an underlying domain. For example, the domain \spad{Matrix(R)} denotes "matrices over \spad{R}". Domains \spad{Mapping}, \spad{Record}, and \spad{Union} are primitive domains. All other domains are written in the Axiom programming language and can be modified by users with access to the library source code.

A domain constructor \spad{A} is said to extend a domain constructor \spad{B} if \spad{A}'s definition has the form \spad{A == B add ...}. This intuitively means "functions not defined by \spad{A} are assumed to come from \spad{B}". Successive domain extensions form \spad{add-chains} affecting the the \spad{search order} for functions not implemented directly by the domain during \spad{dynamic lookup}.

using an infix dot (\spad{.}) for function application. If \spad{u} is the list \spad{[7, 4, -11]} then both \spad{u(2)} and \spad{u.2} return 4. Dot notation nests to left. Thus \spad{f . g . h} is equivalent to \spad{(f . g) . h}.

that which is done at run-time as opposed to \spad{compile-time}. For example, the interpreter will build the domain "matrices over integers" dynamically in response to user input. However, the compilation of all functions for matrices and integers is done during \spad{compile-time}. Constrast \spad{static}.

In Axiom, a \spad{domain} may or may not explicitly provide \spad{function} definitions for all of its exported \spad{operations}. These definitions may instead come from domains in the \spad{add-chain} or from \spad{default packages}. When a \spad{function call} is made for an operation in the domain, up to five steps are carried out. If the domain itself implements a function for the operation, that function is returned. Each of the domains in the \spad{add-chain} are searched for one which implements the function; if found, the function is returned. Each of the \spad{default packages} for the domain are searched in order of the \spad{lineage}. If any of the default packages implements the function, the first one found is returned. Each of the \spad{default packages} for each of the domains in the \spad{add-chain} are searched in the order of their \spad{lineage}. If any of the default packages implements the function, the first one found is returned. If all of the above steps fail, an error message is reported.
the unique value of objects with type \spadtype{Void}.

Glossary:

- **environment**
  - a set of \spadgloss{bindings}.

- **evaluation**
  - a systematic process which transforms an \spadgloss{expression} into an object called the \spadgloss{value} of the expression. Evaluation may produce \spadgloss{side effects}.

- **exit**
  - \{reserved word\} an \spadgloss{operator} which forces an exit from the current block. For example, \{the \spadgloss{block}\} \spad{(a := 1; if i > 0 then exit a; a := 2)} will prematurely exit at the second statement with value 1 if the value of \spad{i} is greater than 0. See \spadgloss{\spad{=>}} for an alternate syntax.

- **explicit export**
  - 1. (of a domain \spad{D}) any \spadgloss{attribute}, \spadgloss{operation}, or \spadgloss{category} explicitly mentioned in the \spadgloss{type} specification part \spad{T} for the domain constructor definition \spad{\spad{D: T == I}} 2. (of a category \spad{C}) any \spadgloss{attribute}, \spadgloss{operation}, \spad{category} explicitly mentioned in the \spadgloss{type} specification part \spad{T} for the domain constructor definition \spad{\spad{C: \spadgloss{Category} == T}}

- **export**
  - \spadgloss{explicit export} or \spadgloss{implicit export} of a domain or category

- **expose**
  - some constructors are \{exposed\}, others \{unexposed\}. Exposed domains and packages are recognized by the interpreter. Use \spadsys{\set expose} to control change what is exposed. To see both exposed and unexposed constructors, \{use \spad{Browse()} with give the system command \spadsyscom{\set hyperdoc browse exposure on}\}. Unexposed constructors will now appear prefixed by star(\spad{*}).

- **expression**
  - 1. any syntactically correct program fragment. 2. an element of domain \spadtype{Expression}

- **extend**
  - see \spadgloss{category extension} or \spadgloss{domain extension}

- **field**
  - \{algebra\} a \spadgloss{domain} which is \spadgloss{ring} where every non-zero element is invertible and where \spad{xy=yx}; a member of category \spadtype{Field}. For a complete list of fields, \{click on \{\spad{Domains}\} under \{\spad{Cross Reference}\} for \spadtype{Field}\}.

- **file**
  - a program or collection of data stored on disk, \{tape or other medium\}

- **float**
  - a floating-point number with user-specified precision; an element of domain \spadtype{Float}. Floats are \spadgloss{literals} which are written two ways: without an exponent (\{\spad{3.1416}\}), \{or with an exponent \spad{3.1416E-12}\}). Use function \spadgloss{precision} to change the precision of the mantissa.
CHAPTER 3. HYPERDOC PAGES

(20 digits by default). See also \spadgloss{small float}.

\item\newline{\em \menuitemstyle{}}{\em formal parameter}\space{}
(of a function) an identifier \spadglossSee{bound}{binding} to the value of an actual \spadgloss{argument} on \spadgloss{invocation}. In the function definition \spad{f(x,\{y\}) == u},\{} for example,\{} \spad{x}
and \spad{y} are the formal parameter.

\item\newline{\em \menuitemstyle{}}{\em frame}\space{}
the basic unit of an interactive session; each frame has its own \spadgloss{step number},\{} \spadgloss{environment},\{} and \spadgloss{history}. In one interactive session,\{} users can create and drop frames,\{} and have several active frames simultaneously.

\item\newline{\em \menuitemstyle{}}{\em free}\space{}
{\em (syntax)} A keyword used in user-defined functions to declare that a variable is a \spadgloss{free variable} of that function. For example,\{} the statement \spad{free x} declares the variable \spad{x} within the body of a function \spad{f} to be a free variable in \spad{f}. Without such a declaration,\{} any variable \spad{x} which appears on the left hand side of an assignment is regarded as a \spadgloss{local variable} of that function. If the intention of the assignment is to give an value to a \spadgloss{global variable} \spad{x},\{} the body of that function must contain the statement \spad{free x}.

\item\newline{\em \menuitemstyle{}}{\em function}\space{}
implementation of \spadgloss{operation}; it takes zero or more \spadgloss{argument} parameters and produces zero or more values. Functions are objects which can be passed as parameters to functions and can be returned as values of functions. Functions can also create other functions (see also \spadgloss{application} and \spadgloss{invocation}). The terms \{\em operation\} and \{\em function\} are distinct notions in Axiom. An operation is an abstraction of a function,\{} described by declaring a \spadgloss{signature}. A function is created by providing an implementation of that operation by some piece of Axiom code. Consider the example of defining a user-function \spad{fact} to compute the \spadfun{factorial} of a nonnegative integer. The Axiom statement \spad{fact: Integer -> Integer} describes the operation,\{} whereas the statement \spad{fact(n) = \text{reduce}(\star,\{1..n\})} defines the functions. See also \spadgloss{generic function}.

\item\newline{\em \menuitemstyle{}}{\em function body}\space{}
the part of a \spadgloss{function}\spad{'}s definition which is evaluated when the function is called at \spadgloss{run-time}; the part of the function definition to the right of the \spadSyntax{\spad{==}}. \spadgloss{garbage collection}\space{}
a system function that automatically recycles memory cells from the \spadgloss{heap}. Axiom is built upon \spadgloss{Common LISP} which provides this facility.
a mechanism for reclaiming storage in the \spadgloss{heap}.
\item a complex-valued expression, \spadignore{e.g.} one with both a real
and imaginary part; a member of a \spadtype{Complex} domain.
\item the use of one function to operate on objects of different types; One
might regard Axiom as supporting generic \spadgloss{operations}
but not generic functions. One operation \spad{+: (D,D) -> D} exists
for adding elements in a ring; each ring however provides its own
type-specific function for implementing this operation.
\item A variable which can be referenced freely by functions. In Axiom,
all top-level user-defined variables defined during an interactive user
session are global variables. Axiom does not allow \spad{fluid variables},
that is, variables \spadgloss{bound} by functions which can be referenced by functions those functions call.
\item \spadgloss{Groebner basis} a special basis for a polynomial ideal that allows a
simple test for membership. It is useful in solving systems of polynomial
equations.
\item \spadgloss{group} a monoid where every element has a multiplicative inverse.
\item A data structure that efficiently maps a given object to another. A hash
table consists of a set of \spad{entries}, each of which associates a
\spad{key} with a \spad{value}. Finding the object stored under a key can
be very fast even if there are a large number of entries since keys are
\spadhashed into numerical codes for fast lookup.
\item an area of storage used by data in programs. For example, Axiom will
use the heap to hold the partial results of symbolic computations. When
cancellations occur, these results remain in the heap until
\spadgloss{garbage collected}
\item a mechanism which records the results for an interactive computation.
Using the history facility, users can save computations, review
previous steps of a computation, and restore a previous interactive
session at some later time. For details, issue the system command
\spad{)history ?} to the interpreter. See also \spadgloss{frame}.
\item \spadgloss{ideal} a subset of a ring that is closed under addition and
multiplication by arbitrary ring elements, \spadignore{i.e.}
it's a module over the ring.
\item \spadgloss{identifier} an Axiom name; a \spad{literal} of type
\spadtype{Symbol}. An identifier begins with an alphabetical character or
\% and may be followed by alphabetic characters, digits, \? or !.
Certain distinguished \spadgloss{reserved words} are not allowed as
identifiers but have special meaning in the Axiom.
\item an \spadtype{immutable}
an object is immutable if it cannot be changed by an operation; not a mutable object. Algebraic objects generally immutable: changing an algebraic expression involves copying parts of the original object. One exception is a matrix object of type Matrix. Examples of mutable objects are data structures such as those of type List. See also pointer semantics.

1. a variable that counts the number of times a loop is repeated. 2. the “address” of an element in a data structure (see also category LinearAggregate).

{\em infix\} an operator placed between two operands; also called a binary operator, e.g. \spad{a + b}. An infix operator may also be used as a prefix, e.g. \spad{+(a,{}b)} is also permissible in the Axiom language. Infix operators have a relative precedence.

a rectangular area on a Hyperdoc screen into which users can enter text. to build a category, domain, or package at run-time a \spad{literal} object of domain \spad{Integer}, the class of integers with an unbounded number of digits. Integer literals consist of one or more consecutive digits (0-9) with no embedded blanks. Underscores can be used to separate digits in long integers if desirable. a system where the user interacts with the computer step-by-step the subsystem of Axiom responsible for handling user input during an interactive session. The following somewhat simplified description of the typical action of the interpreter. The interpreter parses the user’s input expression to create an expression tree then does a bottom-up traversal of the tree. Each subtree encountered which is not a value consists of a root node denoting an operation name and one or more leaf nodes denoting operands. The interpreter resolves type mismatches and uses type-inferencing and a library database to determine appropriate types of the operands and the result, and an operation to be performed. The interpreter then builds a domain to perform the indicated operation, then invokes a function from the domain to compute a value. The subtree is then replaced by that value and the process continues. Once the entire tree has been processed, the value replacing the top node of the tree is displayed back to the user as the value of the expression.
3.49. GLOSS.HT

-of a function) the run-time process involved in
\spadglossSee{evaluating}{evaluation} a a \spadgloss{function}
\spadgloss{application}. This process has two steps. First,{} a
local \spadgloss{environment} is created where \spadgloss{formal arguments}
are locally \spadglossSee{bound}{binding} by \spadgloss{assignment} to
their respective actual \spadgloss{argument}. Second,{} the
\spadgloss{function body} is evaluated in that local environment.
The evaluation of a function is terminated either by completely
evaluating the function body or by the evaluation of a
\spadSyntax{return} expression.

iterated evaluation of an expression or a sequence of expressions.
Iterations use the reserved words \spadSyntax{for},{}
\spadSyntax{while},{} and \spadSyntax{repeat}.
- a primitive Axiom function taking two or more categories as
arguments and producing a category containing all of the operations
and attributes from the respective categories.

Kyoto Common LISP,{} a version of \spadgloss{Common LISP} which
features compilation of the compilation of LISP into the \spad{C}
Programming Language

In Axiom,{} a collection of compiled modules representing
the \spadgloss{category} or \spadgloss{domain} constructor.
the sequence of \spadgloss{default packages} for a given domain to be
searched during \spadgloss{dynamic lookup}. This sequence is computed
first by ordering the category \spadgloss{ancestors} of the domain
according to their \spad{level number},{} an integer equal to to the
minimum distance of the domain from the category. Parents have level
1,{}, parents of parents have level 2,{}, and so on. Among categories
with equal level numbers,{} ones which appear in the left-most branches
of \spad{Join}s in the source code come first. See also
\spadgloss{dynamic lookup}.

acronymn for List Processing Language,{} a language designed for the
manipulation of nonnumerical data. The Axiom library is
translated into LISP then compiled into machine code by an underlying LISP.
an object of a \spadtype{List} domain.
an object with a special syntax in the language. In Axiom,{}
there are five types of literals: \spadgloss{booleans},{}
\spadgloss{integers},{} \spadgloss{floats},{} \spadgloss{strings},{}
and \spadgloss{symbols}.
\spadSyntax{local} A keyword used in user-defined functions to declare that
a variable is a \spadgloss{local variable} of that function. Because of
default assumptions on variables, such a declaration is not necessary but is available to the user for clarity when appropriate.

(of a function) a variable \( \text{bound} \) by that function and such that its binding is invisible to any function that function calls. Also called a \( \text{lexical} \) variable. By default in the

interpreter:

\begin{itemize}
\item 1. any variable \( \text{free} \) which appears on the left hand side of an assignment is regarded a local variable of that function. If the intention of an assignment is to change the value of a \( \text{global} \) variable \( \text{free} \), the body of the function must then contain the statement \( \text{free} \). \item 2. any other variable is regarded as a \( \text{free} \) variable. An optional declaration \( \text{local} \) is available to explicitly declare a variable to be a local variable. All \( \text{formal} \) parameters to the function can be regarded as local variables to the function.
\end{itemize}

\item \( \text{loop} \)

1. an expression containing a \( \text{repeat} \)

2. a collection expression having a \( \text{for} \) or a \( \text{while} \)

\item \( \text{loop body} \)

the part of a loop following the \( \text{repeat} \) that tells what to do each iteration. For example, the body of the loop \( \text{repeat} \) \( \text{for} \) \( \text{in} \) \( \text{S} \)

\item \( \text{macro} \)

1. An expression of the form \( \text{symbol} \) \( \text{==} \) \( \text{expression} \) at parse time. \item 2. An expression of the form \( \text{macro} \) \( \text{==} \) \( \text{expression} \) defining a parameterized macro expansion for a parameterized form \( \text{macro} \) \( \text{==} \) \( \text{expression} \) \( \text{macro} \). This macro causes a form \( \text{expression} \) \( \text{macro} \) \( \text{expression} \) to be textually replaced by the expression \( \text{expression} \) \( \text{macro} \) \( \text{expression} \)

\item \( \text{mode} \)

a type expression containing a question-mark \( \text{?} \). For example, \( \text{the class of all polynomials over an arbitrary ring} \)

\item \( \text{mutable} \)

objects which contain \( \text{pointers} \) to other objects and which have operations defined on them which alter these pointers. Contrast \( \text{immutable} \). Axiom uses \( \text{pointer semantics} \) as does \( \text{LISP} \) in contrast with many other languages such as Pascal which use \( \text{copying semantics} \). See \( \text{pointer semantics} \) for details.

\item \( \text{name} \)

1. a \( \text{symbol} \) denoting a \( \text{variable} \),\( \text{the variable} \)

2. a \( \text{symbol} \) denoting an \( \text{operation} \),\( \text{the operation} \) \n
\( \text{divide: (Integer, Integer) -> Integer} \).
3.49. GLOSS.HT

- **nullary**: a function with no arguments, e.g. \spadfun{characteristic}.
- **nullary**: operation or function with \spadgloss{arity} 0
- **Object**: a category with no operations or attributes, from which most categories in Axiom are \spadglossSee{extensions}{category extension}.
- **object**: a data entity created or manipulated by programs. Elements of domains, and domains themselves are objects. Whereas categories are created by functions, they cannot be dynamically manipulated in the current system and are thus not considered as objects. The most basic objects are \spadgloss{literals}; all other objects must be created \spadgloss{functions}. Objects can refer to other objects using \spadgloss{pointers}. Axiom language uses \spadgloss{pointer semantics} when dealing with \spadgloss{mutable} objects.
- **object code**: code which can be directly executed by hardware; also known as \spadgloss{machine language}.
- **operand**: an argument of an \spadgloss{operator} (regarding an operator as a \spadgloss{function}).
- **operation**: an abstraction of a \spadgloss{function}, described by a \spadgloss{signature}. For example, \spad{fact: NonNegativeInteger -> NonNegativeInteger} describes an operation for "the factorial of a (non-negative) integer".
- **operator**: special reserved words in the language such as \spadop{+} and \spadop{*}; operators can be either \spadgloss{prefix} or \spadgloss{infix} and have a relative \spadgloss{precedence}.
- **overloading**: the use of the same name to denote distinct functions; a function is identified by a \spadgloss{signature} identifying its name, the number and types of its arguments, and its return types. If two functions can have identical signatures, a \spadgloss{package call} must be made to distinguish the two.
- **package**: a domain whose exported operations depend solely on the parameters and other explicit domains, a package for solving systems of equations of polynomials over any field, floats, rational numbers, complex rational functions, or power series. Facilities for integration, differential equations, solution of linear or polynomial equations, and group theory are provided by "packages". Technically, a package is a domain which has no \spadgloss{signature} containing the symbol \$. While domains intuitively provide computational objects you can compute with, packages intuitively provide functions (\spadgloss{polymorphic} functions) which will work over a variety of datatypes.


\em{(syntax)} an expression of the form \spad{e \$ D} where \spad{e} is
an \spadgloss{application} and \spad{D} denotes some \spadgloss{package}
(or \spadgloss{domain}).

\item \em{package call}\space{} 
\em{(syntax)} an expression of the form \spad{f(x,y) \$ D} used to identify
that the function \spad{f} is to be one from \spad{D}.

\item \em{package constructor}\space{} 
same as \spadgloss{domain constructor}.

\item \em{parameter}\space{} 
see \spadgloss{argument}

\item \em{parameterized datatype}\space{} 
a domain that is built on another, for example, polynomials with integer
coefficients.

\item \em{parameterized form}\space{} 
a expression of the form \spad{f(x,y)}, an \spadgloss{application} of a
function.

\item \em{parent}\space{} 
(of a domain) a category which is explicitly declared in the source code
definition for the domain to be an \spadgloss{export} of the domain.

\item \em{parse}\space{} 
1. (verb) to produce an internal representation of a user input string;
the resultant internal representation is then "interpreted" by Axiom
to perform some indicated action.

\item \em{parse}\space{} 
the transformation of a user input string representing a valid Axiom
expression into an internal representation as a tree-structure.

\item \em{partially ordered set}\space{} 
a set with a reflexive, transitive and antisymmetric \spadgloss{binary}
operation.

\item \em{pattern match}\space{} 
1. (on expressions) Given a expression called a "subject" \spad{u},
the attempt to rewrite \spad{u} using a set of "rewrite rules". Each rule has
the form \spad{A == B} where \spad{A} indicates a expression called a
"pattern" and \spad{B} denotes a "replacement". The meaning of this rule
is "replace \spad{A} by \spad{B}\". If a given pattern \spad{A} matches a
subexpression of \spad{u},\{} that subexpression is replaced by \spad{B}.
Once rewritten,\{} pattern matching continues until no further changes occur.
2. (on strings) the attempt to match a string indicating a "pattern" to
another string called a "subject",\{} for example,\{} for the purpose of
identifying a list of names. In \Browse\{},\{} users may enter
\spadgloss{search strings} for the purpose of identifying constructors,\{}
operations,\{} and attributes.

\item \em{pile}\space{} 
alternate syntax for a block,\{} using indentation and column alignment
(see also \spadgloss{block}).

\item \em{pointer}\space{} 
a reference implemented by a link directed from one object to another in
the computer memory. An object is said to \em{refer} to another if it
has a pointer to that other object. Objects can also refer to themselves
(cyclic references are legal). Also more than one object can refer to the
same object. See also \spadgloss{pointer semantics}.

the programming language semantics used in languages such as LISP which allow objects to be \spadgloss{mutable}. Consider the following sequence of Axiom statements:
\begin{items}
  \item \spad{x : Vector Integer := [1,{},4,{},7]}
  \item \spad{y := x}
  \item \spad{swap!(x,{},2,{},3)}
\end{items}

The function \spadfunFrom{swap!}{Vector} is used to interchange the 2nd and 3rd value in the list \spad{x} producing the value \spad{[1,{},7,{},4]}. What value does \spad{y} have after evaluation of the third statement?
The answer is different in Axiom than it is in a language with \spadgloss{copying semantics}. In Axiom, first the vector \spad{[1,{},2,{},3]} is created and the variable \spad{x} set to \spad{V}. Next, the variable \spad{y} is made to point to \spad{V} just as \spad{x} does. Now the third statement interchanges the last 2 elements of \spad{V} (the \{em !\} at the end of the name \spadfunFrom{swap!}{Vector} tells you that this operation is destructive,\{em \} that is,\{em \} it changes the elements \{em in place\}). Both \spad{x} and \spad{y} perceive this change to \spad{V}. Thus both \spad{x} and \spad{y} then have the value \spad{[1,{},7,{},4]}. In Pascal, the second statement causes a copy of \spad{V} to be stored under \spad{y}. Thus the change to \spad{V} made by the third statement does not affect \spad{y}.

a \spadgloss{function} parameterized by one or more \spadgloss{domains}; a \spadgloss{algorithm} defined \spadglossSee{categorically}{category}. Every function defined in a domain or package constructor with a domain-valued parameter is polymorphic. For example,\{em \} the same matrix \spad{matrix}\{em \}* function is used to multiply "matrices over integers" as "matrices over matrices over integers" Likewise,\{em \} various \spad{solve}\{em \} polynomials over any \spadgloss{field}.

an \spadgloss{operator} that follows its single \spadgloss{operand}. Postfix operators are not available in Axiom.

{\em (syntax)} refers to the so-called {\em binding power} of an operator. For example, \spad{\*} has higher binding power than \spad{\+} so that the expression \spad{a + b * c} is equivalent to \spad{a + (b \* c)}.

the number of digits in the specification of a number,\{em \} \spad{\!\!precision\{e.g.\} as set by \spadfunFrom{precision}{Float}.

1. a Boolean valued function,\{em \} \spadignore{e.g.}
\spad{\!\!odd: Integer -> Boolean}. 2. an Boolean valued expression

{\em (syntax)} an \spadgloss{operator} such as \spad{\neg} and \spad{\!\!not}
that is written {\em before} its single \spadgloss{operand}. Every function of one argument can be used as a prefix operator. For example,\{em \}
all of the following have equivalent meaning in Axiom: \spad{f(x)}, \{} and \spad{f\ x}. See also \spadgloss{dot notation}.

the prefix \spadgloss{operator} \spad{'} meaning \{em do not evaluate\}.

(basic domain constructor) a domain constructor used to create a inhomogeneous aggregate composed of pairs of "selectors" and \spadgloss{values}. A Record domain is written in the form \spad{Record(a1:D1,{}...,{}an:Dn)} (\spad{n} > 0) where \spad{a1}, \{}...,\{}\spad{an} are identifiers called the \{\em selectors\} of the record, \{} and \spad{D1}, \{}...,\{}\spad{Dn} are domains indicating the type of the component stored under selector \spad{an}.

A relation which can be expressed as a function \spad{f} with some argument \spad{n} which depends on the value of \spad{f} at \spad{k} previous values. In many cases, \{} Axiom will rewrite a recurrence relation on compilation so as to \spadgloss{cache} its previous \spad{k} values and therefore make the computation significantly more efficient.

use of a self-reference within the body of a function. Indirect recursion is when a function uses a function below it in the call chain.

1. A function that calls itself, \{} either directly or indirectly through another function. 2. self-referential. See also \spadgloss{recursive}.

a special identifier used as \spadgloss{local variable} of a domain constructor body to denote the representation domain for objects of a domain.

a \spadgloss{domain} providing a data structure for elements of a domain; generally denoted by the special identifier \spadgloss{Rep} in the Axiom programming language. As domains are \spadgloss{abstract datatypes}, \{} this representation is not available to users of the domain, \{} only to functions defined in the \spadgloss{function body} for a domain constructor. Any domain can be used as a representation.

a special sequence of non-blank characters with special meaning in the Axiom language. Examples of reserved words are names such as \spad{for}, \{} \spad{if}, \{} and \spad{free}, \{} operator names such as \spad{+} and \spad{mod}, \{} special character strings such as \spad{=} and \spad{:=}.

to move an object in a parameterized domain back to the underlying domain, \{} for example to move the object \spad{7} from a "fraction of integers" (domain \spad{Fraction Integer}) to "the integers" (domain \spad{Integer}).
when leaving a function, the value of the expression following \spadSyntax{return} becomes the value of the function.

\item when leaving a function, the value of the expression following \spadSyntax{return} becomes the value of the function.

\item A set with a commutative addition, associative multiplication, a unit element, and multiplication distributes over addition and subtraction.

\item \spadgloss{rule} (syntax) 1. An expression of the form \spad{rule A == B} indicating a "rewrite rule". 2. An expression of the form \spad{rule (R1;...;Rn)} indicating a set of "rewrite rules" \spad{R1},...,\spad{Rn}. See \spadgloss{pattern matching} for details.

\item \spadgloss{run-time} the time of doing a computation. Contrast \spadgloss{compile-time} rather than prior to it; \spadgloss{dynamic} as opposed to \spadgloss{static}. For example, the decision of the interpreter to build a structure such as "matrices with power series entries" in response to user input is made at run-time.

\item \spadgloss{run-time check} an error-checking which can be done only when the program receives user input; for example, confirming that a value is in the proper range for a computation.

\item \spadgloss{search string} a string entered into an \spadgloss{input area} on a Hyperdoc screen

\item \spadgloss{selector} an identifier used to address a component value of a \spadgloss{Record} datatype.

\item \spadgloss{semantics} the relationships between symbols and their meanings. The rules for obtaining the \spadgloss{meaning} of any syntactically valid expression.

\item \spadgloss{small float} the domain for hardware floating point arithmetic as provided by the computer hardware.

\item \spadgloss{small integer} the domain for hardware integer arithmetic as provided by the computer hardware.

\item \spadgloss{source} the \spadgloss{type} of the argument of a \spadgloss{function}; the type expression before the \spad{->} in a \spadgloss{signature}. For example, the source of \spad{f : (Integer,{}Integer) -> Integer} is \spad{Integer,{}Integer).
data structure whose elements are mostly identical (a sparse matrix is one filled with mostly zeroes).

that computation done before run-time, such as compilation. Contrast \spadgloss{dynamic}.

the number which precedes user input lines in an interactive session; the output of user results is also labeled by this number.

an object of \spadtype{Stream(R)}, a generalization of a \spadgloss{list} to allow an infinite number of elements. Elements of a stream are computed "on demand". Strings are used to implement various forms of power series \ignore{\spad{???}}.

an object of domain \spadtype{String}. Strings are \spadgloss{literals} consisting of an arbitrary sequence of \spadgloss{characters} surrounded by double-quotes \spad{""}, \spadignore{e.g.} \spad{"Look here!"}.

\{\em (basic concept)\} a \spadgloss{subdomain} together with a \spadgloss{predicate} characterizing which members of the domain belong to the subdomain. The exports of a subdomain are usually distinct from the domain itself. A fundamental assumption however is that values in the subdomain are automatically \spadglossSee{coerceable}{coercion} to values in the domain. For example, if \spad{n} and \spad{m} are declared to be members of a subdomain of the integers, then \{\em any\} \spadgloss{binary} operation from \spadtype{Integer} is available on \spad{n} and \spad{m}. On the other hand, if the result of that operation is to be assigned to, say, \spad{k}, also declared to be of that subdomain, a \spadgloss{run-time} check is generally necessary to ensure that the result belongs to the subdomain.

the use of \spad{\mid} followed by an expression to filter an iteration. \spadgloss{suffix} an \spadgloss{operator} which placed after its operand. Suffix operators are not allowed in the Axiom language.

objects denoted by \spadgloss{identifier} \spadgloss{literals}; an element of domain \spadtype{Symbol}. The interpreter defaultly converts a symbol \spad{x} into \spadtype{Variable(x)}.

\spadgloss{rules} of grammar, punctuation etc. for forming correct expressions.\spad{\`}

\spadgloss{top-level Axiom statements that begin with }\spad{\`}. System commands allow users to query the database, \{\em read files,\} \em trace functions,\} and so on.

an identifier used to discriminate a branch of a \spadgloss{Union} type.

\spadgloss{type} of the result of a \spadgloss{function}; the
type expression following the \spad{->} in a \spad{signature}.  
refers to direct user interactions with the Axiom interpreter.  
\spad{a partially ordered set} a partially ordered set where any two elements are 
comparable.  
\item  
use of system function \spad{)trace} to track the arguments passed 
to a function and the values returned.  
\item  
an expression of two or more other expressions separated by commas,{} \spad{f(x,\{\}}{}{}\spad{y))} and in \spad{signatures} \spad{(Integer,\{\}Integer) \rightarrow Integer)}.  A tuple is not a data structure,{} rather a syntax mechanism for grouping expressions.  
\item  
\spad{Category}.  The type of a \spad{domain} is any \spad{category} that domain 
develops to.  The type of any other object is either the (unique) domain 
that object belongs to or any \spad{domain} of that domain.  The 
type of objects is in general not unique.  
\item  
a system function which determines whether the datatype of an object is 
appropriate for a given operation.  
\item  
a \spad{domain constructor} or \spad{category constructor}.  
\item  
when the interpreter chooses the type for an object based on context. 
For example,{} if the user interactively issues the definition  
\spad{f(x) == (x + \%i)**2}} then issues \spad{f(2)},{} the interpreter will infer the type of \spad{f} to be  
\spad{Integer \rightarrow Complex Integer}.  
\item  
operation or function with \spad{arity} 1  
\item  
\spad{domain} that has a single domain-valued parameter,{} the \spad{underlying domain} refers to that parameter.  For example,{} the domain “matrices of integers” \spad{Matrix Integer}) has 
underlying domain \spad{Integer}.  
\item  
(basic domain constructor) a domain constructor used to combine any 
set of domains into a single domain.  A Union domain is written in the 
form \spad{Union(D1,\{\}Dn)} \spad{n} > 0 where  
\spad{D1},{}\ldots{},\spad{Dn} are identifiers called the \spad{tags} of 
the union,{} and \spad{D1},{}\ldots{},\spad{Dn} are domains called the 
\spad{branches} of the union.  The tags \spad{D1} are optional,{} but required when two of the \spad{D1} are equal,{} 
\spad{Union(inches:Integer,\{\}centimeters:Integer))}.  
In the interpreter,{} values of union domains are automatically coerced
to values in the branches and vice-versa as appropriate. See also \spadgloss{case}.
\item an invertible element.
\item a function defined by a user during an interactive session. Contrast \spadgloss{built-in function}.
\item a variable created by the user at top-level during an interactive session
\item 1. the result of \spadgloss{evaluating} an expression.
2. a property associated with a \spadgloss{variable} in a \spadgloss{binding}
in an \spadgloss{environment}.
\item a means of referring to an object but itself \spad{not} an object. A variable has a name and an associated \spadgloss{binding} created by \spadgloss{evaluation} of Axiom expressions such as \spadgloss{declarations}, \spadgloss{assignments}, and \spadgloss{definitions}. In the top-level \spadgloss{environment} of the interpreter, variables are \spadgloss{global variables}. Such variables can be freely referenced in user-defined functions although a \spadgloss{free} declaration is needed to assign values to them. See \spadgloss{local variable} for details.
\item the type given when the \spadgloss{value} and \spadgloss{type} of an expression are not needed. Also used when there is no guarantee at run-time that a value and predictable mode will result.
\item a symbol which matches any substring including the empty string; for example, the search string \spad{*an*} matches an word containing the consecutive letters \spad{a} and \spad{n}
\item an interactive record of the user input and output held in an interactive history file. Each user input and corresponding output expression in the workspace has a corresponding \spadgloss{step number}. The current output expression in the workspace is referred to as \spad{\%}. The output expression associated with step number \spad{n} is referred to by \spad{\%(n)}. The \spad{k}-th previous output expression relative to the current step number \spad{n} is referred to by \spad{\%(n\%(- k))}. Each interactive \spadgloss{frame} has its own workspace.
\endmenu\endscroll
Graphics

Axiom can plot curves and surfaces of various types, as well as lists of points in the plane.

- **Examples** See examples of Axiom graphics
- **2D Graphics** Graphics in the real and complex plane
- **3D Graphics** Plot surfaces, curves, or tubes around curves
- **Viewports** Customize graphics using Viewports
Graphics Examples

⇒ “notitle” (AssortedGraphicsExamplePage) 3.50 on page 603
⇒ “notitle” (ThreeDimensionalGraphicsExamplePage) 3.50 on page 605
⇒ “notitle” (OneVariableGraphicsExamplePage) 3.50 on page 610
⇒ “notitle” (PolarGraphicsExamplePage) 3.50 on page 614
⇒ “notitle” (ParametricCurveGraphicsExamplePage) 3.50 on page 612
⇒ “notitle” (ImplicitCurveGraphicsExamplePage) 3.50 on page 616
⇒ “notitle” (ListPointsGraphicsExamplePage) 3.50 on page 619
— graphics.ht —

\begin{page}{GraphicsExamplePage}{Graphics Examples}
\beginscroll
Here are some examples of Axiom graphics.
Choose a specific type of graph or choose Assorted Examples.
\beginmenu
\menulink{Assorted Examples}{AssortedGraphicsExamplePage} \newline
Examples of each type of Axiom graphics.
\menulink{Three Dimensional Graphics}{ThreeDimensionalGraphicsExamplePage} \newline
Plot parametrically defined surfaces of three functions.
\menulink{Functions of One Variable}{OneVariableGraphicsExamplePage} \newline
Plot curves defined by an equation y = f(x).
\menulink{Parametric Curves}{ParametricCurveGraphicsExamplePage} \newline
Plot curves defined by parametric equations x = f(t), y = g(t).
\menulink{Polar Coordinates}{PolarGraphicsExamplePage} \newline
Plot curves given in polar form by an equation r = f(theta).
\menulink{Implicit Curves}{ImplicitCurveGraphicsExamplePage} \newline
Plot non-singular curves defined by a polynomial equation
\menulink{Lists of Points}{ListPointsGraphicsExamplePage} \newline
Plot lists of points in the (x,y)-plane.
\%
\menulink{Sequences}{SequenceGraphicsExamplePage}
\%
Plot a sequence a1, a2, a3,...
\%
\menulink{Complex Functions}{ComplexFunctionGraphicsExamplePage}
\%
Plot complex functions of a complex variable by means of grid plots.
\endmenu
\endscroll
\autobuttons \end{page}
Assorted Graphics Examples

--- graphics.ht ---

\begin{page}{AssortedGraphicsExamplePage}{Assorted Graphics Examples}
\beginscroll
Pick a specific example or choose 'All' to see all the examples.
Function of two variables: \( z = f(x,y) \).
\graphpaste{draw(sin(x \cdot y), x = -2.5..2.5, y = -2.5..2.5) \bound{example1}}
Function of one variable: \( y = f(x) \).
\graphpaste{draw(sin tan x - tan sin x, x = 0..6) \bound{example2}}
Plane parametric curve: \( x = f(t), y = g(t) \).
\graphpaste{draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t)), t = 0..2*\%pi) \bound{example3}}
Space parametric curve: \( x = f(t), y = g(t), z = h(t) \).
\graphpaste{draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t), sin(5*t)*sin(6*t)), t = 0..2*\%pi) \bound{example4}}
Polar coordinates: \( r = f(\theta) \).
\graphpaste{draw(sin(17*t), t = 0..2*\%pi, coordinates == polar) \bound{example5}}
Implicit curves: \( p(x,y) = 0 \).
\graphpaste{draw(y**2 + y = x**3 - x, x, y, range == \[-2..2,-2..1\]) \bound{example6}}
Run all examples.
\spadpaste{All \free{example1 example2 example3 example4 example5 example6}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{AssortedGraphicsExamplePagePatch1}
\begin{paste}{AssortedGraphicsExamplePageFull1}{AssortedGraphicsExamplePageEmpty1}
\pastebutton{AssortedGraphicsExamplePageFull1}{\hidepaste}
\tab{5}\spadgraph{draw(sin(x \cdot y), x = -2.5..2.5, y = -2.5..2.5) \bound{example1}}
\center{unixcommand{\inputimage{\env{AXIOM}/doc/viewports/assortedgraphicsexamplepage1.view/image}}}{viewalone\space{1} \env{AXIOM}/doc/viewports/assortedgraphicsexamplepage1}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePageEmpty1}
\begin{paste}{AssortedGraphicsExamplePageEmpty1}{AssortedGraphicsExamplePageFull1}
\pastebutton{AssortedGraphicsExamplePageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(sin(x \cdot y), x = -2.5..2.5, y = -2.5..2.5) \bound{example1}}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePagePatch2}
\begin{paste}{AssortedGraphicsExamplePageFull2}{AssortedGraphicsExamplePageEmpty2}
\pastebutton{AssortedGraphicsExamplePageFull2}{\hidepaste}
\tab{5}\spadgraph{draw(sin tan x - tan sin x, x = 0..6) \bound{example2}}
\end{paste}
\end{patch}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{AssortedGraphicsExamplePageEmpty2}
\begin{paste}{AssortedGraphicsExamplePageEmpty2}{AssortedGraphicsExamplePagePatch2}
\pastebutton{AssortedGraphicsExamplePageEmpty2}{\showpaste}
\tab{5}\spadgraph{draw(sin tan x - tan sin x, x = 0..6)\bound{example2 }}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePagePatch3}
\begin{paste}{AssortedGraphicsExamplePageFull3}{AssortedGraphicsExamplePageEmpty3}
\pastebutton{AssortedGraphicsExamplePageFull3}{\showpaste}
\tab{5}\spadgraph{draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t)), t = 0..2*\%pi)\bound{example3}}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePagePatch4}
\begin{paste}{AssortedGraphicsExamplePageFull4}{AssortedGraphicsExamplePageEmpty4}
\pastebutton{AssortedGraphicsExamplePageFull4}{\showpaste}
\tab{5}\spadgraph{draw(curve(sin(t)*sin(2*t), sin(3*t)*sin(4*t), sin(5*t)*sin(6*t)), t = 0..2*\%pi)\bound{example4}}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePagePatch5}
\begin{paste}{AssortedGraphicsExamplePageFull5}{AssortedGraphicsExamplePageEmpty5}
\pastebutton{AssortedGraphicsExamplePageFull5}{\showpaste}
\tab{5}\spadgraph{draw(sin(17*t), t = 0..2*\%pi, coordinates == polar)\bound{example5}}
\end{paste}
\end{patch}

\begin{patch}{AssortedGraphicsExamplePagePatch6}
\begin{paste}{AssortedGraphicsExamplePageFull6}{AssortedGraphicsExamplePageEmpty6}
\pastebutton{AssortedGraphicsExamplePageFull6}{\showpaste}
\end{paste}
\end{patch}
Three Dimensional Graphics

---

graphics.ht ---

Plots of parametric surfaces defined by functions \( f(u,v) \), \( g(u,v) \), and \( h(u,v) \). Choose a particular example or choose 'All' to see all the examples.

\begin{verbatim}
(7) All
Type: Variable All
\end{verbatim}

---

Three Dimensional Graphics
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch1}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull1}{ThreeDimensionalGraphicsExamplePageEmpty1}\hidepaste
\tab{5}\spadgraph{draw(surface((1+exp(-100*u*u))*sin(pi*u)*sin(pi*v), (1+exp(-100*u*u))*sin(pi*u)*cos(pi*v), (1+exp(-100*u*u))*cos(pi*u)), u=0..1, v=0..2, title="Pear")\bound{example1}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage1.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage1}}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty1}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty1}{ThreeDimensionalGraphicsExamplePagePatch1}\showpaste
\tab{5}\spadgraph{draw(surface((1+exp(-100*u*u))*sin(pi*u)*sin(pi*v), (1+exp(-100*u*u))*sin(pi*u)*cos(pi*v), (1+exp(-100*u*u))*cos(pi*u)), u=0..1, v=0..2, title="Pear")\bound{example1}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage1.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage1}}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch2}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull2}{ThreeDimensionalGraphicsExamplePageEmpty2}\hidepaste
\tab{5}\spadgraph{draw(surface(x*cos(y),x*sin(y),cos(x)), x=-4.4, y=0..2*pi, var1Steps==40, var2Steps==40, title="Trig Screw")\bound{example2}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2}}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty2}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty2}{ThreeDimensionalGraphicsExamplePagePatch2}\showpaste
\tab{5}\spadgraph{draw(surface(x*cos(y),x*sin(y),cos(x)), x=-4.4, y=0..2*pi, var1Steps==40, var2Steps==40, title="Trig Screw")\bound{example2}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2}}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch3}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull3}{ThreeDimensionalGraphicsExamplePageEmpty3}\hidepaste
\tab{5}\spadgraph{draw(surface(x*cos(y),x*sin(y),cos(x)), x=-4.4, y=0..2*pi, var1Steps==40, var2Steps==40, title="Trig Screw")\bound{example2}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2}}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty3}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty3}{ThreeDimensionalGraphicsExamplePagePatch3}\showpaste
\tab{5}\spadgraph{draw(surface(x*cos(y),x*sin(y),cos(x)), x=-4.4, y=0..2*pi, var1Steps==40, var2Steps==40, title="Trig Screw")\bound{example2}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2.view/image}}{viewalone{1} env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage2}}\end{paste}\end{patch}
\begin{spadgraph}
\draw(surface(x*cos(y),x*sin(y),y*cos(x)), x=-4..4, y=0..2*%pi, var1Steps==40, var2Steps==40, title=='Trig Screw')
\end{spadgraph}

\indentrel{3}\begin{verbatim}
(3) cos(x)sin(y) + 1.3 cos(2.0 x)cos(y)
Type: Expression Float
\end{verbatim}

\indentrel{-3}

\begin{spadcommand}
a := 1.3 * cos(2*x) * cos(y) + sin(y) * cos(x)
\end{spadcommand}

\indentrel{3}\begin{verbatim}
(4) - 1.0 sin(x)sin(y) + 1.3 cos(y)sin(2.0 x)
Type: Expression Float
\end{verbatim}

\indentrel{-3}

\begin{spadcommand}
b := 1.3 * sin(2*x) * cos(y) - sin(y) * sin(x)
\end{spadcommand}

\indentrel{3}\begin{verbatim}
(5) 2.5 cos(y)
Type: Expression Float
\end{verbatim}

\indentrel{-3}

\begin{spadcommand}
c := 2.5 * cos(y)
\end{spadcommand}

\indentrel{3}\begin{verbatim}
(5) 2.5 cos(y)
Type: Expression Float
\end{verbatim}

\indentrel{-3}
\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty5}
\begin{paste}{ThreeDimensionalGraphicsExamplePagePatch5}
\spadcommand{c := 2.5 * \cos(y)}\bound{c}
\end{paste}
\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch6}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull6}
\spadgraph{draw(surface(a,b,c), x=0..\%pi, y=-\%pi..\%pi, var1Steps==40, var2Steps==40, title=="Etruscan Venus")\free{a b c} \bound{example3}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage6.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/threedimensionalgraphicsexamplepage6}}
\end{paste}
\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch7}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull7}
\begin{verbatim}
(7)
x x
\cos(x)\cos(y)\sin()\sin(y) + \cos()\cos(x)\cos(y)
+ \\
x \\
2 \cos()\cos(x)
2
\end{verbatim}
Type: Expression Integer
\end{paste}
\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch8}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull8}
\begin{verbatim}
(8)
x \\
\cos(y)\sin()\sin(x)\sin(y)
\end{verbatim}
\end{paste}
\end{patch}
2
+ x x
  (cos()cos(y) + \2 cos())sin(x)
  2 2
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty8}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull8}{ThreeDimensionalGraphicsExamplePageEmpty8}\spadcommand{g:=sin(x)*(cos(x/2)*(sqrt(2) + cos(y))+(sin(x/2)*sin(y)*cos(y)))\bound{g }}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch9}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull9}{ThreeDimensionalGraphicsExamplePageEmpty9}\spadcommand{h:=-sin(x/2)*(sqrt(2)+cos(y)) + cos(x/2)*sin(y)*cos(y)\bound{h }}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty9}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty9}{ThreeDimensionalGraphicsExamplePagePatch9}\spadcommand{h:=-sin(x/2)*(sqrt(2)+cos(y)) + cos(x/2)*sin(y)*cos(y)\bound{h }}\end{paste}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch10}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull10}{ThreeDimensionalGraphicsExamplePageEmpty10}\spadgraph{draw(surface(f,g,h), x=0..4*%pi, y=0..2*%pi, var1Steps==50, var2Steps==50, title=="Banchoff Klein Bottle")\free{f g h }\bound{example4 }}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty10}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty10}{ThreeDimensionalGraphicsExamplePagePatch10}\spadgraph{draw(surface(f,g,h), x=0..4*%pi, y=0..2*%pi, var1Steps==50, var2Steps==50, title=="Banchoff Klein Bottle")\free{f g h }\bound{example4 }}\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePagePatch11}
\begin{paste}{ThreeDimensionalGraphicsExamplePageFull11}{ThreeDimensionalGraphicsExamplePageEmpty11}\spadcommand{All\free{example1 example2 example3 example4 }}\end{patch}
CHAPTER 3. HYPERDOC PAGES

\indent\begin{verbatim}
(11) All
\end{verbatim}
\indent\end{paste}
\end{patch}

\begin{patch}{ThreeDimensionalGraphicsExamplePageEmpty11}
\begin{paste}{ThreeDimensionalGraphicsExamplePageEmpty11}{ThreeDimensionalGraphicsExamplePagePatch11}
\pastebutton{ThreeDimensionalGraphicsExamplePageEmpty11}{\showpaste}
\tab{5}\spadcommand{All\free{example1 example2 example3 example4 }}
\end{paste}\end{patch}

---

Functions of One Variable

— graphics.ht —

\begin{page}{OneVariableGraphicsExamplePage}{Functions of One Variable}
\beginscroll
Plots of functions \( y = f(x) \).
Choose a particular example or choose 'All' to see all the examples.
\graphpaste{\draw(sin tan x - tan sin x, x = 0..6) \bound{example1}}
\newline
\graphpaste{\draw(sin x + cos x, x = 0..2*\%pi) \bound{example2}}
\newline
\graphpaste{\draw(sin(1/x), x = -1..1) \bound{example3}}
\newline
\graphpaste{\draw(x * sin(1/x), x = -1..1) \bound{example4}}
\newline
\spadpaste{All \free{example1 example2 example3 example4}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{OneVariableGraphicsExamplePagePatch1}
\begin{paste}{OneVariableGraphicsExamplePageFull1}{OneVariableGraphicsExamplePageEmpty1}
\pastebutton{OneVariableGraphicsExamplePageFull1}{\hidepaste}
\tab{5}\spadgraph{\draw(sin tan x - tan sin x, x = 0..6)\bound{example1}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage1.view}}}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePageEmpty1}
\begin{paste}{OneVariableGraphicsExamplePageEmpty1}{OneVariableGraphicsExamplePagePatch1}
\pastebutton{OneVariableGraphicsExamplePageEmpty1}{\showpaste}
\tab{5}\spadgraph{\draw(sin tan x - tan sin x, x = 0..6)\bound{example1}}
\end{paste}\end{patch}
3.50. GRAPHICS.HT

\begin{patch}{OneVariableGraphicsExamplePagePatch2}
\begin{paste}{OneVariableGraphicsExamplePageFull2}{OneVariableGraphicsExamplePageEmpty2}\hidepaste
\begin{verbatim}
\tab{5}\spadgraph{draw(sin x + cos x, x = 0..2*%pi)\bound{example2 }}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage2.view/image}}{viewalone\ space{1} \env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage2}}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePageEmpty2}
\begin{paste}{OneVariableGraphicsExamplePageEmpty2}{OneVariableGraphicsExamplePagePatch2}\showpaste
\begin{verbatim}
\tab{5}\spadgraph{draw(sin x + cos x, x = 0..2*%pi)\bound{example2 }}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePagePatch3}
\begin{paste}{OneVariableGraphicsExamplePageFull3}{OneVariableGraphicsExamplePageEmpty3}\hidepaste
\begin{verbatim}
\tab{5}\spadgraph{draw(sin(1/x), x = -1..1)\bound{example3 }}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage3.view/image}}{viewalone\ space{1} \env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage3}}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePageEmpty3}
\begin{paste}{OneVariableGraphicsExamplePageEmpty3}{OneVariableGraphicsExamplePagePatch3}\showpaste
\begin{verbatim}
\tab{5}\spadgraph{draw(sin(1/x), x = -1..1)\bound{example3 }}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePagePatch4}
\begin{paste}{OneVariableGraphicsExamplePageFull4}{OneVariableGraphicsExamplePageEmpty4}\hidepaste
\begin{verbatim}
\tab{5}\spadgraph{draw(x * sin(1/x), x = -1..1)\bound{example4 }}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage4.view/image}}{viewalone\ space{1} \env{AXIOM}/doc/viewports/onevariablegraphicsexamplepage4}}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePageEmpty4}
\begin{paste}{OneVariableGraphicsExamplePageEmpty4}{OneVariableGraphicsExamplePagePatch4}\showpaste
\begin{verbatim}
\tab{5}\spadgraph{draw(x * sin(1/x), x = -1..1)\bound{example4 }}
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OneVariableGraphicsExamplePagePatch5}
\begin{paste}{OneVariableGraphicsExamplePageFull5}{OneVariableGraphicsExamplePageEmpty5}\hidepaste
\begin{verbatim}
\indentrel{3}\begin{verbatim}
(5) All
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{3}\begin{verbatim}
Type: Variable All
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{OneVariableGraphicsExamplePageEmpty5}
\begin{paste}{OneVariableGraphicsExamplePageEmpty5}{OneVariableGraphicsExamplePagePatch5}
\pastebutton{OneVariableGraphicsExamplePageEmpty5}{\showpaste}
\tab{5}\spadcommand{All\free{example1 example2 example3 example4}}
\end{paste}\end{patch}

Parametric Curves

\begin{page}{ParametricCurveGraphicsExamplePage}{Parametric Curves}
Plots of parametric curves \( x = f(t), y = g(t) \).
Pick a particular example or choose 'All' to see all the examples.
\beginscroll
The Lemniscate of Bernoulli.
\graphpaste{draw(curve(cos(t/(1+sin(t)**2)), sin(t)*cos(t)/(1+sin(t)**2)), t = -\%pi..\%pi) \bound{example1}}
Lissajous curve.
\graphpaste{draw(curve(9*sin(3*t/4), 8*sin(t)), t = -4*\%pi..4*\%pi) \bound{example2}}
A gnarly closed curve.
\graphpaste{draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2*\%pi) \bound{example3}}
Another closed curve.
\graphpaste{draw(curve(cos(4*t)*cos(7*t), cos(4*t)*sin(7*t)), t = 0..2*\%pi) \bound{example4}}
Run all examples on this page.
\spadpaste{All \free{example1 example2 example3 example4}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ParametricCurveGraphicsExamplePagePatch1}
\begin{paste}{ParametricCurveGraphicsExamplePageFull1}{ParametricCurveGraphicsExamplePageEmpty1}
\pastebutton{ParametricCurveGraphicsExamplePageFull1}{\hidepaste}
\tab{6}\spadgraph{draw(curve(cos(t/(1+sin(t)**2)), sin(t)*cos(t)/(1+sin(t)**2)), t = -\%pi..\%pi)\center{\unixcommand{"inputimage{"env{AXIOM}/doc/viewports/parametriccurvemathexamplepage1.view/image}}}\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePageEmpty1}
\begin{paste}{ParametricCurveGraphicsExamplePageEmpty1}{ParametricCurveGraphicsExamplePagePatch1}\pastebutton{ParametricCurveGraphicsExamplePageEmpty1}{\showpaste}
\tab{6}\spadgraph{draw(curve(cos(t/(1+sin(t)**2)), sin(t)*cos(t)/(1+sin(t)**2)), t = -\%pi..\%pi)\end{paste}\end{patch}
\begin{patch}{ParametricCurveGraphicsExamplePagePatch2}
\begin{paste}{ParametricCurveGraphicsExamplePageFull2}{ParametricCurveGraphicsExamplePageEmpty2}
\pastebutton{ParametricCurveGraphicsExamplePageFull2}{\hidepaste}
\tab{5}\spadgraph{draw(curve(9*\sin(3*t/4), 8*\sin(t)), \t = -4*\%pi..4*\%pi)\bound{example2 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage2}}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePageEmpty2}
\begin{paste}{ParametricCurveGraphicsExamplePageEmpty2}{ParametricCurveGraphicsExamplePagePatch2}
\pastebutton{ParametricCurveGraphicsExamplePageEmpty2}{\showpaste}
\tab{5}\spadgraph{draw(curve(9*\sin(3*t/4), 8*\sin(t)), \t = -4*\%pi..4*\%pi)\bound{example2 }}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePagePatch3}
\begin{paste}{ParametricCurveGraphicsExamplePageFull3}{ParametricCurveGraphicsExamplePageEmpty3}
\pastebutton{ParametricCurveGraphicsExamplePageFull3}{\hidepaste}
\tab{5}\spadgraph{draw(curve(\sin(t)*\sin(2*t)*\sin(3*t), \sin(4*t)*\sin(5*t)*\sin(6*t)), \t = 0..2*\%pi)\bound{example3 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage3.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage3}}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePageEmpty3}
\begin{paste}{ParametricCurveGraphicsExamplePageEmpty3}{ParametricCurveGraphicsExamplePagePatch3}
\pastebutton{ParametricCurveGraphicsExamplePageEmpty3}{\showpaste}
\tab{5}\spadgraph{draw(curve(\sin(t)*\sin(2*t)*\sin(3*t), \sin(4*t)*\sin(5*t)*\sin(6*t)), \t = 0..2*\%pi)\bound{example3 }}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePagePatch4}
\begin{paste}{ParametricCurveGraphicsExamplePageFull4}{ParametricCurveGraphicsExamplePageEmpty4}
\pastebutton{ParametricCurveGraphicsExamplePageFull4}{\hidepaste}
\tab{5}\spadgraph{draw(curve(\cos(4*t)*\cos(7*t), \cos(4*t)*\sin(7*t)), \t = 0..2*\%pi)\bound{example4 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage4.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/parametriccurvegraphicsexamplepage4}}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePageEmpty4}
\begin{paste}{ParametricCurveGraphicsExamplePageEmpty4}{ParametricCurveGraphicsExamplePagePatch4}
\pastebutton{ParametricCurveGraphicsExamplePageEmpty4}{\showpaste}
\tab{5}\spadgraph{draw(curve(\cos(4*t)*\cos(7*t), \cos(4*t)*\sin(7*t)), \t = 0..2*\%pi)\bound{example4 }}
\end{paste}\end{patch}

\begin{patch}{ParametricCurveGraphicsExamplePagePatch5}
\begin{paste}{ParametricCurveGraphicsExamplePageFull5}{ParametricCurveGraphicsExamplePageEmpty5}
\pastebutton{ParametricCurveGraphicsExamplePageFull5}{\hidepaste}
\tab{5}\spadcommand{All\free{example1 example2 example3 example4 }}
\indentrel{-3}\begin{verbatim}
(5) All
\end{verbatim}
\end{paste}\end{patch}

\indentrel{3}\begin{verbatim}
(5) All
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
CHAPTER 3. HYPERDOC PAGES

---

Polar Coordinates

--- graphics.ht ---

Plots of curves given by an equation in polar coordinates, \( r = f(\theta) \).
Pick a particular example or choose 'All' to see all the examples.

A Circle.
\[ \text{draw}(1, t = 0..2\pi, \text{coordinates} == \text{polar}) \]
A Spiral.
\[ \text{draw}(t, t = 0..100, \text{coordinates} == \text{polar}) \]
A Petal Curve.
\[ \text{draw}(\sin(4t), t = 0..2\pi, \text{coordinates} == \text{polar}) \]
A Limacon.
\[ \text{draw}(2 + 3 \times \sin t, t = 0..2\pi, \text{coordinates} == \text{polar}) \]

Run all examples on this page.
\[ \text{spadpaste}(\text{All} \ \text{free}\{ \text{example1} \ \text{example2} \ \text{example3} \ \text{example4} \}) \]

---

\begin{patch}{ParametricCurveGraphicsExamplePageEmpty5}
\begin{paste}{ParametricCurveGraphicsExamplePageEmpty5}{ParametricCurveGraphicsExamplePagePatch5}
\pastebutton{ParametricCurveGraphicsExamplePageEmpty5}{\showpaste}
\tab{5}\spadcommand{\text{All free}\{\text{example1} \ \text{example2} \ \text{example3} \ \text{example4} \}}
\end{paste}\end{patch}

---

\begin{patch}{PolarGraphicsExamplePagePatch1}
\begin{paste}{PolarGraphicsExamplePageFull1}{PolarGraphicsExamplePageEmpty1}
\pastebutton{PolarGraphicsExamplePageFull1}{\hidepaste}
\tab{5}\spadgraph{\text{draw}(1, t = 0..2\pi, \text{coordinates} == \text{polar}) \text{\bound{example1}}}
\end{paste}\end{patch}

---

\begin{patch}{PolarGraphicsExamplePageEmpty1}
\begin{paste}{PolarGraphicsExamplePageEmpty1}{PolarGraphicsExamplePagePatch1}
\pastebutton{PolarGraphicsExamplePageEmpty1}{\showpaste}
\tab{5}\spadgraph{\text{draw}(1, t = 0..2\pi, \text{coordinates} == \text{polar}) \text{\bound{example1}}}
\end{paste}\end{patch}
\begin{patch}{PolarGraphicsExamplePagePatch2}
\begin{paste}{PolarGraphicsExamplePageFull2}{PolarGraphicsExamplePageEmpty2}
\pastebutton{PolarGraphicsExamplePageFull2}{\hidepaste}
\tab{5}\spadgraph{draw(t,t = 0..100, coordinates == polar)\bound{example2 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/polargraphicsexamplepage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/polargraphicsexamplepage2}}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePageEmpty2}
\begin{paste}{PolarGraphicsExamplePageEmpty2}{PolarGraphicsExamplePagePatch2}
\pastebutton{PolarGraphicsExamplePageEmpty2}{\showpaste}
\tab{5}\spadgraph{draw(t,t = 0..100, coordinates == polar)\bound{example2 }}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePagePatch3}
\begin{paste}{PolarGraphicsExamplePageFull3}{PolarGraphicsExamplePageEmpty3}
\pastebutton{PolarGraphicsExamplePageFull3}{\hidepaste}
\tab{5}\spadgraph{draw(sin(4*t), t = 0..2*\%pi, coordinates == polar)\bound{example3 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/polargraphicsexamplepage3.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/polargraphicsexamplepage3}}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePageEmpty3}
\begin{paste}{PolarGraphicsExamplePageEmpty3}{PolarGraphicsExamplePagePatch3}
\pastebutton{PolarGraphicsExamplePageEmpty3}{\showpaste}
\tab{5}\spadgraph{draw(sin(4*t), t = 0..2*\%pi, coordinates == polar)\bound{example3 }}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePagePatch4}
\begin{paste}{PolarGraphicsExamplePageFull4}{PolarGraphicsExamplePageEmpty4}
\pastebutton{PolarGraphicsExamplePageFull4}{\hidepaste}
\tab{5}\spadgraph{draw(2 + 3 * sin t, t = 0..2*\%pi, coordinates == polar)\bound{example4 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/polargraphicsexamplepage4.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/polargraphicsexamplepage4}}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePageEmpty4}
\begin{paste}{PolarGraphicsExamplePageEmpty4}{PolarGraphicsExamplePagePatch4}
\pastebutton{PolarGraphicsExamplePageEmpty4}{\showpaste}
\tab{5}\spadgraph{draw(2 + 3 * sin t, t = 0..2*\%pi, coordinates == polar)\bound{example4 }}
\end{paste}\end{patch}

\begin{patch}{PolarGraphicsExamplePagePatch5}
\begin{paste}{PolarGraphicsExamplePageFull5}{PolarGraphicsExamplePageEmpty5}
\pastebutton{PolarGraphicsExamplePageFull5}{\hidepaste}
\tab{5}\spadcommand{All\free{example2 example3 example4 }}
\indentrel{3}\begin{verbatim}
(5) All
Type: Variable All
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}
\end{patch}

\begin{patch}{PolarGraphicsExamplePageEmpty5}

\begin{patch}{PolarGraphicsExamplePagePatch5}
\begin{paste}{PolarGraphicsExamplePageFull5}{PolarGraphicsExamplePageEmpty5}
\pastebutton{PolarGraphicsExamplePageFull5}{\hidepaste}
\tab{5}\spadcommand{All\free{example2 example3 example4 }}
\indentrel{3}\begin{verbatim}
(5) All
Type: Variable All
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}

\begin{patch}{PolarGraphicsExamplePageEmpty5}

CHAPTER 3. HYPERDOC PAGES

Implicit Curves

— graphics.ht —

Non-singular curves defined by a polynomial equation \( p(x,y) = 0 \) in a rectangular region in the plane.

Pick a particular example or choose 'All' to see all the examples.

A Conic Section (Hyperbola).
\[
\text{\graphpaste{draw(x * y = 1, x, y, range == [-3..3, -3..3])}}
\]

An Elliptic Curve.
\[
\text{\graphpaste{draw(y**2 + y = x**3 - x, x, y, range == [-2..2, -2..1])}}
\]

Cartesian Ovals.
\[
\text{\spadpaste{p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1) - 4*x - 1)}}
\]
\[
\text{\graphpaste{draw(p = 0, x, y, range == [-1..11, -7..7], title == "Cartesian Ovals")}}
\]

Cassinian Ovals: two loops.
\[
\text{\spadpaste{q := (x**2 + y**2 + 7**2)**2 - (6**4 + 4*7**2*x**2)}}
\]
\[
\text{\graphpaste{draw(q = 0, x, y, range == [-10..10, -4..4], title == "Cassini oval with two loops")}}
\]

Run all examples on this page.

---

Implicit Curves

Non-singular curves defined by a polynomial equation \( p(x,y) = 0 \) in a rectangular region in the plane.

Pick a particular example or choose 'All' to see all the examples.

A Conic Section (Hyperbola).
\[
\text{\graphpaste{draw(x * y = 1, x, y, range == [-3..3, -3..3])}}
\]

An Elliptic Curve.
\[
\text{\graphpaste{draw(y**2 + y = x**3 - x, x, y, range == [-2..2, -2..1])}}
\]

Cartesian Ovals.
\[
\text{\spadpaste{p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1) - 4*x - 1)}}
\]
\[
\text{\graphpaste{draw(p = 0, x, y, range == [-1..11, -7..7], title == "Cartesian Ovals")}}
\]

Cassinian Ovals: two loops.
\[
\text{\spadpaste{q := (x**2 + y**2 + 7**2)**2 - (6**4 + 4*7**2*x**2)}}
\]
\[
\text{\graphpaste{draw(q = 0, x, y, range == [-10..10, -4..4], title == "Cassini oval with two loops")}}
\]

Run all examples on this page.

---
3.50. GRAPHICS.HT

\begin{spadgraph}{draw(x \times y = 1, x, y, range == [-3..3, -3..3])\bound{example1 }}
\end{spadgraph}

\begin{spadcommand}{p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1) - 4*x - 1)\bound{p }}
\indentrel{3}\begin{verbatim}
(3)
  4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\end{spadcommand}

\begin{spadgraph}{draw(p = 0, x, y, range == [-1..11, -7..7], title == "Cartesian Ovals")\free{p }\bound{example3 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/implicitcurvegraphicsexamplepage4.view/image}}{viewalone\space{1}\env{AXIOM}/doc/viewports/implicitcurvegraphicsexamplepage4}}
\end{spadgraph}
\begin{verbatim}
4 2 2 4 2
(5) y + (2x + 98)y + x - 98x + 1105
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(7) All
Type: Variable All
\end{verbatim}
Lists of Points

— graphics.ht —

Axiom has the ability to create lists of points in a two dimensional graphics viewport. This is done by utilizing the \spadtype{GraphImage} and \spadtype{TwoDimensionalViewport} domain facilities.

\beginscroll
\indent{5}
\em NOTE: It is only necessary to click on the makeViewport2D command button to plot this curve example).
\indent{0}
\spadpaste{p1 := point [1::SF,1::SF]$(Point SF) \bound{p1}}
\newline
\spadpaste{p2 := point [0::SF,1::SF]$(Point SF) \bound{p2}}
\newline
\spadpaste{p3 := point [0::SF,0::SF]$(Point SF) \bound{p3}}
\newline
\spadpaste{p4 := point [1::SF,0::SF]$(Point SF) \bound{p4}}
\newline
\spadpaste{p5 := point [1::SF,5::SF]$(Point SF) \bound{p5}}
\newline
\spadpaste{p6 := point [0.5::SF,0::SF]$(Point SF) \bound{p6}}
\newline
\spadpaste{p7 := point [0::SF,0.5::SF]$(Point SF) \bound{p7}}
\newline
\spadpaste{p8 := point [0.5::SF,1::SF]$(Point SF) \bound{p8}}
\newline
\spadpaste{p9 := point [0.25::SF,0.25::SF]$(Point SF) \bound{p9}}
\newline
\spadpaste{p10 := point [0.25::SF,0.75::SF]$(Point SF) \bound{p10}}
\newline
\spadpaste{p11 := point [0.75::SF,0.75::SF]$(Point SF) \bound{p11}}
\newline
\spadpaste{p12 := point [0.75::SF,0.25::SF]$(Point SF) \bound{p12}}
\newline
\spadpaste{llp := [[p1,p2],[p2,p3],[p3,p4],[p4,p1],[p5,p6],[p6,p7],
[p7,p8],[p8,p5],[p9,p10],[p10,p11],[p11,p12],[p12,p9]] \bound{llp}}
\newline
\free{p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12}
\newline
\spadpaste{size1 := 6::PositiveInteger \bound{size1}}
\newline
\spadpaste{size2 := 8::PositiveInteger \bound{size2}}
\newline
\spadpaste{size3 := 10::PositiveInteger \bound{size3}}
\newline
\spadpaste{lsize := [size1, size1, size1, size1, size2, size2, size2, size2, size3, size3, size3, size3] \bound{lsize}
spadpaste{pc1 := pastel red() \bound{pc1}}

spadpaste{pc2 := dim green() \bound{pc2}}

spadpaste{pc3 := pastel yellow() \bound{pc3}}

spadpaste{lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3] \bound{lpc} \free{pc1 pc2 pc3}}

spadpaste{lc := [pastel blue(), light yellow(), dim green(), bright red(), light green(), dim yellow(), bright blue(), dark red(), pastel red(), light blue(), dim green(), light yellow()] \bound{lc}}

spadpaste{g := makeGraphImage(llp,lpc,lc,lsize)\$GRIMAGE \free{llp lpc lc lsize}}

graphpaste{makeViewport2D(g,[title("Lines")])\$VIEW2D \free{g}}

The \spadfun{makeViewport2D} command takes a list of options as a parameter in this example. The string "Lines" is designated as the viewport's title.

\end{scroll}

\begin{page}

\begin{patch}{ListPointsGraphicsExamplePagePatch1}
\begin{paste}{ListPointsGraphicsExamplePageFull1}{ListPointsGraphicsExamplePageEmpty1}
\pastebutton{ListPointsGraphicsExamplePageFull1}{\hidepaste}
\begin{verbatim}
(1) [1.0,1.0]
Type: Point DoubleFloat
\end{verbatim}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch2}
\begin{paste}{ListPointsGraphicsExamplePageFull2}{ListPointsGraphicsExamplePageEmpty2}
\pastebutton{ListPointsGraphicsExamplePageFull2}{\hidepaste}
\begin{verbatim}
(2) [0.0,1.0]
Type: Point DoubleFloat
\end{verbatim}
\end{patch}

\end{page}
3.50. GRAPHICS.HT

\begin{verbatim}
(3) [0.0,0.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch4}
\begin{paste}{ListPointsGraphicsExamplePageFull4}{ListPointsGraphicsExamplePageEmpty4}
\pastebutton{ListPointsGraphicsExamplePageFull4}{\hidepaste}
\tab{5}\spadcommand{p4 := point [1::SF,0::SF]$(Point SF)$\bound{p4 }}
\indentrel{3}\begin{verbatim}
(4) [1.0,0.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch5}
\begin{paste}{ListPointsGraphicsExamplePageFull5}{ListPointsGraphicsExamplePageEmpty5}
\pastebutton{ListPointsGraphicsExamplePageFull5}{\hidepaste}
\tab{5}\spadcommand{p5 := point [1::SF,.5::SF]$(Point SF)$\bound{p5 }}
\indentrel{3}\begin{verbatim}
(5) [1.0,0.5]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ListPointsGraphicsExamplePageEmpty5}
\begin{paste}{ListPointsGraphicsExamplePageEmpty5}{ListPointsGraphicsExamplePagePatch5}
\pastebutton{ListPointsGraphicsExamplePageEmpty5}{\showpaste}
\tab{5}\spadcommand{p5 := point [1::SF,0.5::SF]$(Point SF)$\bound{p5}}
\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch6}
\begin{paste}{ListPointsGraphicsExamplePageFull6}{ListPointsGraphicsExamplePageEmpty6}
\pastebutton{ListPointsGraphicsExamplePageFull6}{\hidepaste}
\indentrel{3}\begin{verbatim}
(6) [0.5,0.0]
Type: Point DoubleFloat
\end{verbatim}
\end{screen}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch7}
\begin{paste}{ListPointsGraphicsExamplePageFull7}{ListPointsGraphicsExamplePageEmpty7}
\pastebutton{ListPointsGraphicsExamplePageFull7}{\hidepaste}
\indentrel{3}\begin{verbatim}
(7) [0.0,0.5]
Type: Point DoubleFloat
\end{verbatim}
\end{screen}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch8}
\begin{paste}{ListPointsGraphicsExamplePageFull8}{ListPointsGraphicsExamplePageEmpty8}
\pastebutton{ListPointsGraphicsExamplePageFull8}{\hidepaste}
\indentrel{3}\begin{verbatim}
(8) [0.5,1.0]
Type: Point DoubleFloat
\end{verbatim}
\end{screen}
\end{patch}
\begin{verbatim}
(12) \[
\begin{bmatrix}
0.75 & 0.25
\end{bmatrix}
\end{bmatrix}
\end{verbatim}

\begin{verbatim}
(13)
\[
\begin{bmatrix}
[1.0, 0.1, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0],
[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0],
[0.0, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5],
[0.0, 0.5, 0.0, 0.0], [0.5, 0.0, 0.0, 0.0],
[0.0, 0.25, 0.0, 0.25], [0.0, 0.75, 0.75, 0.0],
[0.75, 0.0, 0.0, 0.75], [0.75, 0.25, 0.25, 0.0],
\end{bmatrix}
\end{verbatim}

\begin{verbatim}
(14) 6
\end{verbatim}
\begin{paste}{ListPointsGraphicsExamplePageEmpty17}{ListPointsGraphicsExamplePagePatch17}
\tab{5}\spadcommand{lsize := [size1, size1, size1, size1, size2, size2, size2, size2, size3, size3, size3, size3]\bound{lsize }\free{size1 size2 size3 }}
\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch18}
\begin{paste}{ListPointsGraphicsExamplePageFull18}{ListPointsGraphicsExamplePageEmpty18}
\pastebutton{ListPointsGraphicsExamplePageFull18}{\hidepaste}
\tab{5}\spadcommand{pc1 := pastel red()}\bound{pc1 }\begin{verbatim}
(18) [Hue: 1 Weight: 1.0] from the Pastel palette
Type: Palette
\end{verbatim}\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch19}
\begin{paste}{ListPointsGraphicsExamplePageFull19}{ListPointsGraphicsExamplePageEmpty19}
\pastebutton{ListPointsGraphicsExamplePageFull19}{\hidepaste}
\tab{5}\spadcommand{pc2 := dim green()}\bound{pc2 }\begin{verbatim}
(19) [Hue: 14 Weight: 1.0] from the Dim palette
Type: Palette
\end{verbatim}\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch20}
\begin{paste}{ListPointsGraphicsExamplePageFull20}{ListPointsGraphicsExamplePageEmpty20}
\pastebutton{ListPointsGraphicsExamplePageFull20}{\hidepaste}
\tab{5}\spadcommand{pc3 := pastel yellow()}\bound{pc3 }\begin{verbatim}
(20) [Hue: 11 Weight: 1.0] from the Pastel palette
Type: Palette
\end{verbatim}\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
3.50. GRAPHICS.HT

\begin{verbatim}
(21) [[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Pastel palette]
Type: List Palette
\end{verbatim}

\indentrel{-3}\end{patch}\end{paste}\end{patch}

\begin{verbatim}
(22) [[Hue: 22 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 1 Weight: 1.0] from the Bright palette,
[Hue: 14 Weight: 1.0] from the Light palette,
[Hue: 11 Weight: 1.0] from the Dim palette,
[Hue: 22 Weight: 1.0] from the Bright palette,
[Hue: 1 Weight: 1.0] from the Dark palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 22 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Light palette]
Type: List Palette
\end{verbatim}
\begin{verbatim}
(23) Graph with 12 point lists
Type: GraphImage
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch23}
\begin{paste}{ListPointsGraphicsExamplePageFull23}{ListPointsGraphicsExamplePageEmpty23}
\pastebutton{ListPointsGraphicsExamplePageFull23}{\hidepaste}
\tab{5}\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE\bound{g }ree{llp lpc lc lsize}}
\indentrel{3}
\end{paste}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePagePatch24}
\begin{paste}{ListPointsGraphicsExamplePageFull24}{ListPointsGraphicsExamplePageEmpty24}
\pastebutton{ListPointsGraphicsExamplePageFull24}{\hidepaste}
\tab{5}\spadgraph{makeViewport2D(g,[title("Lines")])$VIEW2D\free{g}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/listpointsgraphicsexamplepage24.view}}}
\end{paste}
\end{patch}

\begin{patch}{ListPointsGraphicsExamplePageEmpty24}
\begin{paste}{ListPointsGraphicsExamplePageEmpty24}{ListPointsGraphicsExamplePagePatch24}
\pastebutton{ListPointsGraphicsExamplePageEmpty24}{\showpaste}
\tab{5}\spadgraph{makeViewport2D(g,[title("Lines")])$VIEW2D\free{g}}
\end{paste}
\end{patch}

\begin{center}
---
\end{center}

Three Dimensional Graphing

⇒ “notitle” (TwoVariableGraphicsPage) 3.50 on page 629
⇒ “notitle” (SpaceCurveGraphicsPage) 3.50 on page 631
⇒ “notitle” (ParametricTubeGraphicsPage) 3.50 on page 633
⇒ “notitle” (ParametricSurfaceGraphicsPage) 3.50 on page 636
3.50. GRAPHICS.HT

⇒ “notitle” (ugGraphThreeDBuildPage) 11 on page 2041 — graphics.ht —

\begin{page}{ThreeDimensionalGraphicsPage}{Three Dimensional Graphing}
\beginscroll
\beginmenu
\menulink{Functions of Two Variables}{TwoVariableGraphicsPage} \newline Plot surfaces defined by an equation \( z = f(x,y) \).
\menulink{Parametric Curves}{SpaceCurveGraphicsPage} \newline Plot curves defined by equations \( x = f(t) \), \( y = g(t) \), \( z = g(t) \).
\menulink{Parametric Tube Plots}{ParametricTubeGraphicsPage} \newline Plot a tube around a parametric space curve.
\menulink{Parametric Surfaces}{ParametricSurfaceGraphicsPage} \newline Plot surfaces defined by \( x = f(u,v) \), \( y = g(u,v) \), \( z = h(u,v) \).
\menulink{Building Objects}{ugGraphThreeDBuildPage} \newline Create objects constructed from geometric primitives.
\endmenu
\endscroll
\autobuttons \end{page}

---

Functions of Two Variables

— graphics.ht —

\begin{page}{TwoVariableGraphicsPage}{Functions of Two Variables}
\beginscroll
This page describes the plotting of surfaces defined by an equation of two variables, \( z = f(x,y) \), for which the ranges of \( x \) and \( y \) are explicitly defined. The basic draw command for this function utilizes either the uncompiled function or compiled function format. The general format for an uncompiled function is:
\indent{5}\newline
\textbf{\em draw}(f(x,y), x = a..b, y = c..d)
\indent{0}\newline
where \texttt{a..b} and \texttt{c..d} are segments defining the intervals \([a,b]\) and \([c,d]\) over which the variables \( x \) and \( y \) span. In this case the function is not compiled until the draw command is executed. Here is an example:
\graphpaste{draw(cos(x*y),x=-3..3,y=-3..3)}
In the case of a compiled function, the function is named and compiled independently. This is useful if you intend to use a function often, or if the function is long and complex. The following line shows a function whose parameters are of the type \texttt{Small Float}. The function is
CHAPTER 3. HYPERDOC PAGES

compiled and stored by Axiom when it is entered.

\indent{5} newline

\em NOTE: It is only necessary to click on the draw command button to
plot this example.

\indent{0} newline

\spadpaste{f(x:SF,y:SF):SF == sin(x)*cos(y) \bound{f}}

\indent{0} newline

Once the function is compiled the draw command only needs the name
of the function to execute. Here is a compiled function example:

\graphpaste{draw(f,-\%pi..\%pi,\%pi..-\%pi) \free{f}}

Note that the parameter ranges do not take the variable names as in the
case of uncompiled functions. The variables are entered in the order in
which they are defined in the function specification. In this case the
first range specifies the x-variable and the second range specifies the
y-variable.

\endscroll

\autobuttons

\end{page}
Parametric Space Curves

This page describes the plotting in three dimensional space of a curve defined by the parametric equations \( x = f(t), y = g(t), z = h(t), \) where \( f, g, \) and \( h \) are functions of the parameter \( t \) which ranges over a specified interval. The basic draw command for this function utilizes either the uncompiled functions or compiled functions format and uses the \spadfun{curve} command to specify the three functions for the \( x, y, \) and \( z \) components of the curve. The general format for uncompiled functions is:

\[ \text{draw(curve}(f(t), g(t), h(t)), t = a..b) \]

where \( a..b \) is the segment defining the interval \([a,b]\) over which the parameter \( t \) ranges. In this case the functions are not compiled until the draw command is executed. Here is an example:

\graphpaste{draw(curve(cos(t),sin(t),t), t=-12..12)}

In the case of compiled functions, the functions are named and compiled independently. This is useful if you intend to use the functions often, or if the functions are long and complex. The following lines show functions whose parameters are of the type Small Float. The functions are compiled and stored by Axiom when entered.

\spadpaste{i1(t:SF):SF == sin(t)*cos(3*t/5) \bound{i1}}
\spadpaste{i2(t:SF):SF == cos(t)*cos(3*t/5) \bound{i2}}
\spadpaste{i3(t:SF):SF == cos(t)*sin(3*t/5) \bound{i3}}

Once the functions are compiled the draw command only needs the names of the functions to execute. Here is a compiled functions example:
\graphpaste{draw(curve(i1,i2,i3),0..15*\pi)} \free{i1 i2 i3}

Note that the parameter range does not take the variable name as in the case of uncompiled functions. It is understood that the indicated range applies to the parameter of the functions, which in this case is $t$.

\endscroll
\autobuttons
\end{page}

\begin{patch}{SpaceCurveGraphicsPagePatch1}
\begin{paste}{SpaceCurveGraphicsPageFull1}{SpaceCurveGraphicsPageEmpty1}
\pastebutton{SpaceCurveGraphicsPageFull1}{\hidepaste}
\tab{5}\spadgraph{draw(curve(cos(t),sin(t),t), t=-12..12)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/spacecurvegraphicspage1.view/image}}}{viewalone\space{1} \env{AXIOM}/doc/viewports/spacecurvegraphicspage1}}
\end{paste}
\end{patch}

\begin{patch}{SpaceCurveGraphicsPageEmpty1}
\begin{paste}{SpaceCurveGraphicsPageEmpty1}{SpaceCurveGraphicsPagePatch1}
\pastebutton{SpaceCurveGraphicsPageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(curve(cos(t),sin(t),t), t=-12..12)}
\end{paste}
\end{patch}

\begin{patch}{SpaceCurveGraphicsPagePatch2}
\begin{paste}{SpaceCurveGraphicsPageFull2}{SpaceCurveGraphicsPageEmpty2}
\pastebutton{SpaceCurveGraphicsPageFull2}{\hidepaste}
\tab{5}\spadcommand{i1(t:SF):SF == sin(t)*cos(3*t/5)\bound{i1}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{SpaceCurveGraphicsPageEmpty2}
\begin{paste}{SpaceCurveGraphicsPageEmpty2}{SpaceCurveGraphicsPagePatch2}
\pastebutton{SpaceCurveGraphicsPageEmpty2}{\showpaste}
\tab{5}\spadcommand{i1(t:SF):SF == sin(t)*cos(3*t/5)\bound{i1}}
\end{paste}
\end{patch}

\begin{patch}{SpaceCurveGraphicsPagePatch3}
\begin{paste}{SpaceCurveGraphicsPageFull3}{SpaceCurveGraphicsPageEmpty3}
\pastebutton{SpaceCurveGraphicsPageFull3}{\hidepaste}
\tab{5}\spadcommand{i2(t:SF):SF == cos(t)*cos(3*t/5)\bound{i2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{SpaceCurveGraphicsPageEmpty3}
\begin{paste}{SpaceCurveGraphicsPageEmpty3}{SpaceCurveGraphicsPagePatch3}
\pastebutton{SpaceCurveGraphicsPageEmpty3}{\showpaste}
\tab{5}\spadcommand{i2(t:SF):SF == cos(t)*cos(3*t/5)\bound{i2}}
\end{paste}
\end{patch}
This page describes the plotting in three dimensional space of a tube around a parametric space curve defined by the parametric equations $x = f(t)$, $y = g(t)$, $z = h(t)$, where $f$, $g$, and $h$ are functions of the parameter $t$ which ranges over a specified interval. The basic draw command for this function utilizes either the uncompiled functions or compiled functions format and uses the \spadfun{curve} command to specify the three functions for the $x$, $y$, and $z$ components of the curve. This uses the same format as that for space curves except that it requires a specification for the radius of the tube. If the radius of the tube is 0, then the result is the space curve itself. The
general format for uncompiled functions is:

\[
\text{draw}(\text{curve}(f(t),g(t),h(t)), \ t = a..b, \ \text{tubeRadius} == r)
\]

where \( a..b \) is the segment defining the interval \([a,b]\) over which the parameter \( t \) ranges, and the \( \text{tubeRadius} \) is indicated by the variable \( r \). In this case the functions are not compiled until the \text{draw} \ command is executed. Here is an example:

\[
\text{draw}(\text{curve}(\sin(t)\cdot\cos(3t/5), \ \cos(t)\cdot\cos(3t/5), \ \cos(t)\cdot\sin(3t/5)), \ t=0..15\cdot\pi, \ \text{tubeRadius} == .15)
\]

In the case of compiled functions, the functions are named and compiled independently. This is useful if you intend to use the functions often, or if the functions are long and complex. The following lines show functions whose parameters are of the type Small Float. The functions are compiled and stored by Axiom when entered.

\[
\text{NOTE: It is only necessary to click on the draw command button to plot this example}.
\]

\[
\text{spadpaste}{t1(t:SF):SF == 4/(2-\sin(3t))\cdot\cos(2t) \ \text{bound}\{t1\}}
\]

\[
\text{spadpaste}{t2(t:SF):SF == 4/(2-\sin(3t))\cdot\sin(2t) \ \text{bound}\{t2\}}
\]

\[
\text{spadpaste}{t3(t:SF):SF == 4/(2-\sin(3t))\cdot\cos(3t) \ \text{bound}\{t3\}}
\]

Once the function is compiled the \text{draw} \ command only needs the names of the functions to execute. Here is a compiled functions example of a trefoil knot:

\[
\text{draw}(\text{curve}(t1,t2,t3),0..2\cdot\pi, \ \text{tubeRadius} == .2)
\]

Note that the parameter range does not take the variable name as in the case of uncompiled functions. It is understood that the indicated range applies to the parameter of the functions, which in this case is \( t \). Typically, the radius of the tube should be set between 0 and 1. A radius of less than 0 results in its positive counterpart and a radius of greater than one causes self intersection.

\end{scroll}

3.50. GRAPHICS.HT

\begin{verbatim}
\tab{5}\spadcommand{t1(t:SF):SF == 4/(2-sin(3*t))*cos(2*t)\bound{t1 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{t2(t:SF):SF == 4/(2-sin(3*t))*sin(2*t)\bound{t2 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{t3(t:SF):SF == 4/(2-sin(3*t))*cos(3*t)\bound{t3 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{t4(t:SF):SF == 4/(2-sin(3*t))*sin(3*t)\bound{t4 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{verbatim}
\end{verbatim}
Parametric Surfaces

— graphics.ht —

Graphing a surface defined by \( x = f(u,v), y = g(u,v), z = h(u,v) \).

This page describes the plotting of surfaces defined by the parametric equations of two variables, \( x = f(u,v), y = g(u,v), \) and \( z = h(u,v), \) for which the ranges of \( u \) and \( v \) are explicitly defined. The basic draw command for this function utilizes either the uncompiled function or compiled function format and uses the \spadfun{surface} command to specify the three functions for the \( x, y \) and \( z \) components of the surface. The general format for uncompiled functions is:

\begin{verbatim}
\indent{5}\printem{draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d)}
\end{verbatim}

where \( a..b \) and \( c..d \) are segments defining the intervals \([a,b]\) and \([c,d]\) over which the parameters \( u \) and \( v \) span. In this case the functions are not compiled until the draw command is executed. Here is an example of a surface plotted using the parabolic cylindrical coordinate system option:

\begin{verbatim}
\printgraphpaste{draw(surface(u*cos(v), u*sin(v),v*cos(u)),
u=-4..4,v=0..2*\%pi, coordinates==parabolicCylindrical)}
\end{verbatim}

In the case of compiled functions, the functions are named and compiled independently. This is useful if you intend to use the functions often, or if the functions are long and complex. The following lines show functions whose parameters are of the type Small Float. The functions are compiled and stored by Axiom when entered.

\begin{verbatim}
\indent{5}\printem{NOTE: It is only necessary to click on the draw command button to plot this example.}
\end{verbatim}
3.50. GRAPHICS.HT

\spadpaste{n1(u:SF,v:SF):SF == u*cos(v) \bound{n1}}
\newline
\spadpaste{n2(u:SF,v:SF):SF == u*sin(v) \bound{n2}}
\newline
\spadpaste{n3(u:SF,v:SF):SF == u \bound{n3}}

Once the function is compiled the draw command only needs the names of
the functions to execute. Here is a compiled functions example
plotted using the toroidal coordinate system option:
\graphpaste{draw(surface(n1,n2,n3), 1.0..4.0, 1.0..4*%pi,
coordinates == toroidal(1\$SF)) \free{n1 n2 n3}}

Note that the parameter ranges do not take the variable names as in
the case of uncompiled functions. The variables are entered in the
order in which they are defined in the function specification. In
this case the first range specifies the u-variable and the second
range specifies the v-variable.

\endscroll
\autobuttons
\end{page}
Building 3D Objects

— graphics.ht —
This page describes the Axiom facilities for creating three dimensional objects constructed from geometric primitives. The Axiom operation \spadfun{create3Space()} creates a space to which points, curves, and polygons can be added using the operations from the \spadtype{ThreeSpace} domain. The contents of this space can then be displayed in a viewport using the \spadfun{makeViewport3D()} command. It will be necessary to have these operations exposed in order to use them.

Initially, the space which will hold the objects must be defined and compiled, as in the following example:

```
space := create3Space()
```

Now objects can be sent to this \spad{space} as per the operations allowed by the \spadtype{ThreeSpace} domain. The following examples place curves into \spad{space}.

```
curve(space,[[0,20,20],[0,20,30],[0,30,30],[0,30,100],[0,20,100],[0,20,110],[0,50,110],[0,50,100],[0,40,100],[0,40,30],[0,50,30],[0,50,20],[0,20,20]]) \bound{curveI}
```

```
curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]]) \bound{curveB1}
```

```
curve(space,[[0,110,35],[0,110,65],[0,105,60],[0,80,60],[0,80,70],[0,105,70],[0,110,75],[0,110,95],[0,105,100],[0,80,100],[0,80,30]]) \bound{curveB2}
```

```
closedCurve(space,[[0,140,20],[0,140,110],[0,150,110],[0,170,50],[0,190,110],[0,200,110],[0,200,20],[0,190,20],[0,190,75],[0,175,35],[0,165,35],[0,150,20]]) \bound{curveM}
```

```
closedCurve(space,[[200,0,20],[200,0,110],[185,0,110],[160,0,45],[160,0,110],[150,0,110],[150,0,20],[165,0,20],[190,0,85],[190,0,20]]) \bound{curveN}
```

```
closedCurve(space,[[140,0,20],[120,0,110],[110,0,110],[90,0,20],[100,0,20],[108,0,50],[123,0,50],[121,0,60],[110,0,60],[115,0,90],[130,0,20]]) \bound{curveA}
```

```
closedCurve(space,[[80,0,30],[80,0,100],[70,0,110],[40,0,110],[30,0,100],[30,0,90],[40,0,90],[40,0,95],[45,0,100],[65,0,100],[70,0,95],[70,0,35],[65,0,30],[45,0,30],[40,0,35],[40,0,60],[50,0,60],[50,0,70],[30,0,70],[30,0,30],[40,0,20],[70,0,20]]) \bound{curveG}
```

Once \spad{space} contains the desired elements a viewport is created and displayed with the following command:

```
makeViewport3D(space,[title("Curves")])
```

The parameters for \spadfun{makeViewport3D()} in this example are \spad{space}, which is the name of the three dimensional space that was
defined, and a string, "curve", which is the title for the viewport. The tailing string \em \spadfun{makeViewport3D} exposes the command \spadtype{ThreeDimensionalViewport} if these commands are unexposed.

\begin{patch}{3DObjectGraphicsPagePatch1}
\begin{paste}{3DObjectGraphicsPageFull1}{3DObjectGraphicsPageEmpty1}
\pastebutton{3DObjectGraphicsPageFull1}{\hidepaste}
\indentrel{5}\spadcommand{space := create3Space()$(ThreeSpace SF)\bound{space }}
\indentrel{-3}\begin{verbatim}
(1) 3-Space with 0 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\end{patch}

\begin{patch}{3DObjectGraphicsPageEmpty1}
\begin{paste}{3DObjectGraphicsPageEmpty1}{3DObjectGraphicsPagePatch1}
\pastebutton{3DObjectGraphicsPageEmpty1}{\showpaste}
\indentrel{5}\spadcommand{space := create3Space()$(ThreeSpace SF)\bound{space }}
\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch2}
\begin{paste}{3DObjectGraphicsPageFull2}{3DObjectGraphicsPageEmpty2}
\pastebutton{3DObjectGraphicsPageFull2}{\hidepaste}
\indentrel{5}\spadcommand{curve(space,[[0,20,20],[0,20,30],[0,30,30],[0,30,100], [0,20,100],[0,20,110],[0,50,110],[0,50,100],[0,40,100],[0,40,30],[0,50,30],[0,50,20],[0,20,20]])\bound{curveI}}
\indentrel{3}\begin{verbatim}
(2) 3-Space with 1 component
Type: ThreeSpace DoubleFloat
\end{verbatim}
\end{patch}

\begin{patch}{3DObjectGraphicsPageEmpty2}
\begin{paste}{3DObjectGraphicsPageEmpty2}{3DObjectGraphicsPagePatch2}
\pastebutton{3DObjectGraphicsPageEmpty2}{\showpaste}
\indentrel{5}\spadcommand{curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,60],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]])\bound{curveB1}}
\indentrel{-3}\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch3}
\begin{paste}{3DObjectGraphicsPageFull3}{3DObjectGraphicsPageEmpty3}
\pastebutton{3DObjectGraphicsPageFull3}{\hidepaste}
\indentrel{5}\spadcommand{curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,60],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]])\bound{curveB1}}
\indentrel{-3}\end{patch}

\begin{patch}{3DObjectGraphicsPageEmpty3}
\begin{paste}{3DObjectGraphicsPageEmpty3}{3DObjectGraphicsPagePatch3}
\indentrel{5}\spadcommand{curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,60],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]])\bound{curveB1}}
\indentrel{-3}\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch4}
\begin{paste}{3DObjectGraphicsPageFull4}{3DObjectGraphicsPageEmpty4}
\pastebutton{3DObjectGraphicsPageFull4}{\hidepaste}
\indentrel{5}\spadcommand{curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,60],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]])\bound{curveB1}}
\indentrel{-3}\end{patch}

\begin{patch}{3DObjectGraphicsPageEmpty4}
\begin{paste}{3DObjectGraphicsPageEmpty4}{3DObjectGraphicsPagePatch4}
\indentrel{5}\spadcommand{curve(space,[[0,80,20],[0,70,20],[0,70,110],[0,110,110],[0,120,100],[0,120,70],[0,115,65],[0,120,60],[0,120,30],[0,110,20],[0,80,20],[0,80,30],[0,105,30],[0,110,35]])\bound{curveB1}}
\indentrel{-3}\end{patch}
\begin{patch}{3DObjectGraphicsPageEmpty3}
\begin{paste}{3DObjectGraphicsPageEmpty3}{3DObjectGraphicsPagePatch3}
\pastebutton{3DObjectGraphicsPageEmpty3}\{\showpaste\}
\tab{5}\spadcommand{curve\left(\text{space,}\left[\left[0,80,20\right],\left[0,70,20\right],\left[0,70,110\right],\left[0,110,110\right],\left[0,120,100\right],\left[0,120,70\right],\left[0,115,65\right],\left[0,120,60\right],\left[0,120,30\right],\left[0,110,20\right],\left[0,80,20\right],\left[0,80,30\right],\left[0,105,30\right],\left[0,110,35\right]\right]\right)\}\bound{curveB1}}
\end{paste}\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch4}
\begin{paste}{3DObjectGraphicsPageFull4}{3DObjectGraphicsPageEmpty4}
\pastebutton{3DObjectGraphicsPageFull4}\{\hidepaste\}
\tab{5}\spadcommand{curve\left(\text{space,}\left[\left[0,110,35\right],\left[0,110,55\right],\left[0,105,60\right],\left[0,80,60\right],\left[0,80,70\right],\left[0,105,70\right],\left[0,110,75\right],\left[0,110,95\right],\left[0,105,100\right],\left[0,80,100\right],\left[0,80,30\right]\right]\right)\}\bound{curveB2}}
\indentrel{3}\begin{verbatim}
(4) 3-Space with 3 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch5}
\begin{paste}{3DObjectGraphicsPageFull5}{3DObjectGraphicsPageEmpty5}
\pastebutton{3DObjectGraphicsPageFull5}\{\hidepaste\}
\tab{5}\spadcommand{closedCurve\left(\text{space,}\left[\left[0,140,20\right],\left[0,140,110\right],\left[0,150,110\right],\left[0,170,50\right],\left[0,190,110\right],\left[0,200,110\right],\left[0,200,20\right],\left[0,190,20\right],\left[0,190,75\right],\left[0,175,35\right],\left[0,165,35\right],\left[0,150,75\right],\left[0,150,20\right]\right]\right)\}\bound{curveM}}
\indentrel{3}\begin{verbatim}
(5) 3-Space with 4 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch6}
\begin{paste}{3DObjectGraphicsPageFull6}{3DObjectGraphicsPageEmpty6}
\pastebutton{3DObjectGraphicsPageFull6}\{\hidepaste\}
\tab{5}\spadcommand{closedCurve\left(\text{space,}\left[\left[200,0,20\right],\left[200,0,110\right],\left[185,0,110\right],\left[160,0,45\right],\left[160,0,110\right],\left[150,0,110\right],\left[150,0,20\right],\left[165,0,20\right],\left[190,0,85\right],\left[190,0,20\right]\right]\right)\}\bound{curveN}}
\indentrel{3}\begin{verbatim}
(6) 3-Space with 5 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{3DObjectGraphicsPagePatch7}
\begin{paste}{3DObjectGraphicsPageFull7}{3DObjectGraphicsPageEmpty7}
\pastebutton{3DObjectGraphicsPageFull7}{\hidepaste}
\tab{5}\spadcommand{closedCurve(space,[[200,0,20], [200,0,110], [185,0,110], [160,0,45], [160,0,110], [150,0,110], [150,0,20], [165,0,20], [190,0,85], [190,0,20]])\bound{curveN}}
\end{paste}
\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch8}
\begin{paste}{3DObjectGraphicsPageFull8}{3DObjectGraphicsPageEmpty8}
\pastebutton{3DObjectGraphicsPageFull8}{\hidepaste}
\tab{5}\spadcommand{closedCurve(space,[[140,0,20], [120,0,110], [110,0,110], [90,0,20], [100,0,20], [108,0,50], [123,0,50], [121,0,60], [110,0,60], [115,0,90], [130,0,20]])\bound{curveA}}
\indentrel{3}\begin{verbatim}
(7) 3-Space with 6 components
Type: ThreeSpace DoubleFloat
\indentrel{-3}\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{3DObjectGraphicsPagePatch9}
\begin{paste}{3DObjectGraphicsPageFull9}{3DObjectGraphicsPageEmpty9}
\pastebutton{3DObjectGraphicsPageFull9}{\hidepaste}
\tab{5}\spadcommand{closedCurve(space,[[80,0,30], [80,0,100], [70,0,110], [40,0,110], [30,0,100], [30,0,90], ... [40,0,35], [40,0,60], [50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20]])\bound{curveG}}
\indentrel{3}\begin{verbatim}
(8) 3-Space with 7 components
Type: ThreeSpace DoubleFloat
\indentrel{-3}\end{verbatim}
\end{paste}
\end{patch}

\begin{paste}{3DObjectGraphicsPageFull9}{3DObjectGraphicsPageEmpty9}
\pastebutton{3DObjectGraphicsPageFull9}{\hidepaste}
\tab{5}\spadgraph{makeViewport3D(space,[title("Curves")])} VIEW3D \free{space curveI curveB1 curveB2 curveM curveN curveA curveG}
\center{\unixcommand{\inputimage\{\env{AXIOM}/doc/viewports/3dobjectgraphicspage9.view/image\}}{viewalone}}
\end{paste}
\end{patch}
Two Dimensional Graphics

⇒ “notitle” (OneVariableGraphicsPage) 3.50 on page 643
⇒ “notitle” (ParametricCurveGraphicsPage) 3.50 on page 646
⇒ “notitle” (PolarGraphicsPage) 3.50 on page 648
⇒ “notitle” (ImplicitCurveGraphicsPage) 3.50 on page 650
⇒ “notitle” (ListPointsGraphicsPage) 3.50 on page 652

Functions of One Variable

⇒ graphics.ht

\begin{page}{OneVariableGraphicsPage}{Functions of One Variable}
\beginscroll
Here we wish to plot a function \( y = f(x) \) on an interval \([a,b]\).
As an example, let's take the function \( y = \sin(\tan(x)) - \tan(\sin(x)) \) on the interval \([0,6]\).
Here is the simplest command that will do this:
\graphpaste{draw(sin(tan(x)) - tan(sin(x)),x = 0..6)}

Notice that Axiom compiled a function before the graph was put on the screen. The expression sin(tan(x)) - tan(sin(x)) was converted to a compiled function so that it's value for various values of x could be computed quickly and efficiently. Let's graph the same function on a different interval and this time we'll give the graph a title. The title is a String, which is an optional argument of the command 'draw'.
\graphpaste{draw(sin(tan(x)) - tan(sin(x)),x = 10..16, title == "y = sin tan x - tan sin x")}

Once again the expression sin(tan(x)) - tan(sin(x)) was converted to a compiled function before any points were computed.

If you want to graph the same function on a number of intervals, it's a good idea to write down a function definition so that the function only has to be compiled once.
Here's an example:
\spadpaste{f(x) == (x-1)*(x-2)*(x-3) \bound{f}}
\newline
\graphpaste{draw(f, 0..2, title == "y = f(x) on \[0,2\]) \free{f}}
\newline
\graphpaste{draw(f, 0..4,title == "y = f(x) on \[0,4\]) \free{f}}

Notice that our titles can be whatever we want, as long as they are enclosed by double quotes. However, a title which is too long to fit within the viewport title window will be clipped.
\endscroll
\autobuttons
\end{page}
\begin{patch}{OneVariableGraphicsPagePatch2}
\begin{paste}{OneVariableGraphicsPageFull2}{OneVariableGraphicsPageEmpty2}
\pastebutton{OneVariableGraphicsPageFull2}{\hidepaste}
\indentrel{3}\spadgraph{draw(sin(tan(x)) - tan(sin(x)),x = 10..16,title == "y = sin tan x - tan sin x")}
\end{patch}

\begin{patch}{OneVariableGraphicsPagePatch3}
\begin{paste}{OneVariableGraphicsPageFull3}{OneVariableGraphicsPageEmpty3}
\pastebutton{OneVariableGraphicsPageFull3}{\hidepaste}
\indentrel{3}\spadcommand{f(x) == (x-1)*(x-2)*(x-3)\bound{f}}
\end{paste}
\end{patch}

\begin{patch}{OneVariableGraphicsPagePatch4}
\begin{paste}{OneVariableGraphicsPageFull4}{OneVariableGraphicsPageEmpty4}
\pastebutton{OneVariableGraphicsPageFull4}{\hidepaste}
\indentrel{3}\spadgraph{draw(f, 0..2, title == "y = f(x) on \[0,2\]"\free{f}}
\end{paste}
\end{patch}

\begin{patch}{OneVariableGraphicsPagePatch5}
\begin{paste}{OneVariableGraphicsPageFull5}{OneVariableGraphicsPageEmpty5}
\pastebutton{OneVariableGraphicsPageFull5}{\hidepaste}
\indentrel{3}\spadgraph{draw(f, 0..4, title == "y = f(x) on \[0,4\]"\free{f}}
\end{paste}
\end{patch}
Parametric Curves

One way of producing interesting curves is by using parametric equations. Let \( x = f(t) \) and \( y = g(t) \) for two functions \( f \) and \( g \) as the parameter \( t \) ranges over an interval \([a,b]\).

Here's an example:

\[
\text{draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2\%pi)}
\]

Here \( 0..2\%pi \) represents the interval over which the variable \( t \) ranges.

In the case of parametric curves, Axiom will compile two functions, one for each of the functions \( f \) and \( g \).

You may also put a title on a graph. The title may be an arbitrary string and is an optional argument to the command 'draw'. For example:

\[
\text{draw(curve(cos(t), sin(t)), t = 0..2\%pi, title == "The Unit Circle"}
\]

If you plan on plotting \( x = f(t) \), \( y = g(t) \) as \( t \) ranges over several intervals, you may want to define functions \( f \) and \( g \), so that they need not be recompiled every time you create a new graph. Here's an example:

\[
f(t:SF):SF == sin(3*t/4) \bound{f}
\]
\[
g(t:SF):SF == sin(t) \bound{g}
\]

These examples show how the curve changes as the range of parameter \( t \) varies.

These examples show how the curve changes as the range of parameter \( t \) varies.
3.50. GRAPHICS.HT

\begin{patch}{ParametricCurveGraphicsPagePatch2}
\begin{paste}{ParametricCurveGraphicsPageFull2}{ParametricCurveGraphicsPageEmpty2}
\spadgraph{draw(curve(cos(t), sin(t)), t = 0..2*\%pi, title == "The Unit Circle")}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/parametriccurvegraphicspage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/parametriccurvegraphicspage2}}
\end{paste}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPageEmpty2}
\begin{paste}{ParametricCurveGraphicsPageEmpty2}{ParametricCurveGraphicsPagePatch2}
\spadgraph{draw(curve(cos(t), sin(t)), t = 0..2*\%pi, title == "The Unit Circle")}
\end{paste}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPagePatch3}
\begin{paste}{ParametricCurveGraphicsPageFull3}{ParametricCurveGraphicsPageEmpty3}
\spadcommand{f(t:SF):SF == sin(3*t/4)\bound{f}}
\verbatimbegin{verbatim}
|Type: Void|
\verbatimend{verbatim}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPageEmpty3}
\begin{paste}{ParametricCurveGraphicsPageEmpty3}{ParametricCurveGraphicsPagePatch3}
\spadcommand{f(t:SF):SF == sin(3*t/4)\bound{f}}
\end{paste}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPagePatch4}
\begin{paste}{ParametricCurveGraphicsPageFull4}{ParametricCurveGraphicsPageEmpty4}
\spadcommand{g(t:SF):SF == sin(t)\bound{g}}
\verbatimbegin{verbatim}
|Type: Void|
\verbatimend{verbatim}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPageEmpty4}
\begin{paste}{ParametricCurveGraphicsPageEmpty4}{ParametricCurveGraphicsPagePatch4}
\spadcommand{g(t:SF):SF == sin(t)\bound{g}}
\end{paste}
\end{patch}

\begin{patch}{ParametricCurveGraphicsPagePatch5}
\begin{paste}{ParametricCurveGraphicsPageFull5}{ParametricCurveGraphicsPageEmpty5}
\end{patch}
\end{patch}
Polar Coordinates

--- graphics.ht ---

Graphs in polar coordinates are given by an equation $r = f(\theta)$ as $\theta$ ranges over an interval. This is equivalent to the parametric curve $x = f(\theta) \cdot \cos(\theta)$,
3.50.  GRAPHICS.HT

\[ y = f(\theta) \sin(\theta) \] as \( \theta \) ranges over the same interval.
You may create such curves using the command 'draw', with the optional argument 'coordinates == polar'.
Here are some examples:
\begin{verbatim}
\texttt{draw(1, t = 0..2*\pi, \text{coordinates == polar},
    title == "The Unit Circle")}
\end{verbatim}
\begin{verbatim}
\texttt{draw(sin(17*t), t = 0..2*\pi, \text{coordinates == polar},
    title == "A Petal Curve")}
\end{verbatim}
%When you don't specify an interval, Axiom will assume that you
%mean 0..2*\pi.
You may also define your own functions, when you plan on plotting the
same curve as \( \theta \) varies over several intervals.
\begin{verbatim}
\texttt{f(t) == \cos(4*t/7) \\textit{bound}{f}}
\end{verbatim}
\begin{verbatim}
\texttt{draw(f, 0..2*\pi, \text{coordinates == polar}) \\textit{free}{f}}
\end{verbatim}
\begin{verbatim}
\texttt{draw(f, 0..14*\pi, \text{coordinates == polar}) \\textit{free}{f}}
\end{verbatim}
For information on plotting graphs in other coordinate systems see the
pages for the \spadtype{CoordinateSystems} domain.
\spad{endscroll}
\spad{autobuttons}
\spad{end{page}
Implicit Curves

— graphics.ht —
Axiom has facilities for graphing a non-singular algebraic curve in a rectangular region of the plane. An algebraic curve is a curve defined by a polynomial equation \( p(x,y) = 0 \).

Non-singular means that the curve is "smooth" in that it does not cross itself or come to a point (cusp).

Algebraically, this means that for any point \((a,b)\) on the curve (i.e. a point such that \( p(a,b) = 0 \)), the partial derivatives \( \frac{dp}{dx}(a,b) \) and \( \frac{dp}{dy}(a,b) \) are not both zero.

We require that the polynomial have rational or integral coefficients.

Here is a Cartesian ovals algebraic curve example:

(click on the draw button to execute this example)

\[
\begin{align*}
\text{spadpaste} & \{ p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1) - 4*x - 1) \} \\
\text{graphpaste} & \{ \text{draw}(p = 0, x, y, \text{range} == [-1..11, -7..7], \\
\text{title} == \text{"Cartesian Ovals"}) \} \\
\{ \text{A range must be declared for each variable specified in the algebraic curve equation}. \}
\end{align*}
\]

Here is a Cartesian ovals algebraic curve example:

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]

\[
\begin{verbatim}
(1) 4 2 2 4 3 2
y + (2x - 16x - 6)y + x - 16x + 58x - 12x - 6
Type: Polynomial Integer
\end{verbatim}
\]
Lists of Points

--- graphics.ht ---

Axiom has the ability to create lists of points in a two dimensional graphics viewport. This is done by utilizing the \spadtype{GraphImage} and \spadtype{TwoDimensionalViewport} domain facilities.

\verb|NOTE: It is only necessary to click on the makeViewport2D command button to plot this curve example.|

In this example, the \spadfun{makeGraphImage} command takes a list of lists of points parameter, a list of colors for each point in the graph, a list of colors for each line in the graph, and a list of numbers which indicate the size of each point in the graph. The following lines create list of lists of points which can be read be made into two dimensional graph images.

\begin{spad}
\begin{verbatim}
%p1 := point [1::SF,1::SF]$(Point SF) \bound{p1}
\end{verbatim}
\end{spad}
These lines set the point color and size, and the line color for all components of the graph.

Now the graph image is created and named according to the component specifications indicated above. The \spadfun{makeViewport2D} command then creates a two dimensional viewport for this graph according to the list of options specified within the brackets.
\begin{verbatim}
def make_point(*args):
    return Point(*args)

# Example usage:
point_1 = make_point(1.0, 2.0)
point_2 = make_point(3.0, 4.0)
point_3 = make_point(5.0, 0.0)
\end{verbatim}

Type: Point DoubleFloat

\end{verbatim}

\begin{verbatim}
def make_point(*args):
    return Point(*args)

# Example usage:
point_1 = make_point(1.0, 2.0)
point_2 = make_point(3.0, 4.0)
point_3 = make_point(5.0, 0.0)
\end{verbatim}

Type: Point DoubleFloat

\end{verbatim}

\begin{verbatim}
def make_point(*args):
    return Point(*args)

# Example usage:
point_1 = make_point(1.0, 2.0)
point_2 = make_point(3.0, 4.0)
point_3 = make_point(5.0, 0.0)
\end{verbatim}

Type: Point DoubleFloat

\end{verbatim}
(4) [1.0, 0.0]

Type: Point DoubleFloat

(5) [1.0, 0.5]

Type: Point DoubleFloat

(6) [0.5, 0.0]

Type: Point DoubleFloat

(7) [0.0, 0.5]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsPagePatch7}
\begin{paste}{ListPointsGraphicsPageFull7}{ListPointsGraphicsPageEmpty7}
\pastebutton{ListPointsGraphicsPageFull7}{\showpaste}
\tab{5}\spadcommand{p7 := point [0::SF,0.5::SF]$(Point SF)\bound{p7}}\}
\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsPagePatch8}
\begin{paste}{ListPointsGraphicsPageFull8}{ListPointsGraphicsPageEmpty8}
\pastebutton{ListPointsGraphicsPageFull8}{\hidepaste}
\tab{5}\spadcommand{p8 := point [0.5::SF,1::SF]$(Point SF)\bound{p8}}\}
\indentrel{3}\begin{verbatim}
(8) [0.5,1.0]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ListPointsGraphicsPagePatch9}
\begin{paste}{ListPointsGraphicsPageFull9}{ListPointsGraphicsPageEmpty9}
\pastebutton{ListPointsGraphicsPageFull9}{\hidepaste}
\tab{5}\spadcommand{p9 := point [0.25::SF,0.25::SF]$(Point SF)\bound{p9}}\}
\indentrel{3}\begin{verbatim}
(9) [0.25,0.25]
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ListPointsGraphicsPagePatch10}
\begin{paste}{ListPointsGraphicsPageFull10}{ListPointsGraphicsPageEmpty10}
\pastebutton{ListPointsGraphicsPageFull10}{\hidepaste}
\tab{5}\spadcommand{p10 := point [0.25::SF,0.75::SF]$(Point SF)\bound{p10}}\}
\indentrel{3}\begin{verbatim}
(10) [0.25,0.75]
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\end{verbatim}
3.50.  GRAPHICS.HT

\indentrel{-3}\end{patch}\end{patch}
\indentrel{3}\begin{verbatim}
(11) \[0.75,0.75\]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\indentrel{3}\begin{verbatim}
(12) \[0.75,0.25\]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\indentrel{3}\begin{verbatim}
(13) \\
\end{verbatim}
\input{ListPointsGraphicsPagePatch1}
\begin{verbatim}
\begin{tabular}{ll}
\verb|size1| & 6
\end{tabular}
\end{verbatim}
\end{patch}
\begin{patch}{ListPointsGraphicsPagePatch15}
\begin{paste}{ListPointsGraphicsPageFull15}{ListPointsGraphicsPageEmpty15}
\begin{tabular}{ll}
\verb|size2| & 8
\end{tabular}
\end{verbatim}
\end{patch}
\begin{patch}{ListPointsGraphicsPagePatch16}
\begin{paste}{ListPointsGraphicsPageFull16}{ListPointsGraphicsPageEmpty16}
\begin{tabular}{ll}
\verb|size3| & 10
\end{tabular}
\end{verbatim}
\end{patch}
\begin{verbatim}
(17) [6,6,6,6,8,8,8,8,10,10,10,10]
Type: List PositiveInteger
\end{verbatim}
\end{patch}

\begin{patch}{ListPointsGraphicsPagePatch18}
\begin{paste}{ListPointsGraphicsPageFull18}{ListPointsGraphicsPageEmpty18}
\pastebutton{ListPointsGraphicsPageFull18}{\hidepaste}
\indentrel{3}\spadcommand{pc2 := dim green()}\bound{pc2 }
\indentrel{3}\begin{verbatim}
(19) [Hue: 14 Weight: 1.0] from the Dim palette
Type: Palette
\end{verbatim}
\end{paste}\end{patch}
\begin{verbatim}
(20) [Hue: 11 Weight: 1.0] from the Pastel palette
    Type: Palette
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(21) [[Hue: 1 Weight: 1.0] from the Pastel palette,
    [Hue: 14 Weight: 1.0] from the Dim palette,
    [Hue: 14 Weight: 1.0] from the Dim palette,
    [Hue: 14 Weight: 1.0] from the Dim palette,
    [Hue: 11 Weight: 1.0] from the Pastel palette,
    [Hue: 11 Weight: 1.0] from the Pastel palette,
    [Hue: 11 Weight: 1.0] from the Pastel palette]
    Type: List Palette
\end{verbatim}
\begin{paste}{ListPointsGraphicsPagePatch22}
\begin{paste}{ListPointsGraphicsPageFull22}{ListPointsGraphicsPageEmpty22}
\pastebutton{ListPointsGraphicsPageFull22}{\hidepaste}
\indentrel{3}\spadcommand{lc := \[pastel blue(), light yellow(), dim green(), bright red(), light green(), dim yellow(), bright blue(), dark red(), pastel red(), light blue(), dim green(), light yellow()\]\bound{lc }}
\begin{verbatim}
(22)
\[
[\text{[Hue: 22 Weight: 1.0] from the Pastel palette,}
\text{[Hue: 11 Weight: 1.0] from the Light palette,}
\text{[Hue: 14 Weight: 1.0] from the Dim palette,}
\text{[Hue: 1 Weight: 1.0] from the Bright palette,}
\text{[Hue: 14 Weight: 1.0] from the Light palette,}
\text{[Hue: 11 Weight: 1.0] from the Dim palette,}
\text{[Hue: 22 Weight: 1.0] from the Bright palette,}
\text{[Hue: 1 Weight: 1.0] from the Dark palette,}
\text{[Hue: 1 Weight: 1.0] from the Pastel palette,}
\text{[Hue: 22 Weight: 1.0] from the Light palette,}
\text{[Hue: 14 Weight: 1.0] from the Dim palette,}
\text{[Hue: 11 Weight: 1.0] from the Light palette]}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ListPointsGraphicsPageEmpty22}
\begin{paste}{ListPointsGraphicsPageEmpty22}{ListPointsGraphicsPagePatch22}
\pastebutton{ListPointsGraphicsPageEmpty22}{\showpaste}
\indentrel{3}\spadcommand{lc := \[pastel blue(), light yellow(), dim green(), bright red(), light green(), dim yellow(), bright blue(), dark red(), pastel red(), light blue(), dim green(), light yellow()\]\bound{lc }}
\end{paste}
\end{patch}
\begin{patch}{ListPointsGraphicsPagePatch23}
\begin{paste}{ListPointsGraphicsPageFull23}{ListPointsGraphicsPageEmpty23}
\pastebutton{ListPointsGraphicsPageFull23}{\hidepaste}
\indentrel{3}\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE\bound{g }\free{llp lpc lc lsize }}
\begin{verbatim}
(23) Graph with 12 point lists
Type: GraphImage
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ListPointsGraphicsPageEmpty23}
\begin{paste}{ListPointsGraphicsPageEmpty23}{ListPointsGraphicsPagePatch23}
\pastebutton{ListPointsGraphicsPageEmpty23}{\showpaste}
\indentrel{3}\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE\bound{g }\free{llp lpc lc lsize }}
\end{paste}
\end{patch}
\begin{patch}{ListPointsGraphicsPagePatch24}
\begin{paste}{ListPointsGraphicsPageFull24}{ListPointsGraphicsPageEmpty24}
\pastebutton{ListPointsGraphicsPageFull24}{\hidepaste}
\indentrel{3}\spadgraph{makeViewport2D(g,[title("Lines")])$VIEW2D\free{g }}
Stand-alone Viewport

To get a viewport on a Hyperdoc page, you first need to create one in Axiom and write it out to a file that Hyperdoc can call up.

For example, here we draw a saddle function and assign the result to the variable \( v \):

\[
v := \text{draw}(x^2-y^2,x=-1..1,y=-1..1) \quad \text{bound}(v)
\]

Now that we've created the viewport, we want to write the data out to a file. To do this, we use the \spadfunFrom{write}{ThreeDimensionalViewport} command which takes the following arguments: the viewport to write out, the title of the file to write it out to, and an optional argument telling the write command what type (or types) of data you want to write in addition to the one Axiom will always write out. The optional argument could be a string, like "pixmap", or a list of strings, like ["postscript","pixmap"]. Hyperdoc needs a "pixmap" data type to include a graph in a page so in this case, we write the viewport and tell it to also write a "pixmap" file, as well:

\[
\text{write}(v,"saddle","pixmap") \quad \text{free}(v)
\]

Now we want to put this viewport into a Hyperdoc page. Say you've created a viewport and written it out to a file called "~/tmp/mobius". (Axiom actually tags a ".view" at the end of a viewport data file to make it easier to spot when you're rummaging through your file system, but you needn't worry about that here since Axiom will always automatically add on a "view" for you.)
3.50. GRAPHICS.HT

{f Including Viewports} 

To put a viewport in a Hyperdoc page, include the following line in your Hyperdoc source code:\newline
\space{5}\viewport{/tmp/mobius} \newline
You will get this on your page: \newline
\space{4}\viewport{/tmp/mobius} \newline
\space{4}\spadviewport{mobius} \newline
\centerline{\spadviewport{mobius}} \newline

{f Creating Viewport Buttons} 

To make an active button that would make this viewport come to life, include the following: \newline
\space{5}\viewportbutton{ViewButton}{/tmp/mobius} \newline
this creates this button... \newline
\space{4}\centerline{\viewportbutton{ViewButton}{/tmp/mobius}} \newline
\space{4}\centerline{\spadviewportbutton{ViewButton}{mobius}} \newline

{f Creating Active Viewports} 

To merge the two things described above, namely, getting a picture of a viewport and creating a button to invoke a live viewport, you can do the following: \newline
\space{5}\viewportasbutton{/tmp/mobius} \newline
\centerline{\viewportasbutton{/tmp/mobius}} \newline
This would create a picture of a viewport that is an active button as well. Try it: \newline
\space{5}\viewportasbutton{/tmp/mobius} \newline
\space{5}\spadviewportasbutton{mobius} \newline
\centerline{\spadviewportasbutton{mobius}} \newline

{f Including Viewports Distributed with Axiom} 

All the above commands have counterparts that allow you to access viewports that are already packaged with Axiom. To include those viewports, just add on an “axiom” prefix to the above commands: \newline
\centerline{\axiomviewport{vA} for \viewport{vA}} \newline
\centerline{\axiomviewportbutton{vB} for \viewportbutton{vB}} \newline
\centerline{\axiomviewportasbutton{vC} for \viewportasbutton{vC}} \newline
\newline
All these macros really do is include some path that indicates where Axiom stores the viewports. \newline
\newline
\endscroll
\autobuttons
\begin{patch}{ViewportPagePatch1}
\begin{paste}{ViewportPageFull1}{ViewportPageEmpty1}
\pastebutton{ViewportPageFull1}{\hidepaste}
\tab{5}\spadgraph{v := draw(x*x-y*y,x=-1..1,y=-1..1)\bound{v }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/viewportpage1.view/image}}{viewalone}}
\end{paste}
\end{patch}
\begin{patch}{ViewportPageEmpty1}
\begin{paste}{ViewportPageEmpty1}{ViewportPagePatch1}
\pastebutton{ViewportPageEmpty1}{\showpaste}
\tab{5}\spadgraph{v := draw(x*x-y*y,x=-1..1,y=-1..1)\bound{v }}
\end{paste}
\end{patch}
\begin{patch}{ViewportPagePatch2}
\begin{paste}{ViewportPageFull2}{ViewportPageEmpty2}
\pastebutton{ViewportPageFull2}{\hidepaste}
\tab{5}\spadcommand{write(v,"saddle","pixmap")}\free{v }}
\indentrel{3}\begin{verbatim}
(2) "NIL"
Type: String
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ViewportPageEmpty2}
\begin{paste}{ViewportPageEmpty2}{ViewportPagePatch2}
\pastebutton{ViewportPageEmpty2}{\showpaste}
\tab{5}\spadcommand{write(v,"saddle","pixmap")}\free{v }}
\end{paste}
\end{patch}

---

3.51 grpthry.ht

Group Theory

⇒ “notitle” (InfoGroupTheoryPage) 3.51 on page 685
⇒ “notitle” (InfoRepTheoryPage) 3.51 on page 684
⇒ “notitle” (RepA6Page) 3.51 on page 665

---

% authors: H. Gollan, J. Grabmeier, August 1989
% beginscroll
Axiom can work with individual permutations, permutation groups and do representation theory.
\horizontalline
\newline
\beginmenu
\menulink{Info on Group Theory}{InfoGroupTheoryPage}
\horizontalline
\menulink{Permutation}{PermutationXmpPage}
%Calculating within symmetric groups.
\menulink{Permutation Groups}{PermutationGroupXmpPage}
%Working with subgroups of a symmetric group.
\menulink{Permutation Group Examples}{PermutationGroupExampleXmpPage}
%Working with permutation groups, predefined in the system as Rubik’s group.
\menulink{Info on Representation Theory}{InfoRepTheoryPage}
\horizontalline
\menulink{Irreducible Representations of Symmetric Groups}{IrrRepSymNatXmpPage}
%Alfred Young’s natural form for these representations.
\menulink{Representations of Higher Degree}{RepresentationPackage1XmpPage}
%Constructing new representations by symmetric and antisymmetric tensors.
\menulink{Decomposing Representations}{RepresentationPackage2XmpPage}
%Parker’s ‘Meat-Axe’, working in prime characteristics.
\menulink{Representations of \texttt{$A_6$}}{RepA6Page}
The irreducible representations of the alternating group \texttt{$A_6$} over fields of characteristic 2.
\endmenu
\endscroll
\autobuttons \end{page}

---

Representations of $A_6$ $A_6$

---

\begin{page}{RepA6Page}{Representations of \texttt{$A_6$}}
In what follows you’ll see how to use Axiom to get all the irreducible representations of the alternating group \(A_6\) over the field with two elements (GF 2). First, we generate \(A_6\) by a three-cycle: \(x = (1,2,3)\) and a 5-cycle: \(y = (2,3,4,5,6)\). Next we have Axiom calculate the permutation representation over the integers and over GF 2:

\begin{spad}
\spad{genA6 : LIST PERM INT := [cycle [1,2,3], cycle [2,3,4,5,6]]}
\spad{pRA6 := permutationRepresentation (genA6, 6)}
\end{spad}

Now we apply Parker’s ‘Meat-Axe’ and split it:

\begin{spad}
\spad{sp0 := meatAxe (pRA6::(LIST MATRIX PF 2))}
\end{spad}

We have found the trivial module as a quotient module and a 5-dimensional sub-module.

Try to split again:

\begin{spad}
\spad{sp1 := meatAxe sp0.1}
\end{spad}

and we find a 4-dimensional sub-module and the trivial one again. Now we can test if this representation is absolutely irreducible:

\begin{spad}
\spad{isAbsolutelyIrreducible? sp1.2}
\end{spad}

and we see that this 4-dimensional representation is absolutely irreducible. So, we have found a second irreducible representation. Now, we construct a representation by reducing an irreducible one of the symmetric group \(S_6\) over the integers mod 2. We take the one labelled by the partition \([2,2,1,1]\) and restrict it to \(A_6\):

\begin{spad}
\spad{d2211 := irreducibleRepresentation ([2,2,1,1], genA6)}
\end{spad}

Now split it:

\begin{spad}
\spad{sp2 := meatAxe d2211:: (LIST MATRIX PF 2)}
\end{spad}

This gave both a five and a four dimensional representation. Now we take the 4-dimensional one and we shall see that it is absolutely irreducible:

\begin{spad}
\spad{is AbsolutelyIrreducible? sp2.1}
\end{spad}

The two 4-dimensional representations are not equivalent:

\begin{spad}
\spad{areEquivalent? (sp1.2, sp2.1)}
\end{spad}

So we have found a third irreducible representation. Now we construct a new representation using the tensor product and try to split it:

\begin{spad}
\spad{dA6d16 := tensorProduct(sp1.2, sp2.1)}
\end{spad}

The representation is irreducible, but it may be not absolutely irreducible.

\begin{spad}
\spad{isAbsolutelyIrreducible? dA6d16}
\end{spad}

So let’s try the same procedure over the field with 4 elements:
Now we find two 8-dimensional representations, \(dA6d8a\) and \(dA6d8b\).
Both are absolutely irreducible...
\spadpaste{isAbsolutelyIrreducible? sp3.1}
\spadpaste{isAbsolutelyIrreducible? sp3.2}
and they are not equivalent:
\spadpaste{areEquivalent? (sp3.1,sp3.2)}
So we have found five absolutely irreducible representations of \(A_6\) in characteristic 2.
General theory now tells us that there are no more irreducible ones.
Here, for future reference are all the absolutely irreducible 2-modular representations of \(A_6\)
\spadpaste{sp0.2 \free{sp0}}
\spadpaste{sp1.2 \free{sp1}}
\spadpaste{sp2.1 \free{sp2}}
\spadpaste{sp3.1 \free{sp3}}
\spadpaste{sp3.2 \free{sp3}}
And here again is the irreducible, but not absolutely irreducible representations of \(A_6\) over GF 2
\spadpaste{dA6d16 \free{dA6d16}}

\begin{verbatim}
(1) [(1 2 3),(2 3 4 5 6)]
Type: List Permutation Integer
\end{verbatim}

\begin{verbatim}
0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
\end{verbatim}
0 1 0 0 0 0 1 0 0 0 0
(2) [ 
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0

Type: List Matrix Integer

Fingerprint element in generated algebra is singular
A proper cyclic submodule is found.
Transition matrix computed
The inverse of the transition matrix computed
Now transform the matrices
0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 1 1 1 1

(3) [[0 1 0 0 0,0 1 0 0 0],[[1],[1]]]
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0

Type: List List Matrix PrimeField 2

Fingerprint element in generated algebra is singular
A proper cyclic submodule is found.
Transition matrix computed
The inverse of the transition matrix computed
Now transform the matrices
0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 1 1 1 1

(3) [[0 1 0 0 0,0 1 0 0 0],[[1],[1]]]
Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper
The generated cyclic submodule was not proper
The generated cyclic submodule was not proper
We know that all the cyclic submodules generated by a non-trivial element of the singular matrix under view are not proper, hence Norton’s irreducibility test can be done:
A proper cyclic submodule is found.
Transition matrix computed
The inverse of the transition matrix computed
Now transform the matrices
Representation is not irreducible and it will be split:
\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]
Type: List List Matrix PrimeField 2

Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra has one-dimensional kernel
We know that all the cyclic submodules generated by a non-trivial element of the singular matrix under view are not proper, hence Norton’s irreducibility test can
be done:
The generated cyclic submodule was not proper
Representation is absolutely irreducible
(5) \text{true}
\text{Type: Boolean}
\end{verbatim}
}\end{paste}\end{patch}
\begin{patch}{RepA6PageEmpty5}
\begin{paste}{RepA6PageEmpty5}{RepA6PagePatch5}
\pastebutton{RepA6PageEmpty5}{\showpaste}
\tab{5}\texttt{isAbsolutelyIrreducible? sp1.2}
\end{paste}\end{patch}
\begin{patch}{RepA6PagePatch6}
\begin{paste}{RepA6PageFull6}{RepA6PageEmpty6}
\pastebutton{RepA6PageFull6}{\hidepaste}
\tab{5}\texttt{d2211 := irreducibleRepresentation ([2,2,1,1],genA6)}
\end{paste}\end{patch}
}\verbatim{\begin{verbatim}
(6)
1 0 0 -1 1 0 0 0 0
0 1 0 1 0 1 0 0 0
0 0 1 0 1 -1 0 0 0
0 0 0 -1 0 0 -1 0 0
[0 0 0 0 -1 0 0 -1 0 ,
0 0 0 0 0 -1 0 0 -1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 -1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 -1 0 1]
0 0 0 0 0 0 1 0 0
-1 0 0 0 0 0 -1 0 0
\end{verbatim}
\[ \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \end{bmatrix} \]

Type: List Matrix Integer
Representations are not equivalent.

\( \begin{array}{l}
(9) \quad [0]
\end{array} \)  
Type: Matrix PrimeField 2
\begin{paste}\tab{5}\spadcommand{areEquivalent? (sp1.2, sp2.1)}\end{paste}

\begin{patch}\begin{paste}\indentrel{3}\begin{verbatim}
Fingerprint element in generated algebra is non-singular
The generated cyclic submodule was not proper

Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper

Fingerprint element in generated algebra is non-singular
The generated cyclic submodule was not proper

Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper
We know that all the cyclic submodules generated by a non-trivial element of the singular matrix under view are not proper, hence Norton’s irreducibility test can be done:
The generated cyclic submodule was not proper
Representation is irreducible, but we don’t know whether it is absolutely irreducible
\end{verbatim}\end{paste}\end{patch}

\[10\]
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
CHAPTER 3. HYPERDOC PAGES

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[ 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
] 
0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1
1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0
0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1
3.51. GRPTHRY.HT

\[0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0
0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1
1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1\]

Type: List List Matrix PrimeField 2

\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
\[\text{Random element in generated algebra does not have a one-dimensional kernel}\]
not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
We have not found a one-dimensional kernel so far, as we do a random search you could try again
(11) false
Type: Boolean

\begin{verbatim}
Fingerprint element in generated algebra is non-singular
The generated cyclic submodule was not proper
\end{verbatim}

\begin{verbatim}
Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper
\end{verbatim}
The generated cyclic submodule was not proper
Fingerprint element in generated algebra is non-singular
The generated cyclic submodule was not proper
Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper
Fingerprint element in generated algebra is singular
The generated cyclic submodule was not proper
The generated cyclic submodule was not proper
A proper cyclic submodule is found.
Transition matrix computed
The inverse of the transition matrix computed
Now transform the matrices
(12)
[ ]
[ ]
[[\%A, \%A + 1, 0, \%A, 1, \%A + 1, 0, 0],
 [0,0, \%A, \%A + 1, \%A, \%A, 0, 0],
 [\%A, \%A + 1, \%A, 1, \%A + 1, 0, 0, 0],
 [\%A + 1, \%A + 1, \%A, 1, \%A, 0, 0, 0],
 [\%A, \%A + 1, \%A, 1, \%A, 0, 0, 0],
 [\%A + 1, 1, 1, 1, 0, 0, \%A + 1, \%A],
 [0,0, \%A + 1, 1, 1, 0, 0, \%A, 0], [1,0,1,0,0,0,0],
 [1,1,0,0,0,0,0,0]]
 ,
[[1,0, \%A, 0,1,1, \%A, \%A + 1],
 [1, \%A + 1, 0, 0, 0, \%A + 1, 1, \%A + 1],
 [\%A, 1, \%A + 1, \%A + 1, \%A + 1, 1, \%A, 0],
 [\%A + 1, \%A + 1, 0, 0, 1, \%A + 1, 1, 1],
 [1,0, \%A + 1, 0,1,1, \%A, \%A],
 [0,0, \%A + 1, \%A + 1, \%A + 1, 1, 1, \%A], [0,0,1,0,0,1,0,1],
 [0, \%A,0, \%A,1, \%A + 1, \%A + 1, \%A] ]
 ,
0 1 1 \%A + 1 0 0 0 0
1 1 \%A + 1 0 0 0 0 0
\%A 0 0 0 0 0 0 0
1 \%A 0 0 0 0 0 0
[ \%A \%A + 1 1 1 1 0 1 1 ]
Type: List List Matrix FiniteField(2,2)

Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra has one-dimensional kernel

We know that all the cyclic submodules generated by a non-trivial element of the singular matrix under \( vi \)
ew are not proper, hence Norton’s irreducibility test can be done:
The generated cyclic submodule was not proper
Representation is absolutely irreducible
(13) \text{true}
Type: Boolean

\begin{verbatim}
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra does not have a one-dimensional kernel
Random element in generated algebra has one-dimensional kernel
We know that all the cyclic submodules generated by a non-trivial element of the singular matrix under vi ew are not proper, hence Norton's irreducibility test can be done:
The generated cyclic submodule was not proper
Representation is absolutely irreducible
(14) \text{true}
Type: Boolean
\end{verbatim}
Representations are not equivalent.

(15) $[0]$

Type: Matrix FiniteField(2,2)
0 0 1 0 1 1 0 1
(17) [ , ]
1 0 0 0 1 1 1 0

0 0 0 1 1 1 1 1
Type: List Matrix PrimeField 2

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RepA6PagePatch18}\begin{paste}{RepA6PageFull18}{RepA6PageEmpty18}\pastebutton{RepA6PageFull18}{\hidepaste}\indentrel{3}\begin{verbatim}
1 0 1 1 0 0 1 0
0 1 0 1 1 1 1 1
(18) [ , ]
1 1 0 0 1 0 1 1

0 1 0 0 0 1 0 1
Type: List Matrix PrimeField 2
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RepA6PagePatch19}\begin{paste}{RepA6PageFull19}{RepA6PageEmpty19}\pastebutton{RepA6PageFull19}{\hidepaste}\indentrel{3}\begin{verbatim}
(19)
[
[\%A,\%A + 1,0,\%A,1,\%A + 1,0,0],
[0,0,\%A,\%A + 1,\%A,\%A,0,0],
[\%A,\%A + 1,\%A,1,\%A + 1,0,0,0],
[\%A,\%A + 1,\%A,1,\%A,0,0,0],
[\%A + 1,1,1,0,0,\%A + 1,\%A],

\begin{verbatim}
[0,0,%A + 1,1,0,0,%A,0], [1,0,1,1,0,0,0],
[1,1,0,0,0,0,0,0]

\[ \]

[1,0,%A,0,1,1,%A,%A + 1],
[1,%A + 1,0,0,0,%A + 1,1,%A + 1],
[1,%A,1,%A + 1,%A + 1,1,%A + 1,%A,0],
[1,%A + 1,%A + 1,0,1,%A + 1,1,1],
[1,0,%A + 1,0,1,1,%A,%A],
[0,0,%A + 1,%A + 1,%A + 1,1,1,%A], [0,0,1,0,1,0,1,1],
[0,0,%A,0,1,1,%A + 1,1,%A + 1,%A]
\]

Type: List Matrix FiniteField(2,2)
\end{verbatim}
\begin{enumerate}[-3]}
\end{patch}
\begin{patch}{RepA6PageEmpty19}
\begin{paste}{RepA6PageEmpty19}{RepA6PagePatch19}
\pastebutton{RepA6PageEmpty19}{\showpaste}
\end{patch}
\begin{patch}{RepA6PagePatch20}
\begin{paste}{RepA6PageFull20}{RepA6PageEmpty20}
\pastebutton{RepA6PageFull20}{\hidepaste}
\end{patch}
\begin{verbatim}
0 1 1 %A + 1 0 0 0 0
1 1 %A 0 0 0 0 0
%A 0 0 0 0 0 0 0
1 %A 0 0 0 0 0 0
[ %A %A + 1 1 1 1 0 1 1
0 0 %A 1 0 1 0 1
%A 1 0 1 1 1 0 0
1 %A %A + 1 %A 0 1 0 0
[[%A + 1,1,%A,0,0,%A + 1,0,1],
[0,%A,1,1,0,0,%A + 1,1,1],
[0,%A + 1,0,0,0,%A + 1,1,1,%A + 1,1],
[1,%A + 1,1,%A + 1,0,0,%A + 1,1],
[0,0,%A + 1,%A + 1,0,0,%A + 1],
[0,0,%A,0,1,1,%A + 1,1,1,%A,0]]
\]
\end{verbatim}
\begin{verbatim}
[0,1,0,1,\%A + 1,0,\%A + 1,\%A + 1],
[\%A,\%A,\%A,1,\%A,1,\%A,1,\%A + 1]
\end{verbatim}
Type: List Matrix FiniteField(2,2)
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{RepA6PageEmpty20}
\begin{paste}{RepA6PageEmpty20}{RepA6PagePatch20}
\pastebutton{RepA6PageEmpty20}{\showpaste}
\begin{verbatim}
(21)
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\[
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
\end{verbatim}
\end{paste}\end{patch}
Representation Theory

— grpthry.ht —
Representation theory for finite groups studies finite groups by embedding them in a general linear group over a field or an integral domain. Hence, we are representing each element of the group by an invertible matrix. Two matrix representations of a given group are equivalent, if, by changing the basis of the underlying space, you can go from one to the other. When you change bases, you transform the matrices that are the images of elements by conjugating them by an invertible matrix.

If we can find a subspace which is fixed under the image of the group, then there exists a ‘base change’ after which all the representing matrices are in upper triangular block form. The block matrices on the main diagonal give a new representation of the group of lower degree. Such a representation is said to be ‘reducible’.

If we can find a subspace which is fixed under the image of the group, then there exists a ‘base change’ after which all the representing matrices are in upper triangular block form. The block matrices on the main diagonal give a new representation of the group of lower degree. Such a representation is said to be ‘reducible’.

Alfred Young's natural form for these representations.

Constructing new representations by symmetric and antisymmetric tensors.

Parker's 'Meat-Axe', working in prime characteristics.

The irreducible representations of the alternating group \(A_6\) over fields of characteristic 2.

Group Theory

— grpthry.ht —
A \it group is a set G together with an associative operation * satisfying the axioms of existence of a unit element and an inverse of every element of the group. The Axiom category \spadtype{Group} represents this setting. Many data structures in Axiom are groups and therefore there is a large variety of examples as fields and polynomials, although the main interest there is not the group structure.

To work with and in groups in a concrete manner some way of representing groups has to be chosen. A group can be given as a list of generators and a set of relations. If there are no relations, then we have a \it free group, realized in the domain \spadtype{FreeMonoid} which won’t be discussed here. We consider \it permutation groups, where a group is realized as a subgroup of the symmetric group of a set, i.e. the group of all bijections of a set, the operation being the composition of maps. Indeed, every group can be realized this way, although this may not be practical.

Furthermore group elements can be given as invertible matrices. The group operation is reflected by matrix multiplication. More precise in representation theory group homomorphisms from a group to general linear groups are constructed. Some algorithms are implemented in Axiom.

\begin{scroll}

% Johannes Grabmeier 03/02/90

A \it group is a set G together with an associative operation * satisfying the axioms of existence of a unit element and an inverse of every element of the group. The Axiom category \spadtype{Group} represents this setting. Many data structures in Axiom are groups and therefore there is a large variety of examples as fields and polynomials, although the main interest there is not the group structure.

To work with and in groups in a concrete manner some way of representing groups has to be chosen. A group can be given as a list of generators and a set of relations. If there are no relations, then we have a \it free group, realized in the domain \spadtype{FreeMonoid} which won’t be discussed here. We consider \it permutation groups, where a group is realized as a subgroup of the symmetric group of a set, i.e. the group of all bijections of a set, the operation being the composition of maps. Indeed, every group can be realized this way, although this may not be practical.

Furthermore group elements can be given as invertible matrices. The group operation is reflected by matrix multiplication. More precise in representation theory group homomorphisms from a group to general linear groups are constructed. Some algorithms are implemented in Axiom.

\end{scroll}
Suppose we launched a fund-raising campaign to raise fifty thousand dollars. To record the contributions, we want a table with strings as keys (for the names) and integer entries (for the amount). In a database of cash contributions, unless someone has been explicitly entered, it is reasonable to assume they have made a zero dollar contribution.

This creates a keyed access file with default entry \spad{0}.

\spadpaste{patrons: GeneralSparseTable(String, Integer, KeyedAccessFile(Integer), 0) := table() \free{patrons}}

Now \spad{patrons} can be used just as any other table. Here we record two gifts.

\spadpaste{patrons."Smith" := 10500 \free{patrons}\bound{smith}}

\spadpaste{patrons."Jones" := 22000 \free{smith}\bound{jones}}

Now let us look up the size of the contributions from Jones and Stingy.

\spadpaste{patrons."Jones" \free{jones}}

\spadpaste{patrons."Stingy" \free{jones}}
\xtc{
Have we met our seventy thousand dollar goal?
}\{ 
\spadpaste{reduce(+, entries patrons) \free{jones}} 
\}
\noOutputXtc{
So the project is cancelled and we can delete the database: 
}\{ 
\spadpaste{)system rm -r kaf*.sdata \free{patrons}} 
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{GeneralSparseTableXmpPagePatch1}
\begin{paste}{GeneralSparseTableXmpPageFull1}{GeneralSparseTableXmpPageEmpty1}
\pastebutton{GeneralSparseTableXmpPageFull1}{\hidepaste}
tab{5}\spadcommand{patrons: GeneralSparseTable(String, Integer, KeyedAccessFile(Integer), 0) := table() ;\bound{patrons}}
\indentrel{3}\begin{verbatim}
Type: GeneralSparseTable(String,Integer,KeyedAccessFile Integer,0)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{GeneralSparseTableXmpPagePatch2}
\begin{paste}{GeneralSparseTableXmpPageFull2}{GeneralSparseTableXmpPageEmpty2}
\pastebutton{GeneralSparseTableXmpPageFull2}{\hidepaste}
tab{5}\spadcommand{patrons."Smith" := 10500\free{patrons}\bound{smith}}
\indentrel{3}\begin{verbatim}
(2) 10500
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{GeneralSparseTableXmpPagePatch3}
\begin{paste}{GeneralSparseTableXmpPageFull3}{GeneralSparseTableXmpPageEmpty3}
\pastebutton{GeneralSparseTableXmpPageFull3}{\hidepaste}
tab{5}\spadcommand{patrons."Jones" := 22000\free{smith}\bound{jones}}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
(3) 22000

\begin{verbatim}
(3) 22000
Type: PositiveInteger
\end{verbatim}

(4) 22000

\begin{verbatim}
(4) 22000
Type: PositiveInteger
\end{verbatim}

(5) 0

\begin{verbatim}
(5) 0
Type: NonNegativeInteger
\end{verbatim}

(6) 32500

\begin{verbatim}
(6) 32500
Type: PositiveInteger
\end{verbatim}
3.53 heap.ht

Heap

⇒ “notitle” (FlexibleArrayXmpPage) 3.39 on page 472

\beginscroll
The domain \spadtype{Heap(S)} implements a priority queue of objects of type \spad{S} such that the operation \spadfun{extract} removes and returns the maximum element. The implementation represents heaps as flexible arrays (see \downlink{`FlexibleArray'}{FlexibleArrayXmpPage}). The representation and algorithms give complexity of $O(\log(n))$ for insertion and extractions, and $O(n)$ for construction.
\xtc{Create a heap of six elements.}
\spadpaste{\spad{h := heap [-4,9,11,2,7,-7]\bound{h}}}
Use \spadfun{insert} to add an element.
\spadpaste{insert!(3,h)\bound{h1}\free{h}}

The operation \spadfun{extract} removes and returns the maximum element.
\spadpaste{extract! h\bound{h2}\free{h1}}

The internal structure of \spad{h} has been appropriately adjusted.
\spadpaste{h\free{h2}}

Now \spadfun{extract} elements repeatedly until none are left, collecting the elements in a list.
\spadpaste{[extract!(h) while not empty?(h)]\bound{h2}}

Another way to produce the same result is by defining a \userfun{heapsort} function.
\spadpaste{heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))}\bound{f}

Create another sample heap.
\spadpaste{h1 := heap [17,-4,9,-11,2,7,-7]\bound{h1}}

Apply \spadfun{heapsort} to present elements in order.
\spadpaste{heapsort h1\free{f}}
All rationals have repeating hexadecimal expansions. The operation \texttt{hex} returns these expansions of type \texttt{HexadecimalExpansion}. Operations to access the individual numerals of a hexadecimal expansion can be obtained by converting the value to \texttt{RadixExpansion(16)}. More examples of expansions are available in the \texttt{`DecimalExpansion'}, \texttt{`BinaryExpansion'}, and \texttt{`RadixExpansion'}.

Issue the system command \texttt{)show HexadecimalExpansion} to display the full list of operations defined by \texttt{HexadecimalExpansion}.

This is a hexadecimal expansion of a rational number.

\begin{verbatim}
  r := hex(22/7)
  Arithmetic is exact.
  r + hex(6/7)
  The period of the expansion can be short or long...
  \{hex(1/1) for i in 350..354\}
  or very long!
\end{verbatim}
This is a hexadecimal expansion of a rational number.

\spadpaste{r := hex(22/7) \bound{r}}

Arithmetic is exact.

\spadpaste{r + hex(6/7) \free{r}}

The period of the expansion can be short or long \ldots

\spadpaste{[hex(1/i) for i in 350..354]}

or very long!

\spadpaste{hex(1/1007)}

These numbers are bona fide algebraic objects.

\spadpaste{p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9) \bound{p}}

\spadpaste{q := D(p, x) \free{p}\bound{q}}

\spadpaste{g := gcd(p, q) \free{p}\free{q}}

---

\begin{verbatim}
  (1) 3.249
  Type: HexadecimalExpansion
\end{verbatim}
\begin{patch}{HexExpansionXmpPageEmpty1}
\begin{paste}{HexExpansionXmpPageEmpty1}{HexExpansionXmpPagePatch1}
\pastebutton{HexExpansionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{r := hex(22/7)\bound{r }}
\end{paste}
\end{patch}
\begin{patch}{HexExpansionXmpPagePatch2}
\begin{paste}{HexExpansionXmpPageFull2}{HexExpansionXmpPageEmpty2}
\pastebutton{HexExpansionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{r + hex(6/7)\free{r }}
\indentrel{3}\begin{verbatim}
(2) 4
Type: HexadecimalExpansion
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{HexExpansionXmpPageEmpty2}
\begin{paste}{HexExpansionXmpPageEmpty2}{HexExpansionXmpPagePatch2}
\pastebutton{HexExpansionXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{r + hex(6/7)\free{r }}
\end{paste}
\end{patch}
\begin{patch}{HexExpansionXmpPagePatch3}
\begin{paste}{HexExpansionXmpPageFull3}{HexExpansionXmpPageEmpty3}
\pastebutton{HexExpansionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{\[hex(1/i) for i in 350..354\]}
\indentrel{3}\begin{verbatim}
(3)  
______________ _________ _____ 
[0.00BB3EE721A54D88, 0.00BAB6661, 0.00BA2E8,
____________________ 
0.00B9A7862A0FF465879D5F,
____________________________ 
0.00B92143FA36F5E02E4850FE8DBD78]
Type: List HexadecimalExpansion
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{HexExpansionXmpPageEmpty3}
\begin{paste}{HexExpansionXmpPageEmpty3}{HexExpansionXmpPagePatch3}
\pastebutton{HexExpansionXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{\[hex(1/i) for i in 350..354\]}
\end{paste}
\end{patch}
\begin{patch}{HexExpansionXmpPagePatch4}
\begin{paste}{HexExpansionXmpPageFull4}{HexExpansionXmpPageEmpty4}
\pastebutton{HexExpansionXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{hex(1/1007)}
\indentrel{3}\begin{verbatim}
(4)
\end{verbatim}
\end{paste}
\end{patch}
0.

\begin{verbatim}
2 _ ___
(5) 0.4x + 0.Ax + 0.71C
Type: Polynomial HexadecimalExpansion
\end{verbatim}

\begin{verbatim}
(6) 0.8x + 0.A
Type: Polynomial HexadecimalExpansion
\end{verbatim}
\begin{verbatim}
(7) x + 1.5
Type: Polynomial HexadecimalExpansion
\end{verbatim}

3.55 \texttt{int.ht}

Integer

Axiom provides many operations for manipulating arbitrary precision integers. In this section we will show some of those that come from \texttt{Integer} itself plus some that are implemented in other packages. More examples of using integers are in the following sections: "Numbers" in section 1.5, "IntegerNumberTheoryFunctions", "DecimalExpansion", "BinaryExpansion", "HexadecimalExpansion", and "RadixExpansion".

\begin{itemize}
\item \texttt{9.34.1 Basic Functions}
\item \texttt{9.34.2 Primes and Factorization}
\item \texttt{9.34.3 Some Number Theoretic Functions}
\end{itemize}

\begin{itemize}
\item \texttt{"Integers" (IntegerPage) 3.80 on page 1029}
\item \texttt{"Numbers" (ugIntroNumbersPage) 6 on page 1513}
\end{itemize}
3.55. \textit{INT.HT}

Axiom provides many operations for manipulating arbitrary precision integers. In this section we will show some of those that come from \spadtype{Integer} itself plus some that are implemented in other packages. More examples of using integers are in the following sections:

\begin{itemize}
\item \downlink{``Numbers''}{ugIntroNumbersPage} in section 1.5
\item \downlink{``Integer Number Theory Functions''}{IntNumberTheoryFnsXmpPage}
\item \downlink{``Decimal Expansion''}{DecimalExpansionXmpPage}
\item \downlink{``Binary Expansion''}{BinaryExpansionXmpPage}
\item \downlink{``Hexadecimal Expansion''}{HexExpansionXmpPage}
\item \downlink{``Radix Expansion''}{RadixExpansionXmpPage}
\end{itemize}

\begin{itemize}
\item \menudownlink{{9.34.1. Basic Functions}}{ugxIntegerBasicPage}
\item \menudownlink{{9.34.2. Primes and Factorization}}{ugxIntegerPrimesPage}
\item \menudownlink{{9.34.3. Some Number Theoretic Functions}}{ugxIntegerNTPage}
\end{itemize}
Basic Functions

The size of an integer in Axiom is only limited by the amount of computer storage you have available. The usual arithmetic operations are available.

\[ 2^{(5678 - 4856 + 2 \times 17)} \]

There are a number of ways of working with the sign of an integer. Let's use this \texttt{x} as an example.

\[ \texttt{x := -101} \]

First of all, there is the absolute value function.

\[ \texttt{abs(x)} \]

The \texttt{sign} operation returns $-1$ if its argument is negative, 0 if zero and 1 if positive.

\[ \texttt{sign(x)} \]

You can determine if an integer is negative in several other ways.

\[ \texttt{x < 0} \]

\[ \texttt{x <= -1} \]

\[ \texttt{negative?(x)} \]

← “Integer” (IntegerXmpPage) 3.55 on page 696
⇒ “Fraction” (FractionXmpPage) 3.45 on page 543
⇒ “Unions” (ugTypesUnionsPage) 7 on page 1656
⇒ “Records” (ugTypesRecordsPage) 7 on page 1647

— int.ht —
First of all, there is the absolute value function.
}\{ abs(x) \free{x} \}
\xtc{ The \spadfunFrom{sign}{Integer} operation returns \spad{-1} if its argument is negative, \spad{0} if zero and \spad{1} if positive. }
}\{ sign(x) \free{x} \}
}\%
\xtc{ You can determine if an integer is negative in several other ways. }
}\{ x < 0 \free{x} \}
\xtc{ }
}\{ x <= -1 \free{x} \}
\xtc{ }
}\{ negative?(x) \free{x} \}
}\%
\xtc{ Similarly, you can find out if it is positive. }
}\{ x > 0 \free{x} \}
\xtc{ }
}\{ x >= 1 \free{x} \}
\xtc{ }
}\{ positive?(x) \free{x} \}
\xtc{ }
\beginImportant
Use the \spadfunFrom{zero?}{Integer} operation whenever you are testing any mathematical object for equality with zero. This is usually more efficient that using \spad{=} (think of matrices: it is easier to tell if a matrix is zero by just checking term by term than constructing another ‘‘zero’’ matrix and comparing the two matrices.
term by term) and also avoids the problem that \spadop{=} is usually used for creating equations.
\endImportant

\xtc{
This is the recommended way of determining whether an integer is equal to one.
}
\spadpaste{one?(x) \free{x}}
}

\xtc{
This syntax is used to test equality using \spadFrom{=} \spadtype{Integer}. It says that you want a \spadtype{Boolean} (\spad{true} or \spad{false}) answer rather than an equation.
}
\spadpaste{(x = -101)@Boolean \free{x}}
}

\xtc{
The operations \spadfunFrom{odd?}{Integer} and \spadfunFrom{even?}{Integer} determine whether an integer is odd or even, respectively. They each return a \spadtype{Boolean} object.
}
\spadpaste{odd?(x) \free{x}}

\xtc{
\spadpaste{even?(x) \free{x}}
}

\xtc{
The operation \spadfunFrom{gcd}{Integer} computes the greatest common divisor of two integers.
}
\spadpaste{gcd(56788,43688)}

\xtc{
The operation \spadfunFrom{lcm}{Integer} computes their least common multiple.
}
\spadpaste{lcm(56788,43688)}

\xtc{
To determine the maximum of two integers, use \spadfunFrom{max}{Integer}.
}
\spadpaste{max(678,567)}

\xtc{
To determine the minimum, use \spadfunFrom{min}{Integer}.
}

The \spadfun{reduce} operation is used to extend binary operations to more than two arguments. For example, you can use \spadfun{reduce} to find the maximum integer in a list or compute the least common multiple of all integers in the list.

\spadpaste{reduce(max, [2, 45, -89, 78, 100, -45])}

\spadpaste{reduce(min, [2, 45, -89, 78, 100, -45])}

\spadpaste{reduce(gcd, [2, 45, -89, 78, 100, -45])}

\spadpaste{reduce(lcm, [2, 45, -89, 78, 100, -45])}

The infix operator ``/$$'' is \textit{not} used to compute the quotient of integers. Rather, it is used to create rational numbers as described in \downlink{`Fraction'}{FractionXmpPage}\ignore{Fraction}.

\spadpaste{13 / 4}

The infix operation \spadfunFrom{quo}{Integer} computes the integer quotient.

\spadpaste{13 \, \text{quo} \, 4}

The infix operation \spadfunFrom{rem}{Integer} computes the integer remainder.

\spadpaste{13 \, \text{rem} \, 4}

One integer is evenly divisible by another if the remainder is zero. The operation \spadfunFrom{exquo}{Integer} can also be used. See \downlink{`Unions'}{ugTypesUnionsPage} in Section 2.5\ignore{ugTypesUnions} for an example.

\spadpaste{min(678, 567)}
The operation \spadfunFrom{divide}{Integer} returns a record of the quotient and remainder and thus is more efficient when both are needed.

\spadpaste{d := divide(13,4) \bound{d}}

\spadpaste{d.quotient \free{d}}

\spadpaste{d.remainder \free{d}}

Records are discussed in detail in \downlink{``Records''}{ugTypesRecordsPage} in Section 2.4

\spadcommand{2**(5678 - 4856 + 2 * 17)}

Type: PositiveInteger

\spadcommand{x := -101 \bound{x}}
\begin{verbatim}
(2)  -101
\end{verbatim}
Type: Integer

\spadcommand{x := -101}

\begin{verbatim}
(3)  101
\end{verbatim}
Type: PositiveInteger

\spadcommand{abs(x)}

\begin{verbatim}
(4)  -1
\end{verbatim}
Type: Integer

\spadcommand{x < 0}

(5)  true
\begin{verbatim}
(6) true
\end{verbatim}

\begin{verbatim}
(7) true
\end{verbatim}

\begin{verbatim}
(8) false
\end{verbatim}
3.55. INT.HT

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch9}
\begin{paste}{ugxIntegerBasicPageFull9}{ugxIntegerBasicPageEmpty9}
\pastebutton{ugxIntegerBasicPageFull9}{\hidepaste}
\tab{5}\spadcommand{x >= 1\free{x }}
\indentrel{3}\begin{verbatim}
(9) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch10}
\begin{paste}{ugxIntegerBasicPageFull10}{ugxIntegerBasicPageEmpty10}
\pastebutton{ugxIntegerBasicPageFull10}{\hidepaste}
\tab{5}\spadcommand{positive?(x)\free{x }}
\indentrel{3}\begin{verbatim}
(10) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch11}
\begin{paste}{ugxIntegerBasicPageFull11}{ugxIntegerBasicPageEmpty11}
\pastebutton{ugxIntegerBasicPageFull11}{\hidepaste}
\tab{5}\spadcommand{zero?(x)\free{x }}
\indentrel{3}\begin{verbatim}
(11) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxIntegerBasicPageEmpty11}
\begin{paste}{ugxIntegerBasicPageEmpty11}{ugxIntegerBasicPagePatch11}
\pastebutton{ugxIntegerBasicPageEmpty11}{\showpaste}
\tab{5}\spadcommand{zero?(x)\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch12}
\begin{paste}{ugxIntegerBasicPageFull12}{ugxIntegerBasicPageEmpty12}
\pastebutton{ugxIntegerBasicPageFull12}{\hidepaste}
\tab{5}\spadcommand{one?(x)\free{x}}
\indentrel{3}\begin{verbatim}
(12) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPageEmpty12}
\begin{paste}{ugxIntegerBasicPageEmpty12}{ugxIntegerBasicPagePatch12}
\pastebutton{ugxIntegerBasicPageEmpty12}{\showpaste}
\tab{5}\spadcommand{one?(x)\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch13}
\begin{paste}{ugxIntegerBasicPageFull13}{ugxIntegerBasicPageEmpty13}
\pastebutton{ugxIntegerBasicPageFull13}{\hidepaste}
\tab{5}\spadcommand{(x = -101)@Boolean\free{x}}
\indentrel{3}\begin{verbatim}
(13) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPageEmpty13}
\begin{paste}{ugxIntegerBasicPageEmpty13}{ugxIntegerBasicPagePatch13}
\pastebutton{ugxIntegerBasicPageEmpty13}{\showpaste}
\tab{5}\spadcommand{(x = -101)@Boolean\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPagePatch14}
\begin{paste}{ugxIntegerBasicPageFull14}{ugxIntegerBasicPageEmpty14}
\pastebutton{ugxIntegerBasicPageFull14}{\hidepaste}
\tab{5}\spadcommand{odd?(x)\free{x}}
\indentrel{3}\begin{verbatim}
(14) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxIntegerBasicPageEmpty14}
\begin{paste}{ugxIntegerBasicPageEmpty14}{ugxIntegerBasicPagePatch14}
\end{paste}\end{patch}
\spadcommand{odd?(x)}
\begin{verbatim}
(15) false
Type: Boolean
\end{verbatim}
\spadcommand{even?(x)}
\begin{verbatim}
(16) 4
Type: PositiveInteger
\end{verbatim}
\spadcommand{lcm(56788,43688)}
\begin{verbatim}
(17) 620238536
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(18) 678
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(19) 567
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(20) 100
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(21) - 89
Type: Integer
\end{verbatim}

\begin{verbatim}
(22) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(23) 1041300
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
13
\end{verbatim}

Type: Fraction Integer

\end{verbatim}

Type: PositiveInteger

\end{verbatim}

Type: PositiveInteger

\end{verbatim}
\indentrel{-3}\begin{verbatim}
(27) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}
\indentrel{-3}\end{patch}
Primes and Factorization

Use the operation \texttt{factor} to factor integers. It returns an object of type \texttt{Factored Integer}. See \texttt{"Factored"} for a discussion of the manipulation of factored objects.

\begin{verbatim}
    \texttt{factor 102400}
\end{verbatim}

The operation \texttt{prime?} returns true or false depending on whether its argument is a prime.

\begin{verbatim}
    \texttt{prime? 7}
    \texttt{prime? 8}
\end{verbatim}

The operation \texttt{nextPrime} returns the least prime number greater than its argument.

\begin{verbatim}
    \texttt{nextPrime 100}
\end{verbatim}

The operation \texttt{prevPrime} returns the greatest prime number less than its argument.

\begin{verbatim}
    \texttt{prevPrime 100}
\end{verbatim}

To compute all primes between two integers ( inclusively), use the operation \texttt{primes}.

\begin{verbatim}
    \texttt{primes(100,175)}
\end{verbatim}

You might sometimes want to see the factorization of an integer when it is considered a Gaussian Integer. See \texttt{"Complex"} for more details.

\begin{verbatim}
    \texttt{factor(2 :: Complex Integer)}
\end{verbatim}
3.55. **INT.HT**

\begin{page}{ugxIntegerPrimesPage}{Primes and Factorization}
\beginscroll

\labelSpace{3pc}
\xtc{Use the operation \spadfunFrom{factor}{Integer} to factor integers. It returns an object of type \spadtype{Factored Integer}. See \downlink{`Factored'}{FactoredXmpPage}\ignore{Factored} for a discussion of the manipulation of factored objects.}
}{\spadpaste{factor 102400}}

\xtc{The operation \spadfunFrom{prime?}{Integer} returns \spad{true} or \spad{false} depending on whether its argument is a prime.}
}{\spadpaste{prime? 7}}

\xtc{\spadpaste{prime? 8}}

\xtc{The operation \spadfunFrom{nextPrime}{IntegerPrimesPackage} returns the least prime number greater than its argument.}
}{\spadpaste{nextPrime 100}}

\xtc{The operation \spadfunFrom{prevPrime}{IntegerPrimesPackage} returns the greatest prime number less than its argument.}
}{\spadpaste{prevPrime 100}}

\xtc{To compute all primes between two integers (inclusively), use the operation \spadfunFrom{primes}{IntegerPrimesPackage}.}
}{\spadpaste{primes(100,175)}}

\xtc{You might sometimes want to see the factorization of an integer when it is considered a \spad{Gaussian Integer}. See \downlink{`Complex'}{ComplexXmpPage}\ignore{Complex} for more details.}
}{\spadpaste{factor(2 :: Complex Integer)}}

\endscroll
\spadcommand{factor 102400}
\begin{verbatim}
12 2
(1) 2 5
Type: Factored Integer
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{ugxIntegerPrimesPageEmpty2}
\begin{paste}{ugxIntegerPrimesPageEmpty2}{ugxIntegerPrimesPagePatch2}
\pastebutton{ugxIntegerPrimesPageEmpty2}{\showpaste}
\begin{verbatim}
(2) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{ugxIntegerPrimesPagePatch3}
\begin{paste}{ugxIntegerPrimesPageFull3}{ugxIntegerPrimesPageEmpty3}
\pastebutton{ugxIntegerPrimesPageFull3}{\hidepaste}
\begin{verbatim}
(3) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
\spadcommand{prime? 8}

(3) \text{false}
Type: Boolean

\spadcommand{nextPrime 100}

(4) 101
Type: PositiveInteger

\spadcommand{prevPrime 100}

(5) 97
Type: PositiveInteger

\spadcommand{primes(100,175)}

(6) [173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 107, 103, 101]
Type: List Integer
Some Number Theoretic Functions

Axiom provides several number theoretic operations for integers. More examples are in

`IntegerNumberTheoryFunctions`

The operation fibonacci computes the Fibonacci numbers. The algorithm has running time $O(\log(n)^2)$ for argument $n$.

```
fibonacci(k) for k in 0..10
```

The operation legendre computes the Legendre symbol for its two integer arguments where the second one is prime. If you know the second argument to be prime, use jacobi instead where no check is made.

```
legendre(i, 11) for i in 0..10
```

The operation jacobi computes the Jacobi symbol for its two integer arguments. By convention, 0 is returned if the greatest common divisor of the numerator and denominator is not 1.

```
jacobi(i, 15) for i in 0..9
```

The operation eulerPhi computes the values of Euler's phi function.
Axiom provides several number theoretic operations for integers. More examples are in \downlink{`IntegerNumberTheoryFunctions'} {IntNumberTheoryFnsXmpPage}.

\begin{page}{ugxIntegerNTPage}{Some Number Theoretic Functions}
\beginscroll

Axiom provides several number theoretic operations for integers. More examples are in \downlink{`IntegerNumberTheoryFunctions'} {IntNumberTheoryFnsXmpPage}.

\begin{itemize}
\item The operation \spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions} computes the Fibonacci numbers. The algorithm has running time $O(\log^3(n))$ for argument \spad{n}.
\end{itemize}

\begin{itemize}
\item The operation \spadfunFrom{legendre}{IntegerNumberTheoryFunctions} computes the Legendre symbol for its two integer arguments where the second one is prime. If you know the second argument to be prime, use \spadfunFrom{jacobi}{IntegerNumberTheoryFunctions} instead where no check is made.
\end{itemize}

\begin{itemize}
\item The operation \spadfunFrom{jacobi}{IntegerNumberTheoryFunctions} computes the Jacobi symbol for its two integer arguments. By convention, \spad{0} is returned if the greatest common divisor of the numerator and denominator is not \spad{1}.
\end{itemize}

\begin{itemize}
\item The operation \spadfunFrom{eulerPhi}{IntegerNumberTheoryFunctions} computes the values of Euler’s \textit{$\phi$}-function where $\phi(n)=\sum_{d|n} \phi(d)$ equals the number of positive integers less than or equal to \spad{n} that are relatively prime to the positive integer \spad{n}.
\end{itemize}

\begin{itemize}
\item The operation \spadfunFrom{moebiusMu}{IntegerNumberTheoryFunctions} computes the \textit{Moebius mu} function.
\end{itemize}
Although they have somewhat limited utility, Axiom provides Roman numerals.

```
spadpaste{a := roman(78) \bound{a}}
spadpaste{b := roman(87) \bound{b}}
spadpaste{a + b \free{a}\free{b}}
spadpaste{a * b \free{a}\free{b}}
spadpaste{b \text{ rem } a \free{a}\free{b}}
```

```
\spadcommand{\[fibonacci(k) \text{ for } k \in 0..\]}
```

```
\spadcommand{\[legendre(i,11) \text{ for } i \in 0..10\]}
```
3.55. INT.HT

\begin{verbatim}
(2) [0,1,-1,1,1,-1,-1,1,-1,-1,1,-1]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(3) [0,1,1,0,1,0,0,-1,1,0]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(4) [1,1,2,2,4,2,6,4,6,4,...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
(5) [1,-1,-1,0,-1,1,-1,0,0,1,...]
\end{verbatim}
\begin{verbatim}
(6) LXXVIII
Type: RomanNumeral
\end{verbatim}
\begin{verbatim}
(9) MMMMMDCCLXXXVI
Type: RomanNumeral
\end{verbatim}
(10) IX
Type: RomanNumeral
\end{verbatim}
3.56  intheory.ht

IntegerNumberTheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations of interest to number theorists. Many of these operations deal with divisibility properties of integers. (Recall that an integer \(a\) divides an integer \(b\) if there is an integer \(c\) such that \(b = a \times c\).)

The operation \texttt{divisors} returns a list of the divisors of an integer.

\begin{verbatim}
\spadfunFrom{divisors}{IntegerNumberTheoryFunctions} := divisors(144)
\end{verbatim}

You can now compute the number of divisors of 144 and the sum of the divisors of 144 by counting and summing the elements of the list we just created.

\begin{verbatim}
\spad{div144 := divisors(144)}
\end{verbatim}

\xtc{The operation \spadfunFrom{divisors}{IntegerNumberTheoryFunctions} returns a list of the divisors of an integer.}

\begin{verbatim}
\spadpaste{div144 := divisors(144) \bound{div144}}
\end{verbatim}

\xtc{You can now compute the number of divisors of \spad{144} and the sum of}
the divisors of \(\spad{144}\) by counting and summing the elements of the list we just created.
}\{ 
\spadpaste{\#(div144) \free{div144}} 
\}
\xtc{
}\{ 
\spadpaste{reduce(+,div144) \free{div144}} 
\}

Of course, you can compute the number of divisors of an integer \(\spad{n}\), usually denoted \(\spad{d(n)}\), and the sum of the divisors of an integer \(\spad{n}\), usually denoted \(\spad{\sigma(n)}\), without ever listing the divisors of \(\spad{n}\).

\xtc{In Axiom, you can simply call the operations
\spadfunFrom{numberOfDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{sumOfDivisors}{IntegerNumberTheoryFunctions}.
}\{ 
\spadpaste{numberOfDivisors(144)} 
\}
\xtc{\{ 
\spadpaste{sumOfDivisors(144)} 
\}}

The key is that \(\spad{d(n)}\) and \(\spad{\sigma(n)}\) are "multiplicative functions."
This means that when \(\spad{n}\) and \(\spad{m}\) are relatively prime, that is, when \(\spad{n}\) and \(\spad{m}\) have no prime factor in common, then
\(\spad{d(nm) = d(n) d(m)}\) and
\(\spad{\sigma(nm) = \sigma(n) \sigma(m)}\).

Note that these functions are trivial to compute when \(\spad{n}\) is a prime power and are computed for general \(\spad{n}\) from the prime factorization of \(\spad{n}\).
Other examples of multiplicative functions are
\(\spad{\sigma_k(n)}\), the sum of the \(\spad{k}\)-th powers of the divisors of \(\spad{n}\) and
\(\spad{\varphi(n)}\), the number of integers between 1 and \(\spad{n}\) which are prime to \(\spad{n}\).
The corresponding Axiom operations are called
\spadfunFrom{sumOfKthPowerDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{eulerPhi}{IntegerNumberTheoryFunctions}.

An interesting function is \(\spad{\mu(n)}\), the \(\spad{\text{M"{o}bius \mu}}\) function, defined
as follows:
\begin{verbatim}
\spad{\mu(1) = 1, \mu(n) = 0}, when \spad{n} is divisible by a
square, and \spad{\mu(n) = (-1)^k}, when \spad{n}
is the product of \spad{k} distinct primes.
The corresponding Axiom operation is
\spadfunFrom{moebiusMu}{IntegerNumberTheoryFunctions}.
This function occurs in the following theorem:

\indent
{\bf Theorem} (Möbius Inversion Formula): 
\begin{quote}
Let \spad{f(n)} be a function on the positive integers and let \spad{F(n)}
be defined by \spad{F(n) = \sum_{d \mid n} f(n)}, where the sum
is taken over the positive divisors of \spad{n}.
Then the values of \spad{f(n)} can be recovered from the values of
\spad{F(n)}: \spad{f(n) = \sum_{d \mid n} \mu(n) F(n/d)}, where again
the sum is taken over the positive divisors of \spad{n}.
\end{quote}

\begin{verbatim}
When \spad{f(n) = 1}, then \spad{F(n) = d(n)}.
Thus, if you sum \spad{\mu(d) \cdot d(n/d)} over the positive divisors
\spad{d} of \spad{n}, you should always get \spad{1}.
\spad{f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d))
for d in divisors(n)])}
\spad{f1(200) \free{f1}}
\spad{f1(846) \free{f1}}

Similarly,
when \spad{f(n) = n}, then \spad{F(n) = \sigma(n)}.
Thus, if you sum \spad{\mu(d) \cdot \sigma(n/d)} over the positive divisors
\spad{d} of \spad{n}, you should always get \spad{n}.
\spad{f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d))
for d in divisors(n)])}
\spad{f2(200) \free{f2}}
\spad{f2(846) \free{f2}}
\end{verbatim}
\end{quote}
\end{verbatim}
for d in divisors(n)] \bound{f2}
}
\xtc{
\spadpaste{f2(200) \free{f2}}
}
\xtc{
\spadpaste{f2(846) \free{f2}}
}

The Fibonacci numbers are defined by \pad{F(1) = F(2) = 1} and \pad{F(n) = F(n-1) + F(n-2)} for \pad{n = 3,4, ...}.
\xtc{
The operation \spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions} computes the \eth{\pad{n}} Fibonacci number.
}
\spadpaste{fibonacci(25)}
\xtc{
\spadpaste{[fibonacci(n) for n in 1..15]}\free{fibonacci}
}
\xtc{
Fibonacci numbers can also be expressed as sums of binomial coefficients.
}
\spadpaste{fib(n) == reduce(+,[binomial(n-1-k,k)
for k in 0..quo(n-1,2)]) \bound{fib}}
\xtc{
\spadpaste{fib(25) \free{fib}}
}
\xtc{
\spadpaste{[fib(n) for n in 1..15] \free{fib}}
}

Quadratic symbols can be computed with the operations \spadfunFrom{legendre}{IntegerNumberTheoryFunctions} and \spadfunFrom{jacobi}{IntegerNumberTheoryFunctions}. The Legendre symbol \pad{$(a/p)$} is defined for integers \pad{a} and \pad{p} with \pad{p} an odd prime number. By definition, \pad{$(a/p) = +1$}, when \pad{a} is a square \pad{a (mod p)}, \pad{$(a/p) = -1$}, when \pad{a} is not a square \pad{a (mod p)}, and
\( \left( \frac{a}{p} \right) \) = 0, when \( a \) is divisible by \( p \).

You compute \( \left( \frac{a}{p} \right) \) via the command \( \text{legendre}(a,p) \).

\( \text{legendre}(3,5) \)

\( \text{legendre}(23,691) \)

The Jacobi symbol \( \left( \frac{a}{n} \right) \) is the usual extension of the Legendre symbol, where \( n \) is an arbitrary integer.

The most important property of the Jacobi symbol is the following: if \( K \) is a quadratic field with discriminant \( d \) and quadratic character \( \chi \), then \( \chi(n) = (d/n) \).

Thus, you can use the Jacobi symbol to compute, say, the class numbers of imaginary quadratic fields from a standard class number formula.

This function computes the class number of the imaginary quadratic field with discriminant \( d \).

\( \text{h}(d) \equiv \text{quo}(\text{reduce}(+,[\text{jacobi}(d,k) \text{ for } k \in 1..\text{quo}(-d,2)]),2-\text{jacobi}(d,2)) \)

\( \text{h}(-163) \)

\( \text{h}(-499) \)

\( \text{h}(-1832) \)

This function computes the class number of the imaginary quadratic field with discriminant \( d \).
\begin{verbatim}
(1) [1,2,3,4,6,8,9,12,16,18,24,36,48,72,144]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(2) 15
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(3) 403
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(4) 15
\end{verbatim}
Type: PositiveInteger

\begin{verbatim}
(5) 403
\end{verbatim}

\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch6}
\begin{paste}{IntNumberTheoryFnsXmpPageFull6}{IntNumberTheoryFnsXmpPageEmpty6}
\pastebutton{IntNumberTheoryFnsXmpPageFull6}{\hidepaste}
\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch7}
\begin{paste}{IntNumberTheoryFnsXmpPageFull7}{IntNumberTheoryFnsXmpPageEmpty7}
\pastebutton{IntNumberTheoryFnsXmpPageFull7}{\hidepaste}
\begin{verbatim}
(7) 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{IntNumberTheoryFnsXmpPageEmpty7}
\begin{paste}{IntNumberTheoryFnsXmpPageEmpty7}{IntNumberTheoryFnsXmpPagePatch7}
\pastebutton{IntNumberTheoryFnsXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{f1(200)\free{f1 \)}}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch8}
\begin{paste}{IntNumberTheoryFnsXmpPageFull8}{IntNumberTheoryFnsXmpPageEmpty8}
\pastebutton{IntNumberTheoryFnsXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{f1(846)\free{f1 \}}}
\indentrel{3}\begin{verbatim}
(8) 1
Type: PositiveInteger
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPageEmpty8}
\begin{paste}{IntNumberTheoryFnsXmpPageEmpty8}{IntNumberTheoryFnsXmpPagePatch8}
\pastebutton{IntNumberTheoryFnsXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{f1(846)\free{f1 \}}}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch9}
\begin{paste}{IntNumberTheoryFnsXmpPageFull9}{IntNumberTheoryFnsXmpPageEmpty9}
\pastebutton{IntNumberTheoryFnsXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d in divisors(n)])\bound{f2 \}}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPageEmpty9}
\begin{paste}{IntNumberTheoryFnsXmpPageEmpty9}{IntNumberTheoryFnsXmpPagePatch9}
\pastebutton{IntNumberTheoryFnsXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d in divisors(n)])\bound{f2 \}}}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch10}
\begin{paste}{IntNumberTheoryFnsXmpPageFull10}{IntNumberTheoryFnsXmpPageEmpty10}
\pastebutton{IntNumberTheoryFnsXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{f2(200)\free{f2 \}}}
\indentrel{3}\begin{verbatim}
(10) 200
Type: PositiveInteger
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPageEmpty10}
\begin{paste}{IntNumberTheoryFnsXmpPageEmpty10}{IntNumberTheoryFnsXmpPagePatch10}
\pastebutton{IntNumberTheoryFnsXmpPageEmpty10}{\showpaste}
\end{patch}\end{patch}
\begin{verbatim}
(11) 846
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(12) 75025
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(13) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
Type: List Integer
\end{verbatim}
3.56. \textsc{InTheory}.

\begin{verbatim}
spadcommand{fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])\bound{fib }}
\end{verbatim}

\begin{verbatim}
spadcommand{fib(25)\free{fib }}
\end{verbatim}

\begin{verbatim}
spadcommand{[fib(n) for n in 1..15]\free{fib }}
\end{verbatim}
\begin{verbatim}
\spadcommand{legendre(3,5)}
end{verbatim}

```
(17) - 1
Type: Integer
```

\begin{verbatim}
\spadcommand{legendre(23,691)}
end{verbatim}

```
(18) - 1
Type: Integer
```

\begin{verbatim}
\spadcommand{h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 - jacobi(d,2))}
end{verbatim}

```
Type: Void
```

\begin{verbatim}
\spadcommand{h(-163)}
end{verbatim}

```
```
```
```
\indentrel{3}\begin{verbatim}(20) 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch21}
\begin{paste}{IntNumberTheoryFnsXmpPageFull21}{IntNumberTheoryFnsXmpPageEmpty21}
\pastebutton{IntNumberTheoryFnsXmpPageFull21}{\hidepaste}
\indentrel{3}\begin{verbatim}(21) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{IntNumberTheoryFnsXmpPagePatch22}
\begin{paste}{IntNumberTheoryFnsXmpPageFull22}{IntNumberTheoryFnsXmpPageEmpty22}
\pastebutton{IntNumberTheoryFnsXmpPageFull22}{\hidepaste}
\indentrel{3}\begin{verbatim}(22) 26
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
The domain \spadtype{KeyedAccessFile(S)} provides files which can be used as associative tables. Data values are stored in these files and can be retrieved according to their keys. The keys must be strings so this type behaves very much like the \spadtype{StringTable(S)} domain. The difference is that keyed access files reside in secondary storage while string tables are kept in memory. For more information on table-oriented operations, see the description of \spadtype{Table}.

\begin{description}
\item[Before a keyed access file can be used, it must first be opened.] A new file can be created by opening it for output.
\spadpaste{ey: KeyedAccessFile(Integer) := open("/tmp/editor.year", "output") \bound{ey}}
\item[Just as for vectors, tables or lists, values are saved in a keyed access file by setting elements.]\spadpaste{ey."Char" := 1986 \free{ey} \bound{eya}}
\item[Values are retrieved using application, in any of its syntactic forms.]\spadpaste{ey."Char" \free{eya}}
\end{description}
Attempting to retrieve a non-existent element in this way causes an error. If it is not known whether a key exists, you should use the \spadfunFrom{search}{KeyedAccessFile} operation.

\spadpaste{search("Char", ey) \free{eya,eyb,eyc}\bound{eyaa}}
\xtc{}
\spadpaste{search("Smith", ey) \free{eyaa}}
\xtc{When an entry is no longer needed, it can be removed from the file.}
\spadpaste{remove!("Char", ey) \free{eyaa}\bound{eybb}}
\xtc{The \spadfunFrom{keys}{KeyedAccessFile} operation returns a list of all the keys for a given file.}
\spadpaste{keys ey \free{eybb}}
\xtc{The \spadfunFrom{\#}{KeyedAccessFile} operation gives the number of entries.}
\spadpaste{\#ey \free{eybb}}
\xtc{The table view of keyed access files provides safe operations. That is, if the Axiom program is terminated between file operations, the file is left in a consistent, current state. This means, however, that the operations are somewhat costly. For example, after each update the file is closed.}
\xtc{Here we add several more items to the file, then check its contents.}
\spadpaste{KE := Record(key: String, entry: Integer) \bound{KE}}
\xtc{}
\spadpaste{reopen!(ey, "output") \free{eybb,KE}\bound{eycc}}
\xtc{
If many items are to be added to a file at the same time, then it is more efficient to use the \spadfunFromX{write}{KeyedAccessFile} operation. 

\spadpaste{write!(ey, ["van Hulzen", 1983]\$KE) \bound{eyccA}\free{eycc}}

\xtc{
\spadpaste{write!(ey, ["Calmet", 1982]\$KE) \bound{eyccB}\free{eycc}}
}

\xtc{
\spadpaste{write!(ey, ["Wang", 1981]\$KE) \bound{eyccC}\free{eycc}}
}

\xtc{
\spadpaste{close! ey \free{eyccA,eyccB,eyccC}\bound{eydd}}
}

The \spadfunFromX{read}{KeyedAccessFile} operation is also available from the file view, but it returns elements in a random order. It is generally clearer and more efficient to use the \spadfunFromX{keys}{KeyedAccessFile} operation and to extract elements by key. 

\spadpaste{keys ey \free{eydd}}

\xtc{
\spadpaste{members ey \free{eydd}}
}

\noOutputXtc{
\spadpaste{)system rm -r /tmp/editor.year \free{ey}}
}

For more information on related topics, see \downlink{`File'}{FileXmpPage}\ignore{File}, \downlink{`TextFile'}{TextFileXmpPage}\ignore{TextFile}, and \downlink{`Library'}{LibraryXmpPage}\ignore{Library}.
\indentrel{3}\begin{verbatim}
(1) "/tmp/editor.year"
Type: KeyedAccessFile Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{KeyedAccessFileXmpPageEmpty1}
\begin{paste}{KeyedAccessFileXmpPageEmpty1}{KeyedAccessFileXmpPagePatch1}
\pastebutton{KeyedAccessFileXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{ey: KeyedAccessFile(Integer) := open("/tmp/editor.year", "output")\bound{ey }}\end{paste}\end{patch}
\begin{patch}{KeyedAccessFileXmpPagePatch2}
\begin{paste}{KeyedAccessFileXmpPageFull2}{KeyedAccessFileXmpPageEmpty2}
\pastebutton{KeyedAccessFileXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{ey."Char" := 1986\free{ey }\bound{eya }}
\indentrel{3}\begin{verbatim}
(2) 1986
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{KeyedAccessFileXmpPagePatch3}
\begin{paste}{KeyedAccessFileXmpPageFull3}{KeyedAccessFileXmpPageEmpty3}
\pastebutton{KeyedAccessFileXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{ey."Caviness" := 1985\free{ey }\bound{eyb }}
\indentrel{3}\begin{verbatim}
(3) 1985
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{KeyedAccessFileXmpPagePatch4}
\begin{paste}{KeyedAccessFileXmpPageFull4}{KeyedAccessFileXmpPageEmpty4}
\pastebutton{KeyedAccessFileXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{ey."Fitch" := 1984\free{ey }\bound{eyc }}
\indentrel{3}\begin{verbatim}
(4) 1984
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(5) 1986
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(6) 1986
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(7) 1986
Type: PositiveInteger
\end{verbatim}
3.57. KAFILE.HT

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{KeyedAccessFileXmpPageEmpty7\}
\begin{paste}\{KeyedAccessFileXmpPagePatch7\}{KeyedAccessFileXmpPagePatch7}\end{paste}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPageEmpty7\}\begin{paste}\{KeyedAccessFileXmpPagePatch7\}{\showpaste}\tab{5}\spadcommand{ey "Char"\free{eya }}\end{paste}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPagePatch8\}\begin{paste}\{KeyedAccessFileXmpPageFull8\}{KeyedAccessFileXmpPageEmpty8}\pastebutton{\showpaste}\tab{5}\spadcommand{search("Char", ey)\free{eya eyb eyc }\bound{eyaa }}\indentrel{3}\begin{verbatim}
(8) 1986
Type: Union(Integer,...)
\end{verbatim}\indentrel{-3}\end{patch}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPagePatch8\}\begin{paste}\{KeyedAccessFileXmpPageFull8\}{KeyedAccessFileXmpPageEmpty8}\pastebutton{\hidepaste}\tab{5}\spadcommand{search("Char", ey)\free{eya eyb eyc }\bound{eyaa }}\end{paste}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPagePatch9\}\begin{paste}\{KeyedAccessFileXmpPageFull9\}{KeyedAccessFileXmpPageEmpty9}\pastebutton{\hidepaste}\tab{5}\spadcommand{search("Smith", ey)\free{eyaa }}\indentrel{3}\begin{verbatim}
(9) "failed"
Type: Union("failed",...)
\end{verbatim}\indentrel{-3}\end{patch}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPagePatch9\}\begin{paste}\{KeyedAccessFileXmpPageFull9\}{KeyedAccessFileXmpPageEmpty9}\pastebutton{\showpaste}\tab{5}\spadcommand{search("Smith", ey)\free{eyaa }}\end{paste}\end{patch}
\begin{patch}\{KeyedAccessFileXmpPagePatch10\}\begin{paste}\{KeyedAccessFileXmpPageFull10\}{KeyedAccessFileXmpPageEmpty10}\pastebutton{\hidepaste}\tab{5}\spadcommand{remove!("Char", ey)\free{eyaa }\bound{eybb }}\indentrel{3}\begin{verbatim}
(10) 1986
Type: Union(Integer,...)
\end{verbatim}\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{KeyedAccessFileXmpPageEmpty10}
\begin{paste}{KeyedAccessFileXmpPageEmpty10}{KeyedAccessFileXmpPagePatch10}
\pastebutton{KeyedAccessFileXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{remove!("Char", ey)\free{eyaa }\bound{eybb }}
\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPagePatch11}
\begin{paste}{KeyedAccessFileXmpPageFull11}{KeyedAccessFileXmpPageEmpty11}
\pastebutton{KeyedAccessFileXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{keys ey\free{eybb }}
\indentrel{3}\begin{verbatim}
(11) ["Fitch","Caviness"]
Type: List String
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty11}
\begin{paste}{KeyedAccessFileXmpPageEmpty11}{KeyedAccessFileXmpPagePatch11}
\pastebutton{KeyedAccessFileXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{keys ey\free{eybb }}
\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPagePatch12}
\begin{paste}{KeyedAccessFileXmpPageFull12}{KeyedAccessFileXmpPageEmpty12}
\pastebutton{KeyedAccessFileXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{\#ey\free{eybb }}
\indentrel{3}\begin{verbatim}
(12) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty12}
\begin{paste}{KeyedAccessFileXmpPageEmpty12}{KeyedAccessFileXmpPagePatch12}
\pastebutton{KeyedAccessFileXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{\#ey\free{eybb }}
\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPagePatch13}
\begin{paste}{KeyedAccessFileXmpPageFull13}{KeyedAccessFileXmpPageEmpty13}
\pastebutton{KeyedAccessFileXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{KE := Record(key: String, entry: Integer)\bound{KE }}
\indentrel{3}\begin{verbatim}
(13) Record(key: String,entry: Integer)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty13}
\begin{paste}{KeyedAccessFileXmpPageEmpty13}{KeyedAccessFileXmpPagePatch13}
\end{paste}\end{patch}
\begin{verbatim}
KE := Record(key: String, entry: Integer)
\end{verbatim}

```
(14) "/tmp/editor.year"
Type: KeyedAccessFile Integer
```

```
(15) [key= "van Hulzen", entry= 1983]
Type: Record(key: String,entry: Integer)
```

```
(16) [key= "Calmet", entry= 1982]
Type: Record(key: String,entry: Integer)
```

\begin{verbatim}
write!(ey, ["Calmet", 1982]$KE)
\end{verbatim}

```
(16) [key= "Calmet", entry= 1982]
Type: Record(key: String,entry: Integer)
```
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{KeyedAccessFileXmpPagePatch17}
\begin{paste}{KeyedAccessFileXmpPageFull17}{KeyedAccessFileXmpPageEmpty17}
\pastebutton{KeyedAccessFileXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{write!(ey, ["Wang", 1981]$KE)\bound{eyccC} \free{eycc}}
\indentrel{3}\begin{verbatim}
(17) [key= "Wang",entry= 1981]
Type: Record(key: String,entry: Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty17}
\begin{paste}{KeyedAccessFileXmpPageEmpty17}{KeyedAccessFileXmpPagePatch17}
\pastebutton{KeyedAccessFileXmpPageEmpty17}{\showpaste}
\tab{5}\spadcommand{write!(ey, ["Wang", 1981]$KE)\bound{eyccC} \free{eycc}}
\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPagePatch18}
\begin{paste}{KeyedAccessFileXmpPageFull18}{KeyedAccessFileXmpPageEmpty18}
\pastebutton{KeyedAccessFileXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{close! ey\free{eyccA eyccB eyccC} \bound{eydd}}
\indentrel{3}(18) "/tmp/editor.year"
Type: KeyedAccessFile Integer
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty18}
\begin{paste}{KeyedAccessFileXmpPageEmpty18}{KeyedAccessFileXmpPagePatch18}
\pastebutton{KeyedAccessFileXmpPageEmpty18}{\showpaste}
\tab{5}\spadcommand{close! ey\free{eyccA eyccB eyccC} \bound{eydd}}
\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPagePatch19}
\begin{paste}{KeyedAccessFileXmpPageFull19}{KeyedAccessFileXmpPageEmpty19}
\pastebutton{KeyedAccessFileXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{keys ey\free{eydd}}
\indentrel{3}(19)
["Wang","Calmet","van Hulzen","Fitch","Caviness"]
Type: List String
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KeyedAccessFileXmpPageEmpty19}
\begin{paste}{KeyedAccessFileXmpPageEmpty19}{KeyedAccessFileXmpPagePatch19}
\pastebutton{KeyedAccessFileXmpPageEmpty19}{\showpaste}
\tab{5}\spadcommand{keys ey\free{eydd}}
\end{paste}\end{patch}
3.58. *KERNEL.HT*

Kernel

=> “notitle” (BasicOperatorXmpPage) 3.10 on page 169
=> “notitle” (ExpressionXmpPage) 3.33 on page 436

---

A \textit{kernel} is a symbolic function application (such as
CHAPTER 3. HYPERDOC PAGES

\spad{\sin(x + y)}) or a symbol (such as \spad{x}). More precisely, a non-symbol kernel over a set \{it S\} is an operator applied to a given list of arguments from \{it S\}. The operator has type \axiomType{BasicOperator} (see \downlink{`BasicOperator'}{BasicOperatorXmpPage}\ignore{BasicOperator}) and the kernel object is usually part of an expression object (see \downlink{`Expression'}{ExpressionXmpPage}\ignore{Expression}).

Kernels are created implicitly for you when you create expressions.
\xtc{
\spadpaste{x :: Expression Integer}
}
\xtc{
You can directly create a ‘symbol’ kernel by using the \axiomFunFrom{kernel}{Kernel} operation.
}\{\spadpaste{kernel x}
}
\xtc{
This expression has two different kernels.
}\{\spadpaste{\sin(x) + \cos(x) \bound{sincos}}
}
\xtc{
The operator \axiomFunFrom{kernels}{Expression} returns a list of the kernels in an object of type \axiomType{Expression}.
}\{\spadpaste{kernels \% \free{sincos}}
}\xtc{
This expression also has two different kernels.
}\{\spadpaste{\sin(x)^{**2} + \sin(x) + \cos(x) \bound{sincos2}}
}
\xtc{
The \spad{\sin(x)} kernel is used twice.
}\{\spadpaste{kernels \% \free{sincos2}}
}\xtc{
An expression need not contain any kernels.
}\{\spadpaste{kernels(1 :: Expression Integer)}
\xtc{
If one or more kernels are present, one of them is designated the \{it main\} kernel.
Kernels can be nested. Use `height` to determine the nesting depth.

This has height 2 because the `x` has height 1 and then we apply an operator to that.

Use the `operator` operation to extract the operator component of the kernel. The operator has type `BasicOperator`.

Use the `name` operation to extract the name of the operator component of the kernel. This is really just a shortcut for a two-step process of extracting the operator and then calling `name` on the operator.

Axiom knows about functions such as `sin`, `cos` and so on and can make kernels and then expressions using them. To create a kernel and expression using an arbitrary operator, use `operator{BasicOperator}`.

Now `f` can be used to create symbolic function applications.
Use the \axiomFunFrom{is?}{Kernel} operation to learn if the operator component of a kernel is equal to a given operator.

You can also use a symbol or a string as the second argument to \axiomFunFrom{is?}{Kernel}.

Use the \axiomFunFrom{argument}{Kernel} operation to get a list containing the argument component of a kernel.

Conceptually, an object of type \axiomType{Expression} can be thought of a quotient of multivariate polynomials, where the ‘‘variables’’ are kernels. The arguments of the kernels are again expressions and so the structure recurses.

See \downlink{Expression}{ExpressionXmpPage} for examples of using kernels to take apart expression objects.
\begin{verbatim}
(2) x
Type: Kernel Expression Integer
\end{verbatim}

\begin{verbatim}
(3) sin(x) + cos(x)
Type: Expression Integer
\end{verbatim}

\begin{verbatim}
(4) \[sin(x),cos(x)\]
Type: List Kernel Expression Integer
\end{verbatim}
\[ \sin(x)^2 + \sin(x) + \cos(x) \]
Type: Expression Integer
\begin{verbatim}
mainKernel(cos(x) + tan(x))
\end{verbatim}

Type: Union(Kernel Expression Integer,...)

\begin{verbatim}
height kernel x
\end{verbatim}

Type: PositiveInteger

\begin{verbatim}
height mainKernel(sin x)
\end{verbatim}

Type: PositiveInteger

\begin{verbatim}
height mainKernel(sin cos x)
\end{verbatim}
(11) \[3\]
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{KernelXmpPagePatch12}
\begin{paste}{KernelXmpPageFull12}{KernelXmpPageEmpty12}
\pastebutton{KernelXmpPageFull12}{\hidepaste}
\indentrel{3}\begin{verbatim}
(12) 4
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{KernelXmpPageEmpty12}
\begin{paste}{KernelXmpPageEmpty12}{KernelXmpPagePatch12}
\pastebutton{KernelXmpPageEmpty12}{\showpaste}
\indentrel{3}\begin{verbatim}
(13) sin
Type: BasicOperator
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{KernelXmpPagePatch14}
\begin{paste}{KernelXmpPageFull14}{KernelXmpPageEmpty14}
\pastebutton{KernelXmpPageFull14}{\hidepaste}
\indentrel{3}\begin{verbatim}
(14) sin
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
The provided text appears to be a code snippet with comments and symbolic expressions, involving operations on expressions and operators. Here is a structured representation of the text:

```plaintext
(15) f
Type: BasicOperator

(16) f(x, y, 10)
Type: Expression Integer

(17) true
Type: Boolean
```

The code snippet includes the definition of operators and expressions, along with their types and values. It seems to be part of a larger context, possibly a documentation or tutorial on symbolic computation, involving mathematical expressions and their evaluation.
\begin{patch}{KernelXmpPagePatch17}\begin{paste}{KernelXmpPageFull17}{KernelXmpPageEmpty17}\pastebutton{KernelXmpPageFull17}{\hidepaste}\tab{5}\spadcommand{is?(e, f)\free{f e}}\end{paste}\end{patch}

\begin{patch}{KernelXmpPagePatch18}\begin{paste}{KernelXmpPageFull18}{KernelXmpPageEmpty18}\pastebutton{KernelXmpPageFull18}{\hidepaste}\tab{5}\spadcommand{is?(e, 'f)\free{e}}\indentrel{3}\begin{verbatim}(18) true
Type: Boolean\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{KernelXmpPagePatch19}\begin{paste}{KernelXmpPageFull19}{KernelXmpPageEmpty19}\pastebutton{KernelXmpPageFull19}{\hidepaste}\tab{5}\spadcommand{argument mainKernel e\free{f}\free{e}}\indentrel{3}\begin{verbatim}(19) [x,y,10]
Type: List Expression Integer\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

3.59 lazm3pk.ht

LazardSetSolvingPackage
The \texttt{LazardSetSolvingPackage} package constructor solves polynomial systems by means of Lazard triangular sets. However one condition is relaxed: Regular triangular sets whose saturated ideals have positive dimension are not necessarily normalized.

The decompositions are computed in two steps. First the algorithm of Moreno Maza (implemented in the \texttt{RegularTriangularSet} domain constructor) is called. Then the resulting decompositions are converted into lists of square-free regular triangular sets and the redundant components are removed. Moreover, zero-dimensional regular triangular sets are normalized.

Note that the way of understanding triangular decompositions is detailed in the example of the \texttt{RegularTriangularSet} constructor.

The \texttt{LazardSetSolvingPackage} constructor takes six arguments. The first one, \texttt{\textbf{R}}, is the coefficient ring of the polynomials; it must belong to the category \texttt{GcdDomain}. The second one, \texttt{\textbf{E}}, is the exponent monoid of the polynomials; it must belong to the category \texttt{OrderedAbelianMonoidSup}. The third one, \texttt{\textbf{V}}, is the ordered set of variables; it must belong to the category \texttt{OrderedSet}. The fourth one is the polynomial ring; it must belong to the category \texttt{RecursivePolynomialCategory(R,E,V)}. The fifth one is a domain of the category \texttt{RegularTriangularSetCategory(R,E,V,P)} and the last one is a domain of the category \texttt{SquareFreeRegularTriangularSetCategory(R,E,V,P)}. The abbreviation for \texttt{LazardSetSolvingPackage} is \texttt{LAZM3PK}.

\textbf{N.B.} For the purpose of solving zero-dimensional algebraic systems, see also \texttt{LexTriangularPackage} and \texttt{ZeroDimensionalSolvePackage}. These packages are easier to call than \texttt{LAZM3PK}. Moreover, the \texttt{ZeroDimensionalSolvePackage} package provides operations to compute either the complex roots or the real roots.

We illustrate now the use of the \texttt{LazardSetSolvingPackage} package constructor with two examples (Butcher and Vermeer).

\begin{verbatim}
\xtc{
Define the coefficient ring.
}

\begin{verbatim}
R := Integer \bound{R}
\}

\xtc{
Define the list of variables,
}\{
\spadpaste{ls : List Symbol := [b1,x,y,z,t,v,u,w] \bound{ls}}
\}
\xtc{
and make it an ordered set;
}\{
\spadpaste{V := OVAR(ls) \free{ls} \bound{V}}
\}
\xtc{
then define the exponent monoid.
}\{
\spadpaste{E := IndexedExponents V \free{V} \bound{E}}
\}
\xtc{
Define the polynomial ring.
}\{
\spadpaste{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
\}
\xtc{
Let the variables be polynomial.
}\{
\spadpaste{b1: P := 'b1 \free{P} \bound{b1}}
\}
\xtc{
}\{
\spadpaste{x: P := 'x \free{P} \bound{x}}
\}
\xtc{
}\{
\spadpaste{y: P := 'y \free{P} \bound{y}}
\}
\xtc{
}\{
\spadpaste{z: P := 'z \free{P} \bound{z}}
\}
\xtc{
}\{
\spadpaste{t: P := 't \free{P} \bound{t}}
\}
\xtc{
\end{verbatim}
\{ 
\texttt{u: P := 'u \free{P} \bound{u}} \}
\texttt{\xtc{}}
\{ 
\texttt{v: P := 'v \free{P} \bound{v}} \}
\texttt{\xtc{}}
\{ 
\texttt{w: P := 'w \free{P} \bound{w}} \}
\texttt{\xtc{}}

Now call the \texttt{RegularTriangularSet} domain constructor.
\{ 
\texttt{T := REGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{T}} \}
\texttt{\xtc{}}

Define a polynomial system (the Butcher example).
\{ 
\texttt{p0 := b1 + y + z - t - w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p0}} \}
\texttt{\xtc{}}
\{ 
\texttt{p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p1}} \}
\texttt{\xtc{}}
\{ 
\texttt{p2 := 3*z*w**2 + 3*y*w**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p2}} \}
\texttt{\xtc{}}
\{ 
\texttt{p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p3}} \}
\texttt{\xtc{}}
\{ 
\texttt{p4 := 4*z*w**3+ 4*y*w**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p4}} \}
\texttt{\xtc{}}
\spadpaste{p5 := 8*x*z*u*v + 8*t*w**3 - 8*w**4 + 4*t*w**2 -
12*w**3 + 4*t*w - 14*w**2 - 3*w - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p5}}
\xtc{
}\spadpaste{p6 := 12*x*z*v**2 + 12*t*w**3 - 12*w**4 + 12*t*w**2 -
18*w**3 + 8*t*w - 14*w**2 - w - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p6}}
\xtc{
}\spadpaste{p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 -
8*t*w + 26*w**2 + 7*w + 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p7}}
\xtc{
}\spadpaste{lp := [p0, p1, p2, p3, p4, p5, p6, p7] \free{p0} \free{p1} \free{p2} \free{p3} \free{p4} \free{p5} \free{p6} \free{p7} \bound{lp}}
\xtc{
First of all, let us solve this system in the sense of Lazard
by means of the \spadtype{REGSET} constructor:
}\{\spadpaste{lts := zeroSetSplit(lp, false)$T\free{lp}\free{T}\bound{lts}}\}
\xtc{
We can get the dimensions of each component
of a decomposition as follows.
}\{\spadpaste{[coHeight(ts) for ts in lts] \free{lts}}\}
\xtc{
The first five sets have a simple shape.
However, the last one, which has dimension zero, can be simplified
by using Lazard triangular sets.
}\{\spadpaste{ST := SREGSET(R, E, V, P) \free{R} \free{E} \free{V} \free{P} \bound{ST}}\}
\xtc{
Thus we call the \spadtype{SquareFreeRegularTriangularSet} domain
constructor,
}\{\spadpaste{ST := SREGSET(R, E, V, P) \free{R} \free{E} \free{V} \free{P} \bound{ST}}\}
and set the \spadtype{LAZM3PK} package constructor to our situation.
}\spadpaste{pack := LAZM3PK(R,E,V,P,T,ST) \free{R} \free{E} \free{V} \free{P} \free{T} \free{ST} \bound{pack} }
}
\xtc{
We are ready to solve the system by means of Lazard triangular sets:
}\spadpaste{zeroSetSplit(lp,false)$pack \free{lp} \free{pack}}
}

We see the sixth triangular set is \emph{nicer} now:
each one of its polynomials has a constant initial.

We follow with the Vermeer example. The ordering is the usual one for this system.
\xtc{
Define the polynomial system.
}\spadpaste{f0 := (w - v) ** 2 + (u - t) ** 2 - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f0}}
}
\xtc{\}
\spadpaste{f1 := t ** 2 - v ** 3 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f1}}
}
\xtc{\}
\spadpaste{f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t) \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f2}}
}
\xtc{\}
\spadpaste{f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1) \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f3}}
}
\xtc{\}
\spadpaste{lf := \[f0, f1, f2, f3\] \free{f0} \free{f1} \free{f2} \free{f3} \bound{lf}}
}
\xtc{
First of all, let us solve this system in the sense of Kalkbrener by

means of the \spadtype{REGSET} constructor:
}\{
\spadpaste{zeroSetSplit(lf,true)$T \free{lf} \free{T}}
}\}

We have obtained one regular chain (i.e. regular triangular set) with
dimension 1. This set is in fact a characterist set of the (radical
of) of the ideal generated by the input system \texttt{(bf lf)}. Thus we have
only the \texttt{\{em generic points\}} of the variety associated with \texttt{(bf lf)}
(for the elimination ordering given by \texttt{(bf ls)}).

So let us get now a full description of this variety.
\\xtc{Hence, we solve this system in the sense of Lazard by means of the
\spadtype{REGSET} constructor:}
\}\{
\spadpaste{zeroSetSplit(lf,false)$T \free{lf} \free{T}}
\}\}

We retrieve our regular chain of dimension 1 and we get three regular
chains of dimension 0 corresponding to the \texttt{\{em degenerated cases\}}.
We want now to simplify these zero-dimensional regular chains by using
Lazard triangular sets. Moreover, this will allow us to prove that
the above decomposition has no redundant component. \texttt{(bf N.B.)}
Generally, decompositions computed by the \spadtype{REGSET} constructor do not have redundant components. However, to be sure
that no redundant component occurs one needs to use the
\spadtype{SREGSET} or \spadtype{LAZM3PK} constructors.
\\xtc{So let us solve the input system in the sense of Lazard by means of
the \spadtype{LAZM3PK} constructor:}
\}\{
\spadpaste{zeroSetSplit(lf,false)$pack \free{lf} \free{pack}}
\}\}

Due to square-free factorization, we obtained now four
zero-dimensional regular chains. Moreover, each of them is normalized
(the initials are constant). Note that these zero-dimensional
components may be investigated further with the
\spadtype{ZeroDimensionalSolvePackage} package constructor.
\\endscroll
\autobuttons
\end{page}

\\begin{patch}{LazardSetSolvingPackageXmpPagePatch1}
\begin{paste}{LazardSetSolvingPackageXmpPageFull1}{LazardSetSolvingPackageXmpPageEmpty1}
\spadcommand{R := Integer}\bound{R }
\verbatim
(1) \texttt{Integer}
\end{verbatim}
\begin{verbatim}
(2) \texttt{[b1,x,y,z,t,v,u,w]}
\end{verbatim}
\begin{verbatim}
(3) \texttt{OrderedVariableList [b1,x,y,z,t,v,u,w]}
\end{verbatim}
IndexedExponents OrderedVariableList \[b1,x,y,z,t,v,u,w\]

\begin{verbatim}
(4)
IndexedExponents OrderedVariableList \[b1,x,y,z,t,v,u,w\]
Type: Domain
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty4}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty4}{LazardSetSolvingPackageXmpPagePatch4}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty4}{\showpaste}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch5}
\begin{paste}{LazardSetSolvingPackageXmpPageFull5}{LazardSetSolvingPackageXmpPageEmpty5}
\pastebutton{LazardSetSolvingPackageXmpPageFull5}{\hidepaste}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch6}
\begin{paste}{LazardSetSolvingPackageXmpPageFull6}{LazardSetSolvingPackageXmpPageEmpty6}
\pastebutton{LazardSetSolvingPackageXmpPageFull6}{\hidepaste}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch7}
\begin{paste}{LazardSetSolvingPackageXmpPageFull7}{LazardSetSolvingPackageXmpPageEmpty7}
\pastebutton{LazardSetSolvingPackageXmpPageFull7}{\hidepaste}
\indentrel{3}\begin{verbatim}(7) x
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{LazardSetSolvingPackageXmpPagePatch7}
\begin{paste}{LazardSetSolvingPackageXmpPageFull8}{LazardSetSolvingPackageXmpPageEmpty8}
\pastebutton{LazardSetSolvingPackageXmpPageFull8}{\hidepaste}
\indentrel{3}\begin{verbatim}(8) y
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{LazardSetSolvingPackageXmpPagePatch8}
\begin{paste}{LazardSetSolvingPackageXmpPageFull9}{LazardSetSolvingPackageXmpPageEmpty9}
\pastebutton{LazardSetSolvingPackageXmpPageFull9}{\hidepaste}
\indentrel{3}\begin{verbatim}(9) z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{LazardSetSolvingPackageXmpPagePatch9}
\begin{paste}{LazardSetSolvingPackageXmpPageFull10}{LazardSetSolvingPackageXmpPageEmpty10}
\pastebutton{LazardSetSolvingPackageXmpPageFull10}{\hidepaste}
\indentrel{3}\begin{verbatim}(10) t
\end{verbatim}
\indentrel{-3}\end{patch}
(10) \( t \)
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([b1,x,y,z,t,v,u,w]\))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty10}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty10}{LazardSetSolvingPackageXmpPagePatch10}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{t: P := 't\free{P }\bound{t }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch11}
\begin{paste}{LazardSetSolvingPackageXmpPageFull11}{LazardSetSolvingPackageXmpPageEmpty11}
\pastebutton{LazardSetSolvingPackageXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{u: P := 'u\free{P }\bound{u }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty11}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty11}{LazardSetSolvingPackageXmpPagePatch11}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{u: P := 'u\free{P }\bound{u }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch12}
\begin{paste}{LazardSetSolvingPackageXmpPageFull12}{LazardSetSolvingPackageXmpPageEmpty12}
\pastebutton{LazardSetSolvingPackageXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{v: P := 'v\free{P }\bound{v }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty12}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty12}{LazardSetSolvingPackageXmpPagePatch12}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{v: P := 'v\free{P }\bound{v }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch13}
\begin{paste}{LazardSetSolvingPackageXmpPageFull13}{LazardSetSolvingPackageXmpPageEmpty13}
\pastebutton{LazardSetSolvingPackageXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{w: P := 'w\free{P }\bound{w }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty13}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty13}{LazardSetSolvingPackageXmpPagePatch13}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty13}{\showpaste}
\tab{5}\spadcommand{w: P := 'w\free{P }\bound{w }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch14}
\begin{paste}{LazardSetSolvingPackageXmpPageFull14}{LazardSetSolvingPackageXmpPageEmpty14}
\pastebutton{LazardSetSolvingPackageXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{w: P := 'w\free{P }\bound{w }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty14}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty14}{LazardSetSolvingPackageXmpPagePatch14}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty14}{\showpaste}
\tab{5}\spadcommand{w: P := 'w\free{P }\bound{w }}
\end{paste}\end{patch}

(11) \( u \)
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([b1,x,y,z,t,v,u,w]\))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

(12) \( v \)
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([b1,x,y,z,t,v,u,w]\))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

(13) \( w \)
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([b1,x,y,z,t,v,u,w]\))
\begin{verbatim}
LazardSetSolvingPackageXmpPagePatch13
spadcommand(w: P := 'w\text{free}(P)\text{bound}(w))
\end{verbatim}

\begin{verbatim}
tab{5}spadcommand(T := REGSET(R,E,V,P)\text{free}(R)\text{free}(E)\text{free}(V)\text{free}(P)\text{bound}(T))
\end{verbatim}

\begin{verbatim}
(14)
\text{RegularTriangularSet}(\text{Integer, IndexedExponents OrderedVariableList \[b1,x,y,z,t,v,u,w\], OrderedVariableList \[b1,x,y,z,t,v,u,w\], NewSparseMultivariatePolynomial(\text{Integer, OrderedVariableList \[b1,x,y,z,t,v,u,w\]})])
\end{verbatim}

\begin{verbatim}
p0 := b1 + y + z - t - w
\end{verbatim}

\begin{verbatim}
p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1
\end{verbatim}

\begin{verbatim}
p0 := b1 + y + z - t - w
\end{verbatim}

\begin{verbatim}
p0 := b1 + y + z - t - w
\end{verbatim}

\begin{verbatim}
p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1
\end{verbatim}
\begin{verbatim}
2  (16)  2v y + 2u z + 2w t - 2w - w - 1
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]) \end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty16}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty16}{LazardSetSolvingPackageXmpPagePatch16}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\bound{p1 }\begin{verbatim}
2 2 2
(17)  3v y + 3u z + (- 3w - 1)t + 3w + 3w + 4w
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]) \end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch17}
\begin{paste}{LazardSetSolvingPackageXmpPageFull17}{LazardSetSolvingPackageXmpPageEmpty17}
\pastebutton{LazardSetSolvingPackageXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w\free{b1 }\begin{verbatim}
2 2 3 2
(18)  6v z x + (- 6w - 3w - 1)t + 6w + 6w + 4w
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]) \end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch18}
\begin{paste}{LazardSetSolvingPackageXmpPageFull18}{LazardSetSolvingPackageXmpPageEmpty18}
\pastebutton{LazardSetSolvingPackageXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w\free{b1 }\begin{verbatim}
2 3 2
(19)  4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\bound{p3 }
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch19}
\begin{paste}{LazardSetSolvingPackageXmpPageFull19}{LazardSetSolvingPackageXmpPageEmpty19}
\pastebutton{LazardSetSolvingPackageXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\bound{p4 }}
3.59. LAZM3PK.HT

\begin{verbatim}
3 3 4 3 2
4v y + 4u z + (4w + 4w)t - 4w - 6w - 10w - w - 1
\end{verbatim}

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\begin{verbatim}
3 2 4 3 2
8u v z x + (8w + 4w + 4w)t - 8w - 12w - 14w - 3w + - 1
\end{verbatim}

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\begin{verbatim}
2 3 2 4 3 2
12v z x + (12w + 12w + 8w)t - 12w - 18w - 14w - w - 1
\end{verbatim}

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\begin{verbatim}
2 3 2
12w z x + (12w + 12w + 8w)t - 12w - 18w - 14w - w - 1
\end{verbatim}

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\begin{verbatim}
3 2 4 3 2
(-24w - 24w - 8w)t + 24w + 36w + 26w + 7w + 1
\end{verbatim}

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\begin{verbatim}
2
[21 + y + z - t - w, 2v y + 2u z + 2w t - 2w - w - 1,
  2 2 2 3 2
  3v y + 3u z + (-3w - 1)t + 3w + 3w + 4w,
  2 3 2
  6v z x + (-6w - 3w - 1)t + 6w + 6w + 4w,
  3 3 3 4 3 2
  4v y + 4u z + (4w + 4w)t - 4w - 6w - 10w - w - 1,
  3 2 4 3 2
  8u v z x + (8w + 4w + 4w)t - 8w - 12w - 14w +
  + -3w - 1,
  3 3 2
  12v z x + (12w + 12w + 8w)t - 12w - 18w - 14w +
  + -w - 1,
  3 2 4 3 2
  (-24w - 24w - 8w)t + 24w + 36w + 26w + 7w + 1]
\end{verbatim}
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty23}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty23}{LazardSetSolvingPackageXmpPagePatch23}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty23}{\showpaste}
\indentrel{5}\spadcommand{lp := [p0, p1, p2, p3, p4, p5, p6, p7]\free{p0 }\free{p1 }\free{p2 }\free{p3 }\free{p4 }\free{p5 }\free{p6 }\free{p7 }\bound{lp }}
\end{paste}
\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch24}
\begin{paste}{LazardSetSolvingPackageXmpPageFull24}{LazardSetSolvingPackageXmpPageEmpty24}
\pastebutton{LazardSetSolvingPackageXmpPageFull24}{\hidepaste}
\indentrel{5}\spadcommand{lts := zeroSetSplit(lp,false)$T\free{lp }\free{T }\bound{lts }}
\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty24}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty24}{LazardSetSolvingPackageXmpPagePatch24}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty24}{\showpaste}

Type: List RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],OrderedVariableList [b1,x,y,z,t,v,u,w],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))

\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty24}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty24}{LazardSetSolvingPackageXmpPagePatch24}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty24}{\showpaste}
\begin{verbatim}
(25) [3,3,3,2,2,0]
Type: List NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(26)
SquareFreeRegularTriangularSet(Integer,IndexedExponents
OrderedVariableList [b1,x,y,z,t,v,u,w],OrderedVariable
List [b1,x,y,z,t,v,u,w],NewSparseMultivariatePolynomial
(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))
Type: Domain
\end{verbatim}
1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w]), SquareFreeRegularTriangularSet(Integer, IndexedExponents OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t, v, u, w])))

Type: Domain

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty27}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty27}{LazardSetSolvingPackageXmpPagePatch27}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{pack := LAZM3PK(R, E, V, P, T, ST)}$free{R}\free{E}\free{V}\free{P}\free{T}\free{ST}\bound{pack}$
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch28}
\begin{paste}{LazardSetSolvingPackageXmpPageFull28}{LazardSetSolvingPackageXmpPageEmpty28}
\pastebutton{LazardSetSolvingPackageXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{zeroSetSplit(lp, false)$pack\free{lp}\free{pack}$}
\indentrel{3}\begin{verbatim}
(28)
{w + 1, t + 1, z, y, b1 + 2},
{w + 1, v, t + 1, z, b1 + y + 2},
{w + 1, u, v, t + 1, b1 + y + z + 2},
{w + 1, v - u, t + 1, y + z, x, b1 + 2},
{w + 1, u, t + 1, y, x, b1 + z + 2},
{w + 1, t + 1, y, x, b1 + z + 2},
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty28}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty28}{LazardSetSolvingPackageXmpPagePatch28}
\begin{paste}{LazardSetSolvingPackageXmpPagePatch28}{LazardSetSolvingPackageXmpPageEmpty28}
\pastebutton{LazardSetSolvingPackageXmpPagePatch28}{\hidepaste}
\indentrel{3}\begin{verbatim}
(28)
{144w + 216w + 96w + 6w - 11w - 1,}
{u - 24w - 36w - 14w + w + 1,}
{3v - 48w - 60w - 10w + 8w + 2,}
{t - 24w - 36w - 14w - w + 1,}
{486z - 2772w - 4662w - 2055w + 30w + 127,}
{2916y - 22752w - 30312w - 8220w + 2064w + 1561,}
{356w - 3696w - 4536w - 968w + 822w + 371,}
{2916b1 - 30600w - 46692w - 20274w - 8076w + 593}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{LazardSetSolvingPackageXmpPageEmpty28}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty28}{LazardSetSolvingPackageXmpPagePatch28}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{zeroSetSplit(lp,false)$pack\free{lp }\free{pack }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch29}
\begin{paste}{LazardSetSolvingPackageXmpPageFull29}{LazardSetSolvingPackageXmpPageEmpty29}
\pastebutton{LazardSetSolvingPackageXmpPageFull29}{\hidepaste}
\tab{5}\spadcommand{f0 := (w - v) ** 2 + (u - t) ** 2 - 1\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f0} }

\indentrel{3}\begin{verbatim}
2 2 2 2
(29) t - 2u t + v - 2w v + u + w - 1
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty29}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty29}{LazardSetSolvingPackageXmpPagePatch29}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty29}{\showpaste}
\tab{5}\spadcommand{f0 := (w - v) ** 2 + (u - t) ** 2 - 1\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f0} }
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch30}
\begin{paste}{LazardSetSolvingPackageXmpPageFull30}{LazardSetSolvingPackageXmpPageEmpty30}
\pastebutton{LazardSetSolvingPackageXmpPageFull30}{\hidepaste}
\tab{5}\spadcommand{f1 := t ** 2 - v ** 3\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f1} }

\indentrel{3}\begin{verbatim}
2 3
(30) t - v
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty30}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty30}{LazardSetSolvingPackageXmpPagePatch30}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty30}{\showpaste}
\tab{5}\spadcommand{f1 := t ** 2 - v ** 3\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f1} }
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch31}
\begin{paste}{LazardSetSolvingPackageXmpPageFull31}{LazardSetSolvingPackageXmpPageEmpty31}
\pastebutton{LazardSetSolvingPackageXmpPageFull31}{\hidepaste}
\tab{5}\spadcommand{f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f2} }

\indentrel{3}\begin{verbatim}
2 2
(31) (- 3v - 2v + 2w)t + 3u v
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{LazardSetSolvingPackageXmpPageEmpty31}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty31}{LazardSetSolvingPackageXmpPagePatch31}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty31}{\showpaste}
\tab{5}\spadcommand{f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f2 }}
\end{paste}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPagePatch32}
\begin{paste}{LazardSetSolvingPackageXmpPageFull32}{LazardSetSolvingPackageXmpPageEmpty32}
\pastebutton{LazardSetSolvingPackageXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1)\free{b1 }\free{x }\free{y }\free{z }\free{t }\free{u }\free{v }\free{w }\bound{f3 }}
\indentrel{3}\begin{verbatim}
2 2 2
(32) 6v t z + (- 2t - 3v )z + 1
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty33}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty33}{LazardSetSolvingPackageXmpPagePatch33}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty33}{\showpaste}
\tab{5}\spadcommand{lf := [f0, f1, f2, f3]\free{f0 }\free{f1 }\free{f2 }\free{f3 }\bound{lf }}
\indentrel{3}\begin{verbatim}
(33)
[ 2 2 2 2 2 2
 2 2
(- 3v - 2v + 2w)t + 3u v ,
 2 2
6v t z + (- 2t - 3v )z + 1]
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{LazardSetSolvingPackageXmpPageEmpty34}
\begin{paste}{LazardSetSolvingPackageXmpPageEmpty34}{LazardSetSolvingPackageXmpPagePatch34}
\pastebutton{LazardSetSolvingPackageXmpPageEmpty34}{\showpaste}
\tab{5}\spadcommand{zeroSetSplit(lf,true)$T\free{lf }\free{T }$}
\end{paste}\end{patch}
\begin{verbatim}
(34)
\[
\begin{array}{r}
6 & 3 & 2 & 4 \\
729u + (-1458w + 729w - 4158w - 1685)u \\
+ & 6 & 5 & 4 & 3 & 2 \\
729w - 1458w - 2619w - 4892w - 297w \\
+ & 5814w + 427 \\
* & 2 \\
\text{u} \\
+ & 8 & 7 & 6 & 5 & 4 & 3 \\
729w + 216w - 2900w - 2376w + 3870w + 4072w \\
+ & 2 \\
-1188w - 1656w + 529 \\
, \\
4 & 3 & 2 & 2 \\
2187u + (-4374w - 972w - 12474w - 2868)u \\
+ & 6 & 5 & 4 & 3 & 2 \\
2187w - 1944w - 10125w - 4800w + 2501w \\
+ & 4968w - 1587 \\
* & v \\
+ & 3 & 2 & 2 & 6 & 5 & 4 \\
(1944w - 108w )u + 972w + 3024w - 1080w \\
+ & 3 & 2 \\
496w + 1116w \\
, \\
2 & 2 \\
(3v + 2v - 2w)t - 3u v , \\
2 & 2 \\
((4v - 4w)t - 6u v )z + (2t + 3v )z - 1
\end{array}
\]
\end{verbatim}
Type: List RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],OrderedVariableList [b1,x,y,z,t,v,u,w],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))
\begin{patch}{LazardSetSolvingPackageXmpPagePatch35}
\begin{paste}{LazardSetSolvingPackageXmpPageFull35}{LazardSetSolvingPackageXmpPageEmpty35}
pastebutton{LazardSetSolvingPackageXmpPageFull35}{\hidepaste}
\end{patch}
\begin{verbatim}
(35)
\[
\{ \\
6 3 2 4 \\
729u + (-1458w + 729w - 4158w - 1685)u + \\
6 5 4 3 2 \\
729w - 1458w - 2619w - 4892w - 297w + \\
5814w + 427 \\
* \\
2 \\
u + \\
8 7 6 5 4 3 \\
729w + 216w - 2900w - 2376w + 3870w + 4072w + \\
2 \\
- 1188w - 1656w + 529 \\
, \\
4 3 2 2 \\
2187u + (-4374w - 972w - 12474w - 2868)u + \\
6 5 4 3 2 \\
2187w - 1944w - 10125w - 4800w + 2501w + \\
4968w - 1587 \\
* \\
v + \\
3 2 2 6 5 4 \\
(1944w - 108w )u + 972w + 3024w - 1080w + \\
3 2 \\
496w + 1116w \\
, \\
2 2 \\
(3v + 2v - 2w)t - 3u v , \\
2 2 2 \\
((4v - 4w)t - 6u v )z + (2t + 3v )z - 1 \\
, \\
\}
\end{verbatim}
\end{patch}
4 3 2
\{27w + 4w - 54w - 36w + 23, u, 2 2 2
(12w + 2)v - 9w - 2w + 9, 6t - 2v - 3w + 2w + 3, 2t z - 1\}
,
\
{\
 6 5 4 3 2
59049w + 91854w - 45198w + 145152w + 63549w + 60922w + 21420,
\}
,
\
 5 4
31484448266904w - 18316865522574w + 3 2
23676995746098w + 6657857188965w + 8904703998546w + 3890631403260 *
2
u +
\
5 4
94262810316408w - 82887296576616w + 3 2
89801831438784w + 28141734167208w + 38070359425432w + 16003865949120 ,
,
2 2
(243w + 36w + 85)v + 2 3 2 3 2
(- 81u - 162w + 36w + 154w + 72)v - 72w + 4w ,
2 2
(3v + 2v - 2w)t - 3u v ,
2 2 2
((4v - 4w)t - 6u v )z + (2t + 3v )z - 1} ,
,
4 3 2
\{27w + 4w - 54w - 36w + 23, u, 2 2 2
(12w + 2)v - 9w - 2w + 9, 6t - 2v - 3w + 2w + 3,
2
3v z - 1
]

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList [b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1,x,y,z,t,v,u,w]))
\[
\begin{align*}
\{ & 3 \quad 2 \quad 2 \quad 6 \quad 5 \quad 4 \\
(1944w - 108w)u + 972w + 3024w - 1080w \\
+ & 3 \quad 2 \\
496w + 1116w, \\
\{ & 2 \quad 2 \\
(3v + 2v - 2w)t - 3u v, \\
2 \quad 2 \quad 2 \\
((4v - 4w)t - 6u v )z + (2t + 3v )z - 1 \} \\
2 \quad 2 \\
\{ & 81w + 18w + 28, 729u - 1890w - 533, \\
2 \\
81v + (-162w + 27)v - 72w - 112, \\
11881t + (972w + 2997)u v + (-11448w - 11536)u, \\
2 \\
641237934604288z \\
+ & (78614584763904w + 26785578742272)u \\
+ & 236143618655616w + 70221988585728 \\
* & v \\
+ & (358520253138432w + 101922133759488)u \\
+ & 142598803536000w + 54166419595008 \\
* & z \\
+ & (32655103844499w - 44224572465882)u v \\
+ & (43213900115457w - 32432039102070)u \\
\} \\
, \\
4 \quad 3 \quad 2 \\
\{ & 27w + 4w - 54w - 36w + 23, u, \\
3 \quad 2 \\
218v - 162w + 3w + 160w + 153, \\
2 \quad 3 \quad 2 \\
109t - 27w - 54w + 63w + 80, \\
3 \quad 2 \\
1744z + (-1458w + 27w + 1440w + 505)t \} \\
, \\
4 \quad 3 \quad 2
\end{align*}
\]
\{27w + 4w - 54w - 36w + 23, u,
  3  2
218v - 162w + 3w + 160w + 153,
  2  3  2
109t - 27w - 54w + 63w + 80,
  3  2
1308z + 162w - 3w - 814w - 153\}
,
4  3  2
\{729w + 972w - 1026w + 1684w + 765,
  2  2
81u + 72w + 16w - 72,
  3  2
702v - 162w - 225w + 40w - 99,
  3  2
11336t + (324w - 603w - 1718w - 1557)u,
  2
595003968z
+
  3  2
- 963325386w - 898607682w + 1516286466w
+ 
  - 3239166186
  u
+ 
  3  2
- 1579048992w - 1796454288w + 2428328160w
+ 
  - 4368495024
  z
+ 
  3  2
9713133306w + 9678670317w - 16726834476w
+ 
  28144233593
  u
}\)

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents OrderedVariableList \[b1,x,y,z,t,v,u,w\], OrderedVariableList \[b1,x,y,z,t,v,u,w\], NewSparseMultivariatePolynomial(Integer, OrderedVariableList \[b1,x,y,z,t,v,u,w\]))
\tab{5}\spadcommand{zeroSetSplit(lf,false)$pack\free{lf}$\free{pack}}
\end{paste}\end{patch}

---

### 3.60 lexp.ht

**LieExponentials**

\begin{page}{LieExponentialsXmpPage}{LieExponentials}
\beginscroll
\xtc{
  \spadpaste{ a: Symbol := 'a \bound{a}}
}
\xtc{
  \spadpaste{ b: Symbol := 'b \bound{b}}
}

Declarations of domains
\xtc{
  \spadpaste{ coef := Fraction(Integer) \bound{coef}}
}
\xtc{
  \spadpaste{ group := LieExponentials(Symbol, coef, 3) \free{coef} \bound{group}}
}
\xtc{
  \spadpaste{ lpoly := LiePolynomial(Symbol, coef) \free{coef} \bound{lpoly}}
}
\xtc{
  \spadpaste{ poly := XPBWPolynomial(Symbol, coef) \free{coef} \bound{poly}}
}

Calculations
\xtc{
}

\end{scroll}\end{page}
\texttt{ea := exp(a::lpoly)$\text{group}$ \free{a} \free{lpoly} \free{group} \bound{ea}}
\texttt{eb := exp(b::lpoly)$\text{group}$ \free{b} \free{lpoly} \free{group} \bound{eb}}
\texttt{g: group := ea*eb \free{ea} \free{eb} \bound{g}}
\texttt{g :: poly \free{g} \free{poly}}
\texttt{log(g)$\text{group}$ \free{g} \free{group}}
\texttt{g1: group := inv(g) \free{g} \free{group} \bound{g1}}
\texttt{g*g1 \free{g} \free{g1}}

\begin{patch}{LieExponentialsXmpPagePatch1}
\begin{paste}{LieExponentialsXmpPageFull1}{LieExponentialsXmpPageEmpty1}
\input{LieExponentialsXmpPageFull1}
\pastebutton{LieExponentialsXmpPageFull1}{\hidepaste}
\end{paste}
\end{patch}
\begin{patch}{LieExponentialsXmpPageEmpty1}
\begin{paste}{LieExponentialsXmpPageEmpty1}{LieExponentialsXmpPagePatch1}
\input{LieExponentialsXmpPageEmpty1}
\pastebutton{LieExponentialsXmpPageEmpty1}{\showpaste}
\end{paste}
\end{patch}

\begin{patch}{LieExponentialsXmpPagePatch2}
\begin{verbatim}
(2) b
Type: Symbol
\end{verbatim}

\begin{verbatim}
(3) Fraction Integer
Type: Domain
\end{verbatim}

\begin{verbatim}
(4) LieExponentials(Symbol, Fraction Integer, 3)
Type: Domain
\end{verbatim}
3.60. **LEXP.HT**

\[ \text{spadcommand{ lpoly := LiePolynomial(Symbol, coef)} free{coef} bound{lpoly} } \]
\[ \text{indentrel{3}{begin{verbatim}(5) LiePolynomial(Symbol,Fraction Integer) Type: Domain\end{verbatim}} end{verbatim} end{paste} \]
\[ \text{indentrel{-3}{end{paste}} end{patch} } \]
\[ \text{begin{patch}{LieExponentialsXmpPageEmpty5} } \]
\[ \text{begin{paste}{LieExponentialsXmpPageEmpty5}{LieExponentialsXmpPagePatch5} } \]
\[ \text{indentrel{3}{begin{verbatim}(5) LiePolynomial(Symbol,Fraction Integer) Type: Domain\end{verbatim}} end{verbatim} end{paste} \]
\[ \text{begin{patch}{LieExponentialsXmpPagePatch6} } \]
\[ \text{begin{paste}{LieExponentialsXmpPageFull6}{LieExponentialsXmpPageEmpty6} } \]
\[ \text{indentrel{3}{begin{verbatim}(6) XPBWPolynomial(Symbol,Fraction Integer) Type: Domain\end{verbatim}} end{verbatim} end{paste} \]
\[ \text{begin{patch}{LieExponentialsXmpPagePatch7} } \]
\[ \text{begin{paste}{LieExponentialsXmpPageFull7}{LieExponentialsXmpPageEmpty7} } \]
\[ \text{indentrel{3}{begin{verbatim}(7) e Type: LieExponentials(Symbol,Fraction Integer,3)\end{verbatim}} end{verbatim} end{paste} \]
\[ \text{begin{patch}{LieExponentialsXmpPagePatch8} } \]
\[ \text{begin{paste}{LieExponentialsXmpPageFull8}{LieExponentialsXmpPageEmpty8} } \]
\[ \text{indentrel{3}{begin{verbatim}(8) eb Type: LieExponentials(Symbol,Fraction Integer,3)\end{verbatim}} end{verbatim} end{paste} \]
(8) \text{Type: LieExponentials(Symbol,Fraction Integer,3)}

\begin{verbatim}
(9) \text{Type: LieExponentials(Symbol,Fraction Integer,3)}
\end{verbatim}

\begin{verbatim}
(10)
\text{Type: XPBWPolynomial(Symbol,Fraction Integer)}
\end{verbatim}

\begin{verbatim}
(11)
\text{Type: XPBWPolynomial(Symbol,Fraction Integer)}
\end{verbatim}
\begin{verbatim}
1  1  2  1  2
(11)  [a] + [b] + [a b] + [a b] + [a b ]
     2   12  12
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\indentrel{-3}
\end{patch}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{LieExponentialsXmpPagePatch13}
\begin{paste}{LieExponentialsXmpPageFull13}{LieExponentialsXmpPageEmpty13}
\pastebutton{LieExponentialsXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{ g*g1\free{g1}}
\indentrel{3}
\begin{verbatim}
(13) 1
\end{verbatim}
\end{paste}
\end{patch}

3.60. LEXP.HT

783
3.61 lextraipk.ht

LexTriangularPackage

--- lextraipk.ht ---

This package takes two arguments: the coefficient-ring \(\bf R\) of the polynomials, which must be a \spadtype{GcdDomain} and their set of variables given by \(\bf ls\) a \spadtype{List Symbol}. The type of the input polynomials must be \spadtype{NewSparseMultivariatePolynomial(R,V)} where \(\bf V\) is \spadtype{OrderedVariableList(ls)}. The abbreviation for \spadtype{LexTriangularPackage} is \spadtype{LEXTRIPK}. The main operations are \axiomOpFrom{lexTriangular}{LexTriangularPackage} and \axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The former provides decompositions by means of square-free regular triangular sets, whereas the latter uses the \spadtype{SREGSET} constructor. Note that these constructors also implement another algorithm for solving algebraic systems by means of regular triangular sets; in that case no computations of Groebner bases are needed and the input system may have any dimension (i.e. it may have an infinite number of solutions).
The implementation of the `{\em lexTriangular}` algorithm provided in the `\spadtype{LexTriangularPackage}` constructor differs from that reported in "Computations of gcd over algebraic towers of simple extensions" by M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995). Indeed, the `\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}` operation removes all multiplicities of the solutions (i.e. the computed solutions are pairwise different) and the `\axiomOpFrom{lexTriangular}{LexTriangularPackage}` operation may keep some multiplicities; this latter operation runs generally faster than the former.

The interest of the `{\em lexTriangular}` algorithm is due to the following experimental remark. For some examples, a triangular decomposition of a zero-dimensional variety can be computed faster via a lexicographical Groebner basis computation than by using a direct method (like that of `\spadtype{SREGSET}` and `\spadtype{REGSET}`). This happens typically when the total degree of the system relies essentially on its smallest variable (like in the `{\em Katsura}` systems). When this is not the case, the direct method may give better timings (like in the `{\em Rose}` system).

Of course, the direct method can also be applied to a lexicographical Groebner basis. However, the `{\em lexTriangular}` algorithm takes advantage of the structure of this basis and avoids many unnecessary computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of solutions, see also the `\spadtype{ZeroDimensionalSolvePackage}`. It allows to use both strategies (the lexTriangular algorithm and the direct method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is detailed in the example of the `\spadtype{RegularTriangularSet}` constructor.

Since the `\spadtype{LEXTRIPK}` package constructor is limited to zero-dimensional systems, it provides a `\axiomOpFrom{zeroDimensional?}{LexTriangularPackage}` operation to check whether this requirement holds. There is also a `\axiomOpFrom{groebner}{LexTriangularPackage}` operation to compute the lexicographical Groebner basis of a set of polynomials with type `\spadtype{NewSparseMultivariatePolynomial(R,V)}`. The elimination ordering is that given by `{\bf ls}` (the greatest variable being the first element of `{\bf ls}`). This basis is computed by the `{\em FLGM}` algorithm (Faugere et al. "Efficient Computation of Zero-Dimensional Groebner Bases by Change of Ordering", J. of Symbol. Comput., 1993) implemented in the `\spadtype{LinGroebnerPackage}` package constructor. Once a lexicographical Groebner basis is computed,
then one can call the operations
\\texttt{\textbackslash axiomOpFrom\{lexTriangular\}\{LexTriangularPackage\}}
and \\texttt{\textbackslash axiomOpFrom\{squareFreeLexTriangular\}\{LexTriangularPackage\}}.

Note that these operations admit an optional argument
to produce normalized triangular sets.

There is also a \texttt{\textbackslash axiomOpFrom\{zeroSetSplit\}\{LexTriangularPackage\}}
operation which does all the job from the input system;
an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the \texttt{\textbackslash spadtype\{LEXTRIPK\}} constructor
by a famous example, the \texttt{\textbackslash em cyclic-6 root} system.
\xtc{
Define the coefficient ring.
}{
\spadpaste{R := Integer \bound{R}}
}
\xtc{
Define the list of variables,
}{
\spadpaste{ls : List Symbol := [a,b,c,d,e,f] \bound{ls}}
}
\xtc{
and make it an ordered set.
}{
\spadpaste{V := OVAR(ls) \free{ls} \bound{V}}
}
\xtc{
Define the polynomial ring.
}{
\spadpaste{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
}
\xtc{
Define the polynomials.
}{
\spadpaste{p1: P := a*b*c*d*e*f - 1 \free{P} \bound{p1}}
}
\xtc{
}{
\spadpaste{p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f +
a*c*d*e*f +b*c*d*e*f \free{P} \bound{p2}}
}
\xtc{
}{
\spadpaste{p3: P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f +
b*c*d*e + c*d*e*f \free{P} \bound{p3}}
}
\xtc{
}{
\spadpaste{p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f \free{P} \bound{p4}}
}
Now call \spad{LEXTRIPK}.

\begin{verbatim}
\spadpaste{lextripack := LEXTRIPK(R,ls) \free{R} \free{ls} \bound{lextripack}}
\end{verbatim}

Compute the lexicographical Groebner basis of the system. This may take between 5 minutes and one hour, depending on your machine.

\begin{verbatim}
\spadpaste{lg := groebner(lp)$lextripack \free{lp} \free{lextripack} \bound{lg}}
\end{verbatim}

Apply lexTriangular to compute a decomposition into regular triangular sets. This should not take more than 5 seconds.

\begin{verbatim}
\spadpaste{lexTriangular(lg,false)$lextripack \free{lg} \free{lextripack}}
\end{verbatim}

Note that the first set of the decomposition is normalized (all initials are integer numbers) but not the second one (normalized triangular sets are defined in the description of the \spad{NormalizedTriangularSetCategory} constructor).

So apply now lexTriangular to produce normalized triangular sets.

\begin{verbatim}
\spadpaste{lts := lexTriangular(lg,true)$lextripack \free{lg} \free{lextripack} \bound{lts}}
\end{verbatim}

We check that all initials are constant.

\begin{verbatim}
\spadpaste{[[init(p) for p in (ts :: List(P))] for ts in lts]}
\end{verbatim}
Note that each triangular set in $\{\text{bf lts}\}$ is a lexicographical Groebner basis.
Recall that a point belongs to the variety associated with $\{\text{bf lp}\}$ if and only if it belongs to that associated with one triangular set $\{\text{bf ts}\}$ in $\{\text{bf lts}\}$.

By running the $\text{axiomOpFrom\{squareFreeLexTriangular\}\{LexTriangularPackage\}}$ operation, we retrieve the above decomposition.

\begin{verbatim}
xtc{
\spadpaste{squareFreeLexTriangular(lg,true)$lextripack \text{free\{lg\} \text{free\{lextripack\}}}}
\end{verbatim}

Thus the solutions given by $\{\text{bf lts}\}$ are pairwise different.

\begin{verbatim}
xtc{
\spadpaste{reduce(+,[degree(ts) for ts in lts]) \text{free\{lts\}}}}
\end{verbatim}

We can investigate the triangular decomposition $\{\text{bf lts}\}$ by using the $\text{spadtype\{ZeroDimensionalSolvePackage\}}$.

\begin{verbatim}
xtc{
\spadpaste{ls2 : List Symbol := concat(ls,new()$Symbol) \text{free\{ls\}} \text{bound\{ls2\}}}}
\end{verbatim}

Then we call the package.

\begin{verbatim}
xtc{
\spadpaste{zdpack := ZDSOLVE(R,ls,ls2) \text{free\{R\}} \text{free\{ls\}} \text{free\{ls2\}} \text{bound\{zdpack\}}}}
\end{verbatim}

We compute a univariate representation of the variety associated with the input system as follows.

\begin{verbatim}
xtc{
\spadpaste{concat [univariateSolve(ts)$zdpack for ts in lts] \text{free\{lts\}} \text{free\{zdpack\}}}}
\end{verbatim}

Since the $\text{axiomOpFrom\{univariateSolve\}\{ZeroDimensionalSolvePackage\}}$ operation may
split a regular set, it returns a list. This explains the use of `concat(List)`.

Look at the last item of the result. It consists of two parts. For any complex root of the univariate polynomial in the first part, we get a tuple of univariate polynomials (in `a`, ..., `f` respectively) by replacing `A` by `?` in the second part. Each of these tuples describes a point of the variety associated with `lp` by equaling to zero the polynomials in `t`.

Note that the way of reading these univariate representations is explained also in the example illustrating the `ZeroDimensionalSolvePackage` constructor.

Now, we compute the points of the variety with real coordinates.

\begin{verbatim}
concat [realSolve(ts)$zdpack for ts in lts] \free{lts}$zdpack
\end{verbatim}

We obtain 24 points given by lists of elements in the `RealClosure` of `Fraction` of `R`. In each list, the first value corresponds to the indeterminate `f`, the second to `e` and so on.

See `ZeroDimensionalSolvePackage` to learn more about the `realSolve` operation.
\spadcommand{\{\texttt{ls := \[a,b,c,d,e,f\]}\}}
\begin{verbatim}
(2) \[a,b,c,d,e,f\]
Type: \texttt{List Symbol}
\end{verbatim}
\begin{verbatim}
(3) \texttt{OrderedVariableList \[a,b,c,d,e,f\]}\nType: \texttt{Domain}
\end{verbatim}
\begin{verbatim}
(4) \texttt{NewSparseMultivariatePolynomial}\n\quad \texttt{List \[a,b,c,d,e,f\]}\nType: \texttt{Domain}
\end{verbatim}
\begin{verbatim}
(5) f e d c b a - 1
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
(6) (((e + f)d + f e d)c + f e d b + f e d c)a + f e d c b
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
(7) (((d + f)c + f e d)b + f e d c)a + e d c b + f e d c
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}
\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}

\begin{verbatim}
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}
(11) 
\[ f \cdot e \cdot d \cdot c \cdot b \cdot a - 1, \]
\[ (((e + f) \cdot d + f \cdot e) \cdot c + f \cdot e \cdot d) \cdot a + f \cdot e \cdot d \cdot c \cdot b, \]
\[ (((d + f) \cdot c + f \cdot e) \cdot b + f \cdot e \cdot d) \cdot a + e \cdot d \cdot c \cdot b + f \cdot e \cdot d, \]
\[ ((c + f) \cdot b + f \cdot e) \cdot a + d \cdot c \cdot b + e \cdot d \cdot c + f \cdot e \cdot d, \]
\[ (b + f) \cdot a + c \cdot b + d \cdot c + e \cdot d + f \cdot e, \]
\[ a + b + c + d + e + f \]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

```
3.61. LEXTRIPK.HT
```

```
(12) LexTriangularPackage(Integer,[a,b,c,d,e,f])
 Type: Domain
```

```
(13) [a + b + c + d + e + f,
 2
 3968379498283200b + 15873517993132800f b
 +
 2
 3968379498283200d + 15873517993132800f d
 +
 3 5 4 4
 3968379498283200e - 15873517993132800f e
 +
```

```
(14) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(15) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(16) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(17) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(18) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(19) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(20) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(21) GroebnerLexPack := Groebner(lp)$lextripack
```

```
(22) GroebnerLexPack := Groebner(lp)$lextripack
```
\[
\begin{align*}
&5.3 \quad 23810276989699200f \quad e \\
&+ \quad 6 \quad 2 \\
&\quad (206355733910726400f + 230166010900425600)e \\
&+ \quad 43 \quad 37 \\
&\quad - 729705987316687f + 1863667496867205421f \\
&+ \quad 31 \\
&\quad 291674853771731104461f \\
&+ \quad 25 \\
&\quad 365285994691106921745f \\
&+ \quad 19 \\
&\quad 549961185828911895f \\
&+ \quad 13 \\
&\quad - 365048404038768439269f \\
&+ \quad 7 \\
&\quad - 292382820431504027669f - 2271898467631865497f \\
&* \quad e \\
&+ \quad 44 \quad 38 \\
&\quad - 3988812642545399f + 10187423878429609997f \\
&+ \quad 32 \\
&\quad 1594377523424314053637f \\
&+ \quad 26 \quad 20 \\
&\quad 199479308439916238065f + 1596840088052642815f \\
&+ \quad 14 \\
&\quad - 1993494118301162145413f \\
&+ \quad 8 \quad 2 \\
&\quad - 1596049742289689815053f - 11488171330159667449f \\
&, \\
&\quad (23810276989699200c - 23810276989699200f)b \\
&+ \quad 2 \\
&\quad 23810276989699200c + 71430830969097600f c \\
&+ \quad 2 \\
&\quad - 23810276989699200d - 95241107958796800f d \\
&+ \\,
\end{align*}
\]
\[
\begin{align*}
35 & - 55557312975964800f \times e + 174608697924460800f \times e \\
& + 174608697924460800f \\
& + (-2428648252949318400f - 2611193709870345600f) \times e \\
& + 8305444561289527f - 21212087151945459641f \\
& + 3319815883093451385381f \\
& + 4157691646261657136445f \\
& + 6072721607510764095f \\
& + 4154986709036460221649f \\
& + 3327761311138587096749f + 25885340608290841637f \\
& + 45815897629010329f - 117013765582151891207f \\
& + 18313166848970865074187f \\
& + 22909971239649297438915f \\
& + 16133250761305157265f \\
& + 22897305857636178256623f \\
& + 18329944781867242497923f + 130258531002020420699f \\
& , (7936758996566400d - 7936758996566400f) b
\end{align*}
\]
\[ \begin{align*}
&\text{- } 7936758996666400f \
&\text{d - } 7936758996666400f \
&\text{e} + \
&\text{44} \
&\text{53} \
&\text{2381027698969200f} \
&\text{e} - \text{2381027698969200f} \
&\text{e} + \
&\text{6} \
&\text{2} \
&\text{(- 33731225735407200f} \
&\text{e - 369059293340337600e) e} + \
&\text{43} \
&\text{37} \
&\text{117634538640471f} \
&\text{e - 3004383582891473073f} \
&\text{+} \
&\text{31} \
&\text{- 47020350270724610563f} \
&\text{+} \
&\text{25} \
&\text{- 588858183402644348085f} \
&\text{+} \
&\text{19} \
&\text{- 856939308623513535f} \
&\text{+} \
&\text{13} \
&\text{5888472674242340526377f} \
&\text{+} \
&\text{7} \
&\text{471313241958371103517f} \
&\text{e + 3659742549078552381f} \
&\text{+} \
&\text{e} \
&\text{+} \
&\text{44} \
&\text{38} \
&\text{6423170513956901f} \
&\text{e - 16404772137036480803f} \
&\text{+} \
&\text{32} \
&\text{- 2567419165227528774463f} \
&\text{+} \
&\text{26} \
&\text{- 3211938090825682172335f} \
&\text{+} \
&\text{20} \
&\text{- 2330490332697587485f} \
&\text{+} \
&\text{14} \
&\text{3210100109444754864587f} \
&\text{+} \
&\text{8} \
&\text{2} \
&\text{2569858315395162617847f} \
&\text{e + 18326089487427735751f} \
&\text{,} \
&(11905138494849600e - 11905138494849600f) b +
\end{align*} \]
3.61. LEXTRIPK.HT

\[
\frac{3}{5} \times \frac{3}{4} \times \frac{4}{4} - \frac{3968379498283200}{e} + \frac{15873517993132800}{e} + \frac{2777656487982400}{e} + \frac{6}{2} (\frac{-208339923659868000}{e} - \frac{240086959646133600}{e}) + \frac{43}{31} \times \frac{31}{37} \quad \frac{786029984751110}{e} - \frac{2007519008182245250}{e} + \frac{31}{25} - \frac{314188062908073807090}{e} + \frac{25}{19} - \frac{393423667537929575250}{e} + \frac{19}{13} - \frac{550329120654394950}{e} + \frac{13}{7} \quad \frac{314892372799176495730}{e} + \frac{2409386515146668530}{e} + \frac{7}{44} \times \frac{44}{38} \quad \frac{4177638546747827}{e} - \frac{10669685294602576381}{e} + \frac{32}{26} - \frac{1669852980419949524601}{e} + \frac{26}{20} - \frac{2089077057287904170745}{e} + \frac{20}{14} - \frac{1569899763580278795}{e} + \frac{14}{8} \quad \frac{2087864026859015573349}{e} + \frac{2}{2} \quad \frac{1671496085945199577969}{e} + \frac{11940257226216280177}{e} + \frac{2}{6} (\frac{11905138494849600}{e} - \frac{11905138494849600}{b})
\]
\[ + \quad 2 \quad 5 \quad 3 \quad 4 \] 
\[ - 15873517993132800fe + 39683794982832000fe + \] 
\[ 4 \quad 3 \] 
\[ - 39683794982832000fe + \] 
\[ + \quad 11 \quad 5 \quad 2 \] 
\[ ( - 686529653202993600fe - 60716206323729600fe )e + \] 
\[ + \quad 42 \quad 36 \] 
\[ 65144531306704f - 166381280901088652f + \] 
\[ 30 \] 
\[ - 26033434502470283472f + \] 
\[ 24 \] 
\[ - 31696259583860650140f + \] 
\[ + \quad 18 \quad 12 \] 
\[ 971492093167581360f + 32220085033691389548f + \] 
\[ 6 \] 
\[ 25526177666070529808f + 138603268355749244 \] 
\[ * e + \] 
\[ 43 \quad 37 \] 
\[ 167620036074811f - 428102417974791473f + \] 
\[ 31 \quad 25 \] 
\[ - 66997243801231679313f - 83426716722148750485f + \] 
\[ 19 \quad 13 \] 
\[ 203673895369980765f + 83523056326010432457f + \] 
\[ 7 \] 
\[ 66995789640238066937f + 478592855549587901f , \] 
\[ 3 \quad 2 \] 
\[ 801692827936c + 2405078483808fc + \] 
\[ + \quad 2 \quad 45 \] 
\[ - 2405078483808fc - 13752945467f + \] 
\[ + \quad 39 \quad 33 \] 
\[ 35125117815561f + 5496946957826433f + \] 
\[ 27 \quad 21 \]
3.61. LEXTRIPK.HT

\[
6834659447749117f - 44484880462461f + \\
\quad 15 9 \\
- 6873406230093057f - 5450844938762633f + \\
\quad 3 \\
1216586044571f , \\
(23810276989699200d - 23810276989699200f)c + \\
\quad 2 \\
23810276989699200d + 71430830969097600f d + \\
\quad 3 5 4 4 \\
7936758996566400f e - 31747035986265600f e + \\
\quad 5 3 \\
31747035986265600f e + \\
\quad 6 2 \\
(4047747088248886400f + 396837949828320000)e + \\
\quad 43 37 \\
- 1247372229446701f + 3185785654596621203f + \\
\quad 31 \\
498594866849974751463f + \\
\quad 25 \\
624542545845791047935f + \\
\quad 19 \\
931085755769682885f + \\
\quad 13 \\
- 624150663582417063387f + \\
\quad 7 \\
- 499881859388360475647f - 3926885313819527351f * e + \\
\quad 44 38 \\
- 7026011547118141f + 17944427051950691243f + \\
\quad 32 \\
2808383522593986603543f + \\
\quad 26 20
\]
\[
\begin{align*}
3513624142354807530135f & + 2860757006705537685f + \\
& 14 \\
- 351356735642190737267f & + \\
& 8 \\
- 2811332494697103819887f & - 20315011631522847311f + , \\
(7936758996566400e - 7936758996566400f)c & + \\
& 43 \\
- 4418748183673f & + 11285568707456559f + \\
& 31 \\
1765998617294451019f & + 2173749283622606155f + \\
& 19 \\
- 55788292195402895f & - 221529142178292951f + \\
& 7 \\
- 1718142665347430851f & + 30256569458230237f * \\
& e + \\
4418748183673f & - 11285568707456559f + \\
& 32 \\
1765998617294451019f & - 2173749283622606155f + \\
& 20 \\
55788292195402895f & + 221529142178292951f + \\
& 8 \\
1718142665347430851f & - 30256569458230237f , \\
(72152354514240f - 72152354514240)c & + \\
& 43 \\
40950859449f & - 1045888980990367f + \\
& 31 \\
- 16367227396575307f & - 20268523416527355f + \\
& 19 \\
442205002259535f & + 20576059935789063f +
\end{align*}
\]
3.61. LEXTRIPK.HT

\[
\begin{align*}
&15997133796970563f - 275099882785581f \\
&\quad + 31984189749141600d + 5952569247424800f + d + 2 - 5952569247424800f + d - 3968379498283200f + e + 54315873617993132800f + 3 + e + 17857707742274400e + 472(- 148814231185620000f - 162703559429611200f + e + 3844 - 390000914678878f + 996062704593756434f + 32 + 155886323972034823914f + 26 + 194745956143985421330f + 6205077595574430f + 14 + 19459651265329906876f + 8 + 155796897940756922666f + 5 - 1036375759077320978f * e + + 45 + 374998630035991f + 957747106595453993f + 33 + 149889155566764891693f + 187154171443494641685f + 21 + 187241533243115040417f + 9 + 149719983567976534037f - 836654081239648061f , \\
&\quad (5952569247424800e - 5952569247424800f)d + 35 - 3968379498283200f + e + 9920948745708000f + e
\end{align*}
\]
\( + \frac{5}{3} \cdot 3968379498283200 \cdot e \)
\( + \frac{6}{2} \cdot (\frac{14881423118562000}{\text{e}} - \frac{15079842093476160}{\text{e}}) \)
\( + \frac{43}{37} \cdot 492558110242553 \cdot \frac{1}{\text{e}} - \frac{1257992359608074599}{\text{e}} \)
\( + \frac{31}{25} \cdot (-196883094539368513959 \cdot \text{e} + 246562115745735428055 \cdot \text{e}) \)
\( + \frac{19}{13} \cdot 246417769883651808111 \cdot \text{e} \)
\( + \frac{7}{19} \cdot 197327352068200652911 \cdot \text{e} + \frac{1523373796389332143}{\text{e}} \)
\( \cdot \frac{44}{38} \cdot 2679481081803026 \cdot \frac{1}{\text{e}} - \frac{6843392695421906608}{\text{e}} \)
\( + \frac{32}{26} \cdot (-1071020459642646913578 \cdot \text{e} + 852746750910750210 \cdot \text{e}) \)
\( + \frac{20}{14} \cdot 1339105101971878401312 \cdot \text{e} \)
\( + \frac{8}{2} \cdot 1071900289758712984762 \cdot \frac{1}{\text{e}} + \frac{755523907207277756}{\text{e}} \)
\( \cdot \frac{6}{3} \cdot (119051384948496000 \cdot \text{e} - 119051384948496000) \)
\( + \frac{25}{34} \cdot -7936758996666400 \cdot \text{e} + \frac{31747035986265600}{\text{e}} \)
\( + \frac{4}{3} \cdot \text{e} \)
\[
\begin{align*}
3.61. \text{ LEXTRIPKHT} & \quad 803 \\
-31747035986265600e & + \\
11 & 5 2 \\
(-420648226818019200e & -404774708824886400e) & e \\
+ & \\
42 & 36 \\
15336187600889f & -39169739565161107f \\
+ & \\
30 & \\
-6127176127489690827f & + \\
+ & \\
24 & \\
-7217708742310509615f & + \\
+ & \\
18 & 12 \\
538628483890722735f & + 7506804353843507643f \\
+ & \\
6 & \\
5886160769782607203f & + 63576108396535879 \\
* & e \\
+ & \\
43 & 37 \\
71737781777066f & -1832188562075557938f \\
+ & \\
31 & 25 \\
-28672874271132276078f & -35625223686939812010f \\
+ & \\
19 & 13 \\
164831339634084390f & + 35724160423073052642f \\
+ & \\
7 & \\
286270222578664910622f & + 187459987029680506f \\
, & \\
6 & 5 \\
132279316609440e & -396837198283200f \\
+ & \\
24 & 33 \\
3968379498283200f & -5291172664377800f \\
+ & \\
10 & 4 2 \\
(-230166010900425600f & -226197631402142400f) & e \\
+ & \\
47 & \\
-152375364610443885f & + \\
+ & \\
41 & \\
389166626064854890415f & \\
+ & 
\end{align*}
\]
35
60906097841360558987335f
+ 29
76167367934608798697275f
+ 23
27855066785995181125f
+ 17
- 76144952817052723145495f
+ 11
- 60933629892463517546975f
+ 5
- 411415071682002547795f
* e
+ 42
- 209493533143822f
+ 36
535045979490560586f
+ 30
837394796497353146f
+ 24
104889507084213371570f
+ 18
167117997269207870f
+ 12
- 104793725781390615514f
+ 6
- 83842685189903180394f
+ 6
569978796672974242
- 3
(25438330117200f
+ 25438330117200)e
+ 7
(76314990351600f
+ 76314990351600f)e
+ 44
- 1594966552735f
+ 38
4073543370415745f
+ 32
637527159231148925f
+ 26
797521176113606525f
+ 20
530440941097175f
+ 14
797160527306433145f
+ 8
638132320196044965f
- 2
4510507167940725f
* 
  e 
  + 
  
  45  39 
  6036376800443f  + 15416903421476909f 
  + 
  
  33  27 
  2412807646192304449f  + 3017679923028013705f 
  + 
  
  21  15 
  1422320037411955f  - 3016560402417843941f 
  + 
  
  9  3 
  2414249368183033161f  - 16561862361763873f 
  + 
  
  12  2 
  (1387545279120f  - 1387545279120)e 
  + 
  
  43  37 
  4321823003f  - 11037922310209f 
  + 
  
  31  25 
  1727510711947989f  - 2165150991154425f 
  + 
  
  19  13 
  5114342560755f  + 2162682824948601f 
  + 
  
  7  13 
  1732620732685741f  + 13506088516033f 
  * 
  e 
  + 
  
  44  38 
  24177661775f  - 61749727185325f 
  + 
  
  32  26 
  9664106795754225f  - 12090487758628245f 
  + 
  
  20  14 
  8787672733575f  + 12083693383005045f 
  + 
  
  8  2 
  9672870290826025f  + 68544102808525f 
  + 
  
  48  42  36  30  18 
  f  - 2554f  - 399710f  - 499722f  + 499722f 
  + 
  
  12  6
\begin{verbatim}
39970f + 2554f - 1
\end{verbatim}

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LexTriangularPackageXmpPageEmpty13}
\begin{paste}{LexTriangularPackageXmpPageEmpty13}{LexTriangularPackageXmpPagePatch13}
\pastebutton{LexTriangularPackageXmpPageEmpty13}{\showpaste}
\tab{5}\spadcommand{lg := groebner(lp)$lextripack\free{lp }\free{lextripack }\bound{lg }}\end{paste}\end{patch}

\begin{patch}{LexTriangularPackageXmpPagePatch14}
\begin{paste}{LexTriangularPackageXmpPageFull14}{LexTriangularPackageXmpPageEmpty14}
\pastebutton{LexTriangularPackageXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{lexTriangular(lg,false)$lextripack\free{lg }\free{lextripack }}\indentrel{3}\begin{verbatim}
(14)
\[
\begin{array}{l}
6 \\
{f + 1,}
6 \\
{5 2 4 3 3 4 2 5}
{e - 3f e + 3f e - 4f e + 3f e - 3f e - 1,}
2 5 3 4 4 3 5 2
{3d + f e - 4f e + 4f e - 2f e - 2e + 2f, c + f,}
2 5 3 4 4 3 5 2
{3b + 2f e - 5f e + 5f e - 10f e - 4e + 7f,}
2 5 3 4 4 3 5 2
{a - f e + 3f e - 3f e + 4f e + 3e - 3f}
\end{array}
, \\
6 \\
{2 2}
{f - 1, e - f, d - f, c + 4f c + f,}
2
{(c - f)b - f c - 5f , a + b + c + 3f}
, \\
6 \\
{2 2}
{f - 1,e - f,d - f,c - f,b + 4f b + f ,a + b + 4f},
6 \\
{2 2}
{f - 1, e - f, d + 4f d + f,}
2
{(d - f)c - f d - 5f , b - f, a + c + d + 3f}
, \\
{36 30 24 18 12}
{f - 2554f - 399709f - 502276f - 399709f + 6}
\end{verbatim}
\end{patch}
- 2554f + 1

12 2
(161718564f - 161718564)e +

31 25 19
- 504205f + 128773751f + 201539391380f +

13 7
253982817368f + 201940704665f + 1574134601f * e +

32 26 20
- 2818405f + 7198203911f + 1126548149060f +

14 8 2
1416530563364f + 1127377589345f + 7988820725f,

6 (693772639560f - 693772639560)d +

2 5 3 4
- 462515093040f e + 1850060372160f e +

4 3
- 1850060372160f e +

11 5 2
(- 24513299931120f - 23588269745040f )e +

30 24
- 890810428f + 2275181044754f +

18 12
355937263869776f + 413736880104344f +

6 342849304487996f + 3704966481878 * e +

31 25
- 4163798003f + 10634395752169f +

19 13
1664161760192806f + 2079424391370694f +
\[
\begin{align*}
7 & \quad 1668153650635921f + 10924274392693f \\
& \quad 31 \quad (12614047992f - 12614047992)c - 7246825f \\
& \quad 25 \quad 19 \quad 18508536599f + 2896249516034f \\
& \quad 13 \quad 7 \quad 3581539649666f + 2796477571739f - 48094301893f \\
& \quad 6 \quad 25 \quad (693772639560f - 693772639560)b \\
& \quad 25 \quad 34 \quad - 925030186080f e + 2312575465200f e \\
& \quad 43 \quad - 2312575465200f e \\
& \quad 11 \quad 52 \quad (- 4000755547960f - 35382404617560f )e \\
& \quad 30 \quad 24 \quad - 3781280823f + 9657492291789f \\
& \quad 18 \quad 12 \quad 1511158913397906f + 1837290892286154f \\
& \quad 6 \quad 31 \quad 25 \quad 1487216006594361f + 8077238712093 \\
& \quad e \\
& \quad + \\
& \quad 31 \quad 25 \quad - 9736390478f + 24866827916734f \\
& \quad 19 \quad 13 \quad 3891495681905296f + 4872556418871424f \\
& \quad 7 \quad 3904047887269606f + 27890075838538f
\end{align*}
\]
\[
\{ a + b + c + d + e + f \}
\]

\begin{verbatim}
{f - 1, e + 4f e + f, (e - f)e - f e - 5f,
c - f, b - f, a + d + e + 3f}
\end{verbatim}

Type: List RegularChain(Integer, [a, b, c, d, e, f])
\end{verbatim}
4321823003f - 11037922310209f 
+ 19 13
- 1727506390124986f - 2176188913464634f 
+ 7
- 1732620732685741f - 13506088516033f 
* e 
+ 32 26
24177661775f - 61749727185325f 
+ 20 14
- 9664082618092450f - 12152237485813570f 
+ 8 2
- 9672870290826025f - 68544102808525f 
, 1387545279120d 
+ 30 24
- 1128983050f + 2883434331830f 
+ 18 12
451234998755840f + 562426491685760f 
+ 6
447129055314890f - 165557857270 
* e 
+ 31 25
- 1816935351f + 4640452214013f 
+ 19 13
726247129626942f + 912871801716798f 
+ 7
726583262666877f + 4909358645961f 
, 31 25
1387545279120c + 778171189f - 1987468196267f 
+ 19 13
- 310993556954378f - 383262822316802f 
+ 7
\begin{verbatim}
3.61. LEXTRIPK.HT

\begin{paste}{LexTriangularPackageXmpPageEmpty15}{LexTriangularPackageXmpPagePatch15}
\pastebutton{LexTriangularPackageXmpPageEmpty15}{\showpaste}
\end{paste}
\end{verbatim}

\begin{patch}{LexTriangularPackageXmpPageEmpty15}
\begin{paste}{LexTriangularPackageXmpPageEmpty15}{LexTriangularPackageXmpPagePatch15}
\pastebutton{LexTriangularPackageXmpPageEmpty15}{\showpaste}
\end{paste}
\end{patch}

\begin{verbatim}
- 300335488637543f + 5289595037041f

- 300335488637543f + 5289595037041f,

1387545279120b
+ 30 24
1128983050f - 2883434331830f
+ 18 12
- 45123498755840f - 562426491685760f
+ 6
- 447129055314890f + 165557857270
* e
+ 31 25
- 3283058841f + 8384938292463f
+ 19 13
1312252817452422f + 1646579934064638f
+ 7
1306372958656407f + 4694680112151f
,

1387545279120a + 1387545279120e + 4321823003f
+ 25 19
- 11037922310209f - 1727506390124986f
+ 13 7
- 2176188913464634f - 1732620732685741f
+ 13506088516033f
}
,
6 2 2
{f - 1,e + 4f e + f ,d + e + 4f,c - f,b - f,a - f}
Type: List RegularChain(Integer,[a,b,c,d,e,f])
\end{verbatim}
\end{patch}

\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LexTriangularPackageXmpPageEmpty15}
\begin{paste}{LexTriangularPackageXmpPageEmpty15}{LexTriangularPackageXmpPagePatch15}
\pastebutton{LexTriangularPackageXmpPageEmpty15}{\showpaste}
\end{patch}
\end{verbatim}

\begin{verbatim}
\begin{paste}{LexTriangularPackageXmpPageEmpty15}{LexTriangularPackageXmpPagePatch15}
\pastebutton{LexTriangularPackageXmpPageEmpty15}{\showpaste}
\end{patch}
\end{verbatim}

\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{verbatim}
\begin{paste}{LexTriangularPackageXmpPageEmpty15}{LexTriangularPackageXmpPagePatch15}
\pastebutton{LexTriangularPackageXmpPageEmpty15}{\showpaste}
\end{patch}
\end{verbatim}

\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(16)
[[1,3,1,3,1,1], [1,1,1,1,1,1], [1,1,1,1,1,1], [1,1,1,1,1,1], [1387545279120, 1387545279120, 1387545279120, 1387545279120, 1387545279120, 1], [1,1,1,1,1,1]],
Type: List List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(17)
[6
  \{f + 1,
    6 5 2 4 3 3 4 2 5
    e - 3f e + 3f e - 4f e + 3f e - 3f e - 1,
    2 5 3 4 4 3 5 2
    3d + f e - 4f e + 4f e - 2f e - 2e + 2f, c + f,
    2 5 3 4 4 3 5 2
    3b + 2f e - 5f e + 5f e - 10f e - 4e + 7f,
    2 5 3 4 4 3 5 2
    a - f e + 3f e - 3f e + 4f e + 3e - 3f
  },
  6
  \{f - 1,e - f,d - f,c + 4f c + f ,b + c + 4f,a - f\},
  6
  \{f - 1,e - f,d - f,c - f,b + 4f b + f ,a + b + 4f\},
  6
  \{f - 1,e - f,d + 4f d + f ,c + d + 4f,b - f,a - f\},
  \{36 30 24 18 12
  \}
\end{verbatim}
\end{verbatim}
\[ f - 2554f - 399709f - 502276f - 399709f + 6 - 2554f + 1, \]
\[ 2 \]
\[ 1387545279120e + 31 25 \]
\[ 4321823003f - 11037922310209f + 19 13 \]
\[ - 1727506390124986f - 21761889134634f + 7 \]
\[ - 1732620732685741f - 13506088516033f * e + 32 26 \]
\[ 24177661775f - 61749727185325f + 20 14 \]
\[ - 9664082618092450f - 12152237485813570f + 8 \]
\[ - 9672870290826025f - 68544102808525f, \]
\[ 1387545279120d + 30 24 \]
\[ - 1128983050f + 2883434331830f + 18 12 \]
\[ 451234998755840f + 562426491685760f + 6 \]
\[ 447129055314890f - 165557857270 * e + 31 25 \]
\[ - 1816935351f + 4640452214013f + 19 13 \]
\[ 726247129626942f + 912871801716798f + 7 \]
\[
726583262666877f + 4909358645961f \\
+ \frac{19}{31} \frac{13}{25} \frac{19}{13} \frac{7}{19} \frac{7}{7} \frac{7}{7} \\
1387545279120c + 778171189f - 1987468196267f \\
+ \frac{19}{13} \frac{7}{19} \frac{7}{7} \\
300335488637543f + 5289595037041f \\
+ \frac{30}{24} \frac{18}{12} \frac{6}{6} \\
1128983050f - 2883434331830f \\
+ \frac{18}{12} \frac{6}{6} \\
451234998756840f - 562426491685760f \\
+ \frac{6}{6} \\
447129055314890f + 165557857270 \\
* \frac{e}{e} + \frac{31}{31} \frac{25}{25} \frac{19}{19} \frac{13}{13} \frac{7}{7} \frac{7}{7} \\
- 3283058841f + 8384938292463f \\
+ \frac{19}{19} \frac{13}{13} \frac{7}{7} \\
1312252817452422f + 1646579934064638f \\
+ \frac{7}{7} \\
1306372958656407f + 4694680112151f \\
+ \frac{31}{31} \\
1387545279120a + 1387545279120e + 4321823003f \\
+ \frac{25}{25} \frac{19}{19} \frac{13}{13} \frac{7}{7} \frac{7}{7} \\
- 11037922310209f - 1727506390124986f \\
+ \frac{13}{13} \frac{7}{7} \\
2176188913464634f - 1732620732685741f \\
+ \frac{13506088516033f}{}}
3.61. LEXTRIPK.HT

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents OrderedVariableList [a,b,c,d,e,f], OrderedVariableList [a,b,c,d,e,f], NewSparseMultivariatePolynomial( Integer, OrderedVariableList [a,b,c,d,e,f]))

\begin{verbatim}
(18) 156
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(19) [a,b,c,d,e,f,%A]
Type: List Symbol
\end{verbatim}

\begin{verbatim}
(20) ZeroDimensionalSolvePackage(Integer,[a,b,c,d,e,f],[a,b, c,d,e,f,%A])
\end{verbatim}
Type: Domain

\begin{verbatim}
zdpack := ZDSOLVE(R, ls, ls2) \free{R } \free{ls } \free{ls2 } \bound{zdpack }
\end{verbatim}

\begin{verbatim}
(21) \[
\begin{array}{l}
\text{coordinates = 3 3} \\
\quad \left[ 7a + \%A - 6\%A, 21b + \%A + \%A, \\
\quad \quad 3 3 \\
\quad \quad 21c - 2\%A + 19\%A, 7d - \%A + 6\%A, \\
\quad \quad 3 3 \\
\quad \quad 21e - \%A - \%A, 21f + 2\%A - 19\%A \right] \\
\text{,}
\end{array}
\]
\text{complexRoots = } \? - 13\? + 49,
\end{verbatim}

\begin{verbatim}
(21) \[
\begin{array}{l}
\text{coordinates = 3 3} \\
\quad \left[ 35a + 3\%A + 19\%A, 35b + \%A + 18\%A, \\
\quad \quad 3 3 \\
\quad \quad 35c - 2\%A - \%A, 35d - 3\%A - 19\%A, \\
\quad \quad 3 3 \\
\quad \quad 35e - \%A - 18\%A, 35f + 2\%A + \%A \right] \\
\text{,}
\end{array}
\]
\text{complexRoots = 4 2} \\
\quad \left[ 4 2 \right.
\end{verbatim}

\begin{verbatim}
\text{complexRoots = } \? + 11\? + 49,
\end{verbatim}

\begin{verbatim}
\text{coordinates = 3 3} \\
\quad \left[ 8 7 6 5 4 3 \\
\quad \quad ? - 12\? + 58\? - 120\? + 207\? - 360\? \\
\quad \quad + 2 \\
\quad \quad 802\? - 1332\? + 1369
\end{verbatim}
coordinates =

\[
\begin{bmatrix}
7 & 6 & 5 \\
43054532a + 33782\%A - 546673\%A + 3127348\%A \\
+ 4 & 3 & 2 \\
- 6927123\%A + 4365212\%A - 25086957\%A \\
+ 39582814\%A - 107313172
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 6 & 5 \\
43054532b - 33782\%A + 546673\%A - 3127348\%A \\
+ 4 & 3 & 2 \\
6927123\%A - 4365212\%A + 25086957\%A \\
- 39582814\%A + 107313172
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 6 & 5 \\
21527266c - 22306\%A + 263139\%A - 1166076\%A \\
+ 4 & 3 & 2 \\
1821805\%A - 2892788\%A + 10322663\%A \\
- 9026596\%A + 12950740
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 6 & 5 \\
43054532d + 22306\%A - 263139\%A + 1166076\%A \\
+ 4 & 3 & 2 \\
1821805\%A + 2892788\%A - 10322663\%A \\
+ 30553862\%A - 12950740
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 6 & 5 \\
43054532e - 22306\%A + 263139\%A - 1166076\%A \\
+ 4 & 3 & 2 \\
1821805\%A - 2892788\%A + 10322663\%A \\
- 30553862\%A + 12950740
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 6 & 5 \\
43054532f + 22306\%A - 263139\%A + 1166076\%A \\
+ 4 & 3 & 2 \\
1821805\%A + 2892788\%A - 10322663\%A \\
+ 30553862\%A - 12950740
\end{bmatrix}
\]
complexRoots =
[ 21527266f + 22306\%A - 263139\%A + 1166076\%A \\
  + 4 3 2 \\
  - 1821805\%A + 2892788\%A - 10322663\%A \\
  + 9026596\%A - 12950740
]

coordinates =
[
  [ 7 6 5 
    43054532a + 33782\%A + 546673\%A + 3127348\%A \\
    + 4 3 2 \\
    6927123\%A + 4365212\%A + 25086957\%A \\
    + 39582814\%A + 107313172
  ],

  [ 7 6 5 
    43054532b - 33782\%A - 546673\%A - 3127348\%A \\
    + 4 3 2 \\
    - 6927123\%A - 4365212\%A - 25086957\%A \\
    - 39582814\%A - 107313172
  ],

  [ 7 6 5 
    21527266c - 22306\%A - 263139\%A - 1166076\%A \\
    + 4 3 2 \\
    - 1821805\%A - 2892788\%A - 10322663\%A \\
    - 9026596\%A - 12950740
  ],

  [ 7 6 5 
    43054532d + 22306\%A + 263139\%A + 1166076\%A
  ]
]
3.61. *LEXTRIPK.HT*

\[\begin{align*}
4^3 \cdot 2 & \quad 1821805\%A + 2892788\%A + 10322663\%A \\
& + 30553862\%A + 12950740 \\
7^6 \cdot 5 & \quad 43054532e - 22306\%A - 263139\%A - 1166076\%A \\
& + 4^3 \cdot 2 - 1821805\%A - 2892788\%A - 10322663\%A \\
& + 30553862\%A - 12950740 \\
7^6 \cdot 5 & \quad 21527266f + 22306\%A + 263139\%A + 1166076\%A \\
& + 4^3 \cdot 2 + 1821805\%A + 2892788\%A + 10322663\%A \\
& + 9026596\%A + 12950740 \\
\end{align*}\]

\[\begin{align*}
\text{complexRoots} &= ? - ? + 1, \\
\text{coordinates} &= \\
& \quad [a - \%A, b + \%A - \%A, c + \%A, d + \%A, \\
& \quad e - \%A + \%A, f - \%A ] \\
\end{align*}\]

\[\begin{align*}
8^6 \cdot 4^2 & \quad \text{complexRoots} = ? + 4 + 12 + 16 + 4, \\
\text{coordinates} &= \\
& \quad [4a - 2\%A - 7\%A - 20\%A - 22\%A, \\
& \quad 7^5 \cdot 3 \quad 4b + 2\%A + 7\%A + 20\%A + 22\%A, \\
& \quad 7^5 \cdot 3 \quad 4c + \%A + 3\%A + 10\%A + 10\%A, \\
& \quad 7^5 \cdot 3 \quad 4d + \%A + 3\%A + 10\%A + 6\%A, \\
\end{align*}\]
\[
\begin{align*}
4e &= \frac{7}{3}\alpha - \frac{5}{3}\alpha^2 - \frac{10}{3}\alpha - 6\alpha^3, \\
4f &= \frac{7}{3}\alpha - \frac{5}{3}\alpha^2 - \frac{10}{3}\alpha - 10\alpha^3
\end{align*}
\]

\[
\text{coordinates} = \\
\begin{align*}
[30a &= \frac{3}{2}\alpha - \frac{5}{2}\alpha^2 - \frac{30}{2}\alpha - 6, \\
6b &= \frac{3}{2}\alpha + \frac{5}{2}\alpha + \frac{24}{2}\alpha + 6, \\
30c &= \frac{3}{2}\alpha - \frac{5}{2}\alpha - 6, \\
30d &= \frac{3}{2}\alpha - \frac{5}{2}\alpha - \frac{30}{2}\alpha - 6, \\
30e &= \frac{3}{2}\alpha - \frac{5}{2}\alpha - \frac{30}{2}\alpha - 6, \\
30f &= \frac{3}{2}\alpha - \frac{5}{2}\alpha - \frac{30}{2}\alpha - 6]
\end{align*}
\]

\[
\begin{align*}
4 &= \frac{3}{2}\alpha - 6\alpha + 30\alpha - 36\alpha + 36, \\
\text{coordinates} = \\
\begin{align*}
[30a &= \frac{3}{2}\alpha + \frac{5}{2}\alpha - \frac{30}{2}\alpha + 6, \\
6b &= \frac{3}{2}\alpha - \frac{5}{2}\alpha + \frac{24}{2}\alpha - 6, \\
30c &= \frac{3}{2}\alpha + \frac{5}{2}\alpha + 6, \\
30d &= \frac{3}{2}\alpha + \frac{5}{2}\alpha - \frac{30}{2}\alpha + 6, \\
30e &= \frac{3}{2}\alpha + \frac{5}{2}\alpha - \frac{30}{2}\alpha + 6, \\
30f &= \frac{3}{2}\alpha + \frac{5}{2}\alpha - \frac{30}{2}\alpha + 6]
\end{align*}
\]

\[
\begin{align*}
2 &= \frac{1}{1}\alpha + 6\alpha + 6, \\
\text{coordinates} = \\
[a + 1, b - \frac{5}{2}\alpha - 1, c + \frac{1}{2}\alpha + 1, d + 1, e + 1, f + 1]
\end{align*}
\]
[complexRoots= ? - 6? + 6,
coordinates =
  [a - 1,b - %A + 5,c + %A - 1,d - 1,e - 1,f - 1]
],

[complexRoots= ? + 6? + 30? + 36? + 36,
coordinates =
  3 2
  [6a + %A + 5%A + 24%A + 6,
   3 2
30b - %A - 5%A - 6,
   3 2
30c - %A - 5%A - 30%A - 6,
   3 2
30d - %A - 5%A - 30%A - 6,
   3 2
30e - %A - 5%A - 30%A - 6,
   3 2
30f - %A - 5%A - 30%A - 6]
],

[complexRoots= ? - 6? + 30? - 36? + 36,
coordinates =
  3 2
  [6a + %A - 5%A + 24%A - 6,
   3 2
30b - %A + 5%A + 6,
   3 2
30c - %A + 5%A - 30%A + 6,
   3 2
30d - %A + 5%A - 30%A + 6,
   3 2
30e - %A + 5%A - 30%A + 6,
   3 2
30f - %A + 5%A - 30%A + 6]
],
[complexRoots = \( \pm 6 + 6 \),
coordinates =
\[ \begin{align*}
  & [a - \%A - 5, b + \%A + 1, c + 1, d + 1, e + 1, f + 1] \\
  & [a - \%A - 5, b + \%A - 1, c - 1, d - 1, e - 1, f - 1] \\
  & [30a - \%A - 5\%A - 30\%A - 6, 3, 2] \\
  & [30b - \%A - 5\%A - 30\%A - 6, 3, 2] \\
  & [6c + \%A + 5\%A + 24\%A + 6, 3, 2] \\
  & [30d - \%A - 5\%A - 6, 3, 2] \\
  & [30e - \%A - 5\%A - 30\%A - 6, 3, 2] \\
  & [30f - \%A - 5\%A - 30\%A - 6, 3, 2] \\
  & [30a - \%A + 5\%A - 30\%A + 6, 3, 2] \\
  & [30b - \%A + 5\%A - 30\%A + 6, 3, 2] \\
  & [6c + \%A - 5\%A + 24\%A - 6, 3, 2] \\
  & [30d - \%A + 5\%A + 6, 3, 2] \\
  & [30e - \%A + 5\%A - 30\%A + 6, 3, 2] \\
  & [30f - \%A + 5\%A - 30\%A + 6, 3, 2] \\
\end{align*} \]
]
complexRoots = \( \pm 6 \),
coordinates = 
\[\begin{array}{cccccc}
a + 1, & b + 1, & c - %A - 5, & d + %A + 1, & e + 1, & f + 1
\end{array}\]

complexRoots = \( \pm 6 \),
coordinates = 
\[\begin{array}{cccccc}
a - 1, & b - 1, & c - %A + 5, & d + %A - 1, & e - 1, & f - 1
\end{array}\]

complexRoots = 
\[\begin{array}{cccccc}
8, & 7, & 6, & 5, & 4, & 2
\end{array}\]
\[= \pm 6 + 16 + 24 + 18 - 8 + 4\]
coordinates = 
\[\begin{array}{cccccc}
2a + 2%A + 9%A + 18%A + 19%A + 4%A + 2
- 10%A - 2%A + 4
\end{array}\]
\[= \begin{array}{cccccc}
2b + 2%A + 9%A + 18%A + 19%A + 4%A + 2
- 10%A - 4%A + 4
\end{array}\]
\[= \begin{array}{cccccc}
2c - %A - 4%A - 8%A - 9%A - 4%A - 2%A - 4,
2d + %A + 4%A + 8%A + 9%A + 4%A + 2%A + 4,
2e - 2%A - 9%A - 18%A - 19%A - 4%A + 2
10%A + 4%A - 4
\end{array}\]
CHAPTER 3. HYPERDOC PAGES

\[
\begin{align*}
\text{complexRoots} &= \left[ \begin{array}{cccc}
7 & 6 & 5 & 4 \\
+ & 2 \\
& 10A & + 2A & - 4 \\
\end{array} \right] \\
& \text{coordinates} = \\
\left[ \begin{array}{cccc}
1408a - 19A & - 200A & - 912A & - 2216A \\
+ & 3 & 2 \\
- 4544A & - 6784A & - 6976A & - 1792 \\
\end{array} \right] \\
& \left[ \begin{array}{cccc}
1408b - 37A & - 408A & - 1952A & - 5024A \\
+ & 3 & 2 \\
- 10368A & - 16768A & - 17920A & - 5120 \\
\end{array} \right] \\
& \left[ \begin{array}{cccc}
1408c + 37A & + 408A & + 1952A & + 5024A \\
+ & 3 & 2 \\
10368A & + 16768A & + 17920A & + 5120 \\
\end{array} \right] \\
& \left[ \begin{array}{cccc}
1408d + 19A & + 200A & + 912A & + 2216A \\
+ & 3 & 2 \\
4544A & + 6784A & + 6976A & + 1792 \\
\end{array} \right] \\
2e + A, 2f - A \right]
\end{align*}
\]
3.61. LEXTRIPK.HT

\[
\begin{align*}
\text{coordinates} &= \begin{bmatrix} 7 & 5 & 3 \\
4a & - & 3A & - & 10A & - & 6A, \\
4d & + & 2A & + & 7A & + & 20A & + & 22A, \\
4e & + & 3A & + & 3A & + & 10A & + & 10A, \\
4f & + & 3A & + & 3A & + & 10A & + & 6A \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\text{coordinates} &= \begin{bmatrix} 7 & 5 & 3 \\
512a & - & 12A & + & 176A & - & 448A, \\
128b & - & 16A & + & 96A & - & 256A, \\
128c & + & 16A & - & 96A & + & 256A, \\
512d & + & 12A & - & 176A & + & 448A, \\
2f & - & A \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\text{coordinates} &= \begin{bmatrix} 7 & 6 & 5 & 4 & 3 \\
2 & 1024? & - & 768? & + & 256 \end{bmatrix},
\end{align*}
\]
1408a - 19%A + 200%A - 912%A + 2216%A + 3 2 - 4544%A + 6784%A - 6976%A + 1792

1408b - 37%A + 408%A - 1952%A + 5024%A + 3 2 - 10368%A + 16768%A - 17920%A + 5120

1408c + 37%A - 408%A + 1952%A - 5024%A + 3 2 10368%A - 16768%A + 17920%A - 5120

1408d + 19%A - 200%A + 912%A - 2216%A + 3 2 4544%A - 6784%A + 6976%A - 1792

[complexRoots =
  8 7 6 5 4 2
]

[coordinates =
  7 6 5 4 3
  2a + 2%A - 9%A + 18%A - 19%A + 4%A + 2
  10%A - 2%A - 4
  7 6 5 4 3
  2b + 2%A - 9%A + 18%A - 19%A + 4%A + 2
  10%A - 4%A - 4]
\[2c - \frac{\partial}{\partial x} + 4x - 8x - 9x + 4x + 2x - 4, \quad 2d + \frac{\partial}{\partial x} - 4x + 8x - 9x + 4x + 2x - 4, \quad 2e - 2x + 9x - 18x + 19x - 4x + 2, \quad 2f - 2x + 9x - 18x + 19x - 4x + 2 \]

\[\text{coordinates } = \begin{cases} \text{complexRoots} = ? + 12? + 144, \\ 12a - \frac{\partial}{\partial x} - 12, 12b - \frac{\partial}{\partial x} - 12, 12c - \frac{\partial}{\partial x} - 12, 12d - \frac{\partial}{\partial x} - 12, 6e + \frac{\partial}{\partial x} + 3x - 12, 6f + \frac{\partial}{\partial x} - 3x + 12 \end{cases} \]

\[\text{coordinates } = \begin{cases} \text{complexRoots} = ? + 6? + 30? + 36? + 36, \\ 6a - \frac{\partial}{\partial x} - 5x - 24x - 6, 30b + \frac{\partial}{\partial x} + 5x + 30x + 6, 30c + \frac{\partial}{\partial x} + 5x + 30x + 6, 30d + \frac{\partial}{\partial x} + 5x + 30x + 6, 30e + \frac{\partial}{\partial x} + 5x + 30x + 6 \end{cases} \]
30f + %A + 5%A + 6] 
] , 

4  3  2
[complexRoots= ? - 6? + 30? - 36? + 36, 
coordinates =
3  2
[6a - %A + 5%A - 24%A + 6, 
3  2
30b + %A - 5%A + 30%A - 6, 
3  2
30c + %A - 5%A + 30%A - 6, 
3  2
30d + %A - 5%A + 30%A - 6, 
3  2
30e + %A - 5%A + 30%A - 6, 
3  2
30f + %A - 5%A - 6] 
] , 

4  2
[complexRoots= ? + 12? + 144, 
coordinates =
2
[12a + %A + 12, 12b + %A + 12, 12c + %A + 12, 
2
12d + %A + 12, 6e - %A + 3%A - 12, 
2
6f - %A - 3%A - 12] 
] , 

2
[complexRoots= ? - 12, 
coordinates =
[a - 1,b - 1,c - 1,d - 1,2e + %A + 4,2f - %A + 4] 
] , 

2
[complexRoots= ? + 6? + 6, 
coordinates =
[a + %A + 5,b - 1,c - 1,d - 1,e - 1,f - %A - 1] 
]
\[ \text{coordinates} = \begin{bmatrix} a + \%A - 5, b + 1, c + 1, d + 1, e + 1, f - \%A + 1 \end{bmatrix} \]

\[ \text{coordinates} = \begin{bmatrix} a + 1, b + 1, c + 1, d + 1, 2e + \%A - 4, 2f - \%A - 4 \end{bmatrix} \]

\[ \text{coordinates} = \begin{bmatrix} 30a - \%A - 5\%A - 30\%A - 6, \\ 30b - \%A - 5\%A - 30\%A - 6, \\ 30c - \%A - 5\%A - 30\%A - 6, \\ 30d + \%A + 5\%A + 24\%A + 6, \\ 30e - \%A - 5\%A - 6, \\ 30f - \%A - 5\%A - 30\%A - 6 \end{bmatrix} \]

\[ \text{coordinates} = \begin{bmatrix} 30a - \%A + 5\%A - 30\%A + 6, \\ 30b - \%A + 5\%A - 30\%A + 6, \\ 30c - \%A + 5\%A - 30\%A + 6, \\ 6d + \%A - 5\%A + 24\%A - 6 \end{bmatrix} \]
\begin{verbatim}
30e - %A + 5%A + 6,
3 2
30f - %A + 5%A - 30%A + 6]
,

2
[complexRoots= ? + 6? + 6,
coordinates =
[a + 1,b + 1,c + 1,d - %A - 5,e + %A + 1,f + 1]
]
,

2
[complexRoots= ? - 6? + 6,
coordinates =
[a - 1,b - 1,c - 1,d - %A + 5,e + %A - 1,f - 1]
]

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)
\end{verbatim}
\begin{patch}{LexTriangularPackageXmpPageEmpty21}
\begin{paste}{LexTriangularPackageXmpPageEmpty21}{LexTriangularPackageXmpPagePatch21}
\pastebutton{LexTriangularPackageXmpPageEmpty21}{\showpaste}
\tab{5}\spadcommand{concat [univariateSolve(ts)$zdpack for ts in lts]
free{lts }\free{zdpack }}
\end{paste}
\end{patch}

\begin{patch}{LexTriangularPackageXmpPagePatch22}
\begin{paste}{LexTriangularPackageXmpPageFull22}{LexTriangularPackageXmpPageEmpty22}
\pastebutton{LexTriangularPackageXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{concat [realSolve(ts)$zdpack for ts in lts]
free{lts }\free{zdpack }}
\indentrel{3}\begin{verbatim}
(22)
[[%R1,%R1,%R1,%R5,- %R5 - 4%R1,%R1],
[%R1,%R1,%R1,%R6,- %R6 - 4%R1,%R1],
[%R2,%R2,%R2,%R3,- %R3 - 4%R2,%R2],
[%R2,%R2,%R2,%R4,- %R4 - 4%R2,%R2],
[%R7,%R7,%R7,%R11,- %R11 - 4%R7],
[%R7,%R7,%R7,%R12, - %R12 - 4%R7],
[%R8,%R8,%R8,%R9,- %R9 - 4%R8],
[%R8,%R8,%R8,%R10,- %R10 - 4%R8],
[%R13,%R13,%R17,- %R17 - 4%R13,%R13],
[%R13,%R13,%R18,- %R18 - 4%R13,%R13],
[%R14,%R14,%R15,- %R15 - 4%R14,%R14],
[%R14,%R14,%R16,- %R16 - 4%R14,%R14],
\end{verbatim}
\end{patch}
3.61. LEXTRIPK.HT

\[
\begin{align*}
\%R19, \%R29, \\
7865521 & \quad 31 \quad 6696179241 \quad 25 \\
\%R19 & - \%R19 \\
6006689520 & \quad 2002229840 \\
+ \quad 25769893181 & \quad 19 \quad 1975912990729 \quad 13 \\
\%R19 & - \%R19 \\
49235160 & \quad 3003344760 \\
+ \quad 1048460696489 & \quad 7 \quad 21252634831 \\
\%R19 & - \%R19 \\
200229840 & \quad 6006689520 \\
, \\
778171189 & \quad 31 \quad 1987468196267 \quad 25 \\
\%R19 & + \%R19 \\
1387545279120 & \quad 1387545279120 \\
+ \quad 155496778477189 & \quad 19 \quad 19163141158401 \quad 13 \\
\%R19 & + \%R19 \\
693772639560 & \quad 693772639560 \\
+ \quad 300335488637543 & \quad 7 \quad 756656433863 \\
\%R19 & - \%R19 \\
1387545279120 & \quad 198220754160 \\
, \\
1094352947 & \quad 31 \quad 2794979430821 \quad 25 \\
\%R19 & - \%R19 \\
462515093040 & \quad 462515093040 \\
+ \quad 218708802908737 & \quad 19 \quad 91476663003591 \quad 13 \\
\%R19 & - \%R19 \\
231257546520 & \quad 77085848840 \\
+ \quad 145152550961823 & \quad 7 \quad 1564893370717 \\
\%R19 & - \%R19 \\
154171697680 & \quad 462515093040 \\
, \\
4321823003 & \quad 31 \\
\%R29 & - \%R19 \\
1387545279120 & \quad \\
+ \quad 180949546069 & \quad 25 \quad 863753195062493 \quad 19 \\
\%R19 & + \%R19 \\
22746643920 & \quad 693772639560 \\
+ \quad 108809456732317 & \quad 13 \quad 1732620732685741 \quad 7
\end{align*}
\]
\%R_{19} + \%R_{19}
\begin{align*}
693772639560 & \quad 1387545279120 \\
+ & \quad 13506088516033 \\
\%R_{19} & \quad 1387545279120 \\
\end{align*}
\]

\%R_{19}, \%R_{30}, \%
\begin{align*}
7865521 & \quad 31 \quad 6696179241 \quad 25 \\
\%R_{19} & \quad - \%R_{19} \\
6006689520 & \quad 2002229840 \\
+ & \quad 25769893181 \quad 19 \quad 1975912990729 \quad 13 \\
- & \quad \%R_{19} - \%R_{19} \quad 49235160 \quad 3003344760 \\
+ & \quad 1048460696489 \quad 7 \quad 21252634831 \\
- & \quad \%R_{19} - \%R_{19} \quad 2002229840 \quad 6006689520 \\
, \\
778171189 & \quad 31 \quad 1987468196267 \quad 25 \\
- & \quad \%R_{19} + \%R_{19} \quad 1387545279120 \quad 1387545279120 \\
+ & \quad 155496778477189 \quad 19 \quad 191631411158401 \quad 13 \\
\%R_{19} & \quad + \%R_{19} \\
693772639560 & \quad 693772639560 \\
+ & \quad 300335488637543 \quad 7 \quad 755656433863 \\
\%R_{19} & \quad - \%R_{19} \quad 1387545279120 \quad 198220754160 \\
, \\
1094352947 & \quad 31 \quad 2794979430821 \quad 25 \\
\%R_{19} & \quad - \%R_{19} \\
462515093040 & \quad 462515093040 \\
+ & \quad 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
- & \quad \%R_{19} - \%R_{19} \quad 231257546520 \quad 77085848840 \\
+ & \quad 145152550961823 \quad 7 \quad 1564893370717 \\
- & \quad \%R_{19} - \%R_{19} \quad 154171697680 \quad 462515093040 \\
, \\
\]
3.61. LEXTRIPK.HT

\[
\begin{align*}
&\text{4321823003} \quad 31 \\
&\quad - \%R30 - \%R19 \\
&\quad \text{1387545279120} \\
&\quad + \\
&\quad \text{180949546069} \quad 25 \quad \text{863753195062493} \quad 19 \\
&\quad \%R19 + \%R19 \\
&\quad 22746643920 \quad \text{693772639560} \\
&\quad + \\
&\quad \text{1088094456732317} \quad 13 \quad \text{1732620732685741} \quad 7 \\
&\quad \%R19 + \%R19 \\
&\quad \text{693772639560} \quad \text{1387545279120} \\
&\quad + \\
&\quad \text{13506088516033} \\
&\quad \%R19 \\
&\quad \text{1387545279120} \\
&\right]
\]

, [\%R20, \%R27, 

\[
\begin{align*}
&\text{7865521} \quad 31 \quad \text{6696179241} \quad 25 \\
&\quad \%R20 - \%R20 \\
&\quad \text{6006689520} \quad \text{2002229840} \\
&\quad + \\
&\quad \text{25769893181} \quad 19 \quad \text{1975912990729} \quad 13 \\
&\quad \%R20 - \%R20 \\
&\quad \text{49235160} \quad \text{3003344760} \\
&\quad + \\
&\quad \text{1048460696489} \quad 7 \quad \text{21252634831} \\
&\quad \%R20 - \%R20 \\
&\quad \text{2002229840} \quad \text{6006689520} \\
&\right]
\]

, 

\[
\begin{align*}
&\text{778171189} \quad 31 \quad \text{1987468196267} \quad 25 \\
&\quad \%R20 + \%R20 \\
&\quad \text{1387545279120} \quad \text{1387545279120} \\
&\quad + \\
&\quad \text{155496778477189} \quad 19 \quad \text{191631411158401} \quad 13 \\
&\quad \%R20 + \%R20 \\
&\quad \text{693772639560} \quad \text{693772639560} \\
&\quad + \\
&\quad \text{300335488637543} \quad 7 \quad \text{755656433863} \\
&\quad \%R20 - \%R20 \\
&\quad \text{1387545279120} \quad \text{198220754160} \\
&\right]
\]

, 

\[
\begin{align*}
&\text{1094352947} \quad 31 \quad \text{2794979430821} \quad 25 \\
&\quad \%R20 - \%R20 \\
&\quad \text{462515093040} \quad \text{462515093040} \\
&\quad + 
\end{align*}
\]
\[ 218708802908737 \quad 19 \quad 91476663003591 13 \\
- \%R20 - \%R20 \\
\quad 231257546520 \quad 77085848840 \\
+ \\
145152550961823 \quad 7 \quad 1564893370717 \\
- \%R20 - \%R20 \\
\quad 154171697680 \quad 462515093040 \\
+ \
\quad 4321823003 \quad 31 \\
- \%R27 - \%R20 \\
\quad 1387545279120 \\
+ \\
180949546069 \quad 25 \quad 863753195062493 19 \\
\%R20 + \%R20 \\
\quad 22746643920 \quad 693772639560 \\
+ \\
1088094465732317 \quad 13 \quad 1732620732686741 7 \\
\%R20 + \%R20 \\
\quad 693772639560 \quad 1387545279120 \\
+ \\
13506088516033 \\
\%R20 \\
\quad 1387545279120 \\
\] 

[\%R20, \%R28, 
\quad 7865521 \quad 31 \quad 6696179241 25 \\
- \%R20 - \%R20 \\
\quad 6006699520 \quad 2002229840 \\
+ \\
2576983181 \quad 19 \quad 1975912990729 13 \\
- \%R20 - \%R20 \\
\quad 49235160 \quad 3003344760 \\
+ \\
1048460696489 \quad 7 \quad 21252634831 \\
- \%R20 - \%R20 \\
\quad 2002229840 \quad 6006699520 \\
+ \\
778171189 \quad 31 \quad 1987468196267 25 \\
- \%R20 + \%R20 \\
\quad 1387545279120 \quad 1387545279120 \\
+ \\
155496778477189 \quad 19 \quad 191631411158401 13 \\
\%R20 + \%R20 \\
\quad 693772639560 \quad 693772639560 \\
+ 

\]
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300335488637543</td>
<td>7</td>
<td>755656433863</td>
<td></td>
</tr>
<tr>
<td>%R20 - %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1387545279120</td>
<td>198220754160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1094352947</td>
<td>31</td>
<td>2794979430821</td>
<td>25</td>
</tr>
<tr>
<td>%R20 - %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>462615093040</td>
<td>462515093040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>218708802908737</td>
<td>19</td>
<td>91476663003591</td>
</tr>
<tr>
<td>%R20 - %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231257546520</td>
<td>77085848840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>145152550961823</td>
<td>7</td>
<td>1564893370717</td>
</tr>
<tr>
<td>%R20 - %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154171697680</td>
<td>462515093040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4321823003</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%R28 - %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1387545279120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>180949546069</td>
<td>25</td>
<td>863753195062493</td>
</tr>
<tr>
<td>%R20 + %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22746643920</td>
<td>693772639560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1088094456732317</td>
<td>13</td>
<td>1732620732685741</td>
</tr>
<tr>
<td>%R20 + %R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>693772639560</td>
<td>1387545279120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1350608516033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%R20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1387545279120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[%R21, %R25,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7865521</td>
<td>31</td>
<td>6696179241</td>
<td>25</td>
</tr>
<tr>
<td>%R21 - %R21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6006689520</td>
<td>2002229840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>25769893181</td>
<td>19</td>
<td>1975912990729</td>
</tr>
<tr>
<td>%R21 - %R21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49235160</td>
<td>3003344760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1048460696489</td>
<td>7</td>
<td>21252634831</td>
</tr>
<tr>
<td>%R21 - %R21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002229840</td>
<td>6006689520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
778171189 & \quad 31 \quad 1987468196267 \quad 25 \\
\%R21 + \%R21 & \quad 1387545279120 \quad 1387545279120 \\
+ & \quad 155496778477189 \quad 19 \quad 191631411158401 \quad 13 \\
\%R21 + \%R21 & \quad 693772639560 \quad 693772639560 \\
+ & \quad 300335488637543 \quad 7 \quad 755656433863 \\
\%R21 - \%R21 & \quad 1387545279120 \quad 198220754160 \\
, & \\
1094352947 & \quad 31 \quad 2794979430821 \quad 25 \\
\%R21 - \%R21 & \quad 462515093040 \quad 462515093040 \\
+ & \quad 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
- \%R21 - \%R21 & \quad 231257546520 \quad 77085848840 \\
+ & \quad 145152550961823 \quad 7 \quad 1564893370717 \\
- \%R21 - \%R21 & \quad 154171697680 \quad 462515093040 \\
, & \\
4321823003 & \quad 31 \\
- \%R25 - \%R21 & \quad 1387545279120 \\
+ & \quad 180949546069 \quad 25 \quad 863753195062493 \quad 19 \\
\%R21 + \%R21 & \quad 22746643920 \quad 693772639560 \\
+ & \quad 1088094456732317 \quad 13 \quad 1732620732685741 \quad 7 \\
\%R21 + \%R21 & \quad 693772639560 \quad 1387545279120 \\
+ & \quad 13506088516033 \\
\%R21 & \quad 1387545279120 \\
\] \\
, & \\
\{\%R21, \%R26, & \\
7865521 & \quad 31 \quad 6696179241 \quad 25 \\
\%R21 - \%R21 & \quad 6006689520 \quad 2002229840
\end{align*}
\]
3.61. LEXTRIPK.HT

\[
\begin{align*}
&+ 25769893181 \quad 19 \quad 1975912990729 \quad 13 \\
&- \%R21 - \%R21 \\
&\quad 49235160 \quad 3003344760 \\
&+ 1048460696489 \quad 7 \quad 21252634831 \\
&- \%R21 - \%R21 \\
&\quad 2002229840 \quad 6006689520 \\
&,, \\
&778171189 \quad 31 \quad 1987468196267 \quad 25 \\
&- \%R21 + \%R21 \\
&\quad 1387545279120 \quad 1387545279120 \\
&+ 155496778477189 \quad 19 \quad 191631411158401 \quad 13 \\
&\%R21 + \%R21 \\
&\quad 693772639560 \quad 693772639560 \\
&+ 300335488637543 \quad 7 \quad 756656433863 \\
&\%R21 - \%R21 \\
&\quad 1387545279120 \quad 198220754160 \\
&,, \\
&1094352947 \quad 31 \quad 2794979430821 \quad 25 \\
&\%R21 - \%R21 \\
&\quad 462515093040 \quad 462515093040 \\
&+ 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
&- \%R21 - \%R21 \\
&\quad 231257546520 \quad 77085848840 \\
&+ 145152550961823 \quad 7 \quad 1564893370717 \\
&- \%R21 - \%R21 \\
&\quad 154171697680 \quad 462515093040 \\
&,, \\
&4321823003 \quad 31 \\
&- \%R26 - \%R21 \\
&\quad 1387545279120 \\
&+ 180949546069 \quad 25 \quad 863753195062493 \quad 19 \\
&\%R21 + \%R21 \\
&\quad 22746643920 \quad 693772639560 \\
&+ 1088094456732317 \quad 13 \quad 1732620732685741 \quad 7 \\
&\%R21 + \%R21 \\
&\quad 693772639560 \quad 1387545279120 \\
&+ 13506088516033 \\
&\%R21 
\end{align*}
\]
\[
\begin{align*}
1387545279120 \\
\%, \%R22, \%R23, \\
7865521 & \quad 31 \quad 6696179241 \quad 25 \\
\%R22 - \%R22 & \\
6006689520 & \quad 2002229840 \\
+ & 25769893181 \quad 19 \quad 1975912990729 \quad 13 \\
- \%R22 - \%R22 & \\
49235160 & \quad 3003344760 \\
+ & 1048460696489 \quad 7 \quad 21252634831 \\
- \%R22 - \%R22 & \\
2002229840 & \quad 6006689520 \\
, \\
778171189 & \quad 31 \quad 1987468196267 \quad 25 \\
- \%R22 + \%R22 & \\
1387545279120 & \quad 1387545279120 \\
+ & 155496778477189 \quad 19 \quad 191631411158401 \quad 13 \\
\%R22 + \%R22 & \\
693772639560 & \quad 693772639560 \\
+ & 300335488637543 \quad 7 \quad 755656433863 \\
\%R22 - \%R22 & \\
1387545279120 & \quad 198220754160 \\
, \\
1094352947 & \quad 31 \quad 2794979430821 \quad 25 \\
\%R22 - \%R22 & \\
462515093040 & \quad 462515093040 \\
+ & 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
- \%R22 - \%R22 & \\
231257546520 & \quad 77085848840 \\
+ & 145152550961823 \quad 7 \quad 1564893370717 \\
\%R22 - \%R22 & \\
154171697680 & \quad 462515093040 \\
, \\
4321823003 & \quad 31 \\
- \%R23 - \%R22 & \\
1387545279120 & \\
+ & 180949546069 \quad 25 \quad 863753195062493 \quad 19
\end{align*}
\]
\[
\begin{align*}
\%R22 + \%R22 = & \quad 693772639560 \\
22746643920 + & \quad 108809456732317 \quad 13 \quad 1732620732685741 \quad 7 \\
\%R22 + \%R22 = & \quad 1387545279120 \\
693772639560 + & \quad 13506088516033 \quad \%R22 = \quad 1387545279120 \\
\end{align*}
\]

\[
\begin{align*}
\%R22, \%R24, \\
7865521 + & \quad 31 \quad 6696179241 \quad 25 \\
\%R22 - \%R22 = & \quad 2002229840 \\
6006689520 + & \quad 25769893181 \quad 19 \quad 1975912990729 \quad 13 \\
- \%R22 - \%R22 = & \quad 3003344760 \\
49235160 + & \quad 1048460696489 \quad 7 \quad 21252634831 \\
- \%R22 - \%R22 = & \quad 6006689520 \\
2002229840 \\
\end{align*}
\]

\[
\begin{align*}
\%R22 + \%R22 = & \quad 1387545279120 \\
693772639560 + & \quad 155496778477189 \quad 19 \quad 191631411158401 \quad 13 \\
\%R22 + \%R22 = & \quad 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
\%R22 + \%R22 = & \quad 15648933370717 \\
\%R22 - \%R22 = & \quad 198220754160 \\
1387545279120 + & \quad 300335488637543 \quad 7 \quad 755656433863 \\
\end{align*}
\]

\[
\begin{align*}
\%R22 + \%R22 = & \quad 1387545279120 \\
693772639560 + & \quad 1043529247 \quad 31 \quad 2794979430821 \quad 25 \\
\%R22 - \%R22 = & \quad 462515093040 \\
462515093040 + & \quad 218708802908737 \quad 19 \quad 91476663003591 \quad 13 \\
- \%R22 - \%R22 = & \quad 77085848840 \\
231257546520 + & \quad 145152550961823 \quad 7 \quad 15648933370717 \\
\end{align*}
\]
3.62  lib.ht

Library

⇒ “notitle” (FileXmpPage) 3.40 on page 480
⇒ “notitle” (TextFileXmpPage) 3.107 on page 1307
⇒ “notitle” (KeyedAccessFileXmpPage) 3.57 on page 734
— lib.ht —
The \spadtype{Library} domain provides a simple way to store Axiom values in a file. This domain is similar to \spadtype{KeyedAccessFile} but fewer declarations are needed and items of different types can be saved together in the same file.

To create a library, you supply a file name.

\spadpaste{stuff := library "/tmp/Neat.stuff" \bound{stuff}}

Now values can be saved by key in the file. The keys should be mnemonic, just as the field names are for records. They can be given either as strings or symbols.

\spadpaste{stuff.int := 32**2 \free{stuff}\bound{stuffa}}
\spadpaste{stuff."poly" := x**2 + 1 \free{stuffa}\bound{stuffb}}
\spadpaste{stuff.str := "Hello" \free{stuffb}\bound{stuffc}}

You obtain the set of available keys using the \spadfunFrom{keys}{Library} operation.

\spadpaste{keys stuff \free{stuffa,stuffb,stuffc}\bound{stuffabc}}

You extract values by giving the desired key in this way.

\spadpaste{stuff.poly \free{stuffb}}
\spadpaste{stuff("poly") \free{stuffb}}

When the file is no longer needed, you should remove it from the file system.

\spadpaste{)system rm -rf /tmp/Neat.stuff \free{stuff}\bound{rmstuff}}
For more information on related topics, see 
\downlink{'File'}{FileXmpPage}\ignore{File}, 
\downlink{'TextFile'}{TextFileXmpPage}\ignore{TextFile}, and 
\downlink{'KeyedAccessFile'}{KeyedAccessFileXmpPage} \ignore{KeyedAccessFile}. 
\showBlurb{Library}
\endscroll
\autobuttons
\end{page}

\begin{patch}{LibraryXmpPagePatch1}
\begin{paste}{LibraryXmpPageFull1}{LibraryXmpPageEmpty1}
\pastebutton{LibraryXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{stuff := library "/tmp/Neat.stuff"}\bound{stuff }
\indentrel{3}\begin{verbatim}
(1) "/tmp/Neat.stuff"
Type: Library
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{LibraryXmpPagePatch2}
\begin{paste}{LibraryXmpPageFull2}{LibraryXmpPageEmpty2}
\pastebutton{LibraryXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{stuff.int := 32**2}\free{stuff}\bound{stuffa }
\indentrel{3}\begin{verbatim}
(2) 1024
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{LibraryXmpPagePatch3}
\begin{paste}{LibraryXmpPageFull3}{LibraryXmpPageEmpty3}
\pastebutton{LibraryXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{stuff."poly" := x**2 + 1}\free{stuff}\bound{stuffb }
\indentrel{3}\begin{verbatim}
(3) x + 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
\indentrel{-3}
\end{verbatim}

\indentrel{-3}
\end{patch}\end{patch}

\begin{patch}{LibraryXmpPageEmpty3}
\begin{paste}{LibraryXmpPageEmpty3}{LibraryXmpPagePatch3}
\pastebutton{LibraryXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{stuff."poly" := x**2 + 1\free{stuffa }\bound{stuffb }}
\end{paste}\end{patch}

\begin{patch}{LibraryXmpPagePatch4}
\begin{paste}{LibraryXmpPageFull4}{LibraryXmpPageEmpty4}
\pastebutton{LibraryXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{stuff.str := "Hello"\free{stuffb }\bound{stuffc }}
\indentrel{3}\begin{verbatim}
(4) "Hello"
Type: String
\end{verbatim}
\indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{LibraryXmpPageEmpty4}
\begin{paste}{LibraryXmpPageEmpty4}{LibraryXmpPagePatch4}
\pastebutton{LibraryXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{stuff.str := "Hello"\free{stuffb }\bound{stuffc }}
\end{paste}\end{patch}

\begin{patch}{LibraryXmpPagePatch5}
\begin{paste}{LibraryXmpPageFull5}{LibraryXmpPageEmpty5}
\pastebutton{LibraryXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{keys stuff\free{stuffa stuffb stuffc }\bound{stuffabc }}
\indentrel{3}\begin{verbatim}
(5) ["str","poly","int"]
Type: List String
\end{verbatim}
\indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{LibraryXmpPageEmpty5}
\begin{paste}{LibraryXmpPageEmpty5}{LibraryXmpPagePatch5}
\pastebutton{LibraryXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{keys stuff\free{stuffa stuffb stuffc }\bound{stuffabc }}
\end{paste}\end{patch}

\begin{patch}{LibraryXmpPagePatch6}
\begin{paste}{LibraryXmpPageFull6}{LibraryXmpPageEmpty6}
\pastebutton{LibraryXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{stuff.poly\free{stuffb }}
\indentrel{3}\begin{verbatim}
2
(6) x + 1
Type: Polynomial Integer
\end{verbatim}
\end{paste}\end{patch}
3.63  link.ht

The Axiom Link to NAG Software

⇒ “Introduction to the NAG Library Link” (nagLinkIntroPage) 18 on page 2494
Use of the Link from HyperDoc

⇒ “notitle” (c02) 3.63 on page 846
⇒ “notitle” (c05) 3.63 on page 847
⇒ “notitle” (c06) 3.63 on page 847
⇒ “notitle” (c01) 3.63 on page 849
⇒ “notitle” (c02) 3.63 on page 851
⇒ “notitle” (d03) 3.63 on page 852
⇒ “notitle” (e01) 3.63 on page 853
⇒ “notitle” (e02) 3.63 on page 854
⇒ “notitle” (e04) 3.63 on page 856
⇒ “notitle” (f01) 3.63 on page 857
⇒ “notitle” (f02) 3.63 on page 858
⇒ “notitle” (f04) 3.63 on page 860
⇒ “notitle” (f07) 3.63 on page 862
⇒ “notitle” (s) 3.63 on page 863

Click on the chapter of routines that you would like to use.

C02 Zeros of Polynomials

⇒ “Foundation Library Chapter c02 Manual Page” (manpageXXc02) 22.2 on page 2845
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “C02AFF” (LispFunctions) 3.71 on page 952
⇒ “C02AGF” (LispFunctions) 3.71 on page 952
— link.ht —

\begin{page}{c02}{C02 Zeros of Polynomials}
\beginscroll
\centerline{What would you like to do?}
\newline\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter c02 Manual Page} {manpageXXc02}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagPolynomialRootsPackage")}
\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{C02AFF}{(|c02aff|)}\tab{10} All zeros of a complex polynomial
\menulispdownlink{C02AGF}{(|c02agf|)}\tab{10} All zeros of a real polynomial
\endmenu
\endscroll
\autobuttons
\end{page}
C05 Roots of One or More Transcendental Equations

⇒ “Foundation Library Chapter c05 Manual Page” (manpageXXc05) 22.2 on page 2860
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “C05ADF” (LispFunctions) 3.71 on page 952
⇒ “C05NBF” (LispFunctions) 3.71 on page 952
⇒ “C05PBF” (LispFunctions) 3.71 on page 952

— link.ht —

\begin{page}{c05}{C05 Roots of One or More Transcendental Equations}
\beginscroll
\centerline{What would you like to do?}
\newline
\begin{menu}
\item Read
\menuwindowlink{Foundation Library Chapter c05 Manual Page}{manpageXXc05}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagRootFindingPackage")}
\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{C05ADF}{(|c05adf|)}
\tab{10} Zero of continuous function in given interval,
Bus and Dekker algorithm
\menulispdownlink{C05NBF}{(|c05nbf|)}
\tab{10} Solution of system of nonlinear equations using
function values only
\menulispdownlink{C05PBF}{(|c05pbf|)}
\tab{10} Solution of system of nonlinear equations using
1st derivatives
\end{menu}
\endscroll
\autobuttons
\end{page}

C06 Summation of Series

⇒ “Foundation Library Chapter c06 Manual Page” (manpageXXc06) 22.2 on page 2881
CHAPTER 3. HYPERDOC PAGES

⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “C06EAF” (LispFunctions) 3.71 on page 952
⇒ “C06EBF” (LispFunctions) 3.71 on page 952
⇒ “C06ECF” (LispFunctions) 3.71 on page 952
⇒ “C06EKF” (LispFunctions) 3.71 on page 952
⇒ “C06FPF” (LispFunctions) 3.71 on page 952
⇒ “C06FQF” (LispFunctions) 3.71 on page 952
⇒ “C06FRF” (LispFunctions) 3.71 on page 952
⇒ “C06GBF” (LispFunctions) 3.71 on page 952
⇒ “C06GCF” (LispFunctions) 3.71 on page 952
⇒ “C06GQF” (LispFunctions) 3.71 on page 952
⇒ “C06GSF” (LispFunctions) 3.71 on page 952

— link.ht —

\begin{page}{c06}{C06 Summation of Series}
\beginscroll
\centerline{What would you like to do?}
\newline\begin{menu}
\item Read \menuwindowlink{Foundation Library Chapter c06 Manual Page}{manpageXXc06}
\item or \menulispwindowlink{Browse}{(|kSearch| "NagSeriesSummationPackage")}
\item or use the routines:
\menulispdownlink{C06EAF}{(|c06eaf|)}\tab{10} Single 1-D real discrete Fourier transform, no extra workspace
\menulispdownlink{C06EBF}{(|c06ebf|)}\tab{10} Single 1-D Hermitian discrete Fourier transform, no extra workspace
\menulispdownlink{C06ECF}{(|c06ecf|)}\tab{10} Single 1-D complex discrete Fourier transform, no extra workspace
\menulispdownlink{C06EKF}{(|c06ekf|)}\tab{10} Circular convolution or correlation of two real vectors, no extra workspace
\menulispdownlink{C06FPF}{(|c06fpf|)}\tab{10} Multiple 1-D real discrete Fourier transforms
\menulispdownlink{C06FQF}{(|c06fqf|)}\tab{10} Multiple 1-D Hermitian discrete Fourier transforms
\menulispdownlink{C06FRF}{(|c06frf|)}\tab{10} Multiple 1-D complex discrete Fourier transforms
\menulispdownlink{C06GBF}{(|c06gbf|)}\tab{10} 2-D complex discrete Fourier transforms
D01 Quadrature

⇒ “Foundation Library Chapter d01 Manual Page” (manpageXXd01) 22.3 on page 2930
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “D01AJF” (LispFunctions) 3.71 on page 952
⇒ “D01AKF” (LispFunctions) 3.71 on page 952
⇒ “D01ALF” (LispFunctions) 3.71 on page 952
⇒ “D01AMF” (LispFunctions) 3.71 on page 952
⇒ “D01ANF” (LispFunctions) 3.71 on page 952
⇒ “D01APF” (LispFunctions) 3.71 on page 952
⇒ “D01AQF” (LispFunctions) 3.71 on page 952
⇒ “D01ASF” (LispFunctions) 3.71 on page 952
⇒ “D01BBF” (LispFunctions) 3.71 on page 952
⇒ “D01FCF” (LispFunctions) 3.71 on page 952
⇒ “D01GAF” (LispFunctions) 3.71 on page 952
⇒ “D01GBF” (LispFunctions) 3.71 on page 952

— link.ht —
CHAPTER 3. HYPERDOC PAGES

1-D quadrature, adaptive, finite interval, strategy due to Plessens and de Doncker, allowing for badly-behaved integrands

1-D quadrature, adaptive, finite interval, method suitable for oscillating functions

1-D quadrature, adaptive, finite interval, allowing for singularities at user specified points

1-D quadrature, adaptive, infinite or semi-finite interval

1-D quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$

1-D quadrature, adaptive, finite interval, weight function with end point singularities of algebraico-logarithmic type

1-D quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principle value (Hilbert transform)

1-D quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$

Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule

Multi-dimensional adaptive quadrature over hyper-rectangle

1-D quadrature, integration of function defined by data values, Gill–Miller method

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
D02 Ordinary Differential Equations

⇒ “notitle” (manpageXXd02) 22.3 on page 3011

— link.ht —

```
\begin{page}{d02}{D02 Ordinary Differential Equations}
\pageto{Foundation Library Chapter d02 Manual Page}{manpageXXd02}
\pageto{Browse}{LispFunctions}
\pageto{D02BBF}{LispFunctions}
\pageto{D02BHF}{LispFunctions}
\pageto{D02CJF}{LispFunctions}
\pageto{D02EJF}{LispFunctions}
\pageto{D02GAF}{LispFunctions}
\pageto{D02GBF}{LispFunctions}
\pageto{D02KEF}{LispFunctions}
\pageto{D02RAF}{LispFunctions}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter d02 Manual Page}{manpageXXd02}
\item or
\menulispwindowlink{Browse}{|kSearch| "NagOrdinaryDifferentialEquationsPackage"}
\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{D02BBF}{(|d02bbf|)}\space{}
\tab{10} ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output
\menulispdownlink{D02BHF}{(|d02bhf|)}\space{}
\tab{10} ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero
\menulispdownlink{D02CJF}{(|d02cjf|)}\space{}
\tab{10} ODEs, IVP, Adams method, until function of solution is zero, intermediate output
\menulispdownlink{D02EJF}{(|d02ejf|)}\space{}
\tab{10} ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output
\menulispdownlink{D02GAF}{(|d02gaf|)}\space{}
\tab{10} ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
\menulispdownlink{D02GBF}{(|d02gbf|)}\space{}
\tab{10} ODEs, boundary value problem, finite difference technique with deferred correction, general nonlinear problem
\menulispdownlink{D02KEF}{(|d02kef|)}\space{}
```
2nd order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points

ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility

---

D03 Partial Differential Equations

⇒ “Foundation Library Chapter d03 Manual Page” (manpageXXd03) 22.3 on page 3104
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “D03EDF” (LispFunctions) 3.71 on page 952
⇒ “D03EEF” (LispFunctions) 3.71 on page 952
⇒ “D03FAF” (LispFunctions) 3.71 on page 952

---

Elliptic PDE, solution of finite difference equations by a multigrid technique

Discretize a 2nd order elliptic PDE on a rectangle

Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates
E01 Interpolation

⇒ “Foundation Library Chapter e01 Manual Page” (manpageXXe01) 22.4 on page 3142
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “E01BAF” (LispFunctions) 3.71 on page 952
⇒ “E01BEF” (LispFunctions) 3.71 on page 952
⇒ “E01BFF” (LispFunctions) 3.71 on page 952
⇒ “E01BGF” (LispFunctions) 3.71 on page 952
⇒ “E01BHF” (LispFunctions) 3.71 on page 952
⇒ “E01DAF” (LispFunctions) 3.71 on page 952
⇒ “E01SAF” (LispFunctions) 3.71 on page 952
⇒ “E01SEF” (LispFunctions) 3.71 on page 952

— link.ht —

\begin{page}{e01}\{E01 Interpolation\}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter e01 Manual Page} {manpageXXe01}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagInterpolationPackage")}
\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{E01BAF}{(|e01baf|)}
\tab{10} Interpolating functions, cubic spline interpolant, one variable
\menulispdownlink{E01BEF}{(|e01bef|)}
\tab{10} Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
\menulispdownlink{E01BFF}{(|e01bff|)}
\tab{10} Interpolated values, interpolant computed by E01BEF, function only, one variable
\menulispdownlink{E01BGF}{(|e01bgf|)}
\tab{10} Interpolated values, interpolant computed by E01BEF, function and 1st derivative, one variable
\menulispdownlink{E01BHF}{(|e01bhf|)}
\tab{10} Interpolated values, interpolant computed by E01BEF, definite integral, one variable
\menulispdownlink{E01DAF}{(|e01daf|)}
\tab{10} Interpolating functions, fitting bicubic spline, data on a rectangular grid
\endmenu
\endscroll
\end{page}
CHAPTER 3. HYPERDOC PAGES

Interpolating functions, method of Renka and Cline, two variables
Interpolating functions, modified Shepherd’s method, two variables

E02 Curve and Surface Fitting

⇒ “Foundation Library Chapter e02 Manual Page” (manpageXXe02) 22.4 on page 3185
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “E02ADF” (LispFunctions) 3.71 on page 952
⇒ “E02AEF” (LispFunctions) 3.71 on page 952
⇒ “E02AGF” (LispFunctions) 3.71 on page 952
⇒ “E02AHF” (LispFunctions) 3.71 on page 952
⇒ “E02AJF” (LispFunctions) 3.71 on page 952
⇒ “E02AKF” (LispFunctions) 3.71 on page 952
⇒ “E02BAF” (LispFunctions) 3.71 on page 952
⇒ “E02BBF” (LispFunctions) 3.71 on page 952
⇒ “E02BCF” (LispFunctions) 3.71 on page 952
⇒ “E02BDF” (LispFunctions) 3.71 on page 952
⇒ “E02BEF” (LispFunctions) 3.71 on page 952
⇒ “E02DAF” (LispFunctions) 3.71 on page 952
⇒ “E02DCF” (LispFunctions) 3.71 on page 952
⇒ “E02DDF” (LispFunctions) 3.71 on page 952
⇒ “E02DEF” (LispFunctions) 3.71 on page 952
⇒ “E02DFF” (LispFunctions) 3.71 on page 952
⇒ “E02GAF” (LispFunctions) 3.71 on page 952
⇒ “E02ZAF” (LispFunctions) 3.71 on page 952
through this chapter

- use the routines:
  - E02ADF: Least-squares curve fit, by polynomials, arbitrary data points
  - E02AEF: Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
  - E02AGF: Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points
  - E02AHF: Derivative of fitted polynomial in Chebyshev series form
  - E02AJF: Integral of fitted polynomial in Chebyshev series form
  - E02AKF: Evaluation of fitted polynomial in one variable, from Chebyshev series form
  - E02BAF: Least-squares curve cubic spline fit (including interpolation)
  - E02BBF: Evaluation of fitted cubic spline, function only
  - E02BCF: Evaluation of fitted cubic spline, function and derivatives
  - E02BDF: Evaluation of fitted cubic spline, definite integral
  - E02BEF: Least-squares curve cubic spline fit, automatic knot placement
  - E02DAF: Least-squares surface fit, bicubic splines
  - E02DCF: Evaluation of a fitted bicubic spline at a vector of points
  - E02DDF: Evaluation of a fitted bicubic spline at a mesh of points
  - E02DEF: Sort 2-D data into panels for fitting bicubic splines
  - E02ZAF: Sort 2-D data into panels for fitting bicubic splines

Sort 2-D data into panels for fitting bicubic splines
E04 Minimizing or Maximizing a Function

⇒ “Foundation Library Chapter e04 Manual Page” (manpageXXe04) 22.4 on page 3322
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “E04DGF” (LispFunctions) 3.71 on page 952
⇒ “E04FDF” (LispFunctions) 3.71 on page 952
⇒ “E04GCF” (LispFunctions) 3.71 on page 952
⇒ “E04JAF” (LispFunctions) 3.71 on page 952
⇒ “E04MBF” (LispFunctions) 3.71 on page 952
⇒ “E04NAF” (LispFunctions) 3.71 on page 952
⇒ “E04UCF” (LispFunctions) 3.71 on page 952
⇒ “E04YCF” (LispFunctions) 3.71 on page 952

— link.ht —

⇒ Read
⇒ or
⇒ through this chapter
⇒ or use the routines:
⇒ Unconstrained minimum, of a sum of squares, combined
⇒ Gauss-Newton and modified Newton algorithm using function values only
⇒ Unconstrained minimum, of a sum of squares, combined
⇒ Gauss-Newton and modified Newton algorithm using 1st derivatives
⇒ Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values only
⇒ Linear programming problem
3.63. LINK.HT

\menulispdownlink{E04NAF}{(|e04naf|)}\space{}
\tab{10} Quadratic programming problem
\menulispdownlink{E04UCF}{(|e04ucf|)}\space{}
\tab{10} Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally 1st derivatives
\menulispdownlink{E04YCF}{(|e04ycf|)}\space{}
\tab{10} Covariance matrix for non-linear least-squares problem
\endmenu
\endscroll
\autobuttons
\end{page}

——

F01 Matrix Operations - Including Inversion

⇒ “Foundation Library Chapter f Manual Page” (manpageXXf) 22.5 on page 3478
⇒ “Foundation Library Chapter f01 Manual Page” (manpageXXf01) 22.5 on page 3482
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “F01BRF” (LispFunctions) 3.71 on page 952
⇒ “F01BSF” (LispFunctions) 3.71 on page 952
⇒ “F01MAF” (LispFunctions) 3.71 on page 952
⇒ “F01MCF” (LispFunctions) 3.71 on page 952
⇒ “F01QCF” (LispFunctions) 3.71 on page 952
⇒ “F01QDF” (LispFunctions) 3.71 on page 952
⇒ “F01QEF” (LispFunctions) 3.71 on page 952
⇒ “F01RCF” (LispFunctions) 3.71 on page 952
⇒ “F01RDF” (LispFunctions) 3.71 on page 952
⇒ “F01REF” (LispFunctions) 3.71 on page 952

—— link.ht ——
F02 Eigenvalues and Eigenvectors

⇒ “Foundation Library Chapter f Manual Page” (manpageXXf) 22.5 on page 3478
⇒ “Foundation Library Chapter f02 Manual Page” (manpageXXf02) 22.5 on page 3543
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “F02AAF” (LispFunctions) 3.71 on page 952
⇒ “F02ABF” (LispFunctions) 3.71 on page 952
⇒ “F02ADF” (LispFunctions) 3.71 on page 952
⇒ “F02AEF” (LispFunctions) 3.71 on page 952
⇒ “F02AFF” (LispFunctions) 3.71 on page 952
3.63. LINK.HT

⇒ “F02AGF” (LispFunctions) 3.71 on page 952
⇒ “F02AJF” (LispFunctions) 3.71 on page 952
⇒ “F02AKF” (LispFunctions) 3.71 on page 952
⇒ “F02AWF” (LispFunctions) 3.71 on page 952
⇒ “F02AXF” (LispFunctions) 3.71 on page 952
⇒ “F02BBF” (LispFunctions) 3.71 on page 952
⇒ “F02BFF” (LispFunctions) 3.71 on page 952
⇒ “F02FJF” (LispFunctions) 3.71 on page 952
⇒ “F02WEF” (LispFunctions) 3.71 on page 952
⇒ “F02XEF” (LispFunctions) 3.71 on page 952

— link.ht —

\begin{page}{f02}{F02 Eigenvalues and Eigenvectors}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f02 Manual Page}{manpageXXf02}
\item or
\menuwindowlink{Browse}{(|kSearch| "NagEigenPackage")}
\tab{10} through this chapter
\item or use the routines:
\menulispwindowlink{F02AAF}{(|f02aaf|)}
\tab{10} All eigenvalues of real symmetric matrix (Black box)
\menulispwindowlink{F02ABF}{(|f02abf|)}
\tab{10} All eigenvalues and eigenvectors of real symmetric matrix (Black box)
\menulispwindowlink{F02ADF}{(|f02adf|)}
\tab{10} All eigenvalues of generalized real eigenproblem of the form \(Ax = \lambda Bx\) where \(A\) and \(B\) are symmetric and \(B\) is positive definite
\menulispwindowlink{F02AEF}{(|f02aef|)}
\tab{10} All eigenvalues and eigenvectors of generalized real eigenproblem of the form \(Ax = \lambda Bx\) where \(A\) and \(B\) are symmetric and \(B\) is positive definite
\menulispwindowlink{F02AFF}{(|f02aff|)}
\tab{10} All eigenvalues of real matrix (Black box)
\menulispwindowlink{F02AGF}{(|f02agf|)}
\tab{10} All eigenvalues and eigenvectors of real matrix (Black box)
\menulispwindowlink{F02AJF}{(|f02ajf|)}
\tab{10} All eigenvalues of complex matrix (Black box)
\menulispwindowlink{F02AKF}{(|f02akf|)}
\tab{10} All eigenvalues and eigenvectors of complex matrix (Black box)
\menulispwindowlink{F02AWF}{(|f02awf|)}
\tab{10} All eigenvalues of complex Hermitian matrix (Black box)
\menulispwindowlink{F02AXF}{(|f02axf|)}
\tab{10} All eigenvalues and eigenvectors of complex Hermitian matrix (Black box)
F04 Simultaneous Linear Equations

› “Foundation Library Chapter f Manual Page” (manpageXXf) 22.5 on page 3478
› “Foundation Library Chapter f04 Manual Page” (manpageXXf04) 22.5 on page 3615
› “Browse” (LispFunctions) 3.71 on page 952
› “F04ADF” (LispFunctions) 3.71 on page 952
› “F04ARF” (LispFunctions) 3.71 on page 952
› “F04ASF” (LispFunctions) 3.71 on page 952
› “F04ATF” (LispFunctions) 3.71 on page 952
› “F04AXF” (LispFunctions) 3.71 on page 952
› “F04FAC” (LispFunctions) 3.71 on page 952
› “F04JGF” (LispFunctions) 3.71 on page 952
› “F04MAF” (LispFunctions) 3.71 on page 952
› “F04MBF” (LispFunctions) 3.71 on page 952
› “F04MCF” (LispFunctions) 3.71 on page 952
› “F04QAF” (LispFunctions) 3.71 on page 952

— link.ht —
item or use the routines:
\item \menulispdownlink{F04ADF}{(|f04adf|)} Solution of complex simultaneous linear equations, with multiple right-hand sides (Black box)
\item \menulispdownlink{F04ARF}{(|f04arf|)} Solution of real simultaneous linear equations, one right-hand side (Black box)
\item \menulispdownlink{F04ASF}{(|f04asf|)} Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side using iterative refinement (Black box)
\item \menulispdownlink{F04ATF}{(|f04atf|)} Solution of real simultaneous linear equations, one right-hand side using iterative refinement (Black box)
\item \menulispdownlink{F04AXF}{(|f04axf|)} Approximate solution of real sparse simultaneous linear equations (coefficient matrix already factorized by F01BRF or F01BSF)
\item \menulispdownlink{F04JGF}{(|f04jgf|)} Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m real equations in n unknowns, rank \htbitmap{less=} n, m \htbitmap{great=} n
\item \menulispdownlink{F04MAF}{(|f04maf|)} Real sparse symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized)
\item \menulispdownlink{F04MBF}{(|f04mbf|)} Real sparse symmetric simultaneous linear equations
\item \menulispdownlink{F04MCF}{(|f04mcf|)} Approximate solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized)
\item \menulispdownlink{F04QAF}{(|f04qaf|)} Sparse linear least-squares problem, \{it m\} real equations in \{it n\} unknowns
\endmenu
\endscroll
\autobuttons
\end{page}
F07 Linear Equations (LAPACK)

⇒ “Foundation Library Chapter f Manual Page”  (manpageXXf) 22.5 on page 3478
⇒ “Foundation Library Chapter f07 Manual Page” (manpageXXf07) 22.5 on page 3718
⇒ “Browse”  (LispFunctions) 3.71 on page 952
⇒ “F07ADF”  (LispFunctions) 3.71 on page 952
⇒ “F07AEF”  (LispFunctions) 3.71 on page 952
⇒ “F07FDF”  (LispFunctions) 3.71 on page 952
⇒ “F07FEF”  (LispFunctions) 3.71 on page 952

— link.ht —

\begin{page}{f07}{F07 Linear Equations (LAPACK)}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f07 Manual Page}{manpageXXf07}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagLapack")}
\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{F07ADF}{(|f07adf|)}
\tab{10} (DGETRF) \{LU\} factorization of real
\item
\tab{10} \lag{\it m} by \lag{\it n} matrix
\menulispdownlink{F07AEF}{(|f07aef|)}
\tab{10} (DGETRS) Solution of real system of linear equations, multiple right hand sides, matrix factorized by F07ADF
\menulispdownlink{F07FDF}{(|f07fdf|)}
\tab{10} (DPOTRF) Cholesky factorization of real symmetric positive-definite matrix
\menulispdownlink{F07FEF}{(|f07fef|)}
\tab{10} (DPOTRS) Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FDF
\endmenu
\endscroll
\autobuttons
\end{page}
S – Approximations of Special Functions

⇒ “Foundation Library Chapter's Manual Page” (manpageXXs) 22.6 on page 3754
⇒ “Browse” (LispFunctions) 3.71 on page 952
⇒ “S01EAF” (LispFunctions) 3.71 on page 952
⇒ “S13AAF” (LispFunctions) 3.71 on page 952
⇒ “S13ACF” (LispFunctions) 3.71 on page 952
⇒ “S13ADF” (LispFunctions) 3.71 on page 952
⇒ “S14AAF” (LispFunctions) 3.71 on page 952
⇒ “S14ABF” (LispFunctions) 3.71 on page 952
⇒ “S14BAF” (LispFunctions) 3.71 on page 952
⇒ “S15ADF” (LispFunctions) 3.71 on page 952
⇒ “S15AEF” (LispFunctions) 3.71 on page 952
⇒ “S17ACF” (LispFunctions) 3.71 on page 952
⇒ “S17ADF” (LispFunctions) 3.71 on page 952
⇒ “S17AEF” (LispFunctions) 3.71 on page 952
⇒ “S17AFF” (LispFunctions) 3.71 on page 952
⇒ “S17AGF” (LispFunctions) 3.71 on page 952
⇒ “S17AHF” (LispFunctions) 3.71 on page 952
⇒ “S17AJF” (LispFunctions) 3.71 on page 952
⇒ “S17AKF” (LispFunctions) 3.71 on page 952
⇒ “S17DCF” (LispFunctions) 3.71 on page 952
⇒ “S17DEF” (LispFunctions) 3.71 on page 952
⇒ “S17DGF” (LispFunctions) 3.71 on page 952
⇒ “S17DHF” (LispFunctions) 3.71 on page 952
⇒ “S17DLF” (LispFunctions) 3.71 on page 952
⇒ “S18ACF” (LispFunctions) 3.71 on page 952
⇒ “S18ADF” (LispFunctions) 3.71 on page 952
⇒ “S18AEF” (LispFunctions) 3.71 on page 952
⇒ “S18AFF” (LispFunctions) 3.71 on page 952
⇒ “S18DCF” (LispFunctions) 3.71 on page 952
⇒ “S18DEF” (LispFunctions) 3.71 on page 952
⇒ “S19AAF” (LispFunctions) 3.71 on page 952
⇒ “S19ABF” (LispFunctions) 3.71 on page 952
⇒ “S19ACF” (LispFunctions) 3.71 on page 952
⇒ “S19ADF” (LispFunctions) 3.71 on page 952
⇒ “S20ACF” (LispFunctions) 3.71 on page 952
⇒ “S20ADF” (LispFunctions) 3.71 on page 952
⇒ “S21BAF” (LispFunctions) 3.71 on page 952
⇒ “S21BBF” (LispFunctions) 3.71 on page 952
⇒ “S21BCF” (LispFunctions) 3.71 on page 952
⇒ “S21BDF” (LispFunctions) 3.71 on page 952

— link.ht —
\begin{page}{s}{S \space{2} Approximations of Special Functions}

\beginscroll

What would you like to do?

\begin{menu}
\item Read
  \menuwindowlink{Foundation Library Chapter s Manual Page}{manpageXXs}
\item or
  \menulispwindowlink{Browse}{(|kSearch| "NagSpecialFunctionsPackage")}
\end{menu}

\tab{10} through this chapter

\item or use the routines:
  \menulispdownlink{S01EAF}{(|s01eaf|)} \tab{10} Complex exponential \{em exp(z)\}
  \menulispdownlink{S13AAF}{(|s13aaf|)} \tab{10} Exponential integral \htbitmap{s13aaf2}
  \menulispdownlink{S13ACF}{(|s13acf|)} \tab{10} Cosine integral \{em Ci(x)\}
  \menulispdownlink{S13ADF}{(|s13adf|)} \tab{10} Sine integral \{em Si(x)\}
  \menulispdownlink{S14AAF}{(|s14aaf|)} \tab{10} Gamma function \Gamma
  \menulispdownlink{S14ABF}{(|s14abf|)} \tab{10} Log Gamma function \{em ln \Gamma\}
  \menulispdownlink{S14BAF}{(|s14baf|)} \tab{10} Incomplete gamma functions P(a,x) and Q(a,x)
  \menulispdownlink{S15ADF}{(|s15adf|)} \tab{10} Complement of error function \{em erfc x \}
  \menulispdownlink{S15AEF}{(|s15aef|)} \tab{10} Error function \{em erf x\}
  \menulispdownlink{S17ACF}{(|s17acf|)} \tab{10} Bessel function \htbitmap{s17acf}
  \menulispdownlink{S17ADF}{(|s17adf|)} \tab{10} Bessel function \htbitmap{s17adf}
  \menulispdownlink{S17AEF}{(|s17aef|)} \tab{10} Bessel function \htbitmap{s17aef}
  \menulispdownlink{S17AFF}{(|s17aff|)} \tab{10} Bessel function \htbitmap{s17aff}
  \menulispdownlink{S17AGF}{(|s17agf|)} \tab{10} Airy function \{em Ai(x)\}
  \menulispdownlink{S17AHF}{(|s17ahf|)} \tab{10} Airy function \{em Bi(x)\}
  \menulispdownlink{S17AJF}{(|s17ajf|)} \tab{10} Airy function \{em Ai'(x)\}
  \menulispdownlink{S17AKF}{(|s17akf|)} \tab{10} Airy function \{em Bi'(x)\}
  \menulispdownlink{S17DCF}{(|s17dcf|)} \tab{10} Bessel function \htbitmap{s17dcf}, real a \space{1}
  \htbitmap{great=} 0, complex z, v = 0,1,2,...
  \menulispdownlink{S17DEF}{(|s17def|)} \tab{10} Bessel function \htbitmap{s17def}, real a \space{1}
  \htbitmap{great=} 0, complex z, v = 0,1,2,...
Airy function \( \text{Ai}(z) \) and \( \text{Ai}'(z) \), complex \( z \)

Airy function \( \text{Bi}(z) \) and \( \text{Bi}'(z) \), complex \( z \)

Hankel function \( \text{Bi}(z) \) and \( \text{Bi}'(z) \), complex \( z \)

\( j = 1, 2 \), real \( a \), \( \text{v} = 0, 1, 2, \ldots \)

Modified Bessel function \( \text{ber} x \)

Modified Bessel function \( \text{bei} x \)

Modified Bessel function \( \text{ker} x \)

Modified Bessel function \( \text{kei} x \)

Fresnel integral \( \text{S}(x) \)

Fresnel integral \( \text{C}(x) \)

Degenerate symmetrised elliptic integral of 1st kind

Symmetrised elliptic integral of 1st kind

Symmetrised elliptic integral of 2nd kind

Symmetrised elliptic integral of 3rd kind

}\end{page}
3.64 list.ht

List

⇒ “notitle” (ugxListCreatePage) 3.64 on page 867
⇒ “notitle” (ugxListAccessPage) 3.64 on page 869
⇒ “notitle” (ugxListChangePage) 3.64 on page 875
⇒ “notitle” (ugxListOtherPage) 3.64 on page 879
⇒ “notitle” (ugxListDotPage) 3.64 on page 882

A \spadgloss{list} is a finite collection of elements in a specified
order that can contain duplicates.
A list is a convenient structure to work with because it is easy
to add or remove elements and the length need not be constant.
There are many different kinds of lists in Axiom, but the
default types (and those used most often) are created by the
\spadtype{List} constructor.
For example, there are objects of type \spadtype{List Integer},
\spadtype{List Float} and \spadtype{List Polynomial Fraction Integer}.
Indeed, you can even have \spadtype{List List List Boolean}
(that is, lists of lists of lists of Boolean values).
You can have lists of any type of Axiom object.
Creating Lists

\begin{page}{ugxListCreatePage}{Creating Lists}
\beginscroll

The easiest way to create a list with, for example, the elements \spad{2, 4, 5, 6} is to enclose the elements with square brackets and separate the elements with commas.
\xtc{The spaces after the commas are optional, but they do improve the readability.}
\spadpaste{[2, 4, 5, 6]}
\xtc{To create a list with the single element \spad{1}, you can use either \spad{[1]} or the operation \spadfunFrom{list}{List}.}
\spadpaste{[1]}
\xtc{Once created, two lists \spad{k} and \spad{m} can be concatenated by issuing \spad{append(k,m)}. \spadfunFrom{append}{List} does \textit{not} physically join the lists, but rather produces a new list with the elements coming from the two arguments.}
\spadpaste{append([1,2,3],[5,6,7])}
\xtc{Use \spadfunFrom{cons}{List} to append an element onto the front of a list.}
\spadpaste{cons(10,[9,8,7])}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxListCreatePagePatch1}
\begin{paste}{ugxListCreatePageFull1}{ugxListCreatePageEmpty1}
\pastebutton{ugxListCreatePageFull1}{\hidepaste}
\end{paste}
\end{patch}
\begin{verbatim}
(1) [2,4,5,6]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\begin{patch}{ugxListCreatePageEmpty1}
\begin{paste}{ugxListCreatePageEmpty1}{ugxListCreatePagePatch1}
\pastebutton{ugxListCreatePageEmpty1}{\showpaste}
\tab{5}\spadcommand{[2, 4, 5, 6]}
\end{paste}
\end{patch}
\begin{patch}{ugxListCreatePagePatch2}
\begin{paste}{ugxListCreatePageFull2}{ugxListCreatePageEmpty2}
\pastebutton{ugxListCreatePageFull2}{\hidepaste}
\tab{5}\spadcommand{[1]}
\indentrel{3}\begin{verbatim}
(2) [1]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
\begin{patch}{ugxListCreatePagePatch3}
\begin{paste}{ugxListCreatePageFull3}{ugxListCreatePageEmpty3}
\pastebutton{ugxListCreatePageFull3}{\hidepaste}
\tab{5}\spadcommand{list(1)}
\indentrel{3}\begin{verbatim}
(3) [1]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
\begin{patch}{ugxListCreatePagePatch4}
\begin{paste}{ugxListCreatePageFull4}{ugxListCreatePageEmpty4}
\pastebutton{ugxListCreatePageFull4}{\hidepaste}
\tab{5}\spadcommand{append([1,2,3],[5,6,7])}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
3.64. LIST.HT

(4) \[1,2,3,5,6,7\] \hspace{1cm} \textbf{Type: List PositiveInteger}

(5) \[10,9,8,7\] \hspace{1cm} \textbf{Type: List PositiveInteger}

---

**Accessing List Elements**

--- list.ht ---

To determine whether a list has any elements, use the operation\texttt{empty?\{List\}.}

Alternatively, equality with the list constant \texttt{nil\{List\}} can be tested.
We’ll use this in some of the following examples.
}
\spadpaste{k := [4,3,7,3,8,5,9,2] \bound{k}}
}
\xtc{
Each of the next four expressions extracts the \spadfunFrom{first}{List}
 element of \spad{k}.
}
\spadpaste{first k \free{k}}
}
\xtc{
}\{\{\\}
\spadpaste{k.first \free{k}}
}
\xtc{
}\{\{\\}
\spadpaste{k.1 \free{k}}
}
\xtc{
}\{\{\\}
\spadpaste{k(1) \free{k}}
}
The last two forms generalize to \spad{k.i} and \spad{k(i)},
 respectively, where
\texth{$ 1 \leq i \leq n$}\{\spad{1 <= i <= n}\}
and
\spad{n} equals the length of \spad{k}.
\xtc{
This length is calculated by \spad{opFrom(\#){List}}.
}
\spadpaste{n := \#k \free{k}}
}
Performing an operation such as \spad{k.i} is sometimes
 referred to as {\it indexing into k} or
 {\it elting into k}.
The latter phrase comes about because the name of the operation
 that extracts elements is called \spadfunFrom{elt}{List}.
That is, \spad{k.3} is just alternative syntax for \spad{elt(k,3)}.
It is important to remember that list indices
 begin with 1.
If we issue \spad{k := [1,3,2,9,5]} then \spad{k.4}
 returns \spad{9}.
It is an error to use an index that is not in the range from
\spad{1} to the length of the list.
The last element of a list is extracted by any of the following three expressions.

\{
\spadpaste{last k \free{k}}
\}
\xtc{
\spadpaste{k.last \free{k}}
}\xtc{
This form computes the index of the last element and then extracts the element from the list.
}\{ 
\spadpaste{k.(\#k) \free{k}}
\}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
(3) [4,3,7,3,8,5,9,2]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(4) 4
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(5) 4
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
(6) 4
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(7) 4
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(8) 8
Type: PositiveInteger
\end{verbatim}
(9) 2
Type: PositiveInteger

(10) 2
Type: PositiveInteger

(11) 2
Type: PositiveInteger
Changing List Elements

\begin{page}{ugxListChangePage}{Changing List Elements}
\beginscroll

\labelSpace{4pc}
\xtc{
We’ll use this in some of the following examples.
}{
\spadpaste{k := \{4,3,7,3,8,5,9,2\} \bound{k}}
}
\xtc{
List elements are reset by using the \spad{k.i} form on
the left-hand side of an assignment.
This expression resets the first element of \spad{k} to \spad{999}.
}{
\spadpaste{k.1 := 999 \free{k}\bound{k1}}
}
\xtc{
As with indexing into a list, it is an error to use an index
that is not within the proper bounds.
Here you see that \spad{k} was modified.
}{
\spadpaste{k \free{k1}}
}

The operation that performs the assignment of an element to a particular
position in a list is called \spadfunFrom{setelt}{List}.
This operation is \{it destructive\} in that it changes the list.
In the above example, the assignment returned the value \spad{999} and
\spad{k} was modified.
For this reason, lists are called \spadglos{mutable} objects: it is
possible to change part of a list (mutate it) rather than always returning
a new list reflecting the intended modifications.
\xtc{
Moreover, since lists can share structure, changes to one list can
sometimes affect others.
}{
\spadpaste{k := \{1,2\} \bound{k2}}
}
\xtc{
}{
\spadpaste{m := \spad{cons(0,k)} \free{k2}\bound{m}}
}
\xtc{
Change the second element of \spad{m}.
}{
}
\spadpaste{\texttt{m} := 99 \free{m}\bound{m2}}
\}
\xtc{
See, \spad{m} was altered.
}\{
\spadpaste{m \free{m2}}
\}
\xtc{
But what about \spad{k}? It changed too!
}\{
\spadpaste{k \free{m2 k2}}
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxListChangePagePatch1}
\begin{paste}{ugxListChangePageFull1}{ugxListChangePageEmpty1}
\pastebutton{ugxListChangePageFull1}{\hidepaste}
\tab{5}\spadcommand{k := [4,3,7,3,8,5,9,2]\bound{k }}
\indentrel{3}\begin{verbatim}
(1) [4,3,7,3,8,5,9,2]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxListChangePageEmpty1}
\begin{paste}{ugxListChangePageEmpty1}{ugxListChangePagePatch1}
\pastebutton{ugxListChangePageEmpty1}{\showpaste}
\tab{5}\spadcommand{k := [4,3,7,3,8,5,9,2]\bound{k }}
\end{paste}
\end{patch}

\begin{patch}{ugxListChangePagePatch2}
\begin{paste}{ugxListChangePageFull2}{ugxListChangePageEmpty2}
\pastebutton{ugxListChangePageFull2}{\hidepaste}
\tab{5}\spadcommand{k.1 := 999\free{k }\bound{k1 }}
\indentrel{3}\begin{verbatim}
(2) 999
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxListChangePageEmpty2}
\begin{paste}{ugxListChangePageEmpty2}{ugxListChangePagePatch2}
\pastebutton{ugxListChangePageEmpty2}{\showpaste}
\tab{5}\spadcommand{k.1 := 999\free{k }\bound{k1 }}
\end{paste}
\end{patch}
\begin{verbatim}(3) [999, 3, 7, 3, 8, 5, 9, 2]
Type: List PositiveInteger
\end{verbatim}

\begin{verbatim}(4) [1, 2]
Type: List PositiveInteger
\end{verbatim}

\begin{verbatim}(5) [0, 1, 2]
Type: List Integer
\end{verbatim}
\spadcommand{m.2 := 99\free{m }\bound{m2 }}

\begin{verbatim}
(6) 99
Type: PositiveInteger
\end{verbatim}

\spadcommand{k\free{m2 k2 }}

\begin{verbatim}
(8) [99,2]
Type: List PositiveInteger
\end{verbatim}
Other Functions

\begin{page}{ugxListOtherPage}{Other Functions}
\beginscroll
\labelSpace{3pc}
\xtc{
An operation that is used frequently in list processing is that which returns all elements in a list after the first element.
}\{
\spadpaste{k := [1,2,3] \bound{k}}
\}
\xtc{
Use the \spadfunFrom{rest}{List} operation to do this.
}\{
\spadpaste{rest k \free{k}}
\}
\xtc{
To remove duplicate elements in a list \spad{k}, use \spadfunFrom{removeDuplicates}{List}.
}\{
\spadpaste{removeDuplicates [4,3,4,3,5,3,4]}
\}
\xtc{
To get a list with elements in the order opposite to those in a list \spad{k}, use \spadfunFrom{reverse}{List}.
}\{
\spadpaste{reverse [1,2,3,4,5,6]}
\}
\xtc{
To test whether an element is in a list, use \spadfunFrom{member?}{List}:
\spad{member?([a,k])} returns \spad{true} or \spad{false} depending on whether \spad{a} is in \spad{k} or not.
}\{
\spadpaste{member?(1/2,[3/4,5/6,1/2])}
\}
\xtc{}
\{
\spadpaste{member?(1/12,[3/4,5/6,1/2])}
\}
\endscroll

As an exercise, the reader should determine how to get a list containing all but the last of the elements in a given non-empty list \spad{k}.\footnote{\spad{reverse(rest(reverse(k)))} works.}
\autobuttons

\begin{patch}{ugxListOtherPagePatch1}
\begin{paste}{ugxListOtherPageFull1}{ugxListOtherPageEmpty1}
\tab{5}\spadcommand{k := [1,2,3]\bound{k }}
\indentrel{3}\begin{verbatim}
(1) [1,2,3]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxListOtherPageEmpty1}
\begin{paste}{ugxListOtherPageEmpty1}{ugxListOtherPagePatch1}
\pastebutton{ugxListOtherPageEmpty1}{\showpaste}
\tab{5}\spadcommand{k := [1,2,3]\bound{k }}
\end{paste}
\end{patch}

\begin{patch}{ugxListOtherPagePatch2}
\begin{paste}{ugxListOtherPageFull2}{ugxListOtherPageEmpty2}
\tab{5}\spadcommand{rest k\free{k }}
\indentrel{3}\begin{verbatim}
(2) [2,3]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxListOtherPageEmpty2}
\begin{paste}{ugxListOtherPageEmpty2}{ugxListOtherPagePatch2}
\pastebutton{ugxListOtherPageEmpty2}{\showpaste}
\tab{5}\spadcommand{rest k\free{k }}
\end{paste}
\end{patch}

\begin{patch}{ugxListOtherPagePatch3}
\begin{paste}{ugxListOtherPageFull3}{ugxListOtherPageEmpty3}
\tab{5}\spadcommand{removeDuplicates [4,3,4,3,5,3,4]}
\indentrel{3}\begin{verbatim}
(3) [4,3,5]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxListOtherPageEmpty3}
\begin{paste}{ugxListOtherPageEmpty3}{ugxListOtherPagePatch3}
\pastebutton{ugxListOtherPageEmpty3}{\showpaste}
\tab{5}\spadcommand{removeDuplicates [4,3,4,3,5,3,4]}
\end{paste}
\end{patch}
\begin{itemize}
\item \texttt{reverse \([1, 2, 3, 4, 5, 6]\)}
\begin{verbatim}
(4) \[6, 5, 4, 3, 2, 1\]
Type: List PositiveInteger
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \texttt{member?\((1/2, \{3/4, 5/6, 1/2\})\)}
\begin{verbatim}
(5) true
Type: Boolean
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \texttt{member?\((1/12, \{3/4, 5/6, 1/2\})\)}
\begin{verbatim}
(6) false
Type: Boolean
\end{verbatim}
\end{itemize}
CHAPTER 3. HYPERDOC PAGES

Dot, Dot

| list.ht |

\begin{page}{ugxListDotPage}{Dot, Dot}
\beginscroll

Certain lists are used so often that Axiom provides an easy way of constructing them. If \spad{n} and \spad{m} are integers, then \spad{expand \[n..m\]} creates a list containing \spad{n, n+1, ... m}. If \spad{n > m} then the list is empty. It is actually permissible to leave off the \spad{m} in the dot-dot construction (see below).

\xtc{
The dot-dot notation can be used more than once in a list construction and with specific elements being given. Items separated by dots are called \{it segments.\}
}{
\spadpaste{[1..3,10,20..23]}
}
\xtc{
Segments can be expanded into the range of items between the endpoints by using \spadfunFrom{expand}{Segment}.
}{
\spadpaste{expand \[1..3,10,20..23\]}
}
\xtc{
What happens if we leave off a number on the right-hand side of \spadopFrom{..}{UniversalSegment}?
}{
\spadpaste{expand \[1..\]}
}
What is created in this case is a \spadtype{Stream} which is a generalization of a list. See \downlink{`Stream'}{StreamXmpPage}\ignore{Stream} for more information.
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxListDotPagePatch1}
\begin{paste}{ugxListDotPageFull1}{ugxListDotPageEmpty1}
\pastebutton{ugxListDotPageFull1}{\hidepaste}
\tab{5}\spadcommand{[[1..3,10,20..23]]}
\indentrel{3}\begin{verbatim}
3.64. **LIST.HT**

(1) $[1..3,10..10,20..23]$

Type: List Segment PositiveInteger

(2) $[1,2,3,10,20,21,22,23]$

Type: List Integer

(3) $[1,2,3,4,5,6,7,8,9,10,\ldots]$

Type: Stream Integer
3.65 lodo.ht

LinearOrdinaryDifferentialOperator

⇒ “notitle” (ugxLinearOrdinaryDifferentialOperatorSeriesPage) 3.65 on page 884
— lodo.ht —

\begin{page}{LinearOrdinaryDifferentialOperatorXmpPage}
{LinearOrdinaryDifferentialOperator}
\beginscroll

\spadtype{LinearOrdinaryDifferentialOperator(A, diff)} is the domain of linear ordinary differential operators with coefficients in a ring \spad{A} with a given derivation. %This includes the cases of operators which are polynomials in \spad{D}
%acting upon scalar or vector expressions of a single variable. %The coefficients of the operator polynomials can be integers, rational
%functions, matrices or elements of other domains. \showBlurb{LinearOrdinaryDifferentialOperator}

\beginmenu
\menudownlink{9.44.1. Differential Operators with Series Coefficients} %\showBlurb{ugxLinearOrdinaryDifferentialOperatorSeriesPage}
\endmenu
\endscroll
\autobuttons
\end{page}


Differential Operators with Series Coefficients
— lodo.ht —

\begin{page}{ugxLinearOrdinaryDifferentialOperatorSeriesPage}
{Differential Operators with Series Coefficients}
\beginscroll

\noindent \bf Problem:
Find the first few coefficients of $\exp(x)/x^i$ of \spad{Dop phi} where
\verbatim\begin{verbatim}
Dop := D**3 + G/x**2 * D + H/x**3 - 1
phi := sum(s[i]*exp(x)/x**i, i = 0..)
\end{verbatim}

\end{verbatim}
\bf Solution:

Define the differential.
\spad{Dx: \textit{LODO}(\textit{EXPR INT}, \textit{f} \mapsto \textit{D}(\textit{f}, \textit{x}))}

Now define the differential operator \spad{\textit{Dop}}.
\spad{\textit{Dop}:= \textit{Dx}^3 + \frac{\textit{G}/\textit{x}^2\textit{Dx} + \textit{H}/\textit{x}^3}{\textit{x}} - 1}

\spad{n == 3}
\spad{\phi == \textit{reduce}(+,[\textit{s}[i]*\exp(\textit{x})/\textit{x}^i \text{ for } \textit{i} \text{ in } 0..\text{n}])}
\spad{\phi1 == \textit{Dop}(\phi) / \exp x}
\spad{\phi2 == \phi1 \times (\textit{n+3})}
\spad{\phi3 == \textit{retract}(\phi2)@(\textit{POLY INT})}
\spad{\textit{pans} == \phi3 :: \textit{UP}(\textit{x}, \textit{POLY INT})}
\spad{\textit{pans1} == [\text{coefficient}(\textit{pans}, (\textit{n+3}-i) \text{ :: NNI}) \text{ for } \textit{i} \text{ in } 2..\text{n+1}]}

\end{verbatim}
\spadpaste{leq == solve(pans1, [subscript(s, [i]) for i in 1..n])}
\bound{leq}\free{pans1}
}
\xtc{
Evaluate this for several values of \spad{n}.
}{
\spadpaste{leq \free{n3 leq}}
}
\xtc{
}{
\spadpaste{n==4 \bound{n4}}
}
\xtc{
}{
\spadpaste{leq \free{n4 leq}}
}
\xtc{
}{
\spadpaste{n==7 \bound{n7}}
}
\xtc{
}{
\spadpaste{leq \free{n7 leq}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch1}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull1}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty1}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull1}{\hidepaste}
\tab{5}\spadcommand{Dx: LODO(EXPR INT, f +-> D(f, x))\bound{Dxd}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty1}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty1}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch1}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty1}{\showpaste}
\tab{5}\spadcommand{Dx: LODO(EXPR INT, f +-> D(f, x))\bound{Dxd}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch2}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull2}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty2}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull2}{\hidepaste}
\tab{5}\spadcommand{Dx := D()\free{Dxd}}\bound{Dx}
\indentrel{3}\begin{verbatim}
(2) D
\end{verbatim}
\end{paste}\end{patch}
Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)

\indentrel{-3}\end{verbatim}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty2}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty2}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch2}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty2}{\showpaste}
\tab{5}\spadcommand{Dx := D()\free{Dxd }\bound{Dx }}
\end{paste}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch3}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull3}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty3}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull3}{\hidepaste}
\tab{5}\spadcommand{Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1\free{Dx }\bound{Dop }}
\indentrel{3}\begin{verbatim}
3
3 G - x + H
(3) D + D +
2 3
x x
Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty3}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty3}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch3}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty3}{\showpaste}
\tab{5}\spadcommand{Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1\free{Dx }\bound{Dop }}
\end{patch}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch4}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull4}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty4}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull4}{\hidepaste}
\tab{5}\spadcommand{n == 3\bound{n3 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty4}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty4}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch4}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty4}{\showpaste}
\tab{5}\spadcommand{n == 3\bound{n3 }}
\end{paste}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch5}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull5}{ugxLinearOrdinaryDifferentialOperatorSeriesPageEmpty5}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorSeriesPageFull5}{\hidepaste}
\tab{5}\spadcommand{phi == reduce(+,[subscript(s, [i])*exp(x)/x**i for i in 0..n])\bound{phi }}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{verbatim}
\spadcommand{phi == reduce(+,[\text{\texttt{subscript(s,[i])}}*\text{\texttt{exp(x)/x**i for i in 0..n}}])\text{\texttt{bound{phi }}}} 
\end{verbatim}

\begin{verbatim}
\spadcommand{phi1 == Dop(phi) / exp x\text{\texttt{bound{phi1 }}}} 
\end{verbatim}

\begin{verbatim}
\spadcommand{phi2 == phi1 *x**(n+3)} 
\end{verbatim}

\begin{verbatim}
\spadcommand{phi3 == retract(phi2)@(POLY INT)} 
\end{verbatim}
\begin{spad}{\phi_3 == \text{retract} (\phi_2) \text{@ (POLY INT)}}\end{spad}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spad}{\text{pans} == \phi_3 \text{::UP}(x, \text{POLY INT})}\end{spad}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spad}{\text{pans}_1 == [\text{coefficient} (\text{pans}, (n+3-i) \text{:: NNI}) \text{ for } i \text{ in } 2..n+1]}\end{spad}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spad}{\text{leq} == \text{solve} (\text{pans}_1, [\text{subscript} (s, \text{i}) \text{ for } i \text{ in } 1..n])}\end{spad}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
(12)
\[
\begin{array}{cccc}
2 & 3s H + s G + 6s G \\
0 & 0 & 0 & 0 \\
\end{array}
\]
\]
\[
\begin{array}{cccc}
1 & 3 & 2 & 18 \\
3 & 2 & 6 \left(9s G + 54s H\right) + s G + 18s G + 72s G \\
0 & 0 & 0 & 0 \\
3 & 162 \\
\end{array}
\]
\end{verbatim}
\end{verbatim}

Type: List List Equation Fraction Polynomial Integer
\end{verbatim}
\end{verbatim}

(14)
\[
\begin{array}{cccc}
\]
\begin{verbatim}
s = , s = ,
1 3 2 18
(9s + 54s )H + s G + 18s G + 72s G
0 0 0 0 0
s = ,
3 162
s =
4
2 2 4
27s H + (18s G + 378s H + 1296s )H + s G
0 0 0 0 0
+ 3 2
36s G + 396s G + 1296s G
0 0 0
/ 1944
\end{verbatim}
\indentrel{-3}
\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorSeriesPagePatch16}
\begin{verbatim}

\end{verbatim}
\indentrel{-3}
\end{patch}
\begin{verbatim}
(16)
[ 2
  s G 3s H + s G + 6s G
  0 0 0 0 0

[ s = , s = ,
  1 3 2 18
  3 2
(9s G + 54s )H + s G + 18s G + 72s G
  0 0 0 0 0
s = ,
  3 162
s =
  4

 2 2 4
27s H + (18s G + 378s G + 1296s )H + s G
  0 0 0 0 0
+
 3 2
36s G + 396s G + 1296s G
  0 0 0
/
1944
,

s =
  5

 2
(135s G + 2268s )H
  0 0
+
 3 2
(30s G + 1350s G + 16416s G + 38880s )H
  0 0 0 0 0
+
 5 4 3 2
s G + 60s G + 1188s G + 9504s G + 25920s G
  0 0 0 0 0
/
29160
,

s =
  6

 3 2
2
\end{verbatim}
\[
\begin{align*}
405s \, H &+ (405s \, G + 18468s \, G + 174960s) \, H \\
&+ 45s \, G + 3510s \, G + 88776s \, G + 777600s \, G \\
&+ 1166400s \\
&* \ H \\
&+ 6 \ 5 \ 4 \ 3 \\
s \ G + 90s \ G + 2628s \ G + 27864s \ G \\
&+ 2 \\
&90720s \ G \\
&/ \\
&524880 \\
,
\end{align*}
\]

\[
s = 7 \\
(2835s \, G + 91854s) \, H \\
&+ 3 \\
945s \, G + 81648s \ G + 2082996s \, G \\
&+ 14171760s \\
&* \\
&2 \\
&H \\
&+ 5 \ 4 \ 3 \\
63s \ G + 7560s \ G + 317520s \ G \\
&+ 2 \\
5554008s \ G + 34058880s \ G \\
&* \\
&H \\
&+ 7 \ 6 \ 5 \ 4
\]
3.66  lodo1.ht

LinearOrdinaryDifferentialOperator1

⇒ “notitle” (ugxLinearOrdinaryDifferentialOperatorOneRatPage) 3.66 on page 895

---

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary differential operators with coefficients in the differential ring \( \text{spad}(A) \).

This includes the cases of operators which are polynomials in \( \text{spad}(D) \) acting upon scalar or vector expressions of a single variable.

The coefficients of the operator polynomials can be integers, rational functions, matrices or elements of other domains.

\showBlurb{LinearOrdinaryDifferentialOperator1}
Differential Operators with Rational Function Coefficients

— lodo1.ht —

We begin by defining \spad{RF} to be the rational functions in \spad{x} with integer coefficients and \spad{Dx} to be the differential operator for \spad{d/dx}.

\spadpaste{RF := Fraction UnivariatePolynomial('x, Integer) \bound{RF0}}
\xtc{\spadpaste{x : RF := 'x \free{RF0}\bound{RF}}}
\xtc{\spadpaste{Dx : LODO1 RF := D()\bound{Dx}\free{RF}}} Operators are created using the usual arithmetic operations.
\spadpaste{b : LODO1 RF := 3*x**2*Dx**2 + 2*Dx + 1/x \free{Dx}\bound{b}}
\spadpaste{a : LODO1 RF := b*(5*x*Dx + 7) \free{b Dx}\bound{a}} Operator multiplication corresponds to functional composition.

Operator multiplication corresponds to functional composition.
Since operator coefficients depend on \spad{x}, the multiplication is not commutative.

When the coefficients of operator polynomials come from a field, as in this case, it is possible to define operator division. Division on the left and division on the right yield different results when the multiplication is non-commutative.

The results of \spadfunFrom{leftDivide}{LinearOrdinaryDifferentialOperator1} and \spadfunFrom{rightDivide}{LinearOrdinaryDifferentialOperator1} are quotient-remainder pairs satisfying:

\spad{leftDivide(a,b) = \[q, r\]} such that \spad{a = b*q + r} \newline
\spad{rightDivide(a,b) = \[q, r\]} such that \spad{a = q*b + r} \newline

In both cases, the \spad{degree} of the remainder, \spad{r}, is less than the degree of \spad{b}.

The operations of left and right division are so-called because the quotient is obtained by dividing \spad{a} on that side by \spad{b}.

Operations \spadfunFrom{rightQuotient}{LinearOrdinaryDifferentialOperator1} and \spadfunFrom{rightRemainder}{LinearOrdinaryDifferentialOperator1} are available if only one of the quotient or remainder are of
This is the quotient from right division.
}\spad{\texttt{rightQuotient(a,b) \free{a b}}}
}\xtc{
This is the remainder from right division.
The corresponding ‘left’ functions
\spad{\texttt{leftQuotient(a,b)} \free{a b}} and
\spad{\texttt{leftRemainder(a,b)} \free{a b}}
are also available.
}\spad{\texttt{rightRemainder(a,b) \free{a b}}}
}\xtc{
For exact division, the operations
\spad{\texttt{leftExactQuotient(a,b)}} and
\spad{\texttt{rightExactQuotient(a,b)}}
are supplied. These return the quotient but only if the remainder is zero.
The call \spad{\texttt{rightExactQuotient(a,b)}} would yield an error.
}\spad{\texttt{leftExactQuotient(a,b) \free{a b}}}
}\xtc{
The division operations allow the computation of left and right
Greatest common divisors (\spad{\texttt{leftGcd(a,b) \free{a b}}}) and
\spad{\texttt{rightGcd(a,b) \free{a b}}}) via
remainder sequences, and consequently the computation of left and
right least common multiples (\spad{\texttt{rightLcm(a,b) \free{a b}}}) and
\spad{\texttt{leftLcm(a,b) \free{a b}}}).
}\spad{e := \texttt{leftGcd(a,b) \bound{e} \free{a b}}}
}\xtc{
Note that a greatest common divisor doesn’t necessarily divide \spad{a} and
\spad{b} on both sides. Here the left greatest common divisor does not divide \spad{a} on the right.
}\spad{\texttt{leftRemainder(a, e) \free{a e}}}
}\xtc{
}\spad{\texttt{rightRemainder(a, e) \free{a e}}}

Similarly, a least common multiple is not necessarily divisible from both sides.

\[
\text{f := rightLcm(a, b)}
\]

\[
\text{rightRemainder(f, b)}
\]

\[
\text{leftRemainder(f, b)}
\]
\begin{verbatim}
mf: 1
Dx : LODO1 RFZ := D()

(3) D
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
\end{verbatim}

\begin{verbatim}
b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x

(4) 3x D + 2D + \frac{1}{x}
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
\end{verbatim}

\begin{verbatim}
a : LODO1 RFZ := b*(5*x*Dx + 7)

(5) 15x D + (51x + 10x)D + 29D + \frac{1}{x}
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
\end{verbatim}
\spadcommand{a : LODO1 RFZ := b*(5*x*Dx + 7)}
\begin{verbatim}
4
x + 1
(6)
2
x
\end{verbatim}
\free{b Dx \bound{a }}
\end{paste}\end{patch}

\spadcommand{p := x**2 + 1/x**2} \free{RFZ}
\indentrel{3}\begin{verbatim}
4
4
x + 1
(6)
2
x
\end{verbatim}
\free{RFZ}
\end{patch}

\spadcommand{(a*b - b*a) p} \free{a b p}
\indentrel{3}\begin{verbatim}
4
- 75x + 540x - 75
(7)
4
x
\end{verbatim}
\free{RFZ}
\end{patch}

\spadcommand{ld := leftDivide(a,b)} \free{a b}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\free{RFZ}
\end{patch}
(8) \[ \text{quotient}= 5x D + 7, \text{remainder}= 0 \]

Type: Record(\text{quotient: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial}(x, \text{Integer}), \text{remainder: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial}(x, \text{Integer}))

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty8}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty8}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch8}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty8}{\showpaste}
\tab{5}\spadcommand{ld := leftDivide(a,b)\bound{ld }\free{a b }}\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch9}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull9}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty9}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch9}{\hidepaste}
\tab{5}\spadcommand{a = b * ld.quotient + ld.remainder}\free{a b ld }\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch10}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull10}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty10}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch10}{\hidepaste}
\tab{5}\spadcommand{rd := rightDivide(a,b)\bound{rd }\free{a b }}\end{paste}\end{patch}

(9) \[ 15x D + (51x + 10x)D + 29D + \]
\[ \begin{array}{c}
15x D + (51x + 10x)D + 29D + \\
\end{array} \]

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial\(x, \text{Integer}\)

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty9}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty9}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch9}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty9}{\showpaste}
\tab{5}\spadcommand{a = b * ld.quotient + ld.remainder}\free{a b ld }\end{paste}\end{patch}

\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch10}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull10}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty10}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch10}{\hidepaste}
\tab{5}\spadcommand{rd := rightDivide(a,b)\bound{rd }\free{a b }}\end{paste}\end{patch}

(10) \[ \text{quotient}= 5x D + 7, \text{remainder}= 10D + \]

Type: Record(\text{quotient: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial}(x, \text{Integer}), \text{remainder: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial}(x, \text{Integer}))

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(11)
3 3 2 2 7
15x D + (51x + 10x)D + 29D +
\end{verbatim}

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

\begin{verbatim}
(12) 5x D + 7
\end{verbatim}

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)

\begin{verbatim}
(13) 10D +
\end{verbatim}

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
3.66. \( LODO1.HT \)

\begin{verbatim}
rightRemainder(a,b)
\end{verbatim}

\begin{verbatim}
leftExactQuotient(a,b)
\end{verbatim}

\begin{verbatim}
leftGcd(a,b)
\end{verbatim}

\begin{verbatim}
leftRemainder(a, e)
\end{verbatim}

\begin{verbatim}

\end{verbatim}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty16}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty16}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch16}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty16}{\showpaste}
\tab{5}\spadcommand{leftRemainder(a, e)\free{a e }}
\end{paste}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch17}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull17}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty17}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull17}{\hidepaste}
\tab{5}\spadcommand{rightRemainder(a, e)\free{a e }}
\indentrel{3}\begin{verbatim}
(17) 10D + \\
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty17}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty17}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch17}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty17}{\showpaste}
\tab{5}\spadcommand{rightRemainder(a, e)\free{a e }}
\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch18}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull18}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty18}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull18}{\hidepaste}
\tab{5}\spadcommand{f := rightLcm(a,b)\bound{f }\free{a b }}
\indentrel{3}\begin{verbatim}
(18) 15x D + (51x + 10x)D + 29D + \\
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty18}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty18}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch18}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty18}{\showpaste}
\tab{5}\spadcommand{f := rightLcm(a,b)\bound{f }\free{a b }}
\end{patch}
\begin{patch}{ugxLinearOrdinaryDifferentialOperatorOneRatPagePatch19}
\begin{paste}{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull19}{ugxLinearOrdinaryDifferentialOperatorOneRatPageEmpty19}
\pastebutton{ugxLinearOrdinaryDifferentialOperatorOneRatPageFull19}{\hidepaste}
\tab{5}\spadcommand{rightRemainder(f, b)\free{f b }}
\indentrel{3}\begin{verbatim}
(19) 10D + \\
\end{verbatim}
\indentrel{-3}\end{patch}
LinearOrdinaryDifferentialOperator2

⇒ “notitle” (ugxLinearODEOperatorTwoConstPage) 3.67 on page 906
⇒ “notitle” (ugxLinearODEOperatorTwoMatrixPage) 3.67 on page 911
— lodo2.ht —
polynomials in \spad{D} acting upon scalar or vector expressions of a single variable. The coefficients of the operator polynomials can be integers, rational functions, matrices or elements of other domains.

\showBlurb{LinearOrdinaryDifferentialOperator2}

\beginmenu
\menudownlink{9.46.1. Differential Operators with Constant Coefficients}}
\menudownlink{ugxLinearODEOperatorTwoConstPage}
\menuendlink
\menuendlink{9.46.2. Differential Operators with Matrix Coefficients Operating on Vectors}}
\menudownlink{ugxLinearODEOperatorTwoMatrixPage}
\endmenu
\endscroll
\autobuttons
\end{page}

\begin{page}{ugxLinearODEOperatorTwoConstPage}
\{Differential Operators with Constant Coefficients\}
\beginscroll

This example shows differential operators with rational number coefficients operating on univariate polynomials.

\labelSpace{3pc}
\xtc{We begin by making type assignments so we can conveniently refer to univariate polynomials in \spad{x} over the rationals.}
\{\spadpaste{Q := Fraction Integer \bound{Q}}\}
\xtc{}
\{\spadpaste{PQ := UnivariatePolynomial('x, Q) \free{Q}\bound{PQ0}}\}
\xtc{}
\{\spadpaste{x: PQ := 'x \free{PQ0}\bound{x}}\}
\xtc{}

---

Differential Operators with Constant Coefficients

— lodo2.ht —

\begin{page}{ugxLinearODEOperatorTwoConstPage}
\{Differential Operators with Constant Coefficients\}
\beginscroll

This example shows differential operators with rational number coefficients operating on univariate polynomials.

\labelSpace{3pc}
\xtc{We begin by making type assignments so we can conveniently refer to univariate polynomials in \spad{x} over the rationals.}
\{\spadpaste{Q := Fraction Integer \bound{Q}}\}
\xtc{}
\{\spadpaste{PQ := UnivariatePolynomial('x, Q) \free{Q}\bound{PQ0}}\}
\xtc{}
\{\spadpaste{x: PQ := 'x \free{PQ0}\bound{x}}\}
\xtc{}}
Now we assign \texttt{Dx} to be the differential operator 
\texttt{DxfunFrom(D){LinearOrdinaryDifferentialOperator2}}
corresponding to \texttt{d/dx}.
}\{ 
\spadpaste{Dx: LODO2(Q, PQ) := D() \free{Q PQ0} \bound{Dx}}
}\xtc{
New operators are created as polynomials in \texttt{D}().}
}\{ 
\spadpaste{a := Dx + 1 \free{Dx} \bound{a}}
}\xtc{
}\{ 
\spadpaste{b := a + 1/2*Dx**2 - 1/2 \free{Dx} \bound{b}}
}\xtc{
To apply the operator \texttt{a} to the value \texttt{p} the usual function 
call syntax is used.
}\{ 
\spadpaste{p := 4*x**2 + 2/3 \free{x} \bound{p}}
}\xtc{
}\{ 
\spadpaste{a p \free{a p}}
}\xtc{
Operator multiplication is defined by the identity \texttt{(a*b) p = a(b(p))}
}\{ 
\spadpaste{(a * b) p = a b p \free{a p b}}
}\xtc{
Exponentiation follows from multiplication.
}\{ 
\spadpaste{c := (1/9)*b*(a + b)**2 \free{a b c}}
}\xtc{
Finally, note that operator expressions may be applied directly.
}\{ 
\spadpaste{(a**2 - 3/4*b + c) (p + 1) \free{a b c p}}
}\xtc{
\endscroll
\autobuttons
\end{page}
(1) Fraction Integer

\begin{verbatim}
(2) UnivariatePolynomial(x, Fraction Integer)
\end{verbatim}

(2) UnivariatePolynomial(x, Fraction Integer)

\begin{verbatim}
(3) x
\end{verbatim}

(3) x

\begin{verbatim}
(4) D
\end{verbatim}

(4) D
3.67. LODO2.HT

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch4}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull4}{ugxLinearODEOperatorTwoConstPageEmpty4}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty4}{\showpaste}
\tab{5}\spadcommand{Dx: LODO2(Q, PQ) := D()\free{Q PQ0 }\bound{Dx }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch5}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull5}{ugxLinearODEOperatorTwoConstPageEmpty5}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty5}{\hidepaste}
\tab{5}\spadcommand{a := Dx + 1\bound{a }\free{Dx }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch6}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull6}{ugxLinearODEOperatorTwoConstPageEmpty6}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty6}{\showpaste}
\tab{5}\spadcommand{b := a + 1/2*Dx**2 - 1/2\bound{b }\free{Dx }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch7}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull7}{ugxLinearODEOperatorTwoConstPageEmpty7}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty7}{\hidepaste}
\tab{5}\spadcommand{p := 4*x**2 + 2/3\free{x }\bound{p }}
\end{paste}\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch5}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull5}{ugxLinearODEOperatorTwoConstPageEmpty5}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty5}{\hidepaste}
\tab{5}\spadcommand{a := Dx + 1\bound{a }\free{Dx }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch6}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull6}{ugxLinearODEOperatorTwoConstPageEmpty6}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty6}{\showpaste}
\tab{5}\spadcommand{b := a + 1/2*Dx**2 - 1/2\bound{b }\free{Dx }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch7}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull7}{ugxLinearODEOperatorTwoConstPageEmpty7}
\pastebutton{ugxLinearODEOperatorTwoConstPageEmpty7}{\hidepaste}
\tab{5}\spadcommand{p := 4*x**2 + 2/3\free{x }\bound{p }}
\end{paste}\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{verbatim}
(5) D + 1
Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))
\end{verbatim}

\begin{verbatim}
(6) D + D + 1
2 2
Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))
\end{verbatim}

\begin{verbatim}
(7) 4x + 2
\end{verbatim}
3
Type: UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPageEmpty8}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull8}{ugxLinearODEOperatorTwoConstPageEmpty8}
\pastebutton{ugxLinearODEOperatorTwoConstPageFull8}{\hidepaste}
\tab{5}\spadcommand{(a * b) p = a b p\free{a b p }}
\indentrel{3}\begin{verbatim}
2 37 2 37
(9) 2x + 12x + = 2x + 12x +
3 3
Type: Equation UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch9}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull9}{ugxLinearODEOperatorTwoConstPageEmpty9}
\pastebutton{ugxLinearODEOperatorTwoConstPageFull9}{\hidepaste}
\tab{5}\spadcommand{(a * b) p = a b p\free{a b p }}
\indentrel{3}\begin{verbatim}
2 2
(8) 4x + 8x +
3
Type: UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch8}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull8}{ugxLinearODEOperatorTwoConstPageEmpty8}
\pastebutton{ugxLinearODEOperatorTwoConstPageFull8}{\showpaste}
\tab{5}\spadcommand(p := 4*x**2 + 2/3\free{x }\bound{p }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPagePatch7}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull7}{ugxLinearODEOperatorTwoConstPageEmpty7}
\pastebutton{ugxLinearODEOperatorTwoConstPageFull7}{\showpaste}
\tab{5}\spadcommand{p := 4*x**2 + 2/3\free{x }\bound{p }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoConstPageEmpty7}
\begin{paste}{ugxLinearODEOperatorTwoConstPageFull7}{ugxLinearODEOperatorTwoConstPageEmpty7}
\pastebutton{ugxLinearODEOperatorTwoConstPageFull7}{\showpaste}
\tab{5}\spadcommand{a p\free{a p }}
\indentrel{3}\begin{verbatim}
2 2
(8) 4x + 8x +
3
Type: UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Differential Operators with Matrix Coefficients Operating on Vectors

— lodo2.ht —

Differential Operators with Matrix Coefficients Operating on Vectors

This is another example of linear ordinary differential operators with non-commutative multiplication.
Unlike the rational function case, the differential ring of
square matrices (of a given dimension) with univariate polynomial entries does not form a field. Thus the number of operations available is more limited.

\begin{verbatim}
\labelSpace{1pc}
\xtc{In this section, the operators have three by three matrix coefficients with polynomial entries.}
\spadpaste{PZ := UnivariatePolynomial(x,Integer)}
\xtc{\}
\spadpaste{x:PZ := 'x}
\xtc{
\spadpaste{Mat := SquareMatrix(3,PZ)}
\xtc{\}
\spadpaste{Vect := DPMM(3, PZ, Mat, PZ)}
\xtc{\}
\spadpaste{Modo := LODO2(Mat, Vect)}
\xtc{\}
\spadpaste{m:Mat := matrix \[x^{**2},1,0\],\[1,x^{**4},0\],\[0,0,4*x^{**2}\]} \free{Mat} \bound{m}
\xtc{\}
\spadpaste{p:Vect := directProduct \[3*x^{**2}+1,2*x,7*x^{**3}+2*x\]} \free{Vect} \bound{p}
\xtc{\}
\spadpaste{q: Vect := m * p} \free{m p Vect} \bound{q}
\xtc{\}
\spadpaste{Dx : Modo := D()} \bound{Dx} \free{Modo}
\end{verbatim}

Now form a few operators.
These operators can be applied to vector values.

\spad{a : Modo := Dx + m}
\spad{b : Modo := m*Dx + 1}
\spad{c := a*b}

These operators can be applied to vector values.

\spad{a p}
\spad{b p}
\spad{(a + b + c) (p + q)}

\begin{spad}{UnivariatePolynomial(x,Integer)}
\end{spad}
\begin{verbatim}
(1) UnivariatePolynomial(x,Integer)
Type: Domain
\end{verbatim}
\end{spad}
\begin{verbatim}
(2) x
\end{verbatim}
\begin{verbatim}
Type: UnivariatePolynomial(x, Integer)
\end{verbatim}
\indentrel{-3}\begin{paste}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty2}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty2}{ugxLinearODEOperatorTwoMatrixPagePatch2}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty2}{\showpaste}
\tab{5}\spadcommand{x:PZ := 'x\free{PZ0 }\bound{PZ }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch3}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull3}{ugxLinearODEOperatorTwoMatrixPageEmpty3}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull3}{\hidepaste}
\tab{5}\spadcommand{Mat := SquareMatrix(3, PZ)\free{PZ }\bound{Mat }}
\indentrel{3}\begin{verbatim}
(3) SquareMatrix(3, UnivariatePolynomial(x, Integer))
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty3}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty3}{ugxLinearODEOperatorTwoMatrixPagePatch3}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty3}{\showpaste}
\tab{5}\spadcommand{Mat := SquareMatrix(3, PZ)\free{PZ }\bound{Mat }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch4}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull4}{ugxLinearODEOperatorTwoMatrixPageEmpty4}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull4}{\hidepaste}
\tab{5}\spadcommand{Vect := DPMM(3, PZ, Mat, PZ)\free{PZ Mat }\bound{Vect }}
\indentrel{3}\begin{verbatim}
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty4}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty4}{ugxLinearODEOperatorTwoMatrixPagePatch4}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty4}{\showpaste}
\tab{5}\spadcommand{Vect := DPMM(3, PZ, Mat, PZ)\free{PZ Mat }\bound{Vect }}
\end{paste}\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch5}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull5}{ugxLinearODEOperatorTwoMatrixPageEmpty5}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull5}{\hidepaste}
\tab{5}\spadcommand{Modo := LODO2(Mat, Vect)\free{Mat Vect }\bound{modo}}
\indentrel{3}\begin{verbatim}
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty5}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty5}{ugxLinearODEOperatorTwoMatrixPagePatch5}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty5}{\showpaste}
\tab{5}\spadcommand{Modo := LODO2(Mat, Vect);}\free{Mat Vect }\bound{Modo}
\end{paste}
\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch6}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull6}{ugxLinearODEOperatorTwoMatrixPageEmpty6}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull6}{\hidepaste}
\tab{5}\spadcommand{m:Mat := matrix \[
\begin{array}{ccc}
x**2 & 1 & 0 \\
1 & x**4 & 0 \\
0 & 0 & 4*x**2
\end{array}
\]};\free{Mat}\bound{m}
\indentrel{3}\verb|
\begin{verbatim}
2
x 1 0
(6) 4
1 x 0
2
0 0 4x
\end{verbatim}|
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty6}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty6}{ugxLinearODEOperatorTwoMatrixPagePatch6}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty6}{\showpaste}
\tab{5}\spadcommand{m:Mat := matrix \[
\begin{array}{ccc}
x**2 & 1 & 0 \\
1 & x**4 & 0 \\
0 & 0 & 4*x**2
\end{array}
\]};\free{Mat}\bound{m}
\end{paste}
\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch7}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull7}{ugxLinearODEOperatorTwoMatrixPageEmpty7}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull7}{\hidepaste}
\tab{5}\spadcommand{p:Vect := directProduct \[3*x**2+1,2*x,7*x**3+2*x\]};\free{Vect}\bound{p}
\indentrel{3}\verb|
\begin{verbatim}
2 3
[3x + 1,2x,7x + 2x]
\end{verbatim}|
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPageEmpty7}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageEmpty7}{ugxLinearODEOperatorTwoMatrixPagePatch7}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageEmpty7}{\showpaste}
\tab{5}\spadcommand{p:Vect := directProduct \[3*x**2+1,2*x,7*x**3+2*x\]};\free{Vect}\bound{p}
\end{paste}
\end{patch}

\begin{patch}{ugxLinearODEOperatorTwoMatrixPagePatch8}
\begin{paste}{ugxLinearODEOperatorTwoMatrixPageFull8}{ugxLinearODEOperatorTwoMatrixPageEmpty8}
\pastebutton{ugxLinearODEOperatorTwoMatrixPageFull8}{\hidepaste}
\tab{5}\spadcommand{q: Vect := m * p};\free{m p Vect}\bound{q}
\end{paste}
\end{patch}
(8) \[3x + x + 2x, 2x + 3x + 1, 28x + 8x\]
Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x, Integer))

(9) \[D\]
Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3, UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x, Integer)))

(10) \[D + 4\]
\[1 x 0\]
\[0 0 4x\]
Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3, UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x, Integer)))
\begin{verbatim}
2
x 1 0 1 0 0

(11) 4  D + 0 1 0
1 x 0
0 0 1
2
0 0 4x

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,UnivariatePolynomial(x,Integer)),DirectProductMatrixModule(3,UnivariatePolynomial(x,Integer),SquareMatrix(3,UnivariatePolynomial(x,Integer)),UnivariatePolynomial(x,Integer)))
\end{verbatim}
\end{verbatim}

\begin{verbatim}
2
x 1 0

4  D + 0 1 0
1 x 0
4 x + 2x + 2 x + x 0
4 2 8 3  D
x + x x + 4x + 2 0
4
0 0 16x + 8x + 1
+
2
\end{verbatim}
\end{verbatim}
\[
\begin{align*}
&x 
\begin{bmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
2 & 0 & 4x
\end{bmatrix} \\
\text{Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,UnivariatePolynomial(x,Integer)),DirectProductMatrixModule(3,UnivariatePolynomial(x,Integer),SquareMatrix(3,UnivariatePolynomial(x,Integer)),UnivariatePolynomial(x,Integer)))}
\end{align*}
\]
\begin{verbatim}
(15) [ 8 7 6 5 4 3 2 10x + 12x + 16x + 30x + 85x + 94x + 40x + 40x + 17 , 12 9 8 7 6 5 4 10x + 10x + 12x + 92x + 6x + 32x + 72x + 3 2 28x + 49x + 32x + 19 , 8 7 6 5 4 3 2240x + 224x + 1280x + 3508x + 492x + 751x + 2 98x + 18x + 4 ]
Type: DirectProductMatrixModule(3,UnivariatePolynomial(x,Integer),SquareMatrix(3,UnivariatePolynomial(x,Integer)),UnivariatePolynomial(x,Integer))
\end{verbatim}
\end{patch}

3.68  \texttt{lpoly.ht}

\texttt{LiePolynomial}

--- \texttt{lpoly.ht} ---
\begin{page}{LiePolynomialXmpPage}{LiePolynomial}
\beginscroll
Declaration of domains
\xtc{
}\spadpaste{RN := Fraction Integer \bound{RN}}
}\xtc{
}\spadpaste{Lpoly := LiePolynomial(Symbol,RN) \bound{Lpoly} \free{RN}}
}\xtc{
}\spadpaste{Dpoly := XDPOLY(Symbol,RN) \bound{Dpoly} \free{RN}}
}\xtc{
}\spadpaste{Lword := LyndonWord Symbol \bound{Lword}}

Initialisation
\xtc{
}\spadpaste{a:Symbol := 'a \bound{a}}
}\xtc{
}\spadpaste{b:Symbol := 'b \bound{b}}
}\xtc{
}\spadpaste{c:Symbol := 'c \bound{c}}
}\xtc{
}\spadpaste{aa: Lpoly := a \bound{aa} \free{Lpoly} \free{a}}
}\xtc{
}\spadpaste{bb: Lpoly := b \bound{bb} \free{Lpoly} \free{b}}
}\xtc{
}\spadpaste{cc: Lpoly := c \bound{cc} \free{Lpoly} \free{c}}
}\xtc{
}\spadpaste{p : Lpoly := [aa,bb] \bound{p} \free{aa} \free{bb} \free{Lpoly}}
\xtc{
\spadpaste{q : Lpoly := [p,bb] \bound{q} \free{p} \free{bb} \free{Lpoly}}

\xtc{All the Lyndon words of order 4}
\spadpaste{liste : List Lword := LyndonWordsList([a,b], 4) \free{a} \free{b} \free{Lword} \bound{liste}}

\xtc{
\spadpaste{r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly \bound{r} \free{Lpoly} \free{p} \free{q} \free{liste}}
}

\xtc{
\spadpaste{s:Lpoly := [p,r] \bound{s} \free{Lpoly} \free{p} \free{r}}
}

\xtc{
\spadpaste{t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5) \bound{t} \free{Lpoly} \free{s} \free{liste}}
}

\xtc{
\spadpaste{degree t \free{t}}
}

\xtc{
\spadpaste{mirror t \free{t}}
}

Jacobi Relation
\xtc{
\spadpaste{Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [[p,q]$Lpoly, r] + [[q,r]$Lpoly, p] + [[r,p]$Lpoly, q] \free{Lpoly} \bound{J}}
}

Tests
\xtc{
\spadpaste{test: Lpoly := Jacobi(a,b,b) \free{J Lpoly a b} \bound{test1}}
}

\xtc{
\spadpaste{test: Lpoly := Jacobi(p,q,r) \free{J p q r Lpoly} \bound{test2}}
}
\spadpaste{test: Lpoly := Jacobi(r,s,t) \free{J r s t Lpoly} \bound{test3}}
}

Evaluation
\xtc{
}\spadpaste{eval(p, a, p)$Lpoly}
}
\xtc{
}\spadpaste{eval(p, [a,b], [2*bb, 3*aa])$Lpoly \free{p a b bb aa Lpoly}}
}
\xtc{
}\spadpaste{r: Lpoly := [p,c] \free{p c Lpoly} \bound{rr}}
}
\xtc{
}\spadpaste{r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly \free{rr a b c aa bb cc Lpoly} \bound{r1}}
}
\xtc{
}\spadpaste{r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly \free{rr a b c cc bb aa Lpoly} \bound{r2}}
}
\xtc{
}\spadpaste{r + r1 + r2 \free{rr r1 r2}}
}

\endscroll
\autobuttons
\end{page}

\begin{patch}{LiePolynomialXmpPagePatch1}
\begin{paste}{LiePolynomialXmpPageFull1}{LiePolynomialXmpPageEmpty1}
\begin{verbatim}
(1) Fraction Integer
Type: Domain
\end{verbatim}
\end{paste}
\end{patch}
\spadcommand{Lpoly := LiePolynomial(Symbol,RN)\free{RN}}
\begin{verbatim}
2
LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}
\end{paste}

\spadcommand{Dpoly := XDPOLY(Symbol,RN)\free{RN}}
\begin{verbatim}
3
XDistributedPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}
\end{paste}

\spadcommand{Lword := LyndonWord Symbol\free{Lword}}
\begin{verbatim}
4
LyndonWord Symbol
\end{verbatim}
\indentrel{-3}
\end{paste}
\begin{verbatim}
(5) a
Type: Symbol
\end{verbatim}

\begin{verbatim}
(6) b
Type: Symbol
\end{verbatim}

\begin{verbatim}
(7) c
Type: Symbol
\end{verbatim}
\spadcommand{aa: Lpoly := a\monomial{aa}\free{Lpoly}\free{a}}
\begin{verbatim}
(8) [a]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\spadcommand{bb: Lpoly := b\monomial{bb}\free{Lpoly}\free{b}}
\begin{verbatim}
(9) [b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\spadcommand{cc: Lpoly := c\monomial{cc}\free{Lpoly}\free{c}}
\begin{verbatim}
(10) [c]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\spadcommand{p : Lpoly := [aa,bb]\monomial{p}\free{aa}\free{bb}\free{Lpoly}}
\begin{verbatim}
(11) [a b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\begin{verbatim}
(12) [a b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\begin{verbatim}
(13) [[a, b], [a b], [a b], [a b], [a b], [a b]]
Type: List LyndonWord Symbol
\end{verbatim}
\begin{verbatim}
(14) \[a b\] + 3[a b] + [a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(15) - 3[a b a b] + [a b a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(16) 2[a b] - 5[a b ] - 3[a b a b] + [a b a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{degree t\free{t}}
\indentrel{3}(17) 5
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
\tab{5}\spadcommand{mirror t\free{t}}
\indentrel{3}(18) \hspace{1em} -2[a b] -5[a b a] -3[a b a b] + [a b a b]
\indentrel{3}Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
\tab{5}\spadcommand{Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == 
\hspace{3em} [[p,q]$Lpoly, r] + [[q,r]$Lpoly, p] + [[r,p]$Lpoly, q]}\free{Lpoly}\bound{J}
\indentrel{3}Type: Void
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
\tab{5}\spadcommand{test: Lpoly := Jacobi(a,b,b)}\free{J Lpoly a b}\bound{test1}}
\end{verbatim}
\begin{verbatim}
(20) 0
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\end{patch}

\begin{verbatim}
(21) 0
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\end{patch}

\begin{verbatim}
(22) 0
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\end{patch}

\begin{verbatim}
\texttt{eval(p, a, p)$Lpoly}$
\end{verbatim}
\end{patch}
\begin{verbatim}
(23) [a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LiePolynomialXmpPagePatch24}
\begin{paste}{LiePolynomialXmpPageFull24}{LiePolynomialXmpPageEmpty24}
\pastebutton{LiePolynomialXmpPageFull24}{\hidepaste}
\tab{5}\spadcommand{eval(p, [a,b], [2*bb, 3*aa])$Lpoly\free{p a b bb aa Lpoly }}
\indentrel{3}\begin{verbatim}
(24) - 6[a b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LiePolynomialXmpPagePatch25}
\begin{paste}{LiePolynomialXmpPageFull25}{LiePolynomialXmpPageEmpty25}
\pastebutton{LiePolynomialXmpPageFull25}{\hidepaste}
\tab{5}\spadcommand{r: Lpoly := [p,c]\free{p c Lpoly }\bound{rr}}
\indentrel{3}\begin{verbatim}
(25) [a b c] + [a c b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LiePolynomialXmpPagePatch26}
\begin{paste}{LiePolynomialXmpPageFull26}{LiePolynomialXmpPageEmpty26}
\pastebutton{LiePolynomialXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly\free{r r1 a b c aa bb cc Lpoly }}
\indentrel{3}\begin{verbatim}
(26) - [a b c]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(27) - [a c b]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(28) 0
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}
3.69 lword.ht

LyndonWord

--- lword.ht ---

\begin{page}{LyndonWordXmpPage}{LyndonWord}
\beginscroll
Initialisations
\xtc{
}\spadpaste{a:Symbol := 'a \bound{a}}
}
\xtc{
}\spadpaste{b:Symbol := 'b \bound{b}}
}
\xtc{
}\spadpaste{c:Symbol := 'c \bound{c}}
}
\xtc{
}\spadpaste{lword := LyndonWord(Symbol) \bound{lword}}
}
\xtc{
}\spadpaste{magma := Magma(Symbol) \bound{magma}}
}
\xtc{
}\spadpaste{word := OrderedFreeMonoid(Symbol) \bound{word}}
}
\xtc{All Lyndon words of with a, b, c to order 3 }
}{\spadpaste{LyndonWordsList([a,b,c],3)$lword \free{lword} \free{a} \free{b} \free{c} } }
\xtc{All Lyndon words of with a, b, c to order 3 in flat list }
}{\spadpaste{LyndonWordsList([a,b,c],3)$lword \free{a} \free{b} \free{c} \free{lword}} }
\xtc{All Lyndon words of with a, b to order 5 }
}
\spadpaste{lw := LyndonWordsList([a,b],5)$lword \free{a} \free{b} \\
\free{lw} \bound{lw}}
}
\xtc{
\spadpaste{w1 : word := lw.4 :: word \free{word} \free{lw} \bound{w1}}
}
\xtc{
\spadpaste{w2 : word := lw.5 :: word \free{word} \free{lw} \bound{w2}}
}

Let’s try factoring
\xtc{
\spadpaste{factor(a::word)$lword \free{a \ word \ lword}}
}
\xtc{
\spadpaste{factor(w1*w2)$lword \free{ w1 \ w2 \ lword}}
}
\xtc{
\spadpaste{factor(w2*w2)$lword \free{w2 \ lword}}
}
\xtc{
\spadpaste{factor(w2*w1)$lword \free{w1 \ w2 \ lword}}
}

Checks and coercions
\xtc{
\spadpaste{lyndon?(w1)$lword \free{w1 \ lword}}
}
\xtc{
\spadpaste{lyndon?(w1*w2)$lword \free{w1 \ w2 \ lword}}
}
\xtc{
\spadpaste{lyndon?(w2*w1)$lword \free{w1 \ w2 \ lword}}
}
\xtc{
\spadpaste{lyndonIfCan(w1)$lword \free{w1 \ lword}}
}
\xtc{
\spadpaste{lyndonIfCan(w2*w1)$lword \free{w1 \ w2 \ lword}}
}
\spadcommand{a:Symbol := 'a\bound{a }}
\indentrel{3}\begin{verbatim}
(1) a
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{verbatim}
\end{page}

\spadcommand{b:Symbol := 'b\bound{b }}
\indentrel{3}\begin{verbatim}
(2) b
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{verbatim}
\end{page}

\spadcommand{c:Symbol := 'c\bound{c }}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{verbatim}
\end{page}
(3) \texttt{c}

Type: \texttt{Symbol}

\begin{verbatim}
(4) LyndonWord Symbol
Type: Domain
\end{verbatim}

(5) \texttt{Magma Symbol}
Type: Domain

(6) \texttt{OrderedFreeMonoid Symbol}
Type: Domain
\begin{verbatim}

(7)
[[[a],[b],[c]], [[a],[b],[c]], [[a],[b],[c]],

2 2 2 2
[[a,b], [a,c], [a,b,c], [a,c],

2 2
[b,c], [b,c]]]

Type: OneDimensionalArray List LyndonWord Symbol
\end{verbatim}

\begin{verbatim}

(8)
[[a], [b], [c], [a,b], [a,c], [b,c], [a,b], [a,c],

2 2 2 2
[a,b], [a,b,c], [a,c], [b,c], [b,c]]

Type: List LyndonWord Symbol
\end{verbatim}

\end{verbatim}
\begin{verbatim}
(9) 2 2 3 2 2
[[a], [b], [a b], [a b]], 3 4 3 2 2 2 3 2

Type: List LyndonWord Symbol
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(10) a b
Type: OrderedFreeMonoid Symbol
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(11) a b
Type: OrderedFreeMonoid Symbol
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch12}
\begin{paste}{LyndonWordXmpPageFull12}{LyndonWordXmpPageEmpty12}
\pastebutton{LyndonWordXmpPageFull12}{\hidepaste}
\indentrel{3}\begin{verbatim}
(12) [[a]]
Type: List LyndonWord Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch13}
\begin{paste}{LyndonWordXmpPageFull13}{LyndonWordXmpPageEmpty13}
\pastebutton{LyndonWordXmpPageFull13}{\hidepaste}
\indentrel{3}\begin{verbatim}
(13) [[a b a b], [a b]]
Type: List LyndonWord Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch14}
\begin{paste}{LyndonWordXmpPageFull14}{LyndonWordXmpPageEmpty14}
\pastebutton{LyndonWordXmpPageFull14}{\hidepaste}
\indentrel{3}\begin{verbatim}
(14) [[a b], [a b]]
Type: List LyndonWord Symbol
\end{verbatim}
\end{paste}\end{patch}
\begin{verbatim}
2 2
(15) [[a b], [a b]]
Type: List LyndonWord Symbol
\end{verbatim}
\begin{verbatim}
(16) true
Type: Boolean
\end{verbatim}
\begin{verbatim}
(17) true
Type: Boolean
\end{verbatim}
\begin{patch}{LyndonWordXmpPageEmpty17}
\begin{paste}{LyndonWordXmpPageEmpty17}{LyndonWordXmpPagePatch17}
\spadcommand{lyndon?(w1*w2)$lword\free{w1 w2 lword }}
\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch18}
\begin{paste}{LyndonWordXmpPageFull18}{LyndonWordXmpPageEmpty18}
\spadcommand{lyndon?(w2*w1)$lword\free{w1 w2 lword }}
\indentrel{3}\begin{verbatim}
(18) false
Type: Boolean
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch19}
\begin{paste}{LyndonWordXmpPageFull19}{LyndonWordXmpPageEmpty19}
\spadcommand{lyndonIfCan(w1)$lword\free{w1 lword }}
\indentrel{3}\begin{verbatim}
(19) [a b]
Type: Union(LyndonWord Symbol,...)
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{LyndonWordXmpPagePatch20}
\begin{paste}{LyndonWordXmpPageFull20}{LyndonWordXmpPageEmpty20}
\spadcommand{lyndonIfCan(w2*w1)$lword\free{w1 w2 lword }}
\indentrel{3}\begin{verbatim}
(20) "failed"
Type: Union("failed",...)
\end{verbatim}
\end{paste}\end{patch}
\begin{verbatim}
(21) \[a \ b\]
Type: LyndonWord Symbol
\end{verbatim}

\begin{verbatim}
(22) \[a \ b \ a \ b\]
Type: LyndonWord Symbol
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

3.70 magma.ht

Magma

—— magma.ht ——

\begin{page}{MagmaXmpPage}{Magma}
\beginscroll
Initialisations
\xtc{
}{
\spadpaste{x:Symbol := 'x \bound{x}}
}
\xtc{
}{
\spadpaste{y:Symbol := 'y \bound{y}}
}
\xtc{
}{
\spadpaste{z:Symbol := 'z \bound{z}}
}
\xtc{
}{
\spadpaste{word := OrderedFreeMonoid(Symbol) \bound{word}}
}
\xtc{
}{
\spadpaste{tree := Magma(Symbol) \bound{tree}}
}

Let's make some trees
\xtc{
}{
\spadpaste{a:tree := x*x \free{x tree} \bound{a}}
}
\xtc{
}{
\spadpaste{b:tree := y*y \free{y tree} \bound{b}}
}
\xtc{
}{
\spadpaste{c:tree := a*b \free{a b tree} \bound{c}}
}

Query the trees
\xtc{
}{
\spadpaste{left c \free{c}}
}
Coerce to the monoid

Check ordering

Navigate the tree

Check ordering
\spadpaste{xa:tree := x*a \free{a x tree} \bound{xa}}}
\xtc{
\spadpaste{xa < ax \free{ax xa}}}
\xtc{
\spadpaste{lexico(xa,ax) \free{ax xa}}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{MagmaXmpPagePatch1}
\begin{paste}{MagmaXmpPageFull1}{MagmaXmpPageEmpty1}
\pastebutton{MagmaXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{x:Symbol := 'x\bound{x}}
\indentrel{3}\begin{verbatim}
(1) x
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MagmaXmpPageEmpty1}
\begin{paste}{MagmaXmpPageEmpty1}{MagmaXmpPagePatch1}
\pastebutton{MagmaXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{x:Symbol := 'x\bound{x}}
\end{paste}
\end{patch}

\begin{patch}{MagmaXmpPagePatch2}
\begin{paste}{MagmaXmpPageFull2}{MagmaXmpPageEmpty2}
\pastebutton{MagmaXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{y:Symbol := 'y\bound{y}}
\indentrel{3}\begin{verbatim}
(2) y
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MagmaXmpPageEmpty2}
\begin{paste}{MagmaXmpPageEmpty2}{MagmaXmpPagePatch2}
\pastebutton{MagmaXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{y:Symbol := 'y\bound{y}}
\end{paste}
\end{patch}

\begin{patch}{MagmaXmpPagePatch3}
\begin{paste}{MagmaXmpPageFull3}{MagmaXmpPageEmpty3}
\pastebutton{MagmaXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{z:Symbol := 'z\bound{z}}
\end{paste}
\end{patch}
\begin{verbatim}
(3) z
Type: Symbol
\end{verbatim}

\begin{verbatim}
(4) OrderedFreeMonoid Symbol
Type: Domain
\end{verbatim}

\begin{verbatim}
(5) Magma Symbol
Type: Domain
\end{verbatim}

\begin{verbatim}
(6) [x, x]
\end{verbatim}
\begin{verbatim}
(7) [y, y]
\end{verbatim}

\begin{verbatim}
(8) [[x, x], [y, y]]
\end{verbatim}

\begin{verbatim}
(9) [x, x]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MagmaXmpPageEmpty9}
\begin{paste}{MagmaXmpPageEmpty9}{MagmaXmpPagePatch9}
\pastebutton{MagmaXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{left c\free{c }}
\end{paste}\end{patch}
\begin{patch}{MagmaXmpPagePatch10}
\begin{paste}{MagmaXmpPageFull10}{MagmaXmpPageEmpty10}
\pastebutton{MagmaXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{right c\free{c }}
\indentrel{3}\begin{verbatim}
(10) [y,y]
Type: Magma Symbol
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{MagmaXmpPageEmpty10}
\begin{paste}{MagmaXmpPageEmpty10}{MagmaXmpPagePatch10}
\pastebutton{MagmaXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{right c\free{c }}
\end{patch}
\begin{patch}{MagmaXmpPagePatch11}
\begin{paste}{MagmaXmpPageFull11}{MagmaXmpPageEmpty11}
\pastebutton{MagmaXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{length c\free{c }}
\indentrel{3}\begin{verbatim}
(11) 4
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{MagmaXmpPageEmpty11}
\begin{paste}{MagmaXmpPageEmpty11}{MagmaXmpPagePatch11}
\pastebutton{MagmaXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{length c\free{c }}
\end{patch}
\begin{patch}{MagmaXmpPagePatch12}
\begin{paste}{MagmaXmpPageFull12}{MagmaXmpPageEmpty12}
\pastebutton{MagmaXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{c::word\free{c word }}
\indentrel{3}\begin{verbatim}
(12) x y
Type: OrderedFreeMonoid Symbol
\end{verbatim}
\indentrel{-3}\end{patch}\end{paste}\end{patch}
\begin{patch}{MagmaXmpPageEmpty12}
\begin{paste}{MagmaXmpPageEmpty12}{MagmaXmpPagePatch12}
pastebutton{MagmaXmpPageEmpty12}\showpaste
\tab{5}\spadcommand{c::word\free{c word }}
\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch13}
\begin{paste}{MagmaXmpPageFull13}{MagmaXmpPageEmpty13}
pastebutton{MagmaXmpPageFull13}\hidepaste
\tab{5}\spadcommand{a < b\free{a b }}
indentrel{3}\begin{verbatim}
(13) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch14}
\begin{paste}{MagmaXmpPageFull14}{MagmaXmpPageEmpty14}
pastebutton{MagmaXmpPageFull14}\hidepaste
\tab{5}\spadcommand{a < c\free{a c }}
indentrel{3}\begin{verbatim}
(14) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch15}
\begin{paste}{MagmaXmpPageFull15}{MagmaXmpPageEmpty15}
pastebutton{MagmaXmpPageFull15}\hidepaste
\tab{5}\spadcommand{b < c\free{b c }}
indentrel{3}\begin{verbatim}
(15) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{paste}{MagmaXmpPageEmpty15}{MagmaXmpPagePatch15}\pastebutton{MagmaXmpPageEmpty15}{\showpaste}\tab{5}\spadcommand{b < c\free{b c }}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch16}\begin{paste}{MagmaXmpPageFull16}{MagmaXmpPageEmpty16}\pastebutton{MagmaXmpPageFull16}{\hidepaste}\tab{5}\spadcommand{first c\free{c}}\indentrel{3}\begin{verbatim}(16) \text{x} Type: Symbol\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPageEmpty16}\begin{paste}{MagmaXmpPageEmpty16}{MagmaXmpPagePatch16}\pastebutton{MagmaXmpPageEmpty16}{\showpaste}\tab{5}\spadcommand{first c\free{c}}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch17}\begin{paste}{MagmaXmpPageFull17}{MagmaXmpPageEmpty17}\pastebutton{MagmaXmpPageFull17}{\hidepaste}\tab{5}\spadcommand{rest c\free{c}}\indentrel{3}\begin{verbatim}(17) \text{[x,[y,y]]} Type: Magma Symbol\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPageEmpty17}\begin{paste}{MagmaXmpPageEmpty17}{MagmaXmpPagePatch17}\pastebutton{MagmaXmpPageEmpty17}{\showpaste}\tab{5}\spadcommand{rest c\free{c}}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPagePatch18}\begin{paste}{MagmaXmpPageFull18}{MagmaXmpPageEmpty18}\pastebutton{MagmaXmpPageFull18}{\hidepaste}\tab{5}\spadcommand{rest rest c\free{c}}\indentrel{3}\begin{verbatim}(18) \text{[y,y]} Type: Magma Symbol\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPageEmpty18}\begin{paste}{MagmaXmpPageEmpty18}{MagmaXmpPagePatch18}\pastebutton{MagmaXmpPageEmpty18}{\showpaste}\indentrel{3}\end{paste}\end{patch}
\begin{verbatim}
(19) [[x,x],x]
Type: Magma Symbol
\end{verbatim}

\begin{verbatim}
(20) [x,[x,x]]
Type: Magma Symbol
\end{verbatim}

\begin{verbatim}
(21) true
Type: Boolean
\end{verbatim}
3.71. MAN0.HT

\begin{patch}{MagmaXmpPagePatch22}
\begin{paste}{MagmaXmpPageFull22}{MagmaXmpPageEmpty22}
\pastebutton{MagmaXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{lexico(xa,ax)\free{ax xa }}
\indentrel{3}\begin{verbatim}
(22) false
\end{verbatim}
(22) false
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MagmaXmpPageEmpty22}
\begin{paste}{MagmaXmpPageEmpty22}{MagmaXmpPagePatch22}
\pastebutton{MagmaXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{lexico(xa,ax)\free{ax xa }}
\end{paste}\end{patch}

3.71 man0.ht

Reference Search

Enter search string:

Search Reference documentation [*wild card is not accepted].

⇐ “Reference” (TopReferencePage) 3.1 on page 123
CHAPTER 3. HYPERDOC PAGES

\begin{page}{RefSearchPage}{Reference Search}
\beginscroll
Enter search string :
\inputstring{pattern}{40}\{}
\newline
\beginmenu
\menuunixlink{Search}
\{htsearch \"\stringvalue{pattern}\"\}
\tab{15} Reference documentation (\em * wild card is not accepted).
\endmenu
\endmenu
\endscroll
\end{page}

Lisp Functions

\left= “Root Page” (RootPage) 3.1 on page 117
\left= “System Commands” (TopSettingsPage) 3.1 on page 120
\left= “Axiom Browser” (Man0Page) 3.71 on page 962
\left= “Axiom Reference” (TopReferencePage) 3.1 on page 123
\left= “Basic Commands” (BasicCommand) 3.6 on page 155
\left= “Calculus” (Calculus) 3.6 on page 156
\left= “Glossary” (GlossaryPage) 3.49 on page 579
\left= “The Axiom Link to NAG Software” (htxl) 3.63 on page 844
\left= “C02 Zeros of Polynomials” (c02) 3.63 on page 846
\left= “C02 Roots of One or More TranscendentalEquations” (c05) 3.63 on page 847
\left= “C06 Summation of Series” (c06) 3.63 on page 847
\left= “D03 Partial Differential Equations” (d03) 3.63 on page 852
\left= “E01 Interpolation” (e01) 3.63 on page 853
\left= “E02 Curve and Surface Fitting” (e02) 3.63 on page 854
\left= “E04 Minimizing or Maximizing a Function” (e04) 3.63 on page 856
\left= “F01 Matrix Operations - Including Inversion” (f01) 3.63 on page 857
\left= “F02 Eigenvalues and Eigenvectors” (f02) 3.63 on page 858
\left= “F04 Simultaneous Linear Equations” (f04) 3.63 on page 860
\left= “F07 Linear Equations (LAPACK)” (f07) 3.63 on page 862
\left= “S – Approximations of Special Functions” (s) 3.63 on page 863
\left= “Domain Mapping” (DomainMapping) 3.72 on page 964
\left= “Domain Record” (DomainRecord) 3.92 on page 1182
\left= “Domain Union” (DomainUnion) 3.110 on page 1319
\left= “HTXLinkPage4xPatch2” (HTXLinkPage4xPatch2) 21.24 on page 2686
There are lisp functions which exist behind certain pages and the page information is created dynamically by calling the function.

This is a list of the macros which use lisp functions:

- `oPage` axiomFun
- `oPageFrom` axiomFunFrom
- `htGloss` gloss
- `htGloss` spadglos
- `htGloss` glossSee
- `conPage` aliascon
- `conPage` aliasdom
- `conPage` dom
- `conPage` conf
- `conOpPage` ops
- `htsn` keyword
- `htsn` op

This is a list of the lisp function, the link name, and the page name:

- **annaOde** – Ordinary Differential Equations link from page Ordinary Differential Equations
- **annaOpt** – Optimization of a Single Multivariate Function link from page Optimization
- **annaOpt2** – Optimization of a set of observations of a data set link from page Optimization
- **annaPDESolve** – Second Order Elliptic Partial Differential Equation link from page Partial Differential Equations
- **annaOptDefaultSolve1** – Example 1 link from page Examples Using the Axiom/NAG Expert System
- **annaOptDefaultSolve2** – Example 2 link from page Examples Using the Axiom/NAG Expert System
• **annaOptDefaultSolve3** – Example 3 link from page Examples Using the Axiom/NAG Expert System

• **annaOptDefaultSolve4** – Example 4 link from page Examples Using the Axiom/NAG Expert System

• **annaOptDefaultSolve5** – Example 5 link from page Examples Using the Axiom/NAG Expert System

• **annaFoo** – Example 1 link from page Examples Using the Axiom/NAG Expert System

• **annaBar** – Example 2 link from page Examples Using the Axiom/NAG Expert System

• **annaJoe** – Example 3 link from page Examples Using the Axiom/NAG Expert System

• **annaSue** – Example 4 link from page Examples Using the Axiom/NAG Expert System

• **annaAnn** – Example 5 link from page Examples Using the Axiom/NAG Expert System

• **annaBab** – Example 6 link from page Examples Using the Axiom/NAG Expert System

• **annaFnar** – Example 7 link from page Examples Using the Axiom/NAG Expert System

• **annaDan** – Example 8 link from page Examples Using the Axiom/NAG Expert System

• **annaBlah** – Example 9 link from page Examples Using the Axiom/NAG Expert System

• **annaTub** – Example 10 link from page Examples Using the Axiom/NAG Expert System

• **annaRats** – Example 11 link from page Examples Using the Axiom/NAG Expert System

• **annaMInt** – Example 12 link from page Examples Using the Axiom/NAG Expert System

• **annaMInt** – Multiple Integration link from page Integration

• **annaInt** – Integration link from page Integration

• **annaOdeDefaultSolve1** – Example 1 link from page Examples Using the Axiom/NAG Expert System

• **annaOdeDefaultSolve2** – Example 2 link from page Examples Using the Axiom/NAG Expert System

• **annaOpt2DefaultSolve** – Example 1 link from page Examples Using the Axiom/NAG Expert System
• aSearch – Attributes link from page Axiom Browser
• aokSearch – General link from page Axiom Browser
• bcDefiniteIntegrate – Do an Definite Integral link from page Calculus
• bcDifferentiate – Differentiate link from page Calculus
• bcDraw – Draw link from page Basic Commands
• bcIndefiniteIntegrate – Do an Indefinite Integral link from page Calculus
• bcLimit – Find a Limit link from page Calculus
• bcMatrix – Matrix link from page Basic Commands
• bcSeries – Series link from page Basic Commands
• bcSolve – Solve link from page Basic Commands
• bcSum – Sum link from page Calculus
• cSearch – categories link from page Axiom Browser
• dbSpecialDescription – Description link from page Domain Mapping
• dbSpecialDescription – Description link from page Domain Record
• dbSpecialDescription – Description link from page Domain Union
• dbSpecialDescription – Description link from page Domain Untagged Union
• dbSpecialExports – Exports link from page Domain Union
• dbSpecialOperations – Operations link from page Domain Mapping
• dbSpecialOperations – Operations link from page Domain Record
• dbSpecialOperations – Operations link from page Domain Union
• dbSpecialOperations – Operations link from page Domain Untagged Union
• dSearch – domains link from page Axiom Browser
• detailSearch – domains link from page Axiom Browser
• docSearch – Documentation link from page Axiom Browser
• genSearch – Complete link from page Axiom Browser
• htGloss – Search link from page Glossary
• HTSEARCH – Reference link from page Axiom Browser
• htsv – System Variables link from page Axiom Reference
• htSystemVariables – Settings link from page System Commands
• issueHT – Definition link from page HTXLinkPage4xPatch2
• kSearch – Constructors link from page Axiom Browser
• kSearch – Browser pages for individual routines link from page htxl
• kSearch – C02 Zeros of Polynomials link from page c02
• kSearch – Browse link from page c05 Roots of One or More Transcendental Equations
• kSearch – Browse link from page c06 Summation of Series
• kSearch – Browse link from page d01 Quadrature
• kSearch – Browse link from page d02 Ordinary Differential Equations
• kSearch – Browse link from page d03 Partial Differential Equations
• kSearch – Browse link from page e01 Interpolation
• kSearch – Browse link from page e02 Curve and Surface Fitting
• kSearch – Browse link from page e04 Minimizing or Maximizing a Function
• kSearch – Browse link from page F01 Matrix Operations - Including Inversion
• kSearch – Browse link from page F02 Eigenvalues and Eigenvectors
• kSearch – Browse link from page F04 Simultaneous Linear Equations
• linkToHTPage – Interpret link from page HTXLinkPage4xPatch3
• oSearch – Operations link from page Axiom Browser
• pSearch – packages link from page Axiom Browser
• startHTPage – Interpret link from page HTXLinkPage4xPatch4
• c02aff – C02AFF link from page C02 Zeros of Polynomials
• c02agf – C02AGF link from page C02 Zeros of Polynomials
• c05adf – C05ADF link from page C05 Roots of One or More Transcendental Equations
• c05ndf – C05NDF link from page C05 Roots of One or More Transcendental Equations
• c05pbf – C05PBF link from page C05 Roots of One or More Transcendental Equations
• c06eaf – C06EAF link from page C06 Summation of Series
• c06ebf – C06EBF link from page C06 Summation of Series
• c06ecf – C06ECF link from page C06 Summation of Series
• c06ekf – C06EKF link from page C06 Summation of Series
• c06fpf – C06FPF link from page C06 Summation of Series
• c06fqf – C06FQF link from page C06 Summation of Series
• c06frf – C06FRF link from page C06 Summation of Series
• c06fuf – C06FU link from page C06 Summation of Series
• c06gbf – C06GBF link from page C06 Summation of Series
• c06gcf – C06GCF link from page C06 Summation of Series
• c06gqf – C06GQF link from page C06 Summation of Series
• c06gsf – C06GSF link from page C06 Summation of Series
• d01ajf – D01AJF link from page D01 Quadrature
• d01akf – D01AKF link from page D01 Quadrature
• d01alf – D01ALF link from page D01 Quadrature
• d01amf – D01AMF link from page D01 Quadrature
• d01anf – D01ANF link from page D01 Quadrature
• d01apf – D01APF link from page D01 Quadrature
• d01aqf – D01AQF link from page D01 Quadrature
• d01asf – D01ASF link from page D01 Quadrature
• d01bbf – D01BBF link from page D01 Quadrature
• d01fcf – D01FCF link from page D01 Quadrature
• d01gaf – D01GAF link from page D01 Quadrature
• d01gbf – D01GBF link from page D01 Quadrature
• d02bbf – D02BBF link from page D02 Ordinary Differential Equations
• d02bhf – D02BHF link from page D02 Ordinary Differential Equations
• d02cjf – D02CJF link from page D02 Ordinary Differential Equations
• d02ejf – D02EJF link from page D02 Ordinary Differential Equations
• d02gaf – D02GAF link from page D02 Ordinary Differential Equations
• d02gbf – D02GBF link from page D02 Ordinary Differential Equations
• d02kef – D02KEF link from page D02 Ordinary Differential Equations
• d02raf – D02RAF link from page D02 Ordinary Differential Equations
• d03edf – D03EDF link from page D03 Partial Differential Equations
• d03eef – D03EEF link from page D03 Partial Differential Equations
• d03faf – D03FAF link from page D03 Partial Differential Equations
• e01baf – E01BAF link from page E01 Interpolation
• e01bef – E01BEF link from page E01 Interpolation
• e01bff – E01BFF link from page E01 Interpolation
• e01bgf – E01BGF link from page E01 Interpolation
• e01bhf – E01BHF link from page E01 Interpolation
• e01daf – E01DAF link from page E01 Interpolation
• e01saf – E01SAF link from page E01 Interpolation
• e01sef – E01SEF link from page E01 Interpolation
• e02adf – E02ADF link from page E02 Curve and Surface Fitting
• e02aef – E02AEF link from page E02 Curve and Surface Fitting
• e02agf – E02AGF link from page E02 Curve and Surface Fitting
• e02ahf – E02AHF link from page E02 Curve and Surface Fitting
• e02ajf – E02AJF link from page E02 Curve and Surface Fitting
• e02akf – E02AKF link from page E02 Curve and Surface Fitting
• e02baf – E02BAF link from page E02 Curve and Surface Fitting
• e02bbf – E02BBF link from page E02 Curve and Surface Fitting
• e02bcf – E02BCF link from page E02 Curve and Surface Fitting
• e02bdf – E02BDF link from page E02 Curve and Surface Fitting
• e02bef – E02BEF link from page E02 Curve and Surface Fitting
• e02daf – E02DAF link from page E02 Curve and Surface Fitting
• e02df – E02DCF link from page E02 Curve and Surface Fitting
- e02ddf – E02DDF link from page E02 Curve and Surface Fitting
- e02def – E02DEF link from page E02 Curve and Surface Fitting
- e02dff – E02DFF link from page E02 Curve and Surface Fitting
- e02gaf – E02GAF link from page E02 Curve and Surface Fitting
- e02zaf – E02ZAF link from page E02 Curve and Surface Fitting
- e04dgf – E04DGF link from page E04 Minimizing or Maximizing a Function
- e04fdf – E04FDF link from page E04 Minimizing or Maximizing a Function
- e04gcf – E04GCF link from page E04 Minimizing or Maximizing a Function
- e04jaf – E04JAF link from page E04 Minimizing or Maximizing a Function
- e04mbf – E04MBF link from page E04 Minimizing or Maximizing a Function
- e04naf – E04NAF link from page E04 Minimizing or Maximizing a Function
- e04ucf – E04UCF link from page E04 Minimizing or Maximizing a Function
- e04ycf – E04YCF link from page E04 Minimizing or Maximizing a Function
- f01brf – F01BRF link from page F01 Matrix Operations - Including Inversion
- f01bsf – F01BSF link from page F01 Matrix Operations - Including Inversion
- f01maf – F01MAF link from page F01 Matrix Operations - Including Inversion
- f01mcf – F01MCF link from page F01 Matrix Operations - Including Inversion
- f01qcf – F01QCF link from page F01 Matrix Operations - Including Inversion
- f01qdf – F01QDF link from page F01 Matrix Operations - Including Inversion
- f01qef – F01QEF link from page F01 Matrix Operations - Including Inversion
- f01rcf – F01RCF link from page F01 Matrix Operations - Including Inversion
- f01rdf – F01RDF link from page F01 Matrix Operations - Including Inversion
- f01ref – F01REF link from page F01 Matrix Operations - Including Inversion
- f02aaf – F02AAF link from page F02 Eigenvalues and Eigenvectors
- f02abf – F02ABF link from page F02 Eigenvalues and Eigenvectors
- f02adf – F02ADF link from page F02 Eigenvalues and Eigenvectors
- f02aef – F02AEF link from page F02 Eigenvalues and Eigenvectors
• f02aff – F02AFF link from page F02 Eigenvalues and Eigenvectors
• f02agf – F02AGF link from page F02 Eigenvalues and Eigenvectors
• f02ajf – F02AJF link from page F02 Eigenvalues and Eigenvectors
• f02akf – F02AKF link from page F02 Eigenvalues and Eigenvectors
• f02awf – F02AWF link from page F02 Eigenvalues and Eigenvectors
• f02axf – F02AXF link from page F02 Eigenvalues and Eigenvectors
• f02bbf – F02BBF link from page F02 Eigenvalues and Eigenvectors
• f02bjf – F02BJF link from page F02 Eigenvalues and Eigenvectors
• f02tfj – F02FJF link from page F02 Eigenvalues and Eigenvectors
• f02wef – F02WEF link from page F02 Eigenvalues and Eigenvectors
• f02xef – F02XEF link from page F02 Eigenvalues and Eigenvectors
• f04adf – F04ADF link from page F04 Simultaneous Linear Equations
• f04arf – F04ARF link from page F04 Simultaneous Linear Equations
• f04asf – F04ASF link from page F04 Simultaneous Linear Equations
• f04atf – F04ATF link from page F04 Simultaneous Linear Equations
• f04aef – F04AXF link from page F04 Simultaneous Linear Equations
• f04jgf – F04JGF link from page F04 Simultaneous Linear Equations
• f04maf – F04MAF link from page F04 Simultaneous Linear Equations
• f04mbf – F04MBF link from page F04 Simultaneous Linear Equations
• f04mcf – F04MCF link from page F04 Simultaneous Linear Equations
• f04qaf – F04QAF link from page F04 Simultaneous Linear Equations
• f07adf – F07ADF link from page F07 Linear Equations (LAPACK)
• f07aef – F07AEF link from page F07 Linear Equations (LAPACK)
• f07fdf – F07FDF link from page F07 Linear Equations (LAPACK)
• f07fef – F07FEF link from page F07 Linear Equations (LAPACK)
• s01eaf – S01EAF link from page S – Approximations of Special Functions
• s13aaf – S13AAF link from page S – Approximations of Special Functions
• s13acf – S13ACF link from page S – Approximations of Special Functions
• s13adf – S13ADF link from page S – Approximations of Special Functions
• s14aaf – S14AAF link from page S – Approximations of Special Functions
• s14abf – S14ABF link from page S – Approximations of Special Functions
• s14abf – S14BAF link from page S – Approximations of Special Functions
• s15aaf – S15ADF link from page S – Approximations of Special Functions
• s15aef – S15AEF link from page S – Approximations of Special Functions
• s17aef – S17AEF link from page S – Approximations of Special Functions
• s17aff – S17AFF link from page S – Approximations of Special Functions
• s17agf – S17AGF link from page S – Approximations of Special Functions
• s17ahf – S17AHF link from page S – Approximations of Special Functions
• s17ajf – S17AJF link from page S – Approximations of Special Functions
• s17akf – S17AKF link from page S – Approximations of Special Functions
• s17dcf – S17DCF link from page S – Approximations of Special Functions
• s17def – S17DEF link from page S – Approximations of Special Functions
• s17dgf – S17DF link from page S – Approximations of Special Functions
• s17dhf – S17DHF link from page S – Approximations of Special Functions
• s17df – S17DLF link from page S – Approximations of Special Functions
• s18acf – S18ACF link from page S – Approximations of Special Functions
• s18adf – S18ADF link from page S – Approximations of Special Functions
• s18aef – S18AEF link from page S – Approximations of Special Functions
• s18aff – S18AFF link from page S – Approximations of Special Functions
• s18dcf – S18DCF link from page S – Approximations of Special Functions
• s18def – S18DEF link from page S – Approximations of Special Functions
• s19aaf – S19AAF link from page S – Approximations of Special Functions
• s19abf – S19ABF link from page S – Approximations of Special Functions
• s19acf – S19ACF link from page S – Approximations of Special Functions
• s19adf – S19ADF link from page S – Approximations of Special Functions
• s20acf – S20ACF link from page S – Approximations of Special Functions
• s20adf – S20ADF link from page S – Approximations of Special Functions
• s21baf – S21BAF link from page S – Approximations of Special Functions
• s21bbf – S21BBF link from page S – Approximations of Special Functions
• s21bcf – S21BCF link from page S – Approximations of Special Functions
• s21bdf – S21BDF link from page S – Approximations of Special Functions

Axiom Browser

Enter search string [use * for wild card unless counter-indicated]:

- Constructors Search for categories, domains, or packages
- Operations Search for operations.
- Attributes Search for attributes.
- General Search for all three of the above.
- Documentation Search library documentation.
- Complete All of the above.
- Selectable Detailed search with selectable options.
- Reference Search Reference documentation (*wild card is not accepted).
- Commands View system command documentation.

⇐ “Root Page” (RootPage) 3.1 on page 117
⇒ “Commands” (ugSysCmdPage) 19 on page 2538
⇒ “Constructors” (LispFunctions) 3.71 on page 952
— man0.ht —
Enter search string (use {em *} for wild card unless counter-indicated):
\inputstring{pattern}{40}{}
\newline
\beginmenu
\beginmenu
\begin{itemize}
\item \menulispmemolink{Constructors} \{ (|kSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Search for
\item \menulispmemolink{Categories} \{ (|cSearch| '|\stringvalue{pattern}|) \},
\item \menulispmemolink{Domains} \{ (|dSearch| '|\stringvalue{pattern}|) \}, or
\item \menulispmemolink{Packages} \{ (|pSearch| '|\stringvalue{pattern}|) \}
\end{itemize}
\begin{itemize}
\item \menulispmemolink{Operations} \{ (|oSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Search for operations.
\item \menulispmemolink{Attributes} \{ (|aSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Search for attributes.
\item \menulispmemolink{General} \{ (|aokSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Search for all three of the above.
\item \menulispmemolink{Documentation} \{ (|docSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Search library documentation.
\item \menulispmemolink{Complete} \{ (|genSearch| '|\stringvalue{pattern}|) \}
  \tab{15} All of the above.
\item \menulispmemolink{Selectable} \{ (|detailedSearch| '|\stringvalue{pattern}|) \}
  \tab{15} Detailed search with selectable options.
\end{itemize}
\begin{itemize}
\item \menuunixlink{Reference} \{htsearch "|\stringvalue{pattern}"\}
  \tab{15} Search Reference documentation ({{em *}} wild card
  is not accepted).
\item \menumemolink{Commands} \{ugSysCmdPage\}
  \tab{15} View system command documentation.
\end{itemize}
\endmenu
\endscroll
\autobutt{BROWSEhelp}
\end{page}

The Hyperdoc Browse Facility

--- man0.ht ---

\begin{page}{BROWSEhelp}{The Hyperdoc Browse Facility}
3.72 mapping.ht

Domain Mapping(T,S,...)

⇒ “Description” (LispFunctions) 3.71 on page 952
⇒ “Operations” (LispFunctions) 3.71 on page 952

— mapping.ht —

\begin{page}{DomainMapping}{Domain \textit{Mapping(T,S,...)}}
\beginscroll
\item \textit{Mapping} takes any number of arguments of the form:
\indentrel{2}
\newline \texttt{spad(T)}, a domain of category \texttt{SetCategory}
\newline \texttt{spad(S)}, a domain of category \texttt{SetCategory}
\indentrel{-2}
This constructor is a primitive in Axiom.
\end{scroll}
\end{page}
Domain Constructor Mapping

---

Function are objects of type \texttt{Mapping}. In this section we demonstrate some library operations from the
packages \spadtype{MappingPackage1}, \spadtype{MappingPackage2}, and \spadtype{MappingPackage3} that manipulate and create functions. Some terminology: a \textit{nullary} function takes no arguments, a \textit{unary} function takes one argument, and a \textit{binary} function takes two arguments.

\xtc{We begin by creating an example function that raises a rational number to an integer exponent.}
\spadpaste{power(q: FRAC INT, n: INT): FRAC INT == q**n \bound{power}}
\xtc{}
\spadpaste{power(2, 3) \free{power}}
\xtc{The \spadfunFrom{twist}{MappingPackage3} operation transposes the arguments of a binary function. Here \spad{rewop(a, b)} is \spad{power(b, a)}.}
\spadpaste{rewop := twist power \free{power} \bound{rewop}}
\xtc{This is \texttt{$2^3.$} \spad{2**3.}}
\spadpaste{rewop(3, 2) \free{rewop}}
\xtc{Now we define \texttt{square} in terms of \texttt{power}.}
\spadpaste{square: FRAC INT -> FRAC INT \bound{squaredec}}
\xtc{The \spadfunFrom{curryRight}{MappingPackage3} operation creates a unary function from a binary one by providing a constant argument on the right.}
\spadpaste{square:= curryRight(power, 2) \free{squaredec power} \bound{square}}
\xtc{Likewise, the \spadfunFrom{curryLeft}{MappingPackage3} operation provides a constant argument on the left.}
\spadpaste{square 4 \free{square}}
\xtc{The \spadfunFrom{constantRight}{MappingPackage3} operation creates
(in a trivial way) a binary function from a unary one:
\spad{constantRight(f)} is the function \spad{g} such that
\spad{g(a,b)= f(a).}
\spadpaste{squirrel:= constantRight(square)$MAPPKG3(FRAC INT,
FRAC INT,FRAC INT) \free{square}\bound{squirrel}}
\xtc{
Likewise,\spad{constantLeft(f)} is the function \spad{g} such that
\spad{g(a,b)= f(b).}
}\spadpaste{squirrel(1/2, 1/3) \free{squirrel}}
\xtc{
The \spadfunFrom{curry}{MappingPackage2} operation makes a
unary function nullary.
}\spadpaste{sixteen := curry(square, 4/1) \free{square}\bound{sixteen}}
\xtc{
}\spadpaste{sixteen() \free{sixteen}}
\xtc{
The \spadopFrom{*}{MappingPackage3} operation
constructs composed functions.
}\spadpaste{square2:=square*square \free{square}\bound{square2}}
\xtc{
}\spadpaste{square2 3 \free{square2}}
\xtc{
Use the \spadopFrom{**}{MappingPackage1} operation to create
functions that are \spad{n}-fold iterations of other functions.
}\spadpaste{sc(x: FRAC INT): FRAC INT == x + 1 \bound{sc}}
\xtc{
This is a list of \pspadtype{Mapping} objects.
}\spadpaste{incfns := [sc**i for i in 0..10] \free{sc}\bound{incfns}}
\xtc{
This is a list of applications of those functions.
}\spadpaste{[f 4 for f in incfns] \free{incfns}}
Use the \spadfunFrom{recur}{MappingPackage1} operation for recursion:
\spad{g := recur f} means \spad{g(n,x) == f(n,f(n-1,\ldots f(1,x))).}

\spadpaste{times(n:NNI, i:INT):INT == n*i}

This is a factorial function.
\spadpaste{fact := curryRight(r, 1)

fact 4

Constructed functions can be used within other functions.
\begin{spadsrc}
\free{square}
\bound{mto2ton}
mto2ton(m, n) ==
  raiser := square**n
  raiser m
\end{spadsrc}

This is \texttt{3^{2^3}.}
\spadpaste{mto2ton(3, 3)}

Here \userfun{shiftfib} is a unary function that modifies its argument.
\begin{spadsrc}
\free{shiftfib}
shiftfib(r: List INT) : INT ==
  t := r.1
  r.1 := r.2
  r.2 := r.2 + t
  t
\end{spadsrc}

By currying over the argument we get a function with private state.
\spadpaste{fibinit: List INT := [0, 1]}
\xtc{
  }
\spadpaste{fibs := curry(shiftfib, fibinit)
  \free{shiftfib fibinit}\bound{fibs}}
\xtc{
  }
\spadpaste{[fibs() for i in 0..30] \free{fibs}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{MappingPackageOneXmpPagePatch1}
\begin{paste}{MappingPackageOneXmpPageFull1}{MappingPackageOneXmpPageEmpty1}
\pastebutton{MappingPackageOneXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{power(q: FRAC INT, n: INT): FRAC INT == q**n\bound{power }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{MappingPackageOneXmpPageEmpty1}
\begin{paste}{MappingPackageOneXmpPageEmpty1}{MappingPackageOneXmpPagePatch1}
\pastebutton{MappingPackageOneXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{power(q: FRAC INT, n: INT): FRAC INT == q**n\bound{power }}
\end{patch}
\begin{patch}{MappingPackageOneXmpPagePatch2}
\begin{paste}{MappingPackageOneXmpPageFull2}{MappingPackageOneXmpPageEmpty2}
\pastebutton{MappingPackageOneXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{power(2,3)\free{power}}
\indentrel{3}\begin{verbatim}
(2) 8
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{MappingPackageOneXmpPageEmpty2}
\begin{paste}{MappingPackageOneXmpPageEmpty2}{MappingPackageOneXmpPagePatch2}
\pastebutton{MappingPackageOneXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{power(2,3)\free{power}}
\end{patch}
\begin{patch}{MappingPackageOneXmpPagePatch3}
\begin{paste}{MappingPackageOneXmpPageFull3}{MappingPackageOneXmpPageEmpty3}
\pastebutton{MappingPackageOneXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{rewop := twist power\free{power}\bound{rewop}}
\indentrel{3}\begin{verbatim}
(3) theMap(MAPPKG3;twist;MM;5!0)
Type: ((Integer,Fraction Integer) -> Fraction Integer)

\begin{verbatim}
\indentrel{-3}end\{paste\}end\{patch\}
\end{verbatim}

\begin{patch}{MappingPackageOneXmpPageEmpty3}
\begin{paste}{MappingPackageOneXmpPageEmpty3}{MappingPackageOneXmpPagePatch3}
\pastebutton{MappingPackageOneXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{rewop := twist power\free{power }\bound{rewop }}
\end{paste}
\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch4}
\begin{paste}{MappingPackageOneXmpPageFull4}{MappingPackageOneXmpPageEmpty4}
\pastebutton{MappingPackageOneXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{rewop(3, 2)\free{rewop }}
\indentrel{3}begin\{verbatim\}
\begin{verbatim}
(4) 8
\end{verbatim}
\indentrel{-3}end\{verbatim\}
\end{paste}
\end{patch}

\begin{patch}{MappingPackageOneXmpPageEmpty4}
\begin{paste}{MappingPackageOneXmpPageEmpty4}{MappingPackageOneXmpPagePatch4}
\pastebutton{MappingPackageOneXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{rewop(3, 2)\free{rewop }}
\end{paste}
\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch5}
\begin{paste}{MappingPackageOneXmpPageFull5}{MappingPackageOneXmpPageEmpty5}
\pastebutton{MappingPackageOneXmpPageFull5}{\hidepaste}
\tab{5}spadcommand{square: FRAC INT -> FRAC INT\bound{squaredec }}
\indentrel{3}begin\{verbatim\}
\indentrel{3}begin\{verbatim\}
\indentrel{-3}end\{verbatim\}
\end{paste}
\end{patch}

\begin{patch}{MappingPackageOneXmpPageEmpty5}
\begin{paste}{MappingPackageOneXmpPageEmpty5}{MappingPackageOneXmpPagePatch5}
\pastebutton{MappingPackageOneXmpPageEmpty5}{\showpaste}
\tab{5}spadcommand{square: FRAC INT -> FRAC INT\bound{squaredec }}
\end{paste}
\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch6}
\begin{paste}{MappingPackageOneXmpPageFull6}{MappingPackageOneXmpPageEmpty6}
\pastebutton{MappingPackageOneXmpPageFull6}{\hidepaste}
\tab{5}spadcommand{square:= curryRight(power, 2)\free{squaredec poswer }\bound{square }}
\indentrel{3}begin\{verbatim\}
\indentrel{3}begin\{verbatim\}
\indentrel{-3}end\{verbatim\}
\end{paste}
\end{patch}

\begin{verbatim}
(6) theMap(MAPPKG3;curryRight;MBM;1!0,430)
\indentrel{-3}end\{verbatim\}
\end{verbatim}

Type: (Fraction Integer -> Fraction Integer)

\begin{verbatim}
\indentrel{-3}end\{verbatim\}
\end{verbatim}
\begin{patch}{MappingPackageOneXmpPageEmpty6}
\begin{paste}{MappingPackageOneXmpPageEmpty6}{MappingPackageOneXmpPagePatch6}
\pastebutton{MappingPackageOneXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{square:= curryRight(power, 2)\free{square }
\bound{square }}
\end{paste}\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch7}
\begin{paste}{MappingPackageOneXmpPageFull7}{MappingPackageOneXmpPageEmpty7}
\pastebutton{MappingPackageOneXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{square 4\free{square }}
\indentrel{3}\begin{verbatim}
(7) 16
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch8}
\begin{paste}{MappingPackageOneXmpPageFull8}{MappingPackageOneXmpPageEmpty8}
\pastebutton{MappingPackageOneXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{squirrel:= constantRight(square)$\text{MAPPKG3}(\text{FRAC INT,FRAC INT,FRAC INT})\free{square }
\bound{squirrel }}
\indentrel{3}\begin{verbatim}
(8) theMap($\text{MAPPKG3;constantRight;MM};3!0)
Type: ((\text{Fraction Integer,\text{Fraction Integer}}) \rightarrow \text{Fraction Integer})
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch9}
\begin{paste}{MappingPackageOneXmpPageFull9}{MappingPackageOneXmpPageEmpty9}
\pastebutton{MappingPackageOneXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{squirrel(1/2, 1/3)\free{squirrel }}
\indentrel{3}\begin{verbatim}
1
(9) 4
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MappingPackageOneXmpPageEmpty9}
\begin{paste}{MappingPackageOneXmpPageEmpty9}{MappingPackageOneXmpPagePatch9}
\pastebutton{MappingPackageOneXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{squirrel(1/2, 1/3)\free{squirrel }}
\end{paste}\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch10}
\begin{paste}{MappingPackageOneXmpPageFull10}{MappingPackageOneXmpPageEmpty10}
\pastebutton{MappingPackageOneXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{sixteen := curry(square, 4/1)\free{square }\bound{sixteen }}
\indentrel{3}\begin{verbatim}
(10) \texttt{theMap(MAPPKG2;curry;MAM;2!0,488)}
\texttt{Type: (()) \textasciitilde Fraction Integer)}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch11}
\begin{paste}{MappingPackageOneXmpPageFull11}{MappingPackageOneXmpPageEmpty11}
\pastebutton{MappingPackageOneXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{square2:=square*square\free{square }\bound{square2 }}
\indentrel{3}\begin{verbatim}
(12) \texttt{theMap(MAPPKG3;*;MMM;6!0,589)}
\texttt{Type: (Fraction Integer \textasciitilde Fraction Integer)}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{spad}
\spadcommand{square2 := square*square}
\end{spad}

\begin{verbatim}
(13) 81
Type: Fraction Integer
\end{verbatim}

\begin{spad}
\spadcommand{sc(x: FRAC INT) == x + 1}
\end{spad}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spad}
\spadcommand{incfns := [sc**i for i in 0..10]}
\end{spad}

\begin{verbatim}
(15) [theMap(MAPPKG1;**;MNniM;610,314), theMap(MAPPKG1;**;MNniM;610,963), theMap(MAPPKG1;**;MNniM;610,810), theMap(MAPPKG1;**;MNniM;610,546), theMap(MAPPKG1;**;MNniM;610,338), theMap(MAPPKG1;**;MNniM;610,989), theMap(MAPPKG1;**;MNniM;610,218), theMap(MAPPKG1;**;MNniM;610,20),
\end{verbatim}
\begin{verbatim}

(16) \[4,5,6,7,8,9,10,11,12,13,14\]
Type: List Fraction Integer
\end{verbatim}

\end{verbatim}
Type: ((NonNegativeInteger,Integer) -> Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MappingPackageOneXmpPagePatch19}
\begin{paste}{MappingPackageOneXmpPageFull19}{MappingPackageOneXmpPageEmpty19}
\pastebutton{MappingPackageOneXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{fact := curryRight(r, 1)\free{r }\bound{fact }}
\indentrel{3}\begin{verbatim}
(19) theMap(MAPPKG3;curryRight;MBM;1!0,541)
    Type: (NonNegativeInteger -> Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MappingPackageOneXmpPagePatch20}
\begin{paste}{MappingPackageOneXmpPageFull20}{MappingPackageOneXmpPageEmpty20}
\pastebutton{MappingPackageOneXmpPageFull20}{\hidepaste}
\tab{5}\spadcommand{fact 4\free{fact }}
\indentrel{3}\begin{verbatim}
(20) 24
    Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MappingPackageOneXmpPagePatch21}
\begin{paste}{MappingPackageOneXmpPageFull21}{MappingPackageOneXmpPageEmpty21}
\pastebutton{MappingPackageOneXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{mto2ton(m, n) ==
  \free{square }\bound{mto2ton }}
\indentrel{3}\begin{verbatim}
raiser := square**n
raiser m
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
raiser := square**n
raiser m
\end{verbatim}
Type: Void

\begin{verbatim}
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{patch}{MappingPackageOneXmpPageFull24}{MappingPackageOneXmpPageEmpty24}
\pastebutton{MappingPackageOneXmpPageFull24}{\hidepaste}
\indentrel{3}\begin{verbatim}
(24) \[0,1\]
Type: List Integer
\end{verbatim}
\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch25}
\begin{paste}{MappingPackageOneXmpPageFull25}{MappingPackageOneXmpPageEmpty25}
\pastebutton{MappingPackageOneXmpPageFull25}{\hidepaste}
\indentrel{3}\begin{verbatim}
(25) theMap(MAPPKG2;curry;MAM;2!0,91)
Type: (() -> Integer)
\end{verbatim}
\end{patch}

\begin{patch}{MappingPackageOneXmpPagePatch26}
\begin{paste}{MappingPackageOneXmpPageFull26}{MappingPackageOneXmpPageEmpty26}
\pastebutton{MappingPackageOneXmpPageFull26}{\hidepaste}
\indentrel{3}\begin{verbatim}
(26) \[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040\]
Type: List Integer
\end{verbatim}
\end{patch}
3.74 mset.ht

MultiSet

--- mset.ht ---

Create a multiset of integers.

\begin{spadpaste}
\spadpaste{s := multiset \{1,2,3,4,5,4,3,2,3,4,5,6,7,4,10\}}
\end{spadpaste}

The operation \spadfunX{insert} adds an element to a multiset.

\begin{spadpaste}
\spadpaste{insert!(3,s)}
\end{spadpaste}

Use \spadfunX{remove} to remove an element. If a third argument is present, it specifies how many instances to remove. Otherwise all instances of the element are removed. Display the resulting multiset.

\begin{spadpaste}
\spadpaste{remove!(3,s,1)}
\end{spadpaste}
The operation `count` returns the number of copies of a given value.

```spad
\spadpaste{count(5,s)\free{s2}}
```

A second multiset.

```spad
\spadpaste{t := multiset [2,2,2,-9]\bound{t}}
```

The \spad{union} of two multisets is additive.

```spad
\spadpaste{U := union(s,t)\bound{U}}
```

The \spad{intersect} operation gives the elements that are in common, with additive multiplicity.

```spad
\spadpaste{I := intersect(s,t)\bound{I}}
```

The \spad{difference} of \spad{s} and \spad{t} consists of the elements that \spad{s} has but \spad{t} does not. Elements are regarded as indistinguishable, so that if \spad{s} and \spad{t} have any element in common, the \spad{difference} does not contain that element.

```spad
\spadpaste{difference(s,t)\free{s t}}
```

The \spad{symmetricDifference} is the \spad{union} of \spad{difference(s,t)} and \spad{difference(t,s)}.

```spad
\spadpaste{S := symmetricDifference(s,t)\bound{S}\free{s t}}
```

Check that the \spad{union} of the \spad{symmetricDifference} and the \spad{intersect} equals the \spad{union} of the elements.

```spad
\spadpaste{(U = union(S,I))@Boolean\free{S I U}}
```

Check some inclusion relations.

```spad
\spadpaste{t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s] \free{t s2}}
```
\begin{paste}{MultiSetXmpPageFull1}{MultiSetXmpPageEmpty1}
\spadcommand{s := multiset \[1,2,3,4,5,4,3,2,3,4,5,6,7,4,10\]\bound{s }}
\indentrel{3}
\begin{verbatim}
(1) {7,2: 5,3: 3,1,10,6,4: 4,2: 2}
Type: Multiset PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{MultiSetXmpPageEmpty1}
\begin{paste}{MultiSetXmpPageEmpty1}{MultiSetXmpPagePatch1}
\spadcommand{s := multiset \[1,2,3,4,5,4,3,2,3,4,5,6,7,4,10\]\bound{s }}
\end{paste}\end{patch}
\begin{patch}{MultiSetXmpPagePatch2}
\begin{paste}{MultiSetXmpPageFull2}{MultiSetXmpPageEmpty2}
\spadcommand{insert!(3,s)\bound{s1 }\free{s}}
\indentrel{3}
\begin{verbatim}
(2) {7,2: 5,4: 3,1,10,6,4: 4,2: 2}
Type: Multiset PositiveInteger
\end{verbatim}
\end{paste}\end{patch}
\begin{patch}{MultiSetXmpPageEmpty2}
\begin{paste}{MultiSetXmpPageEmpty2}{MultiSetXmpPagePatch2}
\spadcommand{insert!(3,s)\bound{s1 }\free{s}}
\end{paste}\end{patch}
\begin{patch}{MultiSetXmpPagePatch3}
\begin{paste}{MultiSetXmpPageFull3}{MultiSetXmpPageEmpty3}
\spadcommand{remove!(3,s,1); s\bound{s2 }\free{s1}}
\indentrel{3}
\begin{verbatim}
(3) {7,2: 5,3: 3,1,10,6,4: 4,2: 2}
Type: Multiset PositiveInteger
\end{verbatim}
\end{paste}\end{patch}
\begin{patch}{MultiSetXmpPageEmpty3}
\begin{paste}{MultiSetXmpPageEmpty3}{MultiSetXmpPagePatch3}
\end{paste}\end{patch}
\begin{verbatim}
(4) {7,3: 3,1,10,6,4: 4,2: 2}
Type: Multiset PositiveInteger
\end{verbatim}

\begin{verbatim}
(5) 0
Type: NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(6) {- 9,3: 2}
Type: Multiset Integer
\end{verbatim}
\begin{verbatim}
U := union(s,t)
\end{verbatim}

(7) \{7,3:3,1,-9,10,6,4:4,5:2\}
Type: Multiset Integer

\begin{verbatim}
I := intersect(s,t)
\end{verbatim}

(8) \{5:2\}
Type: Multiset Integer

\begin{verbatim}
difference(s,t)
\end{verbatim}

(9) \{7,3:3,1,10,6,4:4\}
Type: Multiset Integer


\begin{verbatim}
(10) \{7,3:3,1:-9,10,6,4:4\}
Type: Multiset Integer
\end{verbatim}

\begin{verbatim}
(11) true
Type: Boolean
\end{verbatim}

\begin{verbatim}
(12) [false,true,false,true]
Type: List Boolean
\end{verbatim}
3.75 matrix.ht

Matrix

\begin{page}{MatrixXmpPage}{Matrix}
\beginscroll
The \spadtype{Matrix} domain provides arithmetic operations on matrices
and standard functions from linear algebra.
This domain is similar to the \spadtype{TwoDimensionalArray} domain, except
that the entries for \spadtype{Matrix} must belong to a \spadtype{Ring}.
\end{scroll}
\autobuttons
\end{page}

Creating Matrices

\begin{page}{ugxMatrixCreatePage}{Creating Matrices}
\beginscroll
There are many ways to create a matrix from a collection of
values or from existing matrices.

\xtc{
If the matrix has almost all items equal to the same value,
use \spadfunFrom{new}{Matrix} to create a matrix filled with that
value and then reset the entries that are different.
}\}
\spadpaste{m : Matrix(Integer) := new(3,3,0) \bound{m}}
\xtc{
To change the entry in the second row, third column to \spad{5}, use
}
\spadfunFrom{setelt}{Matrix}.
{\spadpaste{setelt(m,2,3,5) \free{m}\bound{m1}}}
\xtc{An alternative syntax is to use assignment.}
{\spadpaste{m(1,2) := 10 \free{m1}\bound{m2}}}
\xtc{The matrix was \textit{destructively modified}.}
{\spadpaste{m \free{m2}}}
\xtc{If you already have the matrix entries as a list of lists, use \spadfunFrom{matrix}{Matrix}.
{\spadpaste{matrix [[1,2,3,4],[0,9,8,7]]}}}
\xtc{If the matrix is diagonal, use}
\spadfunFrom{diagonalMatrix}{Matrix}.
{\spadpaste{dm := diagonalMatrix [1,x**2,x**3,x**4,x**5] \bound{dm}}}
\xtc{Use \spadfunFromX{setRow}{Matrix} and \spadfunFromX{setColumn}{Matrix} to change a row or column of a matrix.}
{\spadpaste{setRow!(dm,5,vector [1,1,1,1,1]) \free{dm}\bound{dm1}}} 
\xtc{ }
{\spadpaste{setColumn!(dm,2,vector [y,y,y,y,y]) \free{dm1}\bound{dm2}}} 
% 
\xtc{Use \spadfunFrom{copy}{Matrix} to make a copy of a matrix.}
{\spadpaste{cdm := copy(dm) \free{dm2}\bound{cdm}}} 
\xtc{This is useful if you intend to modify a matrix destructively but want a copy of the original.}
{\spadpaste{setelt(dm,4,1,1-x**7) \free{dm2}\bound{setdm}}}
Use \spadfunFrom{subMatrix}{Matrix} to extract part of an existing matrix. The syntax is \spad{subMatrix({\it m, firstrow, lastrow, firstcol, lastcol})}.

\spadpaste{subMatrix(dm,2,3,2,4) \free{setdm}}

To change a submatrix, use \spadfunFromX{setsubMatrix}{Matrix}. If \spad{e} is too big to fit where you specify, an error message is displayed. Use \spadfunFrom{subMatrix}{Matrix} to extract part of \spad{e}, if necessary.

\spadpaste{d := diagonalMatrix [1.2,-1.3,1.4,-1.5] \bound{d}}

\spadpaste{e := matrix [[6.7,9.11],[-31.33,67.19]] \bound{e}}

\spadpaste{setsubMatrix!(d,1,2,e) \free{setdm}}

Matrices can be joined either horizontally or vertically to make new matrices.

\spadpaste{a := matrix [[1/2,1/3,1/4],[1/5,1/6,1/7]] \bound{a}}
3.75. MATRIX.HT

\spadpaste{b := matrix \[[3/5,3/7,3/11],[3/13,3/17,3/19]\] \bound{b}}
}\xtc{
Use \spadfunFrom{horizConcat}{Matrix} to append them side to side.
The two matrices must have the same number of rows.
}\spadpaste{horizConcat(a,b) \free{a b}}
}\xtc{
Use \spadfunFrom{vertConcat}{Matrix} to stack one upon the other.
The two matrices must have the same number of columns.
}\spadpaste{vab := vertConcat(a,b) \free{a b}\bound{vab}}
}

% \xtc{
The operation \spadfunFrom{transpose}{Matrix} is used to create a new matrix by
reflection across the main diagonal.
}\spadpaste{transpose vab \free{vab}}
}

\endscroll
autoscroll
end{page}

\begin{patch}{ugxMatrixCreatePagePatch1}
\begin{paste}{ugxMatrixCreatePageFull1}{ugxMatrixCreatePageEmpty1}
\pastebutton{ugxMatrixCreatePageFull1}{\hidepaste}
\tab{5}\spadcommand{m : Matrix(Integer) := new(3,3,0)\bound{m }}
\indentrel{3}\begin{verbatim}
0 0 0
(1) 0 0 0
0 0 0
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxMatrixCreatePageEmpty1}
\begin{paste}{ugxMatrixCreatePageEmpty1}{ugxMatrixCreatePagePatch1}
\pastebutton{ugxMatrixCreatePageEmpty1}{\showpaste}
\tab{5}\spadcommand{m : Matrix(Integer) := new(3,3,0)\bound{m }}
\end{paste}
\end{patch}

\begin{patch}{ugxMatrixCreatePagePatch2}
\begin{verbatim}
(2) 5
Type: PositiveInteger
\end{verbatim}

(3) 10
Type: PositiveInteger

\begin{verbatim}
0 10 0
0 0 5
0 0 0
\end{verbatim}
Type: Matrix Integer
\begin{patch}{ugxMatrixCreatePageFull5}{ugxMatrixCreatePageEmpty5}\pastebutton{ugxMatrixCreatePageFull5}{\hidepaste}\tab{5}\spadcommand{matrix [[1,2,3,4],[0,9,8,7]]}\indentrel{3}\begin{verbatim}1 2 3 4
0 9 8 7
\end{verbatim}\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ugxMatrixCreatePageFull6}{ugxMatrixCreatePageEmpty6}\pastebutton{ugxMatrixCreatePageFull6}{\hidepaste}\tab{5}\spadcommand{dm := diagonalMatrix [1,x**2,x**3,x**4,x**5]\bound{dm}}\indentrel{3}\begin{verbatim}1 0 0 0 0
2
0 x 0 0 0
3
(6) 0 0 x 0 0
4
0 0 0 x 0
5
0 0 0 0 x
\end{verbatim}\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ugxMatrixCreatePageFull7}{ugxMatrixCreatePageEmpty7}\pastebutton{ugxMatrixCreatePageFull7}{\hidepaste}
\spadcommand{setRow!(dm,5,vector [1,1,1,1,1])}
\begin{verbatim}
  2
  0  x  0  0  0
(7)
  3
  0  0  x  0  0

  4
  0  0  0  x  0

  1  1  1  1  1
\end{verbatim}
Type: Matrix Polynomial Integer
\end{verbatim}
\begin{verbatim}
1 y 0 0 0
0 y 0 0 0
3
(9) 0 y x 0 0
4
0 y 0 x 0
1 y 1 1 1
Type: Matrix Polynomial Integer
\end{verbatim}

\begin{verbatim}
7
(10) - x + 1
Type: Polynomial Integer
\end{verbatim}
```
0 y 0 0 0 y 0 0 0

3 3
(11) [0 y x 0 0,0 y x 0 0]

7 4 4
- x + 1 y 0 x 0 0 y 0 x 0

1 y 1 1 1 y 1 1 1
Type: List Matrix Polynomial Integer
```

```
y 0 0

(12)
y x 0
3
Type: Matrix Polynomial Integer
```

```
y 0 0

(13)
y 0 0 1.4 0.0
0.0 0.0 0.0 -1.5
```
Type: Matrix Float

\begin{verbatim}
   6.7  9.11
(14)
   -31.33  67.19
\end{verbatim}

Type: Matrix Float

\begin{verbatim}
   1.2  6.7  9.11  0.0
(15)
   0.0    -31.33  67.19  0.0
   0.0      0.0    1.4  0.0
   0.0      0.0      0.0    -1.5
\end{verbatim}

Type: Matrix Float
\begin{verbatim}
1.2 6.7 9.11 0.0
0.0 - 31.33 67.19 0.0
(16)
0.0 0.0 1.4 0.0
0.0 0.0 0.0 - 1.5
\end{verbatim}

Type: Matrix Float

\begin{verbatim}
1 1 1
2 3 4
(17)
1 1 1
5 6 7
\end{verbatim}

Type: Matrix Fraction Integer

\begin{verbatim}
3 3
\end{verbatim}
\begin{verbatim}

3.75. MATRIX.HT

declare (18)

5  7  11
3  3  3
13 17 19

Type: Matrix Fraction Integer

declare (19)

1  1  1  3  3  3
2  3  4  5  7  11
5  6  7 13 17 19

Type: Matrix Fraction Integer

declare (20)

1  1  1
2  3  4
1  1  1
5  6  7

\end{verbatim}

\end{patch}
(20)
\[
\begin{pmatrix}
3 & 3 & 3 \\
5 & 7 & 11 \\
3 & 3 & 3 \\
13 & 17 & 19
\end{pmatrix}
\]
Type: Matrix Fraction Integer

(21)
\[
\begin{pmatrix}
1 & 1 & 3 & 3 \\
2 & 5 & 5 & 13 \\
1 & 1 & 3 & 3 \\
3 & 6 & 7 & 17 \\
1 & 1 & 3 & 3 \\
4 & 7 & 11 & 19
\end{pmatrix}
\]
Type: Matrix Fraction Integer
Operations on Matrices

Axiom provides both left and right scalar multiplication.

\begin{spad}{m := matrix \([1,2],[3,4]\)} \end{spad}

You can add, subtract, and multiply matrices provided, of course, that the matrices have compatible dimensions. If not, an error message is displayed.

\begin{spad}{n := matrix([[1,0,-2],[-3,5,1]])} \end{spad}

This following product is defined but \spad{n \times m} is not.

\begin{spad}{m \times n} \end{spad}

The operations \spadfunFrom{nrows}{Matrix} and \spadfunFrom{ncols}{Matrix} return the number of rows and columns of a matrix.

You can extract a row or a column of a matrix using the operations \spadfunFrom{row}{Matrix} and \spadfunFrom{column}{Matrix}.

The object returned is a \spadtype{Vector}.

Here is the third column of the matrix \spad{n}.

\begin{spad}{vec := column(n,3)} \end{spad}
You can multiply a matrix on the left by a "row vector" and on the right by a "column vector."

\spadpaste{vec * m \free{vec m}}
\xtc{
Of course, the dimensions of the vector and the matrix must be compatible or an error message is returned.
}\spadpaste{m * vec \free{vec m}}

The operation \spadfunFrom{inverse}{Matrix} computes the inverse of a matrix if the matrix is invertible, and returns \spad{"failed"} if not.

\xtc{This Hilbert matrix is invertible.}
\spadpaste{hilb := matrix([[1/(i + j) for i in 1..3] for j in 1..3]) \bound{hilb}}
\xtc{inverse(hilb) \free{hilb}}

\xtc{This matrix is not invertible.}
\spadpaste{mm := matrix([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16]]) \bound{mm}}
\xtc{inverse(mm) \free{mm}}

The operation \spadfunFrom{determinant}{Matrix} computes the determinant of a matrix provided that the entries of the matrix belong to a \spadtype{CommutativeRing}.

\xtc{The above matrix \spad{mm} is not invertible and, hence, must have determinant \spad{0}.}
\spadpaste{determinant(mm) \free{mm}}

The operation
\spadfunFrom{trace}{SquareMatrix} computes the trace of a square matrix.

\spadpaste{trace(mm) \free{mm}}

\xtc{
The operation \spadfunFrom{rank}{Matrix} computes the rank of a matrix: the maximal number of linearly independent rows or columns.
\spadpaste{rank(mm) \free{mm}}
}

\xtc{
The operation \spadfunFrom{nullity}{Matrix} computes the nullity of a matrix: the dimension of its null space.
\spadpaste{nullity(mm) \free{mm}}
}

\xtc{
The operation \spadfunFrom{nullSpace}{Matrix} returns a list containing a basis for the null space of a matrix. Note that the nullity is the number of elements in a basis for the null space.
\spadpaste{nullSpace(mm) \free{mm}}
}

\xtc{
The operation \spadfunFrom{rowEchelon}{Matrix} returns the row echelon form of a matrix. It is easy to see that the rank of this matrix is two and that its nullity is also two.
\spadpaste{rowEchelon(mm) \free{mm}}
}

For more information on related topics, see
\downlink{‘Expanding to Higher Dimensions’}{ugIntroTwoDimPage} in Section 1.7\ignore{ugIntroTwoDim},
\downlink{‘Computation of Eigenvalues and Eigenvectors’}{ugProblemEigenPage} in Section 8.4\ignore{ugProblemEigen},
\downlink{‘Determinant of a Hilbert Matrix’}{ugxFloatHilbertPage}\ignore{ugxFloatHilbert},
\downlink{‘Permanent’}{PermanentXmpPage}\ignore{Permanent},
\downlink{‘Vector’}{VectorXmpPage}\ignore{Vector},
\downlink{‘OneDimensionalArray’}{OneDimensionalArrayXmpPage}\ignore{OneDimensionalArray}, and
% showBlurb{Matrix}
\end{scroll}
\autoloads
\end{page}

\begin{patch}{ugxMatrixOpsPagePatch1}
\begin{paste}{ugxMatrixOpsPageFull1}{ugxMatrixOpsPageEmpty1}
\vspace{-5pt}
\begin{verbatim}
 1 2
(1)
3 4
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugxMatrixOpsPageEmpty1}
\begin{paste}{ugxMatrixOpsPageEmpty1}{ugxMatrixOpsPagePatch1}
\vspace{-5pt}
\begin{verbatim}
 1 2
(1)
3 4
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugxMatrixOpsPagePatch2}
\begin{paste}{ugxMatrixOpsPageFull2}{ugxMatrixOpsPageEmpty2}
\vspace{-5pt}
\begin{verbatim}
-20 -40
(2)
-60 -80
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugxMatrixOpsPageEmpty2}
\begin{paste}{ugxMatrixOpsPageEmpty2}{ugxMatrixOpsPagePatch2}
\vspace{-5pt}
\begin{verbatim}
-20 -40
(2)
-60 -80
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugxMatrixOpsPagePatch3}
\begin{paste}{ugxMatrixOpsPageFull3}{ugxMatrixOpsPageEmpty3}
\vspace{-5pt}
\begin{verbatim}
 1 0 -2
\end{verbatim}
\end{paste}
\end{patch}
\begin{verbatim}
\indentrel{-3}
\end{verbatim}

\indentrel{3}
\begin{verbatim}
- 3 5 1
\end{verbatim}

Type: Matrix Integer

\indentrel{3}
\begin{verbatim}
- 5 10 0
\end{verbatim}

Type: Matrix Integer

\indentrel{3}
\begin{verbatim}
- 9 20 - 2
\end{verbatim}

Type: Matrix Integer

\indentrel{3}
\begin{verbatim}
[- 2,1]
\end{verbatim}

Type: Vector Integer

\indentrel{3}
\begin{verbatim}
[- 2,1]
\end{verbatim}

\indentrel{-3}
\verb+\begin{verbatim}+(6) \[1,0\] Type: Vector Integer \verb+\end{verbatim}+\begin{verbatim}+(7) \[0,-2\] Type: Vector Integer \verb+\end{verbatim}

\begin{verbatim}+1 1 1 +2 3 4 +1 1 1 +3 4 5 +1 1 1 +4 5 6 Type: Matrix Fraction Integer \end{verbatim}+\begin{verbatim}+(8) \end{verbatim}+\begin{verbatim}+(9) \end{verbatim}
\spadcommand{hilb := matrix([1/(i+j) for i in 1..3] for j in 1..3)}
\indentrel{3}\begin{verbatim}
72  -240  180
(9) -240  900 -720
180 -720  600
177
\end{verbatim}
\indentrel{-3}
\end{verbatim}
\indentrel{-3}Type: Union(Matrix Fraction Integer,...)
\end{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}Type: Matrix Integer
\end{verbatim}
\indentrel{-3}
\indentrel{3}\begin{verbatim}
(11) "failed"
Type: Union("failed",...)
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{ugxMatrixOpsPageEmpty11}
\begin{paste}{ugxMatrixOpsPageEmpty11}{ugxMatrixOpsPagePatch11}
pastebutton{ugxMatrixOpsPageEmpty11}{\showpaste}
\tab{5}\spadcommand{inverse(mm)\free{mm}}
\end{paste}\end{patch}
\begin{patch}{ugxMatrixOpsPagePatch12}
\begin{paste}{ugxMatrixOpsPageFull12}{ugxMatrixOpsPageEmpty12}
pastebutton{ugxMatrixOpsPageFull12}{\hidepaste}
\tab{5}\spadcommand{determinant(mm)\free{mm}}
\indentrel{3}\begin{verbatim}
(12) 0
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxMatrixOpsPageEmpty12}
\begin{paste}{ugxMatrixOpsPageEmpty12}{ugxMatrixOpsPagePatch12}
pastebutton{ugxMatrixOpsPageEmpty12}{\showpaste}
\tab{5}\spadcommand{determinant(mm)\free{mm}}
\end{paste}\end{patch}
\begin{patch}{ugxMatrixOpsPagePatch13}
\begin{paste}{ugxMatrixOpsPageFull13}{ugxMatrixOpsPageEmpty13}
pastebutton{ugxMatrixOpsPageFull13}{\hidepaste}
\tab{5}\spadcommand{trace(mm)\free{mm}}
\indentrel{3}\begin{verbatim}
(13) 34
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxMatrixOpsPageEmpty13}
\begin{paste}{ugxMatrixOpsPageEmpty13}{ugxMatrixOpsPagePatch13}
pastebutton{ugxMatrixOpsPageEmpty13}{\showpaste}
\tab{5}\spadcommand{trace(mm)\free{mm}}
\end{paste}\end{patch}
\begin{patch}{ugxMatrixOpsPagePatch14}
\begin{paste}{ugxMatrixOpsPageFull14}{ugxMatrixOpsPageEmpty14}
pastebutton{ugxMatrixOpsPageFull14}{\hidepaste}
\tab{5}\spadcommand{rank(mm)\free{mm}}
\indentrel{3}\begin{verbatim}
(14) 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
1  2  3  4
0  4  8 12
\end{verbatim}

Type: PositiveInteger

\end{verbatim}

\begin{verbatim}
1  2  3  4
0  4  8 12
\end{verbatim}

Type: PositiveInteger
3.76 mkfunc.ht

MakeFunction

⇒ “notitle” (ugUserMakePage) 10 on page 1889

\begin{page}{MakeFunctionXmpPage}{MakeFunction}
\beginscroll
It is sometimes useful to be able to define a function given by the result of a calculation.
\%
\xtc{
Suppose that you have obtained the following expression after several computations and that you now want to tabulate the numerical values of \spad{f} for \spad{x} between \spad{-1} and \spad{+1} with increment \spad{0.1}.
}
\spadpaste{expr := (x - \exp x + 1)**2 * (\sin(x**2) * x + 1)**3
\bound{expr}}
\%
You could, of course, use the function \spadfunFrom{eval}{Expression} within a loop and evaluate \spad{expr} twenty-one times, but this would be quite slow. A better way is to create a numerical function \spad{f} such that \spad{f(x)} is defined by the expression \spad{expr} above, but without retyping \spad{expr}!! The package \spadtype{MakeFunction} provides the operation
\spadfunFrom{function}{MakeFunction} which does exactly this.
%
\xtc{
Issue this to create the function \spad{f(x)} given by \spad{expr}.
}\{
\spad{function(expr, f, x) \bound{f}\free{expr}}
\}
\xtc{
To tabulate \spad{expr}, we can now quickly evaluate \spad{f} 21 times.
}\{
\spad{tbl := [f(0.1 * i - 1) for i in 0..20]; \free{f}\bound{tbl}}
\}
%
%
\xtc{
Use the list \spad{[x1,...,xn]} as the
third argument to \spadfunFrom{function}{MakeFunction}
to create a multivariate function \spad{f(x1,...,xn)}.
}\{
\spad{e := (x - y + 1)**2 * (x**2 * y + 1)**2 \bound{e}}
\}
\xtc{
}\{
\spad{function(e, g, [x, y]) \free{e}}
\}
%
%
\xtc{
In the case of just two
variables, they can be given as arguments without making them into a list.
}\{
\spad{function(e, h, x, y) \free{e}\bound{h}}
\}
%
%
\xtc{
Note that the functions created by \spadfunFrom{function}{MakeFunction}
are not limited to floating point numbers, but can be applied to any type
for which they are defined.
}\{
\spad{m1 := squareMatrix [[1, 2], [3, 4]] \bound{m1}}
\}
\xtc{
}\{
\spad{m2 := squareMatrix [[1, 0], [-1, 1]] \bound{m2}}
\}
\xtc{
}\{
\spad{h(m1, m2) \free{h m1 m2}}
\}
For more information, see \downlink{``Making Functions from Objects''}{ugUserMakePage} in Section 6.14\ignore{ugUserMake}.
\showBlurb{MakeFunction}
\endscroll
\autobuttons
\end{page}

\begin{patch}{MakeFunctionXmpPagePatch1}
\begin{paste}{MakeFunctionXmpPageFull1}{MakeFunctionXmpPageEmpty1}
\pastebutton{MakeFunctionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3\bound{expr}}
\indentrel{3}\begin{verbatim}
(1)
3 x 2 4 3 x 5 4 3 2 3
(x (%e ) + (- 2x - 2x)%e + x + 2x + x )sin(x )
+ 2 x 2 3 2 x 4 3 2
(3x (%e ) + (- 6x - 6x)%e + 3x + 6x + 3x )
* 2 2
sin(x )
+ x 2 2 x 3 2 2
(3x (%e ) + (- 6x - 6x)%e + 3x + 6x + 3x)sin(x )
+ x 2 x 2
(%e ) + (- 2x - 2)%e + x + 2x + 1
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{MakeFunctionXmpPageEmpty1}
\begin{paste}{MakeFunctionXmpPageEmpty1}{MakeFunctionXmpPagePatch1}
\pastebutton{MakeFunctionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3\bound{expr}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MakeFunctionXmpPagePatch2}
\begin{paste}{MakeFunctionXmpPageFull2}{MakeFunctionXmpPageEmpty2}
\pastebutton{MakeFunctionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{function(expr, f, x)\bound{f }\free{expr}}
\indentrel{3}\begin{verbatim}
(2) f
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MakeFunctionXmpPageEmpty2}
\begin{paste}{MakeFunctionXmpPageEmpty2}{MakeFunctionXmpPagePatch2}
\pastebutton{MakeFunctionXmpPageEmpty2}{\showpaste}
\end{patch}\end{patch}
Function $f$ can be defined as
\[
\text{function}(\text{expr}, f, x) \quad \text{bound:} f \quad \text{free:} \text{expr}
\]

Then the table $t$ can be constructed as
\[
\text{tbl} := \{f(0.1 \ast i - 1) \mid i \in 0..20\} \quad \text{bound:} \text{tbl}
\]

\[
\begin{verbatim}
Type: List Float
\end{verbatim}
\]

The expression $e$ is defined as
\[
(e := (x - y + 1)^2 \ast (x^2 \ast y + 1)^2) \quad \text{bound:} e
\]

\[
\begin{verbatim}
(4)

4 4 5 4 2 3
x y + (- 2x - 2x + 2x)y
+
6 5 4 3 2 2
(x + 2x + x - 4x - 4x + 1)y
+
4 3 2 2
(2x + 4x + 2x - 2x - 2)y + x + 2x + 1

Type: Polynomial Integer
\end{verbatim}
\]

Finally, $g$ is defined as
\[
\text{function}(e, g, [x, y]) \quad \text{free:} \text{expr}
\]

\[
\begin{verbatim}
(5) g
\end{verbatim}
\]
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
function(e, g, [x, y])\free{e }
\end{verbatim}

\begin{verbatim}
(6) h
Type: Symbol
\end{verbatim}

\begin{verbatim}
m1 := squareMatrix [[1, 2], [3, 4]]\bound{m1 }
\end{verbatim}

\begin{verbatim}
1 2
3 4
Type: SquareMatrix(2,Integer)
\end{verbatim}

\begin{verbatim}
m2 := squareMatrix [[1, 0], [-1, 1]]\bound{m2 }
\end{verbatim}

\begin{verbatim}
m1 := squareMatrix [[1, 2], [3, 4]]\bound{m1 }
\end{verbatim}

\begin{verbatim}
m2 := squareMatrix [[1, 0], [-1, 1]]\bound{m2 }
\end{verbatim}
3.77. **MPOLY.HT**

(8)

\[-1 \quad 1\]

Type: SquareMatrix(2,Integer)

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MakeFunctionXmpPageEmpty8}
\begin{paste}{MakeFunctionXmpPageEmpty8}{MakeFunctionXmpPagePatch8}
\tab{5}\spadcommand{m2 := squareMatrix [[1, 0], [-1, 1]]}\bound{m2}
\end{paste}\end{patch}

\begin{patch}{MakeFunctionXmpPagePatch9}
\begin{paste}{MakeFunctionXmpPageFull9}{MakeFunctionXmpPageEmpty9}
\tab{5}\spadcommand{h(m1, m2)}\free{h m1 m2}
\end{paste}\end{patch}

\begin{patch}{MakeFunctionXmpPageEmpty9}
\begin{paste}{MakeFunctionXmpPageEmpty9}{MakeFunctionXmpPagePatch9}
\end{paste}\end{patch}

\begin{align}
\begin{array}{cc}
  -7836 & 8960 \\
  -17132 & 19588
\end{array}
\end{align}

Type: SquareMatrix(2,Integer)

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

---

**mpoly.HT**

MultivariatePolynomial

\Rightarrow “notitle” (PolynomialXmpPage) 3.88 on page 1110
\Rightarrow “notitle” (UnivariatePolyXmpPage) 3.112 on page 1327
\Rightarrow “notitle” (DistributedMultivariatePolyXmpPage) 3.24 on page 375

---

The domain constructor \spadtype{MultivariatePolynomial} is similar to
\spadtype{Polynomial} except that it specifies the variables to be used. \spadtype{Polynomial} are available for \spadtype{MultivariatePolynomial}. The abbreviation for \spadtype{MultivariatePolynomial} is \spadtype{MPOLY}. The type expressions
\centerline{{\spadtype{MultivariatePolynomial([x,y],Integer)}}}
and
\centerline{{\spadtype{MPOLY([x,y],INT)}}}
refer to the domain of multivariate polynomials in the variables \spad{x} and \spad{y} where the coefficients are restricted to be integers. The first variable specified is the main variable and the display of the polynomial reflects this.
\xtc{
This polynomial appears with terms in descending powers of the variable \spad{x}.
}{
\spadpaste{m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2 \bound{m}}
}
\xtc{
It is easy to see a different variable ordering by doing a conversion.
}{
\spadpaste{m :: MPOLY([y,x],INT) \free{m}}
}
\xtc{
You can use other, unspecified variables, by using \spadtype{Polynomial} in the coefficient type of \spadtype{MPOLY}.
}{
\spadpaste{p : MPOLY([x,y],POLY INT) \bound{pdec}}
}
\xtc{
Conversions can be used to re-express such polynomials in terms of the other variables. For example, you can first push all the variables into a polynomial with integer coefficients.
}{
\spadpaste{p :: POLY INT \free{p}\bound{prev}}
}
\xtc{
Now pull out the variables of interest.
}{
\spadpaste{\% :: MPOLY([a,b],POLY INT) \free{prev}}
}

\beginImportant
\noindent {\bf Restriction:}
\texht{
\begin{quotation}
\noindent{5}
\end{quotation}}
\endImportant
Axiom does not allow you to create types where \(\texttt{MultivariatePolynomial}\) is contained in the coefficient type of \(\texttt{Polynomial}\). Therefore, \(\texttt{MPOLY([x,y],\text{POLY INT})}\) is legal but \(\texttt{POLY MPOLY([x,y],\text{INT})}\) is not.

Multivariate polynomials may be combined with univariate polynomials to create types with special structures.

\[
q : \text{UP}(x, \text{FRAC MPOLY([y,z],\text{INT})}) \text{ free}\{qdec\}
\]

This is a polynomial in \(x\) whose coefficients are quotients of polynomials in \(y\) and \(z\).

\[
q := (x^2 - x*(z+1)/y +2)**2 \text{ free}\{qdec\}\text{ bound}\{q\}
\]

Use conversions for structural rearrangements. \(z\) does not appear in a denominator and so it can be made the main variable.

\[
q : \text{UP}(z, \text{FRAC MPOLY([x,y],\text{INT})}) \text{ free}\{q\}
\]

Or you can make a multivariate polynomial in \(x\) and \(z\) whose coefficients are fractions in polynomials in \(y\).

\[
q : \text{MPOLY([x,z], FRAC UP(y,\text{INT})}) \text{ free}\{q\}
\]

A conversion like \(\texttt{q :: MPOLY([x,y], FRAC UP(z,\text{INT})})\) is not possible in this example because \(\texttt{y}\) appears in the denominator of a fraction. As you can see, Axiom provides extraordinary flexibility in the manipulation and display of expressions via its conversion facility.

For more information on related topics, see \(\text{Polynomial}\), \(\text{UnivariatePolynomial}\), and \(\text{DistributedMultivariatePoly}\).
\begin{patch}{MultivariatePolyXmpPagePatch1}
\begin{paste}{MultivariatePolyXmpPageFull1}{MultivariatePolyXmpPageEmpty1}
\pastebutton{MultivariatePolyXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2}\bound{m }
\indentrel{3}\begin{verbatim}
4 3 3 6 2 4 2
(1) x - 2y x + (y + 6y)x - 6y x + 9y
Type: MultivariatePolynomial([x,y],Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPagePatch2}
\begin{paste}{MultivariatePolyXmpPageFull2}{MultivariatePolyXmpPageEmpty2}
\pastebutton{MultivariatePolyXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{m :: MPOLY([y,x],INT)\free{m }}
\indentrel{3}\begin{verbatim}
2 6 4 3 3 2 2 4
(2) x y - 6x y - 2x y + 9y + 6x y + x
Type: MultivariatePolynomial([y,x],Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPagePatch3}
\begin{paste}{MultivariatePolyXmpPageFull3}{MultivariatePolyXmpPageEmpty3}
\pastebutton{MultivariatePolyXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{p : MPOLY([x,y],POLY INT)\bound{pdec }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPagePatch4}
\begin{paste}{MultivariatePolyXmpPageFull4}{MultivariatePolyXmpPageEmpty4}
\pastebutton{MultivariatePolyXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{p :: MPOLY([y,x],POLY INT)\free{pdec }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{MultivariatePolyXmpPagePatch4}
\begin{paste}{MultivariatePolyXmpPageFull4}{MultivariatePolyXmpPageEmpty4}\hidepaste
\indentrel{3}\begin{verbatim}
 4 2 2 2 2 4 2
(4)  a x + (- 2a b y + 2a )x + b y - 2b y + 1
Type: MultivariatePolynomial([x,y],Polynomial Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPagePatch5}
\begin{paste}{MultivariatePolyXmpPageFull5}{MultivariatePolyXmpPageEmpty5}\hidepaste
\indentrel{3}\begin{verbatim}
 2 4 2 2 4 2 2
(5)  b y + (- 2a b x - 2b)y + a x + 2a x + 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPagePatch6}
\begin{paste}{MultivariatePolyXmpPageFull6}{MultivariatePolyXmpPageEmpty6}\hidepaste
\indentrel{3}\begin{verbatim}
 2 4 2 2 4 2 2
(6)  x a + (- 2x y b + 2x)a + y b - 2y b + 1
Type: MultivariatePolynomial([a,b],Polynomial Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}\{MultivariatePolyXmpPagePatch7\}
\begin{paste}\{MultivariatePolyXmpPageFull7\}\{MultivariatePolyXmpPageEmpty7\}
\pastebutton{MultivariatePolyXmpPageFull7}{\hidepaste}
\indentrel{3}\spadcommand{q := (x**2 - x*(z+1)/y +2)**2\free{qdec \bound{q}}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{MultivariatePolyXmpPageEmpty7\}
\begin{paste}\{MultivariatePolyXmpPageEmpty7\}\{MultivariatePolyXmpPagePatch7\}
\pastebutton{MultivariatePolyXmpPageEmpty7}{\showpaste}
\indentrel{3}\spadcommand{q := (x**2 - x*(z+1)/y +2)**2\free{qdec \bound{q}}}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{MultivariatePolyXmpPagePatch8\}
\begin{paste}\{MultivariatePolyXmpPageFull8\}\{MultivariatePolyXmpPageEmpty8\}
\pastebutton{MultivariatePolyXmpPageFull8}{\hidepaste}
\indentrel{3}\spadcommand{q := (x**2 - x*(z+1)/y +2)**2\free{qdec \bound{q}}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{MultivariatePolyXmpPageEmpty8\}
\begin{paste}\{MultivariatePolyXmpPageEmpty8\}\{MultivariatePolyXmpPagePatch8\}
\pastebutton{MultivariatePolyXmpPageEmpty8}{\showpaste}
\indentrel{3}\spadcommand{q := (x**2 - x*(z+1)/y +2)**2\free{qdec \bound{q}}}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{MultivariatePolyXmpPagePatch9\}
\begin{paste}\{MultivariatePolyXmpPageFull9\}\{MultivariatePolyXmpPageEmpty9\}
\pastebutton{MultivariatePolyXmpPageFull9}{\hidepaste}
\indentrel{3}\spadcommand{q := (x**2 - x*(z+1)/y +2)**2\free{qdec \bound{q}}}
\indentrel{-3}\end{patch}\end{patch}

\begin{verbatim}
(8)
4 - 2z - 2 3 4y + z + 2z + 1 2 - 4z - 4 x + x + x y
y

Type: UnivariatePolynomial(x,Fraction MultivariatePolynomial([y,z],Integer))
\end{verbatim}

\begin{verbatim}
(9)
2 3 2 3
x 2 - 2y x + 2x - 4y x z + z
2 2
y y

\end{verbatim}
\begin{verbatim}
+ 2 4 3 2 2 2 2
y x - 2y x + (4y + 1)x - 4y x + 4y

2
y
\end{verbatim}

Type: UnivariatePolynomial(z,Fraction MultivariatePolynomial([x,y],Integer))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPageEmpty9}
\begin{paste}{MultivariatePolyXmpPageEmpty9}{MultivariatePolyXmpPagePatch9}
\pastebutton{MultivariatePolyXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{q :: UP(z, FRAC MPOLY([x,y],INT))}\free{q}}
\indentrel{3}\begin{verbatim}
(10)
4  2  2  3  1  2  2  4y + 1  2
x + (- z - )x + ( z + z + )x
  y   y  2  2
          2
+ 4  4
   (- z - )x + 4
   y   y
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{MultivariatePolyXmpPageEmpty10}
\begin{paste}{MultivariatePolyXmpPageEmpty10}{MultivariatePolyXmpPagePatch10}
\pastebutton{MultivariatePolyXmpPageEmpty10}{\showpaste}
\spadcommand{q :: MPOLY([x,z], Fraction UnivariatePolynomial(y,Integer))}\free{q}}
\indentrel{3}\begin{verbatim}
(10)
4  2  2  3  1  2  2  4y + 1  2
x + (- z - )x + ( z + z + )x
  y   y  2  2
          2
+ 4  4
   (- z - )x + 4
   y   y
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.78 newuser.ht

No More Help :-(

<table>
<thead>
<tr>
<th>newuser.ht</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{page}{NoMoreHelpPage}{No More Help :-()} \beginscroll\vspace{2} \centerline{No additional or specific help information is available.} \centerline{Click on \ \ExitButton{QuitPage} \ to get back.} \endscroll \end{page}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>You Tried It!</th>
<th>Hyper Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click here to get back.</td>
<td></td>
</tr>
</tbody>
</table>

\begin{page}{YouTriedIt}{You Tried It!} \beginscroll \upbutton{Click here}{UpPage} \ get back. \endscroll

\begin{page}{Reference}{ReferencePage} 3.1 on page 123 |
| newuser.ht |
| \begin{page}{YouTriedIt}{You Tried It!} \beginscroll \upbutton{Click here}{UpPage} \ get back. \endscroll |
The `None` domain is not very useful for interactive work but it is provided nevertheless for completeness of the Axiom type system.

Probably the only place you will ever see it is if you enter an empty list with no type information.

```spad
[]
```

Such an empty list can be converted into an empty list of any other type.

```spad
[] :: List Float
```

If you wish to produce an empty list of a particular type directly, such as `List NonNegativeInteger`, do it this way.

```spad
[]$List(NonNegativeInteger)
```

```
(1) []
Type: List None
```

```spad
[]
```

```spad
[]
```

```spad
[]
```
\begin{patch}{NoneXmpPageFull2}{NoneXmpPageEmpty1}
\begin{paste}{NoneXmpPageFull2}{NoneXmpPageEmpty1}
\spadcommand{[] :: List Float}
\verbatim{(2) []}
\end{paste}
\end{patch}

\begin{patch}{NoneXmpPageFull3}{NoneXmpPageEmpty2}
\begin{paste}{NoneXmpPageFull3}{NoneXmpPageEmpty2}
\spadcommand{[] \ List(NonNegativeInteger)}
\verbatim{(3) []}
\end{paste}
\end{patch}

\begin{patch}{NoneXmpPageFull3}{NoneXmpPageEmpty3}
\begin{paste}{NoneXmpPageFull3}{NoneXmpPageEmpty3}
\spadcommand{[] \ List(NonNegativeInteger)}
\end{paste}
\end{patch}
3.80 numbers.ht

Axiom Number Types

The following types of numbers are among those available in Axiom.

- **Integers**: Arithmetic with arbitrarily large integers.
- **Rational Numbers**: Rational numbers and general fractions.
- **Machine Floats**: Fixed precision machine floating-point.
- **Real Numbers**: Arbitrary precision decimal arithmetic.
- **Complex Numbers**: Complex numbers in general.
- **Finite Fields**: Arithmetic in characteristic $p$.

Additional Topics

- **Numeric Functions**
- **Cardinal Numbers**
- **Machine-sized Integers**
- **Roman Numerals**
- **Continued Fractions**
- **Partial Fractions**
- **Quaternions**
- **Octonions**
- **Repeating Decimals**
- **Repeating Binary Expansions**
- **Repeating Hexadecimal Expansions**
- **Expansions in other Bases**

⇐ “Axiom Topics” (TopicPage) 3.108 on page 1313
⇒ “Integers” (IntegerPage) 3.80 on page 1029
⇒ “Fractions” (FractionPage) 3.80 on page 1023
⇒ “Machine Floats” (DoubleFloatXmpPage) 3.23 on page 369
⇒ “Real Numbers” (FloatXmpPage) 3.41 on page 487
⇒ “Complex Numbers” (ComplexXmpPage) 3.16 on page 254
⇒ “Finite Fields” (ugProblemFinitePage) 12 on page 2235
⇒ “Numeric Functions” (ugProblemNumericPage) 12 on page 2079
⇒ “Cardinal Numbers” (CardinalNumberXmpPage) 3.12 on page 185
⇒ “Machine-sized Integers” (SingleIntegerXmpPage) 3.98 on page 1237
⇒ “Roman Numerals” (RomanNumeralXmpPage) 3.94 on page 1213
⇒ “Continued Fractions” (ContinuedFractionXmpPage) 3.17 on page 262
⇒ “Partial Fractions” (PartialFractionXmpPage) 3.86 on page 1088
⇒ “Quaternions” (QuaternionXmpPage) 3.89 on page 1134
⇒ “Octonions” (OctonionXmpPage) 3.81 on page 1044
⇒ “Repeating Decimals” (DecimalExpansionXmpPage) 3.21 on page 348
The following types of numbers are among those available in Axiom.

\begin{menu}
\menulink{Integers}{IntegerPage}\tab{16} Arithmetic with arbitrarily large integers.
\menulink{Fractions}{FractionPage} \tab{16} Rational numbers and general fractions.
\menulink{Machine Floats}{DoubleFloatXmpPage} \tab{16} Fixed precision machine floating-point.
\menulink{Real Numbers}{FloatXmpPage} \tab{16} Arbitrary precision decimal arithmetic.
\menulink{Complex Numbers}{ComplexXmpPage} \tab{16} Complex numbers in general.
\menulink{Finite Fields}{ugProblemFinitePage} \tab{16} Arithmetic in characteristic \spad{p}.
\end{menu}

Additional Topics

\begin{menu}
\menulink{Numeric Functions}{ugProblemNumericPage}
\menulink{Cardinal Numbers}{CardinalNumberXmpPage}
\menulink{Machine-sized Integers}{SingleIntegerXmpPage}
\menulink{Roman Numerals}{RomanNumeralsXmpPage}
\menulink{Continued Fractions}{ContinuedFractionXmpPage}
\menulink{Partial Fractions}{PartialFractionXmpPage}
\menulink{Quaternions}{QuaternionXmpPage}
\menulink{Octonions}{OctonionXmpPage}
\menulink{Repeating Decimals}{DecimalExpansionXmpPage}
\menulink{Repeating Binary Expansions}{BinaryExpansionXmpPage}
\menulink{Repeating Hexadecimal Expansions}{HexExpansionXmpPage}
\menulink{Expansions in other Bases}{RadixExpansionXmpPage}
\end{menu}
Fraction

Axiom handles fractions in many different contexts and will automatically simplify fractions whenever possible. Here are some examples:

\begin{verbatim}
1/4 - 1/5
f := (x**2 + 1)/(x - 1)
g := (x**2 - 3*x + 2)/(x + 2)
f * g
\end{verbatim}

Additional Topics:
- Rational Numbers
- Quotient Fields

== "Axiom Number Types" (NumberPage) 3.80 on page 1021
⇒ "Rational Numbers" (RationalNumberPage) 3.80 on page 1025
⇒ "Quotient Fields" (FractionXmpPage) 3.45 on page 543
— numbers.ht —
Quotients over an arbitrary integral domain
\endmenu
\autobuttons
\end{page}

\begin{patch}{FractionPagePatch1}
\begin{paste}{FractionPageFull1}{FractionPageEmpty1}
\pastebutton{FractionPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
1
(1)
20
Type: Fraction Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{FractionPageEmpty1}
\begin{paste}{FractionPageEmpty1}{FractionPagePatch1}
\pastebutton{FractionPageEmpty1}{\showpaste}
\indentrel{3}\end{paste}
\end{patch}

\begin{patch}{FractionPagePatch2}
\begin{paste}{FractionPageFull2}{FractionPageEmpty2}
\pastebutton{FractionPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
2
x + 1
(2)
x - 1
Type: Fraction Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{FractionPageEmpty2}
\begin{paste}{FractionPageEmpty2}{FractionPagePatch2}
\pastebutton{FractionPageEmpty2}{\showpaste}
\indentrel{3}\end{paste}
\end{patch}

\begin{patch}{FractionPagePatch3}
\begin{paste}{FractionPageFull3}{FractionPageEmpty3}
\pastebutton{FractionPageFull3}{\hidepaste}
\indentrel{3}\begin{verbatim}
2
x - 3x + 2
(3)
\end{verbatim}
\end{paste}
\end{patch}
\[ x + 2 \]
Type: Fraction Polynomial Integer

\[
\begin{aligned}
3 & 2 \\
\end{aligned}
\]
\[ x - 2x + x - 2 \]
(4)
\[ x + 2 \]
Type: Fraction Polynomial Integer

---

**Rational Number**

--- numbers.ht ---

Like integers, rational numbers can be arbitrarily large. For example:
\[
61657 ** 10 / 999983 ** 12
\]
Rational numbers will not be converted to decimals unless you explicitly ask Axiom to do so. To convert a rational number to a decimal, use the function \spadfun{numeric}. Here’s an example:
\[
x := 104348/33215 \quad \text{bound}(x)
\]
You can find the numerator and denominator of rational numbers using the functions \spadfun{numer} and \spadfun{denom}, respectively.

\spadpaste{numer(x) \free{x}}
\spadpaste{denom(x) \free{x}}

To factor the numerator and denominator of a fraction, use the following command:
\spadpaste{factor(numer x) / factor(denom x) \free{x}}

\begin{patch}{RationalNumberPagePatch1}
\begin{paste}{RationalNumberPageFull1}{RationalNumberPageEmpty1}
\pastebutton{RationalNumberPageFull1}{\hidepaste}
\tab{5}\spadcommand{61657 ** 10 / 999983 ** 12}
\indentrel{3}\begin{verbatim}
(1)
79400620711967293768869745365148806136551203249
/  
997960190729191813417704955587887712239578440952258_
  46167460930641229761
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{RationalNumberPagePatch2}
\begin{paste}{RationalNumberPageFull2}{RationalNumberPageEmpty2}
\pastebutton{RationalNumberPageFull2}{\hidepaste}
\tab{5}\spadcommand{x := 104348/33215\bound{x}}
\indentrel{3}\begin{verbatim}
104348
(2)
33215
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
(3) 3.1415926539 214210447

Type: Float

(4) 104348

Type: PositiveInteger

(5) 33215

Type: PositiveInteger
\texttt{factor(numer \ \textit{x}) / factor(denom \ \textit{x})}\ \textit{free}\{\ \textit{x}\ \}

\begin{verbatim}
2
2 19 1373
(6)
5 7 13 73
\end{verbatim}

Type: Fraction Factored Integer
In Axiom, integers can be as large as you like. Try the following examples:

\begin{spad}
\begin{verbatim}
x := factorial(200)
y := 2**90 - 1
\end{verbatim}
\end{spad}

Of course, you can now do arithmetic as usual on these (very) large integers:

\begin{spad}
\begin{verbatim}
x + y
x - y
x*y
\end{verbatim}
\end{spad}

Axiom can factor integers, but numbers with small prime factors
\begin{spad}
\begin{verbatim}
factor(x)
factor(y)
\end{verbatim}
\end{spad}
will factor more rapidly than numbers with large prime factors.
Axiom can factor integers, but numbers with small prime factors
\spadpaste{\texttt{factor(x) \free{x}}}
will factor more rapidly than numbers with large prime factors.
\spadpaste{\texttt{factor(y) \free{y}}}

Additional Topics
\begin{menu}
\menulink{Integer}{IntegerXmpPage} \tab{16}
General information and examples of integers.
\menulink{Factorization}{ugxIntegerPrimesPage} \tab{16}
Primes and factorization.
\menulink{Functions}{IntNumberTheoryFnsXmpPage} \tab{16}
Number theoretic functions.
\menulink{Examples}{IntegerExamplePage} \tab{16}
Examples from number theory.
\menulink{Problems}{IntegerProblemPage} \tab{16}
Problems from number theory.
\end{menu}

\begin{patch}{IntegerPagePatch1}
\begin{paste}{IntegerPageFull1}{IntegerPageEmpty1}
\pastebutton{IntegerPageFull1}{\hidepaste}
\tab{5}\spadcommand{x := factorial(200) \bound{x }}
\indentrel{3}\begin{verbatim}
(1) 788657867364790503552363213932185062296135977687173263_ 
29474253244359499634033429203428401198462390417721_ 
2138919638302576428702426371050619266249528299311134_ 
628577270633172373969894392244562415166424025403291_ 
864131227428294853277524242407573932403212574055966_ 
866022603190417032462351700858796178922227896237038_ 
97374720000000000000000000000000000000000000000000000000_ 
000
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{IntegerPageEmpty1}
\begin{paste}{IntegerPageEmpty1}{IntegerPagePatch1}
\pastebutton{IntegerPageEmpty1}{\showpaste}
\tab{5}\spadcommand{x := factorial(200) \bound{x }}
\end{paste}
\end{patch}
3.80. NUMBERS.HT

\begin{verbatim}
(2) 12379400392580274899124223
    Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(3) 788657867364790503552363213932185062295135977687173263_
    29474253244359449963403429203042840119846239417721_
    213891963883025764279024267105619266249628299311134_
    62055127076331723739698943322445621451664240254033291_
    864131227426294853277524242407573930324031265740557956_
    8660226031904170324062351700858796178922227896237038_
    973747200000000000000000123794039285380274899124_
    223
    Type: PositiveInteger
\end{verbatim}

(4) 788657867364790503552363213932185062295135977687173263_
    29474253244359449963403429203042840119846239417721_
\end{verbatim}
\begin{verbatim}
 21389196388302576427902426371050619266624952829931134_
 62857270763317237396988943922445621451664240254033291_
 864131227428294832775242424075739032432125740557956_
 8660226031904170324062351700858796178922227896237038_
 973747199999999999999999999999876205960714619725100875_
 777
  
  Type: PositiveInteger
\end{verbatim}

\indentrel{-3}\end{patch}
\begin{patch}{IntegerPageEmpty4}
\begin{paste}{IntegerPageEmpty4}{IntegerPagePatch4}
\pastebutton{IntegerPageEmpty4}{\showpaste}
\indentrel{3}\begin{verbatim}
(5)
97631115130829282184363119660950225776642966765414042_
3707949648113338983407329188092355479782812765687260_
1797573491311946635607873292910072808106228471338396_
7550931506953260921744797014165125163884859138819053_
52475856869630194698878995048210905618067437176553811_
3397303250952495686554360537566475497856969235918273_
095211823239269505070338239685984256000000000000000000_
000000000000000000000000000000
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{IntegerPageEmpty5}
\begin{paste}{IntegerPageEmpty5}{IntegerPagePatch5}
\pastebutton{IntegerPageEmpty5}{\showpaste}
\indentrel{3}\begin{verbatim}
(5)
97631115130829282184363119660950225776642966765414042_
3707949648113338983407329188092355479782812765687260_
1797573491311946635607873292910072808106228471338396_
7550931506953260921744797014165125163884859138819053_
52475856869630194698878995048210905618067437176553811_
3397303250952495686554360537566475497856969235918273_
095211823239269505070338239685984256000000000000000000_
000000000000000000000000000000
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{IntegerPageEmpty6}
\begin{paste}{IntegerPageEmpty6}{IntegerPagePatch6}
\pastebutton{IntegerPageEmpty6}{\showpaste}
\indentrel{3}\begin{verbatim}
(5)
197 97 49 32 19 16 11 10 8 6 5 4 4 4 3 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
*
  3 3 2 2 2 2 2 2
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
3 7 11 19 31 63 157 331 151 18837001
\end{verbatim}
Type: Factored Integer
Integer Examples

One can show that if an integer of the form $2^k + 1$ is prime, then $k$ must be a power of 2. **Proof**

Pierre Fermat conjectured that every integer of the form $2^{2^{2^n}} + 1$ is prime. Let’s look for a counterexample. First define a function:

```plaintext
f: NNI -> INT
f(n) == 2**(2**n) + 1
```

Now try commands like:

```plaintext
factor f(1)
factor f(2)
```

until you find an integer of this form which is composite. You can also try the following command:

```plaintext
for n in 1..6 repeat output factor f(n)
```

Obviously, Fermat didn’t have access to Axiom.

\begin{page}{IntegerExamplePage}{Integer Examples}
\beginscroll
One can show that if an integer of the form $2^k + 1$ is prime, then $k$ must be a power of 2.
\downlink{Proof}{IntegerExampleProofPage}
\par
Pierre Fermat conjectured that every integer of the form $2^{2^{2^n}} + 1$ is prime. Let’s look for a counterexample. First define a function:

```plaintext
f: NNI -> INT
f(n) == 2**(2**n) + 1
```

Now try commands like:

```plaintext
factor f(1)
factor f(2)
```

until you find an integer of this form which is composite. You can also try the following command:

```plaintext
for n in 1..6 repeat output factor f(n)
```

Obviously, Fermat didn’t have access to Axiom.
\endscroll
\autobuttons
3.80. NUMBERS.HT

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Factored Integer
\end{verbatim}
\begin{verbatim}
(4) 17
Type: Factored Integer
\end{verbatim}

\begin{verbatim}
5
17
257
65537
641 6700417
274177 67280421310721
Type: Void
\end{verbatim}

\begin{verbatim}
5
17
257
65537
641 6700417
274177 67280421310721
Type: Void
\end{verbatim}

---

\section*{Integer Example Proof}

\begin{verbatim}
#numbers.ht#
\end{verbatim}

---

\begin{verbatim}

\end{verbatim}

---

Proposition. If $2^k + 1$ is prime, then $k$ is a power of 2.

Proof. Suppose that $k = m \times n$ with $m > 1$ odd. Then

Therefore, $2^k + 1$ is divisible by $2^n + 1$. Now $1 < 2^n + 1$ and since $m > 1$, $2^n + 1 < 2^{n \cdot m} + 1$. Hence, $2^k + 1$ has a non-trivial factor.

QED

\begin{page}{IntegerProblemPage}{Integer Problems}
\beginscroll
One can show that if an integer of the form $2^k - 1$ is prime, then $k$ must be prime. \proof
Problem \#1: Find the smallest prime $p$ such that $2^p - 1$ is not prime. \answer
Problem \#2: Find the smallest positive integer $n$ such that $n^2 - n + 41$ isn't prime. \answer
\endscroll
\end{page}
Integer Problem Proof

---

Solution to Problem #1

---
This gets tedious after a while, so let’s use Axiom’s stream facility. (A stream is essentially an infinite sequence.)

First, we create a stream consisting of the positive integers:
\spad{ints := [n for n in 1..] \bound{ints}}

Now, we create a stream consisting of the primes:
\spad{primes := [x for x in ints | prime? x] \bound{primes} \free{ints}}

Here’s the 25th prime:
\spad{primes.25 \free{primes}}

Next, create the stream of numbers of the form \(2^{**}p - 1\) with \(p\) prime:
\spad{numbers := [f(n) for n in primes] \bound{numbers} \free{primes f}}

Finally, form the stream of factorizations of the elements of \spad{numbers}:
\spad{factors := [factor n for n in numbers] \bound{factors} \free{numbers}}

You can see that the fifth number in the stream (2047 = 23*89) is the first one that has a non-trivial factorization.

Since \(2^{**}11 = 2048\), the solution to the problem is 11.

Here’s another way to see that 2047 is the first number in the stream that is composite:
\spad{nums := [x for x in numbers | not prime? x] \bound{nums} \free{numbers}}

You can see that the fifth number in the stream (2047 = 23*89) is the first one that has a non-trivial factorization.

Since \(2^{**}11 = 2048\), the solution to the problem is 11.
\begin{verbatim}
(3) 127
\end{verbatim}
Type: Factored Integer

\begin{verbatim}
(4) [1,2,3,4,5,6,7,8,9,10,...]
\end{verbatim}
Type: Stream PositiveInteger

\begin{verbatim}
(5) [2,3,5,7,11,13,17,19,23,29,....]
\end{verbatim}
Type: Stream PositiveInteger
\begin{patch}{IntegerProblemAnswerPage1Empty5}
\begin{paste}{IntegerProblemAnswerPage1Empty5}{IntegerProblemAnswerPage1Patch5}
\spadcommand{primes := \[x \text{ for } x \text{ in ints | prime? } x\]}{\showpaste}
\end{paste}
\end{patch}

\begin{patch}{IntegerProblemAnswerPage1Patch6}
\begin{paste}{IntegerProblemAnswerPage1Full6}{IntegerProblemAnswerPage1Empty6}
\spadcommand{primes.25}{\hidepaste}
\indentrel{3}\begin{verbatim}
(6) 97
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{IntegerProblemAnswerPage1Patch7}
\begin{paste}{IntegerProblemAnswerPage1Full7}{IntegerProblemAnswerPage1Empty7}
\spadcommand{numbers := \[f(n) \text{ for } n \text{ in primes}\]}{\showpaste}
\indentrel{3}\begin{verbatim}
(7)
[3, 7, 31, 127, 2047, 8191, 131071, 524287, 8388607,
  536870911, ...]
Type: Stream Integer
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{IntegerProblemAnswerPage1Patch8}
\begin{paste}{IntegerProblemAnswerPage1Full8}{IntegerProblemAnswerPage1Empty8}
\spadcommand{factors := \[factor n \text{ for } n \text{ in numbers}\]}{\showpaste}
\indentrel{3}\begin{verbatim}
(8)
[3, 7, 31, 127, 23 89, 8191, 131071, 524287,
  47 178481, 233 1103 2089, ...]
Type: Stream Factored Integer
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
Solution to Problem #2

numbers.txt

Problem #2: Find the smallest positive integer \( n \) such that \( n^2 - n + 41 \) is not prime.

When \( n = 41 \), \( n^2 - n + 41 = 41^2 \), which certainly isn't prime. Let's see if any smaller integer works.

Here are the first 40 values:

\[
\text{numbers := [n**2 - n + 41 for n in 0..40] \bound{numbers}}
\]

Now have Axiom factor the numbers on this list:

\[
\text{[factor n for n in numbers] \free{numbers}}
\]

You can see that 41 is the smallest positive integer \( n \) such that \( n^2n - n + 41 \) is not prime.
\begin{spadcommand}{\begin{verbatim}
(1)
[41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151,
  173, 197, 223, 251, 281, 313, 347, 383, 421, 461,
  503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
  1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601]
Type: List Integer
\end{verbatim}}
\end{spadcommand}

\begin{spadcommand}{\begin{verbatim}
(2)
[41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151,
  173, 197, 223, 251, 281, 313, 347, 383, 421, 461,
  503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
  1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601]
Type: List Factored Integer
\end{verbatim}}
\end{spadcommand}
The Octonions, also called the Cayley-Dixon algebra, defined over a commutative ring are an eight-dimensional non-associative algebra. Their construction from quaternions is similar to the construction of quaternions from complex numbers (see `Quaternion`). As Octonion creates an eight-dimensional algebra, you have to give eight components to construct an octonion.

\begin{verbatim}
oci1 := octon(1,2,3,4,5,6,7,8)
oci2 := octon(7,2,3,-4,5,6,-7,0)
\end{verbatim}

Or you can use two quaternions to create an octonion.

\begin{verbatim}
oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
\end{verbatim}

You can easily demonstrate the non-associativity of multiplication.

\begin{verbatim}
(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)
\end{verbatim}

As with the quaternions, we have a real part, the imaginary parts i, j, k, and four additional imaginary parts E, I, J and K. These parts correspond to the canonical basis.
Or you can use two quaternions to create an octonion.
\begin{verbatim}
oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
\end{verbatim}
You can easily demonstrate the non-associativity of multiplication.
\begin{verbatim}
(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)
\end{verbatim}
As with the quaternions, we have a real part, the imaginary parts \spad{i}, \spad{j}, \spad{k}, and four additional imaginary parts \spad{E}, \spad{I}, \spad{J} and \spad{K}. These parts correspond to the canonical basis \spad{(1,i,j,k,E,I,J,K)}.
For each basis element there is a component operation to extract the coefficient of the basis element for a given octonion.
\begin{verbatim}
\spadfunFrom{real}{Octonion}, \spadfunFrom{imagi}{Octonion}, \spadfunFrom{imagj}{Octonion}, \spad{imagk}{Octonion}, \spadfunFrom{imagE}{Octonion}, \spadfunFrom{imagI}{Octonion}, \spadfunFrom{imagJ}{Octonion}, \spadfunFrom{imagK}{Octonion}.
\end{verbatim}
A basis with respect to the quaternions is given by \spad{(1,E)}. However, you might ask, what then are the commuting rules? To answer this, we create some generic elements.
\begin{verbatim}
q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)
\end{verbatim}
Note that quaternions are automatically converted to octonions in the obvious way.

\spadpaste{q * E free(q E)}
\spadpaste{E * q free(E q)}
\spadpaste{q * 1\$(Octonion Polynomial Integer) free(q)}
\spadpaste{1\$(Octonion Polynomial Integer) * q free(q)}

Finally, we check that the \spadfunFrom{norm}{Octonion}, defined as the sum of the squares of the coefficients, is a multiplicative map.

\spadpaste{o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK) bound(o)}
\spadpaste{norm o free(o)}
\spadpaste{p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK) bound(p)}
\spadpaste{norm(o*p)-norm(p)*norm(p) free(o p) }

Since the result is \spad{0}, the norm is multiplicative.

\showBlurb{Octonion}
\begin{patch}{OctonionXmpPagePatch1}
\begin{paste}{OctonionXmpPageFull1}{OctonionXmpPageEmpty1}
\pastebutton{OctonionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{oci1 := octon(1,2,3,4,5,6,7,8)\bound{oci1}}
\indentrel{3}\begin{verbatim}
(1) 1 + 2i + 3j + 4k + 5E + 6I + 7J + 8K
Type: Octonion Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OctonionXmpPagePatch2}
\begin{paste}{OctonionXmpPageFull2}{OctonionXmpPageEmpty2}
\pastebutton{OctonionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{oci2 := octon(7,2,3,-4,5,6,-7,0)\bound{oci2}}
\indentrel{3}\begin{verbatim}
(2) 7 + 2i + 3j - 4k + 5E + 6I - 7J
Type: Octonion Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OctonionXmpPagePatch3}
\begin{paste}{OctonionXmpPageFull3}{OctonionXmpPageEmpty3}
\pastebutton{OctonionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{oci3 := octon\text{quatern}(-7,-12,3,-10), \text{quatern}(5,6,9,0)\bound{oci3}}
\indentrel{3}\begin{verbatim}
(3) - 7 - 12i + 3j - 10k + 5E + 6I + 9J
Type: Octonion Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\( (oci1 \ast oci2) \ast oci3 - oci1 \ast (oci2 \ast oci3) \) 
\( (4) \)
\[
2696i - 2928j - 4072k + 16E - 1192I + 832J + 2616K
\]
Type: Octonion Integer

\( [\text{real } oci1, \text{imag } oci1, \text{imagj } oci1, \text{imagk } oci1, \text{imagE } oci1, \text{imagI } oci1, \text{imagJ } oci1, \text{imagK } oci1] \)

\( (5) [1,2,3,4,5,6,7,8] \)
Type: List PositiveInteger

\( q : \text{Quaternion Polynomial Integer} := \text{quatern}(q1, qi, qj, qk) \) 
\( (6) q1 + q1 i + qj j + qk k \) 
Type: Quaternion Polynomial Integer
\begin{verbatim}
(7) E
Type: Octonion Polynomial Integer
\end{verbatim}

\begin{verbatim}
(8) qi E + qi I + qi J + qi K
Type: Octonion Polynomial Integer
\end{verbatim}

\begin{verbatim}
(9) qi E - qi I - qi J - qi K
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
(10) q1 + qi i + qj j + qk k
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
(11) q1 + qi i + qj j + qk k
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K
Type: Octonion Polynomial Integer
\end{verbatim}
\begin{verbatim}
(13) \texttt{ok + oj + oi + oK + oJ + oI + oE + oI}
   \texttt{Type: Polynomial Integer}
\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OctonionXmpPageFull13}
\begin{paste}{OctonionXmpPageFull13}{OctonionXmpPageEmpty13}
\pastebutton{OctonionXmpPageFull13}{\showpaste}
\tab{5}\spadcommand{\texttt{oK + oJ + oI + oE + o1}}
\end{paste}\end{patch}

\indentrel{-3}\end{patch}

\begin{patch}{OctonionXmpPagePatch14}
\begin{paste}{OctonionXmpPageFull14}{OctonionXmpPageEmpty14}
\pastebutton{OctonionXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{p : Octonion Polynomial Integer := \texttt{octon(p1, pi, pj, pk, pE, pI, pJ, pK)}}
\indentrel{3}\begin{verbatim}
(14)
   p1 + pi i + pj j + pk k + pE E + pI I + pJ J + pK K
   \texttt{Type: Octonion Polynomial Integer}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\indentrel{-3}end{patch}

\begin{patch}{OctonionXmpPagePatch15}
\begin{paste}{OctonionXmpPageFull15}{OctonionXmpPageEmpty15}
\pastebutton{OctonionXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{\texttt{norm(o*p)-norm(p)*norm(p)}}
\indentrel{3}\begin{verbatim}
(15)
   \texttt{4 pk}
   + \texttt{2 2 2 2 2 2 2 2}
      \texttt{- 2pj - 2pi - 2pK - 2pJ - 2pI - 2pE - 2p1}
   + \texttt{2 2 2 2 2 2 2 2}
      \texttt{ok + oj + oi + oK + oJ + oI + oE + oI}
   \texttt{*}
   \texttt{2 pk}
   + \texttt{4 - pj}
   + \texttt{2}
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{-3}end{patch}
3.82. **ODPOL.HT**

\[
\begin{align*}
&+ \quad 2 \quad 2 \\
&\quad oE \quad + \quad o1 \\
&\ast \\
&\quad 2 \\
&\quad pI \\
&+ \\
&\quad 4 \\
&\quad - \quad pE \\
&+ \\
&\quad 2 \quad 2 \quad 2 \quad 2 \quad 2 \quad 2 \quad 2 \\
&\quad - \quad 2pI \quad + \quad ok \quad + \quad oj \quad + \quad oi \quad + \quad oK \quad + \quad oJ \quad + \quad oI \quad + \quad oE \\
&+ \\
&\quad 2 \\
&\quad o1 \\
&\ast \\
&\quad 2 \\
&\quad pE \\
&+ \\
&\quad 4 \\
&\quad - \quad pI \\
&+ \\
&\quad 2 \quad 2 \\
&\quad (ok \quad + \quad oj \quad + \quad oi \quad + \quad oK \quad + \quad oJ \quad + \quad oI \quad + \quad oE \quad + \quad o1 )pI \\
\end{align*}
\]

Type: Polynomial Integer

\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OctonionXmpPageEmpty15}
\begin{paste}{OctonionXmpPageEmpty15}{OctonionXmpPagePatch15}
\pastebutton{OctonionXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{norm(o*p)-norm(p)*norm(p)\free{o p}}
\end{paste}\end{patch}

———

3.82  **odpol.ht**

**OrderlyDifferentialPolynomial**

— **odpol.ht** —

\begin{page}{OrderlyDifferentialPolynomialXmpPage}
{OrderlyDifferentialPolynomial}
\begin{scroll}

\end{scroll}
Many systems of differential equations may be transformed to equivalent systems of ordinary differential equations where the equations are expressed polynomially in terms of the unknown functions. In Axiom, the domain constructors \spadtype{OrderlyDifferentialPolynomial} (abbreviated \spadtype{ODPOL}) and \spadtype{SequentialDifferentialPolynomial} (abbreviation \spadtype{SDPOL}) implement two domains of ordinary differential polynomials over any differential ring. In the simplest case, this differential ring is usually either the ring of integers, or the field of rational numbers. However, Axiom can handle ordinary differential polynomials over a field of rational functions in a single indeterminate.

The two domains \spadtype{ODPOL} and \spadtype{SDPOL} are almost identical, the only difference being the choice of a different ranking, which is an ordering of the derivatives of the indeterminates. The first domain uses an orderly ranking, that is, derivatives of higher order are ranked higher, and derivatives of the same order are ranked alphabetically. The second domain uses a sequential ranking, where derivatives are ordered first alphabetically by the differential indeterminates, and then by order. A more general domain constructor, \spadtype{DifferentialSparseMultivariatePolynomial} (abbreviation \spadtype{DSMP}) allows both a user-provided list of differential indeterminates as well as a user-defined ranking. We shall illustrate \spadtype{ODPOL(FRAC INT)}, which constructs a domain of ordinary differential polynomials in an arbitrary number of differential indeterminates with rational numbers as coefficients. 

A differential indeterminate \spad{w} may be viewed as an infinite sequence of algebraic indeterminates, which are the derivatives of \spad{w}.

To facilitate referencing these, Axiom provides the operation \spadfunFrom{makeVariable}{OrderlyDifferentialPolynomial} to convert an element of type \spadtype{Symbol} to a map from the natural numbers to the differential polynomial ring.

The fifth derivative of \spad{w} can be obtained by applying the map \spad{w} to the number \spad{5.} Note that the order of differentiation is given as a subscript (except when the order is 0).
The first five derivatives of \( z \) can be generated by a list.
\[
[z.i \text{ for } i \text{ in } 1..5]
\]
The usual arithmetic can be used to form a differential polynomial from the derivatives.
\[
f := w.4 - w.1 \times w.1 \times z.3
\]
The operation \( \text{DifferentialPolynomial} \) computes the derivative of any differential polynomial.
\[
D(f)
\]
The same operation can compute higher derivatives, like the fourth derivative.
\[
D(f,4)
\]
The operation \( \text{makeVariable} \) creates a map to facilitate referencing the derivatives of \( f \), similar to the map \( w \).
\[
df := \text{makeVariable}(f)\text{dpol}
\]
The fourth derivative of \( f \) may be referenced easily.
\[
df.4
\]
The operation \( \text{order} \) returns the order of a differential polynomial, or the order in a specified differential indeterminate.
The operation \spadfunFrom{differentialVariables}{OrderlyDifferentialPolynomial} returns a list of differential indeterminates occurring in a differential polynomial.

\spadpaste{differentialVariables(g) \free{g}}

The operation \spadfunFrom{degree}{OrderlyDifferentialPolynomial} returns the degree, or the degree in the differential indeterminate specified.

\spadpaste{degree(g) \free{g}}

\spadpaste{degree(g, 'w) \free{g}}

The operation \spadfunFrom{weights}{OrderlyDifferentialPolynomial} returns a list of weights of differential monomials appearing in differential polynomial, or a list of weights in a specified differential indeterminate.

\spadpaste{weights(g) \free{g}}

\spadpaste{weights(g,'w) \free{g}}

The operation \spadfunFrom{weight}{OrderlyDifferentialPolynomial} returns the maximum weight of all differential monomials appearing in the differential polynomial.

\spadpaste{weight(g) \free{g}}

A differential polynomial is \textit{isobaric} if the weights of all differential monomials appearing in it are equal.

\spadpaste{isobaric?(g) \free{g}}
To substitute \emph{differentially}, use \spadfunFrom{eval}{OrderlyDifferentialPolynomial}. Note that we must coerce \spad{'w} to \spadtype{Symbol}, since in \spadtype{ODPOL}, differential indeterminates belong to the domain \spadtype{Symbol}. Compare this result to the next, which substitutes \emph{algebraically} (no substitution is done since \spad{w.0} does not appear in \spad{g}).

\spadpaste{eval(g,['w::Symbol],[f]) \free{f}\free{g}}

\spadpaste{eval(g,variables(w.0),[f]) \free{f}\free{g}}

Since \spadtype{OrderlyDifferentialPolynomial} belongs to \spadtype{PolynomialCategory}, all the operations defined in the latter category, or in packages for the latter category, are available.

\spadpaste{monomials(g) \free{g}}

\spadpaste{variables(g) \free{g}}

\spadpaste{gcd(f,g) \free{f}\free{g}}

\spadpaste{groebner([f,g]) \free{f}\free{g}}

The next three operations are essential for elimination procedures in differential polynomial rings. The operation \spadfunFrom{leader}{OrderlyDifferentialPolynomial} returns the leader of a differential polynomial, which is the highest ranked derivative of the differential indeterminates that occurs.

\spadpaste{lg:=leader(g) \free{g}\bound{lg}}

The operation \spadfunFrom{separant}{OrderlyDifferentialPolynomial} returns the separant of a differential polynomial, which is the partial derivative with respect to the leader.

\spadpaste{sg:=separant(g) \free{g}\bound{sg}}

The operation \spadfunFrom{initial}{OrderlyDifferentialPolynomial} returns the initial, which is the leading coefficient when the given differential polynomial is expressed as a polynomial in the leader.

```spad
ing := initial(g) \free{g}\bound{ig}()
```

Using these three operations, it is possible to reduce \spad{f} modulo the differential ideal generated by \spad{g}. The general scheme is to first reduce the order, then reduce the degree in the leader. First, eliminate \spad{z.3} using the derivative of \spad{g}.

```spad
g1 := D g \free{g}\bound{g1}()
```

Find its leader.

```spad
lg1 := leader g1 \free{g1}\bound{lg1}()
```

Differentiate \spad{f} partially with respect to this leader.

```spad
pdf := D(f, lg1) \free{f}\free{lg1}\bound{pdf}()
```

Compute the partial remainder of \spad{f} with respect to \spad{g}.

```spad
prf := sg * f - pdf * g1 \free{sg}\free{pdf} \free{g1}\bound{prf}()
```

Note that high powers of \spad{lg} still appear in \spad{prf}. Compute the leading coefficient of \spad{prf} as a polynomial in the leader of \spad{g}.

```spad
lcf := leadingCoefficient univariate(prf, lg) \free{prf}\free{lg}\bound{lcf}()
```

Finally, continue eliminating the high powers of \spad{lg} appearing in \spad{prf} to obtain the (pseudo) remainder of \spad{f} modulo \spad{g} and its derivatives.

```spad
ig * prf - lcf * g * lg \free{ig}\free{prf} \free{lcf}\free{lg}()
```

\showBlurb{OrderlyDifferentialPolynomial}
\showBlurb{SequentialDifferentialPolynomial}
\endscroll
3.82. ODPOL.HT

\autobuttons
\end{page}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch1}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull1}{OrderlyDifferentialPolynomialXmpPageEmpty1}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{dpol:= ODPOL\(FRAC\ INT\)}\bound{dpol }
\indentrel{3}\begin{verbatim}
(1) OrderlyDifferentialPolynomial Fraction Integer
    Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch2}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull2}{OrderlyDifferentialPolynomialXmpPageEmpty2}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{w := makeVariable\('w\)$dpol\free{dpol }\bound{w }}
\indentrel{3}\begin{verbatim}
(2) theMap\(DPOLCAT-;makeVariable;AM;17\!0,62\)
    Type: \(\text{NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer}\)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch3}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull3}{OrderlyDifferentialPolynomialXmpPageEmpty3}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{z := makeVariable\('z\)$dpol\free{dpol }\bound{z }}
\indentrel{3}\begin{verbatim}
(3) theMap\(DPOLCAT-;makeVariable;AM;17\!0,187\)
    Type: \(\text{NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer}\)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}\{OrderlyDifferentialPolynomialXmpPagePatch4\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageFull4\}\{OrderlyDifferentialPolynomialXmpPageEmpty4\}\pastebutton\{OrderlyDifferentialPolynomialXmpPageEmpty4\}\{\hidepaste\}
\tab{5}\spadcommand{\(w.5\) free \(w\)}
\indentrel{-3}\begin{verbatim}
(4) w
5
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{patch}\{OrderlyDifferentialPolynomialXmpPageEmpty4\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageEmpty4\}\{OrderlyDifferentialPolynomialXmpPagePatch4\}\pastebutton\{OrderlyDifferentialPolynomialXmpPagePatch4\}\{\showpaste\}
\tab{5}\spadcommand{\(w.5\) free \(w\)}
\end{patch}

\begin{patch}\{OrderlyDifferentialPolynomialXmpPagePatch5\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageFull5\}\{OrderlyDifferentialPolynomialXmpPageEmpty5\}\pastebutton\{OrderlyDifferentialPolynomialXmpPageEmpty5\}\{\hidepaste\}
\tab{5}\spadcommand{\(w 0\) free \(w\)}
\indentrel{-3}\begin{verbatim}
(5) w
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{patch}\{OrderlyDifferentialPolynomialXmpPageEmpty5\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageEmpty5\}\{OrderlyDifferentialPolynomialXmpPagePatch5\}\pastebutton\{OrderlyDifferentialPolynomialXmpPagePatch5\}\{\showpaste\}
\tab{5}\spadcommand{\(w 0\) free \(w\)}
\end{patch}

\begin{patch}\{OrderlyDifferentialPolynomialXmpPagePatch6\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageFull6\}\{OrderlyDifferentialPolynomialXmpPageEmpty6\}\pastebutton\{OrderlyDifferentialPolynomialXmpPageEmpty6\}\{\hidepaste\}
\tab{5}\spadcommand{\{z.i for i in 1..5\}} free \(z\)}
\indentrel{-3}\begin{verbatim}
(6) \{z ,z ,z ,z ,z \}
1 2 3 4 5
Type: List OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{patch}\{OrderlyDifferentialPolynomialXmpPageEmpty6\}
\begin{paste}\{OrderlyDifferentialPolynomialXmpPageEmpty6\}\{OrderlyDifferentialPolynomialXmpPagePatch6\}\pastebutton\{OrderlyDifferentialPolynomialXmpPagePatch6\}\{\showpaste\}
\tab{5}\spadcommand{\{z.i for i in 1..5\}} free \(z\)}
\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch7}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull7}{OrderlyDifferentialPolynomialXmpPageEmpty7}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{f:= w.4 - w.1 \ast w.1 \ast z.3}{\free{w }{z }{\bound{f }}}
\indentrel{3}\begin{verbatim}
  2
(7) w - w z
  4 1 3
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty7}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty7}{OrderlyDifferentialPolynomialXmpPagePatch7}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{f:= w.4 - w.1 \ast w.1 \ast z.3}{\free{w }{z }{\bound{f }}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch8}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull8}{OrderlyDifferentialPolynomialXmpPageEmpty8}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{g:=(z.1)**3 \ast (z.2)**2 - w.2}{\free{z }{w }{\bound{g }}}
\indentrel{3}\begin{verbatim}
  3 2
(8) z z - w
  1 2 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty8}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty8}{OrderlyDifferentialPolynomialXmpPagePatch8}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{g:=(z.1)**3 \ast (z.2)**2 - w.2}{\free{z }{w }{\bound{g }}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch9}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull9}{OrderlyDifferentialPolynomialXmpPageEmpty9}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{D(f)}{\free{f }}
\indentrel{3}\begin{verbatim}
  2
(9) w - w z - 2w w z
  5 1 4 1 2 3
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty9}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty9}{OrderlyDifferentialPolynomialXmpPagePatch9}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty9}{\showpaste}
\end{paste}\end{patch}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty9}{OrderlyDifferentialPolynomialXmpPagePatch9}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{D(f)\free{f}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch10}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull10}{OrderlyDifferentialPolynomialXmpPageEmpty10}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{D(f,4)\free{f}}
\indentrel{3}\begin{verbatim}
(10)
2 2
w - w z - 8w w z + (- 12w w - 12w )z - 2w z w
8 1 7 1 2 6 1 3 2 5 1 3 5
+ \\
2
(- 8w w - 24w w )z - 8w z w - 6w z
1 4 2 3 4 2 3 4 3 3
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty10}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty10}{OrderlyDifferentialPolynomialXmpPagePatch10}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{D(f,4)\free{f}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch11}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull11}{OrderlyDifferentialPolynomialXmpPageEmpty11}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{df:=makeVariable(f)$dpol\free{f}\bound{df}}
\indentrel{3}\begin{verbatim}
(11) theMap(DPOLCAT-;makeVariable;AM;17!0,488)
Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty11}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty11}{OrderlyDifferentialPolynomialXmpPagePatch11}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{df:=makeVariable(f)$dpol\free{f}\bound{df}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch12}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull12}{OrderlyDifferentialPolynomialXmpPageEmpty12}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{df.4\free{df}}
\indentrel{3}\begin{verbatim}
(12)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\[
\begin{align*}
2 & \quad w - w z - 8w w z + (-12w w - 12w) z - 2w z w \\
8 & \quad 1 \quad 7 \quad 1 \quad 2 \quad 6 \quad 1 \quad 3 \quad 2 \quad 5 \quad 1 \quad 3 \quad 5 \\
2 & \quad (-8w w - 24w w) z - 8w z w - 6w z \\
1 & \quad 4 \quad 2 \quad 3 \quad 4 \quad 2 \quad 3 \quad 4 \quad 3 \quad 3 
\end{align*}
\]

Type: OrderlyDifferentialPolynomial Fraction Integer
\verbatim
\end{verbatim}
\indentrel{-3}\end{patch}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty12}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull12}{OrderlyDifferentialPolynomialXmpPageEmpty12}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull12}{\showpaste}
\indentrel{3}\begin{verbatim}
(13) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty13}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull13}{OrderlyDifferentialPolynomialXmpPageEmpty13}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull13}{\showpaste}
\indentrel{3}\begin{verbatim}
(14) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty14}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull14}{OrderlyDifferentialPolynomialXmpPageEmpty14}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull14}{\showpaste}
\indentrel{3}\begin{verbatim}
(15) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
differentialVariables(g)
\end{verbatim}

\begin{verbatim}
degree(g)
\end{verbatim}

\begin{verbatim}
degree(g, 'w)
\end{verbatim}
3.82. ODPOLHT

\begin{verbatim}
(18) [7,2]  Type: List NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(19) [2]  Type: List NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(20) 7  Type: PositiveInteger
\end{verbatim}
\tab{5}\spadcommand{isobaric?(g)\free{g }}
\indentrel{3}\begin{verbatim}
(21) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty21}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull21}{OrderlyDifferentialPolynomialXmpPageEmpty21}\{\showpaste\}
\tab{5}\spadcommand{isobaric?(g)\free{g }}
\end{patch}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch22}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull22}{OrderlyDifferentialPolynomialXmpPageEmpty22}\{\hidepaste\}
\tab{5}\spadcommand{eval(g,['w::Symbol],[f])\free{f }\free{g }}
\indentrel{3}\begin{verbatim}
(22)
2 2 3 2
- w + w z + 4w w z + (2w w + 2w )z + z z
6 1 5 1 2 4 1 3 2 3 1 2
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty22}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty22}{OrderlyDifferentialPolynomialXmpPagePatch22}\{\showpaste\}
\tab{5}\spadcommand{eval(g,['w::Symbol],[f])\free{f }\free{g }}
\end{patch}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch23}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull23}{OrderlyDifferentialPolynomialXmpPageEmpty23}\{\hidepaste\}
\tab{5}\spadcommand{eval(g,variables(w.0),[f])\free{f }\free{g }}
\indentrel{3}\begin{verbatim}
(23)
3 2
z z - w
1 2 2
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty23}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty23}{OrderlyDifferentialPolynomialXmpPagePatch23}\{\showpaste\}
\tab{5}\spadcommand{eval(g,variables(w.0),[f])\free{f }\free{g }}
\end{patch}\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch24}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull24}{OrderlyDifferentialPolynomialXmpPageEmpty24}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull24}{\hidepaste}
\indentrel{3}\begin{verbatim}
3 2
\( [z^2 z^1 , -w^2] \)
\end{verbatim}
Type: List OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty24}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty24}{OrderlyDifferentialPolynomialXmpPagePatch24}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty24}{\showpaste}
\indentrel{3}\begin{verbatim}
\( [z^2 z^1 , w^1] \)
\end{verbatim}
Type: List OrderlyDifferentialVariable Symbol
\end{verbatim}
\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch26}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull26}{OrderlyDifferentialPolynomialXmpPageEmpty26}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull26}{\hidepaste}
\indentrel{3}\begin{verbatim}
1
\end{verbatim}
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\end{patch}
\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch27}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull27}{OrderlyDifferentialPolynomialXmpPageEmpty27}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull27}{\hidepaste}
\tab{5}\spadcommand{groebner([f,g])\free{f}\free{g}}
\indentrel{3}\begin{verbatim}
2 3 2
\(27) \[w - w z ,z z - w\]
4 1 3 1 2 2
Type: List OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty27}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty27}{OrderlyDifferentialPolynomialXmpPagePatch27}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{groebner([f,g])\free{f}\free{g}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch28}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull28}{OrderlyDifferentialPolynomialXmpPageEmpty28}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{lg:=leader(g)\free{g}\bound{lg}}
\indentrel{3}\begin{verbatim}
(28) z
2
Type: OrderlyDifferentialVariable Symbol
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty28}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty28}{OrderlyDifferentialPolynomialXmpPagePatch28}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{lg:=leader(g)\free{g}\bound{lg}}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch29}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull29}{OrderlyDifferentialPolynomialXmpPageEmpty29}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull29}{\hidepaste}
\tab{5}\spadcommand{sg:=separant(g)\free{g}\bound{sg}}
\indentrel{3}\begin{verbatim}
3
(29) 2z z
1 2
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty29}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty29}{OrderlyDifferentialPolynomialXmpPagePatch29}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty29}{\showpaste}
\tab{5}\spadcommand{sg:=separant(g)\free{g}\bound{sg}}
\end{paste}\end{patch}
3.82. ODPOL.HT

\begin{verbatim}
3 (30) z
1
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}

\begin{verbatim}
3 2 3
(31) 2z z z - w + 3z z
1 2 3 3 1 2
Type: OrderlyDifferentialPolynomial Fraction Integer
\end{verbatim}

\begin{verbatim}
3 (32) z
Type: OrderlyDifferentialVariable Symbol
\end{verbatim}
\begin{patch}{OrderlyDifferentialPolynomialXmpPageEmpty32}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageEmpty32}{OrderlyDifferentialPolynomialXmpPagePatch32}
\pastebutton{OrderlyDifferentialPolynomialXmpPageEmpty32}{\showpaste}
\tab{5}\spadcommand{lg1:= leader g1\free{g1 }\bound{lg1 }}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch33}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull33}{OrderlyDifferentialPolynomialXmpPageEmpty33}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{pdf:=D(f, lg1)\free{f }\free{lg1 }\bound{pdf }}
\indentrel{3}\verbatim
\begin{verbatim}
2
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch34}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull34}{OrderlyDifferentialPolynomialXmpPageEmpty34}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull34}{\hidepaste}
\tab{5}\spadcommand{prf:=sg * f- pdf * g1\free{f }\free{sg }\free{pdf }\free{g1 }\bound{prf }}
\indentrel{3}\verbatim
\begin{verbatim}
3 2 2 2 3
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{OrderlyDifferentialPolynomialXmpPagePatch35}
\begin{paste}{OrderlyDifferentialPolynomialXmpPageFull35}{OrderlyDifferentialPolynomialXmpPageEmpty35}
\pastebutton{OrderlyDifferentialPolynomialXmpPageFull35}{\hidepaste}
\tab{5}\spadcommand{lcf:=leadingCoefficient univariate(prf, lg)\free{prf }\free{lg }\bound{lcf }}
\indentrel{3}\verbatim
\begin{verbatim}
2 2
\end{verbatim}
\end{paste}\end{patch}
3.83. `op.ht`

Operator

--- `op.ht` ---

Given any ring `\spad{R}`, the ring of the `\spadtype{Integer}`-linear operators over `\spad{R}` is called `\spadtype{Operator(\spad{R})}`. To create an operator over `\spad{R}`, first create a basic operator using the operation `\spadfun{operator}{\spad{R}}`, and then convert it to `\spadtype{Operator(\spad{R})}` for the `\spad{R}` you want.

%
We choose \texttt{R} to be the two by two matrices over the integers.

\begin{verbatim}
\spad{R := SQMATRIX(2, INT)}
\end{verbatim}

Create the operator \texttt{tilde} on \texttt{R}.

\begin{verbatim}
\spad{t := operator("tilde") :: OP(R)}
\end{verbatim}

Since \texttt{Operator} is unexposed we must either package-call operations from it, or expose it explicitly. For convenience we will do the latter.

\begin{verbatim}
\set expose add constructor Operator
\end{verbatim}

To attach an evaluation function (from \texttt{R} to \texttt{R}) to an operator over \texttt{R}, use \texttt{evaluate(op, f)} where \texttt{op} is an operator over \texttt{R} and \texttt{f} is a function \texttt{R -> R}.

This needs to be done only once when the operator is defined.

Note that \texttt{f} must be \texttt{Integer}-linear (that is, \texttt{f(ax+y) = a f(x) + f(y)} for any integer \texttt{a}, and any \texttt{x} and \texttt{y} in \texttt{R}).

We now attach the transpose map to the above operator \texttt{t}.

\begin{verbatim}
\spad{evaluate(t, m +-> transpose m)}
\end{verbatim}

Operators can be manipulated formally as in any ring: \texttt{op(+)} is the pointwise addition and \texttt{op(*)} is composition.

Any element \texttt{x} of \texttt{R} can be converted to an operator \texttt{x} over \texttt{R}, and the evaluation function of \texttt{x} is left-multiplication by \texttt{x}.

Multiplying on the left by this matrix swaps the two rows.

\begin{verbatim}
\spad{s : R := matrix [[0, 1], [1, 0]]}
\end{verbatim}
Can you guess what is the action of the following operator?

\[
\rho := t \ast s
\]

Hint: applying \(\rho\) four times gives the identity, so
\(\rho^{**4} - 1\) should return 0 when applied to any two by two matrix.

\[
\z := \rho^{**4} - 1
\]

Now check with this matrix.

\[
\m:R := \begin{bmatrix} 1, 2 \\ 3, 4 \end{bmatrix}
\]

As you have probably guessed by now, \(\rho\) acts on matrices by rotating the elements clockwise.

\[
\rho \m
\]

Do the swapping of rows and transposition commute? We can check by computing their bracket.

\[
b := t \ast s - s \ast t
\]
Now apply it to \spad{m}.
}\spadpaste{b m \free{b m}}

Next we demonstrate how to define a differential operator on a polynomial ring.
\xtc{This is the recursive definition of the \spad{n}-th Legendre polynomial.}
{\begin{spadsrc}
L n ==
  n = 0 => 1
  n = 1 => x
  \frac{(2n-1)n}{n} \times L(n-1) - \frac{(n-1)n}{n} \times L(n-2)
\end{spadsrc}}
\xtc{Create the differential operator \texht{$d \over {dx}$} on polynomials in \spad{x} over the rational numbers.}
{\spadpaste{dx := operator("D") :: OP(POLY FRAC INT) \free{dx} \bound{dx}}}
\xtc{Now attach the map to it.}
{\spadpaste{evaluate(dx, p +-> D(p, 'x)) \free{dx} \bound{edx}}}
\xtc{This is the differential equation satisfied by the \spad{n}-th Legendre polynomial.}
{\spadpaste{E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1) \free{edx} \bound{E}}}
\xtc{Now we verify this for \spad{n = 15}. Here is the polynomial.}
{\spadpaste{L 15 \free{L}}}
\xtc{Here is the operator.}
{\spadpaste{E 15 \free{E}}}
\xtc{Here is the evaluation.
3.83. \textit{OP.HT}

\begin{verbatim}
(1) SquareMatrix(2,Integer)
Type: Domain
\end{verbatim}

\begin{verbatim}
(2) tilde
Type: Operator SquareMatrix(2,Integer)
\end{verbatim}

\begin{verbatim}
)set expose add constructor Operator
\end{verbatim}
\begin{verbatim}
(3) tilde
Type: Operator SquareMatrix(2,Integer)
\end{verbatim}
\begin{verbatim}
(4)
Type: SquareMatrix(2,Integer)
\end{verbatim}
\begin{verbatim}
(5) tilde
Type: Operator SquareMatrix(2,Integer)
\end{verbatim}
\begin{verbatim}
(6)
0 1 0 1 0 1 0 1
- 1 + tilde tilde tilde tilde
1 0 1 0 1 0 1 0
Type: Operator SquareMatrix(2,Integer)
\end{verbatim}

\begin{verbatim}
(7)
1 2
3 4
Type: SquareMatrix(2,Integer)
\end{verbatim}
Type: SquareMatrix(2, Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OperatorXmpPageEmpty9}
\begin{paste}{OperatorXmpPageEmpty9}{OperatorXmpPagePatch9}
\pastebutton{OperatorXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{z m\free{z m }}
\end{paste}\end{patch}

\begin{patch}{OperatorXmpPagePatch10}
\begin{paste}{OperatorXmpPageFull10}{OperatorXmpPageEmpty10}
\pastebutton{OperatorXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{rho m\free{rho m }}
\indentrel{3}\begin{verbatim}
3 1
4 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OperatorXmpPageEmpty10}
\begin{paste}{OperatorXmpPageEmpty10}{OperatorXmpPagePatch10}
\pastebutton{OperatorXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{rho m\free{rho m }}
\end{paste}\end{patch}

\begin{patch}{OperatorXmpPagePatch11}
\begin{paste}{OperatorXmpPageFull11}{OperatorXmpPageEmpty11}
\pastebutton{OperatorXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{rho rho m\free{rho m }}
\indentrel{3}\begin{verbatim}
4 3
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OperatorXmpPageEmpty11}
\begin{paste}{OperatorXmpPageEmpty11}{OperatorXmpPagePatch11}
\pastebutton{OperatorXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{rho rho m\free{rho m }}
\end{paste}\end{patch}

\begin{patch}{OperatorXmpPagePatch12}
\begin{paste}{OperatorXmpPageFull12}{OperatorXmpPageEmpty12}
\pastebutton{OperatorXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{(rho**3) m\free{rho m }}
\begin{verbatim}
2 4
1 3
\end{verbatim}

Type: SquareMatrix(2,Integer)

\begin{verbatim}
0 1 0 1
- tilde + tilde
1 0 1 0
\end{verbatim}

Type: Operator SquareMatrix(2,Integer)

\begin{verbatim}
1 - 3
3 - 1
\end{verbatim}

Type: SquareMatrix(2,Integer)
\begin{patch}{OperatorXmpPagePatch15}
\begin{paste}{OperatorXmpPageFull15}{OperatorXmpPageEmpty15}
\pastebutton{OperatorXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{L n ==
  n = 0 => 1
  n = 1 => x
  (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
}\bound{l }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OperatorXmpPageEmpty15}
\begin{paste}{OperatorXmpPageEmpty15}{OperatorXmpPagePatch15}
\pastebutton{OperatorXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{L n ==
  n = 0 => 1
  n = 1 => x
  (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
}\bound{l }
\end{paste}\end{patch}

\begin{patch}{OperatorXmpPagePatch16}
\begin{paste}{OperatorXmpPageFull16}{OperatorXmpPageEmpty16}
\pastebutton{OperatorXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{dx := operator("D") :: OP(POLY FRAC INT)}\bound{dx }
\indentrel{3}\begin{verbatim}
(15) D
Type: Operator Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{OperatorXmpPageEmpty16}
\begin{paste}{OperatorXmpPageEmpty16}{OperatorXmpPagePatch16}
\pastebutton{OperatorXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{dx := operator("D") :: OP(POLY FRAC INT)}\bound{dx }
\end{paste}\end{patch}

\begin{patch}{OperatorXmpPagePatch17}
\begin{paste}{OperatorXmpPageFull17}{OperatorXmpPageEmpty17}
\pastebutton{OperatorXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{evaluate(dx, p +-> D(p, 'x))}\bound{edx }
\indentrel{3}\begin{verbatim}
(16) D
Type: Operator Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{spadcommand}
\spad{evaluate(dx, p \mapsto D(p, 'x))\free{dx }\bound{edx}}
\end{spadcommand}

\begin{spadcommand}
\spad{E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)\free{edx }\bound{E}}
\end{spadcommand}

\begin{verbatim}
(18)
  9694845  15  35102025  13  50702925  11
  x - x + x
  2048  2048  2048
+
  37182145  9  14549535  7  2909907  5  255255  3
  - x + x - x + x
  2048  2048  2048  2048
+
  6435
  - x
  2048
\end{verbatim}

\begin{spadcommand}
\spad{L 15\free{L}}
\end{spadcommand}

\begin{verbatim}
Type: Polynomial Fraction Integer
\end{verbatim}
\tab{5}\spadcommand{E 15\free{E }}
\indentrel{3}\begin{verbatim}
2 2
(19) 240 - 2x D - (x - 1)D
Type: Operator Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{OperatorXmpPagePatch21}
\begin{paste}{OperatorXmpPageFull21}{OperatorXmpPageEmpty21}
\pastebutton{OperatorXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{(E 15)(L 15)\free{L E }}
\indentrel{3}\begin{verbatim}
(20) 0
Type: Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{OperatorXmpPageEmpty21}
\begin{paste}{OperatorXmpPageEmpty21}{OperatorXmpPagePatch21}
\pastebutton{OperatorXmpPageEmpty21}{\showpaste}
\end{paste}
\end{patch}

<table>
<thead>
<tr>
<th>ovar.ht</th>
</tr>
</thead>
</table>

3.84 \texttt{ovar.ht}

\texttt{OrderedVariableList}

\begin{verbatim}

\begin{page}{OrderedVariableListXmpPage}{OrderedVariableList}
\beginscroll
The domain \spadtype{OrderedVariableList} provides symbols which are restricted to a particular list and have a definite ordering. Those two features are specified by a \spadtype{List Symbol} object that is the argument to the domain.
\xtc{
\end{verbatim}
This is a sample ordering of three symbols.
}
\spadpaste{ls:List Symbol:=['x,'a,'z] \bound{ls}}
}
\xtc{}
Let's build the domain
}
\spadpaste{Z:=OVAR ls \bound{Z} \free{ls}}
}
\xtc{}
How many variables does it have?
}
\spadpaste{size()$Z \free{Z}}
}
\xtc{}
They are (in the imposed order)
}
\spadpaste{lv:=[index(i::PI)$Z for i in 1..size()$Z] \bound{lv}\free{Z}}
}
\xtc{}
Check that the ordering is right
}
\spadpaste{sorted?(>,lv) \free{lv}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{OrderedVariableListXmpPagePatch1}
\begin{paste}{OrderedVariableListXmpPageFull1}{OrderedVariableListXmpPageEmpty1}
\pastebutton{OrderedVariableListXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{ls:List Symbol:=['x,'a,'z] \bound{ls}}
\indentrel{3}\begin{verbatim}
(1) \[x,a,z\]
Type: List Symbol
\end{verbatim}
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch2}
\begin{paste}{OrderedVariableListXmpPageFull2}{OrderedVariableListXmpPageEmpty2}
\pastebutton{OrderedVariableListXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{Z:=OVAR ls \bound{Z} \free{ls}}
\indentrel{3}\begin{verbatim}
(2) OrderedVariableList [x,a,z]
CHAPTER 3. HYPERDOC PAGES

Type: Domain

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{OrderedVariableListXmpPageEmpty2}
\begin{paste}{OrderedVariableListXmpPageEmpty2}{OrderedVariableListXmpPagePatch2}
\pastebutton{OrderedVariableListXmpPageEmpty2}{\showpaste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch3}
\begin{paste}{OrderedVariableListXmpPageFull3}{OrderedVariableListXmpPageEmpty3}
\pastebutton{OrderedVariableListXmpPageFull3}{\hidepaste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPageEmpty3}
\begin{paste}{OrderedVariableListXmpPageEmpty3}{OrderedVariableListXmpPagePatch3}
\pastebutton{OrderedVariableListXmpPageEmpty3}{\showpaste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch4}
\begin{paste}{OrderedVariableListXmpPageFull4}{OrderedVariableListXmpPageEmpty4}
\pastebutton{OrderedVariableListXmpPageFull4}{\hidepaste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPageEmpty4}
\begin{paste}{OrderedVariableListXmpPageEmpty4}{OrderedVariableListXmpPagePatch4}
\pastebutton{OrderedVariableListXmpPageEmpty4}{\showpaste}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch5}
\begin{paste}{OrderedVariableListXmpPageFull5}{OrderedVariableListXmpPageEmpty5}
\pastebutton{OrderedVariableListXmpPageFull5}{\hidepaste}
\end{patch}

\indentrel{3}\begin{verbatim}
(3) 3
\end{verbatim}

\begin{patch}{OrderedVariableListXmpPagePatch3}
\begin{paste}{OrderedVariableListXmpPageFull3}{OrderedVariableListXmpPageEmpty3}
\pastebutton{OrderedVariableListXmpPageFull3}{\hidepaste}
\end{patch}

\indentrel{3}\begin{verbatim}
(4) [x,a,z]
\end{verbatim}

\begin{patch}{OrderedVariableListXmpPagePatch4}
\begin{paste}{OrderedVariableListXmpPageFull4}{OrderedVariableListXmpPageEmpty4}
\pastebutton{OrderedVariableListXmpPageFull4}{\hidepaste}
\end{patch}

\indentrel{3}\begin{verbatim}
(5) true
\end{verbatim}

\indentrel{-3}\end{verbatim}
\end{patch}

Type: NonNegativeInteger

\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch4}
\begin{paste}{OrderedVariableListXmpPageFull4}{OrderedVariableListXmpPageEmpty4}
\pastebutton{OrderedVariableListXmpPageFull4}{\hidepaste}
\end{patch}

\indentrel{3}\begin{verbatim}
Type: List OrderedVariableList [x,a,z]
\end{verbatim}

\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{OrderedVariableListXmpPagePatch5}
\begin{paste}{OrderedVariableListXmpPageFull5}{OrderedVariableListXmpPageEmpty5}
\pastebutton{OrderedVariableListXmpPageFull5}{\hidepaste}
\end{patch}

\indentrel{3}\begin{verbatim}
(5) true
\end{verbatim}

\indentrel{-3}\end{verbatim}
\end{patch}

Type: Boolean
3.85. \textit{PERMAN.HT}

\begin{spadcommand}{\texttt{sorted?(>,lv)} free{lv}}
\end{spadcommand}

\begin{spadexample}
\begin{verbatim}
|----|
\end{verbatim}
\end{spadexample}

3.85 perman.ht

Permanent

--- perman.ht ---

\begin{spadexample}
\begin{verbatim}
kn n ==
  r : MATRIX INT := new(n,n,1)
  for i in 1..n repeat
    r.i.i := 0
  r
\end{verbatim}
\end{spadexample}

The package \texttt{Permanent} provides the function \texttt{permanent\{Permanent\}} for square matrices. The \texttt{permanent\{Permanent\}} of a square matrix can be computed in the same way as the determinant by expansion of minors except that for the permanent the sign for each element is \texttt{1}, rather than being \texttt{1} if the row plus column indices is positive and \texttt{-1} otherwise. This function is much more difficult to compute efficiently than the \texttt{determinant\{Matrix\}}.

An example of the use of \texttt{permanent\{Permanent\}} is the calculation of the \texttt{\textbackslash \texttt{eth\{spad\(n\)}} derangement number, defined to be the number of different possibilities for \texttt{spad\(n\)} couples to dance but never with their own spouse.

\begin{spadexample}
\begin{verbatim}
Consider an \texttt{spad\(n\)} by \texttt{spad\(n\)} matrix with entries \texttt{spad\(0\)} on the diagonal and \texttt{spad\(1\)} elsewhere. Think of the rows as one-half of each couple (for example, the males) and the columns the other half. The permanent of such a matrix gives the desired derangement number.
\end{verbatim}
\end{spadexample}

\begin{spadexample}
\begin{verbatim}
\texttt{kn n ==
  r : MATRIX INT := new(n,n,1)
  for i in 1..n repeat
    r.i.i := 0
  r}
\end{verbatim}
\end{spadexample}
Here are some derangement numbers, which you see grow quite fast.

\spadpaste{permanent(kn(5) :: SQMATRIX(5,INT)) \free{kn}}

\spadpaste{[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13] \free{kn}}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: PositiveInteger
\end{verbatim}
3.85. PERMAN.HT

\begin{paste}{PermanentXmpPageEmpty2}{PermanentXmpPagePatch2}\pastebutton{PermanentXmpPageEmpty2}{\showpaste}\tab{5}\spadcommand{permanent(kn(5) :: SQMATRIX(5,INT))}\free{kn }\end{paste}\end{patch}

\begin{patch}{PermanentXmpPagePatch3}\begin{paste}{PermanentXmpPageFull3}{PermanentXmpPageEmpty3}\pastebutton{PermanentXmpPageFull3}{\hidepaste}\tab{5}\spadcommand{[permanent(kn(n) :: SQMATRIX(n,INT))\text{ for } n\text{ in }1..13]}\free{kn }\indentrel{3}\begin{verbatim}(3)[0, 1, 2, 9, 44, 265, 1854, 133496, 1334961, 14684570, 176214841, 2290792932]\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PermanentXmpPageEmpty3}\begin{paste}{PermanentXmpPageEmpty3}{PermanentXmpPagePatch3}\pastebutton{PermanentXmpPageEmpty3}{\showpaste}\tab{5}\spadcommand{[permanent(kn(n) :: SQMATRIX(n,INT))\text{ for } n\text{ in }1..13]}\free{kn }\end{paste}\end{patch}

\begin{verbatim}(3)[0, 1, 2, 9, 44, 265, 1854, 133496, 1334961, 14684570, 176214841, 2290792932]\end{verbatim}Type: List NonNegativeInteger

\end{verbatim}}\end{patch}
3.80 pfr.ht

PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients where the denominators of the summands are powers of primes. (Most people first encounter partial fractions when they are learning integral calculus. For a technical discussion of partial fractions, see, for example, Lang’s *Algebra.* ) For example, the rational number $1/6$ is decomposed into $1/2-1/3$. You can compute partial fractions of quotients of objects from domains belonging to the category *EuclideanDomain.* For example, *Integer, Complex Integer,* and *UnivariatePolynomial(x, Fraction Integer)* all belong to *EuclideanDomain.* In the examples following, we demonstrate how to decompose quotients of each of these kinds of object into partial fractions. Issue the system command `)show PartialFraction` to display the full list of operations defined by *PartialFraction.*

It is necessary that we know how to factor the denominator when we want to compute a partial fraction. Although the
It is necessary that we know how to factor the denominator when we want to compute a partial fraction. Although the interpreter can often do this automatically, it may be necessary for you to include a call to \texttt{factor}. In these examples, it is not necessary to factor the denominators explicitly.

The main operation for computing partial fractions is called \texttt{partialFraction} and we use this to compute a decomposition of \texttt{1 / 10!}.

The first argument to \texttt{partialFraction} is the numerator of the quotient and the second argument is the factored denominator.

\begin{verbatim}
partialFraction(1, factorial 10) \bound{prev1}
\end{verbatim}

Since the denominators are powers of primes, it may be possible to expand the numerators further with respect to those primes. Use the operation \texttt{padicFraction} to do this.

\begin{verbatim}
f := padicFraction(\%) \free{prev1}\bound{f}
\end{verbatim}

The operation \texttt{compactFraction} returns an expanded fraction into the usual form. The compacted version is used internally for computational efficiency.

\begin{verbatim}
compactFraction(f) \free{f}
\end{verbatim}

You can add, subtract, multiply and divide partial fractions. In addition, you can extract the parts of the decomposition. \texttt{numberOfFractionalTerms} computes the number of terms in the fractional part. This does not include the whole part of the fraction, which you get by calling \texttt{wholePart}. In this example, the whole part is just \texttt{0}.

\begin{verbatim}
numberOfFractionalTerms(f) \free{f}
\end{verbatim}

The operation \texttt{nthFractionalTerm} returns the individual terms in the decomposition. Notice that the object returned is a partial fraction itself.

\begin{verbatim}
\end{verbatim}
\spadfunFrom{firstDenom}{PartialFraction} extract the numerator and
denominator of the first term of the fraction.
\begin{verbatim}
\spadpaste{nthFractionalTerm(f,3) \free{f}}
\end{verbatim}

\xtc{
Given two gaussian integers (see\downlink{`Complex'}{ComplexXmpPage}\ignore{Complex}), you can
decompose their quotient into a partial fraction.
\begin{verbatim}
\spadpaste{partialFraction(1,- 13 + 14 * \%i) \bound{prev2}}
\end{verbatim}
\xtc{
To convert back to a quotient, simply use a conversion.
\begin{verbatim}
\spadpaste{\% :: Fraction Complex Integer \free{prev2}}
\end{verbatim}
\xtc{
To conclude this section, we compute the decomposition of
\begin{verbatim}
\narrowDisplay{1 \over {{(x + 1)}{(x + 2)}^2{(x + 3)}^3{(x + 4)}^4}}
\end{verbatim}
\begin{verbatim}
\verbatim{1
-----------------------------------
 2 3 4
 (x + 1)(x + 2) (x + 3) (x + 4)
\end{verbatim}
\xtc{
The polynomials in this object have type\spadtype{UnivariatePolynomial(x, Fraction Integer)}.
\xtc{
We use the \spadfunFrom{primeFactor}{Factored} operation (see\downlink{`Factored'}{FactoredXmpPage}\ignore{Factored}) to create the denominator in factored form directly.
\begin{verbatim}
\spadpaste{u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i)\for i in 1..4]) \bound{u}}
\end{verbatim}
\xtc{
These are the compact and expanded partial fractions for the quotient.
\begin{verbatim}
\spadpaste{partialFraction(1,u) \free{u}\bound{prev3}}
\end{verbatim}
\xtc{
All see `FullPartialFracExpansion' for examples of factor-free conversion of quotients to full partial fractions.

\begin{verbatim}
159 23 12 1
(1) - - +
8 4 2 7
2 3 5
Type: PartialFraction Integer
\end{verbatim}

\begin{verbatim}
1 1 1 1 1 1 2 1 2 2 2 1
+ + + + - - - - +
2 4 5 6 7 8 2 3 4 5 2 7
2 2 2 2 2 3 3 3 5
Type: PartialFraction Integer
\end{verbatim}
\begin{patch}{PartialFractionXmpPagePatch3}
\begin{paste}{PartialFractionXmpPageFull3}{PartialFractionXmpPageEmpty3}
\pastebutton{PartialFractionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{compactFraction(f)\free{f}}
\indentrel{3}\begin{verbatim}
159 23 12 1
\hline
8 4 2 7
2 3 5
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PartialFractionXmpPagePatch4}
\begin{paste}{PartialFractionXmpPageFull4}{PartialFractionXmpPageEmpty4}
\pastebutton{PartialFractionXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{numberOfFractionalTerms(f)\free{f}}
\indentrel{3}\begin{verbatim}
(4) 12
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PartialFractionXmpPagePatch5}
\begin{paste}{PartialFractionXmpPageFull5}{PartialFractionXmpPageEmpty5}
\pastebutton{PartialFractionXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{nthFractionalTerm(f,3)\free{f}}
\indentrel{3}\begin{verbatim}
1
\hline
5
2
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{spadcommand}
thth{PartialFractionXmpPageEmpty5}{PartialFractionXmpPagePatch5}
\end{spadcommand}

\begin{spadcommand}
partialFraction(1,- 13 + 14 \cdot \%i)
\end{spadcommand}

\begin{verbatim}
\begin{verbatim}
1 4
\end{verbatim}
\end{verbatim}

\begin{spadcommand}
\end{spadcommand}

\begin{spadcommand}
\end{spadcommand}
\begin{verbatim}
(9)
   1  1  7  17  2  139
x + - x - 12x -
  648  4  16  8  8
 + +
   x + 1  2  3
  (x + 2) (x + 3)
 +
   607  3  10115 2  391  44179
x + x + x +
  324  432  4  324

(x + 4)
Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(10)
   1  1  1  17  3
648  4  16  8  4
 + - - +
   x + 1  x + 2  2  x + 3  2
  (x + 2) (x + 3)
 +
\end{verbatim}
3.87  POLY.HT

\[
\begin{array}{cccc}
1 & 607 & 403 & 13 \\
2 & 324 & 432 & 36 \\
- & + & + & + \\
3 & x + 4 & 2 & 3 & 4 \\
\end{array}
\]

\((x + 3) (x + 4) (x + 4) (x + 4)\)

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

\begin{verbatim}
indentrel{-3}\end{verbatim}

\begin{verbatim}
begin{patch}{PartialFractionXmpPageEmpty10}
paste{PartialFractionXmpPagePatch10}
pastebutton{PartialFractionXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{padicFraction \%free{prev3}}
\end{patch}
\end{verbatim}

3.87  poly.ht

Polynomials

\begin{itemize}
\item Basic Functions
  Create and manipulate polynomials.
\item Substitutions
  Evaluate polynomials.
\item Factorization
  Factor in different contexts.
\item GCDs and Friends
  Greatest common divisors etc.
\item Roots
  Work with and solve for roots.
\item Specific Types
  More specific information.
\end{itemize}

← “Topics” (TopicPage) 3.108 on page 1313
⇒ “Basic Functions” (PolynomialBasicPage) 3.87 on 1097
The Specific Polynomial Types

The general type.

One variable polynomials.

Multiple variable polynomials, recursive structure.
Multiple variable polynomials, non-recursive structure.

Skew or Ore polynomials

Basic Operations On Polynomials

You create polynomials using the usual operations of \begin{spad}{+}{Polynomial}, \begin{spad}{-}{Polynomial}, \begin{spad}{*}{Polynomial} (for multiplication), and \begin{spad}{**}{Polynomial} (for exponentiation). Here are two examples:

\begin{spad}{p := a*x**2 + b*x*y + c*y**2\free{p}}\end{spad}
\begin{spad}{q := 13*x**2 + 3*z\free{q}}\end{spad}

These operations can also be used to combine polynomials. Try the following:

\begin{spad}{p + q \free{p q}}\end{spad}
\begin{spad}{p - 3*q \free{p q}}\end{spad}
\begin{spad}{p**2 + p*q \free{p q}}\end{spad}
\begin{spad}{r := (p + q)**2 \free{p q}}\end{spad}

As you can see from the above examples, the variables are ordered by defaults \begin{spad}{z > y > x > c > b > a},\end{spad} that is, \begin{spad}{z} is the main variable, then \begin{spad}{y} and so on in reverse alphabetical order.

You can redefine this ordering (for display purposes only) with the \begin{spadfun}{setVariableOrder} command.

For example, the following makes \begin{spad}{a} the main variable, then \begin{spad}{b}, and so on:
\begin{spad}{setVariableOrder \[a,b,c,x,y,z\] \free{vord}}\end{spad}

Now compare the way polynomials are displayed:

\begin{spad}{p \free{p vord}}\end{spad}
\begin{spad}{q \free{q vord}}\end{spad}
\begin{spad}{r \free{r vord}}\end{spad}

To return to the system's default ordering,
use \spadfun{resetVariableOrder}.
\spadpaste{resetVariableOrder() \bound{rvord}}
\spadpaste{p \free{p rvord}}
Polynomial coefficients can be pulled out using the function \spadfun{coefficient}.
For example:
\spadpaste{coefficient(q,x,2) \free{q}}
will give you the coefficient of \spad{x**2} in the polynomial \spad{q}.

Try these commands:
\spadpaste{coefficient(r,x,3) \free{r}}
\spadpaste{c := coefficient(r,z,1) \free{r} \bound{c}}
\spadpaste{coefficient(c,x,2) \free{c}}
Coefficients of monomials can be obtained as follows:
\spadpaste{coefficient(q**2, [x,z], [2,1]) \free{q}}
This will return the coefficient of \spad{x**2 * z} in the polynomial \spad{q**2}.
Also,
\spadpaste{coefficient(r, [x,y], [2,2]) \free{r}}
will return the coefficient of \spad{x**2 * y**2} in the polynomial \spad{r(x,y)}.
endscroll
autobuttons
endpage

\begin{patch}{PolynomialBasicPagePatch1}
\begin{paste}{PolynomialBasicPageFull1}{PolynomialBasicPageEmpty1}
\pastebutton{PolynomialBasicPageFull1}{\hidepaste}
tab{5}\spadcommand{p := a*x**2 + b*x*y + c*y**2\bound{p }}
\indentrel{3}\begin{verbatim}
2 2
(1) c y + b x y + a x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{PolynomialBasicPageEmpty1}
\begin{paste}{PolynomialBasicPageEmpty1}{PolynomialBasicPagePatch1}
\pastebutton{PolynomialBasicPageEmpty1}{\showpaste}
tab{5}\spadcommand{p := a*x**2 + b*x*y + c*y**2\bound{p }}
\indentrel{3}\begin{verbatim}
2 2
(1) c y + b x y + a x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPagePatch2}
\begin{paste}{PolynomialBasicPageFull2}{PolynomialBasicPageEmpty2}
\pastebutton{PolynomialBasicPageFull2}{\hidepaste}
\tab{5}\spadcommand{q := 13*x**2 + 3*z\bound{q }}
\indentrel{3}\begin{verbatim}
2
(2) 3z + 13x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{PolynomialBasicPagePatch2}
\spadcommand{q := 13*x**2 + 3*z}
\end{patch}

\begin{patch}{PolynomialBasicPagePatch3}
\spadcommand{p + q}
\end{patch}

\begin{patch}{PolynomialBasicPagePatch4}
\spadcommand{p - 3*q}
\end{patch}

\begin{patch}{PolynomialBasicPagePatch5}
\spadcommand{p**2 + p*q}
\end{patch}

\begin{verbatim}
2 2
(3) 3z + c y + b x y + (a + 13)x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2 2
(4) - 9z + c y + b x y + (a - 39)x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2 2 2 4 3
(5) (3c y + 3b x y + 3a x )z + c y + 2b c x y
\end{verbatim}
\begin{verbatim}
\indentrel{-3}
\end{patch}
\begin{patch}{PolynomialBasicPagePatch6}
\begin{paste}{PolynomialBasicPageFull6}{PolynomialBasicPageEmpty6}
\pastebutton{PolynomialBasicPageFull6}{\hidepaste}
\tab{5}\spadcommand{r := (p + q)**2\bound{r }\free{p q }}
\indentrel{3}\begin{verbatim}
(6)
2 2 2 3 2 4
+ (2a + 13)c + b )x y + (2a + 13)b x y + (a + 13a)x
\indentrel{-3}
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{PolynomialBasicPagePatch7}
\begin{paste}{PolynomialBasicPageFull7}{PolynomialBasicPageEmpty7}
\pastebutton{PolynomialBasicPageFull7}{\hidepaste}
\tab{5}\spadcommand{setVariableOrder [a,b,c,x,y,z]\bound{vord }}
\indentrel{3}\begin{verbatim}
Type: Void
\indentrel{-3}
\end{verbatim}
\end{patch}
\begin{patch}{PolynomialBasicPagePatch7}
\begin{paste}{PolynomialBasicPageFull7}{PolynomialBasicPageEmpty7}
\pastebutton{PolynomialBasicPageFull7}{\hidepaste}
\tab{5}\spadcommand{setVariableOrder [a,b,c,x,y,z]\bound{vord }}
\indentrel{3}\begin{verbatim}
Type: Void
\indentrel{-3}
\end{verbatim}
\end{patch}
\begin{verbatim}
2 2
(8) x a + y x b + y c
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2
(9) 13x + 3z
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
4 2 3 2 2 4 2 2 2
x a + (2y x b + 2y x c + 26x + 6z x )a + y x b
+ 3 3 4 2
(2y x c + 26y x + 6z y x)b + y c
+ 2 2 2 4 2 2 2
(26y x + 6z y )c + 169x + 78z x + 9z
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

Type: Polynomial Integer
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{PolynomialBasicPageEmpty10}
\begin{paste}{PolynomialBasicPageEmpty10}{PolynomialBasicPagePatch10}
\pastebutton{PolynomialBasicPageEmpty10}{\showpaste}
\tab{5}\spadcommand{r\free{r vord }}\end{paste}\end{patch}
\begin{patch}{PolynomialBasicPagePatch11}
\begin{paste}{PolynomialBasicPageFull11}{PolynomialBasicPageEmpty11}
\pastebutton{PolynomialBasicPageFull11}{\hidepaste}
\tab{5}\spadcommand{resetVariableOrder()\bound{rvord }}\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{PolynomialBasicPageEmpty11}
\begin{paste}{PolynomialBasicPageEmpty11}{PolynomialBasicPagePatch11}
\pastebutton{PolynomialBasicPageEmpty11}{\showpaste}
\tab{5}\spadcommand{resetVariableOrder()\bound{rvord }}\end{paste}\end{patch}
\begin{patch}{PolynomialBasicPagePatch12}
\begin{paste}{PolynomialBasicPageFull12}{PolynomialBasicPageEmpty12}
\pastebutton{PolynomialBasicPageFull12}{\hidepaste}
\tab{5}\spadcommand{p\free{p rvord }}\indentrel{3}\begin{verbatim}
\indentrel{2}
(12)  2  2
   c y + b x y + a x
Type: Polynomial Integer
\end{verbatim}
\end{patch}\end{patch}
\begin{patch}{PolynomialBasicPageEmpty12}
\begin{paste}{PolynomialBasicPageEmpty12}{PolynomialBasicPagePatch12}
\pastebutton{PolynomialBasicPageEmpty12}{\showpaste}
\tab{5}\spadcommand{p\free{p rvord }}\end{paste}\end{patch}
\begin{patch}{PolynomialBasicPagePatch13}
\begin{paste}{PolynomialBasicPageFull13}{PolynomialBasicPageEmpty13}
\pastebutton{PolynomialBasicPageFull13}{\hidepaste}
\tab{5}\spadcommand{coefficient(q,x,2)\free{q }}\indentrel{3}\begin{verbatim}
(13)  13
Type: Polynomial Integer
\end{verbatim}
\end{patch}\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPageEmpty13}
\begin{paste}{PolynomialBasicPageEmpty13}{PolynomialBasicPagePatch13}
\pastebutton{PolynomialBasicPageEmpty13}{\showpaste}
\tab{5}\spadcommand{coefficient(q,x,2)\free{q }}
\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPagePatch14}
\begin{paste}{PolynomialBasicPageFull14}{PolynomialBasicPageEmpty14}
\pastebutton{PolynomialBasicPageFull14}{\hidepaste}
\tab{5}\spadcommand{coefficient(r,x,3)\free{r }}
\indentrel{3}\begin{verbatim}
(14) (2a + 26)b y
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPageEmpty14}
\begin{paste}{PolynomialBasicPageEmpty14}{PolynomialBasicPagePatch14}
\pastebutton{PolynomialBasicPageEmpty14}{\showpaste}
\tab{5}\spadcommand{coefficient(r,x,3)\free{r }}
\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPagePatch15}
\begin{paste}{PolynomialBasicPageFull15}{PolynomialBasicPageEmpty15}
\pastebutton{PolynomialBasicPageFull15}{\hidepaste}
\tab{5}\spadcommand{c := coefficient(r,z,1)\free{r }}\bound{c}
\indentrel{3}\begin{verbatim}
(15) 6c y + 6b x y + (6a + 78)x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPageEmpty15}
\begin{paste}{PolynomialBasicPageEmpty15}{PolynomialBasicPagePatch15}
\pastebutton{PolynomialBasicPageEmpty15}{\showpaste}
\tab{5}\spadcommand{c := coefficient(r,z,1)\free{r }}\bound{c}
\end{paste}\end{patch}

\begin{patch}{PolynomialBasicPagePatch16}
\begin{paste}{PolynomialBasicPageFull16}{PolynomialBasicPageEmpty16}
\pastebutton{PolynomialBasicPageFull16}{\hidepaste}
\tab{5}\spadcommand{coefficient(c,x,2)\free{c }}
\indentrel{3}\begin{verbatim}
(16) 6a + 78
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}\end{paste}\end{patch}
Polynomial Evaluation and Substitution

poly.ht
The function \texttt{eval} is used to substitute values into polynomials. Here’s an example of how to use it:
\texttt{p := x**2 + y**2 \bound{p}}
\texttt{eval(p, x=5) \free{p}}

This example would give you the value of the polynomial \texttt{p} at 5. You can also substitute into polynomials with several variables. First, specify the polynomial, then give a list of bindings of the form \texttt{variable = value}. For example:
\texttt{eval(p, \{x = a + b, y = c + d\}) \free{p}}
Here \texttt{p(x)} was replaced by \texttt{p(a + b)}, and \texttt{p(y)} was replaced by \texttt{p(c + d)}.

Here’s another example:
\texttt{q := x**3 + 5*x - y**4 \bound{q}}
\texttt{eval(q, \{x=y, y=x\}) \free{q}}
Substitution is done ‘‘in parallel.’’ That is, Axiom takes \texttt{q(x,y)} and returns \texttt{q(y,x)}.

You can also substitute numerical values for some or all of the variables:
\texttt{px := eval(p, y = \text{sin}(2.0)) \bound{px}}
\texttt{eval(px, x = \text{cos}(2.0)) \free{px}}
\indentrel{3}\begin{verbatim}
2
(2) y + 25
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialSubstitutionPageEmpty2}
\begin{paste}{PolynomialSubstitutionPageFull2}{PolynomialSubstitutionPageEmpty2}{PolynomialSubstitutionPagePatch2}
\spadcommand{eval(p,x=5)}
\free{p}
\end{paste}\end{patch}

\begin{patch}{PolynomialSubstitutionPagePatch3}
\begin{paste}{PolynomialSubstitutionPageFull3}{PolynomialSubstitutionPageEmpty3}{PolynomialSubstitutionPagePatch3}
\spadcommand{eval(p,[x = a + b,y = c + d])}
\free{p}
\end{paste}\end{patch}

\begin{patch}{PolynomialSubstitutionPagePatch4}
\begin{paste}{PolynomialSubstitutionPageFull4}{PolynomialSubstitutionPageEmpty4}{PolynomialSubstitutionPagePatch4}
\spadcommand{q := x**3 + 5*x - y**4}
\bound{q}
\end{paste}\end{patch}

\begin{patch}{PolynomialSubstitutionPagePatch5}
\begin{paste}{PolynomialSubstitutionPageFull5}{PolynomialSubstitutionPageEmpty5}{PolynomialSubstitutionPagePatch5}
\end{paste}\end{patch}
\( \text{Type: Polynomial Integer} \)

\( \text{Type: Polynomial Float} \)

\( \text{Type: Polynomial Float} \)

\( \text{Type: Polynomial Float} \)
Greatest Common Divisors, Resultants, and Discriminants

\begin{page}{PolynomialGCDPage}
\{Greatest Common Divisors, Resultants, and Discriminants\}
\beginscroll
You can compute the greatest common divisor of two polynomials using the function \spadfun{gcd}. Here’s an example:
\spadpaste{p := 3*x**8 + 2*x**7 + 6*x**2 + 7*x + 2 \bound{p}}
\spadpaste{q := 2*x**13 + 9*x**7 + 2*x**6 + 10*x + 5 \bound{q}}
\spadpaste{gcd(p,q) \free{p q}}
You could also see that \spad{p} and \spad{q} have a factor in common by using the function \spadfun{resultant}:
\spadpaste{resultant(p,q,x) \free{p q}}
The resultant of two polynomials vanishes precisely when they have a factor in common.
(In the example above we specified the variable with which we wanted to compute the resultant because the polynomials could have involved variables other than x.)
\endscroll
\autobuttons
\end{page}

\begin{patch}{PolynomialGCDPagePatch1}
\begin{paste}{PolynomialGCDPageFull1}{PolynomialGCDPageEmpty1}
\pastebutton{PolynomialGCDPageFull1}{\hidepaste}
\tab{5}\spadcommand{p := 3*x**8 + 2*x**7 + 6*x**2 + 7*x + 2 \bound{p}}
\indentrel{3}\begin{verbatim}
8 7 2
  (1) 3x + 2x + 6x + 7x + 2
  Type: Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{PolynomialGCDPageEmpty1}
\begin{paste}{PolynomialGCDPageEmpty1}{PolynomialGCDPagePatch1}
\pastebutton{PolynomialGCDPageEmpty1}{\showpaste}
\tab{5}\spadcommand{p := 3*x**8 + 2*x**7 + 6*x**2 + 7*x + 2 \bound{p}}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PolynomialGCDPagePatch2}
\begin{paste}{PolynomialGCDPageFull2}{PolynomialGCDPageEmpty2}
\pastebutton{PolynomialGCDPageFull2}{\hidepaste}
\tab{5}\spadcommand{q := 2*x**13 + 9*x**7 + 2*x**6 + 10*x + 5 \bound{q}}
\indentrel{3}\begin{verbatim}
13 7 6
\end{verbatim}
\end{paste}
\end{patch}
(2) \[ 2x + 9x + 2x + 10x + 5 \]
\[ \text{Type: Polynomial Integer} \]

\[ \text{gcd}(p,q) \]
Roots of Polynomials

— poly.ht —

\begin{page}{PolynomialRootPage}{Roots of Polynomials}
\beginscroll
\begin{menu}
\menulink{Using a Single Root of a Polynomial}{ugxProblemSymRootOnePage}
\newline
Working with a single root of a polynomial.
\menulink{Using All Roots of a Polynomial}{ugxProblemSymRootAllPage}
\newline
Working with all the roots of a polynomial.
\menulink{Solution of a Single Polynomial Equation}{ugxProblemOnePolPage}
\newline
Finding the roots of one polynomial.
\menulink{Solution of Systems of Polynomial Equations}{ugxProblemPolSysPage}
\newline
Finding the roots of a system of polynomials.
\endmenu
\endscroll
\end{page}

3.88 poly1.ht

Polynomial

⇒ “notitle” (DistributedMultivariatePolyXmpPage) 3.24 on page 375
⇒ “notitle” (MultivariatePolyXmpPage) 3.77 on page 1011
⇒ “notitle” (UnivariatePolyXmpPage) 3.112 on page 1327
⇒ “notitle” (FactoredXmpPage) 3.43 on page 516
⇒ “notitle” (ugProblemFactorPage) 12 on page 2101
— poly1.ht —

\begin{page}{PolynomialXmpPage}{Polynomial}
\beginscroll
The domain constructor \spadtype{Polynomial}
(abbreviation: \spadtype{POLY})
provides polynomials with an arbitrary number of unspecified variables.

\xtc{
  It is used to create the default polynomial domains in Axiom.
  Here the coefficients are integers.
}{
  \spadpaste{x + 1}
}\xtc{
  Here the coefficients have type \spadtype{Float}.
}{
  \spadpaste{z - 2.3}
}\xtc{
  And here we have a polynomial in two variables with coefficients which have type \spadtype{Fraction Integer}.
}{
  \spadpaste{y**2 - z + 3/4}
}

The representation of objects of domains created by \spadtype{Polynomial} is that of recursive univariate polynomials. The term \spad{univariate} means ‘‘one variable.’’ \spad{multivariate} means ‘‘possibly more than one variable.’’
\xtc{
  This recursive structure is sometimes obvious from the display of a polynomial.
}{
  \spadpaste{y **2 + x*y + y \bound{prev}}
}\xtc{
  In this example, you see that the polynomial is stored as a polynomial in \spad{y} with coefficients that are polynomials in \spad{x} with integer coefficients.
  In fact, you really don’t need to worry about the representation unless you are working on an advanced application where it is critical.
  The polynomial types created from \spadtype{DistributedMultivariatePoly} and \spadtype{NewDistributedMultivariatePoly} (discussed in \downlink{'DistributedMultivariatePoly'}) \ignore{DistributedMultivariatePolyXmpPage} are stored and displayed in a non-recursive manner.
}{
  You see a ‘‘flat’’ display of the above polynomial by converting to one of those types.
}{
  \spadpaste{\% :: DMP([y,x],INT) \free{prev}}
}
We will demonstrate many of the polynomial facilities by using two polynomials with integer coefficients.

By default, the interpreter expands polynomial expressions, even if they are written in a factored format.

```
\spadpaste{p := (y-1)**2 * x * z \bound{p}}
```

See \downlink{`Factored'}{FactoredXmpPage} to see how to create objects in factored form directly.

```
\spadpaste{q := (y-1) * x * (z+5) \bound{q}}
```

The fully factored form can be recovered by using \spadfunFrom{factor}{Polynomial}.

```
\spadpaste{factor(q) \free{q}}
```

This is the same name used for the operation to factor integers. Such reuse of names is called \spadglos{overloading} and makes it much easier to think of solving problems in general ways. Axiom facilities for factoring polynomials created with \spadtype{Polynomial} are currently restricted to the integer and rational number coefficient cases. There are more complete facilities for factoring univariate polynomials: see \downlink{``Polynomial Factorization''}{ugProblemFactorPage} in Section 8.2\ignore{ugProblemFactor}.

The standard arithmetic operations are available for polynomials.

```
\spadpaste{p - q**2 \free{p q}}
```

The operation \spadfunFrom{gcd}{Polynomial} is used to compute the greatest common divisor of two polynomials.

```
\spadpaste{gcd(p,q) \free{p q}\bound{prev4}}
```

In the case of \spad{p} and \spad{q}, the gcd is obvious from their definitions.

We factor the gcd to show this relationship better.

```
\spadpaste{factor \% \free{prev4}}
```
The least common multiple is computed by using \spadfunFrom{lcm}{Polynomial}.
\spadpaste{lcm(p,q) \free{p q}}

Use \spadfunFrom{content}{Polynomial} to compute the greatest common divisor of the coefficients of the polynomial.
\spadpaste{content p \free{p}}

Many of the operations on polynomials require you to specify a variable. For example, \spadfunFrom{resultant}{Polynomial} requires you to give the variable in which the polynomials should be expressed.
\spadpaste{resultant(p,q,z) \free{p q}}

This computes the resultant of the values of \spad{p} and \spad{q}, considering them as polynomials in the variable \spad{z}. They do not share a root when thought of as polynomials in \spad{z}.
\spadpaste{resultant(p,q,x) \free{p q}}

This value is \spad{0} because as polynomials in \spad{x} the polynomials have a common root.
\spadpaste{resultant(p,q,x) \free{p} \free{q}}

The data type used for the variables created by \spadtype{Polynomial} is \spadtype{Symbol}.
As mentioned above, the representation used by \spadtype{Polynomial} is recursive and so there is a main variable for nonconstant polynomials.
\spadpaste{mainVariable p \free{p}}

The latter branch of the union is be used if the polynomial has no variables, that is, is a constant.
\spadpaste{mainVariable(1 :: POLY INT)}

You can also use the predicate \spadfunFrom{ground?}{Polynomial} to test whether a polynomial is in fact a member of its ground ring.
The complete list of variables actually used in a particular polynomial is returned by \spadfunFrom{variables}{Polynomial}. For constant polynomials, this list is empty.

The \spadfunFrom{degree}{Polynomial} operation returns the degree of a polynomial in a specific variable.

If you give a list of variables for the second argument, a list of the degrees in those variables is returned.

The minimum degree of a variable in a polynomial is computed using \spadfunFrom{minimumDegree}{Polynomial}.

The total degree of a polynomial is returned by \spadfunFrom{totalDegree}{Polynomial}.

It is often convenient to think of a polynomial as a leading monomial
plus the remaining terms.
}{
\spadpaste{leadingMonomial p \free{p}}
}
\xtc{The \spadfun{reductum}{Polynomial} operation returns a polynomial consisting of the sum of the monomials after the first.}
}{
\spadpaste{reductum p \free{p}}
}
\xtc{These have the obvious relationship that the original polynomial is equal to the leading monomial plus the reductum.}
}{
\spadpaste{p - leadingMonomial p - reductum p \free{p}}
}
\xtc{The value returned by \spadfun{leadingCoefficient}{Polynomial} includes the coefficient of that term. This is extracted by using \spadfun{leadingCoefficient}{Polynomial} on the original polynomial.}
}{
\spadpaste{leadingCoefficient p \free{p}}
}
\xtc{The operation \spadfun{eval}{Polynomial} is used to substitute a value for a variable in a polynomial.}
}{
\spadpaste{p \free{p}}
}
\xtc{This value may be another variable, a constant or a polynomial.}
}{
\spadpaste{eval(p,x,w) \free{p}}
}
\xtc{}
\spadpaste{eval(p,x,1) \free{p}}
\xtc{Actually, all the things being substituted are just polynomials, some more trivial than others.}
}{
\spadpaste{eval(p,x,y**2 - 1) \free{p}}
}
\xtc{Derivatives are computed using the \spadfun{D}{Polynomial} operation.}
}{

\spadpaste{D(p,x) \free{p}}
}
\xtc{The first argument is the polynomial and the second is the variable.}
}\{\spadpaste{D(p,y) \free{p}}
}
\xtc{Even if the polynomial has only one variable, you must specify it.}
}\{\spadpaste{D(p,z) \free{p}}
}

Integration of polynomials is similar and the \spadfunFrom{integrate}{Polynomial} operation is used.
\xtc{Integration requires that the coefficients support division. Consequently, Axiom converts polynomials over the integers to polynomials over the rational numbers before integrating them.}
}\{\spadpaste{integrate(p,y) \free{p}}
}

It is not possible, in general, to divide two polynomials. In our example using polynomials over the integers, the operation \spadfunFrom{monicDivide}{Polynomial} divides a polynomial by a monic polynomial (that is, a polynomial with leading coefficient equal to 1). The result is a record of the quotient and remainder of the division.
\xtc{You must specify the variable in which to express the polynomial.}
}\{\spadpaste{qr := monicDivide(p,x+1,x) \free{p}\bound{qr}}
}
\xtc{The selectors of the components of the record are \spad{quotient} and \spad{remainder}. Issue this to extract the remainder.}
}\{\spadpaste{qr.remainder \free{qr}}
}
\xtc{Now that we can extract the components, we can demonstrate the relationship among them and the arguments to our original expression \spad{qr := monicDivide(p,x+1,x)}.}
}\{\spadpaste{p - ((x+1) * qr.quotient + qr.remainder) \free{p}\free{qr}}
}
If the `\spadop{\text{Fraction}}` operator is used with polynomials, a fraction object is created. In this example, the result is an object of type `\spadtype{\text{Fraction Polynomial Integer}}`.
\spadpaste{\frac{p}{q} \free{p}\free{q}}

If you use rational numbers as polynomial coefficients, the resulting object is of type `\spadtype{\text{Polynomial Fraction Integer}}`.
\spadpaste{\left(\frac{2}{3}\right) \times x^2 - y + \frac{4}{5} \\begin{eqnarray*} \text{prev1} \end{eqnarray*}}

This can be converted to a fraction of polynomials and back again, if required.
\spadpaste{\% :: \text{FRAC POLY INT} \\text{prev1} \\text{bound{prev2}}} \begin{eqnarray*} \text{prev1} \end{eqnarray*}
\spadpaste{\% :: \text{POLY FRAC INT} \\text{prev2} \\text{bound{prev3}}} \begin{eqnarray*} \text{prev2} \end{eqnarray*}

To convert the coefficients to floating point, map the `\spadfun{\text{numeric}}` operation on the coefficients of the polynomial.
\spadpaste{\text{map(numeric,\%)} \free{prev3}}

For more information on related topics, see `UnivariatePolynomial`{\UnivariatePolyXmpPage}, `MultivariatePolynomial`{\MultivariatePolyXmpPage}, and `DistributedMultivariatePoly`{\DistributedMultivariatePolyXmpPage}. You can also issue the system command 
\spadcmd{\text{)show Polynomial}} to display the full list of operations defined by `\spadtype{\text{Polynomial}}`.
\spadcommand{x + 1}

(1) \( x + 1 \)

\indentrel{-3}

Type: Polynomial Integer

\spadcommand{z - 2.3}

(2) \( z - 2.3 \)

\indentrel{-3}

Type: Polynomial Float

\spadcommand{y**2 - z + 3/4}

(3) \( - z + y + \frac{3}{4} \)

\indentrel{-3}

Type: Polynomial Fraction Integer
\begin{verbatim}
2
(4) y + (x + 1)y
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2
(5) y + y x + y
Type: DistributedMultivariatePolynomial([y,x],Integer)
\end{verbatim}

\begin{verbatim}
2
(6) (x y - 2x y + x)z
Type: Polynomial Integer
\end{verbatim}
\begin{paste}{PolynomialXmpPageFull7}{PolynomialXmpPageEmpty7}
\spadcommand{q := (y-1) * x * (z+5)\bound{q}}
\begin{verbatim}
(7) (x y - x)z + 5x y - 5x
Type: Polynomial Integer
\end{verbatim}
\end{paste}

\begin{patch}{PolynomialXmpPageEmpty7}
\begin{patch}{PolynomialXmpPagePatch7}
\begin{paste}{PolynomialXmpPageFull8}{PolynomialXmpPageEmpty8}
\spadcommand{factor(q)\free{q}}
\begin{verbatim}
(8) x(y - 1)(z + 5)
Type: Factored Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}
\end{patch}

\begin{patch}{PolynomialXmpPagePatch8}
\begin{paste}{PolynomialXmpPageFull9}{PolynomialXmpPageEmpty9}
\spadcommand{p - q**2\free{p q}}
\begin{verbatim}
(9)
2 2 2 2
(- x y + 2x y - x)z
+ 2 2 2 2
((- 10x + x)y + (20x - 2x)y - 10x + x)z - 25x y
+ 2 2
50x y - 25x
Type: Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}
\end{patch}
\begin{paste}{PolynomialXmpPageEmpty9}{PolynomialXmpPagePatch9}
\tab{5}\spadcommand{p - q**2\text{free}[p\ q ]}
\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPagePatch10}
\begin{paste}{PolynomialXmpPageFull10}{PolynomialXmpPageEmpty10}
\tab{5}\spadcommand{gcd(p,q)\text{free}[p\ q ]\text{bound}[prev4]}
\indentrel{3}\begin{verbatim}
(10) x y - x
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPageEmpty10}
\begin{paste}{PolynomialXmpPageEmpty10}{PolynomialXmpPagePatch10}
\tab{5}\spadcommand{gcd(p,q)\text{free}[p\ q ]\text{bound}[prev4]}
\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPagePatch11}
\begin{paste}{PolynomialXmpPageFull11}{PolynomialXmpPageEmpty11}
\tab{5}\spadcommand{factor\text{free}[prev4]}
\indentrel{3}\begin{verbatim}
(11) x(y - 1)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPageEmpty11}
\begin{paste}{PolynomialXmpPageEmpty11}{PolynomialXmpPagePatch11}
\tab{5}\spadcommand{factor\text{free}[prev4]}
\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPagePatch12}
\begin{paste}{PolynomialXmpPageFull12}{PolynomialXmpPageEmpty12}
\tab{5}\spadcommand{lcm(p,q)\text{free}[p\ q ]}
\indentrel{3}\begin{verbatim}
(12) (x y - 2x y + x)z + (5x y - 10x y + 5x)z
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{PolynomialXmpPageEmpty12}
\begin{paste}{PolynomialXmpPageEmpty12}{PolynomialXmpPagePatch12}
\end{paste}
\end{patch}
\spadcommand{lcm(p,q)\free{p q}}

\spadcommand{content p\free{p}}

\begin{verbatim}
(13) 1
Type: PositiveInteger
\end{verbatim}

\spadcommand{resultant(p,q,z)\free{p q}}

\begin{verbatim}
(14) 5x^2 y - 15x^2 y + 15x^2 y - 5x
Type: Polynomial Integer
\end{verbatim}

\spadcommand{resultant(p,q,x)\free{p}\free{q}}

\begin{verbatim}
(15) 0
Type: Polynomial Integer
\end{verbatim}
\text{resultant}(p, q, x) \qquad \text{ground?}(p)

\begin{verbatim}
(16) z
Type: Union(Symbol,...)
\end{verbatim}

\begin{verbatim}
(17) "failed"
Type: Union("failed",...)
\end{verbatim}

\begin{verbatim}
(18) false
Type: Boolean
\end{verbatim}
\begin{patch}{PolynomialXmpPagePatch19}
\begin{paste}{PolynomialXmpPageFull19}{PolynomialXmpPageEmpty19}
\pastebutton{PolynomialXmpPageFull19}\{hidepaste\}
\tab{5}\spadcommand{ground?(1 :: POLY INT)}
\indentrel{3}\begin{verbatim}
(19) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty19}
\begin{paste}{PolynomialXmpPageEmpty19}{PolynomialXmpPagePatch19}
\pastebutton{PolynomialXmpPageEmpty19}\{showpaste\}
\tab{5}\spadcommand{ground?(1 :: POLY INT)}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch20}
\begin{paste}{PolynomialXmpPageFull20}{PolynomialXmpPageEmpty20}
\pastebutton{PolynomialXmpPageFull20}\{hidepaste\}
\tab{5}\spadcommand{variables p}\free{p}
\indentrel{3}\begin{verbatim}
(20) [z,y,x]
Type: List Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty20}
\begin{paste}{PolynomialXmpPageEmpty20}{PolynomialXmpPagePatch20}
\pastebutton{PolynomialXmpPageEmpty20}\{showpaste\}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch21}
\begin{paste}{PolynomialXmpPageFull21}{PolynomialXmpPageEmpty21}
\pastebutton{PolynomialXmpPageFull21}\{hidepaste\}
\tab{5}\spadcommand{degree(p,x)}\free{p}
\indentrel{3}\begin{verbatim}
(21) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty21}
\begin{paste}{PolynomialXmpPageEmpty21}{PolynomialXmpPagePatch21}
\pastebutton{PolynomialXmpPageEmpty21}\{showpaste\}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch22}
\begin{verbatim}
(22) 2
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(23) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(24) [1,2,1]
Type: List NonNegativeInteger
\end{verbatim}
\begin{verbatim}
(25) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(26) 4
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(27) x y z
Type: Polynomial Integer
\end{verbatim}
\indentrel{3}\begin{verbatim}
(28) (- 2x y + x)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch29}
\begin{paste}{PolynomialXmpPageFull29}{PolynomialXmpPageEmpty29}
\pastebutton{PolynomialXmpPageFull29}{\hidepaste}
\tab{5}\spadcommand{p - leadingMonomial p - reductum p\free{p} }
\indentrel{3}\begin{verbatim}
(29) 0
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch30}
\begin{paste}{PolynomialXmpPageFull30}{PolynomialXmpPageEmpty30}
\pastebutton{PolynomialXmpPageFull30}{\hidepaste}
\tab{5}\spadcommand{leadingCoefficient p\free{p} }
\indentrel{3}\begin{verbatim}
(30) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(31) \((x \, y - 2x \, y + x)z\)  
Type: Polynomial Integer

\(\end{verbatim}\)
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch32}
\begin{paste}{PolynomialXmpPageFull32}{PolynomialXmpPageEmpty32}
\pastebutton{PolynomialXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{eval(p,x,w) free p}
\indentrel{3}
\begin{verbatim}
2
(32) \((w \, y - 2w \, y + w)z\)  
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch33}
\begin{paste}{PolynomialXmpPageFull33}{PolynomialXmpPageEmpty33}
\pastebutton{PolynomialXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{eval(p,x,1) free p}
\indentrel{3}
\begin{verbatim}
2
(33) \((y - 2y + 1)z\)  
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch34}
\begin{paste}{PolynomialXmpPageFull34}{PolynomialXmpPageEmpty34}
\pastebutton{PolynomialXmpPageFull34}{\hidepaste}
\tab{5}\spadcommand{eval(p,x,y**2 - 1) free p}
\indentrel{3}\begin{verbatim}\end{verbatim}
\begin{verbatim}
4 3
(34) (y - 2y + 2y - 1)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch34}
\begin{paste}{PolynomialXmpPageFull34}{PolynomialXmpPageEmpty34}
\pastebutton{PolynomialXmpPageFull34}{\hidepaste}
\tab{5}\spadcommand{eval(p,x,y**2 - 1)}\free{p}
\indentrel{3}\begin{verbatim}
2
(35) (y - 2y + 1)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch35}
\begin{paste}{PolynomialXmpPageFull35}{PolynomialXmpPageEmpty35}
\pastebutton{PolynomialXmpPageFull35}{\hidepaste}
\tab{5}\spadcommand{D(p,x)}\free{p}
\indentrel{3}\begin{verbatim}
2
(36) (2x y - 2x)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch36}
\begin{paste}{PolynomialXmpPageFull36}{PolynomialXmpPageEmpty36}
\pastebutton{PolynomialXmpPageFull36}{\hidepaste}
\tab{5}\spadcommand{D(p,y)}\free{p}
\indentrel{3}\begin{verbatim}
(37) (2x y - 2x)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch37}
\begin{paste}{PolynomialXmpPageFull37}{PolynomialXmpPageEmpty37}
\pastebutton{PolynomialXmpPageFull37}{\hidepaste}
\tab{5}\spadcommand{D(p,z)}\free{p}
\indentrel{3}\begin{verbatim}

3.88. POLY1.HT

\begin{verbatim}
4 3
(34) (y - 2y + 2y - 1)z
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
2

(37) \(x^2 y - 2x y + x\)

Type: Polynomial Integer

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch37}
\begin{paste}{PolynomialXmpPageFull37}{PolynomialXmpPageEmpty37}
\pastebutton{PolynomialXmpPageFull37}{\showpaste}
\indentrel{3}\begin{verbatim}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty37}
\begin{paste}{PolynomialXmpPageEmpty37}{PolynomialXmpPagePatch37}
\pastebutton{PolynomialXmpPageEmpty37}{\showpaste}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch38}
\begin{paste}{PolynomialXmpPageFull38}{PolynomialXmpPageEmpty38}
\pastebutton{PolynomialXmpPageFull38}{\hidepaste}
\indentrel{3}\begin{verbatim}
1 3 2

(38) \((x^2 y - x^2 y + x y)z\)

Type: Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty38}
\begin{paste}{PolynomialXmpPageEmpty38}{PolynomialXmpPagePatch38}
\pastebutton{PolynomialXmpPageEmpty38}{\showpaste}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch39}
\begin{paste}{PolynomialXmpPageFull39}{PolynomialXmpPageEmpty39}
\pastebutton{PolynomialXmpPageFull39}{\hidepaste}
\indentrel{3}\begin{verbatim}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPageEmpty39}
\begin{paste}{PolynomialXmpPageEmpty39}{PolynomialXmpPagePatch39}
\pastebutton{PolynomialXmpPageEmpty39}{\showpaste}
\end{paste}\end{patch}

\begin{patch}{PolynomialXmpPagePatch40}
\begin{paste}{PolynomialXmpPageFull40}{PolynomialXmpPageEmpty40}
\pastebutton{PolynomialXmpPageFull40}{\hidepaste}
\end{paste}\end{patch}
\begin{verbatim}
2
(40) (- y + 2y - 1)z
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(41) 0
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(y - 1)z
(42) z + 5
Type: Fraction Polynomial Integer
\end{verbatim}
\begin{paste}{PolynomialXmpPageFull43}{PolynomialXmpPageEmpty43}
\pastebutton{PolynomialXmpPageFull43}{\hidepaste}
\tab{5}\spadcommand{(2/3) * x**2 - y + 4/5}\bound{prev1}
\indentrel{3}\begin{verbatim}
2 2 4
(43) - y + x +
3 5
Type: Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{PolynomialXmpPageEmpty43}
\begin{paste}{PolynomialXmpPageEmpty43}{PolynomialXmpPagePatch43}
\pastebutton{PolynomialXmpPageEmpty43}{\showpaste}
\tab{5}\spadcommand{(2/3) * x**2 - y + 4/5}\bound{prev1}
\end{paste}\end{patch}
\begin{patch}{PolynomialXmpPagePatch44}
\begin{paste}{PolynomialXmpPageFull44}{PolynomialXmpPageEmpty44}
\pastebutton{PolynomialXmpPageFull44}{\hidepaste}
\tab{5}\spadcommand(% :: FRAC POLY INT}\free{prev1}\bound{prev2}
\indentrel{3}\begin{verbatim}
2
(44)
15
- 15y + 10x + 12
Type: Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{PolynomialXmpPageEmpty44}
\begin{paste}{PolynomialXmpPageEmpty44}{PolynomialXmpPagePatch44}
\pastebutton{PolynomialXmpPageEmpty44}{\showpaste}
\end{paste}\end{patch}
\begin{patch}{PolynomialXmpPagePatch45}
\begin{paste}{PolynomialXmpPageFull45}{PolynomialXmpPageEmpty45}
\pastebutton{PolynomialXmpPageFull45}{\hidepaste}
\tab{5}\spadcommand(% :: POLY FRAC INT}\free{prev2}\bound{prev3}
\indentrel{3}\begin{verbatim}
2 2 4
(45) - y + x +
3 5
Type: Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{PolynomialXmpPageEmpty45}
\begin{paste}{PolynomialXmpPageEmpty45}{PolynomialXmpPagePatch45}
\end{patch}\end{patch}
\spadcommand{\% :: POLY FRAC INT\free{prev2}\bound{prev3}}

\spadcommand{map(numeric,\%)}

\verbatim
2
(46) - 1.0 y + 0.6666666666666666 x + 0.8
Type: Polynomial Float

\verbatim
3.89 quat.ht

Quaternion

The domain constructor \texttt{Quaternion} implements quaternions over commutative rings. For information on related topics, see \texttt{Complex} and \texttt{Octonion}. You can also issue the system command \texttt{)show Quaternion} to display the full list of operations defined by \texttt{Quaternion}.

The basic operation for creating quaternions is \texttt{quatern}. This is a quaternion over the rational numbers.
\begin{verbatim}
\begin{axiom}
q := quatern(2/11,-8,3/4,1)
\end{axiom}
\end{verbatim}

The four arguments are the real part, the i imaginary part, the j imaginary part, and the k imaginary part, respectively.
\begin{verbatim}
\begin{axiom}
[real q, imagI q, imagJ q, imagK q]
\end{axiom}
\end{verbatim}

Because \(q\) is over the rationals (and nonzero), you can invert it.
\begin{verbatim}
\begin{axiom}
inv q
\end{axiom}
\end{verbatim}

The usual arithmetic (ring) operations are available
\begin{verbatim}
\begin{axiom}
q**6
r := quatern(-2,3,23/9,-89); q + r
\end{axiom}
\end{verbatim}
The four arguments are the real part, the \spad{i} imaginary part, the \spad{j} imaginary part, and the \spad{k} imaginary part, respectively.
\spadpaste{[real q, imagI q, imagJ q, imagK q] \free{q}}
Because \spad{q} is over the rationals (and nonzero), you can invert it.
\spadpaste{inv q \free{q}}
The usual arithmetic (ring) operations are available
\spadpaste{q**6 \free{q}}
\spadpaste{r := quatern(-2,3,23/9,-89); q + r \bound{r}\free{q}}
In general, multiplication is not commutative.
\spadpaste{q * r - r * q\free{q r}}
There are no predefined constants for the imaginary \spad{i, j}, and \spad{k} parts, but you can easily define them.
\spadpaste{i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1) \bound{i j k}}
These satisfy the normal identities.
\spadpaste{[i*i, j*j, k*k, i*j, j*k, k*i, q*i] \free{i j k q}}
The norm is the quaternion times its conjugate.
\spadpaste{norm q \free{q}}
\spadpaste{conjugate q \free{q} \bound{prev}}
\begin{patch}{QuaternionXmpPagePatch1}
\begin{paste}{QuaternionXmpPageFull1}{QuaternionXmpPageEmpty1}
\pastebutton{QuaternionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{q := quatern(2/11, -8, 3/4, 1)\bound{q}}
\indentrel{3}\begin{verbatim}
2 3
(1) - 8i + j + k
11 4
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{QuaternionXmpPageEmpty1}
\begin{paste}{QuaternionXmpPageEmpty1}{QuaternionXmpPagePatch2}
\pastebutton{QuaternionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{q := quatern(2/11, -8, 3/4, 1)\bound{q}}
\end{paste}\end{patch}

\begin{patch}{QuaternionXmpPagePatch2}
\begin{paste}{QuaternionXmpPageFull2}{QuaternionXmpPageEmpty2}
\pastebutton{QuaternionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{[\real q, \imagI q, \imagJ q, \imagK q] \free{q}}
\indentrel{3}\begin{verbatim}
2 3
(2) [- 8, 1]
11 4
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{QuaternionXmpPageEmpty2}
\begin{paste}{QuaternionXmpPageEmpty2}{QuaternionXmpPagePatch3}
\pastebutton{QuaternionXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{[\real q, \imagI q, \imagJ q, \imagK q] \free{q}}
\end{paste}\end{patch}

\begin{patch}{QuaternionXmpPagePatch3}
\begin{paste}{QuaternionXmpPageFull3}{QuaternionXmpPageEmpty3}
\pastebutton{QuaternionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{\inv q \free{q}}
\indentrel{3}\begin{verbatim}
352 15488 484 1936
(3) + i - j - k
126993 126993 42331 126993
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Type: Quaternion Fraction Integer

\begin{verbatim}
(4)
  2029490709319345  48251690851  144755072553
  - i + j
  7256313856  1288408  41229056
+ 48251690851
k
  10307264
\end{verbatim}

Type: Quaternion Fraction Integer

\end{verbatim}

\end{patch}

\begin{patch}\{QuaternionXmpPagePatch4\}
\begin{verbatim}
(5) 20  119
 - - 5i + j - 88k
  11  36
\end{verbatim}

Type: Quaternion Fraction Integer

\end{verbatim}

\end{patch}

\begin{patch}\{QuaternionXmpPagePatch5\}
\begin{verbatim}
(5) -5i + j - 88k
11  36
\end{verbatim}

Type: Quaternion Fraction Integer

\end{verbatim}

\end{patch}

\begin{patch}\{QuaternionXmpPagePatch5\}
\begin{verbatim}
(5) -5i + j - 88k
11  36
\end{verbatim}

Type: Quaternion Fraction Integer

\end{verbatim}

\end{patch}

\begin{patch}\{QuaternionXmpPagePatch5\}
\begin{verbatim}
(5) -5i + j - 88k
11  36
\end{verbatim}

Type: Quaternion Fraction Integer

\end{verbatim}

\end{patch}
\begin{patch}\{QuaternionXmpPagePatch6\}
\begin{paste}\{QuaternionXmpPageFull6\}\{QuaternionXmpPageEmpty6\}
\pastebutton{QuaternionXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{q * r - r * q\free{q r}}
\indentrel{3}\begin{verbatim}
2495 817
(6) - i - 1418j - k
18 18
Type: Quaternion Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{QuaternionXmpPagePatch7\}
\begin{paste}\{QuaternionXmpPageFull7\}\{QuaternionXmpPageEmpty7\}
\pastebutton{QuaternionXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1)\bound{i j k}}
\indentrel{3}\begin{verbatim}
(7) k
Type: Quaternion Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{QuaternionXmpPagePatch8\}
\begin{paste}\{QuaternionXmpPageFull8\}\{QuaternionXmpPageEmpty8\}
\pastebutton{QuaternionXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{[i*1, j*j, k*k, i*j, j*k, k*1, q*i]\free{i j k q}}
\indentrel{3}\begin{verbatim}
2 3
(8) [- 1, - 1, - 1,k, i,j,8 + i + j - k]
11 4
Type: List Quaternion Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{QuaternionXmpPagePatch9}
\begin{paste}{QuaternionXmpPageFull9}{QuaternionXmpPageEmpty9}
\pastebutton{QuaternionXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{\texttt{norm q} \free{q}}
\indentrel{3}\begin{verbatim}
126993
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{QuaternionXmpPageEmpty9}
\begin{paste}{QuaternionXmpPageEmpty9}{QuaternionXmpPagePatch9}
\pastebutton{QuaternionXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{\texttt{norm q} \free{q}}
\end{paste}
\end{patch}

\begin{patch}{QuaternionXmpPagePatch10}
\begin{paste}{QuaternionXmpPageFull10}{QuaternionXmpPageEmpty10}
\pastebutton{QuaternionXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{\texttt{conjugate q} \free{q} \bound{prev}}
\indentrel{3}\begin{verbatim}
2 3
(10) + 8i - j - k
11 4
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{QuaternionXmpPageEmpty10}
\begin{paste}{QuaternionXmpPageEmpty10}{QuaternionXmpPagePatch10}
\pastebutton{QuaternionXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{\texttt{conjugate q} \free{q} \bound{prev}}
\end{paste}
\end{patch}

\begin{patch}{QuaternionXmpPagePatch11}
\begin{paste}{QuaternionXmpPageFull11}{QuaternionXmpPageEmpty11}
\pastebutton{QuaternionXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{\texttt{q * \%} \free{q \ prev}}
\indentrel{3}\begin{verbatim}
126993
(11)
1936
\end{verbatim}
\end{paste}
\end{patch}

\end{verbatim}
\end{patch}
It is possible to expand numbers in general bases. Here we expand 111 in base 5. This means $10*2+10*1+10*0 = 4*5*2+2*5*1+5*0$.

| radix.ht |

It is possible to expand numbers in general bases. Here we expand 111 in base 5. This means $10*2+10*1+10*0 = 4*5*2+2*5*1+5*0$.

\begin{scroll}
It is possible to expand numbers in general bases. Here we expand 111 in base 5. This means $10*2+10*1+10*0 = 4*5*2+2*5*1+5*0$.
\end{scroll}

For bases from 11 to 36 the letters A through Z are used.

For bases greater than 36, the rags are separated by blanks.

The \texttt{RadixExpansion} type provides operations to obtain the individual rags. Here is a rational number in base 8.
Here we expand \spad{111} in base \spad{5}.
This means
\[
10^2+10^1+10^0 = 4 \cdot 5^2 + 2 \cdot 5^1 + 5^0.
\]
\spad{10**2+10**1+10**0 = 4*5**2+2*5**1+5**0.}
\spadpaste{111::RadixExpansion(5)}

You can expand fractions to form repeating expansions.
\spadpaste{(5/24)::RadixExpansion(2)}
\spadpaste{(5/24)::RadixExpansion(3)}
\spadpaste{(5/24)::RadixExpansion(8)}
\spadpaste{(5/24)::RadixExpansion(10)}

For bases from 11 to 36 the letters A through Z are used.
\spadpaste{(5/24)::RadixExpansion(12)}
\spadpaste{(5/24)::RadixExpansion(16)}
\spadpaste{(5/24)::RadixExpansion(36)}

For bases greater than 36, the ragits are separated by blanks.
\spadpaste{(5/24)::RadixExpansion(38)}

The \spadtype{RadixExpansion} type provides operations to obtain the individual ragits.
Here is a rational number in base \spad{8}.
\spadpaste{a := (76543/210)::RadixExpansion(8) \bound{a}}
The operation \spadfunFrom{wholeRagits}{RadixExpansion} returns a list of the ragits for the integral part of the number.

\spadpaste{w := wholeRagits a \free{a}\bound{w}}

The operations \spadfunFrom{prefixRagits}{RadixExpansion} and \spadfunFrom{cycleRagits}{RadixExpansion} return lists of the initial and repeating ragits in the fractional part of the number.

\spadpaste{f0 := prefixRagits a \free{a}\bound{f0}}

\spadpaste{f1 := cycleRagits a \free{a}\bound{f1}}

You can construct any radix expansion by giving the whole, prefix and cycle parts. The declaration is necessary to let Axiom know the base of the ragits.

\spadpaste{u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1) \free{w f0 f1}\bound{u}}

If there is no repeating part, then the list \spad{[0]} should be used.

\spadpaste{v: RadixExpansion(12) := fractRadix([1,2,3,11], [0]) \bound{v}}

If you are not interested in the repeating nature of the expansion, an infinite stream of ragits can be obtained using \spadfunFrom{fractRagits}{RadixExpansion}.

\spadpaste{fractRagits(u) \free{u}}

Of course, it's possible to recover the fraction representation:

\spadpaste{a :: Fraction(Integer) \free{a}}

\showBlurb{RadixExpansion}

More examples of expansions are available in \downlink{'DecimalExpansion'}{DecimalExpansionXmpPage}
3.9.0. RADIX.HT

\downlink{'BinaryExpansion'}{BinaryExpansionXmpPage}
\ignore{BinaryExpansion}, and
\downlink{'HexadecimalExpansion'}{HexExpansionXmpPage}
\ignore{HexadecimalExpansion}.
\endscroll
\autobuttons
\end{page}
\begin{patch}{RadixExpansionXmpPagePatch1}
\begin{paste}{RadixExpansionXmpPageFull1}{RadixExpansionXmpPageEmpty1}
\pastebutton{RadixExpansionXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{111::RadixExpansion(5)}
\indentrel{3}\begin{verbatim}
(1) 421
Type: RadixExpansion 5
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{RadixExpansionXmpPageEmpty1}
\begin{paste}{RadixExpansionXmpPageEmpty1}{RadixExpansionXmpPagePatch1}
\pastebutton{RadixExpansionXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{111::RadixExpansion(5)}
\end{paste}
\end{patch}
\begin{patch}{RadixExpansionXmpPagePatch2}
\begin{paste}{RadixExpansionXmpPageFull2}{RadixExpansionXmpPageEmpty2}
\pastebutton{RadixExpansionXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{5/24::RadixExpansion(2)}
\indentrel{3}\begin{verbatim}
(2) 0.00110
Type: RadixExpansion 2
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{RadixExpansionXmpPageEmpty2}
\begin{paste}{RadixExpansionXmpPageEmpty2}{RadixExpansionXmpPagePatch2}
\pastebutton{RadixExpansionXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{5/24::RadixExpansion(2)}
\end{paste}
\end{patch}
\begin{patch}{RadixExpansionXmpPagePatch3}
\begin{paste}{RadixExpansionXmpPageFull3}{RadixExpansionXmpPageEmpty3}
\pastebutton{RadixExpansionXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{5/24::RadixExpansion(3)}
\indentrel{3}\begin{verbatim}
(3) 0.012
Type: RadixExpansion 3
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\(\frac{5}{24} \) as a RadixExpansion with different radices:

- **RadixExpansion with radix 3:**
  \[
  \frac{5}{24} \approx 0.152 \quad \text{Type: RadixExpansion 8}
  \]
- **RadixExpansion with radix 8:**
  \[
  \frac{5}{24} \approx 0.2083 \quad \text{Type: RadixExpansion 10}
  \]
- **RadixExpansion with radix 12:**
  \[
  \frac{5}{24} \approx 0.26 \quad \text{Type: RadixExpansion 12}
  \]
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\begin{paste}\begin{verbatim}
(8) 0.71
Type: RadixExpansion 36
\end{verbatim}\end{paste}\end{patch}

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\begin{paste}\begin{verbatim}
(9) 0.7 34 31 25 12
Type: RadixExpansion 38
\end{verbatim}\end{paste}\end{patch}
\begin{verbatim}
(5/24)::RadixExpansion(38)
\end{verbatim}

\begin{verbatim}
(10)  554.37307
Type: RadixExpansion 8
\end{verbatim}

\begin{verbatim}
[5,5,4]
Type: List Integer
\end{verbatim}

\begin{verbatim}
[3]
Type: List Integer
\end{verbatim}
\begin{spadcommand}
\text{f0 := prefixRagits a}\text{\free{a \bound{f0}}}
\end{spadcommand}

\begin{spadcommand}
\text{f1 := cycleRagits a}\text{\free{a \bound{f1}}}
\end{spadcommand}

\begin{verbatim}
[13] 7,3,0,7
\end{verbatim}

\begin{spadcommand}
\text{\(u:RadixExpansion(8) := wholeRadix(w)+fractRadix(f0,f1)\free{w f0 f1}\bound{u}}
\end{spadcommand}

\begin{verbatim}
554.37307
\end{verbatim}

\begin{spadcommand}
\text{v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])\bound{v}}
\end{spadcommand}

\begin{verbatim}
0.123B0
\end{verbatim}
\begin{patch}\{RadixExpansionXmpPageEmpty15\}
\begin{paste}\{RadixExpansionXmpPageEmpty15\}\{RadixExpansionXmpPagePatch15\}
\pastebutton{RadixExpansionXmpPageEmpty15}\{\showpaste\}
\tab{5}\spadcommand{v: \text{RadixExpansion}(12) := \text{fractRadix}([1,2,3,11], [0])}\bound{v}
\end{paste}\end{patch}

\begin{patch}\{RadixExpansionXmpPagePatch16\}
\begin{paste}\{RadixExpansionXmpPageFull16\}\{RadixExpansionXmpPageEmpty16\}
\pastebutton{RadixExpansionXmpPageFull16}\{\hidepaste\}
\tab{5}\spadcommand{\text{fractRagits}(u)}\free{u}
\indentrel{3}\begin{verbatim}
    ______
(16) [3,7,3,0,7,7]
Type: Stream Integer
\end{verbatim}
\end{patch}\end{patch}

\begin{patch}\{RadixExpansionXmpPagePatch17\}
\begin{paste}\{RadixExpansionXmpPageFull17\}\{RadixExpansionXmpPageEmpty17\}
\pastebutton{RadixExpansionXmpPageFull17}\{\hidepaste\}
\tab{5}\spadcommand{a :: \text{Fraction}(Integer)}\free{a}
\indentrel{3}\begin{verbatim}
    76543
(17) 210
Type: Fraction Integer
\end{verbatim}
\end{patch}\end{patch}
3.91 reclos.ht

RealClosure

--- reclos.ht ---

\begin{page}{RealClosureXmpPage}{RealClosure}
\beginscroll

The Real Closure 1.0 package provided by Renaud Rioboo (Renaud.Rioboo@lip6.fr) consists of different packages, categories and domains:

\begin{items}
\item The package \texttt{RealPolynomialUtilitiesPackage} which needs a \texttt{Field} \texttt{F} and a \texttt{UnivariatePolynomialCategory} domain with coefficients in \texttt{F}. It computes some simple functions such as Sturm and Sylvester sequences (\texttt{sturmSequence}\{RealPolynomialUtilitiesPackage\}, \texttt{sylvesterSequence}\{RealPolynomialUtilitiesPackage\}).

\item The category \texttt{RealRootCharacterizationCategory} provides abstract functions to work with "real roots" of univariate polynomials. These resemble variables with some functionality needed to compute important operations.

\item The category \texttt{RealClosedField} provides common operations available over real closed fields. These include finding all the roots of a univariate polynomial, taking square (and higher) roots, ...

\item The domain \texttt{RightOpenIntervalRootCharacterization} is the main code that provides the functionality of \texttt{RealRootCharacterizationCategory} for the case of archimedean fields. Abstract roots are encoded with a left closed right open interval containing the root together with a defining polynomial for the root.

\item The \texttt{RealClosure} domain is the end-user code. It provides usual arithmetic with real algebraic numbers, along with the functionality of a real closed field. It also provides functions to approximate a real algebraic number by an element of the base field. This approximation may either be absolute (\texttt{approximate}\{RealClosure\}) or relative (\texttt{relativeApprox}\{RealClosure\}).
\end{items}
\endscroll\end{page}
Since real algebraic expressions are stored as depending on "real roots" which are managed like variables, there is an ordering on these. This ordering is dynamical in the sense that any new algebraic takes precedence over older ones. In particular every creation function raises a new "real root". This has the effect that when you type something like \( \texttt{sqrt(2) + sqrt(2)} \) you have two new variables which happen to be equal. To avoid this name the expression such as in \( \texttt{s2 := sqrt(2) ; s2 + s2} \)

Also note that computing times depend strongly on the ordering you implicitly provide. Please provide algebraics in the order which seems most natural to you.

This packages uses algorithms which are published in [1] and [2] which are based on field arithmetics, in particular for polynomial gcd related algorithms. This can be quite slow for high degree polynomials and subresultants methods usually work best. Beta versions of the package try to use these techniques in a better way and work significantly faster. These are mostly based on unpublished algorithms and cannot be distributed. Please contact the author if you have a particular problem to solve or want to use these versions.

Be aware that approximations behave as post-processing and that all computations are done exactly. They can thus be quite time consuming when depending on several "real roots".


   In Mathematics and Computers in Simulation Volume 42, Issue 4-6, November 1996.

We shall work with the real closure of the ordered field of rational numbers.

\( \texttt{Ran := RECLOS(FRAC INT)} \)
Some simple signs for square roots, these correspond to an extension of degree 16 of the rational numbers. Examples provided by J. Abbot.

\spadpaste{\texttt{fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d) \free{Ran} \bound{fs}}} 

These produce values very close to zero.

\spadpaste{\texttt{squareDiff1 := fourSquares(73,548,60,586) \free{fs} \bound{sd1}}} 

\spadpaste{\texttt{recip(squareDiff1)\free{sd1}}} 

\spadpaste{\texttt{sign(squareDiff1)\free{sd1}}} 

\spadpaste{\texttt{squareDiff2 := fourSquares(165,778,86,990) \free{fs} \bound{sd2}}} 

\spadpaste{\texttt{recip(squareDiff2)\free{sd2}}} 

\spadpaste{\texttt{sign(squareDiff2)\free{sd2}}} 

\spadpaste{\texttt{squareDiff3 := fourSquares(217,708,226,692) \free{fs} \bound{sd3}}} 

\spadpaste{\texttt{recip(squareDiff3)\free{sd3}}} 

\spadpaste{\texttt{sign(squareDiff3)\free{sd3}}}
\spadpaste{squareDiff4 := fourSquares(155,836,162,820)
\free{fs}\bound{sd4}}
}\xtc{}
}\spadpaste{recip(squareDiff4)\free{sd4}}
}\xtc{}
}\spadpaste{sign(squareDiff4)\free{sd4}}
}\xtc{}
}\spadpaste{squareDiff5 := fourSquares(591,772,552,818)
\free{fs}\bound{sd5}}
}\xtc{}
}\spadpaste{recip(squareDiff5)\free{sd5}}
}\xtc{}
}\spadpaste{sign(squareDiff5)\free{sd5}}
}\xtc{}
}\spadpaste{squareDiff6 := fourSquares(434,1053,412,1088)
\free{fs}\bound{sd6}}
}\xtc{}
}\spadpaste{recip(squareDiff6)\free{sd6}}
}\xtc{}
}\spadpaste{sign(squareDiff6)\free{sd6}}
}\xtc{}
]\spadpaste{squareDiff7 := fourSquares(514,1049,446,1152)
\free{fs}\bound{sd7}}
}\xtc{}
}\spadpaste{recip(squareDiff7)\free{sd7}}
}\xtc{}
]\spadpaste{sign(squareDiff7)\free{sd7}}
\texttt{\{squareDiff8 := fourSquares(190,1751,208,1698)\}}
\texttt{\{\}}
\texttt{\{recip(squareDiff8)\}}
\texttt{\{\}}
\texttt{\{sign(squareDiff8)\}}
\texttt{\{\}}
\texttt{\{This should give three digits of precision\}}
\texttt{\{relativeApprox(squareDiff8,10**(-3)):Float\}}
\texttt{\{\}}
\texttt{\{The sum of these 4 roots is 0\}}
\texttt{\{\}}
\texttt{\{allRootsOf((x**2-2)**2-2)\}}
\texttt{\{\}}
\texttt{\{removeDuplicates map(mainDefiningPolynomial,l)\}}
\texttt{\{\}}
\texttt{\{map(mainCharacterization,l)\}}
\texttt{\{\}}
\texttt{\{[reduce(+,l),reduce(*,l)-2]\}}
\texttt{\{\}}
\texttt{\{\}}
\texttt{\{(s2, s5, s10) := (sqrt(2)$Ran, sqrt(5)$Ran, sqrt(10)$Ran)\}}
\texttt{\{\}}
\texttt{\{eq1:=sqrt(s10+3)*sqrt(s5+2) - sqrt(s10-3)*sqrt(s5-2) = sqrt(10*s2+10)\}}
\[eq1::\text{Boolean}\]
\(eq2:=\sqrt{s5+2}\cdot\sqrt{s2+1} - \sqrt{s5-2}\cdot\sqrt{s2-1} = \sqrt{2s10+2}\)
\(eq2::\text{Boolean}\)

Some more examples from J. M. Arnaudies

\(s3 := \sqrt{3}\)
\(s7 := \sqrt{7}\)
\(e1 := \sqrt{2s7-3s3}\)
\(e2 := \sqrt{2s7+3s3}\)
\(e2-e1-s3\)

A quartic polynomial

\(\text{pol} := x^4 + \frac{7}{3}x^2 + 30x - \frac{100}{3}\)

Add some cubic roots

\(r1 := \sqrt{7633}\)
\(\alpha := \sqrt{5r1-436}/3\)
A quintic polynomial
\[
qol : \text{UP}(x, \text{Ran}) := x^5 + 10x^3 + 20x + 22 \quad \text{\free{Ran}} \text{\bound{qol}}
\]
Add some cubic roots
\[
r2 := \sqrt{153} \quad \text{\free{Ran}} \text{\bound{r2}}
\]
\[
alpha2 := \sqrt{r2 - 11.5} \quad \text{\free{r2}} \text{\bound{alpha2}}
\]
\[
beta2 := -\sqrt{r2 + 11.5} \quad \text{\free{r2}} \text{\bound{beta2}}
\]
Finally, some examples from the book Computer Algebra by Davenport, Siret and Tournier (page 77).
The last one is due to Ramanujan.
\[
dst1 := \sqrt{9 + 4s2} = 1 + 2s2 \quad \text{\free{s2}} \text{\bound{dst1}}
\]
\{s29: \text{Ran} := \sqrt{29} \} \\
\{dst4 := \sqrt{(112+70s29)+(46+34s29)s5} = (5+4s2)+(3+s2)s5 \} \\
\{dst6 := \sqrt{(f32-f27,3)} = f25*(1+f3-f3**2) \}
3.91. RECLOS.HT

}\spadpaste{dst5::Boolean \free{dst5}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{RealClosureXmpPagePatch1}
\begin{paste}{RealClosureXmpPageFull1}{RealClosureXmpPageEmpty1}
\pastebutton{RealClosureXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{Ran := RECLOS(FRAC INT)\bound{Ran }}
\indentrel{3}\begin{verbatim}
(1) RealClosure Fraction Integer
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{RealClosureXmpPageEmpty1}
\begin{paste}{RealClosureXmpPageEmpty1}{RealClosureXmpPagePatch1}
\pastebutton{RealClosureXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{Ran := RECLOS(FRAC INT)\bound{Ran }}
\end{paste}
\end{patch}

\begin{patch}{RealClosureXmpPagePatch2}
\begin{paste}{RealClosureXmpPageFull2}{RealClosureXmpPageEmpty2}
\pastebutton{RealClosureXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d)\free{Ran }\bound{fs }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{RealClosureXmpPageEmpty2}
\begin{paste}{RealClosureXmpPageEmpty2}{RealClosureXmpPagePatch2}
\pastebutton{RealClosureXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d)\free{Ran }\bound{fs }}
\end{paste}
\end{patch}

\begin{patch}{RealClosureXmpPagePatch3}
\begin{paste}{RealClosureXmpPageFull3}{RealClosureXmpPageEmpty3}
\pastebutton{RealClosureXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{squareDiff1 := fourSquares(73,548,60,586)\free{fs }\bound{sd1 }}
\indentrel{3}\begin{verbatim}
(3) - \586 - \60 + \548 + \73
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{RealClosureXmpPageEmpty3}
\begin{paste}{RealClosureXmpPageEmpty3}{RealClosureXmpPagePatch3}
\pastebutton{RealClosureXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{squareDiff1 := fourSquares(73,548,60,586)\free{fs} \bound{sd1}}
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch4}
\begin{paste}{RealClosureXmpPageFull4}{RealClosureXmpPageEmpty4}
\pastebutton{RealClosureXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{recip(squareDiff1)\free{sd1}}
\indentrel{3}\begin{verbatim}
  (4)  (54602\548 + 149602\73 )\60
   +
  49502\73 \548 + 9900895
   *
 \586
   +
 (154702\73 \548 + 30941947)\60 + 10238421\548
   +
  28051871\73
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPageEmpty4}
\begin{paste}{RealClosureXmpPageEmpty4}{RealClosureXmpPagePatch4}
\pastebutton{RealClosureXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{recip(squareDiff1)\free{sd1}}
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch5}
\begin{paste}{RealClosureXmpPageFull5}{RealClosureXmpPageEmpty5}
\pastebutton{RealClosureXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{sign(squareDiff1)\free{sd1}}
\indentrel{3}\begin{verbatim}
(5) 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPageEmpty5}
\begin{paste}{RealClosureXmpPageEmpty5}{RealClosureXmpPagePatch5}
\pastebutton{RealClosureXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{sign(squareDiff1)\free{sd1}}
\end{paste}\end{patch}
\begin{verbatim}
(6) - \990 - \86 + \778 + \165
Type: RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
(8) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(9) - 692 - 226 + 708 + 217
Type: RealClosure Fraction Integer
\end{verbatim}
3.91. **RECLOSE.HT**

- 13486123\708 – 24359809\217

Type: \text{Union}(\text{RealClosure} \text{ Fraction} \text{ Integer}, ...)

\begin{verbatim}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty10}
\begin{paste}{RealClosureXmpPageFull10}{RealClosureXmpPageEmpty10}{RealClosureXmpPagePatch10}
\pastebutton{RealClosureXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{recip(squareDiff3)}\free{sd3}
\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch11}
\begin{paste}{RealClosureXmpPageFull11}{RealClosureXmpPageEmpty11}
\pastebutton{RealClosureXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{sign(squareDiff3)}\free{sd3}
\indentrel{3}\begin{verbatim}
(11) - 1
Type: \text{Integer}
\end{verbatim}\indentrel{-3}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty11}
\begin{paste}{RealClosureXmpPageEmpty11}{RealClosureXmpPagePatch11}
\pastebutton{RealClosureXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{sign(squareDiff3)}\free{sd3}
\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch12}
\begin{paste}{RealClosureXmpPageFull12}{RealClosureXmpPageEmpty12}
\pastebutton{RealClosureXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{squareDiff4 := fourSquares(155,836,162,820)}\free{fs}\bound{sd4}
\indentrel{3}\begin{verbatim}
(12) - \820 - \162 + \836 + \155
Type: \text{RealClosure} \text{ Fraction} \text{ Integer}
\end{verbatim}\indentrel{-3}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty12}
\begin{paste}{RealClosureXmpPageEmpty12}{RealClosureXmpPagePatch12}
\pastebutton{RealClosureXmpPageEmpty12}{\showpaste}
\tab{5}\spadcommand{squareDiff4 := fourSquares(155,836,162,820)}\free{fs}\bound{sd4}
\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch13}
\begin{paste}{RealClosureXmpPageFull13}{RealClosureXmpPageEmpty13}
\pastebutton{RealClosureXmpPageEmpty13}{\showpaste}
\tab{5}\spadcommand{recip(squareDiff4)}\free{sd4}
\indentrel{3}\begin{verbatim}\end{verbatim}
\indentrel{-3}\end{patch}
(13)
\[
\begin{align*}
& (- 37078 \cdot 836 - 86110 \cdot 155 ) \frac{1}{162} \\
& + \\
& - 37906 \cdot 155 \cdot 836 - 13645107 \\
& * \\
& \frac{820}{162} \\
& + \\
& (- 85282 \cdot 155 \cdot 836 - 30699151 ) \frac{1}{162} \\
& + \\
& - 13513901 \cdot 836 - 31384703 \cdot 155
\end{align*}
\]
Type: Union(RealClosure Fraction Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty13}
\begin{paste}{RealClosureXmpPageEmpty13}{RealClosureXmpPagePatch13}
\pastebutton{RealClosureXmpPageEmpty13}{\showpaste}
\indentrel{-3}
\begin{verbatim}
(14) - 1
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch14}
\begin{paste}{RealClosureXmpPageFull14}{RealClosureXmpPageEmpty14}
\pastebutton{RealClosureXmpPageFull14}{\hidepaste}
\indentrel{3}\begin{verbatim}
(15) - \818 - \552 + \772 + \591
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{3}\end{paste}\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{RealClosureXmpPageEmpty15\}
\begin{paste}\{RealClosureXmpPageEmpty15\}\{RealClosureXmpPagePatch15\}
\pastebutton\{RealClosureXmpPageEmpty15\}\{showpaste\}
\tab{5}\spadcommand{squareDiff5 := fourSquares(591,772,552,818)}\free{fs}\bound{sd5}}
\end{paste}\end{patch}

\begin{patch}\{RealClosureXmpPagePatch16\}
\begin{paste}\{RealClosureXmpPageFull16\}\{RealClosureXmpPageEmpty16\}
\pastebutton\{RealClosureXmpPageFull16\}\{hidepaste\}
\tab{5}\spadcommand{recip(squareDiff5)}\free{sd5}}
\indentrel{3}\begin{verbatim}
(16)

(70922\772 + 81058\591 )\552
+
68542\591 \772 + 46297673
*
\818
+
(83438\591 \772 + 56359389)\552 + 47657051\772
+
54468081\591
Type: Union(RealClosure Fraction Integer,...)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}\{RealClosureXmpPagePatch17\}
\begin{paste}\{RealClosureXmpPageFull17\}\{RealClosureXmpPageEmpty17\}
\pastebutton\{RealClosureXmpPageFull17\}\{hidepaste\}
\tab{5}\spadcommand{sign(squareDiff5)}\free{sd5}}
\indentrel{3}\begin{verbatim}
(17) 1
Type: PositiveInteger
\end{verbatim}
\end{patch}\end{patch}
\begin{verbatim}
(18) - 1088 - 412 + 1053 + 434
  Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\begin{verbatim}
(19)
  (115442\cdot1053 + 179818\cdot434 )\cdot412
  +
                      112478\cdot434 \cdot1053 + 76037291
  *
  \cdot1088
  +
  (182782\cdot434 \cdot1053 + 123564147 )\cdot412
  +
  77290639\cdot1053 + 120391609\cdot434
  Type: Union(RealClosure Fraction Integer,...)
\end{verbatim}
3.91. \textsc{reclos.h}t

\begin{patch}{RealClosureXmpPagePatch20} 
\begin{paste}{RealClosureXmpPageFull20}{RealClosureXmpPageEmpty20} 
\pastebutton{RealClosureXmpPageFull20}{\hidepaste} \tab{5} \spadcommand{sign(squareDiff6)\free{sd6}} \end{verbatim} 
\indentrel{-3} \end{paste} \end{patch} 

\begin{patch}{RealClosureXmpPagePatch21} 
\begin{paste}{RealClosureXmpPageFull21}{RealClosureXmpPageEmpty21} 
\pastebutton{RealClosureXmpPageFull21}{\hidepaste} \tab{5} \spadcommand{squareDiff7 := fourSquares(514,1049,446,1152)\free{fs}\bound{sd7}} \end{verbatim} 
\indentrel{-3} \end{paste} \end{patch} 

\begin{patch}{RealClosureXmpPagePatch22} 
\begin{paste}{RealClosureXmpPageFull22}{RealClosureXmpPageEmpty22} 
\pastebutton{RealClosureXmpPageFull22}{\hidepaste} \tab{5} \spadcommand{recip(squareDiff7)\free{sd7}} \end{verbatim} 
\indentrel{-3} \end{paste} \end{patch}
(523262\514 \1049 + 384227549)\446 + 250534873\1049 + 357910443\514
Type: Union(RealClosure Fraction Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPageEmpty22}
\begin{paste}{RealClosureXmpPageFull22}{RealClosureXmpPageEmpty22}
\pastebutton{RealClosureXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{recip(squareDiff7)\free{sd7 }}
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch23}
\begin{paste}{RealClosureXmpPageFull23}{RealClosureXmpPageEmpty23}
\pastebutton{RealClosureXmpPageEmpty23}{\hidepaste}
\tab{5}\spadcommand{sign(squareDiff7)\free{sd7 }}
\indentrel{3}\begin{verbatim}
(23) 1
Type: PositiveInteger
\indentrel{-3}\end{verbatim}
\indentrel{3}\end{patch}
\begin{patch}{RealClosureXmpPageEmpty23}
\begin{paste}{RealClosureXmpPageEmpty23}{RealClosureXmpPagePatch23}
\pastebutton{RealClosureXmpPageEmpty23}{\showpaste}
\tab{5}\spadcommand{sign(squareDiff7)\free{sd7 }}
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch24}
\begin{paste}{RealClosureXmpPageFull24}{RealClosureXmpPageEmpty24}
\pastebutton{RealClosureXmpPageEmpty24}{\hidepaste}
\tab{5}\spadcommand{squareDiff8 := fourSquares(190,1751,208,1698)\free{fs }}\bound{sd8 }
\indentrel{3}\begin{verbatim}
(24) - \1698 - \208 + \1751 + \190
Type: RealClosure Fraction Integer
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{RealClosureXmpPageEmpty24}
\begin{paste}{RealClosureXmpPageEmpty24}{RealClosureXmpPagePatch24}
\pastebutton{RealClosureXmpPageEmpty24}{\showpaste}
\tab{5}\spadcommand{squareDiff8 := fourSquares(190,1751,208,1698)\free{fs }}\bound{sd8 }
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch25}
\begin{paste}{RealClosureXmpPageFull25}{RealClosureXmpPageEmpty25}
\pastebutton{RealClosureXmpPageEmpty25}{\hidepaste}
\begin{verbatim}
(25) \((- 2147021751 - 651782190) + (- 224642190 \cdot 1751 - 129571901 \cdot 1698 + (- 641842190 \cdot 1751 - 370209881) + (- 127595865 \cdot 1751 - 387349387)\)  
\end{verbatim}
\begin{verbatim}
(26) - 1  
\end{verbatim}
\begin{verbatim}
(27) - 0.2340527771 5937700123 E -10  
\end{verbatim}
\begin{verbatim}
relativeApprox(squareDiff8,10**(-3))::Float free sd8
\end{verbatim}

\begin{verbatim}
(28) [%R33,%R34,%R35,%R36]
Type: List RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
4 2
(29) [- 2,- 4? + 2]
Type: List Union(SparseUnivariatePolynomial RealClosure Fraction Integer,"failed")
\end{verbatim}

\begin{verbatim}
[- 2,- 1,[],[- 1,0],[0,1],[1,2]]
Type: List Union(RightOpenIntervalRootCharacterization(RealClosure Fraction Integer,SparseUnivariatePolynomial RealClosure Fraction Integer),"failed")
\end{verbatim}
\begin{verbatim}
(31) \[0,0\]
Type: List RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
(32) \10 \10
Type: RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
(33) \- \10 - 3 \5 - 2 + \10 + 3 \5 + 2 =
\end{verbatim}
\(10^2 + 10\)  
Type: Equation RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch33}
\begin{paste}{RealClosureXmpPageFull33}{RealClosureXmpPageEmpty33}
\pastebutton{RealClosureXmpPageFull33}{\hidepaste}
\indentrel{3}\begin{verbatim}
(34) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch34}
\begin{paste}{RealClosureXmpPageFull34}{RealClosureXmpPageEmpty34}
\pastebutton{RealClosureXmpPageFull34}{\hidepaste}
\indentrel{3}\begin{verbatim}
(35) - 5 - 2 \sqrt{2} - 1 + \sqrt{5} + 2 \sqrt{2} + 1 =
\end{verbatim}
\end{patch}

\begin{patch}{RealClosureXmpPagePatch35}
\begin{paste}{RealClosureXmpPageFull35}{RealClosureXmpPageEmpty35}
\pastebutton{RealClosureXmpPageFull35}{\hidepaste}
\end{patch}

\begin{verbatim}
(35) - 5 - 2 \sqrt{2} - 1 + \sqrt{5} + 2 \sqrt{2} + 1 =
\end{verbatim}
\begin{verbatim}
(36) true
Type: Boolean
\end{verbatim}

\begin{verbatim}
(37) 3
Type: RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
(38) 7
Type: RealClosure Fraction Integer
\end{verbatim}
\begin{patch}{RealClosureXmpPagePatch39}
\begin{paste}{RealClosureXmpPageFull39}{RealClosureXmpPageEmpty39}
\pastebutton{RealClosureXmpPageFull39}{\hidepaste}
\tab{5}\spadcommand{e1 := sqrt(2*s7-3*s3,3)\free{s7 }\free{s3 }\bound{e1 }}
\indentrel{3}\begin{verbatim}
3
(39)  2\7 - 3\3
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty39}
\begin{paste}{RealClosureXmpPageEmpty39}{RealClosureXmpPagePatch39}
\pastebutton{RealClosureXmpPageEmpty39}{\showpaste}
\tab{5}\spadcommand{e1 := sqrt(2*s7-3*s3,3)\free{s7 }\free{s3 }\bound{e1 }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch40}
\begin{paste}{RealClosureXmpPageFull40}{RealClosureXmpPageEmpty40}
\pastebutton{RealClosureXmpPageFull40}{\hidepaste}
\tab{5}\spadcommand{e2 := sqrt(2*s7+3*s3,3)\free{s7 }\free{s3 }\bound{e2 }}
\indentrel{3}\begin{verbatim}
3
(40)  2\7 + 3\3
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty40}
\begin{paste}{RealClosureXmpPageEmpty40}{RealClosureXmpPagePatch40}
\pastebutton{RealClosureXmpPageEmpty40}{\showpaste}
\tab{5}\spadcommand{e2 := sqrt(2*s7+3*s3,3)\free{s7 }\free{s3 }\bound{e2 }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPagePatch41}
\begin{paste}{RealClosureXmpPageFull41}{RealClosureXmpPageEmpty41}
\pastebutton{RealClosureXmpPageFull41}{\hidepaste}
\tab{5}\spadcommand{e2-e1-s3\free{e2 }\free{e1 }\free{s3 }}
\indentrel{3}\begin{verbatim}
(41)  0
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RealClosureXmpPageEmpty41}
\begin{paste}{RealClosureXmpPageEmpty41}{RealClosureXmpPagePatch41}
\pastebutton{RealClosureXmpPageEmpty41}{\showpaste}
\indentrel{-3}\end{paste}\end{patch}
3.91. **RECLOS.HT**

\begin{verbatim}
\spadcommand{e2-e1-s3}\free{e2 }\free{e1 }\free{s3 }
\end{verbatim}
\end{patch}

\begin{verbatim}
\spadcommand{pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)}\free{Ran }\bound{pol }
\end{verbatim}

\begin{verbatim}
4 7 2 100
(42) x + x + 30x - \\
3 3
Type: UnivariatePolynomial(x,RealClosure Fraction Integer)
\end{verbatim}

\begin{verbatim}
\spadcommand{r1 := sqrt(7633)$Ran}\free{Ran }\bound{r1 }
\end{verbatim}

\begin{verbatim}
1 3
(43) \sqrt{7633}
Type: RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
\spadcommand{alpha := sqrt(5*r1-436,3)/3}\free{r1 }\bound{alpha }
\end{verbatim}

\begin{verbatim}
1 3
(44) \sqrt{5}\sqrt{7633 - 436}
Type: RealClosure Fraction Integer
\end{verbatim}
\spadcommand{alpha := sqrt(5*r1-436,3)/3\free{r1}\bound{alpha}}

\spadcommand{beta := -sqrt(5*r1+436,3)/3\free{r1}\bound{beta}}

\begin{verbatim}
1 3
- 5\sqrt{7633} + 436
3
\end{verbatim}

Type: RealClosure Fraction Integer

\spadcommand{pol.(alpha+beta-1/3)\free{pol}\free{alpha}\free{beta}}

\begin{verbatim}
0
\end{verbatim}

Type: RealClosure Fraction Integer

\spadcommand{qol : UP(x,Ran) := x**5+10*x**3+20*x+22}\free{Ran}\bound{qol}

\begin{verbatim}
x**5+10*x**3+20*x+22
\end{verbatim}

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)
\begin{verbatim}
qol : UP(x,Ran) := x**5+10*x**3+20*x+22
r2 := sqrt(153)
alpha2 := sqrt(r2-11)
beta2 := -sqrt(r2+11)
\end{verbatim}

(48) \(153\)
Type: RealClosure Fraction Integer

5 \(153 - 11\)
Type: RealClosure Fraction Integer

\end{verbatim}
(50) \(- \sqrt{153 + 11}\)
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch50}
\begin{paste}{RealClosureXmpPageFull50}{RealClosureXmpPageEmpty50}
\pastebutton{RealClosureXmpPageFull50}{\showpaste}
\begin{tab}{5}\spadcommand{beta2 := -sqrt(r2+11,5)\free{r2 }\bound{beta2 }}\end{tab}
\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch51}
\begin{paste}{RealClosureXmpPageFull51}{RealClosureXmpPageEmpty51}
\pastebutton{RealClosureXmpPageFull51}{\hidepaste}
\begin{tab}{5}\spadcommand{qol(alpha2+beta2)\free{qol }\free{alpha2 }\free{beta2 }}\end{tab}
\indentrel{3}\begin{verbatim}
(51) 0
Type: RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch52}
\begin{paste}{RealClosureXmpPageFull52}{RealClosureXmpPageEmpty52}
\pastebutton{RealClosureXmpPageFull52}{\hidepaste}
\begin{tab}{5}\spadcommand{dst1:=sqrt(9+4*s2)=1+2*s2\free{s2 }\bound{dst1 }}\end{tab}
\indentrel{3}\begin{verbatim}
(52) \sqrt{9+4\times s2} = 1 + 2 \times s2
Type: Equation RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RealClosureXmpPagePatch53}
\begin{paste}{RealClosureXmpPageFull53}{RealClosureXmpPageEmpty53}
\pastebutton{RealClosureXmpPageFull53}{\hidepaste}
\begin{tab}{5}\spadcommand{dst1::Boolean\free{dst1 }}\end{tab}
\end{paste}\end{patch}
3.91. RECLOS.HT

\begin{verbatim}
(53) true
Type: Boolean
\end{verbatim}

\begin{verbatim}
(54) 6
Type: Real Closure Fraction Integer
\end{verbatim}

\begin{verbatim}
(55) \(- 2\sqrt{6} + 5 + \sqrt{2\sqrt{6} + 5} = 2\sqrt{3}
Type: Equation Real Closure Fraction Integer
\end{verbatim}
\begin{verbatim}
(56) true
Type: Boolean
\end{verbatim}
\begin{verbatim}
(57) \sqrt{29}
Type: RealClosure Fraction Integer
\end{verbatim}
\begin{verbatim}
(58)
\sqrt{16-2*\sqrt{29}+2*\sqrt{55-10*\sqrt{29}})} = \sqrt{22+2*\sqrt{5}+29}+\sqrt{11+2*\sqrt{29}}+\sqrt{5}
\end{verbatim}
\begin{verbatim}
2\sqrt{10}\sqrt{29} + 55 - 2\sqrt{29} + 16 =
\end{verbatim}
\begin{verbatim}
- 2\sqrt{10} + 11 + 2\sqrt{5} + 22 + 5
Type: Equation RealClosure Fraction Integer
\end{verbatim}
\begin{verbatim}
(59) true
Type: Boolean
\end{verbatim}

\begin{verbatim}
(60)
(34\2 + 46)\5 + 70\2 + 112 =
(2 + 3)\5 + 4\2 + 5
Type: Equation RealClosure Fraction Integer
\end{verbatim}

\begin{verbatim}
(61) true
Type: Boolean
\end{verbatim}
\begin{patch}{RealClosureXmpPageEmpty61}
\begin{paste}{RealClosureXmpPageEmpty61}{RealClosureXmpPagePatch61}
\showpaste
\[dst6::\text{Boolean}\ free\{dst6\}\}
\end{paste}
\end{patch}
\begin{patch}{RealClosureXmpPagePatch62}
\begin{paste}{RealClosureXmpPageFull62}{RealClosureXmpPageEmpty62}
\hidepaste
5
\begin{verbatim}
\(5\)
\(3\)
\end{verbatim}
\begin{verbatim}
Type: RealClosure Fraction Integer
\end{verbatim}
\end{patch}
\begin{patch}{RealClosureXmpPageEmpty62}
\begin{paste}{RealClosureXmpPageEmpty62}{RealClosureXmpPagePatch62}
\showpaste
\[f3::\text{Ran}\ :=\sqrt{3,5}\ free\{\text{Ran}\}\ bound\{f3\}\}
\end{paste}
\end{patch}
\begin{patch}{RealClosureXmpPagePatch63}
\begin{paste}{RealClosureXmpPageFull63}{RealClosureXmpPageEmpty63}
\hidepaste
1
\begin{verbatim}
\(5\)
\(25\)
\end{verbatim}
\begin{verbatim}
Type: RealClosure Fraction Integer
\end{verbatim}
\end{patch}
\begin{patch}{RealClosureXmpPageEmpty63}
\begin{paste}{RealClosureXmpPageEmpty63}{RealClosureXmpPagePatch63}
\showpaste
\[f25::\text{Ran}\ :=\sqrt{1/25,5}\ free\{\text{Ran}\}\ bound\{f25\}\}
\end{paste}
\end{patch}
\begin{patch}{RealClosureXmpPagePatch64}
\begin{paste}{RealClosureXmpPageFull64}{RealClosureXmpPageEmpty64}
\hidepaste
32
\begin{verbatim}
\(5\)
\end{verbatim}
\end{patch}
\begin{patch}{RealClosureXmpPageEmpty64}
\begin{paste}{RealClosureXmpPageEmpty64}{RealClosureXmpPagePatch64}
\showpaste
\end{paste}
\end{patch}
Type: RealClosure Fraction Integer
\end{verbatim}
3.92 record.ht

Domain Record(a:A,...,b:B)

⇒ “Description” (LispFunctions) 3.71 on page 952
⇒ “Operations” (LispFunctions) 3.71 on page 952
— record.ht —
3.92. RECORD.HT

\begin{page}{RecordDescription}{Domain Constructor \emph{Record}}
\beginscroll
\newitem{Record({\em a:A},{\em b:B})}{Record\{\em a:A,\em b:B\}}
\newitem{\em Arguments:}{-2}
\newitem{\em a}, a selector, an element of domain \texttt{Symbol}
\newitem{\em A}, a domain of category \texttt{SetCategory}
\newitem{\em b}, a selector, an element of domain \texttt{Symbol}
\newitem{\em B}, a domain of category \texttt{SetCategory}
\indent\newitem{\em Returns:}{-2}
a record object with component objects of type \{\em A\},...,\{\em B\} with
\newitem{\em Description:}{0}
corresponding selectors \{\em a\},...,\{\em b\}
as described below.
\indent\newitem{\em Record(a:A,b:B)}{Record\{a:A,b:B\}} is used to create the class of pairs of objects made
\newitem{\em Returns:}{0}
up of a value of type \{\em A\} selected by the symbol \{\em a\} and
\newitem{\em Description:}{0}
a value of type \{\em B\} selected by the symbol \{\em b\}.
\indent\newitem{\em Record(a:A,b:B)} is a primitive domain of Axiom which cannot be
defined in the Axiom language.
\endscroll
\end{page}

---

Domain Constructor Record

--- record.ht ---
3.93  regset.ht

RegularTriangularSet

beginscroll
The \spadtype{RegularTriangularSet} domain constructor implements regular triangular sets. These particular triangular sets were introduced by M. Kalkbrener (1991) in his PhD Thesis under the name regular chains. Regular chains and their related concepts are presented in the paper "On the Theories of Triangular sets" by P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of Symbolic Computation). The \spadtype{RegularTriangularSet} constructor also provides a new method (by the third author) for solving polynomial system by means of regular chains. This method has two ways of solving. One has the same specifications as Kalkbrener's algorithm (1991) and the other is closer to Lazard's method (Discr. App. Math, 1991). Moreover, this new method removes redundant component from the decompositions when this is not too expensive. This is always the case with square-free regular chains. So if you want to obtain decompositions without redundant components just use the \spadtype{SquareFreeRegularTriangularSet} domain constructor or the \spadtype{LazardSetSolvingPackage} package constructor. See also the \spadtype{LexTriangularPackage} and \spadtype{ZeroDimensionalSolvePackage} for the case of algebraic systems with a finite number of (complex) solutions.

One of the main features of regular triangular sets is that they naturally define towers of simple extensions of a field. This allows to perform with multivariate polynomials the same kind of operations as one can do in an \spadtype{EuclideanDomain}.

The \spadtype{RegularTriangularSet} constructor takes four arguments. The first one, \spad{R}, is the coefficient ring of the polynomials; it must belong to the category \spadtype{GcdDomain}. The second one, \spad{E}, is the exponent monoid of the polynomials; it must belong to the category \spadtype{OrderedAbelianMonoidSup}. The third one, \spad{V}, is the ordered set of variables; it must belong to the category \spadtype{OrderedSet}. The last one is the polynomial ring; it must belong to the category \spadtype{RecursivePolynomialCategory(R,E,V)}. The abbreviation for \spadtype{RegularTriangularSet} is \spadtype{REGSET}. See also the constructor \spadtype{RegularChain} which only takes two arguments, the coefficient ring and the ordered set of variables; in that case, polynomials are necessarily built with the \spadtype{NewSparseMultivariatePolynomial} domain constructor.
We shall explain now how to use the constructor \spadtype{REGSET} and how to read the decomposition of a polynomial system by means of regular sets.

Let us give some examples. We start with an easy one (Donati-Traverso) in order to understand the two ways of solving polynomial systems provided by the \spadtype{REGSET} constructor.

\xtc{Define the coefficient ring.}
\spad{R := Integer \bound{R}}
\xtc{Define the list of variables.}
\spad{ls : List Symbol := [x,y,z,t] \bound{ls}}
\xtc{and make it an ordered set.}
\spad{V := OVAR(ls) \free{ls} \bound{V}}
\xtc{then define the exponent monoid.}
\spad{E := IndexedExponents V \free{V} \bound{E}}
\xtc{Define the polynomial ring.}
\spad{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
\xtc{Let the variables be polynomial.}
\spad{x: P := 'x \free{P} \bound{x}}
\spad{y: P := 'y \free{P} \bound{y}}
\spad{z: P := 'z \free{P} \bound{z}}
\spad{t: P := 't \free{P} \bound{t}}
Now call the \texttt{RegularTriangularSet} domain constructor.}
\spadpaste{T := REGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{T} }
\xtc{Define a polynomial system.}
\spadpaste{p1 := x ** 31 - x ** 6 - x - y \free{x} \free{y} \bound{p1}}
\xtc{p2 := x ** 8 - z \free{x} \free{z} \bound{p2}}
\xtc{p3 := x ** 10 - t \free{x} \free{t} \bound{p3}}
\xtc{lp := \[p1, p2, p3\] \free{p1} \free{p2} \free{p3} \bound{lp}}
\xtc{First of all, let us solve this system in the sense of Kalkbrener.}
\spadpaste{zeroSetSplit(lp)$T \free{lp} \free{T} \bound{lts}}
\xtc{And now in the sense of Lazard (or Wu and other authors).}
\spadpaste{lts := zeroSetSplit(lp,false)$T \free{lp} \free{T} \bound{lts}}
\xtc{We can see that the first decomposition is a subset of the second. So how can both be correct ?}
\xtc{Recall first that polynomials from a domain of the category \texttt{RecursivePolynomialCategory} are regarded as univariate polynomials in their main variable. For instance the second polynomial in the first set of each decomposition has main variable \texttt{y} and its initial (i.e. its leading coefficient w.r.t. its main variable) is \texttt{t z}.}
\xtc{Now let us explain how to read the second decomposition. Note that the non-constant initials of the first set are \texttt{t^4-t} and \texttt{t z}. Then the solutions described by this first set are the common zeros of its polynomials that do not cancel the polynomials \texttt{t^4-t} and \texttt{t z}. Now the solutions of the input system \texttt{lp}.
satisfying these equations are described by the second and the third sets of the decomposition. Thus, in some sense, they can be considered as degenerated solutions. The solutions given by the first set are called the generic points of the system; they give the general form of the solutions. The first decomposition only provides these generic points. This latter decomposition is useful when they are many degenerated solutions (which is sometimes hard to compute) and when one is only interested in general informations, like the dimension of the input system.

\xtc{
We can get the dimensions of each component of a decomposition as follows.
}

\spadpaste{{\text{coHeight}(ts) \text{ for ts in lts}} \setminus \text{free(lts)}}

Thus the first set has dimension one. Indeed \textbf{t} can take any value, except \textbf{0} or any third root of \textbf{1}, whereas \textbf{z} is completely determined from \textbf{t}, \textbf{y} is given by \textbf{z} and \textbf{t}, and finally \textbf{x} is given by the other three variables.

In the second and the third sets of the second decomposition the four variables are completely determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume some mathematical knowledge. However, for the non-expert user, the above explanations will be sufficient to understand the other features of the \spadtype{RSEGSET} constructor.

The input system \textbf{lp} is decomposed in the sense of Kalkbrener as finitely many regular sets \{\textbf{T1},\ldots,\textbf{Ts}\} such that the radical ideal generated by \textbf{lp} is the intersection of the radicals of the saturated ideals of \{\textbf{T1},\ldots,\textbf{Ts}\}. In other words, the affine variety associated with \textbf{lp} is the union of the closures (w.r.t. Zarisky topology) of the regular-zeros sets of \{\textbf{T1},\ldots,\textbf{Ts}\}.

\textbf{N. B.} The prime ideals associated with the radical of the saturated ideal of a regular triangular set have all the same dimension; moreover these prime ideals can be given by characteristic sets with the same main variables. Thus a decomposition in the sense of Kalkbrener is unmixed dimensional. Then it can be viewed as a \textit{lazy}
decomposition into prime ideals (some of these prime ideals being merged into unmixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular sets. The input system $\{\textbf{lp}\}$ is decomposed in the sense of Lazard as finitely many regular triangular sets $\{\textbf{T1}, \ldots, \textbf{Ts}\}$ such that the affine variety associated with $\{\textbf{lp}\}$ is the union of the regular-zeros sets of $\{\textbf{T1}, \ldots, \textbf{Ts}\}$. Thus a decomposition in the sense of Lazard is also a decomposition in the sense of Kalkbrener; the converse is false as we have seen before.

When the input system has a finite number of solutions, both ways of solving provide similar decompositions as we shall see with this second example (Caprasse).

\begin{verbatim}
\xtc{Define a polynomial system.}
\spadpaste{f1 := y**2*z+2*x*y*t-2*x-z \free{z} \free{x} \free{y} \free{t} \bound{f1}}
\xtc{}
\spadpaste{f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2- 10*y**2+ 4*x*z- 10*y*t+ 2 \free{z} \free{x} \free{y} \free{t} \bound{f2}}
\xtc{}
\spadpaste{f3 := 2*y*z*t+x*t**2-x-2*z \free{z} \free{x} \free{y} \free{t} \bound{f3}}
\xtc{}
\spadpaste{f4 := -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x**2+ 4*z**2-10*y*t- 10*t**2+2 \free{z} \free{x} \free{y} \free{t} \bound{f4}}
\xtc{}
\spadpaste{lf := [f1, f2, f3, f4] \free{f1} \free{f2} \free{f3} \free{f4} \bound{lf}}
\xtc{First of all, let us solve this system in the sense of Kalkbrener.}
\end{verbatim}
\spadpaste{zeroSetSplit(\sf{lf}) \free{lf} \free{T}}}
}\xtc{And now in the sense of Lazard (or Wu and other authors).}
\{\spadpaste{lts2 := zeroSetSplit(\sf{lf},false) \free{lf} \free{T} \bound{lts2}}}
\}

Up to the ordering of the components, both decompositions are identical.

\xtc{Let us check that each component has a finite number of solutions.}
\{\spadpaste{[\sf{coHeight}(\sf{ts})\ \text{for} \ \sf{ts} \ \text{in} \ \sf{lts2}] \free{lts2}}}
\}
\xtc{Let us count the degrees of each component,}
\{\spadpaste{\sf{degrees := [degree}(\sf{ts})\ \text{for} \ \sf{ts} \ \text{in} \ \sf{lts2}] \free{lts2} \bound{\sf{degrees}}}\}
\xtc{and compute their sum.}
\{\spadpaste{\sf{reduce}(+,:\sf{degrees}) \free{\sf{degrees}}}\}
\}

We study now the options of the \spadfun{zeroSetSplit} operation. As we have seen yet, there is an optional second argument which is a boolean value. If this value is true (this is the default) then the decomposition is computed in the sense of Kalkbrener, otherwise it is computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that case the first optional argument must be present). This second option allows you to get some information during the computations.

Therefore, we need to understand a little what is going on during the computations. An important feature of the algorithm is that the intermediate computations are managed in some sense like the processes of a Unix system. Indeed, each intermediate computation may generate other intermediate computations and the management of all these computations is a crucial task for the efficiency. Thus any intermediate computation may be suspended, killed or resumed, depending on algebraic considerations that determine priorities for
these processes. The goal is of course to go as fast as possible towards the final decomposition which means to avoid as much as possible unnecessary computations.

To follow the computations, one needs to set to \spad{true} the second argument. Then a lot of numbers and letters are displayed. Between a \spad{} and a \spad{} one has the state of the processes at a given time. Just after \spad{} one can see the number of processes. Then each process is represented by two numbers between \spad{} and \spad{}. A process consists of a list of polynomial \spad{} and a triangular set \spad{}; its goal is to compute the common zeros of \spad{} that belong to the regular-zeros set of \spad{}. After the processes, the number between pipes gives the total number of polynomials in all the sets \spad{}. Finally, the number between braces gives the number of components of a decomposition that are already computed. This number may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how these informations are displayed.

\begin{verbatim}
\xtc{
Define a polynomial system.
}{
\spadpaste{u : R := 2 \free{R} \bound{u}}
}
\xtc{
}{
\spadpaste{q1 := 2*(u-1)**2+ 2*(x-z*x+z**2)+ y**2*(x-1)**2-2*u*x+ 2*y*t*(1-x)*(x-z)+ 2*u*z*t*(t-y)+ u**2*t**2*(1-2*z)+2*u*t**2*(z-x)+ 2*u*t*y*(z-1)+ 2*u*z*x*(y+1)+ (u**2-2*u)*z**2*t**2+ 2*u**2*z**2+ 4*u*(1-u)*z+ t**2*(z-x)**2 \free{z} \free{x} \free{y} \free{t} \free{u} \bound{q1}}
}
\xtc{
}{
\spadpaste{q2 := t*(2*z+1)*(x-z)+ y*(z+2)*(1-x)+ u*(u-2)*t+ u*(1-2*u)*z*t+ u*y*(x+u-z*x-1)+ u*(u+1)*z**2*t \free{x} \free{y} \free{t} \free{u} \bound{q2}}
}
\xtc{
}{
\spadpaste{q3 := -u**2*(z-1)**2+ 2*z*(z-x)-2*(x-1) \free{z} \free{x} \free{y} \free{t} \free{u} \bound{q3}}
}
\xtc{
}{
\spadpaste{q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2- 3*t**2*(z-x)**2 +3*u**2*t**2*(z-1)**2+u**2*z*(z-2)+ 6*u*t*y*(x+u-z*x-1) \free{z} \free{x} \free{y} \free{t} \free{u} \bound{q4}}
}
\end{verbatim}
Let us try the information option.
N.B. The timing should be between 1 and 10 minutes, depending on your machine.

\spad{\textbf{zeroSetSplit}(lq,\text{true},\text{true})}\ T \ \text{\\textbf{free}(lq)} \ \text{\\textbf{free}(T)}

Between a sequence of processes, thus between a \spad{[]} and a \spad{[]} you can see capital letters \spad{W, G, I} and lower case letters \spad{i, w}. Each time a capital letter appears a non-trivial computation has been performed and its result is put in a hash-table. Each time a lower case letter appears a needed result has been found in an hash-table. The use of these hash-tables generally speed up the computations. However, on very large systems, it may happen that these hash-tables become too big to be handle by your Axiom configuration. Then in these exceptional cases, you may prefer getting a result (even if it takes a long time) than getting nothing. Hence you need to know how to prevent the \spad{\textbf{RSEGSET}} constructor from using these hash-tables. In that case you will be using the \spad{\textbf{zeroSetSplit}} with five arguments. The first one is the input system \spad{bf lq} as above. The second one is a boolean value \spad{\textbf{hash?}} which is \spad{\text{false}} iff you want to use hash-tables. The third one is boolean value \spad{\textbf{clos?}} which is \spad{\text{true}} iff you want to solve your system in the sense of Kalkbrener, the other way remaining that of Lazard. The fourth argument is boolean value \spad{\textbf{info?}} which is \spad{\text{true}} iff you want to display information during the computations. The last one is boolean value \spad{\textbf{prep?}} which is \spad{\text{true}} iff you want to use some heuristics that are performed on the input system before starting the real algorithm. The value of this flag is \spad{\text{false}} when you are using \spad{\textbf{zeroSetSplit}} with less than five arguments. Note that there is no available signature for \spad{\textbf{zeroSetSplit}} with four arguments.

We finish this section by some remarks about both ways of solving, in the sense of Kalkbrener or in the sense of Lazard. For problems with a finite number of solutions, there are theoretically equivalent and the resulting decompositions are identical, up to the ordering of the components. However, when solving in the sense of Lazard, the algorithm behaves differently. In that case, it becomes more incremental than in the sense of Kalkbrener. That means the polynomials of the input system are considered one after another whereas in the sense of Kalkbrener the input system is treated more
globally.

This makes an important difference in positive dimension. Indeed when solving in the sense of Kalkbrener, the \emph{Primeidealkettensatz} of Krull is used. That means any regular triangular containing more polynomials than the input system can be deleted. This is not possible when solving in the sense of Lazard. This explains why Kalkbrener’s decompositions usually contain less components than those of Lazard. However, it may happen with some examples that the incremental process (that cannot be used when solving in the sense of Kalkbrener) provide a more efficient way of solving than the global one even if the \emph{Primeidealkettensatz} is used. Thus just try both, with the various options, before concluding that you cannot solve your favorite system with \spadfun{zeroSetSplit}. There exist more options at the development level that are not currently available in this public version. So you are welcome to contact \emph{marc@nag.co.uk} for more information and help.

\begin{verbatim}
(1) Integer
    Type: Domain
\end{verbatim}

\begin{verbatim}
(2) [x,y,z,t]
    Type: List Symbol
\end{verbatim}
3.93. REGSET.HT

\begin{verbatim}
(3) OrderedVariableList [x,y,z,t]  
  Type: Domain
\end{verbatim}

\begin{verbatim}
(4) IndexedExponents OrderedVariableList [x,y,z,t]  
  Type: Domain
\end{verbatim}

\begin{verbatim}
(5) NewSparseMultivariatePolynomial(Integer,OrderedVariable 
  List [x,y,z,t])  
  Type: Domain
\end{verbatim}
\begin{verbatim}
(6) x
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
(7) y
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
(8) z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\begin{verbatim}
(9) t
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
(10) RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
Type: Domain
\end{verbatim}

\begin{verbatim}
(11) x - x - x - y
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\begin{spad}
\tab{5}\spadcommand{p1 := x ** 31 - x ** 6 - x - y}
\end{spad}

\begin{spad}
\tab{8}
\begin{verbatim}
(12) x - z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\end{spad}

\begin{spad}
\tab{5}\spadcommand{p2 := x ** 8 - z}
\indentrel{3}\begin{verbatim}
8
(12) x - z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{spad}

\begin{spad}
\tab{5}\spadcommand{p3 := x ** 10 - t}
\indentrel{3}\begin{verbatim}
10
(13) x - t
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{spad}

\begin{spad}
\tab{5}\spadcommand{lp := \[p1, p2, p3\]}
\indentrel{3}\begin{verbatim}
31 6 8 10
(14) [x - x - x - y,x - z,x - t]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{spad}
\begin{patch}{RegularTriangularSetXmpPageEmpty14}
\begin{paste}{RegularTriangularSetXmpPageFull14}{RegularTriangularSetXmpPageEmpty14}
\pastebutton{RegularTriangularSetXmpPageFull14}{\showpaste}
\tab{5}\spadcommand{lp := \[p1, p2, p3\]\free{p1} \free{p2} \free{p3}\bound{lp}}
\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch15}
\begin{paste}{RegularTriangularSetXmpPageFull15}{RegularTriangularSetXmpPageEmpty15}
\pastebutton{RegularTriangularSetXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{zeroSetSplit(lp)$\free{lp}\free{T}}
\indentrel{3}\begin{verbatim}
(15)
[ 5 4 2 3 8 5 3 2
  \{z - t , t z y + 2z y - t + 2t + t - t ,
    4 2
  (t - t)x - t y - z
  \}
]
Type: List RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch16}
\begin{paste}{RegularTriangularSetXmpPageFull16}{RegularTriangularSetXmpPageEmpty16}
\pastebutton{RegularTriangularSetXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{lts := zeroSetSplit(lp,false)$\free{lp}\free{T}\bound{lts}}
\indentrel{3}\begin{verbatim}
(16)
[ 5 4 2 3 8 5 3 2
  \{z - t , t z y + 2z y - t + 2t + t - t ,
    4 2
  (t - t)x - t y - z
  \},
  3 5 2 3 2
  \{t - 1,z - t,t z y + 2z y + 1,z x - t\},
  \{t,z,y,x\}]
Type: List RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\tab{5}\spadcommand{lts := zeroSetSplit(lp, false)$T\free{lp }\free{T }\bound{lts }}
\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPagePatch17}
\begin{paste}{RegularTriangularSetXmpPageFull17}{RegularTriangularSetXmpPageEmpty17}
\pastebutton{RegularTriangularSetXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{[coHeight(ts) for ts in lts]\free{lts }}
\indentrel{3}\begin{verbatim}
(17) [1,0,0]
Type: List NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPageEmpty17}
\begin{paste}{RegularTriangularSetXmpPageEmpty17}{RegularTriangularSetXmpPagePatch17}
\pastebutton{RegularTriangularSetXmpPageEmpty17}{\showpaste}
\tab{5}\spadcommand{[coHeight(ts) for ts in lts]\free{lts }}
\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPagePatch18}
\begin{paste}{RegularTriangularSetXmpPageFull18}{RegularTriangularSetXmpPageEmpty18}
\pastebutton{RegularTriangularSetXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{f1 := y**2*z+x*y**t-2*x-z\free{z }\free{x }\free{y }\free{t }\bound{f1 }}
\indentrel{3}\begin{verbatim}
(18) (2t y - 2)x + z y - z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPageEmpty18}
\begin{paste}{RegularTriangularSetXmpPageEmpty18}{RegularTriangularSetXmpPagePatch18}
\pastebutton{RegularTriangularSetXmpPageEmpty18}{\showpaste}
\tab{5}\spadcommand{f1 := y**2*z+2*x*y**t-2*x-z\free{z }\free{x }\free{y }\free{t }\bound{f1 }}
\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPagePatch19}
\begin{paste}{RegularTriangularSetXmpPageFull19}{RegularTriangularSetXmpPageEmpty19}
\pastebutton{RegularTriangularSetXmpPageFull19}{\hidepaste}
\tab{5}\spadcommand{f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y**t+ 2*y**3*t+ 4*x**2- 10*y**2+ 4*x*z- 10*y*t+ 2\free{z }\free{x }\free{y }\free{t }\bound{f2 }}
\indentrel{3}\begin{verbatim}
(19) 3 2 2 3 2
- z x + (4t y + 4)x + (4z y + 4z)x + 2t y - 10y
+ 10t y + 2
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.93. REGSET.HT

\begin{patch}{RegularTriangularSetXmpPageEmpty19}
\begin{paste}{RegularTriangularSetXmpPageEmpty19}{RegularTriangularSetXmpPagePatch19}
\pastebutton{RegularTriangularSetXmpPageEmpty19}{\showpaste}
\tab{5}\spadcommand{f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2- 10*y**2+ 4*x*z- 10*y*t+ 2}\free{z }\free{x }\free{y }\free{t }\bound{f2 }
\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch20}
\begin{paste}{RegularTriangularSetXmpPageFull20}{RegularTriangularSetXmpPageEmpty20}
\pastebutton{RegularTriangularSetXmpPageEmpty20}{\hidepaste}
\tab{5}\spadcommand{f3 := 2*y*z*t+x*t**2-x-2*z}\free{z }\free{x }\free{y }\free{t }\bound{f3 }
\indentrel{3}\begin{verbatim}
(20) (t - 1)x + 2t z y - 2z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch21}
\begin{paste}{RegularTriangularSetXmpPageFull21}{RegularTriangularSetXmpPageEmpty21}
\pastebutton{RegularTriangularSetXmpPageEmpty21}{\hidepaste}
\tab{5}\spadcommand{f4 := -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x*z+ 4*z**2-10*y*t- 10*t**2+2}\free{z }
\indentrel{3}\begin{verbatim}
(21)
3 2 2 3 2
(- z + (4t + 4)z)x + (4t z + 2t - 10t)y + 4z
+ 2
- 10t + 2
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch22}
\begin{paste}{RegularTriangularSetXmpPageFull22}{RegularTriangularSetXmpPageEmpty22}
\pastebutton{RegularTriangularSetXmpPageEmpty22}{\hidepaste}
\tab{5}\spadcommand{lf := [f1, f2, f3, f4]}\free{f1 }\free{f2 }\free{f3 }\free{f4 }\bound{lf }
\indentrel{3}\begin{verbatim}
(22)
\end{verbatim}
\end{patch}
\[(2t y - 2)x + z y - z,\]
\[
3 \quad 2 \quad 2 \quad 3
\]
\[- z x + (4t y + 4)x + (4z y + 4z)x + 2t y +
\]
\[
2
\- 10y - 10t y + 2
\]
\[
(t - 1)x + 2t z y - 2z,
\]
\[
3 \quad 2 \quad 2 \quad 3 \quad 2
\]
\[- (z + (4t + 4)z)x + (4t z + 2t - 10t)y + 4z +
\]
\[
2
\- 10t + 2
\]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\begin{verbatim}
(23)
\[
\[2862
\]
\[
\{t - 1, z - 16z + 256z - 256, t y - 1,
\]
\[
3 \quad 2
\]
\[
(z - 8z)x - 8z + 16\}
\]
\[
2 \quad 2 \quad 2
\]
\[
\{3t + 1, z - 7t - 1, y + t, x + z\},
\]
\[
8 \quad 6 \quad 2 \quad 3 \quad 2
\]
\[
\{t - 10t + 10t - 1, z, (t - 5t)y - 5t + 1, x\},
\]
\[
2 \quad 2
\]
\[
\{t + 3, z - 4, y + t, x - z\}\]
\end{verbatim}

Type: List RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\begin{patch}{RegularTriangularSetXmpPageEmpty23}\begin{paste}{RegularTriangularSetXmpPageFull23}{RegularTriangularSetXmpPagePatch23}\pastebutton{RegularTriangularSetXmpPageEmpty23}{\showpaste}\tab{5}\spadcommand{zeroSetSplit(lf)$T\free{lf }\free{T }}\end{paste}\end{patch}\begin{patch}{RegularTriangularSetXmpPagePatch24}\begin{paste}{RegularTriangularSetXmpPageFull24}{RegularTriangularSetXmpPageEmpty24}\pastebutton{RegularTriangularSetXmpPageFull24}{\hidepaste}\tab{5}\spadcommand{lts2 := zeroSetSplit(lf,false)$T\free{lf \free{T }\bound{lts2 }}\indentrel{3}\begin{verbatim}\(24)\{(2\times t - 10t + 10t - 1,z, (t - 5t)y - 5t + 1, x),\}
\{t - 1, z - 16z + 256z - 256, t y - 1,\}
\{(z - 8z)x - 8z + 16,\}
\{3t + 1, z - 7t - 1, y + t, x + z,\}
\{t + 3, z - 4, y + t, x - z,\}\}
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}\begin{patch}{RegularTriangularSetXmpPagePatch25}\begin{paste}{RegularTriangularSetXmpPageFull25}{RegularTriangularSetXmpPageEmpty25}\pastebutton{RegularTriangularSetXmpPageFull25}{\hidepaste}\tab{5}\spadcommand{\[\text{coHeight}(ts)\text{ for ts in lts2}\]}\indentrel{3}\begin{verbatim}(25) \[0,0,0,0]\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{RegularTriangularSetXmpPagePatch26}
\begin{paste}{RegularTriangularSetXmpPageFull26}{RegularTriangularSetXmpPageEmpty26}
\pastebutton{RegularTriangularSetXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{degrees := [degree(ts) for ts in lts2]\free{lts2 }\bound{degrees }}
\indentrel{3}\begin{verbatim}
(26) [8,16,4,4]
Type: List NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPageEmpty26}
\begin{paste}{RegularTriangularSetXmpPageEmpty26}{RegularTriangularSetXmpPagePatch26}
\pastebutton{RegularTriangularSetXmpPageEmpty26}{\showpaste}
\tab{5}\spadcommand{degrees := [degree(ts) for ts in lts2]\free{lts2 }\bound{degrees }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch27}
\begin{paste}{RegularTriangularSetXmpPageFull27}{RegularTriangularSetXmpPageEmpty27}
\pastebutton{RegularTriangularSetXmpPageFull27}{\hidepaste}
\tab{5}\spadcommand{reduce(+,degrees)\free{degrees }}
\indentrel{3}\begin{verbatim}
(27) 32
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPageEmpty27}
\begin{paste}{RegularTriangularSetXmpPageEmpty27}{RegularTriangularSetXmpPagePatch27}
\pastebutton{RegularTriangularSetXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{reduce(+,degrees)\free{degrees }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch28}
\begin{paste}{RegularTriangularSetXmpPageFull28}{RegularTriangularSetXmpPageEmpty28}
\pastebutton{RegularTriangularSetXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{u : R := 2\free{R }\bound{u }}
\indentrel{3}\begin{verbatim}
(28) 2
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPageEmpty28}
\begin{paste}{RegularTriangularSetXmpPageEmpty28}{RegularTriangularSetXmpPagePatch28}
\pastebutton{RegularTriangularSetXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{u : R := 2\free{R }\bound{u }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch29}
\begin{paste}{RegularTriangularSetXmpPageFull29}{RegularTriangularSetXmpPageEmpty29}
\begin{verbatim}
(29)  2  2  2
      (y - 2t y + t )x +
      2  2  2
   - 2y + ((2t + 4)z + 2t)y + (- 2t + 2)z - 4t - 2)x +
      2  2  2
   y + (- 2t z - 4t)y + (t + 10)z - 8z + 4t + 2
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
(30) (- 3z y + 2t z + t)x + (z + 4)y + 4t z - 7t z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
(31) (- 2z - 2)x - 2z + 8z - 2
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\end{patch}
\begin{patch}{RegularTriangularSetXmpPageEmpty31}
\begin{paste}{RegularTriangularSetXmpPageEmpty31}{RegularTriangularSetXmpPagePatch31}
\pastebutton{RegularTriangularSetXmpPageEmpty31}{\showpaste}
\tab{5}\spadcommand{q3 := -u**2*(z-1)**2 + 2*z*(z-x)-2*(x-1)\free{z }\free{x }\free{y }\free{t }\free{u }\bound{q3 }}
\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch32}
\begin{paste}{RegularTriangularSetXmpPageFull32}{RegularTriangularSetXmpPageEmpty32}
\pastebutton{RegularTriangularSetXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2 - 3*t**2*(z-x)**2 +3*u**2*t**2*(z-1)**2\free{z }\free{x }\free{y }\free{t }\free{u }\bound{q4 }}
\indentrel{3}\begin{verbatim}
(32)
2 2 2 2
(3y - 3t - 4)x + (- 6y + (12t z + 12t)y + 6t z)x
+ 
2 2 2 2
3y + (12t z - 12t)y + (9t + 4)z + (- 24t - 4)z
+ 
2
12t + 4
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPageEmpty32}
\begin{paste}{RegularTriangularSetXmpPageEmpty32}{RegularTriangularSetXmpPagePatch32}
\pastebutton{RegularTriangularSetXmpPageEmpty32}{\showpaste}
\tab{5}\spadcommand{q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2 - 3*t**2*(z-x)**2 +3*u**2*t**2*(z-1)**2\free{z }\free{x }\free{y }\free{t }\free{u }\bound{q4 }}
\end{paste}\end{patch}

\begin{patch}{RegularTriangularSetXmpPagePatch33}
\begin{paste}{RegularTriangularSetXmpPageFull33}{RegularTriangularSetXmpPageEmpty33}
\pastebutton{RegularTriangularSetXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{lq := [q1, q2, q3, q4]\free{q1 }\free{q2 }\free{q3 }\free{q4 }\bound{lq }}
\indentrel{3}\begin{verbatim}
(33)
\[
2 2 2
(y - 2t y + t )x
+ 
2
- 2y + ((2t + 4)z + 2t)y + (- 2t + 2)z - 4t
+ 
- 2
* 
x
+ 
2 2 2 2
y + (- 2t z - 4t)y + (t + 10)z - 8z + 4t + 2
, 
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(- 3z \ y + 2t \ z + t)x + (z + 4)y + 4t z - 7t z,

(- 2z - 2)x - 2z + 8z - 2,

(3y - 3t - 4)x

+ (- 6y + (12t z + 12t)y + 6t z)x + 3y

+ (12t z - 12t)y + (9t + 4)z + (- 24t - 4)z + 12t

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\[ \text{Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])} \]

\begin{verbatim}
*** QCMPACK Statistics ***
Table size: 36
Entries reused: 255

*** REGSETGCD: Gcd Statistics ***
Table size: 125
Entries reused: 0

*** REGSETGCD: Inv Set Statistics ***
Table size: 30
Entries reused: 0
\end{verbatim}

(34)

\[ \begin{array}{c}
24 & 23 \\
960725655771966t & + 386820897948702t \\
+ & 22 & 21
\end{array} \]
\[8906817198608181t + 2704966893949428t + 20 + 19
\]
\[37304033340228264t + 7924782817170207t + 18 + 17
\]
\[93126799040354990t + 13101273653130910t + 16 + 15
\]
\[15614625042711858t + 16626490957259119t + 14 + 13
\]
\[190699288479805763t + 24339173367625275t + 12 + 11
\]
\[180532313014960135t + 35288089030975378t + 10 + 9
\]
\[135054975747656285t + 34733736952488640t + 8 + 7
\]
\[75947600354493972t + 19772555692457088t + 6 + 5
\]
\[28871558573755428t + 5576152439081664t + 4 + 3
\]
\[6321711820352976t + 438314209312320t + 2
\]
\[-581105748367008t - 60254467992576t + 1449115951104,
\]
\[266042108694913023855152657370520823616684 - 74181372891857784 * 23
t + 443104378424686086067294899528296664238693 * 22
t + 279078393286701234679141342358988327155321 * 21
t + 305829547090310242 * 20
t + 581105748367008t - 60254467992576t + 1449115951104]

3.93. REGSET.HT

+ 339027636141323246510761717661554305462062_
  6391823613392185226
  * 20
    t
+ 941478179503540575755754198645220352803719793_
  196473813837434129
  * 19
    t
+ 115478551946794752422116967496739493525857_
  47674184320988144390
  * 18
    t
+ 134360956676559778988170165669941321646721_
  566033356417241432
  * 17
    t
+ 232338138681478735039335516171756408598991_
  02987800663566699334
  * 16
    t
+ 869574020537672336950845440508790740850931_
  336484983573386433
  * 15
    t
+ 315615543058769348754194614869699265542417_
  50065103460820476969
  * 14
    t
+ 127140099028771748744206595254773187955482_
  3889855386072264931
  * 13
    t
+ 319450899138637360448025269640795401983370_
49550503295825160523
*  
12
t  
+  
373873570428814450987137156023284588443910_  
2270778010470931960  
*  
11
  t  
+  
252939975123914202614460143577113158755619_  
05532992045692885927  
*  
10
  t  
+  
521023900984606712346926279987005277341047_  
1135950175008046524  
*  
9  
  t  
+  
150838879869302971662598705686082704274031_  
876062387134911129188  
*  
8  
  t  
+  
352208723469293012638368627077577955348176_  
9125870839075109000  
*  
7  
  t  
+  
607994520039668101308653379256888649110124_  
4247440034969288588  
*  
6  
  t  
+  
109063485243390088819991375624798602319698_  
7723469934933603680  
*  
5  
  t  
+  
1405819430871907102229443253753833540210283_  
8994019667487458352  
*
\begin{align*}
4 & \times t + \\
& 880715279503204500725366712655077488783478 \\
& * 3 \\
& t + \\
& 135882489433640933229781177155977768016065 \\
& 765482378657129440 \\
& * 2 \\
& t + \\
& -139572834428822622305598946074003140825 \\
& 166907499756646520320 \\
& * t + \\
& 33463769297318929927725832570930847259211711 \\
& 2855749713920 \\
& * z + \\
& 8567175484043952879756725964506833932149637101 \\
& 090521164936 \\
& * 23 \\
& t + \\
& 1497923928642017918457083740327289424987975192 \\
& 51667250945721 \\
& * 22 \\
& t + \\
& 7725837178364582215741086158215976413812300307 \\
& 4190374021550 \\
& * 21 \\
& t + \\
& 1108862254126854214498918940708612211184560556 \\
& 764334742191654 \\
& * 20 \\
& t + \\
& \end{align*}
\begin{verbatim}
  3  t
+ 3647741206738478294236663530339663776330392817_4935079178528
  2  t
+ 3722212879279038648713080422224976273210890_229485838670848
  t
+ 890797248531143483612306344840138620247285999068_74105856
   3  2     3  2
(3z - 11z + 8z + 4)y + 2tz + 4tz - 5tz - t,
    2
(x + 1)x + z - 4z + 1
\end{verbatim}

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

\begin{patch}{RegularTriangularSetXmpPageEmpty34}
\begin{paste}{RegularTriangularSetXmpPageEmpty34}{RegularTriangularSetXmpPagePatch34}
\pastebutton{RegularTriangularSetXmpPageEmpty34}{\showpaste}
\tab{5}\spadcommand{zeroSetSplit(lq,true,true)$T\free{lq }\free{T }}
\end{paste}\end{patch}
The Roman numeral package was added to Axiom in MCMLXXXVI for use in denoting higher order derivatives.

For example, let \( f \) be a symbolic operator.

\[
\text{\begin{code}\begin{axiom}
f := \text{operator 'f}
\end{axiom}\end{code}}
\]

This is the seventh derivative of \( f \) with respect to \( x \).

\[
\text{\begin{code}\begin{axiom}
D(f \times x, 7)
\end{axiom}\end{code}}
\]

You can have integers printed as Roman numerals by declaring variables to be of type \spadtype{RomanNumeral} (abbreviation \spadtype{ROMAN}).

\[
\text{\begin{code}\begin{axiom}
a := \text{roman(1978 - 1965)}
\end{axiom}\end{code}}
\]

This package now has a small but devoted group of followers that claim this domain has shown its efficacy in many other contexts. They claim that Roman numerals are every bit as useful as ordinary integers. In a sense, they are correct, because Roman numerals form a ring and you can therefore construct polynomials with Roman numeral coefficients, matrices over Roman numerals, etc..

\[
\text{\begin{code}\begin{axiom}
x : \text{UTIS(ROMAN, 'x, 0)} := x
\end{axiom}\end{code}}
\]
This package now has a small but devoted group of followers that claim this domain has shown its efficacy in many other contexts. They claim that Roman numerals are every bit as useful as ordinary integers.

\xtc{In a sense, they are correct, because Roman numerals form a ring and you can therefore construct polynomials with Roman numeral coefficients, matrices over Roman numerals, etc..}
\{\spadpaste{x : UTS(ROMAN,'x,0) := x \bound{x}}\}
\xtc{Was Fibonacci Italian or ROMAN?}
\{\spadpaste{recip(1 - x - x**2) \free{x}}\}
\xtc{You can also construct fractions with Roman numeral numerators and denominators, as this matrix Hilberticus illustrates.}
\{\spadpaste{m : MATRIX FRAC ROMAN \bound{m}}\}
\xtc{Note that the inverse of the matrix has integral \spadtype{ROMAN} entries.}
\{\spadpaste{inverse m \free{m1}}\}
\xtc{Unfortunately, the spoil-sports say that the fun stops when the numbers get big---mostly because the Romans didn’t establish conventions about representing very large numbers.}
\{\spadpaste{y := factorial 10 \bound{y}}\}
\xtc{You work it out!}
\{\spadpaste{roman y \free{y}}\}

Issue the system command
\spadcmd{)show RomanNumeral}
to display the full list of operations defined by 
\spadtype{RomanNumeral}.
\autobuttons
\end{page}

\begin{patch}{RomanNumeralXmpPagePatch1}
\begin{paste}{RomanNumeralXmpPageFull1}{RomanNumeralXmpPageEmpty1}
\pastebutton{RomanNumeralXmpPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{f := operator 'f\bound{f }}
\indentrel{-3}\begin{verbatim}
(1) f
Type: BasicOperator
\end{verbatim}
\end{page}
\end{patch}

\begin{patch}{RomanNumeralXmpPageEmpty1}
\begin{paste}{RomanNumeralXmpPageEmpty1}{RomanNumeralXmpPagePatch1}
\pastebutton{RomanNumeralXmpPageEmpty1}{\showpaste}
\indentrel{3}\spadcommand{D(f x,x,7)\free{f }}
\indentrel{-3}\begin{verbatim}
(2) f (x)
Type: Expression Integer
\end{verbatim}
\end{page}
\end{patch}

\begin{patch}{RomanNumeralXmpPagePatch2}
\begin{paste}{RomanNumeralXmpPageFull2}{RomanNumeralXmpPageEmpty2}
\pastebutton{RomanNumeralXmpPageFull2}{\hidepaste}
\indentrel{3}\spadcommand{a := roman(1978 - 1965)\bound{a }}
\indentrel{-3}\begin{verbatim}
(3) XIII
Type: RomanNumeral
\end{verbatim}
\end{page}
\end{patch}
\begin{patch}{RomanNumeralXmpPageEmpty3}
\begin{paste}{RomanNumeralXmpPageEmpty3}{RomanNumeralXmpPagePatch3}
\pastebutton{RomanNumeralXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{a := roman(1978 - 1965)\bound{a}}
\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPagePatch4}
\begin{paste}{RomanNumeralXmpPageFull4}{RomanNumeralXmpPageEmpty4}
\pastebutton{RomanNumeralXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{x : UTS(RomanNumeral,'x,0) := x\bound{x}}
\indentrel{3}\begin{verbatim}
(4) x
Type: UnivariateTaylorSeries(RomanNumeral,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPageEmpty4}
\begin{paste}{RomanNumeralXmpPageEmpty4}{RomanNumeralXmpPagePatch4}
\pastebutton{RomanNumeralXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{x : UTS(RomanNumeral,'x,0) := x\bound{x}}
\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPagePatch5}
\begin{paste}{RomanNumeralXmpPageFull5}{RomanNumeralXmpPageEmpty5}
\pastebutton{RomanNumeralXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{recip(1 - x - x**2)\free{x}}
\indentrel{3}\begin{verbatim}
(5)  2  3  4  5  6
  I + x + II x + III x + V x + VII x + XIII x + 
  7  8  9  10  11
  XXI x + XXXIV x + LV x + LXXXIX x + O(x )
Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPageEmpty5}
\begin{paste}{RomanNumeralXmpPageEmpty5}{RomanNumeralXmpPagePatch5}
\pastebutton{RomanNumeralXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{recip(1 - x - x**2)\free{x}}
\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPagePatch6}
\begin{paste}{RomanNumeralXmpPageFull6}{RomanNumeralXmpPageEmpty6}
\pastebutton{RomanNumeralXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{m : MATRIX FRAC ROMAN\bound{m}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{RomanNumeralXmpPageEmpty6}
\begin{paste}{RomanNumeralXmpPageEmpty6}{RomanNumeralXmpPagePatch6}
\end{patch}
\begin{patch}{RomanNumeralXmpPagePatch7}
\begin{paste}{RomanNumeralXmpPageFull7}{RomanNumeralXmpPageEmpty7}
\end{patch}
\begin{patch}{RomanNumeralXmpPagePatch8}
\begin{paste}{RomanNumeralXmpPageFull8}{RomanNumeralXmpPageEmpty8}
\end{paste}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}

\indentrel{-3}\end{patch}\end{patch}
\begin{verbatim}
(9)  3628800
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(10)  (((I))) (((I))) (((I))) (((I))) (((I))) (((I))) (((I)))
    (((I))) (((I))) (((I))) (((I))) (((I))) (((I))) (((I)))
    (((I))) (((I))) (((I))) (((I))) (((I)))
    MMMMMMDCCC
Type: RomanNumeral
\end{verbatim}
The \spadtype{Segment} domain provides a generalized interval type.

\begin{page}{SegmentXmpPage}{Segment}
\beginscroll

Segments are created using the \spad{..} construct by indicating the (included) end points.
\begin{spadblock}
\spad{s := 3..10 \bound{s}}
\end{spadblock}

The first end point is called the \spadfunFrom{lo}{Segment} and the second is called \spadfunFrom{hi}{Segment}.
\begin{spadblock}
\spad{lo s \free{s}}
\end{spadblock}

These names are used even though the end points might belong to an unordered set.
\begin{spadblock}
\spad{hi s \free{s}}
\end{spadblock}

In addition to the end points, each segment has an integer "increment." An increment can be specified using the "\spad{by}" construct.
\begin{spadblock}
\spad{t := 10..3 by -2 \bound{t}}
\end{spadblock}

This part can be obtained using the \spadfunFrom{incr}{Segment} function.
\begin{spadblock}
\spad{incr s \free{s}}
\end{spadblock}

Unless otherwise specified, the increment is \spad{1}.
\begin{spadblock}
\spad{incr t \free{t}}
\end{spadblock}

A single value can be converted to a segment with equal end points. This happens if segments and single values are mixed in a list.
\spadpaste{l := \[1..3, 5, 9, 15..11 by -1\] \bound{l}}
}

\xtc{If the underlying type is an ordered ring, it is possible to perform additional operations. The \spadfunFrom{expand}{Segment} operation creates a list of points in a segment. }
}\spadpaste{expand s \free{s}}

\xtc{If \spad{k > 0}, then \spad{expand(l..h by k)} creates the list \spad{\[l, l+k, \ldots, lN\]} where \spad{1N <= h < lN+k}. If \spad{k < 0}, then \spad{lN >= h > lN+k}.}
}\spadpaste{expand t \free{t}}

\xtc{It is also possible to expand a list of segments. This is equivalent to appending lists obtained by expanding each segment individually.}
}\spadpaste{expand l \free{l}}

For more information on related topics, see \downlink{`SegmentBinding'}{SegmentBindingXmpPage}\ignore{SegmentBinding} and \downlink{`UniversalSegment'}{UniversalSegmentXmpPage}\ignore{UniversalSegment}.
% \showBlurb{Segment} \endscroll 

\begin{patch}{SegmentXmpPagePatch1} \begin{paste}{SegmentXmpPageFull1}{SegmentXmpPageEmpty1} \pastebutton{SegmentXmpPageFull1}{\hidepaste} \tab{5}\spadcommand{s := 3..10\bound{s}} \indentrel{3}\begin{verbatim}(1) 3..10\end{verbatim} \indentrel{-3}\end{paste}\end{patch} \begin{patch}{SegmentXmpPageEmpty1} \begin{paste}{SegmentXmpPageEmpty1}{SegmentXmpPagePatch1} \pastebutton{SegmentXmpPageEmpty1}{\showpaste} \end{patch}
\[\text{spadcommand}\{s := 3..10\} \)
\end{patch}
\begin{patch}{SegmentXmpPagePatch2}
\begin{paste}{SegmentXmpPageFull2}{SegmentXmpPageEmpty2}
\pastebutton{SegmentXmpPageFull2}{\hidepaste}
\tab{5}\text{spadcommand}\{lo s\} \free{s \}}
\indentrel{3}\begin{verbatim}
(2) 3
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{SegmentXmpPageEmpty2}
\begin{paste}{SegmentXmpPageEmpty2}{SegmentXmpPagePatch2}
\pastebutton{SegmentXmpPageEmpty2}{\showpaste}
\tab{5}\text{spadcommand}\{lo s\} \free{s \}}
\end{paste}
\end{patch}
\begin{patch}{SegmentXmpPagePatch3}
\begin{paste}{SegmentXmpPageFull3}{SegmentXmpPageEmpty3}
\pastebutton{SegmentXmpPageFull3}{\hidepaste}
\tab{5}\text{spadcommand}\{hi s\} \free{s \}}
\indentrel{3}\begin{verbatim}
(3) 10
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{SegmentXmpPageEmpty3}
\begin{paste}{SegmentXmpPageEmpty3}{SegmentXmpPagePatch3}
\pastebutton{SegmentXmpPageEmpty3}{\showpaste}
\tab{5}\text{spadcommand}\{hi s\} \free{s \}}
\end{paste}
\end{patch}
\begin{patch}{SegmentXmpPagePatch4}
\begin{paste}{SegmentXmpPageFull4}{SegmentXmpPageEmpty4}
\pastebutton{SegmentXmpPageFull4}{\hidepaste}
\tab{5}\text{spadcommand}\{t := 10..3 \text{ by -2}\} \bound{t \}}
\indentrel{3}\begin{verbatim}
(4) 10..3 \text{ by -2}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{SegmentXmpPageEmpty4}
\begin{paste}{SegmentXmpPageEmpty4}{SegmentXmpPagePatch4}
\pastebutton{SegmentXmpPageEmpty4}{\showpaste}
\tab{5}\text{spadcommand}\{t := 10..3 \text{ by -2}\} \bound{t \}}
\end{paste}
\end{patch}
\begin{verbatim}
(5) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(6) - 2
Type: Integer
\end{verbatim}

\begin{verbatim}
(7) [1..3, 5, 9..9, 15..11 by -1]
Type: List Segment PositiveInteger
\end{verbatim}
\begin{verbatim}
(8) \[3,4,5,6,7,8,9,10\]  
Type: List Integer
\end{verbatim}
\begin{verbatim}
(9) \[10,8,6,4\]  
Type: List Integer
\end{verbatim}
\begin{verbatim}
(10) \[1,2,3,5,9,15,14,13,12,11\]  
Type: List Integer
\end{verbatim}
The `SegmentBinding` type is used to indicate a range for a named symbol.

First give the symbol, then an `=` and finally a segment of values.

\begin{spadpaste}
\spad{x = a..b}
\end{spadpaste}

This is used to provide a convenient syntax for arguments to certain operations.

\begin{spadpaste}
\spad{\sum(i**2, i = 0..n)}
\end{spadpaste}

\begin{graphpaste}
\texttt{draw(x**2, x = -2..2)}
\end{graphpaste}

The left-hand side must be of type `Symbol` but the right-hand side can be a segment over any type.

\begin{spadpaste}
\spad{sb := y = 1/2..3/2 \bound{sb}}
\end{spadpaste}

The left- and right-hand sides can be obtained using the `variable` and `segment` operations.

\begin{spadpaste}
\spad{\text{variable(sb) free(sb)}}
\end{spadpaste}

\begin{spadpaste}
\spad{\text{segment(sb) free(sb)}}
\end{spadpaste}

For more information on related topics, see
Segment and UniversalSegment.

\( x = a..b \)

Type: SegmentBinding Symbol

\( \sum(i^2, i = 0..n) \)

\( \frac{3\ n + 3n + n}{6} \)

Type: Fraction Polynomial Integer

\( \frac{3\ n^2 + 2n + n}{6} \)
\begin{patch}{SegmentBindingXmpPageEmpty3}
\begin{paste}{SegmentBindingXmpPageEmpty3}{SegmentBindingXmpPagePatch3}
\pastebutton{SegmentBindingXmpPageEmpty3}{\showpaste}
\tab{5}\spadgraph{draw(x**2, x = -2..2)}
\end{paste}\end{patch}

\begin{patch}{SegmentBindingXmpPagePatch4}
\begin{paste}{SegmentBindingXmpPageFull4}{SegmentBindingXmpPageEmpty4}
\pastebutton{SegmentBindingXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{sb := y = 1/2..3/2\bound{sb }}
\indentrel{3}\begin{verbatim}
1 3
\(4)\ y = ()..()
2 2
Type: SegmentBinding Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SegmentBindingXmpPageEmpty4}
\begin{paste}{SegmentBindingXmpPageEmpty4}{SegmentBindingXmpPagePatch4}
\pastebutton{SegmentBindingXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{sb := y = 1/2..3/2\bound{sb }}
\end{paste}\end{patch}

\begin{patch}{SegmentBindingXmpPagePatch5}
\begin{paste}{SegmentBindingXmpPageFull5}{SegmentBindingXmpPageEmpty5}
\pastebutton{SegmentBindingXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{variable(sb)\free{sb }}
\indentrel{3}\begin{verbatim}
(5)\ y
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SegmentBindingXmpPageEmpty5}
\begin{paste}{SegmentBindingXmpPageEmpty5}{SegmentBindingXmpPagePatch5}
\pastebutton{SegmentBindingXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{variable(sb)\free{sb }}
\end{paste}\end{patch}

\begin{patch}{SegmentBindingXmpPagePatch6}
\begin{paste}{SegmentBindingXmpPageFull6}{SegmentBindingXmpPageEmpty6}
\pastebutton{SegmentBindingXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{segment(sb)\free{sb }}
\indentrel{3}\begin{verbatim}
1 3
\(6)\ ()..()
2 2
Type: Segment Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.97. set.ht

Set

⇒ “notitle” (ListXmpPage) 3.64 on page 866

— set.ht —

The \texttt{Set} domain allows one to represent explicit finite sets of values. These are similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values \ldots

\spadcommand{s := \text{set} [x^2-1, y^2-1, z^2-1] \free{s}}

or by using a collect form, just as for lists. In either case, the set is formed from a finite collection of values.

\spadcommand{t := \text{set} [x^i - i+1 \text{ for } i \text{ in } 2..10 \text{ | prime? } i] \free{t}}

The basic operations on sets are \spadfunFrom{intersect}{Set}, \spadfunFrom{union}{Set}, \spadfunFrom{difference}{Set}, and \spadfunFrom{symmetricDifference}{Set}.

\spadcommand{i := \text{intersect}(s, t) \free{s t}\bound{i}}
\spadpaste{u := union(s,t) \free{s t}\bound{u}}
\)
\xtc{
The set \spad{difference(s,t)} contains those members of \spad{s} which are not in \spad{t}.
}\{
\spadpaste{difference(s,t) \free{s t}}
\)
\xtc{
The set \spad{symmetricDifference(s,t)} contains those elements which are in \spad{s} or \spad{t} but not in both.
}\{
\spadpaste{symmetricDifference(s,t) \free{s t}}
\)
\xtc{
Set membership is tested using the \spadfunFrom{member?}{Set} operation.
}\{
\spadpaste{member?(y, s) \free{s}}
\)
\xtc{
}\{
\spadpaste{member?((y+1)*(y-1), s) \free{s}}
\)
\xtc{
The \spadfunFrom{subset?}{Set} function determines whether one set is a subset of another.
}\{
\spadpaste{subset?(i, s) \free{i s}}
\)
\xtc{
}\{
\spadpaste{subset?(u, s) \free{u s}}
\)
\xtc{
When the base type is finite, the absolute complement of a set is defined.
This finds the set of all multiplicative generators of \spadtype{PrimeField 11}---the integers mod \spad{11}.
}\{
\spadpaste{gs := set [g for i in 1..11 | primitive?(g := i::PF 11)] \bound{gs}}
\)
\xtc{
The following values are not generators.
}\{
\spadpaste{complement gs \free{gs}}
\)
Often the members of a set are computed individually; in addition, values can be inserted or removed from a set over the course of a computation.

There are two ways to do this:

One is to view a set as a data structure and to apply updating operations.

The other way is to view a set as a mathematical entity and to create new sets from old.

For more information about lists, see \downlink{'List'}{ListXmpPage}\ignore{List}.
\indentrel{3}\begin{verbatim}
2 2 2
(1) {x - 1, y - 1, z - 1}
Type: Set Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SetXmpPagePatch2}
\begin{paste}{SetXmpPageFull2}{SetXmpPageEmpty2}
\indentrel{3}\begin{verbatim}
2 3 5 7
(2) {x - 1, x - 2, x - 4, x - 6}
Type: Set Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SetXmpPagePatch3}
\begin{paste}{SetXmpPageFull3}{SetXmpPageEmpty3}
\indentrel{3}\begin{verbatim}
2
(3) {x - 1}
Type: Set Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SetXmpPagePatch4}
\begin{verbatim}
2 3 5 7 2 2
\end{verbatim}

Type: Set Polynomial Integer
\begin{patch}{SetXmpPagePatch7}
\begin{paste}{SetXmpPageFull7}{SetXmpPageEmpty7}
\pastebutton{SetXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{member?(y, s)}\free{s }
\indentrel{3}\begin{verbatim}
(7) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPageEmpty7}
\begin{paste}{SetXmpPageEmpty7}{SetXmpPagePatch7}
\pastebutton{SetXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{member?(y, s)}\free{s }
\end{paste}\end{patch}

\begin{patch}{SetXmpPagePatch8}
\begin{paste}{SetXmpPageFull8}{SetXmpPageEmpty8}
\pastebutton{SetXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{member?((y+1)*(y-1), s)}\free{s }
\indentrel{3}\begin{verbatim}
(8) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPageEmpty8}
\begin{paste}{SetXmpPageEmpty8}{SetXmpPagePatch8}
\pastebutton{SetXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{member?((y+1)*(y-1), s)}\free{s }
\end{paste}\end{patch}

\begin{patch}{SetXmpPagePatch9}
\begin{paste}{SetXmpPageFull9}{SetXmpPageEmpty9}
\pastebutton{SetXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{subset?(i, s)}\free{i \ s}
\indentrel{3}\begin{verbatim}
(9) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPageEmpty9}
\begin{paste}{SetXmpPageEmpty9}{SetXmpPagePatch9}
\pastebutton{SetXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{subset?(i, s)}\free{i \ s}
\end{paste}\end{patch}

\begin{patch}{SetXmpPagePatch10}
\begin{paste}{SetXmpPageFull10}{SetXmpPageEmpty10}
\pastebutton{SetXmpPageFull10}{\hidepaste}
\end{paste}\end{patch}
\spadcommand{subset?(u, s) free {u s}}
\begin{verbatim}
(10) false
Type: Boolean
\end{verbatim}
\begin{verbatim}
(11) {2,6,7,8}
Type: Set PrimeField 11
\end{verbatim}
\begin{verbatim}
(12) {1,3,4,5,9,10,0}
Type: Set PrimeField 11
\end{verbatim}
\begin{verbatim}
(2) {i for i in 1..5}
Type: Set Integer
\end{verbatim}
\begin{verbatim}
(13) \{1,4,9,16,25\}
Type: Set PositiveInteger
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPagePatch13}
\begin{paste}{SetXmpPageFull13}{SetXmpPageEmpty13}
\pastebutton{SetXmpPageFull13}{\showpaste}
\begin{verbatim}
(13) \{1,4,9,16,25\}
Type: Set PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPageEmpty13}
\begin{paste}{SetXmpPageEmpty13}{SetXmpPagePatch13}
\pastebutton{SetXmpPageEmpty13}{\hidepaste}
\spadcommand{a := set [i**2 for i in 1..5]\bound{a}}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPagePatch14}
\begin{paste}{SetXmpPageFull14}{SetXmpPageEmpty14}
\pastebutton{SetXmpPageFull14}{\hidepaste}
\spadcommand{insert!(32, a)\free{a}\bound{ainsert}}
\indentrel{3}
\begin{verbatim}
(14) \{1,4,9,16,25,32\}
Type: Set PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPageEmpty14}
\begin{paste}{SetXmpPageEmpty14}{SetXmpPagePatch14}
\pastebutton{SetXmpPageEmpty14}{\showpaste}
\spadcommand{insert!(32, a)\free{a}\bound{ainsert}}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPagePatch15}
\begin{paste}{SetXmpPageFull15}{SetXmpPageEmpty15}
\pastebutton{SetXmpPageFull15}{\hidepaste}
\spadcommand{remove!(25, a)\free{a}\bound{aremove}}
\indentrel{3}
\begin{verbatim}
(15) \{1,4,9,16,32\}
Type: Set PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPageEmpty15}
\begin{paste}{SetXmpPageEmpty15}{SetXmpPagePatch15}
\pastebutton{SetXmpPageEmpty15}{\hidepaste}
\spadcommand{remove!(25, a)\free{a}\bound{aremove}}
\end{paste}
\end{patch}
\begin{patch}{SetXmpPagePatch16}
\begin{paste}{SetXmpPageFull16}{SetXmpPageEmpty16}
\pastebutton{SetXmpPageFull16}{\hidepaste}
\spadcommand{a\free{aremove ainsert}}
\indentrel{3}
\begin{verbatim}
(16) \{1,4,9,16,32\}
\end{verbatim}
\end{paste}
\end{patch}
3.97. SET.HT

```
Type: Set PositiveInteger

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPageEmpty16}
\begin{paste}{SetXmpPageEmpty16}{SetXmpPagePatch16}
\pastedisplay{SetXmpPageEmpty16}{\showpaste}
\begin{verbatim}
(17) \{1,4,9,16,25\}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPagePatch18}
\begin{paste}{SetXmpPageFull18}{SetXmpPageEmpty18}
\pastedisplay{SetXmpPageFull18}{\hidepaste}
\begin{verbatim}
(19) \{1,4,9,16,32\}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SetXmpPagePatch19}
\begin{paste}{SetXmpPageFull19}{SetXmpPageEmpty19}
\pastedisplay{SetXmpPageFull19}{\hidepaste}
\begin{verbatim}
(20) \{1,4,9,16,32\}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
```

Type: Set PositiveInteger
\begin{verbatim}
(20) {1,4,9,16,25}
Type: Set PositiveInteger
\end{verbatim}
The `SingleInteger` domain is intended to provide support in Axiom for machine integer arithmetic. It is generally much faster than (bignum) `Integer` arithmetic but suffers from a limited range of values. Since Axiom can be implemented on top of various dialects of Lisp, the actual representation of small integers may not correspond exactly to the host machines integer representation.

In the CCL implementation of Axiom (Release 2.1 onwards) the underlying representation of `SingleInteger` is the same as `Integer`. The underlying Lisp primitives treat machine-word sized computations specially.

You can discover the minimum and maximum values in your implementation by using `min` and `max`

\begin{verbatim}
min($)SingleInteger
max($)SingleInteger
\end{verbatim}

To avoid confusion with `Integer`, which is the default type for integers, you usually need to work with declared variables (``Declarations`` in Section 2.3) ...

\begin{page}{SingleIntegerXmpPage}{SingleInteger}
\beginscroll
\end{page}
You can discover the minimum and maximum values in your implementation by using \spadfunFrom{min}{SingleInteger} and \spadfunFrom{max}{SingleInteger}.

\spadpaste{min()$\text{SingleInteger}$}
\xspace
\spadpaste{max()$\text{SingleInteger}$}
\xspace

To avoid confusion with \axiomType{Integer}, which is the default type for integers, you usually need to work with declared variables (\downlink{``Declarations''}{ugTypesDeclarePage} in Section 2.3)\ldots

\spadpaste{a := 1234 :: SingleInteger \bound{a}}

or use package calling (\downlink{``Package Calling and Target Types''}{ugTypesPkgCallPage} in Section 2.9).

\spadpaste{b := 124$\text{SingleInteger}$ \bound{b}}

You can add, multiply and subtract \axiomType{SingleInteger} objects, and ask for the greatest common divisor (\spad{gcd}).

\spadpaste{gcd(a,b) \free{a}\free{b}}

The least common multiple (\spad{ lcm}) is also available.

\spadpaste{lcm(a,b) \free{a}\free{b}}

Operations \spadfunFrom{mulmod}{SingleInteger}, \spadfunFrom{addmod}{SingleInteger}, \spadfunFrom{submod}{SingleInteger}, and \spadfunFrom{invmod}{SingleInteger} are similar---they provide arithmetic modulo a given small integer. Here is \spad{5 * 6 \ttmod 13}.

\spadpaste{mulmod(5,6,13)$\text{SingleInteger}$}

To reduce a small integer modulo a prime, use \spadfunFrom{positiveRemainder}{SingleInteger}. 

Operations \spadfunFrom{And}{SingleInteger}, \spadfunFrom{Or}{SingleInteger}, \spadfunFrom{xor}{SingleInteger}, and \spadfunFrom{Not}{SingleInteger} provide bit level operations on small integers.

\begin{verbatim}
\spad{And(3,4)$\spad{\text{SingleInteger}}}
\end{verbatim}

Use \spad{shift(int,numToShift)} to shift bits, where \spad{i} is shifted left if \spad{numToShift} is positive, right if negative.

\begin{verbatim}
\spad{shift(1,4)$\spad{\text{SingleInteger}}}
\end{verbatim}

\begin{verbatim}
\spad{shift(31,-1)$\spad{\text{SingleInteger}}}
\end{verbatim}

Many other operations are available for small integers, including many of those provided for \axiomType{Integer}. To see the other operations, use the Browse Hyperdoc facility (\downlink{``Browse''}{ugBrowsePage} in Section 14\ignore{ugBrowse}).
\begin{patch}{SingleIntegerXmpPagePatch2}
\begin{paste}{SingleIntegerXmpPageFull2}{SingleIntegerXmpPageEmpty2}
\pastebutton{SingleIntegerXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{max()$SingleInteger}$
\indentrel{3}\begin{verbatim}
(2) 134217727
Type: SingleInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPageEmpty2}
\begin{paste}{SingleIntegerXmpPageEmpty2}{SingleIntegerXmpPagePatch2}
\pastebutton{SingleIntegerXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{max()$SingleInteger}$
\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPagePatch3}
\begin{paste}{SingleIntegerXmpPageFull3}{SingleIntegerXmpPageEmpty3}
\pastebutton{SingleIntegerXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{a := 1234 :: SingleInteger\bound{a }}
\indentrel{3}\begin{verbatim}
(3) 1234
Type: SingleInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPageEmpty3}
\begin{paste}{SingleIntegerXmpPageEmpty3}{SingleIntegerXmpPagePatch3}
\pastebutton{SingleIntegerXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{a := 1234 :: SingleInteger\bound{a }}
\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPagePatch4}
\begin{paste}{SingleIntegerXmpPageFull4}{SingleIntegerXmpPageEmpty4}
\pastebutton{SingleIntegerXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{b := 124$SingleInteger\bound{b }}
\indentrel{3}\begin{verbatim}
(4) 124
Type: SingleInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPageEmpty4}
\begin{paste}{SingleIntegerXmpPageEmpty4}{SingleIntegerXmpPagePatch4}
\pastebutton{SingleIntegerXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{b := 124$SingleInteger\bound{b }}
\end{paste}\end{patch}
\begin{patch}{SingleIntegerXmpPagePatch5}
\begin{verbatim}
(5)  2
Type: SingleInteger
\end{verbatim}

\begin{verbatim}
(6)  76508
Type: SingleInteger
\end{verbatim}

\begin{verbatim}
(7)  4
Type: SingleInteger
\end{verbatim}
\begin{verbatim}
(8) 11
Type: SingleInteger
\end{verbatim}
\end{patch}

\begin{patch}{SingleIntegerXmpPagePatch9}
\begin{paste}{SingleIntegerXmpPageFull9}{SingleIntegerXmpPageEmpty9}
\pastebutton{SingleIntegerXmpPageFull9}{\hidepaste}
\indentrel{3}egin{verbatim}
(9) 0
Type: SingleInteger
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{SingleIntegerXmpPagePatch10}
\begin{paste}{SingleIntegerXmpPageFull10}{SingleIntegerXmpPageEmpty10}
\pastebutton{SingleIntegerXmpPageFull10}{\hidepaste}
\indentrel{3}egin{verbatim}
(10) 16
Type: SingleInteger
\end{verbatim}
\end{paste}
\end{patch}
3.99 sqmatrix.ht

SquareMatrix

\Rightarrow “notitle” (MatrixXmpPage) 3.75 on page 984
\Rightarrow “notitle” (ugTypesWritingModesPage) 7 on page 1637
\Rightarrow “notitle” (ugTypesExposePage) 7 on page 1699

The top level matrix type in Axiom is \spadtype{Matrix} (see \downlink{`Matrix'}{MatrixXmpPage}\ignore{Matrix}), which provides basic arithmetic and linear algebra functions. However, since the matrices can be of any size it is not true that any pair can be added or multiplied. Thus \spadtype{Matrix} has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in other algebraic contexts. In this case, \spadtype{SquareMatrix} should be used. The domain \spadtype{SquareMatrix(n,R)} gives the ring of \spad{n} by \spad{n} square matrices over \spad{R}.

\xtc{Since \spadtype{SquareMatrix} is not normally exposed at the top level, you must expose it before it can be used.}
\spadpaste{)set expose add constructor SquareMatrix \bound{SQ}}

\xtc{Once \spad{SQMATRIX} has been exposed, values can be created using the \spadfunFrom{squareMatrix}{SquareMatrix}
function.
}\{m := squareMatrix [[1, -\%i], [\%i, 4]] \bound{m}\free{SQ}}
\xtc{}
The usual arithmetic operations are available.
}\{m*m - m \free{m}}
\xtc{}
Square matrices can be used where ring elements are required.
For example, here is a matrix with matrix entries.
}\{mm := squareMatrix [[m, 1], [1-m, m**2]] \free{m}\bound{mm}}
\xtc{}
Or you can construct a polynomial with square matrix coefficients.
}\{p := (x + m)**2 \free{m}\bound{p}}
\xtc{}
This value can be converted to a square matrix with polynomial coefficients.
}\{p::SquareMatrix(2, ?) \free{p}}
\}

For more information on related topics, see
\downlink{``Modes''}{ugTypesWritingModesPage}
in Section 2.2.4\ignore{ugTypesWritingModes},
\downlink{``Exposing Domains and Packages''}{ugTypesExposePage}
in Section 2.11\ignore{ugTypesExpose}, and
\downlink{`Matrix'}{MatrixXmpPage}\ignore{Matrix}.
\showBlurb{SquareMatrix}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
1 - %i
(1)
%i 4
Type: SquareMatrix(2,Complex Integer)
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
1 - 4%i
(2)
4%i 13
Type: SquareMatrix(2,Complex Integer)
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
1 - %i 1 0
(3)
%i 4 0 1
0 %i 2 - 5%i
- %i - 3 5%i 17
\end{verbatim}
Type: SquareMatrix(2, SquareMatrix(2, Complex Integer))

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SqMatrixXmpPagePatch5}
\begin{paste}{SqMatrixXmpPageFull5}{SqMatrixXmpPageEmpty5}
\pastebutton{SqMatrixXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{p := (x + m)**2\free{m }\bound{p }}
\indentrel{3}\begin{verbatim}
2 2 - 2%i 2 - 5%i
(4) x + x +
    2%i 8 5%i 17
Type: Polynomial SquareMatrix(2, Complex Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SqMatrixXmpPagePatch6}
\begin{paste}{SqMatrixXmpPageFull6}{SqMatrixXmpPageEmpty6}
\pastebutton{SqMatrixXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{p::SquareMatrix(2, ?)\free{p }}
\indentrel{3}\begin{verbatim}
2
(5) x + 2x + 2 - 2%i x - 5%i
2
 2%i x + 5%i x + 8x + 17
Type: SquareMatrix(2, Polynomial Complex Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
3.100 sregset.ht

SquareFreeRegularTriangularSet

The \spadtype{SquareFreeRegularTriangularSet} domain constructor implements square-free regular triangular sets. See the \spadtype{RegularTriangularSet} domain constructor for general regular triangular sets. Let \{t1, \ldots, tm\} be a regular triangular set consisting of polynomials \{t1, \ldots, tm\} ordered by increasing main variables. The regular triangular set \{t1, \ldots, tm\} is square-free if \{t1, \ldots, tm\} is empty or if \{t1, \ldots, tm-1\} is square-free and if the polynomial \{tm\} is square-free as a univariate polynomial with coefficients in the tower of simple extensions associated with \{t1, \ldots, tm-1\}.

The main interest of square-free regular triangular sets is that their associated towers of simple extensions are product of fields. Consequently, the saturated ideal of a square-free regular triangular set is radical. This property simplifies some of the operations related to regular triangular sets. However, building square-free regular triangular sets is generally more expensive than building general regular triangular sets.

As the \spadtype{RegularTriangularSet} domain constructor, the \spadtype{SquareFreeRegularTriangularSet} domain constructor also implements a method for solving polynomial systems by means of regular triangular sets. This is in fact the same method with some adaptations to take into account the fact that the computed regular chains are square-free. Note that it is also possible to pass from a decomposition into general regular triangular sets to a decomposition into square-free regular triangular sets. This conversion is used internally by the \spadtype{LazardSetSolvingPackage} package constructor.

\bf{N.B.} When solving polynomial systems with the \spadtype{SquareFreeRegularTriangularSet} domain constructor or the \spadtype{LazardSetSolvingPackage} package constructor, decompositions have no redundant components. See also \spadtype{LexTriangularPackage} and \spadtype{ZeroDimensionalSolvePackage} for the case of algebraic systems with a finite number of (complex) solutions.

We shall explain now how to use the constructor
This constructor takes four arguments. The first one, \texttt{R}, is the coefficient ring of the polynomials; it must belong to the category \spadtype{GcdDomain}. The second one, \texttt{E}, is the exponent monoid of the polynomials; it must belong to the category \spadtype{OrderedAbelianMonoidSup}. The third one, \texttt{V}, is the ordered set of variables; it must belong to the category \spadtype{OrderedSet}. The last one is the polynomial ring; it must belong to the category \spadtype{RecursivePolynomialCategory(R,E,V)}. The abbreviation for \spadtype{SquareFreeRegularTriangularSet} is \spadtype{SREGSET}.

Note that the way of understanding triangular decompositions is detailed in the example of the \spadtype{RegularTriangularSet} constructor.

\xtc{Let us illustrate the use of this constructor with one example (Donati-Traverso). Define the coefficient ring.}
\spadpaste{R := Integer \bound{R}}
\xtc{Define the list of variables,}
\spadpaste{ls : List Symbol := [x,y,z,t] \bound{ls}}
\xtc{and make it an ordered set;}
\spadpaste{V := OVAR(ls) \free{ls} \bound{V}}
\xtc{then define the exponent monoid.}
\spadpaste{E := IndexedExponents V \free{V} \bound{E}}
\xtc{Define the polynomial ring.}
\spadpaste{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
\xtc{Let the variables be polynomial.}
\spadpaste{x: P := 'x \free{P} \bound{x}}
Now call the \spadtype{SquareFreeRegularTriangularSet} domain constructor.
}\{ 
\spadpaste{ST := SREGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{ST} } 
\}
\xtc{ Define a polynomial system. }
}\{ 
\spadpaste{p1 := x ** 31 - x ** 6 - x - y \free{x} \free{y} \bound{p1}} 
\}
\xtc{ }
\spadpaste{p2 := x ** 8 - z \free{x} \free{z} \bound{p2}} 
\}
\xtc{ }
\spadpaste{p3 := x ** 10 - t \free{x} \free{t} \bound{p3}} 
\}
\xtc{ }
\spadpaste{lp := [p1, p2, p3] \free{p1} \free{p2} \free{p3} \bound{lp}} 
\}
\xtc{ First of all, let us solve this system in the sense of Kalkbrener. }
}\{ 
\spadpaste{zeroSetSplit(lp)$ST \free{lp} \free{ST}} 
\}
\xtc{ And now in the sense of Lazard (or Wu and other authors). }
}\{ 
\spadpaste{zeroSetSplit(lp,false)$ST \free{lp} \free{ST} \bound{lts}} 
\}
Now to see the difference with the \spadtype{RegularTriangularSet} domain constructor,
\xtc{
we define:
}
\spadpaste{T := REGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{T} }
}
\xtc{
and compute:
}
\spadpaste{lts := zeroSetSplit(lp,false)$T \free{lp} \free{T} \bound{lts}}
}

If you look at the second set in both decompositions in the sense of Lazard, you will see that the polynomial with main variable \textbf{y} is not the same.

Let us understand what has happened.
\xtc{
We define:
}
\spadpaste{ts := lts.2 \free{lts} \bound{ts}}
}
\xtc{
}
\spadpaste{pol := select(ts,'y)$T \free{ts} \free{y} \free{T} \bound{pol}}
}
\xtc{
}
\spadpaste{tower := collectUnder(ts,'y)$T \free{ts} \free{y} \free{T} \bound{tower}}
}
\xtc{
}
\spadpaste{pack := RegularTriangularSetGcdPackage(R,E,V,P,T) \free{R} \free{E} \free{V} \free{P} \free{T} \bound{pack}}
}
\xtc{
Then we compute:
}
\spadpaste{toseSquareFreePart(pol,tower)$pack \free{pol} \free{pack}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch1}
\begin{verbatim}
R := Integer
(1) Integer
Type: Domain
\end{verbatim}

\begin{verbatim}
ls := [x,y,z,t]
(2) [x,y,z,t]
Type: List Symbol
\end{verbatim}

\begin{verbatim}
V := OVAR(ls)
(3) OrderedVariableList [x,y,z,t]
Type: Domain
\end{verbatim}
The document contains code examples from a programming language, specifically using the `spadcommand` and `verbatim` blocks to display code and its output. Here is the content in a natural text representation:

```
\tab{5}\spadcommand{E := IndexedExponents V\free{V}\bound{E}}
\indentrel{3}\begin{verbatim}(4) IndexedExponents OrderedVariableList [x,y,z,t]
 Type: Domain\end{verbatim}
\end{verbatim}
\end{verbatim}

\begin{verbatim}(5)
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
 Type: Domain\end{verbatim}
\end{verbatim}
\end{verbatim}

\begin{verbatim}(6) x
 Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])\end{verbatim}
\end{verbatim}
```

The code examples illustrate the creation of an indexed exponents list and a new sparse multivariate polynomial, with each step showing the type of the resulting object. The output is presented in a natural text format, highlighting the code and its results.
\( y \)  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( z \)  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( t \)  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

\( ST := \text{SREGSET}(R,E,V,P) \)
\begin{verbatim}
(10)
\text{SquareFreeRegularTriangularSet}\left(\text{Integer},\text{IndexedExponents OrderedVariableList [x,y,z,t]},\text{OrderedVariableList [x,y,z,t]},\text{NewSparseMultivariatePolynomial}\left(\text{Integer},\text{OrderedVariableList [x,y,z,t]}\right)\right)
\text{Type: Domain}
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{SqFreeRegTriangSetXmpPageEmpty10}
\begin{paste}{SqFreeRegTriangSetXmpPageFull10}{SqFreeRegTriangSetXmpPageEmpty10}
\pastebutton{SqFreeRegTriangSetXmpPageFull10}{\showpaste}
\tab{5}\text{spadcommand}\left(\text{ST} := \text{SREGSET}\left(\text{R,E,V,P}\right)\right)\free{\text{R }}\free{\text{E }}\free{\text{V }}\free{\text{P }}\text{\bound{ST}}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SqFreeRegTriangSetXmpPagePatch11}
\begin{paste}{SqFreeRegTriangSetXmpPageFull11}{SqFreeRegTriangSetXmpPageEmpty11}
\pastebutton{SqFreeRegTriangSetXmpPageFull11}{\hidepaste}
\tab{3}\text{spadcommand}\left(\text{p1} := \text{x} \text{**} 31 - \text{x} \text{**} 6 - \text{y}\right)\free{\text{x}}\free{\text{y}}\text{\bound{p1}}\end{verbatim}
\indentrel{3}8
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SqFreeRegTriangSetXmpPageEmpty11}
\begin{paste}{SqFreeRegTriangSetXmpPageFull11}{SqFreeRegTriangSetXmpPageEmpty11}
\pastebutton{SqFreeRegTriangSetXmpPageFull11}{\showpaste}
\tab{5}\text{spadcommand}\left(\text{p2} := \text{x} \text{**} 8 - \text{z}\right)\free{\text{x}}\free{\text{z}}\text{\bound{p2}}\end{verbatim}
\indentrel{3}8
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SqFreeRegTriangSetXmpPagePatch12}
\begin{paste}{SqFreeRegTriangSetXmpPageFull12}{SqFreeRegTriangSetXmpPageEmpty12}
\pastebutton{SqFreeRegTriangSetXmpPageFull12}{\hidepaste}
\tab{5}\text{spadcommand}\left(\text{p2} := \text{x} \text{**} 8 - \text{z}\right)\free{\text{x}}\free{\text{z}}\text{\bound{p2}}\end{verbatim}
\indentrel{3}8
\indentrel{-3}\end{patch}\end{patch}
\begin{patch}{SqFreeRegTriangSetXmpPagePatch13}
\begin{verbatim}
10
(13) x - t
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
31 6 8 10
(14) [x - x - y, x - z, x - t]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
(15) [5 4 2 3 8 5 3 2
  {z - t, t z y + 2z y - t + 2t + t - t,
   4
   (t - t)x - t y - z }
]
Type: List SquareFreeRegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}

CHAPTER 3. HYPERDOC PAGES

\begin{paste}{SqFreeRegTriangSetXmpPageEmpty15}{SqFreeRegTriangSetXmpPagePatch15}
\pastebutton{SqFreeRegTriangSetXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{zeroSetSplit(lp)$ST\free{lp }\free{ST }}
\end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch16}
\begin{paste}{SqFreeRegTriangSetXmpPageFull16}{SqFreeRegTriangSetXmpPageEmpty16}
\pastebutton{SqFreeRegTriangSetXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{zeroSetSplit(lp,false)$ST\free{lp }\free{ST }\bound{lts }}
\indentrel{3}\begin{verbatim}
(16) 
[  
5 4 2 3 8 5 3 2 
{z - t , t z y + 2z y - t + 2t + t - t ,  
4 2 
(t - t)x - t y - z } 
,  
3 5 2 2 
{t - 1,z - t,t y + z ,z x - t}, \{t,z,y,x}\] 
Type: List SquareFreeRegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPageEmpty16}
\begin{paste}{SqFreeRegTriangSetXmpPageEmpty16}{SqFreeRegTriangSetXmpPagePatch16}
\pastebutton{SqFreeRegTriangSetXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{zeroSetSplit(lp,false)$ST\free{lp }\free{ST }\bound{lts }}
\end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch17}
\begin{paste}{SqFreeRegTriangSetXmpPageFull17}{SqFreeRegTriangSetXmpPageEmpty17}
\pastebutton{SqFreeRegTriangSetXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{T := REGSET(R,E,V,P)$free{R }\free{E }\free{V }\free{P }\bound{T }}
\indentrel{3}\begin{verbatim}
(17) 
RegularTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])) 
Type: Domain
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPageEmpty17}
\begin{paste}{SqFreeRegTriangSetXmpPageEmpty17}{SqFreeRegTriangSetXmpPagePatch17}
\pastebutton{SqFreeRegTriangSetXmpPageEmpty17}{\showpaste}
\tab{5}\spadcommand{T := REGSET(R,E,V,P)$free{R }\free{E }\free{V }\free{P }\bound{T }}
\end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch18}

\begin{verbatim}
(18)
\[
\begin{array}{c}
5 4 2 3 8 5 3 2 \\
4 2 \\
5 2 3 2 \\
3 5 2 3 2 \\
\{t - 1,z - t,t z y + 2z y + 1,z x - t, \\
\}\}
\end{array}
\right.
\]
\end{verbatim}

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}
\end{patch}

\begin{verbatim}
(19) \{t - 1,z - t,t z y + 2z y + 1,z x - t, \\
\}\}
\end{verbatim}

Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t], NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}
\end{patch}

\begin{verbatim}
(20) t z y + 2z y + 1
\end{verbatim}

Type: Union(NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch21}
\begin{paste}{SqFreeRegTriangSetXmpPageFull21}{SqFreeRegTriangSetXmpPageEmpty21}
\pastebutton{SqFreeRegTriangSetXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{pol := select(ts,'y)$T\free{ts }\free{y }\free{T }\bound{pol }} \end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPageEmpty21}
\begin{paste}{SqFreeRegTriangSetXmpPageEmpty21}{SqFreeRegTriangSetXmpPagePatch21}
\pastebutton{SqFreeRegTriangSetXmpPageEmpty21}{\showpaste}
\tab{5}\spadcommand{tower := collectUnder(ts,'y)$T\free{ts }\free{y }\free{T }\bound{tower }} \end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch22}
\begin{paste}{SqFreeRegTriangSetXmpPageFull22}{SqFreeRegTriangSetXmpPageEmpty22}
\pastebutton{SqFreeRegTriangSetXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{pack := RegularTriangularSetGcdPackage(R,E,V,P,T)$\free{R }\free{E }\free{V }\free{P }\free{T }} \end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPageEmpty22}
\begin{paste}{SqFreeRegTriangSetXmpPageEmpty22}{SqFreeRegTriangSetXmpPagePatch22}
\pastebutton{SqFreeRegTriangSetXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{pack := RegularTriangularSetGcdPackage(R,E,V,P,T)$\free{R }\free{E }\free{V }\free{P }\free{T }} \end{paste}\end{patch}

\begin{patch}{SqFreeRegTriangSetXmpPagePatch23}
\begin{paste}{SqFreeRegTriangSetXmpPageFull23}{SqFreeRegTriangSetXmpPageEmpty23}
\pastebutton{SqFreeRegTriangSetXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{pack := RegularTriangularSetGcdPackage(R,E,V,P,T)$\free{R }\free{E }\free{V }\free{P }\free{T }} \end{paste}\end{patch}
3.101. STBL.HT

\begin{verbatim}
(23) [[val= t y + z ,tower= {t - 1,z - t}]]
Type: List Record(val: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]),tower: Regular expression,pack: Record(2: 3, 3: 5))
\end{verbatim}

\begin{verbatim}
(23) [[val= t y + z ,tower= {t - 1,z - t}]]
Type: List Record(val: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]),tower: Regular expression,pack: Record(2: 3, 3: 5))
\end{verbatim}

3.101 stbl.ht

SparseTable

⇒ “notitle” (TableXmpPage) 3.106 on page 1298
⇒ “notitle” (GeneralSparseTableXmpPage) 3.52 on page 687

\begin{verbatim}
\spad{t: SparseTable(Integer, String, "Try again!") := table()
\bound{t}}
\end{verbatim}

\begin{verbatim}
\spad{t.3 := "Number three" \free{t}\bound{t1}}
\end{verbatim}

% The \spadtype{SparseTable} domain provides a general purpose
table type with default entries.
\begin{verbatim}
\spad{t: SparseTable(Integer, String, "Try again!") := table()
\bound{t}}
\end{verbatim}

Entries can be stored in the table.
\begin{verbatim}
\spad{t.3 := "Number three" \free{t}\bound{t1}}
\end{verbatim}
These values can be retrieved as usual, but if a look up fails the default entry will be returned.

To see which values are explicitly stored, the functions can be used.

If a specific table representation is required, the constructor should be used. The domain $\text{SparseTable}(K, E, \text{dflt})$ is equivalent to $\text{GeneralSparseTable}(K,E, \text{Table}(K,E), \text{dflt})$.

For more information, see \downlink{`Table'}{TableXmpPage} and \downlink{`GeneralSparseTable'}{GeneralSparseTableXmpPage}.

\showBlurb{SparseTable}

\endscroll

\autobuttons
\end{page}

\begin{patch}{SparseTableXmpPagePatch1}
\begin{paste}{SparseTableXmpPageFull1}{SparseTableXmpPageEmpty1}
\pastebutton{SparseTableXmpPageFull1}{\hidepaste}
\spadcommand(t: SparseTable(Integer, String, "Try again!") := table())\bound{t}\\
\indentrel{3}
(1) table()
\end{verbatim}
\indentrel{3}Type: SparseTable(Integer, String, Try again!)
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{SparseTableXmpPageEmpty1}
\begin{paste}{SparseTableXmpPageEmpty1}{SparseTableXmpPagePatch1}
\pastebutton{SparseTableXmpPageEmpty1}{\showpaste}
\spadcommand(t: SparseTable(Integer, String, "Try again!") := table())\bound{t}\\
\indentrel{3}\end{patch}
\begin{verbatim}
(2) "Number three"
Type: String
\end{verbatim}

\begin{verbatim}
(3) "Number four"
Type: String
\end{verbatim}

\begin{verbatim}
(4) "Number three"
Type: String
\end{verbatim}
"Try again!"

Type: String

[4,3]

Type: List Integer

["Number four","Number three"]

Type: List String
3.102 stream.ht

Stream

A \spadtype{Stream} object is represented as a list whose last element contains the wherewithal to create the next element, should it ever be required.

\begin{verbatim}
\spad{ints := \[i for i in 0..\] \bound{ints}}
\end{verbatim}

By default, ten stream elements are calculated. This number may be changed to something else by the system command \spadcmd{)set streams calculate}. For the display purposes of this book, we have chosen a smaller value.

More generally, you can construct a stream by specifying its initial value and a function which, when given an element, creates the next element.

\begin{verbatim}
\spad{f : List \text{INT} -> List \text{INT} \bound{fdec}}
\end{verbatim}

\begin{verbatim}
\spad{f \ x == \[x.1 + x.2, x.1\] \bound{f}\free{fdec}}
\end{verbatim}

\begin{verbatim}
\spad{fibs := \[i.2 for i in \[generate(f,\[1,1\)]\]] \bound{fibs}\free{f}}
\end{verbatim}

You can create the stream of odd non-negative integers by either filtering them from the integers, or by evaluating an expression for each integer.

\begin{verbatim}
\spad{\[i for i in ints \ where odd? i\] \free{ints}}
\end{verbatim}
You can accumulate the initial segments of a stream using the \spadfunFrom{scan}{StreamFunctions2} operation.
}\)
\xtc{
The corresponding elements of
two or more streams can be combined in this way.
}\)
\xtc{
Many operations similar to those applicable to lists are available for streams.
}\)
\xtc{
The packages \spadtype{StreamFunctions1},
\spadtype{StreamFunctions2} and
\spadtype{StreamFunctions3} export some useful stream manipulation operations.
For more information, see \downlink{``Creating Lists and Streams with Iterators''}{ugLangItsPage} in Section 5.5\ignore{ugLangIts},
\downlink{``Working with Power Series''}{ugProblemSeriesPage} in Section 8.9\ignore{ugProblemSeries},
\downlink{`ContinuedFraction'}{ContinuedFractionXmpPage}
\ignore{ContinuedFraction}, and
\downlink{`List'}{ListXmpPage}\ignore{List}.
}%
\begin{patch}{StreamXmpPagePatch1}
\begin{paste}{StreamXmpPageFull1}{StreamXmpPageEmpty1}
\pastebutton{StreamXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{ints := [i for i in 0..]}\bound{ints }
\indentrel{3}\begin{verbatim}
(1) [0,1,2,3,4,5,6,7,8,9,...]
Type: Stream NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{StreamXmpPagePatch2}
\begin{paste}{StreamXmpPageFull2}{StreamXmpPageEmpty2}
\pastebutton{StreamXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{f : List INT -> List INT}\bound{fdec }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{StreamXmpPagePatch3}
\begin{paste}{StreamXmpPageFull3}{StreamXmpPageEmpty3}
\pastebutton{StreamXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{f x := [x.1 + x.2, x.1]}\bound{fdec }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{StreamXmpPagePatch4}
\begin{paste}{StreamXmpPageFull4}{StreamXmpPageEmpty4}
\pastebutton{StreamXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{fibs := [i.2 for i in \text{generate}(f,[1,1])]\bound{fibs }\free{f }}
\indentrel{3}\begin{verbatim}
(4) \[1,1,2,3,5,8,13,21,34,55,...\]
Type: Stream Integer
\end{verbatim}
\end{paste}

\begin{patch}{StreamXmpPageEmpty4}
\begin{paste}{StreamXmpPageEmpty4}{StreamXmpPagePatch4}
\pastebutton{StreamXmpPageEmpty4}{
\showpaste}
\tab{5}\spadcommand{fibs := [i.2 for i in \text{generate}(f,[1,1])]\bound{fibs }\free{f }}
\end{paste}
\end{patch}

\begin{patch}{StreamXmpPagePatch5}
\begin{paste}{StreamXmpPageFull5}{StreamXmpPageEmpty5}
\pastebutton{StreamXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{[i for i in ints | odd? i]\free{ints }}
\indentrel{3}\begin{verbatim}
(5) \[1,3,5,7,9,11,13,15,17,19,...\]
Type: Stream NonNegativeInteger
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{StreamXmpPageEmpty5}
\begin{paste}{StreamXmpPageEmpty5}{StreamXmpPagePatch5}
\pastebutton{StreamXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{[i for i in ints | odd? i]\free{ints }}
\end{paste}
\end{patch}

\begin{patch}{StreamXmpPagePatch6}
\begin{paste}{StreamXmpPageFull6}{StreamXmpPageEmpty6}
\pastebutton{StreamXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{odds := [2*i+1 for i in ints]\bound{odds }\free{ints }}
\indentrel{3}\begin{verbatim}
(6) \[1,3,5,7,9,11,13,15,17,19,...\]
Type: Stream NonNegativeInteger
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{StreamXmpPageEmpty6}
\begin{paste}{StreamXmpPageEmpty6}{StreamXmpPagePatch6}
\pastebutton{StreamXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{odds := [2*i+1 for i in ints]\free{odds }}
\end{paste}
\end{patch}

\begin{patch}{StreamXmpPagePatch7}
\begin{paste}{StreamXmpPageFull7}{StreamXmpPageEmpty7}
\pastebutton{StreamXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{\text{scan}(0,+,odds)\free{odds}}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{paste}
\end{patch}
(7) \[1,4,9,16,25,36,49,64,81,100,\ldots\] 
Type: Stream NonNegativeInteger

(8) \[0,3,10,21,36,55,78,105,136,171,\ldots\] 
Type: Stream NonNegativeInteger

(9) \[0,3,10,21,36,55,78,105,136,171,\ldots\] 
Type: Stream NonNegativeInteger

(10) 0 
Type: NonNegativeInteger
\begin{verbatim}
(11) \[1,2,3,4,5,6,7,8,9,10,...\]
Type: Stream NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(12) 6765
Type: PositiveInteger
\end{verbatim}
3.103  string.ht

String

⇒ “notitle” (CharacterXmpPage) 3.15 on page 228
⇒ “notitle” (CharacterClassXmpPage) 3.14 on page 221

\begin{page}{StringXmpPage}{String}
\beginscroll

The type \spadtype{String} provides character strings. Character strings provide all the operations for a one-dimensional array of characters, plus additional operations for manipulating text. For more information on related topics, see \downlink{`Character'}{CharacterXmpPage}\ignore{Character} and \downlink{`CharacterClass'}{CharacterClassXmpPage}\ignore{CharacterClass}. You can also issue the system command \spadcmd{)show String} to display the full list of operations defined by \spadtype{String}.

\xtc{
String values can be created using double quotes.
}
\spadpaste{hello := "Hello, I'm Axiom!" \bound{hello}}
\xtc{
Note, however, that double quotes and underscores must be preceded by an extra underscore.
}
\spadpaste{said := "Jane said, _"Look!_"" \bound{said}}
\xtc{
It is also possible to use \spadfunFrom{new}{String} to create a string of any size filled with a given character. Since there are many \spadfun{new} functions it is necessary to indicate the desired type.
}
\spadpaste{gasp: String := new(32, char "x") \bound{gasp}}
\xtc{
The length of a string is given by \spadopFrom{#}{List}.
}
\spadpaste{\#gasp \free{gasp}}
\endscroll
\end{page}


Indexing operations allow characters to be extracted or replaced in strings. For any string $s$, indices lie in the range $1..\#s$.

\spadpaste{hello.2 \free{hello}}

Indexing is really just the application of a string to a subscript, so any application syntax works.

\spadpaste{hello 2 \free{hello}}

\spadpaste{hello(2) \free{hello}}

If it is important not to modify a given string, it should be copied before any updating operations are used.

\spadpaste{hullo := copy hello \free{hello}\bound{hullo0}}

\spadpaste{hullo.2 := char "u"; [hello, hullo] \free{hullo0 hello} \bound{hullo}}

Operations are provided to split and join strings. The $\texttt{concat(String)}$ operation allows several strings to be joined together.

\spadpaste{saidsaw := concat ["alpha","---","omega"] \bound{saidsaw}}

There is a version of $\texttt{concat(String)}$ that works with two strings.

\spadpaste{concat("hello ","goodbye")}

Juxtaposition can also be used to concatenate strings.

\spadpaste{"This " "is " "several " "strings " "concatenated."}

Substrings are obtained by giving an index range.
3.103. STRING.HT
\spadpaste{hello(1..5) \free{hello}}
}
\xtc{
}{
\spadpaste{hello(8..) \free{hello}}
}
\xtc{
A string can be split into several substrings by giving a
separation character or character class.
}{
\spadpaste{split(hello, char " ")
\free{hello}}
}
\xtc{
}{
\spadpaste{other := complement alphanumeric(); \bound{other}}
}
\xtc{
}{
\spadpaste{split(saidsaw, other)
\free{saidsaw other}}
}
\xtc{
Unwanted characters can be trimmed from the beginning or end of a
string using the operations \spadfunFrom{trim}{String},
\spadfunFrom{leftTrim}{String} and \spadfunFrom{rightTrim}{String}.
}{
\spadpaste{trim
("\#\# ++ relax ++ \#\#", char "\#")}
}
\xtc{
Each of these functions takes a string and a second argument to specify
the characters to be discarded.
}{
\spadpaste{trim
("\#\# ++ relax ++ \#\#", other) \free{other}}
}
\xtc{
The second argument can be given
either as a single character or as a character class.
}{
\spadpaste{leftTrim ("\#\# ++ relax ++ \#\#", other) \free{other}}
}
\xtc{
}{
\spadpaste{rightTrim("\#\# ++ relax ++ \#\#", other) \free{other}}
}
\xtc{
Strings can be changed to upper case or lower case using the operations
\spadfunFrom{upperCase}{String}, \spadfunFromX{upperCase}{String},
\spadfunFrom{lowerCase}{String} and
\spadfunFromX{lowerCase}{String}.
}{

1271


1272

CHAPTER 3. HYPERDOC PAGES

\spadpaste{upperCase hello \free{hello}}
}
\xtc{
The versions with the exclamation mark
change the original string, while the others produce a copy.
}{
\spadpaste{lowerCase hello \free{hello}}
}
\xtc{
Some basic string matching is provided.
The function \spadfunFrom{prefix?}{String}
tests whether one string is an initial prefix of another.
}{
\spadpaste{prefix?("He", "Hello")}
}
\xtc{
}{
\spadpaste{prefix?("Her", "Hello")}
}
\xtc{
A similar function, \spadfunFrom{suffix?}{String}, tests for suffixes.
}{
\spadpaste{suffix?("", "Hello")}
}
\xtc{
}{
\spadpaste{suffix?("LO", "Hello")}
}
\xtc{
The function \spadfunFrom{substring?}{String} tests for a substring
given a starting
position.
}{
\spadpaste{substring?("ll", "Hello", 3)}
}
\xtc{
}{
\spadpaste{substring?("ll", "Hello", 4)}
}
\xtc{
A number of \spadfunFrom{position}{String} functions locate things in
strings. If the first argument to position is a string, then
\spad{position(s,t,i)} finds the location of \spad{s} as a substring
of \spad{t} starting the search at position \spad{i}.
}{
\spadpaste{n := position("nd", "underground",
1) \bound{n}}
}
\xtc{


If \spad{s} is not found, then \spad{0} is returned (\spad{minIndex(s)-1} in \spad{minIndex} in \spadtype{IndexedString}).

To search for a specific character or a member of a character class, a different first argument is used.

\begin{verbatim}
(1) "Hello, I'm AXIOM!"
Type: String
\end{verbatim}

(2) "Jane said, "Look!""
Type: String
\begin{patch}\begin{paste}\begin{verbatim}
(3) "She saw exactly one underscore: _.
Type: String
end verbatim)
indentrel{-3}end paste\end patch
\end{patch}\begin{patch}\begin{paste}\begin{verbatim}
(4) "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Type: String
end verbatim)
indentrel{-3}end paste\end patch
\end{patch}\begin{patch}\begin{paste}\begin{verbatim}
(5) 32
Type: PositiveInteger
end verbatim)
indentrel{-3}end paste\end patch
\end{patch}\begin{patch}\begin{paste}\begin{verbatim}
(6) "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Type: String
end verbatim)
indentrel{-3}end paste\end patch
\end{patch}\begin{patch}\begin{paste}\begin{verbatim}
(7) 32
Type: PositiveInteger
end verbatim)
indentrel{-3}end paste\end patch
\end{patch}
\begin{verbatim}
(6) e
Type: Character
\end{verbatim}

\begin{verbatim}
(7) e
Type: Character
\end{verbatim}

\begin{verbatim}
(8) e
Type: Character
\end{verbatim}
\begin{verbatim}
(9) "Hello, I'm AXIOM!"
Type: String
\end{verbatim}

\begin{verbatim}
(10) ["Hello, I'm AXIOM!", "Hullo, I'm AXIOM!"]
Type: List String
\end{verbatim}

\begin{verbatim}
(11) "alpha---omega"
Type: String
\end{verbatim}
```
\begin{verbatim}
(12) "hello goodbye"
\end{verbatim}
```

```
\begin{verbatim}
(13) "This is several strings concatenated."
\end{verbatim}
```

```
\begin{verbatim}
(14) "Hello"
\end{verbatim}
```
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
(15) "I'm AXIOM!"
Type: String
\end{verbatim}

\begin{verbatim}
(16) ["Hello,","I'm","AXIOM!"]
Type: List String
\end{verbatim}

\begin{verbatim}
Type: CharacterClass
\end{verbatim}
(18) ['alpha', 'omega'] Type: List String

(19) " ++ relax ++ " Type: String

(20) "relax" Type: String

(21) "relax ++ ##" Type: String
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
(22) "## ++ relax"
Type: String
\end{verbatim}

\begin{verbatim}
(23) "HELLO, I'M AXIOM!"
Type: String
\end{verbatim}

\begin{verbatim}
(24) "hello, i'm axiom!"
Type: String
\end{verbatim}
\begin{patch}{StringXmpPageEmpty24}
  \begin{paste}{StringXmpPageEmpty24}{StringXmpPagePatch24}
  \pastebuttont{StringXmpPageEmpty24}{\showpaste}
  \tab{5}\spadcommand{lowerCase hello\free{hello}}
  \end{paste}
  \end{patch}

\begin{patch}{StringXmpPagePatch25}
  \begin{paste}{StringXmpPageFull25}{StringXmpPageEmpty25}
  \pastebuttont{StringXmpPageFull25}{\hidepaste}
  \tab{5}\spadcommand{prefix?("He", "Hello")}
  \indentrel{3}\begin{verbatim}
  (25) \text{true}
  Type: \text{Boolean}
  \end{verbatim}
  \indentrel{-3}\end{paste}
  \end{patch}

\begin{patch}{StringXmpPagePatch26}
  \begin{paste}{StringXmpPageFull26}{StringXmpPageEmpty26}
  \pastebuttont{StringXmpPageFull26}{\hidepaste}
  \tab{5}\spadcommand{prefix?("Her", "Hello")}
  \indentrel{3}\begin{verbatim}
  (26) \text{false}
  Type: \text{Boolean}
  \end{verbatim}
  \indentrel{-3}\end{paste}
  \end{patch}

\begin{patch}{StringXmpPagePatch27}
  \begin{paste}{StringXmpPageFull27}{StringXmpPageEmpty27}
  \pastebuttont{StringXmpPageFull27}{\hidepaste}
  \tab{5}\spadcommand{suffix?("", "Hello")}
  \indentrel{3}\begin{verbatim}
  (27) \text{true}
  Type: \text{Boolean}
  \end{verbatim}
  \indentrel{-3}\end{paste}
  \end{patch}
\begin{patch}{StringXmpPagePatch27}
\begin{paste}{StringXmpPageFull27}{StringXmpPageEmpty27}
\pastebutton{StringXmpPageFull27}{\showpaste}
\tab{5}\spadcommand{suffix?("", "Hello")}
\end{paste}
\end{patch}

\begin{patch}{StringXmpPagePatch28}
\begin{paste}{StringXmpPageFull28}{StringXmpPageEmpty28}
\pastebutton{StringXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{suffix?("LO", "Hello")}
\indentrel{3}\begin{verbatim}
(28) false
Type: Boolean
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{StringXmpPagePatch29}
\begin{paste}{StringXmpPageFull29}{StringXmpPageEmpty29}
\pastebutton{StringXmpPageFull29}{\hidepaste}
\tab{5}\spadcommand{substring?("ll", "Hello", 3)}
\indentrel{3}\begin{verbatim}
(29) true
Type: Boolean
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{StringXmpPagePatch30}
\begin{paste}{StringXmpPageFull30}{StringXmpPageEmpty30}
\pastebutton{StringXmpPageFull30}{\hidepaste}
\tab{5}\spadcommand{substring?("ll", "Hello", 4)}
\indentrel{3}\begin{verbatim}
(30) false
Type: Boolean
\end{verbatim}
\indentrel{-3}
\end{patch}
\begin{verbatim}
(31) 2
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(32) 10
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(33) 0
Type: NonNegativeInteger
\end{verbatim}
3.104  

StringTable

⇒ “notitle” (TableXmpPage) 3.106 on page 1298

— strtbl.ht —

This domain provides a table type in which the keys are known to
be strings so special techniques can be used.
Other than performance, the type \spadtype{StringTable(S)} should
behave exactly the same way as \spadtype{Table(String,S)}.
See \downlink{'Table'}{TableXmpPage}\ignore{Table}
for general information about tables.
\showBlurb{StringTable}

\xtc{This creates a new table whose keys are strings.}
{\spadpaste{t: StringTable(Integer) := table() \bound{t}}} 
\xtc{The value associated with each string key is the number of
characters in the string.}
{\begin{spadsrc}\free{t}\bound{h}\end{spadsrc}}
\xtc{for s in split("My name is Ian Watt.", char " ")
repeat
  t.s := #s
\end{spadsrc}}
\xtc{for key in keys t repeat output [key, t.key] \free{t h}}
\endscroll
\autobuttons
\end{page}
repeat
t.s := \#s
\free{t} \bound{h} }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{StringTableXmpPageEmpty2}
\begin{paste}{StringTableXmpPageEmpty2}{StringTableXmpPagePatch2}
\pastebutton{StringTableXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{for s in split("My name is Ian Watt.",char ")
repeat
  t.s := \#s
\free{t} \bound{h} }
\end{paste}\end{patch}
\begin{patch}{StringTableXmpPagePatch3}
\begin{paste}{StringTableXmpPageFull3}{StringTableXmpPageEmpty3}
\pastebutton{StringTableXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{for key in keys t repeat output [key, t.key]\free{t h }}
\indentrel{3}\begin{verbatim}
["Ian",3]
["My",2]
["Watt.",5]
["name",4]
["is",2]
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{StringTableXmpPageEmpty3}
\begin{paste}{StringTableXmpPageEmpty3}{StringTableXmpPagePatch3}
\pastebutton{StringTableXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{for key in keys t repeat output [key, t.key]\free{t h }}
\end{paste}\end{patch}

3.105 symbol.ht
Symbol

— symbol.ht —
\begin{page}{SymbolXmpPage}{Symbol}
Symbols are one of the basic types manipulated by Axiom. The \spadtype{Symbol} domain provides ways to create symbols of many varieties.

\begin{verbatim}
xtc{\showBlurb{Symbol}}
  The simplest way to create a symbol is to `'single quote'` an identifier.
  }
  \spadpaste{X: Symbol := 'x \bound{X}}
  }
  xtnc{This gives the symbol even if \spad{x} has been assigned a value. If \spad{x} has not been assigned a value, then it is possible to omit the quote.}
  }
  \spadpaste{XX: Symbol := x}
  }
  xtnc{Declarations must be used when working with symbols, because otherwise the interpreter tries to place values in a more specialized type \spadtype{Variable}.}
  }
  \spadpaste{A := 'a}
  }
  xtnc{\spadpaste{B := b}
  }
  xtnc{The normal way of entering polynomials uses this fact.}
  }
  \spadpaste{x**2 + 1}
  }
  xtnc{Another convenient way to create symbols is to convert a string. This is useful when the name is to be constructed by a program.}
  }
  \spadpaste{"Hello"::Symbol}
  }
  xtnc{Sometimes it is necessary to generate new unique symbols, for example, to name constants of integration. The expression \spad{new()} generates a symbol starting with \spad{\%}.}
  }
  \spadpaste{new()\$Symbol}
  }
\end{verbatim}
Successive calls to \spadfunFrom{new}{Symbol} produce different symbols.
\spadpaste{new()}\$Symbol
A symbol can be adorned in various ways. The most basic thing is applying a symbol to a list of subscripts.
\spadpaste{X[i,j] \free{X}}

Somewhat less pretty is to attach subscripts, superscripts or arguments.
\spadpaste{U := subscript(u, [1,2,1,2]) \bound{U}}
\spadpaste{V := superscript(v, [n]) \bound{V}}
\spadpaste{P := argscript(p, [t]) \bound{P}}

It is possible to test whether a symbol has scripts using the \spadfunFrom{scripted?}{Symbol} test.
\spadpaste{scripted? U \free{U}}
\spadpaste{scripted? X \free{X}}

If a symbol is not scripted, then it may be converted to a string.
\spadpaste{string X \free{X}}
The basic parts can always be extracted using the \spadfunFrom{name}{Symbol} and \spadfunFrom{scripts}{Symbol} operations.
The most general form is obtained using the \spadfunFrom{script}{Symbol} operation. This operation takes an argument which is a list containing, in this order, lists of subscripts, superscripts, presuperscripts, presubscripts and arguments to a symbol.

\spadpaste{M := script(Mammoth, \[[i,j],[k,l],[0,1],[2],[u,v,w]\]) \bound{M}}

If trailing lists of scripts are omitted, they are assumed to be empty.

\spadpaste{N := script(Nut, \[[i,j],[k,l],[0,1]\]) \bound{N}}

\begin{verbatim}
(1) x
Type: Symbol
\end{verbatim}
\begin{verbatim}
X: Symbol := 'x
\end{verbatim}

\begin{verbatim}
XX: Symbol := x
(2) x
Type: Symbol
\end{verbatim}

\begin{verbatim}
A := 'a
(3) a
Type: Variable a
\end{verbatim}

\begin{verbatim}
B := b
(4) b
Type: Variable b
\end{verbatim}
\begin{patch}\{SymbolXmpPageEmpty4\}
\begin{paste}\{SymbolXmpPageEmpty4\}\{SymbolXmpPagePatch4\}
\pastebutton{SymbolXmpPageEmpty4}\{\showpaste\}
\tab{5}\spadcommand{B := b}
\end{paste}\end{patch}

\begin{patch}\{SymbolXmpPagePatch5\}
\begin{paste}\{SymbolXmpPageFull5\}\{SymbolXmpPageEmpty5\}
\pastebutton{SymbolXmpPageFull5}\{\hidepaste\}
\tab{5}\spadcommand{x**2 + 1}
\indentrel{3}\begin{verbatim}
2
(5)  x + 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{SymbolXmpPagePatch6\}
\begin{paste}\{SymbolXmpPageFull6\}\{SymbolXmpPageEmpty6\}
\pastebutton{SymbolXmpPageFull6}\{\hidepaste\}
\tab{5}\spadcommand{"Hello"::Symbol}
\indentrel{3}\begin{verbatim}
(6)  Hello
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{SymbolXmpPagePatch7\}
\begin{paste}\{SymbolXmpPageFull17\}\{SymbolXmpPageEmpty7\}
\pastebutton{SymbolXmpPageFull17}\{\hidepaste\}
\tab{5}\spadcommand{new()$Symbol}
\indentrel{3}\begin{verbatim}
(7)  %A
Type: Symbol
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{SymbolXmpPageEmpty7}
\begin{paste}{SymbolXmpPageEmpty7}{SymbolXmpPagePatch7}
\pastebutton{SymbolXmpPageEmpty7}{\showpaste}
\tab{5}\spadcommand{new()$Symbol}
\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch8}
\begin{paste}{SymbolXmpPageFull8}{SymbolXmpPageEmpty8}
\pastebutton{SymbolXmpPageFull8}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\indentrel{-3}(8) %B
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty8}
\begin{paste}{SymbolXmpPageEmpty8}{SymbolXmpPagePatch8}
\pastebutton{SymbolXmpPageEmpty8}{\showpaste}
\tab{5}\spadcommand{new()$Symbol}
\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch9}
\begin{paste}{SymbolXmpPageFull9}{SymbolXmpPageEmpty9}
\pastebutton{SymbolXmpPageFull9}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\indentrel{-3}(9) %xyz0
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty9}
\begin{paste}{SymbolXmpPageEmpty9}{SymbolXmpPagePatch9}
\pastebutton{SymbolXmpPageEmpty9}{\showpaste}
\tab{5}\indentrel{3}\begin{verbatim}
\indentrel{-3}(10) x
\indentrel{-3}i,j
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch10}
\begin{paste}{SymbolXmpPageFull10}{SymbolXmpPageEmpty10}
\pastebutton{SymbolXmpPageFull10}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty10}
\begin{paste}{SymbolXmpPageEmpty10}{SymbolXmpPagePatch10}
\pastebutton{SymbolXmpPageEmpty10}{\showpaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch11}
\begin{paste}{SymbolXmpPageFull11}{SymbolXmpPageEmpty11}
\pastebutton{SymbolXmpPageFull11}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty11}
\begin{paste}{SymbolXmpPageEmpty11}{SymbolXmpPagePatch11}
\pastebutton{SymbolXmpPageEmpty11}{\showpaste}
\tab{5}\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch12}
\begin{paste}{SymbolXmpPageFull12}{SymbolXmpPageEmpty12}
\pastebutton{SymbolXmpPageFull12}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty12}
\begin{paste}{SymbolXmpPageEmpty12}{SymbolXmpPagePatch12}
\pastebutton{SymbolXmpPageEmpty12}{\showpaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch13}
\begin{paste}{SymbolXmpPageFull13}{SymbolXmpPageEmpty13}
\pastebutton{SymbolXmpPageFull13}{\hidepaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{paste}\end{patch}

\begin{patch}{SymbolXmpPageEmpty13}
\begin{paste}{SymbolXmpPageEmpty13}{SymbolXmpPagePatch13}
\pastebutton{SymbolXmpPageEmpty13}{\showpaste}
\tab{5}\indentrel{3}\begin{verbatim}
\end{patch}\end{patch}
$X_{i,j}$

$U := \text{subscript}(u, [1,2,1,2])$

\begin{verbatim}
(11) u
\end{verbatim}

Type: Symbol

$V := \text{superscript}(v, [n])$

\begin{verbatim}
(12) v
\end{verbatim}

Type: Symbol

$P := \text{argscript}(p, [t])$

\begin{verbatim}
(13) p(t)
\end{verbatim}

Type: Symbol
\tab{5}\spadcommand{P := argscript(p, \[t\])\bound{P }\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch14}
\begin{paste}{SymbolXmpPageFull14}{SymbolXmpPageEmpty14}
\pastebutton{SymbolXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{scripted? U\free{U }}\indentrel{3}\verbatim
(14) true
Type: Boolean
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch15}
\begin{paste}{SymbolXmpPageFull15}{SymbolXmpPageEmpty15}
\pastebutton{SymbolXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{scripted? X\free{X }}\indentrel{3}\verbatim
(15) false
Type: Boolean
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{SymbolXmpPagePatch16}
\begin{paste}{SymbolXmpPageFull16}{SymbolXmpPageEmpty16}
\pastebutton{SymbolXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{string X\free{X }}\indentrel{3}\verbatim
(16) "x"
Type: String
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(17) u
Type: Symbol
\end{verbatim}

\begin{verbatim}
(18)
[sub= [1, 2, 1, 2], sup= [], presup= [], presub= [], args= []
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List OutputForm, presub: List OutputForm, args: List OutputForm)
\end{verbatim}

\begin{verbatim}
(19) x
Type: Symbol
\end{verbatim}
\begin{verbatim}
(20)
[sub= [], sup= [], presup= [], presub= [], args= []]
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List OutputForm, presub: List OutputForm, args: List OutputForm)
\end{verbatim}

\begin{verbatim}
(21)
Mammoth (u, v, w)
Type: Symbol
\end{verbatim}

\begin{verbatim}
(22)
[sub= [i, j], sup= [k, l], presup= [0, 1], presub= [2], args= [u, v, w]]
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List OutputForm, presub: List OutputForm, args: List OutputForm)
\end{verbatim}
\begin{paste}{SymbolXmpPageEmpty22}{SymbolXmpPagePatch22}
\apadcommand{scripts M\free{M}}
\end{paste}
\end{patch}

\begin{patch}{SymbolXmpPagePatch23}
\begin{paste}{SymbolXmpPageFull23}{SymbolXmpPageEmpty23}
\spadcommand{N := script(Nut, [[i,j],[k,l],[0,1]])\bound{N}}
\indentrel{3}\begin{verbatim}
0,1 k,l
(23) Nut
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{SymbolXmpPageEmpty23}
\begin{paste}{SymbolXmpPageEmpty23}{SymbolXmpPagePatch23}
\spadcommand{N := script(Nut, [[i,j],[k,l],[0,1]])\bound{N}}
\end{paste}
\end{patch}

\begin{patch}{SymbolXmpPagePatch24}
\begin{paste}{SymbolXmpPageFull24}{SymbolXmpPageEmpty24}
\spadcommand{scripts N\free{N}}
\indentrel{3}\begin{verbatim}
(24) [sub= [i,j], sup= [k,l], presup= [0,1], presub= [],
args= []]
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{SymbolXmpPageEmpty24}
\begin{paste}{SymbolXmpPageEmpty24}{SymbolXmpPagePatch24}
\spadcommand{scripts N\free{N}}
\end{paste}
\end{patch}

\begin{verbatim}
Type: Symbol
\end{verbatim}

\begin{verbatim}
Type: Record(sub: List OutputForm,sup: List OutputForm,presup: List OutputForm,presub: List OutputForm,args: List OutputForm)
\end{verbatim}

\begin{verbatim}
Type: Record(sub: List OutputForm,sup: List OutputForm,presup: List OutputForm,presub: List OutputForm,args: List OutputForm)
\end{verbatim}
Table

The \spadtype{Table} constructor provides a general structure for associative storage. This type provides hash tables in which data objects can be saved according to keys of any type. For a given table, specific types must be chosen for the keys and entries.

\xtc{
In this example the keys to the table are polynomials with integer coefficients. The entries in the table are strings.
}{
\spadpaste{t: Table(Polynomial Integer, String) := table() \bound{t}}
}
\xtc{
To save an entry in the table, the \spadfun{setelt}{Table} operation is used. This can be called directly, giving the table a key and an entry.
}{
\spadpaste{setelt(t, x**2 - 1, "Easy to factor") \bound{p1}\free{t}}
}
\xtc{
Alternatively, you can use assignment syntax.
}{
\spadpaste{t(x**3 + 1) := "Harder to factor" \bound{p2}\free{p1}}
}
\xtc{
}{
\spadpaste{t(x) := "The easiest to factor" \bound{p3}\free{p2}}
}
\xtc{
Entries are retrieved from the table by calling the \spadfun{elt}{Table} operation.
}{
\spadpaste{elt(t, x) \free{p3}}
}
This operation is called when a table is `'applied'` to a key using this or the following syntax.

\spadpaste{t.x \free{p3}}

Parentheses are used only for grouping. They are needed if the key is an infixed expression.

\spadpaste{t.(x**2 - 1) \free{p3}}

Note that the \spadfun{elt}{Table} operation is used only when the key is known to be in the table---otherwise an error is generated.

\spadpaste{t (x**3 + 1) \free{p3}}

You can get a list of all the keys to a table using the \spadfun{keys}{Table} operation.

\spadpaste{keys t \free{p3}}

If you wish to test whether a key is in a table, the \spadfun{search}{Table} operation is used. This operation returns either an entry or \spad{"failed"}.

\spadpaste{search(x, t) \free{p3}}

The return type is a union so the success of the search can be tested using \spad{case}.

\spadkey{case}

\spadpaste{search(x**2, t) case "failed" \free{p3}}

The \spadfun{remove}{Table} operation is used to delete values from a table.
If an entry exists under the key, then it is returned. Otherwise, \spadfunFromX{remove}{Table} returns \spad{“failed”}.

The number of key-entry pairs can be found using the \spadfunFrom{\#}{Table} operation.

Just as \spadfunFrom{keys}{Table} returns a list of keys to the table, a list of all the entries can be obtained using the \spadfunFrom{members}{Table} operation.

A number of useful operations take functions and map them on to the table to compute the result. Here we count the entries which have \spad{“Hard”} as a prefix.

Other table types are provided to support various needs.

\begin{itemize}
\item The \spadtype{AssociationList} gives a list with a table view. This allows new entries to be appended onto the front of the list to cover up old entries. This is useful when table entries need to be stacked or when frequent list traversals are required. See \downlink{`AssociationList'}{AssociationListXmpPage}\ignore{AssociationList} for more information.
\item The \spadtype{EqTable} gives tables in which keys are considered equal only when they are in fact the same instance of a structure. See \downlink{'EqTable'}{EqTableXmpPage}\ignore{EqTable} for more information.
\item The \spadtype{StringTable} should be used when the keys are known to be strings. See \downlink{'StringTable'}{StringTableXmpPage}\ignore{StringTable} for more information.
\end{itemize}
\item \spadtype{SparseTable} provides tables with default entries, so lookup never fails. The \spadtype{GeneralSparseTable} constructor can be used to make any table type behave this way. See \downlink{`SparseTable'}{SparseTableXmpPage} for more information.

\item \spadtype{KeyedAccessFile} allows values to be saved in a file, accessed as a table. See \downlink{`KeyedAccessFile'}{KeyedAccessFileXmpPage} for more information.
\tab{5}\spadcommand{setelt(t, x**2 - 1, "Easy to factor")}\bound{p1 }\free{t }
\end{paste}\end{patch}

\begin{patch}{TableXmpPagePatch3}
\begin{paste}{TableXmpPageFull3}{TableXmpPageEmpty3}
\pastebutton{TableXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{t(x**3 + 1) := "Harder to factor"}\bound{p2 }\free{p1 }
\indentrel{-3}\begin{verbatim}
(3) "Harder to factor"
Type: String
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TableXmpPageEmpty3}
\begin{paste}{TableXmpPageEmpty3}{TableXmpPagePatch3}
\pastebutton{TableXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{t(x**3 + 1) := "Harder to factor"}\bound{p2 }\free{p1 }
\end{paste}
\end{patch}

\begin{patch}{TableXmpPagePatch4}
\begin{paste}{TableXmpPageFull4}{TableXmpPageEmpty4}
\pastebutton{TableXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{t(x) := "The easiest to factor"}\bound{p3 }\free{p2 }
\indentrel{-3}\begin{verbatim}
(4) "The easiest to factor"
Type: String
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TableXmpPageEmpty4}
\begin{paste}{TableXmpPageEmpty4}{TableXmpPagePatch4}
\pastebutton{TableXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{t(x) := "The easiest to factor"}\bound{p3 }\free{p2 }
\end{paste}
\end{patch}

\begin{patch}{TableXmpPagePatch5}
\begin{paste}{TableXmpPageFull5}{TableXmpPageEmpty5}
\pastebutton{TableXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{elt(t, x)}\free{p3 }
\indentrel{-3}\begin{verbatim}
(5) "The easiest to factor"
Type: String
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TableXmpPageEmpty5}
\begin{paste}{TableXmpPageEmpty5}{TableXmpPagePatch5}
\pastebutton{TableXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{elt(t, x)}\free{p3 }
\end{paste}
\end{patch}
(6) "The easiest to factor"  
Type: String

(7) "The easiest to factor"  
Type: String

(8) "Easy to factor"  
Type: String
\begin{verbatim}
(9) "Harder to factor"
  Type: String
\end{verbatim}

\begin{verbatim}
(10) \[x,x + 1,x - 1\]
  Type: List Polynomial Integer
\end{verbatim}

\begin{verbatim}
(11) "The easiest to factor"
  Type: Union(String,...)
\end{verbatim}
\begin{verbatim}(12) "failed"
Type: Union("failed",...)
\end{verbatim}
\begin{verbatim}(13) true
Type: Boolean
\end{verbatim}
\begin{verbatim}(14) "Easy to factor"
Type: Union(String,...)
\end{verbatim}
\indentrel{3}\begin{verbatim}
(15) "failed"
Type: Union("failed",...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{TableXmpPageEmpty15}
\begin{paste}{TableXmpPageEmpty15}{TableXmpPagePatch15}
\pastebutton{TableXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{remove!(x-1, t)\free{p4 }\bound{p5 }}
\end{paste}\end{patch}
\begin{patch}{TableXmpPagePatch16}
\begin{paste}{TableXmpPageFull16}{TableXmpPageEmpty16}
\pastebutton{TableXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{\#t\free{p5 }}
\indentrel{3}\begin{verbatim}
(16) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{TableXmpPageEmpty16}
\begin{paste}{TableXmpPageEmpty16}{TableXmpPagePatch16}
\pastebutton{TableXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{\#t\free{p5 }}
\end{paste}\end{patch}
\begin{patch}{TableXmpPagePatch17}
\begin{paste}{TableXmpPageFull17}{TableXmpPageEmpty17}
\pastebutton{TableXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{members t\free{p5 }}
\indentrel{3}\begin{verbatim}
(17) ["The easiest to factor","Harder to factor"]
Type: List String
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{TableXmpPageEmpty17}
\begin{paste}{TableXmpPageEmpty17}{TableXmpPagePatch17}
\pastebutton{TableXmpPageEmpty17}{\showpaste}
\tab{5}\spadcommand{members t\free{p5 }}
\end{paste}\end{patch}
\begin{patch}{TableXmpPagePatch18}
\begin{paste}{TableXmpPageFull18}{TableXmpPageEmpty18}
\pastebutton{TableXmpPageFull18}{\hidepaste}
\tab{5}\spadcommand{count(s: String +-> prefix?("Hard", s), t)\free{p5 }}
\indentrel{3}\begin{verbatim}
(18) 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
The domain \spadtype{TextFile} allows Axiom to read and write character data and exchange text with other programs. This type behaves in Axiom much like a \spadtype{File} of strings, with additional operations to cause new lines. We give an example of how to produce an upper case copy of a file.

\begin{verbatim}
This is the file from which we read the text.
}\[
\spadpaste{f1: TextFile := open("/etc/group", "input") \bound{f1}}
\]
\xtc{This is the file to which we read the text.}
}\[
\spadpaste{f2: TextFile := open("/tmp/MOTD", "output") \bound{f2}}
\]
\xtc{Entire lines are handled using the \spadfunFromX{readLine}{TextFile} and \spadfunFromX{writeLine}{TextFile} operations.}
\[
\spadpaste{l := readLine! f1 \free{f1}\bound{l}}
\]
\end{verbatim}
Use the \spadfunFrom{endOfFile?}{TextFile} operation to check if you have reached the end of the file.

\begin{spadsrc}
while not endOfFile? f1 repeat
  s := readLine! f1
  writeLine!(f2, upperCase s)
\end{spadsrc}

The file \spad{f1} is exhausted and should be closed.

\spadpaste{close! f1}  

It is sometimes useful to write lines a bit at a time. The \spadfunFromX{write}{TextFile} operation allows this.

\spadpaste{write!(f2, "-The-" )}

This ends the line. This is done in a machine-dependent manner.

\spadpaste{writeLine! f2}  

Finally, clean up.

\spadpaste{)system rm /tmp/MOTD}

For more information on related topics, see \downlink{`File'}{FileXmpPage} and \downlink{`KeyedAccessFile'}{KeyedAccessFileXmpPage}
\begin{patch}{TextFileXmpPagePatch1}
\begin{paste}{TextFileXmpPageFull1}{TextFileXmpPageEmpty1}
\pastebutton{TextFileXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{f1: TextFile := open("/etc/group", "input")\bound{f1 }}
\indentrel{3}\begin{verbatim}
(1) "/etc/group"
Type: TextFile
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TextFileXmpPagePatch2}
\begin{paste}{TextFileXmpPageFull2}{TextFileXmpPageEmpty2}
\pastebutton{TextFileXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{f2: TextFile := open("/tmp/MOTD", "output")\bound{f2 }}
\indentrel{3}\begin{verbatim}
(2) "/tmp/MOTD"
Type: TextFile
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{TextFileXmpPagePatch3}
\begin{paste}{TextFileXmpPageFull3}{TextFileXmpPageEmpty3}
\pastebutton{TextFileXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{l := readLine! f1\free{f1 }\bound{l }}
\indentrel{3}\begin{verbatim}
(3) "system:*:0:root"
Type: String
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{paste}{TextFileXmpPageEmpty3}{TextFileXmpPagePatch3}
\spadcommand{l := readLine! f1\free{f1 \bound{l}}}
\end{paste}

\begin{patch}{TextFileXmpPagePatch4}
\begin{paste}{TextFileXmpPageFull4}{TextFileXmpPageEmpty4}
\spadcommand{writeLine!(f2, upperCase l)\free{f2 l}}
\end{paste}
\end{patch}

\begin{patch}{TextFileXmpPagePatch5}
\begin{paste}{TextFileXmpPageFull5}{TextFileXmpPageEmpty5}
\spadcommand{while not endOfFile? f1 repeat
s := readLine! f1
   writeLine!(f2, upperCase s)\free{f1 f2 \bound{Copied}}}
\end{paste}
\end{patch}

\begin{patch}{TextFileXmpPagePatch6}
\begin{paste}{TextFileXmpPageFull6}{TextFileXmpPageEmpty6}
\spadcommand{close! f1\free{Copied \bound{closed1}}}
\end{paste}
\end{patch}
3.107. TEXTFILE.HT

\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{TextFileXmpPageEmpty6}
\begin{paste}{TextFileXmpPageEmpty6}{TextFileXmpPagePatch6}
\pastebutton{TextFileXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{close! f1}\free{Copied }\bound{closed1 }
\end{paste}\end{patch}
\begin{patch}{TextFileXmpPagePatch7}
\begin{paste}{TextFileXmpPageFull7}{TextFileXmpPageEmpty7}
\pastebutton{TextFileXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{write!(f2, "-The-")}\free{Copied }\bound{tthhee }
\indentrel{3}\begin{verbatim}
(7) "-The-
Type: String
\indentrel{-3}\end{verbatim}
\indentrel{3}\begin{verbatim}
(8) "-End-
Type: String
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{TextFileXmpPagePatch8}
\begin{paste}{TextFileXmpPageFull8}{TextFileXmpPageEmpty8}
\pastebutton{TextFileXmpPageFull8}{\hidepaste}
\tab{5}\spadcommand{write!(f2, "-End-")}\free{tthhee }\bound{eenndd }
\indentrel{3}\begin{verbatim}
(9) ""
Type: String
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{TextFileXmpPagePatch9}
\begin{paste}{TextFileXmpPageFull9}{TextFileXmpPageEmpty9}
\pastebutton{TextFileXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{writeLine! f2}\free{eenndd }\bound{LastLine }
\indentrel{3}\begin{verbatim}
(9) ""
Type: String
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{TextFileXmpPageEmpty9}
\begin{paste}{TextFileXmpPageEmpty9}{TextFileXmpPagePatch9}
\tab{5}\spadcommand{writeLine! f2\free{eenndd }\bound{LastLine }}
\end{paste}\end{patch}

\begin{patch}{TextFileXmpPagePatch10}
\begin{paste}{TextFileXmpPageFull10}{TextFileXmpPageEmpty10}
\tab{5}\spadcommand{close! f2\free{LastLine }\bound{closed2 }}
\indentrel{3}\begin{verbatim}
(10) "/tmp/MOTD"
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{TextFileXmpPageEmpty11}
\begin{paste}{TextFileXmpPageEmpty11}{TextFileXmpPagePatch11}
\tab{5}\spadcommand{)system rm /tmp/MOTD\free{closed2 }}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Axiom Topics

Select a topic below:

- **Numbers**
  A look at different types of numbers
- **Polynomials**
  Polynomials in Axiom
- **Functions**
  Built-in and user-defined functions
- **Solving Equations**
  Facilities for solving equations
- **Calculus**
  Using Axiom to do calculus
- **Linear Algebra**
  Axiom's linear algebra facilities
- **Graphics**
  Axiom's graphics facilities
- **Algebra**
  Axiom's abstract algebra facilities

A look at different types of numbers
CHAPTER 3. HYPERDOC PAGES

\menumemolink{Polynomials}{PolynomialPage}\tab{18}
Polynomials in Axiom
%\menumemolink{Functions}{FunctionPage}\tab{18}
Built-in and user-defined functions
%\menumemolink{Solving Equations}{EquationPage}\tab{18}
Facilities for solving equations
%\menumemolink{Calculus}{CalculusPage}\tab{18}
Using Axiom to do calculus
%\menumemolink{Linear Algebra}{LinAlgPage}\tab{18}
Axiom’s linear algebra facilities
%\menumemolink{Graphics}{GraphicsPage}\tab{18}
Axiom’s graphics facilities
%\menumemolink{Algebra}{AlgebraPage}\tab{18}
Axiom’s abstract algebra facilities
%
\endmenu
\endscroll
\end{page}
Solving Equations

Axiom lets you solve equations of various types:

- **Solution of Systems of Linear Equations**
  Solve systems of linear equations.

- **Solution of a Single Polynomial Equation**
  Find roots of polynomials.

- **Solution of Systems of Polynomial Equations**
  Solve systems of polynomial equations.

- **Solution of Differential Equations**
  Closed form and series solutions of differential equations.
Linear Algebra

Introduction
Create and manipulate matrices. Work with the entries of a
matrix. Perform matrix arithmetic.

Creating Matrices
Create matrices from scratch and from other matrices.

Operations on Matrices
Algebraic manipulations with matrices. Compute the inverse,
determinant and trace of a matrix. Find the rank, nullspace
and row echelon form of a matrix.

Eigenvalues and Eigenvectors
How to compute eigenvalues and eigenvectors.

Additional Topics:
- Example: Determinant of a Hilbert Matrix
- Computing the Permanent
- Working with Vectors
- Working with Square Matrices
- Working with One-Dimensional Arrays
- Working with Two-Dimensional Arrays
- Conversion (Polynomials of Matrices)

⇐ “Topics” (TopicPage) 3.108 on page 1313
⇒ “Introduction” (ugIntroTwoDimPage) 6 on page 1548
⇒ “Creating Matrices” (ugxMatrixCreatePage) 3.75 on page 984
⇒ “Operations on Matrices” (ugxMatrixOpsPage) 3.75 on page 997
⇒ “Eigenvalues and Eigenvectors” (ugProblemEigenPage) 12 on page 2123
⇒ “Example: Determinant of a Hilbert Matrix” (ugxFloatHilbertPage) 3.41 on page 502
⇒ “Computing the Permanent” (PermanentXmpPage) 3.85 on page 1085
⇒ “Working with Vectors” (VectorXmpPage) 3.114 on page 1351
⇒ “Working with Square Matrices” (SqMatrixXmpPage) 3.99 on page 1243
⇒ “Working with One-dimensional Arrays” (OneDimensionalArrayXmpPage) 3.4 on page 138
⇒ “Working with Two-dimensional Arrays” (TwoDimensionalArrayXmpPage) 3.5 on page 143
⇒ “Conversion (Polynomials of Matrices)” (ugTypesConvertPage) 7 on page 1671


topics.ht

\begin{page}{LinAlgPage}{Linear Algebra}
\beginscroll
\beginmenu
\menulink{Introduction}{ugIntroTwoDimPage}\newline
Create and manipulate matrices.
Work with the entries of a matrix.
Perform matrix arithmetic.
\menulink{Creating Matrices}{ugxMatrixCreatePage} \newline
Create matrices from scratch and from other matrices.
\menulink{Operations on Matrices}{ugxMatrixOpsPage} \newline
Algebraic manipulations with matrices.
Compute the inverse, determinant and trace of a matrix.
Find the rank, nullspace and row echelon form of a matrix.
\menulink{Eigenvalues and Eigenvectors}{ugProblemEigenPage} \newline
How to compute eigenvalues and eigenvectors.
\endmenu
\horizontal\newline
Additional Topics:
\beginmenu
\menulink{Example: Determinant of a Hilbert Matrix}{ugxFloatHilbertPage}
\menulink{Computing the Permanent}{PermanentXmpPage}
\menulink{Working with Vectors}{VectorXmpPage}
\menulink{Working with Square Matrices}{SqMatrixXmpPage}
\menulink{Working with One-Dimensional Arrays}{OneDimensionalArrayXmpPage}
\menulink{Working with Two-Dimensional Arrays}{TwoDimensionalArrayXmpPage}
\menulink{Conversion (Polynomials of Matrices)}{ugTypesConvertPage}
\endmenu
\endscroll
\autobuttons
\end{page}
Calculus

\begin{page}{CalculusPage}{Calculus}
\beginscroll
\begin{menu}
\menulink{Limits}{ugProblemLimitsPage} \tab{17}
Compute limits of functional expressions.
\menulink{Derivatives}{ugIntroCalcDerivPage} \tab{17}
Compute derivatives and partial derivatives.
\menulink{Integrals}{ugIntroIntegratePage} \tab{17}
Introduction to Axiom's symbolic integrator.
\menulink{More Integrals}{ugProblemIntegrationPage} \tab{17}
More information about symbolic integration.
\menulink{Laplace}{ugProblemLaplacePage} \tab{17}
Computing Laplace transforms.
\menulink{Series}{ugProblemSeriesPage} \tab{17}
Compute series expansions of expressions.
\menulink{Differential Eqns}{ugProblemDEQPage} \tab{17}
Solve differential equations.
\endscroll\end{menu}
\end{page}

← “Topics” (TopicPage) 3.108 on page 1313
⇒ “Limits” (ugProblemLimitsPage) 12 on page 2145
⇒ “Derivatives” (ugIntroCalcDerivPage) 6 on page 1580
⇒ “Integrals” (ugIntroIntegratePage) 6 on page 1587
⇒ “More Integrals” (ugProblemIntegrationPage) 12 on page 2157
⇒ “Laplace” (ugProblemLaplacePage) 12 on page 2152
⇒ “Series” (ugProblemSeriesPage) 12 on page 2164
⇒ “Differential Eqns” (ugProblemDEQPage) 12 on page 2211

— topics.ht —
Category Type

\begin{page}{CategoryType}{Category \textit{Type}}
\beginscroll
\textit{Type} is a primitive category in Axiom, one which is an ancestor of all Axiom categories.

\textit{Type} is the root of Axiom’s category hierarchy, a category with no properties (exported operations and attributes) of which all other categories are descendants.

Two important children of \textit{Type} are \texttt{SetCategory}, the category of all algebraic domains, and \texttt{Aggregate}, the category of all data structures.
\endscroll

\end{page}

Domain \texttt{Union(a:A,...,b:B)}

⇒ “Description” (LispFunctions) 3.71 on page 952
⇒ “Operations” (LispFunctions) 3.71 on page 952
⇒ “Exports” (LispFunctions) 3.71 on page 952

\begin{page}{DomainUnion}{Domain \textit{Union(a:A,...,b:B)}}
\beginscroll
\textit{Union} takes any number of "tag"-domain pairs of arguments:
Domain Constructor Union

— union.ht —
\{\text{Union}(a:A,b:B)\} denotes the class of objects which are either members of domain \{\text{A}\} or of domain \{\text{B}\}. The symbols \{\text{a}\} and \{\text{b}\} are called "tags" and are used to identify the two "branches" of the union. The \{\text{Union}\} constructor can take any number of arguments and has an alternate form without \{\text{em tags}\}. This tagged \{\text{Union}\} type is necessary, for example, to disambiguate two branches of a union where \{\text{A}\} and \{\text{B}\} denote the same type. \{\text{Union}\} is a primitive domain of Axiom which cannot be defined in the Axiom language.

---

**Domain Union(A,\ldots,B)**

⇒ “Description” (LispFunctions) 3.71 on page 952
⇒ “Operations” (LispFunctions) 3.71 on page 952

---

\text{Domain Union(A,\ldots,B)}

\begin{page}{UntaggedUnion}{Domain \{\text{Union}(A,\ldots,B)\}}
\beginscroll
\{\text{Union}\} takes any number of domain arguments:
\indentrel{2}
\newline \spad{A}, a domain of category \spadtype{SetCategory}
\newline \tab{10}...
\newline \spad{B}, a domain of category \spadtype{SetCategory}
\indentrel{-2} \newline
\spad{Union} is a primitive constructor in Axiom.
\newline
\newline
\begingroup
\item\menulispdownlink{Description}
{{(|dbSpecialDescription| '|UntaggedUnion|)}} \tab{15}General description
\item\menulispdownlink{Operations}
{{(|dbSpecialOperations| '|UntaggedUnion|)}} \tab{15}All exported operations of \spad{Union(A,B)}
\item\menulispdownlink{Examples} \tab{15}Examples illustrating use
\item\menulispdownlink{Exports} \tab{15}Explicit categories and operations
\endgroup
\vspace{1} \newline
In this untagged form of \spad{Union}, domains \spad{A,\ldots,B} must be distinct.
\endscroll\end{page}
Domain Constructor Union

Domain Constructor Union

\begin{page}{UTUnionDescription}{Domain Constructor \{\em Union\}}
\beginscroll
\menuitemstyle{}
tab{2}\em{Union(\{\em A\},\{\em B\})}
\begin{tab}{2}\em{Arguments:}\indent{17}\tab{-2}
\{\em A\}, a domain of category \spadtype{SetCategory}
\newline\tab{-2}\{\em B\}, a domain of category \spadtype{SetCategory}
\indent{0}\begin{tab}{2}\em{Returns:}\indent{17}\tab{-2}
the "union of \{\em A\} and \{\em B\}" as described below.
\indent{0}\begin{tab}{2}\em{Description:}\indent{15}\tab{0}
\{\em Union(A,B)\} denotes the class of objects which are
which are either members of domain \{\em A\} or of domain \{\em B\}.
The \{\em Union\} constructor can take any number of arguments and
has an alternate form using \{\em tags\}.
\{\em Union\} is a primitive domain of Axiom which cannot be
defined in the Axiom language.
\endscroll
\end{page}

3.111 uniseg.ht

UniversalSegment

\begin{page}{UniversalSegmentXmpPage}{UniversalSegment}
\beginscroll
\xtc{

\end{scroll}
\end{page}

\begin{page}{UniversalSegmentXmpPage}{UniversalSegment}
\beginscroll

\xtc{

\end{scroll}
\end{page}
Values of type \texttt{Segment} are automatically converted to type \texttt{UniversalSegment} when appropriate.

The operation \texttt{hasHi\{UniversalSegment\}} is used to test whether a segment has a \texttt{hi} end point.

All operations available on type \texttt{Segment} apply to \texttt{UniversalSegment}, with the proviso that expansions produce streams rather than lists. This is to accommodate infinite expansions.

For more information on related topics, see \texttt{Segment}, \texttt{SegmentBinding}, \texttt{List}, and \texttt{Stream}.

\showBlurb{UniversalSegment}
\begin{patch}{UniversalSegmentXmpPagePatch1}
\begin{paste}{UniversalSegmentXmpPageFull1}{UniversalSegmentXmpPageEmpty1}
\spadcommand{pints := 1..\bound{pints }}
\verbatim
(1) 1.. \\
Type: UniversalSegment PositiveInteger
\end{verbatim}
\end{patch}

\begin{patch}{UniversalSegmentXmpPagePatch2}
\begin{paste}{UniversalSegmentXmpPageFull2}{UniversalSegmentXmpPageEmpty2}
\spadcommand{nevens := (0..) by -2\bound{nevens }}
\verbatim
(2) 0.. by - 2 \\
Type: UniversalSegment NonNegativeInteger
\end{verbatim}
\end{patch}

\begin{patch}{UniversalSegmentXmpPagePatch3}
\begin{paste}{UniversalSegmentXmpPageFull3}{UniversalSegmentXmpPageEmpty3}
\spadcommand{useg: UniversalSegment(Integer) := 3..10\bound{useg }}
\verbatim
(3) 3..10 \\
Type: UniversalSegment Integer
\end{verbatim}
\end{patch}
\begin{verbatim}
(4) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(5) false
Type: Boolean
\end{verbatim}

\begin{verbatim}
(6) true
Type: Boolean
\end{verbatim}
\begin{verbatim}
(7) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
(8) [0, - 2, - 4, - 6, - 8, - 10, - 12, - 14, - 16, - 18, ...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
(9) [1, 3, 10, 11, 12, 13, 14, 15, 100, 101, ...]
Type: Stream Integer
\end{verbatim}
The domain constructor \texttt{UnivariatePolynomial} (abbreviated \texttt{UP}) creates domains of univariate polynomials in a specified variable. For example, the domain \texttt{UP(a1,POLY FRAC INT)} provides polynomials in the single variable \texttt{a1} whose coefficients are general polynomials with rational number coefficients.

\beginImportant
Axiom does not allow you to create types where \texttt{UnivariatePolynomial} is contained in the coefficient type of \texttt{Polynomial}. Therefore, \texttt{UP(x,POLY INT)} is legal but \texttt{POLY UP(x,INT)} is not.
\endImportant

\begin{verbatim}
\spad{p} := (3*x-1)**2 * (2*x + 8) \free{p}
\spad{q} := (1 - 6*x + 9*x**2)**2 \free{q}
\end{verbatim}
The usual arithmetic operations are available for univariate polynomials.

\begin{spad}{p**2 + p*q \free{p q}}
\end{spad}

\begin{xtc}{
The operation \spadfunFrom{leadingCoefficient}{UnivariatePolynomial} extracts the coefficient of the term of highest degree.
}
\begin{spad}{leadingCoefficient p \free{p}}
\end{spad}
\begin{xtc}{
The operation \spadfunFrom{degree}{UnivariatePolynomial} returns the degree of the polynomial. Since the polynomial has only one variable, the variable is not supplied to operations like \spadfunFrom{degree}{UnivariatePolynomial}.
}
\begin{spad}{degree p \free{p}}
\end{spad}
\begin{xtc}{
The reductum of the polynomial, the polynomial obtained by subtracting the term of highest order, is returned by \spadfunFrom{reductum}{UnivariatePolynomial}.
}
\begin{spad}{reductum p \free{p}}
\end{spad}
\begin{xtc}{
The operation \spadfunFrom{gcd}{UnivariatePolynomial} computes the greatest common divisor of two polynomials.
}
\begin{spad}{gcd(p,q) \free{p q}}
\end{spad}
\begin{xtc}{
The operation \spadfunFrom{lcm}{UnivariatePolynomial} computes the least common multiple.
}
\begin{spad}{lcm(p,q) \free{p q}}
\end{spad}
\begin{xtc}{
The operation \spadfunFrom{resultant}{UnivariatePolynomial} computes the resultant of two univariate polynomials. In the case of \spad{p} and \spad{q}, the resultant is \spad{0} because they share a common root.
}
\begin{spad}{resultant(p,q) \free{p q}}
\end{spad}
\begin{xtc}{
To compute the derivative of a univariate polynomial with respect to its variable, use \spadfunFrom{D}{UnivariatePolynomial}.
}
\begin{spad}{D(p) \free{p}}
\end{spad}
Univariate polynomials can also be used as if they were functions. To evaluate a univariate polynomial at some point, apply the polynomial to the point.

\spadpaste{p(2) \free{p}}

The same syntax is used for composing two univariate polynomials, i.e. substituting one polynomial for the variable in another. This substitutes \spad{q} for the variable in \spad{p}.

\spadpaste{p(q) \free{p \ q}}

This substitutes \spad{p} for the variable in \spad{q}.

\spadpaste{q(p) \free{p \ q}}

To obtain a list of coefficients of the polynomial, use \spadfunFrom{coefficients}{UnivariatePolynomial}.

\spadpaste{l := coefficients p \free{p}\bound{l}}

From this you can use \spadfunFrom{gcd}{UnivariatePolynomial} and \spadfunFrom{reduce}{List} to compute the content of the polynomial.

\spadpaste{reduce(gcd,l) \free{l}}

Alternatively (and more easily), you can just call \spadfunFrom{content}{UnivariatePolynomial}.

\spadpaste{content p \free{p}}

Note that the operation \spadfunFrom{coefficients}{UnivariatePolynomial} omits the zero coefficients from the list. Sometimes it is useful to convert a univariate polynomial to a vector whose \eth{\spad{i}} position contains the degree \spad{i-1} coefficient of the polynomial.

\spadpaste{ux := (x**4+2*x+3)::UP(x,INT) \bound{ux}}
To get a complete vector of coefficients, use the operation \spadfunFrom{vectorise}{UnivariatePolynomial}, which takes a univariate polynomial and an integer denoting the length of the desired vector.

\spadpaste{vectorise(ux,5) \free{ux}}

It is common to want to do something to every term of a polynomial, creating a new polynomial in the process.

This is a function for iterating across the terms of a polynomial, squaring each term.

\begin{spadsrc}
\texttt{\textbf{squareTerms}}(p) == \\
\texttt{reduce(\texttt{+},[t**2 for t in monomials p])}
\end{spadsrc}

Recall what \spad{p} looked like.

\spadpaste{p \free{p}}

We can demonstrate \userfun{squareTerms} on \spad{p}.

\spadpaste{\texttt{\textbf{squareTerms} p \free{p}\free{\textbf{\texttt{\textbf{\textbf{\textbf{\textbf{squareTerms}}}}}}}}}

When the coefficients of the univariate polynomial belong to a field, it is possible to compute quotients and remainders.

\spadpaste{(r,s) : \texttt{UP(a1,FRAC INT)} \bound{rdec}\bound{sdec}}
\spadpaste{r := a1**2 - 2/3 \free{rdec}\bound{r}}
\spadpaste{s := a1 + 4 \free{sdec}\bound{s}}
When the coefficients are rational numbers or rational expressions, the operation \( \text{quo}(\text{UnivariatePolynomial}) \) computes the quotient of two polynomials.
\[
\text{r \quad \text{quo} \quad s \quad \text{free}(\text{r \quad s})}
\]
The operation \( \text{rem}(\text{UnivariatePolynomial}) \) computes the remainder.
\[
\text{r \quad \text{rem} \quad s \quad \text{free}(\text{r \quad s})}
\]
The operation \( \text{divide}(\text{UnivariatePolynomial}) \) can be used to return a record of both components.
\[
\text{d := divide(r, s) \quad \text{free}(\text{r \quad s})\text{\quad bound(d)}}
\]
Now we check the arithmetic!
\[
\text{r \quad - \quad (d.quotient \times s \quad + \quad d.remainder) \quad \text{free}(\text{r \quad s \quad d})}
\]
It is also possible to integrate univariate polynomials when the coefficients belong to a field.
\[
\text{integrate \quad r \quad \text{free}(r)}
\]
\[
\text{integrate \quad s \quad \text{free}(s)}
\]
One application of univariate polynomials is to see expressions in terms of a specific variable.
\%
We start with a polynomial in \( \text{a1} \) whose coefficients are quotients of polynomials in \( \text{b1} \) and \( \text{b2} \).
\[
\text{t := a1**2 \quad - \quad a1/b2 \quad + \quad (b1**2-b1)/(b2+3) \quad \text{free}(\text{dec})\text{\quad bound(t)}}
\]
Since in this case we are not talking about using multivariate polynomials in only two variables, we use \( \text{spadtype(Polynomial)} \). We also use \( \text{spadtype(Fraction)} \) because we want fractions.
\[
\text{t := a1**2 \quad - \quad a1/b2 \quad + \quad (b1**2-b1)/(b2+3) \quad \text{free}(\text{dec})\text{\quad bound(t)}}
\]
We push all the variables into a single quotient of polynomials.

\spadpaste{u : FRAC POLY INT := t \bound{u}\free{t}}

Alternatively, we can view this as a polynomial in the variable $u$.

This is a \textit{mode-directed} conversion: you indicate as much of the structure as you care about and let Axiom decide on the full type and how to do the transformation.

\spadpaste{u :: UP(b1,?) \free{u}}

See \link{``Polynomial Factorization''}{ugProblemFactorPage} in Section 8.2 for a discussion of the factorization facilities in Axiom for univariate polynomials. For more information on related topics, see \link{``Polynomials''}{ugIntroVariablesPage}, \link{``Conversion''}{ugTypesConvertPage}, \link{`Polynomial'}{PolynomialXmpPage}, \link{`MultivariatePolynomial'}{MultivariatePolyXmpPage}, and \link{`DistributedMultivariatePoly'}{DistributedMultivariatePolyXmpPage}.

\%\showBlurb{UnivariatePolynomial}
\begin{spadcommand}
3 2
(2) 18x + 60x - 46x + 8
Type: UnivariatePolynomial(x,Integer)
\end{spadcommand}

\begin{spadcommand}
4 3 2
(3) 81x - 108x + 54x - 12x + 1
Type: UnivariatePolynomial(x,Integer)
\end{spadcommand}

\begin{spadcommand}
7 6 5 4 3 2
1458x + 3240x - 7074x + 10584x - 9282x + 4120x
+ - 878x + 72
Type: UnivariatePolynomial(x,Integer)
\end{spadcommand}
\begin{paste}{UnivariatePolyXmpPageEmpty4}{UnivariatePolyXmpPagePatch4}
\pastebutton{UnivariatePolyXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{p**2 + p*q\free{p q}}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch5}
\begin{paste}{UnivariatePolyXmpPageFull5}{UnivariatePolyXmpPageEmpty5}
\pastebutton{UnivariatePolyXmpPageFull5}{\hidepaste}
\tab{5}\spadcommand{leadingCoefficient p\free{p}}
\indentrel{3}\begin{verbatim}
(5) 18
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPageEmpty5}
\begin{paste}{UnivariatePolyXmpPageEmpty5}{UnivariatePolyXmpPagePatch5}
\pastebutton{UnivariatePolyXmpPageEmpty5}{\showpaste}
\tab{5}\spadcommand{leadingCoefficient p\free{p}}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch6}
\begin{paste}{UnivariatePolyXmpPageFull6}{UnivariatePolyXmpPageEmpty6}
\pastebutton{UnivariatePolyXmpPageFull6}{\hidepaste}
\tab{5}\spadcommand{degree p\free{p}}
\indentrel{3}\begin{verbatim}
(6) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPageEmpty6}
\begin{paste}{UnivariatePolyXmpPageEmpty6}{UnivariatePolyXmpPagePatch6}
\pastebutton{UnivariatePolyXmpPageEmpty6}{\showpaste}
\tab{5}\spadcommand{degree p\free{p}}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch7}
\begin{paste}{UnivariatePolyXmpPageFull7}{UnivariatePolyXmpPageEmpty7}
\pastebutton{UnivariatePolyXmpPageFull7}{\hidepaste}
\tab{5}\spadcommand{reductum p\free{p}}
\indentrel{3}\begin{verbatim}
2
(7) 60x - 46x + 8
Type: UnivariatePolynomial(x,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPageEmpty7}
\begin{paste}{UnivariatePolyXmpPageEmpty7}{UnivariatePolyXmpPagePatch7}
\pastebutton{UnivariatePolyXmpPageEmpty7}{\showpaste}
\indentrel{-3}\end{patch}\end{patch}
\spadcommand{reductum p\free{p}}

\spadcommand{gcd(p,q)\free{p q}}

\verbatim
2
(8) 9x - 6x + 1
    Type: UnivariatePolynomial(x,Integer)
\endverbatim

\spadcommand{lcm(p,q)\free{p q}}

\verbatim
5 4 3 2
(9) 162x + 432x - 756x + 408x - 94x + 8
    Type: UnivariatePolynomial(x,Integer)
\endverbatim

\spadcommand{resultant(p,q)\free{p q}}

\verbatim
(10) 0
    Type: NonNegativeInteger
\endverbatim

\spadcommand{resultant(p,q)\free{p q}}
\begin{verbatim}
(11) 54x + 120x - 46
Type: UnivariatePolynomial(x,Integer)
\end{verbatim}

\begin{verbatim}
(12) 300
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(13) 9565938x - 38263752x + 70150212x - 77944680x
+ 58852170x - 32227632x + 13349448x - 4280688x
+ 4

d + 10 + 9
\end{verbatim}
1058184x - 192672x + 23328x - 1536x + 40  
Type: UnivariatePolynomial(x,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{UnivariatePolyXmpPageEmpty13}
\begin{paste}{UnivariatePolyXmpPageEmpty13}{UnivariatePolyXmpPagePatch13}
\pastebutton{UnivariatePolyXmpPageEmpty13}{\showpaste}
\tab{5}\spadcommand{p(q)\free{p q }}
\end{paste}\end{patch}
\begin{patch}{UnivariatePolyXmpPagePatch14}
\begin{paste}{UnivariatePolyXmpPageFull14}{UnivariatePolyXmpPageEmpty14}
\pastebutton{UnivariatePolyXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{q(p)\free{p q }}
\indentrel{3}\begin{verbatim}
(14)
12 11 10
8503056x + 113374080x + 479950272x
+ 9 8 7
404997408x - 1369516896x - 626146848x
+ 6 5 4
2939858712x - 2780728704x + 1364312160x
+ 3 2
- 39683872x + 69205896x - 6716184x + 279841
Type: UnivariatePolynomial(x,Integer)
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{UnivariatePolyXmpPagePatch15}
\begin{paste}{UnivariatePolyXmpPageFull15}{UnivariatePolyXmpPageEmpty15}
\pastebutton{UnivariatePolyXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{l := coefficients p\free{p}}\bound{l}}
\indentrel{3}\begin{verbatim}
(15) [18, 60, - 46, 8]
Type: List Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{UnivariatePolyXmpPageEmpty15}
\begin{paste}{UnivariatePolyXmpPageEmpty15}{UnivariatePolyXmpPagePatch15}
\pastebutton{UnivariatePolyXmpPageEmpty15}{\showpaste}
\end{patch}
\spadcommand{l := coefficients p\free{p }\bound{l }}

\spadcommand{reduce(gcd,l)\free{l }}

\verbatim
(16) 2
\nType: PositiveInteger
\n\verbatim
(17) 2
\nType: PositiveInteger
\n\verbatim
(18) x + 2x + 3
\nType: UnivariatePolynomial(x,Integer)
\n
\textbf{3.112. \textit{UP.HT}}

\begin{verbatim}
\spadcommand{ux := (x**4+2*x+3)::UP(x,INT)}
\end{verbatim}
\begin{verbatim}
\spadcommand{vectorise(ux,5)}
\end{verbatim}
\begin{verbatim}
(19)  [3,2,0,0,1]
\end{verbatim}
\begin{verbatim}
\spadcommand{squareTerms(p) == reduce(+,[t**2 for t in monomials p])}
\end{verbatim}
\begin{verbatim}
(21)  18x^3 + 60x - 46x + 8
\end{verbatim}
\begin{verbatim}
\spadcommand{p}
\end{verbatim}
\begin{verbatim}
(21)  18x^3 + 60x - 46x + 8
\end{verbatim}
`spadcommand` \begin{verbatim}
6 4 2
(22) 324x + 3600x + 2116x + 64
Type: UnivariatePolynomial(x, Integer)
\end{verbatim}

\spadcommand{r := a1**2 - 2/3}\free{rdec \bound{r}}
\end{paste}\end{patch}
\begin{patch}{UnivariatePolyXmpPagePatch25}
\begin{paste}{UnivariatePolyXmpPageFull25}{UnivariatePolyXmpPageEmpty25}
\pastebutton{UnivariatePolyXmpPageFull25}{\hidepaste}
\spadcommand{s := a1 + 4}\free{sdec \bound{s}}\begin{verbatim}
(25) a1 + 4
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{patch}\end{patch}
\begin{patch}{UnivariatePolyXmpPageEmpty25}
\begin{paste}{UnivariatePolyXmpPageEmpty25}{UnivariatePolyXmpPagePatch25}
\pastebutton{UnivariatePolyXmpPageEmpty25}{\showpaste}
\spadcommand{r quo s}\free{r s}
\begin{verbatim}
(26) a1 - 4
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{patch}\end{patch}
\begin{patch}{UnivariatePolyXmpPagePatch26}
\begin{paste}{UnivariatePolyXmpPageFull26}{UnivariatePolyXmpPageEmpty26}
\pastebutton{UnivariatePolyXmpPageFull26}{\hidepaste}
\spadcommand{r rem s}\free{r s}
\indentrel{-3}
46
(27)
3
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{patch}\end{patch}
\begin{patch}{UnivariatePolyXmpPageEmpty26}
\begin{paste}{UnivariatePolyXmpPageEmpty26}{UnivariatePolyXmpPagePatch26}
\pastebutton{UnivariatePolyXmpPageEmpty26}{\showpaste}
\spadcommand{r quo s}\free{r s}
\end{patch}\end{patch}
\begin{patch}{UnivariatePolyXmpPagePatch27}
\begin{paste}{UnivariatePolyXmpPageFull27}{UnivariatePolyXmpPageEmpty27}
\pastebutton{UnivariatePolyXmpPageFull27}{\hidepaste}
\spadcommand{r rem s}\free{r s}
\indentrel{-3}
46
(27)
3
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{patch}\end{patch}
\begin{paste}{UnivariatePolyXmpPageEmpty27}{UnivariatePolyXmpPagePatch27}
\pastebutton{UnivariatePolyXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{r \text{ rem } s} \\text{free}\{r \ s \}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch28}
\begin{paste}{UnivariatePolyXmpPageFull28}{UnivariatePolyXmpPageEmpty28}
\pastebutton{UnivariatePolyXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{d := \text{divide}(r, s)} \\text{free}\{r \ s \}\text{bound}\{d \}
\indentrel{3}\begin{verbatim}
46
(28) \[\text{quotient}= a1 - 4, \text{remainder}= \]
3
Type: \text{Record(quotient: UnivariatePolynomial(a1,Fraction Integer), remainder: UnivariatePolynomial(a1,Fraction Integer))}
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPageEmpty28}
\begin{paste}{UnivariatePolyXmpPageEmpty28}{UnivariatePolyXmpPagePatch28}
\pastebutton{UnivariatePolyXmpPageEmpty28}{\showpaste}
\tab{5}\spadcommand{d := \text{divide}(r, s)} \\text{free}\{r \ s \}\text{bound}\{d \}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch29}
\begin{paste}{UnivariatePolyXmpPageFull29}{UnivariatePolyXmpPageEmpty29}
\pastebutton{UnivariatePolyXmpPageFull29}{\hidepaste}
\tab{5}\spadcommand{r - (d.\text{quotient} * s + d.\text{remainder})} \\text{free}\{r \ s \} \text{bound}\{d \}
\indentrel{3}\begin{verbatim}
(29) 0
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPageEmpty29}
\begin{paste}{UnivariatePolyXmpPageEmpty29}{UnivariatePolyXmpPagePatch29}
\pastebutton{UnivariatePolyXmpPageEmpty29}{\showpaste}
\tab{5}\spadcommand{r - (d.\text{quotient} * s + d.\text{remainder})} \\text{free}\{r \ s \} \text{bound}\{d \}
\end{paste}
\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch30}
\begin{paste}{UnivariatePolyXmpPageFull30}{UnivariatePolyXmpPageEmpty30}
\pastebutton{UnivariatePolyXmpPageFull30}{\hidepaste}
\tab{5}\spadcommand{\text{integrate} \ r} \\text{free}\{r \}
\indentrel{3}\begin{verbatim}
1 3 2
(30) a1 - a1
3 3
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{UnivariatePolyXmpPageEmpty30}
\begin{paste}{UnivariatePolyXmpPageEmpty30}{UnivariatePolyXmpPagePatch30}
\pastebutton{UnivariatePolyXmpPageEmpty30}{\showpaste}
\tab{5}\spadcommand{\text{integrate } r}\free{r}
\end{paste}\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch31}
\begin{paste}{UnivariatePolyXmpPageFull31}{UnivariatePolyXmpPageEmpty31}
\pastebutton{UnivariatePolyXmpPageFull31}{\hidepaste}
\tab{5}\spadcommand{\text{integrate } s}\free{s}
\end{paste}\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch32}
\begin{paste}{UnivariatePolyXmpPageFull32}{UnivariatePolyXmpPageEmpty32}
\pastebutton{UnivariatePolyXmpPageFull32}{\hidepaste}
\tab{5}\spadcommand{t := a1\^{}2 - a1/b2 + (b1\^{}2-b1)/(b2+3)}\free{tdec}
\end{paste}\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch33}
\begin{paste}{UnivariatePolyXmpPageFull33}{UnivariatePolyXmpPageEmpty33}
\pastebutton{UnivariatePolyXmpPageFull33}{\hidepaste}
\tab{5}\spadcommand{t := a1\^{}2 - a1/b2 + (b1\^{}2-b1)/(b2+3)}\free{tdec}
\end{patch}

\begin{verbatim}
1 2
a1 + 4a1
2
Type: UnivariatePolynomial(a1,Fraction Integer)
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
2
2 1 b1 - b1
a1 - a1 +
2
b2 b2 + 3
Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)
\end{verbatim}
\begin{verbatim}
2 2 2 2
a1 b2 + (b1 - b1 + 3a1 - a1)b2 - 3a1
(34)
2
b2 + 3b2
Type: Fraction Polynomial Integer
\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch35}
\begin{paste}{UnivariatePolyXmpPagePatch35}{UnivariatePolyXmpPageEmpty35}
\pastebutton{UnivariatePolyXmpPagePatch35}{\showpaste}
\spadcommand{u :: UP(b1,?)\free{u }}
\indentrel{3}\begin{verbatim}
1 2 1 a1 b2 - a1
(35) b1 - b1 + b2 + 3 b2 + 3 b2
Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)
\end{verbatim}
\end{patch}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{UnivariatePolyXmpPagePatch35}
\begin{paste}{UnivariatePolyXmpPagePatch35}{UnivariatePolyXmpPageEmpty35}
\pastebutton{UnivariatePolyXmpPagePatch35}{\showpaste}
\spadcommand{u :: UP(b1,?)\free{u }}
\end{patch}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Skew or Ore polynomial rings provide a unified framework to compute with differential and difference equations.

In the following, let $A$ be an integral domain, equipped with two endomorphisms $\sigma$ and $\delta$ where:

- $\sigma: A \to A$ is an injective ring endomorphism
- $\delta: A \to A$, the pseudo-derivation with respect to $\sigma$, is an additive endomorphism with
  - $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$

for all $a, b$ in $A$

The skew polynomial ring $[\Delta; \sigma, \delta]$ is the ring of polynomials in $\delta$ with coefficients in $A$, with the usual addition, while the product is given by

$\delta a = \sigma(a)\delta + \delta(a)$ for $a$ in $A$

The two most important examples of skew polynomial rings are:

- $K(x)[D, 1, \delta]$ where $1$ is the identity on $K$ and $\delta$ is the usual derivative, is the ring of differential polynomials
- $\text{subscriptIt}(K)[n] [E, n, n \to n+1, 0]$ is the ring of linear recurrence operators with polynomial coefficients

The UnivariateSkewPolynomialCategory (OREPCAT) provides a unified framework for polynomial rings in a non-central indeterminate over some coefficient ring $R$. The commutation relations between the indeterminate $x$ and the coefficient $t$ is given by
where $\sigma$ is a ring endomorphism of $R$ and $\delta$ is a $\sigma$-derivation of $R$ which is an additive map from $R$ to $R$ such that

$$
\delta(rs) = \sigma(r) \delta(s) + \delta(r) s
$$

In case $\sigma$ is the identity map on $R$, a $\sigma$-derivation of $R$ is just called a derivation.

We start with a linear ordinary differential operator. First, we define the coefficient ring to be expressions in one variable $x$ with fractional coefficients:

$$
F := \text{EXPR}(\text{FRAC}(\text{INT}))
$$

Define $Dx$ to be a derivative $d/dx$:

Define a skew polynomial ring over $F$ with identity endomorphism as $\sigma$ and derivation $d/dx$ as $\delta$:

\begin{verbatim}
D0 := \text{OREUP}('d,F,1,Dx)
\end{verbatim}

\begin{verbatim}
u:D0 := (\text{operator} 'u)(x)
\end{verbatim}

\begin{verbatim}
d:D0 := 'd
\end{verbatim}

\begin{verbatim}
a:D0:=u^3*d^3+u^2*d^2+u*d+1
\end{verbatim}

\begin{verbatim}
3 3 2 2
u(x) d + u(x) d + u(x)d + 1
\end{verbatim}

\begin{verbatim}
b:D0:=(u+1)*d^2+2*d
\end{verbatim}

\begin{verbatim}
2
(u(x) + 1)d + 2d
\end{verbatim}

\begin{verbatim}
r:=\text{rightDivide}(a,b)
\end{verbatim}

\begin{verbatim}
3 , 3 2
3 - u(x) u (x) - u(x) + u(x)
\end{verbatim}
As a second example, we consider the so-called Weyl algebra.

Define the coefficient ring to be an ordinary polynomial over integers in one variable $t$

Define a skew polynomial ring over $R$ with identity map as $\sigma$ and derivation $d/dt$ as $\delta$. 

```plaintext
3 , 3 2
u(x) u(x) - u(x) + u(x)
d + -----------------------------
u(x) + 1 2 u(x) + 2u(x) + 1

r.quotient

3 , 3 2
u(x) 2u(x) u(x) + 3u(x) + u(x)
d + -----------------------------
u(x) + 2u(x) + 1

r.remainder

2
u(x) + 2u(x) + 1
```
The resulting algebra is then called a Weyl algebra:
\begin{verbatim}
W := OREUP('x,R,1,D)

t:W := 't

x:W := 'x
\end{verbatim}

Let
\begin{verbatim}
a:W:=(t-1)*x^4+(t^3+3*t+1)*x^2+2*t*x+t^3

(t - 1)x + (t + 3t + 1)x + 2t x + t
\end{verbatim}

\begin{verbatim}
b:W:=(6*t^4+2*t^2)*x^3+3*t^2*x^2

(6t + 2t )x + 3t x
\end{verbatim}

Then
\begin{verbatim}
a*b
(6t - 6t + 2t - 2t )x + (96t - 93t + 13t - 16t)x
+ 
(6t + 20t + 6t + 438t - 406t - 24)x
+ 
(48t + 15t + 152t + 61t + 603t - 532t - 36)x
+ 
(6t + 74t + 60t + 226t + 116t + 168t - 140)x
+ 
(3t + 6t + 12t + 18t + 6)x
\end{verbatim}

\begin{verbatim}
a^3
(t - 3t + 3t - 1)x + (3t - 6t + 12t - 15t + 3t + 3)x
+ 
(6t - 12t + 6t)x + (3t - 3t + 21t - 18t + 24t - 9t - 15t - 3)x
+ 
(3t - 3t - 3t + 2t - 18t - 24t - 9t - 15t - 3)x
\end{verbatim}
As a third example, we construct a difference operator algebra over
the ring of EXPR(INT) by using an automorphism $S$ defined by a
"shift" operation $S:EXPR(INT) \rightarrow EXPR(INT)$

\begin{verbatim}
s(e)(n) = e(n+1)
\end{verbatim}

and an $S$-derivation defined by $DF:EXPR(INT) \rightarrow EXPR(INT)$ as

\begin{verbatim}
DF(e)(n) = e(n+1)-e(n)
\end{verbatim}

Define $S$ to be a "shift" operator, which acts on expressions with
the discrete variable $n$:

\begin{verbatim}
S:EXPR(INT)->EXPR(INT):=e++->eval(e,[n],[n+1])
\end{verbatim}

Define $DF$ to be a "difference" operator, which acts on expressions
with a discrete variable $n$:

\begin{verbatim}
DF:EXPR(INT)->EXPR(INT):=e++->eval(e,[n],[n+1])-e
\end{verbatim}

Then define the difference operator algebra $D_0$:

\begin{verbatim}
D0:=OREUP('D,EXPR(INT),morphism S,DF)
\end{verbatim}
As a fourth example, we construct a skew polynomial ring by using an inner derivation \( \delta \) induced by a fixed \( y \) in \( R \):

First we should expose the constructor `SquareMatrix` so it is visible in the interpreter:

Define \( R \) to be the square matrix with integer entries:

Define \( \delta \) as the inner derivative:

Define \( S \) to be a skew polynomial determined by \( \sigma = 1 \) and \( \delta \) as an inner derivative:
3.114. VECTOR.HT

\begin{verbatim}
+2 3+
|   |
+1 1+

x^2*a
+2 3+ 2 +2 -2+ +0 -2+
| |x + | |x + | |
+1 1+ +0 -2+ +0 0 +
\end{verbatim}
\end{scroll}
\autobuttons
\end{page}

3.114 vector.ht

Vector

⇒ “notitle” (OneDimensionalArrayXmpPage) 3.4 on page 138
⇒ “notitle” (ListXmpPage) 3.64 on page 866
⇒ “notitle” (MatrixXmpPage) 3.75 on page 984
⇒ “notitle” (OneDimensionalArrayXmpPage) 3.4 on page 138
⇒ “notitle” (SetXmpPage) 3.97 on page 1227
⇒ “notitle” (TableXmpPage) 3.106 on page 1298
⇒ “notitle” (TwoDimensionalArrayXmpPage) 3.5 on page 143

--- vector.ht ---

\begin{page}{VectorXmpPage}{Vector}
\beginscroll

The \spadtype{Vector} domain is used for storing data in a one-dimensional indexed data structure. A vector is a homogeneous data structure in that all the components of the vector must belong to the same Axiom domain. Each vector has a fixed length specified by the user; vectors are not extensible. This domain is similar to the \spadtype{OneDimensionalArray} domain, except that when the components of a \spadtype{Vector} belong to a \spadtype{Ring}, arithmetic operations are provided. For more examples of operations that are defined for both \spadtype{Vector} and \spadtype{OneDimensionalArray}, see \downlink{"OneDimensionalArray"}{OneDimensionalArrayXmpPage}
\ignore{OneDimensionalArray}.

As with the \spadtype{OneDimensionalArray} domain, a \spadtype{Vector} can be created by calling the operation \spadfunFrom{new}{Vector}, its
components can be accessed by calling the operations \spadfun{elt}{Vector} and \spadfun{qelt}{Vector}, and its components can be reset by calling the operations \spadfun{setelt}{Vector} and \spadfun{qsetelt}{Vector}.

\xtc{ This creates a vector of integers of length \spad{5} all of whose components are \spad{12}. }{ \spadpaste{u : VECTOR INT := new(5,12) \bound{u}} } \xtc{ This is how you create a vector from a list of its components. }{ \spadpaste{v : VECTOR INT := vector([1,2,3,4,5]) \bound{v}} }

\xtc{ Indexing for vectors begins at \spad{1}. The last element has index equal to the length of the vector, which is computed by \spadop{\#}{Vector}. }{ \spadpaste{\#(v) \free{v}}} \xtc{ This is the standard way to use \spadfun{elt}{Vector} to extract an element. Functionally, it is the same as if you had typed \spad{elt(v,2)}. }{ \spadpaste{v.2 \free{v}}} \xtc{ This is the standard way to use \spadfun{setelt}{Vector} to change an element. It is the same as if you had typed \spad{setelt(v,3,99)}. }{ \spadpaste{v.3 := 99 \free{v}\bound{vdelta}}} \xtc{ Now look at \spad{v} to see the change. You can use \spadfun{qelt}{Vector} and \spadfun{qsetelt}{Vector} (instead of \spadfun{elt}{Vector} and \spadfun{setelt}{Vector}, respectively) but \{it only\} when you know that the index is within the valid range. }{ \spadpaste{v \free{vdelta}}} \xtc{ When the components belong to a \spadtype{Ring}, Axiom provides arithmetic operations for \spadtype{Vector}. These include left and right scalar multiplication. }{ \spadpaste{5 * v \free{vdelta}}} \xtc{ }{ }
VECTOR HT

\spadpaste{v * 7 \free{v\text{delta}}} \\
\xtc{} \\
\spadpaste{w : VECTOR INT := vector([2,3,4,5,6]) \bound{w}} \\
\xtc{}

Addition and subtraction are also available.

\spadpaste{v + w \free{v\text{delta } w}} \\
\xtc{}

Of course, when adding or subtracting, the two vectors must have the same length or an error message is displayed.

\spadpaste{v - w \free{v\text{delta } w}} \\
\xtc{}

For more information about other aggregate domains, see the following:
\downlink{`List'}{ListXmpPage}\ignore{List}, \downlink{`Matrix'}{MatrixXmpPage}\ignore{Matrix}, \downlink{`OneDimensionalArray'}{OneDimensionalArrayXmpPage}\ignore{OneDimensionalArray}, \downlink{`Set'}{SetXmpPage}\ignore{Set}, \downlink{`Table'}{TableXmpPage}\ignore{Table}, and \downlink{`TwoDimensionalArray'}{TwoDimensionalArrayXmpPage}\ignore{TwoDimensionalArray}.

Issue the system command \spadcmd{)show Vector} to display the full list of operations defined by \spadtype{Vector}.

\begin{patch}{VectorXmpPagePatch1}
\begin{paste}{VectorXmpPageFull1}{VectorXmpPageEmpty1}
\pastebutton{VectorXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{u : VECTOR INT := new(5,12)\bound{u}} \\
\indentrel{3}\begin{verbatim}
(1) [12,12,12,12,12] 
Type: Vector Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{VectorXmpPageEmpty1}
\begin{paste}{VectorXmpPageEmpty1}{VectorXmpPagePatch1}
\pastebutton{VectorXmpPageEmpty1}{\showpaste}
\end{paste}
\end{patch}
\begin{patch}{VectorXmpPagePatch2}
\begin{paste}{VectorXmpPageFull2}{VectorXmpPageEmpty2}
\pastebutton{VectorXmpPageFull2}{\hidepaste}
\spadcommand{v : VECTOR INT := vector([1,2,3,4,5])\bound{v}}
\verbatim
(2) [1,2,3,4,5]
Type: Vector Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{VectorXmpPagePatch3}
\begin{paste}{VectorXmpPageFull3}{VectorXmpPageEmpty3}
\pastebutton{VectorXmpPageFull3}{\hidepaste}
\spadcommand{\#(v)\free{v}}
\verbatim
(3) 5
Type: PositiveInteger
\end{verbatim}
\end{patch}

\begin{patch}{VectorXmpPagePatch4}
\begin{paste}{VectorXmpPageFull4}{VectorXmpPageEmpty4}
\pastebutton{VectorXmpPageFull4}{\hidepaste}
\spadcommand{v.2\free{v}}
\verbatim
(4) 2
Type: PositiveInteger
\end{verbatim}
\end{patch}
\begin{verbatim}
(5) 99
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(6) [1,2,99,4,5]
Type: Vector Integer
\end{verbatim}

\begin{verbatim}
(7) [5,10,495,20,25]
Type: Vector Integer
\end{verbatim}
\spadcommand{v * 7\free{vdelta }}
(8) \[7, 14, 693, 28, 35\]
Type: Vector Integer

\spadcommand{w : VECTOR INT := vector([2, 3, 4, 5, 6])\bound{w}}
(9) \[2, 3, 4, 5, 6\]
Type: Vector Integer

\spadcommand{v + w\free{vdelta w}}
(10) \[3, 5, 103, 9, 11\]
Type: Vector Integer
When an expression is not in a value context, it is given type \spadtype{Void}. For example, in the expression
\begin{verbatim}
r := (a; b; if c then d else e; f)
\end{verbatim}
values are used only from the subexpressions \spad{c} and \spad{f}: all others are thrown away.
The subexpressions \spad{a}, \spad{b}, \spad{d} and \spad{e} are evaluated for side-effects only and have type \spadtype{Void}.
There is a unique value of type \spadtype{Void}.

\xtc{
You will most often see results of type \spadtype{Void} when you declare a variable.
}
\spadpaste{a : Integer}
\noOutputXtc{
Usually no output is displayed for \spadtype{Void} results.
You can force the display of a rather ugly object by issuing \spadcmd{)set message void on}.
}
\spadpaste{)set message void on}
All values can be converted to type \spadtype{Void}.

Once a value has been converted to \spadtype{Void}, it cannot be recovered.

Type: Void
3.115. VOID.HT

\begin{verbatim}
(2) "()"
\end{verbatim}

Type: Void

\end{verbatim}

\end{verbatim}

\end{verbatim}

\end{verbatim}

Type: Void

\end{verbatim}
3.116  wutset.ht

WuWenTsunTriangularSet

— wutset.ht —

The \spadtype{WuWenTsunTriangularSet} domain constructor implements the characteristic set method of Wu Wen Tsun. This algorithm computes a list of triangular sets from a list of polynomials such that the algebraic variety defined by the given list of polynomials decomposes into the union of the regular-zero sets of the computed triangular sets. The constructor takes four arguments. The first one, \{\bf R\}, is the coefficient ring of the polynomials; it must belong to the category \spadtype{IntegralDomain}. The second one, \{\bf E\}, is the exponent monoid of the polynomials; it must belong to the category \spadtype{OrderedAbelianMonoidSup}. The third one, \{\bf V\}, is the ordered set of variables; it must belong to the category \spadtype{OrderedSet}. The last one is the polynomial ring; it must belong to the category \spadtype{RecursivePolynomialCategory(R,E,V)}. The abbreviation for \spadtype{WuWenTsunTriangularSet} is \spadtype{WUTSET}.

Let us illustrate the facilities by an example.

\xtc{
  Define the coefficient ring.
}
\spadpaste{R := Integer \bound{R}}
Define the list of variables,
}\{\spad{ls : List Symbol := [x,y,z,t] \bound{ls}}
\}
\xtc{and make it an ordered set;}
}\{\spad{V := OVAR(ls) \free{ls} \bound{V}}
\}
\xtc{then define the exponent monoid.}
}\{\spad{E := IndexedExponents V \free{V} \bound{E}}
\}
\xtc{Define the polynomial ring.}
}\{\spad{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
\}
\xtc{Let the variables be polynomial.}
}\{\spad{x: P := 'x \free{P} \bound{x}}
\}
\xtc{y: P := 'y \free{P} \bound{y}}
\}
\xtc{z: P := 'z \free{P} \bound{z}}
\}
\xtc{t: P := 't \free{P} \bound{t}}
\}
\xtc{Now call the \spad{WuWenTsunTriangularSet} domain constructor.}
}\{\spad{T := WUTSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{T}}
\}
\xtc{Define a polynomial system.}
}\{\spad{p1 := x ** 31 - x ** 6 - x - y \free{x} \free{y} \bound{p1}}
\}
\xtc{p2 := x ** 8 - z \free{x} \free{z} \bound{p2}}
CHAPTER 3. HYPERDOC PAGES

\spadpaste{p3 := x ** 10 - t \free{x} \free{t} \bound{p3}}

\spadpaste{lp := [p1, p2, p3] \free{p1} \free{p2} \free{p3} \bound{lp}}

Compute a characteristic set of the system.

\spadpaste{characteristicSet(lp)$T \free{lp} \free{T}}

Solve the system.

\spadpaste{zeroSetSplit(lp)$T \free{lp} \free{T}}

The \spadtype{RegularTriangularSet} and \spadtype{SquareFreeRegularTriangularSet} domain constructors, and the \spadtype{LazardSetSolvingPackage}, \spadtype{SquareFreeRegularTriangularSet} and \spadtype{ZeroDimensionalSolvePackage} package constructors also provide operations to compute triangular decompositions of algebraic varieties. These five constructor use a special kind of characteristic sets, called regular triangular sets. These special characteristic sets have better properties than the general ones. Regular triangular sets and their related concepts are presented in the paper "On the Theories of Triangular sets" By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of Symbolic Computation). The decomposition algorithm (due to the third author) available in the four above constructors provide generally better timings than the characteristic set method. In fact, the \spadtype{WUTSET} constructor remains interesting for the purpose of manipulating characteristic sets whereas the other constructors are more convenient for solving polynomial systems.

Note that the way of understanding triangular decompositions is detailed in the example of the \spadtype{RegularTriangularSet} constructor.

\begin{patch}{WuWenTsunTriangularSetXmpPagePatch1}
\begin{paste}{WuWenTsunTriangularSetXmpPageFull1}{WuWenTsunTriangularSetXmpPageEmpty1}
\pastebutton{WuWenTsunTriangularSetXmpPageFull1}{\hidepaste}
\( \text{tab}(5) \texttt{spadcommand}(R := \text{Integer}\bound{R}) \)
\( \text{indentrel}(3) \texttt{begin}(verbatim) \)
\( (1) \text{ Integer} \)
\( \text{Type: Domain} \)
\( \texttt{end}(verbatim) \)
\( \text{indentrel}(3) \texttt{end}(paste) \texttt{end}(patch) \)

\( \text{begin}(paste)\{\text{WuWenTsunTriangularSetXmpPageEmpty1}\} \)
\( \text{pastebutton}\{\text{WuWenTsunTriangularSetXmpPageEmpty1}\}\{\text{WuWenTsunTriangularSetXmpPagePatch1}\} \)
\( \texttt{tab}(5) \texttt{spadcommand}(R := \text{Integer}\bound{R}) \{\text{showpaste}\} \)
\( \text{end}(paste) \texttt{end}(patch) \)

\( \text{begin}(patch)\{\text{WuWenTsunTriangularSetXmpPagePatch2}\} \)
\( \text{begin}(paste)\{\text{WuWenTsunTriangularSetXmpPageEmpty2}\}\{\text{WuWenTsunTriangularSetXmpPagePatch2}\} \)
\( \text{pastebutton}\{\text{WuWenTsunTriangularSetXmpPageFull2}\}\{\text{hidepaste}\} \)
\( \text{tab}(5) \texttt{spadcommand}(ls : \text{List Symbol} := [x,y,z,t]\bound{ls}) \)
\( \text{indentrel}(3) \texttt{begin}(verbatim) \)
\( (2) \ [x,y,z,t] \)
\( \text{Type: List Symbol} \)
\( \texttt{end}(verbatim) \)
\( \text{indentrel}(3) \texttt{end}(paste) \texttt{end}(patch) \)

\( \text{begin}(patch)\{\text{WuWenTsunTriangularSetXmpPagePatch3}\} \)
\( \text{begin}(paste)\{\text{WuWenTsunTriangularSetXmpPageEmpty3}\}\{\text{WuWenTsunTriangularSetXmpPagePatch3}\} \)
\( \text{pastebutton}\{\text{WuWenTsunTriangularSetXmpPageFull3}\}\{\text{hidepaste}\} \)
\( \text{tab}(5) \texttt{spadcommand}(V := \text{OVAR}(ls)\free{ls}\bound{V}) \)
\( \text{indentrel}(3) \texttt{begin}(verbatim) \)
\( (3) \text{ OrderedVariableList} \ [x,y,z,t] \)
\( \text{Type: Domain} \)
\( \texttt{end}(verbatim) \)
\( \text{indentrel}(3) \texttt{end}(paste) \texttt{end}(patch) \)

\( \text{begin}(patch)\{\text{WuWenTsunTriangularSetXmpPagePatch4}\} \)
\( \text{begin}(paste)\{\text{WuWenTsunTriangularSetXmpPageEmpty4}\}\{\text{WuWenTsunTriangularSetXmpPagePatch4}\} \)
\( \text{pastebutton}\{\text{WuWenTsunTriangularSetXmpPageFull4}\}\{\text{hidepaste}\} \)
\( \text{tab}(5) \texttt{spadcommand}(E := \text{IndexedExponents} V\free{V}\bound{E}) \)
\( \text{indentrel}(3) \texttt{begin}(verbatim) \)
(4) IndexedExponents OrderedVariableList [x,y,z,t]
    Type: Domain

(5) NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
    Type: Domain

(6) x
    Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\( y \)  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([x,y,z,t]\))  
\end{verbatim}  
\end{paste}  
\end{patch}  

\begin{patch}{WuWenTsunTriangularSetXmpPagePatch8}  
\begin{paste}{WuWenTsunTriangularSetXmpPageFull8}{WuWenTsunTriangularSetXmpPageEmpty8}  
\pastebutton{WuWenTsunTriangularSetXmpPageFull8}{\hidepaste}  
\tab{5}\spadcommand{z: P := 'z\free{P }\bound{z }}\indentrel{3}\begin{verbatim}  
(8) z  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([x,y,z,t]\))  
\end{verbatim}  
\indentrel{-3}\end{paste}  
\end{patch}  

\begin{patch}{WuWenTsunTriangularSetXmpPagePatch9}  
\begin{paste}{WuWenTsunTriangularSetXmpPageFull9}{WuWenTsunTriangularSetXmpPageEmpty9}  
\pastebutton{WuWenTsunTriangularSetXmpPageFull9}{\hidepaste}  
\tab{5}\spadcommand{t: P := 't\free{P }\bound{t }}\indentrel{3}\begin{verbatim}  
(9) t  
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList \([x,y,z,t]\))  
\end{verbatim}  
\indentrel{-3}\end{paste}  
\end{patch}  

\begin{patch}{WuWenTsunTriangularSetXmpPagePatch10}  
\begin{paste}{WuWenTsunTriangularSetXmpPageFull10}{WuWenTsunTriangularSetXmpPageEmpty10}  
\pastebutton{WuWenTsunTriangularSetXmpPageFull10}{\hidepaste}  
\tab{5}\spadcommand{T := WUTSET(R,E,V,P)\free{R }\free{E }\free{V }\free{P }\bound{T }}\indentrel{3}\begin{verbatim}  
(10)  
WuWenTsunTriangularSet(Integer,IndexedExponents Ordered  
\end{verbatim}  
\indentrel{-3}\end{patch}
\textbf{CHAPTER 3. HYPERDOC PAGES}

\begin{verbatim}
VariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t]))
\end{verbatim}

\begin{verbatim}
31 6
(11) x - x - x - y
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
8
(12) x - z
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
\end{verbatim}
3.116. WUTSET.HT

\begin{verbatim}
10
(13) x - t
Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
31 6 8 10
(14) [x - x - x - y,x - z,x - t]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
\end{verbatim}

\begin{verbatim}
(15) {z - t, t z y + 2t z y + (- t + 2t - t)z + t z,
    3 3 3 3
    (t - 1)z x - z y - t }
Type: Union(WuWenTsunTriangularSet(Integer,IndexedExponents OrderedVariableList [x,y,z,t],OrderedVariableList [x,y,z,t],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])),...}
\end{verbatim}
\texttt{\begin{verbatim}
(16)
3 5 4 3 3 2
\{t, z, y, x\}, \{t - 1, z - t, z y + t, z x - t\},
5 4
\{z - t, 
4 2 2 3 4 7 4 6 6
z y + 2t z y + (-t + 2t - t)z + t z,
3 3 3 3
(t - 1)z x - z y - t\}
\]}
Type: List WuWenTsunTriangularSet(Integer, IndexedExponents OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))
\end{verbatim}\n
\end{patch}

\begin{patch}
\begin{verbatim}
(16)
3 5 4 3 3 2
\{t, z, y, x\}, \{t - 1, z - t, z y + t, z x - t\},
5 4
\{z - t, 
4 2 2 3 4 7 4 6 6
z y + 2t z y + (-t + 2t - t)z + t z,
3 3 3 3
(t - 1)z x - z y - t\}
\]}
Type: List WuWenTsunTriangularSet(Integer, IndexedExponents OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))
\end{verbatim}\n
\end{patch}
Some Examples of Domains and Packages

This is a menu of examples of some domains and packages. Click on any item below to see that section.

- AssociationList
- BalancedBinaryTree
- BasicOperator
- BinaryExpansion
- BinarySearchTree
- CardinalNumber
- CartesianTensor
- Character
- CharacterClass
- CliffordAlgebra
- Complex
- ContinuedFraction
- CycleIndicators
- DeRhamComplex

⇐ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “AssociationList” (AssociationListXmpPage) 3.3 on page 132
⇒ “BalancedBinaryTree” (BalancedBinaryTreeXmpPage) 3.7 on page 157
⇒ “BasicOperator” (BasicOperatorXmpPage) 3.10 on page 169
⇒ “BinaryExpansion” (BinaryExpansionXmpPage) 3.8 on page 163
⇒ “BinarySearchTree” (BinarySearchTreeXmpPage) 3.11 on page 178
⇒ “CardinalNumber” (CardinalNumberXmpPage) 3.12 on page 185
⇒ “CartesianTensor” (CartesianTensorXmpPage) 3.13 on page 195
⇒ “Character” (CharacterXmpPage) 3.15 on page 228
⇒ “CharacterClass” (CharacterClassXmpPage) 3.14 on page 221
⇒ “CliffordAlgebra” (CliffordAlgebraXmpPage) 3.15 on page 234
⇒ “Complex” (ComplexXmpPage) 3.16 on page 254
⇒ “ContinuedFraction” (ContinuedFractionXmpPage) 3.17 on page 262
⇒ “CycleIndicators” (CycleIndicatorsXmpPage) 3.19 on page 279
⇒ “DeRhamComplex” (DeRhamComplexXmpPage) 3.22 on page 352
⇒ “DecimalExpansion” (DecimalExpansionXmpPage) 3.21 on page 348
⇒ “DistributedMultivariatePoly” (DistributedMultivariatePolyXmpPage) 3.24 on page 375
⇒ “DoubleFloat” (DoubleFloatXmpPage) 3.23 on page 369
⇒ “EqTable” (EqTableXmpPage) 3.26 on page 386
⇒ “Equation” (EquationXmpPage) 3.25 on page 380
⇒ “Exit” (ExitXmpPage) 3.28 on page 398
CHAPTER 3. HYPERDOC PAGES

- “Expression” (ExpressionXmpPage) 3.33 on page 436
- “Factored” (FactoredXmpPage) 3.43 on page 516
- “FactoredFunctionsTwo” (FactoredFnsTwoXmpPage) 3.44 on page 539
- “File” (FileXmpPage) 3.40 on page 480
- “FileName” (FileNameXmpPage) 3.42 on page 507
- “FlexibleArray” (FlexibleArrayXmpPage) 3.39 on page 472
- “Float” (FloatXmpPage) 3.41 on page 487
- “Fraction” (FractionXmpPage) 3.45 on page 543
- “FullPartialFracExpansion” (FullPartialFracExpansionXmpPage) 3.46 on page 549
- “GeneralSparseTable” (GeneralSparseTableXmpPage) 3.52 on page 687
- “GroebnerFactorizationPkg” (GroebnerFactorizationPkgXmpPage) 3.48 on page 575
- “Heap” (HeapXmpPage) 3.53 on page 690
- “HexadecimalExpansion” (HexExpansionXmpPage) 3.54 on page 692
- “Integer” (IntegerXmpPage) 3.55 on page 696
- “IntegerLinearDependence” (IntegerLinearDependenceXmpPage) 3.122 on page 1463
- “IntegerNumberTheoryFunctions” (IntNumberTheoryFnsXmpPage) 3.56 on page 722
- “Kernel” (KernelXmpPage) 3.58 on page 743
- “KeyedAccessFile” (KeyedAccessFileXmpPage) 3.57 on page 734
- “LexTriangularPackage” (LexTriangularPkgXmpPage) 3.61 on page 784
- “LazardSetSolvingPackage” (LazardSetSolvingPackageXmpPage) 3.59 on page 752
- “Library” (LibraryXmpPage) 3.62 on page 840
- “LieExponentials” (LieExponentialsXmpPage) 3.60 on page 778
- “LiePolynomial” (LiePolynomialXmpPage) 3.68 on page 919
- “LinearOrdinaryDifferentialOperator” (LinearOrdinaryDifferentialOperatorXmpPage) 3.65 on page 884
- “LinearOrdinaryDifferentialOperatorOne” (LinearOrdinaryDifferentialOperatorOneXmpPage) 3.66 on page 894
- “LinearODEOperatorTwo” (LinearODEOperatorTwoXmpPage) 3.67 on page 905
- “List” (ListXmpPage) 3.64 on page 866
- “LyndonWord” (LyndonWordXmpPage) 3.69 on page 932
- “Magma” (MagmaXmpPage) 3.70 on page 942
- “MakeFunction” (MakeFunctionXmpPage) 3.76 on page 1006
- “MappingPackageOne” (MappingPackageOneXmpPage) 3.73 on page 965
- “Matrix” (MatrixXmpPage) 3.75 on page 984
- “MultiSet” (MultiSetXmpPage) 3.74 on page 978
- “MultivariatePolynomial” (MultivariatePolyXmpPage) 3.77 on page 1011
- “None” (NoneXmpPage) 3.79 on page 1019
- “Octonion” (OctonionXmpPage) 3.81 on page 1044
- “OneDimensionalArray” (OneDimensionalArrayXmpPage) 3.4 on page 138
- “Operator” (OperatorXmpPage) 3.83 on page 1071
- “OrderedVariableList” (OrderedVariableListXmpPage) 3.84 on page 1082
- “OrdinaryDifferentialPolynomial” (OrdinaryDifferentialPolyXmpPage) 3.82 on page 1053
- “PartialFraction” (PartialFractionXmpPage) 3.86 on page 1088
- “Permanent” (PermanentXmpPage) 3.85 on page 1085
- “Polynomial” (PolynomialXmpPage) 3.88 on page 1110
- “Quaternion” (QuaternionXmpPage) 3.89 on page 1134
This is a menu of examples of some domains and packages. Click on any item below to see that section.

- "RadixExpansion" (RadixExpansionXmpPage) on page 1140
- "RealClosure" (RealClosureXmpPage) on page 1149
- "RegularTriangularSet" (RegularTriangularSetXmpPage) on page 1184
- "RomanNumeral" (RomanNumericalXmpPage) on page 1213
- "Segment" (SegmentXmpPage) on page 1218
- "SegmentBinding" (SegmentBindingXmpPage) on page 1224
- "Set" (SetXmpPage) on page 1227
- "SingleInteger" (SingleIntegerXmpPage) on page 1237
- "SparseTable" (SparseTableXmpPage) on page 1259
- "SquareMatrix" (SqMatrixXmpPage) on page 1243
- "SquareFreeRegularTriangularSet" (SqFreeRegTriangSetXmpPage) on page 1247
- "Stream" (StreamXmpPage) on page 1263
- "String" (StringXmpPage) on page 1269
- "StringTable" (StringTableXmpPage) on page 1284
- "Symbol" (SymbolXmpPage) on page 1286
- "Table" (TableXmpPage) on page 1298
- "TextFile" (TextFileXmpPage) on page 1307
- "TwoDimensionalArray" (TwoDimensionalArrayXmpPage) on page 143
- "UnivariatePolynomial" (UnivariatePolyXmpPage) on page 1327
- "UnivariateSkewPolynomial" (UnivariateSkewPolyXmpPage) on page 1345
- "UniversalSegment" (UniversalSegmentXmpPage) on page 1322
- "Vector" (VectorXmpPage) on page 1351
- "Void" (VoidXmpPage) on page 1357
- "WuWenTsunTriangularSet" (WuWenTsunTriangularSetXmpPage) on page 1360
- "XPBWPolynomial" (XPBWPolynomialXmpPage) on page 1374
- "XPolynomial" (XPolynomialXmpPage) on page 1395
- "XPolynomialRing" (XPolynomialRingXmpPage) on page 1402
- "ZeroDimensionalSolvePackage" (ZeroDimSolvePkgXmpPage) on page 1412

\begin{page}{ExamplesExposedPage}{Some Examples of Domains and Packages}

This is a menu of examples of some domains and packages. Click on any item below to see that section.

\beginscroll
\begin{table}
\{ \downlink{AssociationList}{AssociationListXmpPage} \}
\{ \downlink{BalancedBinaryTree}{BalancedBinaryTreeXmpPage} \}
\{ \downlink{BasicOperator}{BasicOperatorXmpPage} \}
\{ \downlink{BinaryExpansion}{BinaryExpansionXmpPage} \}
\{ \downlink{BinarySearchTree}{BinarySearchTreeXmpPage} \}
\{ \downlink{CardinalNumber}{CardinalNumberXmpPage} \}
\{ \downlink{CartesianTensor}{CartesianTensorXmpPage} \}
\{ \downlink{Character}{CharacterXmpPage} \}
\{ \downlink{CharacterClass}{CharacterClassXmpPage} \}
\{ \downlink{CliffordAlgebra}{CliffordAlgebraXmpPage} \}
\{ \downlink{Complex}{ComplexXmpPage} \}
\{ \downlink{ContinuedFraction}{ContinuedFractionXmpPage} \}
\end{table}

\end{scrollpage}
\begin{page}

\section{Examples}

\begin{enumerate}
  \item \texttt{Octonion}
  \item \texttt{OneDimensionalArray}
  \item \texttt{Operator}
  \item \texttt{OrderedVariableList}
  \item \texttt{OrderlyDifferentialPolynomial}
  \item \texttt{PartialFraction}
  \item \texttt{Permanent}
  \item \texttt{Quaternion}
  \item \texttt{RadixExpansion}
  \item \texttt{RealClosure}
  \item \texttt{RegularTriangularSet}
  \item \texttt{RomanNumeral}
  \item \texttt{Segment}
  \item \texttt{Set}
  \item \texttt{SingleInteger}
  \item \texttt{SparseTable}
  \item \texttt{SquareMatrix}
  \item \texttt{SquareFreeRegularTriangularSet}
  \item \texttt{Stream}
  \item \texttt{String}
  \item \texttt{StringTable}
  \item \texttt{Symbol}
  \item \texttt{Table}
  \item \texttt{TextFile}
  \item \texttt{TwoDimensionalArray}
  \item \texttt{UnivariatePolynomial}
  \item \texttt{UnivariateSkewPolynomial}
  \item \texttt{UniversalSegment}
  \item \texttt{Vector}
  \item \texttt{Void}
  \item \texttt{WuWenTsuanTriangularSet}
  \item \texttt{XPBWPolynomial}
  \item \texttt{XPolynomial}
  \item \texttt{XPolynomialRing}
  \item \texttt{ZeroDimensionalSolvePackage}
\end{enumerate}

\end{page}
3.118  xpbwpoly.ht

XPBWPolynomial

— xpbwpoly.ht —

\begin{page}{XPBWPolynomialXmpPage}{XPBWPolynomial}
\beginscroll
Initialisations
\xtc{
\spadpaste{a:Symbol := 'a \bound{a}}
}\xtc{
\spadpaste{b:Symbol := 'b \bound{b}}
}\xtc{
\spadpaste{RN := Fraction(Integer) \bound{RN}}
}\xtc{
\spadpaste{word := OrderedFreeMonoid Symbol \bound{word}}
}\xtc{
\spadpaste{lword := LyndonWord(Symbol) \bound{lword}}
}\xtc{
\spadpaste{base := PoincareBirkhoffWittLyndonBasis Symbol \bound{base}}
}\xtc{
\spadpaste{dpoly := XDistributedPolynomial(Symbol, RN) \bound{dpoly} \free{RN}}
}\xtc{
\spadpaste{rpoly := XRecursivePolynomial(Symbol, RN) \bound{rpoly} \free{RN}}
}\xtc{
\spadpaste{lpoly := LiePolynomial(Symbol, RN) \bound{lpoly} \free{RN}}
}\xtc{
\spadpaste{poly := XBPWPolynomial(Symbol, RN) \free{poly} \bound{RN}}
\xtc{}
\spadpaste{liste : List lword := LyndonWordsList([a,b], 6) \free{liste}}
\xtc{
\spadpaste{0$poly \free{poly}}
}\xtc{
\spadpaste{1$poly \free{poly}}
}\xtc{
\spadpaste{p : poly := a \free{a poly} \bound{p}}
}\xtc{
\spadpaste{q : poly := b \free{b poly} \bound{q}}
}\xtc{
\spadpaste{pq : poly := p*q \free{p q poly} \bound{pq}}
}\xtc{
Coerce to distributed polynomial}
\spadpaste{pq :: dpoly \free{pq dpoly}}
\xtc{
Check some polynomial operations}
\spadpaste{mirror pq \free{pq}}
\xtc{
\spadpaste{listOfTerms pq \free{pq}}
}\xtc{
\spadpaste{reductum pq \free{pq}}
}\xtc{
Calculations with verification in \texttt{XDistributedPolynomial}.
\begin{verbatim}
 }
 \spad{leadingMonomial pq \free{pq}}
 \xtc{
 \spad{coefficients pq \free{pq}}
 \xtc{
 \spad{leadingTerm pq \free{pq}}
 \xtc{
 \spad{degree pq \free{pq}}
 \xtc{
 \spad{pq4:=exp(pq,4) \bound{pq4} \free{pq}}
 \xtc{
 \spad{log(pq4,4) - pq \free{pq4 pq} }
 \end{verbatim}

\begin{verbatim}
 Calculations with verification in \texttt{XDistributedPolynomial}.
 \begin{verbatim}
 }
 \spad{lp1 :lpoly := LiePoly liste.10 \free{liste lpoly} \bound{lp1}}
 \xtc{
 \spad{lp2 :lpoly := LiePoly liste.11 \free{liste lpoly} \bound{lp2}}
 \xtc{
 \spad{lp := [lp1, lp2] \free{lp1 lp2 lpoly} \bound{lp}}
 \xtc{
 \spad{lpd1: dpoly := lp1 \free{lp1 dpoly} \bound{lpd1}}
 \xtc{
 \spad{lpd2: dpoly := lp2 \free{lp2 dpoly} \bound{lpd2}}
 \xtc{
 \spad{lpd : dpoly := lpd1 * lpd2 - lpd2 * lpd1 \free{dpoly lpd1 lpd2} \bound{lpd}}
 \end{verbatim}
Calculations with verification in \texttt{XRecursivePolynomial}.
\begin{verbatim}
(1) a
Type: Symbol
\end{verbatim}

\begin{patch}{XPBWPolynomialXmpPagePatch2}
\begin{paste}{XPBWPolynomialXmpPageFull2}{XPBWPolynomialXmpPageEmpty2}\pastebutton{XPBWPolynomialXmpPageFull2}{\hidepaste}
\begin{verbatim}
(2) b
Type: Symbol
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty2}
\begin{paste}{XPBWPolynomialXmpPageEmpty2}{XPBWPolynomialXmpPagePatch2}\pastebutton{XPBWPolynomialXmpPageEmpty2}{\showpaste}
\tab{5}\spadcommand{b:Symbol := 'b\bound{b }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch3}
\begin{paste}{XPBWPolynomialXmpPageFull3}{XPBWPolynomialXmpPageEmpty3}\pastebutton{XPBWPolynomialXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{RN := Fraction(Integer)\bound{RN }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty3}
\begin{paste}{XPBWPolynomialXmpPageEmpty3}{XPBWPolynomialXmpPagePatch3}\pastebutton{XPBWPolynomialXmpPageEmpty3}{\showpaste}
\tab{5}\spadcommand{RN := Fraction(Integer)\bound{RN }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch4}
\begin{paste}{XPBWPolynomialXmpPageFull4}{XPBWPolynomialXmpPageEmpty4}\pastebutton{XPBWPolynomialXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{word := OrderedFreeMonoid Symbol\bound{word }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty4}
\begin{paste}{XPBWPolynomialXmpPageEmpty4}{XPBWPolynomialXmpPagePatch4}\pastebutton{XPBWPolynomialXmpPageEmpty4}{\showpaste}
\tab{5}\spadcommand{word := OrderedFreeMonoid Symbol\bound{word }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch5}
\begin{paste}{XPBWPolynomialXmpPageFull5}{XPBWPolynomialXmpPageEmpty5}\pastebutton{XPBWPolynomialXmpPageFull5}{\hidepaste}
\end{paste}\end{patch}
\spadcommand{lword := LyndonWord(Symbol)}
\begin{verbatim}
(5) LyndonWord Symbol
Type: Domain
\end{verbatim}
\indentrel{-3}

\spadcommand{base := PoincareBirkhoffWittLyndonBasis Symbol}
\begin{verbatim}
(6) PoincareBirkhoffWittLyndonBasis Symbol
Type: Domain
\end{verbatim}
\indentrel{-3}

\spadcommand{dpoly := XDistributedPolynomial(Symbol, RN)}
\begin{verbatim}
(7) XDistributedPolynomial(Symbol, Fraction Integer)
Type: Domain
\end{verbatim}
\indentrel{-3}

\spadcommand{rpoly := XRecursivePolynomial(Symbol, RN)}
CHAPTER 3. HYPERDOC PAGES

\indentrel{3}\begin{verbatim}
(8) \texttt{XRecursivePolynomial(Symbol,Fraction Integer)}
    Type: Domain
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty8}
\begin{paste}{XPBWPolynomialXmpPageFull9}{XPBWPolynomialXmpPageEmpty9}
\pastebutton{XPBWPolynomialXmpPageFull9}{\hidepaste}
\tab{5}\texttt{spadcommand{rpoly := XRecursivePolynomial(Symbol, RN)}\bound{rpoly }}\free{RN}
\end{paste}
\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch9}
\begin{paste}{XPBWPolynomialXmpPageFull10}{XPBWPolynomialXmpPageEmpty10}
\pastebutton{XPBWPolynomialXmpPageFull10}{\hidepaste}
\tab{5}\texttt{spadcommand{lpoly := LiePolynomial(Symbol, RN)}\bound{lpoly }}\free{RN}
\end{paste}
\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch10}
\begin{paste}{XPBWPolynomialXmpPageFull11}{XPBWPolynomialXmpPageEmpty11}
\pastebutton{XPBWPolynomialXmpPageFull11}{\hidepaste}
\tab{5}\texttt{spadcommand{poly := XPBWPolynomial(Symbol, RN)}\bound{poly }}\free{RN}
\end{paste}
\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch11}
\begin{paste}{XPBWPolynomialXmpPageFull12}{XPBWPolynomialXmpPageEmpty12}
\pastebutton{XPBWPolynomialXmpPageFull12}{\hidepaste}
\tab{5}\texttt{spadcommand{liste : List lword := LyndonWordsList([a,b], 6)}\bound{liste }}\free{lword a b}
\end{paste}
\end{patch}
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\indentrel{3}\begin{verbatim}
(12) 0
Type: XPBWPolynomial(Symbol,Fraction Integer)
\indentrel{-3}\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
\indentrel{3}\begin{verbatim}
(13) 1
Type: XPBWPolynomial(Symbol,Fraction Integer)
\indentrel{-3}\end{verbatim}
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{XPBWPolynomialXmpPagePatch14}
\begin{paste}{XPBWPolynomialXmpPageFull14}{XPBWPolynomialXmpPageEmpty14}
\pastebutton{XPBWPolynomialXmpPageFull14}{\hidepaste}
\tab{5}\spadcommand{p : poly := a\free{a poly }\bound{p }}
\indentrel{3}\begin{verbatim}
(14) [a]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty14}
\begin{paste}{XPBWPolynomialXmpPageEmpty14}{XPBWPolynomialXmpPagePatch14}
\pastebutton{XPBWPolynomialXmpPageEmpty14}{\showpaste}
\tab{5}\spadcommand{p : poly := a\free{a poly }\bound{p }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch15}
\begin{paste}{XPBWPolynomialXmpPageFull15}{XPBWPolynomialXmpPageEmpty15}
\pastebutton{XPBWPolynomialXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{q : poly := b\free{b poly }\bound{q }}
\indentrel{3}\begin{verbatim}
(15) [b]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty15}
\begin{paste}{XPBWPolynomialXmpPageEmpty15}{XPBWPolynomialXmpPagePatch15}
\pastebutton{XPBWPolynomialXmpPageEmpty15}{\showpaste}
\tab{5}\spadcommand{q : poly := b\free{b poly }\bound{q }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch16}
\begin{paste}{XPBWPolynomialXmpPageFull16}{XPBWPolynomialXmpPageEmpty16}
\pastebutton{XPBWPolynomialXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{pq: poly := p*q\free{p q poly }\bound{pq }}
\indentrel{3}\begin{verbatim}
(16) [a b] + [b][a]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPageEmpty16}
\begin{paste}{XPBWPolynomialXmpPageEmpty16}{XPBWPolynomialXmpPagePatch16}
\pastebutton{XPBWPolynomialXmpPageEmpty16}{\showpaste}
\tab{5}\spadcommand{pq: poly := p*q\free{p q poly }\bound{pq }}
\end{paste}\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch17}
\begin{paste}{XPBWPolynomialXmpPageFull17}{XPBWPolynomialXmpPageEmpty17}
\end{paste}\end{patch}
\begin{verbatim}
(17) \texttt{a b}
\end{verbatim}

Type: \texttt{XDistributedPolynomial(Symbol,Fraction Integer)}
\end{verbatim}

\begin{verbatim}
(18) \texttt{[b][a]}
\end{verbatim}

Type: \texttt{XPBWPolynomial(Symbol,Fraction Integer)}
\end{verbatim}

\begin{verbatim}
(19) \texttt{[[k = \texttt{b}[a],c = 1],[k = \texttt{a b},c = 1]]}
\end{verbatim}

Type: \texttt{List \texttt{Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c: Fraction Integer)}}
\end{verbatim}
\( (20) \ [a \ b] \)
Type: \( \text{XPBWPolynomial(Symbol,Fraction Integer)} \)

\( (21) \ [b \ a] \)
Type: \( \text{PoincareBirkhoffWittLyndonBasis Symbol} \)

\( (22) \ [1,1] \)
Type: \( \text{List Fraction Integer} \)

\( (23) \ [k=[b][a],c=1] \)
3.118. XPBWPOLY.HT

Type: Record(k: PoincareBirkhoffWittLyndonBasis Symbol, c: Fraction Integer)
\indentrel{-3}\end{verbatim}\end{patch}
\begin{patch}{XPBWPolynomialXmpPageEmpty23}
\begin{paste}{XPBWPolynomialXmpPageEmpty23}{XPBWPolynomialXmpPagePatch23}
\pastebutton{XPBWPolynomialXmpPageEmpty23}{\showpaste}
\tab{5}\spadcommand{leadingTerm pq}\free{pq }}
\end{paste}\end{patch}
\begin{patch}{XPBWPolynomialXmpPagePatch24}
\begin{paste}{XPBWPolynomialXmpPageFull24}{XPBWPolynomialXmpPageEmpty24}
\pastebutton{XPBWPolynomialXmpPageFull24}{\hidepaste}
\tab{5}\spadcommand{degree pq}\free{pq }}
\indentrel{3}\begin{verbatim}
(24) 2
Type: PositiveInteger
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{XPBWPolynomialXmpPageEmpty24}
\begin{paste}{XPBWPolynomialXmpPageEmpty24}{XPBWPolynomialXmpPagePatch24}
\pastebutton{XPBWPolynomialXmpPageEmpty24}{\showpaste}
\tab{5}\spadcommand{degree pq}\free{pq }}
\end{patch}
\begin{patch}{XPBWPolynomialXmpPagePatch25}
\begin{paste}{XPBWPolynomialXmpPageFull25}{XPBWPolynomialXmpPageEmpty25}
\pastebutton{XPBWPolynomialXmpPageFull25}{\hidepaste}
\tab{5}\spadcommand{pq4:=exp(pq,4)}\bound{pq4 }\free{pq }}
\indentrel{3}\begin{verbatim}
(25)
1 1 2
1 + [a b] + [b][a] + [a b][a b] + [a b ][a]
2 2
+ 
1 2 3 1
[b][a b] + [b][a b][a] + [b][b][a][a]
2 2 2
Type: XPBWPolynomial(Symbol,Fraction Integer)
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{XPBWPolynomialXmpPageEmpty25}
\begin{paste}{XPBWPolynomialXmpPageEmpty25}{XPBWPolynomialXmpPagePatch25}
\pastebutton{XPBWPolynomialXmpPageEmpty25}{\showpaste}
\tab{5}\spadcommand{pq4:=exp(pq,4)}\bound{pq4 }\free{pq }}
\end{paste}\end{patch}
\begin{patch}{XPBWPolynomialXmpPagePatch26}
\begin{verbatim}
(26) 0
Type: XPBWPolynomial(Symbol, Fraction Integer)
\end{verbatim}

\begin{verbatim}
(27) \{a b \}
Type: LiePolynomial(Symbol, Fraction Integer)
\end{verbatim}

\begin{verbatim}
(28) \{a b a b \}
Type: LiePolynomial(Symbol, Fraction Integer)
\end{verbatim}
\begin{verbatim}
3 2 2
(29) \[a b a b a b\]
Type: LiePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
3 2 2
(30) \[a b a b a b - a b a + 4a b a b \]
+ 2 2 3
- 2b a b a + b a
Type: XDistributedPolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
2 2 2
(31) \[a b a b - a b a - 3a b a b + 4a b a b a - a b a \]
+ 3 2 2
2b a b - 3b a b a + b a b a
Type: XDistributedPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\begin{verbatim}
(32)
  3 2  3 2 2   3 2  2
  a b a b a - a b a b a - 3a b a b a b
+ 3 2  3 2 2   3 3 3   3 3 2
  4a b a b a b a - a b a b a + 2a b a b a - 3a b a b a b
+ 3 3  2 2   3 2 2   2 2
  a b a b a - a b a b a b + 3a b a b a b a b
+ 2  2  2
  6a b a b a b a b - 12a b a b a b a b a b
+ 2  2  2  2  2  2  2
  3a b a b a b a - 4a b a b a b + 6a b a b a b a b
+ 2  3  3  3  2  2  2  2  2  2  2  2
  a b a b a + a b a b - 3a b a b a b + 3a b a b a b a b
+ 2  2  2  2  2  2  2  2  2  2
  2a b a b a b a b + 3a b a b a b a b a - 3a b a b a b a b
+ 2  2  2  2  3  2  2  2
  a b a b a + 3a b a b a b - 6a b a b a b a b
+ 2  2  2
  3a b a b a b a b a + 12a b a b a b a b a a b a
+ 2  3  2  2  2  2  3  3  2  3  3  3
  a b a b a b a - 6a b a b a b a b + 3a b a b a b a b
+ 4  2
  4a b a b a b + 12a b a b a b a b
+ 2  2  3
  12a b a b a b + 8a b a b a b a b
+ 2  2  3
  ...
\end{verbatim}
\begin{verbatim}
2 2
- 12a b b b b b a + 12a b b b b a
+ 2 3 2 5 2 2 4
- 4a b b b b + a b b a - 3a b a b a
+ 2 3 2 2 2 3 2 2 2
3a b a b b b - 2a b a b a + 3a b a b a b a
+ 2 2 2 2 2 3 3 3
- 3a b a b a b a + a b a b a - 2b a b a b
+ 3 2 3 2 2 3
4b a b b a b + 2b a b a b - 8b a b a b a
+ 3 2 2 3 2 3 3 3
2b a b b b + 4b a b b a - 2b a b a
+ 2 4 2 2 3 2 3 2
3b a b b b - 6b a b a b a - 3b a b a b a
+ 2 2 2 2 2 2 2 2
12b a b b b a b a - 3b a b a b a - 6b a b a b a
+ 2 2 3 5 2 2 4 2
3b a b b a - b b a b b + 3b a b b a
+ 3 2 3 3 2 3 2 3 2
6b a b b b a b - 12b a b a b b a + 3b a b b a
+ 2 3 2 2 2 3 4 2 4 2 4
- 4b a b b a b + 6b a b a a b - b a b a b a
+ 2 5 2 5 2 2 4 2 4 2 4
b b a b b b - b b a b + 3b a b a b a + 4b a b a b a
+ 2 4 2 2 3 3 3 2 3 3 2 3 2
- b a b a b + 3b a b a b b + b a b a b a
\end{verbatim}

Type: XDistributedPolynomial(Symbol,Fraction Integer)
\tab{5}\spadcommand{lp :: dpoly - lpd\free{lpd dpoly lp }}
\indentrel{3}\begin{verbatim}
(33) 0
Type: XDistributedPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{XPBWPolynomialXmpPagePatch34}
\begin{paste}{XPBWPolynomialXmpPageFull34}{XPBWPolynomialXmpPageEmpty34}
\pastebutton{XPBWPolynomialXmpPageFull34}{\hidepaste}
\tab{5}\spadcommand{p := 3 * lp\free{lp }\bound{pp }}
\indentrel{3}\begin{verbatim}
3 2 2
(34) 3[a b a b a b]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch35}
\begin{paste}{XPBWPolynomialXmpPageFull35}{XPBWPolynomialXmpPageEmpty35}
\pastebutton{XPBWPolynomialXmpPageFull35}{\hidepaste}
\tab{5}\spadcommand{q := lp1\free{lp1 }\bound{qq }}
\indentrel{3}\begin{verbatim}
3 2
(35) [a b ]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{XPBWPolynomialXmpPagePatch36}
\begin{paste}{XPBWPolynomialXmpPageFull136}{XPBWPolynomialXmpPageEmpty36}
\pastebutton{XPBWPolynomialXmpPageFull136}{\hidepaste}
\tab{5}\spadcommand{q := lp1\free{lp1 }\bound{qq }}
\indentrel{3}\begin{verbatim}
(36) 0
Type: XDistributedPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(36) 3[a b a b b][a b ]
Type: XPBWPolynomial(Symbol,Fraction Integer)
\end{verbatim}
\indentrel{-3}
\end{patch}
\begin{patch}{XPBWPolynomialXmpPagePatch37}
\begin{paste}{XPBWPolynomialXmpPageFull37}{XPBWPolynomialXmpPageEmpty37}
\pastebutton{XPBWPolynomialXmpPageFull37}{\hidepaste}
\tab{5}\spadcommand{pr:rpoly := p :: rpoly\free{rpoly pp }\bound{pr }}
\indentrel{3}\begin{verbatim}
(37)
a
  \times
  a
  \times
    a
    \times
      a b b
      \times
        a
        \times
          a b a 3 + b a(- 3))
          +
          b(a(a b(- 9) + b a 12) + b a a(- 3))
          +
          b a(a a b 6 + b a(- 9)) + b a a 3
  +
  b
  \times
    a b
    \times
      a
      \times
        a(a b b(- 3) + b b a 9)
        +
        b(a(a b 18 + b a(- 36)) + b a a 9)
        +
        b
        \times
          a(a b(- 12) + b a 18)
          +
          b a a(- 3)
\end{verbatim}
\end{paste}
\end{patch}
\[ \begin{array}{l}
+ \\
\quad b \ a \\
\quad a \\
\quad a \\
\quad (a(a \ b \ b \ 3 + b \ a \ b(-9)) + b \ a \ a \ b \ 9) \\
+ \\
\quad b \\
\quad \ a \\
\quad a \\
\quad \ a(a \ b(-6) + b \ a \ 9) \\
+ \\
\quad b \ a \ a(-9) \\
+ \\
\quad b \ a \ a \ a \ 3 \\
\end{array} \]
\[ + \]
\[ b \cdot a \cdot a \cdot (-12) \]
\[ + \]
\[ b \cdot a \cdot a \]
\[ * \]
\[ a(a(a \cdot b \cdot b \cdot 3 + b \cdot a \cdot b(-9)) + b \cdot a \cdot b\cdot 9) \]
\[ + \]
\[ b \]
\[ * \]
\[ a(a(a \cdot b(-6) + b \cdot a \cdot 9) + b \cdot a \cdot a(-9)) \]
\[ + \]
\[ b \cdot a \cdot a \cdot 3 \]
\[ + \]
\[ b \cdot a \]
\[ * \]
\[ a \]
\[ * \]
\[ a \]
\[ * \]
\[ a \cdot b \]
\[ * \]
\[ a \]
\[ * \]
\[ a(a \cdot b \cdot b(-6) + b(a \cdot b \cdot 12 + b \cdot a \cdot 6)) \]
\[ + \]
\[ b(a \cdot b \cdot a(-24) + b \cdot a \cdot a \cdot 6) \]
\[ + \]
\[ b(a \cdot b \cdot a \cdot a \cdot 12 + b \cdot a \cdot a \cdot a(-6)) \]
\[ + \]
\[ b \cdot a \]
\[ * \]
\[ a \]
\[ * \]
\[ a \]
\[ * \]
\[ a \cdot b \cdot b \cdot 9 \]
\[ + \]
\[ b(a \cdot b(-18) + b \cdot a(-9)) \]
\[ + \]
\[ b(a \cdot b \cdot a \cdot 36 + b \cdot a \cdot a(-9)) \]
\[ + \]
\[ b(a \cdot b \cdot a(-18) + b \cdot a \cdot a \cdot 9) \]
\[ + \]
\[ b \cdot a \cdot a \]
\[ * \]
\[ a \]
\[ * \]
\[ a(a \cdot b \cdot b(-3) + b \cdot b \cdot a \cdot 9) \]
\[ + \]
\[ b(a(a \cdot b \cdot 18 + b \cdot a(-36)) + b \cdot a \cdot 9) \]
\begin{verbatim}
+ b(a a b(- 12) + b a a(- 3))
  + b a a
  * a
  * a b(a b 3 + b a(- 3))
  + b(a a b(- 9) + b a(- 3))
  + b a a a(- 3))
Type: XRuxRecursivePolynomial(Symbol,Fraction Integer)
\end{verbatim}

\begin{verbatim}
(38)
  a
  + a(a b b 1 + b(a b(- 2) + b a(- 1)))
  + b(a b a 4 + b a(- 1))
  + b(a b a(- 2) + b a a a 1)
Type: XRuxRecursivePolynomial(Symbol,Fraction Integer)
\end{verbatim}
3.119. **XPOLY.HT**

Type: XRecursivePolynomial(Symbol,Fraction Integer)

---

3.119  **xpoly.ht**

**XPolynomial**

— **xpoly.ht** —

The \spadtype{XPolynomial} domain constructor implements multivariate polynomials whose set of variables is \spadtype{Symbol}. These variables do not commute. The only parameter of this constructor is the coefficient ring which may be non-commutative. However, coefficients and variables commute. The representation of the polynomials is recursive. The abbreviation for \spadtype{XPolynomial} is \spadtype{XPOLY}.

Other constructors like \spadtype{XPolynomialRing}, \spadtype{XRecursivePolynomial}, \spadtype{XDistributedPolynomial}, \spadtype{LiePolynomial} and \spadtype{XPBWPolynomial} implement multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the \spadtype{XPOLY} domain constructor.

\xtc{
Define a polynomial ring over the integers.}

\tab{5}\spadcommand{pq :: rpoly - pr*qr \free{pr qr rpoly pq p}}

(39) 0

Type: XRecursivePolynomial(Symbol,Fraction Integer)
CHAPTER 3. HYPERDOC PAGES

```
\spadpaste{poly := XPolynomial(Integer) \bound{poly}}
}

\xtc{
Define a first polynomial,
}
\spadpaste{pr: poly := 2*x + 3*y - 5 \free{poly} \bound{pr}}
}

\xtc{
and a second one.
}
\spadpaste{pr2: poly := pr*pr \free{poly} \bound{pr2}}
}

\xtc{
Rewrite \textit{bf pr} in a distributive way,
}
\spadpaste{pd := expand pr \free{pr} \bound{pd}}
}

\xtc{
compute its square,
}
\spadpaste{pd2 := pd*pd \free{pd} \bound{pd2}}
}

\xtc{
and checks that:
}
\spadpaste{expand(pr2) - pd2 \free{pr2} \free{pd2}}
}

\xtc{
We define:
}
\spadpaste{qr := pr**3 \free{pr} \bound{qr}}
}

\xtc{
and:
}
\spadpaste{qd := pd**3 \free{pd} \bound{qd}}
}

\xtc{
We truncate \textit{bf qd} at degree \textit{bf 3}:
}

\spadpaste{ trunc(qd,2) \free{qd}} \\
\xtc{ The same for \bf{qr}: } \\
\spadpaste{trunc(qr,2) \free{qr}} \\
\xtc{ We define: } \\
\spadpaste{Word := OrderedFreeMonoid Symbol \bound{Word}} \\
\xtc{ and: } \\
\spadpaste{w: Word := x*y**2 \free{Word} \bound{w}} \\
\xtc{ The we can compute the right-quotient of \bf{qr} by \bf{r}: } \\
\spadpaste{rquo(qr,w) \free{qr} \free{w}} \\
\xtc{ and the shuffle-product of \bf{pr} by \bf{r}: } \\
\spadpaste{sh(pr,w::poly) \free{pr} \free{w}} \\
\endscroll
\autobuttons
\end{page}

\begin{patch}{XPolynomialXmpPagePatch1}
\begin{paste}{XPolynomialXmpPageFull1}{XPolynomialXmpPageEmpty1}
\pastebutton{XPolynomialXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{poly := XPolynomial(Integer)\bound{poly}}
\indentrel{3}\begin{verbatim}
(1) XPolynomial Integer
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(2) - 5 + x 2 + y 3
Type: XPolynomial Integer
\end{verbatim}

\begin{verbatim}
(3) 25 + x(- 20 + x 4 + y 6) + y(- 30 + x 6 + y 9)
Type: XPolynomial Integer
\end{verbatim}

\begin{verbatim}
(4) - 5 + 2x + 3y
Type: XDistributedPolynomial(Symbol,Integer)
\end{verbatim}
\begin{verbatim}
(5) 25 - 20x - 30y + 4x + 6x y + 6y x + 9y
Type: XDistributedPolynomial(Symbol,Integer)
\end{verbatim}

\begin{verbatim}
(6) 0
Type: XDistributedPolynomial(Symbol,Integer)
\end{verbatim}

\begin{verbatim}
(7) - 125
+ x(150 + x(- 60 + x 8 + y 12) + y(- 90 + x 12 + y 18))
+ y(225 + x(- 90 + x 12 + y 18) + y(- 135 + x 18 + y 27))
Type: XPolynomial Integer
\end{verbatim}
\begin{verbatim}
(8) 2 2
 2 - 125 + 150x + 225y - 60x y - 90y x - 135y
 +
 3 2 2 2
 8x + 12x y + 12x y x + 18x y + 12y x + 18y x y
 +
 2 3
 18y x + 27y
 Type: XDistributedPolynomial(Symbol,Integer)
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(9) 2 2
 2 - 125 + 150x + 225y - 60x y - 90y x - 135y
 Type: XDistributedPolynomial(Symbol,Integer)
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
(10)
- 125 + x(150 + x(- 60) + y(- 90))
+ y(225 + x(- 90) + y(- 135))
\end{verbatim}

Type: XPolynomial Integer
The \spadtype{XPolynomialRing} domain constructor implements generalized polynomials with coefficients from an arbitrary \spadtype{Ring} (not necessarily commutative) and whose exponents are words from an arbitrary \spadtype{OrderedMonoid} (not necessarily commutative too).
Thus these polynomials are (finite) linear combinations of words.

This constructor takes two arguments. The first one is a \texttt{Ring} and the second is an \texttt{OrderedMonoid}. The abbreviation for \texttt{XPolynomialRing} is \texttt{XPR}.

Other constructors like \texttt{XPolynomial}, \texttt{XRecursivePolynomial}, \texttt{XDistributedPolynomial}, \texttt{LiePolynomial} and \texttt{XPBWPolynomial} implement multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the \texttt{XPR} domain constructor.

\begin{verbatim}
xtc{Define the free ordered monoid generated by the symbols.}
\{\spad{Word := OrderedFreeMonoid(Symbol) \bound{Word}}\}

xtc{Define the linear combinations of these words with integer coefficients.}
\{\spad{poly := XPR(Integer,Word) \free{Word} \bound{poly}}\}

xtc{Then we define a first element from \texttt{poly}.}
\{\spad{p:poly := 2 * x - 3 * y + 1 \free{poly} \bound{p}}\}

xtc{And a second one.}
\{\spad{q:poly := 2 * x + 1 \free{poly} \bound{q}}\}

xtc{We compute their sum,}
\{\spad{p + q \free{p}\free{q} }\}
\end{verbatim}
their product,
}
\spadpaste{p \times q \free{p}\free{q} \}

and see that variables do not commute.
}
\spadpaste{(p + q)^2 - p^2 - q^2 - 2p \times q \free{p}\free{q} \}

Now we define a ring of square matrices,
}
\spadpaste{M := \text{SquareMatrix}(2,\text{Fraction Integer}) \ \text{bound}(M)\}

and the linear combinations of words with these matrices as coefficients.
}
\spadpaste{\text{poly1} := \text{XPR}(M,\text{Word}) \free{\text{Word}} \free{M} \ \text{bound}(\text{poly1})\}

Define a first matrix,
}
\spadpaste{m_1 := \text{matrix} \[[i \times j^2 \text{ for } i \text{ in } 1..2] \text{ for } j \in 1..2\]
\free{M} \ \text{bound}(m_1)\}

a second one,
}
\spadpaste{m_2 := m_1 - 5/4 \free{M} \free{m_1} \ \text{bound}(m_2)\}

and a third one.
}
\spadpaste{m_3 := m_2^2 \free{M} \free{m_2} \ \text{bound}(m_3)\}

Define a polynomial,
}
\spadpaste{pm := m_1 \times x + m_2 \times y + m_3 \times z - 2/3 \free{\text{poly1}}\}
\free{m1} \free{m2} \free{m3} \bound{pm}

\xtc{
a second one,
}
\spadpaste{qm:poly1 := pm - m1*x \free{m1} \free{pm} \bound{qm}}

\xtc{
and the following power.
}
\spadpaste{qm**3 \bound{qm}}

\endscroll
\autobuttons
\end{page}

\begin{patch}{XPolynomialRingXmpPagePatch1}
\begin{paste}{XPolynomialRingXmpPageFull1}{XPolynomialRingXmpPageEmpty1}
\pastebutton{XPolynomialRingXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{Word := OrderedFreeMonoid(Symbol)\bound{Word }}
\indentrel{3}\begin{verbatim}
(1) OrderedFreeMonoid Symbol
 Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{XPolynomialRingXmpPageEmpty1}
\begin{paste}{XPolynomialRingXmpPageEmpty1}{XPolynomialRingXmpPagePatch1}
\pastebutton{XPolynomialRingXmpPageEmpty1}{\showpaste}
\tab{5}\spadcommand{Word := OrderedFreeMonoid(Symbol)\bound{Word }}
\end{paste}
\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch2}
\begin{paste}{XPolynomialRingXmpPageFull2}{XPolynomialRingXmpPageEmpty2}
\pastebutton{XPolynomialRingXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{poly := XPR(Integer,Word)\free{Word }\bound{poly }}
\indentrel{3}\begin{verbatim}
(2) XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
 Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{XPolynomialRingXmpPageEmpty2}
\begin{paste}{XPolynomialRingXmpPageEmpty2}{XPolynomialRingXmpPagePatch2}
\pastebutton{XPolynomialRingXmpPageEmpty2}{\showpaste}
\spad{poly := XPR(Integer,Word)
\begin{verbatim}
(3) 1 + 2x - 3y
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}
\end{verbatim}}

\spad{p:poly := 2 * x - 3 * y + 1
\begin{verbatim}
(4) 1 + 2x
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}
\end{verbatim}}

\spad{q:poly := 2 * x + 1
\begin{verbatim}
(5) 2 + 4x - 3y
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}
\end{verbatim}}

\spad{p + q
\begin{verbatim}
(6) 2 + 4x - 3y
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}
\end{verbatim}}
\begin{verbatim}
(6) 1 + 4x - 3y + 4x - 6y x
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}

\begin{verbatim}
(7) - 6x y + 6y x
Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
\end{verbatim}

\begin{verbatim}
(8) SquareMatrix(2,Fraction Integer)
Type: Domain
\end{verbatim}
CHAPTER 3. HYPERDOC PAGES

\begin{patch}{XPolynomialRingXmpPagePatch9}
\begin{paste}{XPolynomialRingXmpPageFull9}{XPolynomialRingXmpPageEmpty9}
\pastebutton{XPolynomialRingXmpPageFull9}{\hidepaste}
\tab{5}\spadcommand{poly1:= XPR(M,Word)\free{Word \free{M }\bound{poly1 }}}
\indentrel{3}\begin{verbatim}
(9)
XPolynomialRing(SquareMatrix(2,Fraction Integer),Ordere
dFreeMonoid Symbol)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPageEmpty9}
\begin{paste}{XPolynomialRingXmpPageEmpty9}{XPolynomialRingXmpPagePatch9}
\pastebutton{XPolynomialRingXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{poly1:= XPR(M,Word)\free{Word \free{M }\bound{poly1 }}}
\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch10}
\begin{paste}{XPolynomialRingXmpPageFull10}{XPolynomialRingXmpPageEmpty10}
\pastebutton{XPolynomialRingXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{m1:M := matrix [[i*j**2 for i in 1..2] for j in 1..2]\free{M }\bound{m1 }}
\indentrel{3}\begin{verbatim}
1 2
(10)
4 8
Type: SquareMatrix(2,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPageEmpty10}
\begin{paste}{XPolynomialRingXmpPageEmpty10}{XPolynomialRingXmpPagePatch10}
\pastebutton{XPolynomialRingXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{m1:M := matrix [[i*j**2 for i in 1..2] for j in 1..2]\free{M }\bound{m1 }}
\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch11}
\begin{paste}{XPolynomialRingXmpPageFull11}{XPolynomialRingXmpPageEmpty11}
\pastebutton{XPolynomialRingXmpPageFull11}{\hidepaste}
\tab{5}\spadcommand{m2:M := m1 - 5/4}\free{M }\free{m1 }\bound{m2 }}
\indentrel{3}\begin{verbatim}
1
- 2
4
(11)
27
4
4
Type: SquareMatrix(2,Fraction Integer)
\end{verbatim}
\end{patch}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch11}
\begin{paste}{XPolynomialRingXmpPageFull11}{XPolynomialRingXmpPageEmpty11}
\pastebutton{XPolynomialRingXmpPageFull11}{\showpaste}
\tab{5}\spadcommand{m2:M := m1 - 5/4\free{M }\free{m1 }\bound{m2 }}
\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch12}
\begin{paste}{XPolynomialRingXmpPageFull12}{XPolynomialRingXmpPageEmpty12}
\pastebutton{XPolynomialRingXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{m3: M := m2**2\free{M }\free{m2 }\bound{m3 }}
\indentrel{3}\begin{verbatim}
129
13
16
(12)
 857
26
 16
Type: SquareMatrix(2,Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{XPolynomialRingXmpPagePatch13}
\begin{paste}{XPolynomialRingXmpPageFull13}{XPolynomialRingXmpPageEmpty13}
\pastebutton{XPolynomialRingXmpPageFull13}{\hidepaste}
\tab{5}\spadcommand{pm:poly1 := m1*x + m2*y + m3*z - 2/3\free{poly1 }\free{m1 }\free{m2 }\free{m3 }\bound{pm}}
\indentrel{3}\begin{verbatim}
2 1 129
- 0 - 2 13
3 1 2 4 16
(13)
+ x + y + z
 2 4 8 27 857
0 - 4 26
3 4 16
Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
 2 1 129
- 0 - 2 13
 3 4 16

 14) + y + z
 2 27 857
 0 - 4 26
 3 4 16

Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
\end{verbatim}

(15)

\begin{verbatim}
 8 1 8 43 52
- 0 - 27 3 3 4 3
 + y + z
 8 16 104 857
 0 - 9
 27 3 3 12
+ 129 3199 831
- - 26 - 8 2 32 4
 + y + y z
 857 831 26467
- 52 - - 8 2 32
+ 3199 831 103169 6409
- - - 32 4 128 4 2
 + z y + z
\end{verbatim}
tab{5}\spadcommand{qm**3\bound{qm }}\end{paste}\end{patch}
3.121 zdsolve.ht

ZeroDimensionalSolvePackage

--- zdsolve.ht ---

\begin{page}{ZeroDimSolvePkgXmpPage}{ZeroDimensionalSolvePackage}
\beginscroll
The \spadtype{ZeroDimensionalSolvePackage} package constructor provides operations for computing symbolically the complex or real roots of zero-dimensional algebraic systems.

The package provides \bf{no} multiplicity information (i.e. some returned roots may be double or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible regular chains. These representations are computed by the \axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage} operation (by calling the \spadtype{InternalRationalUnivariateRepresentationPackage} package constructor which does the job).

Real roots are given by means of tuples of coordinates lying in the \spadtype{RealClosure} of the coefficient ring. They are computed by the \axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} operations. The former computes all the solutions of the input system with real coordinates whereas the later concentrate on the solutions with (strictly) positive coordinates. In both cases, the computations are performed by the \spadtype{RealClosure} constructor.

Both computations of complex roots and real roots rely on triangular decompositions. These decompositions can be computed in two different ways. First, by applying the \axiomOpFrom{zeroSetSplit}{RegularTriangularSet} operation from the \spadtype{REGSET} domain constructor. In that case, no Groebner bases are computed. This strategy is used by default. Secondly, by applying the \axiomOpFrom{zeroSetSplit}{LexTriangularPackage} from \spadtype{LEXTRIPK}. To use this later strategy with the operations \axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage}, \axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} one just needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the example of the \spadtype{RegularTriangularSet} constructor.
The \spadtype{ZeroDimensionalSolvePackage} constructor takes three arguments. The first one \{\bf R\} is the coefficient ring; it must belong to the categories \spadtype{OrderedRing}, \spadtype{EuclideanDomain}, \spadtype{CharacteristicZero} and \spadtype{RealConstant}. This means essentially that \{\bf R\} is \spadtype{Integer} or \spadtype{Fraction(Integer)}. The second argument \{\bf ls\} is the list of variables involved in the systems to solve. The third one MUST BE \{\bf concat(ls,s)\} where \{\bf s\} is an additional symbol used for the univariate representations. The abbreviation for \spadtype{ZeroDimensionalSolvePackage} is \spadtype{ZDSOLVE}.

We illustrate now how to use the constructor \spadtype{ZDSOLVE} by two examples: the \{\em Arnborg and Lazard\} system and the \{\em L-3\} system (Aubry and Moreno Maza). Note that the use of this package is also demonstrated in the example of the \spadtype{LexTriangularPackage} constructor.

\xtc{Define the coefficient ring.}{
\spadpaste{R := Integer \bound{R}}
}

\xtc{Define the lists of variables:}{
\spadpaste{ls : List Symbol := \[x,y,z,t\] \bound{ls}}
}

\xtc{and:}{
\spadpaste{ls2 : List Symbol := \[x,y,z,t,new()$Symbol\] \bound{ls2}}
}

\xtc{Call the package:}{
\spadpaste{pack := ZDSOLVE(R,ls,ls2) \free{ls} \free{ls2} \free{R} \bound{pack}}
}

\xtc{Define a polynomial system (Arnborg-Lazard)}{\}
\spadpaste{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z \bound{p1}}
CHAPTER 3. HYPERDOC PAGES

\begin{verbatim}
p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z \bound{p2}

p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1 \bound{p3}

lp := [p1, p2, p3] \free{p1} \free{p2} \free{p3} \bound{lp}
\end{verbatim}

Note that these polynomials do not involve the variable t; we will use it in the second example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

\begin{verbatim}
triangSolve(lp)$pack \free{lp} \free{pack}
\end{verbatim}

We can see easily from this decomposition (consisting of a single regular chain) that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

\begin{verbatim}
univariateSolve(lp)$pack \free{lp} \free{pack}
\end{verbatim}

We see that the zeros of our regular chain are split into three components. This is due to the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible univariate polynomial $p(\%A)$ which defines a simple algebraic extension of the field of fractions of R. The second one consists of multivariate polynomials $\{\text{pol1}(x,\%A)\}$, $\{\text{pol2}(y,\%A)\}$ and $\{\text{pol3}(z,\%A)\}$. Each of these polynomials involve two variables: one is an indeterminate x, y or z of the input system lp and the other is $\%A$ which represents any root of $p(\%A)$. Recall that this $\%A$ is the last element of the third parameter of \spadtype{ZDSOLVE}. Thus any complex root $\%A$ of $p(\%A)$ leads to a solution of the input system lp by replacing $\%A$ by this $\%A$ in $\{\text{pol1}(x,\%A)\}$, $\{\text{pol2}(y,\%A)\}$ and $\{\text{pol3}(z,\%A)\}$. Note that the polynomials $\{\text{pol1}(x,\%A)\}$, $\{\text{pol2}(y,\%A)\}$ and $\{\text{pol3}(z,\%A)\}$
have degree one w.r.t. \textit{bf x}, \textit{bf y} or \textit{bf z} respectively. This is always the case for all univariate representations. Hence the operation \textit{bf univariateSolve} replaces a system of multivariate polynomials by a list of univariate polynomials, what justifies its name. Another example of univariate representations illustrates the \spadtype{LexTriangularPackage} package constructor.

\xtc{
We now compute the solutions with real coordinates:
}\{
\spadpaste{lr := realSolve(lp)$pack \free{lp} \free{pack} \bound{lr}}
}

\xtc{
The number of real solutions for the input system is:
}\{
\spadpaste{\# lr \free{lr}}
}

Each of these real solutions is given by a list of elements in \spadtype{RealClosure(R)}. In these 8 lists, the first element is a value of \textit{bf z}, the second of \textit{bf y} and the last of \textit{bf x}. This is logical since by setting the list of variables of the package to \{x,y,z,t\} we mean that the elimination ordering on the variables is \{bf t < z < y < x \}. Note that each system treated by the \spadtype{ZDSOLVE} package constructor needs only to be zero-dimensional w.r.t. the variables involved in the system it self and not necessarily w.r.t. all the variables used to define the package.

\xtc{
We can approximate these real numbers as follows. This computation takes between 30 sec. and 5 min, depending on your machine.
}\{
\spadpaste{[[approximate(r,1/1000000) for r in point] for point in lr] \free{lr}}
}

\xtc{
We can also concentrate on the solutions with real (strictly) positive coordinates:
}\{
\spadpaste{lpr := positiveSolve(lp)$pack \free{lp} \free{pack} \bound{lpr}}
}

Thus we have checked that the input system has no solution with strictly positive coordinates.
Let us define another polynomial system (L-3).
\[f_0 := x^{3} + y + z + t - 1 \]
\[f_1 := x + y^{3} + z + t - 1 \]
\[f_2 := x + y + z^{3} + t - 1 \]
\[f_3 := x + y + z + t^{3} - 1 \]
\[\textit{lf} := [f_0, f_1, f_2, f_3] \]

First compute a decomposition into regular chains (i.e. regular triangular sets).
\[\textit{lts} := \text{triangSolve}(\textit{lf}) \]

Then we compute a univariate representation.
\[\text{univariateSolve}(\textit{lf}) \]

Note that this computation is made from the input system \(\text{lf} \). However it is possible to reuse a pre-computed regular chain as follows:
\[\textit{ts} := \text{triangSolve}(\textit{lf}) \]

\[\text{univariateSolve}(\textit{ts}) \]
We compute now the full set of points with real coordinates:
\spadpaste{realSolve(ts)$pack \free{ts} \free{pack}}
\xtc{We compute now the full set of points with real coordinates:}{\spadpaste{lr2 := realSolve(lf)$pack \free{lf} \free{pack} \bound{lr2}}}
\xtc{The number of real solutions for the input system is:}{\spadpaste{\#lr2 \free{lr2}}}
Another example of computation of real solutions illustrates the \spadtype{LexTriangularPackage} package constructor.
\spadpaste{R := Integer \bound{R}}
\spad{R := Integer}
\begin{verbatim}
(1) Integer
Type: Domain
\end{verbatim}
\begin{verbatim}
(1) Integer
Type: Domain
\end{verbatim}
\xtc{We concentrate now on the solutions with real (strictly) positive coordinates:}{\spadpaste{lpr2 := positiveSolve(lf)$pack \free{lf} \free{pack} \bound{lpr2}}}
\xtc{Finally, we approximate the coordinates of this point with 20 exact digits:}{\spadpaste{[approximate(r,1/10**21)::Float for r in lpr2.1] \free{lpr2}}}
\end{verbatim}
\begin{patch}{ZeroDimSolvePkgXmpPagePatch2}
\begin{patch}{ZeroDimSolvePkgXmpPageFull2}{ZeroDimSolvePkgXmpPageEmpty2}
\pastebutton{ZeroDimSolvePkgXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{ls : List Symbol := [x,y,z,t] \bound{ls }}
\indentrel{3}\begin{verbatim}
(2) [x,y,z,t]
Type: List Symbol
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch3}
\begin{patch}{ZeroDimSolvePkgXmpPageFull3}{ZeroDimSolvePkgXmpPageEmpty3}
\pastebutton{ZeroDimSolvePkgXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{ls2 : List Symbol := [x,y,z,t,new()$Symbol] \bound{ls2 }}
\indentrel{3}\begin{verbatim}
(3) [x,y,z,t,%A]
Type: List Symbol
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch4}
\begin{patch}{ZeroDimSolvePkgXmpPageFull4}{ZeroDimSolvePkgXmpPageEmpty4}
\pastebutton{ZeroDimSolvePkgXmpPageFull4}{\hidepaste}
\tab{5}\spadcommand{pack := ZDSOLVE(R,ls,ls2) \free{ls} \free{ls2} \free{R} \bound{pack }}
\indentrel{3}\begin{verbatim}
(4) ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t, %A])
Type: Domain
\end{verbatim}
\indentrel{-3}\end{patch}
\end{patch}
\begin{verbatim}
2 2 2
(5) x y z + (x x + x + 1)y + x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2 2 2
(6) x y z + (x y + (x + x + 1)y + x + z)z + x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2 2 2
(7) x y z + ((x + x)y + x y + x + 1)z + 1
Type: Polynomial Integer
\end{verbatim}
```spad
\spad{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1}
```

```spad
\spad{lp := [p1, p2, p3]}
```

```verbatim
(8)
\[
\begin{align*}
2 & 2 & 2 \\
& x y z + (x y + (x + x + 1)y + x)z + x y, \\
2 & 2 & 2 \\
& x y z + (x y + (x + x + 1)y + 1)z + x, \\
2 & 2 & 2 \\
& x y z + ((x + x)y + x y + x + 1)z + 1
\end{align*}
\]
Type: List Polynomial Integer
```

```spad
\spad{triangSolve(lp)$pack}
```

```verbatim
(9)
\[
\begin{align*}
20 & 19 & 18 & 17 & 16 & 15 \\
& z - 6z - 41z + 71z + 106z + 92z + \\
14 & 13 & 12 & 11 & 10 \\
& 197z + 145z + 257z + 278z + 201z + \\
9 & 8 & 7 & 6 & 5 & 4 \\
& 278z + 257z + 145z + 197z + 92z + 106z + \\
3 & 2 \\
& 71z - 41z - 6z + 1
\end{align*}
\]
```

\[- 185261586z - 18007775z - 338007307z + \]
\[13 \quad 12 \quad 11 \]
\[- 275379623z - 453190404z - 474597456z + \]
\[10 \quad 9 \quad 8 \]
\[- 366147695z - 481433567z - 430613166z + \]
\[7 \quad 6 \quad 5 \]
\[- 261878358z - 326073537z - 163008796z + \]
\[4 \quad 3 \quad 2 \]
\[- 177213227z - 104356755z + 65241699z + \]
\[9237732z - 1567348 \]
*
\[y + \]
\[19 \quad 18 \quad 17 \]
\[1917314z + 6508991z - 16973165z + \]
\[16 \quad 15 \quad 14 \]
\[- 24000259z - 23349192z - 43786426z + \]
\[13 \quad 12 \quad 11 \]
\[- 35696474z - 58724172z - 61480792z + \]
\[10 \quad 9 \quad 8 \]
\[- 47452440z - 62378085z - 55776527z + \]
\[7 \quad 6 \quad 5 \]
\[- 33940618z - 42233406z - 21122875z + \]
\[4 \quad 3 \quad 2 \]
\[- 22958177z - 13504569z + 8448317z + 1195888z + \]
\[- 202934 \]
\]
\]
\[(z - 2z)y + (- z - z - 2z - 1)y - z - z + \]
\[1 \]
*
\[x + \]
\[2 \]
\[z - 1 \]
CHAPTER 3. HYPERDOC PAGES

Type: List RegularChain(Integer,[x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty9}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty9}{ZeroDimSolvePkgXmpPagePatch9}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty9}{\showpaste}
\tab{5}\spadcommand{triangSolve(lp)$pack\free{lp }\free{pack}}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch10}
\begin{paste}{ZeroDimSolvePkgXmpPageFull10}{ZeroDimSolvePkgXmpPageEmpty10}
\pastebutton{ZeroDimSolvePkgXmpPageFull10}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp}\free{pack}}
\end{paste}\end{patch}

\indentrel{3}\begin{verbatim}
(10)
[[
 [complexRoots =
 12 11 10 9 8 7 6
 + 5 4 3 2
 27? - 9? + 4? + 24? - 12? + 1,
 ,
 coordinates =
 [11 10 9 8
 63x + 62%A - 721%A + 1220%A + 705%A
 + 7 6 5 4 3
 - 285%A + 1512%A - 735%A + 1401%A - 21%A
 + 2
 215%A + 1577%A - 142,
 ,
 11 10 9 8
 63y - 75%A + 890%A - 1682%A - 516%A
 + 7 6 5 4 3
 588%A - 1953%A + 1323%A - 1815%A + 426%A
 + 2
 - 243%A - 1801%A + 679,
 ,
 z - %A]
]]
\end{verbatim}
\begin{verbatim}
3.121. ZDSOLVE.HT

6 5 4 3 2
\text{complexRoots} = ? + ? + ? + ? + ? + ? + 1,
 5 3
\text{coordinates} = [x - \%A, y - \%A, z - \%A],

2
\text{complexRoots} = ? + 5? + 1,
\text{coordinates} = [x - 1, y - 1, z - \%A]
\end{verbatim}

\textbf{Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)}

\end{verbatim}

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty10}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty10}{ZeroDimSolvePkgXmpPagePatch10}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty10}{\showpaste}
\tab{5}\spadcommand{univariateSolve(lp)$pack\free{lp }\free{pack}}
\end{paste}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch11}
\begin{paste}{ZeroDimSolvePkgXmpPageFull11}{ZeroDimSolvePkgXmpPageEmpty11}
\pastebutton{ZeroDimSolvePkgXmpPagePatch11}{\hidpaste}
\tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp}\free{pack}\bound{lr}}
\end{paste}
\end{patch}

\begin{verbatim}
(11)
[
 \%R1,
 1184459 19 2335702 18 5460230 17
 \%R1 - \%R1 - \%R1
 1645371 548457 182819
 +
 79900378 16 43953929 15 13420192 14
 \%R1 + \%R1 + \%R1
 1645371 548457 182819
 +
 553986 13 193381378 12 35978916 11
 \%R1 + \%R1 + \%R1
 3731 1645371 182819
 +
 358660781 10 271667666 9 118784873 8
 \%R1 + \%R1 + \%R1
 1645371 1645371 548457
 +
 337505020 7 1389370 6 688291 5
 \%R1 + \%R1 + \%R1
 1645371 11193 4459
 +
\end{verbatim}
3378002 4 140671876 3 32325724 2
\(\%R1 + \%R1 + \%R1 \)
42189 1645371 548457
+
8270 9741532
- \(\%R1 - \)
343 1645371
,
91729 19 487915 18 4114333 17
- \(\%R1 + \%R1 + \%R1 \)
705159 705159 705159
+
1276987 16 13243117 15 16292173 14
- \(\%R1 - \%R1 - \%R1 \)
235053 705159 705159
+
26536060 13 722714 12 5382578 11
- \(\%R1 - \%R1 - \%R1 \)
705159 18081 100737
+
15449995 10 14279770 9 6603890 8
- \(\%R1 - \%R1 - \%R1 \)
235053 235053 100737
+
409930 7 37340389 6 34893715 5
- \(\%R1 - \%R1 - \%R1 \)
6027 705159 705159
+
26686318 4 801511 3 17206178 2
- \(\%R1 - \%R1 - \%R1 \)
705159 26117 705159
+
4406102 377534
- \(\%R1 - \)
705159 705159
]
,
\[\%R2, \\
1184459 19 2335702 18 5460230 17
\(\%R2 - \%R2 - \%R2 \)
1645371 548457 182819
+
79900378 16 43953929 15 13420192 14
\(\%R2 + \%R2 + \%R2 \)
1645371 548457 182819
+
553986 13 193381378 12 35978916 11
\%R2 + \%R2 + \%R2
3731 1645371 182819
+ 358660781 10 271667666 9 118784873 8
\%R2 + \%R2 + \%R2
1645371 1645371 548457
+ 337605020 7 1389370 6 688291 5
\%R2 + \%R2 + \%R2
1645371 11193 4459
+ 3378002 4 140671876 3 32325724 2
\%R2 + \%R2 + \%R2
42189 1645371 548457
+ 8270 9741532
- \%R2 -
343 1645371
,
91729 19 487915 18 4114333 17
- \%R2 + \%R2 + \%R2
705159 705159 705159
+ 1276987 16 13243117 15 16292173 14
- \%R2 - \%R2 - \%R2
235053 705159 705159
+ 26536060 13 722714 12 5382578 11
- \%R2 - \%R2 - \%R2
705159 19081 100737
+ 15449995 10 14279770 9 6603890 8
- \%R2 - \%R2 - \%R2
235053 235053 100737
+ 409930 7 37340389 6 34893715 5
- \%R2 - \%R2 - \%R2
6027 705159 705159
+ 26686318 4 801511 3 17206178 2
- \%R2 - \%R2 - \%R2
705159 26117 705159
+ 4406102 377534
- \%R2 +
705159 705159
]
CHAPTER 3. HYPERDOC PAGES

\[
\begin{align*}
&1184459 \quad 19 \quad 2335702 \quad 18 \quad 5460230 \quad 17 \\
&\%R3 - \%R3 - \%R3 \\
&1645371 \quad 548457 \quad 182819 \\
+ &79900378 \quad 16 \quad 43953929 \quad 15 \quad 13420192 \quad 14 \\
&\%R3 + \%R3 + \%R3 \\
&1645371 \quad 548457 \quad 182819 \\
+ &553986 \quad 13 \quad 193381378 \quad 12 \quad 35978916 \quad 11 \\
&\%R3 + \%R3 + \%R3 \\
&3731 \quad 1645371 \quad 182819 \\
+ &358660781 \quad 10 \quad 271667666 \quad 9 \quad 118784873 \quad 8 \\
&\%R3 + \%R3 + \%R3 \\
&1645371 \quad 1645371 \quad 548457 \\
+ &337505020 \quad 7 \quad 1389370 \quad 6 \quad 688291 \quad 5 \\
&\%R3 + \%R3 + \%R3 \\
&1645371 \quad 11193 \quad 4459 \\
+ &3378002 \quad 4 \quad 140671876 \quad 3 \quad 32325724 \quad 2 \\
&\%R3 + \%R3 + \%R3 \\
&42189 \quad 1645371 \quad 548457 \\
+ &8270 \quad 9741532 \\
- &\%R3 - \\
&343 \quad 1645371 \\
, \\
&91729 \quad 19 \quad 487915 \quad 18 \quad 4114333 \quad 17 \\
- &\%R3 + \%R3 + \%R3 \\
&705159 \quad 705159 \quad 705159 \\
+ &1276987 \quad 16 \quad 13243117 \quad 15 \quad 16292173 \quad 14 \\
- &\%R3 - \%R3 - \%R3 \\
&235053 \quad 705159 \quad 705159 \\
+ &26536060 \quad 13 \quad 722714 \quad 12 \quad 5382578 \quad 11 \\
- &\%R3 - \%R3 - \%R3 \\
&705159 \quad 18081 \quad 100737 \\
+ &15449995 \quad 10 \quad 14279770 \quad 9 \quad 6603890 \quad 8 \\
- &\%R3 - \%R3 - \%R3 \\
&235053 \quad 235053 \quad 100737 \\
+ &409930 \quad 7 \quad 37340389 \quad 6 \quad 34893715 \quad 5 \\
- &\%R3 - \%R3 - \%R3 \\
&6027 \quad 705159 \quad 705159
\end{align*}
\]
3.121. ZDSOLVE.HT

+ 26686318 4 801511 3 17206178 2
- %R3 - %R3 - %R3
 705159 26117 705159

+ 4406102 377534
- %R3 +
 705159 705159
]

[\%R4,

1184459 19 2335702 18 5460230 17
\%R4 - \%R4 - \%R4
 1645371 548457 182819

+ 79900378 16 43953929 15 13420192 14
\%R4 + \%R4 + \%R4
 1645371 548457 182819

+ 553986 13 193381378 12 35978916 11
\%R4 + \%R4 + \%R4
 3731 1645371 182819

+ 358660781 10 271667666 9 118784873 8
\%R4 + \%R4 + \%R4
 1645371 1645371 548457

+ 337505020 7 1389370 6 688291 5
\%R4 + \%R4 + \%R4
 1645371 11193 4459

+ 3378002 4 140671876 3 32325724 2
\%R4 + \%R4 + \%R4
 42189 1645371 548457

+ 8270 9741532
- \%R4 -
 343 1645371

91729 19 487915 18 4114333 17
- \%R4 + \%R4 + \%R4
 705159 705159 705159

+ 1276987 16 13243117 15 16292173 14
- \%R4 - \%R4 - \%R4
 235053 705159 705159

+ 2960329 17 4513420 16 7528478 15
- \%R4 + \%R4 + \%R4
 705159 705159 705159

]}
CHAPTER 3. HYPERDOC PAGES

\[
\begin{align*}
26536060 &\quad 13 &\quad 722714 &\quad 12 &\quad 5382578 &\quad 11 \\
- &\quad %R4 &\quad - &\quad %R4 &\quad - &\quad %R4 \\
705159 &\quad &\quad 18081 &\quad &\quad 100737 \\
+ &\quad 15449995 &\quad 10 &\quad 14279770 &\quad 9 &\quad 6603890 &\quad 8 \\
- &\quad %R4 &\quad - &\quad %R4 &\quad - &\quad %R4 \\
235053 &\quad &\quad 235053 &\quad &\quad 100737 \\
+ &\quad 409930 &\quad 7 &\quad 37340389 &\quad 6 &\quad 34893715 &\quad 5 \\
- &\quad %R4 &\quad - &\quad %R4 &\quad - &\quad %R4 \\
6027 &\quad &\quad 705159 &\quad &\quad 705159 \\
+ &\quad 26686318 &\quad 4 &\quad 801511 &\quad 3 &\quad 17206178 &\quad 2 \\
- &\quad %R4 &\quad - &\quad %R4 &\quad - &\quad %R4 \\
705159 &\quad &\quad 26117 &\quad &\quad 705159 \\
+ &\quad 4406102 &\quad 377534 \\
- &\quad %R4 + \\
&\quad 705159 &\quad 705159 \\
\right) \] \\

\[
, \\
[&\text{[%R5,} \\
1184459 &\quad 19 &\quad 2335702 &\quad 18 &\quad 5460230 &\quad 17 \\
\%R5 &\quad - &\quad %R5 &\quad - &\quad %R5 \\
1645371 &\quad &\quad 548457 &\quad &\quad 182819 \\
+ &\quad 79900378 &\quad 16 &\quad 43953929 &\quad 15 &\quad 13420192 &\quad 14 \\
\%R5 &\quad + &\quad %R5 &\quad + &\quad %R5 \\
1645371 &\quad &\quad 548457 &\quad &\quad 182819 \\
+ &\quad 553986 &\quad 13 &\quad 193381378 &\quad 12 &\quad 35978916 &\quad 11 \\
\%R5 &\quad + &\quad %R5 &\quad + &\quad %R5 \\
3731 &\quad 1645371 &\quad &\quad 182819 \\
+ &\quad 358660781 &\quad 10 &\quad 271667666 &\quad 9 &\quad 118784873 &\quad 8 \\
\%R5 &\quad + &\quad %R5 &\quad + &\quad %R5 \\
1645371 &\quad 1645371 &\quad &\quad 548457 \\
+ &\quad 337505020 &\quad 7 &\quad 1389370 &\quad 6 &\quad 688291 &\quad 5 \\
\%R5 &\quad + &\quad %R5 &\quad + &\quad %R5 \\
1645371 &\quad &\quad 11193 &\quad &\quad 4459 \\
+ &\quad 3378002 &\quad 4 &\quad 140671876 &\quad 3 &\quad 32325724 &\quad 2 \\
\%R5 &\quad + &\quad %R5 &\quad + &\quad %R5 \\
42189 &\quad 1645371 &\quad &\quad 548457 \\
+ &\quad 8270 &\quad 9741532 \\
- &\quad %R5 - \\
\right) \\
\]
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>Value5</th>
<th>Value6</th>
<th>Value7</th>
<th>Value8</th>
</tr>
</thead>
<tbody>
<tr>
<td>%R5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%R6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.121. ZDSOLVE.HT

1429

The text contains algebraic expressions involving variables and numbers, likely part of a larger mathematical or computational context.
3.121. ZDSOLVE.HT

\[
\begin{align*}
79900378 & \quad 16 \quad 43953929 \quad 15 \quad 13420192 \quad 14 \\
%R7 & + %R7 + %R7 \\
1645371 & \quad 548457 \quad 182819 \\
+ & \\
553986 & \quad 13 \quad 193381378 \quad 12 \quad 35978916 \quad 11 \\
%R7 & + %R7 + %R7 \\
3731 & \quad 1645371 \quad 182819 \\
+ & \\
358660781 & \quad 10 \quad 271667666 \quad 9 \quad 118784873 \quad 8 \\
%R7 & + %R7 + %R7 \\
1645371 & \quad 1645371 \quad 548457 \\
+ & \\
337605020 & \quad 7 \quad 1389370 \quad 6 \quad 688291 \quad 5 \\
%R7 & + %R7 + %R7 \\
1645371 & \quad 11193 \quad 4459 \\
+ & \\
3378002 & \quad 4 \quad 140671876 \quad 3 \quad 32325724 \quad 2 \\
%R7 & + %R7 + %R7 \\
42189 & \quad 1645371 \quad 548457 \\
+ & \\
8270 & \quad 9741532 \\
- & %R7 \\
343 & \quad 1645371 \\
, \\
91729 & \quad 19 \quad 487915 \quad 18 \quad 4114333 \quad 17 \\
- & %R7 + %R7 + %R7 \\
705159 & \quad 705159 \quad 705159 \\
+ & \\
1276987 & \quad 16 \quad 13243117 \quad 15 \quad 16292173 \quad 14 \\
- & %R7 - %R7 - %R7 \\
235053 & \quad 705159 \quad 705159 \\
+ & \\
26536060 & \quad 13 \quad 722714 \quad 12 \quad 5382578 \quad 11 \\
- & %R7 - %R7 - %R7 \\
705159 & \quad 18081 \quad 100737 \\
+ & \\
15449995 & \quad 10 \quad 14279770 \quad 9 \quad 6603890 \quad 8 \\
- & %R7 - %R7 - %R7 \\
235053 & \quad 235053 \quad 100737 \\
+ & \\
409930 & \quad 7 \quad 37340389 \quad 6 \quad 34893715 \quad 5 \\
- & %R7 - %R7 - %R7 \\
6027 & \quad 705159 \quad 705159 \\
+ & \\
26686318 & \quad 4 \quad 801511 \quad 3 \quad 17206178 \quad 2 \\
- & %R7 - %R7 - %R7 \\
705159 & \quad 26117 \quad 705159 \\
+ & \\
4406102 & \quad 377534 \\
\end{align*}
\]
\begin{verbatim}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty11}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty11}{ZeroDimSolvePkgXmpPagePatch11}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty11}{\showpaste}
\tab{5}\spadcommand{lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch12}
\begin{paste}{ZeroDimSolvePkgXmpPageFull12}{ZeroDimSolvePkgXmpPageEmpty12}
\pastebutton{ZeroDimSolvePkgXmpPageFull12}{\hidepaste}
\tab{5}\spadcommand{\# lr\free{lr }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty12}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty12}{ZeroDimSolvePkgXmpPagePatch13}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty12}{\hidepaste}
\tab{5}\spadcommand{[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }}
\end{paste}\end{patch}

\end{verbatim}

Type: List List RealClosure Fraction Integer

```spad
lr := realSolve(lp)$pack\free{lp }\free{pack }\bound{lr }
```

```spad
\# lr\free{lr }
```

```spad
[[approximate(r,1/1000000) for r in point] for point in lr]\free{lr }
```
3.12. ZDSOLVE.HT

\[3311571242897\]
\[
/ 116522540050226253058398191600458914375722661_ 0276858900087901348199149409224137539839713_ 94019523433320408139928153188829495755455163_ 96341761930839697754479714023146923426903492_ 193805593984_
",
\[35725945502759172210658872961578827299851705467_ 56032395781981410060340917352828265906219023044_ 66963941971038923304526273329316373757450061978_ 9892286110976997087250466235373_
/ 10396482693455989368770712448304260580081455112_ 01705922005223665917594096594864423391410294529_ 5026517998960104811875822530205346505131581243_ 9017247289173865014702966308864_
]
\[, 1715967
[-, 2097152
-
 421309353378430352108483951797708239037726150_ 39695862248289984366060306560763593746648137_ 73498376603121267822565801436206939519951465_ 18222580524697287410022543952491_
/ 94418141418537445864969203434922405243659747_ 0966253639306419607958058825854831998401916_ 99917659443264824641135187383583888147867340_ 19307857605820364195856822304768_
",
\[763583334711264422251562542441083122534747566900_ 85893388341621725019049943763467308768090428452_ 08919919925302105720971453918982731389072591403_ 5
/ 26241887640860971997842976104780663393423046789_ 58516022785809785037845492057884990196406022669_ 66026891580103543567625039018629887141284916756_ 48_
]
,
\[437701]
3.121. ZDSOLVE.HT

765693,
2097152

855896921981671626787324476117819808872469895861_66701402137657543220023032516857861186783308402_03328837654339523418704917749518340772512899000_391009630373148561_294144244553301079097642841137369349981558021594_585691790645253549572301385668189417023302287798_90141296236721138154231997238917322156711965244_4639331719460159488,

205761823068257210124765032486024256111130258_15435888088439236627654698322416593627122907_77612800192921420574408948085193743688582762_2224643325187889489015_267159820332573553809795235350145022057631375_98908350970917225206427101987719026671839489_06289863714759678360292483949204616471537777_775324180661095366656,

5743879,
2097152

10762888169689068479554639477357020817145672494_26166140236631235747689608504342639713860725465_92772662158833449797698617455397887562900072984_76800060834355318980169340872720504761255988923_27575638305286889635354218094827710589175426028_90060941949620874083007858366669453501766248414_88732463225_313176895708031794664864194002355204419037661345_85849862285496319161966016162197187656155325322_947465296427463058310894079374566460757823146_88858119555602920851521883888320031865840746939_9426063260589828612309231596669129709864813198_51571942927230340622934023923486703042068153044_0846099008
\begin{verbatim}
(14) []
Type: List List RealClosure Fraction Integer
\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ZeroDimSolvePkgXmpPagePatch15}
\begin{paste}{ZeroDimSolvePkgXmpPageFull15}{ZeroDimSolvePkgXmpPageEmpty15}
\pastebutton{ZeroDimSolvePkgXmpPageFull15}{\hidepaste}
\tab{5}\spadcommand{f0 := x**3 + y + z + t - 1\bound{f0}}
\indentrel{3}\begin{verbatim}
3
(15) z + y + x + t - 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch16}
\begin{paste}{ZeroDimSolvePkgXmpPageFull16}{ZeroDimSolvePkgXmpPageEmpty16}
\pastebutton{ZeroDimSolvePkgXmpPageFull16}{\hidepaste}
\tab{5}\spadcommand{f1 := x + y**3 + z + t - 1\bound{f1}}
\indentrel{3}\begin{verbatim}
3
(16) z + y + x + t - 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch17}
\begin{paste}{ZeroDimSolvePkgXmpPageFull17}{ZeroDimSolvePkgXmpPageEmpty17}
\pastebutton{ZeroDimSolvePkgXmpPageFull17}{\hidepaste}
\tab{5}\spadcommand{f2 := x + y + z**3 + t - 1\bound{f2}}
\indentrel{3}\begin{verbatim}
3
(17) z + y + x + t - 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ZeroDimSolvePkgXmpPagePatch18}
\begin{paste}{ZeroDimSolvePkgXmpPageFull18}{ZeroDimSolvePkgXmpPageEmpty18}
\spadcommand{f3 := x + y + z + t**3 -1}\bound{f3 }
\indentrel{3}\verbatim
(18) 3
\[z + y + x + t - 1 \]
\indentrel{-3}Type: Polynomial Integer
\end{indentrel}{\end{paste}}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch19}
\begin{paste}{ZeroDimSolvePkgXmpPageFull19}{ZeroDimSolvePkgXmpPageEmpty19}
\spadcommand{lf := \[f0, f1, f2, f3\]}\free{f0 }
\free{f1 }
\free{f2 }
\free{f3 }
\bound{lf }
\indentrel{3}\verbatim
(19) \[3 3 \]
\[\{ t + t + 1, z - z - t + t, \}
\]
\indentrel{-3}Type: List Polynomial Integer
\end{indentrel}{\end{paste}}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch20}
\begin{paste}{ZeroDimSolvePkgXmpPageFull20}{ZeroDimSolvePkgXmpPageEmpty20}
\spadcommand{lts := triangSolve(lf)\$pack}\free{lf }
\free{pack }
\bound{lts }
\indentrel{3}\verbatim
(20) \[
2 3 3
\{ t + t + 1, z - z - t + t, \}
\]
\indentrel{-3}\end{indentrel}{\end{paste}}
\end{patch}
\[(3z + 3t - 3)y + (3t - 6t + 3)z + 3t - 6t + 3)y + (3t - 3)z + 6t - 6t + 3)z + t - 3t + 5t - 3t, x + y + z\]

\[\{ t - 6t + 9t + 4t + 15t - 54t + 27, 16 13 10 7 4 2\]

\[15 14 13\]
\[4907\times 32t + 40893984t - 115013088t + 12\]
\[11 10\]
\[22805712t + 36330336t + 162959040t + 9\]
\[8\]
\[-159859440t - 156802608t + 117168768t + 6\]
\[5\]
\[126282384t - 129351600t + 30664992t + 3\]
\[2\]
\[475302816t - 1006837776t - 237269088t + 480716208 * z\]

\[48t - 912t + 8232t - 72t - 46848t + 43\]
\[42\]
\[1152t + 186324t - 3780t - 543144t + 38\]
\[37\]
\[-3168t - 21384t + 1175251t + 41184t + 34\]
\[33\]
\[278003t - 1843242t - 301815t - 1440726t + 30\]
\[29\]
\[1912012t + 1442826t + 4696262t - 922481t + 26\]
\[25\]
\[4816188t - 10583524t - 208751t\]
\[\begin{align*}
&+ 23 \quad 22 \quad 21 \\
&11472138t + 16762859t - 857663t \\
&+ 20 \quad 19 \quad 18 \\
&- 19328175t - 18270421t + 4914903t \\
&+ 17 \quad 16 \quad 15 \\
&22483044t + 12926517t - 860511t \\
&+ 14 \quad 13 \quad 12 \\
&- 17455518t - 5014597t + 8108814t \\
&+ 11 \quad 10 \quad 9 \quad 8 \\
&846535t + 190542t - 4305624t - 2226123t \\
&+ 7 \quad 6 \quad 5 \quad 4 \\
&661905t + 1169775t + 226260t - 209952t \\
&+ 3 \\
&- 141183t + 27216t \\
\end{align*} \]

\((3z + 3t - 3)y \)

\[\begin{align*}
&+ 3 \quad 2 \\
&(3z + 3t - 3)y \\
&+ 2 \quad 3 \quad 6 \quad 3 \quad 3 \quad 2 \\
&(3z + (6t - 6)z + 3t - 6t + 3)y + (3t - 3)z \\
&+ 6 \quad 3 \quad 9 \quad 6 \quad 3 \\
&(3t - 6t + 3)z + t - 3t + 5t - 3t \\
&+ 3 \\
&x + y + z + t - 1 \}
\]

\[\begin{align*}
\{t,z - 1,y - 1,x + y\}, \{t - 1,z,y - 1,x + y\}, \\
\{t - 1,z - 1,z y + 1,x\}, \\
\{t - 6t + 9t + 4t + 15t - 54t + 27, \\
&16 \quad 13 \quad 10 \quad 7 \quad 4 \quad 2 \\
&490723t + 40893984t - 115013088t \\
&+ 26 \quad 25 \quad 24 \\
&- 1730448t - 168139584t + 738024480t \\
&+ 23 \quad 22 \quad 21
\end{align*} \]
- 195372288t + 315849456t - 2567279232t
+ 20 19 18
937147968t + 1026357696t + 478048240t
+ 17 16
- 2893767696t - 5617160352t
+ 15 14
- 3427651728t + 500110848t
+ 13 12 11
8720098416t + 2331732960t - 499046544t
+ 10 9
- 16243306272t - 9748123200t
+ 8 7 6
3927244320t + 25257280896t + 10348032096t
+ 5 4 3
- 17128672128t - 14755488768t + 544086720t
+ 2
10848188736t + 1423614528t - 2884297248
* z
+ 68 65 62 60 59
- 48t + 1152t - 13560t + 360t + 103656t
+ 57 56 54 53
- 7560t - 572820t + 71316t + 2414556t
+ 52 51 50 49
2736t - 402876t - 7985131t - 49248t
+ 48 47 46 45
1431133t + 20977409t + 521487t - 2697636t
+ 44 43 42
- 43763654t - 3756573t - 2093410t
+ 41 40 39
71546495t + 19699032t + 35025028t
+ 38 37 36
- 89623786t - 77798760t - 138654191t
+ 35 34 33
\[
\begin{align*}
87596128t & + 235642497t + 349607642t \\
+ & \quad 32 \quad 31 \quad 30 \\
- & \quad 93299834t - 561563167t - 630995176t \\
+ & \quad 29 \quad 28 \quad 27 \\
186818962t & + 995427468t + 828416204t \\
+ & \quad 26 \quad 25 \quad 24 \\
- & \quad 393919231t - 1076617485t - 1609479791t \\
+ & \quad 23 \quad 22 \quad 21 \\
595738126t & + 1198787136t + 4342832069t \\
+ & \quad 20 \quad 19 \quad 18 \\
- & \quad 2075938757t - 4390835799t - 4822843033t \\
+ & \quad 17 \quad 16 \quad 15 \\
6932747678t & + 6172196808t + 1141517740t \\
+ & \quad 14 \quad 13 \quad 12 \\
- & \quad 4981677585t - 9819815280t - 7404299976t \\
+ & \quad 11 \quad 10 \quad 9 \\
- & \quad 157295760t + 29124027630t + 14856038208t \\
+ & \quad 8 \quad 7 \quad 6 \\
- & \quad 16184101410t - 26935440354t - 3574164258t \\
+ & \quad 5 \quad 4 \quad 3 \\
1027138974t & + 11191425264t + 6869861262t \\
+ & \quad 2 \\
- & \quad 9780477840t - 3586674168t + 2884297248 \\
\end{align*}
\]

\[
\begin{align*}
3 & \quad 3 \quad 2 \quad 6 \quad 3 \quad 9 \\
3z & + (6t - 6)z + (6t - 12t + 3)z + 2t \\
+ & \quad 6 \quad 3 \\
- & \quad 6t + t + 3t \\
\ast & \\
\end{align*}
\]

\[
\begin{align*}
y & + \\
3 & \quad 3 \quad 6 \quad 3 \quad 2 \\
(3t - 3)z & + (6t - 12t + 6)z \\
+ & \quad 9 \quad 6 \quad 3 \quad 12 \quad 9 \quad 6 \quad 3 \\
(4t - 12t + 11t - 3)z & + t - 4t + 5t - 2t \\
\end{align*}
\]
\[\begin{align*}
3 & \quad x + y + z + t - 1 \\
2 & \quad \{t - 1, z - 1, y, x + z\}, \\
8 & \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \\
& \quad \{t + t + t - 2t - 2t - 2t + 19t + 19t - 8, \\
7 & \quad 6 \quad 5 \\
& \quad 2395770t + 3934440t - 3902067t \\
& \quad + \\
& \quad 4 \quad 3 \quad 2 \\
& \quad - 10084164t - 1010448t + 32386932t \\
& \quad + \\
& \quad 22413225t - 10432368 \\
* & \quad z \\
& \quad + \\
7 & \quad 6 \quad 5 \quad 4 \\
& \quad - 463519t + 3586833t + 9494955t - 8539305t \\
& \quad + \\
3 & \quad 2 \\
& \quad - 33283098t + 35479377t + 46263256t - 17419896 \\
, \\
4 & \quad 3 \quad 3 \quad 6 \quad 3 \quad 2 \\
& \quad 3z + (9t - 9)z + (12t - 24t + 9)z \\
& \quad + \\
3 & \quad 6 \quad 4 \quad 3 \\
& \quad (- 152t + 219t - 67)z - 41t + 57t + 25t \\
& \quad + \\
& \quad - 57t + 16 \\
* & \quad y \\
& \quad + \\
3 & \quad 4 \quad 6 \quad 3 \quad 3 \\
& \quad (3t - 3)z + (9t - 18t + 9)z \\
& \quad + \\
3 & \quad 2 \\
& \quad (- 181t + 270t - 89)z \\
& \quad + \\
6 & \quad 4 \quad 3 \\
& \quad (- 92t + 135t + 49t - 135t + 43)z + 27t \\
& \quad + \\
6 & \quad 4 \quad 3 \\
& \quad - 27t - 54t + 396t - 486t + 144 \\
, \\
3 & \quad x + y + z + t - 1 \end{align*} \]
\begin{verbatim}
3
\{t,z-t+1,y-1,x-1\}, \{t-1,z,y,x\},
\{t,z-1,y,x\}, \{t,z,y,x-1\}
Type: List RegularChain(Integer,[x,y,z,t])
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty20}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty20}{ZeroDimSolvePkgXmpPagePatch20}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty20}{\showpaste}
\tab{5}\spadcommand{lts := triangSolve(lf)$pack\free{lf }\free{pack }\bound{lts }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch21}
\begin{paste}{ZeroDimSolvePkgXmpPageFull21}{ZeroDimSolvePkgXmpPageEmpty21}
\pastebutton{ZeroDimSolvePkgXmpPageFull21}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(lf)$pack\free{lf }\free{pack }}
\indentrel{3}\begin{verbatim}
(21)
[complexRoots= ?,
coordinates= [x - 1,y - 1,z + 1,t - %A]]
,
[complexRoots= ?,coordinates= [x,y - 1,z,t - %A]],
[complexRoots= ? - 1,coordinates= [x,y,z,t - %A]],
[complexRoots= ?,coordinates= [x - 1,y,z,t - %A]],
[complexRoots= ?,coordinates= [x,y,z - 1,t - %A]],

[complexRoots= ? - 2,
coordinates= [x - 1,y + 1,z,t - 1]]
,
[complexRoots= ?,coordinates= [x + 1,y - 1,z,t - 1]],

[complexRoots= ? - 1,
coordinates= [x - 1,y + 1,z - 1,t]]
,

[complexRoots= ? + 1,
coordinates= [x + 1,y - 1,z - 1,t]]
,

6 3 2
[complexRoots= ? - 2? + 3? - 3,
coordinates =
3
[2x + %A + %A - 1, 2y + %A + %A - 1, z - %A,
t - %A]
]
\end{verbatim}
\indentrel{3}\end{paste}\end{patch}
\[\text{complexRoots} = \sqrt[3]{x + 3 - 2 + 3 - 3}, \]
\[\text{coordinates} = \begin{bmatrix} x - \%A, y - \%A, z + \%A + 2\%A - 1, t - \%A \end{bmatrix} \]

\[\text{complexRoots} = \sqrt[3]{x - ? - ? - 2 + 3}, \]
\[\text{coordinates} = \begin{bmatrix} x + \%A - \%A - 1, y + \%A - \%A - 1, \\
\end{bmatrix} \]
\[\text{complexRoots} = \sqrt[3]{x - 1, y - 1, z, t - \%A} \]

\[\text{complexRoots} = \sqrt[3]{x + 2 - 3 - 3}, \]
\[\text{coordinates} = \begin{bmatrix} 2x - \%A - \%A - 1, y + \%A, 2z - \%A - \%A - 1, \\
t + \%A \end{bmatrix} \]

\[\text{complexRoots} = \sqrt[3]{x + 12 - 20 - 45 - 42 - 953}, \]
\[\text{coordinates} = \begin{bmatrix} 12609x + 23\%A + 49\%A - 46\%A + 362\%A \\
+ 5015\%A - 8239 \end{bmatrix} \]
\[\text{complexRoots} = 25218y + 23\%A + 49\%A - 46\%A + 362\%A \\
+ \]
7594%A - 8239
,
5 4 3 2
25218z + 23%A + 49%A - 46%A + 362%A
+ 7594%A - 8239
,
5 4 3 2
12609t + 23%A + 49%A - 46%A + 362%A
+ 25218z + 23%A + 49%A - 46%A + 362%A
+ 7594%A - 8239
,
5 4 3 2
coordinates = 3
[8x + %A + 8%A - 8, 2y - %A, 2z - %A, 2t - %A]
]
,
5 4 3 2
coordinates = 3 3
[2x - %A + 2%A - 1, 2y + %A - 4%A + 1,
3 3 2
2z - %A + 2%A - 1, 2t - %A + 2%A - 1]
]
,
4 3 2
[complexRoots= ? - 3? + 4? - 6? + 13,
coordinates = 3 2
[9x - 2%A + 4%A - %A + 2,
3 2 9y + %A - 2%A + 5%A - 1,
3 2 9z + %A - 2%A + 5%A - 1,
3 2 9t + %A - 2%A - 4%A - 1]
]
\[\text{complexRoots} = ? - 11? + 37, \]
\[\text{coordinates} = \]
\[\left[3x - \%A + 7, \; 6y + \%A + 3\%A - 7, \; 3z - \%A + 7, \; 6t + \%A - 3\%A - 7 \right] \]

\[\text{complexRoots} = ? + 1, \]
\[\text{coordinates} = [x - 1, y, z - 1, t + 1] \]

\[\text{complexRoots} = ? + 2, \]
\[\text{coordinates} = [x, y - 1, z - 1, t + 1] \]

\[\text{complexRoots} = ? - 2, \]
\[\text{coordinates} = [x, y - 1, z + 1, t - 1] \]

\[\text{complexRoots} = ?, \text{coordinates} = [x, y + 1, z - 1, t - 1], \]

\[\text{complexRoots} = ? - 2, \]
\[\text{coordinates} = [x - 1, y, z + 1, t - 1] \]

\[\text{complexRoots} = ?, \text{coordinates} = [x + 1, y, z - 1, t - 1], \]

\[\text{complexRoots} = ? + 5? + 16? + 30? + 57, \]
\[\text{coordinates} = \]
\[\left[151x + 15\%A + 54\%A + 104\%A + 93, \; 151y - 10\%A - 36\%A - 19\%A - 62, \; 151z - 5\%A - 18\%A - 85\%A - 31, \; 151t - 5\%A - 18\%A - 85\%A - 31 \right] \]

\[\text{complexRoots} = ? - ? - 2? + 3, \]
\[\text{coordinates} = \]
\[
[x - \%A + 2\%A + 1, y + \%A - \%A - 1, z - \%A, \\
3 \quad \quad \quad \quad 3
3
3 \\
t + \%A - \%A - 1]
\]

\[
4 \quad 3 \quad 2
\text{complexRoots} = \%A + 2\%A - 8\%A + 48, \\
\text{coordinates} = \\
3 \quad \\
[8x - \%A + 4\%A - 8, 2y + \%A, \\
3 \quad 3 \\
3z + \%A - 8\%A + 8, 8t - \%A + 4\%A - 8]
\]

\[
5 \quad 4 \quad 3 \quad 2
\text{complexRoots} = \%A + \%A - 2\%A - 4\%A + 5\%A + 8, \\
\text{coordinates} = \\
3 \quad \\
[3x + \%A - 1, 3y + \%A - 1, 3z + \%A - 1, t - \%A]
\]

\[
3 \quad \\
[\text{complexRoots} = \%A + 3\%A - 1, \\
\text{coordinates} = [x - \%A, y - \%A, z - \%A, t - \%A]]
\]

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer, coordinates: List Polynomial Integer)

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch22}
\begin{paste}{ZeroDimSolvePkgXmpPageFull22}{ZeroDimSolvePkgXmpPageEmpty22}
\pastebutton{ZeroDimSolvePkgXmpPageFull22}{\hidepaste}
\tab{5}\spadcommand{ts := lts.1}$pack\free{lf }$\free{pack }$
\end{paste}$\end{patch}
\begin{verbatim}
(3z + 3t - 3)y
+ 2 3 6 3 3 2
(3z + (6t - 6)z + 3t - 6t + 3)y + (3t - 3)z
+ 6 3 9 6 3
(3t - 6t + 3)z + t - 3t + 5t - 3t
, x + y + z
\end{verbatim}

Type: RegularChain(Integer,[x,y,z,t])

\end{verbatim}
\end{paste}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty22}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty22}{ZeroDimSolvePkgXmpPagePatch22}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty22}{\showpaste}
\tab{5}\spadcommand{ts := lts.1\free{lts \bound{ts }}}
\end{paste}
\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch23}
\begin{paste}{ZeroDimSolvePkgXmpPageFull23}{ZeroDimSolvePkgXmpPageEmpty23}
\pastebutton{ZeroDimSolvePkgXmpPageFull23}{\hidepaste}
\tab{5}\spadcommand{univariateSolve(ts)$pack\free{ts \bound{pack }\free{pack }}}
\end{paste}
\end{patch}

\begin{verbatim}
(23)
[
 4 3 2
[complexRoots= ? + 5? + 16? + 30? + 57,
coordinates =
 3 2
[151x + 15%A + 54%A + 104%A + 93,
 3 2
151y - 10%A + 36%A - 19%A - 62,
 3 2
151z - 5%A + 18%A - 85%A - 31,
 3 2
151t - 5%A + 18%A - 85%A - 31]
,]
 4 3 2
[complexRoots= ? - ? - 2? + 3,
coordinates =
 3
[x - %A + 2%A + 1, y + %A - %A - 1, z - %A,
 3
t + %A - %A - 1]
\end{verbatim}
complexRoots = \(x^4 + 2x^3 - 8x^2 + 48, \)
coordinates =
\[
\begin{align*}
8x - 8 + 4%A - 8, & \quad 2y + %A, \\
8z + %A - 8%A + 8, & \quad 8t - %A + 4%A - 8
\end{align*}
\]

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer, coordinates: List Polynomial Integer)
\begin{align*}
1 & \quad 15 & \quad 2 & \quad 14 & \quad 1 & \quad 13 & \quad 4 & \quad 12 \\
%R32 & + & \%R32 & + & \%R32 & - & \%R32 \\
27 & & 27 & & 27 & & 27 \\
+ & & 11 & & 11 & & 4 & & 10 & & 1 & & 9 & & 14 & & 8 \\
\%R32 & - & \%R32 & + & \%R32 & + & \%R32 \\
27 & & 27 & & 27 & & 27 \\
+ & & 1 & & 7 & & 2 & & 6 & & 1 & & 5 & & 2 & & 4 & & 3 \\
\%R32 & + & \%R32 & + & \%R32 & + & \%R32 & + & \%R32 \\
27 & & 27 & & 9 & & 3 & & 9 \\
+ & & 4 & & 2 \\
\%R32 & - & \%R32 & - & 2 \\
3 \\
, \\
1 & \quad 15 & \quad 1 & \quad 14 & \quad 1 & \quad 13 & \quad 2 & \quad 12 \\
- & \%R32 & - & \%R32 & - & \%R32 & + & \%R32 \\
54 & & 27 & & 54 & & 27 \\
+ & & 11 & & 11 & & 2 & & 10 & & 1 & & 9 & & 7 & & 8 \\
\%R32 & + & \%R32 & - & \%R32 & - & \%R32 \\
54 & & 27 & & 54 & & 27 \\
+ & & 1 & & 7 & & 1 & & 6 & & 1 & & 5 & & 1 & & 4 & & 3 \\
54 & & 9 & & 6 & & 9 \\
+ & & 2 & & 2 & & 1 & & 3 \\
- & \%R32 & + & \%R32 + \\
3 & & 2 & & 2 \\
, \\
1 & \quad 15 & \quad 1 & \quad 14 & \quad 1 & \quad 13 & \quad 2 & \quad 12 \\
- & \%R32 & - & \%R32 & - & \%R32 & + & \%R32 \\
54 & & 27 & & 54 & & 27 \\
+ & & 11 & & 11 & & 2 & & 10 & & 1 & & 9 & & 7 & & 8 \\
\%R32 & + & \%R32 & - & \%R32 & - & \%R32 \\
54 & & 27 & & 54 & & 27 \\
+ & & 1 & & 7 & & 1 & & 6 & & 1 & & 5 & & 1 & & 4 & & 3 \\
54 & & 9 & & 6 & & 9 \\
+ & & 2 & & 2 & & 1 & & 3 \\
- & \%R32 & + & \%R32 + \\
3 & & 2 & & 2
\end{align*}
3.121. ZDSOLVE.HT

] ,

[%R33,

1 15 2 14 1 13 4 12
%R33 + %R33 + %R33 - %R33
27 27 27 27
+
11 11 4 10 1 9 14 8
- %R33 - %R33 + %R33 + %R33
27 27 27 27
+
1 7 2 6 1 5 2 4 3
%R33 + %R33 + %R33 + %R33 + %R33
27 9 3 9
+
4 2
%R33 - %R33 - 2
3

1 15 1 14 1 13 2 12
- %R33 - %R33 - %R33 + %R33
54 27 54 27
+
11 11 2 10 1 9 7 8
%R33 + %R33 - %R33 - %R33
54 27 54 27
+
1 7 1 6 1 5 1 4 3
- %R33 - %R33 - %R33 - %R33 - %R33
54 9 6 9
+
2 2 1 3
- %R33 + %R33 +
3 2 2

1 15 1 14 1 13 2 12
- %R33 - %R33 - %R33 + %R33
54 27 54 27
+
11 11 2 10 1 9 7 8
%R33 + %R33 - %R33 - %R33
54 27 54 27
+
1 7 1 6 1 5 1 4 3
- %R33 - %R33 - %R33 - %R33 - %R33
54 9 6 9
\[\begin{align*}
+ & \quad 2 \quad 2 \quad 1 \quad 3 \\
- & \quad \%R33 \quad + \quad \%R33 \quad + \\
& \quad 3 \quad 2 \quad 2 \\
\]

\text{%R34,}

\begin{align*}
1 & \quad 15 \quad 2 \quad 14 \quad 1 \quad 13 \quad 4 \quad 12 \\
\%R34 & \quad + \quad \%R34 \quad + \quad \%R34 \quad - \quad \%R34 \\
27 & \quad 27 \quad 27 \quad 27 \\
+ & \quad 11 \quad 11 \quad 4 \quad 10 \quad 1 \quad 9 \quad 14 \quad 8 \\
- & \quad \%R34 \quad - \quad \%R34 \quad + \quad \%R34 \quad + \quad \%R34 \\
27 & \quad 27 \quad 27 \quad 27 \\
+ & \quad 1 \quad 7 \quad 2 \quad 6 \quad 1 \quad 5 \quad 2 \quad 4 \quad 3 \\
\%R34 & \quad + \quad \%R34 \quad + \quad \%R34 \quad + \quad \%R34 \quad + \quad \%R34 \\
27 & \quad 9 \quad 3 \quad 9 \\
+ & \quad 4 \quad 2 \\
\%R34 & \quad - \quad \%R34 \quad - \quad 2 \\
3 &
\end{align*}

\begin{align*}
1 & \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \quad 2 \quad 12 \\
- & \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \quad + \quad \%R34 \\
54 & \quad 27 \quad 54 \quad 27 \\
+ & \quad 11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \quad 7 \quad 8 \\
\%R34 & \quad + \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \\
54 & \quad 27 \quad 54 \quad 27 \\
+ & \quad 1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4 \quad 3 \\
- & \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \\
54 & \quad 9 \quad 6 \quad 9 \\
+ & \quad 2 \quad 2 \quad 1 \quad 3 \\
- & \quad \%R34 \quad + \quad \%R34 \quad + \\
3 & \quad 2 \quad 2 \\
\end{align*}

\begin{align*}
1 & \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \quad 2 \quad 12 \\
- & \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \quad + \quad \%R34 \\
54 & \quad 27 \quad 54 \quad 27 \\
+ & \quad 11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \quad 7 \quad 8 \\
\%R34 & \quad + \quad \%R34 \quad - \quad \%R34 \quad - \quad \%R34 \\
54 & \quad 27 \quad 54 \quad 27
\end{align*}
3.121. ZDSOLVE.HT

\[
\begin{align*}
+ & 1 7 1 6 1 5 1 4 3 \\
- & \%R34 - \%R34 - \%R34 - \%R34 - \%R34 \\
& 54 9 6 9 \\
+ & 2 2 1 3 \\
- & \%R34 + \%R34 + \\
& 3 2 2 2 \\
\]

\[-1,1,0,1], [-1,1,1,0],

[\%R23,

\begin{align*}
& 1 15 1 14 1 13 2 12 \\
- & \%R23 - \%R23 - \%R23 + \%R23 \\
& 54 27 54 27 \\
+ & 11 11 2 10 1 9 7 8 \\
& \%R23 + \%R23 - \%R23 - \%R23 \\
& 54 27 54 27 \\
+ & 1 7 1 6 1 5 1 4 3 \\
- & \%R23 - \%R23 - \%R23 - \%R23 - \%R23 \\
& 54 9 6 9 \\
+ & 2 2 1 3 \\
- & \%R23 + \%R23 + \\
& 3 2 2 2 \\
\],

\%R30,

\begin{align*}
& 1 15 1 14 1 13 \\
- & \%R30 + \%R23 + \%R23 + \%R23 \\
& 54 27 54 \\
+ & 2 12 11 11 2 10 1 9 \\
- & \%R23 - \%R23 - \%R23 + \%R23 \\
& 27 54 27 54 \\
+ & 7 8 1 7 1 6 1 5 1 4 \\
& \%R23 + \%R23 + \%R23 + \%R23 + \%R23 \\
& 27 54 9 6 9 \\
+ & 2 2 1 1 \\
\],
\]
\[
[\%R_{23},
1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \quad 2 \quad 12
- \%R_{23} - \%R_{23} - \%R_{23} + \%R_{23}
54 \quad 27 \quad 54 \quad 27
+ 11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \quad 7 \quad 8
\%R_{23} + \%R_{23} - \%R_{23} - \%R_{23}
54 \quad 27 \quad 54 \quad 27
+ 1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4 \quad 3
- \%R_{23} - \%R_{23} - \%R_{23} - \%R_{23}
54 \quad 9 \quad 6 \quad 9
+ 2 \quad 2 \quad 1 \quad 3
- \%R_{23} + \%R_{23} +
3 \quad 2 \quad 2
,]
\%
[\%R_{31},
1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13
- \%R_{31} + \%R_{23} + \%R_{23} + \%R_{23}
54 \quad 27 \quad 54
+ 2 \quad 12 \quad 11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9
- \%R_{23} - \%R_{23} - \%R_{23} + \%R_{23}
27 \quad 54 \quad 27 \quad 54
+ 7 \quad 8 \quad 1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4
\%R_{23} + \%R_{23} + \%R_{23} + \%R_{23} + \%R_{23}
27 \quad 54 \quad 9 \quad 6 \quad 9
+ 2 \quad 2 \quad 1 \quad 1
- \%R_{23} - \%R_{23} -
3 \quad 2 \quad 2
,]
\%
[\%R_{24},
1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \quad 2 \quad 12
- \%R_{24} - \%R_{24} - \%R_{24} + \%R_{24}
54 \quad 27 \quad 54 \quad 27
+ 11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \quad 7 \quad 8
\%R_{24} + \%R_{24} - \%R_{24} - \%R_{24}
54 \quad 27 \quad 54 \quad 27
+ 1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4 \quad 3
- \%R_{24} - \%R_{24} - \%R_{24} - \%R_{24} - \%R_{24}
\[\begin{align*}
&54 \quad 9 \quad 6 \quad 9 \\
+ &2 \quad 2 \quad 1 \quad 3 \\
- &\%R24 \quad + \quad \%R24 \quad + \\
3 &2 \quad 2 \quad 2 \\
, \\
&\%R28, \\
&1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \\
- &\%R28 \quad + \quad \%R24 \quad + \quad \%R24 \quad + \quad \%R24 \\
&54 \quad 27 \quad 54 \\
+ &2 \quad 12 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \\
- &\%R24 \quad - \quad \%R24 \quad - \quad \%R24 \quad + \quad \%R24 \\
&27 \quad 54 \quad 27 \quad 54 \\
+ &7 \quad 8 \quad 1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4 \\
\%R24 \quad + \quad \%R24 \quad + \quad \%R24 \quad + \quad \%R24 \quad + \quad \%R24 \\
&27 \quad 54 \quad 9 \quad 6 \quad 9 \\
+ &2 \quad 2 \quad 1 \quad 1 \\
\%R24 \quad - \quad \%R24 \quad - \\
3 &2 \quad 2 \quad 2 \\
] \\
, \\
[\%R24, \\
&1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \quad 2 \quad 12 \\
- &\%R24 \quad - \quad \%R24 \quad - \quad \%R24 \quad + \quad \%R24 \\
&54 \quad 27 \quad 54 \quad 27 \\
+ &11 \quad 11 \quad 2 \quad 10 \quad 1 \quad 9 \quad 7 \quad 8 \\
\%R24 \quad + \quad \%R24 \quad - \quad \%R24 \quad - \quad \%R24 \\
&54 \quad 27 \quad 54 \quad 27 \\
+ &1 \quad 7 \quad 1 \quad 6 \quad 1 \quad 5 \quad 1 \quad 4 \quad 3 \\
- &\%R24 \quad - \quad \%R24 \quad - \quad \%R24 \quad - \quad \%R24 \quad - \quad \%R24 \\
&54 \quad 9 \quad 6 \quad 9 \\
+ &2 \quad 2 \quad 1 \quad 3 \\
\%R24 \quad + \quad \%R24 \quad + \\
3 &2 \quad 2 \quad 2 \\
, \\
&\%R29, \\
&1 \quad 15 \quad 1 \quad 14 \quad 1 \quad 13 \\
- &\%R29 \quad + \quad \%R24 \quad + \quad \%R24 \quad + \quad \%R24 \\
&54 \quad 27 \quad 54 \\
+ \]
\[
\begin{align*}
\%R24 & = 12 - 11 + 2 - 10 - 1 - 9 + 27 - 54 - 27 + 54 \\
\%R25 & = 7 + 1 + 7 + 1 + 6 + 1 + 5 + 1 + 4 \\
\%R26 & = 2 + 2 + 1 + 1 \\
\%R27 & = 3 + 2 + 2
\end{align*}
\]
\begin{verbatim}

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ZeroDimSolvePkgXmpPageEmpty25}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty25}{ZeroDimSolvePkgXmpPagePatch25}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty25}{\showpaste}
\tab{5}\spadcommand{lr2 := realSolve(lf)$pack\free{lf }\free{pack }\bound{lr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch26}
\begin{paste}{ZeroDimSolvePkgXmpPageFull26}{ZeroDimSolvePkgXmpPageEmpty26}
\pastebutton{ZeroDimSolvePkgXmpPageFull26}{\hidepaste}
\tab{5}\spadcommand{\#lr2\free{lr2 }}
\indentrel{3}\begin{verbatim}
(26) 27
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty26}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty26}{ZeroDimSolvePkgXmpPagePatch26}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty26}{\showpaste}
\tab{5}\spadcommand{\#lr2\free{lr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch27}
\begin{paste}{ZeroDimSolvePkgXmpPageFull27}{ZeroDimSolvePkgXmpPageEmpty27}
\pastebutton{ZeroDimSolvePkgXmpPageFull27}{\hidepaste}
\tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }}
\indentrel{3}\begin{verbatim}
(27) 1 3 1 1 3 1 1 3 1
[[-R40,- R40 +,- R40 +,- R40 +]]
3 3 3 3 3 3 3 3 3
Type: List List RealClosure Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPageEmpty27}
\begin{paste}{ZeroDimSolvePkgXmpPageEmpty27}{ZeroDimSolvePkgXmpPagePatch27}
\pastebutton{ZeroDimSolvePkgXmpPageEmpty27}{\showpaste}
\tab{5}\spadcommand{lpr2 := positiveSolve(lf)$pack\free{lf }\free{pack }\bound{lpr2 }}
\end{paste}\end{patch}

\begin{patch}{ZeroDimSolvePkgXmpPagePatch28}
\begin{paste}{ZeroDimSolvePkgXmpPageFull28}{ZeroDimSolvePkgXmpPageEmpty28}
\pastebutton{ZeroDimSolvePkgXmpPageFull28}{\hidepaste}
\tab{5}\spadcommand{\[approximate(r,1/10**21)::Float for r in lpr2.1\}\free{lpr2 }}
\indentrel{3}\begin{verbatim}
(28) [0.3221853546 2608559291, 0.3221853546 2608559291,
0.3221853546 2608559291, 0.3221853546 2608559291]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
The elements \(v_1, \ldots, v_n \) of a module \(M \) over a ring \(R \) are said to be \(\text{it linearly dependent over } R \) if there exist \(c_1, \ldots, c_n \) in \(R \), not all \(0 \), such that \(c_1 v_1 + \ldots c_n v_n = 0 \). If such \(c_i \)'s exist, they form what is called a \(\text{it linear dependence relation over } R \) for the \(v_i \)'s.

The package \spadtype{IntegerLinearDependence} provides functions for testing whether some elements of a module over the integers are linearly dependent over the integers, and to find the linear dependence relations, if any.

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

Consider the domain of two by two square matrices with integer entries.

\begin{verbatim}
\end{verbatim}

Now create three such matrices.
\spadpaste{m1: M := squareMatrix matrix \[
[1, 2],
[0, -1]
\]
\free(M)\bound{m1}}}

\xtc{
}\spadpaste{m2: M := squareMatrix matrix \[
[2, 3],
[1, -2]
\]
\free(M)\bound{m2}}}

\xtc{
}\spadpaste{m3: M := squareMatrix matrix \[
[3, 4],
[2, -3]
\]
\free(M)\bound{m3}}}

This tells you whether \spad{m1}, \spad{m2} and \spad{m3} are linearly dependent over the integers.

\spadpaste{linearlyDependentOverZ? vector \[m1, m2, m3\] \free{m1 m2 m3}}}

Since they are linearly dependent, you can ask for the dependence relation.

\spadpaste{c := linearDependenceOverZ vector \[m1, m2, m3\] \free{m1 m2 m3}\bound{c}}}

This means that the following linear combination should be \spad{0}.

\spadpaste{c.1 * m1 + c.2 * m2 + c.3 * m3 \free{c m1 m2 m3}}}

When a given set of elements are linearly dependent over \spad{R}, this also means that at least one of them can be rewritten as a linear combination of the others with coefficients in the quotient field of \spad{R}.

To express a given element in terms of other elements, use the operation \spadfunFrom{solveLinearlyOverQ}{IntegerLinearDependence}.

\spadpaste{solveLinearlyOverQ(vector \[m1, m3\], m2) \free{m1 m2 m3}}}

\begin{patch}{IntegerLinearDependenceXmpPagePatch1}
\begin{paste}{IntegerLinearDependenceXmpPageFull1}{IntegerLinearDependenceXmpPageEmpty1}
\pastebutton{IntegerLinearDependenceXmpPageFull1}{\hidepaste}
\tab{5}\spadcommand{M := SQMATRIX(2,\text{INT})}\bound{M }
\indentrel{3}\begin{verbatim}
(1) SquareMatrix(2,Integer)
Type: Domain
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{IntegerLinearDependenceXmpPagePatch2}
\begin{paste}{IntegerLinearDependenceXmpPageFull2}{IntegerLinearDependenceXmpPageEmpty2}
\pastebutton{IntegerLinearDependenceXmpPageFull2}{\hidepaste}
\tab{5}\spadcommand{m1: M := squareMatrix matrix \[
\begin{bmatrix} 1 & 2 \\
0 & -1 \end{bmatrix}\]}\bound{m1 }
\indentrel{3}\begin{verbatim}
(2)
\begin{bmatrix} 1 & 2 \\
0 & -1 \end{bmatrix}
Type: SquareMatrix(2,Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{IntegerLinearDependenceXmpPagePatch3}
\begin{paste}{IntegerLinearDependenceXmpPageFull3}{IntegerLinearDependenceXmpPageEmpty3}
\pastebutton{IntegerLinearDependenceXmpPageFull3}{\hidepaste}
\tab{5}\spadcommand{m2: M := squareMatrix matrix \[
\begin{bmatrix} 2 & 3 \\
1 & -2 \end{bmatrix}\]}\bound{m2 }
\indentrel{3}\begin{verbatim}
(3)
\begin{bmatrix} 2 & 3 \\
1 & -2 \end{bmatrix}
Type: SquareMatrix(2,Integer)
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{IntegerLinearDependenceXmpPageEmpty3}
\begin{paste}{IntegerLinearDependenceXmpPageEmpty3}{IntegerLinearDependenceXmpPagePatch3}
	pastebutton{IntegerLinearDependenceXmpPageEmpty3}{showpaste}
\tab{5}\spadcommand{m2: M := squareMatrix matrix [[2, 3], [1, -2]] free(M) \bound{m2}}
\end{paste}\end{patch}

\begin{patch}{IntegerLinearDependenceXmpPagePatch4}
\begin{paste}{IntegerLinearDependenceXmpPageFull4}{IntegerLinearDependenceXmpPageEmpty4}
	pastebutton{IntegerLinearDependenceXmpPageFull4}{hidepaste}
\tab{5}\spadcommand{m3: M := squareMatrix matrix [[3, 4], [2, -3]] free(M) \bound{m3}}
\indentrel{3}\begin{verbatim}
3 4
 2 - 3
Type: SquareMatrix(2,Integer)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{IntegerLinearDependenceXmpPagePatch5}
\begin{paste}{IntegerLinearDependenceXmpPageFull5}{IntegerLinearDependenceXmpPageEmpty5}
	pastebutton{IntegerLinearDependenceXmpPageFull5}{hidepaste}
\tab{5}\spadcommand{linearlyDependentOverZ vector [m1, m2, m3] free(m1 m2 m3)}
\indentrel{3}\begin{verbatim}
(5) true
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{IntegerLinearDependenceXmpPagePatch6}
\begin{paste}{IntegerLinearDependenceXmpPageFull6}{IntegerLinearDependenceXmpPageEmpty6}
	pastebutton{IntegerLinearDependenceXmpPageFull6}{hidepaste}
\tab{5}\spadcommand{c := linearDependenceOverZ vector [m1, m2, m3] free(m1 m2 m3) \bound{c}}
\indentrel{3}\begin{verbatim}
(6) [1,- 2,1]
Type: Union(Vector Integer,...)
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{spadcommand}
c := linearDependenceOverZ vector [m1, m2, m3]\end{spadcommand}

\begin{verbatim}
0 0
(7)
0 0
\end{verbatim}

\begin{spadcommand}
solveLinearlyOverQ(vector [m1, m3], m2)
\end{spadcommand}

\begin{verbatim}
1 1
(8) [,.]
2 2
\end{verbatim}

\begin{spadcommand}
solveLinearlyOverQ(vector [m1, m3], m2)
\end{spadcommand}
Chapter 4

Users Guide Pages (ug.ht)

Users Guide

This is the table of contents for the Users Guide. Click on any item below to see that section.

0. What's New in Axiom Version 2.2
Part I. Basic Features of Axiom
 1. An Overview of Axiom
 2. Using Types and Modes
 3. Using HyperDoc
 4. Input Files and Output Styles
 5. Introduction to the Axiom Interactive Language
 6. User-Defined Functions, Macros and Rules
 7. Graphics
Part II. Advanced Problem Solving and Examples
 8. Advanced Problem Solving
 9. Some Examples for Domains and Packages
Part III. Advanced Programming in Axiom
 10. Interactive Programming
 11. Packages
 12. Categories
 13. Domains
 14. Browse
 15. What's New in Axiom Version 2.0
Appendices.
 A. Axiom System Commands
 F. Programs for Axiom Images
 G. Glossary
This is the table of contents for the Users Guide. Click on any item below to see that section.

Part I. Basic Features of Axiom

Part II. Advanced Problem Solving and Examples
Part III. Advanced Programming in Axiom

Appendices.
Chapter 5

Users Guide Chapter 0 (ug00.ht)

What’s New for May 2008

No image here because the page changes every release.
⇐ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “New polynomial domains and algorithms” (ugTwoTwoPolynomialsPage) 5 on page 1474
⇒ “Enhancements to Hyperdoc...” (ugTwoTwoHyperdocPage) 5 on page 1475
⇒ “Enhancements to NAGLink” (ugTwoTwoNAGLinkPage) 5 on page 1476
⇒ “Enhancements to the Lisp system” (ugTwoTwoCCLPage) 5 on page 1476
— ug00.ht —

\begin{page}{ugWhatsNewTwoTwoPage}
{0. What’s New for May 2008}
\beginscroll
\begin{menu}
 \menudownlink{{0.2. New polynomial domains and algorithms}}{ugTwoTwoPolynomialsPage}
 \menudownlink{{0.3. Enhancements to HyperDoc and Graphics}}{ugTwoTwoHyperdocPage}
 \menudownlink{{0.4. Enhancements to NAGLink}}{ugTwoTwoNAGLinkPage}
 \menudownlink{{0.5. Enhancements to the Lisp system}}{ugTwoTwoCCLPage}
\end{menu}
\endscroll
\autobuttons
\end{page}
New polynomial domains and algorithms

Univariate polynomial factorisation over the integers has been enhanced by updates to the \spadtype{GaloisGroupFactorizer} type and friends from Frederic Lehobey (Frederic.Lehobey@lifl.fr, University of Lille I, France).

The package constructor \spadtype{PseudoRemainderSequence} provides efficient algorithms by Lionel Ducos (Lionel.Ducos@mathlabo.univ-poitiers.fr, University of Poitiers, France) for computing sub-resultants. This leads to a speed up in many places in Axiom where sub-resultants are computed (polynomial system solving, algebraic factorization, integration).

Based on this package, the domain constructor \spadtype{NewSparseUnivariatePolynomial} extends the constructor \spadtype{SparseUnivariatePolynomial}. In a similar way, the \spadtype{NewSparseMultivariatePolynomial} extends the constructor \spadtype{SparseUnivariatePolynomial}; it also provides some additional operations related to polynomial system solving by means of triangular sets.

Several domain constructors implement regular triangular sets (or regular chains). Among them \spadtype{RegularTriangularSet} and \spadtype{SquareFreeRegularTriangularSet}. They also implement an algorithm by Marc Moreno Maza (marc@nag.co.uk, NAG) for computing triangular decompositions of polynomial systems. This method is refined in the package \spadtype{LazardSetSolvingPackage} in order to produce decompositions by means of Lazard triangular sets. For the case of polynomial systems with finitely many solutions, these decompositions can also be computed by the package \spadtype{LexTriangularPackage}.

The domain constructor \spadtype{RealClosure} by Renaud Rioboo (Renaud.Rioboo@lip6.fr, University of Paris 6, France) provides the real closure of an ordered field. The implementation is based on interval arithmetic. Moreover, the design of this constructor and its related packages allows an easy use of other codings for real algebraic numbers.

Based on triangular decompositions and the \spadtype{RealClosure} constructor, the package \spadtype{ZeroDimensionalSolvePackage} provides operations for computing symbolically the real or complex
roots of polynomial systems with finitely many solutions.

Polynomial arithmetic with non-commutative variables has been improved too by a contribution of Michel Petitot (Michel.Petitot@lifl.fr, University of Lille I, France). The domain constructors \spadtype{XRecursivePolynomial} and \spadtype{XDistributedPolynomial} provide recursive and distributed representations for these polynomials. They are the non-commutative equivalents for the \spadtype{SparseMultivariatePolynomial} and \spadtype{DistributedMultivariatePoly} constructors. The constructor \spadtype{LiePolynomial} implement Lie polynomials in the Lyndon basis. The constructor \spadtype{XPBWPolynomial} manage polynomials with non-commutative variables in the \texttt{Poincar'e}-Birkhoff-Witt basis from the Lyndon basis. This allows to compute in the Lie Group associated with a free nilpotent Lie algebra by using the \spadtype{LieExponentials} domain constructor.

Enhancements to HyperDoc and Graphics

— ugo.00.ht —

\begin{page}{ugTwoTwoHyperdocPage}
\{0.3. Enhancements to HyperDoc and Graphics\}
\beginscroll

From this version of Axiom onwards, the pixmap format used to save graphics images in color and to display them in HyperDoc has been changed to the industry-standard XPM format. See \{\tt http://koala.ilog.fr/ftp/pub/xpm\}.

\endscroll
\autobuttons
\end{page}
Enhancements to NAGLink

\begin{verbatim}
A1AGG-;=;2AB;28A
A1AGG-;copy;2A;19A
A1AGG-;sort!;2A;19A
ABELGRP-;*;2A;19A
ABELMON-;zero?;SB;1A
AGG-;empty?;SB;3A
AGG-;size?;SB;6A
ALIST;keys;$L;6A
ALIST;search;Key$U;15A
\end{verbatim}
|FFP;=;2$B;24|
|FIELD;=/;3S;11|
|FIELD;inv;2S;4|
|FLAGG;sort!;2A;8|
|FLAGG;sort;M2A;6|
|FLASORT;QuickSort|
|FLASORT;partition|
|FLASORT;quickSort;M2V;1|
|FM;*;R2$;1|
|FRAC;*;3$;18|
|FRAC;*;I2$;19|
|FRAC;+;3$;16|
|FRAC;=;2$B;22|
|FRAC;cancelGcd|
|FRAC;coerce;S$;1|
|FRAC;normalize|
|FRAC;one?;S$;23|
|FRAC;recip;$U;13|
|FRAC;zero?;S$;2|
|FSAGG;brace;LA;3|
|GDMP;univariate;S$0v1;Sup;21|
|HDP;<;2$B;1|
|IARRAY1;#;$Nni;1|
|IARRAY1;elt;$IS;16|
|IARRAY1;fill!;S$;2|
|IARRAY1;map;M3$;8|
|IARRAY1;maxIndex;$I;13|
|IARRAY1;minIndex;$I;3|
|IARRAY1;new;NniS$;5|
|IARRAY1;qelt;$IS;14|
|IARRAY1;qsetelt!;$I2S;15|
|IARRAY1;setelt;$I2S;17|
|IDPAM;+;3$;4|
|IDPAM;map;M2$;7|
|IDPAM;monomial;AS$;6|
|IDPO;=;2$B;1|
|IFARRAY;#;$Nni;4|
|IFARRAY;concat!;S$;21|
|IFARRAY;elt;$IS;17|
|IFARRAY;empty;$3|
|IFARRAY;growAndFill|
|IFARRAY;growWith|
|IFARRAY;maxIndex;$I;6|
|IFARRAY;minIndex;$I;7|
|IFARRAY;new;NniS$;8|
|IFARRAY;removeDuplicates!;2$;30|
|IFARRAY;setelt;$I2S;18|
|IIARRAY2;elt;$2IR;11|
|IIARRAY2;empty?;S$;1|
|IIARRAY2;maxColIndex;$I;7|
| IIARRAY2;maxRowIndex;$I;6 |
| IIARRAY2;minColIndex;$I;5 |
| IIARRAY2;minRowIndex;$I;4 |
| IIARRAY2;ncols;$Nni;9 |
| IIARRAY2;nrows;$Nni;8 |
| IIARRAY2;qelt;$2IR;10 |
| IIARRAY2;qsetelt!;$2I2R;12 |
| ILIST;concat!;3$;25 |
| ILIST;copy;2$;20 |
| ILIST;empty;$;6 |
| ILIST;first;$S;4 |
| ILIST;member?;S$B;24 |
| ILIST;mergeSort |
| ILIST;minIndex;$I;18 |
| ILIST;removeDuplicates!;2$;26 |
| ILIST;rest;Nni;19 |
| ILIST;sort!;M2$;27 |
| ILIST;split!;I;29 |
| IMATLIN;rowEchelon;2M;3 |
| INS-;symmetricRemainder;3S;27 |
| INT;exquo;2$U;44 |
| INT;one?;$B;2 |
| INT;positiveRemainder;3$;23 |
| INT;unitNormal;$R;47 |
| INTDOM-;unitCanonical;2S;2 |
| ISTRING;<<;2$B;6 |
| KDAGG-;key?;KeySB;1 |
| KERNEL;<<;2$B;14 |
| KERNEL;=;;2$B;13 |
| KERNEL;B2Z |
| KERNEL;argument;$L;6 |
| KERNEL;operator;$SBo;5 |
| KERNEL;position;$Nni;7 |
| KERNEL;triage |
| LO;=;2$;3 |
| LO;=;2$B;4 |
| LSAGG-;<<;2AB;25 |
| LSAGG-;reduce;MA2S;16 |
| LSAGG-;select!;M2A;5 |
| MATCAT--;*;3S;29 |
| MATCAT--;*;S2Co1;32 |
| MDDFACT;reduction!0 |
| MDDFACT;reduction |
| MODRING;reduce;RMod$;6 |
| MODRING;zero?;$B;10 |
| MONOID-;one?;SB;2 |
| NNI;subtractIfCan;2$U;3 |
| NSMP;mvar;$VarSet;5 |
| OVAR;<<;2$B;10 |
| PERMGRP;inv |
PERMGRP:orbitWithSvc
PERMGRP:testIdentity
PERMGRP:times
PGCD:better
PGCD:gcd;3P;15
PGCD:gcdTermList
POLYCATQ:variables;FL;5
PR:*,3$;20
PR;addm!
PR;coerce;R$;12
PR;degree;$E;4
PR;leadingCoefficient;$R;6
PR;reductum;2$;8
PRIMARR:;#;$Nni;1
PRIMARR;fill!;S;9
PRIMARR;new;Nni$;4
PRITION;<;2$B;5
REPSQ;expt;SPiS;1
RING--;coerce;IS;1
SAE;*,3$;15
SAE;*,3$;13
SAE;--;2$;14
SAE;=;2$B;12
SAE;reduce;UP$;11
SCACHE;enterInCache;SMS;5
SET;construct;L$;19
SET;empty;$;4
SGROUP--;**;SPiS;1
SINT;zero?;$B;33
SMP;*,3$;29
SMP;*,R2$;25
SMP;+;3$;26
SMP;--;2$;23
SMP;=;2$B;28
SMP;coerce;R$;20
SMP;coerce;VarSet$;7
SMP;exquo;2$U;35
SMP;exquo;2$U;36
SMP;gcd;3$;41
SMP;gcd;3$;44
SMP;gcd;3$;48
SMP;gcd;3$;51
SMP;ground?;$B;15
SMP;leadingCoefficient;$R;73
SMP;mainVariable;$U;59
SMP;one?;$B;4
SMP;retract;$R;55
SMP;unitNormal;$R;31
SMP:variables;$L;58
SMP;zero?;$B;3
\begin{verbatim}
[STAGG--;c2]
[STAGG--;concat;3A;7]
[STAGG--;elt;AIS;5]
[STAGG--;first;ANniA;3]
[STREAM2;map;MSS;2]
[STREAM2;mapp10]
[STREAM2;mapp]
[STREAM;empty;$;33]
[STREAM;lazyEval]
[STREAM;setfirst!]
[STREAM;setrst!]
[STTAYLOR;+;3S;2]
[SUP;exquo;2$U;19]
[SUP;exquo;2$U;20]
[SUP;fmcg;$NniR2$;21]
[SUP;ground?;$B;3]
[SUP;monicDivide;2$R;28]
[URAGG--;tail;2A;16]
[ZMOD;+:3S;30]
[ZMOD;+:3S;32]
[ZMOD;:+;2$;36]
[ZMOD;+:3S;33]
\end{verbatim}
\end{scroll}
\autobuttons
\end{page}
Chapter 6

Users Guide Chapter 1
(ug01.ht)

An Overview of Axiom

Welcome to the Axiom environment for interactive computation and problem solving. Consider this chapter a brief, whirlwind tour of the
Axiom world. We introduce you to Axiom's graphics and the Axiom language. Then we give a sampling of the large variety of facilities in the Axiom system, ranging from the various kinds of numbers, to data types (like lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential equations). We conclude with the discussion of system commands and an interactive ‘undo.’

Before embarking on the tour, we need to brief those readers working interactively with Axiom on some details. Others can skip right immediately to \downlink{‘Typographic Conventions’}{ugIntroTypoPage} in Section 1.2\ignore{ugIntroTypo}.

\beginmenu
\menudownlink{1.1. Starting Up and Winding Down}{ugIntroStartPage}
\menudownlink{1.2. Typographic Conventions}{ugIntroTypoPage}
\menudownlink{1.3. The Axiom Language}{ugIntroExpressionsPage}
\menudownlink{1.4. Graphics}{ugIntroGraphicsPage}
\menudownlink{1.5. Numbers}{ugIntroNumbersPage}
\menudownlink{1.6. Data Structures}{ugIntroCollectPage}
\menudownlink{1.7. Expanding to Higher Dimensions}{ugIntroTwoDimPage}
\menudownlink{1.8. Writing Your Own Functions}{ugIntroYouPage}
\menudownlink{1.9. Polynomials}{ugIntroVariablesPage}
\menudownlink{1.10. Limits}{ugIntroCalcLimitsPage}
\menudownlink{1.11. Series}{ugIntroSeriesPage}
\menudownlink{1.12. Derivatives}{ugIntroCalcDerivPage}
\menudownlink{1.13. Integration}{ugIntroIntegratePage}
\menudownlink{1.14. Differential Equations}{ugIntroDiffEqnsPage}
\menudownlink{1.15. Solution of Equations}{ugIntroSolutionPage}
\menudownlink{1.16. System Commands}{ugIntroSysCommandsPage}
\endmenu

Starting Up and Winding Down

⇒ “notitle” (ugHyperPage) 8 on page 1707
⇒ “notitle” (ugSysCmdPage) 19 on page 2538
⇒ “notitle” (ugAvailCLEFPage) 6 on page 1487

— ug01.ht —

\begin{page}{ugIntroStartPage}{1.1. Starting Up and Winding Down}
You need to know how to start the Axiom system and how to stop it. We assume that Axiom has been correctly installed on your machine (as described in another Axiom document).

To begin using Axiom, issue the command {\bf axiom} to the operating system shell. There is a brief pause, some start-up messages, and then one or more windows appear.

If you are not running Axiom under the X Window System, there is only one window (the console). At the lower left of the screen there is a prompt that looks like

\verbatim
(1) ->
@endverbatim

When you want to enter input to Axiom, you do so on the same line after the prompt. The ‘‘1’’ in ‘‘(1)’’ is the computation step number and is incremented after you enter Axiom statements. Note, however, that a system command such as \spad{)clear all} may change the step number in other ways. We talk about step numbers more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the console window (as just described) and the Hyperdoc main menu. Hyperdoc is a multiple-window hypertext system that lets you view Axiom documentation and examples on-line, execute Axiom expressions, and generate graphics. If you are in a graphical windowing environment, it is usually started automatically when Axiom begins. If it is not running, issue \spad{)hd} to start it. We discuss the basics of Hyperdoc in \downlink{``Using Hyperdoc''}{ugHyperPage} in Chapter 3\ignore{ugHyper}.

To interrupt an Axiom computation, hold down the \texttt{\{\bf Ctrl\}\{\bf Ctrl\}} (control) key and press \texttt{\{\bf c\}}. This brings you back to the Axiom prompt.

\beginImportant
To exit from Axiom, move to the console window, type \spad{)quit} at the input prompt and press the \texttt{\{\bf Enter\}} key. You will probably be prompted with the following message: \centerline{Please enter \{\bf y\} or \{\bf yes\} if you really want to leave the \}} \centerline{interactive environment and return to the operating system} You should respond \{\bf yes\}, for example, to exit Axiom.
@endImportant

We are purposely vague in describing exactly what your screen looks
like or what messages Axiom displays. Axiom runs on a number of
different machines, operating systems and window environments, and
these differences all affect the physical look of the system. You can
also change the way that Axiom behaves via \spadgloss{system commands}
described later in this chapter and in
\downlink{"Axiom System Commands"}{ugSysCmdPage} in Appendix B
\ignore{ugSysCmd}. System commands are special
commands, like \spadcmd{\()set\)}, that begin with a closing parenthesis
and are used to change your environment. For example, you can set a
system variable so that you are not prompted for confirmation when you
want to leave Axiom.

\beginmenu
 \menu{\ref{1.1.1. Clef{}}}{ugAvailCLEFPage}
\endmenu
\endscroll
\autobuttons
\endpage

Clef

If you are using Axiom under the X Window System, the Clef command line editor is probably available and installed. With this editor you can recall previous lines with the up and down arrow keys. To move forward and backward on a line, use the right and left arrows. You can use the Insert key to toggle insert mode on or off. When you are in insert mode, the cursor appears as a large block and if you type anything, the characters are inserted into the line without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and if you press the End key, the cursor moves to the end of the line. Pressing Ctrl-End deletes all the text from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you enter a few letters and then press the Tab key, Clef tries to use those letters as the prefix of an Axiom operation name. If a name appears and it is not what you want, press Tab again to see another name.

You are ready to begin your journey into the world of Axiom. Proceed to the first step.
\begin{scroll}{ugIntroIntroPage}{3. Typographic Conventions}

In this book we have followed these typographical conventions:
\begin{itemize}
\item Categories, domains and packages are displayed in a sans-serif typeface:
\begin{itemize}
\item \texttt{Ring}, \texttt{Integer}, \texttt{DiophantineSolutionPackage}.
\end{itemize}
\item Prefix operators, infix operators, and punctuation symbols in the Axiom language are displayed in the text like this:
\begin{itemize}
\item \texttt{+}, \texttt{\$}, \texttt{+->}.
\end{itemize}
\item Axiom expressions or expression fragments are displayed in a monospace typeface:
\begin{itemize}
\item \texttt{inc(x) == x + 1}.
\end{itemize}
\item For clarity of presentation, \TeX{} is often used to format expressions:
\begin{itemize}
\item $g(x) = x^2 + 1$.
\end{itemize}
\end{itemize}
\end{scroll}

1.3. The Axiom Language

The Axiom language is a rich language for performing interactive computations and for building components of the Axiom library. Here we present only some basic aspects of the language that you need to know for the rest of this chapter. Our discussion here is intentionally informal, with details unveiled on an 'as needed'
Arithmetic Expressions

For arithmetic expressions, use the \spadop{+} and \spadop{-} \spadgloss{operators} as in mathematics. Use \spadop{*} for multiplication, and \spadop{**} for exponentiation. To create a fraction, use \spadop{/}. When an expression contains several operators, those of highest \spadgloss{precedence} are evaluated first. For arithmetic operators, \spadop{**} has highest precedence, \spadop{*} and \spadop{/} have the next highest precedence, and \spadop{+} and \spadop{-} have the lowest precedence.

\xtc{Axiom puts implicit parentheses around operations of higher precedence, and groups those of equal precedence from left to right.}
\spadpaste{1 + 2 - 3 / 4 * 3 ** 2 - 1}
\xtc{The above expression is equivalent to this.}
\spadpaste{1 + 2 - 3 / 4 * 3 ** 2 - 1}
If an expression contains subexpressions enclosed in parentheses, the parenthesized subexpressions are evaluated first (from left to right, from inside out).

```
(1 + 2) - ((3 / 4) * (3 ** 2)) - 1
```

```
1 + 2 - 3 / (4 * 3 ** (2 - 1))
```

```
19

Type: Fraction Integer
```

```
(1) - 4
```

```
((1 + 2) - ((3 / 4) * (3 ** 2))) - 1
```

```
1 + 2 - 3 / (4 * 3 ** (2 - 1))
```

```
19

Type: Fraction Integer
```

```
(2) - 4
```

```
((1 + 2) - ((3 / 4) * (3 ** 2))) - 1
```

```
1 + 2 - 3 / (4 * 3 ** (2 - 1))
```

```
19

Type: Fraction Integer
```
\begin{verbatim}
1 + 2 - 3 / (4 * 3 ** (2 - 1))
\end{verbatim}
\indentrel{-3}
Type: Fraction Integer

\begin{verbatim}
10 ** 10
\end{verbatim}
This is ten to the tenth power.

\begin{verbatim}
\% - 1
\end{verbatim}
This is the last result minus one.
This is the last result.
}
\spadpaste{%(-1) \free{prev1}\bound{prev2}}
\xtc{
This is the result from step number 1.
}{
\spadpaste{\%1 \free{prev2}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntroPreviousPagePatch1}
\begin{paste}{ugIntroPreviousPageFull1}{ugIntroPreviousPageEmpty1}
\pastebutton{ugIntroPreviousPageFull1}{\hidepaste}
\tab{5}\spadcommand{10 ** 10\bound{prev }}
\indentrel{3}\begin{verbatim}
(1) 10000000000
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntroPreviousPageEmpty1}
\begin{paste}{ugIntroPreviousPageEmpty1}{ugIntroPreviousPagePatch1}
\pastebutton{ugIntroPreviousPageEmpty1}{\showpaste}
\tab{5}\spadcommand{10 ** 10\bound{prev }}
\end{paste}
\end{patch}

\begin{patch}{ugIntroPreviousPagePatch2}
\begin{paste}{ugIntroPreviousPageFull2}{ugIntroPreviousPageEmpty2}
\pastebutton{ugIntroPreviousPageFull2}{\hidepaste}
\tab{5}\spadcommand{% - 1\free{prev}\bound{prev1}}
\indentrel{3}\begin{verbatim}
(2) 9999999999
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntroPreviousPageEmpty2}
\begin{paste}{ugIntroPreviousPageEmpty2}{ugIntroPreviousPagePatch2}
\pastebutton{ugIntroPreviousPageEmpty2}{\showpaste}
\tab{5}\spadcommand{% - 1\free{prev}\bound{prev1}}
\end{paste}
\end{patch}

\begin{patch}{ugIntroPreviousPagePatch3}
\begin{paste}{ugIntroPreviousPageFull3}{ugIntroPreviousPageEmpty3}
\pastebutton{ugIntroPreviousPageFull3}{\hidepaste}
\tab{5}\spadcommand{%(-1) \free{prev1}\bound{prev2}}
\end{paste}
\end{patch}
Everything in Axiom has a type. The type determines what operations you can perform on an object and how the object can be used.

An entire chapter of this book (in Chapter 2) is dedicated to the interactive use of types. Several of the final chapters discuss how types are built and how they are organized in the Axiom library.
Positive integers are given type \texttt{PositiveInteger}.

\begin{verbatim}
(1) 8
Type: PositiveInteger
\end{verbatim}

Negative ones are given type \texttt{Integer}.
This fine distinction is helpful to the Axiom interpreter.

\begin{verbatim}
(2) -8
\end{verbatim}

Here a positive integer exponent gives a polynomial result.

\begin{verbatim}
(3) x**8
\end{verbatim}

Here a negative integer exponent produces a fraction.

\begin{verbatim}
(4) x**(-8)
\end{verbatim}
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroTypesPageEmpty2}
\begin{paste}{ugIntroTypesPageEmpty2}{ugIntroTypesPagePatch2}
\pastebutton{ugIntroTypesPageEmpty2}{\showpaste}
\tab{5}\spadcommand{-8}
\end{paste}\end{patch}

\begin{patch}{ugIntroTypesPagePatch3}
\begin{paste}{ugIntroTypesPageFull3}{ugIntroTypesPageEmpty3}
\pastebutton{ugIntroTypesPageFull3}{\hidepaste}
\tab{5}\spadcommand{x**8}
\indentrel{3}\begin{verbatim}
8
(3) x
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroTypesPageEmpty3}
\begin{paste}{ugIntroTypesPageEmpty3}{ugIntroTypesPagePatch3}
\pastebutton{ugIntroTypesPageEmpty3}{\showpaste}
\tab{5}\spadcommand{x**8}
\end{paste}\end{patch}

\begin{patch}{ugIntroTypesPagePatch4}
\begin{paste}{ugIntroTypesPageFull4}{ugIntroTypesPageEmpty4}
\pastebutton{ugIntroTypesPageFull4}{\hidepaste}
\tab{5}\spadcommand{x**(-8)}
\indentrel{3}\begin{verbatim}
1
(4) x
Type: Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the "variables" in polynomials and power series.

We use the three symbols \axiom{x}, \axiom{y}, and \axiom{z} in entering this polynomial.

\spadpaste{(x - y*z)**2}

A symbol has a name beginning with an uppercase or lowercase alphabetic character, \axiom{\%}, or \axiom{!}. Successive characters (if any) can be any of the above, digits, or \axiom{?}. Case is distinguished: the symbol \axiom{points} is different from the symbol \axiom{Points}.

A symbol can also be used in Axiom as a variable. A variable refers to a value. To assign a value to a variable, the operator \axiom{:=} is used. Axiom actually has two forms of assignment: immediate assignment, as discussed here, and delayed assignment. See Immediate and Delayed Assignments in Section 5.1 for details.

A variable initially has no restrictions on the kinds of values to which it can refer.

\spadpaste{x := 4}

\spadpaste{x := z + 3/5}

To restrict the types of objects that can be assigned to a variable,
use a \spadgloss{declaration}

\spadpaste{y : Integer \boundary{y}}

\xtc{
After a variable is declared to be of some type, only values
of that type can be assigned to that variable.
}
\spadpaste{y := 89 \boundary{y1} \free{y}}

\xtc{
The declaration for \axiom{y} forces values assigned to \axiom{y} to
be converted to integer values.
}
\spadpaste{y := \sin \\pi}

\xtc{
If no such conversion is possible, Axiom refuses to assign a value to \axiom{y}.
}
\spadpaste{y := 2/3}

\xtc{
A type declaration can also be given together with an assignment. The declaration can assist Axiom in choosing the correct
operations to apply.
}
\spadpaste{f : Float := 2/3}

Any number of expressions can be given on input line. Just separate them by semicolons. Only the result of evaluating the last expression is displayed.

\xtc{
These two expressions have the same effect as the previous single expression.
}
\spadpaste{f : Float; f := 2/3 \boundary{f}}

The type of a symbol is either \axiomType{Symbol} or \axiomType{Variable({\it name})} where \{\it name\} is the name of the symbol.

\xtc{
By default, the interpreter gives this symbol the type \axiomType{Variable(q)}.
}
\spadpaste{q}
When multiple symbols are involved, \axiomType{Symbol} is used.

{\spadpaste{[q, r]}}

What happens when you try to use a symbol that is the name of a variable?

{\spadpaste{f \free{fff}}}

Use a single quote (\axiomSyntax{'}) before the name to get the symbol.

{\spadpaste{'f}}

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Experience will teach you when you are most likely going to need to use a quote. We try to point out the location of such trouble spots.

{(x - y*z)**2}

\begin{verbatim}
2 2 2
(1) y z - 2x y z + x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
2
(2) 2
\end{verbatim}

\begin{verbatim}
2
(3) 2
\end{verbatim}

x := 4
\begin{verbatim}
(2) 4
Type: PositiveInteger
\end{verbatim}
(5) 89

\begin{verbatim}
(6) 0
\end{verbatim}

(6) 0

\begin{verbatim}
2
\end{verbatim}

(7) 0.6666666666 6666666667
\begin{verbatim}
(8) 0.6666666667
\end{verbatim}

\begin{verbatim}
(9) q
\end{verbatim}

\begin{verbatim}
(10) [q, r]
\end{verbatim}
Conversion

⇒ “notitle” (ugTypesConvertPage) 7 on page 1671
Objects of one type can usually be "converted" to objects of several other types. To use the `::` infix operator. Conversion is discussed in detail in Section 2.7. For example, to display an object, it is necessary to convert the object to type `OutputForm`.

This produces a polynomial with rational number coefficients.

Create a quotient of polynomials with integer coefficients by using `::`.

Some conversions can be performed automatically when Axiom tries to evaluate your input. Others conversions must be explicitly requested.
Calling Functions

— ug01.ht —

As we saw earlier, when you want to add or subtract two values, you place the arithmetic operator $\spadop{+}$ or $\spadop{-}$ between the two $\spadglossSee{arguments}{argument}$ denoting the values. To use most other Axiom operations, however, you use another syntax: write the name of the operation first, then an open parenthesis, then each of the arguments separated by commas, and, finally, a closing parenthesis. If the operation takes only one argument and the argument is a number or a symbol, you can omit the parentheses.

This calls the operation \axiomFun{factor} with the single integer argument \axiom{120}.

This is a call to \axiomFun{divide} with the two integer arguments
An operation that returns a \spadtype{Boolean} value (that is, \spad{true} or \spad{false}) frequently has a name suffixed with a question mark (``?''). For example, the \spadfun{even?} operation returns \spad{true} if its integer argument is an even number, \spad{false} otherwise.

An operation that can be destructive on one or more arguments usually has a name ending in an exclamation point (``!''). This actually means that it is \{it allowed\} to update its arguments but it is not \{it required\} to do so. For example, the underlying representation of a collection type may not allow the very last element to be removed and so an empty object may be returned instead. Therefore, it is important that you use the object returned by the operation and not rely on a physical change having occurred within the object. Usually, destructive operations are provided for efficiency reasons.
\begin{verbatim}
(2) [quotient= 17, remainder= 6]
 Type: Record(quotient: Integer, remainder: Integer)
\end{verbatim}

\begin{verbatim}
(3) 3.4 + 5.6 \text{i} + 2.9 \text{j} + 0.1 \text{k}
 Type: Quaternion Float
\end{verbatim}

\begin{verbatim}
(4) 3628800
 Type: PositiveInteger
\end{verbatim}
Some Predefined Macros

⇒ “notitle” (ugUserMacrosPage) 10 on page 1827
— ug01.ht —

Axiom provides several \spadglossSee{macros}{macro} for your convenience.\footnote{See \downlink{``Macros''}{ugUserMacrosPage} in Section 6.2\ignore{ugUserMacros} for a discussion on how to write your own macros.} Macros are names (or forms) that expand to larger expressions for commonly used values.

\begin{tabular}{ll}
\spadgloss{\%i} & The square root of \(-1\). \\
\spadgloss{\%e} & The base of the natural logarithm. \\
\spadgloss{\%pi} & \(\pi\). \\
\spadgloss{\%infinity} & \(\infty\). \\
\spadgloss{\%plusInfinity} & \(+\infty\). \\
\spadgloss{\%minusInfinity} & \(-\infty\).
\end{tabular}

%To display all the macros (along with anything you have %defined in the workspace), issue the system command \spadsys{display all}.

\end{page}
Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are too long to fit on one line. Axiom does not care how long your lines are, so you can let them continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together. To get this glue, put an underscore (_) at the end of each line you wish to continue.

\begin{verbatim}
 2_
 +_
 3
\end{verbatim}
is the same as if you had entered

\begin{verbatim}
 2+3
\end{verbatim}

If you are putting your Axiom statements in an input file (see \downlink{``Input Files''}{ugInOutInPage} in Section 4.1\ignore{ugInOutIn}), you can use indentation to indicate the structure of your program. (see \downlink{``Blocks''}{ugLangBlocksPage} in Section 5.2\ignore{ugLangBlocks}).
Comments

\begin{page}{ugIntroCommentsPage}{1.3.9. Comments}
\beginscroll
Comment statements begin with two consecutive hyphens or two consecutive plus signs and continue until the end of the line.

\xtc{
The comment beginning with \tt{--} is ignored by Axiom.
}\{
\spadpaste{2 + 3 -- this is rather simple, no?}
\}

There is no way to write long multi-line comments other than starting each line with \spad{--} or \spad{++}.
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntroCommentsPagePatch1}
\begin{paste}{ugIntroCommentsPageFull1}{ugIntroCommentsPageEmpty1}
\pastebutton{ugIntroCommentsPageFull1}{\hidepaste}
\indentrel{5}\spadcommand{2 + 3 -- this is rather simple, no?}
\indentrel{-3}\begin{verbatim}
(1) 5
Type: PositiveInteger
\end{verbatim}
\end{patch}

\begin{patch}{ugIntroCommentsPageEmpty1}
\begin{paste}{ugIntroCommentsPageEmpty1}{ugIntroCommentsPagePatch1}
\pastebutton{ugIntroCommentsPageEmpty1}{\showpaste}
\indentrel{5}\spadcommand{2 + 3 -- this is rather simple, no?}
\end{paste}\end{patch}

Graphics

⇒ \textit{“notitle” (ugProblemNumericPage) 12 on page 2079}
Axiom has a two- and three-dimensional drawing and rendering package that allows you to draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom computations. The graphics interface is capable of plotting functions of one or more variables and plotting parametric surfaces. Once the graphics figure appears in a window, move your mouse to the window and click. A control panel appears immediately and allows you to interactively transform the object.

This is an example of Axiom's two-dimensional plotting. From the 2D Control Panel you can rescale the plot, turn axes and units on and off and save the image, among other things. This PostScript image was produced by clicking on the 2D Control Panel button.

This is an example of Axiom's three-dimensional plotting. It is a monochrome graph of the complex arctangent function. The image displayed was rotated and had the 'shade' and 'outline' display options set from the 3D Control Panel. The PostScript output was produced by clicking on the 3D Control Panel button and then clicking on the PostScript button. See "Numeric Functions" for more details and examples of Axiom's numeric and graphics capabilities.

An exhibit of is given in the center section of this book. For a description of the commands and programs that produced these figures, see
PostScript output is available so that Axiom images can be printed. See Chapter 7 for more examples and details about using Axiom's graphics facilities.
Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are represented and what their properties are. Here are a sampling of some of these kinds of numbers and some things you can do with them.

Integer arithmetic is always exact.

\begin{spadpaste}
11**13 * 13**11 * 17**7 - 19**5 * 23**3
\end{spadpaste}

Integers can be represented in factored form.

Factor

\begin{spadpaste}
643238070748569023720594412551704344145570763243
\end{spadpaste}

Results stay factored when you do arithmetic. Note that the 12 is automatically factored for you.

\begin{spadpaste}
11 * 12
\end{spadpaste}

Integers can also be displayed to bases other than 10. This is an integer in base 11.

\begin{spadpaste}
radix(25937424601, 11)
\end{spadpaste}

Roman numerals are also available for those special occasions.

\begin{spadpaste}
roman(1992)
\end{spadpaste}
Integers can be represented in factored form.
{
\spadpaste{factor 643238070748569023720594412551704344145570763243
\bound{ex1}}
}
\xtc{
Results stay factored when you do arithmetic.
Note that the \axiom{12} is automatically factored for you.
}{
\spadpaste{\% * 12 \free{ex1}}
}
\xtc{
Integers can also be displayed to bases other than 10.
This is an integer in base 11.
}{
\spadpaste{radix(25937424601,11)}
}
\xtc{
Roman numerals are also available for those special occasions.
}{
\spadpaste{roman(1992)}
}
\xtc{
Rational number arithmetic is also exact.
}{
\spadpaste{r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9
\bound{r}}
}
\xtc{
To factor fractions, you have to
map \axiomFun{factor} onto the numerator and denominator.
}{
\spadpaste{map(factor,r) \free{r}}
}
\xtc{
Type \spadtype{SingleInteger} refers to machine word-length
integers.
In English, this expression means ‘‘\axiom{11} as a small
integer’’.
}{
\spadpaste{110\@SingleInteger}
}
\xtc{
Machine double-precision floating-point numbers are also
available for numeric and graphical
applications.
}{
\spadpaste{123.210\@DoubleFloat}
The normal floating-point type in Axiom, \spadtype{Float}, is a software implementation of floating-point numbers in which the exponent and the mantissa may have any number of digits. See \downlink{'Float'}{FloatXmpPage} and \downlink{'DoubleFloat'}{DoubleFloatXmpPage} for additional information on floating-point types.) The types \spadtype{Complex(Float)} and \spadtype{Complex(DoubleFloat)} are the corresponding software implementations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The \axiomSyntax{::} is used here to change from one kind of object (here, a rational number) to another (a floating-point number).

\spadpaste{r :: Float \free{r}}

Use \spadfunFrom{digits}{Float} to change the number of digits in the representation. This operation returns the previous value so you can reset it later.

\spadpaste{digits(22) \bound{fewerdigits}}

To \axiom{22} digits of precision, the number \texttt{exp(\%pi * sqrt 163.0)} appears to be an integer.

\spadpaste{exp(\%pi * sqrt 163.0) \free{fewerdigits}}

Increase the precision to forty digits and try again.

\spadpaste{digits(40); exp(\%pi * sqrt 163.0) \free{moredigits}}

Here are complex numbers with rational numbers as real and imaginary parts.

\spadpaste{(2/3 + \%i)**3 \bound{gaussint}}

The standard operations on complex numbers are available.

\spadpaste{conjugate \% \free{gaussint}}
You can factor complex integers.
\spadpaste{factor(89 - 23 * __('i'))}

Complex numbers with floating point parts are also available.
\spadpaste{exp(__('pi/4.0') * __('i'))}

Every rational number has an exact representation as a repeating decimal expansion (see \downlink{'DecimalExpansion'}{DecimalExpansionXmpPage}).
\spadpaste{decimal(1/352)}

A rational number can also be expressed as a continued fraction (see \downlink{'ContinuedFraction'}{ContinuedFractionXmpPage}).
\spadpaste{continuedFraction(6543/210)}

Also, partial fractions can be used and can be displayed in a compact format or expanded format (see \downlink{'PartialFraction'}{PartialFractionXmpPage}).
\spadpaste{padicFraction(__('') \free{partfrac}}

Like integers, bases (radices) other than ten can be used for rational numbers (see \downlink{'RadixExpansion'}{RadixExpansionXmpPage}).
Here we use base eight.
\spadpaste{radix(4/7, 8) \bound{rad}}

Of course, there are complex versions of these as well.
Axiom decides to make the result a complex rational number.
}\{
\spadpaste{\% + 2/3*\%i\free{rad}}
\}
\xtc{You can also use Axiom to manipulate fractional powers.}
}\{
\spadpaste{(5 + sqrt 63 + sqrt 847)**(1/3)}
\}
\xtc{You can also compute with integers modulo a prime.}
}\{
\spadpaste{x : PrimeField 7 := 5 \bound{x}}
\}
\xtc{Arithmetic is then done modulo \mathOrSpad{7}.}
}\{
\spadpaste{x**3 \free{x}}
\}
\xtc{Since \mathOrSpad{7} is prime, you can invert nonzero values.}
}\{
\spadpaste{1/x \free{x}}
\}
\xtc{You can also compute modulo an integer that is not a prime.}
}\{
\spadpaste{y : IntegerMod 6 := 5 \bound{y}}
\}
\xtc{All of the usual arithmetic operations are available.}
}\{
\spadpaste{y**3 \free{y}}
\}
\xtc{Inversion is not available if the modulus is not a prime number. Modular arithmetic and prime fields are discussed in \downlink{``Modular Arithmetic and Prime Fields''}{ugxProblemFinitePrimePage} in Section 8.11.1\ignore{ugxProblemFinitePrime}.}
}\{
\spadpaste{1/y \free{y}}
\}
\xtc{This defines \axiom{a} to be an algebraic number, that is, a root of a polynomial equation.}
}\{
\spadpaste{a := rootOf(a**5 + a**3 + a**2 + 3,a) \bound{a}}
}
 Computations with \axiom{a} are reduced according to the polynomial equation.
\spadpaste{(a + 1)**10} \free{a}

Define \axiom{b} to be an algebraic number involving \axiom{a}.
\spadpaste{b := rootOf(b**4 + a, b)} \bound{b} \free{a}

Do some arithmetic.
\spadpaste{2/(b - 1}} \free{b} \bound{check}

To expand and simplify this, call \axiomFun{ratDenom} to rationalize the denominator.
\spadpaste{ratDenom(\%) \free{check}} \bound{check1}

If we do this, we should get \axiom{b}.
\spadpaste{2/\%+1 \free{check1}} \bound{check2}

But we need to rationalize the denominator again.
\spadpaste{ratDenom(\%)} \free{check2}

Types \spadtype{Quaternion} and \spadtype{Octonion} are also available. Multiplication of quaternions is non-commutative, as expected.
\spadpaste{q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)}

\(1\) 25387751112538918594666224484237298
\spad{11^{13} \times 13^{11} \times 17^{7} - 19^{5} \times 23^{3}}

\spad{factor 643238070748569023720594412551704344145570763243}

\begin{verbatim}
13 11 7 5 3 2
(2) 11 13 17 19 23 29
\end{verbatim}

\spad{factor 643238070748569023720594412551704344145570763243}

\begin{verbatim}
2 13 11 7 5 3 2
(3) 2 3 11 13 17 19 23 29
\end{verbatim}

\spad{radix(25937424601,11)}

(4) 10000000000
Type: RadixExpansion 11

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPageEmpty4}
\begin{paste}{ugIntroNumbersPageEmpty4}{ugIntroNumbersPagePatch4}
\pastebutton{ugIntroNumbersPageEmpty4}{\showpaste}
\tab{5}\spadcommand{radix(25937424601,11)}
\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch5}
\begin{paste}{ugIntroNumbersPageFull5}{ugIntroNumbersPageEmpty5}
\pastebutton{ugIntroNumbersPageFull5}{\hidepaste}
\tab{5}\spadcommand{roman(1992)}
\indentrel{3}\begin{verbatim}
(5) MCMXCII
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPageEmpty5}
\begin{paste}{ugIntroNumbersPageEmpty5}{ugIntroNumbersPagePatch5}
\pastebutton{ugIntroNumbersPageEmpty5}{\showpaste}
\tab{5}\spadcommand{roman(1992)}
\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch6}
\begin{paste}{ugIntroNumbersPageFull6}{ugIntroNumbersPageEmpty6}
\pastebutton{ugIntroNumbersPageFull6}{\hidepaste}
\tab{5}\spadcommand{r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9}\free{r}
\indentrel{3}\begin{verbatim}
(6) 55739
2520
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPageEmpty6}
\begin{paste}{ugIntroNumbersPageEmpty6}{ugIntroNumbersPagePatch6}
\pastebutton{ugIntroNumbersPageEmpty6}{\showpaste}
\tab{5}\spadcommand{r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9}\free{r}
\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch7}
\begin{paste}{ugIntroNumbersPageFull7}{ugIntroNumbersPageEmpty7}
\pastebutton{ugIntroNumbersPageFull7}{\hidepaste}
\tab{5}\spadcommand{map(factor,r)}\free{r}
\indentrel{3}\begin{verbatim}
139 401
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(7)
\verbatiminput{ugIntroNumbersPagePatch7}
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugIntroNumbersPagePatch8}
\begin{paste}{ugIntroNumbersPageFull8}{ugIntroNumbersPageEmpty8}
\pastebutton{ugIntroNumbersPageFull8}{\hidepaste}
\tab{5}\spadcommand{map(factor,r)\free{r}}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugIntroNumbersPagePatch9}
\begin{paste}{ugIntroNumbersPageFull9}{ugIntroNumbersPageEmpty9}
\pastebutton{ugIntroNumbersPageFull9}{\hidepaste}
\tab{5}\spadcommand{123.21@DoubleFloat}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugIntroNumbersPagePatch10}
\begin{paste}{ugIntroNumbersPageFull10}{ugIntroNumbersPageEmpty10}
\pastebutton{ugIntroNumbersPageFull10}{\hidepaste}
\tab{5}\spadcommand{r :: Float\free{r}}
\indentrel{-3}
\end{paste}
\end{patch}

3 2
2 3 5 7
Type: Fraction Factored Integer

\begin{verbatim}
\verbatiminput{ugIntroNumbersPagePatch8}
\end{verbatim}

\indentrel{-3}
\end{paste}
\end{patch}

\begin{verbatim}
\verbatiminput{ugIntroNumbersPagePatch9}
\end{verbatim}

\indentrel{-3}
\end{paste}
\end{patch}

\begin{verbatim}
\verbatiminput{ugIntroNumbersPagePatch10}
\end{verbatim}

\indentrel{-3}
\end{paste}
\end{patch}
(10) 22.1186507936 50793651
Type: Float

(11) 20
Type: PositiveInteger

(12) 26253741 2640768744.0
Type: Float

(13) 26253741 2640768743.9999999999 9925007259 76
Type: Float
\begin{verbatim}
46 1
(14) - + \%i
27 3
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch15}
\begin{patch}{ugIntroNumbersPageFull15}{ugIntroNumbersPageEmpty15}
\pastebutton{ugIntroNumbersPageFull15}{\hidepaste}
\indentrel{3}\spadcommand{conjugate \%ree{gaussint}}
\indentrel{3}
\begin{verbatim}
46 1
(15) - - \%i
27 3
Type: Complex Fraction Integer
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch16}
\begin{patch}{ugIntroNumbersPageFull16}{ugIntroNumbersPageEmpty16}
\pastebutton{ugIntroNumbersPageFull16}{\hidepaste}
\indentrel{3}\spadcommand{factor(89 - 23 * \%i)}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{patch}\end{patch}
\begin{verbatim}
(16) - (1 + %i)(2 + %i)(3 + 2%i)
Type: Factored Complex Integer
\end{verbatim}

\begin{verbatim}
(17) 0.7071067811 8654752440 0844362104 8490392849
+ 0.7071067811 8654752440 0844362104 8490392848 %i
Type: Complex Float
\end{verbatim}

\begin{verbatim}
(18) 0.0028409
Type: DecimalExpansion
\end{verbatim}
\begin{verbatim}
1 1 1 1
(19) 31 + + + +
6 2 1 3
\end{verbatim}
\indent
Type: Continued\hspace{2pt}Fraction\hspace{2pt}Integer

\begin{verbatim}
159 23 12 1
(20) - - +
8 4 2 7
2 3 5
\end{verbatim}
\indent
Type: Partial\hspace{2pt}Fraction\hspace{2pt}Integer

\begin{verbatim}
1 1 1 1 1 1 2 1 2 2 2 1
(21) + + + + + - - - - -
2 4 5 6 7 8 2 3 4 5 2 7
2 2 2 2 2 3 3 3 5
\end{verbatim}
\indent
Type: Partial\hspace{2pt}Fraction\hspace{2pt}Integer
\begin{verbatim}
(22) 0.4
Type: RadixExpansion 8
\end{verbatim}

\begin{verbatim}
(23) + %i
7 3
Type: Complex Fraction Integer
\end{verbatim}

\begin{verbatim}
(24) 14\7 + 5
Type: AlgebraicNumber
\end{verbatim}
\texttt{(5 + \sqrt{63} + \sqrt{847})^{(1/3)}}

\texttt{x : PrimeField 7 := 5}\texttt{\;bound\{x \}}

\begin{verbatim}
(25) 5
Type: PrimeField 7
\end{verbatim}

\texttt{x^3}\texttt{\;free\{x \}}

\begin{verbatim}
(26) 6
Type: PrimeField 7
\end{verbatim}

\texttt{1/x}\texttt{\;free\{x \}}

\begin{verbatim}
(27) 3
Type: PrimeField 7
\end{verbatim}
\begin{patch}{ugIntroNumbersPageEmpty27}
\begin{paste}{ugIntroNumbersPageEmpty27}{ugIntroNumbersPagePatch27}
\tab{5}\spadcommand{1/x\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch28}
\begin{paste}{ugIntroNumbersPageFull28}{ugIntroNumbersPageEmpty28}
\tab{5}\spadcommand{y : IntegerMod 6 := 5\bound{y}}
\indentrel{3}\begin{verbatim}
(28) 5
Type: IntegerMod 6
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPageEmpty28}
\begin{paste}{ugIntroNumbersPageEmpty28}{ugIntroNumbersPagePatch28}
\tab{5}\spadcommand{y**3\free{y}}
\indentrel{3}\begin{verbatim}
(29) 5
Type: IntegerMod 6
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch29}
\begin{paste}{ugIntroNumbersPageFull29}{ugIntroNumbersPageEmpty29}
\tab{5}\spadcommand{1/y\free{y}}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPageEmpty29}
\begin{paste}{ugIntroNumbersPageEmpty29}{ugIntroNumbersPagePatch29}
\tab{5}\spadcommand{1/y\free{y}}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroNumbersPagePatch30}
\begin{paste}{ugIntroNumbersPageFull30}{ugIntroNumbersPageEmpty30}
\tab{5}\spadcommand{1/y\free{y}}
\indentrel{-3}\end{paste}\end{patch}
\spadcommand{a := rootOf(a**5 + a**3 + a**2 + 3,a)}

\begin{verbatim}
(30) a
Type: Expression Integer
\end{verbatim}

\spadcommand{(a + 1)**10}

\begin{verbatim}
4 3 2
(31) - 85a - 264a - 378a - 458a - 287
Type: Expression Integer
\end{verbatim}

\spadcommand{b := rootOf(b**4 + a,b)}

\begin{verbatim}
(32) b
Type: Expression Integer
\end{verbatim}
\begin{patch}{ugIntroNumbersPagePatch34}
\begin{paste}{ugIntroNumbersPageFull34}{ugIntroNumbersPageEmpty34}
\pastebutton{ugIntroNumbersPageFull34}{\hidepaste}
\tab{5}\spadcommand{2/(b - 1)}\free{b }\bound{check}
\indentrel{3}\begin{verbatim}
2
(33)
\indentrel{3}
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugIntroNumbersPageEmpty34}
\begin{paste}{ugIntroNumbersPageEmpty34}{ugIntroNumbersPagePatch34}
\pastebutton{ugIntroNumbersPageEmpty34}{\showpaste}
\tab{5}\spadcommand{2/(b - 1)}\free{b }\bound{check}
\end{patch}
\begin{patch}{ugIntroNumbersPagePatch35}
\begin{paste}{ugIntroNumbersPageFull35}{ugIntroNumbersPageEmpty35}
\pastebutton{ugIntroNumbersPageFull35}{\hidepaste}
\tab{5}\spadcommand{ratDenom(\%)}\free{check}\bound{check1}
\indentrel{3}\begin{verbatim}
(34)
4 3 2 3 4 3 2 2
(a - a + 2a - a + 1)b + (a - a + 2a - a + 1)b
+ 4 3 2
4 3 2
(a - a + 2a - a + 1)b + a - a + 2a - a + 1
\indentrel{-3}
\end{verbatim}
\end{patch}
\begin{patch}{ugIntroNumbersPageEmpty35}
\begin{paste}{ugIntroNumbersPageEmpty35}{ugIntroNumbersPagePatch35}
\pastebutton{ugIntroNumbersPageEmpty35}{\showpaste}
\tab{5}\spadcommand{ratDenom(\%)}\free{check}\bound{check1}
\end{patch}
\begin{patch}{ugIntroNumbersPagePatch36}
\begin{paste}{ugIntroNumbersPageFull36}{ugIntroNumbersPageEmpty36}
\pastebutton{ugIntroNumbersPageFull36}{\hidepaste}
\tab{5}\spadcommand{2/\%+1}\free{check}\bound{check2}
\indentrel{3}\begin{verbatim}
(35)
4 3 2 3
(a - a + 2a - a + 1)b
+ 4 3 2 2
\end{verbatim}
\end{patch}
\begin{verbatim}
(a - a + 2a - a + 1)b \\
+ 4 3 2 4 3 2
(a - a + 2a - a + 1)b + a - a + 2a - a + 3 \\
/ \\
4 3 2 3
(a - a + 2a - a + 1)b \\
+ 4 3 2 2
(a - a + 2a - a + 1)b \\
+ 4 3 2 4 3 2
(a - a + 2a - a + 1)b + a - a + 2a - a + 1
\end{verbatim}

Type: Expression Integer
\end{verbatim}

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}
Axiom has a large variety of data structures available. Many data structures are particularly useful for interactive computation and others are useful for building applications. The data structures of Axiom are organized into \spadglossSee{category hierarchies}{hierarchy} as shown on the inside back cover.

A \spadgloss{list} is the most commonly used data structure in Axiom for holding objects all of the same type. Lists are discussed in...
The name \it list is short for `linked-list of nodes.' Each node consists of a value (\spadfun{first}{List}) and a link (\spadfun{rest}{List}) that \spadglossSee{points}{pointer} to the next node, or to a distinguished value denoting the empty list.

To get to, say, the third element, Axiom starts at the front of the list, then traverses across two links to the third node.

\spadpaste{u := [1,-7,11] \free{u}}

This is the value at the third node. Alternatively, you can say \axiom{u.3}.

Many operations are defined on lists, such as: \axiomFun{empty?}, to test that a list has no elements; \axiomFun{cons}\axiom{(x,l)}, to create a new list with \axiomFun{first} element \axiom{x} and \axiomFun{rest} \axiom{l}; \axiomFun{reverse}, to create a new list with elements in reverse order; and \axiomFun{sort}, to arrange elements in order.

An important point about lists is that they are `mutable': their constituent elements and links can be changed `in place.' To do this, use any of the operations whose names end with the character \axiomSyntax{!}.

\spadpaste{concat!(u,[9,1,3,-4]); u\free{u}\bound{u1}}

A \it cyclic list is a list with a `cycle': a link pointing back to an earlier node of the list. To create a cycle, first get a node somewhere down the list.
\spadpaste{lastnode := rest(u,3)\free{u1}\bound{u2}}
\xtc{
Use \spadfunFromX{setrest}{List} to change the link emanating from that node to point back to an earlier part of the list.}
\spadpaste{setrest!(lastnode,rest(u,2)); u\free{u2}}

A \spadgloss{stream} is a structure that (potentially) has an infinite number of distinct elements. Streams are discussed in \dlink{`Stream'}{StreamXmpPage}\ignore{Stream} and in \dlink{``Creating Lists and Streams with Iterators''}{ugLangItsPage} in Section 5.5\ignore{ugLangIts}. Think of a stream as an ‘‘infinite list’’ where elements are computed successively.

Create an infinite stream of factored integers. Only a certain number of initial elements are computed and displayed.
\spadpaste{[factor(i) for i in 2.. by 2] \bound{stream1}}
\xtc{
Axiom represents streams by a collection of already-computed elements together with a function to compute the next element ‘‘on demand.’’ Asking for the \eth{\axiom{n}} element causes elements \axiom{1} through \axiom{n} to be evaluated.}
\spadpaste{\%.36 \free{stream1}}

Streams can also be finite or cyclic. They are implemented by a linked list structure similar to lists and have many of the same operations. For example, \axiomFun{first} and \axiomFun{rest} are used to access elements and successive nodes of a stream.

A \spadgloss{one-dimensional array} is another data structure used to hold objects of the same type. See \dlink{`OneDimensionalArray'}{OneDimensionalArrayXmpPage}\ignore{OneDimensionalArray} for
Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation \(\text{oneDimensionalArray}\) to a list of elements.

\begin{verbatim}
\spadpaste{a := oneDimensionalArray [1, -7, 3, 3/2]\bound{a}}
\end{verbatim}

One-dimensional arrays are also mutable: you can change their constituent elements "in place."

\begin{verbatim}
\spadpaste{a.3 := 11; a\bound{a1}\free{a}}
\end{verbatim}

However, one-dimensional arrays are not flexible structures. You cannot destructively \(\text{concat}\) them together.

\begin{verbatim}
\spadpaste{concat!(a,oneDimensionalArray [1,-2])\free{a1}}
\end{verbatim}

Examples of datatypes similar to \(\text{OneDimensionalArray}\) are: \(\text{Vector}\) (vectors are mathematical structures implemented by one-dimensional arrays), \(\text{String}\) (arrays of "characters," represented by byte vectors), and \(\text{Bits}\) (represented by "bit vectors").

A vector of 32 bits, each representing the \(\text{Boolean}\) value \(\text{true}\).

\begin{verbatim}
\spadpaste{bits(32,true)}
\end{verbatim}

A \(\text{flexible array}\) is a cross between a list and a one-dimensional array. Like a one-dimensional array, a flexible array occupies a fixed block of storage. Its block of storage, however, has room to expand! When it gets full, it grows (a new, larger block of storage is allocated); when it has too much room, it contracts.

Create a flexible array of three elements.
Flexible arrays are used to implement 'heaps.' A
\spadgloss{heap} is an example of a data structure called a
\spadgloss{priority queue}, where elements are ordered with respect to one another.\footnote{See \downlink{`Heap'}{HeapXmpPage}\ignore{Heap} for more details. Heaps are also examples of data structures called
\spadglossSee{bags}{bag}. Other bag data structures are \spadtype{Stack}, \spadtype{Queue}, and \spadtype{Dequeue}.}

A heap is organized so as to optimize insertion and extraction of maximum elements. The \spadfunX{extract} operation returns the maximum element of the heap, after destructively removing that element and reorganizing the heap so that the next maximum element is ready to be delivered.

A \spadgloss{binary tree} is a 'tree' with at most two branches per node: it is either empty, or else is a node consisting of a value, and a left and right subtree (again, binary trees).\footnote{Example of binary tree types are \spadtype{BinarySearchTree} (see \downlink{`BinarySearchTree'}{BinarySearchTreeXmpPage}\ignore{BinarySearchTree}, \spadtype{PendantTree}, \spadtype{TournamentTree}, and \spadtype{BalancedBinaryTree} (see \downlink{`BalancedBinaryTree'}{BalancedBinaryTreeXmpPage}\ignore{BalancedBinaryTree}).}
A binary search tree is a binary tree such that, for each node, the value of the node is greater than all values (if any) in the left subtree, and less than or equal all values (if any) in the right subtree.

\spadpaste{binarySearchTree [5,3,2,9,4,7,11]}

A balanced binary tree is useful for doing modular computations. Given a list \axiom{lm} of moduli, \axiomFun{modTree}\axiom{(a,lm)} produces a balanced binary tree with the values \Texht{$a \mod m$}\{a \ttt mod m\} at its leaves.

\spadpaste{modTree(8,[2,3,5,7])}

A set is a collection of elements where duplication and order is irrelevant.\footnote{See \downlink{'Set'}{SetXmpPage}\ignore{Set} for more details.} Sets are always finite and have no corresponding structure like streams for infinite collections.

\spadpaste{fs := set [1/3,4/5,-1/3,4/5] \bound{fs}}

A multiset is a set that keeps track of the number of duplicate values.\footnote{See \downlink{'MultiSet'}{MultiSetXmpPage}\ignore{MultiSet} for details.}

\spadpaste{multiset \[x \rem 5 \text{ for } x \text{ in primes(2,1000)}\]}

A table is conceptually a set of ‘key--value’ pairs and is a generalization of a multiset.\footnote{For examples of tables, see \spadtype{AssociationList} (\downlink{'AssociationList'}{AssociationListXmpPage}\ignore{AssociationList})}
The domain \spadtype{Table(Key, Entry)} provides a general-purpose type for tables with \textit{values} of type \axiom{Entry} indexed by \textit{keys} of type \axiom{Key}.

\begin{verbatim}
Compute the above distribution of primes using tables. First, let \axiom{t} denote an empty table of keys and values, each of type \spadtype{Integer}.
\spadpaste{t : Table(Integer,Integer) := empty() \bound{t}}

We define a function \userfun{howMany} to return the number of values of a given modulus \axiom{k} seen so far. It calls \axiomFun{search}\axiom{(k,t)} which returns the number of values stored under the key \axiom{k} in table \axiom{t}, or \axiom{"failed"} if no such value is yet stored in \axiom{t} under \axiom{k}.
\spadpaste{ howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1) \bound{how}}

We define a function \userfun{howMany} to return the number of values of a given modulus \axiom{k} seen so far. It calls \axiomFun{search}\axiom{(k,t)} which returns the number of values stored under the key \axiom{k} in table \axiom{t}, or \axiom{"failed"} if no such value is yet stored in \axiom{t} under \axiom{k}.

\spadpaste{for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t\free{how t}}
\end{verbatim}

A \{\textit{it record}\} is an example of an inhomogeneous collection.
of objects.\footnote{See} in Section 2.4\ignore{ugTypesRecords} for details.) A record consists of a set of named \{it selectors\} that can be used to access its components.

\xtc{ Declare that \axiom{daniel} can only be assigned a record with two prescribed fields. }
\spadpaste{daniel : Record(age : Integer, salary : Float) \bound{danieldec}}

\xtc{ Give \axiom{daniel} a value, using square brackets to enclose the values of the fields. }
\spadpaste{daniel := [28, 32005.12] \free{danieldec}\bound{daniel}}

\xtc{ Give \axiom{daniel} a raise. }
\spadpaste{daniel.salary := 35000; daniel \free{daniel}}

A \{\it union\} is a data structure used when objects have multiple types.\footnote{See in Section 2.5\ignore{ugTypesUnions} for details.}

\xtc{ Let \axiom{dog} be either an integer or a string value. }
\spadpaste{dog: Union(licenseNumber: Integer, name: String)\bound{xint}}

\xtc{ Give \axiom{dog} a name. }
\spadpaste{dog := "Whisper"\free{xint}}

All told, there are over forty different data structures in Axiom. Using the domain constructors described in Chapter 13\ignore{ugDomains}, you can add your own data structure or extend an existing one. Choosing the right data structure for your application may be the key to obtaining good performance.
\begin{verbatim}
(1) [1, -7, 11]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(2) 11
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(3) [1, -7, 11, 9, 1, 3, -4]
Type: List Integer
\end{verbatim}
\begin{verbatim}
(4) [9,1,3,-4]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(5) [1,-7,11,9]
Type: List Integer
\end{verbatim}

\begin{verbatim}
(6) [2,3,2,4,2,2,2,3,2,5,2,7,2,3,2,5,...]
Type: Stream Factored Integer
\end{verbatim}
\begin{verbatim}
3 2
(7) 2 3
Type: Factored Integer
\end{verbatim}

\begin{verbatim}
3
(8) [1, -7, 3,]
2
Type: OneDimensionalArray Fraction Integer
\end{verbatim}

\begin{verbatim}
3
(9) [1, -7, 11,]
2
Type: OneDimensionalArray Fraction Integer
\end{verbatim}
\begin{spadcommand}{a.3 := 11; a\bound{a1}\free{a}}
\end{spadcommand}

\begin{spadcommand}{concat!(a,\text{oneDimensionalArray} \[1,-2]\)}\free{a1}
\end{spadcommand}

\begin{spadcommand}{bits(32,\text{true})}
\end{spadcommand}

\begin{spadcommand}{f := \text{flexibleArray} \[2,7,-5]\}\bound{f}}
\end{spadcommand}

\begin{verbatim}
(10) "11111111111111111111111111111111"
Type: Bits
\end{verbatim}

\begin{verbatim}
(11) \[2,7,-5\]
Type: FlexibleArray Integer
\end{verbatim}
(12) \[2,11,-3,7,-5] \]

Type: FlexibleArray Integer

(13) \[11,4,7,-4,3,-7\]

Type: Heap Integer

(14) \[11,7,4,3,-4,-7\]

Type: List Integer
\begin{verbatim}
binarySearchTree [5,3,2,9,4,7,11]

(15) [[2,3,4],5,[7,9,11]]
Type: BinarySearchTree PositiveInteger
\end{verbatim}

\begin{verbatim}
modTree(8, [2,3,5,7])

(16) [0,2,3,1]
Type: List Integer
\end{verbatim}

\begin{verbatim}
fs := set[1/3,4/5,-1/3,4/5]

(17) {- , , , ,, }
 3 3 5
Type: Set Fraction Integer
\end{verbatim}
\begin{verbatim}
tab{5}\spadcommand{multiset [x rem 5 for x in primes(2,1000)]}
\indentrel{3}(18) \{0,42: 3,40: 1,38: 4,47: 2\}
\indentrel{-3}Type: Multiset Integer
\end{verbatim}

\begin{verbatim}
tab{5}\spadcommand{t : Table(Integer,Integer) := empty()\bound{t}}
\indentrel{3}(19) table()
\indentrel{-3}Type: Table(Integer,Integer)
\end{verbatim}

\begin{verbatim}
tab{5}\spadcommand{howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)\bound{how}}
\indentrel{3}Type: Void
\end{verbatim}

\begin{verbatim}
tab{5}\spadcommand{for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t}
\end{verbatim}
(21) \[\text{table}(2= 47, 4= 38, 1= 40, 3= 42, 0= 1) \]
Type: Table(Integer,Integer)

(23) \[[\text{age}= 28, \text{salary}= 32005.12] \]
Type: Record(age: Integer, salary: Float)
Expanding to Higher Dimensions

⇒ “notitle” (TwoDimensionalArrayXmpPage) 3.5 on page 143
⇒ “notitle” (MatrixXmpPage) 3.75 on page 984
⇒ “notitle” (PermanentXmpPage) 3.85 on page 1085
To get higher dimensional aggregates, you can create one-dimensional aggregates with elements that are themselves aggregates, for example, lists of lists, one-dimensional arrays of lists of multisets, and so on. For applications requiring two-dimensional homogeneous aggregates, you will likely find \textit{two-dimensional arrays} and \textit{matrices} most useful.

The entries in \texttt{TwoDimensionalArray} and \texttt{Matrix} objects are all the same type, except that those for \texttt{Matrix} must belong to a \texttt{Ring}. You create and access elements in roughly the same way. Since matrices have an understood algebraic structure, certain algebraic operations are available for matrices but not for arrays. Because of this, we limit our discussion here to \texttt{Matrix}, that can be regarded as an extension of \texttt{TwoDimensionalArray}. For more information about Axiom’s linear algebra facilities, see \texttt{Matrix}\xmpPage, \texttt{Permanent}\xmpPage, \texttt{SquareMatrix}\xmpPage, \texttt{Vector}\xmpPage, \texttt{Computation of Eigenvalues and Eigenvectors}\xmpPage in Section 8.4, and \texttt{Solution of Linear and Polynomial Equations}\xmpPage in Section 8.5.

You can create a matrix from a list of lists, where each of the inner lists represents a row of the matrix.

\spad{m := matrix([[1,2], [3,4]])}
The "collections" construct (see Section 5.5) is useful for creating matrices whose entries are given by formulas.

\begin{verbatim}
1/(i + j - x) for i in 1..4 for j in 1..4
\end{verbatim}

Let \texttt{vm} denote the three by three Vandermonde matrix.

\begin{verbatim}
[1,1,1, [x,y,z], [x*x,y*y,z*z]]
\end{verbatim}

Use this syntax to extract an entry in the matrix.

\begin{verbatim}
vm(3,3)
\end{verbatim}

You can also pull out a \texttt{row} or a \texttt{column}.

\begin{verbatim}
column(vm,2)
\end{verbatim}

You can do arithmetic.

\begin{verbatim}
vm * vm
\end{verbatim}

You can perform operations such as \texttt{transpose}, \texttt{trace}, and \texttt{determinant}.

\begin{verbatim}
factor determinant vm
\end{verbatim}

\begin{verbatim}
m := matrix([[1,2], [3,4]])
\end{verbatim}

Type: Matrix Integer
\begin{verbatim}
1 1 1 1
- - - -
x - 2 x - 3 x - 4 x - 5
1 1 1 1
- - - -
x - 3 x - 4 x - 5 x - 6
(2)
1 1 1 1
- - - -
x - 4 x - 5 x - 6 x - 7
1 1 1 1
- - - -
x - 5 x - 6 x - 7 x - 8
\end{verbatim}

Type: Matrix Fraction Polynomial Integer

\begin{verbatim}
1 1 1
2 2 2
x y z
\end{verbatim}

(3) x y z
```spadcommand
vm := matrix [[1,1,1], [x,y,z], [x*x,y*y,z*z]]
```

```verbatim
(4) z
Type: Polynomial Integer
```

```spadcommand
vm(3,3)
```

```verbatim
2
(4) \[1,y,y\]
Type: Vector Polynomial Integer
```

```spadcommand
vm * vm
```

```verbatim
(6)
```

```spadcommand
column(vm,2)
```

```verbatim
2
(5) \[1,y,y\]
Type: Vector Polynomial Integer
```

```spadcommand
column(vm,2)
```

```verbatim
2
```

```spadcommand
vm := matrix [[1,1,1], [x,y,z], [x*x,y*y,z*z]]
```

```verbatim
(4) z
Type: Polynomial Integer
```

```spadcommand
vm(3,3)
```

```verbatim
2
(4) \[1,y,y\]
Type: Vector Polynomial Integer
```

```spadcommand
vm * vm
```

```verbatim
(6)
```
\[
\begin{array}{ccc}
2 & 2 & 2 \\
x + x + 1 & y + y + 1 & z + z + 1 \\
2 & 2 & 2 & 3 \\
x z + x y + x & y z + y + x & z + y z + x \\
2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 4 & 2 & 2 \\
x z + x y + x & y z + y + x & z + y z + x \\
\end{array}
\]

Type: Matrix Polynomial Integer

\begin{verbatim}
(7) \((y - x)(z - y)(z - x) \)
Type: Factored Polynomial Integer
\end{verbatim}

Writing Your Own Functions
Axiom provides you with a very large library of predefined operations and objects to compute with. You can use the Axiom library of constructors to create new objects dynamically of quite arbitrary complexity. For example, you can make lists of matrices of fractions of polynomials with complex floating point numbers as coefficients. Moreover, the library provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom programs to tackle your application. Axiom allows you to write functions interactively, thereby effectively extending the system library. Here we give a few simple examples, leaving the details to \downlink{`User-Defined Functions, Macros and Rules'}` {ugUserPage} in Chapter 6\ignore{ugUser}.

We begin by looking at several ways that you can define the ‘factorial’ function in Axiom. The first way is to give a piece-wise definition of the function. This method is best for a general recurrence relation since the pieces are gathered together and compiled into an efficient iterative function. Furthermore, enough previously computed values are automatically saved so that a subsequent call to the function can pick up from where it left off.

\xtc{Define the value of \userfun{fact} at \axiom{0}.}{\spadpaste{fact(0) == 1 \bound{fact}}}
\xtc{Define the value of \axiom{fact(n)} for general \axiom{n}.}{\spadpaste{fact(n) == n*fact(n-1) \bound{facta}\free{fact}}}
\xtc{Ask for the value at \axiom{50}.}{\spadpaste{fact(50) \free{facta}}}
\xtc{A second definition uses an \axiom{if-then-else} and recursion.}{\spadpaste{fac(n) == if n < 3 then n else n * fac(n - 1) \bound{fac}}}
\xtc{This function is less efficient than the previous version since each iteration involves a recursive function call.}{\spadpaste{fac(50) \free{fac}}}

A third version directly uses iteration.

\spadpaste{fa(n) == (a := 1; for i in 2..n repeat a := a*i; a) \bound{fa}}

This is the least space-consuming version.

\spadpaste{fa(50) \free{fa}}

A final version appears to construct a large list and then reduces over it with multiplication.

\spadpaste{f(n) == reduce(*,[i for i in 2..n]) \bound{f}}

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to that of the third version.

\spadpaste{f(50) \free{f}}

The library version uses an algorithm that is different from the four above because it highly optimizes the recurrence relation definition of \axiomFun{factorial}.

\spadpaste{factorial(50) \free{factorial}}

You are not limited to one-line functions in Axiom. If you place your function definitions in \axiom{.input} files (see \downlink{``Input Files''}{ugInOutInPage} in Section 4.1\ignore{ugInOutIn}), you can have multi-line functions that use indentation for grouping.

Given \axiom{n} elements, \axiomFun{diagonalMatrix} creates an \axiom{n} by \axiom{n} matrix with those elements down the diagonal. This function uses a permutation matrix that interchanges the \axiom{i}th and \axiom{j}th rows of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in \axiom{.input} files. Indentation is used to create \spadglossSee{blocks}{block}: sequences of expressions that are evaluated in sequence except as modified by control statements such as \axiom{if-then-else} and \axiom{return}.\{
\begin{spadsrc}
\texttt{permMat(n, i, j) ==}
\begin{spadlit}
m := \text{diagonalMatrix}
\quad ((\text{if } i = k \text{ or } j = k \text{ then } 0 \text{ else } 1)
\quad \text{for } k \text{ in } 1..n)
\quad m(i,j) := 1
\quad m(j,i) := 1
\quad m
\end{spadlit}
\end{spadsrc}

This creates a four by four matrix that interchanges the second and third rows.

\begin{spadpaste}
\texttt{p := permMat(4,2,3) \free{permMat} \bound{p}}
\end{spadpaste}

Create an example matrix to permute.

\begin{spadpaste}
\texttt{m := \text{matrix} \quad \texttt{[[4*i + j for j in 1..4] for i in 0..3]} \bound{m}}
\end{spadpaste}

Interchange the second and third rows of m.

\begin{spadpaste}
\texttt{permMat(4,2,3) * m \free{p m}}
\end{spadpaste}

A function can also be passed as an argument to another function, which then applies the function or passes it off to some other function that does.

You often have to declare the type of a function that has functional arguments.

\begin{spadpaste}
\texttt{t : (Float \to Float, Float) \to Float \free{tdecl}}
\end{spadpaste}

This declares \userfun{t} to be a two-argument function that returns a \spadtype{Float}.

The first argument is a function that takes one \spadtype{Float} argument and returns a \spadtype{Float}.

\begin{spadpaste}
\texttt{t(fun, x) == fun(x)**2 + \sin(x)**2 \free{tdecl}}
\end{spadpaste}

This is the definition of \userfun{t}.

\begin{spadpaste}
\texttt{t(fun, x) == fun(x)**2 + \sin(x)**2 \free{tdecl} \bound{t}}
\end{spadpaste}

We have not defined a \axiomFun{cos} in the workspace. The one from the Axiom library will do.

Here we define our own (user-defined) function.

\spadpaste{cosinv(y) == cos(1/y) \bound{cosinv}}

Pass this function as an argument to \userfun{t}.

\spadpaste{t(cosinv, 5.2058) \free{t}\free{cosinv}}

Axiom also has pattern matching capabilities for simplification of expressions and for defining new functions by rules. For example, suppose that you want to apply regularly a transformation that groups together products of radicals:
\[
\sqrt{a} \cdot \sqrt{b} \mapsto \sqrt{ab}, \quad (\forall a)(\forall b)
\]
\[
\text{for any } \text{axiom}(a) \text{ and } \text{axiom}(b)
\]
Note that such a transformation is not generally correct. Axiom never uses it automatically.

\spadpaste{groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b)) \bound{g}}

\spadpaste{a := (sqrt(x) + sqrt(y) + sqrt(z))**4 \bound{sxy}}

\spadpaste{groupSqrt a \free{sxy} \free{g}}
\begin{verbatim}
\spadcommand{fact(0) == 1\bound{fact}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fact(n) == n*fact(n-1)\bound{facta}\free{fact}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fact(50)\free{facta}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fac(n) == if n < 3 then n else n * fac(n - 1)\bound{fac}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fact(5)\bound{fact5}\free{facta}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fact(50)\free{facta}}
\end{verbatim}

\begin{verbatim}
\spadcommand{fac(n) == if n < 3 then n else n * fac(n - 1)\bound{fac}}
\end{verbatim}
\spadcommand{fac(n) == if n < 3 then n else n * fac(n - 1)}

\spadcommand{fac(50)}

\begin{verbatim}
Type: PositiveInteger
\end{verbatim}

\spadcommand{fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)}

\spadcommand{fa(50)}

\begin{verbatim}
Type: Void
\end{verbatim}

\spadcommand{fa(50)}

\begin{verbatim}
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
\indentrel{-3}fa(50)\free{fa}
\end{verbatim}

\begin{verbatim}
f(n) == reduce(*,[i for i in 2..n])\bound{f}
\end{verbatim}

\begin{verbatim}
Type: Void
\indentrel{-3}
\end{verbatim}

\begin{verbatim}
f(n) == reduce(*,[i for i in 2..n])\bound{f}
\end{verbatim}

\begin{verbatim}
Type: PositiveInteger
\indentrel{-3}
\end{verbatim}

\begin{verbatim}
factorial(50)
\end{verbatim}

\begin{verbatim}
(10) 30414093201713378043612608166064768843776415689605120_00000000000
\indentrel{3}
\end{verbatim}
\begin{verbatim}
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\begin{paste}\begin{patch}{ugIntroYouPagePatch10}
\begin{paste}{ugIntroYouPageFull10}{ugIntroYouPagePatch10}
\pastebutton{ugIntroYouPageEmpty10}{\showpaste}
\tab{5}\spadcommand{factorial(50)}
\end{paste}\end{patch}
\end{paste}\end{patch}

\begin{patch}\begin{paste}\begin{patch}{ugIntroYouPagePatch11}
\begin{paste}{ugIntroYouPageFull11}{ugIntroYouPageEmpty11}
\pastebutton{ugIntroYouPageEmpty11}{\hidepaste}
\tab{5}\spadcommand{permMat(n, i, j) ==
 m := diagonalMatrix
 [if i = k or j = k then 0 else 1]
 for k in 1..n]
 m(i,j) := 1
 m(j,i) := 1
 m
\bound{permMat }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\end{patch}

\begin{patch}\begin{paste}\begin{patch}{ugIntroYouPagePatch12}
\begin{paste}{ugIntroYouPageFull12}{ugIntroYouPageEmpty12}
\pastebutton{ugIntroYouPageEmpty12}{\hidepaste}
\tab{5}\spadcommand{p := permMat(4,2,3)\free{permMat }}\bound{p }}
\indentrel{3}\begin{verbatim}
1 0 0 0
0 0 1 0
(12)
0 1 0 0
\end{verbatim}
\end{paste}\end{patch}
\end{patch}
0 0 0 1

Type: Matrix Integer

\begin{verbatim}
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
\end{verbatim}

Type: Matrix Integer

\begin{verbatim}
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
\end{verbatim}
\begin{spadcommand}
\texttt{permMat(4,2,3) \ast m\free{p m}}
\end{spadcommand}

\begin{spadcommand}
\texttt{t : (Float \to \ Float, Float) \to Float\bound{tdecl}}
\end{spadcommand}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spadcommand}
\texttt{t(fun, x) == fun(x)**2 + sin(x)**2\free{tdecl }\bound{t}}
\end{spadcommand}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{spadcommand}
\texttt{t(cos, 5.2058)\free{t}}
\end{spadcommand}

\begin{verbatim}
(17) 1.0
Type: Float
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
(19) 1.7392237241 800516493
Type: Float
\end{verbatim}

\begin{verbatim}
(20) \b a \ b == \b a b
Type: RewriteRule(Integer,Integer,Expression Integer)
\end{verbatim}
\begin{verbatim}
(21)
((4z + 4y + 12x)y + (4z + 12y + 4x)x)z +
 2
(12z + 4y + 4x)x y + z + (6y + 6x)z + y + 6x y +
 2
x
\end{verbatim}
Type: Expression Integer

\begin{verbatim}
(22)
(4z + 4y + 12x)y z + (4z + 12y + 4x)x z +
 2
(12z + 4y + 4x)x y + z + (6y + 6x)z + y + 6x y +
 2
x
\end{verbatim}
Type: Expression Integer
Polynomials

--- ug01.ht ---

Polynomials are the commonly used algebraic types in symbolic computation. Interactive users of Axiom generally only see one type of polynomial: `\spadtype{Polynomial(R)}`. This type represents polynomials in any number of unspecified variables over a particular coefficient domain `\axiom{R}`. This type represents its coefficients `\spadglossSee{sparsely}{sparse}`: only terms with non-zero coefficients are represented.

In building applications, many other kinds of polynomial representations are useful. Polynomials may have one variable or multiple variables, the variables can be named or unnamed, the coefficients can be stored sparsely or densely. So-called ‘distributed multivariate polynomials’ store polynomials as coefficients paired with vectors of exponents. This type is particularly efficient for use in algorithms for solving systems of non-linear polynomial equations.

\xtc{
The polynomial constructor most familiar to the interactive user is `\spadtype{Polynomial}`.
}{
\spadpaste{(x**2 - x*y**3 +3*y)**2}
}
\xtc{
If you wish to restrict the variables used, `\spadtype{UnivariatePolynomial}` provides polynomials in one variable.
}{
\spadpaste{p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)}
}
\xtc{
The constructor `\spadtype{MultivariatePolynomial}` provides polynomials in one or more specified variables.
}{
\spadpaste{m: MPOLY([x,y],INT) := (x**2-x*y**3*3*y)**2 \bound{m}}
}
You can change the way the polynomial appears by modifying the variable ordering in the explicit list.
}
\spadpaste{m :: MPOLY([y,x],INT) \free{m}}
}
\xtc{
The constructor
\spadtype{DistributedMultivariatePoly} provides polynomials in one or more specified variables with the monomials ordered lexicographically.
}
\spadpaste{m :: DMP([y,x],INT) \free{m}}
}
\xtc{
The constructor
\spadtype{HomogeneousDistributedMultivariatePoly} is similar except that the monomials are ordered by total order refined by reverse lexicographic order.
}
\spadpaste{m :: HDMP([y,x],INT) \free{m}}
}
\xtc{
More generally, the domain constructor
\spadtype{GeneralDistributedMultivariatePoly} allows the user to provide an arbitrary predicate to define his own term ordering. These last three constructors are typically used in \texht{Gr"{o}bner} basis applications and when a flat (that is, non-recursive) display is wanted and the term ordering is critical for controlling the computation.

\endscroll
\autobuttons
\end{page}
\begin{spadcommand}
\begin{verbatim}
3 2
(2) 18x + 60x - 46x + 8
Type: UnivariatePolynomial(x,Integer)
\end{verbatim}
\end{spadcommand}

\begin{spadcommand}
\begin{verbatim}
4 3 3 6 2 4 2
(3) x - 2y x + (y + 6y)x - 6y x + 9y
Type: MultivariatePolynomial([x,y],Integer)
\end{verbatim}
\end{spadcommand}

\begin{spadcommand}
\begin{verbatim}
2 6 4 3 3 2 2 4
(4) x y - 6x y - 2x y + 9y + 6x y + x
Type: MultivariatePolynomial([y,x],Integer)
\end{verbatim}
\end{spadcommand}
\begin{verbatim}
6 2 4 3 3 2 2 4
(5) y x - 6y x - 2y x + 9y + 6y x + x
Type: DistributedMultivariatePolynomial([y,x],Integer)
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
6 2 3 3 4 4 2 2
(6) y x - 2y x - 6y x + x + 6y x + 9y
Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)
\end{verbatim}
\indentrel{-3}

% Limits

⇒ “notitle” (ugProblemLimitsPage) 12 on page 2145
— ug01.ht —

\begin{page}{ugIntroCalcLimitsPage}{1.10. Limits}
\beginscroll

\end{scroll}
\end{page}
Axiom's \axiomFun{limit} function is usually used to evaluate limits of quotients where the numerator and denominator both tend to zero or both tend to infinity.

To find the limit of an expression \axiom{f} as a real variable \axiom{x} tends to a limit value \axiom{a}, enter \axiom{limit(f, x=a)}.

Use \axiomFun{complexLimit} if the variable is complex.

Additional information and examples of limits are in \downlink{``Limits''}{ugProblemLimitsPage} in Section 8.6\ignore{ugProblemLimits}.

\xtc{You can take limits of functions with parameters.}{
\spadpaste{g := \csc(a*x) / \csch(b*x) \bound{g}}
}
\xtc{As you can see, the limit is expressed in terms of the parameters.}{
\spadpaste{limit(g,x=0) \free{g}}
}
\%
\xtc{A variable may also approach plus or minus infinity:}{
\spadpaste{h := (1 + k/x)**x \bound{h}}
}
\xtc{Use \axiom{\%plusInfinity} and \axiom{\%minusInfinity} to denote ∞ and $-\infty$.}{
\spadpaste{limit(h,x=\%plusInfinity) \free{h}}
}
\xtc{A function can be defined on both sides of a particular value, but may tend to different limits as its variable approaches that value from the left and from the right.}{
\spadpaste{limit(sqrt(y**2)/y,y = 0)}
}
\xtc{As \axiom{x} approaches \axiom{0} along the real axis, \axiom{exp(-1/x**2)} tends to \axiom{0}.}{
\spadpaste{limit(exp(-1/x**2),x = 0)}
}
\xtc{However, if \axiom{x} is allowed to approach \axiom{0} along any path in the complex plane, the limiting value of \axiom{exp(-1/x**2)} depends on the path taken because the function has an essential singularity at \axiom{x=0}. This is reflected in the error message

}
returned by the function.
\}
\spadpaste{complexLimit(exp(-1/x**2),x = 0)}
\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntroCalcLimitsPagePatch1}
\begin{paste}{ugIntroCalcLimitsPageFull1}{ugIntroCalcLimitsPageEmpty1}
\pastebutton{ugIntroCalcLimitsPageFull1}{\hidepaste}
\tab{5}\spadcommand{g := csc(a*x) / csch(b*x)}\bound{g }\}
\indentrel{3}\begin{verbatim}
csc(a x)
(1)
csch(b x)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroCalcLimitsPageEmpty1}
\begin{paste}{ugIntroCalcLimitsPageEmpty1}{ugIntroCalcLimitsPagePatch1}
\pastebutton{ugIntroCalcLimitsPageEmpty1}{\showpaste}
\tab{5}\spadcommand{g := csc(a*x) / csch(b*x)}\bound{g }\}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroCalcLimitsPagePatch2}
\begin{paste}{ugIntroCalcLimitsPageFull2}{ugIntroCalcLimitsPageEmpty2}
\pastebutton{ugIntroCalcLimitsPageFull2}{\hidepaste}
\tab{5}\spadcommand{limit(g,x=0)}\free{g }\}
\indentrel{3}\begin{verbatim}
(2)
b
a
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroCalcLimitsPageEmpty2}
\begin{paste}{ugIntroCalcLimitsPageEmpty2}{ugIntroCalcLimitsPagePatch2}
\pastebutton{ugIntroCalcLimitsPageEmpty2}{\showpaste}
\tab{5}\spadcommand{limit(g,x=0)}\free{g }\}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroCalcLimitsPagePatch3}
\begin{paste}{ugIntroCalcLimitsPageFull3}{ugIntroCalcLimitsPageEmpty3}
\pastebutton{ugIntroCalcLimitsPageFull3}{\hidepaste}
\tab{5}\spadcommand{h := (1 + k/x)**x}\free{h }\}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
x + k \frac{x}{x}
\end{verbatim}

Type: Expression Integer
Series

⇒ "notitle" (ugProblemSeriesPage) 12 on page 2164 — ug01.ht —

Axiom also provides power series. By default, Axiom tries to compute and display the first ten elements of a series. Use \texttt{\textbackslash spad\textbackslash s(\textbackslash set\textbackslash streams\textbackslash calculate\textbackslash \textbackslash)} to change the default value to something else.

For the purposes of this book, we have used this system command to display fewer than ten terms.

For more information about working with series, see
You can convert a functional expression to a power series by using the operation \axiomFun{series}.
In this example, \axiom{\sin(a*x)} is expanded in powers of \axiom{(x - 0)},
that is, in powers of \axiom{x}.
\spad{\text{series}(\sin(a*x),x = 0)}
\xtc{This expression expands
\axiom{\sin(a*x)} in powers of \axiom{(x - \%pi/4)}.}
\spad{\text{series}(\sin(a*x),x = \%pi/4)}
\xtc{Axiom provides
\textit{Puiseux series:} series with rational number exponents.
The first argument to \axiomFun{series} is an in-place function that
computes the \(n\) coefficient.
(Recall that
the \axiomSyntax{+->} is an infix operator meaning ‘maps to.’)
\spad{\text{series}(\text{n} +-> (-1)**((3*\text{n} - 4)/6)/factorial(\text{n} - 1/3),x = 0,4/3..,2)}
\xtc{Once you have created a power series, you can perform arithmetic operations
on that series.
We compute the Taylor expansion of \axiom{1/(1-x)}.}
\spad{\text{series}(1/(1-x),x = 0)}
\xtc{Compute the square of the series.}
\spad{\text{series}(1/(1-x),x = 0) ** 2}
\xtc{The usual elementary functions
(\axiomFun{log}, \axiomFun{exp}, trigonometric functions, and so on)
are defined for power series.}
\spad{\text{series}(1/(1-x),x = 0) ** 2}
Here is a way to obtain numerical approximations of \texttt{e} from the Taylor series expansion of \texttt{exp(x)}. First create the desired Taylor expansion.

\begin{verbatim}
\spadcommand{f := taylor(exp(x))}
\end{verbatim}

Evaluate the series at the value \texttt{1.0}. As you see, you get a sequence of partial sums.

\begin{verbatim}
\spadcommand{eval(f,1.0)}
\end{verbatim}

\begin{verbatim}
\spadcommand{series(sin(a*x),x = 0)}
\end{verbatim}

\begin{verbatim}
3 5 7 9
a 3 a 5 a 7 a 9
a x - x + x - x + x
6 120 5040 362880
+
11
a 11 12
- x + O(x)
39916800
\end{verbatim}

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\begin{verbatim}
(2)
a \frac{\pi}{4} \sin() + a \cos() (x - \frac{\pi}{4})
+ 2 \frac{a \pi}{4} \frac{\pi}{2} \frac{\pi}{4} \frac{\pi}{4}
\sin() \cos() (x - \frac{\pi}{4}) - (x - \frac{\pi}{4})
+ 4 \frac{a \pi}{4} \frac{\pi}{4} \frac{\pi}{4} \frac{\pi}{4}
\sin() \cos() (x - \frac{\pi}{4}) + (x - \frac{\pi}{4})
+ 6 \frac{a \pi}{4} \frac{\pi}{4} \frac{\pi}{4} \frac{\pi}{4}
\sin() \cos() (x - \frac{\pi}{4}) - (x - \frac{\pi}{4})
+ 8 \frac{a \pi}{4} \frac{\pi}{4} \frac{\pi}{4} \frac{\pi}{4}
\sin() \cos() (x - \frac{\pi}{4}) + (x - \frac{\pi}{4})
+ 10 \frac{a \pi}{4} \frac{\pi}{4} \frac{\pi}{4}
\sin() - (x - \frac{\pi}{4}) + O((x - \frac{\pi}{4})^2)
\end{verbatim}
Type: UnivariatePuiseuxSeries(Expression Integer,x,\pi/4)
\spadcommand{series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x = 0,4/3..,2)}
% 4 10
% 3 1 3 5
% (3) x - x + O(x^6)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

\spadcommand{f := series(1/(1-x),x = 0)}
% (4)
% 2 3 4 5 6 7 8 9 10
% 1 + x + x + x + x + x + x + x + x + x
% + 11
% O(x)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

\spadcommand{f ** 2}
% (5)
% 2 3 4 5 6 7 8
% 1 + 2x + 3x + 4x + 5x + 6x + 7x + 8x + 9x
% + 9 10 11
10x + 11x + O(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroSeriesPageEmpty5}
\begin{paste}{ugIntroSeriesPageEmpty5}{ugIntroSeriesPagePatch5}
\pastebutton{ugIntroSeriesPageEmpty5}{\showpaste}
\tab{5}\spadcommand{f ** 2}\free{f }
\end{paste}\end{patch}
\begin{patch}{ugIntroSeriesPagePatch6}
\begin{paste}{ugIntroSeriesPageFull6}{ugIntroSeriesPageEmpty6}
\pastebutton{ugIntroSeriesPageFull6}{\hidepaste}
\tab{5}\spadcommand{f := series(1/(1-x),x = 0)\bound{f1 }}
\indentrel{3}\begin{verbatim}
(6)
2 3 4 5 6 7 8 9 10
1 + x + x + x + x + x + x + x + x + x + x + x + x
+ 11
O(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroSeriesPageEmpty6}
\begin{paste}{ugIntroSeriesPageEmpty6}{ugIntroSeriesPagePatch6}
\pastebutton{ugIntroSeriesPageEmpty6}{\showpaste}
\tab{5}\spadcommand{f := series(1/(1-x),x = 0)\bound{f1 }}
\end{paste}\end{patch}
\begin{patch}{ugIntroSeriesPagePatch7}
\begin{paste}{ugIntroSeriesPageFull7}{ugIntroSeriesPageEmpty7}
\pastebutton{ugIntroSeriesPageFull7}{\hidepaste}
\tab{5}\spadcommand{g := log(f)\free{f1 }\bound{g }}
\indentrel{3}\begin{verbatim}
(7)
1 2 3 4 5 6 7 8
x + x + x + x + x + x + x + x + x + x + x + x + x
+ 1 9 1 10 1 11 12
x + x + x + x + O(x)
9 10 11
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroSeriesPageEmpty7}
\begin{paste}{ugIntroSeriesPageEmpty7}{ugIntroSeriesPagePatch7}
\spadcommand{g := log(f)\free{f1 \bound{g}}}
\end{paste}

\begin{patch}{ugIntroSeriesPagePatch8}
\begin{paste}{ugIntroSeriesPageFull8}{ugIntroSeriesPageEmpty8}
\spadcommand{exp(g)\free{g}}
\begin{verbatim}
\(8\)
\begin{verbatim}
2 3 4 5 6 7 8 9 10
1 + x + x + x + x + x + x + x + x + x + x + x + 11
0(x)
\end{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugIntroSeriesPagePatch9}
\begin{paste}{ugIntroSeriesPageFull9}{ugIntroSeriesPageEmpty9}
\spadcommand{f := taylor(exp(x)\bound{f2}}
\begin{verbatim}
\(9\)
\begin{verbatim}
1 2 1 3 1 4 1 5 1 6
1 + x + x + x + x + x + x + x + x + x + x + 2 6 24 120 720
+ 1 7 1 8 1 9 1 10 11
x + x + x + x + 0(x)
5040 40320 362880 3628800
\end{verbatim}
\end{verbatim}
\end{patch}
Derivatives

— ug01.ht —

\begin{page}{ugIntroCalcDerivPage}{1.12. Derivatives}
\begin{verbatim}
% Use the Axiom function \axiomFun{D} to differentiate an expression.
\texttt{vskip 2pc}
\texttt{	extasciitilde}
To find the derivative of an expression \axiom{f} with respect to a variable \axiom{x}, enter \axiom{D(f, x)}.
\texttt{vskip 2pc}
\texttt{	extasciitilde}
\texttt{spadpaste{f := exp exp x \bound{f}}}
\texttt{	extasciitilde}
\texttt{spadpaste{D(f, x) \free{f}}}
\texttt{	extasciitilde}
\texttt{An optional third argument \axiom{n} in \axiomFun{D} asks Axiom for the \texttt{veth\{axiom{n}\}} derivative of \axiom{f}.
This finds the fourth derivative of \axiom{f} with respect to \axiom{x}.
\texttt{vskip 2pc}
\end{verbatim}
\end{page}
Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal operators. All the dependencies must be explicit.

\begin{verbatim}
\spadpaste{D(f, x, 4) \free{f}}
\xtc{
You can also compute partial derivatives by specifying the order of differentiation.
}\{\spadpaste{g := sin(x**2 + y) \bound{g}}\}
\xtc{
}\{\spadpaste{D(g, y) \free{g}}\}
\xtc{
}\{\spadpaste{D(g, [y, y, x, x]) \free{g}}\}
\xtc{Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal operators. All the dependencies must be explicit.}\xtc{This returns \axiom{0} since \axiom{F} (so far) does not explicitly depend on \axiom{x}.}\{\spadpaste{D(F,x)}\}
\xtc{Suppose that we have \axiom{F} a function of \axiom{x}, \axiom{y}, and \axiom{z}, where \axiom{x} and \axiom{y} are themselves functions of \axiom{z}.}\xtc{Start by declaring that \axiom{F}, \axiom{x}, and \axiom{y} are operators.}\{F := operator 'F; x := operator 'x; y := operator 'y\bound{F x y}}\xtc{You can use \axiom{F}, \axiom{x}, and \axiom{y} in expressions.}\{a := F(x z, y z, z**2) + x y(z+1) \bound{a}\free{F}\free{x}\free{y}}\xtc{Differentiate formally with respect to \axiom{z}. The formal derivatives appearing in \axiom{dadz} are not just formal symbols, but do represent the derivatives of \axiom{x}, \axiom{y}, and \axiom{F}.}\{\spadpaste{dadz := D(a, z)\bound{da}\free{a}}\}
\xtc{\begin{verbatim}
\end{verbatim}}
\end{verbatim}
You can evaluate the above for particular functional values of \texttt{F}, \texttt{x}, and \texttt{y}. If \texttt{x(z)} is \texttt{exp(z)} and \texttt{y(z)} is \texttt{log(z+1)}, then this evaluates \texttt{dadz}.

\begin{verbatim}
\spadpaste{eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))
free{da}}
\end{verbatim}

\texttt{You obtain the same result by first evaluating \texttt{a} and then differentiating.}

\begin{verbatim}
\spadpaste{eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1)) \free{a}\bound{eva}}
\end{verbatim}

\begin{verbatim}
D(a, z)
\end{verbatim}

\end{scroll}
\end{page}

\begin{patch}{ugIntroCalcDerivPagePatch1}
\begin{paste}{ugIntroCalcDerivPageFull1}{ugIntroCalcDerivPageEmpty1}
\pastebutton{ugIntroCalcDerivPageFull1}{\hidepaste}
\tab{5}\spadcommand{f := exp exp x
\bound{f }}
\begin{verbatim}
(1) %e
Type: Expression Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugIntroCalcDerivPageEmpty1}
\begin{paste}{ugIntroCalcDerivPageEmpty1}{ugIntroCalcDerivPagePatch1}
\pastebutton{ugIntroCalcDerivPageEmpty1}{\showpaste}
\tab{5}\spadcommand{D(%e, x)
\free{f }}
\begin{verbatim}
(2) %e %e
Type: Expression Integer
\end{verbatim}
\end{paste}
\end{patch}
\texttt{\texttt{x} 4 \ x 3 \ x 2 \ x \ %e} \\
\texttt{(3) \ ((%e) + 6(%e) + 7(%e) + %e)%e} \\
\texttt{Type: Expression Integer}

\texttt{\texttt{2}} \\
\texttt{(4) \ sin(y + x)} \\
\texttt{Type: Expression Integer}

\texttt{\texttt{2}} \\
\texttt{(5) \ cos(y + x)}
\begin{verbatim}
2 2 2
(6) 4x sin(y + x) - 2cos(y + x)
\end{verbatim}
Type: Expression Integer

\begin{verbatim}
(7) 0
\end{verbatim}
Type: Polynomial Integer

\begin{verbatim}
(8) y
\end{verbatim}
Type: BasicOperator
\begin{verbatim}
2
(9) x(y(z + 1)) + F(x(z),y(z),z)
Type: Expression Integer
\end{verbatim}

\begin{verbatim}
2 , 2
2zF (x(z),y(z),z) + y (z)F (x(z),y(z),z)
,3
,2
+ ,
2 ,
(10) x (z) F (x(z),y(z),z) + x (y(z + 1))y (z + 1)
,1
Type: Expression Integer
\end{verbatim}
\begin{verbatim}
(11) 2
2 z 2
(2z + 2z)F (%e , log(z + 1), z)
3 ,
+
3 2
F (%e , log(z + 1), z)
2 ,
+
3 2
(z + 1) %e F (%e , log(z + 1), z) + z + 1
1 ,
/
Type: Expression Integer
\end{verbatim}

\begin{verbatim}
(12) F(%e , log(z + 1), z) + z + 2
Type: Expression Integer
\end{verbatim}
\begin{verbatim}
(13)
\begin{align*}
 & 2 \quad z \quad 2 \\
 & (2z + 2z)F \left(\%e, \log(z + 1), z \right) \\
 & + \\
 & \quad z \quad 2 \\
 & F \left(\%e, \log(z + 1), z \right) \\
 & + \\
 & \quad z \quad z \quad 2 \\
 & (z + 1)\%e F \left(\%e, \log(z + 1), z \right) + z + 1 \\
 & / \\
 & z + 1
\end{align*}
\end{verbatim}

Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroCalcDerivPageEmpty13}
\begin{paste}{ugIntroCalcDerivPageEmpty13}{ugIntroCalcDerivPagePatch13}
\pastebutton{ugIntroCalcDerivPageEmpty13}{\showpaste}
\tab{5}\spadcommand{D(\%, z)\free{eva}}
\end{paste}\end{patch}

\begin{page}{ugIntroIntegratePage}{1.13. Integration}
\beginscroll
\%Axiom has extensive library facilities for integration.
\xxtc{We use a factorization-free algorithm.}{\spadpaste{integrate((x**2+2*x+1)/((x+1)**6+1),x)}}
\end{scroll}
\end{page}
When real parameters are present, the form of the integral can depend on the signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.

\spadpaste{integrate(1/(x**2 + a),x)}

The \axiomFun{integrate} operation generally assumes that all parameters are real.
The only exception is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is a unique answer. You can request this answer by ‘prepending’ the word ‘complex’ to the command name:

\spadpaste{complexIntegrate(1/(x**2 + a),x)}

The following two examples illustrate the limitations of table-based approaches. The two integrands are very similar, but the answer to one of them requires the addition of two new algebraic numbers.

This one is the easy one.
The next one looks very similar but the answer is much more complicated.

\spadpaste{integrate(x**3 / (a+b*x)**(1/3),x)}

Only an algorithmic approach is guaranteed to find what new constants must be added in order to find a solution.

\spadpaste{integrate(1 / (x**3 * (a+b*x)**(1/3)),x)}

Some computer algebra systems use heuristics or table-driven approaches to integration. When these systems cannot determine the answer to an integration problem, they reply ‘‘I don’t know.’’ Axiom uses an algorithm for integration that conclusively proves that an integral cannot be expressed in terms of elementary functions.
When Axiom returns an integral sign, it has proved that no answer exists as an elementary function.

Axiom can handle complicated mixed functions much beyond what you can find in tables.

Whenever possible, Axiom tries to express the answer using the functions present in the integrand.

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between functions.

The discovery of this algebraic relationship is necessary for correct integration of this function.

Here are the details:

If \(x = \tan t \) and \(g = \tan \left(\frac{t}{3} \right) \) then the following algebraic relation is true:

\[
 g^3 - 3xg^2 - 3g + x = 0
\]

Integrate \(g \) using this algebraic relation; this produces:

\[
 \frac{(24g^2 - 8)\log(3g^2 - 2) + (81x^2 + 24)g^2 + 72gx - 27x^2 - 16}{54g^2 - 18}
\]

Rationalize the denominator, producing:

\[
 \frac{8\log(3g^2 - 1) - 3g^2 + 18gx + 16}{18}
\]

Replace \(g \) by the initial definition to produce the final result.
This is an example of a mixed function where the algebraic layer is over the transcendental one.

\(\text{integrate}\left(\frac{x + 1}{x(x + \log x)^{3/2}}, x\right) \)

While incomplete for non-elementary functions, Axiom can handle some of them.

\(\text{integrate}\left(\frac{\exp(-x^2) \cdot \text{erf}(x)}{(\text{erf}(x)^3 - \text{erf}(x)^2 - \text{erf}(x) + 1)}, x\right) \)

More examples of Axiom's integration capabilities are discussed in the link to "Integration" in Section 8.8.
\[x + a \]

(2) [.,]

\[2\sqrt{-a} \]

Type: Union(List Expression Integer,...)

\[
\begin{verbatim}
x\sqrt{-a + a} \\
x\sqrt{-a} - a \\
\log() - \log() \\
\sqrt{-a} - \sqrt{-a}
\end{verbatim}
\]

(3)

\[2\sqrt{-a} \]

Type: Expression Integer

\[
\begin{verbatim}
3 3 2 2 2 3 32
(120b x - 135a b x + 162a b x - 243a)/b x + a
4
440b
\end{verbatim}
\]

Type: Union(Expression Integer,...)
\begin{verbatim}
(5)
- 2 2
2b x \3
*
332 32 3
log(\a \b x + a + \a \b x + a + a)
+
2 2 32 3
4b x \3 log(\a \b x + a - a)
+
32 3
2 2 2\3 \a \b x + a + a\3
12b x atan()
3a
+
332
(12b x - 9a)\3 \a \b x + a
/
2 2 3
18a x \3 \a
Type: Union(Expression Integer,...)
\end{verbatim}
\[
\begin{align*}
\log(b + \sqrt{a + 1}) \\
\text{(6) } \frac{d}{dx}
\end{align*}
\]

\[
\text{Type: } \text{Union(Expression Integer,...)}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty6}
\begin{paste}{ugIntroIntegratePageEmpty6}{ugIntroIntegratePagePatch6}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch7}
\begin{paste}{ugIntroIntegratePageFull7}{ugIntroIntegratePageEmpty7}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty7}
\begin{paste}{ugIntroIntegratePageEmpty7}{ugIntroIntegratePagePatch7}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch8}
\begin{paste}{ugIntroIntegratePageFull8}{ugIntroIntegratePageEmpty8}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty8}
\begin{paste}{ugIntroIntegratePageEmpty8}{ugIntroIntegratePagePatch8}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch9}
\begin{paste}{ugIntroIntegratePageFull9}{ugIntroIntegratePageEmpty9}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty9}
\begin{paste}{ugIntroIntegratePageEmpty9}{ugIntroIntegratePagePatch9}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch10}
\begin{paste}{ugIntroIntegratePageFull10}{ugIntroIntegratePageEmpty10}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty10}
\begin{paste}{ugIntroIntegratePageEmpty10}{ugIntroIntegratePagePatch10}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch11}
\begin{paste}{ugIntroIntegratePageFull11}{ugIntroIntegratePageEmpty11}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty11}
\begin{paste}{ugIntroIntegratePageEmpty11}{ugIntroIntegratePagePatch11}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch12}
\begin{paste}{ugIntroIntegratePageFull12}{ugIntroIntegratePageEmpty12}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty12}
\begin{paste}{ugIntroIntegratePageEmpty12}{ugIntroIntegratePagePatch12}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch13}
\begin{paste}{ugIntroIntegratePageFull13}{ugIntroIntegratePageEmpty13}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty13}
\begin{paste}{ugIntroIntegratePageEmpty13}{ugIntroIntegratePagePatch13}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch14}
\begin{paste}{ugIntroIntegratePageFull14}{ugIntroIntegratePageEmpty14}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty14}
\begin{paste}{ugIntroIntegratePageEmpty14}{ugIntroIntegratePagePatch14}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch15}
\begin{paste}{ugIntroIntegratePageFull15}{ugIntroIntegratePageEmpty15}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty15}
\begin{paste}{ugIntroIntegratePageEmpty15}{ugIntroIntegratePagePatch15}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch16}
\begin{paste}{ugIntroIntegratePageFull16}{ugIntroIntegratePageEmpty16}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty16}
\begin{paste}{ugIntroIntegratePageEmpty16}{ugIntroIntegratePagePatch16}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch17}
\begin{paste}{ugIntroIntegratePageFull17}{ugIntroIntegratePageEmpty17}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty17}
\begin{paste}{ugIntroIntegratePageEmpty17}{ugIntroIntegratePagePatch17}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch18}
\begin{paste}{ugIntroIntegratePageFull18}{ugIntroIntegratePageEmpty18}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty18}
\begin{paste}{ugIntroIntegratePageEmpty18}{ugIntroIntegratePagePatch18}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch19}
\begin{paste}{ugIntroIntegratePageFull19}{ugIntroIntegratePageEmpty19}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty19}
\begin{paste}{ugIntroIntegratePageEmpty19}{ugIntroIntegratePagePatch19}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch20}
\begin{paste}{ugIntroIntegratePageFull20}{ugIntroIntegratePageEmpty20}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty20}
\begin{paste}{ugIntroIntegratePageEmpty20}{ugIntroIntegratePagePatch20}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch21}
\begin{paste}{ugIntroIntegratePageFull21}{ugIntroIntegratePageEmpty21}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty21}
\begin{paste}{ugIntroIntegratePageEmpty21}{ugIntroIntegratePagePatch21}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch22}
\begin{paste}{ugIntroIntegratePageFull22}{ugIntroIntegratePageEmpty22}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty22}
\begin{paste}{ugIntroIntegratePageEmpty22}{ugIntroIntegratePagePatch22}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch23}
\begin{paste}{ugIntroIntegratePageFull23}{ugIntroIntegratePageEmpty23}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty23}
\begin{paste}{ugIntroIntegratePageEmpty23}{ugIntroIntegratePagePatch23}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch24}
\begin{paste}{ugIntroIntegratePageFull24}{ugIntroIntegratePageEmpty24}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty24}
\begin{paste}{ugIntroIntegratePageEmpty24}{ugIntroIntegratePagePatch24}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch25}
\begin{paste}{ugIntroIntegratePageFull25}{ugIntroIntegratePageEmpty25}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty25}
\begin{paste}{ugIntroIntegratePageEmpty25}{ugIntroIntegratePagePatch25}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePagePatch26}
\begin{paste}{ugIntroIntegratePageFull26}{ugIntroIntegratePageEmpty26}\end{paste}\end{patch}
\begin{patch}{ugIntroIntegratePageEmpty26}
\begin{paste}{ugIntroIntegratePageEmpty26}{ugIntroIntegratePagePatch26}\end{paste}\end{patch}
\begin{verbatim}
type: \texttt{Union(Expression Integer,...)}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroIntegratePagePatch9}
\begin{paste}{ugIntroIntegratePageFull9}{ugIntroIntegratePageEmpty9}
\pastebutton{ugIntroIntegratePageFull9}{\hidepaste}
\tab{5}\spadcommand{integrate((x + 1) / (x*(x + log x) ** (3/2)), x)}
\indentrel{3}\begin{verbatim}
2\log(x) + x
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroIntegratePagePatch10}
\begin{paste}{ugIntroIntegratePageFull10}{ugIntroIntegratePageEmpty10}
\pastebutton{ugIntroIntegratePageFull10}{\hidepaste}
\tab{5}\spadcommand{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
\indentrel{3}\begin{verbatim}
erf(x) - 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Differential Equations

\begin{page}{ugIntroDiffEqnsPage}{1.14. Differential Equations}
\beginscroll
%
The general approach used in integration also carries over to the
solution of linear differential equations.

\labelSpace{2pc}
\xtc{Let’s solve some differential equations.}
\labelSpace{2pc}
\xtc{\begin{verbatim}
Let \axiom{y} be the unknown function in terms of \axiom{x}.
\end{verbatim}}
\xtc{\spadpaste{y := operator 'y \bound{y}} }
\xtc{\xtc{Here we solve a third order equation with polynomial coefficients.}
\xtc{\begin{verbatim}
\spadpaste{deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x**4 \bound{e3}\free{y}}
\end{verbatim}}
}\xtc{\spadpaste{solve(deq, y, x) \free{e3}\free{y}}}
\xtc{\xtc{Here we find all the algebraic function solutions of the equation.}
\xtc{\begin{verbatim}
deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0 \bound{e5}\free{y}}
\end{verbatim}}
\xtc{\spadpaste{solve(deq, y, x) \free{e5}\free{y}}}
\xtc{Coefficients of differential equations can come from arbitrary
constant fields.
For example, coefficients can contain algebraic numbers.}
\xtc{\xtc{}}}
\endscroll
This example has solutions whose logarithmic derivative is an algebraic function of degree two.

\[
\text{eq := } 2x^3 \cdot \frac{D(y(x),x,2)}{D(y(x),x)} + 3x^2 \cdot \frac{D(y(x),x)}{D(y(x),x)} - 2 \cdot y(x)
\]

Here’s another differential equation to solve.

\[
deq := \frac{D(y(x),x)}{y(x)} = \frac{y(x)}{x + y(x) \cdot \log y(x)}
\]

Rather than attempting to get a closed form solution of a differential equation, you instead might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell Axiom that \texttt{x} is also an operator.

Here are the two equations forming our system.

\[
eq 1 := \frac{D(x(t),t)}{1 + x(t)^2}
\]

\[
eq 2 := \frac{D(y(t),t)}{y(t)} - x(t) \cdot y(t)
\]

We can solve the system around \texttt{x(t = 0)} with the initial conditions \texttt{x(0) = 0} and \texttt{y(0) = 1}. Notice that since we give the unknowns in the order \texttt{|x, y|}, the answer is a list of two series in the order \texttt{|series for x(t), series for y(t)|}.
\spadpaste{seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])\free{x}\free{y}\free{eq1}\free{eq2}}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntroDiffEqnsPagePatch1}
\begin{paste}{ugIntroDiffEqnsPageFull1}{ugIntroDiffEqnsPageEmpty1}
\pastebutton{ugIntroDiffEqnsPageFull1}{\hidepaste}
\tab{5}\spadcommand{y := operator 'y\bound{y }}
\indentrel{3}\begin{verbatim}
(1) y
Type: BasicOperator
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntroDiffEqnsPageEmpty1}
\begin{paste}{ugIntroDiffEqnsPageEmpty1}{ugIntroDiffEqnsPagePatch1}
\pastebutton{ugIntroDiffEqnsPageEmpty1}{\showpaste}
\tab{5}\spadcommand{y := operator 'y\bound{y }}
\end{paste}
\end{patch}

\begin{patch}{ugIntroDiffEqnsPagePatch2}
\begin{paste}{ugIntroDiffEqnsPageFull2}{ugIntroDiffEqnsPageEmpty2}
\pastebutton{ugIntroDiffEqnsPageFull2}{\hidepaste}
\tab{5}\spadcommand{deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x**4\bound{e3}\free{y}}
\indentrel{3}\begin{verbatim}
3 ,,, 2 ,, , 4
(2) x y (x) + x y (x) - 2xy (x) + 2y(x)= 2x
Type: Equation Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntroDiffEqnsPageEmpty2}
\begin{paste}{ugIntroDiffEqnsPageEmpty2}{ugIntroDiffEqnsPagePatch2}
\pastebutton{ugIntroDiffEqnsPageEmpty2}{\showpaste}
\tab{5}\spadcommand{deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x**4\bound{e3}\free{y}}
\end{paste}
\end{patch}

\begin{patch}{ugIntroDiffEqnsPagePatch3}
\begin{paste}{ugIntroDiffEqnsPageFull3}{ugIntroDiffEqnsPageEmpty3}
\pastebutton{ugIntroDiffEqnsPageFull3}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e3}\free{y}}
\indentrel{3}\begin{verbatim}
(3)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

(3)
\begin{verbatim}
5 3 2
x - 10x + 20x + 4
\end{verbatim}
\[\begin{array}{c}
[\text{particular} = 15x, \\
\quad \quad \quad 3 \quad 2 \quad 3 \quad 3 \quad 2 \\
\quad \quad \quad 2x - 3x + 1 \quad x - 1 \quad x - 3x - 1 \\
\text{basis} = [,,] \\
x \quad x \quad x
\end{array} \]
Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)
\end{verbatim}
}\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroDiffEqnsPageEmpty3}
\begin{paste}{ugIntroDiffEqnsPageEmpty3}{ugIntroDiffEqnsPagePatch3}
\pastebutton{ugIntroDiffEqnsPageEmpty3}{\showpaste}
\tab{5}\spadcommand{solve(deq, y, x) free(e3) free(y)}
\end{paste}\end{patch}
\begin{patch}{ugIntroDiffEqnsPagePatch4}
\begin{paste}{ugIntroDiffEqnsPageFull4}{ugIntroDiffEqnsPageEmpty4}
\pastebutton{ugIntroDiffEqnsPageFull4}{\hidepaste}
\tab{5}\spadcommand{deq := \(x^2 + 1 \) \cdot D(y x, x, 2) + 3 \cdot x \cdot D(y x, x) + y x = 0 \) bound(e5) free(e5) free(y)}
\indentrel{3}\begin{verbatim}
(4) \((x + 1)y' (x) + 3xy (x) + y(x) = 0 \)
Type: Equation Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntroDiffEqnsPageEmpty4}
\begin{paste}{ugIntroDiffEqnsPageEmpty4}{ugIntroDiffEqnsPagePatch4}
\pastebutton{ugIntroDiffEqnsPageEmpty4}{\showpaste}
\tab{5}\spadcommand{solve(deq, y, x) free(e5) free(y)}
\end{paste}\end{patch}
\begin{patch}{ugIntroDiffEqnsPagePatch5}
\begin{paste}{ugIntroDiffEqnsPageFull5}{ugIntroDiffEqnsPageEmpty5}
\pastebutton{ugIntroDiffEqnsPageFull5}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x) free(e5) free(y)}
\indentrel{3}\begin{verbatim}
(5) \[1 \log(x + 1 - x) \]
[\text{particular} = 0, \text{basis} = [,,] \\
\quad \quad \quad 2 \quad 2 \\
\quad \quad \quad x + 1 \quad x + 1 \\
\text{Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
3 ,
(6) 2x y (x) + 3x y (x) - 2y(x)
\end{verbatim}

Type: Expression Integer
\begin{verbatim}
(7) [\%e ,\%e]
\end{verbatim}

Type: List Expression Integer
(8) \[y(x) = y(x) \log(y(x)) + x \]

Type: Equation Expression Integer

\begin{verbatim}
2
y(x) \log(y(x)) - 2x
\end{verbatim}

Type: Union(Expression Integer,...)

\begin{verbatim}
2
y(x)
\end{verbatim}

Type: BasicOperator

\begin{verbatim}
2
y(x)
\end{verbatim}

Type: Union(Expression Integer,...)
\textspadcommand{eq1 := D(x(t), t) = 1 + x(t)**2\free{x} \free{y}\bound{eq1}}

\textverbatim{\indentrel{-3}}
\begin{verbatim}
(11) \hspace{1em} x(t) = x(t) + 1
\end{verbatim}
\textverbatim{\indentrel{3}}

\text{Type: Equation Expression Integer}

\textspadcommand{eq2 := D(y(t), t) = x(t) * y(t)\free{x}\free{y}\bound{eq2}}

\textverbatim{\indentrel{-3}}
\begin{verbatim}
(12) \hspace{1em} y(t) = x(t)y(t)
\end{verbatim}
\textverbatim{\indentrel{3}}

\text{Type: Equation Expression Integer}

\textspadcommand{seriesSolve[[eq2, eq1], [x, y], t = 0, \{y(0) = 1, x(0) = 0\}]\free{x}\free{y}\free{eq1}\free{eq2}}

\textverbatim{\indentrel{3}}
\begin{verbatim}
(13) \hspace{1em} 1 \hspace{1em} 3 \hspace{1em} 2 \hspace{1em} 5 \hspace{1em} 17 \hspace{1em} 7 \hspace{1em} 62 \hspace{1em} 9 \hspace{1em} 11
[t + t + t + t + t + O(t),]
3 \hspace{1em} 15 \hspace{1em} 315 \hspace{1em} 2835
\]
\]
1 \hspace{1em} 2 \hspace{1em} 5 \hspace{1em} 4 \hspace{1em} 61 \hspace{1em} 6 \hspace{1em} 277 \hspace{1em} 8 \hspace{1em} 50521 \hspace{1em} 10
1 + t + t + t + t + t
2 \hspace{1em} 24 \hspace{1em} 720 \hspace{1em} 8064 \hspace{1em} 3628800
+
11
O(t)
\end{verbatim}
Solution of Equations

--- ug01.ht ---

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equations. When the number of equations and unknowns is the same, and you have no symbolic coefficients, you can use \spadfun{solve} for real roots and \spadfun{complexSolve} for complex roots. In each case, you tell Axiom how accurate you want your result to be. All operations in the \spadfun{solve} family return answers in the form of a list of solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter \axiom{t}.

\spad{S(t) == \[x**2-2*y**2 - t,x*y-y-5*x + 5\]} \free{S1}

Find the real roots of \spad{S(19)} with rational arithmetic, correct to within \spad{1/10**20}.

\spad{solve(S(19),1/10**20)} \free{S1}

Find the complex roots of \spad{S(19)} with floating point coefficients to \spad{20} digits accuracy in the mantissa.
If a system of equations has symbolic coefficients and you want a solution in radicals, try \spadfun{radicalSolve}.

For systems of equations with symbolic coefficients, you can apply \spadfun{solve}, listing the variables that you want Axiom to solve for. For polynomial equations, a solution cannot usually be expressed solely in terms of the other variables. Instead, the solution is presented as a ‘‘triangular’’ system of equations, where each polynomial has coefficients involving only the succeeding variables. This is analogous to converting a linear system of equations to ‘‘triangular form’’.

A system of three equations in five variables.

\spad{eqns := [x**2 - y + z, x**2*z + x**4 - b*y, y**2 z - a - b*x]}

Solve the system for unknowns \smath{[x,y,z]}, reducing the solution to triangular form.

\spad{solve(eqns,[x,y,z])}

}\end{page}
\begin{verbatim}
(2)
2451682632253093442511
[[y= 5, x= -],
 295147905179352825856
2451682632253093442511
[y= 5, x=]]
 295147905179352825856
Type: List List Equation Polynomial Fraction Integer
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
(3)
[
 [y= 5.0,
 x= 8.3066238629 1807485256 1669055295 290320373]
 ,
 [y= 5.0,
 x= - 8.3066238629 1807485256 1669055295 290320373]
 ,
 [y= - 3.0 %i, x= 1.0], [y= 3.0 %i, x= 1.0]]
Type: List List Equation Polynomial Complex Float
\end{verbatim}
\end{patch}
(4)
\[
[[x = - \alpha + 50 , y = 5] , [x = \alpha + 50 , y = 5],
\]
\[
- \alpha + 1 - \alpha + 1
\]
\[
[x = 1, y = -] , [x = 1, y = -]
\]
\[
2 2
\]
Type: List List Equation Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroSolutionPageEmpty4}
\begin{paste}{ugIntroSolutionPageEmpty4}{ugIntroSolutionPagePatch4}
\pastebutton{ugIntroSolutionPageEmpty4}{\showpaste}
\tab{5}\spadcommand{\text{radicalSolve}(S(a),[x,y])\free{S1}}
\end{paste}\end{patch}

\begin{patch}{ugIntroSolutionPagePatch5}
\begin{paste}{ugIntroSolutionPageFull5}{ugIntroSolutionPageEmpty5}
\pastebutton{ugIntroSolutionPageFull5}{\hidepaste}
\tab{5}\spadcommand{\text{eqns} := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]\bound{e}}
\indentrel{3}\begin{verbatim}
2 2 4 2
(5) \[z - y + x , x z - b y + x , y z - b x - a]
Type: List Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntroSolutionPagePatch6}
\begin{paste}{ugIntroSolutionPageFull6}{ugIntroSolutionPageEmpty6}
\pastebutton{ugIntroSolutionPageFull6}{\hidepaste}
\tab{5}\spadcommand{\text{solve}(\text{eqns},[x,y,z])\free{e}}
\indentrel{3}\begin{verbatim}
(6)
2
a a
[[x = - , y = 0, z = -],
 b 2
b
3 2 2
z + 2b z + b z - a
[x = , y = z + b, b
b
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
6 5 2 4 3 3 4 2
z + 4b z + 6b z + (4b - 2a)z + (b - 4a b)z
+ z + (4b - 2a)z + (b - 4a b)z
 2 3 2
- 2a b z - b + a
= 0
\end{verbatim}

Type: List List Equation Fraction Polynomial Integer

\end{verbatim}
\end{patch}

\begin{patch}{ugIntroSolutionPageEmpty6}
\begin{paste}{ugIntroSolutionPageEmpty6}{ugIntroSolutionPagePatch6}
\pastebutton{ugIntroSolutionPageEmpty6}{\showpaste}
\tab{5}\spadcommand{solve(eqns,[x,y,z])}\free{e }
\end{paste}\end{patch}

System Commands

⇒ "notitle" (ugSysCmdPage) 19 on page 2538
— ug01.ht —

We conclude our tour of Axiom with a brief discussion of
\spadgloss{system commands}. System commands are special statements
that start with a closing parenthesis (\axiomSyntax{)}. They are used
to control or display your Axiom environment, start the Hyperdoc
system, issue operating system commands and leave Axiom. For example,
\spadsys{system} is used to issue commands to the operating system
from Axiom. Here is a brief description of some of these commands.
For more information on specific commands, see
\downlink{"Axiom System Commands'’}{ugSysCmdPage} in Appendix B
\ignore{ugSysCmd}.

Perhaps the most important user command is the \spadsys{clear all}
command that initializes your environment. Every section and
subsection in this book has an invisible \spadsys{clear all} that is
read prior to the examples given in the section. \spadsys{clear all}
gives you a fresh, empty environment with no user variables defined
and the step number reset to axiom{1}. The \spad{clear} command can also be used to selectively clear values and properties of system variables.

Another useful system command is \spad{read}. A preferred way to develop an application in Axiom is to put your interactive commands into a file, say \{\bf my.input\} file. To get Axiom to read this file, you use the system command \spad{read my.input}. If you need to make changes to your approach or definitions, go into your favorite editor, change \{\bf my.input\}, then \spad{read my.input} again.

Other system commands include: \spad{history}, to display previous input and/or output lines; \spad{display}, to display properties and values of workspace variables; and \spad{what}.

\xtc{Issue \spad{what} to get a list of Axiom objects that contain a given substring in their name.}
\spadpaste{\spad{what operations integrate}}

\section{Undo}

A useful system command is \spad{undo}. Sometimes while computing interactively with Axiom, you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to try one of several alternative approaches, one after another, to find the best way to approach an application. For this, you will find the \spad{undo} facility of Axiom helpful.

System command \spad{undo n} means ‘undo back to step axiom{n}’; it restores the values of user variables to those that existed immediately after input expression axiom{n} was evaluated. Similarly, \spad{undo -n} undoes changes caused by the last axiom{n} input expressions. Once you have done an \spad{undo}, you can continue on from there, or make a change and \{\bf redo\} all your input expressions from the point of the \spad{undo} forward. The \spad{undo} is completely general: it changes the environment like any user expression. Thus you can \spad{undo} any previous undo.

Here is a sample dialogue between user and Axiom.
\xtc{‘Let me define two mutually dependent functions axiom{f} and axiom{g} piece-wise.’}
\spadpaste{f(0) == 1; g(0) == 1\spad{undo}}
''Here is the general term for \texttt{f}.''
\spadpaste{f(n) == e/2*f(n-1) - x*g(n-1)}

''And here is the general term for \texttt{g}.''
\spadpaste{g(n) == -x*f(n-1) + d/3*g(n-1)}

''What is value of \texttt{f(3)}?''
\spadpaste{f(3)}

Hmm, I think I want to define \texttt{f} differently.
Undo to the environment right after I defined \texttt{f}.''
\spadpaste{)undo 2}

''Here is how I think I want \texttt{f} to be defined instead.''
\spadpaste{f(n) == d/3*f(n-1) - x*g(n-1)}

Redo the computation from expression \texttt{3} forward.
\spadpaste{)undo)redo}

''I want my old definition of \texttt{f} after all. Undo the undo and restore
the environment to that immediately after \texttt{(4)}.''
\spadpaste{)undo 4}

''Check that the value of \texttt{f(3)} is restored.''
\spadpaste{f(3)}

After you have gone off on several tangents, then backtracked to
previous points in your conversation using \texttt{undo}, you might
want to save all the ‘‘correct’’ input commands you issued,
disregarding those undone. The system command \texttt{history}
\texttt{write mynew.input} writes a clean straight-line program onto the file
mynew.input on your disk.

This concludes your tour of Axiom.
To disembark, issue the system command \spads{)quit} to leave Axiom and return to the operating system.

{\bf \spadcommand{)what operations integrate}}

\begin{verbatim}
Type: Void
\end{verbatim}

{\bf \spad{f(n) == e/2*f(n-1) - x*g(n-1)\bound{u2}\free{u1}}}

Type: Void
\begin{verbatim}
tab{5}\spadcommand{f(n) == e/2*f(n-1) - x*g(n-1)}
\end{verbatim}
\begin{verbatim}
tab{5}\spadcommand{g(n) == -x*f(n-1) + d/3*g(n-1)}
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Polynomial Fraction Integer
\end{verbatim}
\begin{verbatim}
\end{verbatim}
\texttt{f(n) == d/3*f(n-1) - x*g(n-1)}

Type: Void

\begin{verbatim}
(6)
\end{verbatim}
\[- x + (e + d)x + (-e - d\ e - d)x + e \]

Type: Polynomial Fraction Integer
Chapter 7

Users Guide Chapter 2
(ug02.ht)

Using Types and Modes

⇒ “notitle” (ugTypesBasicPage) 7 on page 1614
⇒ “notitle” (ugTypesWritingPage) 7 on page 1629
⇒ “notitle” (ugTypesDeclarePage) 7 on page 1641
⇒ “notitle” (ugTypesRecordsPage) 7 on page 1647
⇒ “notitle” (ugTypesUnionsPage) 7 on page 1656
⇒ “notitle” (ugTypesAnyNonePage) 7 on page 1668
⇒ “notitle” (ugTypesConvertPage) 7 on page 1671
⇒ “notitle” (ugTypesSubdomainsPage) 7 on page 1679
⇒ “notitle” (ugTypesPkgCallPage) 7 on page 1686
⇒ “notitle” (ugTypesResolvePage) 7 on page 1696
⇒ “notitle” (ugTypesExposePage) 7 on page 1699
⇒ “notitle” (ugAvailSnoopPage) 7 on page 1703

In this chapter we look at the key notion of \spadgloss{type} and its generalization \spadgloss{mode}. We show that every Axiom object has a type that determines what you can do with the object. In particular, we explain how to use types to call specific functions from particular parts of the library and how types and modes can be used to create new objects from old. We also look at \pspadtype{Record} and \pspadtype{Union} types and the special type \axiomType{Any}. Finally, we give you an idea of how Axiom
manipulates types and modes internally to resolve ambiguities.

\beginmenu
\menudownlink{2.1. The Basic Idea}{ugTypesBasicPage}
\menudownlink{2.2. Writing Types and Modes}{ugTypesWritingPage}
\menudownlink{2.3. Declarations}{ugTypesDeclarePage}
\menudownlink{2.4. Records}{ugTypesRecordsPage}
\menudownlink{2.5. Unions}{ugTypesUnionsPage}
\menudownlink{2.6. The "Any" Domain}{ugTypesAnyNonePage}
\menudownlink{2.7. Conversion}{ugTypesConvertPage}
\menudownlink{2.8. Subdomains Again}{ugTypesSubdomainsPage}
\menudownlink{2.9. Package Calling and Target Types}{ugTypesPkgCallPage}
\menudownlink{2.10. Resolving Types}{ugTypesResolvePage}
\menudownlink{2.11. Exposing Domains and Packages}{ugTypesExposePage}
\menudownlink{2.12. Commands for Snooping}{ugAvailSnoopPage}
\endmenu
\endscroll
\autobuttons
\end{page

The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such as numbers and polynomials, data structure objects such as lists and arrays, and graphics objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of \textit{domain of computation}, or simply \textit{domain}. Each domain denotes a class of objects. The class of objects it denotes is usually given by the name of the domain: \texttt{Integer} for the integers, \texttt{Float} for floating-point numbers, and so on. The convention is that the first letter of a domain name is capitalized. Similarly, the domain \texttt{Polynomial(Integer)} denotes "polynomials with integer coefficients." Also, \texttt{Matrix(Float)} denotes "matrices with floating-point entries."

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain \texttt{Integer} and the polynomial $x + 3$
The Axiom world deals with many kinds of objects. There are mathematical objects such as numbers and polynomials, data structure objects such as lists and arrays, and graphics objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of \textit{domain of computation}, or simply \textit{domain}. Each domain denotes a class of objects. The class of objects it denotes is usually given by the name of the domain: \texttt{Integer} for the integers, \texttt{Float} for floating-point numbers, and so on. The convention is that the first letter of a domain name is capitalized. Similarly, the domain \texttt{Polynomial(Integer)} denotes ''polynomials with integer coefficients.''' Also, \texttt{Matrix(Float)} denotes ''matrices with floating-point entries.'''

Every basic Axiom object belongs to a unique domain. The integer \texttt{3} belongs to the domain \texttt{Integer} and the polynomial \texttt{x + 3} belongs to the domain \texttt{Polynomial(Integer)}. The domain of an object is also called its \textit{type}. Thus we speak of ''the type \texttt{Integer}'' and ''the type \texttt{Polynomial(Integer)}.''

\texttt{After an Axiom computation, the type is displayed toward the right-hand side of the page (or screen).}{\spadpaste{-3}}

\texttt{Here we create a rational number but it looks like the last result. The type however tells you it is different. You cannot identify the type of an object by how Axiom displays the object.}{\spadpaste{-3/1}}

\texttt{When a computation produces a result of a simpler type, Axiom leaves the type unsimplified. Thus no information is lost.}
This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

When you issue a positive number, the type \texttt{PositiveInteger} is printed. Surely, \texttt{3} also has type \texttt{Integer}! The curious reader may now have two questions. First, is the type of an object not unique? Second, how is \texttt{PositiveInteger} related to \texttt{Integer}? Read on!

Any domain can be refined to a subdomain by a membership predicate. For example, the domain \texttt{Integer} can be refined to the subdomain \texttt{PositiveInteger}, the set of integers \texttt{x} such that \texttt{x > 0}, by giving the Axiom predicate \texttt{x \rightarrow x > 0}. Similarly, Axiom can define subdomains such as ‘the subdomain of diagonal matrices,’ ‘the subdomain of lists of length two,’ ‘the subdomain of monic irreducible polynomials in \texttt{x},’ and so on. Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains. Any subdomain of the domain of an object can be used as the \texttt{type} of that object. The type of \texttt{3} is indeed both \texttt{Integer} and \texttt{PositiveInteger} as well as any other subdomain of integer whose predicate is satisfied, such as ‘the prime integers,’ ‘the odd positive integers between 3 and 17,’ and so on.
(1) \(-3\)
Type: Integer

\begin{verbatim}
\end{verbatim}

\begin{verbatim}
(2) \(-3/1\)
Type: Fraction Integer
\end{verbatim}

\begin{verbatim}
(3) 3
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(4) 6
Type: Expression Integer
\end{verbatim}
\begin{verbatim}
3
\end{verbatim}

\begin{verbatim}
(5) 3
Type: PositiveInteger
\end{verbatim}
In Axiom, domains are objects. You can create them, pass them to functions, and, as we'll see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of arguments.

To ask for "the factorial of 7" you enter this expression to Axiom. This applies the function factorial to the value 7 to compute the result.

```
factorial(7)
```

Enter the type `Polynomial (Integer)` as an expression to Axiom. This looks much like a function call as well. It is! The result is appropriately stated to be of type `Domain`, which according to our usual convention, denotes the class of all domains.

```
Polynomial (Integer)
```

The most basic operation involving domains is that of building a new domain from a given one. To create the domain of "polynomials over the integers," Axiom applies the function
according to our usual convention, denotes the class of all domains.

\texttt{Polynomial(Integer)}

The most basic operation involving domains is that of building a new domain from a given one. To create the domain of ‘‘polynomials over the integers,’’ Axiom applies the function \texttt{Polynomial} to the domain \texttt{Integer}. A function like \texttt{Polynomial} is called a \texttt{domain constructor} or, more simply, a \texttt{constructor}. A domain constructor is a function that creates a domain. An argument to a domain constructor can be another domain or, in general, an arbitrary kind of object. \texttt{Polynomial} takes a single domain argument while \texttt{SquareMatrix} takes a positive integer as an argument to give its dimension and a domain argument to give the type of its components.

What kinds of domains can you use as the argument to \texttt{Polynomial} or \texttt{SquareMatrix} or \texttt{List}? Well, the first two are mathematical in nature. You want to be able to perform algebraic operations like \texttt{+} and \texttt{*} on polynomials and square matrices, and operations such as \texttt{determinant} on square matrices. So you want to allow polynomials of integers \{it and\} polynomials of square matrices with complex number coefficients and, in general, anything that ‘‘makes sense.’’ At the same time, you don’t want Axiom to be able to build nonsense domains such as ‘‘polynomials of strings!’’

In contrast to algebraic structures, data structures can hold any kind of object. Operations on lists such as \texttt{insert\{}List, \texttt{delete\{}List, and \texttt{concat\{}List\} just manipulate the list itself without changing or operating on its elements. Thus you can build \texttt{List} over almost any datatype, including itself.

\texttt{Create a complicated algebraic domain.}

\texttt{List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))}

\texttt{Create a meaningless domain.}

\texttt{Polynomial(String)}

Evidently from our last example, Axiom has some mechanism that tells what a constructor can use as an argument. This brings us to the notion of \texttt{category}. As domains are objects, they too have a domain.
The domain of a domain is a category.
A category is simply a type whose members are domains.

A common algebraic category is \(\text{\texttt{Ring}}\), the class of all domains that are "rings." A ring is an algebraic structure with constants \(\text{\texttt{0}}\) \(\text{\texttt{1}}\) and operations \(\text{\texttt{+}}\), \(\text{\texttt{-}}\), and \(\text{\texttt{*}}\). These operations are assumed "closed" with respect to the domain, meaning that they take two objects of the domain and produce a result object also in the domain. The operations are understood to satisfy certain "axioms," certain mathematical principles providing the algebraic foundation for rings. For example, the "additive inverse axiom" for rings states: "Every element \(\text{\texttt{x}}\) has an additive inverse \(\text{\texttt{y}}\) such that \(\text{\texttt{x + y = 0}}\)." The prototypical example of a domain that is a ring is the integers. Keep them in mind whenever we mention \(\text{\texttt{Ring}}\).

Many algebraic domain constructors such as \(\text{\texttt{Complex}}, \text{\texttt{Polynomial}}, \text{\texttt{Fraction}}\), take rings as arguments and return rings as values. You can use the infix operator "\(\text{\texttt{has}}\)" \(\text{\texttt{has}}\) to ask a domain if it belongs to a particular category.

\(\text{\texttt{Polynomial(Integer) has Ring}}\)
Use \texttt{SquareMatrix(n,R)} instead. For any positive integer \texttt{n}, it builds \(^{\prime\prime}\text{the ring of }\texttt{n}\text{ by }\texttt{n}\text{ matrices over }\texttt{R}^{\prime\prime}\).

\begin{verbatim}
\spadpaste{Polynomial(SquareMatrix(7,Complex(Integer)))}
\end{verbatim}

Another common category is \texttt{Field}, the class of all fields. A field is a ring with additional operations. For example, a field has commutative multiplication and a closed operation \texttt{Field} for the division of two elements. \texttt{Field} is not a field since, for example, \texttt{3/2} does not have an integer result. The prototypical example of a field is the rational numbers, that is, the domain \texttt{Fraction(Integer)}. In general, the constructor \texttt{Field} takes a ring as an argument and returns a field.\footnote{Actually, the argument domain must have some additional properties so as to belong to category \texttt{IntegralDomain}.} Other domain constructors, such as \texttt{Complex}, build fields only if their argument domain is a field.

\begin{verbatim}
\spadpaste{Complex(Integer) has Field}
\end{verbatim}

But fractions of complex integers do.

\begin{verbatim}
\spadpaste{Fraction(Complex(Integer)) has Field}
\end{verbatim}

\begin{verbatim}
\spadpaste{Complex(Fraction(Integer)) has Field}
\end{verbatim}

The algebraically equivalent domain of complex rational numbers is a field since domain constructor \texttt{Complex} produces a field whenever its argument is a field.

The most basic category is \texttt{Type}. It denotes the class of all domains and subdomains.\footnote{\texttt{Type} does not denote the class of all types. The type of all categories is \texttt{Category}. The type of \texttt{Type} itself is undefined.} Domain constructor \texttt{List} is able to build \(^{\prime\prime}\text{lists of elements from domain }\texttt{D}^{\prime\prime}\) for arbitrary \texttt{D} simply by requiring that \texttt{D} belong to category \texttt{Type}.\footnote{\texttt{List} is a member of \texttt{Category}.}
Now, you may ask, what exactly is a category?
Like domains, categories can be defined in the Axiom language.
A category is defined by three components:

1. a name (for example, `axiomType{Ring}`), used to refer to the class of domains that the category represents;
2. a set of operations, used to refer to the operations that the domains of this class support (for example, `axiomOp{+}`, `axiomOp{-}`, and `axiomOp{*}` for rings); and
3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom! Because categories can extend one another, they form hierarchies. Detailed charts showing the category hierarchies in Axiom are displayed in the endpages of this book. There you see that all categories are extensions of `axiomType{Type}` and that `axiomType{Field}` is an extension of `axiomType{Ring}`.

The operations supported by the domains of a category are called the exports of that category because these are the operations made available for system-wide use. The exports of a domain of a given category are not only the ones explicitly mentioned by the category. Since a category extends other categories, the operations of these other categories---and all categories these other categories extend---are also exported by the domains.

For example, polynomial domains belong to `axiomType{PolynomialCategory}`. This category explicitly mentions some twenty-nine operations on polynomials, but it extends eleven other categories (including `axiomType{Ring}`). As a result, the current system has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, `axiomType{Ring}`, it is convenient to say that the domain exports `axiomType{Ring}`. The name of the category thus provides a convenient shorthand for the list of operations exported by the category. Rather than listing operations such as `axiomOpFrom{+}{Ring}` and `axiomOpFrom{*}{Ring}` of `axiomType{Ring}` each time they are needed, the definition of a type simply asserts that it exports category `axiomType{Ring}`.

The category name, however, is more than a shorthand. The name `axiomType{Ring}`, in fact, implies that the operations exported by rings are required to satisfy a set of ‘‘axioms’’ associated with the name `axiomType{Ring}`.

This subtle but important feature distinguishes Axiom from
other abstract datatype designs.}

Why is it not correct to assume that some type is a ring if it exports all of the operations of \axiomType{Ring}? Here is why. Some languages such as \textit{bf APL} denote the \axiomType{Boolean} constants \axiom{true} and \axiom{false} by the integers \axiom{1} and \axiom{0} respectively, then use \axiomOp{+} and \axiomOp{*} to denote the logical operators \axiomOp{or} and \axiomOp{and}. But with these definitions \axiomType{Boolean} is not a ring since the additive inverse axiom is violated.\footnote{There is no inverse element \axiom{a} such that \axiom{1 + a = 0}, or, in the usual terms:
\axiom{true or a = false}.} This alternative definition of \axiomType{Boolean} can be easily and correctly implemented in Axiom, since \axiomType{Boolean} simply does not assert that it is of category \axiomType{Ring}. This prevents the system from building meaningless domains such as \axiomType{Polynomial(Boolean)} and then wrongfully applying algorithms that presume that the ring axioms hold.

Enough on categories. To learn more about them, see \downlink{``Categories''}{ugCategoriesPage} in Chapter 12\ignore{ugCategories}. We now return to our discussion of domains.

Domains \spadgloss{export} a set of operations to make them available for system-wide use. \axiomType{Integer}, for example, exports the operations \axiomOp{+}{Integer} and \axiomOp{=}{Integer} given by the \spadglossSee{signatures}{signature} \axiomOp{+}{Integer}: \spadsig{(Integer,Integer)}{Integer} and \axiomOp{=}{Integer}: \spadsig{(Integer,Integer)}{Boolean}, respectively. Each of these operations takes two \axiomType{Integer} arguments. The \axiomOp{+}{Integer} operation also returns an \axiomType{Integer} but \axiomOp{=}{Integer} returns a \axiomType{Boolean}: \axiom{true} or \axiom{false}. The operations exported by a domain usually manipulate objects of the domain---but not always.

The operations of a domain may actually take as arguments, and return as values, objects from any domain. For example, \axiomType{Fraction (Integer)} exports the operations \axiomOp{+}{Fraction}:
\spadsig{(Integer,Integer)}{Fraction} and \axiomFun{characteristic}{Fraction}:
\spadsig{NonNegativeInteger}.

Suppose all operations of a domain take as arguments and return as values, only objects from \textit{it other} domains. This kind of domain is what Axiom calls a \spadgloss{package}.

A package does not designate a class of objects at all. Rather, a package is just a collection of operations. Actually the bulk of the Axiom library of algorithms consists of packages. The facilities for
factorization; integration; solution of linear, polynomial, and
differential equations; computation of limits; and so on, are all
defined in packages. Domains needed by algorithms can be passed to a
package as arguments or used by name if they are not "variable."
Packages are useful for defining operations that convert objects of
one type to another, particularly when these types have different
parameterizations. As an example, the package
\axiomType{PolynomialFunction2(R,S)} defines operations that convert
polynomials over a domain \axiom{R} to polynomials over \axiom{S}. To
convert an object from \axiomType{Polynomial(Integer)} to
\axiomType{Polynomial(Float)}, Axiom builds the package
\axiomType{PolynomialFunctions2(Integer,Float)} in order to create the
required conversion function. (This happens "behind the scenes" for
you: see \downlink{"Conversion"}{ugTypesConvertPage} in
Section 2.7\ignore{ugTypesConvert} for details on
how to convert objects.)

Axiom categories, domains and packages and all their contained
functions are written in the Axiom programming language and have
been compiled into machine code.
This is what comprises the Axiom \spadgloss{library}.
In the rest of this book we show you how to use these domains and
their functions and how to write your own functions.

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugTypesBasicDomainConsPagePatch1}
\begin{paste}{ugTypesBasicDomainConsPageFull1}{ugTypesBasicDomainConsPageEmpty1}
pastebutton{ugTypesBasicDomainConsPageFull1}{\hidepaste}
\tab{5}\spadcommand{factorial(7)}

(1) 5040
Type: PositiveInteger
\end{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesBasicDomainConsPageEmpty1}
\begin{paste}{ugTypesBasicDomainConsPageEmpty1}{ugTypesBasicDomainConsPagePatch1}
pastebutton{ugTypesBasicDomainConsPageFull1}{\showpaste}
\tab{5}\spadcommand{factorial(7)}

(1) 5040
Type: PositiveInteger
\end{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesBasicDomainConsPagePatch2}
\begin{paste}{ugTypesBasicDomainConsPageFull2}{ugTypesBasicDomainConsPageEmpty2}
pastebutton{ugTypesBasicDomainConsPageFull12}{\hidepaste}
\tab{5}\spadcommand{Polynomial(Integer)}

(2) Polynomial Integer

\end{verbatim}
\end{verbatim}
\end{patch}
Type: Domain

\begin{verbatim}
(3)
List List Matrix Polynomial Complex Fraction Integer
Type: Domain
\end{verbatim}

(4) true
Type: Boolean
\begin{spadcommand}{Polynomial(Integer) has Ring}
end\end{spadcommand}

\begin{spadcommand}{List(Integer) has Ring}
\begin{verbatim}
(5) false
Type: Boolean
end
\end{verbatim}
\end{spadcommand}

\begin{spadcommand}{Matrix(Integer) has Ring}
\begin{verbatim}
(6) false
Type: Boolean
end
\end{verbatim}
\end{spadcommand}

\begin{spadcommand}{Polynomial(Matrix(Integer))}
\end{spadcommand}
\begin{verbatim}
(7) Polynomial SquareMatrix(7,Complex Integer)
 Type: Domain
\end{verbatim}

\begin{verbatim}
(8) false
 Type: Boolean
\end{verbatim}

\begin{verbatim}
(9) true
 Type: Boolean
\end{verbatim}
We have already seen in the last section several examples of types. Most of these examples had either no arguments (for example, \texttt{axiomType(Integer)}) or one argument (for example, \texttt{axiomType(Polynomial (Integer))}). In this section we give details about writing arbitrary types. We then define \texttt{spadglossSee{modes}{mode}} and discuss how to write them. We conclude the section with a discussion on constructor abbreviations.
When might you need to write a type or mode?
You need to do so when you declare variables.
}\{
\spadpaste{a : PositiveInteger}
\}
\xtc{
You need to do so when you declare functions
(\downlink{‘Declarations’}{ugTypesDeclarePage} in Section 2.3\ignore{ugTypesDeclare}),
}\{
\spadpaste{f : Integer -> String}
\}
\xtc{
You need to do so when you convert an object from one type to another
(\downlink{‘Conversion’}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert}).
}\{
\spadpaste{factor(2 :: Complex(Integer))}
\}
\xtc{
You need to do so when you give computation target type information
(\downlink{‘Package Calling and Target Types’}{ugTypesPkgCallPage} in Section 2.9\ignore{ugTypesPkgCall}).
}\{
\spadpaste{(2 = 3)@Boolean}
\}
\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesWritingPagePatch2}
\begin{paste}{ugTypesWritingPageFull2}{ugTypesWritingPageEmpty2}
\pastebutton{ugTypesWritingPageFull2}{\hidepaste}
\tab{5}\spadcommand{f : Integer -> String}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesWritingPagePatch3}
\begin{paste}{ugTypesWritingPageFull3}{ugTypesWritingPageEmpty3}
\pastebutton{ugTypesWritingPageFull3}{\hidepaste}
\tab{5}\spadcommand{factor(2 :: Complex(Integer))}
\indentrel{3}\begin{verbatim}
2
(3) - %i (1 + %i)
Type: Factored Complex Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesWritingPagePatch4}
\begin{paste}{ugTypesWritingPageFull4}{ugTypesWritingPageEmpty4}
\pastebutton{ugTypesWritingPageFull4}{\hidepaste}
\tab{5}\spadcommand{(2 = 3)$Integer}
\indentrel{3}\begin{verbatim}
(4) false
Type: Boolean
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Types with No Arguments

— ug02.ht —

A constructor with no arguments can be written either with or without trailing opening and closing parentheses (\texttt{()}).

\begin{verbatim}
| \texttt{Boolean()} is the same as \texttt{Boolean} | \quad |
| \texttt{Integer()} is the same as \texttt{Integer} |
| \texttt{String()} is the same as \texttt{String} | \quad |
| \texttt{Void()} is the same as \texttt{Void} |
\end{verbatim}
Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest from right to left so that \texttt{Complex Fraction Polynomial Integer} is the same as \texttt{Complex (Fraction (Polynomial (Integer)))}. You need to use parentheses to force the application of a constructor to the correct argument, but you need not use any more than is necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive than they need to be).

\begin{itemize}
 \item If the argument is an expression like \texttt{2 + 3} then you must enclose the argument in parentheses.
 \end{itemize}

\begin{itemize}
 \item If the type is to be used with package calling then you must enclose the argument in parentheses.
 \end{itemize}
Alternatively, you can write the type without parentheses then enclose the whole type expression with parentheses.
\spadpaste{content(2)\$(Polynomial Complex Fraction Integer)}

If you supply computation target type information (\downlink{‘Package Calling and Target Types’}{ugTypesPkgCallPage} in Section 2.9\ignore{ugTypesPkgCall}) then you should enclose the argument in parentheses.
\spadpaste{(2/3)@Fraction(Polynomial(Integer))}

If the type itself has parentheses around it and we are not in the case of the first example above, then the parentheses can usually be omitted.
\spadpaste{(2/3)@Fraction(Polynomial Integer)}

If the type is used in a declaration and the argument is a single-word type, integer or symbol, then the parentheses can usually be omitted.
\spadpaste{(d,f,g) : Complex Polynomial Integer}

\begin{verbatim}
e : PrimeField(2 + 3)
\end{verbatim}

Type: Void
\begin{verbatim}
content(2)$\text{Polynomial(Integer)}$
\end{verbatim}

Type: Integer

\begin{verbatim}
content(2)$\text{Polynomial(Integer)}$
\end{verbatim}

Type: Complex Fraction Integer

\begin{verbatim}
(2/3)$\text{Fraction(Polynomial(Integer))}$
\end{verbatim}

Type: Fraction Polynomial Integer
Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses.
Some examples are
\begin{verbatim}
\centerline{{\axiomType{UnivariatePolynomial(x, Float)}}}
\centerline{{\axiomType{MultivariatePolynomial([z,w,r], Complex Float)}}}
\centerline{{\axiomType{SquareMatrix(3, Integer)}}}
\centerline{{\axiomType{FactoredFunctions2(Integer, Fraction Integer)}}}
\end{verbatim}

\section*{Modes}

\begin{itemize}
\item “notitle” (ugTypesDeclarePage) on page 1641
\item “notitle” (ugTypesConvertPage) on page 1671
\end{itemize}

\begin{verbatim}
\begin{page}{ugTypesWritingModesPage}{2.2.4. Modes}
\beginscroll
A \spadgloss{mode} is a type that possibly is a question mark \axiomSyntax{?} or contains one in an argument position. For example, the following are all modes.
\begin{verbatim}
\centerline{{\begin{tabular}{ccc}}}
\centerline{{\axiomType{?} & \quad &}}
\centerline{{\axiomType{Polynomial ?} & \quad &}}
\centerline{{\axiomType{Matrix Polynomial ?} & \quad &}}
\centerline{{\axiomType{SquareMatrix(3, ?)} & \quad &}}
\centerline{{\axiomType{Integer} & \quad &}}
\centerline{{\axiomType{OneDimensionalArray(Float)}}}
\centerline{{\axiomType{?} & \quad &}}
\centerline{{\axiomType{Polynomial ?} & \quad &}}
\centerline{{\axiomType{Matrix Polynomial ?} & \quad &}}
\centerline{{\axiomType{SquareMatrix(3, ?)} & \quad &}}
\centerline{{\axiomType{Integer} & \quad &}}
\centerline{{\axiomType{OneDimensionalArray(Float)}}}
\end{tabular}}
\end{verbatim}
As is evident from these examples, a mode is a type with a part that is not specified (indicated by a question mark). Only one \axiomSyntax{?} is allowed per mode and it must appear in the most
\end{verbatim}
\end{scroll}
\end{page}
\end{verbatim}
deeply nested argument that is a type. Thus
\nonLibAxiomType{?(Integer)}, \nonLibAxiomType{Matrix(?
(Polynomial))}, \nonLibAxiomType{SquareMatrix(?, Integer)} and
\nonLibAxiomType{SquareMatrix(?, ?)} are all invalid. The question
mark must take the place of a domain, not data (for example, the
integer that is the dimension of a square matrix). This rules out,
for example, the two \axiomType{SquareMatrix} expressions.

Modes can be used for declarations
\downlink{‘Declarations’}{ugTypesDeclarePage} in Section 2.3\ignore{ugTypesDeclare} and conversions
\downlink{‘Conversion’}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert}.
However, you cannot use a mode for package calling or giving target
type information.

Abbreviations

⇒ “notitle” (ugSysCmdwhatPage) 19 on page 2586
— ug02.ht —

\begin{page}{ugTypesWritingAbbrPage}{2.2.5. Abbreviations}
\beginscroll

Every constructor has an abbreviation that you can freely substitute
for the constructor name. In some cases, the abbreviation is nothing
more than the capitalized version of the constructor name.

\beginImportant
Aside from allowing types to be written more concisely,
abbreviations are used by Axiom to name various system
files for constructors (such as library filenames, test input
files and example files).
Here are some common abbreviations.
\texht{}\{table{
 \{\axiomType{COMPLEX} abbreviates \axiomType{Complex} \}
 \{\axiomType{DFLOAT} abbreviates \axiomType{DoubleFloat} \}
 \{\axiomType{EXPR} abbreviates \axiomType{Expression} \}
 \{\axiomType{FLOAT} abbreviates \axiomType{Float} \}
 \{\axiomType{FRAC} abbreviates \axiomType{Fraction} \}
 \{\axiomType{INT} abbreviates \axiomType{Integer} \}
\}
You can combine both full constructor names and abbreviations in a type expression.

Here are some types using abbreviations.

\begin{center}
\verb|POLY INT| is the same as \verb|Polynomial(INT)|
\end{center}

\begin{center}
\verb|POLY(Integer)| is the same as \verb|Polynomial(Integer)|
\end{center}

\begin{center}
\verb|POLY(Integer)| is the same as \verb|Polynomial(INT)|
\end{center}

\begin{center}
\verb|FRAC(COMPLEX(INT))| is the same as \verb|Fraction Complex Integer|
\end{center}

\begin{center}
\verb|FRAC(COMPLEX(INT))| is the same as \verb|FRAC(Complex Integer)|
\end{center}

There are several ways of finding the names of constructors and their abbreviations. For a specific constructor, use \verb|)abbreviation query|. You can also use the \verb|)what| system command to see the names and abbreviations of constructors. For more information about \verb|)what|, see \url{ugSysCmdwhatPage} in Section B.28.

\begin{xtc}
\verb|)abbreviation query| can be abbreviated (no pun intended) to \verb|)abb q|.
\end{xtc}

\begin{verbatim}
\verb|)abb q Integer|
\end{verbatim}

\begin{xtc}
The \verb|)abbreviation query| command lists the constructor name if you give the abbreviation. Issue \verb|)abb q| if you want to see the names and abbreviations of all Axiom constructors.
\end{xtc}

\begin{verbatim}
\verb|)abb q DMP|
\end{verbatim}

\begin{xtc}
Issue this to see all packages whose names contain the string ‘ode’.
\end{xtc}

\begin{verbatim}
\verb|)what packages ode|
\end{verbatim}
\begin{patch}{ugTypesWritingAbbrPagePatch1}
\begin{paste}{ugTypesWritingAbbrPageFull1}{ugTypesWritingAbbrPageEmpty1}
\pastebutton{ugTypesWritingAbbrPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesWritingAbbrPageEmpty1}
\begin{paste}{ugTypesWritingAbbrPageFull1}{ugTypesWritingAbbrPagePatch1}
\pastebutton{ugTypesWritingAbbrPageFull1}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesWritingAbbrPagePatch2}
\begin{paste}{ugTypesWritingAbbrPageFull2}{ugTypesWritingAbbrPageEmpty2}
\pastebutton{ugTypesWritingAbbrPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesWritingAbbrPageEmpty2}
\begin{paste}{ugTypesWritingAbbrPageFull2}{ugTypesWritingAbbrPagePatch2}
\pastebutton{ugTypesWritingAbbrPageFull2}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesWritingAbbrPagePatch3}
\begin{paste}{ugTypesWritingAbbrPageFull3}{ugTypesWritingAbbrPageEmpty3}
\pastebutton{ugTypesWritingAbbrPageFull3}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesWritingAbbrPageEmpty3}
\begin{paste}{ugTypesWritingAbbrPageFull3}{ugTypesWritingAbbrPagePatch3}
\pastebutton{ugTypesWritingAbbrPageFull3}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}
A \spadgloss{declaration} is an expression used to restrict the type of values that can be assigned to variables. A colon (\axiomSyntax{:}) is always used after a variable or list of variables to be declared.

You can always combine a declaration with an assignment. When you do, it is equivalent to first giving a declaration statement, then giving an assignment.

To see how to declare your own functions, see
\downlink{``Declaring the Type of Functions''}{ugUserDeclarePage} in Section 6.4\ignore{ugUserDeclare}.

\xtc{
This declares one variable to have a type.
}{
\spadpaste{a : Integer \bound{a}}}
\xtc{
This declares several variables to have a type.
}{
\spadpaste{(b,c) : Integer \bound{b c}}}
\xtc{
\axiom{a, b} and \axiom{c} can only hold integer values.
\{
\spadpaste{a := 45} \\
\xtc{If a value cannot be converted to a declared type,
an error message is displayed.}
\spadpaste{b := 4/5} \\
\xtc{This declares a variable with a mode.}
\spadpaste{n : Complex ?} \\
\xtc{This declares several variables with a mode.}
\spadpaste{(p,q,r) : Matrix Polynomial ?} \\
\xtc{This complex object has integer real and imaginary parts.}
\spadpaste{n := -36 + 9 * \%i} \\
\xtc{This complex object has fractional symbolic real and imaginary parts.}
\spadpaste{n := complex(4/(x + y),y/x)} \\
\xtc{This matrix has entries that are polynomials with integer coefficients.}
\spadpaste{p := [[1,2],[3,4],[5,6]]} \\
\xtc{This matrix has a single entry that is a polynomial with rational number coefficients.}
\spadpaste{q := [[x - 2/3]]} \\
\xtc{This matrix has entries that are polynomials with complex integer coefficients.}
\spadpaste{r := [[1-\%i*x,7*y+4*\%i]]} \\
\xtc{Note the difference between this and the next example.}
This is a complex object with polynomial real and imaginary parts.
}\{\spadpaste{f : COMPLEX POLY ? := (x + y*\%i)**2}
\}
\xtc{
This is a polynomial with complex integer coefficients.
The objects are convertible from one to the other.
See \downlink{``Conversion''}{ugTypesConvertPage} in Section 2.7\ignore{ugTypesConvert} for more
information.
}\{\spadpaste{g : POLY COMPLEX ? := (x + y*\%i)**2}
\}

\end{scroll}
\autobuttons
\end{page}

\begin{patch}{ugTypesDeclarePagePatch1}
\begin{paste}{ugTypesDeclarePageFull1}{ugTypesDeclarePageEmpty1}
\pastebutton{ugTypesDeclarePageFull1}{\hidepaste}
\indentrel{3}\spadcommand{a : Integer\bound{a }}
\indentrel{-3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesDeclarePageEmpty1}
\begin{paste}{ugTypesDeclarePageEmpty1}{ugTypesDeclarePagePatch1}
\pastebutton{ugTypesDeclarePageEmpty1}{\showpaste}
\indentrel{3}\spadcommand{a : Integer\bound{a }}
\end{paste}
\end{patch}

\begin{patch}{ugTypesDeclarePagePatch2}
\begin{paste}{ugTypesDeclarePageFull2}{ugTypesDeclarePageEmpty2}
\pastebutton{ugTypesDeclarePageFull2}{\hidepaste}
\indentrel{3}\spadcommand{(b,c) : Integer\bound{b \ c }}
\indentrel{-3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesDeclarePageEmpty2}
\begin{paste}{ugTypesDeclarePageEmpty2}{ugTypesDeclarePagePatch2}
\pastebutton{ugTypesDeclarePageEmpty2}{\showpaste}
\indentrel{3}\spadcommand{(b,c) : Integer\bound{b \ c }}
\end{paste}
\end{patch}

\begin{patch}{ugTypesDeclarePagePatch3}
\begin{paste}{ugTypesDeclarePageFull3}{ugTypesDeclarePageEmpty3}
\pastebutton{ugTypesDeclarePageFull3}{\hidepaste}
\indentrel{3}\spadcommand{(b,c) : Integer\bound{b \ c }}
\indentrel{-3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}

\begin{patch}{ugTypesDeclarePageEmpty3}
\begin{paste}{ugTypesDeclarePageEmpty3}{ugTypesDeclarePagePatch3}
\pastebutton{ugTypesDeclarePageEmpty3}{\showpaste}
\indentrel{3}\spadcommand{(b,c) : Integer\bound{b \ c }}
\end{paste}
\end{patch}
\begin{verbatim}
(3) 45
Type: Integer
\end{verbatim}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesDeclarePageEmpty6}
\begin{paste}{ugTypesDeclarePageEmpty6}{ugTypesDeclarePagePatch6}
\pastebutton{ugTypesDeclarePageEmpty6}{\showpaste}
\indentrel{3}\spadcommand{(p,q,r) : Matrix Polynomial ?bound{p q r }}
\end{paste}\end{patch}

\begin{patch}{ugTypesDeclarePagePatch7}
\begin{paste}{ugTypesDeclarePageFull7}{ugTypesDeclarePageEmpty7}
\pastebutton{ugTypesDeclarePageFull7}{\hidepaste}
\indentrel{3}\spadcommand{n := -36 + 9 * \%i\free{n }}
\end{paste}\end{patch}

\begin{patch}{ugTypesDeclarePageEmpty7}
\begin{paste}{ugTypesDeclarePageEmpty7}{ugTypesDeclarePagePatch7}
\pastebutton{ugTypesDeclarePageEmpty7}{\showpaste}
\indentrel{3}\spadcommand{n := -36 + 9 * \%i\free{n }}
\end{paste}\end{patch}

\begin{patch}{ugTypesDeclarePagePatch8}
\begin{paste}{ugTypesDeclarePageFull8}{ugTypesDeclarePageEmpty8}
\pastebutton{ugTypesDeclarePageFull8}{\hidepaste}
\indentrel{3}\spadcommand{p := \[[1,2],[3,4],[5,6]\]\free{p }}
\end{paste}\end{patch}

\begin{patch}{ugTypesDeclarePagePatch9}
\begin{paste}{ugTypesDeclarePageFull9}{ugTypesDeclarePageEmpty9}
\pastebutton{ugTypesDeclarePageFull9}{\hidepaste}
\indentrel{3}\spadcommand{p := [[1,2],[3,4],[5,6]\free{p }}
\end{paste}\end{patch}
Type: Matrix Polynomial Integer

\[p := \begin{bmatrix} 1, 2 \\ 3, 4 \\ 5, 6 \end{bmatrix} \]

\[q := \begin{bmatrix} x - 2/3 \end{bmatrix} \]

Type: Matrix Polynomial Fraction Integer

\[r := \begin{bmatrix} 1 - \%i \times 1, 7 \times y + 4 \times \%i \end{bmatrix} \]

Type: Matrix Polynomial Complex Integer
\begin{paste}{ugTypesDeclarePageFull12}{ugTypesDeclarePageEmpty12}
\pastebutton{ugTypesDeclarePageFull12}{\hidepaste}
\tab{5}\spadcommand{f : COMPLEX POLY := (x + y*\%i)**2}
\indentrel{3}\begin{verbatim}
 2 2
(11) - y + x + 2x y \%i
Type: Complex Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{ugTypesDeclarePageEmpty12}
\begin{paste}{ugTypesDeclarePageEmpty12}{ugTypesDeclarePagePatch12}
\pastebutton{ugTypesDeclarePageEmpty12}{\showpaste}
\tab{5}\spadcommand{f : COMPLEX POLY := (x + y*\%i)**2}
\end{paste}\end{patch}
\begin{patch}{ugTypesDeclarePagePatch13}
\begin{paste}{ugTypesDeclarePageFull13}{ugTypesDeclarePageEmpty13}
\pastebutton{ugTypesDeclarePageFull13}{\hidepaste}
\tab{5}\spadcommand{g : POLY COMPLEX := (x + y*\%i)**2}
\indentrel{3}\begin{verbatim}
 2 2
(12) - y + 2\%i x y + x
Type: Polynomial Complex Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugTypesDeclarePageEmpty13}
\begin{paste}{ugTypesDeclarePageEmpty13}{ugTypesDeclarePagePatch13}
\pastebutton{ugTypesDeclarePageEmpty13}{\showpaste}
\tab{5}\spadcommand{g : POLY COMPLEX := (x + y*\%i)**2}
\end{paste}\end{patch}

Records

| ug02.ht |

\begin{page}{ugTypesRecordsPage}{2.4. Records}
\beginscroll
A \emph{Record} is an object composed of one or more other objects, each of which is referenced with a \spadgloss{selector}. Components can all belong to the same type or each can have a different
The syntax for writing a Record type is
\begin{center}
\texttt{Record(_selector_1:_type_1, \\
_selector_2:_type_2, \ldots, \\
_selector_N:_type_N))}
\end{center}
You must be careful if a selector has the same name as a variable in the workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at once by assigning the record a bracketed tuple of values of the proper length (for example, \axiom{r : Record(a: Integer, b: String) := [1, "two"]}). To access a component of a record \axiom{r}, write the name \axiom{r}, followed by a period, followed by a selector.

\begin{xref}
The object returned by this computation is a record with two components: a quotient part and a remainder part.
\end{xref}
\axiom{u := divide(5,2) \bound{u}}
\begin{xref}
This is the quotient part.
\end{xref}
\axiom{u.quotient \free{u}}
\begin{xref}
This is the remainder part.
\end{xref}
\axiom{u.remainder \free{u}}
\begin{xref}
You can use selector expressions on the left-hand side of an assignment to change destructively the components of a record.
\end{xref}
\axiom{u.quotient := 8978 \free{u}\bound{u1}}
\begin{xref}
The selected component \axiom{quotient} has the value \axiom{8978}, which is what is returned by the assignment.
Check that the value of \axiom{u} was modified.
\end{xref}
\axiom{u \free{u}\free{u1}}
Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the selectors themselves.

\[
\spadpaste{s := 'quotient \bound{s}}
\]

Be careful! A selector could have the same name as a variable in the workspace. If this occurs, precede the selector name by a single quote, as in \axiom{u.'quotient}.

\[
\spadpaste{\text{divide}(5,2).s \free{s}}
\]

Here we declare that the value of \axiom{bd} has two components: a string, to be accessed via \axiom{name}, and an integer, to be accessed via \axiom{birthdayMonth}.

\[
\spadpaste{\text{bd : Record(name : String, birthdayMonth : Integer)}}
\]

You must initially set the value of the entire \spadtype{Record} at once.

\[
\spadpaste{\text{bd := ["Judith", 3] \free{bddec}}} \bound{bd}
\]

Once set, you can change any of the individual components.

\[
\spadpaste{\text{bd.name := "Katie" \free{bd}}} \bound{bd}
\]

Records may be nested and the selector names can be shared at different levels.

\[
\spadpaste{\text{r : Record(a : Record(b: Integer, c: Integer), b: Integer)}} \bound{rdec}
\]

The record \axiom{r} has a \axiom{b} selector at two different levels. Here is an initial value for \axiom{r}.

\[
\spadpaste{\text{r := [[1,2],3] \bound{r} \free{rdec}}} \bound{r}
\]
This extracts the $\text{axiom}\{b\}$ component from the $\text{axiom}\{a\}$ component of $\text{axiom}\{r\}$.
\spad{r.a.b \free{r}}
\xtc{
This extracts the $\text{axiom}\{b\}$ component from $\text{axiom}\{r\}$.
\spad{r.b \free{r}}
\%}
\xtc{
You can also use spaces or parentheses to refer to $\text{pspadtype\{Record\}}$ components.
This is the same as $\text{axiom}\{r.a\}$.
\spad{r(a) \free{r}}
\xtc{
This is the same as $\text{axiom}\{r.b\}$.
\spad{r b \free{r}}
\xtc{
This is the same as $\text{axiom}\{r.b := 10\}$.
\spad{r(b) := 10 \free{r}\bound{r1}}
\xtc{
Look at $\text{axiom}\{r\}$ to make sure it was modified.
\spadpaste{r \free{r1}}
\end{scroll}
\autobuttons
\end{page}

\begin{patch}{ugTypesRecordsPagePatch1}
\begin{paste}{ugTypesRecordsPageFull1}{ugTypesRecordsPageEmpty1}
\pastebutton{ugTypesRecordsPageFull1}{\hidepaste}
\tab{5}\spadcommand{u := divide(5,2)\bound{u}}
\indentrel{3}\begin{verbatim}
(1) [quotient= 2,remainder= 1]
Type: Record(quotient: Integer,remainder: Integer)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesRecordsPageEmpty1}
\begin{paste}{ugTypesRecordsPageEmpty1}{ugTypesRecordsPagePatch1}
\end{patch}
\spadcommand{u := \text{divide}(5,2)\free{u\ }}
\spadcommand{u.\text{quotient}\free{u\ }}
\begin{verbatim}
(2) 2
Type: \text{PositiveInteger}
\end{verbatim}
\spadcommand{u.\text{remainder}\free{u\ }}
\begin{verbatim}
(3) 1
Type: \text{PositiveInteger}
\end{verbatim}
\spadcommand{u.\text{quotient} := 8978\free{u\ }}
\begin{verbatim}
(4) 8978
Type: \text{PositiveInteger}
\end{verbatim}
(5) \[\text{quotient} = 8978, \text{remainder} = 1\]

Type: Record(quotient: Integer, remainder: Integer)

(6) quotient

Type: Variable quotient

(7) 2

Type: PositiveInteger
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
(9) \[name= "Judith",birthdayMonth= 3\]
Type: Record(name: String,birthdayMonth: Integer)
\end{verbatim}

\begin{verbatim}
(10) "Katie"
Type: String
\end{verbatim}
\(r : \text{Record}(a : \text{Record}(b: \text{Integer}, c: \text{Integer}), b: \text{Integer}) \)\n
\begin{verbatim}
Type: Void
\end{verbatim}

\(r := \{[1,2],3\} \)

\begin{verbatim}
(12) \{a= \{b= 1,c= 2\},b= 3\}
Type: \text{Record}(a: \text{Record}(b: \text{Integer},c: \text{Integer}),b: \text{Integer})
\end{verbatim}

\(r.a.b \)

\begin{verbatim}
(13) 1
Type: \text{PositiveInteger}
\end{verbatim}

\(r.b \)

\begin{verbatim}
(14) 3
\end{verbatim}
Type: PositiveInteger
\begin{verbatim}
(15) [b= 1,c= 2]
Type: Record(b: Integer,c: Integer)
\end{verbatim}

(16) 3
Type: PositiveInteger
\end{verbatim}

(17) 10
Type: PositiveInteger
Unions

⇒ “notitle” (ugTypesUnionsWOSelPage) 7 on page 1657
⇒ “notitle” (ugTypesUnionsWSelPage) 7 on page 1664

Type \texttt{Union} is used for objects that can be of any of a specific finite set of types. Two versions of unions are available, one with selectors (like records) and one without.
Unions Without Selectors

The declaration \texttt{x : Union(Integer, String, Float)} states that \texttt{x} can have values that are integers, strings or ‘big’ floats.

If, for example, the \texttt{Union} object is an integer, the object is said to belong to the \texttt{Integer} \texttt{it} branch of the \texttt{Union}.

Note that we are being a bit careless with the language here. Technically, the type of \texttt{x} is always \texttt{Union(Integer, String, Float)}.

If it belongs to the \texttt{Integer} branch, \texttt{x} may be converted to an object of type \texttt{Integer}.

It is possible to create unions like \texttt{Union(Integer, PositiveInteger)} but they are difficult to work with because of the overlap in the branch types.

See below for the rules Axiom uses for converting something into a union object.

The \texttt{case} infix \texttt{case} operator returns a \texttt{Boolean} and can be used to determine the branch in which an object lies.

This function displays a message stating in which branch of the \texttt{Union} the object (defined as \texttt{x} above) lies.

\xtc{
\begin{spadsrc}
sayBranch(x : Union(Integer,String,Float)) : Void ==
 output
 x case Integer => "Integer branch"
 x case String => "String branch"
 "Float branch"
\end{spadsrc}

This tries \userfun{sayBranch} with an integer.
\spadpaste{sayBranch 1 \free{sayBranch}}

This tries \userfun{sayBranch} with a string.
\spadpaste{sayBranch "hello" \free{sayBranch}}

This tries \userfun{sayBranch} with a floating-point number.
\spadpaste{sayBranch 2.718281828 \free{sayBranch}}

There are two things of interest about this particular example to which we would like to draw your attention.
\begin{itemize}
\item[1.] Axiom normally converts a result to the target value before passing it to the function. If we left the declaration information out of this function definition then the \axiom{sayBranch} call would have been attempted with an \axiomType{Integer} rather than a \pspadtype{Union}, and an error would have resulted.
\item[2.] The types in a \pspadtype{Union} are searched in the order given. So if the type were given as
\begin{spad}{small}
\axiom{sayBranch(x: Union(String,Integer,Float,Any)): Void}}
\end{spad}
then the result would have been "String branch" because there is a conversion from \axiomType{Integer} to \axiomType{String}.
\end{itemize}
Sometimes \pspadtype{Union} types can have extremely
long names.
Axiom therefore abbreviates the names of unions by printing
the type of the branch first within the \texttt{Union} and then
eliding the remaining types with an ellipsis (\texttt{...}).

\begin{verbatim}
Here the \texttt{Union(Integer,String)} branch is displayed first.
Use \texttt{::} to create a \texttt{Union} object from an object.
\}\{ \spadpaste{78 :: Union(Integer,String)} \}
\begin{verbatim}
Here the \texttt{Union(String)} branch is displayed first.
\}\{ \spadpaste{s := "string" :: Union(Integer,String) \bound{s}} \}
\end{verbatim}
Use \texttt{\textbf{typeOf}} to see the full and actual \texttt{Union} type.
\}\{ \spadpaste{\textbf{typeOf s}} \}
\begin{verbatim}
A common operation that returns a union is \texttt{exquo} which returns the ‘‘exact quotient’’ if the quotient is exact,...
\}\{ \spadpaste{three := exquo(6,2) \bound{three}} \}
\begin{verbatim}
and \texttt{"failed"} if the quotient is not exact.
\}\{ \spadpaste{exquo(5,2)} \}
\end{verbatim}
A union with a \texttt{"failed"} is frequently used to indicate the failure
or lack of applicability of an object.
As another example, assign an integer a variable \texttt{r} declared to be a
rational number.
\}\{ \spadpaste{r: FRAC INT := 3 \bound{r}\bound{rdec}} \}
\begin{verbatim}
The operation \texttt{retractIfCan} tries to retract the
fraction to the underlying domain \texttt{Integer}.
It produces a union object.
Here it succeeds.
\}\{ \spadpaste{retractIfCan(r) \free{r}} \}
\end{verbatim}
\end{verbatim}
Assign it a rational number.

\spadpaste{r := 3/2 \bound{r1}\free{rdec}}
\xtc{Here the retraction fails.}
\spadpaste{retractIfCan(r) \free{r1}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugTypesUnionsWOSelPagePatch1}
\begin{paste}{ugTypesUnionsWOSelPageFull1}{ugTypesUnionsWOSelPageEmpty1}
\pastebutton{ugTypesUnionsWOSelPageFull1}{\hidepaste}
\tab{5}\spadcommand{sayBranch(x : Union(Integer,String,Float)) : Void == output x case Integer => "Integer branch" x case String => "String branch" "Float branch" \bound{sayBranch }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesUnionsWOSelPageEmpty1}
\begin{paste}{ugTypesUnionsWOSelPageEmpty1}{ugTypesUnionsWOSelPagePatch1}
\pastebutton{ugTypesUnionsWOSelPageEmpty1}{\showpaste}
\tab{5}\spadcommand{sayBranch(x : Union(Integer,String,Float)) : Void == output x case Integer => "Integer branch" x case String => "String branch" "Float branch" \bound{sayBranch }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesUnionsWOSelPagePatch2}
\begin{paste}{ugTypesUnionsWOSelPageFull2}{ugTypesUnionsWOSelPageEmpty2}
\pastebutton{ugTypesUnionsWOSelPageFull2}{\hidepaste}
\tab{5}\spadcommand{sayBranch 1\free{sayBranch }}
\indentrel{3}\begin{verbatim}
Integer branch
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{spadcommand}{sayBranch 1}
\end{spadcommand}
\begin{verbatim}
String branch
Type: Void
\end{verbatim}

\begin{spadcommand}{sayBranch "hello"}
\end{spadcommand}
\begin{verbatim}
Float branch
Type: Void
\end{verbatim}

\begin{spadcommand}{78 :: Union(Integer,String)}
\end{spadcommand}
\begin{verbatim}
(5) 78
Type: Union(Integer,...)
\end{verbatim}
\tab{5}\spadcommand{78 :: Union(Integer,String)}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPagePatch6}
\begin{paste}{ugTypesUnionsWOSelPageFull6}{ugTypesUnionsWOSelPageEmpty6}
\pastebutton{ugTypesUnionsWOSelPageFull6}{\hidepaste}
\tab{5}\spadcommand{s := "string" :: Union(Integer,String)\bound{s}}
\indentrel{3}\begin{verbatim}
(6) "string"
Type: Union(String,...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPageEmpty6}
\begin{paste}{ugTypesUnionsWOSelPageEmpty6}{ugTypesUnionsWOSelPagePatch6}
\pastebutton{ugTypesUnionsWOSelPageEmpty6}{\showpaste}
\tab{5}\spadcommand{s := "string" :: Union(Integer,String)\bound{s}}
\end{paste}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPagePatch7}
\begin{paste}{ugTypesUnionsWOSelPageFull7}{ugTypesUnionsWOSelPageEmpty7}
\pastebutton{ugTypesUnionsWOSelPageFull7}{\hidepaste}
\tab{5}\spadcommand{\typeOf s}
\indentrel{3}\begin{verbatim}
(7) Union(Integer,String)
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPageEmpty7}
\begin{paste}{ugTypesUnionsWOSelPageEmpty7}{ugTypesUnionsWOSelPagePatch7}
\pastebutton{ugTypesUnionsWOSelPageEmpty7}{\showpaste}
\tab{5}\spadcommand{\typeOf s}
\end{paste}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPagePatch8}
\begin{paste}{ugTypesUnionsWOSelPageFull8}{ugTypesUnionsWOSelPageEmpty8}
\pastebutton{ugTypesUnionsWOSelPageFull8}{\hidepaste}
\tab{5}\spadcommand{three := \exquo(6,2)\bound{three}}
\indentrel{3}\begin{verbatim}
(8) 3
Type: Union(Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugTypesUnionsWOSelPageEmpty8}
\begin{paste}{ugTypesUnionsWOSelPageEmpty8}{ugTypesUnionsWOSelPagePatch8}
\pastebutton{ugTypesUnionsWOSelPageEmpty8}{\showpaste}
\tab{5}\spadcommand{three := \exquo(6,2)\bound{three}}
\end{paste}
\end{patch}
\begin{verbatim}
(9) "failed"
Type: Union("failed",...)
\end{verbatim}

(10) 3
Type: Fraction Integer
Like records (\downlink{``Records''}{ugTypesRecordsPage} in Section 2.4\ignore{ugTypesRecords}), you can write \pspadtype{Union} types

Unions With Selectors
with selectors.

Important
The syntax for writing a \texttt{Union} type with selectors is

\begin{verbatim}
Union(selector{1}:type{1}, selector{2}:type{2}, \ldots, selector{N}:type{N})
\end{verbatim}

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single
quote. It is an error to use a selector that does not correspond to
the branch of the \texttt{Union} in which the element actually lies.

Important

Be sure to understand the difference between records and unions with
selectors. Records can have more than one component and the selectors
are used to refer to the components. Unions always have one component
but the type of that one component can vary. An object of type
\texttt{Record(a: Integer, b: Float, c: String)} contains an
integer \textit{and} a float \textit{and} a string. An object of type
\texttt{Union(a: Integer, b: Float, c: String)} contains an integer
\textit{or} a float \textit{or} a string.

Here is a version of the \texttt{sayBranch} function (cf.
\downlink{``Unions Without Selectors''}{ugTypesUnionsWOSelPage}
in Section 2.5.1) that works with a union with selectors.
It displays a message stating in which branch of the \texttt{Union} the
object lies.

\begin{verbatim}
sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
 output
 x case i => "Integer branch"
 x case s => "String branch"
 "Float branch"
\end{verbatim}

Note that \texttt{case} uses the selector name as its right-hand argument.
\spad{case}

If you accidentally use the branch type on the right-hand side of
\texttt{case}, \texttt{false} will be returned.

xtc{
Declare variable \texttt{u} to have a union type with selectors.
}
\spadpaste{u : Union(i : Integer, s : String) \bound{undec}}
}

xtc{
Give an initial value to \texttt{u}.
}

Use \axiom{case} to determine in which branch of a \pspadtype{Union} an object lies.

\spadpaste{u case i \free{u}}

\spadpaste{u case s \free{u}}

To access the element in a particular branch, use the selector.

\spadpaste{u.s \free{u}}
\spad{u := "good morning" \free{undec}}

\verbatim{(3) false Type: Boolean}
\verbatim{(4) true Type: Boolean}
\verbatim{(5) "good morning" Type: String}
The “Any” Domain

With the exception of objects of type \texttt{Record}, all Axiom data structures are homogenous, that is, they hold objects all of the same type. If you need to get around this, you can use type \texttt{Any}. Using \texttt{Any}, for example, you can create lists whose elements are integers, rational numbers, strings, and even other lists.

\begin{verbatim}
DECLARE \texttt{u} to have type \texttt{Any}.
\texttt{u: Any\bound{uany}}
\end{verbatim}

 Assign a list of mixed type values to \texttt{u}
\begin{verbatim}
\texttt{u := [1, 7.2, 3/2, x**2, "wally"]\free{uany}\bound{u}}
\end{verbatim}

 When we ask for the elements, Axiom displays these types.
\begin{verbatim}
\texttt{u.1 \free{u}}
\end{verbatim}

 Actually, these objects belong to \texttt{Any} but Axiom automatically converts them to their natural types for you.
\begin{verbatim}
\texttt{u.3 \free{u}}
\end{verbatim}

 Since type \texttt{Any} can be anything, it can only belong to type \texttt{Type}. Therefore it cannot be used in algebraic domains.
\begin{verbatim}
\texttt{v : Matrix(Any)}
\end{verbatim}

Perhaps you are wondering how Axiom internally represents
objects of type \texttt{Any}.
An object of type \texttt{Any} consists not only a data part
representing its normal value, but also a type part (a \texttt{badge}) giving
its type.
For example, the value \texttt{1} of type \texttt{PositiveInteger} as an
object of type \texttt{Any} internally looks like
\texttt{[1,PositiveInteger()]}.

%When should you use \texttt{Any} instead of a \texttt{Union} type?
%Can you plan ahead?
%For a \texttt{Union}, you must know in advance exactly which types you
%are
%\index{union!vs. Any@{vs. \nonLibAxiomType{Any}}}
%going to allow.
%For \texttt{Any}, anything that comes along can be accommodated.

\begin{spad}
\begin{verbatim}
Type: Void
\end{verbatim}
\end{spad}
\begin{verbatim}
(3) 1
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(4) 2
Type: Fraction Integer
\end{verbatim}
Conversion

Conversion is the process of changing an object of one type into an object of another type. The syntax for conversion is:
\begin{verbatim}
object :: newType
\end{verbatim}

By default, 3 has the type PositiveInteger.

3

We can change this into an object of type Fraction Integer by using `::'

\begin{verbatim}
3 :: Fraction Integer
\end{verbatim}

A coercion is a special kind of conversion that Axiom is allowed to do automatically when you enter an expression. Coercions are usually somewhat safer than more general conversions. The Axiom library contains operations called coerce and convert. Only the coerce operations can be used by the interpreter to change an object into an object of another type unless you explicitly use a `::'.

By default, \axiom{3} has the type \axiomType{PositiveInteger}.

\spadpaste{3}
A coercion is a special kind of conversion that Axiom is allowed to do automatically when you enter an expression. Coercions are usually somewhat safer than more general conversions. The Axiom library contains operations called \axiomFun{coerce} and \axiomFun{convert}. Only the \axiomFun{coerce} operations can be used by the interpreter to change an object into an object of another type unless you explicitly use a \axiomSyntax{::}.

By now you will be quite familiar with what types and modes look like. It is useful to think of a type or mode as a pattern for what you want the result to be.

\xtc{Let's start with a square matrix of polynomials with complex rational number coefficients.}{
\spadpaste{m : SquareMatrix(2,POLY COMPLEX FRAC INT) \bound{mdec}}}
\xtc{}
\spadpaste{m := matrix \[[x-3/4*\%i,z*y**2+1/2],[3/7*\%i*y**4 - x,12-\%i*9/5]\] \bound{m}\free{mdec}}
\xtc{We first want to interchange the \axiomType{Complex} and \axiomType{Fraction} layers. We do the conversion by doing the interchange in the type expression.}{
\spadpaste{m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT) \free{m}\bound{m1}}}
\xtc{Interchange the \axiomType{Polynomial} and the \axiomType{Fraction} levels.}{
\spadpaste{m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT) \free{m1}\bound{m2}}}
\xtc{Interchange the \axiomType{Polynomial} and the \axiomType{Complex} levels.}{
\spadpaste{m3 := m2 :: SquareMatrix(2,FRAC POLY COMPLEX INT) \free{m2}\bound{m3}}}
\xtc{We can change this into an object of type \axiomType{Fraction Integer} by using \axiomSyntax{::}.}{
\spadpaste{3 :: Fraction Integer}}
All the entries have changed types, although in comparing the
last two results only the entry in the lower left corner looks different.
We did all the intermediate steps to show you what Axiom can do.

In fact, we could have combined all these into one conversion.

There are times when Axiom is not be able to do the conversion
in one step.
You may need to break up the transformation into several conversions
in order to get an object of the desired type.

We cannot move either \texttt{Fraction} or \texttt{Complex}
above (or to the left of, depending on how you look at it)
\texttt{SquareMatrix} because each of these levels requires that its
argument type have commutative multiplication, whereas
\texttt{SquareMatrix} does not. \footnote{\texttt{Fraction} requires
that its argument belong to the category \texttt{IntegralDomain} and
\texttt{Complex} requires that its argument belong to
\texttt{CommutativeRing}. See
\url{``The Basic Idea''}{ugTypesBasicPage}
in Section 2.1\ignore{ugTypesBasic} for a brief discussion of categories.}
The \texttt{Integer} level did not move anywhere
because it does not allow any arguments.
We also did not move the \texttt{SquareMatrix} part anywhere, but
we could have.

Recall that \texttt{m} looks like this.

If we want a polynomial with matrix coefficients rather than a matrix
with polynomial entries, we can just do the conversion.

We have not yet used modes for any conversions.
Modes are a great shorthand for indicating the type of the
object you want.
Instead of using the long type expression in the
last example, we could have simply said this.
}
\spadpaste{m :: POLY ? \free{m}}
}
\xtc{
We can also indicate more structure if we want the entries
of the matrices to be fractions.
}
\spadpaste{m :: POLY SquareMatrix(2,FRAC ?) \free{m}}
}
\endscroll

\begin{patch}{ugTypesConvertPagePatch1}
\begin{paste}{ugTypesConvertPageFull1}{ugTypesConvertPageEmpty1}
\pastebutton{ugTypesConvertPageFull1}{\hidepaste}
\tab{5}\spadcommand{3}
\indentrel{3}\begin{verbatim}
(1) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesConvertPageEmpty1}
\begin{paste}{ugTypesConvertPageEmpty1}{ugTypesConvertPagePatch1}
\pastebutton{ugTypesConvertPageEmpty1}{\showpaste}
\tab{5}\spadcommand{3}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesConvertPagePatch2}
\begin{paste}{ugTypesConvertPageFull2}{ugTypesConvertPageEmpty2}
\pastebutton{ugTypesConvertPageFull2}{\hidepaste}
\tab{5}\spadcommand{3 :: Fraction Integer}
\indentrel{3}\begin{verbatim}
(2) 3
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesConvertPageEmpty2}
\begin{paste}{ugTypesConvertPageEmpty2}{ugTypesConvertPagePatch2}
\pastebutton{ugTypesConvertPageEmpty2}{\showpaste}
\tab{5}\spadcommand{3 :: Fraction Integer}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugTypesConvertPagePatch3}
\begin{paste}{ugTypesConvertPageFull3}{ugTypesConvertPageEmpty3}
\pastebutton{ugTypesConvertPageFull3}{\hidepaste}
\end{patch}
\texttt{m := matrix \[\begin{array}{cc} x-3/4*\%i, & z*y^2+1/2 \\ 3/7*\%i*y^4-x, & 12-\%i*9/5 \end{array} \]}\free{m}

Type: \texttt{SquareMatrix(2,Polynomial Complex Fraction Integer)}
\begin{verbatim}
\textbf{Example:}
\spad{m1 := m :: \text{SquareMatrix}(2, \text{POLY FRAC COMPLEX INT})}
\end{verbatim}

\textbf{Example:}
\spad{m2 := m1 :: \text{SquareMatrix}(2, \text{FRAC POLY COMPLEX INT})}
\begin{verbatim}
\begin{verbatim}
2
4x - 3\%i 2y z + 1
4 2
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
3\%i y - 7x 60 - 9\%i
4
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
7 5
\end{verbatim}
\end{verbatim}
\textbf{Example:}
\spad{m2 := m1 :: \text{SquareMatrix}(2, \text{FRAC POLY COMPLEX INT})}
\textbf{Example:}
\spad{m3 := m2 :: \text{SquareMatrix}(2, \text{FRAC COMPLEX POLY INT})}
\begin{verbatim}
\begin{verbatim}
2
4x - 3\%i 2y z + 1
4 2
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
- 7x + 3y \%i 60 - 9\%i
4
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\begin{verbatim}
7 5
\end{verbatim}
\end{verbatim}
\textbf{Example:}
\spad{m3 := m2 :: \text{SquareMatrix}(2, \text{FRAC COMPLEX POLY INT})}
\end{verbatim}
\begin{verbatim}
(10) \begin{array}{cccc}
0 & 1 & 2 & 0 \\
0 & y & z + 3 & y + x \\
0 & 0 & \%i & 0 & - 1 & 0
\end{array}
+ \begin{array}{cccc}
3 & 1 & 9 & 0 \\
- \%i & 4 & 2 & 0
\end{array}
\end{verbatim}
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)
\end{verbatim}
\end{patch}
\begin{patch}
\begin{verbatim}
(11) \begin{array}{cccc}
0 & 1 & 2 & 0 \\
0 & y & z + 3 & y + x \\
0 & 0 & \%i & 0 & - 1 & 0
\end{array}
+ \begin{array}{cccc}
3 & 1 & 9 & 0 \\
- \%i & 4 & 2 & 0
\end{array}
\end{verbatim}
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)
\end{verbatim}
\end{patch}
Subdomains Again

A \spadgloss{subdomain} \axiom{S} of a domain \axiom{D} is a domain consisting of
\begin{itemize}
\item those elements of \axiom{D} that satisfy some \spadgloss{predicate} (that is, a test that returns \axiom{true} or \axiom{false}) and
Every domain is a subdomain of itself, trivially satisfying the membership test: \(\text{true} \).

Currently, there are only two system-defined subdomains in Axiom that receive substantial use. \axiomType{PositiveInteger} and \axiomType{NonNegativeInteger} are subdomains of \axiomType{Integer}. An element \(\text{axiom}(x) \) of \axiomType{NonNegativeInteger} is an integer that is greater than or equal to zero, that is, satisfies \(x \geq 0 \). An element \(\text{axiom}(x) \) of \axiomType{PositiveInteger} is a nonnegative integer that is, in fact, greater than zero, that is, satisfies \(x > 0 \). Not all operations from \axiomType{Integer} are available for these subdomains. For example, negation and subtraction are not provided since the subdomains are not closed under those operations. When you use an integer in an expression, Axiom assigns to it the type that is the most specific subdomain whose predicate is satisfied.

\[\begin{align*}
\text{This is a positive integer.} \\
\spadpaste{5}
\end{align*} \]

\[\begin{align*}
\text{This is a nonnegative integer.} \\
\spadpaste{0}
\end{align*} \]

\[\begin{align*}
\text{This is neither of the above.} \\
\spadpaste{-5}
\end{align*} \]

Furthermore, unless you are assigning an integer to a declared variable or using a conversion, any integer result has as type the most specific subdomain.

\[\begin{align*}
\spadpaste{(-2) - (-3)}
\end{align*} \]
When necessary, Axiom converts an integer object into one belonging to a less specific subdomain. For example, in \axiom{3-2}, the arguments to \axiomOpFrom{-}{Integer} are both elements of \axiomType{PositiveInteger}, but this type does not provide a subtraction operation. Neither does \axiomType{NonNegativeInteger}, so \axiom{3} and \axiom{2} are viewed as elements of \axiomType{Integer}, where their difference can be calculated. The result is \axiom{1}, which Axiom then automatically assigns the type \axiomType{PositiveInteger}.

\xtc{
Certain operations are very sensitive to the subdomains to which their arguments belong.
This is an element of \axiomType{PositiveInteger}.
}{
\spadpaste{2 ** 2}
}
\xtc{
This is an element of \axiomType{Fraction Integer}.
}{
\spadpaste{2 ** (-2)}
}
\xtc{
It makes sense then that this is a list of elements of \axiomType{PositiveInteger}.
}{
\spadpaste{[10**i for i in 2..5]}
}
What should the type of \axiom{[10**(i-1) for i in 2..5]} be? On one hand, \axiom{i-1} is always an integer greater than zero as \axiom{i} ranges from \axiom{2} to \axiom{5} and so \axiom{10**i} is also always a positive integer. On the other, \axiom{i-1} is a very simple function of \axiom{i}. Axiom does not try to analyze every such function over the index’s range of values to determine whether it is always positive or nowhere negative.
For an arbitrary Axiom function, this analysis is not possible.

\xtc{
So, to be consistent no such analysis is done and we get this.
}{
\spadpaste{[10**(i-1) for i in 2..5]}
}
\xtc{
To get a list of elements of \axiomType{PositiveInteger} instead, you have two choices. You can use a conversion.
}{
\spadpaste{[10**((i-1) :: PI) for i in 2..5]}
}
Or you can use \axiom{pretend}.
\spadkey{pretend}
\spadpaste{[10**((i-1) pretend PI) for i in 2..5]}
}

The operation \axiom{pretend} is used to defeat the Axiom type system.
The expression \axiom{object pretend D} means ‘make a new object (without copying) of type \axiom{D} from \axiom{object}.’
If \axiom{object} were an integer and you told Axiom to pretend it was a list, you would probably see a message about a fatal error being caught and memory possibly being damaged.
Lists do not have the same internal representation as integers!

You use \axiom{pretend} at your peril.

Use \axiom{pretend} with great care!
Axiom trusts you that the value is of the specified type.
\spadpaste{(2/3) pretend Complex Integer}
(2) 0

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty2}
\begin{paste}{ugTypesSubdomainsPageEmpty2}{ugTypesSubdomainsPagePatch2}
\tab{5}\spadcommand{0}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch3}
\begin{paste}{ugTypesSubdomainsPageFull3}{ugTypesSubdomainsPageEmpty3}
\spadcommand{-5}
\indentrel{-3}egin{verbatim}
(3) - 5
Type: Integer
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty3}
\begin{paste}{ugTypesSubdomainsPageEmpty3}{ugTypesSubdomainsPagePatch3}
\spadcommand{-5}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch4}
\begin{paste}{ugTypesSubdomainsPageFull4}{ugTypesSubdomainsPageEmpty4}
\spadcommand{(-2) - (-3)}
\indentrel{-3}egin{verbatim}
(4) 1
Type: PositiveInteger
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty4}
\begin{paste}{ugTypesSubdomainsPageEmpty4}{ugTypesSubdomainsPagePatch4}
\spadcommand{(-2) - (-3)}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch5}
\begin{paste}{ugTypesSubdomainsPageFull5}{ugTypesSubdomainsPageEmpty5}
\spadcommand{0 :: Integer}
\indentrel{-3}\begin{verbatim}
(5) 0
Type: Integer
\end{verbatim}
\end{patch}

\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(6) 5
Type: NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(7) 4
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(8) 4
Type: Fraction Integer
\end{verbatim}
\begin{verbatim}
(9) [100,1000,10000,100000]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch10}
\begin{paste}{ugTypesSubdomainsPageFull10}{ugTypesSubdomainsPageEmpty10}{ugTypesSubdomainsPagePatch10}
\pastebutton{ugTypesSubdomainsPageFull10}{\hidepaste}
\tab{5}\spadcommand{[10**(i-1) for i in 2..5]}
\indentrel{3}\begin{verbatim}
(10) [10,100,1000,10000]
Type: List Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch11}
\begin{paste}{ugTypesSubdomainsPageFull11}{ugTypesSubdomainsPageEmpty11}{ugTypesSubdomainsPagePatch11}
\pastebutton{ugTypesSubdomainsPageFull11}{\hidepaste}
\tab{5}\spadcommand{[10**(i-1 :: PI) for i in 2..5]}
\indentrel{3}\begin{verbatim}
(11) [10,100,1000,10000]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty11}
\begin{paste}{ugTypesSubdomainsPageEmpty11}{ugTypesSubdomainsPagePatch11}
\pastebutton{ugTypesSubdomainsPageEmpty11}{\showpaste}
\tab{5}\spadcommand{\[10^{((i-1) :: \text{PI}) for i in 2..5}\]}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch12}
\begin{paste}{ugTypesSubdomainsPageFull12}{ugTypesSubdomainsPageEmpty12}
\pastebutton{ugTypesSubdomainsPageFull12}{\hidepaste}
\tab{5}\spadcommand{\[10^{((i-1) pretend \text{PI}) for i in 2..5}\]}
\indentrel{3}\begin{verbatim}
(12) \[10,100,1000,10000\]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty12}
\begin{paste}{ugTypesSubdomainsPageEmpty12}{ugTypesSubdomainsPagePatch12}
\pastebutton{ugTypesSubdomainsPageEmpty12}{\showpaste}
\tab{5}\spadcommand{\[10^{((i-1) pretend \text{PI}) for i in 2..5}\]}
\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPagePatch13}
\begin{paste}{ugTypesSubdomainsPageFull13}{ugTypesSubdomainsPageEmpty13}
\pastebutton{ugTypesSubdomainsPageFull13}{\hidepaste}
\tab{5}\spadcommand{\((2/3) pretend \text{Complex Integer}\)}
\indentrel{3}\begin{verbatim}
(13) 2 + 3\%i
Type: Complex Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugTypesSubdomainsPageEmpty13}
\begin{paste}{ugTypesSubdomainsPageEmpty13}{ugTypesSubdomainsPagePatch13}
\pastebutton{ugTypesSubdomainsPageEmpty13}{\showpaste}
\tab{5}\spadcommand{\((2/3) pretend \text{Complex Integer}\)}
\end{paste}\end{patch}

Package Calling and Target Types

⇒ "notitle" (ugTypesDeclarePage) 7 on page 1641
⇒ "notitle" (ugUserUsePage) 10 on page 1854

ug02.ht
Axiom works hard to figure out what you mean by an expression without your having to qualify it with type information. Nevertheless, there are times when you need to help it along by providing hints (or even orders!) to get Axiom to do what you want.

We saw in Section 2.3 that declarations using types and modes control the type of the results produced. For example, we can either produce a complex object with polynomial real and imaginary parts or a polynomial with complex integer coefficients, depending on the declaration.

\spadgloss{Package calling} is how you tell Axiom to use a particular function from a particular part of the library.

\xtc{Use the \axiomOpFrom{/}{Fraction} from \axiomType{Fraction Integer} to create a fraction of two integers.}{2/3}
\xtc{If we wanted a floating point number, we can say ‘‘use the \axiomOpFrom{/}{Float} in \axiomType{Float}.’’}{(2/3)\$Float}
\xtc{Perhaps we actually wanted a fraction of complex integers.}{(2/3)\$Fraction(Complex Integer)}

In each case, Axiom used the indicated operations, sometimes first needing to convert the two integers into objects of an appropriate type. In these examples, \axiomOpFrom{/}{Fraction} is written as an infix operator.

\beginImportant
To use package calling with an infix operator, use the following syntax:
\centerline{\tt (\subscriptIt{arg}{1} \ \it op}
We used, for example, \texttt{axiom{(2/3)Float}}. The expression \texttt{axiom{(2 + 3 + 4)}} is equivalent to \texttt{axiom{(2+3) + 4.}} Therefore in the expression \texttt{axiom{(2 + 3 + 4)Float}} the second \texttt{axiomOp{+}} comes from the \texttt{\axiomType{Float}} domain. Can you guess whether the first \texttt{axiomOp{+}} comes from \texttt{\axiomType{Integer}} or \texttt{\axiomType{Float}}?\footnote{\texttt{\axiomType{Float}}, because the package call causes Axiom to convert \texttt{axiom{(2 + 3)}} and \texttt{axiom{4}} to type \texttt{\axiomType{Float}}. Before the sum is converted, it is given a target type (see below) of \texttt{\axiomType{Float}} by Axiom and then evaluated. The target type causes the \texttt{axiomOp{+}} from \texttt{\axiomType{Float}} to be used.}

For an operator written before its arguments, you must use parentheses around the arguments (even if there is only one), and follow the closing parenthesis by a \texttt{axiomSyntax{type}} and then the type.

\beginImportant
For example, to call the ‘‘minimum’’ function from \texttt{\axiomType{DoubleFloat}} on two integers, you could write \texttt{axiom{min(4,89)DoubleFloat}}.

Another use of package calling is to tell Axiom to use a library function rather than a function you defined. We discuss this in \texttt{ugUserUsePage} in Section 6.9\ignore{ugUserUse}.

Sometimes rather than specifying where an operation comes from, you just want to say what type the result should be. We say that you provide a \texttt{\spadglossSee{target type}{target}} for the expression. Instead of using a \texttt{axiomSyntax{type}}, use a \texttt{axiomSyntax{@}} to specify the requested target type.

Otherwise, the syntax is the same.

Note that giving a target type is not the same as explicitly doing a conversion.

The first says ‘‘try to pick operations so that the result has such-and-such a type.’’

The second says ‘‘compute the result and then convert to an object of such-and-such a type.’’

\xtc{}

Sometimes it makes sense, as in this expression, to say ‘‘choose the operations in this expression so that
the final result is a \texttt{Float}.
\spad{(2/3)@Float}

Here we used \texttt{@} to say that the target type of the left-hand side was \texttt{Float}.
In this simple case, there was no real difference between using \texttt{@} and \texttt{\$}.
You can see the difference if you try the following.
\spad{(2 + 3)@String}
\spad{(2 + 3)\$String}
(By the way, the operation \texttt{concat} or juxtaposition is used to concatenate two strings.)

When we have more than one operation in an expression, the difference is even more evident.
The following two expressions show that Axiom uses the target type to create different objects.
The \texttt{+}, \texttt{*} and \texttt{**} operations are all chosen so that an object of the correct final type is created.
\spad{((x + y * \%i)**2)@(Complex Polynomial Integer)}
\spad{((x + y * \%i)**2)@(Polynomial Complex Integer)}

What do you think might happen if we left off all target type and package call information in this last example?
We can convert it to \axiomType{Complex} as an afterthought. But this is more work than just saying making what we want in the first place.
\spadpaste{(x + y * \%i)**2 \free{prevC}}
\xtc{We can convert it to \axiomType{Complex} as an afterthought. But this is more work than just saying making what we want in the first place.}
\spadpaste{\% :: Complex \free{prevC}}
\xtc{We can convert it to \axiomType{Complex} as an afterthought. But this is more work than just saying making what we want in the first place.}

Finally, another use of package calling is to qualify fully an operation that is passed as an argument to a function.

\spadpaste{\% :: Complex \free{prevC}}
\xtc{Start with a small matrix of integers.}
\spadpaste{h := matrix [[8,6],[-4,9]] \free{h}}
\xtc{We want to produce a new matrix that has for entries the multiplicative inverses of the entries of \axiom{h}. One way to do this is by calling \axiomFunFrom{map}\{MatrixCategoryFunctions2\} with the \axiomFunFrom{inv}\{Fraction\} function from \axiomType{Fraction (Integer)}.}
\spadpaste{map(inv\$Fraction(Integer),h) \free{h}}
\xtc{We could have been a bit less verbose and used abbreviations.}
\spadpaste{map(inv\$FRAC(INT),h) \free{h}\free{h1}}
\xtc{As it turns out, Axiom is smart enough to know what we mean anyway. We can just say this.}
\spadpaste{map(inv,h) \free{h}}
\end{scroll}

\autobuttons
\end{page}

\begin{patch}{ugTypesPkgCallPagePatch1}
\begin{paste}{ugTypesPkgCallPageFull1}{ugTypesPkgCallPageEmpty1}
\pastebutton{ugTypesPkgCallPageFull1}{\hidepaste
\tab{5}\spadcommand{2/3}
\indentrel{3}\begin{verbatim}
2
(1)
3
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugTypesPkgCallPagePatch1}
\begin{paste}{ugTypesPkgCallPageFull1}{ugTypesPkgCallPageEmpty1}
\pastebutton{ugTypesPkgCallPageEmpty1}{\showpaste}
\tab{5}\spadcommand{2/3}
\end{paste}\end{patch}
\begin{patch}{ugTypesPkgCallPagePatch2}
\begin{paste}{ugTypesPkgCallPageFull2}{ugTypesPkgCallPageEmpty2}
\pastebutton{ugTypesPkgCallPageEmpty2}{\hidepaste}
\tab{5}\spadcommand{(2/3)Float}
\indentrel{3}\begin{verbatim}
(2) 0.6666666666 6666666667
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugTypesPkgCallPagePatch3}
\begin{paste}{ugTypesPkgCallPageFull3}{ugTypesPkgCallPageEmpty3}
\pastebutton{ugTypesPkgCallPageEmpty3}{\hidepaste}
\tab{5}\spadcommand{(2/3)$\text{Fraction(Complex Integer)}$}
\indentrel{3}\begin{verbatim}
2
(3)
3
Type: Fraction Complex Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugTypesPkgCallPagePatch4}
\begin{verbatim}
(4) 0.6666666667 6666666667
Type: Float
\end{verbatim}

\begin{verbatim}
(5) - y + x + 2x y %i
\end{verbatim}
Type: Complex Polynomial Integer

\begin{verbatim}
2 2
(6) - y + 2%i x y + x
\end{verbatim}

Type: Polynomial Complex Integer

\begin{verbatim}
2 2
(7) - y + 2%i x y + x
\end{verbatim}

Type: Polynomial Complex Integer

\begin{verbatim}
2 2
(8) % :: Complex ?
\end{verbatim}
\(y + x + 2x \) \(y \) %i

Type: Complex Polynomial Integer

\begin{verbatim}
8 6
- 4 9
\end{verbatim}

Type: Matrix Integer

\begin{verbatim}
1 1
8 6
- 1 1
- 4 9
\end{verbatim}

Type: Matrix Fraction Integer

\begin{verbatim}
1 1
8 6
- 1 1
- 4 9
\end{verbatim}

Type: Matrix Fraction Integer
\spadcommand{map(inv$FRAC(INT),h)\free{h}}
\begin{verbatim}
\begin{tabular}{ll}
1 & 1 \\
8 & 6 \\
\end{tabular}
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
\begin{tabular}{ll}
1 & 1 \\
- & 4 \\
9 & 9 \\
\end{tabular}
\end{verbatim}
Type: Matrix Fraction Integer
\end{verbatim}
\end{patch}
\end{patch}
\begin{patch}{ugTypesPkgCallPagePatch14}
\begin{patch}{ugTypesPkgCallPageFull14}
\spadcommand{map(inv,h)\free{h}}
\begin{verbatim}
\begin{tabular}{ll}
1 & 1 \\
8 & 6 \\
\end{tabular}
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
\begin{tabular}{ll}
1 & 1 \\
- & 4 \\
9 & 9 \\
\end{tabular}
\end{verbatim}
Type: Matrix Fraction Integer
\end{verbatim}
\end{patch}
\end{patch}
In this section we briefly describe an internal process by which
Axiom determines a type to which two objects of possibly
different types can be converted.
We do this to give you further insight into how Axiom takes
your input, analyzes it, and produces a result.

What happens when you enter \texttt{x + 1} to Axiom?
Let’s look at what you get from the two terms of this expression.

\begin{vmulticolumn}{c}{c}{This is a symbolic object whose type indicates the name.}
\end{vmulticolumn}
\begin{vmulticolumn}{c}{c}{\texttt{x}}
\end{vmulticolumn}
\begin{vmulticolumn}{c}{c}{This is a positive integer.}
\end{vmulticolumn}
\begin{vmulticolumn}{c}{c}{\texttt{1}}
\end{vmulticolumn}

There are no operations in \texttt{PositiveInteger} that add
positive integers to objects of type \texttt{Variable(x)} nor
are there any in \texttt{Variable(x)}.
Before it can add the two parts, Axiom must come up with
a common type to which both \texttt{x} and \texttt{1} can be
converted.
We say that Axiom must \texttt{resolve} the two types
into a common type.
In this example, the common type is \texttt{Polynomial(Integer)}.

\begin{vmulticolumn}{c}{c}{Once this is determined, both parts are converted into polynomials,
and the addition operation from \texttt{Polynomial(Integer)} is used
to get the answer.}
\end{vmulticolumn}
\begin{vmulticolumn}{c}{c}{\texttt{x + 1}}
\end{vmulticolumn}
\begin{vmulticolumn}{c}{c}{Axiom can always resolve two types: if nothing resembling
the original types can be found, then \texttt{Any} is be used.
This is fine and useful in some cases.}
\end{vmulticolumn}
In other cases objects of type \axiomType{Any} can’t be used by the operations you specified.

Although this example was contrived, your expressions may need to be qualified slightly to help Axiom resolve the types involved. You may need to declare a few variables, do some package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does. We think you will be impressed with its ability to ‘‘do what I mean.’’ If Axiom is still being obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little help to analyze quickly and perform your computations.

\begin{verbatim}
(1) x
Type: Variable x
\end{verbatim}

\begin{verbatim}
(2) 1
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(3) x + 1
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(4) ["string",3.14159]
Type: List Any
\end{verbatim}

\begin{verbatim}
"string" + 3.14159
\end{verbatim}
Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding others that are meant to be used by developers or only in rare cases. If you are a new user of Axiom, it is likely that everything you need is available by default and you may want to skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can use its operations without doing anything special) or it is hidden (meaning you have to either package call (see Package Calling and Target Types) in Section 2.9) or explicitly expose it to use the operations).

The initial exposure status for a constructor is set in the file exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of this file). Constructors are collected together in exposure groups. Categories are all in the exposure group ’categories’ and the bulk of the basic set of packages and domains that are exposed are in the exposure group ’basic’.

Here is an abbreviated sample of the file (without the Lisp parentheses):

```
\spadglossSee{exposed}{expose} (meaning that you can use its operations without doing anything special) or it is \it hidden (meaning you have to either package call (see Package Calling and Target Types) in Section 2.9) or explicitly expose it to use the operations).

The initial exposure status for a constructor is set in the file exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of this file). Constructors are collected together in exposure groups. Categories are all in the exposure group ’categories’ and the bulk of the basic set of packages and domains that are exposed are in the exposure group ’basic’.

Here is an abbreviated sample of the file (without the Lisp parentheses):

```
```
For each constructor in a group, the full name and the abbreviation is given.

There are other groups in \texttt{exposed.lsp} but initially only the constructors in exposure groups \texttt{``basic''} \texttt{``categories''} \texttt{``naglink''} and \texttt{``anna''} are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use \texttt{\spadcmd{)set expose}} to expose, hide or query the exposure status of an individual constructor or exposure group. The reason for having exposure groups is to be able to expose or hide multiple constructors with a single command. For example, you might group together into exposure group \texttt{``quantum''} a number of domains and packages useful for quantum mechanical computations. These probably should not be available to every user, but you want an easy way to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default,
you would issue \spadcmd{)set expose drop group basic}. If, however, you discover that you have hidden all the basic constructors, you should issue \spadcmd{)set expose add group basic} to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. In \downlink{``A Famous Triangle''}{ugUserTrianglePage} in Section 6.19\ignore{ugUserTriangle} we use several operations from \axiomType{OutputForm}, a domain usually hidden. To avoid package calling every operation from \axiomType{OutputForm}, we expose the domain and let Axiom conclude that those operations should be used. Use \spadcmd{)set expose add constructor} and \spadcmd{)set expose drop constructor} to expose and hide a constructor, respectively. You should use the constructor name, not the abbreviation. The \spadcmd{)set expose} command guides you through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your intention) though you might not expect the results that you get. \axiomType{OutputForm} is, in fact, one of the worst offenders in this regard. This domain is meant to be used by other domains for creating a structure that Axiom knows how to display. It has functions like \axiomOpFrom{+}{OutputForm} that form output representations rather than do mathematical calculations. Because of the order in which Axiom looks at constructors when it is deciding what operation to apply, \axiomType{OutputForm} might be used instead of what you expect. \xtc{ This is a polynomial. }{ \spadpaste{x + x} } \xtc{ Expose \axiomType{OutputForm}. }{ \spadpaste{)set expose add constructor OutputForm \bound{setexposeadd}}} \xtc{ This is what we get when \axiomType{OutputForm} is automatically available. }{ \spadpaste{x + x \free{setexposeadd}}} \xtc{ Hide \axiomType{OutputForm} so we don't run into problems with any later examples! }{ \spadpaste{)set expose drop constructor OutputForm \bound{setexposedrop}}} 

Finally, exposure is done on a frame-by-frame basis. A \spadgloss{frame} (see \downlink{``)frame''}{ugSysCmdframePage} in Section B.11 \ignore{ugSysCmdframe}) is one of possibly several logical Axiom workspaces within a physical one, each having its own environment (for example, variables and function definitions). If you have several Axiom workspace windows on your screen, they are all different frames, automatically created for you by Hyperdoc. Frames can be manually created, made active and destroyed by the \spadcmd{)frame} system command. They do not share exposure information, so you need to use \spadcmd{)set expose} in each one to add or drop constructors from view.
\begin{verbatim}
(1) 2x
\end{verbatim}

Type: Polynomial Integer

\begin{verbatim}
(2) x + x
\end{verbatim}

Type: OutputForm
To conclude this chapter, we introduce you to some system commands that you can use for getting more information about domains, packages, categories, and operations. The most powerful Axiom facility for getting information about constructors and operations is the \Browse{} component of Hyperdoc. This is discussed in \downlink{``Browse''}{ugBrowsePage} in Chapter 14\ignore{ugBrowse}.

Use the \spadsys{what} system command to see lists of system objects whose name contain a particular substring (uppercase or lowercase is not significant).

\xtc{Issue this to see a list of all operations with \tt{complex} in their names.}
{"\tt\spadpaste{\what operation complex}}
\xtc{If you want to see all domains with \tt{matrix} in their names, issue this.
Similarly, if you wish to see all packages whose names contain `'\{\tt gauss\}'`, enter this.

\spadpaste{)what package gauss}

\xtc{
This command shows all
the operations that \axiomType{Any} provides.
Wherever \axiomSyntax{\$} appears, it means `'\axiomType{Any}'`.
}

\spadpaste{)show Any}

\xtc{
This displays all operations with the name \axiomFun{complex}.
}

\spadpaste{)display operation complex}

Let’s analyze this output.

\xtc{
First we find out what some of the abbreviations mean.
}

\spadpaste{)abbreviation query COMPCAT}

\xtc{
\spadpaste{)abbreviation query COMRING}

So if \axiom{D1} is a commutative ring (such as the integers or
floats) and \axiom{D} belongs to \axiomType{ComplexCategory}
\axiom{D1}, then there is an operation called \axiomFun{complex} that
takes two elements of \axiom{D1} and creates an element of
\axiom{D}.

The primary example of a constructor implementing domains
belonging to \axiomType{ComplexCategory} is \axiomType{Complex}.
See \downlink{‘Complex’}{ComplexXmpPage}\ignore{Complex}
for more information on that and see
\downlink{‘Declaring the Type of Functions’}{ugUserDeclarePage} in
Section 6.4\ignore{ugUserDeclare}
for more information on function types.

\endscroll

\begin{patch}{ugAvailSnoopPagePatch1}
\begin{paste}{ugAvailSnoopPageFull1}{ugAvailSnoopPageEmpty1}
\spadcommand{)show Any}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPagePatch5}
\begin{paste}{ugAvailSnoopPageFull5}{ugAvailSnoopPageEmpty5}
\spadcommand{)display operation complex}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPageEmpty5}
\begin{paste}{ugAvailSnoopPageEmpty5}{ugAvailSnoopPagePatch5}
\spadcommand{)display operation complex}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPagePatch6}
\begin{paste}{ugAvailSnoopPageFull6}{ugAvailSnoopPageEmpty6}
\spadcommand{)abbreviation query COMPCAT}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPageEmpty6}
\begin{paste}{ugAvailSnoopPageEmpty6}{ugAvailSnoopPagePatch6}
\spadcommand{)abbreviation query COMPCAT}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPagePatch7}
\begin{paste}{ugAvailSnoopPageFull7}{ugAvailSnoopPageEmpty7}
\spadcommand{)abbreviation query COMRING}
\end{paste}\end{patch}

\begin{patch}{ugAvailSnoopPageEmpty7}
\begin{paste}{ugAvailSnoopPageEmpty7}{ugAvailSnoopPagePatch7}
\spadcommand{)abbreviation query COMRING}
\end{paste}\end{patch}
Chapter 8

Users Guide Chapter 3 (ug03.ht)

Using Hyperdoc

⇒ “notitle” (YouTriedIt) 3.78 on page 1018
⇒ “notitle” (ugHyperHeadingsPage) 8 on page 1708
⇒ “notitle” (ugHyperKeysPage) 8 on page 1709
⇒ “notitle” (ugHyperScrollPage) 8 on page 1710
⇒ “notitle” (ugHyperInputPage) 8 on page 1711
⇒ “notitle” (ugHyperButtonsPage) 8 on page 1713
⇒ “notitle” (ugHyperSearchPage) 8 on page 1714
⇒ “notitle” (ugHyperExamplePage) 8 on page 1716
⇒ “notitle” (ugHyperResourcesPage) 8 on page 1717
⇒ ugHyperPage{3. Using Hyperdoc}
⇒ ugHyperPage

Hyperdoc is the gateway to Axiom.
It’s both an on-line tutorial and an on-line reference manual.
It also enables you to use Axiom simply by using the mouse and
filling in templates.
Hyperdoc is available to you if you are running Axiom under the
X Window System.

Pages usually have active areas, marked in
\textbf{this font} (bold face).\textlink{this font}{YouTriedIt}
As you move the mouse pointer to an active area, the pointer changes from
a filled dot to an open circle.
The active areas are usually linked to other pages. When you click on an active area, you move to the linked page.

\text{Try clicking \downlink{here}{YouTriedIt} now.}

We suggest that you learn more about other features of Hyperdoc by clicking on an active area in the menu below.

\beginmenu
\menudownlink{{3.1. Headings}}{ugHyperHeadingsPage}
\menudownlink{{3.2. Key Definitions}}{ugHyperKeysPage}
\menudownlink{{3.3. Scroll Bars}}{ugHyperScrollPage}
\menudownlink{{3.4. Input Areas}}{ugHyperInputPage}
\menudownlink{{3.5. Radio Buttons and Toggles}}{ugHyperButtonsPage}
\menudownlink{{3.6. Search Strings}}{ugHyperSearchPage}
\menudownlink{{3.7. Example Pages}}{ugHyperExamplePage}
\menudownlink{{3.8. X Window Resources for Hyperdoc}}
{ugHyperResourcesPage}
\endmenu
\endscroll
\autobuttons
\end{page}

Headings

--- ug03.ht ---

\begin{page}{ugHyperHeadingsPage}{3.1. Headings}
\beginscroll
%
Most pages have a standard set of buttons at the top of the page.
This is what they mean:

\indent{0}
\beginitems
\item{\StdHelpButton{} Click on this to get help.}
The button only appears if there is specific help for the page you are viewing.
You can get \text{\it general} help for Hyperdoc by clicking the help button on the home page.

\item{\UpButton{} Click here to go back one page.}
By clicking on this button repeatedly, you can go back several pages and then take off in a new direction.

\item{\ReturnButton{} Go back to the home page, that is,
the page on which you started.
Use Hyperdoc to explore, to make forays into new topics.
Don’t worry about how to get back.
Hyperdoc remembers where you came from.
Just click on this button to return.

\item[\StdExitButton{}]
From the root window (the one that is displayed when you start the system) this button leaves the Hyperdoc program, and it must be restarted if you want to use it again. From any other Hyperdoc window, it just makes that one window go away. You \{it must\} use this button to get rid of a window. If you use the window manager ‘‘Close’’ button, then all of Hyperdoc goes away.
\enditems
\indent{0}
%
The buttons are not displayed if they are not applicable to the page you are viewing.
For example, there is no \ReturnButton{} button on the top-level menu.

\endscroll
\autobuttons
\end{page}

---------

Key Definitions

⇒ “notitle” (ugHyperScrollPage) 8 on page 1710
⇒ “notitle” (ugHyperInputPage) 8 on page 1711
—— ug03.ht ——

\begin{page}{ugHyperKeysPage}{3.2. Key Definitions}
\beginscroll
The following keyboard definitions are in effect throughout Hyperdoc.
See \downlink{‘‘Scroll Bars’’}{ugHyperScrollPage} in Section 3.3\ignore{ugHyperScroll} and \downlink{‘‘Input Areas’’}{ugHyperInputPage} in Section 3.4\ignore{ugHyperInput} for some contextual key definitions.
%
\indent{0}
\beginitems
\item[\F1]
Display the main help page.
\item[\F3]
Same as \StdExitButton{}, makes the window go away if you are
not at the top-level window or quits the Hyperdoc facility if you are
at the top-level.
\item[F5] Rereads the Hyperdoc database, if necessary (for system
developers).
\item[F9] Displays this information about key definitions.
\item[F12] Same as \bf{F3}.
\item[Up Arrow] Scroll up one line.
\item[Down Arrow] Scroll down one line.
\item[Page Up] Scroll up one page.
\item[Page Down] Scroll down one page.
\enditems
\indent{0}

\endscroll
\autobuttons
\end{page}

---

**Scroll Bars**

⇒ “notitle” (ugHyperInputPage) 8 on page 1711
— ug03.htm —

\begin{page}{ugHyperScrollPage}{3.3. Scroll Bars}
\beginscroll

Whenever there is too much text to fit on a page, a \it scroll bar automatically appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount of text than can be displayed at one time.
The scroll bar lets you move up and down in the text to see different parts.
It also shows where the aperture is relative to the whole text.
The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the ‘‘down-arrow’’ at the bottom of the scroll bar and click.
See that the aperture moves down one line.
Do it several times.
Each time you click, the aperture moves down one line.
Move the mouse to the ‘‘up-arrow’’ at the top of the scroll bar and click.
The aperture moves up one line each time you click.
Next move the mouse to any position along the middle of the scroll bar and click. Hyperdoc attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the \	exttt{\fbox{\bf PageUp}} and \	exttt{\fbox{\bf PageDown}} keys on your keyboard. They move the visible part of the region up and down one page each time you press them.

If the Hyperdoc page does not contain an input area (see `\downlink{‘Input Areas’}{ugHyperInputPage} in Section 3.4\ignore{ugHyperInput}), you can also use the \texttt{\fbox{\bf Home}} and \texttt{\fbox{\uparrow}} and \texttt{\fbox{\downarrow}} arrow keys to navigate. When you press the \texttt{\fbox{\bf Home}} key, the screen is positioned at the very top of the page. Use the \texttt{\fbox{\uparrow}} and \texttt{\fbox{\downarrow}} arrow keys to move the screen up and down one line at a time, respectively.

\inputstring{one}{40}{some text}

As you can see, the input area has some initial text \{it some text\} followed by an underscore cursor (the character \{it _\}).
To enter characters, first move your mouse cursor to somewhere within the Hyperdoc page. Characters that you type are inserted in front of the underscore. This means that when you type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the \textbackslash{	extbf{Backspace}} key to erase characters to the left. To modify what you type, use the right-arrow and left-arrow keys and the \textbackslash{	extbf{Insert}}, \textbackslash{	extbf{Delete}}, \textbackslash{	extbf{Home}}, and \textbackslash{	extbf{End}} keys. These keys are found immediately on the right of the standard IBM keyboard.

If you press the \textbackslash{	extbf{Home}} key, the cursor moves to the beginning of the line and if you press the \textbackslash{	extbf{End}} key, the cursor moves to the end of the line. Pressing \textbackslash{	extbf{Ctrl}--	extbf{End}} deletes all the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor. When you first see a page, the top-most input area contains the cursor. To type information into another input area, use the \textbackslash{	extbf{Enter}} or \textbackslash{	extbf{Tab}} key to move from one input area to another. To move in the reverse order, use \textbackslash{	extbf{Shift}--	extbf{Tab}}.

You can also move from one input area to another using your mouse. Notice that each input area is active. Click on one of the areas. As you can see, the underscore cursor moves to that window.
Radio Buttons and Toggles

— ug03.ht —

Some pages have \textit{radio buttons} and \textit{toggles}. Radio buttons are a group of buttons like those on car radios: you can select only one at a time.

Here are three radio buttons:

%\texttt{radioboxes{sample}{htbfile{pick}}{htbfile{unpick}}}
\begingroup
\begin{center}
\begin{tabular}{l}
\texttt{\radiobox[1]{rone}{sample}} & First one \\
\texttt{\radiobox[0]{rtwo}{sample}} & Second one \\
\texttt{\radiobox[0]{rthree}{sample}} & Third one \\
\end{tabular}
\end{center}
\endgroup
Once you have selected a button, it appears to be inverted and contains a checkmark.

To change the selection, move the cursor with the mouse to a different radio button and click.

\texttt{Try it now.}

A toggle is an independent button that displays some on/off state. When \texttt{on}, the button appears to be inverted and contains a checkmark. When \texttt{off}, the button is raised.

\%\texttt{inputbox{one}{htbfile{pick}}{htbfile{unpick}}}
\begingroup
\begin{center}
\begin{tabular}{l}
\texttt{\inputbox[1]{one}{htbfile{pick}}{htbfile{unpick}}} & First one \\
\texttt{\inputbox[0]{two}{htbfile{pick}}{htbfile{unpick}}} & Second one \\
\texttt{\inputbox[1]{three}{htbfile{pick}}{htbfile{unpick}}} & Third one \\
\end{tabular}
\end{center}
\endgroup
To change toggle the selection, move the cursor with the mouse to the button and click.
Search Strings

A search string is used for searching some database. To learn about search strings, we suggest that you bring up the Hyperdoc glossary. To do this from the top-level page of Hyperdoc:

\begin{itemize}
  \item Click on Reference, bringing up the Axiom Reference page.
  \item Click on Glossary, bringing up the glossary.
\end{itemize}

You can also just click on the word ‘Glossary’ in the last sentence.

Once you get the window containing the glossary, move it so that it and this window are both visible.

The glossary has an input area at its bottom. We review the various kinds of search strings you can enter to search the glossary.

The simplest search string is a word, for example, \texttt{operation}. A word only matches an entry having exactly that spelling. Enter the word \texttt{operation} into the input area above then click on \texttt{Search}. As you can see, \texttt{operation} matches only one entry, namely with \texttt{operation} itself.

Normally matching is insensitive to whether the alphabetic characters of your search string are in uppercase or lowercase. Thus \texttt{operation} and \texttt{OperAtion} both have the same effect. If you prefer that matching be case-sensitive, issue the command \texttt{ HHyperName mixedCase} command to the interpreter.

You will very often want to use the wildcard \texttt{*} in your search string so as to match multiple entries in the list. The search
key $\texttt{cat*}$ matches every entry in the list. You can also use $\texttt{*}$ anywhere within a search string to match an arbitrary substring. Try $\texttt{cat*}$ for example: enter $\texttt{cat*}$ into the input area and click on $\texttt{Search}$. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try search strings such as $\texttt{*dom*}$. As you see, this search string matches $\texttt{domain}$, $\texttt{domain constructor}$, $\texttt{subdomain}$, and so on.

For more complicated searches, you can use $\texttt{and}$, $\texttt{or}$, and $\texttt{not}$ with basic search strings; write logical expressions using these three operators just as in the Axiom language. For example, $\texttt{domain or package}$ matches the two entries $\texttt{domain}$ and $\texttt{package}$. Similarly, $\texttt{dom* and *con*}$ matches $\texttt{domain constructor}$ and others. Also $\texttt{not *a*}$ matches every entry that does not contain the letter $\texttt{a}$ somewhere.

Use parentheses for grouping. For example, $\texttt{dom* and (not *con*)}$ matches $\texttt{domain}$ but not $\texttt{domain constructor}$.

There is no limit to how complex your logical expression can be. For example, $\texttt{a* or b* or c* or d* or e* and (not *a*)}$ is a valid expression.
Many pages have Axiom example commands.

Here are two:
\spadpaste{a:= x**2 + 1 \bound{a}}
\spadpaste{(a - 2)**2 \free{a}}

Each command has an active ‘‘button’’ along the left margin. When you click on this button, the output for the command is ‘‘pasted-in.’’

Click again on the button and you see that the pasted-in output disappears.

Maybe you would like to run an example?
To do so, just click on any part of its text!
When you do, the example line is copied into a new interactive Axiom buffer for this Hyperdoc page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—Hyperdoc automatically runs all the necessary lines in the right order!
For instance, the second example line above refers to \spad{a} which is assigned in the first example line.
What happens if you first click on the second example line? Axiom first issues the first line (to assign \spad{a}), then the second (to do the computation using \spad{a}).

The new interactive Axiom buffer disappears when you leave Hyperdoc.
If you want to get rid of it beforehand, use the \bf{Cancel} button of the X Window manager or issue the Axiom system command \spadsys{)close.}
X Window Resources for Hyperdoc

— ug03.ht —

You can control the appearance of Hyperdoc while running under Version 11 of the X Window System by placing the following resources
in the file \{bf .Xdefaults\} in your home directory.
In what follows, \{it font\} is any valid X11 font name
(for example, \{tt Rom14\}) and \{it color\} is any valid X11 color
specification (for example, \{tt NavyBlue\}).
For more information about fonts and colors, refer to the
X Window documentation for your system.

\begin{itemize}
\item \t{\tt Axiom.hyperdoc.RmFont:} \{it font\} \\
    This is the standard text font. \xdefault{Rom14}
\item \t{\tt Axiom.hyperdoc.RmColor:} \{it color\} \\
    This is the standard text color. \xdefault{black}
\item \t{\tt Axiom.hyperdoc.ActiveFont:\} \{it font\} \\
    This is the font used for Hyperdoc link buttons. \xdefault{Bld14}
\item \t{\tt Axiom.hyperdoc.ActiveColor:\} \{it color\} \\
    This is the color used for Hyperdoc link buttons. \xdefault{black}
\item \t{\tt Axiom.hyperdoc.AxiomFont:} \{it font\} \\
    This is the font used for active Axiom commands.\footnote{
        This was called \{tt Axiom.hyperdoc.SpadFont\} in early versions
        of Axiom.}
    \xdefault{Bld14}
\item \t{\tt Axiom.hyperdoc.AxiomColor:} \{it color\} \\
    This is the color used for active Axiom commands.\footnote{
        This was called \{tt Axiom.hyperdoc.SpadColor\} in early versions
        of Axiom.}
    \xdefault{black}
\item \t{\tt Axiom.hyperdoc.BoldFont:} \{it font\} \\
    This is the font used for bold face. \xdefault{Bld14}
\item \t{\tt Axiom.hyperdoc.BoldColor:} \{it color\} \\
    This is the color used for bold face. \xdefault{black}
\item \t{\tt Axiom.hyperdoc.TtFont:} \{it font\} \\
    This is the font used for Axiom output in Hyperdoc.
    This font must be fixed-width. \xdefault{Rom14}
\item \t{\tt Axiom.hyperdoc.TtColor:} \{it color\} \\
    This is the color used for Axiom output in Hyperdoc.
    \xdefault{black}
\item \t{\tt Axiom.hyperdoc.EmphasizeFont:} \{it font\} \\
    This is the font used for italics. \xdefault{Itl14}
\item \t{\tt Axiom.hyperdoc.EmphasizeColor:} \{it color\} \\
    This is the color used for italics. \xdefault{black}
\item \t{\tt Axiom.hyperdoc.InputBackground:} \{it color\} \\
    This is the color used as the background for input areas.
    \xdefault{black}
\item \t{\tt Axiom.hyperdoc.InputForeground:} \{it color\} \\
    This is the color used as the foreground for input areas.
    \xdefault{white}
\item \t{\tt Axiom.hyperdoc.BorderColor:} \{it color\} \\
    This is the color used for drawing border lines.
    \xdefault{black}
\end{itemize}
This is the color used for the background of all windows.
\xdefault{white}
\enditems
\indent{0}
\endscroll
\autobuttons
\end{page}
Chapter 9

Users Guide Chapter 4 (ug04.ht)

Input Files and Output Styles

⇒ “notitle” (ugInOutInPage) 9 on page 1722
⇒ “notitle” (ugInOutSpadprofPage) 9 on page 1724
⇒ “notitle” (ugInOutOutPage) 9 on page 1725
⇒ “notitle” (ugInOutAlgebraPage) 9 on page 1728
⇒ “notitle” (ugInOutTeXPage) 9 on page 1731
⇒ “notitle” (ugInOutScriptPage) 9 on page 1732
⇒ “notitle” (ugInOutFortranPage) 9 on page 1734
   — ug04.ht —

\begin{page}{ugInOutPage}{4. Input Files and Output Styles}
\beginscroll

In this chapter we discuss how to collect Axiom statements and commands into files and then read the contents into the workspace.
We also show how to display the results of your computations in several different styles including \texttt{\TeX}, FORTRAN and monospace two-dimensional format.\footnote{\texttt{\TeX} is a trademark of the American Mathematical Society.}

The printed version of this book uses the Axiom \texttt{\TeX} output formatter.
When we demonstrate a particular output style, we will need to turn \texttt{\TeX} formatting off and the output style on so that the correct output is shown in the text.
Input Files

⇒ “notitle” (ugLangBlocksPage) 9 on page 1753
— ug04.ht —

\begin{page}{ugInOutInPage}{4.1. Input Files}
\beginscroll
%
In this section we explain what an \textit{input file} is and why you would want to know about it. We discuss where Axiom looks for input files and how you can direct it to look elsewhere. We also show how to read the contents of an input file into the \spadgloss{workspace} and how to use the \spadgloss{history} facility to generate an input file from the statements you have entered directly into the workspace.

An \textit{input} file contains Axiom expressions and system commands. Anything that you can enter directly to Axiom can be put into an input file. This is how you save input functions and expressions that you wish to read into Axiom more than one time.

To read an input file into Axiom, use the \spadcmd{)read} system command. For example, you can read a file in a particular directory by issuing \begin{verbatim}
The "`\bf .input'" is optional; this also works:

\begin{verbatim}
)read /spad/src/input/matrix
\end{verbatim}

What happens if you just enter
\spadcmd{)read matrix.input} or even \spadcmd{)read matrix}?  
Axiom looks in your current working directory for input files 
that are not qualified by a directory name.
Typically, this directory is the directory from which you invoked 
Axiom.
To change the current working directory, use the \spadcmd{)cd} system 
command. The command \spadsys{)cd} by itself shows the current 
working 
directory.
To change it to 
the \spadsys{src/input} subdirectory for user `babar', 
issue 
\begin{verbatim}
)cd /u/babar/src/input
\end{verbatim}
Axiom looks first in this directory for an input file.
If it is not found, it looks in the system's directories, assuming 
you meant some input file that was provided with Axiom.

\beginImportant
If you have the Axiom history facility turned on (which it is 
by default), you can save all the lines you have entered into the 
workspace by entering 
\begin{verbatim}
)history )write
\end{verbatim}
Axiom tells you what input file to edit to see your 
statements.
The file is in your home directory or in the directory you 
specified with \spadsys{)cd}.
\endImportant

In \downlink{``Blocks''}{ugLangBlocksPage} in Section 5.2 
we discuss using indentation in input files to group statements 
into \it blocks.
The \texttt{.axiom.input} File

\begin{page}{ugInOutSpadprofPage}{4.2. The \texttt{.axiom.input} File}
\beginscroll

When Axiom starts up, it tries to read the input file \texttt{.axiom.input} from your home directory. If there is no \texttt{axiom.input} in your home directory, it reads the copy located in its own \texttt{src/input} directory. The file usually contains system commands to personalize your Axiom environment. In the remainder of this section we mention a few things that users frequently place in their \texttt{axiom.input} files.

In order to have FORTRAN output always produced from your computations, place the system command
\spadcmd{)set output fortran on}
in \texttt{axiom.input}.

If you do not want to be prompted for confirmation when you issue the \spadcmd{)quit} system command, place
\spadcmd{)set quit unprotected}
in \texttt{axiom.input}.

If you then decide that you do want to be prompted, issue
\spadcmd{)set quit protected}.

This is the default setting so that new users do not leave Axiom inadvertently.\footnote{The system command \spadcmd{)pquit} always prompts you for confirmation.}

To see the other system variables you can set, issue \spadcmd{)set} or use the Hyperdoc \texttt{Settings} facility to view and change Axiom system variables.

\endscroll
\autobuttons
\end{page}
Common Features of Using Output Formats

— ug04.ht —

\begin{page}{ugInOutOutPage}{4.3. Common Features of Using Output Formats}
\beginscroll

In this section we discuss how to start and stop the display of the different output formats and how to send the output to the screen or to a file.
To fix ideas, we use FORTRAN output format for most of the examples.

You can use the \texttt{)set output} system command to toggle or redirect the different kinds of output.
The name of the kind of output follows ‘output’ in the command.
The names are

\begin{itemize}
  \item \texttt{fortran} for FORTRAN output.
  \item \texttt{algebra} for monospace two-dimensional mathematical output.
  \item \texttt{tex} for \texttt{\TeX} output.
  \item \texttt{html} for HTML output.
  \item \texttt{mathml} for MathML output.
  \item \texttt{script} for IBM Script Formula Format output.
\end{itemize}

For example, issue \texttt{)set output fortran on} to turn on FORTRAN format and
issue \texttt{)set output fortran off} to turn it off.
By default, \texttt{algebra} is \texttt{on} and all others are \texttt{off}.
When output is started, it is sent to the screen.
To send the output to a file, give the file name without directory or extension.
Axiom appends a file extension depending on the kind of output being produced.
\xtc{
  Issue this to redirect FORTRAN output to, for example, the file \texttt{\bf linalg.sfort}.
}{\texttt{)set output fortran linalg}}
\noOutputXtc{
  You must \texttt{also} turn on the creation of FORTRAN output.
The above just says where it goes if it is created.
In what directory is this output placed?
It goes into the directory from which you started Axiom,
or if you have used the \spad{)cd} system command, the one
that you specified with \spad{)cd}.
You should use \spad{)cd} before you send the output to the file.

You can always direct output back to the screen by issuing this.

You can abbreviate the words \texttt{\textasciitilde\spad{on}}, \texttt{\textasciitilde\spad{off}}, and
\texttt{\textasciitilde\spad{console}} to the minimal number
of characters needed to distinguish them.

The width of the output on the page is set by
\spadcmd{)set output length} for all formats except FORTRAN.
Use \spadcmd{)set fortran fortlength} to
change the FORTRAN line length from its default value of \spad{72}.  

}\begin{patch}{ugInOutOutPagePatch1}
\begin{paste}{ugInOutOutPageFull1}{ugInOutOutPageEmpty1}
\pastebutton{ugInOutOutPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugInOutOutPagePatch1}
\begin{paste}{ugInOutOutPageEmpty1}{ugInOutOutPagePatch1}
\pastebutton{ugInOutOutPageEmpty1}{\showpaste}
\tab{5}\spadcommand{)set output fortran linalg}
\end{paste}\end{patch}

\begin{patch}{ugInOutOutPagePatch2}
\begin{paste}{ugInOutOutPageFull2}{ugInOutOutPageEmpty2}
\pastebutton{ugInOutOutPageFull2}{\hidepaste}
\tab{5}\spadcommand{)set output fortran on}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutOutPagePatch3}
\begin{paste}{ugInOutOutPageFull3}{ugInOutOutPageEmpty3}
\pastebutton{ugInOutOutPageFull3}{\hidepaste}
\tab{5}\spadcommand{)set output fortran console}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutOutPagePatch4}
\begin{paste}{ugInOutOutPageFull4}{ugInOutOutPageEmpty4}
\pastebutton{ugInOutOutPageFull4}{\hidepaste}
\tab{5}\spadcommand{)set output fortran off}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutOutPagePatch5}
Monospace 2D Mathematical Format

— ug04.ht —

This is the default output format for Axiom. It is usually on when you start the system.

\begin{page}
\noOutputXtc{
If it is not, issue this.
}{
\spadpaste{)set output algebra on \bound{algon}}
}
\noOutputXtc{
Since the printed version of this book (as opposed to the Hyperdoc version) shows output produced by the \TeX{} output formatter, let us temporarily turn off \TeX{} output.
}{
\spadpaste{)set output tex off \bound{texoff}}
}
\xtc{
Here is an example of what it looks like.
}{
\spadpaste{matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4] \bound{algon texoff}}
}
The characters used for the matrix brackets above are rather ugly. You get this character set when you issue \spadcmd{set output characters plain}. This character set should be used when you are running on a machine that does not support the IBM extended ASCII character set. If you are running on an IBM workstation, for example, issue \spadcmd{set output characters default} to get better looking output.

\noOutputXtc{
Issue this to turn off this kind of formatting.
}{
\spadpaste{)set output algebra off}
}
\noOutputXtc{
Turn \TeX output on again.
}{
\spadpaste{)set output tex on}
}

\end{scroll}
}\autobuttons
\end{page}
\begin{verbatim}
3 3 2
3\%i y + x 3\%i y + 2x
(1)
4 4 2
4\%i y + x 4\%i y + 2x
Type: Matrix Polynomial Complex Integer
\end{verbatim}

\begin{verbatim}
3 3 2
3\%i y + x 3\%i y + 2x
(1)
4 4 2
4\%i y + x 4\%i y + 2x
Type: Matrix Polynomial Complex Integer
\end{verbatim}
TeX Format

Axiom can produce \TeX{} output for your expressions. The output is produced using macros from the \LaTeX{} document preparation system by Leslie Lamport.\footnote{See Leslie Lamport, \textit{\LaTeX{}: A Document Preparation System,} Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1986.} The printed version of this book was produced using this formatter.

To turn on \TeX{} output formatting, issue this.
\begin{verbatim}
\spadpaste{)set output tex on \bound{texon}}
\end{verbatim}
Here is an example of its output.
\begin{verbatim}
matrix \[
\begin{array}{cc}
\displaystyle {{3 \ \%i \ {y \sp 3}}+x}&
\displaystyle {{3 \ \%i \ {y \sp 3}}+{2 \ \{x \ sp 2}\}} \\
\displaystyle {{4 \ \%i \ {y \sp 4}}+x}&
\displaystyle {{4 \ \%i \ {y \sp 4}}+{2 \ \{x \ sp 2}\}} \\
\end{array}
\right\] \leqno(3)
\end{verbatim}
To turn \TeX{} output formatting off, issue \spad{)set output tex off}.

The \LaTeX{} macros in the output generated by Axiom are all standard except for the following definitions:
\begin{verbatim}
\def\csch{\mathop{\rm csch}\nolimits}
\end{verbatim}
IBM Script Formula Format

___

--- ug04.ht ---

Axiom can produce IBM Script Formula Format output for your expressions.

\texht{vskip 2pc}{
\noOutputXtc{
To turn IBM Script Formula Format on, issue this.
}{
\spadpaste{)set output script on}
Here is an example of its output.
\begin{verbatim}
matrix \([i*x**i + j*%i*y**j \text{ for } i \text{ in } 1..2] \text{ for } j \text{ in } 3..4]\)
.eq set blank @
:df.
<left lb < < <3 @@ %i @@ <y sup 3>>+x> here < <3 @@ %i @@
<y sup 3>>+<2 @@ <x sup 2>>> haove < < <4 @@ %i @@
<y sup 4>>+<2 @@ <x up 2>>> right rb>
:edf.
\end{verbatim}
\noOutputXtc{
To turn IBM Script Formula Format output formatting off, issue this.
}{
\spadpaste{)set output script off}
}
\endscroll
\autobuttons
\end{page}
FORTRAN Format

---

ug04.ht

\begin{page}{ugInOutFortranPage}{4.7. FORTRAN Format}
\beginscroll

In addition to turning FORTRAN output on and off and stating where the output should be placed, there are many options that control the appearance of the generated code. In this section we describe some of the basic options. Issue \spadcmd{)set fortran} to see a full list with their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs more than one line, the ampersand character \spadSyntax{\&} is used in column 6. Since some versions of FORTRAN have restrictions on the number of lines per statement, Axiom breaks long expressions into segments with a maximum of 1320 characters (20 lines of 66 characters) per segment. If you want to change this, say, to 660 characters, issue the system command \spadcmd{)set fortran explength 660}. You can turn off the line breaking by issuing \spadcmd{)set fortran segment off}. Various code optimization levels are available. % \noOutputXtc{ FORTRAN output is produced after you issue this. }{ \spadpaste{)set output fortran on \bound{forton}} }

\noOutputXtc{ For the initial examples, we set the optimization level to 0, which is the lowest level. }{ \spadpaste{)set fortran optlevel 0 \bound{opt0}\free{forton}} }

\noOutputXtc{ The output is usually in columns 7 through 72, although fewer columns are used in the following examples so that the output fits nicely on the page. }{ \spadpaste{)set fortran fortlenght 60} }

\noOutputXtc{ By default, the output goes to the screen and is displayed before the standard Axiom two-dimensional output. In this example, an assignment to the variable \spad{R1} was generated because this is the result of step 1. }{ \spadpaste{\spad{\texttt{(x+y)**3 \free{opt0}}}} }

\noOutputXtc{ Here is an example that illustrates the line breaking. }{ \spadpaste{\texttt{(x+y+z)**3 \free{opt0}}} }

Note in the above examples that integers are generally converted to floating point numbers, except in exponents. This is the default behavior but can be turned off by issuing \spadcmd{)set fortran ints2floats off}. The rules governing when the conversion is done are:
1735

\indent{4}
\begin{itemize}
\item If an integer is an exponent, convert it to a floating point number if it is greater than 32767 in absolute value, otherwise leave it as an integer.
\item Convert all other integers in an expression to floating point numbers.
\end{itemize}
\indent{0}

These rules only govern integers in expressions. Numbers generated by Axiom for \spad{DIMENSION} statements are also integers.

To set the type of generated FORTRAN data, use one of the following:
\begin{verbatim}
)set fortran defaulttype REAL
)set fortran defaulttype INTEGER
)set fortran defaulttype COMPLEX
)set fortran defaulttype LOGICAL
)set fortran defaulttype CHARACTER
\end{verbatim}

When temporaries are created, they are given a default type of \tt{REAL.} Also, the \tt{REAL} versions of functions are used by default.

\spadpaste{sin(x) \free{opt1}}

At optimization level 1, Axiom removes common subexpressions.

\spadpaste{()set fortran optlevel 1 \bound{opt1}\free{forton}}

This changes the precision to \tt{DOUBLE}. Substitute \tt{single} for \tt{double} to return to single precision.

\spadpaste{()set fortran precision double \free{opt1}\bound{double1}}

Complex constants display the precision.

\spadpaste{2.3 + 5.6*\%i \free{double1}}
The function names that Axiom generates depend on the chosen precision.

```spad
sin π/2 \free{double1}
```

Reset the precision to \spad{single} and look at these two examples again.

```spad
)set fortran precision single \free{opt1}\bound{single1}
```

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

```spad
[x+1,y+1,z+1] \free{opt1}
```

A temporary variable is generated to be the name of the array. This may have to be changed in your particular application.

```spad
set[2,3,4,3,5] \free{opt1}
```

By default, the starting index for generated FORTRAN arrays is \spad{0}.

```spad
matrix [[2.3,9.7],[0.0,18.778]] \free{opt1}
```

To change the starting index for generated FORTRAN arrays to be \spad{1}, issue this. This value can only be \spad{0} or \spad{1}.

```spad
)set fortran startindex 1 \free{opt1}\bound{start1}
```

Look at the code generated for the matrix again.

```spad
matrix [[2.3,9.7],[0.0,18.778]] \free{start1}
```
\begin{patch}{ugInOutFortranPagePatch1}
\begin{paste}{ugInOutFortranPageFull1}{ugInOutFortranPageEmpty1}
\pastebutton{ugInOutFortranPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPageEmpty1}
\begin{paste}{ugInOutFortranPageEmpty1}{ugInOutFortranPagePatch1}
\pastebutton{ugInOutFortranPageEmpty1}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPagePatch2}
\begin{paste}{ugInOutFortranPageFull2}{ugInOutFortranPageEmpty2}
\pastebutton{ugInOutFortranPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPageEmpty2}
\begin{paste}{ugInOutFortranPageEmpty2}{ugInOutFortranPagePatch2}
\pastebutton{ugInOutFortranPageEmpty2}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPagePatch3}
\begin{paste}{ugInOutFortranPageFull3}{ugInOutFortranPageEmpty3}
\pastebutton{ugInOutFortranPageFull3}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPageEmpty3}
\begin{paste}{ugInOutFortranPageEmpty3}{ugInOutFortranPagePatch3}
\pastebutton{ugInOutFortranPageEmpty3}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPagePatch4}
\begin{paste}{ugInOutFortranPageFull4}{ugInOutFortranPageEmpty4}
\pastebutton{ugInOutFortranPageFull4}{\hidepaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugInOutFortranPageEmpty4}
\begin{paste}{ugInOutFortranPageEmpty4}{ugInOutFortranPagePatch4}
\pastebutton{ugInOutFortranPageEmpty4}{\showpaste}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(1)  y + 3x y + 3x y + x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(2)  z + (3y + 3x)z + (3y + 6x y + 3x )z + y + 3x y + 2 3
2 3x y + x
Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
(3)  sin(x)
Type: Expression Integer
\end{verbatim}
\begin{verbatim}
(x+y+z)**3
\end{verbatim}

Type: Polynomial Integer
\begin{verbatim}
(5) 2.3 + 5.6 %i
Type: Complex Float
\end{verbatim}

\begin{verbatim}
(6) sin(%e)
Type: Expression Integer
\end{verbatim}
(7) \[2.3 + 5.6 \times \ii\] 
Type: Complex Float

\begin{verbatim}
(8) \sin(\%e)
Type: Expression Integer
\end{verbatim}

\begin{verbatim}
(9) [x + 1, y + 1, z + 1]
Type: List Polynomial Integer
\end{verbatim}

\begin{verbatim}
(10) \{2, 3, 4, 5\}
Type: Set PositiveInteger
\begin{verbatim}
2.3 9.7 
\end{verbatim}
\indentrel{-3}

(11) 
0.0 18.778 

Type: Matrix Float

\begin{verbatim}
2.3 9.7 
\end{verbatim}
\indentrel{-3}

(12) 
0.0 18.778 

Type: Matrix Float
Axiom can produce HTML output for your expressions. The output is produced by the HTMLFormat domain.

To turn on HTML output formatting, issue this.

\)set output html on\)

To turn HTML output formatting off, issue

\)set output html off\)

Axiom can produce MathML output for your expressions. The output is produced by the MathMLFormat domain.

To turn on MathML output formatting, issue this.

\)set output mathml on\)

To turn MathML output formatting off, issue
In this chapter we look at some of the basic components of the Axiom language that you can use interactively. We show how to create a \spadgloss{block} of expressions, how to form loops and list iterations, how to modify the sequential evaluation of a block and how to use \{\tt if-then-else\} to evaluate parts of your program conditionally.

We suggest you first read the boxed material in each section and then proceed to a more thorough reading of the chapter.
Immediate and Delayed Assignments

A \spadgloss{variable} in Axiom refers to a value. A variable has a name beginning with an uppercase or lowercase alphabetic character, \axiomSyntax{\%}, or \axiomSyntax{!}. Successive characters (if any) can be any of the above, digits, or \axiomSyntax{?}. Case is distinguished. The following are all examples of valid, distinct variable names:

\begin{verbatim}
a tooBig? a1B2c3%!? A %j numberOfPoints beta6 %J numberofpoints
\end{verbatim}

The \axiomSyntax{:=} operator is the immediate \spadgloss{assignment} operator. Use it to associate a value with a variable.

\beginImportant
The syntax for immediate assignment for a single variable is
\centerline{{{\it variable} \axiom{:=} {{\it expression}}}}
The value returned by an immediate assignment is the value of {{\it expression}}.
\endImportant

\xtc{The right-hand side of the expression is evaluated, yielding \axiom{1}. This value is then assigned to \axiom{a}.}{\spadpaste{a := 1 \bound{a}}} 
\xtc{The right-hand side of the expression is evaluated, yielding \axiom{1}. This value is then assigned to \axiom{b}. Thus \axiom{a} and \axiom{b} both have the value \axiom{1} after the sequence of assignments.}{\spadpaste{b := a \free{a}\bound{b}}} 
\xtc{What is the value of \axiom{b} if \axiom{a} is assigned the value \axiom{2}?}
Axiom provides delayed assignment with \texttt{==}. This implements a delayed evaluation of the right-hand side and dependency checking.

\beginImportant
The syntax for delayed assignment is
\texttt{\textit{variable} \texttt{==} \textit{expression}}
The value returned by a delayed assignment is \texttt{\texttt{void}}.
\endImportant

Using \texttt{a} and \texttt{b} as above, these are the corresponding delayed assignments.
\begin{verbatim}
\spadpaste{a := 1 \bound{ad}}
\end{verbatim}
\begin{verbatim}
\spadpaste{b == a \free{ad}\bound{bd}}
\end{verbatim}
The right-hand side of each delayed assignment is left unevaluated until the variables on the left-hand sides are evaluated. Therefore this evaluation and \ldots
\begin{verbatim}
\spadpaste{a \free{ad}}
\end{verbatim}
\begin{verbatim}
\spadpaste{b \free{bd}}
\end{verbatim}
this evaluation seem the same as before.

If we change \(a\) to \(2\)

\[
\text{spadpaste}(a == 2)\text{ad2}
\]

then

\[
\text{spadpaste}(a)\text{ad2}
\]

the value of \(b\) reflects the change to \(a\).

It is possible to set several variables at the same time

by using

a \text{spadgloss{tuple}} of variables and a tuple of expressions.\footnote{A \text{spadgloss{tuple}} is a collection of things separated by commas, often surrounded by parentheses.}

\beginImportant
The syntax for multiple immediate assignments is

\[
\text{Centerline}{\{\texttt{( } \subscriptIt{var}{1}, \subscriptIt{var}{2}, \ldots, \subscriptIt{var}{N} \text{ ) := ( } \subscriptIt{expr}{1}, \subscriptIt{expr}{2}, \ldots, \subscriptIt{expr}{N} \text{ )}}\}
\]

The value returned by an immediate assignment is the value of \(\subscriptIt{expr}{N}\).
\endImportant

This sets \(x\) to \(1\) and \(y\) to \(2\).

\[
\text{spadpaste}{(x,y) := (1,2) x y \text{bound{swap}}}
\]

Multiple immediate assignments are parallel in the sense that the

expressions on the right are all evaluated before any assignments

on the left are made.

However, the order of evaluation of these expressions is undefined.

You can use multiple immediate assignment to swap the

values held by variables.

\[
\text{spadpaste}{(x,y) := (y,x) x y \text{free{x y}}\text{bound{swap}}}
\]

\[
\text{spadpaste}{x \text{has the previous value of y}}\}
\]
\spadpaste{x \free{swap}}
\}
\xtc{
\axiom{y} has the previous value of \axiom{x}.
}\}
\spadpaste{y \free{swap}}
\}

There is no syntactic form for multiple delayed assignments. See the discussion in \downlink{``Delayed Assignments vs. Functions with No Arguments''} in Section 6.8\ignore{ugUserDelay} about how Axiom differentiates between delayed assignments and user functions of no arguments.

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugLangAssignPagePatch1}
\begin{paste}{ugLangAssignPageFull1}{ugLangAssignPageEmpty1}
\pastebutton{ugLangAssignPageFull1}{\hidepaste}
\tab{5}\spadcommand{a := 1\bound{a }}
\indentrel{3}\begin{verbatim}
(1) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangAssignPageEmpty1}
\begin{paste}{ugLangAssignPageEmpty1}{ugLangAssignPagePatch1}
\pastebutton{ugLangAssignPageEmpty1}{\showpaste}
\end{patch}

\begin{patch}{ugLangAssignPagePatch2}
\begin{paste}{ugLangAssignPageFull2}{ugLangAssignPageEmpty2}
\pastebutton{ugLangAssignPageFull2}{\hidepaste}
\tab{5}\spadcommand{b := a\free{a }\bound{b }}
\indentrel{3}\begin{verbatim}
(2) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangAssignPageEmpty2}
\begin{paste}{ugLangAssignPageEmpty2}{ugLangAssignPagePatch2}
\pastebutton{ugLangAssignPageEmpty2}{\showpaste}
\end{patch}
\begin{verbatim}
\texttt{a := 2 \\texttt{\textbackslash bound\{2\}}}
\end{verbatim}

\begin{verbatim}
(3) \texttt{2}
\end{verbatim}

\begin{verbatim}
\texttt{b \\texttt{\textbackslash free\{b\}}}
\end{verbatim}

\begin{verbatim}
\texttt{a == 1 \\texttt{\textbackslash bound\{a\}}}
\end{verbatim}

\begin{verbatim}
\texttt{a == 1 \\texttt{\textbackslash bound\{a\}}}
\end{verbatim}

\begin{verbatim}
\texttt{a == 1 \\texttt{\textbackslash bound\{a\}}}
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

(7) 1
Type: PositiveInteger

(8) 1
Type: PositiveInteger
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugLangAssignPageEmpty9}
\begin{paste}{ugLangAssignPageEmpty9}{ugLangAssignPagePatch9}
\pastebutton{ugLangAssignPageEmpty9}{\showpaste}
\tab{5}\spadcommand{a == 2\bound{ad2 }}
\end{paste}
\end{patch}

\begin{patch}{ugLangAssignPagePatch10}
\begin{paste}{ugLangAssignPageFull10}{ugLangAssignPageEmpty10}
\pastebutton{ugLangAssignPageFull10}{\hidepaste}
\tab{5}\spadcommand{a\free{ad2 }}
\indentrel{3}\begin{verbatim}
(10) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugLangAssignPageEmpty10}
\begin{paste}{ugLangAssignPageEmpty10}{ugLangAssignPagePatch10}
\pastebutton{ugLangAssignPageEmpty10}{\showpaste}
\tab{5}\spadcommand{a\free{ad2 }}
\end{paste}
\end{patch}

\begin{patch}{ugLangAssignPagePatch11}
\begin{paste}{ugLangAssignPageFull11}{ugLangAssignPageEmpty11}
\pastebutton{ugLangAssignPageFull11}{\hidepaste}
\tab{5}\spadcommand{b\free{bd ad2 }}
\indentrel{3}\begin{verbatim}
(11) 2
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugLangAssignPageEmpty11}
\begin{paste}{ugLangAssignPageEmpty11}{ugLangAssignPagePatch11}
\pastebutton{ugLangAssignPageEmpty11}{\showpaste}
\tab{5}\spadcommand{b\free{bd ad2 }}
\end{paste}
\end{patch}

\begin{patch}{ugLangAssignPagePatch12}
\begin{paste}{ugLangAssignPageFull12}{ugLangAssignPageEmpty12}
\pastebutton{ugLangAssignPageFull12}{\hidepaste}
\tab{5}\spadcommand{(x,y) := (1,2)}
\indentrel{3}\begin{verbatim}
(12) 2
Type: PositiveInteger
\end{verbatim}
\end{patch}
(13) 1
Type: PositiveInteger

(14) 2
Type: PositiveInteger

(15) 1
Type: PositiveInteger
%% We should handle tabs in pile correctly but so far we do not.

A \spadgloss{block} is a sequence of expressions evaluated in the order that they appear, except as modified by control expressions such as \axiom{break}, \spadkey{break}, \axiom{return}, \spadkey{return}, \axiom{iterate} and \spadkey{iterate} \axiom{if-then-else} constructions. The value of a block is the value of the expression last evaluated in the block.

To leave a block early, use \axiomSyntax{=>}. For example, \axiom{i < 0 => x}. The expression before the \axiomSyntax{=>} must evaluate to \axiom{true} or \axiom{false}. The expression following the \axiomSyntax{=>} is the return value for the block.

A block can be constructed in two ways:
\begin{itemize}
\item[1.] the expressions can be separated by semicolons and the resulting expression surrounded by parentheses, and
\item[2.] the expressions can be written on succeeding lines with each line indented the same number of spaces (which must be greater
A block entered in this form is called a \spadgloss{pile}.

Only the first form is available if you are entering expressions directly to Axiom. Both forms are available in \bf{.input} files.

\beginImportant
The syntax for a simple block of expressions entered interactively is
\centerline{{\tt ( \subscriptIt{expression}{1}; \ldots; \subscriptIt{expression}{N} )}}
\endImportant

In \bf{.input} files, blocks can also be written using \spadglossSee{piles}{pile}.
The examples throughout this book are assumed to come from \bf{.input} files.

\xtc{In this example, we assign a rational number to \axiom{a} using a block consisting of three expressions. This block is written as a pile.
Each expression in the pile has the same indentation, in this case two spaces to the right of the first line.}{
\begin{spadsrc}
a :=
  i := \gcd(234,672)
  i := 3*i**5 - i + 1
  1 / i
\end{spadsrc}
}

\xtc{Here is the same block written on one line. This is how you are required to enter it at the input prompt.}{
\spadpaste{a := (i := \gcd(234,672); i := 3*i**5 - i + 1; 1 / i)}
}

\xtc{Blocks can be used to put several expressions on one line. The value returned is that of the last expression.}{
\spadpaste{(a := 1; b := 2; c := 3; [a,b,c]) \bound{a b c}}
}
Axiom gives you two ways of writing a block and the preferred way in an `.input` file is to use a pile. Roughly speaking, a pile is a block whose constituent expressions are indented the same amount. You begin a pile by starting a new line for the first expression, indenting it to the right of the previous line. You then enter the second expression on a new line, vertically aligning it with the first line. And so on. If you need to enter an inner pile, further indent its lines to the right of the outer pile. Axiom knows where a pile ends. It ends when a subsequent line is indented to the left of the pile or the end of the file.

\xtc{Blocks can be used to perform several steps before an assignment (immediate or delayed) is made.}
\begin{spadsrc}\free{a b}
d := 
    c := a**2 + b**2 
    \sqrt{c * 1.3}
\end{spadsrc}
\xtc{Blocks can be used in the arguments to functions. (Here \axiom{h} is assigned \axiom{2.1 + 3.5}.)}
\begin{spadsrc}\bound{h}
h := 2.1 + 
    1.0 
    3.5
\end{spadsrc}
\xtc{Here the second argument to \axiomFun{eval} is \axiom{x = z}, where the value of \axiom{z} is computed in the first line of the block starting on the second line.}
\begin{spadsrc}
\text{eval}(x**2 - x*y**2, 
    z := \%pi/2.0 - \exp(4.1) 
    x = z
\end{spadsrc}
\xtc{Blocks can be used in the clauses of \axiom{if-then-else} expressions (see \downlink{``if-then-else''}{ugLangIfPage} in Section 5.3\ignore{ugLangIf}).}
This is the pile version of the last block.

}{
\begin{spadsrc}
if h > 3.1 then 1.0 else (z := \cos(h); \max(z,0.5)) \free{h}
\end{spadsrc}

This is the pile version of the last block.

}{
\begin{spadsrc}
a := (b := \text{factorial}(12); c := (d := \text{eulerPhi}(22); \text{factorial}(d)); b+c)
\end{spadsrc}

This is the pile version of the last block.

}{
\begin{spadsrc}
a :=
\begin{align*}
b &= \text{factorial}(12) \\
c &= \\
d &= \text{eulerPhi}(22) \\
&\quad \text{factorial}(d) \\
&b+c
\end{align*}
\end{spadsrc}

Since \\texttt{c + d} does equal \\texttt{3628855}, \\texttt{a} has the value of \\texttt{c} and the last line is never evaluated.

}{
\begin{spadsrc}
a :=
\begin{align*}
c &= \text{factorial} 10 \\
d &= \text{fibonacci} 10 \\
c + d &= 3628855 \Rightarrow c \\
&d
\end{align*}
\end{spadsrc}

\begin{verbatim}
1
(1)
\end{verbatim}
\begin{verbatim}
23323
\end{verbatim}

\begin{verbatim}
1
(2)
\end{verbatim}
\begin{verbatim}
23323
\end{verbatim}
Type: List PositiveInteger

\begin{verbatim}
indentrel{-3}\end{verbatim}\end{paste}\end{patch}

\begin{patch}{ugLangBlocksPageEmpty3}
\begin{paste}{ugLangBlocksPageEmpty3}{ugLangBlocksPagePatch3}
\pastebutton{ugLangBlocksPageEmpty3}{\showpaste}
\tab{5}\spadcommand{(a := 1; b := 2; c := 3; \[a,b,c\])\bound{a b c}}
\end{paste}\end{patch}

\begin{patch}{ugLangBlocksPagePatch4}
\begin{paste}{ugLangBlocksPageFull4}{ugLangBlocksPageEmpty4}
\pastebutton{ugLangBlocksPageFull4}{\hidepaste}
\tab{5}\spadcommand{d :=
c := a**2 + b**2
sqrt(c * 1.3)
\free{a b}}
indentrel{3}\begin{verbatim}
(4) 2.5495097567 96392415
Type: Float
\end{verbatim}
indentrel{-3}\end{patch}

\begin{patch}{ugLangBlocksPageEmpty4}
\begin{paste}{ugLangBlocksPageEmpty4}{ugLangBlocksPagePatch4}
\pastebutton{ugLangBlocksPageEmpty4}{\showpaste}
\tab{5}\spadcommand{d :=
c := a**2 + b**2
sqrt(c * 1.3)
\free{a b}}
\end{paste}\end{patch}

\begin{patch}{ugLangBlocksPagePatch5}
\begin{paste}{ugLangBlocksPageFull5}{ugLangBlocksPageEmpty5}
\pastebutton{ugLangBlocksPageFull5}{\hidepaste}
\tab{5}\spadcommand{h := 2.1 +
1.0
3.5
\bound{h}}
indentrel{3}\begin{verbatim}
(5) 5.6
Type: Float
\end{verbatim}
indentrel{-3}\end{patch}

\begin{patch}{ugLangBlocksPageEmpty5}
\begin{paste}{ugLangBlocksPageEmpty5}{ugLangBlocksPagePatch5}
\pastebutton{ugLangBlocksPageEmpty5}{\showpaste}
\tab{5}\spadcommand{h := 2.1 +
1.0
\end{patch}\end{patch}
3.5
\begin{patch}{ugLangBlocksPagePatch6}
\begin{paste}{ugLangBlocksPageFull6}{ugLangBlocksPageEmpty6}
\spadcommand{eval(x**2 - x*y**2,
  z := \%pi/2.0 - \exp(4.1)
  x = z
)}
\end{paste}
\end{patch}
\indentrel{-3}\begin{verbatim}
(6)
  2
  58.7694912705 67072878 y + 3453.8531042012 59382
  Type: Polynomial Float
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}
\indentrel{-3}\begin{patch}{ugLangBlocksPagePatch7}
\begin{paste}{ugLangBlocksPageFull7}{ugLangBlocksPageEmpty7}
\spadcommand{if h > 3.1 then 1.0 else (z := \cos(h); max(z,0.5))}
\end{paste}
\end{patch}
\indentrel{-3}\begin{patch}{ugLangBlocksPagePatch8}
\begin{paste}{ugLangBlocksPageFull8}{ugLangBlocksPageEmpty8}
\spadcommand{if h > 3.1 then


1.0
else
z := cos(h)
max(z,0.5)
\free(h )
\indentrel{3}\begin{verbatim}
(8)  1.0
\end{verbatim}
\indentrel{-3}\end{paste}
\begin{patch}{ugLangBlocksPageEmpty8}
\begin{paste}{ugLangBlocksPageFull9}{ugLangBlocksPageEmpty9}
\pastebutton{ugLangBlocksPageFull9}{\hidepaste}
\tab{5}\spadcommand{a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d));b+c)}
\indentrel{3}\begin{verbatim}
(9)  482630400
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugLangBlocksPageEmpty9}
\begin{paste}{ugLangBlocksPageEmpty9}{ugLangBlocksPagePatch9}
\pastebutton{ugLangBlocksPageEmpty9}{\showpaste}
\tab{5}\spadcommand{a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d));b+c)}
\indentrel{3}\begin{verbatim}
(10)  482630400
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugLangBlocksPagePatch10}
\begin{paste}{ugLangBlocksPageFull110}{ugLangBlocksPageEmpty110}
\pastebutton{ugLangBlocksPageFull110}{\hidepaste}
\tab{5}\spadcommand{a :=
b := factorial(12)
c :=
d := eulerPhi(22)
factorial(d)
b+c}
\indentrel{3}\begin{verbatim}
(11)  482630400
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\textbf{Type: PositiveInteger}

\begin{verbatim}
(11) 3628800
    Type: PositiveInteger
\end{verbatim}

\textbf{if-then-else}

⇒ "notitle" (ugTypesResolvePage) 7 on page 1696
Like many other programming languages, Axiom uses the three keywords \spadkey{if} \axiom{if, then} \spadkey{then} and \axiom{else} \spadkey{else} to form conditional expressions.

The \axiom{else} part of the conditional is optional.

The expression between the \axiom{if} and \axiom{then} keywords is a \spadgloss{predicate}: an expression that evaluates to or is convertible to either \tt{true} or \tt{false}, that is, a \axiomType{Boolean}.

An \axiom{if-then-else} expression always returns a value.

If the \axiom{else} clause is missing then the entire expression returns \void{}.

If both clauses are present, the type of the value returned by \axiom{if} is obtained by resolving the types of the values of the two clauses.

The predicate must evaluate to, or be convertible to, an object of type \axiomType{Boolean}: \tt{true} or \tt{false}.

By default, the equal sign \spadopFrom{=}{Equation} creates an equation.

This is an equation.

In particular, it is an object of type \axiomType{Equation Polynomial Integer}.

However, for predicates in \axiom{if} expressions, Axiom places a default target type of \axiomType{Boolean} on the predicate and equality testing is performed.
Thus you need not qualify the \axiom{=} in any way. In other contexts you may need to tell Axiom that you want to test for equality rather than create an equation. In those cases, use \axiom{=} and a target type of \axiomType{Boolean}. See \downlink{``Package Calling and Target Types''}{ugTypesPkgCallPage} in Section 2.9 \ignore{ugTypesPkgCall} for more information.

The compound symbol meaning 'not equal' in Axiom is \texttt{\$\sim=\$\axiom{~=}}. This can be used directly without a package call or a target specification. The expression \axiom{a} \texttt{\$\sim=\$\axiom{~=}} \axiom{b} is directly translated into \axiom{not (a = b)}.

Many other functions have return values of type \axiomType{Boolean}. These include \axiom{<}, \axiom{<=}, \axiom{>}, \axiom{>=}, \texttt{\$\sim=\$\axiom{~=}} and \axiom{member?}. By convention, operations with names ending in \axiom{?} return \axiomType{Boolean} values.

The usual rules for piles are suspended for conditional expressions. In {\bf .input} files, the \axiom{then} and \axiom{else} keywords can begin in the same column as the corresponding \axiom{if} but may also appear to the right. Each of the following styles of writing \axiom{if-then-else} expressions is acceptable:

\begin{verbatim}
if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")
  else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0
  then output("positive")
else output("nonpositive")

if i > 0
  then output("positive")
  else output("nonpositive")
\end{verbatim}

A block can follow the \axiom{then} or \axiom{else} keywords. In the following two assignments to \axiom{a}, the \axiom{then} and \axiom{else} clauses each are followed by two-line piles.
The value returned in each is the value of the second line.

\begin{verbatim}
a :=
if i > 0 then
  j := sin(i * \pi())
  exp(j + 1/j)
else
  j := cos(i * 0.5 * \pi())
  log(abs(j)**5 + 1)
\end{verbatim}

These are both equivalent to the following:

\begin{verbatim}
a :=
if i > 0
  then
    j := sin(i * \pi())
    exp(j + 1/j)
  else
    j := cos(i * 0.5 * \pi())
    log(abs(j)**5 + 1)
\end{verbatim}
A \spadgloss{loop} is an expression that contains another expression, called the \spadgloss{loop body}, which is to be evaluated zero or more times. All loops contain the \axiom{repeat} keyword and return \void{}. Loops can contain inner loops to any depth.

\beginImportant
The most basic loop is of the form
\centerline{\axiom{repeat} \it loopBody} \important
Unless \it loopBody contains a \axiom{break} or \axiom{return} expression, the loop repeats forever.
The value returned by the loop is \void{}.
\endImportant
Compiling vs. Interpreting Loops

Axiom tries to determine completely the type of every object in a loop and then to translate the loop body to LISP or even to machine code. This translation is called \spadglossSee{compiler}{compilation}. If Axiom decides that it cannot compile the loop, it issues a message stating the problem and then the following message:

\centerline{\bf We will attempt to step through and interpret the code.}

It is still possible that Axiom can evaluate the loop but in \spadgloss{interpret-code mode}. See \downlink{Compiling vs. Interpreting'}{ugUserCompIntPage} in Section 6.10 where this is discussed in terms of compiling versus interpreting functions.
return in Loops

A \texttt{return} expression is used to exit a function with a particular value. In particular, if a \texttt{return} is in a loop within the \texttt{return} function, the loop is terminated whenever the \texttt{return} is evaluated.

%> This is a bug! The compiler should never accept allow %> Void to be the return type of a function when it has to use %> resolve to determine it.

\xtc{Suppose we start with this.}
\begin{spadsrc}
\bound{f}
f() ==
  i := 1
  repeat
    if factorial(i) > 1000 then return i
  i := i + 1
\end{spadsrc}

\xtc{When \texttt{factorial(i)} is big enough, control passes from inside the loop all the way outside the function, returning the value of \texttt{factorial(i)} (or so we think).}

\spadpaste{f() \free{f}}

What went wrong?
Isn’t it obvious that this function should return an integer?
Well, Axiom makes no attempt to analyze the structure of a loop to determine if it always returns a value because, in general, this is impossible.
So Axiom has this simple rule: the type of the function is determined by the type of its body, in this case a block. The normal value of a block is the value of its last expression, in this case, a loop. And the value of every loop is \texttt{void}!
So the return type of \userfun{f} is \axiomType{Void}.

There are two ways to fix this.
The best way is for you to tell Axiom what the return type of \axiom{f} is.
You do this by giving \axiom{f} a declaration \axiom{f: () -> Integer} prior to calling for its value.
This tells Axiom: 'trust me---an integer is returned.'
We'll explain more about this in the next chapter.
Another clumsy way is to add a dummy expression as follows.

\begin{spadsrc}
\begin{verbatim}
bound{f1}
f() ==
  i := 1
  repeat
    if factorial(i) > 1000 then return i
    i := i + 1
  0
\end{verbatim}
\end{spadsrc}

When we try \userfun{f} again we get what we wanted.
See \downlink{``Functions Defined with Blocks''}{ugUserBlocksPage} in Section 6.15\ignore{ugUserBlocks} for more information.

\begin{verbatim}
f() \free{f1}
\end{verbatim}
\texttt{\spadcommand{f() ==}}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f}}
\texttt{\free{f}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch2}
\begin{paste}{ugLangLoopsReturnPageFull2}{ugLangLoopsReturnPageEmpty2}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
0
\spadcommand{f1}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch3}
\begin{paste}{ugLangLoopsReturnPageFull3}{ugLangLoopsReturnPageEmpty3}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f3}}
\texttt{\free{f3}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\begin{patch}{ugLangLoopsReturnPagePatch1}
\begin{paste}{ugLangLoopsReturnPageFull1}{ugLangLoopsReturnPageEmpty1}
\spadcommand{f() ==}
\begin{verbatim}
i := 1
repeat
  if \texttt{factorial(i)} > 1000 then return i
  i := i + 1
\end{verbatim}
\texttt{\spadcommand{f1}}
\texttt{\free{f1}}
\textbf{Type: Void}
\indentrel{-3}
\end{patch}
\end{paste}
\end{patch}
\begin{verbatim}
(4) 7
\end{verbatim}
Type: PositiveInteger

break in Loops

⇒ “notitle” (ugLangLoopsReturnPage) 9 on page 1767
—— ug05.ht ——

The \axiom{break} keyword is often more useful in terminating a loop. 
%> and more in keeping with the ideas of structured programming. 
A \axiom{break} causes control to transfer to the expression immediately following the loop.
As loops always return \void{}, you cannot return a value with \axiom{break}.
That is, \axiom{break} takes no argument.

\xtc{
This example is a modification of the last example in 
\texttt{the previous section}{
\downlink{‘return in Loops’}{ugLangLoopsReturnPage}
in Section 5.4.2}\ignore{ugLangLoopsReturn}).
Instead of using \texttt{\texttt{axiom\{return\}}}, we'll use \texttt{\texttt{axiom\{break\}}}.

\begin{spadsrc}
\texttt{f1}\texttt{f1}
\begin{axiom}
f() ==
i := 1
repeat
  if factorial(i) > 1000 then break
  i := i + 1
i
\end{axiom}
\end{spadsrc}

The loop terminates when \texttt{factorial(i)} gets big enough, the last line of the function evaluates to the corresponding \texttt{\texttt{\{good\}}} value of \texttt{axiom\{i\}}, and the function terminates, returning that value.

\begin{spadpaste}
f() \free{f1}
\end{spadpaste}

You can only use \texttt{\texttt{axiom\{break\}}} to terminate the evaluation of one loop. Let's consider a loop within a loop, that is, a loop with a nested loop. First, we initialize two counter variables.

\begin{spadpaste}
(i, j) := (1, 1) \bound{i}\bound{j}
\end{spadpaste}

Nested loops must have multiple \texttt{\texttt{axiom\{break\}}} expressions at the appropriate nesting level. How would you rewrite this so \texttt{\texttt{axiom\{i + j\} > 10\}} is only evaluated once?

\begin{spadsrc}
repeat
  repeat
    if (i + j) > 10 then break
    j := j + 1
  if (i + j) > 10 then break
  i := i + 1
\end{spadsrc}

\endscroll
\autobuttons

\begin{patch}{ugLangLoopsBreakPagePatch1}
\begin{paste}{ugLangLoopsBreakPageFull1}{ugLangLoopsBreakPageEmpty1}
\pastebutton{ugLangLoopsBreakPageFull1}{\hidepaste}
\tab{5}\spadcommand{f() ==}
i := 1
repeat
\end{patch}
if factorial(i) > 1000 then break
i := i + 1
i

\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakPageFull2}{ugLangLoopsBreakPageEmpty2}
\pastebutton{ugLangLoopsBreakPageFull2}{\hidepaste}
\tab{5}\spadcommand{f() ==}
i := 1
repeat
  if factorial(i) > 1000 then break
  i := i + 1
i
\bound{f1 }}
\end{patch}

(2) 7

\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakPageFull3}{ugLangLoopsBreakPageEmpty3}
\pastebutton{ugLangLoopsBreakPageFull3}{\hidepaste}
\tab{5}\spadcommand{(i,j) := (1, 1)\bound{i} \bound{j }}

(3) 1

\indentrel{-3}\end{paste}\end{patch}
break vs. => in Loop Bodies

--- ug05.ht ---

Compare the following two loops:

\begin{verbatim}
i := 1
repeat
i := i + 1
i > 3 => i
\end{verbatim}

\begin{verbatim}
i := 1
repeat
i := i + 1
i > 3 => i
if i > 3 then break
\end{verbatim}

--- ug05.ht ---
In the example on the left, the values \mathOrSpad{2} and \mathOrSpad{3} for \axiom{i} are displayed but then the \axiomSyntax{=>} does not allow control to reach the call to \axiomFunFrom{output}{OutputForm} again. The loop will not terminate until you run out of space or interrupt the execution. The variable \axiom{i} will continue to be incremented because the \axiomSyntax{=>} only means to leave the \spad{it block}, not the loop.

In the example on the right, upon reaching \mathOrSpad{4}, the \axiom{break} will be executed, and both the block and the loop will terminate. This is one of the reasons why both \axiomSyntax{=>} and \axiom{break} are provided. Using a \axiom{while} clause (see below) with the \axiomSyntax{=>}

\spadkey{while} lets you simulate the action of \axiom{break}.

More Examples of break

⇒ “notitle” (ugLangLoopsForInPage) 9 on page 1790
— ug05.ht —

Here we give four examples of \axiom{repeat} loops that terminate when a value exceeds a given bound.

First, initialize \axiom{i} as the loop counter.
\begin{verbatim}
\spadpaste{i := 0 \bound{i}}
\end{verbatim}

Here is the first loop. When the square of \axiom{i} exceeds \axiom{100}, the loop terminates.
\begin{spadsrc}
\begin{spadlisting}
\free{i} \bound{i1}
\repeat
\begin{spadlisting}
i := i + 1
\end{spadlisting}
\begin{spadlisting}
if i**2 > 100 then break
\end{spadlisting}
\xtc{
Upon completion, \axiom{i} should have the value \axiom{i1}.
}
\spadpaste{i \free{i1}}
\xact{
Do the same thing except use \axiomSyntax{=>} instead an \axiom(if-then) expression.
}
\spadpaste{i := 0 \bound{i2}}
\xtc{
}
\spadpaste{i \free{i3}}
\xact{
As a third example, we use a simple loop to compute \axiom{n!}.
}
\spadpaste{(n, i, f) := (100, 1, 1) \bound{n}\bound{i4}\bound{f}}
\xtc{
Use \axiom{i} as the iteration variable and \axiom{f} to compute the factorial.
}
\begin{spadlisting}
\bound{f1}\bound{i5}\free{f i4 n}
\repeat
\begin{spadlisting}
if i > n then break
f := f * i
i := i + 1
\end{spadlisting}
\end{spadlisting}
\end{spadsrc}
Look at the value of $f$.

```spadpaste
f \free{f1}
```

Finally, we show an example of nested loops.
First define a four by four matrix.

```spadpaste
m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]] \bound{m2}
```

Next, set row counter $r$ and column counter $c$ to 1.
Note: if we were writing a function, these would all be local variables rather than global workspace variables.

```spadpaste
(r, c) := (1, 1) \bound{r}\bound{c}
```

Also, let $lastrow$ and $lastcol$ be the final row and column index.

```spadpaste
(lastrow, lastcol) := (nrows(m), ncols(m)) \bound{lastrow}\bound{lastcol}\free{m2}
```

Scan the rows looking for the first negative element.
We remark that you can reformulate this example in a better, more concise form by using a `for` clause with `repeat`.

```spadsrc
\free{m2 r c lastrow lastcol}\begin{spadsrc}
repeat
 if r > lastrow then break
 c := 1
 repeat
 if c > lastcol then break
 if elt(m,r,c) < 0 then
 output [r, c, elt(m,r,c)]
 r := lastrow
 break -- don't look any further
```

See \link{``for Loops''}{ugLangLoopsForInPage} in Section 5.4.8 for more information.
\begin{spadsrc}
c := c + 1
r := r + 1
\end{spadsrc}

\begin{patch}{ugLangLoopsBreakMorePagePatch1}
\begin{paste}{ugLangLoopsBreakMorePageFull1}{ugLangLoopsBreakMorePageEmpty1}
\spadcommand{i := 0}\bound{i }
\indentrel{3}\begin{verbatim}
(1) 0
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakMorePagePatch2}
\begin{paste}{ugLangLoopsBreakMorePageFull2}{ugLangLoopsBreakMorePageEmpty2}
\spadcommand{repeat
i := i + 1
if i**2 > 100 then break
\free{i }\bound{ii }}\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakMorePagePatch3}
\begin{paste}{ugLangLoopsBreakMorePageFull3}{ugLangLoopsBreakMorePageEmpty3}
\spadcommand{i}\free{ii}
\end{paste}\end{patch}
\indentrel{3}\begin{verbatim}
(3) 11
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakMorePagePatch3}
\begin{paste}{ugLangLoopsBreakMorePageFull3}{ugLangLoopsBreakMorePageEmpty3}\pastebutton{ugLangLoopsBreakMorePageEmpty3}{\showpaste}
\tab{5}\spadcommand{i\free{i1} }
\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakMorePagePatch4}
\begin{paste}{ugLangLoopsBreakMorePageFull4}{ugLangLoopsBreakMorePageEmpty4}\pastebutton{ugLangLoopsBreakMorePageEmpty4}{\hidepaste}
\tab{5}\spadcommand{i := 0\bound{i2} }
\indentrel{3}\begin{verbatim}
(4) 0
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsBreakMorePagePatch5}
\begin{paste}{ugLangLoopsBreakMorePageFull5}{ugLangLoopsBreakMorePageEmpty5}\pastebutton{ugLangLoopsBreakMorePageEmpty5}{\hidepaste}
\tab{5}\spadcommand{repeat
\indentrel{3}\begin{verbatim}
i := i + 1
i**2 > 100 => break
\free{i2}\bound{i3}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(6) 11
Type: NonNegativeInteger

(7) 1
Type: PositiveInteger

repeat
if i > n then break
f := f * i
i := i + 1

Type: Void
\begin{verbatim}
(9)
933262154439441526816992388562667004907159682643816214_
6859296389521759999329915608941463976156518286253697_
92082723758251185210916864000000000000000000000000
Type: PositiveInteger
\end{verbatim}
\end{paste}

\begin{verbatim}
(10)
21 37 53 14
8  -24 22  -16
2  10  15  14
26  33  55  -13
Type: Matrix Integer
\end{verbatim}
\end{patch}
\begin{verbatim}
(11) 1
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(12) 4
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
[2,2,-24]
Type: Void
\end{verbatim}
iterate in Loops

— ug05.ht —

Axiom provides an \axiom{iterate} expression that \spadkey{iterate} skips over the remainder of a loop body and starts the next loop iteration. \xtc{We first initialize a counter.}{\spadpaste{i := 0 \bound{i}}} \xtc{Display the even integers from \axiom{2} to \axiom{5}.}{\begin{spadsrc}\free{i}
repeat
  i := i + 1
  if i > 5 then break
  if odd?(i) then iterate
  output(i)
\end{spadsrc}}
\begin{patch}{ugLangLoopsIteratePagePatch1}
\begin{paste}{ugLangLoopsIteratePageFull1}{ugLangLoopsIteratePageEmpty1}\hidepaste
\tab{5}\spadcommand{i := 0\bound{i }}
\indentrel{3}\begin{verbatim}
(1) 0
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsIteratePageEmpty1}
\begin{paste}{ugLangLoopsIteratePageEmpty1}{ugLangLoopsIteratePagePatch1}\showpaste
\tab{5}\spadcommand{i := 0\bound{i }}
\end{paste}\end{patch}

\begin{patch}{ugLangLoopsIteratePagePatch2}
\begin{paste}{ugLangLoopsIteratePageFull2}{ugLangLoopsIteratePageEmpty2}\hidepaste
\tab{5}\spadcommand{\textbf{repeat}}
\indentrel{3}\begin{verbatim}
i := i + 1
if i > 5 then break
if odd?(i) then iterate
output(i)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsIteratePageEmpty2}
\begin{paste}{ugLangLoopsIteratePageEmpty2}{ugLangLoopsIteratePagePatch2}\showpaste
\tab{5}\spadcommand{\textbf{repeat}}
\indentrel{3}\begin{verbatim}
i := i + 1
if i > 5 then break
if odd?(i) then iterate
output(i)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
while Loops

\begin{page}{ugLangLoopsWhilePage}{5.4.7. while Loops}
\beginscroll

The \axiom{repeat} in a loop can be modified by adding one or more \axiom{while} clauses.

\spadkey{while}

Each clause contains a \spadgloss{predicate} immediately following the \axiom{while} keyword. The predicate is tested \textit{before} the evaluation of the body of the loop. The loop body is evaluated whenever the predicates in a \axiom{while} clause are all \axiom{true}.

\beginImportant
The syntax for a simple loop using \axiom{while} is
\[\text{\axiom{while} \{it predicate\} \axiom{repeat} \{it loopBody\}}\]

The \{it predicate\} is evaluated before \{it loopBody\} is evaluated. A \axiom{while} loop terminates immediately when \{it predicate\} evaluates to \axiom{false} or when a \axiom{break} or \axiom{return} expression is evaluated in \{it loopBody\}. The value returned by the loop is \void{}.
\endImportant

\xtc{
Here is a simple example of using \axiom{while} in a loop. We first initialize the counter.
}{
\spadpaste{i := 1 \bound{i}}
}

\xtc{
The steps involved in computing this example are
\begin{enumerate}
\item set \axiom{i} to \axiom{1},
\item test the condition \axiom{i < 1} and determine that it is not true, and
\item do not evaluate the loop body and therefore do not display \axiom{"hello"}.
\end{enumerate}
}{
\begin{spadsrc}\free{i}
while i < 1 repeat
   output "hello"
   i := i + 1
\end{spadsrc}
}

\xtc{
If you have multiple predicates to be tested use the logical \axiom{and} operation to separate them. Axiom evaluates these predicates from left to right.
}
\spadpaste{(x, y) := (1, 1) \bound{x} \bound{y}}
}
\xtc{
\begin{spadsrc}\free{x y}
while x < 4 and y < 10 repeat
   output [x, y]
   x := x + 1
   y := y + 2
\end{spadsrc}
}
\xtc{A \axiom{break} expression can be included in a loop body to terminate
a loop even if the predicate in any \axiom{while} clauses are not
\axiom{false}.
}
\spadpaste{(x, y) := (1, 1) \bound{x1} \bound{y1}}
}
\xtc{This loop has multiple \axiom{while} clauses and the loop terminates
before any one of their conditions evaluates to \axiom{false}.
}
\spadpaste{m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]] \bound{m2}}
\xtc{Initialized the row index to \axiom{1} and
get the number of rows and columns.
If we were writing a function, these would all be
local variables.
}
\spadpaste{r := 1 \bound{r}}
\xtc{
\spadpaste{(lastrow, lastcol) := (nrows(m), ncols(m)) \bound{lastrow}\bound{lastcol}\free{m2}}
Scan the rows looking for the first negative element.

```spad
\begin{spadsrc}
\free{m2 r lastrow lastcol}
while r <= lastrow repeat
 c := 1 -- index of first column
 while c <= lastcol repeat
 if elt(m,r,c) < 0 then
 output [r, c, elt(m,r,c)]
 r := lastrow
 break -- don't look any further
 c := c + 1
 r := r + 1
\end{spadsrc}
\end{scroll}
```

\end{page}

\begin{patch}{ugLangLoopsWhilePagePatch1}
\begin{paste}{ugLangLoopsWhilePageFull1}{ugLangLoopsWhilePageEmpty1}
\pastebutton{ugLangLoopsWhilePageFull1}{\hidepaste}
\indentrel{3}\spadcommand{i := 1\bound{i}}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsWhilePageEmpty1}
\begin{paste}{ugLangLoopsWhilePageEmpty1}{ugLangLoopsWhilePagePatch1}
\pastebutton{ugLangLoopsWhilePageEmpty1}{\showpaste}
\indentrel{5}\spadcommand{i := 1\bound{i}}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsWhilePagePatch2}
\begin{paste}{ugLangLoopsWhilePageFull2}{ugLangLoopsWhilePageEmpty2}
\pastebutton{ugLangLoopsWhilePageFull2}{\hidepaste}
\indentrel{5}\spadcommand{while i < 1 repeat
  output "hello"
  i := i + 1
}\end{patch}

\indentrel{-3}\end{page}
\begin{patch}{ugLangLoopsWhilePageEmpty2}
\begin{paste}{ugLangLoopsWhilePageEmpty2}{ugLangLoopsWhilePagePatch2}
\tab{5}\spadcommand{while i < 1 repeat
  output "hello"
  i := i + 1
\free{i}}
\end{paste}\end{patch}

\begin{patch}{ugLangLoopsWhilePagePatch3}
\begin{paste}{ugLangLoopsWhilePageFull3}{ugLangLoopsWhilePageEmpty3}
\tab{5}\spadcommand{(x, y) := (1, 1)\bound{x}\bound{y}}
\indentrel{3}\verbatim
\[1,1\]
\[2,3\]
\[3,5\]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsWhilePageEmpty3}
\begin{paste}{ugLangLoopsWhilePageEmpty3}{ugLangLoopsWhilePagePatch3}
\tab{5}\spadcommand{(x, y) := (1, 1)\bound{x}\bound{y}}
\end{paste}\end{patch}

\begin{patch}{ugLangLoopsWhilePagePatch4}
\begin{paste}{ugLangLoopsWhilePageFull4}{ugLangLoopsWhilePageEmpty4}
\tab{5}\spadcommand{while x < 4 and y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
\free{x y}}
\indentrel{3}\verbatim
\[1,1\]
\[2,3\]
\[3,5\]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsWhilePageEmpty4}
\begin{paste}{ugLangLoopsWhilePageEmpty4}{ugLangLoopsWhilePagePatch4}
\tab{5}\spadcommand{while x < 4 and y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
\free{x y}}
\end{paste}\end{patch}
\begin{spadcommand}
(x, y) := (1, 1)
\end{spadcommand}
\begin{verbatim}
(5) 1
Type: PositiveInteger
\end{verbatim}

\begin{spadcommand}
while x < 4 while y < 10 repeat
  if x + y > 7 then break
  output [x, y]
  x := x + 1
  y := y + 2
\end{spadcommand}
\begin{verbatim}
[1,1]
[2,3]
Type: Void
\end{verbatim}

\begin{spadcommand}
m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13]]
\end{spadcommand}
\begin{verbatim}
21 37 53 14
\end{verbatim}
\begin{verbatim}
Type: Matrix Integer
\end{verbatim}
\indentrel{-3}end\{paste\}\end\{patch\}

\begin{patch}{ugLangLoopsWhilePageEmpty7}
\begin{paste}{ugLangLoopsWhilePageEmpty7}{ugLangLoopsWhilePagePatch7}
\tab{5}\spadcommand{m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13]]\bound{m2 }}
\end{paste}\end\{patch\}

\begin{patch}{ugLangLoopsWhilePagePatch8}
\begin{paste}{ugLangLoopsWhilePageFull8}{ugLangLoopsWhilePageEmpty8}
\tab{5}\spadcommand{r := 1\bound{r }}
\indentrel{3}\begin{verbatim}
(8) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end\{patch\}

\begin{patch}{ugLangLoopsWhilePagePatch9}
\begin{paste}{ugLangLoopsWhilePagePatch9}{ugLangLoopsWhilePageEmpty9}
\tab{5}\spadcommand{(lastrow, lastcol) := (nrows(m), ncols(m))\bound{lastrow }\bound{lastcol }\free{m2 }}
\indentrel{3}\begin{verbatim}
(9) 4
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end\{patch\}

\begin{patch}{ugLangLoopsWhilePagePatch10}
\begin{paste}{ugLangLoopsWhilePagePatch10}{ugLangLoopsWhilePageEmpty10}
\end{paste}\end\{patch\}
for Loops

—— ug05.ht ——

Axiom provides the `axiom(for)`
`spadkey(for)`
and `axiom(in)`
`spadkey(in)`
keywords in `axiom(repeat)` loops,
allowing you to iterate across all
elements of a list, or to have a variable take on integral values from a lower bound to an upper bound. We shall refer to these modifying clauses of \axiom{repeat} loops as \axiom{for} clauses. These clauses can be present in addition to \axiom{while} clauses. As with all other types of \axiom{repeat} loops, \axiom{break} can be used to prematurely terminate the evaluation of the loop.

\beginImportant
The syntax for a simple loop using \axiom{for} is
\begin{center}
{\axiom{for} \{\it iterator\} \axiom{repeat} \{\it loopBody\}}
\end{center}
The \{\it iterator\} has several forms. Each form has an end test which is evaluated before \{\it loopBody\} is evaluated. A \axiom{for} loop terminates immediately when the end test succeeds (evaluates to \axiom{true}) or when a \axiom{break} or \axiom{return} expression is evaluated in \{\it loopBody\}. The value returned by the loop is \void{}.
\endImportant

\endscroll

\begin{page}{ugLangLoopsForInNMPage}{5.4.9. for i in n..m repeat}
\beginscroll
If \axiom{for} is followed by a variable name, the \axiom{in} keyword and then an integer segment of the form \axiom{n..m}, the end test for this loop is the predicate \axiom{i > m}. The body of the loop is evaluated \axiom{m-n+1} times if this number is greater than 0. If this number is less than or equal to 0, the loop body is not evaluated at all.

The variable \axiom{i} has the value
The loop variable is a \spadgloss{local variable} within the loop body: its value is not available outside the loop body and its value and type within the loop body completely mask any outer definition of a variable with the same name.

\xtc{This loop prints the values of $10^3$, $11^3$, and $12^3$:}
\spadpaste{for i in 10..12 repeat output(i**3)}
\xtc{Here is a sample list.}
\spadpaste{a := [1,2,3] \bound{a}}
\xtc{Iterate across this list, using \axiomFun{.} to access the elements of a list and the \axiomFun{\#} operation to count its elements.}
\spadpaste{for i in 1..\#a repeat output(a.i) \free{a}}
\xtc{This type of iteration is applicable to anything that uses \axiomSyntax{.}. You can also use it with functions that use indices to extract elements.}
\xtc{Define \axiom{m} to be a matrix.}
\spadpaste{m := matrix \[[1,2],[4,3],[9,0]\] \bound{m}}
\xtc{Display the rows of \axiom{m}.}
\spadpaste{for i in 1..\nrows(m) repeat output row(m,i) \free{m}}
\xtc{You can use \axiom{iterate} with \axiom{for}-loops.}
\spadkey{iterate}
\xtc{Display the even integers in a segment.}
\begin{spadsrc}
for i in 1..5 repeat
  if odd?(i) then iterate
\end{spadsrc}
output(i)
\end{spadsrc}
}

See \downlink{`Segment'}{SegmentXmpPage}\ignore{Segment} for more information about segments.

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugLangLoopsForInNMPagePatch1}
\begin{paste}{ugLangLoopsForInNMPageFull1}{ugLangLoopsForInNMPageEmpty1}
\pastebutton{ugLangLoopsForInNMPageFull1}{\hidepaste}
\indentrel{5}\spadcommand{for i in 10..12 repeat output(i**3)}
\indentrel{-3}\begin{verbatim}
1000
1331
1728
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsForInNMPagePatch2}
\begin{paste}{ugLangLoopsForInNMPageFull2}{ugLangLoopsForInNMPageEmpty2}
\pastebutton{ugLangLoopsForInNMPageFull2}{\hidepaste}
\indentrel{5}\spadcommand{a := \[1,2,3]\bound{a}}
\indentrel{-3}\begin{verbatim}
(2) \[1,2,3]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsForInNMPagePatch3}
\begin{paste}{ugLangLoopsForInNMPageFull3}{ugLangLoopsForInNMPageEmpty3}
\pastebutton{ugLangLoopsForInNMPageFull3}{\hidepaste}
\indentrel{5}\spadcommand{for i in 1..\#a repeat output(a.i)\free{a}}
\indentrel{-3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
Type: Void
\end{verbatim}
\end{verbatim}

\begin{verbatim}
1
2
3
\end{verbatim}

\begin{verbatim}
4
3
9
0
\end{verbatim}

Type: Matrix Integer
for i in n..m by s repeat

— ug05.ht —

By default, the difference between values taken on by a variable in loops such as \texttt{for i in n..m repeat ...} is \texttt{mathOrSpad{1}}.
It is possible to supply another, possibly negative, step value by using the \texttt{by} keyword along with \texttt{for} and \texttt{in}.
Like the upper and lower bounds, the step value following the \texttt{by} keyword must be an integer.
Note that the loop \texttt{for i in 1..2 by 0 repeat output(i)}
will not terminate by itself, as the step value does not change the index from its initial value of \texttt{mathOrSpad{1}}.
This expression displays the odd integers between two bounds.
}\spadpaste{for i in 1..5 by 2 repeat output(i)}
}\xtc{
Use this to display the numbers in reverse order.
}\spadpaste{for i in 5..1 by -2 repeat output(i)}
}\endscroll
\autobuttons
\end{page}

\begin{patch}{ugLoopsForInNMSPagePatch1}
\begin{paste}{ugLoopsForInNMSPageFull1}{ugLoopsForInNMSPageEmpty1}
pastebutton{ugLoopsForInNMSPageFull1}{\hidepaste}
\tab{5}\spadcommand{for i in 1..5 by 2 repeat output(i)}
\indentrel{3}\begin{verbatim}
1
3
5
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLoopsForInNMSPageEmpty1}
\begin{paste}{ugLoopsForInNMSPageEmpty1}{ugLoopsForInNMSPagePatch1}
pastebutton{ugLoopsForInNMSPageEmpty1}{\showpaste}
\tab{5}\spadcommand{for i in 1..5 by 2 repeat output(i)}
\end{paste}
\end{patch}

\begin{patch}{ugLoopsForInNMSPagePatch2}
\begin{paste}{ugLoopsForInNMSPageFull2}{ugLoopsForInNMSPageEmpty2}
pastebutton{ugLoopsForInNMSPageFull2}{\hidepaste}
\tab{5}\spadcommand{for i in 5..1 by -2 repeat output(i)}
\indentrel{3}\begin{verbatim}
5
3
1
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLoopsForInNMSPageEmpty2}
\begin{paste}{ugLoopsForInNMSPageEmpty2}{ugLoopsForInNMSPagePatch2}
pastebutton{ugLoopsForInNMSPageEmpty2}{\showpaste}
\tab{5}\spadcommand{for i in 5..1 by -2 repeat output(i)}
\end{paste}
\end{patch}
for i in n.. repeat

--- ug05.ht ---

\begin{page}{ugLangLoopsForInNPage}{5.4.11. for i in n.. repeat}
\beginscroll

If the value after the \axiomSyntax{..} is omitted, the loop has no end test.
A potentially infinite loop is thus created.
The variable is given the successive values \axiom{n, n+1, n+2, ...} and the loop is terminated only if a \axiom{break} or \axiom{return} expression is evaluated in the loop body.
However you may also add some other modifying clause on the \axiom{repeat} (for example, a \axiom{while} clause) to stop the loop.

\xtc{
This loop displays the integers greater than or equal to \axiom{15} and less than the first prime greater than \axiom{15}.
}\{\spadpaste{for i in 15.. while not prime?(i) repeat output(i)}\}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugLangLoopsForInNPagePatch1}
\begin{paste}{ugLangLoopsForInNPageFull1}{ugLangLoopsForInNPageEmpty1}
\pastebutton{ugLangLoopsForInNPageFull1}{\hidepaste}
\tab{5}\spadcommand{for i in 15.. while not prime?(i) repeat output(i)}
\indentrel{3}\begin{verbatim}
15
16
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsForInNPageEmpty1}
\begin{paste}{ugLangLoopsForInNPageEmpty1}{ugLangLoopsForInNPagePatch1}
\pastebutton{ugLangLoopsForInNPageEmpty1}{\showpaste}
\tab{5}\spadcommand{for i in 15.. while not prime?(i) repeat output(i)}
\end{paste}
\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}
for x in l repeat

--- ug05.ht ---

\begin{page}{ugLangLoopsForInXLPage}{5.4.12. for x in l repeat}
\beginscroll
Another variant of the \axiom{for} loop has the form:
\begin{centerline}{\it \axiom{for} x \axiom{in} list \axiom{repeat} loopBody}}}
This form is used when you want to iterate directly over the
elements of a list.
In this form of the \axiom{for} loop, the variable
\axiom{x} takes on the value of each successive element in \axiom{l}.
The end test is most simply stated in English: "are there no more
\axiom{x} in \axiom{l}?"

\xtc{
If \axiom{l} is this list,
}{
\spadpaste{l := [0,-5,3] \bound{l}}
}
\xtc{
display all elements of \axiom{l}, one per line.}
}{
\spadpaste{for x in l repeat output(x) \free{l}}
}

Since the list constructing expression \axiom{\[n..m\]} creates the
list \axiom{\[n, n+1, \ldots, m\]}\footnote{This list is empty if \axiom{n > m}.}, you might be tempted to think that the loops
\begin{verbatim}
for i in n..m repeat output(i)
\end{verbatim}
and
\begin{verbatim}
for x in expand [n..m] repeat output(x)
\end{verbatim}
are equivalent.
The second form first creates the list \axiom{\[n..m\]} (no matter how large it might be) and
then does the iteration.
The first form potentially runs in much less space, as the index variable
\axiom{i} is simply incremented once per loop and the list is not actually
created.
Using the first form is much more efficient.
%\xtc{
Of course, sometimes you really want to iterate across a specific list.
This displays each of the factors of \axiom{2400000}.\openup12pt

\begin{verbatim}
for i in 1..2400000 repeat output(i) &
\end{verbatim}
\{spadpaste{for f in factors(factor(2400000)) repeat output(f)}\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugLangLoopsForInXLPagePatch1}
\begin{paste}{ugLangLoopsForInXLPageFull1}{ugLangLoopsForInXLPageEmpty1}\spadcommand{l := [0,-5,3]\bound{l}}\indentrel{3}\begin{verbatim}
(1) [0,- 5,3]
Type: List Integer
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsForInXLPageEmpty1}
\begin{paste}{ugLangLoopsForInXLPagePatch1}{ugLangLoopsForInXLPageEmpty1}\spadcommand{l := [0,-5,3]\bound{l}}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsForInXLPagePatch2}
\begin{paste}{ugLangLoopsForInXLPageFull2}{ugLangLoopsForInXLPageEmpty2}\spadcommand{for x in l repeat output(x)\free{l}}\indentrel{3}\begin{verbatim}
0
- 5
3
Type: Void
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsForInXLPageEmpty2}
\begin{paste}{ugLangLoopsForInXLPagePatch2}{ugLangLoopsForInXLPageEmpty2}\spadcommand{for x in l repeat output(x)}\free{l}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugLangLoopsForInXLPagePatch3}
\begin{paste}{ugLangLoopsForInXLPageFull3}{ugLangLoopsForInXLPageEmpty3}\spadcommand{for f in factors(factor(2400000)) repeat output(f)}\indentrel{3}\begin{verbatim}
[factor= 2,exponent= 8]
[factor= 3,exponent= 1]
[factor= 5,exponent= 5]
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
Type: Void

```
\indentrel{-3}\end{paste}\end{patch}
```

```
\begin{patch}{ugLangLoopsForInXLPageEmpty3}
\begin{paste}{ugLangLoopsForInXLPageEmpty3}{ugLangLoopsForInXLPagePatch3}
\pastebutton{ugLangLoopsForInXLPageEmpty3}{\showpaste}
\tab{5}\spadcommand{for f in factors(factor(2400000)) repeat output(f)}
\end{paste}\end{patch}
```

```
\begin{page}{ugLangLoopsForInPredPage}{5.4.13. "Such that" Predicates}
\beginscroll
A \axiom{for} loop can be followed by a \axiomSyntax{|} and then a predicate. The predicate qualifies the use of the values from the iterator following the \axiom{for}. Think of the vertical bar \axiomSyntax{|} as the phrase 'such that.'
\xtc{
This loop expression prints out the integers \axiom{n} in the given segment such that \axiom{n} is odd.
}{
\spadpaste{for n in 0..4 | odd? n repeat output n}
}
\endImportant
The predicate need not refer only to the variable in the \axiom{for} clause: any variable in an outer scope can be part of the predicate.
\xtc{
In this example, the predicate on the inner \axiom{for} loop uses
}
\axiom{i} from the outer loop and the \axiom{j} from the \axiom{for} clause that it directly modifies.

\begin{spadsrc}
for i in 1..50 repeat
 for j in 1..50 | factorial(i+j) < 25 repeat
 output \[i,j\]
\end{spadsrc}

\endscroll
\autobuttons
\endpage

\begin{patch}{ugLangLoopsForInPredPagePatch1}
\begin{paste}{ugLangLoopsForInPredPageFull1}{ugLangLoopsForInPredPageEmpty1}
\pastebutton{ugLangLoopsForInPredPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{for n in 0..4 | odd? n repeat output n}
\indentrel{-3}\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsForInPredPageEmpty1}
\begin{paste}{ugLangLoopsForInPredPageEmpty1}{ugLangLoopsForInPredPagePatch1}
\pastebutton{ugLangLoopsForInPredPageEmpty1}{\showpaste}
\indentrel{3}\spadcommand{for n in 0..4 | odd? n repeat output n}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangLoopsForInPredPagePatch2}
\begin{paste}{ugLangLoopsForInPredPageFull2}{ugLangLoopsForInPredPageEmpty2}
\pastebutton{ugLangLoopsForInPredPageFull2}{\hidepaste}
\indentrel{3}\spadcommand{for i in 1..50 repeat
 for j in 1..50 | factorial(i+j) < 25 repeat
 output \[i,j\]}
\indentrel{-3}\end{verbatim}
\end{paste}
\end{patch}

\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugLangLoopsForInPredPageEmpty2}
\end{patch}
Parallel Iteration

The last example of the previous section gives an example of nested iteration: a loop is contained in another loop. Sometimes you want to iterate across two lists in parallel, or perhaps you want to traverse a list while incrementing a variable.

The general syntax of a repeat loop is
\[\text{for } i \text{ in } 1 \ldots 50 \text{ repeat for } j \text{ in } 1 \ldots 50 \mid \text{factorial}(i+j) < 25 \text{ repeat output } [i,j] \]

Here we write a loop to iterate across two lists, computing the sum of the pairwise product of elements. Here is the first list.

\begin{spad}{l := [1,3,5,7] \bound{l}}
\end{spad}

Here we write a loop to iterate across two lists, computing the sum of the pairwise product of elements. Here is the first list.

\begin{spad}{l := [1,3,5,7] \bound{l}}
\end{spad}
And the second.

\spadpaste{m := [100,200] \bound{m}}

\xtc{}
The initial value of the sum counter.
\spadpaste{sum := 0 \bound{sum}}
\xtc{}
The last two elements of \axiom{l} are not used in the calculation because \axiom{m} has two fewer elements than \axiom{l}.
\begin{spadsrc}
\begin{verbatim}
for x in l for y in m repeat
 sum := sum + x*y
\end{verbatim}
\end{spadsrc}
\xtc{}
Display the ``dot product.''
\spadpaste{sum \free{doit}}
\xtc{}
Next, we write a loop to compute the sum of the products of the loop elements with their positions in the loop.
\spadpaste{l := [2,3,5,7,11,13,17,19,23,29,31,37] \bound{l1}}
\xtc{}
The initial sum.
\spadpaste{sum := 0 \bound{sum1}}
\xtc{}
Here looping stops when the list \axiom{l} is exhausted, even though the \axiom{for i in 0..} specifies no terminating condition.
\spadpaste{
 for i in 0.. for x in l repeat sum := i * x \bound{doit1}\free{sum1 l1}}
\xtc{}
Display this weighted sum.
\spadpaste{sum \free{doit1}}

When \axiomSyntax{|} is used to qualify any of the \axiom{for} clauses in a
parallel iteration, the variables in the predicates can be from an outer scope or from a \axiom{for} clause in or to the left of a modified clause.

This is correct:
\begin{verbatim}
for i in 1..10 repeat
 for j in 200..300 | odd? (i+j) repeat
 output [i,j]
\end{verbatim}

This is not correct since the variable \axiom{j} has not been defined outside the inner loop.
\begin{verbatim}
for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined
 for j in 200..300 repeat
 output [i,j]
\end{verbatim}

This example shows that it is possible to mix several of the forms of \axiom{repeat} modifying clauses on a loop.
\begin{spadsrc}
for i in 1..10
 for j in 151..160 | odd? j
 while i + j < 160 repeat
 output [i,j]
\end{spadsrc}

Here are useful rules for composing loop expressions:
\begin{itemize}
\item \axiom{while} predicates can only refer to variables that are global (or in an outer scope) or that are defined in \axiom{for} clauses to the left of the predicate.
\item A ‘‘such that’’ predicate (something following \axiomSyntax{[]}) must directly follow a \axiom{for} clause and can only refer to variables that are global (or in an outer scope) or defined in the modified \axiom{for} clause or any \axiom{for} clause to the left.
\end{itemize}
\begin{verbatim}
(1) [1,3,5,7]
Type: List PositiveInteger
\end{verbatim}

\begin{verbatim}
(2) [100,200]
Type: List PositiveInteger
\end{verbatim}

\begin{verbatim}
(3) 0
Type: NonNegativeInteger
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
(5) 700
Type: NonNegativeInteger
\end{verbatim}

\begin{verbatim}
(6) [2,3,5,7,11,13,17,19,23,29,31,37]
Type: List PositiveInteger
\end{verbatim}
\spadcommand{sum := 0 \text{\texttt{\mbox{\textbackslash free{sum1 \mbox{\textbackslash do{it1}}}}}}}

\texttt{(7) 0}
\text{Type: NonNegativeInteger}

\spadcommand{for i in 0.. for x in l \text{\texttt{\mbox{\textbackslash do{it1}}}} \text{\texttt{\mbox{\textbackslash free{sum1 l1}}}}}

\texttt{Type: Void}

\spadcommand{\texttt{(9) 407}}
\text{Type: NonNegativeInteger}

\spadcommand{for i in 1..10}
Creating Lists and Streams with Iterators

⇒ “notitle” (ugLangLoopsPage) 9 on page 1765
⇒ “notitle” (ListXmpPage) 3.64 on page 866
⇒ “notitle” (StreamXmpPage) 3.102 on page 1263
— ug05.ht —

All of what we did for loops in
in Section 5.4\ignore{ugLangLoops}
can be transformed into expressions that create lists
and streams.
The \axiom{repeat,} \axiom{break} or \axiom{iterate} words are not used but
all the other ideas carry over.
Before we give you the general rule, here are some examples which
give you the idea.

\xtc{
This creates a simple list of the integers from \axiom{1} to \axiom{10}.
}{
\spadpaste{list := [i for i in 1..10] \text{bound}(list)}
}\xtc{Create a stream of the integers greater than or equal to \axiom{1}.}{\spadpaste{stream := [i for i in 1..] \text{bound}(stream)}}\xtc{This is a list of the prime integers between \axiom{1} and \axiom{10}, inclusive.}{\spadpaste{[i for i in 1..10 \text{ | prime? i}]} \xtc{This is a stream of the prime integers greater than or equal to \axiom{1}.}{\spadpaste{[i for i in 1.. \text{ | prime? i}]} \xtc{This is a list of the integers between \axiom{1} and \axiom{10}, inclusive, whose squares are less than \axiom{700}.}{\spadpaste{[i for i in 1..10 \text{ while } i\ast i < 700]}}\xtc{This is a stream of the integers greater than or equal to \axiom{1} whose squares are less than \axiom{700}.}{\spadpaste{[i for i in 1.. \text{ while } i\ast i < 700]}}\begin{Important}
The general syntax of a collection is
\centerline{\tt [it collectExpression } \text{subsriptIt}(\text{iterator})\{i\} \text{subsriptIt}(\text{iterator})\{2\} \ldots \text{subsriptIt}(\text{iterator})\{N\}]}where each \text{subsriptIt}(\text{iterator})\{i\} is either a \axiom{for} or a \axiom{while} clause.
The loop terminates immediately when the end test of any \text{subsriptIt}(\text{iterator})\{i\} succeeds or when a \axiom{return} expression is evaluated in \text{collectExpression}.
The value returned by the collection is either a list or a stream of elements, one for each iteration of the \text{collectExpression}.
\end{Important}
Be careful when you use \axiom{while}
to create a stream.
By default, Axiom tries to compute and display the first ten elements
of a stream. If the \axiom{while} condition is not satisfied quickly, Axiom can spend a long (possibly infinite) time trying to compute the elements. Use \spadcmd{)set streams calculate} to change the default to something else. This also affects the number of terms computed and displayed for power series. For the purposes of this book, we have used this system command to display fewer than ten terms.

Use nested iterators to create lists of lists which can then be given as an argument to \axiomFun{matrix}.

\spadpaste{matrix [[x**i+j for i in 1..3] for j in 10..12]}

You can also create lists of streams, streams of lists and streams of streams. Here is a stream of streams.

\spadpaste{[[i/j for i in j+1..] for j in 1..]}

You can use parallel iteration across lists and streams to create new lists.

\spadpaste{[i/j for i in 3.. by 10 for j in 2..]}

Iteration stops if the end of a list or stream is reached.

\spadpaste{[i**j for i in 1..7 for j in 2..]}

or a while condition fails.

\spadcommand{[i**j for i in 1.. for j in 2.. while i + j < 5]}

As with loops, you can combine these modifiers to make very complicated conditions.

\spadpaste{[[i,j] for i in 10..15 | prime? i] for j in 17..22 | j = squareFreePart j]}

See \downlink{'List'}{ListXmpPage}\ignore{List} and \downlink{'Stream'}{StreamXmpPage}\ignore{Stream} for more information on creating and
manipulating lists and streams, respectively.

\end{patch}
\begin{patch}{ugLangItsPagePatch1}
\begin{paste}{ugLangItsPageFull1}{ugLangItsPageEmpty1}
\tab{5}\spadcommand{list := [i for i in 1..10]\bound{list }}
\indentrel{3}\begin{verbatim}
(1) [1,2,3,4,5,6,7,8,9,10]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangItsPagePatch2}
\begin{paste}{ugLangItsPageFull2}{ugLangItsPageEmpty2}
\tab{5}\spadcommand{stream := [i for i in 1..]\bound{stream }}
\indentrel{3}\begin{verbatim}
(2) [1,2,3,4,5,6,7,8,9,10,...]
Type: Stream PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugLangItsPagePatch3}
\begin{paste}{ugLangItsPageFull3}{ugLangItsPageEmpty3}
\tab{5}\spadcommand{[i for i in 1..10 | prime? i]}
\indentrel{3}\begin{verbatim}
(3) [2,3,5,7]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(4) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...]
Type: Stream PositiveInteger
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
(5) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Type: List PositiveInteger
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
(6) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...]
Type: Stream PositiveInteger
\end{verbatim}

\indentrel{-3}
\begin{verbatim}
2 3
x + 10 x + 10 x + 10
(7)
2 3
x + 11 x + 11 x + 11
2 3
x + 12 x + 12 x + 12
\end{verbatim}

Type: Matrix Polynomial Integer
\begin{verbatim}
\[i/j for i in j+1.. for j in 1..]\n\end{verbatim}
\begin{verbatim}
\[i/j for i in 3.. by 10 for j in 2..]\n\end{verbatim}
\begin{verbatim}
\[i**j for i in 1..7 for j in 2..\]
\end{verbatim}
\begin{verbatim}
[1,8,81,1024,15625,279936,5764801]
\end{verbatim}
An Example: Streams of Primes

--- ug05.ht ---

We conclude this chapter with an example of the creation and manipulation of infinite streams of prime integers. This might be useful for experiments with numbers or other applications where you are using sequences of primes over and over again. As for all streams, the stream of primes is only computed as far out as you need. Once computed, however, all the primes up to that point are saved for future reference.

Two useful operations provided by the Axiom library are \axiomFunFrom{prime?}{IntegerPrimesPackage} and \axiomFunFrom{nextPrime}{IntegerPrimesPackage}.

A straightforward way to create a stream of prime numbers is to start with the stream of positive integers \axiom{[2,..]} and filter out those that are prime.
\xtc{Create a stream of primes.}{
A more elegant way, however, is to use the \(\text{generate} \) operation from \(\text{Stream} \). Given an initial value \(a \) and a function \(f \), \(\text{generate}(a, f) \) constructs the stream \(\{a, f(a), f(f(a)), \ldots\} \). This function gives you the quickest method of getting the stream of primes.

This is how you use \(\text{generate} \) to generate an infinite stream of primes.

\[
\text{primes} := \text{generate}(\text{nextPrime}, 2)
\]

Once the stream is generated, you might only be interested in primes starting at a particular value.

\[
\text{smallPrimes} := \{p \mid p \in \text{primes} \land p > 1000\}
\]

Here are the first 11 primes greater than 1000.

\[
\{p \mid p \in \text{smallPrimes} \land 1 \leq i \leq 11\}
\]

Here is a stream of primes between 1000 and 1200.

\[
\{p \mid p \in \text{smallPrimes} \land 1000 < p < 1200\}
\]

To get these expanded into a finite stream, you call \(\text{complete} \) on the stream.

Twin primes are consecutive odd number pairs which are prime. Here is the stream of twin primes.

\[
\text{twinPrimes} := \{[p, p+2] \mid p \in \text{primes} \land \text{prime?}(p+2)\}
\]

Since we already have the primes computed we can avoid the call to \(\text{prime?} \) by using a double iteration. This time we’ll just generate a stream of the first of the twin primes.
Let's try to compute the infinite stream of triplet primes, the set of primes :math:`\{p\}` such that :math:`\{p, p+2, p+4\}` are primes. For example, :math:`\{3, 5, 7\}` is a triple prime. We could do this by a triple :axiom:`for` iteration. A more economical way is to use :userfun:`firstOfTwins`. This time however, put a semicolon at the end of the line.

\[\text{Create the stream of} \text{firstTriplets.} \text{Put a semicolon at the end so that no elements are computed.}\]
\begin{verbatim}
\text{firstTriplets := [p for p in firstOfTwins for q in rest firstOfTwins | q = p+2];}
\end{verbatim}

What happened? As you know, by default Axiom displays the first ten elements of a stream when you first display it. And, therefore, it needs to compute them! If you want \{\it no\} elements computed, just terminate the expression by a semicolon \{\text{\text{axiomSyntax}{;}}\}. Why does this happen? The semi-colon prevents the display of the result of evaluating the expression. Since no stream elements are needed for display (or anything else, so far), none are computed.

\text{Compute the first triplet prime.}
\begin{verbatim}
\text{firstTriplets.1}
\end{verbatim}

If you want to compute another, just ask for it. But wait a second! Given three consecutive odd integers, one of them must be divisible by 3. Thus there is only one triplet prime. But suppose that you did not know this and wanted to know what was the tenth triplet prime.
\begin{verbatim}
\text{firstTriples.10}
\end{verbatim}

To compute the tenth triplet prime, Axiom first must compute the second, the third, and so on. But since there isn't even a second triplet prime, Axiom will compute forever. Nonetheless, this effort can produce a useful result. After waiting a bit, hit \texttt{\fbox{\textbf{Ctrl}--\fbox{\textbf{c}}}{{\textbf{Ctrl-c}}}}.
The system responds as follows.

\begin{verbatim}
>> System error:
Console interrupt.
You are being returned to the top level of
the interpreter.
\end{verbatim}

Let’s say that you want to know how many primes have been computed. Issue

\begin{verbatim}
numberOfComputedEntries primes
\end{verbatim}

and, for this discussion, let’s say that the result is $\text{axiom}(2045.)$

\xtc{
How big is the $\eth{\text{axiom}(2045)}$ prime?
}

\spadpaste{primes.2045}

What you have learned is that there are no triplet primes between 5 and 17837. Although this result is well known (some might even say trivial), there are many experiments you could make where the result is not known. What you see here is a paradigm for testing of hypotheses. Here our hypothesis could have been: ‘‘there is more than one triplet prime.’’ We have tested this hypothesis for 17837 cases. With streams, you can let your machine run, interrupt it to see how far it has progressed, then start it up and let it continue from where it left off.

\endscroll
\autobuttons
\end{page}
\begin{spadcommand}
primes := generate(nextPrime,2)
\end{spadcommand}

(2) \[2,3,5,7,11,13,17,19,23,29,\ldots\]
Type: Stream Integer

\begin{spadcommand}
smallPrimes := [p for p in primes | p > 1000]\bound{smallPrimes }
\end{spadcommand}

(3) \[1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,\ldots\]
Type: Stream Integer

\begin{spadcommand}
[p for p in smallPrimes for i in 1..11]\free{smallPrimes }
\end{spadcommand}

(4) \[1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,\ldots\]
Type: Stream Integer
\begin{verbatim}
(5) [1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061,...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
(6) [1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061,...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
(7) [[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43],
[59, 61], [71, 73], [101, 103], [107, 109], ...]
Type: Stream List Integer
\end{verbatim}
\begin{verbatim}
\spadcommand{firstOfTwins:= \[p for p in primes for q in rest primes | q=p+2\]}
\end{verbatim}

(8) \[3,5,11,17,29,41,59,71,101,107,...\]

Type: Stream Integer

\begin{verbatim}
\spadcommand{firstTriplets := \[p for p in firstOfTwins for q in rest firstOfTwins | q = p+2\]}
\end{verbatim}

(10) 3

Type: PositiveInteger

\begin{verbatim}
\spadcommand{firstTriplets.1}
\end{verbatim}
Type: PositiveInteger

(11) 17837
Chapter 10

Users Guide Chapter 6
(ug06.ht)

User-Defined Functions, Macros and Rules

⇒ “notitle” (ugUserFunMacPage) 10 on page 1825
⇒ “notitle” (ugUserMacrosPage) 10 on page 1827
⇒ “notitle” (ugUserIntroPage) 10 on page 1835
⇒ “notitle” (ugUserDeclarePage) 10 on page 1838
⇒ “notitle” (ugUserOnePage) 10 on page 1841
⇒ “notitle” (ugUserDecUndecPage) 10 on page 1846
⇒ “notitle” (ugUserDecOpersPage) 10 on page 1850
⇒ “notitle” (ugUserDelayPage) 10 on page 1851
⇒ “notitle” (ugUserUsePage) 10 on page 1854
⇒ “notitle” (ugUserCompIntPage) 10 on page 1858
⇒ “notitle” (ugUserPiecePage) 10 on page 1861
⇒ “notitle” (ugUserCachePage) 10 on page 1880
⇒ “notitle” (ugUserRecurPage) 10 on page 1883
⇒ “notitle” (ugUserMakePage) 10 on page 1889
⇒ “notitle” (ugUserBlocksPage) 10 on page 1898
⇒ “notitle” (ugUserFreeLocalPage) 10 on page 1906
⇒ “notitle” (ugUserAnonPage) 10 on page 1921
⇒ “notitle” (ugUserDatabasePage) 10 on page 1932
⇒ “notitle” (ugUserTrianglePage) 10 on page 1939
⇒ “notitle” (ugUserPalPage) 10 on page 1944
⇒ “notitle” (ugUserRulesPage) 10 on page 1949

— ug06.ht —

\begin{page}{ugUserPage}{6. User-Defined Functions, Macros and Rules}
In this chapter we show you how to write functions and macros, and we explain how Axiom looks for and applies them. We show some simple one-line examples of functions, together with larger ones that are defined piece-by-piece or through the use of piles.

1. Functions vs. Macros
2. Macros
3. Introduction to Functions
4. Declaring the Type of Functions
5. One-Line Functions
6. Declared vs. Undeclared Functions
7. Functions vs. Operations
8. Delayed Assignments vs. Functions with No Arguments
9. How Axiom Determines What Function to Use
10. Compiling vs. Interpreting
11. Piece-Wise Function Definitions
12. Caching Previously Computed Results
13. Recurrence Relations
14. Making Functions from Objects
15. Functions Defined with Blocks
16. Free and Local Variables
17. Anonymous Functions
18. Example: A Database
19. Example: A Famous Triangle
20. Example: Testing for Palindromes
21. Rules and Pattern Matching
Functions vs. Macros

A function is a program to perform some computation. Most functions have names so that it is easy to refer to them. A simple example of a function is one named \spadFunFrom{abs}{Integer} which computes the absolute value of an integer.

\begin{verbatim}
\spad{abs(-8)}
\end{verbatim}

Functions can be used alone or serve as the building blocks for larger programs. Usually they return a value that you might want to use in the next stage of a computation, but not always (for example, see \downlink{`Exit'}{ExitXmpPage} and \downlink{`Void'}{VoidXmpPage}). They may also read data from your keyboard, move information from one place to another, or format and display results on your screen.

In Axiom, as in mathematics, functions are usually parameterized. Each time you \spad{call} (some people say \spad{apply}) or \spad{invoke} a function, you give values to the parameters (variables). Such a value is called an \spad{argument} of the function. Axiom uses the arguments for the computation. In this way you get different results depending on what you \spad{feed} the function.
Functions can have local variables or refer to global variables in the workspace.

Axiom can often compile functions so that they execute very efficiently.

Functions can be passed as arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of constants or expressions and to be templates for frequently used expressions. Macros can be parameterized but they are not objects that can be passed as arguments to functions. In effect, macros are extensions to the Axiom expression parser.

\begin{spadcommand}{abs(-8)}
(1) 8
Type: PositiveInteger
\end{spadcommand}

\begin{spadcommand}{(x +-> if x < 0 then -x else x)(-8)}
(2) 8
Type: PositiveInteger
\end{spadcommand}
Macros

— ug06.ht —

A \spadgloss{macro} provides general textual substitution of an Axiom expression for a name. You can think of a macro as being a generalized abbreviation. You can only have one macro in your workspace with a given name, no matter how many arguments it has.

\beginImportant
The two general forms for macros are
\centerline{{\tt macro} \{it name\} \{tt ==\} \{it body\} }}
\centerline{{\tt macro} \{it name(arg1,...)\} \{tt ==\} \{it body\} }}
where the body of the macro can be any Axiom expression.
\endImportant

% \xtc{
For example, suppose you decided that you like to use \axiom{df} for \axiomFun{D}. You define the macro \axiom{df} like this.
}\{
\spadpaste{macro df == D \bound{df}}
\}
\xtc{
Whenever you type \axiom{df}, the system expands it to \axiomFun{D}.
}\{
\spadpaste{df(x**2 + x + 1,x) \free{df}}
\}
\xtc{
Macros can be parameterized and so can be used for many different kinds of objects.
}\{
\spadpaste{macro ff(x) == x**2 + 1 \bound{ff}}
\}
\xtc{
Apply it to a number, a symbol, or an expression.
}\{
\spadpaste{ff z \free{ff}}
\}
\xtc{
Macros can also be nested, but you get an error message if you run out of space because of an infinite nesting loop.
}\spadpaste{macro gg(x) == ff(2*x - 2/3) \bound{gg}\free{ff}}
\xtc{
This new macro is fine as it does not produce a loop.
}\spadpaste{gg(1/w) \free{gg}}
%
\xtc{
This, however, loops since \axiom{gg} is defined in terms of \axiom{ff}.
}\spadpaste{macro ff(x) == gg(-x) \free{gg}}
\xtc{
The body of a macro can be a block.
}\spadpaste{macro next == (past := present; present := future; future := past + present) \bound{next}}
\xtc{
Before entering \axiom{next}, we need values for \axiom{present} and \axiom{future}.
}\spadpaste{present : Integer := 0 \bound{present}}
\xtc{
}\spadpaste{future : Integer := 1 \bound{future}}
\xtc{
Repeatedly evaluating \axiom{next} produces the next Fibonacci number.
}\spadpaste{next \free{future}\free{present}}
\xtc{
And the next one.
}\spadpaste{next \free{future}\free{present}}
\xtc{
Here is the infinite stream of the rest of the Fibonacci numbers.
}\spadpaste{[next for i in 1..] \free{future}\free{present}}
\xtc{
Bundle all the above lines into a single macro.
macro fibStream ==
 present : Integer := 1
 future : Integer := 1
 [next for i in 1..] where
 macro next ==
 past := present
 present := future
 future := past + present
\end{spadsrc}

Use \axiomFun{concat}(Stream) to start with the first two
Fibonacci numbers.

\spadpaste{concat([0,1],fibStream) \free{fibstr}}

An easier way to compute these numbers is to
use the library operation \axiomFun{fibonacci}.

\spadpaste{[fibonacci i for i in 1..]}

\endscroll

\begin{patch}{ugUserMacrosPagePatch1}
\begin{paste}{ugUserMacrosPageFull1}{ugUserMacrosPageEmpty1}
\pastebutton{ugUserMacrosPageFull1}{\hidepaste}
\tab{5}\spadcommand{macro df == D\bound{df }}
\verbatim
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPageEmpty1}
\begin{paste}{ugUserMacrosPageEmpty1}{ugUserMacrosPagePatch1}
\pastebutton{ugUserMacrosPageEmpty1}{\showpaste}
\tab{5}\spadcommand{macro df == D\bound{df }}
\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch2}
\begin{paste}{ugUserMacrosPageFull2}{ugUserMacrosPageEmpty2}
\pastebutton{ugUserMacrosPageFull2}{\hidepaste}
\tab{5}\spadcommand{df(x**2 + x + 1,x)\free{df }}
\verbatim
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

(2) \[2x + 1 \]
Type: Polynomial Integer
\indentrel{-3}\end{patch}\end{verbatim}

\begin{patch}{ugUserMacrosPagePatch2}
\begin{paste}{ugUserMacrosPageFull2}{ugUserMacrosPageEmpty2}
\pastebutton{ugUserMacrosPageFull2}{\showpaste}
\tab{5}\spadcommand{df(x**2 + x + 1,x)}\free{df }
\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch3}
\begin{paste}{ugUserMacrosPageFull3}{ugUserMacrosPageEmpty3}
\pastebutton{ugUserMacrosPageFull3}{\hidepaste}
\tab{5}\spadcommand{macro ff(x) == x**2 + 1}\bound{ff }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch4}
\begin{paste}{ugUserMacrosPageFull4}{ugUserMacrosPageEmpty4}
\pastebutton{ugUserMacrosPageFull4}{\hidepaste}
\tab{5}\spadcommand{ff z}\free{ff }
\indentrel{3}\begin{verbatim}
2
(4) z + 1
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch5}
\begin{paste}{ugUserMacrosPageFull5}{ugUserMacrosPageEmpty5}
\pastebutton{ugUserMacrosPageFull5}{\hidepaste}
\tab{5}\spadcommand{macro gg(x) == ff(2*x - 2/3)}\bound{gg }\free{ff }
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{spadcommand}
macro gg(x) == ff(2*x - 2/3)
\end{spadcommand}

\begin{spadcommand}
macro ff(x) == gg(-x)
\end{spadcommand}

\begin{spadcommand}
macro next == (past := present; present := future; future := past + present)
\end{spadcommand}

\begin{verbatim}
2
13w - 24w + 36
(6)
2
9w
Type: Fraction Polynomial Integer
\end{verbatim}
\begin{patch}{ugUserMacrosPageEmpty8}
\begin{paste}{ugUserMacrosPageEmpty8}{ugUserMacrosPagePatch8}
\tab{5}\spadcommand{macro next == (past := present; present := future; future := past + present)}\bound{next}
\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch9}
\begin{paste}{ugUserMacrosPageFull9}{ugUserMacrosPageEmpty9}
\tab{5}\spadcommand{present : Integer := 0}\bound{present}
\indentrel{3}\begin{verbatim}
(9) 0
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch10}
\begin{paste}{ugUserMacrosPageFull10}{ugUserMacrosPageEmpty10}
\tab{5}\spadcommand{future : Integer := 1}\bound{future}
\indentrel{3}\begin{verbatim}
(10) 1
Type: Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMacrosPagePatch11}
\begin{paste}{ugUserMacrosPageFull11}{ugUserMacrosPageEmpty11}
\tab{5}\spadcommand{next\free{future }\free{present}}\begin{verbatim}
(11) 1
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(12) 2
Type: Integer
\end{verbatim}

\begin{verbatim}
(13) [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
macro fibStream ==
 present : Integer := 1
 future : Integer := 1
 [next for i in 1..] where
 macro next ==
 past := present
 present := future
 future := past + present
 bound{fibstr }}
\end{verbatim}
\begin{verbatim}
macro fibStream ==
 present : Integer := 1
 future : Integer := 1
 [next for i in 1..] where
 macro next ==
 past := present
 present := future
 future := past + present
 \bound{fibstr}}
\end{verbatim}

\begin{verbatim}
[15] [0,1,2,3,5,8,13,21,34,55,..]
Type: Stream Integer
\end{verbatim}

\begin{verbatim}
[fibonacci i for i in 1..]
\end{verbatim}

\begin{verbatim}
[16] [1,1,2,3,5,8,13,21,34,55,..]
Type: Stream Integer
\end{verbatim}
Introduction to Functions

Each name in your workspace can refer to a single object. This may be any kind of object including a function. You can use interactively any function from the library or any that you define in the workspace.

In the library the same name can have very many functions, but you can have only one function with a given name, although it can have any number of arguments that you choose.

If you define a function in the workspace that has the same name and number of arguments as one in the library, then your definition takes precedence. In fact, to get the library function you must \spadglossSee{package-call}{package call} it (see \downlink{‘‘Package Calling and Target Types’’}{ugTypesPkgCallPage} in Section 2.9\ignore{ugTypesPkgCall}).

To use a function in Axiom, you apply it to its arguments. Most functions are applied by entering the name of the function followed by its argument or arguments.

\begin{verbatim}
\spadpaste{factor(12)}
\end{verbatim}

Some functions like \axiomOp{+} have \spadgloss{infix} operators as names.

\begin{verbatim}
\spadpaste{3 + 4}
\end{verbatim}

The function \axiomOp{+} has two arguments. When you give it more than two arguments, Axiom groups the arguments to the left. This expression is equivalent to \axiom{(1 + 2) + 7}.

\begin{verbatim}
\spadpaste{1 + 2 + 7}
\end{verbatim}
All operations, including infix operators, can be written in prefix form, that is, with the operation name followed by the arguments in parentheses. For example, \axiom{2 + 3} can alternatively be written as \axiom{+(2,3)}. But \axiom{+(2,3,4)} is an error since \axiomOp{+} takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus \axiom{factorial 3 + 1} means \axiom{factorial(3) + 1} producing \axiom{7}, and \axiom{- 2 + 5} means \axiom{(-2) + 5} producing \axiom{3}.

An example of a prefix operator is prefix \axiomOp{-}. For example, \axiom{- 2 + 5} converts to \axiom{((-2) + 5)} producing the value \axiom{3}.

Any prefix function taking two arguments can be written in an infix manner by putting an ampersand (\axiomSyntax{&}) before the name. Thus \axiom{D(2*x,x)} can be written as \axiom{2*x \&D x} returning \axiom{2}.

Every function in Axiom is identified by a \spadgloss{name} and \spadgloss{type}. An exception is an "anonymous function" discussed in \downlink{"Anonymous Functions"}{ugUserAnonPage} in Section 6.17 of ugUserAnon.

The type of a function is always a mapping of the form \spadsig{Source}{Target} where \axiom{Source} and \axiom{Target} are types. To enter a type from the keyboard, enter the arrow by using a hyphen \axiomSyntax{-} followed by a greater-than sign \axiomSyntax{>}, e.g. \tt{Integer -> Integer}.

Let's go back to \axiomOp{+}. There are many \axiomOp{+} functions in the Axiom library: one for integers, one for floats, another for rational numbers, and so on. These \axiomOp{+} functions have different types and thus are different functions. You've seen examples of this \spadgloss{overloading} before---using the same name for different functions. Overloading is the rule rather than the exception. You can add two integers, two polynomials, two matrices or two power series. These are all done with the same function name but with different functions.
factor(12)

\begin{verbatim}
2
(1) 2 3
\end{verbatim}

Type: Factored Integer

\begin{verbatim}
2 + 4
(2) 7
\end{verbatim}

Type: PositiveInteger

\begin{verbatim}
1 + 2 + 7
(3) 10
\end{verbatim}

Type: PositiveInteger
Declaring the Type of Functions

⇒ “notitle” (ugTypesDeclarePage) 7 on page 1641
— ug06.ht —

\begin{page}{ugUserDeclarePage}{6.4. Declaring the Type of Functions}
\beginscroll

In \downlink{``Declarations’’}{ugTypesDeclarePage} in Section 2.3\ignore{ugTypesDeclare} we discussed how to declare a variable to restrict the kind of values that can be assigned to it. In this section we show how to declare a variable that refers to function objects.

\beginImportant
A function is an object of type \spadsig{Source}{Type} where \axiom{Source} and \axiom{Target} can be any type. A common type for \axiom{Source} is \axiomType{Tuple}(\subscriptIt{T}{1}, \ldots, \subscriptIt{T}{n}), usually written \spad{\langle T_1, \ldots, T_n \rangle}, to indicate a function of \axiom{n} arguments.
\endImportant

\xtc{If \axiom{g} takes an \axiomType{Integer}, a \axiomType{Float} and another \axiomType{Integer}, and returns a \axiomType{String}, the declaration is written this way.}{
\spadpaste{g: (Integer,Float,Integer) -> String}}

\xtc{The types need not be written fully; using abbreviations, the above declaration is:}{
\spadpaste{g: (INT,FLOAT,INT) -> STRING}}

\xtc{It is possible for a function to take no arguments. If \axiom{h} takes no arguments but returns a \axiomType{Polynomial} \axiomType{Integer}, any of the following declarations is acceptable.}{
Functions can also be declared when they are being defined. The syntax for combined declaration/definition is:
\begin{verbatim}
{\it functionName}(\subscript{parm}{1}: \subscript{parmType}{1}, \ldots, \subscript{parm}{N}: \subscript{parmType}{N}):
{\it functionReturnType}}
\end{verbatim}

The following definition fragments show how this can be done for the functions \texttt{g} and \texttt{h} above.
\begin{verbatim}
g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...
\end{verbatim}

A current restriction on function declarations is that they must involve fully specified types (that is, cannot include modes involving explicit or implicit \texttt{axiomSyntax(?)}).
For more information on declaring things in general, see \downlink{``Declarations''}{ugTypesDeclarePage} in Section 2.3\ignore{ugTypesDeclare}.
\begin{patch}{ugUserDeclarePageEmpty1}
\begin{paste}{ugUserDeclarePageEmpty1}{ugUserDeclarePagePatch1}
\tab{5}\spadcommand{g: (Integer,Float,Integer) -> String}
\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePagePatch2}
\begin{paste}{ugUserDeclarePageFull2}{ugUserDeclarePageEmpty2}
\tab{5}\spadcommand{g: (INT,FLOAT,INT) -> STRING}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePageEmpty2}
\begin{paste}{ugUserDeclarePageEmpty2}{ugUserDeclarePagePatch2}
\tab{5}\spadcommand{g: (INT,FLOAT,INT) -> STRING}
\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePagePatch3}
\begin{paste}{ugUserDeclarePageFull3}{ugUserDeclarePageEmpty3}
\tab{5}\spadcommand{h: () -> POLY INT}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePageEmpty3}
\begin{paste}{ugUserDeclarePageEmpty3}{ugUserDeclarePagePatch3}
\tab{5}\spadcommand{h: () -> POLY INT}
\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePagePatch4}
\begin{paste}{ugUserDeclarePageFull4}{ugUserDeclarePageEmpty4}
\tab{5}\spadcommand{h: () -> Polynomial INT}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserDeclarePageEmpty4}
\begin{paste}{ugUserDeclarePageEmpty4}{ugUserDeclarePagePatch4}
\tab{5}\spadcommand{h: () -> Polynomial INT}
\end{paste}\end{patch}
One-Line Functions

--- ug06.ht ---

As you use Axiom, you will find that you will write many short functions to codify sequences of operations that you often perform. In this section we write some simple one-line functions.

\begin{verbatim}
This is a simple recursive factorial function for positive integers.
\end{verbatim}

\begin{verbatim}
fac n == if n < 3 then n else n * fac(n-1)
\end{verbatim}

\begin{verbatim}
fac 10
\end{verbatim}

%>> Thankfully, the $ is no longer needed in the next example.

\begin{verbatim}
This function computes $\text{axiom}{1 + 1/2 + 1/3 + \ldots + 1/n}$.
\end{verbatim}

\begin{verbatim}
s n == reduce(+,[1/i for i in 1..n])
\end{verbatim}

\begin{verbatim}
s 50
\end{verbatim}
This function computes a Mersenne number, several of which are prime.

\spad{mersenne i == 2**i - 1}

If you type \texttt{mersenne}, Axiom shows you the function definition.

\spad{mersenne \free{mersenne}}

Generate a stream of Mersenne numbers.

\spad{[mersenne i for i in 1..] \free{mersenne}}

Create a stream of those values of \texttt{i} such that \texttt{mersenne(i)} is prime.

\spad{mersenneIndex := [n for n in 1.. | prime?(mersenne(n))] \free{mersenne}}

Finally, write a function that returns the n^{th} Mersenne prime.

\spad{mersennePrime n == mersenne mersenneIndex(n) \free{mersenne mersenneIndex}}

\endscroll

Type: Void
\begin{spadcommand}
fac n == if n < 3 then n else n * fac(n-1)
\end{spadcommand}

\begin{spadcommand}
fac 10 \free{fac}
\end{spadcommand}
\indentrel{3}
\begin{verbatim}
(2) 3628800
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}

\begin{spadcommand}
s n == reduce(+,[1/i for i in 1..n])
\end{spadcommand}
\indentrel{3}
\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\begin{spadcommand}
s 50 \free{s}
\end{spadcommand}
\indentrel{3}
\begin{verbatim}
13943237577224054960759
(4)
309904504245996706400
Type: Fraction Integer
\end{verbatim}
\indentrel{-3}

\begin{spadcommand}
s \free{s}
\end{spadcommand}
\indentrel{3}
\begin{verbatim}
\end{verbatim}
\indentrel{-3}
\spadcommand{s 50\free{s }}
\end{patch}

\begin{patch}{ugUserOnePagePatch5}
\begin{paste}{ugUserOnePageFull5}{ugUserOnePageEmpty5}
\begin{verbatim}
\indentrel{3}mersenne i == 2**i - 1\bound{mersenne }
\end{verbatim}
\end{patch}

\begin{patch}{ugUserOnePagePatch6}
\begin{paste}{ugUserOnePageFull6}{ugUserOnePageEmpty6}
\begin{verbatim}
\indentrel{3}\[mersenne i for i in 1..\]\free{mersenne }
\end{verbatim}
\end{patch}

\begin{patch}{ugUserOnePagePatch7}
\begin{paste}{ugUserOnePageFull7}{ugUserOnePageEmpty7}
\begin{verbatim}
\indentrel{3}[mersenne i for i in 1..]\free{mersenne }
\end{verbatim}
\end{patch}

\begin{verbatim}
(8) [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ...]
Type: Stream PositiveInteger
\end{verbatim}

\indentrel{-3}\end{paste}\end{patch}
\begin{patch}
\begin{paste}
\indentrel{-3}\end{paste}\end{patch}
Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be converted to the source type of the function.

\begin{scroll}
Define \texttt{f} with type \texttt{Integer}\{\texttt{Integer}\}.
\begin{spad}{f(x: Integer): Integer == x + 1\bound{f}}
\end{spad}
\texttt{The function \texttt{f} can be applied to integers, \ldots}
\begin{spad}{f 9 \free{f}}
\end{spad}
\texttt{and to values that convert to integers, \ldots}
\begin{spad}{f(-2.0) \free{f}}
\end{spad}
\texttt{but not to values that cannot be converted to integers.}
\begin{spad}{f(2/3) \free{f}}
\end{spad}
\end{scroll}

To make the function over a wide range of types, do not declare its type.
\begin{scroll}
Give the same definition with no declaration.
\begin{spad}{g x == x + 1\bound{g}}
\end{spad}
\texttt{If \texttt{\axiom{x + 1}} makes sense, you can apply \texttt{\userfun{g}} to \texttt{\axiom{x}.}}
\begin{spad}{g 9 \free{g}}
\end{spad}
\end{scroll}
A version of \userfun{g} with different argument types get compiled for each new kind of argument used.
\spadpaste{g(2/3) \free{g}}

Here \axiom{x+1} for \axiom{x = "axiom"} makes no sense.
\spadpaste{g("axiom")\free{g}}

As you will see in \downlink{"Categories"}{ugCategoriesPage} in Chapter 12\ignore{ugCategories}, Axiom has a formal idea of categories for what \textquote{makes sense.}'

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserDecUndecPagePatch1}
\begin{paste}{ugUserDecUndecPageFull1}{ugUserDecUndecPageEmpty1}
\pastebutton{ugUserDecUndecPageFull1}{\hidepaste}
\tab{5}\spadcommand{f(x: Integer): Integer == x + 1\bound{f}}
\indentrel{3}\begin{verbatim}
(2) 10
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserDecUndecPagePatch2}
\begin{paste}{ugUserDecUndecPageFull2}{ugUserDecUndecPageEmpty2}
\pastebutton{ugUserDecUndecPageFull2}{\hidepaste}
\tab{5}\spadcommand{f 9\free{f}}
\indentrel{3}\begin{verbatim}
(2) 10
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(3) - 1
\end{verbatim}

Type: Integer

\begin{verbatim}
2
\end{verbatim}

Type: Void

\begin{verbatim}
g x == x + 1
\end{verbatim
\begin{verbatim}
(5) 10
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(6)
3
Type: Fraction Integer
\end{verbatim}
Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from functions (for some interesting examples of library functions that manipulate functions, see \url{MappingPackage1}). Yet, we often seem to use the term operation and function interchangeably in Axiom. What is the distinction?

First consider values and types associated with some variable \texttt{n} in your workspace. You can make the declaration \texttt{n: Integer}, then assign \texttt{n} an integer value. You then speak of the integer \texttt{n}. However, note that the integer is not the name \texttt{n} itself, but the value that you assign to \texttt{n}.

Similarly, you can declare a variable \texttt{f} in your workspace to have type \texttt{Integer,Integer}, then assign \texttt{f}, through a definition or an assignment of an anonymous function. You then speak of the function \texttt{f}. However, the function is not \texttt{f}, but the value that you assign to \texttt{f}.

A function is a value, in fact, some machine code for doing something. Doing what? Well, performing some operation. Formally, an operation consists of the constituent parts of \texttt{f} in your workspace, excluding the value; thus an operation has a name and a type. An operation is what domains and packages export. Thus \texttt{Ring} exports one operation \texttt{+}. Every ring also exports this operation. Also, the author of every ring in the system is obliged under contract (see Section 11.3 in \url{Abstract Datatypes}) to provide an implementation for this operation.

This chapter is all about functions---how you create them interactively and how you apply them to meet your needs. In \url{Packages} in Chapter 11, you will learn how to create them
for the Axiom library. Then in
\downlink{``Categories''}{ugCategoriesPage} in Chapter 12\ignore{ugCategories}, you will learn about categories and exported operations.

\endscroll
\autobuttons
\end{page}

| ug06.ht |

\begin{page}{ugUserDelayPage}
6.8. Delayed Assignments vs. Functions with No Arguments
\beginscroll

In \downlink{``Immediate and Delayed Assignments''} {ugLangAssignPage} in Section 5.1\ignore{ugLangAssign} we discussed the difference between immediate and delayed assignments.

In this section we show the difference between delayed assignments and functions of no arguments.

\labelSpace{2pc}
\xtc{A function of no arguments is sometimes called a \{it nullary function.\} }
\{\spadpaste{sin24() == sin(24.0) \bound{sin24}}
\}
\xtc{You must use the parentheses (\axiomSyntax{()}) to evaluate it. Like a delayed assignment, the right-hand-side of a function evaluation is not evaluated until the left-hand-side is used. }
\{\spadpaste{sin24() \free{sin24}}
\}
\xtc{If you omit the parentheses, you just get the function definition. (%Note how the explicit floating point number in the definition %has been translated into a function call involving a mantissa, %exponent and radix.)}
\{
You do not use the parentheses \texttt{()} in a delayed assignment.

\texttt{cos24 == cos(24.0) \bound{cos24}}

nor in the evaluation.

The only syntactic difference between delayed assignments and nullary functions is that you use \texttt{()} in the latter case.

\begin{verbatim}
(2) - 0.9055783620 0662384514
Type: Float
\end{verbatim}
\begin{verbatim}
(3) sin24 () == sin(24.0)
Type: FunctionCalled sin24
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
(5) 0.4241790073 3699697594
Type: Float
\end{verbatim}
How Axiom Determines What Function to Use

⇒ “notitle” (ugTypesPkgCallPage) 7 on page 1686
⇒ “notitle” (ugTypesResolvePage) 7 on page 1696
— ug06.ht —

\begin{page}{ugUserUsePage}
{6.9. How Axiom Determines What Function to Use}
\beginscroll

What happens if you define a function that has the same name as a library function? Well, if your function has the same name and number of arguments (we sometimes say \spadgloss{arity}) as another function in the library, then your function covers up the library function. If you want then to call the library function, you will have to package-call it. Axiom can use both the functions you write and those that come from the library. Let's do a simple example to illustrate this.

\xtc{Suppose you (wrongly!) define \userfun{sin} in this way.}
{\spadpaste{sin x == 1.0 \bound{sin}}}
\xtc{The value \axiom{1.0} is returned for any argument.}
{\spadpaste{sin 4.3 \free{sin}}}
\xtc{If you want the library operation, we have to package-call it (see \downlink{``Package Calling and Target Types''}{ugTypesPkgCallPage} in Section 2.9\ignore{ugTypesPkgCall} for more information).}
{\spadpaste{sin(4.3)\$Float}}
\xtc{}
{\spadpaste{sin(34.6)\$Float}}
\xtc{Even worse, say we accidentally used the same name as a library function in the function.}
{\spadpaste{sin x == sin x \bound{sin1}}}
\end{scroll}

— ug06.ht —
Then Axiom definitely does not understand us.
\spadpaste{sin 4.3 \free{sin1}}

Again, we could package-call the inside function.
\spadpaste{sin x == sin(x)\$Float \bound{sin2}}

Of course, you are unlikely to make such obvious errors.
It is more probable that you would write a function and in the body use a function that you think is a library function.
If you had also written a function by that same name, the library function would be invisible.

How does Axiom determine what library function to call? It very much depends on the particular example, but the simple case of creating the polynomial \axiom{x + 2/3} will give you an idea.

\begin{enumerate}
\item The \axiom{x} is analyzed and its default type is \axiomType{Variable(x)}.
\item The \axiom{2} is analyzed and its default type is \axiomType{PositiveInteger}.
\item The \axiom{3} is analyzed and its default type is \axiomType{PositiveInteger}.
\item Because the arguments to \axiomOp{/} are integers, Axiom gives the expression \axiom{2/3} a default target type of \axiomType{Fraction(Integer)}.
\item Axiom looks in \axiomType{PositiveInteger} for \axiomOp{/}. It is not found.
\item Axiom looks in \axiomType{Fraction(Integer)} for \axiomOp{/}. It is found for arguments of type \axiomType{Integer}.
\item The \axiom{2} and \axiom{3} are converted to objects of type \axiomType{Integer} (this is trivial) and \axiomOp{/} is applied, creating an object of type \axiomType{Fraction(Integer)}.
\item No \axiomOp{+} for arguments of types \axiomType{Variable(x)} and \axiomType{Fraction(Integer)} are found in either domain.
\item Axiom resolves (see \downlink{``Resolving Types''}{ugTypesResolvePage} in Section 2.10\ignore{ugTypesResolve}) the types and gets \axiomType{Polynomial (Fraction (Integer))}.
\item The \axiom{x} and the \axiom{2/3} are converted to objects of this type and \axiomOp{+} is applied, yielding the answer, an object
of type \axiomType{Polynomial (Fraction (Integer))}.
\enditems
\indent{0}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserUsePagePatch1}
\begin{paste}{ugUserUsePageFull1}{ugUserUsePageEmpty1}
\tab{5}\spadcommand{sin x == 1.0\bound{sin }}
\indentrel{3}\begin{verbatim}
(2) 1.0
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty1}
\begin{paste}{ugUserUsePageEmpty1}{ugUserUsePagePatch1}
\pastebutton{ugUserUsePageEmpty1}{\showpaste}
\tab{5}\spadcommand{sin x == 1.0\bound{sin }}
\end{paste}
\end{patch}

\begin{patch}{ugUserUsePagePatch2}
\begin{paste}{ugUserUsePageFull2}{ugUserUsePageEmpty2}
\tab{5}\spadcommand{sin 4.3\free{sin }}
\indentrel{3}\begin{verbatim}
(3) - 0.9161659367 4945498404
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty2}
\begin{paste}{ugUserUsePageEmpty2}{ugUserUsePagePatch2}
\pastebutton{ugUserUsePageEmpty2}{\showpaste}
\tab{5}\spadcommand{sin 4.3\free{sin }}
\end{paste}
\end{patch}

\begin{patch}{ugUserUsePagePatch3}
\begin{paste}{ugUserUsePageFull3}{ugUserUsePageEmpty3}
\tab{5}\spadcommand{sin(4.3)Float}
\indentrel{3}\begin{verbatim}
(3) - 0.9161659367 4945498404
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty3}
\begin{paste}{ugUserUsePageEmpty3}{ugUserUsePagePatch3}
\pastebutton{ugUserUsePageEmpty3}{\showpaste}
\end{paste}
\end{patch}
\begin{paste}{ugUserUsePageEmpty3}{ugUserUsePagePatch3}
\tab{5}\spadcommand{\text{sin}(4.3)\text{\$Float}}
\end{paste}\end{patch}

\begin{patch}{ugUserUsePagePatch4}
\begin{paste}{ugUserUsePageFull4}{ugUserUsePageEmpty4}
\tab{5}\spadcommand{\text{sin}(34.6)\text{\$Float}}
\indentrel{3}\begin{verbatim}
(4) - 0.0424680347 1695010154 3
Type: Float
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty4}
\begin{paste}{ugUserUsePageEmpty4}{ugUserUsePagePatch4}
\tab{5}\spadcommand{\text{sin}(34.6)\text{\$Float}}
\end{paste}
\end{patch}

\begin{patch}{ugUserUsePagePatch5}
\begin{paste}{ugUserUsePageFull5}{ugUserUsePageEmpty5}
\tab{5}\spadcommand{\text{sin }x == \text{sin }x\text{\bound{\text{sin1}}}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty5}
\begin{paste}{ugUserUsePageEmpty5}{ugUserUsePagePatch5}
\tab{5}\spadcommand{\text{sin }x == \text{sin }x\text{\bound{\text{sin1}}}}
\end{paste}
\end{patch}

\begin{patch}{ugUserUsePagePatch6}
\begin{paste}{ugUserUsePageFull6}{ugUserUsePageEmpty6}
\tab{5}\spadcommand{\text{sin }4.3\text{\free{\text{sin1}}}}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserUsePageEmpty6}
\begin{paste}{ugUserUsePageEmpty6}{ugUserUsePagePatch6}
\tab{5}\spadcommand{\text{sin }4.3\text{\free{\text{sin1}}}}
\end{paste}
\end{patch}
Compiling vs. Interpreting

⇒ "notitle" (ugTypesSubdomainsPage) 7 on page 1679
— ug06.ht —

When possible, Axiom completely determines the type of every object in a function, then translates the function definition to \Lisp{} or to machine code (see next section). This translation, called \spadglossSee{compilation}{compiler}, happens the first time you call the function and results in a computational delay. Subsequent function calls with the same argument types use the compiled version
of the code without delay.

If Axiom cannot determine the type of everything, the function may still be executed but in \spadglossSee{interpret-code mode}{interpreter} : each statement in the function is analyzed and executed as the control flow indicates. This process is slower than executing a compiled function, but it allows the execution of code that may involve objects whose types change.

\beginImportant
If Axiom decides that it cannot compile the code, it issues a message stating the problem and then the following message:
\centerline{\textbf{We will attempt to step through and interpret the code.}}}
\centerline{This is not a time to panic.}
Rather, it just means that what you gave to Axiom is somehow ambiguous: either it is not specific enough to be analyzed completely, or it is beyond Axiom’s present interactive compilation abilities.
\endImportant

This function runs in interpret-code mode, but it does not compile.}{
\begin{spadsrc}
\bound{varPolys}
varPolys(vars) ==
 for var in vars repeat
 output(1 :: UnivariatePolynomial(var,Integer))
\end{spadsrc}
\xtc{For \axiom{vars} equal to \axiom{['x, 'y, 'z]}, this function displays \axiom{3} three times.}{
\spadpaste{varPolys ['x,'y,'z] \free{varPolys}}
}\xtc{The type of the argument to \axiomFun{output} changes in each iteration, so Axiom cannot compile the function. In this case, even the inner loop by itself would have a problem:}{
\begin{spadsrc}
for var in ['x,'y,'z] repeat
 output(1 :: UnivariatePolynomial(var,Integer))
\end{spadsrc}
Sometimes you can help a function to compile by using an extra conversion or by using \axiom{pretend}. See \downlink{``Subdomains Again''} in Section 2.8 for details.

When a function is compilable, you have the choice of whether it is compiled to \Lisp{} and then interpreted by the \Lisp{} interpreter or then further compiled from \Lisp{} to machine code. The option is controlled via \spadcmd{)set functions compile}. Issue \spadcmd{)set functions compile on} to compile all the way to machine code. With the default setting \spadcmd{)set functions compile off}, Axiom has its \Lisp{} code interpreted because the overhead of further compilation is larger than the run-time of most of the functions our users have defined. You may find that selectively turning this option on and off will give you the best performance in your particular application. For example, if you are writing functions for graphics applications where hundreds of points are being computed, it is almost certainly true that you will get the best performance by issuing \spadcmd{)set functions compile on}.

\begin{verbatim}
varPolys(vars) == for var in vars repeat output(1 :: UnivariatePolynomial(var,Integer))
bound(varPolys)

Type: Void
\end{verbatim}
Piece-Wise Function Definitions

⇒ “notitle” (ugUserPieceBasicPage) 10 on page 1862
⇒ “notitle” (ugUserPiecePickingPage) 10 on page 1869
⇒ “notitle” (ugUserPiecePredPage) 10 on page 1876
— ug06.ht —
To move beyond functions defined in one line, we introduce in this section functions that are defined piece-by-piece. That is, we say ‘use this definition when the argument is such-and-such and use this other definition when the argument is that-and-that.’

A Basic Example

There are many other ways to define a factorial function for nonnegative integers. You might say

factorial of \texttt{axiom}(0) is \texttt{axiom}(1), otherwise factorial of \texttt{axiom}(n) is \texttt{axiom}(n) times factorial of \texttt{axiom}(n-1).

Here is one way to do this in Axiom.

\[
\texttt{fact(0) == 1}
\]

Here is the value for \texttt{axiom}(n = 0).

\[
\texttt{fact(0) == 1}
\]

Here is the value for \texttt{axiom}(n > 0).

The vertical bar \texttt{axiomSyntax}{} means ‘such that’.

\[
\texttt{fact(n \mid n > 0) == n * fact(n - 1)}
\]
What is the value for \texttt{n = 3}?
\spadpaste{\texttt{fact(3)}}\free{\texttt{factn}}
\xtc{\texttt{fact(3)}}

What is the value for \texttt{n = -3}?
\spadpaste{\texttt{fact(-3)}}\free{\texttt{factn}}
\xtc{\texttt{fact(-3)}}

Now for a second definition.
Here is the value for \texttt{n = 0}.
\spadpaste{\texttt{facto(0) == 1}}\bound{\texttt{facto0}}
\xtc{\texttt{facto(0) == 1}}

Give an error message if \texttt{n < 0}.
\spadpaste{\texttt{facto(n | n < 0) == error "arguments to facto must be non-negative"}}\free{\texttt{facto0}}\bound{\texttt{factop}}
\xtc{\texttt{error "arguments to facto must be non-negative"}}

Here is the value otherwise.
\spadpaste{\texttt{facto(n) == n * facto(n - 1)}}\free{\texttt{factop}}\bound{\texttt{facton}}
\xtc{\texttt{facto(n) == n * facto(n - 1)}}

What is the value for \texttt{n = 7}?
\spadpaste{\texttt{facto(7)}}\free{\texttt{facton}}
\xtc{\texttt{facto(7)}}

What is the value for \texttt{n = -7}?
\spadpaste{\texttt{facto(-7)}}\free{\texttt{facton}}
\xtc{\texttt{facto(-7)}}

To see the current piece-wise definition of a function, use \spad{)display value}.
\spadpaste{\texttt{)display value facto}}\free{\texttt{facton}}
\xtc{\texttt{)display value facto}}

In general a \{\texttt{it piece-wise definition}\} of a function consists of two or more parts. Each part gives a \texttt{"piece"} of the entire definition. Axiom collects the pieces of a function as you enter them. When you ask for a value of the function, it then \texttt{"glues"} the pieces together to form a function.
The two piece-wise definitions for the factorial function are examples of recursive functions, that is, functions that are defined in terms of themselves. Here is an interesting doubly-recursive function. This function returns the value \(11\) for all positive integer arguments.

Here is the first of two pieces.

\[
\text{eleven}(n | n < 1) == n + 11
\]

And the general case.

\[
\text{eleven}(m) == \text{eleven}(\text{eleven}(m - 12))
\]

Compute \(\text{eleven},\) the infinite stream of values of \(\text{eleven}.\)

\[
\text{eleven} := [\text{eleven}(i) \text{ for } i \in 0..]
\]

What is the value at \(n = 200\) ?

\[
\text{eleven}(200)
\]

What is the Axiom’s definition of \(\text{eleven}\) ?

\[
)\text{display value eleven}
\]

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{patch}{ugUserPieceBasicPagePatch1}
\begin{paste}{ugUserPieceBasicPageFull1}{ugUserPieceBasicPageEmpty1}
\indentrel{3}\spadcommand{fact(0) == 1}
\end{paste}
\end{patch}

\begin{patch}{ugUserPieceBasicPageEmpty1}
\begin{paste}{ugUserPieceBasicPageEmpty1}{ugUserPieceBasicPagePatch1}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: PositiveInteger
\end{verbatim}
Type: Void

\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPieceBasicPageEmpty5}
\begin{paste}{ugUserPieceBasicPageEmpty5}{ugUserPieceBasicPagePatch5}
\pastebutton{ugUserPieceBasicPageEmpty5}{\showpaste}
\tab{5}\spadcommand{\texttt{facto(0) == 1}}\free{facto0}
\end{paste}\end{patch}

\begin{patch}{ugUserPieceBasicPagePatch6}
\begin{paste}{ugUserPieceBasicPageFull6}{ugUserPieceBasicPageEmpty6}
\pastebutton{ugUserPieceBasicPageFull6}{\hidepaste}
\tab{5}\spadcommand{\texttt{facto(n | n < 0) == error "arguments to facto must be non-negative"}}\free{factop}
\indentrel{3}\begin{verbatim}
Type: Void
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugUserPieceBasicPageEmpty6}
\begin{paste}{ugUserPieceBasicPageEmpty6}{ugUserPieceBasicPagePatch6}
\pastebutton{ugUserPieceBasicPageEmpty6}{\showpaste}
\tab{5}\spadcommand{\texttt{facto(n | n < 0) == error "arguments to facto must be non-negative"}}\free{factop}
\end{paste}\end{patch}

\begin{patch}{ugUserPieceBasicPagePatch7}
\begin{paste}{ugUserPieceBasicPageFull7}{ugUserPieceBasicPageEmpty7}
\pastebutton{ugUserPieceBasicPageFull7}{\hidepaste}
\tab{5}\spadcommand{\texttt{facto(n) == n * facto(n - 1)}}\free{facton}
\indentrel{3}\begin{verbatim}
Type: Void
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugUserPieceBasicPageEmpty7}
\begin{paste}{ugUserPieceBasicPageEmpty7}{ugUserPieceBasicPagePatch7}
\pastebutton{ugUserPieceBasicPageEmpty7}{\showpaste}
\tab{5}\spadcommand{\texttt{facto(n) == n * facto(n - 1)}}\free{facton}
\end{paste}\end{patch}

\begin{patch}{ugUserPieceBasicPagePatch8}
\begin{paste}{ugUserPieceBasicPageFull8}{ugUserPieceBasicPageEmpty8}
\pastebutton{ugUserPieceBasicPageFull8}{\hidepaste}
\tab{5}\spadcommand{\texttt{facto(3)}}\free{facton}
\indentrel{3}\begin{verbatim}
(7) 6
Type: PositiveInteger
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{verbatim}
definition:
 facto 0 == 1
 facto (n | n < 0) ==
 error(arguments to facto must be non-negative)
 facto n == n facto(n - 1)
\end{verbatim}
\begin{patch}{ugUserPieceBasicPagePatch12}
\begin{paste}{ugUserPieceBasicPageFull12}{ugUserPieceBasicPageEmpty12}
\spadcommand{eleven(n | n < 1) == n + 11}\bound{ff0 }
\end{paste}
\end{patch}

\begin{patch}{ugUserPieceBasicPagePatch13}
\begin{paste}{ugUserPieceBasicPageFull13}{ugUserPieceBasicPageEmpty13}
\spadcommand{eleven(m) == eleven(eleven(m - 12))}\bound{ff1 }
\indentrel{-3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserPieceBasicPagePatch14}
\begin{paste}{ugUserPieceBasicPageFull14}{ugUserPieceBasicPageEmpty14}
\spadcommand{elevens 200}\free{ff2 }
\indentrel{-3}\begin{verbatim}
(11) 11
Type: PositiveInteger
\end{verbatim}
\end{paste}
\end{patch}
Picking Up the Pieces

Here are the details about how Axiom creates a function from its pieces. Axiom converts the \texttt{\texttt{\texttt{axiom(i)}}} piece of a function definition into a conditional expression of the form: \texttt{\texttt{axiom(if \ pred(i) \ axiom(then) \ expr(i). If any new piece has a \pred{i} that is identical\footnote{after all variables are uniformly named} to an earlier \pred{j}, the earlier piece is removed. Otherwise, the new piece is always added at the end.}

%
\texttt{\hspace*{3pc}}{	ab{6}}
\texttt{if \ pred(n) \ then \ expr(n) \ else\newline
\hspace*{3pc}}{	ab{12}}. . . \newline
\texttt{\hspace*{3pc}}{	ab{6}}
\texttt{error "You did not define f for argument \arg."}
You can give definitions of any number of mutually recursive function definitions, piece-wise or otherwise. No computation is done until you ask for a value. When you do ask for a value, all the relevant definitions are gathered, analyzed, and translated into separate functions and compiled.

\begin{spadsrc}
minusEleven(n) ==
 n >= 0 => n - 11
 minusEleven (5 + minusEleven(n + 7))
\end{spadsrc}

A similar doubly-recursive function below produces \texttt{-11} for all negative positive integers. If you haven't worked out why or how \texttt{eleven} works, the structure of this definition gives a clue.

This definition we write as a block.

\begin{spadsrc}
\texttt{s(0) == 1}
\texttt{s(n) == (eleven(n) + minusEleven(n))/n}
\end{spadsrc}

What are the first ten values of \texttt{s(n)}?
Axiom can create infinite streams in the positive direction (for example, for index values \(\text{axiom}(0,1, \ldots)\)) or negative direction (for example, for index values \(\text{axiom}(0,-1,-2, \ldots)\)). Here we would like a stream of values of \(\text{axiom}(s(n))\) that is infinite in both directions. The function \(\text{axiom}(t(n))\) below returns the \(\text{eth}(\text{axiom}(n))\) term of the infinite stream \(\text{axiom}([s(0), s(1), s(-1), s(2), s(-2), \ldots])\). Its definition has three pieces.

\xtc{
Define the initial term.
}{
\spadpaste{t(1) == s(0)}\free{rf4}
}
\xtc{
The even numbered terms are the \(\text{axiom}(s(i))\) for positive \(\text{axiom}(i)\). We use \(\text{axiomOp}(\text{quo})\) rather than \(\text{axiomOp}(\text{/})\) since we want the result to be an integer.
}{
\spadpaste{t(n | \text{even?}(n)) == s(n \text{ quo } 2)}\free{t1}\bound{t2}
}
\xtc{
Finally, the odd numbered terms are the \(\text{axiom}(s(i))\) for negative \(\text{axiom}(i)\). In piece-wise definitions, you can use different variables to define different pieces. Axiom will not get confused.
}{
\spadpaste{t(p) == s(- p \text{ quo } 2)}\free{t2}\bound{t3}
}
\xtc{
Look at the definition of \(\text{axiom}(t)\).
In the first piece, the variable \(\text{axiom}(n)\) was used; in the second piece, \(\text{axiom}(p)\). Axiom always uses your last variable to display your definitions back to you.
}{
\spadpaste{\text{display value } t}\free{t2}
}
\xtc{
Create a series of values of \(\text{axiom}(s)\) applied to alternating positive and negative arguments.
}{
\spadpaste{[t(i) for i in 1..]}\free{t3}\bound{t4}
}
\xtc{
Evidently \(\text{axiom}(t(n) = 1)\) for all \(\text{axiom}(i)\). Check it at \(\text{axiom}(n=100)\).
}{

\spadpaste{t(100)\free{t4}}

}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserPiecePickingPagePatch1}
\begin{paste}{ugUserPiecePickingPageFull1}{ugUserPiecePickingPageEmpty1}\pastebutton{ugUserPiecePickingPageFull1}{\hidepaste}
\tab{5}\spadcommand{eleven(n | n < 1) == n + 11\bound{ff0 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty1}
\begin{paste}{ugUserPiecePickingPageEmpty1}{ugUserPiecePickingPagePatch1}\pastebutton{ugUserPiecePickingPageEmpty1}{\showpaste}
\tab{5}\spadcommand{eleven(n | n < 1) == n + 11\bound{ff0 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch2}
\begin{paste}{ugUserPiecePickingPageFull2}{ugUserPiecePickingPageEmpty2}\pastebutton{ugUserPiecePickingPageFull2}{\hidepaste}
\tab{5}\spadcommand{eleven(m) == eleven(eleven(m - 12))\bound{ff1 }\free{ff0 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty2}
\begin{paste}{ugUserPiecePickingPageEmpty2}{ugUserPiecePickingPagePatch2}\pastebutton{ugUserPiecePickingPageEmpty2}{\showpaste}
\tab{5}\spadcommand{eleven(m) == eleven(eleven(m - 12))\bound{ff1 }\free{ff0 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch3}
\begin{paste}{ugUserPiecePickingPageFull3}{ugUserPiecePickingPageEmpty3}\pastebutton{ugUserPiecePickingPageFull3}{\hidepaste}
\tab{5}\spadcommand{minusEleven(n) ==
 n >= 0 => n - 11
 minusEleven (5 + minusEleven(n + 7))
\bound{rf1 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty3}
\begin{paste}{ugUserPiecePickingPageEmpty3}{ugUserPiecePickingPagePatch3}\pastebutton{ugUserPiecePickingPageEmpty3}{\showpaste}
\tab{5}\spadcommand{minusEleven(n) ==
 n >= 0 => n - 11
 minusEleven (5 + minusEleven(n + 7))
\bound{rf1 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{spadcommand}
\spad{minusEleven(n) ==}
\spad{n >= 0 => n - 11}
\spad{minusEleven(5 + minusEleven(n + 7))}
\end{spadcommand}

\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}

\indentrel{-3}\end{spadcommand}

\begin{spadcommand}
\spad{s(0) == 1}
\end{spadcommand}

\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}

\indentrel{-3}\end{spadcommand}

\begin{spadcommand}
\spad{s(n) == (eleven(n) + minusEleven(n))/n}
\end{spadcommand}

\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}

\indentrel{-3}\end{spadcommand}

\begin{spadcommand}
\spad{\[s(n) for n in 0..\]}
\end{spadcommand}

\indentrel{3}\begin{verbatim}
(6) [1,1,1,1,1,1,1,...]
Type: Stream Fraction Integer
\end{verbatim}

\indentrel{-3}\end{spadcommand}
\spadcommand{[s(n) for n in 0..]} free rf3}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch7}
\begin{paste}{ugUserPiecePickingPageFull7}{ugUserPiecePickingPageEmpty7}
\spadcommand{t(1) == s(0) \texttt{bound}\{t1\} free rf4}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty7}
\begin{paste}{ugUserPiecePickingPageEmpty7}{ugUserPiecePickingPagePatch7}
\spadcommand{t(1) == s(0) \texttt{bound}\{t1\} free rf4}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch8}
\begin{paste}{ugUserPiecePickingPageFull8}{ugUserPiecePickingPageEmpty8}
\spadcommand{t(n \mid \texttt{even?}(n)) == s(n \texttt{quo} 2) \texttt{bound}\{t2\}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty8}
\begin{paste}{ugUserPiecePickingPageEmpty8}{ugUserPiecePickingPagePatch8}
\spadcommand{t(n \mid \texttt{even?}(n)) == s(n \texttt{quo} 2) \texttt{bound}\{t2\}}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch9}
\begin{paste}{ugUserPiecePickingPageFull9}{ugUserPiecePickingPageEmpty9}
\spadcommand{t(p) == s(- p \texttt{quo} 2) \texttt{bound}\{t3\}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPageEmpty9}
\begin{paste}{ugUserPiecePickingPageEmpty9}{ugUserPiecePickingPagePatch9}
\spadcommand{t(p) == s(- p \texttt{quo} 2) \texttt{bound}\{t3\}}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePickingPagePatch10}
\begin{verbatim}
Definition:
 t 1 == s(0)
 t (p | even?(p)) == s(p quo 2)
 t p == s(- p quo 2)
\end{verbatim}

\begin{verbatim}
(10) [1,1,1,1,1,1,1,1,1,1,...]
Type: Stream Fraction Integer
\end{verbatim}

\begin{verbatim}
(11) 1
Type: Fraction Integer
\end{verbatim}
We have already seen some examples of predicates (in Section 6.11.1). Predicates are \axiomType{Boolean}-valued expressions and Axiom uses them for filtering collections and for placing constraints on function arguments. In this section we discuss their latter usage.

The simplest use of a predicate is one you don't see at all.

\spadpaste{opposite 'right == 'left}

Here is a longer way to give the 'opposite definition.'

\spadpaste{opposite (x | x = 'left) == 'right}

Try it out.

Explicit predicates tell Axiom that the given function definition piece is to be applied if the predicate evaluates to \tt{true} for the arguments to the function. You can use such 'constant' arguments for integers, strings, and quoted symbols. The \axiomType{Boolean} values \axiom{true} and \axiom{false} can also be used if qualified with '\spad{0}' or '\spad{1}' and \axiomType{Boolean}. The following are all valid function definition fragments using constant arguments.

\begin{verbatim}
a(1) == ... b("unramified") == ...
\end{verbatim}
If a function has more than one argument, each argument can have its own predicate. However, if a predicate involves two or more arguments, it must be given \{it after\} all the arguments mentioned in the predicate have been given. You are always safe to give a single predicate at the end of the argument list.

\xtc{A function involving predicates on two arguments.}{
\spadpaste{inFirstHalfQuadrant(x \mid x > 0, y \mid y < x) == true}
}
\xtc{This is incorrect as it gives a predicate on \axiom{y} before the argument \axiom{y} is given.}{
\spadpaste{inFirstHalfQuadrant(x \mid x > 0 \text{ and } y < x, y) == true}
}
\xtc{It is always correct to write the predicate at the end.}{
\spadpaste{inFirstHalfQuadrant(x, y \mid x > 0 \text{ and } y < x) == true \text{ \texttt{\textbackslash bound\{ifq1a\}}}}
}
\xtc{Here is the rest of the definition.}{
\spadpaste{inFirstHalfQuadrant(x, y) == false \text{ \texttt{\textbackslash bound\{ifq1b\}}}}
}
\xtc{Try it out.}{
\spadpaste{[inFirstHalfQuadrant(i,3) \text{ for } i \text{ in } 1..5] \text{ \texttt{\textbackslash texttt{\textbackslash bound\{ifq1b\}}}}}
}
\begin{paste}{ugUserPiecePredPageEmpty1}{ugUserPiecePredPagePatch1}
\pastebutton{ugUserPiecePredPageEmpty1}{\showpaste}
\tab{5}\spadcommand{opposite 'right == 'left}
\end{paste}\end{patch}

\begin{patch}{ugUserPiecePredPagePatch2}
\begin{paste}{ugUserPiecePredPageFull2}{ugUserPiecePredPageEmpty2}
\pastebutton{ugUserPiecePredPageFull2}{\hidepaste}
\tab{5}\spadcommand{opposite (x | x = 'left) == 'right}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePredPageEmpty2}
\begin{paste}{ugUserPiecePredPageEmpty2}{ugUserPiecePredPagePatch2}
\pastebutton{ugUserPiecePredPageEmpty2}{\showpaste}
\tab{5}\spadcommand{opposite (x | x = 'left) == 'right}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePredPagePatch3}
\begin{paste}{ugUserPiecePredPageFull3}{ugUserPiecePredPageEmpty3}
\pastebutton{ugUserPiecePredPageFull3}{\hidepaste}
\tab{5}\spadcommand{for x in ['right,'left,'inbetween] repeat output opposite x}
\indentrel{3}\begin{verbatim}
left
right
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePredPageEmpty3}
\begin{paste}{ugUserPiecePredPageEmpty3}{ugUserPiecePredPagePatch3}
\pastebutton{ugUserPiecePredPageEmpty3}{\showpaste}
\tab{5}\spadcommand{for x in ['right,'left,'inbetween] repeat output opposite x}
\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePredPagePatch4}
\begin{paste}{ugUserPiecePredPageFull4}{ugUserPiecePredPageEmpty4}
\pastebutton{ugUserPiecePredPageFull4}{\hidepaste}
\tab{5}\spadcommand{inFirstHalfQuadrant(x | x > 0,y | y < x) == true}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugUserPiecePredPageEmpty4}
\begin{paste}{ugUserPiecePredPageEmpty4}{ugUserPiecePredPagePatch4}
\pastebutton{ugUserPiecePredPageEmpty4}{\showpaste}
\tab{5}\spadcommand{inFirstHalfQuadrant(x | x > 0,y | y < x) == true}
\end{paste}
\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}
By default, Axiom does not save the values of any function. You can cause it to save values and not to recompute unnecessarily by using \spad{)set functions cache}. This should be used before the functions are defined or, at least, before they are executed. The word following ‘cache’ should be \axiom{0} to turn off caching, a positive integer \axiom{n} to save the last \axiom{n} computed values or ‘all’ to save all computed values. If you then give a list of names of functions, the caching only affects those functions. Use no list of names or ‘all’ when you want to define the default behavior for functions not specifically mentioned in other \spad{set functions cache} statements. If you give no list of names, all functions will have the caching behavior. If you explicitly turn on caching for one or more names, you must explicitly turn off caching for those names when you want to stop saving their values.

This causes the functions \userfun{f} and \userfun{g} to have the last three computed values saved.

\spad{set functions cache 3 f g \bound{cache}}

This is a sample definition for \userfun{f}.

\spad{f x == factorial(2**x) \bound{fundef}\free{cache}}
A message is displayed stating what \texttt{f} will cache.
\spadpaste{f(4) \texttt{free}\texttt{\{}\texttt{cache}}
\xtc{}
This causes all other functions to have all computed values saved by
default.
\spadpaste{\texttt{set functions cache all}}
\xtc{}
This causes all functions that have not been specifically cached in
some way to have no computed values saved.
\spadpaste{\texttt{set functions cache 0}}
\xtc{}
We also make \texttt{f} and \texttt{g} uncached.
\spadpaste{\texttt{set functions cache 0 f g}}
\beginImportant
Be careful about caching functions that have \texttt{side
effects}. Such a function might destructively modify the
elements of an array or issue a \texttt{draw} command, for example.
A function that you expect to execute every time it is called should
not be cached. Also, it is highly unlikely that a function with no
arguments should be cached.
\endImportant
You should also be careful about caching functions that depend on
free variables.
See \link{Free and Local Variables}{ugUserFreeLocalPage} in
Section 6.16 for an example.
\begin{verbatim}
\spadcommand{)set functions cache 3 f g\bound{cache}}
\end{verbatim}

\begin{verbatim}
\spadcommand{f x == factorial(2**x)\bound{fdef }\free{cache}}
\end{verbatim}

\begin{verbatim}
(2) 20922789888000
\end{verbatim}

\begin{verbatim}
\spadcommand{)set functions cache all}
\indentrel{3}
\end{verbatim}

\begin{verbatim}
\spadcommand{}
\indentrel{3}
\end{verbatim}
Recurrence Relations

One of the most useful classes of function are those defined via a "recurrence relation." A \cite{ug06} recurrence relation makes each successive value depend on some or all of the previous values. A simple example is the ordinary "factorial" function:
\begin{verbatim}
fact(0) == 1
fact(n | n > 0) == n * fact(n-1)
\end{verbatim}

The value of \axiom{fact(10)} depends on the value of \axiom{fact(9)}, \axiom{fact(9)} on \axiom{fact(8)}, and so on. Because it depends on only one previous value, it is usually called a \{it first order recurrence relation\}. You can easily imagine a function based on two, three or more previous values. The Fibonacci numbers are probably the most famous function defined by a second order recurrence relation.

\xtc{
The library function \axiomFun{fibonacci} computes Fibonacci numbers. It is obviously optimized for speed.}
{s叩irstpaste{[fibonacci(i) for i in 0..]}}

\xtc{Define the Fibonacci numbers ourselves using a piece-wise definition.}
{s叩irstpaste{fib(1) == 1 \bound{fib0}}}

{s叩irstpaste{fib(2) == 1 \bound{fib1}\free{fib0}}}

{s叩irstpaste{fib(n) == fib(n-1) + fib(n-2) \bound{fibn}\free{fib1}}}

As defined, this recurrence relation is obviously doubly-recursive. To compute \axiom{fib(10)}, we need to compute \axiom{fib(9)} and \axiom{fib(8)}. And to \axiom{fib(9)}, we need to compute \axiom{fib(8)} and \axiom{fib(7)}. And so on. It seems that to compute \axiom{fib(10)} we need to compute \axiom{fib(9)} once, \axiom{fib(8)} twice, \axiom{fib(7)} three times. Look familiar? The number of function calls needed to compute \{it any\} second order recurrence relation in the obvious way is exactly \axiom{fib(n)}.

These numbers grow! For example, if Axiom actually did this, then \axiom{fib(500)} requires more than \texht{10^{104}} \axiom{10**104} function calls. And, given all this, our definition of \userfun{fib} obviously could not be used to calculate the five-hundredth Fibonacci number.

\xtc{Let’s try it anyway.}
{s叩irstpaste{fib(500) \free{fihn}}}

Since this takes a short time to compute, it obviously didn't do as many as 10^{104} operations! By default, Axiom transforms any recurrence relation it recognizes into an iteration. Iterations are efficient. To compute the value of the nth term of a recurrence relation using an iteration requires only n function calls. If you compare the speed of our `fib` function to the library function, our version is still slower. This is because the library function from `IntegerNumberTheoryFunctions` uses a 'powering algorithm' with a computing time proportional to $\log^3(n)$ to compute $\text{fibonacci}(n)$.

To turn off this special recurrence relation compilation, issue
\begin{verbatim}
)set functions recurrence off
\end{verbatim}
To turn it back on, substitute '{tt on}' for '{tt off}'.

The transformations that Axiom uses for `fib` caches the last two values. For a more general kth order recurrence relation, Axiom caches the last k values.

If, after computing a value for `fib`, you ask for some larger value, Axiom picks up the cached values and continues computing from there.

See `Free and Local Variables` for an example of a function definition that has this same behavior. Also see `Caching Previously Computed Results` for a more general discussion of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involving polynomials, rational functions, or anything you like. Here we compute the infinite stream of Legendre polynomials.

The Legendre polynomial of degree 0.
\begin{verbatim}
\spadpaste{p(0) == 1\bound{p0}}
\end{verbatim}

The Legendre polynomial of degree 1.
\begin{verbatim}
\spadpaste{p(1) == x\bound{p1}}
\end{verbatim}

The Legendre polynomial of degree n.
\spadpaste{p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n\bound{pn}\free{p1}}
\xtc{Compute the Legendre polynomial of degree \axiom{6.}}{
\spadpaste{p(6)\free{pn}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserRecurPagePatch1}
\begin{paste}{ugUserRecurPageFull1}{ugUserRecurPageEmpty1}
\begin{verbatim}
[1] [0,1,1,2,3,5,8,13,21,34,...]
Type: Stream Integer
\end{verbatim}
\end{patch}
\begin{patch}{ugUserRecurPageEmpty1}
\begin{paste}{ugUserRecurPageEmpty1}{ugUserRecurPagePatch1}
\begin{verbatim}
[1] [0,1,1,2,3,5,8,13,21,34,...]
Type: Stream Integer
\end{verbatim}
\end{patch}

\begin{patch}{ugUserRecurPagePatch2}
\begin{paste}{ugUserRecurPageFull2}{ugUserRecurPageEmpty2}
\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}
\begin{patch}{ugUserRecurPageEmpty2}
\begin{paste}{ugUserRecurPageEmpty2}{ugUserRecurPagePatch2}
\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}

\begin{patch}{ugUserRecurPagePatch3}
\begin{paste}{ugUserRecurPageFull3}{ugUserRecurPageEmpty3}
\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}
\begin{patch}{ugUserRecurPageEmpty3}
\begin{paste}{ugUserRecurPageEmpty3}{ugUserRecurPagePatch3}
\begin{verbatim}
Type: Void
\end{verbatim}
\end{patch}
\spadcommand{fib(2) == 1\bound{fib1 }\free{fib0 }}
\indentrel{-3}
\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadcommand{fib(n) == fib(n-1) + fib(n-2)\bound{fibn }\free{fib1 }}
\indentrel{3}
\begin{verbatim}
(5)
13942322456169788013972438287047283950070256587697307_
26410896294832557162226329069155765876222521294125
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}

\spadcommand{p(0) == 1\bound{p0 }}
\indentrel{3}
\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\begin{patch}{ugUserRecurPageEmpty6}
\begin{paste}{ugUserRecurPageEmpty6}{ugUserRecurPagePatch6}
\tab{5}\spadcommand{p(0) == 1} \bound{p0}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPagePatch7}
\begin{paste}{ugUserRecurPageFull7}{ugUserRecurPageEmpty7}
\tab{5}\spadcommand{p(1) == x} \bound{p1}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPageEmpty7}
\begin{paste}{ugUserRecurPageEmpty7}{ugUserRecurPagePatch7}
\tab{5}\spadcommand{p(1) == x} \bound{p1}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPagePatch8}
\begin{paste}{ugUserRecurPageFull8}{ugUserRecurPageEmpty8}
\tab{5}\spadcommand{p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n} \bound{pn} \free{p1}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPageEmpty8}
\begin{paste}{ugUserRecurPageEmpty8}{ugUserRecurPagePatch8}
\tab{5}\spadcommand{p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n} \bound{pn} \free{p1}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPagePatch9}
\begin{paste}{ugUserRecurPageFull9}{ugUserRecurPageEmpty9}
\tab{5}\spadcommand{p(6)} \free{pn}
\indentrel{3}\begin{verbatim}
231 6 315 4 105 2 5
(9) x - x + x -
16 16 16 16
Type: Polynomial Fraction Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserRecurPageEmpty9}
\begin{paste}{ugUserRecurPageEmpty9}{ugUserRecurPagePatch9}
\end{paste}
\end{patch}
Making Functions from Objects

There are many times when you compute a complicated expression and then wish to use that expression as the body of a function. Axiom provides an operation called `function` to do this. It creates a function object and places it into the workspace. There are several versions, depending on how many arguments the function has. The first argument to `function` is always the expression to be converted into the function body, and the second is always the name to be used for the function.

For more information, see `MakeFunction`.

\xtc{Start with a simple example of a polynomial in three variables.}\
\spadpaste{p := -x + y**2 - z**3 \free{p}}
\xtc{To make this into a function of no arguments that simply returns the polynomial, use the two argument form of `function`.}
\spadpaste{function(p,'f0) \free{p}\bound{f0}}
\xtc{To avoid possible conflicts (see below), it is a good idea to quote always this second argument.}
\spadpaste{f0 \free{f0}}
\xtc{This is what you get when you evaluate the function.}
To make a function in \texttt{x}, use a version of \texttt{function} that takes three arguments. The last argument is the name of the variable to use as the parameter. Typically, this variable occurs in the expression and, like the function name, you should quote it to avoid possible confusion.

\begin{Verbatim}
\texttt{function(p,'f1,'x) \free{p}\bound{f1}}
\end{Verbatim}

This is what the new function looks like.

\begin{Verbatim}
\texttt{f1 \free{f1}}
\end{Verbatim}

This is the value of \texttt{f1} at \texttt{x = 3}. Notice that the return type of the function is \texttt{Polynomial(Integer)}, the same as \texttt{p}.

\begin{Verbatim}
\texttt{f1(3) \free{f1}}
\end{Verbatim}

To use \texttt{x} and \texttt{y} as parameters, use the four argument form of \texttt{function}.

\begin{Verbatim}
\texttt{function(p,'f2,'x,'y) \free{p}\bound{f2}}
\end{Verbatim}

\begin{Verbatim}
\texttt{f2 \free{f2}}
\end{Verbatim}

Evaluate \texttt{f2} at \texttt{x = 3} and \texttt{y = 0}. The return type of \texttt{f2} is still \texttt{Polynomial(Integer)} because the variable \texttt{z} is still present and not one of the parameters.

\begin{Verbatim}
\texttt{f2(3,0) \free{f2}}
\end{Verbatim}

Finally, use all three variables as parameters. There is no five argument form of \texttt{function}, so use the one with three arguments, the third argument being a list of the parameters.

\begin{Verbatim}
\texttt{function(p,'f3,['x,'y,'z]) \free{p}\bound{f3}}
\end{Verbatim}
Evaluate this using the same values for \axiom{x} and \axiom{y} as above, but let \axiom{z} be \axiom{-6}. The result type of \userfun{f3} is \axiomType{Integer}.

\spadpaste{f3 \free{f3}}

\xtc{
 \spadpaste{f3(3,0,-6) \free{f3}}
}

The four functions we have defined via \axiom{p} have been undeclared. To declare a function whose body is to be generated by \axiomFun{function}, issue the declaration \textit{before} the function is created.

\spadpaste{g: (Integer, Integer) -> Float \bound{g}}

\xtc{
 \spadpaste{D(sin(x-y)/cos(x+y),x) \bound{prev}}
}

\xtc{
 \spadpaste{function(\%,'g,'x,'y) \free{g}\free{prev}}
}

\xtc{
 \spadpaste{g \free{g}}
}

It is an error to use \axiom{g} without the quote in the penultimate expression since \axiom{g} had been declared but did not have a value. Similarly, since it is common to overuse variable names like \axiom{x}, \axiom{y}, and so on, you avoid problems if you always quote the variable names for \axiomFun{function}. In general, if \axiom{x} has a value and you use \axiom{x} without a quote in a call to \axiomFun{function}, then Axiom does not know what you are trying to do.

What kind of object is allowable as the first argument to \axiomFun{function}? Let's use the \Browse{} facility of Hyperdoc to find out. At the main \Browse{} menu, enter the string \tt{function} and then click on \tt{Operations.} The exposed operations called \axiomFun{function} all take an object whose type belongs to category \axiomType{ConvertibleTo InputForm}. What domains are those? Go back to the main \Browse{} menu, erase \tt{function}, enter \tt{ConvertibleTo} in the input area, and click on \tt{categories} on the \tt{Constructors} line. At the bottom of the page, enter \tt{InputForm} in the input area following \tt{S =}. Click on \tt{Cross
Reference} and then on \{\bf Domains}. The list you see contains over forty domains that belong to the category \axiomType{ConvertibleTo InputForm}. Thus you can use \axiomFun{function} for \axiomType{Integer}, \axiomType{Float}, \axiomType{Symbol}, \axiomType{Complex}, \axiomType{Expression}, and so on.

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserMakePagePatch1}
\begin{paste}{ugUserMakePageFull1}{ugUserMakePageEmpty1}
\pastebutton{ugUserMakePageFull1}{\hidepaste}
\tab{5}\spadcommand{p := -x + y**2 - z**3\bound{p }}
\indentrel{3}\begin{verbatim}
3 2
(1) - z + y - x
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMakePageEmpty1}
\begin{paste}{ugUserMakePageEmpty1}{ugUserMakePagePatch1}
\pastebutton{ugUserMakePageEmpty1}{\showpaste}
\tab{5}\spadcommand{p := -x + y**2 - z**3\bound{p }}
\end{paste}\end{patch}

\begin{patch}{ugUserMakePagePatch2}
\begin{paste}{ugUserMakePageFull2}{ugUserMakePageEmpty2}
\pastebutton{ugUserMakePageFull2}{\hidepaste}
\tab{5}\spadcommand{function(p,'f0)\free{p }\bound{f0 }}
\indentrel{3}\begin{verbatim}
(2) f0
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserMakePageEmpty2}
\begin{paste}{ugUserMakePageEmpty2}{ugUserMakePagePatch2}
\pastebutton{ugUserMakePageEmpty2}{\showpaste}
\tab{5}\spadcommand{function(p,'f0)\free{p }\bound{f0 }}
\end{paste}\end{patch}

\begin{patch}{ugUserMakePagePatch3}
\begin{paste}{ugUserMakePageFull3}{ugUserMakePageEmpty3}
\pastebutton{ugUserMakePageFull3}{\hidepaste}
\tab{5}\spadcommand{f0\free{f0 }}
\indentrel{3}\begin{verbatim}
3 2
(3) f0 () == - z + y - x
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Type: FunctionCalled f0

\begin{verbatim}
3 2
(4) - z + y - x
\end{verbatim}

Type: Polynomial Integer

\begin{verbatim}
3 2
(6) f1 x == - z + y - x
\end{verbatim}

Type: Symbol
Type: FunctionCalled \texttt{f1}

\begin{verbatim}
3 2
(7) - z + y - 3
\end{verbatim}

Type: Polynomial Integer

\begin{verbatim}
(8) \texttt{f2 (x,y) == - z + y - x}
\end{verbatim}

Type: Symbol
Type: FunctionCalled f2

\begin{verbatim}
3
(10) - z - 3
Type: Polynomial Integer
\end{verbatim}

3
(11) f3
Type: Symbol

3 2
(12) f3 (x,y,z) == - z + y - x
\begin{verbatim}
Type: FunctionCalled f3

\end{verbatim}

\begin{verbatim}
(13) 213
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
(15)
\end{verbatim}
\begin{verbatim}
(16) g
Type: Symbol
\end{verbatim}

\begin{verbatim}
(17) g (x,y) ==
 - \sin(y - x)\sin(y + x) + \cos(y - x)\cos(y + x)

 2
 \cos(y + x)
Type: FunctionCalled g
\end{verbatim}
Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written in a piece-wise manner. The body of the function can be a block, as discussed in the "Blocks" section in Section 5.2.

Here is a short function that swaps two elements of a list, array or vector.

\begin{spadsrc}
\swap{\text{swap}(m,i,j) == }
\text{temp := m.i}
\text{m.i := m.j}
\text{m.j := temp}
\end{spadsrc}

The significance of \text{\texttt{swap}} is that it has a destructive effect on its first argument.

You see that the second and fourth elements are interchanged.

Using this, we write a couple of different sort functions. First, a simple bubble sort. The operation \axiomOp{\#}{List} returns the number of elements in an aggregate.
bubbleSort(m) ==
 n := #m
 for i in 1..(n-1) repeat
 for j in n..(i+1) by -1 repeat
 if m.j < m.(j-1) then swap(m,j,j-1)
 m

Let this be the list we want to sort.

\spadpaste{m := [8,4,-3,9] \bound{m}}

This is the result of sorting.

\spadpaste{bubbleSort(m) \free{m swap bubbleSort}\bound{sortm}}

Moreover, \axiom{m} is destructively changed to be the sorted version.

\spadpaste{m \free{sortm}}

This function implements an insertion sort.
The basic idea is to traverse the list and insert the \eth{\axiom{i}} element in its correct position among the \axiom{i-1} previous elements.
Since we start at the beginning of the list, the list elements before the \eth{\axiom{i}} element have already been placed in ascending order.

\begin{spadsrc}\{\bound{insertionSort}\}
insertionSort(m) ==
 for i in 2..#m repeat
 j := i
 while j > 1 and m.j < m.(j-1) repeat
 swap(m,j,j-1)
 j := j - 1
 m
\end{spadsrc}\}

As with our bubble sort, this is a destructive function.

\spadpaste{m := [8,4,-3,9] \bound{m1}}

\{\}
\{\}
\{\spadpaste{insertionSort(m) \free{m1 swap insertionSort}\bound{sortm1}}\}
Neither of the above functions is efficient for sorting large lists since they reference elements by asking for the \(\text{eth}()\) element of the structure \(\text{axiom}()\).

Here is a more efficient bubble sort for lists.

\begin{spad}{bubbleSort2}
\textbf{bubbleSort2}(m: \text{List Integer}): \text{List Integer} ==
\begin{spad}{if}
\text{null } m \Rightarrow m \\
1 := m \\
\text{while } \text{not null } (r := 1.\text{rest}) \text{ repeat} \\
r := \text{bubbleSort2 } r \\
x := 1.\text{first} \\
\text{if } x < r.\text{first} \text{ then} \\
1.\text{first} := r.\text{first} \\
r.\text{first} := x \\
1.\text{rest} := r \\
1 := 1.\text{rest} \\
m
\end{spad}
\end{spad}

Try it out.

\begin{spad}{bubbleSort2}
\text{bubbleSort2 } [3,7,2]
\end{spad}

This definition is both recursive and iterative, and is tricky! Unless you are really curious about this definition, we suggest you skip immediately to the next section.

Here are the key points in the definition. First notice that if you are sorting a list with less than two elements, there is nothing to do: just return the list. This definition returns immediately if there are zero elements, and skips the entire \texttt{while} loop if there is just one element.

The second point to realize is that on each outer iteration, the bubble sort ensures that the minimum element is propagated leftmost. Each iteration of the \texttt{while} loop calls \texttt{bubbleSort2} recursively to sort all but the first element. When finished, the minimum element is either in the first or second position. The conditional expression ensures that it comes first. If it is in the
second, then a swap occurs. In any case, the \axiomFun{rest} of the original list must be updated to hold the result of the recursive call.

\begin{verbatim}
Type: Void
\end{verbatim}
\texttt{swap(k,2,4)\free{l swap }\bound{swapk }}
\begin{verbatim}
(3) 2
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(4) [1,4,3,2,5]
Type: List PositiveInteger
\end{verbatim}
\begin{verbatim}
\texttt{bubbleSort(m) == n := \#m
 for i in 1..(n-1) repeat
 for j in n..(i+1) by -1 repeat
 if m.j < m.(j-1) then swap(m,j,j-1)
m}
\end{verbatim}
\begin{verbatim}
\end{verbatim}
for j in n..(i+1) by -1 repeat
 if m.j < m.(j-1) then swap(m,j,j-1)

\text{bound{bubbleSort}}}
\end{paste}\end{patch}

\begin{patch}{ugUserBlocksPagePatch6}
\begin{paste}{ugUserBlocksPageFull6}{ugUserBlocksPageEmpty6}
\spadcommand{m := [8,4,-3,9]\text{bound{m}}}
\indentrel{3}\begin{verbatim}
(6) [8,4,-3,9]
Type: List Integer
\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugUserBlocksPagePatch7}
\begin{paste}{ugUserBlocksPageFull7}{ugUserBlocksPageEmpty7}
\spadcommand{bubbleSort(m)\text{free{m swap bubbleSort}}\text{bound{sortm}}}
\indentrel{3}\begin{verbatim}
(7) [-3,4,8,9]
Type: List Integer
\end{verbatim}
\end{patch}

\begin{patch}{ugUserBlocksPagePatch8}
\begin{paste}{ugUserBlocksPageFull8}{ugUserBlocksPageEmpty8}
\spadcommand{m\text{free{sortm}}}
\indentrel{3}\begin{verbatim}
(8) [-3,4,8,9]
Type: List Integer
\end{verbatim}
\end{patch}
for i in 2..\#m repeat
 j := i
 while j > 1 and m.j < m.(j-1) repeat
 swap(m,j,j-1)
 j := j - 1
 m
insertionSort(m) ==

m := [8,4,-3,9]

(10) [8,4,-3,9]
Type: List Integer
\begin{paste}{ugUserBlocksPageFull11}{ugUserBlocksPageEmpty11}
\spadcommand{insertionSort(m)\free{m1 swap insertionSort }\bound{sortm1}}
\indentrel{3}\begin{verbatim}
(11) \[- 3,4,8,9\]
Type: List Integer
\end{verbatim}
\end{paste}

\begin{paste}{ugUserBlocksPageEmpty11}{ugUserBlocksPagePatch11}
\spadcommand{insertionSort(m)\free{m1 swap insertionSort }\bound{sortm1}}
\end{paste}

\begin{patch}{ugUserBlocksPagePatch12}
\begin{paste}{ugUserBlocksPageFull12}{ugUserBlocksPageEmpty12}
\spadcommand{m\free{sortm1}}
\indentrel{3}\begin{verbatim}
(12) \[- 3,4,8,9\]
Type: List Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserBlocksPagePatch13}
\begin{paste}{ugUserBlocksPageFull13}{ugUserBlocksPageEmpty13}
\spadcommand{bubbleSort2(m: List Integer): List Integer ==
null m => m
l := m
while not null (r := l.rest) repeat
 r := bubbleSort2 r
 x := l.first
 if x < r.first then
 l.first := r.first
 r.first := x
 l.rest := r
 l := l.rest
 m
\bound{bubbleSort2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}
\end{patch}
\spadcommand{bubbleSort2(m: List Integer): List Integer ==}
null m => m
l := m
while not null (r := l.rest) repeat
 r := bubbleSort2 r
 x := l.first
 if x < r.first then
 l.first := r.first
 r.first := x
 l.rest := r
 l := l.rest
m
\bound{bubbleSort2}}

\spadcommand{bubbleSort2 [3,7,2]} Type: List Integer
(14) [7,3,2]

\begin{verbatim}
Free and Local Variables
\end{verbatim}

⇒ “notitle” (ugUserCachePage) 10 on page 1880
⇒ “notitle” (ugUserRecurPage) 10 on page 1883
— ug06.ht —
When you want to refer to a variable that is not local to your function, use a `\texttt{free}` declaration. Variables declared to be `\texttt{free}` are assumed to be defined globally in the workspace.

\begin{spadsrc}
\free{counter}
\end{spadsrc}

This function refers to the global `\texttt{counter}`.

\begin{spadsrc}
f() ==
 \free{counter}
 counter := counter + 1
\end{spadsrc}

The global `\texttt{counter}` is incremented by `1`.

\begin{spadsrc}
f() \free{f}
\end{spadsrc}

Usually Axiom can tell that you mean to refer to a global variable and so `\texttt{free}` isn't always necessary. However, for clarity and the sake of self-documentation, we encourage you to use it.

\begin{spadsrc}
\texttt{counter} \free{f1}
\end{spadsrc}

Declare a variable to be `\texttt{local}` when you do not want to refer to a global variable by the same name.

\begin{spadsrc}
\local{counter}
\end{spadsrc}

This function uses `\texttt{counter}` as a local variable.

\begin{spadsrc}
g() ==
 \local{counter}
 counter := 7
\end{spadsrc}

Apply the function.
Parameters to a function are local variables in the function. Even if you issue a `\axiom{free}` declaration for a parameter, it is still local.

What happens if you do not declare that a variable `\axiom{x}` in the body of your function is `\axiom{local}` or `\axiom{free}`?

Well, Axiom decides on this basis:

1. Axiom scans your function line-by-line, from top-to-bottom. The right-hand side of an assignment is looked at before the left-hand side.
2. If \axiom{x} is referenced before it is assigned a value, it is a \axiom{free} (global) variable.
3. If \axiom{x} is assigned a value before it is referenced, it is a \axiom{local} variable.

Set two global variables to 1.

Refer to \axiom{a} before it is assigned a value, but assign a value to \axiom{b} before it is referenced.

Can you predict this result?
How about this one?
}
\spadpaste{[a, b] \free{hhh}}
}

What happened? In the first line of the function body for h, a is referenced on the right-hand side of the assignment. Thus a is a free variable. The variable b is not referenced in that line, but it is assigned a value. Thus b is a local variable and is given the value $a + 1 = 2$. In the second line, the free variable a is assigned the value $b + a$ which equals $2 + 1 = 3$. This is the value returned by the function. Since a was free in h, the global variable a has value 3. Since b was local in h, the global variable b is unchanged---it still has the value 1.

It is good programming practice always to declare global variables. However, by far the most common situation is to have local variables in your functions. No declaration is needed for this situation, but be sure to initialize their values.

Be careful if you use free variables and you cache the value of your function (see \downlink{‘Caching Previously Computed Results’}{ugUserCachePage} in Section 6.12). Caching only checks if the values of the function arguments are the same as in a function call previously seen. It does not check if any of the free variables on which the function depends have changed between function calls.

\xtc{Turn on caching for p.
}\spadpaste{)set fun cache all p \bound{pcache}}
\)
\xtc{Define p to depend on the free variable N.
}\spadpaste{p(i, x) == (free N; reduce(+ , [(x-i)**n for n in 1..N])) \free{pcache}\bound{pdef}}
\)
\xtc{Set the value of N.
}\spadpaste{N := 1 \bound{Nass}}
\)
\xtc{Evaluate p the first time.
}\spadpaste{p(0, x) \free{pdef Nass}\bound{pfirst}}
\xtc{Change the value of \axiom{N}.}
\spadpaste{N := 2 \bound{Nass2}}
\xtc{Evaluate \userfun{p} the second time.}
\spadpaste{p(0, x) \free{pfirst Nass2}}
If caching had been turned off, the second evaluation would have reflected the changed value of \axiom{N}.
\xtc{Turn off caching for \userfun{p}.}
\spadpaste{)set fun cache 0 p}
Axiom does not allow {\it fluid variables}, that is, variables bound by a function \spad{f} that can be referenced by functions called by \spad{f}.
\xtc{Values are passed to functions by \spad{reference}: a pointer to the value is passed rather than a copy of the value or a pointer to a copy.}
\xtc{This is a global variable that is bound to a record object.}
\spadpaste{r : Record(i : Integer) := [1] \free{r}}
\xtc{This function first modifies the one component of its record argument and then rebinds the parameter to another record.}
\begin{spadsrc}
resetRecord rr ==
 rr.i := 2
 rr := [10]
\end{spadsrc}
\xtc{Pass \axiom{r} as an argument to \userfun{resetRecord}.}
\spadpaste{resetRecord r \free{r resetRecord\bound{rr}}}
\xtc{The value of \axiom{r} was changed by the expression \axiom{rr.i := 2} but not by \axiom{rr := [10]}.}
To conclude this section, we give an iterative definition of a function that computes Fibonacci numbers. This definition approximates the definition into which Axiom transforms the recurrence relation definition of \userfun{fib} in \downlink{''Recurrence Relations''}{ugUserRecurPage} in Section 6.13\ignore{ugUserRecur}.

\xtc{
Global variables \axiom{past} and \axiom{present} are used to hold the last computed Fibonacci numbers.
}\{
\spadpaste{past := present := 1\bound{f0}}
\}
\xtc{
Global variable \axiom{index} gives the current index of \axiom{present}.
}\{
\spadpaste{index := 2\bound{f1}\free{f0}}
\}
\xtc{
Here is a recurrence relation defined in terms of these three global variables.
}\{
\begin{spadsrc}
\bound{f3}\free{f2}
\xtc{Global variables \axiom{past}, \axiom{present}, \axiom{index} are used in the definition.}
\end{spadsrc}
\xtc{Compute the infinite stream of Fibonacci numbers.}
}\{
\spadpaste{fibs := [fib(n) for n in 1..] \bound{fibs}\free{f3}}
\}
\xtc{What is the 1000th Fibonacci number?}
}\{
As an exercise, we suggest you write a function in an iterative style that computes the value of the recurrence relation

\[p(n) = p(n-1) - 2 \cdot p(n-2) + 4 \cdot p(n-3) \]

having the initial values

\[p(1) = 1, \quad p(2) = 3 \quad \text{and} \quad p(3) = 9. \]

How would you write the function using an element \(\text{OneDimensionalArray} \) or \(\text{Vector} \) to hold the previously computed values?
free counter
 counter := counter + 1
\free{counter }\bound{f }
\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPagePatch3}
\begin{paste}{ugUserFreeLocalPageFull3}{ugUserFreeLocalPageEmpty3}
\pastebutton{ugUserFreeLocalPageFull3}{\hidepaste}
\tab{5}\spadcommand{f()\free{f }\bound{f1 }}
\indentrel{3}\begin{verbatim}
(3) 1
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPageEmpty3}
\begin{paste}{ugUserFreeLocalPageEmpty3}{ugUserFreeLocalPagePatch3}
\pastebutton{ugUserFreeLocalPageEmpty3}{\showpaste}
\tab{5}\spadcommand{f()\free{f }\bound{f1 }}
\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPagePatch4}
\begin{paste}{ugUserFreeLocalPageFull4}{ugUserFreeLocalPageEmpty4}
\pastebutton{ugUserFreeLocalPageFull4}{\hidepaste}
\tab{5}\spadcommand{counter\free{f1 }}
\indentrel{3}\begin{verbatim}
(4) 1
Type: NonNegativeInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPageEmpty4}
\begin{paste}{ugUserFreeLocalPageEmpty4}{ugUserFreeLocalPagePatch4}
\pastebutton{ugUserFreeLocalPageEmpty4}{\showpaste}
\tab{5}\spadcommand{counter\free{f1 }}
\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPagePatch5}
\begin{paste}{ugUserFreeLocalPageFull5}{ugUserFreeLocalPageEmpty5}
\pastebutton{ugUserFreeLocalPageFull5}{\hidepaste}
\tab{5}\spadcommand{g() ==
 local counter
 counter := 7
\bound{g }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\end{paste}\end{patch}\begin{patch}{ugUserFreeLocalPageEmpty5}
\begin{paste}{ugUserFreeLocalPageEmpty5}{ugUserFreeLocalPagePatch5}\pastebutton{ugUserFreeLocalPageEmpty5}\{\showpaste}\tab{5}\spadcommand{g() ==}
 \begin{paste}{ugUserFreeLocalPageFull6}{ugUserFreeLocalPageEmpty6}\pastebutton{ugUserFreeLocalPageFull6}\{\hidepaste}\tab{5}\spadcommand{g()\free{g}}
 \indentrel{3}\begin{verbatim}
 (6) 7
 Type: PositiveInteger
 \end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugUserFreeLocalPagePatch6}
\begin{paste}{ugUserFreeLocalPageFull6}{ugUserFreeLocalPageEmpty6}\pastebutton{ugUserFreeLocalPageFull6}\{\hidepaste}\tab{5}\spadcommand{g()ree{g}}
 \indentrel{3}\begin{verbatim}
 (7) 1
 Type: NonNegativeInteger
 \end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugUserFreeLocalPagePatch7}
\begin{paste}{ugUserFreeLocalPageFull7}{ugUserFreeLocalPageEmpty7}\pastebutton{ugUserFreeLocalPageFull7}\{\hidepaste}\tab{5}\spadcommand{counter\free{g f1}}
 \indentrel{3}\begin{verbatim}
 (8) 1
 Type: PositiveInteger
 \end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugUserFreeLocalPagePatch8}
\begin{paste}{ugUserFreeLocalPageFull8}{ugUserFreeLocalPageEmpty8}\pastebutton{ugUserFreeLocalPageFull8}\{\hidepaste}\tab{5}\spadcommand{a := b := 1\bound{ab1}}
 \indentrel{3}\begin{verbatim}
 \end{verbatim}
\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty8}
\begin{paste}{ugUserFreeLocalPageEmpty8}{ugUserFreeLocalPagePatch8}
\pastebutton{ugUserFreeLocalPageEmpty8}{\showpaste}
\tab{5}\spadcommand{a := b := 1\bound{ab1 }}
\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch9}
\begin{paste}{ugUserFreeLocalPageFull9}{ugUserFreeLocalPageEmpty9}
\pastebutton{ugUserFreeLocalPageFull9}{\hidepaste}
\tab{5}\spadcommand{h() == b := a + 1\bound{hh }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty9}
\begin{paste}{ugUserFreeLocalPageEmpty9}{ugUserFreeLocalPagePatch9}
\pastebutton{ugUserFreeLocalPageEmpty9}{\showpaste}
\tab{5}\spadcommand{h() == b := a + 1\bound{hh }}
\indentrel{3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch10}
\begin{paste}{ugUserFreeLocalPageFull10}{ugUserFreeLocalPageEmpty10}
\pastebutton{ugUserFreeLocalPageFull10}{\hidepaste}
\tab{5}\spadcommand{h()\free{ab1 hh }\bound{hhh }}
\indentrel{3}\begin{verbatim}
(10) 3
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty10}
\begin{paste}{ugUserFreeLocalPageEmpty10}{ugUserFreeLocalPagePatch10}
\pastebutton{ugUserFreeLocalPageEmpty10}{\showpaste}
\tab{5}\spadcommand{h()\free{ab1 hh }\bound{hhh }}
\indentrel{3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch11}
\begin{paste}{ugUserFreeLocalPageFull11}{ugUserFreeLocalPageEmpty11}
\pastebutton{ugUserFreeLocalPageFull11}{\hidepaste}
\tab{5}\spadcommand{[a, b]\free{hhh }}
\indentrel{3}\begin{verbatim}
(11) [3,1]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch12}
\begin{paste}{ugUserFreeLocalPageFull12}{ugUserFreeLocalPageEmpty12}
\pastebutton{ugUserFreeLocalPageFull12}{\hidepaste}
\tab{5}\spadcommand{)set fun cache all p\bound{pcache }}
\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty12}
\begin{paste}{ugUserFreeLocalPageEmpty12}{ugUserFreeLocalPagePatch12}
\pastebutton{ugUserFreeLocalPageEmpty12}{\showpaste}
\tab{5}\spadcommand{)set fun cache all p\bound{pcache }}
\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch13}
\begin{paste}{ugUserFreeLocalPageFull13}{ugUserFreeLocalPageEmpty13}
\pastebutton{ugUserFreeLocalPageFull13}{\hidepaste}
\tab{5}\spadcommand{p(i,x) == (free N; reduce(+ , [(x-i)**n for n in 1..N]))\free{pcache }
\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty13}
\begin{paste}{ugUserFreeLocalPageEmpty13}{ugUserFreeLocalPagePatch13}
\pastebutton{ugUserFreeLocalPageEmpty13}{\showpaste}
\tab{5}\spadcommand{p(i,x) == (free N; reduce(+ , [(x-i)**n for n in 1..N]))\free{pcache }
\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPagePatch14}
\begin{paste}{ugUserFreeLocalPageFull14}{ugUserFreeLocalPageEmpty14}
\pastebutton{ugUserFreeLocalPageFull14}{\hidepaste}
\tab{5}\spadcommand{N := 1\bound{Nass }}
\indentrel{3}\begin{verbatim}
(13) 1
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugUserFreeLocalPageEmpty14}
\begin{paste}{ugUserFreeLocalPageEmpty14}{ugUserFreeLocalPagePatch14}
\pastebutton{ugUserFreeLocalPageEmpty14}{\showpaste}
\end{paste}\end{patch}
\spadcommand{N := 1\!}

\begin{verbatim}
(14) x
Type: Polynomial Integer
\end{verbatim}

\spadcommand{p(0, x)\!}

\begin{verbatim}
(15) 2
Type: PositiveInteger
\end{verbatim}

\spadcommand{N := 2\!}

\begin{verbatim}
(16) x
Type: Polynomial Integer
\end{verbatim}
\begin{verbatim}
(r : Record(i : Integer) := \[1\])
\end{verbatim}

\begin{verbatim}
Type: Record(i: Integer)
\end{verbatim}

\begin{verbatim}
resetRecord rr ==
 rr.i := 2
 rr := \[10\]
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
resetRecord rr ==
 rr.i := 2
 rr := \[10\]
\end{verbatim}
\begin{verbatim}
(i = 10)
Type: Record(i: Integer)
\end{verbatim}
\begin{verbatim}
(i = 2)
Type: Record(i: Integer)
\end{verbatim}
\begin{verbatim}
1
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
index := 2
\end{verbatim}

\begin{verbatim}
(22) 2
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
fib(n) ==
 free past, present, index
 n < 3 => 1
 n = index - 1 => past
 if n < index-1 then
 (past,present) := (1,1)
 index := 2
 while (index < n) repeat
 (past,present) := (present, past+present)
 index := index + 1
 present
 \end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
Anonymous Functions

⇒ “notitle” (ugUserAnonExampPage) 10 on page 1922
⇒ “notitle” (ugUserAnonDeclarePage) 10 on page 1927
— ug06.ht —
An *anonymous function* is a function that is defined by giving a list of parameters, the ‘maps-to’ compound symbol \(\mapsto\)\textit{(from the mathematical symbol \mapsto)}, and by an expression involving the parameters, the evaluation of which determines the return value of the function.

\[
\text{(\texttt{parm}_1, \texttt{parm}_2, \ldots, \texttt{parm}_N) \mapsto \textit{expression}}
\]

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed by a list of arguments.
2. Assign the anonymous function to a variable and then use the variable name when you would normally use a function name.
3. Use\(\mathrel{==}\) to use the anonymous function definition as the arguments and body of a regular function definition.
4. Have a named function contain a declared anonymous function and use the result returned by the named function.

Some Examples
Anonymous functions are particularly useful for defining functions ‘on the fly.’ That is, they are handy for simple functions that are used only in one place.

In the following examples, we show how to write some simple anonymous functions.

\texttt{This is a simple absolute value function.}
\begin{verbatim}
\spadpaste{x +-> if x < 0 then -x else x \bound{anon0}}
\end{verbatim}
\texttt{This function returns \tt true if the absolute value of the first argument is greater than the absolute value of the second, \tt false otherwise.}
\begin{verbatim}
\spadpaste{(x,y) +-> abs1(x) > abs1(y) \bound{anon1}\free{abs1}}
\end{verbatim}
\texttt{We use the above function to ‘sort’ a list of integers.}
\begin{verbatim}
\spadpaste{sort(\%,[3,9,-4,10,-3,-1,-9,5]) \free{anon1}}
\end{verbatim}
\texttt{This function returns \axiom{1} if \axiom{i + j} is even, \axiom{-1} otherwise.}
\begin{verbatim}
\spadpaste{ev := ((i,j) +-> if even?(i+j) then 1 else -1) \bound{ev}}
\end{verbatim}
\texttt{We create a four-by-four matrix containing \axiom{1} or \axiom{-1} depending on whether the row plus the column index is even or not.}
\begin{verbatim}
\spadpaste{matrix([[ev(row,col) for row in 1..4] for col in 1..4]) \free{ev}}
\end{verbatim}
\texttt{This function returns \tt true if a polynomial in \axiom{x} has multiple roots, \tt false otherwise. It is defined and applied in the same expression.}
\begin{verbatim}
\spadpaste{(p +-> not one?(gcd(p,D(p,x))))(x**2+4*x+4)}
\end{verbatim}
This and the next expression are equivalent.
\spadpaste{g(x,y,z) == cos(x + sin(y + tan(z)))}
\xtc{}
The one you use is a matter of taste.
\spadpaste{g == (x,y,z) +-> cos(x + sin(y + tan(z)))}
\xtc{}

\begin{verbatim}
(1) x +-> if x < 0 then - x else x
 Type: AnonymousFunction
\end{verbatim}

\begin{verbatim}
(2) x +-> if x < 0 then - x else x
 Type: AnonymousFunction
\end{verbatim}
\begin{spadcommand}
abs1 := \%
\end{spadcommand}

\begin{spadcommand}
(x,y) \rightarrow \text{abs}(x) > \text{abs}(y)
\end{spadcommand}

\begin{verbatim}
(3) \(x,y) \rightarrow \text{abs}(y) < \text{abs}(x) \\
Type: \text{AnonymousFunction}
\end{verbatim}

\begin{spadcommand}
\text{sort}((3,9,-4,10,-3,-1,-9,5))
\end{spadcommand}

\begin{verbatim}
(4) \[10, - 9, 9, 5, - 4, - 3, 3, - 1\] \\
Type: \text{List Integer}
\end{verbatim}

\begin{spadcommand}
ev := \((i,j) \rightarrow \text{if even}(i+j) \text{ then } 1 \text{ else } -1\)
\end{spadcommand}

\begin{verbatim}
(5) \\
(i,j) \\
\rightarrow \\
\text{if even}(i+j) \\
\quad \text{ then } 1 \\
\quad \text{ else } -1
\end{verbatim}
Type: AnonymousFunction

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugUserAnonExampPageEmpty5}
\begin{paste}{ugUserAnonExampPageEmpty5}{ugUserAnonExampPagePatch5}
\showpaste
\end{paste}
\end{patch}

\begin{patch}{ugUserAnonExampPagePatch6}
\begin{paste}{ugUserAnonExampPageFull6}{ugUserAnonExampPageEmpty6}
\hidepaste
\end{paste}
\end{patch}

\begin{patch}{ugUserAnonExampPageEmpty6}
\begin{paste}{ugUserAnonExampPageEmpty6}{ugUserAnonExampPagePatch6}
\showpaste
\end{paste}
\end{patch}

\begin{patch}{ugUserAnonExampPagePatch7}
\begin{paste}{ugUserAnonExampPageFull7}{ugUserAnonExampPageEmpty7}
\hidepaste
\end{paste}
\end{patch}

\begin{patch}{ugUserAnonExampPageEmpty7}
\begin{paste}{ugUserAnonExampPageEmpty7}{ugUserAnonExampPagePatch7}
\showpaste
\end{paste}
\end{patch}

\begin{patch}{ugUserAnonExampPagePatch8}
\begin{paste}{ugUserAnonExampPageFull8}{ugUserAnonExampPageEmpty8}
\end{paste}
\end{patch}
Declaring Anonymous Functions

— ug06.ht —

If you declare any of the arguments you must declare all of them. Thus,

\begin{verbatim}
(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)
\end{verbatim}

is not legal.

\xtc{
This is an example of a fully declared anonymous function.
}
The output shown just indicates that the object you created is a particular kind of map, that is, function.

\spadpaste{(x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)}

Axiom allows you to declare the arguments and not declare the return type.

\spadpaste{(x: INT,y: INT) +-> (x + 2*y)/(y - 1)}

The return type is computed from the types of the arguments and the body of the function. You cannot declare the return type if you do not declare the arguments. Therefore,

\begin{verbatim}
(x,y): FRAC INT +-> (x + 2*y)/(y - 1)
\end{verbatim}

is not legal.

This and the next expression are equivalent.

\spadpaste{h(x: INT,y: INT): FRAC INT == (x + 2*y)/(y - 1)}

The one you use is a matter of taste.

\spadpaste{h == (x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)}

When should you declare an anonymous function?

\begin{itemize}
\item[1.] If you use an anonymous function and Axiom can’t figure out what you are trying to do, declare the function.
\item[2.] If the function has nontrivial argument types or a nontrivial return type that Axiom may be able to determine eventually, but you are not willing to wait that long, declare the function.
\item[3.] If the function will only be used for arguments of specific types and it is not too much trouble to declare the function, do so.
\item[4.] If you are using the anonymous function as an argument to another function (such as \axiomFun{map} or \axiomFun{sort}), consider declaring the function.
\item[5.] If you define an anonymous function inside a named function, you \{it must\} declare the anonymous function.
\end{itemize}
This is an example of a named function for integers that returns a function.

\spadpaste{addx x == ((y: Integer): Integer +-> x + y) \bound{addx}}

We define \userfun{g} to be a function that adds \axiom{10} to its argument.

\spadpaste{g := addx 10 \free{addx}\bound{g}}

Try it out.

\spadpaste{g 3 \free{g}}

\spadpaste{g(-4) \free{g}}

An anonymous function cannot be recursive: since it does not have a name, you cannot even call it within itself!

If you place an anonymous function inside a named function, the anonymous function must be declared.
(2) theMap(NIL)
Type: ((Integer,Integer) -> Fraction Integer)
\spadcommand{addx x == ((y: Integer): Integer +-> x + y)\bound{addx }}
\begin{verbatim}
(6) theMap(LAMBDA_f647nv_704,826)
 Type: (Integer -> Integer)
\end{verbatim}
\spadcommand{g := addx 10\free{addx }\bound{g }}
\indentrel{3}
\begin{verbatim}
(7) 13
 Type: PositiveInteger
\end{verbatim}
\spadcommand{g(-4)\free{g }}
\indentrel{3}
\begin{verbatim}
(8) 6
 Type: PositiveInteger
\end{verbatim}
Example: A Database

This example shows how you can use Axiom to organize a database of lineage data and then query the database for relationships.

The database is entered as ‘assertions’ that are really pieces of a function definition.

\spadpaste{children("albert") == ["albertJr","richard","diane"]}\bound{d1}

Each piece \(\text{children}(x) = y\) means ‘the children of \(\text{axiom}(x)\) are \(\text{axiom}(y)\)’.

\spadpaste{children("richard") == ["douglas","daniel","susan"]}\free{d1}\bound{d2}

This family tree thus spans four generations.

\spadpaste{children("douglas") == ["dougie","valerie"]}\free{d2}\bound{d3}

Say ‘no one else has children.’

\spadpaste{children(x) == []}\free{d3}\bound{d4}

We need some functions for computing lineage. Start with \text{childOf}.
\begin{spadsrc}
\texttt{childOf(x,y) == member?(x,children(y))}
\end{spadsrc}

To find the \texttt{parentOf} someone, you have to scan the database of people applying \texttt{children}.

\begin{spadsrc}
\texttt{parentOf(x) ==}
\texttt{for y in people repeat}
\texttt{ (if childOf(x,y) then return y)}
\texttt{"unknown"}
\end{spadsrc}

And a grandparent of \texttt{x} is just a parent of a parent of \texttt{x}.

\begin{spadsrc}
\texttt{grandParentOf(x) == parentOf parentOf x}
\end{spadsrc}

The grandchildren of \texttt{x} are the people \texttt{y} such that \texttt{x} is a grandparent of \texttt{y}.

\begin{spadsrc}
\texttt{grandchildren(x) == [y for y in people | grandParentOf(y) = x]}
\end{spadsrc}

Suppose you want to make a list of all great-grandparents. Well, a great-grandparent is a grandparent of a person who has children.

\begin{spadsrc}
\texttt{greatGrandParents == [x for x in people |}
\texttt{ reduce(_or,[not empty? children(y) for y in grandchildren(x)],[false])}
\end{spadsrc}

Define \texttt{descendants} to include the parent as well.

\begin{spadsrc}
\texttt{descendants(x) ==}
\texttt{ kids := children(x)}
\texttt{ null kids => [x]}
\texttt{ concat(x,reduce(concat,[descendants(y)
 for y in kids],[]))}
\end{spadsrc}

Finally, we need a list of people.
Since all people are descendants of "albert", let's say so.

{\spadpaste{people == descendants "albert"}\free{d4}\bound{d5}}

We have used \axiomSyntax{==} to define the database and some functions to query the database. But no computation is done until we ask for some information. Then, once and for all, the functions are analyzed and compiled to machine code for run-time efficiency. Notice that no types are given anywhere in this example. They are not needed.

{\xtc{\Who are the grandchildren of "richard"\?
\spadpaste{grandchildren "richard"}\bound{d10}\free{d11}}

\xtc{\Who are the great-grandparents?
\spadpaste{greatGrandParents}\bound{d11}\free{d12}}

\endscroll
autobuttons
end{page}

\begin{patch}{ugUserDatabasePagePatch1}
\begin{paste}{ugUserDatabasePageFull1}{ugUserDatabasePageEmpty1}
\pastebutton{ugUserDatabasePageFull1}{\hidepaste}
\begin{verbatim}
children("albert") == ["albertJr","richard","diane"]\bound{d1}
\end{verbatim}
\end{patch}

\begin{patch}{ugUserDatabasePageEmpty1}
\begin{paste}{ugUserDatabasePageEmpty1}{ugUserDatabasePagePatch1}
\pastebutton{ugUserDatabasePageEmpty1}{\showpaste}
end{paste}
end{patch}

\begin{patch}{ugUserDatabasePagePatch2}
\begin{paste}{ugUserDatabasePageFull2}{ugUserDatabasePageEmpty2}
\pastebutton{ugUserDatabasePageFull2}{\hidepaste}
\begin{verbatim}
children("richard") == ["douglas","daniel","susan"]\free{d1}\bound{d2}
\end{verbatim}
\end{patch}

\end{verbatim}
\spadcommand{children("richard") == ["douglas","daniel","susan"]}
\indentrel{-3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadcommand{children("douglas") == ["dougie","valerie"]}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadcommand{children(x) == []}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadcommand{childOf(x,y) == member?(x,children(y))}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
subsection{10.1. Members of a Child}

\begin{verbatim}
for y in people repeat
 if childOf(x,y) then return y
\end{verbatim}
\end{verbatim}

\begin{verbatim}
subsection{10.2. Parent of a Person}

\begin{verbatim}
for y in people repeat
 if childOf(x,y) then return y
\end{verbatim}
\end{verbatim}

\begin{verbatim}
subsection{10.3. Grandparent of a Person}

\begin{verbatim}
for y in people repeat
 if childOf(x,y) then return y
\end{verbatim}
\end{verbatim}

\begin{verbatim}
subsection{10.4. Grandchildren of a Person}

\begin{verbatim}
[y for y in people | grandParentOf(y) = x]
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{patch}{ugUserDatabasePageEmpty8}
\begin{paste}{ugUserDatabasePageEmpty8}{ugUserDatabasePagePatch8}
\tab{5}\spadcommand{grandchildren(x) == \[y \text{ for } y \text{ in } \text{people} \mid \text{grandParentOf}(y) = x\]}{\free{d7}}{\bound{d8}}
\end{paste}\end{patch}

\begin{patch}{ugUserDatabasePagePatch9}
\begin{paste}{ugUserDatabasePageFull9}{ugUserDatabasePageEmpty9}
\pastebutton{ugUserDatabasePageFull9}{\hidepaste}
\tab{5}\spadcommand{greatGrandParents == \[x \text{ for } x \text{ in } \text{people} \mid \text{reduce}(_\text{or}, \[\text{not empty? children}(y) \text{ for } y \text{ in } \text{grandchildren}(x)\], \text{false})]}{\free{d6}}{\bound{d7}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserDatabasePagePatch10}
\begin{paste}{ugUserDatabasePageFull10}{ugUserDatabasePageEmpty10}
\pastebutton{ugUserDatabasePageFull10}{\hidepaste}
\tab{5}\spadcommand{descendants(x) == \begin{verbatim}
\text{kids} := \text{children}(x)
\text{null kids} \Rightarrow \[x\]
\text{concat}(x, \text{reduce}(\text{concat}, \[\text{descendants}(y) \text{ for } y \text{ in } \text{kids}\], [])\})
\end{verbatim}}{\free{d5}}{\bound{d6}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: List String
\end{verbatim}

\begin{verbatim}
Type: List String
\end{verbatim}

\begin{verbatim}
Type: List String
\end{verbatim}
Example: A Famous Triangle

In this example we write some functions that display Pascal's triangle. It demonstrates the use of piece-wise definitions and some output operations you probably haven't seen before.

To make these output operations available, we have to expose the domain \texttt{OutputForm}. See \texttt{Exposing Domains and Packages} in Section 2.11 for more information about exposing domains and packages.

Define the values along the first row and any column \texttt{i}.

Define the values for when the row and column index \texttt{i} are equal. Repeating the argument name indicates that the two index values are equal.

Now that we have defined the coefficients in Pascal's triangle, let's write a couple of one-liners to display it.
First, define a function that gives the \(\text{eth}\{\text{axiom}(n)\} \) row.

{\spad{\text{pascalRow}(n) == [\text{pascal}(i,n) \text{ for } i \text{ in } 1..n] \\
 bound\{\text{pascalRow}\} free\{pas3\}}}

\xtc{Next, we write the function \userfun{displayRow} to display the row, separating entries by blanks and centering.}

{\spad{\text{displayRow}(n) == output center blankSeparate \text{pascalRow}(n) \\
 free\{\text{pascalRow}\} bound\{\text{displayRow}\} free\{expose\}}
}

Here we have used three output operations. Operation \axiomFunFrom{output}{OutputForm} displays the printable form of objects on the screen, \axiomFunFrom{center}{OutputForm} centers a printable form in the width of the screen, and \axiomFunFrom{blankSeparate}{OutputForm} takes a list of printable forms and inserts a blank between successive elements.

\xtc{Look at the result.}

{\spad{\text{for } i \text{ in } 1..7 \text{ repeat } \text{displayRow } i \ free\{\text{displayRow}\}} }

Being purists, we find this less than satisfactory. Traditionally, elements of Pascal's triangle are centered between the left and right elements on the line above.

\xtc{To fix this misalignment, we go back and redefine \userfun{pascalRow} to right adjust the entries within the triangle within a width of four characters.}

{\spad{\text{pascalRow}(n) == [\text{right}(\text{pascal}(i,n),4) \text{ for } i \text{ in } 1..n] \\
 bound\{\text{pascalRow2}\}}
}

\xtc{Finally let's look at our purely reformatted triangle.}

{\spad{\text{for } i \text{ in } 1..7 \text{ repeat } \text{displayRow } i \ free\{\text{pascalRow2}\} \\
 free\{\text{displayRow}\} }}

\xtc{Unexpose \axiomType{OutputForm} so we don't get unexpected results later.}

{\spad{\text{set expose drop constructor OutputForm}}}
\begin{verbatim}
pascal(1,i) == 1
Type: Void
\end{verbatim}

\begin{verbatim}
pascal(n,n) == 1
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
\end{verbatim}

Type: Void

\begin{verbatim}
pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]
\end{verbatim}

Type: Void
Example: Testing for Palindromes

⇒ “notitle” (ugUserTrianglePage) 10 on page 1939

In this section we define a function \texttt{\userfun{pal?}} that tests whether its argument is a \{\it palindrome\}, that is, something that reads the same backwards and forwards. For example, the string ‘‘Madam I’am Adam’’ is a palindrome (excluding blanks and punctuation) and so is the number \texttt{\axiom{123454321.}} The definition works for any datatype that has \texttt{\axiom{n}} components that are accessed by the indices \texttt{\axiom{1\ldots n}}.

\xtc{Here is the definition for \texttt{\userfun{pal?}}. It is simply a call to an auxiliary function called \texttt{\userfun{palAux?}}. We are following the convention of ending a function’s name with \texttt{\axiomSyntax{?}} if the function returns a \texttt{\axiomType{Boolean}} value.}
Here is \texttt{\texttt{palAux?}}. It works by comparing elements that are equidistant from the start and end of the object.

\begin{spadsrc}
\texttt{palAux?}(s,i,j) ==
\begin{itemize}
 \item \texttt{j > i =>}
 \begin{itemize}
 \item \texttt{(s.i = s.j) and palAux?}(s,i+1,i-1)
 \item \texttt{true}
 \end{itemize}
\end{itemize}
\end{spadsrc}

Try \texttt{\texttt{pal?}} on some examples. First, a string.

\begin{spadpaste}
\texttt{pal?} "Oxford"
\end{spadpaste}

A list of polynomials.

\begin{spadpaste}
\texttt{pal?} \{4,a,x-1,0,x-1,a,4\}
\end{spadpaste}

A list of integers from the example in \texth{\texttt{A Famous Triangle'}}\ignore{ugUserTriangle}. \texttt{\texttt{pal?}}\{1,6,15,20,15,6,1\}

To use \texttt{\texttt{pal?}} on an integer, first convert it to a string.

\begin{spadpaste}
\texttt{pal?}(1441::String)
\end{spadpaste}

Compute an infinite stream of decimal numbers, each of which is an obvious palindrome.

\begin{spadpaste}
\texttt{ones := \{reduce(+,[10**j for j in 0..i]) for i in 1..\}}
\end{spadpaste}

\begin{spadpaste}
\texttt{squares := \{x**2 for x in ones\}}
\end{spadpaste}
Well, let's test them all!
}\spadpaste{[pal?(x::String) for x in squares]\free{pal6}}\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugUserPalPagePatch1}
\begin{paste}{ugUserPalPageFull1}{ugUserPalPageEmpty1}\pastebutton{ugUserPalPageFull1}{\hidepaste}
\tab{5}\spadcommand{pal? s == palAux?(s,1,\#s)\bound{pal}}\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim} \indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPalPageEmpty1}
\begin{paste}{ugUserPalPageEmpty1}{ugUserPalPagePatch1}\pastebutton{ugUserPalPageEmpty1}{\showpaste}
\tab{5}\spadcommand{pal? s == palAux?(s,1,\#s)\bound{pal}}\indentrel{3}\end{paste}\end{patch}

\begin{patch}{ugUserPalPagePatch2}
\begin{paste}{ugUserPalPageFull2}{ugUserPalPageEmpty2}\pastebutton{ugUserPalPageFull2}{\hidepaste}
\tab{5}\spadcommand{palAux?(s,i,j) == j > i =>
 (s.i = s.j) and palAux?(s,i+1,i-1)
 true \bound{palAux}}\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim} \indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserPalPageEmpty2}
\begin{paste}{ugUserPalPageEmpty2}{ugUserPalPagePatch2}\pastebutton{ugUserPalPageEmpty2}{\showpaste}
\tab{5}\spadcommand{palAux?(s,i,j) == j > i =>
 (s.i = s.j) and palAux?(s,i+1,i-1)
 true \bound{palAux}}\indentrel{3}\end{paste}\end{patch}

\begin{patch}{ugUserPalPagePatch3}
\begin{paste}{ugUserPalPageFull3}{ugUserPalPageEmpty3}\pastebutton{ugUserPalPageFull3}{\hidepaste}
(3) false

Type: Boolean

(4) true

Type: Boolean

(5) true

Type: Boolean
(6) true
Type: Boolean

(7) \[11, 111, 1111, 11111, 111111, 1111111, 11111111, \ldots\]
Type: Stream PositiveInteger

(8) \[121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 1234567987654321, 123456790120987654321, \ldots\]
Type: Stream PositiveInteger
Rules and Pattern Matching

--- ug06.htm ---

A common mathematical formula is
\[
\log(x) + \log(y) = \log(x \cdot y) \quad \forall \, x \text{ and } y.
\]
The presence of the word "any" indicates that \(x\) and \(y\) can stand for arbitrary mathematical expressions in the above formula.
You can use such mathematical formulas in Axiom to specify "rewrite rules".
Rewrite rules are objects in Axiom that can be assigned to variables for later use, often for the purpose of simplification.
Rewrite rules look like ordinary function definitions except that they are preceded by the reserved word \(\text{axiom}\{\text{rule}\}\).

For example, a rewrite rule for the above formula is:
\begin{verbatim}
rule log(x) + log(y) == log(x * y)
\end{verbatim}
Like function definitions, no action is taken when a rewrite rule is issued.
Think of rewrite rules as functions that take one argument.
When a rewrite rule \(\text{axiom}(A = B)\) is applied to an argument \(\text{axiom}(f)\), its meaning is: "rewrite every subexpression of \(\text{axiom}(f)\) that \{it matches\} ."
The left-hand side of a rewrite rule is called a \texttt{pattern}; its right-hand side is called its \texttt{substitution}.

\begin{verbatim}
\texttt{Create a rewrite rule named \texttt{logrule}.}
\texttt{The generated symbol beginning with a \texttt{\%} is a place-holder for any other terms that might occur in the sum.}
\texttt{Create an expression with logarithms.}
\texttt{Apply \texttt{logrule} to \texttt{f}.}
\end{verbatim}

The meaning of our example rewrite rule is:

```
for all expressions \texttt{x} and \texttt{y}, rewrite \texttt{log(x) + log(y)} by \texttt{log(x * y)}.''
```

Patterns generally have both operation names (here, \texttt{\texttt{log}} and \texttt{\texttt{+}}) and variables (here, \texttt{x} and \texttt{y}).

By default, every operation name stands for itself. Thus \texttt{\texttt{log}} matches only ‘‘\texttt{\texttt{log}}’’ and not any other operation such as \texttt{\texttt{\texttt{sin}}}.

On the other hand, variables do not stand for themselves. Rather, a variable denotes a \texttt{pattern variable} that is free to match any expression whatsoever.

When a rewrite rule is applied, a process called \texttt{pattern matching} goes to work by systematically scanning the subexpressions of the argument. When a subexpression is found that ‘‘matches’’ the pattern, the subexpression is replaced by the right-hand side of the rule. The details of what happens will be covered later.

The customary Axiom notation for patterns is actually a shorthand for a longer, more general notation. Pattern variables can be made explicit by using a percent (\texttt{\%}) as the first character of the variable name. To say that a name stands for itself, you can prefix that name with a quote operator (\texttt{'}). Although the current Axiom parser does not let you quote an operation name, this more general notation gives you an alternate way of giving the same rewrite rule:

\begin{verbatim}
\end{verbatim}
\begin{verbatim}
rule log(%x) + log(%y) == log(x * y)
\end{verbatim}
This longer notation gives you patterns that the standard notation won’t handle.
For example, the rule
\begin{verbatim}
rule %f(c * 'x) == c*%f(x)
\end{verbatim}
means ‘for all \axiom{f} and \axiom{c}, replace \axiom{f(y)} by \axiom{c * f(x)} when \axiom{y} is the product of \axiom{c} and the explicit variable \axiom{x}.’’

Thus the pattern can have several adornments on the names that appear there. Normally, all these adornments are dropped in the substitution on the right-hand side.

To summarize:

\begin{verbatim}
\begin{Important}
To enter a single rule in Axiom, use the following syntax:
\spadkey{rule}
\centerline{{\tt rule \it leftHandSide} == \it rightHandSide}}
The \{\it leftHandSide\} is a pattern to be matched and the \{\it rightHandSide\} is its substitution.
The rule is an object of type \axiomType{RewriteRule} that can be assigned to a variable and applied to expressions to transform them.
\end{Important}
\end{verbatim}

Rewrite rules can be collected into rulesets so that a set of rules can be applied at once. Here is another simplification rule for logarithms. \begin{verbatim}
\texttt{y * log(x) == log(x ** y)} for any \axiom{x} and \axiom{y}.\) If instead of giving a single rule following the reserved word \axiom{rule} you give a ‘‘pile’’ of rules, you create what is called a \{\it ruleset\}. Like rules, rulesets are objects in Axiom and can be assigned to variables. You will find it useful to group commonly used rules into input files, and read them in as needed.
\xtc{Create a ruleset named \axiom{logrules}.}
\begin{spadsrc}
\bound{logrules} := rule
log(x) + log(y) == log(x * y)
y * log x == log(x ** y)
\end{spadsrc}
\xtc{Again, create an expression \axiom{f} containing logarithms.
We have allowed pattern variables to match arbitrary expressions in the above examples. Often you want a variable only to match expressions satisfying some predicate. For example, we may want to apply the transformation `\text{\narrowDisplay{y \log(x) = \log(x^y)}}` only when `\axiom{y}` is an integer.

The way to restrict a pattern variable `\axiom{y}` by a predicate `\axiom{f(y)}` is by using a vertical bar `\axiomSyntax{|}`, which means 'such that,' in much the same way it is used in function definitions. You do this only once, but at the earliest (meaning deepest and leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.

```spadsrc```
logrules2 := rule
    log(x) + log(y) == log(x * y)
    (y | integer? y) * log x == log(x ** y)
```

Compare this with the result of applying the previous set of rules.

```spadpaste```
f
```

You should be aware that you might need to apply a function like \spadfun{integer} within your predicate expression to actually apply the test function.

Here we use \spadfun{integer} because \spad{n} has type \spadtype{Expression Integer} but \spadfun{even?} is an operation defined on integers.

```spadpaste```
evenRule := rule cos(x)**(n | integer? n and even? integer n) == (1-sin(x)**2)**(n/2)
```

Here is the application of the rule.
\begin{spadpaste}
\text{evenRule}(\cos(x)^2)
\end{spadpaste}

This is an example of some of the usual identities involving products of sines and cosines.
\begin{spadsrc}
\begin{axiom}
\bound{sinCosProducts} == rule
\sin(x) * \sin(y) == (\cos(x-y) - \cos(x + y))/2 \\
\cos(x) * \cos(y) == (\cos(x-y) + \cos(x+y))/2 \\
\sin(x) * \cos(y) == (\sin(x-y) + \sin(x + y))/2
\end{axiom}
\end{spadsrc}

Another qualification you will often want to use is to allow a pattern to match an identity element. Using the pattern \axiom{x + y}, for example, neither \axiom{x} nor \axiom{y} matches the expression \axiom{0}. Similarly, if a pattern contains a product \axiom{x*y} or an exponentiation \axiom{x**y}, then neither \axiom{x} or \axiom{y} matches \axiom{1}.

If identical elements were matched, pattern matching would generally loop. Here is an expansion rule for exponentials.
\begin{spadpaste}
\text{exprule} := \text{rule exp(a + b) == exp(a) * exp(b)}
\end{spadpaste}

This rule would cause infinite rewriting on this if either \axiom{a} or \axiom{b} were allowed to match \axiom{0}.
\begin{spadpaste}
\text{exprule exp x}
\end{spadpaste}

There are occasions when you do want a pattern variable in a sum or product to match \axiom{0} or \axiom{1}. If so, prefix its name with a \axiomSyntax{?} whenever it appears in a left-hand side of a rule.
For example, consider the following rule for the exponential integral:
\[
\int \left(\frac{y+e^x}{x}\right)\, dx = \int \frac{y}{x}\, dx + \text{Ei}(x) \quad \forall \, x \text{ and } y.
\]
for any \(x\) and \(y\). This rule is valid for \(y = 0\). One solution is to create a \texttt{Ruleset} with two rules, one with and one without \texttt{y}. A better solution is to use an ‘optional’ pattern variable.

\[
\texttt{Define rule } \texttt{eirule} \texttt{ with a pattern variable } \texttt{?y} \texttt{ to indicate that an expression may or may not occur.}
\]

\[
\texttt{eirule := rule integral((?y + \exp x)/x,x) == integral(y/x,x) + \text{Ei} x \bound{eirule}}
\]

\[
\texttt{Apply rule } \texttt{eirule} \texttt{ to an integral without this term.}
\]

\[
\texttt{eirule integral(\exp u/u, u) \free{eirule}}
\]

\[
\texttt{Apply rule } \texttt{eirule} \texttt{ to an integral with this term.}
\]

\[
\texttt{eirule integral(sin u + \exp u/u, u) \free{eirule}}
\]

Here is one final adornment you will find useful. When matching a pattern of the form \texttt{x + y} to an expression containing a long sum of the form \texttt{a +\ldots+ b}, there is no way to predict in advance which subset of the sum matches \texttt{x} and which matches \texttt{y}. Aside from efficiency, this is generally unimportant since the rule holds for any possible combination of matches for \texttt{x} and \texttt{y}. In some situations, however, you may want to say which pattern variable is a sum (or product) of several terms, and which should match only a single term. To do this, put a prefix colon \texttt{Syntax{}} before the pattern variable that you want to match multiple terms.

\[
\texttt{The remaining rules involve operators } \texttt{u} \texttt{ and } \texttt{v}.
\]

\[
\texttt{u := operator 'u \bound{u}}
\]

\[
\texttt{These definitions tell Axiom that } \texttt{u} \texttt{ and } \texttt{v} \texttt{ are formal operators to be used in expressions.}
\]

\[
\texttt{v := operator 'v \bound{v}}
\]
First define \texttt{myRule} with no restrictions on the pattern variables \texttt{x} and \texttt{y}.

\begin{verbatim}
\spadpaste{myRule := rule u(x + y) == u x + v y \free{u v}\bound{m}}
\end{verbatim}

Apply \texttt{myRule} to an expression.

\begin{verbatim}
\spadpaste{myRule u(a + b + c + d) \free{m}}
\end{verbatim}

Define \texttt{myOtherRule} to match several terms so that the rule gets applied recursively.

\begin{verbatim}
\spadpaste{myOtherRule := rule u(:x + y) == u x + v y \free{u v}\bound{m2}}
\end{verbatim}

Apply \texttt{myOtherRule} to the same expression.

\begin{verbatim}
\spadpaste{myOtherRule u(a + b + c + d) \free{m2}}
\end{verbatim}

Here are some final remarks on pattern matching. Pattern matching provides a very useful paradigm for solving certain classes of problems, namely, those that involve transformations of one form to another and back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply increases. Thus it is good practice to organize the sets of rules you use optimally so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers. You should avoid using pattern matching to handle hidden algebraic relationships that can go undetected by other programs. As a simple example, a symbol such as ‘‘J’’ can easily be used to represent the square root of \texttt{axiom{-1}} or some other important algebraic quantity. Many algorithms branch on whether an expression is zero or not, then divide by that expression if it is not. If you fail to simplify an expression involving powers of \texttt{axiom{J}} to \texttt{axiom{-1,}} algorithms may incorrectly assume an expression is non-zero, take a wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain. In Axiom, objects of one domain are transformed to objects of other domains using well-defined \texttt{axiomFun{coerce}} operations.
Pattern matching should be used on objects that are all the same type. Thus if your application can be handled by type \texttt{\textbackslash axiomType\{Expression\}} in Axiom and you think you need pattern matching, consider this choice carefully. You may well be better served by extending an existing domain or by building a new domain of objects for your application.

\begin{patch}{ugUserRulesPagePatch1}
\begin{paste}{ugUserRulesPageFull1}{ugUserRulesPageEmpty1}
\pastebutton{ugUserRulesPageFull1}{\hidepaste}
\indentrel{5}\spadcommand{logrule := rule log(x) + log(y) == log(x * y)}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserRulesPagePatch2}
\begin{paste}{ugUserRulesPageFull2}{ugUserRulesPageEmpty2}
\pastebutton{ugUserRulesPageFull2}{\hidepaste}
\indentrel{5}\spadcommand{f := log \sin x + log x}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserRulesPagePatch3}
\begin{paste}{ugUserRulesPageFull3}{ugUserRulesPageEmpty3}
\pastebutton{ugUserRulesPageFull3}{\hidepaste}
\indentrel{5}\spadcommand{logrule f\free{f}\free{logrule}}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(4)
{log(y) + log(x) + %C == log(x y) + %C,}

y log(x) == log(x)
Type: Ruleset(Integer,Integer,Expression Integer)
\end{verbatim}

\end{patch}

\begin{patch}
\begin{verbatim}
(5) a log(sin(x)) - 2log(x)
Type: Expression Integer
\end{verbatim}
\end{patch}

\end{patch}

\begin{patch}
\begin{verbatim}
(5) a log(sin(x)) - 2log(x)
Type: Expression Integer
\end{verbatim}
\end{patch}

\end{patch}

\begin{patch}
\begin{verbatim}
(5) a log(sin(x)) - 2log(x)
Type: Expression Integer
\end{verbatim}
\end{patch}

\end{patch}

\end{patch}
(6) \(\log() \) 2 \(x \)

Type: Expression Integer
\begin{verbatim}
1
(9) a \log(\sin(x)) + \log()
2
x
\end{verbatim}

\begin{verbatim}
1
n
(10) \cos(x) == (- \sin(x) + 1)
\end{verbatim}
\begin{verbatim}
2
(11) \ - \ \sin(x) \ + \ 1
Type: Expression Integer
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
(13) \ \sin(a)\sin(b) \ + \ \cos(2a)\sin(2a) \ + \ \cos(a)\cos(b)
Type: Expression Integer
\end{verbatim}
\begin{spadcommand}{g := \sin(a) \ast \sin(b) + \cos(b) \ast \cos(a) + \sin(2a) \ast \cos(2a)\}
\end{spadcommand}

\begin{verbatim}
sin(4a) + 2\cos(b - a)
\end{verbatim}

\begin{verbatim}
(14)
\end{verbatim}

\begin{verbatim}
Type: Expression Integer
\end{verbatim}

\begin{spadcommand}{exprule := rule \exp(a + b) == \exp(a) \ast \exp(b)\}
\end{spadcommand}

\begin{verbatim}
b + a
\end{verbatim}

\begin{verbatim}
(15) %e == %e %e
Type: RewriteRule(Integer,Integer,Expression Integer)
\end{verbatim}

\begin{verbatim}
x
\end{verbatim}

\begin{verbatim}
Type: Expression Integer
\end{verbatim}
\begin{patch}{ugUserRulesPageEmpty16}
\begin{paste}{ugUserRulesPageEmpty16}{ugUserRulesPagePatch16}
\pastebutton{ugUserRulesPageEmpty16}{\showpaste}
\tab{5}\spadcommand{exprule\ x}\free{exprule }}
\end{paste}\end{patch}

\begin{patch}{ugUserRulesPagePatch17}
\begin{paste}{ugUserRulesPageFull17}{ugUserRulesPageEmpty17}
\pastebutton{ugUserRulesPageFull17}{\hidepaste}
\tab{5}\spadcommand{eirule := rule\ integral((?y + exp\ x)/x,x) == integral(y/x,x) + Ei\ x}\bound{eirule }
\indentrel{3}\begin{verbatim}
17) \text{d} \%N = \text{integral}(,x) + \text{Ei}(x) \\
\%N x
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserRulesPageEmpty17}
\begin{paste}{ugUserRulesPageEmpty17}{ugUserRulesPagePatch17}
\pastebutton{ugUserRulesPageEmpty17}{\showpaste}
\tab{5}\spadcommand{eirule := rule\ integral((?y + exp\ x)/x,x) == integral(y/x,x) + Ei\ x}\bound{eirule }
\end{paste}\end{patch}

\begin{patch}{ugUserRulesPagePatch18}
\begin{paste}{ugUserRulesPageFull18}{ugUserRulesPageEmpty18}
\pastebutton{ugUserRulesPageFull18}{\hidepaste}
\tab{5}\spadcommand{eirule integral(exp\ u/u, u) free{eirule }}
\indentrel{3}\begin{verbatim}
18) Ei(u)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugUserRulesPageEmpty18}
\begin{paste}{ugUserRulesPageEmpty18}{ugUserRulesPagePatch18}
\pastebutton{ugUserRulesPageEmpty18}{\showpaste}
\tab{5}\spadcommand{eirule integral(exp\ u/u, u) free{eirule }}
\end{paste}\end{patch}

\begin{patch}{ugUserRulesPagePatch19}
\begin{paste}{ugUserRulesPageFull19}{ugUserRulesPageEmpty19}
\pastebutton{ugUserRulesPageFull19}{\hidepaste}
\tab{5}\spadcommand{eirule integral(sin\ u + exp\ u/u, u) free{eirule }}
\indentrel{3}\begin{verbatim}
19) \sin(\%N)\text{d}\%N + Ei(u)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\spadcommand{eirule integral(sin u + exp u/u, u)\free{eirule}}

(20) u
Type: BasicOperator

\spadcommand{v := operator 'v\bound{v}}

(21) v
Type: BasicOperator

\spadcommand{myRule := rule u(x + y) == u x + v y\free{u v m}}

(22) u(y + x) == 'v(y) + 'u(x)
Type: RewriteRule(Integer,Integer,Expression Integer)
1964

\begin{patch}{ugUserRulesPageEmpty22}
\begin{paste}{ugUserRulesPageEmpty22}{ugUserRulesPagePatch22}
\tab{5}\spadcommand{myRule := rule u(x + y) == u x + v y\free{u v }\bound{m }}
\end{paste}
\end{patch}

\begin{patch}{ugUserRulesPagePatch23}
\begin{paste}{ugUserRulesPageFull23}{ugUserRulesPageEmpty23}
\tab{5}\spadcommand{myRule u(a + b + c + d)\free{m }}
\indentrel{3}\begin{verbatim}
(23) v(d + c + b) + u(a)
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserRulesPageEmpty23}
\begin{paste}{ugUserRulesPageEmpty23}{ugUserRulesPagePatch23}
\tab{5}\spadcommand{myRule u(a + b + c + d)\free{m }}
\end{paste}
\end{patch}

\begin{patch}{ugUserRulesPagePatch24}
\begin{paste}{ugUserRulesPageFull24}{ugUserRulesPageEmpty24}
\tab{5}\spadcommand{myOtherRule := rule u(:x + y) == u x + v y\free{u v }\bound{m2 }}
\indentrel{3}\begin{verbatim}
(24) u(y + x) == 'v(y) + 'u(x)
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugUserRulesPageEmpty24}
\begin{paste}{ugUserRulesPageEmpty24}{ugUserRulesPagePatch24}
\tab{5}\spadcommand{myOtherRule := rule u(:x + y) == u x + v y\free{u v }\bound{m2 }}
\end{paste}
\end{patch}

\begin{patch}{ugUserRulesPagePatch25}
\begin{paste}{ugUserRulesPageFull25}{ugUserRulesPageEmpty25}
\tab{5}\spadcommand{myOtherRule u(a + b + c + d)\free{m2 }}
\indentrel{3}\begin{verbatim}
(25) v(c) + v(b) + v(a) + u(d)
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ugUserRulesPageEmpty25}
\begin{paste}{ugUserRulesPageEmpty25}{ugUserRulesPagePatch25}
\pastebutton{ugUserRulesPageEmpty25}{\showpaste}
\tab{5}\spadcommand{myOtherRule u(a + b + c + d)\free{m2 }}
\end{paste}\end{patch}
Chapter 11

Users Guide Chapter 7 (ug07.ht)

--- ug07.ht ---

<table>
<thead>
<tr>
<th>ug07.ht</th>
</tr>
</thead>
</table>

\begin{page}{ugGraphPage}{7. Graphics}
\beginscroll
%

This chapter shows how to use the Axiom graphics facilities under the X Window System. Axiom has \twodim{} and \threedim{} drawing and rendering packages that allow the drawing, coloring, transforming, mapping, clipping, and combining of graphic output from Axiom computations. This facility is particularly useful for investigating
problems in areas such as topology. The graphics package is capable of plotting functions of one or more variables or plotting parametric surfaces and curves. Various coordinate systems are also available, such as polar and spherical.

A graph is displayed in a viewport window and it has a control-panel that uses interactive mouse commands. PostScript and other output forms are available so that Axiom images can be printed or used by other programs.\footnote{PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.}

\begin{page}{ugGraphTwoDPage}{7.1. Two-Dimensional Graphics}
\beginscroll
\% The Axiom \twodim{} graphics package provides the ability to display
\% curves defined by functions of a single real variable
\%
\end{scroll}
\end{page}
curves defined by parametric equations

% implicit non-singular curves defined by polynomial equations

% planar graphs generated from lists of point components.
\enditems
\indent{0}
These graphs

can be modified by specifying various options, such as
calculating points in the polar
coordinate system or changing the size of the graph viewport window.

\beginmenu
\menudownlink{{7.1.1. Plotting Two-Dimensional Functions of One Variable}}
{ugGraphTwoDPlotPage}
\menudownlink{{7.1.2. Plotting Two-Dimensional Parametric Plane Curves}}
{ugGraphTwoDParPage}
\menudownlink{{7.1.3. Plotting Plane Algebraic Curves}}
{ugGraphTwoDPlanePage}
\menudownlink{{7.1.4. Two-Dimensional Options}}{ugGraphTwoDOptionsPage}
\menudownlink{{7.1.5. Color}}{ugGraphColorPage}
\menudownlink{{7.1.6. Palette}}{ugGraphColorPalettePage}
\menudownlink{{7.1.7. Two-Dimensional Control-Panel}}
{ugGraphTwoDControlPage}
\menudownlink{{7.1.8. Operations for Two-Dimensional Graphics}}
{ugGraphTwoDopsPage}
\menudownlink{{7.1.9. Addendum: Building Two-Dimensional Graphs}}
{ugGraphTwoDbuildPage}
\menudownlink{{7.1.10. Addendum: Appending a Graph to a Viewport Window
Containing a Graph}}{ugGraphTwoDappendPage}
\endmenu
\endscroll
\autobuttons
\end{page}

\begin{page}{ugGraphTwoDPlotPage}
\{7.1.1. Plotting Two-Dimensional Functions of One Variable\}
\beginscroll

\begin{verbatim}
\item[-] curves defined by parametric equations
% \item[-] implicit non-singular curves defined by polynomial equations
% \item[-] planar graphs generated from lists of point components.
\enditems
\indent{0}
These graphs

can be modified by specifying various options, such as
calculating points in the polar
coordinate system or changing the size of the graph viewport window.

\beginmenu
\menudownlink{{7.1.1. Plotting Two-Dimensional Functions of One Variable}}
{ugGraphTwoDPlotPage}
\menudownlink{{7.1.2. Plotting Two-Dimensional Parametric Plane Curves}}
{ugGraphTwoDParPage}
\menudownlink{{7.1.3. Plotting Plane Algebraic Curves}}
{ugGraphTwoDPlanePage}
\menudownlink{{7.1.4. Two-Dimensional Options}}{ugGraphTwoDOptionsPage}
\menudownlink{{7.1.5. Color}}{ugGraphColorPage}
\menudownlink{{7.1.6. Palette}}{ugGraphColorPalettePage}
\menudownlink{{7.1.7. Two-Dimensional Control-Panel}}
{ugGraphTwoDControlPage}
\menudownlink{{7.1.8. Operations for Two-Dimensional Graphics}}
{ugGraphTwoDopsPage}
\menudownlink{{7.1.9. Addendum: Building Two-Dimensional Graphs}}
{ugGraphTwoDbuildPage}
\menudownlink{{7.1.10. Addendum: Appending a Graph to a Viewport Window
Containing a Graph}}{ugGraphTwoDappendPage}
\endmenu
\endscroll
\autobuttons
\end{page}

Plotting Two-Dimensional Functions of One Variable

⇒ “notitle” (ugGraphTwoDOptionsPage) 11 on page 1978
— ug07.ht —

\begin{page}{ugGraphTwoDPlotPage}
\{7.1.1. Plotting Two-Dimensional Functions of One Variable\}
\beginscroll
The first kind of \texttt{twodim} graph is that of a curve defined by a function \texttt{y = f(x)} over a finite interval of the \texttt{x} axis.

\beginImportant
The general format for drawing a function defined by a formula \texttt{f(x)} is:
\beginverbatim
\tt draw(f(x), x = a..b, \{it options\})
\endverbatim
where \texttt{a..b} defines the range of \texttt{x}, and where \{\texttt{it options}\} prescribes zero or more options as described in \link{``Two-Dimensional Options''}{ugGraphTwoDOptionsPage} in Section 7.1.4. An example of an option is \texttt{curveColor == bright red()}. An alternative format involving functions \texttt{f} and \texttt{g} is also available.
\endImportant

A simple way to plot a function is to use a formula. The first argument is the formula. For the second argument, write the name of the independent variable (here, \texttt{x}), followed by an \texttt{=}, and the range of values.

\psXtc{Display this formula over the range $0 \leq x \leq 6$. Axiom converts your formula to a compiled function so that the results can be computed quickly and efficiently.}{\graphpaste{draw(sin(tan(x)) - tan(sin(x)), x = 0..6)}}

Notice that Axiom compiled the function before the graph was put on the screen.

\psXtc{Here is the same graph on a different interval. This time we give the graph a title.}{\graphpaste{draw(sin(tan(x)) - tan(sin(x)), x = 10..16)}}

Once again the formula is converted to a compiled function before
any points were computed. If you want to graph the same function on several intervals, it is a good idea to define the function first so that the function has to be compiled only once.
\xtc{
This time we first define the function.
}
\spadpaste{f(x) == (x-1)*(x-2)*(x-3) \bound{f}}
\psXtc{
To draw the function, the first argument is its name and the second is just the range with no independent variable.
}
\graphpaste{draw(f, 0..4) \free{f}}
\epsffile[0 0 295 295]{../ps/2d1vard.ps}
\endscroll
autoscroll
endbuttons
end{page}
The second kind of \twodim{} graph is that of curves produced by parametric equations. Let \axiom{x = f(t)} and \axiom{y = g(t)} be formulas or two functions \axiom{f} and \axiom{g} as the parameter \axiom{t} ranges over an interval \axiom{[a,b]}.

The function \axiomFun{curve} takes the two functions \axiom{f} and \axiom{g} as its parameters.

The general format for drawing a \twodim{} plane curve defined by

\begin{verbatim}
f(x) == (x-1)*(x-2)*(x-3)
end{verbatim}

Type: Void
parametric formulas \(\texttt{x = f(t)}\) and \(\texttt{y = g(t)}\) is:
\[
\texttt{draw(curve(f(t), g(t)), t = a..b, \{it options\})}
\]
where \(\texttt{a..b}\) defines the range of the independent variable \(\texttt{t}\),
and where \(\{\text{it options}\}\) prescribes zero or more options as
described in
\[
\texttt{draw(curve(f(t), g(t)), t = a..b, \{it options\})}
\]
in Section 7.2.4\ignore{ugGraphThreeDOptions}. An example of an option is
\(\texttt{curveColor == bright red()}\).

Here's an example:
\[
\texttt{Define a parametric curve using a range involving}
\texttt{\%pi}, Axiom's way of saying \(\pi\).
\]
For parametric curves, Axiom compiles two
functions, one for each of the functions \(\texttt{f}\) and \(\texttt{g}\).
\[
\texttt{draw(curve(sin(t)*sin(2*t)*sin(3*t),}
\sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2\%pi)}
\]\[
\texttt{draw(curve(cos(t), sin(t)), t = 0..2\%pi)}
\]\[
\texttt{draw(curve(f(t), g(t)), t = a..b, \{it options\})}
\]
if you plan on plotting \(\texttt{x = f(t)}\), \(\texttt{y = g(t)}\) as \(\texttt{t}\)
ranges over several intervals, you may want to define functions
\(\texttt{f}\) and \(\texttt{g}\) first, so
that they need not be recompiled every time you create a new graph. Here's an example:
\[
\texttt{As before, you can first define the functions you wish to draw.}
\]
\[
\texttt{f(t:DFLOAT):DFLOAT == sin(3*t/4) \bound{f}}
\]
Give to `\tt curve` the names of the functions, then write the range without the name of the independent variable.
}
\graphpaste{draw(curve(f,g),0..\%pi) \free{f g}}
}
\epsffile[0 0 295 295]{../ps/2dppcc.ps}

Here is another look at the same curve but over a different range. Notice that `\axiom{f}` and `\axiom{g}` are not recompiled. Also note that Axiom provides a default title based on the first function specified in `\axiomFun{curve}`.
}
\graphpaste{draw(curve(f,g),-4*\%pi..4*\%pi) \free{f g}}
}
\epsffile[0 0 295 295]{../ps/2dppce.ps}

\endscroll
\autobuttons
\end{page}
\spadcommand{f(t:DFLOAT):DFLOAT == sin(3*t/4)}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadcommand{g(t:DFLOAT):DFLOAT == sin(t)}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}

\spadgraph{draw(curve(f,g),0..\%pi)}
A third kind of \twodim{} graph is a non-singular ‘‘solution curve’’ in a rectangular region of the plane. A solution curve is a curve defined by a polynomial equation \axiom{p(x,y) = 0}. Non-singular means that the curve is ‘‘smooth’’ in that it does not cross itself or come to a point (cusp). Algebraically, this means that for any point \axiom{(x,y)} on the curve, that is, a point such that \axiom{p(x,y) = 0}, the partial derivatives \texht{${{{\partial p}\over{\partial x}}(x,y)}$} and \texht{${{{\partial p}\over{\partial y}}(x,y)}$} are not both zero.

\% \beginImportant
The general format for drawing a non-singular solution curve given by a polynomial of the form \axiom{p(x,y) = 0} is:
\% \beginverbatim
\tt draw(p(x,y) = 0, x, y, range == [a..b, c..d],
{\it options})
\endverbatim\nwhere the second and third arguments name the first and second independent variables of \axiom{p}. A \{\tt range\} option is always given to designate a bounding rectangular region of the plane \texht{$a \leq x \leq b, c \leq y \leq d$}. Zero or more additional options as described in \downlink{‘Two-Dimensional Options’}{ugGraphTwoDOptionsPage}.

Plotting Plane Algebraic Curves

⇒ “notitle” (ugGraphTwoDOptionsPage) 11 on page 1978

— ug07.ht —

\beginverbatim
\tt draw(curve(f,g),-4*%pi..4*%pi)\free{f g }
\endverbatim

\beginverbatim
\tt draw(curve(f,g),-4*%pi..4*%pi)\free{f g }
\endverbatim
in Section 7.1.4\ignore{ugGraphTwoDOptions} may be given.
\endImportant
\xtc{We require that the polynomial has rational or integral coefficients. Here is an algebraic curve example (‘‘Cartesian ovals’’):
}{
\spadpaste{p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1) \bound{p}}
}
\psXtc{The first argument is always expressed as an equation of the form
\axiom{p = 0} where \axiom{p} is a polynomial.
}{
\graphpaste{draw(p = 0, x, y, range == [-1..11, -7..7]) \free{p}}
}\epsffile[0 0 295 295]{../ps/2dpaca.ps}
}
Two-Dimensional Options

⇒ “notitle” (ugGraphColorPage) 11 on page 1983
⇒ “notitle” (ugGraphColorPalettePage) 11 on page 1985
⇒ “notitle” (ugGraphColorPage) 11 on page 1983
⇒ “notitle” (ugGraphColorPalettePage) 11 on page 1985

The \axiomFun{draw} commands take an optional list of options, such as \{\tt title\} shown above. Each option is given by the syntax: \{\it name\} \{\tt ==\} \{\it value\}. Here is a list of the available options in the order that they are described below.

<table>
<thead>
<tr>
<th>Adaptive</th>
<th>Clip</th>
<th>Unit</th>
<th>Curve Color</th>
<th>Range</th>
</tr>
</thead>
</table>

The \axiom{adaptive} option turns adaptive plotting on or off. Adaptive plotting uses an algorithm that traverses a graph and computes more points for those parts of the graph with high curvature. The higher the curvature of a region is, the more points the algorithm computes.

\psXtc{The \{\tt adaptive\} option is normally on. Here we turn it off.}{
\graphpaste{draw(sin(1/x),x=-2*%pi..2*%pi, adaptive == false)}
}{
\epsffile[0 0 295 295]{../ps/2doptad.ps}
}

\psXtc{The \{\tt adaptive\} option is normally on. Here we turn it off.}{
\graphpaste{draw(sin(1/x),x=-2*%pi..2*%pi, adaptive == false)}
}{
\epsffile[0 0 295 295]{../ps/2doptad.ps}
}
The `\tt clip` option turns clipping on or off. If on, large values are cut off according to `\axiomFunFrom{clipPointsDefault}{GraphicsDefaults}`.

\graphpaste{draw(tan(x),x=-2*\%pi..2*\%pi, clip == true)}
\epsffile[0 0 295 295]{../ps/2doptcp.ps}

Option `\tt toScale` does plotting to scale if `\tt true` or uses the entire viewport if `\tt false`. The default can be determined using `\axiomFunFrom{drawToScale}{GraphicsDefaults}`.

\graphpaste{draw(sin(x),x=-\%pi..\%pi, toScale == true, unit == [1.0,1.0])}
\epsffile[0 0 295 295]{../ps/2doptsc.ps}

Option `\tt clip` with a range sets point clipping of a graph within the ranges specified in the list `\axiom{[x range,y range]}`. If only one range is specified, clipping applies to the y-axis.

\graphpaste{draw(sec(x),x=-2*\%pi..2*\%pi, clip == [-2*\%pi..2*\%pi, -\%pi..\%pi], unit == [1.0,1.0])}
\epsffile[0 0 295 295]{../ps/2doptcpr.ps}

Option `\tt curveColor` sets the color of the graph curves or lines to be the indicated palette color (see `\downlink{``Color''}{ugGraphColorPage}` in Section 7.1.5\ignore{ugGraphColor} and `\downlink{``Palette''}{ugGraphColorPalettePage}` in Section 7.1.6\ignore{ugGraphColorPalette}).

\graphpaste{draw(sin(x),x=-\%pi..\%pi, curveColor == bright red())}
\epsffile[0 0 295 295]{../ps/2doptcvc.ps}

Option `\tt pointColor` sets the color of the graph points to the indicated palette color.
(see \link{``Color''}{ugGraphColorPage} in Section 7.1.5\ignore{ugGraphColor} and \link{``Palette''}{ugGraphColorPalettePage} in Section 7.1.6\ignore{ugGraphColorPalette}).

\begin{example}
\graphpaste{draw(sin(x),x=-\pi..\pi, pointColor == pastel yellow())}
\end{example}

\begin{example}
\epsffile[0 0 295 295]{../ps/2doptptc.ps}
\end{example}

Option \tti{unit} sets the intervals at which the axis units are plotted according to the indicated steps \axiom{x} interval, \axiom{y} interval.

\begin{example}
\graphpaste{draw(curve(9*sin(3*t/4),8*sin(t)),
t = -4*\pi..4*\pi, unit == [2.0,1.0])}
\end{example}

\begin{example}
\epsffile[0 0 295 295]{../ps/2doptut.ps}
\end{example}

Option \tti{range} sets the range of variables in a graph to be within the ranges for solving plane algebraic curve plots.

\begin{example}
\graphpaste{draw(y**2 + y - (x**3 - x) = 0, x, y,
range == [-2..2,-2..1], unit==[1.0,1.0])}
\end{example}

\begin{example}
\epsffile[0 0 295 295]{../ps/2doptrga.ps}
\end{example}

A second example of a solution plot.

\begin{example}
\graphpaste{draw(x**2 + y**2 = 1, x, y,
range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])}
\end{example}

\begin{example}
\epsffile[0 0 295 295]{../ps/2doptrgb.ps}
\end{example}

Option \tti{coordinates} indicates the coordinate system in which the graph is plotted.
The default is to use the Cartesian coordinate system.
For more details, see \link{``Coordinate System Transformations''}{ugGraphCoordPage} in
Section 7.2.7\ignore{ugGraphCoord} \texttt{.}{or \axiomType{CoordinateSystems}.}

\graphpaste{draw(curve(sin(5*t),t),t=0..2*\%pi, coordinates == polar)}
}\{ \epsffile[0 0 295 295]{../ps/2doptplr.ps} }
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugGraphTwoDOptionsPagePatch1}
\begin{paste}{ugGraphTwoDOptionsPageFull1}{ugGraphTwoDOptionsPageEmpty1}
\pastebutton{ugGraphTwoDOptionsPageFull1}{\hidepaste}
\tab{5}\spadgraph{draw(sin(1/x),x=-2*\%pi..2*\%pi, adaptive == false)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage1.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphtwodoptionspage1}}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty1}
\begin{paste}{ugGraphTwoDOptionsPageEmpty1}{ugGraphTwoDOptionsPagePatch1}
\pastebutton{ugGraphTwoDOptionsPageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(sin(1/x),x=-2*\%pi..2*\%pi, adaptive == false)}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPagePatch2}
\begin{paste}{ugGraphTwoDOptionsPageFull2}{ugGraphTwoDOptionsPageEmpty2}
\pastebutton{ugGraphTwoDOptionsPageFull2}{\hidepaste}
\tab{5}\spadgraph{draw(tan(x),x=-2*\%pi..2*\%pi, clip == true)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphtwodoptionspage2}}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty2}
\begin{paste}{ugGraphTwoDOptionsPageEmpty2}{ugGraphTwoDOptionsPagePatch2}
\pastebutton{ugGraphTwoDOptionsPageEmpty2}{\showpaste}
\tab{5}\spadgraph{draw(tan(x),x=-2*\%pi..2*\%pi, clip == true)}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPagePatch3}
\begin{paste}{ugGraphTwoDOptionsPageFull3}{ugGraphTwoDOptionsPageEmpty3}
\pastebutton{ugGraphTwoDOptionsPageFull3}{\hidepaste}
\tab{5}\spadgraph{draw(sin(x),x=-\%pi..\%pi, toScale == true, unit == [1.0,1.0])}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage3.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphtwodoptionspage3}}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty3}
\begin{paste}{ugGraphTwoDOptionsPageEmpty3}{ugGraphTwoDOptionsPagePatch3}
\pastebutton{ugGraphTwoDOptionsPageEmpty3}{\showpaste}
\tab{5}\spadgraph{draw(sin(x),x=-\%pi..\%pi, toScale == true, unit == [1.0,1.0])}
\end{paste}\end{patch}
\tab{5}\spadgraph{draw(curve(9*\sin(3*t/4),8*\sin(t)), t = -4*\%pi..4*\%pi, unit == [2.0,1.0])}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPagePatch8}
\begin{paste}{ugGraphTwoDOptionsPageFull8}{ugGraphTwoDOptionsPageEmpty8}
\pastebutton{ugGraphTwoDOptionsPageFull8}{\hidepaste}
\tab{5}\spadgraph{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1], unit==[1.0,1.0])}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage8.view/image}}{viewalone}}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty8}
\begin{paste}{ugGraphTwoDOptionsPageEmpty8}{ugGraphTwoDOptionsPagePatch8}
\pastebutton{ugGraphTwoDOptionsPageEmpty8}{\showpaste}
\tab{5}\spadgraph{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1], unit==[1.0,1.0])}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPagePatch9}
\begin{paste}{ugGraphTwoDOptionsPageFull9}{ugGraphTwoDOptionsPageEmpty9}
\pastebutton{ugGraphTwoDOptionsPageFull9}{\hidepaste}
\tab{5}\spadgraph{draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage9.view/image}}{viewalone}}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty9}
\begin{paste}{ugGraphTwoDOptionsPageEmpty9}{ugGraphTwoDOptionsPagePatch9}
\pastebutton{ugGraphTwoDOptionsPageEmpty9}{\showpaste}
\tab{5}\spadgraph{draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])}
\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPagePatch10}
\begin{paste}{ugGraphTwoDOptionsPageFull10}{ugGraphTwoDOptionsPageEmpty10}
\pastebutton{ugGraphTwoDOptionsPageFull10}{\hidepaste}
\tab{5}\spadgraph{draw(curve(sin(5*t),t),t=0..2*\%pi, coordinates == polar)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodoptionspage10.view/image}}{viewalone}}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDOptionsPageEmpty10}
\begin{paste}{ugGraphTwoDOptionsPageEmpty10}{ugGraphTwoDOptionsPagePatch10}
\pastebutton{ugGraphTwoDOptionsPageEmpty10}{\showpaste}
\tab{5}\spadgraph{draw(curve(sin(5*t),t),t=0..2*\%pi, coordinates == polar)}
\end{paste}\end{patch}

\hline
Color

— ug07.ht —
The domain \texttt{Color} provides operations for manipulating colors in \texttt{twodim} graphs. Colors are objects of \texttt{Color}. Each color has a \texttt{hue} and a \texttt{weight}. Hues are represented by integers that range from \texttt{1} to the \texttt{numberOfHues()}\{Color\}, normally \texttt{27}. Weights are floats and have the value \texttt{1.0} by default.

\begin{itemize}
\item \texttt{color}\funArgs{integer} creates a color of hue \texttt{integer} and weight \texttt{1.0}.
\item \texttt{hue}\funArgs{color} returns the hue of \texttt{color} as an integer.
\item \texttt{red}, \texttt{blue}, \texttt{green}, and \texttt{yellow} create colors of that hue with weight \texttt{1.0}.
\item \texttt{color} \texttt{1} + \texttt{color} \texttt{2} returns the color that results from additively combining the indicated \texttt{color} \texttt{1} and \texttt{color} \texttt{2}. Color addition is not commutative: changing the order of the arguments produces different results.
\item \texttt{integer} \texttt{* color} changes the weight of \texttt{color} by \texttt{integer} without affecting its hue.
\end{itemize}

These functions can be used to change the point and curve colors for \texttt{twodim} and \texttt{threedim} graphs. Use the \texttt{pointColor} option for points.

\begin{itemize}
\item \texttt{pointColor \texttt{color}}
\end{itemize}

\begin{verbatim}
\graphpaste{draw(x**2,x=-1..1,pointColor == green())}
\end{verbatim}

\epsffile[0 0 295 295]{../ps/23dcola.ps}
Use the `{tt curveColor}` option for curves.

```plaintext
\graphpaste{draw(x**2,x=-1..1,curveColor == color(13) + 2*blue())}
\epsffile[0 0 295 295]{../ps/23dcolb.ps}
```

Palette

```plaintext
\begin{page}{ugGraphColorPalettePage}{7.1.6. Palette}
\beginscroll
```
Domain \texttt{Palette} is the domain of shades of colors: \texttt{dark}, \texttt{dim}, \texttt{bright}, \texttt{pastel}, and \texttt{light},
designated by the integers \texttt{1} through \texttt{5}, respectively.

Colors are normally ‘bright.’

To change the shade of a color, apply the name of a shade to it.

The expression \texttt{shade(color)} returns the value of a shade of \texttt{color}.

The expression \texttt{hue(color)} returns its hue.

Palettes can be used in specifying colors in \texttt{twodim{}} graphs.

The expression \texttt{shade(red())} returns the value of a shade of \texttt{red}.

\texttt{shade red()}
\tab{5}\spadcommand{shade \texttt{red()}}
\end{paste}\end{patch}

\begin{patch}{ugGraphColorPalettePagePatch2}
\begin{paste}{ugGraphColorPalettePageFull2}{ugGraphColorPalettePageEmpty2}
\pastebutton{ugGraphColorPalettePageFull2}{\hidepaste}
\tab{5}\spadcommand{myFavoriteColor := \texttt{dark blue()\bound{mfc}}}
\indentrel{3}\begin{verbatim}
(2) \[\text{Hue: 22 Weight: 1.0}\] from the Dark palette
Type: Palette
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugGraphColorPalettePageEmpty2}
\begin{paste}{ugGraphColorPalettePageEmpty2}{ugGraphColorPalettePagePatch2}
\pastebutton{ugGraphColorPalettePageEmpty2}{\showpaste}
\tab{5}\spadcommand{myFavoriteColor := \texttt{dark blue()\bound{mfc}}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphColorPalettePagePatch3}
\begin{paste}{ugGraphColorPalettePageFull3}{ugGraphColorPalettePageEmpty3}
\pastebutton{ugGraphColorPalettePageFull3}{\hidepaste}
\tab{5}\spadcommand{shade myFavoriteColor\free{mfc}}
\indentrel{3}\begin{verbatim}
(3) 1
Type: \texttt{PositiveInteger}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugGraphColorPalettePageEmpty3}
\begin{paste}{ugGraphColorPalettePageEmpty3}{ugGraphColorPalettePagePatch3}
\pastebutton{ugGraphColorPalettePageEmpty3}{\showpaste}
\tab{5}\spadcommand{shade myFavoriteColor\free{mfc}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphColorPalettePagePatch4}
\begin{paste}{ugGraphColorPalettePageFull4}{ugGraphColorPalettePageEmpty4}
\pastebutton{ugGraphColorPalettePageFull4}{\hidepaste}
\tab{5}\spadcommand{hue myFavoriteColor\free{mfc}}
\indentrel{3}\begin{verbatim}
(4) \text{Hue: 22 Weight: 1.0}
Type: \texttt{Color}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugGraphColorPalettePageEmpty4}
\begin{paste}{ugGraphColorPalettePageEmpty4}{ugGraphColorPalettePagePatch4}
\pastebutton{ugGraphColorPalettePageEmpty4}{\showpaste}
\tab{5}\spadcommand{hue myFavoriteColor\free{mfc}}
\end{paste}
\end{patch}
Once you have created a viewport, move your mouse to the viewport and click with your left mouse button to display a control-panel. The panel is displayed on the side of the viewport closest to where you clicked. Each of the buttons which toggle on and off show the current state of the graph.

\subsubsection{Transformations}

Object transformations are executed from the control-panel by mouse-activated potentiometer windows.

\item [Scale:] To scale a graph, click on a mouse button within the \{\bf Scale\} window in the upper left corner of the control-panel. The axes along which the scaling is to occur are indicated by setting the toggles above the arrow. With \{\tt X On\} and \{\tt Y On\} appearing, both axes are selected and scaling is uniform. If either is not selected, for example, if \{\tt X Off\} appears, scaling is non-uniform.

\item [Translate:] To translate a graph, click the mouse in the \{\bf Translate\} window in the direction you wish the graph to move. This window is located in the upper right corner of the control-panel.
Along the top of the \bf{Translate} window are two buttons for selecting the direction of translation. Translation along both coordinate axes results when \tt{X On} and \tt{Y On} appear or along one axis when one is on, for example, \tt{X On} and \tt{Y Off} appear.

\subsubsection{Messages}

The window directly below the transformation potentiometer windows is used to display system messages relating to the viewport and the control-panel. The following format is displayed:

\centerline{\[scaleX, scaleY\] \axiom{>} graph\axiom{<} [translateX, translateY] \newline}

The two values to the left show the scale factor along the \tt{X} and \tt{Y} coordinate axes. The two values to the right show the distance of translation from the center in the \tt{X} and \tt{Y} directions. The number in the center shows which graph in the viewport this data pertains to. When multiple graphs exist in the same viewport, the graph must be selected (see ‘‘Multiple Graphs,’’ below) in order for its transformation data to be shown, otherwise the number is 1.

\subsubsection{Multiple Graphs}

The \bf{Graphs} window contains buttons that allow the placement of \twodim{} graphs into one of nine available slots in any other \twodim{} viewport. In the center of the window are numeral buttons from one to nine that show whether a graph is displayed in the viewport. Below each number button is a button showing whether a graph that is present is selected for application of some transformation. When the caret symbol is displayed, then the graph in that slot will be manipulated. Initially, the graph for which the viewport is created occupies the first slot, is displayed, and is selected.

\item[Clear:] The \bf{Clear} button deselects every viewport graph slot. A graph slot is reselected by selecting the button below its number.

\item[Query:] The \bf{Query} button is used to display the scale and translate data for the indicated graph. When this button is selected the message ‘‘Click on the graph to query’’ appears. Select a slot number button from the \bf{Graphs} window. The scaling factor and
The translation offset of the graph are then displayed in the message window.

\item[Pick:] The \{bf Pick\} button is used to select a graph to be placed or dropped into the indicated viewport. When this button is selected, the message \``Click on the graph to pick\'\' appears. Click on the slot with the graph number of the desired graph. The graph information is held waiting for you to execute a \{bf Drop\} in some other graph.

\item[Drop:] Once a graph has been picked up using the \{bf Pick\} button, the \{bf Drop\} button places it into a new viewport slot. The message \``Click on the graph to drop\'\' appears in the message window when the \{bf Drop\} button is selected. By selecting one of the slot number buttons in the \{bf Graphs\} window, the graph currently being held is dropped into this slot and displayed.

\indent{0}

\subsubsection{Buttons}

%
\indent{0}
\begin{items}
\item[Axes] turns the coordinate axes on or off.
\item[Units] turns the units along the \{tt x\} and \{tt y\} axis on or off.
\item[Box] encloses the area of the viewport graph in a bounding box, or removes the box if already enclosed.
\item[Pts] turns on or off the display of points.
\item[LInes] turns on or off the display of lines connecting points.
\item[PS] writes the current viewport contents to a file \{bf axiom2D.ps\} or to a name specified in the user\'s \{bf .Xdefaults\} file. The file is placed in the directory from which Axiom or the \{bf viewalone\} program was invoked.
\item[Reset] resets the object transformation characteristics and attributes back to their initial states.
\item[Hide] makes the control-panel disappear.
\end{items}
\item[Quit] queries whether the current viewport session should be terminated.
\enditems
\indent{0}
\endscroll
\autobuttons
\end{page}

Operations for Two-Dimensional Graphics

— ug07.ht —

\begin{page}{ugGraphTwoDopsPage}
{7.1.8. Operations for Two-Dimensional Graphics}
\beginscroll

Here is a summary of useful Axiom operations for \twodim{} graphics. Each operation name is followed by a list of arguments. Each argument is written as a variable informally named according to the type of the argument (for example, {\it integer}). If appropriate, a default value for an argument is given in parentheses immediately following the name.

\%\texht{\bgroup\hbadness = 10001\sloppy}{% \item[axiomFun{adaptive}]\funArgs{\optArg{boolean\argDef{true}}} sets or indicates whether graphs are plotted according to the adaptive refinement algorithm.

\item[axiomFun{axesColorDefault}]\funArgs{\optArg{color\argDef{dark blue()}}} sets or indicates the default color of the axes in a \twodim{} graph viewport.

\item[axiomFun{clipPointsDefault}]\funArgs{\optArg{boolean\argDef{false}}} sets or indicates whether point clipping is to be applied as the default for graph plots.

\item[axiomFun{drawToScale}]\funArgs{\optArg{boolean\argDef{false}}} sets or
indicates whether the plot of a graph is ‘to scale’ or uses the entire viewport space as the default.

\item \texttt{\texttt{lineColorDefault}} \funArgs{\optArg{color\argDef{pastel yellow()}}} sets or indicates the default color of the lines or curves in a \texttt{\texttt{twodim()}} graph viewport.

\item \texttt{\texttt{maxPoints}} \funArgs{\optArg{integer\argDef{500}}}
sets or indicates the default maximum number of possible points to be used when constructing a \texttt{\texttt{twodim()}} graph.

\item \texttt{\texttt{minPoints}} \funArgs{\optArg{integer\argDef{21}}}
sets or indicates the default minimum number of possible points to be used when constructing a \texttt{\texttt{twodim()}} graph.

\item \texttt{\texttt{pointColorDefault}} \funArgs{\optArg{color\argDef{bright red()}}} sets or indicates the default color of the points in a \texttt{\texttt{twodim()}} graph viewport.

\item \texttt{\texttt{pointSizeDefault}} \funArgs{\optArg{integer\argDef{5}}}
sets or indicates the default size of the dot used to plot points in a \texttt{\texttt{twodim()}} graph.

\item \texttt{\texttt{screenResolution}} \funArgs{\optArg{integer\argDef{600}}}
sets or indicates the default screen resolution constant used in setting the computation limit of adaptively generated curve plots.

\item \texttt{\texttt{unitsColorDefault}} \funArgs{\optArg{color\argDef{dim green()}}} sets or indicates the default color of the unit labels in a \texttt{\texttt{twodim()}} graph viewport.

\item \texttt{\texttt{viewDefaults}} \funArgs{}
resets the default settings for the following attributes: point color, line color, axes color, units color, point size, viewport upper left-hand corner position, and the viewport size.

\item \texttt{\texttt{viewPosDefault}} \funArgs{\optArg{list\argDef{\[100,100\]}}}
sets or indicates the default position of the upper left-hand corner of a \texttt{\texttt{twodim()}} viewport, relative to the display root window. The upper left-hand corner of the display is considered to be at the (0, 0) position.

\item \texttt{\texttt{viewSizeDefault}} \funArgs{\optArg{list\argDef{\[200,200\]}}}
sets or indicates the default size in which two dimensional viewport windows are shown. It is defined by a width and then a height.

\item \texttt{\texttt{viewWriteAvailable}} \funArgs{\optArg{list\argDef{\[" pixmap", "bitmap", "postscript", "image"\]}}}
indicates the possible file types
that can be created with the \axiomFunFrom{write}{TwoDimensionalViewport} function.

\item\[\axiomFun{viewWriteDefault}\]\funArgs{\optArg{\list\argDef{[]}}} sets or indicates the default types of files, in addition to the \bf{data} file, that are created when a \axiomFun{write} function is executed on a viewport.

\item\[\axiomFun{units}\]\funArgs{viewport, integer\argDef{1}, string\argDef{"off"}} turns the units on or off for the graph with index \it{integer}.

\item\[\axiomFun{axes}\]\funArgs{viewport, integer\argDef{1}, string\argDef{"on"}} turns the axes on or off for the graph with index \it{integer}.

\item\[\axiomFun{close}\]\funArgs{viewport} closes \it{viewport}.

\item\[\axiomFun{connect}\]\funArgs{viewport, integer\argDef{1}, string\argDef{"on"}} declares whether lines connecting the points are displayed or not.

\item\[\axiomFun{controlPanel}\]\funArgs{viewport, string\argDef{"off"}} declares whether the \twodim{} control-panel is automatically displayed or not.

\item\[\axiomFun{graphs}\]\funArgs{viewport} returns a list describing the state of each graph. If the graph state is not being used this is shown by \tt{"undefined"}, otherwise a description of the graph's contents is shown.

\item\[\axiomFun{graphStates}\]\funArgs{viewport} displays a list of all the graph states available for \it{viewport}, giving the values for every property.

\item\[\axiomFun{key}\]\funArgs{viewport} returns the process ID number for \it{viewport}.

\item\[\axiomFun{move}\]\funArgs{viewport, \subscriptText{integer}{x}(viewPosDefault), \subscriptText{integer}{y}(viewPosDefault)} moves \it{viewport} on the screen so that the
upper left-hand corner of \{\text{viewport}\} is at the position \{(x,y)\}.
%
\item \textbf{options}\{\text{viewport}\}
returns a list of all the \texttt{DrawOption}s used by \{\text{viewport}\}.
%
\item \textbf{points}\{\text{viewport}, \text{integer}\argDef{1}, \text{string}\argDef{"on"}\}
specifies whether the graph points for graph \{\text{integer}\} are to be displayed or not.
%
\item \textbf{region}\{\text{viewport}, \text{integer}\argDef{1}, \text{string}\argDef{"off"}\}
declares whether graph \{\text{integer}\} is or is not to be displayed with a bounding rectangle.
%
\item \textbf{reset}\{\text{viewport}\}
resets all the properties of \{\text{viewport}\}.
%
\item \textbf{resize}\{\text{viewport}, \text{integer}\argDef{\text{width}}, \text{integer}\argDef{\text{height}}\}
resizes \{\text{viewport}\} with a new \{\text{width}\} and \{\text{height}\}.
%
\item \textbf{scale}\{\text{viewport}, \text{integer}\argDef{n}, \text{float}\argDef{x}, \text{float}\argDef{y}\}
scales values for the \{\text{x}\} and \{\text{y}\} coordinates of graph \{\text{n}\}.
%
\item \textbf{show}\{\text{viewport}, \text{integer}\argDef{n}, \text{string}\argDef{"on"}\}
indicates if graph \{\text{n}\} is shown or not.
%
\item \textbf{title}\{\text{viewport}, \text{string}\argDef{"Axiom 2D"}\}
designates the title for \{\text{viewport}\}.
%
\item \textbf{translate}\{\text{viewport}, \text{integer}\argDef{n}, \text{float}\argDef{x}, \text{float}\argDef{y}\}
causes graph \{\text{n}\} to be moved \{\text{x}\} and \{\text{y}\} units in the respective directions.
%
\item \textbf{write}\{\text{viewport}, \text{string}\argDef{directory}, \text{optArg}\{\text{strings}\}\}
if no third argument is given, writes the \{\text{bf data}\} file onto the directory
with extension \{\textbf{data}\}.

The third argument can be a single string
or a list of strings with some or
all the entries \{\texttt{" pixmap"}, \texttt{" bitmap"},
\texttt{" postscript"}, and
\texttt{" image"}\}.

\enditems
\indent{0}
texht\{\egroup\}\}

\endscroll
\autobuttons
\end{page}

Addendum: Building Two-Dimensional Graphs

\begin{page}{ugGraphTwoDbuildPage}
{7.1.9. Addendum: Building Two-Dimensional Graphs}
\beginscroll

In this section we demonstrate how to create \twodim{} graphs from
lists of points and give an example showing how to read the lists
of points from a file.

\subsubsection{Creating a Two-Dimensional Viewport from a List of Points}

Axiom creates lists of points in a \twodim{} viewport by utilizing the
\axiomType{GraphImage} and \axiomType{TwoDimensionalViewport} domains.
In this example, the \axiomFunFrom{makeGraphImage}{GraphImage} function takes a list of lists of points parameter, a list of colors
for each point in the graph, a list of colors for each line in the
graph, and a list of sizes for each point in the graph.

\xtc{
The following expressions create a list of lists of points which will
be read by Axiom and made into a \twodim{} viewport.
}
\spadpaste{p1 := point [1,1]\$(Point DFLOAT) \bound{p1}}

\xtc{
}
\spadpaste{p2 := point [0,1]\$(Point DFLOAT) \bound{p2}}
\}
\[\text{Finally, here is the list.}\]

\[
\text{llp := \{p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12\}}\]

\[
\text{Now we set the point sizes for all components of the graph.}\]
Here are the colors for the points.

Here are the colors for the lines.

Now the \axiomType{GraphImage} is created according to the component specifications indicated above.
The \axiomFun{makeViewport2D}{TwoDimensionalViewport} function now creates a \axiomType{TwoDimensionalViewport} for this graph according to the list of options specified within the brackets.

\begin{axiom}
\graph{makeViewport2D(g,[title("Lines")])\$VIEW2D \free{g}}
\end{axiom}

\%See Figure #.#.

This example demonstrates the use of the \axiomType{GraphImage} functions \axiomFun{component}{GraphImage} and \axiomFun{appendPoint}{GraphImage} in adding points to an empty \axiomType{GraphImage}.

\begin{axiom}
\spad{)clear all \bound{clearAll}}
\end{axiom}

\begin{axiom}
\spad{g := graphImage()\$GRIMAGE \bound{Sg}\free{clearAll}}
\end{axiom}

\begin{axiom}
\spad{p1 := point [0,0]\$(Point DFLOAT) \bound{Sp1}}
\end{axiom}

\begin{axiom}
\spad{p2 := point [.25,.25]\$(Point DFLOAT) \bound{Sp2}}
\end{axiom}

\begin{axiom}
\spad{p3 := point [.5,.5]\$(Point DFLOAT) \bound{Sp3}}
\end{axiom}

\begin{axiom}
\spad{p4 := point [.75,.75]\$(Point DFLOAT) \bound{Sp4}}
\end{axiom}

\begin{axiom}
\spad{p5 := point [1,1]\$(Point DFLOAT) \bound{Sp5}}
\end{axiom}

\begin{axiom}
\spad{component(g,p1)\$GRIMAGE\free{Sg Sp1}\bound{gp1}}
\end{axiom}

\begin{axiom}
\spad{component(g,p2)\$GRIMAGE\free{Sg Sp2}\bound{gp2}}
\end{axiom}
Here is the graph.

\begin{verbatim}
\texttt{g1 := makeGraphImage(g)}
\end{verbatim}

A list of points can also be made into a \axiomType{GraphImage} by using the operation \axiomFun{coerce}{GraphImage}. It is equivalent to adding each point to \axiom{g2} using \axiomFun{component}{GraphImage}.

\begin{verbatim}
\texttt{g2 := coerce([[p1],[p2],[p3],[p4],[p5]])}
\end{verbatim}

Now, create an empty \axiomType{TwoDimensionalViewport}.

\begin{verbatim}
\texttt{v := viewport2D()}
\end{verbatim}

Place the graph into the viewport.

\begin{verbatim}
\texttt{putGraph(v,g2,1)}
\end{verbatim}
Take a look.

\begin{verbatim}
0.0 0.0 1.0 1.0 2.0 4.0
3.0 9.0 4.0 16.0 5.0 25.0
\end{verbatim}

Important

\begin{verbatim}
1. drawPoints(lp:List Point DoubleFloat):VIEW2D ==}
2. g := graphImage()$GRIMAGE
3. for p in lp repeat
4. component(g, p, pointColorDefault(), lineColorDefault(), pointSizeDefault())$GRIMAGE
5. gi := makeGraphImage(g)$GRIMAGE
6. makeViewport2D(gi, [title("Points")])$VIEW2D
7.

10. plotData2D(name, title)
11. f:File(DFLOAT) := open(name, "input")
12. lp:LIST(Point DFLOAT) := empty()
13. while ((x := readIfCan!(f)) case DFLOAT) repeat
14. y := read!(f)
15.
16. plotData2D(name, title)
17. f := open(name, "input")
18. lp := empty()
19. while ((x := readIfCan!(f)) case DFLOAT) repeat
20. y := read!(f)
21.
\end{verbatim}
lp := cons(point [x,y](Point DFLOAT), lp)

% This command will actually create the viewport and the graph if
% the point data is in the file \axiom{"file.data"}.
\beginImportant

\verbatim
plotData2D("file.data", "2D Data Plot")
\endverbatim
\endImportant

\begin{patch}{ugGraphTwoDbuildPagePatch1}
\begin{paste}{ugGraphTwoDbuildPageFull1}{ugGraphTwoDbuildPageEmpty1}
\spadcommand{p1 := point [1,1](Point DFLOAT)}
\verbatim
(1) \[1.0,1.0\]
Type: Point DoubleFloat
\endverbatim
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty1}
\begin{paste}{ugGraphTwoDbuildPageEmpty1}{ugGraphTwoDbuildPagePatch1}
\spadcommand{p1 := point [1,1](Point DFLOAT)}
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPagePatch2}
\begin{paste}{ugGraphTwoDbuildPageFull2}{ugGraphTwoDbuildPageEmpty2}
\spadcommand{p2 := point [0,1](Point DFLOAT)}
\verbatim
(2) \[0.0,1.0\]
Type: Point DoubleFloat
\endverbatim
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty2}
\begin{paste}{ugGraphTwoDbuildPageEmpty2}{ugGraphTwoDbuildPagePatch2}
\spadcommand{p2 := point [0,1](Point DFLOAT)}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch3}
\begin{paste}{ugGraphTwoDbuildPageFull3}{ugGraphTwoDbuildPageEmpty3}
\pastebutton{ugGraphTwoDbuildPageFull3}{\hidepaste}
\tab{5}\spadcommand{p3 := point \[0,0\]}$(Point DFLOAT)$\bound{p3}
\indentrel{3}\begin{verbatim}
(3) \[0.0,0.0\]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty3}
\begin{paste}{ugGraphTwoDbuildPageEmpty3}{ugGraphTwoDbuildPagePatch3}
\pastebutton{ugGraphTwoDbuildPageEmpty3}{\showpaste}
\tab{5}\spadcommand{p3 := point \[0,0\]}$(Point DFLOAT)$\bound{p3}
\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch4}
\begin{paste}{ugGraphTwoDbuildPageFull4}{ugGraphTwoDbuildPageEmpty4}
\pastebutton{ugGraphTwoDbuildPageFull4}{\hidepaste}
\tab{5}\spadcommand{p4 := point \[1,0\]}$(Point DFLOAT)$\bound{p4}
\indentrel{3}\begin{verbatim}
(4) \[1.0,0.0\]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty4}
\begin{paste}{ugGraphTwoDbuildPageEmpty4}{ugGraphTwoDbuildPagePatch4}
\pastebutton{ugGraphTwoDbuildPageEmpty4}{\showpaste}
\tab{5}\spadcommand{p4 := point \[1,0\]}$(Point DFLOAT)$\bound{p4}
\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch5}
\begin{paste}{ugGraphTwoDbuildPageFull5}{ugGraphTwoDbuildPageEmpty5}
\pastebutton{ugGraphTwoDbuildPageFull5}{\hidepaste}
\tab{5}\spadcommand{p5 := point \[1,.5\]}$(Point DFLOAT)$\bound{p5}
\indentrel{3}\begin{verbatim}
(5) \[1.0,0.5\]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty5}
\begin{paste}{ugGraphTwoDbuildPageEmpty5}{ugGraphTwoDbuildPagePatch5}
\pastebutton{ugGraphTwoDbuildPageEmpty5}{\showpaste}
\tab{5}\spadcommand{p5 := point \[1,.5\]}$(Point DFLOAT)$\bound{p5}
\end{paste}\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch6}
\begin{verbatim}
(6) [0.5,0.0]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(7) [0.0,0.5]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(8) [0.5,1.0]
Type: Point DoubleFloat
\end{verbatim}
\begin{verbatim}
(9) [0.25,0.25]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(10) [0.25,0.75]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(11) [0.75,0.75]
Type: Point DoubleFloat
\end{verbatim}
\begin{verbatim}
(12) [0.75,0.25]
Type: Point DoubleFloat
\end{verbatim}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty12}
\begin{paste}{ugGraphTwoDbuildPageEmpty12}{ugGraphTwoDbuildPagePatch12}
\pastebutton{ugGraphTwoDbuildPageEmpty12}{\showpaste}
\begin{verbatim}
(12) \begin{verbatim}
Type: Point DoubleFloat
\end{verbatim}
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch13}
\begin{paste}{ugGraphTwoDbuildPageFull13}{ugGraphTwoDbuildPageEmpty13}
\pastebutton{ugGraphTwoDbuildPageFull13}{\hidepaste}
\begin{verbatim}
(13)
\end{verbatim}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty13}
\begin{paste}{ugGraphTwoDbuildPageEmpty13}{ugGraphTwoDbuildPagePatch13}
\pastebutton{ugGraphTwoDbuildPageEmpty13}{\showpaste}
\begin{verbatim}
(13)
\end{verbatim}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch14}
\begin{paste}{ugGraphTwoDbuildPageFull14}{ugGraphTwoDbuildPageEmpty14}
\pastebutton{ugGraphTwoDbuildPageFull14}{\hidepaste}
\begin{verbatim}
(14) 6
Type: PositiveInteger
\end{verbatim}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty14}
\begin{paste}{ugGraphTwoDbuildPageEmpty14}{ugGraphTwoDbuildPagePatch14}
\pastebutton{ugGraphTwoDbuildPageEmpty14}{\showpaste}
\begin{verbatim}
(14) 6
Type: PositiveInteger
\end{verbatim}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch15}
\begin{verbatim}
(15) 8
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(16) 10
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(17) [6,6,6,8,8,8,10,10,10]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\begin{verbatim}
(18) [Hue: 1 Weight: 1.0] from the Pastel palette

Type: Palette
\end{verbatim}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPageEmpty18}
\begin{paste}{ugGraphTwoDbuildPageEmpty18}{ugGraphTwoDbuildPagePatch18}
\pastebutton{ugGraphTwoDbuildPageEmpty18}{\showpaste}
\tab{5}\spadcommand{pc1 := pastel red()\bound{pc1 }}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch19}
\begin{paste}{ugGraphTwoDbuildPageFull19}{ugGraphTwoDbuildPageEmpty19}
\pastebutton{ugGraphTwoDbuildPageFull19}{\hidepaste}
\tab{5}\spadcommand{pc2 := dim green()\bound{pc2 }}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch20}
\begin{paste}{ugGraphTwoDbuildPageFull20}{ugGraphTwoDbuildPageEmpty20}
\pastebutton{ugGraphTwoDbuildPageFull20}{\hidepaste}
\tab{5}\spadcommand{pc3 := pastel yellow()\bound{pc3 }}
\end{paste}
\end{patch}
\begin{patch}{ugGraphTwoDbuildPagePatch21}
\begin{paste}{ugGraphTwoDbuildPageFull21}{ugGraphTwoDbuildPageEmpty21}
\pastebutton{ugGraphTwoDbuildPageFull21}{\hidepaste}
\tab{5}\spadcommand{lpc := \{pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3\}\free{pc1 pc2 pc3 }}
\end{paste}
\end{patch}
(21)
[[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Pastel palette]
Type: List Palette

(22)
[[Hue: 22 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 1 Weight: 1.0] from the Bright palette,
[Hue: 14 Weight: 1.0] from the Light palette,
[Hue: 11 Weight: 1.0] from the Dim palette,
[Hue: 22 Weight: 1.0] from the Bright palette,
[Hue: 1 Weight: 1.0] from the Dark palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 22 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Light palette]
Type: List Palette
\begin{patch}{ugGraphTwoDbuildPagePatch23}
\begin{paste}{ugGraphTwoDbuildPageFull23}{ugGraphTwoDbuildPageEmpty23}
\pastebutton{ugGraphTwoDbuildPageFull23}{\hidepaste}
\tab{5}\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE\bound{g }\free{llp lpc lc lsize }}
\indentrel{3}\begin{verbatim}
(23) Graph with 12 point lists
Type: GraphImage
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty23}
\begin{paste}{ugGraphTwoDbuildPageEmpty23}{ugGraphTwoDbuildPagePatch23}
\pastebutton{ugGraphTwoDbuildPageEmpty23}{\showpaste}
\tab{5}\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE\bound{g }\free{llp lpc lc lsize }}
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPagePatch24}
\begin{paste}{ugGraphTwoDbuildPageFull24}{ugGraphTwoDbuildPageEmpty24}
\pastebutton{ugGraphTwoDbuildPageFull24}{\hidepaste}
\tab{5}\spadgraph{makeViewport2D(g,[title("Lines")])$VIEW2D\free{g }}
\center{\unixcommand{\inputimage{AXIOM/doc/viewports/uggraphtwodbuildpage24.view/image}}{viewalone spadgraph}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty24}
\begin{paste}{ugGraphTwoDbuildPageEmpty24}{ugGraphTwoDbuildPagePatch24}
\pastebutton{ugGraphTwoDbuildPageEmpty24}{\showpaste}
\tab{5}\spadgraph{makeViewport2D(g,[title("Lines")])$VIEW2D\free{g }}
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPagePatch25}
\begin{paste}{ugGraphTwoDbuildPageFull25}{ugGraphTwoDbuildPageEmpty25}
\pastebutton{ugGraphTwoDbuildPageFull25}{\hidepaste}
\tab{5}\spadcommand{clear all$bound{clearAll }}
\indentrel{3}\begin{verbatim}
(1) Graph with 0 point lists
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty25}
\begin{paste}{ugGraphTwoDbuildPageEmpty25}{ugGraphTwoDbuildPagePatch25}
\pastebutton{ugGraphTwoDbuildPageEmpty25}{\showpaste}
\tab{5}\spadcommand{clear all$bound{clearAll }}
\end{paste}
\end{patch}

\begin{patch}{ugGraphTwoDbuildPagePatch26}
\begin{paste}{ugGraphTwoDbuildPageFull26}{ugGraphTwoDbuildPageEmpty26}
\pastebutton{ugGraphTwoDbuildPageFull26}{\hidepaste}
\tab{5}\spadcommand{g := graphImage()$GRIMAGE\bound{Sg }\free{clearAll }}
\indentrel{3}\begin{verbatim}
(1) Graph with 0 point lists
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(2) [0.0,0.0]
\end{verbatim}

Type: Point DoubleFloat

\begin{verbatim}
(3) [0.25,0.25]
\end{verbatim}

Type: Point DoubleFloat

\begin{verbatim}
(4) [0.5,0.5]
\end{verbatim}

Type: Point DoubleFloat
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty32}
\begin{paste}{ugGraphTwoDbuildPageEmpty32}{ugGraphTwoDbuildPagePatch32}
\pastebutton{ugGraphTwoDbuildPageEmpty32}{\showpaste}
\tab{5}\spadcommand{component(g,p1)\texttt{\$GRIMAGE}}\texttt{\free{Sg Sp1 \bound{gp1 }}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty32}
\begin{paste}{ugGraphTwoDbuildPageEmpty32}{ugGraphTwoDbuildPagePatch32}
\pastebutton{ugGraphTwoDbuildPageEmpty32}{\showpaste}
\tab{5}\spadcommand{component(g,p1)\texttt{\$GRIMAGE}}\texttt{\free{Sg Sp1 \bound{gp1 }}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphTwoDbuildPageEmpty32}
\begin{paste}{ugGraphTwoDbuildPageEmpty32}{ugGraphTwoDbuildPagePatch32}
\pastebutton{ugGraphTwoDbuildPageEmpty32}{\showpaste}
\tab{5}\spadcommand{component(g,p1)\texttt{\$GRIMAGE}}\texttt{\free{Sg Sp1 \bound{gp1 }}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: Void
\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: GraphImage
\end{verbatim}

(12) Graph with 2 point lists

(14) Graph with 5 point lists
\begin{verbatim}
Closed or Undefined TwoDimensionalViewport: "AXIOM2D"
Type: TwoDimensionalViewport
\end{verbatim}

\begin{verbatim}
Closed or Undefined TwoDimensionalViewport: "AXIOM2D"
Type: TwoDimensionalViewport
\end{verbatim}

\begin{verbatim}
Closed or Undefined TwoDimensionalViewport: "AXIOM2D"
Type: Void
\end{verbatim}
Addendum: Appending a Graph to a Viewport Window Containing a Graph

--- ug07.ht ---

This section demonstrates how to append a \twodim{} graph to a viewport already containing other graphs. The default \axiomFun{draw} command places a graph into the first \axiomType{GraphImage} slot position of the \axiomType{TwoDimensionalViewport}.

\xtc{
This graph is in the first slot in its viewport.
}
\spadpaste{v1 := draw(sin(x),x=0..2*\%pi) \bound{v1}}
\xtc{So is this graph.}
The operation \axiomFunFrom{getGraph}{TwoDimensionalViewport} retrieves the \axiomType{GraphImage} \axiom{g1} from the first slot position in the viewport \axiom{v1}.

\axiom{g1 := getGraph(v1,1)}

Now \axiomFunFrom{putGraph}{TwoDimensionalViewport} places \axiom{g1} into the the second slot position of \axiom{v2}.

\axiom{putGraph(v2,g1,2)}

Display the new \axiomType{TwoDimensionalViewport} containing both graphs.

\axiom{makeViewport2D(v2)}

%See Figure #.#.

\begin{verbatim}
(1) TwoDimensionalViewport: "sin x"
Type: TwoDimensionalViewport
\end{verbatim}
\indentrel{3}\begin{verbatim}
(2) TwoDimensionalViewport: "cos x"
Type: TwoDimensionalViewport
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugGraphTwoDappendPagePatch3}
\begin{paste}{ugGraphTwoDappendPageFull3}{ugGraphTwoDappendPageEmpty3}
\indentrel{3}\begin{verbatim}
(3) Graph with 1 point list
Type: GraphImage
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\indentrel{-3}\end{patch}

\indentrel{-3}\end{patch}

\indentrel{-3}\end{patch}

\indentrel{-3}\end{patch}

\indentrel{-3}\end{patch}

\indentrel{-3}\end{patch}

center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphtwodappendpage5.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphtwodappendpage5.view/image}}
The Axiom \three{} graphics package provides the ability to
generate surfaces defined by a function of two real variables
\item generate space curves and tubes defined by parametric equations
\item generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating points in the spherical coordinate system or changing the polygon grid size of a surface.
Plotting Three-Dimensional Functions of Two Variables

The simplest \three{} graph is that of a surface defined by a function of two variables, \axiom{z = f(x,y)}.
The general format for drawing a surface defined by a formula $f(x,y)$ of two variables x and y is:

\begin{verbatim}
\tt draw(f(x,y), x = a..b, y = c..d, \{it options\})
\end{verbatim}

where \tt{a..b} and \tt{c..d} define the range of \tt{x} and \tt{y}, and where \{it options\} prescribes zero or more options as described in \downlink{"Three-Dimensional Options"}{ugGraphThreeDOptionsPage} in Section 7.2.4\ignore{ugGraphThreeDOptions}. An example of an option is \tt{title = "Title of Graph".}

An alternative format involving a function \tt{f} is also available.

\begin{verbatim}
\tt draw(f(-\pi..\pi,-\pi..\pi))
\end{verbatim}

The simplest way to plot a function of two variables is to use a formula. With formulas you always precede the range specifications with the variable name and an \spad{=} sign.

\begin{verbatim}
\graphpaste{draw(cos(x*y),x=-3..3,y=-3..3)}
\end{verbatim}

If you intend to use a function more than once, or it is long and complex, then first give its definition to Axiom.

\begin{verbatim}
\spad{f(x,y) == sin(x)*cos(y)}
\end{verbatim}

To draw the function, just give its name and drop the variables from the range specifications.

\begin{verbatim}
\graphpaste{draw(f,-\pi..\pi,-\pi..\pi)}
\end{verbatim}
\begin{patch}{ugGraphThreeDPlotPagePatch1}
\begin{paste}{ugGraphThreeDPlotPageFull1}{ugGraphThreeDPlotPageEmpty1}
\pastebutton{ugGraphThreeDPlotPageFull1}{\hidepaste}
\tab{5}\spadgraph{\texttt{draw(cos(x*y),x=-3..3,y=-3..3)}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphthreedplotpage1.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphthreedplotpage1}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDPlotPageEmpty1}
\begin{paste}{ugGraphThreeDPlotPageEmpty1}{ugGraphThreeDPlotPagePatch1}
\pastebutton{ugGraphThreeDPlotPageEmpty1}{\showpaste}
\tab{5}\spadgraph{\texttt{draw(cos(x*y),x=-3..3,y=-3..3)}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDPlotPagePatch2}
\begin{paste}{ugGraphThreeDPlotPageFull2}{ugGraphThreeDPlotPageEmpty2}
\pastebutton{ugGraphThreeDPlotPageFull2}{\hidepaste}
\tab{5}\spadcommand{f(x,y) == \texttt{sin(x)}*\texttt{cos(y)}\\bound{f}}
\verbatim
\indentrel{3}Type: Void
\indentrel{-3}end\begin{verbatim}
\end{patch}

\begin{patch}{ugGraphThreeDPlotPageEmpty2}
\begin{paste}{ugGraphThreeDPlotPageEmpty2}{ugGraphThreeDPlotPagePatch2}
\pastebutton{ugGraphThreeDPlotPageEmpty2}{\showpaste}
\tab{5}\spadcommand{f(x,y) == \texttt{sin(x)}*\texttt{cos(y)}\\bound{f}}
\end{patch}
\end{patch}

\begin{patch}{ugGraphThreeDPlotPagePatch3}
\begin{paste}{ugGraphThreeDPlotPageFull3}{ugGraphThreeDPlotPageEmpty3}
\pastebutton{ugGraphThreeDPlotPageFull3}{\hidepaste}
\tab{5}\spadgraph{\texttt{draw(f,-\%pi..\%pi,-\%pi..\%pi)}\\\\\free{f}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphthreedplotpage3.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphthreedplotpage3}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDPlotPageEmpty3}
\begin{paste}{ugGraphThreeDPlotPageEmpty3}{ugGraphThreeDPlotPagePatch3}
\pastebutton{ugGraphThreeDPlotPageEmpty3}{\showpaste}
\tab{5}\spadgraph{\texttt{draw(f,-\%pi..\%pi,-\%pi..\%pi)}\\\\\free{f}}
\end{paste}
\end{patch}
A second kind of \three{} graph is a \three{} space curve defined by the parametric equations for \axiom{x(t)}, \axiom{y(t)}, and \axiom{z(t)} as a function of an independent variable \axiom{t}.

The general format for drawing a \three{} space curve defined by parametric formulas \axiom{x = f(t)}, \axiom{y = g(t)}, and \axiom{z = h(t)} is:

\begin{verbatim}
\tt draw(curve(f(t),g(t),h(t)), t = a..b, {\it options})
\end{verbatim}

where \axiom{a..b} defines the range of the independent variable \axiom{t}, and where \{\it options\} prescribes zero or more options as described in \ref{Three-Dimensional Options} in Section 7.2.4. An example of an option is \axiom{title == "Title of Graph".}

An alternative format involving functions \axiom{f}, \axiom{g} and \axiom{h} is also available.

If you use explicit formulas to draw a space curve, always precede the range specification with the variable name and an \spad{} sign.

\begin{verbatim}
\tt draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)
\end{verbatim}

Alternatively, you can draw space curves by referring to functions.

\begin{verbatim}
\spad{ii(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5) \bound{ii}}
\end{verbatim}

This is useful if the functions are to be used more than once \ldots
\spadpaste{i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5) \bound{i2}}

\xtc{
or if the functions are long and complex.
}\{
\spadpaste{i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5) \bound{i3}}
\}
\%
\%
\psXtc{
Give the names of the functions and
drop the variable name specification in the second argument.
Again, Axiom supplies a default title.
}\{
\graphpaste{draw(curve(i1,i2,i3),0..15*\%pi) \free{i1 i2 i3}}
\}
\epsffile[0 0 295 295]{../ps/3dpscb.ps}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugGraphThreeDParmPagePatch1}
\begin{paste}{ugGraphThreeDParmPageFull1}{ugGraphThreeDParmPageEmpty1}
\pastebutton{ugGraphThreeDParmPageFull1}{\hidepaste}
\tab{5}\spadgraph{draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphthreedparmpage1.view/image}}{viewalone\space{1}\env{AXIOM}/doc/viewports/uggraphthreedparmpage1}}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPageEmpty1}
\begin{paste}{ugGraphThreeDParmPageEmpty1}{ugGraphThreeDParmPagePatch1}
\pastebutton{ugGraphThreeDParmPageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPagePatch2}
\begin{paste}{ugGraphThreeDParmPageFull2}{ugGraphThreeDParmPageEmpty2}
\pastebutton{ugGraphThreeDParmPageFull2}{\hidepaste}
\tab{5}\spadcommand{i1(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5)\bound{i1 }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPageEmpty2}
\begin{paste}{ugGraphThreeDParmPageEmpty2}{ugGraphThreeDParmPagePatch2}
\pastebutton{ugGraphThreeDParmPageEmpty2}{\showpaste}
\tab{5}\spadcommand{i1(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5)\bound{i1 }}
\end{paste}\end{patch}
\begin{patch}{ugGraphThreeDParmPagePatch3}
\begin{paste}{ugGraphThreeDParmPageFull3}{ugGraphThreeDParmPageEmpty3}\hidepaste
\tab{5}\spadcommand{i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5)\bound{i2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPageEmpty3}
\begin{paste}{ugGraphThreeDParmPageEmpty3}{ugGraphThreeDParmPagePatch3}\showpaste
\tab{5}\spadcommand{i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5)\bound{i2}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPagePatch4}
\begin{paste}{ugGraphThreeDParmPageFull4}{ugGraphThreeDParmPageEmpty4}\hidepaste
\tab{5}\spadcommand{i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5)\bound{i3}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPageEmpty4}
\begin{paste}{ugGraphThreeDParmPageEmpty4}{ugGraphThreeDParmPagePatch4}\showpaste
\tab{5}\spadcommand{i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5)\bound{i3}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPagePatch5}
\begin{paste}{ugGraphThreeDParmPageFull5}{ugGraphThreeDParmPageEmpty5}\hidepaste
\tab{5}\spadgraph{draw(curve(i1,i2,i3),0..15*\%pi)\free{i1 i2 i3}}
\center{\unixcommand{\inputimage{\env{AXIOM}}/doc/viewports/uggraphthreedparmpage5.view/image}}\{v}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParmPageEmpty5}
\begin{paste}{ugGraphThreeDParmPageEmpty5}{ugGraphThreeDParmPagePatch5}\showpaste
\tab{5}\spadgraph{draw(curve(i1,i2,i3),0..15*\%pi)\free{i1 i2 i3}}
\end{paste}\end{patch}
Plotting 3D Parametric Surfaces

⇒ “notitle” (ugGraphThreeDOptionsPage) 11 on page 2028
⇒ “notitle” (ugGraphCoordPage) 11 on page 2053

\begin{page}{ugGraphThreeDParPage}
\{7.2.3. Plotting 3D Parametric Surfaces\}
\beginscroll

A third kind of \threedim{} graph is a surface defined by
parametric equations for \axiom{x(u,v)}, \axiom{y(u,v)}, and
\axiom{z(u,v)} of two independent variables \axiom{u} and \axiom{v}.

\beginImportant
The general format for drawing a \threedim{} graph defined by
parametric formulas \axiom{x = f(u,v)}, \axiom{y = g(u,v)},
and \axiom{z = h(u,v)} is:
\centerline{\tt draw(surface(f(u,v),g(u,v),h(u,v), u = a..b, v = c..d, \it options))}
where \axiom{a..b} and \axiom{c..d} define the range of the
independent variables \axiom{u} and \axiom{v}, and where
\{\it options\} prescribes zero or more options as described in
\downlink{‘Three-Dimensional Options’}{ugGraphThreeDOptionsPage}
in Section 7.2.4\ignore{ugGraphThreeDOptions}.

An example of an option is \axiom{title == “Title of Graph”.}
An alternative format involving functions \axiom{f}, \axiom{g} and
\axiom{h} is also available.
\endImportant

\psXtc{
This example draws a graph of a surface plotted using the
parabolic cylindrical coordinate system option.
The values of the functions supplied to \axiomFun{surface} are
interpreted in coordinates as given by a \{\tt coordinates\} option,
here as parabolic cylindrical coordinates (see
\downlink{‘Coordinate System Transformations’}{ugGraphCoordPage}
in Section 7.2.7\ignore{ugGraphCoord}).
}{
\graphpaste{draw(surface(u*cos(v), u*sin(v), v*cos(u)),
u=-4..4, v=0..\%pi, coordinates== parabolicCylindrical)}
}{
\epsffile[0 0 295 295]{../ps/3dpsa.ps}
}
\endscroll
\end{page}
Again, you can graph these parametric surfaces using functions, if the functions are long and complex.
\xtc{
Here we declare the types of arguments and values to be of type \axiomType{DoubleFloat}.
}{
\spadpaste{n1(u:DFLOAT,v:DFLOAT):DFLOAT == u*cos(v) \bound{n1}}
}
\xtc{
As shown by previous examples, these declarations are necessary.
}{
\spadpaste{n2(u:DFLOAT,v:DFLOAT):DFLOAT == u*sin(v) \bound{n2}}
}
\xtc{
In either case, Axiom compiles the functions when needed to graph a result.
}{
\spadpaste{n3(u:DFLOAT,v:DFLOAT):DFLOAT == u \bound{n3}}
}
\xtc{
Without these declarations, you have to suffix floats with \axiom{DFLOAT} to get a \axiomType{DoubleFloat} result. However, a call here with an unadorned float produces a \axiomType{DoubleFloat}.
}{
\spadpaste{n3(0.5,1.0)\free{n3}}
}
\psXtc{
Draw the surface by referencing the function names, this time choosing the toroidal coordinate system.
}{
\graphpaste{draw(surface(n1,n2,n3), 1..4, 1..2*π, coordinates == toroidal(1\$DFLOAT)) \free{n1 n2 n3}}
}
\epsffile[0 0 295 295]{../ps/3dpsb.ps}
}
\begin{patch}{ugGraphThreeDParPageEmpty1}
\begin{paste}{ugGraphThreeDParPageEmpty1}{ugGraphThreeDParPagePatch1}
\pastebutton{ugGraphThreeDParPageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..\%pi, coordinates== parabolicCylindrical)}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParPagePatch2}
\begin{paste}{ugGraphThreeDParPageFull2}{ugGraphThreeDParPageEmpty2}
\pastebutton{ugGraphThreeDParPageFull2}{\hidepaste}
\tab{5}\spadcommand{n1(u:DFLOAT,v:DFLOAT):DFLOAT == u*cos(v)\bound{n1} } \indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim} \indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParPagePatch3}
\begin{paste}{ugGraphThreeDParPageFull3}{ugGraphThreeDParPageEmpty3}
\pastebutton{ugGraphThreeDParPageFull3}{\hidepaste}
\tab{5}\spadcommand{n2(u:DFLOAT,v:DFLOAT):DFLOAT == u*sin(v)\bound{n2} } \indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim} \indentrel{-3}
\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDParPagePatch4}
\begin{paste}{ugGraphThreeDParPageFull4}{ugGraphThreeDParPageEmpty4}
\pastebutton{ugGraphThreeDParPageFull4}{\hidepaste}
\tab{5}\spadcommand{n3(u:DFLOAT,v:DFLOAT):DFLOAT == u\bound{n3} } \indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim} \indentrel{-3}
\end{paste}\end{patch}
Three-Dimensional Options

⇒ “notitle” (ugGraphCoordPage) 11 on page 2053 — ug07.ht —

The \axiomFun{draw} commands optionally take an optional list of options such as \tt{coordinates} as shown in the last example. Each option is given by the syntax: \tt{axiom(name)} \tt{=} \tt{axiom(value)}. Here is a list of the available options in the order that they are described below:

\begin{table}[h]
\begin{tabular}{|l|l|l|l|l|}
\hline
\tit{title} & \tit{coordinates} & \tit{var1Steps} & \tit{style} & \tit{tubeRadius} & \tit{var2Steps} \\
\hline
\hline
\end{table}
The option \texttt{title} gives your graph a title.

\begin{verbatim}
\graphpaste{draw(cos(x*y),x=0..2*\%pi,y=0..\%pi,title == "Title of Graph")}
\end{verbatim}

The \texttt{style} determines which of four rendering algorithms is used for the graph. The choices are \texttt{"wireMesh"}, \texttt{"solid"}, \texttt{"shade"}, and \texttt{"smooth"}.

\begin{verbatim}
\graphpaste{draw(cos(x*y),x=-3..3,y=-3..3, style=="smooth",
title=="Smooth Option")}
\end{verbatim}

In all but the wire-mesh style, polygons in a surface or tube plot are normally colored in a graph according to their \texttt{z}-coordinate value. Space curves are colored according to their parametric variable value.

To change this, you can give a coloring function. The coloring function is sampled across the range of its arguments, then normalized onto the standard \texttt{Axiom colormap}.

\begin{verbatim}
A function of one variable makes the color depend on the value of the parametric variable specified for a tube plot.
\end{verbatim}

\begin{verbatim}
\spadpaste{color1(t) == t \bound{colorFxn1}}
\end{verbatim}

A function of two variables makes the color depend on the values of the independent variables.

\begin{verbatim}
\spadpaste{color2(u,v) == u**2 - v**2 \bound{colorFxn2}}
\end{verbatim}
Use the option \tt colorFunction for special coloring.

\\{ draw(cos(u*v), u=-3..3, v=-3..3, \\
\text{colorFunction == color2) \free{colorFxn2}}
\}\{
\epsffile[0 0 295 295]{../ps/3doptcf2.ps}
\%
\xtc{
With a three variable function, the
\text{color also depends on the value of the function.}
\}
\spadpaste{color3(x,y,fxy) == sin(x*fxy) + cos(y*fxy) \bound{colorFxn3}}
\psXtc{
\}
\\{ draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3) \\
\free{colorFxn3}
\}\{
\epsffile[0 0 295 295]{../ps/3doptcf3.ps}
\%
\xtc{
\text{Normally the Cartesian coordinate system is used.}
\text{To change this, use the \tt coordinates option.}
\text{For details, see \downlink{``Coordinate System Transformations''}{ugGraphCoordPage}}
\text{in Section 7.2.7\ignore{ugGraphCoord}.}
\%
\%
\xtc{
\}\{
\spadpaste{m(u:DFLOAT,v:DFLOAT):DFLOAT == 1 \bound{m}}
\}
\psXtc{
\text{Use the spherical}
\text{coordinate system.}
\}
\\{ draw(m, 0..2*\%pi,0..\%pi, coordinates == spherical, \\
\text{style="shade") \free{m}\}
\}\{
\epsffile[0 0 295 295]{../ps/3doptcrd.ps}
\%
\xtc{
\text{Space curves may be displayed as tubes with polygonal cross sections.}
\text{Two options, \tt tubeRadius and \tt tubePoints, control the size and}
\text{shape of this cross section.}
\%
\psXtc{
The \{\tt tubeRadius\} option specifies the radius of the tube that encircles the specified space curve.

\{draw(curve(sin(t),cos(t),0),t=0..2*\pi, style="shade", tubeRadius == .3)\}
\epsffile[0 0 295 295]{../ps/3doptrad.ps}

The \{\tt tubePoints\} option specifies the number of vertices defining the polygon that is used to create a tube around the specified space curve. The larger this number is, the more cylindrical the tube becomes.

\{draw(curve(sin(t), cos(t), 0), t=0..2*\pi, style="shade", tubeRadius == .25, tubePoints == 3)\}
\epsffile[0 0 295 295]{../ps/3doptpts.ps}

Options \axiomFunFrom{var1Steps}{DrawOption} and \axiomFunFrom{var2Steps}{DrawOption} specify the number of intervals into which the grid defining a surface plot is subdivided with respect to the first and second parameters of the surface function(s).

\{draw(cos(x*y),x=-3..3,y=-3..3, style="shade", var1Steps == 30, var2Steps == 30)\}
\epsffile[0 0 295 295]{../ps/3doptvb.ps}

The \{\tt space\} option of a \axiomFun{draw} command lets you build multiple graphs in three space. To use this option, first create an empty three-space object, then use the \{\tt space\} option thereafter. There is no restriction as to the number or kinds of graphs that can be combined this way.

\{s := create3Space() $(ThreeSpace DFLOAT) \\bound{s}\}
\epsffile[0 0 295 295]{../ps/3doptsp.ps}
Add a graph to this three-space object. The new graph destructively inserts the graph into \axiom{s}.
\>{
\graphpaste{\draw(m,0..\%pi,0..2*\%pi, coordinates == spherical, space == s) \free{s m}}
}
\epsffile[0 0 295 295]{../ps/3dmult1a.ps}
%
%
\psXtc{Add a second graph to \axiom{s}.
}{
\graphpaste{v := \draw(curve(1.5*sin(t), 1.5*cos(t),0), t=0..2*\%pi, tubeRadius == .25, space == s) \free{s} \bound{v}}
}
\epsffile[0 0 295 295]{../ps/3dmult1b.ps}
%
A three-space object can also be obtained from an existing \threedim{} viewport using the \axiomFunFrom{subspace}{ThreeSpace} command. You can then use \axiomFun{makeViewport3D} to create a viewport window.
\xtc{Assign to \axiom{subsp} the three-space object in viewport \axiom{v}.
}{
\spadpaste{subsp := subspace v \free{v} \bound{su}}
}
\xtc{Reset the space component of \axiom{v} to the value of \axiom{subsp}.
}{
\spadpaste{subspace(v, subsp) \bound{sp} \free{su}}
}
\noOutputXtc{Create a viewport window from a three-space object.
}{
\graphpaste{makeViewport3D(subsp,"Graphs") \free{sp}}
}
\spadgraph{draw(cos(x*y),x=0..2*\%pi,y=0..\%pi,title == "Title of Graph")}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/ugGraphThreeDOptionsPage1.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/ugGraphThreeDOptionsPage1}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPageEmpty1}
\begin{paste}{ugGraphThreeDOptionsPageEmpty1}{ugGraphThreeDOptionsPagePatch1}
\spadgraph{draw(cos(x*y),x=0..2*\%pi,y=0..\%pi,title == "Title of Graph")}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPagePatch2}
\begin{paste}{ugGraphThreeDOptionsPageFull2}{ugGraphThreeDOptionsPageEmpty2}
\spadcommand{color1(t) == t\bound{colorFxn1}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPageEmpty2}
\begin{paste}{ugGraphThreeDOptionsPageEmpty2}{ugGraphThreeDOptionsPagePatch2}
\spadcommand{color1(t) == t\bound{colorFxn1}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPagePatch3}
\begin{paste}{ugGraphThreeDOptionsPageFull3}{ugGraphThreeDOptionsPageEmpty3}
\spadgraph{draw(curve(sin(t), cos(t),0), t=0..2*\%pi, tubeRadius == .3, colorFunction == color1)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphthreedoptionspage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphthreedoptionspage2}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPageEmpty3}
\begin{paste}{ugGraphThreeDOptionsPageEmpty3}{ugGraphThreeDOptionsPagePatch3}
\spadcommand{color1(t) == t\bound{colorFxn1}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPagePatch4}
\begin{paste}{ugGraphThreeDOptionsPageFull4}{ugGraphThreeDOptionsPageEmpty4}
\spadgraph{draw(curve(sin(t), cos(t),0), t=0..2*\%pi, tubeRadius == .3, colorFunction == color1)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphthreedoptionspage4.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/uggraphthreedoptionspage4}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDOptionsPageEmpty4}
\begin{paste}{ugGraphThreeDOptionsPageEmpty4}{ugGraphThreeDOptionsPagePatch4}
\spadgraph{draw(curve(sin(t), cos(t),0), t=0..2*\%pi, tubeRadius == .3, colorFunction == color1)}
\end{paste}
\end{patch}
\begin{verbatim}
type: void

\end{verbatim}

\begin{verbatim}
type: void

\end{verbatim}

\begin{verbatim}
type: void

\end{verbatim}
\begin{paste}{ugGraphThreeDOptionsPageFull12}{ugGraphThreeDOptionsPageEmpty12}\pastebutton{ugGraphThreeDOptionsPageFull12}{\hidepaste}\tab{5}\spadgraph{draw(curve(sin(t), cos(t), 0), t=0..2*\%pi, style=="shade", tubeRadius == .25,}
center{unixcommand{\inputimage{env{AXIOM}/doc/viewports/uggraphthreedoptionspage12.view/image}}{viewalone{1} \env{AXIOM}/doc/viewports/uggraphthreedoptionspage12}}\end{paste}\end{patch}

\begin{patch}{ugGraphThreeDOptionsPageEmpty12}\begin{paste}{ugGraphThreeDOptionsPageEmpty12}{ugGraphThreeDOptionsPagePatch12}\pastebutton{ugGraphThreeDOptionsPageEmpty12}{\showpaste}\tab{5}\spadgraph{draw(curve(sin(t), cos(t), 0), t=0..2*\%pi, style=="shade", tubeRadius == .25,}
\end{paste}\end{patch}\begin{patch}{ugGraphThreeDOptionsPagePatch13}\begin{paste}{ugGraphThreeDOptionsPageFull13}{ugGraphThreeDOptionsPageEmpty13}\pastebutton{ugGraphThreeDOptionsPageFull13}{\hidepaste}\tab{5}\spadgraph{draw(cos(x*y),x=-3..3,y=-3..3, style=="shade", var1Steps == 30, var2Steps == 30,}
center{unixcommand{\inputimage{env{AXIOM}/doc/viewports/uggraphthreedoptionspage13.view/image}}{viewalone{1} \env{AXIOM}/doc/viewports/uggraphthreedoptionspage13}}\end{paste}\end{patch}\begin{patch}{ugGraphThreeDOptionsPageEmpty13}\begin{paste}{ugGraphThreeDOptionsPageEmpty13}{ugGraphThreeDOptionsPagePatch13}\pastebutton{ugGraphThreeDOptionsPageEmpty13}{\showpaste}\tab{5}\spadgraph{draw(cos(x*y),x=-3..3,y=-3..3, style=="shade", var1Steps == 30, var2Steps == 30,}
\end{paste}\end{patch}\begin{patch}{ugGraphThreeDOptionsPagePatch14}\begin{paste}{ugGraphThreeDOptionsPageFull14}{ugGraphThreeDOptionsPageEmpty14}\pastebutton{ugGraphThreeDOptionsPageFull14}{\hidepaste}\tab{5}\spadcommand{s := create3Space()$(ThreeSpace DFLOAT)\bound{s }}\begin{verbatim}
(14) 3-Space with 0 components
Type: ThreeSpace DoubleFloat
\end{verbatim}\end{paste}\end{patch}\begin{patch}{ugGraphThreeDOptionsPageEmpty14}\begin{paste}{ugGraphThreeDOptionsPageEmpty14}{ugGraphThreeDOptionsPagePatch14}\pastebutton{ugGraphThreeDOptionsPageEmpty14}{\showpaste}\tab{5}\spadcommand{s := create3Space()$(ThreeSpace DFLOAT)\bound{s }}\end{paste}\end{patch}\begin{patch}{ugGraphThreeDOptionsPagePatch15}\begin{paste}{ugGraphThreeDOptionsPageFull15}{ugGraphThreeDOptionsPageEmpty15}\pastebutton{ugGraphThreeDOptionsPageFull15}{\hidepaste}\tab{5}\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == 1\bound{m }}\begin{verbatim}
Type: Void
\end{verbatim}\end{paste}\end{patch}\begin{verbatim}
\indentrel{-3}\end{verbatim}\end{patch}\end{verbatim}
\begin{spadcommand}\m(u:DFLOAT,v:DFLOAT):DFLOAT == 1\end{spadcommand}

\begin{spadgraph}draw(m,0..\%pi,0..2*\%pi, coordinates == spherical, space == s)\end{spadgraph}

\begin{spadcommand}\v := draw(curve(1.5*sin(t), 1.5*cos(t),0), t=0..2*\%pi, tubeRadius == .25, space == s)\end{spadcommand}

\begin{verbatim}
(18) 3-Space with 2 components
Type: ThreeSpace DoubleFloat
\end{verbatim}

\begin{spadcommand}\subsp := subspace \v\end{spadcommand}
The makeObject Command

An alternate way to create multiple graphs is to use \axiomFun{makeObject}. The \axiomFun{makeObject} command is similar to the \axiomFun{draw} command, except that it returns a three-space object rather than a \axiomType{ThreeDimensionalViewport}. In fact, \axiomFun{makeObject} is called by the \axiomFun{draw} command to create the \axiomType{ThreeSpace} then \axiomFunFrom{makeViewport3D}{ThreeDimensionalViewport} to create a viewport window.
Do the last example a new way. First use axiomFun(makeObject) to create a three-space object \texttt{axiom{sph}}.
\{
\spadpaste{sph := makeObject(m, 0..\%pi, 0..2*\%pi, coordinates==spherical)\bound{sph}\free{m}}
\}

Add a second object to \texttt{axiom{sph}}.
\{
\spadpaste{makeObject(curve(1.5*sin(t), 1.5*cos(t), 0), t=0..2*\%pi, space == sph, tubeRadius == .25) \free{sph}\bound{v1}}
\}

Create and display a viewport containing \texttt{axiom{sph}}.
\{
\graphpaste{makeViewport3D(sph,"Multiple Objects") \free{v1}}
\}

Note that an undefined \texttt{axiomType{ThreeSpace}} parameter declared in a \texttt{axiomFun{makeObject}} or \texttt{axiomFun{draw}} command results in an error. Use the \texttt{axiomFunFrom{create3Space}{ThreeSpace}} function to define a \texttt{axiomType{ThreeSpace}}, or obtain a \texttt{axiomType{ThreeSpace}} that has been previously generated before including it in a command line.
\begin{verbatim}
(2) 3-Space with 1 component

Type: ThreeSpace DoubleFloat
\end{verbatim}

\begin{verbatim}
(3) 3-Space with 2 components

Type: ThreeSpace DoubleFloat
\end{verbatim}
Building 3D Objects From Primitives

Rather than using the `axiomFun{draw}` and `axiomFun{makeObject}` commands, you can create `threeDim` graphs from primitives. Operation `axiomFunFrom{create3Space}{ThreeSpace}` creates a three-space object to which points, curves and polygons can be added using the operations from the `axiomType{ThreeSpace}` domain. The resulting object can then be displayed in a viewport using `axiomFunFrom{makeViewport3D}{ThreeDimensionalViewport}`.

\begin{verbatim}
Create the empty three-space object \texttt{axiom{space}}.
\end{verbatim}

\begin{verbatim}
\spadpaste{space := create3Space()$(ThreeSpace DFLOAT) \bound{space}}
\end{verbatim}

Objects can be sent to this \texttt{axiom{space}} using the operations exported by the \texttt{axiomType{ThreeSpace}} domain. The following examples place curves into \texttt{axiom{space}}.

\begin{verbatim}
Add these eight curves to the space.
\end{verbatim}

\begin{verbatim}
\spadpaste{closedCurve(space,[[0,30,20], [0,30,30], [0,40,30],
[0,40,100], [0,30,100], [0,30,110], [0,60,110], [0,60,100],
[0,50,100], [0,50,30], [0,60,30], [0,60,20]]) \bound{curve1} \free{space}}
\end{verbatim}

\begin{verbatim}
\spadpaste{closedCurve(space,[[80,0,30], [80,0,100], [70,0,110],
[40,0,110], [30,0,100], [30,0,90], [40,0,90], [40,0,95],
[45,0,100], [65,0,100], [70,0,95], [70,0,35]]) \bound{curve2} \free{space}}
\end{verbatim}

\begin{verbatim}
\spadpaste{closedCurve(space,[[70,0,35], [65,0,30], [45,0,30],
[40,0,35], [40,0,60], [50,0,60], [50,0,70], [30,0,70], [30,0,30],
[40,0,20], [70,0,20], [80,0,30]]) \bound{curve3} \free{space}}
\end{verbatim}
Create and display the viewport using \axiomFun{makeViewport3D}. Options may also be given but here are displayed as a list with values enclosed in parentheses.

\graphpaste{makeViewport3D(space, title == "Letters") \free{space curve1 curve2 curve3 curve4 curve5 curve6 curve7 curve8}}

\epsffile[0 0 295 295]{../ps/3dbuilda.ps}

As a second example of the use of primitives, we generate a cube using a polygon mesh. It is important to use a consistent orientation of the polygons for correct generation of \threedim objects.
Again start with an empty three-space object.
\{
\spadpaste{spaceC := create3Space()$(ThreeSpace DFLOAT) \bound{spaceC}}
\}
\xtc{
For convenience,
give \axiomType{DoubleFloat} values \axiom{+1} and \axiom{-1} names.
}\{
\spadpaste{x: DFLOAT := 1 \bound{x}}
\}
\xtc{
}\{
\spadpaste{y: DFLOAT := -1 \bound{y}}
\}
\xtc{
Define the vertices of the cube.
}\{
\spadpaste{a := point [x,x,y,1::DFLOAT]\$(Point DFLOAT) \bound{a}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{b := point [y,x,y,4::DFLOAT]\$(Point DFLOAT) \bound{b}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{c := point [y,x,x,8::DFLOAT]\$(Point DFLOAT) \bound{c}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{d := point [x,x,x,12::DFLOAT]\$(Point DFLOAT) \bound{d}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{e := point [x,y,y,16::DFLOAT]\$(Point DFLOAT) \bound{e}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{f := point [y,y,y,20::DFLOAT]\$(Point DFLOAT) \bound{f}
\free{x y}}
\}
\xtc{
}\{
\spadpaste{g := point [y,y,x,24::DFLOAT]\$(Point DFLOAT) \bound{g}
\free{x y}}
\}
Add the faces of the cube as polygons to the space using a consistent orientation.

\pretext{polygon(spaceC,[d,c,g,h]) \free{d c g h spaceC} \bound{pol1}}\pretext{polygon(spaceC,[d,h,e,a]) \free{d h e a spaceC} \bound{pol2}}\pretext{polygon(spaceC,[c,d,a,b]) \free{c d a b spaceC} \bound{pol3}}\pretext{polygon(spaceC,[g,c,b,f]) \free{g c b f spaceC} \bound{pol4}}\pretext{polygon(spaceC,[h,g,f,e]) \free{h g f e spaceC} \bound{pol5}}\pretext{polygon(spaceC,[e,f,b,a]) \free{e f b a spaceC} \bound{pol6}}\psXtc{Create and display the viewport.}

\graphpaste{makeViewport3D(spaceC, title == "Cube") \free{pol1 pol2 pol3 pol4 pol5 pol6}}\epsffile[0 0 295 295]{../ps/3dbuildb.ps}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugGraphThreeDBuildPagePatch1}\begin{paste}{ugGraphThreeDBuildPageFull1}{ugGraphThreeDBuildPageEmpty1}\pastebutton{ugGraphThreeDBuildPageFull1}{\hidepaste}\tab{$}\spadcommand{space := create3Space()}$(ThreeSpace DFLOAT)$\bound{space }$\indentrel{3}\begin{verbatim}$\end{verbatim}\end{paste}$\begin{verbatim}$\end{verbatim}\end{patch}(1) 3-Space with 0 components
Type: ThreeSpace DoubleFloat

\begin{verbatim}
(2) 3-Space with 1 component

Type: ThreeSpace DoubleFloat

\end{verbatim}

\begin{verbatim}
(3) 3-Space with 2 components

Type: ThreeSpace DoubleFloat

\end{verbatim}

\begin{verbatim}
(4) 3-Space with 3 components

Type: ThreeSpace DoubleFloat

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}\end{verbatim}

(5) 3-Space with 4 components
Type: ThreeSpace DoubleFloat
\indentrel{-3}\end{verbatim}

(6) 3-Space with 5 components
Type: ThreeSpace DoubleFloat
\indentrel{-3}\end{verbatim}

(7) 3-Space with 6 components
Type: ThreeSpace DoubleFloat
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(8) 3-Space with 7 components
Type: ThreeSpace DoubleFloat
\end{verbatim}

\begin{verbatim}
(9) 3-Space with 8 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\begin{verbatim}
(11) 3-Space with 0 components
Type: ThreeSpace DoubleFloat
\end{verbatim}

\begin{verbatim}
(12) 1.0
Type: DoubleFloat
\end{verbatim}

\begin{verbatim}
(13) -1.0
Type: DoubleFloat
\end{verbatim}
\begin{verbatim}
(14) [1.0,1.0,-1.0,1.0]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(15) [-1.0,1.0,-1.0,4.0]
Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(16) [-1.0,1.0,1.0,8.0]
Type: Point DoubleFloat
\end{verbatim}
\begin{verbatim}
(17) [1.0,1.0,1.0,12.0]
Type: Point DoubleFloat
\end{verbatim}
\end{paste}

\begin{patch}{ugGraphThreeDBuildPagePatch18}
\begin{paste}{ugGraphThreeDBuildPageFull18}{ugGraphThreeDBuildPageEmpty18}
\pastebutton{ugGraphThreeDBuildPageFull18}{\hidepaste}
\begin{verbatim}
(18) [1.0,-1.0,-1.0,16.0]
Type: Point DoubleFloat
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDBuildPagePatch19}
\begin{paste}{ugGraphThreeDBuildPageFull19}{ugGraphThreeDBuildPageEmpty19}
\pastebutton{ugGraphThreeDBuildPageFull19}{\hidepaste}
\begin{verbatim}
(19) [-1.0,-1.0,-1.0,20.0]
Type: Point DoubleFloat
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugGraphThreeDBuildPagePatch20}
\begin{paste}{ugGraphThreeDBuildPageFull20}{ugGraphThreeDBuildPageEmpty20}
\pastebutton{ugGraphThreeDBuildPageFull20}{\hidepaste}
\begin{verbatim}
\end{verbatim}
\end{patch}
\begin{verbatim}
(20) [- 1.0,- 1.0,1.0,24.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugGraphThreeDBuildPagePatch20}
\begin{paste}{ugGraphThreeDBuildPageFull20}{ugGraphThreeDBuildPagePatch20}
\pastebutton{ugGraphThreeDBuildPageEmpty20}{\showpaste}
\tab{5}\spadcommand{g := point [y,y,x,24::DFLOAT]\bound{g}\free{x y}}
\indentrel{3}\begin{verbatim}
(21) [1.0,- 1.0,1.0,27.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugGraphThreeDBuildPagePatch21}
\begin{paste}{ugGraphThreeDBuildPageFull21}{ugGraphThreeDBuildPagePatch21}
\pastebutton{ugGraphThreeDBuildPageEmpty21}{\hidepaste}
\tab{5}\spadcommand{h := point [x,y,x,27::DFLOAT]\bound{h}\free{x y}}
\indentrel{3}\begin{verbatim}
(22) 3-Space with 1 component
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugGraphThreeDBuildPagePatch22}
\begin{paste}{ugGraphThreeDBuildPageFull22}{ugGraphThreeDBuildPagePatch22}
\pastebutton{ugGraphThreeDBuildPageEmpty22}{\hidepaste}
\tab{5}\spadcommand{polygon(spaceC,[d,c,g,h])\bound{pol1}}
\indentrel{3}\begin{verbatim}
(23) 3-Space with 2 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
(24) 3-Space with 3 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3} end{paste}\end{patch}

\begin{verbatim}
(25) 3-Space with 4 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3} end{paste}\end{patch}

\begin{verbatim}
(26) 3-Space with 5 components
Type: ThreeSpace DoubleFloat
\end{verbatim}
\indentrel{-3} end{paste}\end{patch}
Coordinate System Transformations

--- ug07.ht ---

The \axiomType{CoordinateSystems} package provides coordinate transformation functions that map a given data point from the
coordinate system specified into the Cartesian coordinate system. The
default coordinate system, given a triplet \axiom{(f(u,v), u, v)},
assumes that \axiom{z = f(u, v)}, \axiom{x = u} and \axiom{y = v},
that is, reads the coordinates in \axiom{(z, x, y)} order.

\begin{spad}
\spad{m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2}
\end{spad}

\begin{pspicture}(0,0)(5,5)
Graph plotted in default coordinate system.
\end{pspicture}

The \axiom{z} coordinate comes first since the first argument of the
\axiomFun{draw} command gives its values. In general, the coordinate
systems Axiom provides, or any that you make up, must provide a map to
an \axiom{(x, y, z)} triplet in order to be compatible with the
\axiomFunFrom{coordinates}{DrawOption} \axiomType{DrawOption}. Here
is an example.

\begin{spad}
\spad{cartesian(point:Point DFLOAT):Point DFLOAT == point}
\end{spad}

\begin{pspicture}(0,0)(5,5)
Pass \axiom{cartesian} as the \axiomFunFrom{coordinates}{DrawOption}
parameter to the \axiomFun{draw} command.
\end{pspicture}

What happened? The option \tt{coordinates == cartesian} directs
Axiom to treat the dependent variable \axiom{m} defined by
\texht{\texttt{m=u^2}} as the \axiom{x} coordinate. Thus the triplet
of values \axiom{(m, u, v)} is transformed to coordinates
\axiom{(x, y, z)} and so we get the graph of \texht{\texttt{x=y^2}}.

Here is another example.
The \axiomFunFrom{cylindrical}{CoordinateSystems} transform takes
input of the form \axiom{(v,u,v)}, interprets it in the order
and maps it to the Cartesian coordinates

\[x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = z \]

in which \(r \) is the radius, \(\theta \) is the angle and \(z \) is the z-coordinate.

An example using the \texttt{cylindrical} \texttt{CoordinateSystems} coordinates for the constant \texttt{r = 3}.

\begin{spadpaste}
\texttt{\spad{f(u:DFLOAT,v:DFLOAT):DFLOAT == 3 \bound{f}}} \\
\texttt{\graph{\text{\spad{draw(f,0..\%pi,0..6,coordinates==cylindrical) \free{f}}}}} \\
\end{spadpaste}

Suppose you would like to specify \(z \) as a function of \(r \) and \(\theta \) instead of just \(r \)? Well, you still can use the \texttt{cylindrical} \texttt{Axiom} transformation but we have to reorder the triplet before passing it to the transformation.

First, let’s create a point to work with and call it \texttt{pt} with some color \texttt{col}.

\begin{spadpaste}
\texttt{\textbf{col} := \texttt{5 \bound{c}}} \\
\texttt{\textbf{pt} := point[1,2,3,\texttt{col}]\$(Point DFLOAT) \free{c} \bound{pt}}} \\
\end{spadpaste}

The reordering you want is

\[(z,r, \theta) \]

so that the first element is moved to the third element, while the second and third elements move forward and the color element does not change.

Define a function \texttt{reorder} to reorder the point elements.

\begin{spadpaste}
\end{spadpaste}
The function moves the second and third elements forward but the color does not change.

\spadpaste{reorder pt \free{pt freo}}

The function \userfun{newmap} converts our reordered version of the cylindrical coordinate system to the standard \text{(x,y,z)} Cartesian system.

\spadpaste{newmap(pt:Point DFLOAT):Point DFLOAT == cylindrical(reorder pt)}

\spadpaste{newmap pt \free{fnewmap pt} \bound{new}}

Graph the same function \axiom{f} using the coordinate mapping of the function \axiom{newmap}, so it is now interpreted as \text{$z=3$}:

\graphpaste{draw(f,0..3,0..2*\%pi,coordinates==newmap) \free{f new}}

The \axiomType{CoordinateSystems} package exports the following operations:
\axiomFun{bipolar}, \axiomFun{bipolarCylindrical}, \axiomFun{cartesian}, \axiomFun{conical}, \axiomFun{cylindrical}, \axiomFun{elliptic}, \axiomFun{ellipticCylindrical}, \axiomFun{oblateSpheroidal}, \axiomFun{parabolic}, \axiomFun{parabolicCylindrical}, \axiomFun{paraboloidal}, \axiomFun{polar}, \axiomFun{prolateSpheroidal}, \axiomFun{spherical}, and \axiomFun{toroidal}.

Use \Browse{} or the \spadcmd{}\show{} system command to get more information.
\begin{patch}{ugGraphCoordPagePatch1}
\begin{paste}{ugGraphCoordPageFull1}{ugGraphCoordPageEmpty1}
\pastebutton{ugGraphCoordPageFull1}{\hidepaste}
\tab{5}\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2\bound{m }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugGraphCoordPagePatch2}
\begin{paste}{ugGraphCoordPageFull2}{ugGraphCoordPageEmpty2}
\pastebutton{ugGraphCoordPageFull2}{\hidepaste}
\tab{5}\spadgraph{draw(m,0..3,0..5)\free{m}}
\center{\unixcommand\inputimage{\env{AXIOM}/doc/viewports/uggraphcoordpage2.view/image}}{viewalone\space{1}\env{AXIOM}/doc/viewports/uggraphcoordpage2}
\end{paste}\end{patch}

\begin{patch}{ugGraphCoordPagePatch3}
\begin{paste}{ugGraphCoordPageFull3}{ugGraphCoordPageEmpty3}
\pastebutton{ugGraphCoordPageFull3}{\hidepaste}
\tab{5}\spadcommand{cartesian(point:Point DFLOAT):Point DFLOAT == point\bound{cart}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
f(u:DFLOAT,v:DFLOAT):DFLOAT == 3
Type: Void
\end{verbatim}

\begin{verbatim}
col := 5
(7) 5
Type: PositiveInteger
\end{verbatim}
\begin{spad}
\tab{5}\spadcommand{col := 5\bound{c}}
\end{spad}

\begin{spad}
\tab{5}\spadcommand{pt := point[1,2,3,col\bound{c}]$(Point \text{ DoubleFloat})\free{c}\bound{pt}}
\indentrel{3}\begin{verbatim}
(8) [1.0,2.0,3.0,5.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{spad}

\begin{spad}
\tab{5}\spadcommand{reorder(p:Point \text{ DoubleFloat}):Point \text{ DoubleFloat} == point[p.2, p.3, p.1, p.4]\bound{freo}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{spad}

\begin{spad}
\tab{5}\spadcommand{reorder pt\bound{pt freo}}
\indentrel{3}\begin{verbatim}
(10) [2.0,3.0,1.0,5.0]
Type: Point DoubleFloat
\end{verbatim}
\indentrel{-3}\end{spad}
\begin{verbatim}
$\text{newmap}(\text{pt:Point\ DoubleFloat})\text{=}\text{cylindrical}(\text{reorder\ pt})$
\end{verbatim}

Type: Void

\begin{verbatim}
(12)
[-1.9799849932008908,0.28224001611973443,1.0,5.0]
\end{verbatim}

Type: Point\ DoubleFloat

\begin{verbatim}
\text{draw}(f,0..3,0..2*\%pi,\text{coordinates=}\text{newmap})
\end{verbatim}
Three-Dimensional Clipping

A \texttt{threedim()} graph can be explicitly clipped within the \texttt{axiomFun(draw)} command by indicating a minimum and maximum threshold for the given function definition. These thresholds can be defined using the Axiom \texttt{axiomFun(min)} and \texttt{axiomFun(max)} functions.

\begin{spadsrc}
\begin{verbatim}
g := Gamma complex(x,y)
point [x, y, max(min(real g, 4), -4), argument g]
\end{verbatim}
\end{spadsrc}

Here is an example that clips the gamma function in order to eliminate the extreme divergence it creates.

\begin{verbatim}
gamma(x,y) ==
 g := Gamma complex(x,y)
 point [x, y, max(min(real g, 4), -4), argument g]
\end{verbatim}

\verb|Type: Void|
\begin{patch}{ugGraphClipPageEmpty1}
\begin{paste}{ugGraphClipPageEmpty1}{ugGraphClipPagePatch1}
\tab{5}\spadcommand{gamma(x,y) ==
g := Gamma\ \text{complex}(x,y)
point [x, y, max(\min(\text{real}\ g, 4), -4), \text{argument}\ g]
\bound{g }}
\end{paste}
\end{patch}

\begin{patch}{ugGraphClipPagePatch2}
\begin{paste}{ugGraphClipPageFull2}{ugGraphClipPageEmpty2}
\tab{5}\spadgraph{draw(gamma,-\%pi..\%pi,-\%pi..\%pi,\text{var1Steps==50, var2Steps==50})\free{g }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/uggraphclippage2.view/image}}{viewalone}}
\end{paste}
\end{patch}

\begin{patch}{ugGraphClipPageEmpty2}
\begin{paste}{ugGraphClipPageEmpty2}{ugGraphClipPagePatch2}
\tab{5}\spadgraph{draw(gamma,-\%pi..\%pi,-\%pi..\%pi,\text{var1Steps==50, var2Steps==50})\free{g }}
\end{paste}
\end{patch}

—— Three-Dimensional Control-Panel ——

\begin{page}{ugGraphThreeDControlPage}
\{7.2.9. Three-Dimensional Control-Panel\}
\beginscroll
Once you have created a viewport, move your mouse to the viewport and click with your left mouse button. This displays a control-panel on the side of the viewport that is closest to where you clicked.

\subsubsection{Transformations}

We recommend you first select the \bf{Bounds} button while executing transformations since the bounding box displayed indicates the object’s position as it changes.

\begin{itemize}
\item[\bullet] Rotate: A rotation transformation occurs by clicking the mouse within the \bf{Rotate} window in the upper left corner of the control-panel.
\end{itemize}

\end{scroll}
\end{page}
The rotation is computed in spherical coordinates, using the horizontal mouse position to increment or decrement the value of the longitudinal angle θ within the range of 0 to 2π and the vertical mouse position to increment or decrement the value of the latitudinal angle ϕ within the range of $-\pi$ to π.

The active mode of rotation is displayed in green on a color monitor or in clear text on a black and white monitor, while the inactive mode is displayed in red for color display or a mottled pattern for black and white.

\begin{itemize}
\item[origin:] The \textbf{origin} button indicates that the rotation is to occur with respect to the origin of the viewing space, that is indicated by the axes.
\item[object:] The \textbf{object} button indicates that the rotation is to occur with respect to the center of volume of the object, independent of the axes' origin position.
\end{itemize}

\begin{itemize}
\item[Scale:] A scaling transformation occurs by clicking the mouse within the \textbf{Scale} window in the upper center of the control-panel, containing a zoom arrow. The axes along which the scaling is to occur are indicated by selecting the appropriate button above the zoom arrow window. The selected axes are displayed in green on a color monitor or in clear text on a black and white monitor, while the unselected axes are displayed in red for a color display or a mottled pattern for black and white.
\item[uniform:] Uniform scaling along the \texttt{x}, \texttt{y} and \texttt{z} axes occurs when all the axes buttons are selected.
\item[non-uniform:] If any of the axes buttons are not selected, non-uniform scaling occurs, that is, scaling occurs only in the direction of the axes that are selected.
\end{itemize}

\item[Translate:] Translation occurs by indicating with the mouse in the \textbf{Translate} window the direction you want the graph to move. This window is located in the upper right corner of the control-panel.
and contains a potentiometer with crossed arrows pointing up, down, left and right. Along the top of the \textit{Translate} window are three buttons (\textit{XY}, \textit{XZ}, and \textit{YZ}) indicating the three orthographic projection planes. Each orientates the group as a view into that plane. Any translation of the graph occurs only along this plane.

\subsection*{Messages}

The window directly below the potentiometer windows for transformations is used to display system messages relating to the viewport, the control-panel and the current graph displaying status.

\subsection*{Colormap}

Directly below the message window is the colormap range indicator window. The Axiom Colormap shows a sampling of the spectrum from which hues can be drawn to represent the colors of a surface. The Colormap is composed of five shades for each of the hues along this spectrum. By moving the markers above and below the Colormap, the range of hues that are used to color the existing surface are set. The bottom marker shows the hue for the low end of the color range and the top marker shows the hue for the upper end of the range. Setting the bottom and top markers at the same hue results in monochromatic smooth shading of the graph when \textit{Smooth} mode is selected. At each end of the Colormap are \textit{+} and \textit{-} buttons. When clicked on, these increment or decrement the top or bottom marker.

\subsection*{Buttons}

Below the Colormap window and to the left are located various buttons that determine the characteristics of a graph. The buttons along the bottom and right hand side all have special meanings; the remaining buttons in the first row indicate the mode or style used to display the graph. The second row are toggles that turn on or off a property of the graph. On a color monitor, the property is on if green (clear text, on a monochrome monitor) and off if red (mottled pattern, on a monochrome monitor).

Here is a list of their functions.

\item \texttt{Wire} displays surface and tube plots as a wireframe image in a single color (blue) with no hidden surfaces removed, or displays space curve plots in colors based upon their parametric variables. This is
the fastest mode for displaying a graph. This is very useful when you
want to find a good orientation of your graph.

\item[\texttt{Solid}] displays the graph with hidden
surfaces removed, drawing each polygon beginning with the furthest
from the viewer.
The edges of the polygons are displayed in the hues specified by
the range in the Colormap window.

\item[\texttt{Shade}] displays the graph with hidden
surfaces removed and with the polygons shaded, drawing each
polygon beginning with the furthest from the viewer.
Polygons are shaded in the hues specified by the range in the
Colormap window using the Phong illumination model.

\item[\texttt{Smooth}] displays the graph using a
renderer that computes the graph one line at a time.
The location and color of the graph at each visible point on the
screen are determined and displayed using the Phong illumination
model.
Smooth shading is done in one of two ways, depending on the range
selected in the colormap window and the number of colors available
from the hardware and/or window manager.
When the top and bottom markers of the colormap range are set to
different hues, the graph is rendered by dithering between the
transitions in color hue.
When the top and bottom markers of the colormap range are set to
the same hue, the graph is rendered using the Phong smooth shading
model.
However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a
sufficient color supply is available.
For this reason, it may not be possible to render multiple Phong
smooth shaded graphs at the same time on some systems.

\item[\texttt{Bounds}] encloses the entire volume of the viewgraph within a
bounding box, or removes the box if previously selected. The region
that encloses the entire volume of the viewport graph is displayed.

\item[\texttt{Axes}] displays Cartesian
coordinate axes of the space, or turns them off if previously selected.

\item[\texttt{Outline}] causes quadrilateral polygons forming the graph surface
to be outlined in black when the graph is displayed in \texttt{\textbf{Shade}}
mode.

\item[\texttt{BW}] converts a color viewport to black and white, or vice-versa.
When this button is selected the control-panel and viewport switch to
an immutable colormap composed of a range of grey scale patterns or
tiles that are used wherever shading is necessary.
\item \texttt{[Light]} takes you to a control-panel described below.
\item \texttt{[ViewVolume]} takes you to another control-panel as described below.
\item \texttt{[Save]} creates a menu of the possible file types that can be written using the control-panel. The \texttt{[Exit]} button leaves the save menu. The \texttt{[Pixmap]} button writes an Axiom pixmap of the current viewport contents. The file is called \texttt{[axiom3D.pixmap]} and is located in the directory from which Axiom or \texttt{[viewalone]} was started. The \texttt{[PS]} button writes the current viewport contents to PostScript output rather than to the viewport window. By default the file is called \texttt{[axiom3D.ps]}; however, if a file name is specified in the user's \texttt{[.Xdefaults]} file it is used. The file is placed in the directory from which the Axiom or \texttt{[viewalone]} session was begun. See also the \texttt{axiomFunFrom(write){ThreeDimensionalViewport}} function.
\item \texttt{[Reset]} returns the object transformation characteristics back to their initial states.
\item \texttt{[Hide]} causes the control-panel for the corresponding viewport to disappear from the screen.
\item \texttt{[Quit]} queries whether the current viewport session should be terminated.
\enditems
\indent{0}

\subsubsection{Light}

The \texttt{[Light]} button changes the control-panel into the \texttt{[Lighting Control-Panel]}. At the top of this panel, the three axes are shown with the same orientation as the object. A light vector from the origin of the axes shows the current position of the light source relative to the object. At the bottom of the panel is an \texttt{[Abort]} button that cancels any changes to the lighting that were made, and a \texttt{[Return]} button that carries out the current set of lighting changes on the graph.
\indent{0}

\item \texttt{[XY:]} The \texttt{[XY]} lighting axes window is below the \texttt{[Lighting Control-Panel]} title and to the left. This changes the light vector within the \texttt{[XY]} view plane.
\item \texttt{[Z:]} The \texttt{[Z]} lighting axis window is below the \texttt{[Lighting Control-Panel]} title and in the center. This changes the \texttt{[Z]}
location of the light vector.
%
\item[Intensity:]
Below the \textbf{Lighting Control-Panel} title and to the right is the light intensity meter. Moving the intensity indicator down decreases the amount of light emitted from the light source. When the indicator is at the top of the meter the light source is emitting at 100\% intensity. At the bottom of the meter the light source is emitting at a level slightly above ambient lighting.
\enditems
\indent{0}

\subsubsection{View Volume}
The \textbf{View Volume} button changes the control-panel into the \textbf{Viewing Volume Panel}. At the bottom of the viewing panel is an \textbf{Abort} button that cancels any changes to the viewing volume that were made and a \textbf{Return} button that carries out the current set of viewing changes to the graph.
\indent{0}
\beginitems
\item[Eye Reference:] At the top of this panel is the \textbf{Eye Reference} window. It shows a planar projection of the viewing pyramid from the eye of the viewer relative to the location of the object. This has a bounding region represented by the rectangle on the left. Below the object rectangle is the \textbf{Hither} window. By moving the slider in this window the hither clipping plane sets the front of the view volume. As a result of this depth clipping all points of the object closer to the eye than this hither plane are not shown. The \textbf{Eye Distance} slider to the right of the \textbf{Hither} slider is used to change the degree of perspective in the image.

\item[Clip Volume:] The \textbf{Clip Volume} window is at the bottom of the \textbf{Viewing Volume Panel}. On the right is a \textbf{Settings} menu. In this menu are buttons to select viewing attributes. Selecting the \textbf{Perspective} button computes the image using perspective projection. The \textbf{Show Region} button indicates whether the clipping region of the volume is to be drawn in the viewport and the \textbf{Clipping On} button shows whether the view volume clipping is to be in effect when the image is drawn. The left side of the \textbf{Clip Volume} window shows the clipping boundary of the graph. Moving the knobs along the \textbf{X}, \textbf{Y}, and \textbf{Z} sliders adjusts the volume of the clipping region accordingly.
\enditems
\indent{0}
Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for \three{} graphics. Each operation name is followed by a list of arguments. Each argument is written as a variable informally named according to the type of the argument (for example, \texttt{\var{integer}}). If appropriate, a default value for an argument is given in parentheses immediately following the name.

\begin{itemize}
\item \axiomFun{adaptive3D?} \funArgs{} tests whether space curves are to be plotted according to the adaptive refinement algorithm.
\item \axiomFun{axes} \funArgs{viewport, \var{string}, \texttt{on}} turns the axes on and off.
\item \axiomFun{close} \funArgs{viewport} closes the viewport.
\item \axiomFun{colorDef} \funArgs{viewport, \var{color}{1}, \var{color}{2}, \texttt{27}} sets the colormap range to be from \var{color}{1} to \var{color}{2}.
\end{itemize}
\item {\axiomFun{controlPanel}} \funArgs{viewport, \text{string} \argDef{"off"}} declares whether the control-panel for the viewport is to be displayed or not.

\item {\axiomFun{diagonals}} \funArgs{viewport, \text{string} \argDef{"off"}} declares whether the polygon outline includes the diagonals or not.

\item {\axiomFun{drawStyle}} \funArgs{viewport, \text{style}} selects which of four drawing styles are used: {\tt "wireMesh", "solid", "shade",} or {\tt "smooth"}.

\item {\axiomFun{eyeDistance}} \funArgs{viewport, \text{float} \argDef{500}} sets the distance of the eye from the origin of the object for use in the {\axiomFunFrom{perspective}{ThreeDimensionalViewport}}.

\item {\axiomFun{key}} \funArgs{viewport} returns the operating system process ID number for the viewport.

\item {\axiomFun{lighting}} \funArgs{viewport, \text{float} \argDef{x}, \text{float} \argDef{y}, \text{float} \argDef{z}} sets the Cartesian coordinates of the light source.

\item {\axiomFun{modifyPointData}} \funArgs{viewport, \text{integer} \argDef{point}} replaces the coordinates of the point with the index {\it integer} with {\it point}.

\item {\axiomFun{move}} \funArgs{viewport, \text{integer} \argDef{x}, \text{integer} \argDef{y}} moves the upper left-hand corner of the viewport to screen position

\item {\axiomFun{options}} \funArgs{viewport} returns a list of all current draw options.
% \item[axiomFun{outlineRender}][funArgs{viewport, string\argDef{"off"}}]
turns polygon outlining
off or on when drawing in \{"tt shade\}" mode.

% \item[axiomFun{perspective}][funArgs{viewport, string\argDef{"on"}}]
turns perspective
viewing on and off.

% \item[axiomFun{reset}][funArgs{viewport}]
resets the attributes of a viewport to their
initial settings.

% \item[axiomFun{resize}][funArgs{viewport,
\subscriptText{integer}{width} \argDef{viewSizeDefault},
\subscriptText{integer}{height} \argDef{viewSizeDefault}]
resets the width and height
values for a viewport.

% \item[axiomFun{rotate}][funArgs{viewport,
\subscriptText{number}{\texht{θ}{\axiom{theta}}}{\argDef{viewThetaDefault}},
\subscriptText{number}{\texht{ϕ}{\axiom{phi}}}{\argDef{viewPhiDefault}]]
rotates the viewport by rotation angles for longitude
({\it \texht{θ}{\axiom{theta}}} and
latitude ({\it \texht{ϕ}{\axiom{phi}}}). Angles designate radians if given as floats, or degrees if given
as integers.

% \item[axiomFun{setAdaptive3D}][funArgs{boolean\argDef{true}}]
sets whether space curves are to be plotted
according to the adaptive
refinement algorithm.

% \item[axiomFun{setMaxPoints3D}][funArgs{integer\argDef{1000}}]
sets the default maximum number of possible
points to be used when constructing a \threedim{} space curve.

% \item[axiomFun{setMinPoints3D}][funArgs{integer\argDef{49}}]
sets the default minimum number of possible
points to be used when constructing a \threedim{} space curve.
\item \texttt{setScreenResolution3D}\funArgs{integer\argDef{500}} sets the default screen resolution constant used in setting the computation limit of adaptively generated \texttt{threedim}{} space curve plots.

\item \texttt{showRegion}\funArgs{viewport, string\argDef{"off"}} declares whether the bounding box of a graph is shown or not.

\item \texttt{subspace}\funArgs{viewport} returns the space component.

\item \texttt{subspace}\funArgs{viewport, subspace} resets the space component to \texttt{it subspace}.

\item \texttt{title}\funArgs{viewport, string} gives the viewport the title \texttt{it string}.

\item \texttt{translate}\funArgs{viewport, \subscriptText{float}{x}\argDef{viewDeltaXDefault}, \subscriptText{float}{y}\argDef{viewDeltaYDefault}} translates the object horizontally and vertically relative to the center of the viewport.

\item \texttt{intensity}\funArgs{viewport, float\argDef{1.0}} resets the intensity \texttt{it I} of the light source, \texttt{0 \le I \le 1}.

\item \texttt{tubePointsDefault}\funArgs{optArg{integer\argDef{6}}} sets or indicates the default number of vertices defining the polygon that is used to create a tube around a space curve.

\item \texttt{tubeRadiusDefault}\funArgs{optArg{float\argDef{0.5}}} sets or indicates the default radius of the tube that encircles a space curve.

\item \texttt{var1StepsDefault}\funArgs{optArg{integer\argDef{27}}} sets or indicates the default number of increments into which the grid defining a surface plot is subdivided with
%
\item[\axiomFun{var2StepsDefault}] \funArgs{\optArg{integer}{argDef{27}}} sets or indicates the default number of increments into which the grid defining a surface plot is subdivided with respect to the second parameter declared in the surface function.

%
\item[\axiomFun{viewDefaults}] \funArgs{{\tt [}\subscriptText{integer}{{\it point}}, \subscriptText{integer}{{\it line}}, \subscriptText{integer}{{\it axes}}, \subscriptText{integer}{{\it units}}, \subscriptText{float}{{\it point}}, allowbreak\subscriptText{list}{{\it position}}, \subscriptText{list}{{\it size}}{\tt]}} resets the default settings for the point color, line color, axes color, units color, point size, viewport upper left-hand corner position, and the viewport size.

%
\item[\axiomFun{viewDeltaXDefault}] \funArgs{\optArg{float}{argDef{0}}} resets the default horizontal offset from the center of the viewport, or returns the current default offset if no argument is given.

%
\item[\axiomFun{viewDeltaYDefault}] \funArgs{\optArg{float}{argDef{0}}} resets the default vertical offset from the center of the viewport, or returns the current default offset if no argument is given.

%
\item[\axiomFun{viewPhiDefault}] \funArgs{\optArg{float}{argDef{{\it pi}/4}}} resets the default latitudinal view angle, or returns the current default angle if no argument is given. \texttt{ϕ} is set to this value.

%
\item[\axiomFun{viewpoint}] \funArgs{viewport, \subscriptText{float}{{\it x}}, \subscriptText{float}{{\it y}}, \subscriptText{float}{{\it z}}} sets the viewing position in Cartesian coordinates.

%
\item[\axiomFun{viewpoint}] \funArgs{viewport, \subscriptText{float}{{\it \theta}}, \subscriptText{Float}{{\it \phi}}} sets the viewing position in spherical coordinates.
sets the viewing position in spherical coordinates, the scale factor, and offsets. \texttt{\theta} (longitude) and \texttt{\phi} (latitude) are in radians.

\item \(\textbf{viewPosDefault}\)
\funArgs{\optArg{list\argDef{[0,0]}}}
sets or indicates the position of the upper left-hand corner of a \texttt{twodim{}} viewport, relative to the display root window (the upper left-hand corner of the display is \texttt{axiom{[0, 0]}}).

\item \(\textbf{viewSizeDefault}\)
\funArgs{\optArg{list\argDef{[400,400]}}}
sets or indicates the width and height dimensions of a viewport.

\item \(\textbf{viewThetaDefault}\)
\funArgs{\optArg{float\argDef{\texttt{\pi}/4}}}
resets the default longitudinal view angle, or returns the current default angle if no argument is given. When a parameter is specified, the default longitudinal view angle \texttt{\theta} is set to this value.

\item \(\textbf{viewWriteAvailable}\)
\funArgs{\optArg{list\argDef{["pixmap", "bitmap", "postscript", "image"]}}}
indicates the possible file types that can be created with the \texttt{axiomFunFrom{write}{ThreeDimensionalViewport}} function.

\item \(\textbf{viewWriteDefault}\)
\funArgs{\optArg{list\argDef{[]}}}
sets or indicates the default types of files that are created in addition to the \texttt{\bf data} file when a \texttt{axiomFunFrom{write}{ThreeDimensionalViewport}} command is executed on a viewport.

\item \(\textbf{viewScaleDefault}\)
\funArgs{\optArg{float}}
sets the default scaling factor, or returns the current factor if no argument is given.

\item \(\textbf{write}\)
\funArgs{viewport, directory, \optArg{option}}
writes the file {\bf data} for {\it viewport} in the directory {\it directory}. An optional third argument specifies a file type (one of {\tt pixmap}, {\tt bitmap}, {\tt postscript}, or {\tt image}), or a list of file types. An additional file is written for each file type listed.

\item\[\axiomFun{scale}\]\funArgs{viewport, float\argDef{2.5}} specifies the scaling factor.
\enditems
\indent{0}
\texht{\egroup}{}
\endscroll
\autobuttons
\end{page}

Customization using .Xdefaults

--- ug07.ht ---

Both the \twodim{} and \threedim{} drawing facilities consult the {\bf .Xdefaults} file for various defaults. The list of defaults that are recognized by the graphing routines is discussed in this section. These defaults are preceded by {\tt Axiom.3D.} for \threedim{} viewport defaults, {\tt Axiom.2D.} for \twodim{} viewport defaults, or {\tt Axiom*} (no dot) for those defaults that are acceptable to either viewport type.

\item[\tt Axiom*buttonFont:\ \it font] This indicates which font type is used for the button text on the control-panel.
\xdefault{Rom11}
\item[\tt Axiom.2D.graphFont:\ \it font] quad (2D only)
which font type is used for displaying the graph numbers and
slots in the \bf{Graphs} section of the \twodim{} control-panel.
\default{Rom22}
%
\item[\tt Axiom.3D.headerFont:\ \it font]
This indicates which
font type is used for the axes labels and potentiometer
header names on \threedim{} viewport windows.
This is also used for \twodim{} control-panels for indicating
which font type is used for potentiometer header names and
multiple graph title headers.
\%for example, \tt Axiom.2D.headerFont: 8x13.
\default{It114}
%
\item[\tt Axiom*inverse:\ \it switch]
This indicates whether the
background color is to be inverted from white to black.
If \tt on, the graph viewports use black as the background
color.
If \tt off or no declaration is made, the graph viewports use a
white background.
\default{off}
%
\item[\tt Axiom.3D.lightingFont:\ \it font]
This indicates which font type is used for the \bf{x},
\bf{y}, and \bf{z} labels of the two lighting axes potentiometers,
and for the \bf{Intensity} title on the lighting control-panel.
\default{Rom10}
%
\item[\tt Axiom.2D.messageFont, Axiom.3D.messageFont:\ \it font]
These indicate the font type
to be used for the text in the control-panel message window.
\default{Rom14}
%
\item[\tt Axiom*monochrome:\ \it switch]
This indicates whether the
graph viewports are to be displayed as if the monitor is black and
white, that is, a 1 bit plane.
If \tt on is specified, the viewport display is black and white.
If \tt off is specified, or no declaration for this default is
given, the viewports are displayed in the normal fashion for the
monitor in use.
\default{off}
%
\item[\tt Axiom.2D.postScript:\ \it filename]
This specifies
the name of the file that is generated when a 2D PostScript graph
is saved.
\default{axiom2D.ps}
\item[\tt Axiom.3D.postScript:\it filename] newline
This specifies the name of the file that is generated when a 3D PostScript graph is saved.
\default{axiom3D.ps}
\%
\item[\tt Axiom*titleFont \it font] newline
This indicates which font type is used for the title text and, for \threedim{} graphs, in the lighting and viewing-volume control-panel windows.
\default{Rom14}
\%
\item[\tt Axiom.2D.unitFont:\it font] quad (2D only) newline
This indicates which font type is used for displaying the unit labels on \twodim{} viewport graphs.
\default{6x10}
\%
\item[\tt Axiom.3D.volumeFont:\it font] quad (3D only) newline
This indicates which font type is used for the \textbf{x}, \textbf{y}, and \textbf{z} labels of the clipping region sliders; for the \textbf{Perspective}, \textbf{Show Region}, and \textbf{Clipping On} buttons under \textbf{Settings}, and above the windows for the \textbf{Hither} and \textbf{Eye Distance} sliders in the \textbf{Viewing Volume Panel} of the \threedim{} control-panel.
\default{Rom8}
\enditems
\indent{0}
\endscroll
\autobuttons
\end{page}
Chapter 12

Users Guide Chapter 8 (ug08.ht)

Advanced Problem Solving

⇒ “notitle” (ugProblemNumericPage) 12 on page 2079
⇒ “notitle” (ugProblemFactorPage) 12 on page 2101
⇒ “notitle” (ugProblemSymRootPage) 12 on page 2112
⇒ “notitle” (ugProblemEigenPage) 12 on page 2123
⇒ “notitle” (ugProblemLinPolEqnPage) 12 on page 2130
⇒ “notitle” (ugProblemLimitsPage) 12 on page 2145
⇒ “notitle” (ugProblemLaplacePage) 12 on page 2152
⇒ “notitle” (ugProblemIntegrationPage) 12 on page 2157
⇒ “notitle” (ugProblemSeriesPage) 12 on page 2164
⇒ “notitle” (ugProblemDEQPage) 12 on page 2211
⇒ “notitle” (ugProblemFinitePage) 12 on page 2235
⇒ “notitle” (ugProblemIdealPage) 12 on page 2297
⇒ “notitle” (ugProblemGaloisPage) 12 on page 2306
⇒ “notitle” (ugProblemGeneticPage) 12 on page 2325

— ug08.ht —

\begin{page}{ugProblemPage}{8. Advanced Problem Solving}\beginscroll

In this chapter we describe techniques useful in solving advanced problems with Axiom.

\beginmenu
\menudownlink{{8.1. Numeric Functions}}
{ugProblemNumericPage}

2077
Axiom provides two basic floating-point types: \texttt{Float} and \texttt{DoubleFloat}. This section describes how to use numerical operations defined on these types and the related complex types.

As we mentioned in "An Overview of Axiom" in Chapter 1, the \texttt{Float} type is a software implementation of floating-point numbers in which the exponent and the significand may have any number of digits. See \texttt{'Float'} for detailed information about this domain. The \texttt{DoubleFloat} (see \texttt{'DoubleFloat'}) is usually a hardware implementation of floating point numbers, corresponding to machine double precision. The types \texttt{Complex Float} and \texttt{Complex DoubleFloat} are the corresponding software implementations of complex floating-point numbers. In this section the term \texttt{floating-point type} means any of these four types.

The floating-point types implement the basic elementary functions. These include (where "$\$" means \texttt{DoubleFloat},

\begin{verbatim}
\begin{page}{ugProblem numericPage}{8.1. Numeric Functions}
\beginscroll
Axiom provides two basic floating-point types: \texttt{axiomType{Float}} and \texttt{axiomType{DoubleFloat}}. This section describes how to use numerical operations defined on these types and the related complex types.

As we mentioned in \downlink{‘An Overview of Axiom’}{ugIntroPage} in Chapter 1\ignore{ugIntro}, the \texttt{axiomType{Float}} type is a software implementation of floating-point numbers in which the exponent and the significand may have any number of digits. See \texttt{FloatXmpPage}\ignore{Float} for detailed information about this domain. The \texttt{axiomType{DoubleFloat}} (see \texttt{DoubleFloatXmpPage}\ignore{DoubleFloat}) is usually a hardware implementation of floating point numbers, corresponding to machine double precision. The types \texttt{axiomType{Complex Float}} and \texttt{axiomType{Complex DoubleFloat}} are the corresponding software implementations of complex floating-point numbers. In this section the term \texttt{floating-point type} means any
\end{verbatim}
The floating-point types implement the basic elementary functions. These include (where \axiomSyntax\$ means \axiomType{DoubleFloat}, \axiomType{Float}, \axiomType{Complex DoubleFloat}, or \axiomType{Complex Float}):

\begin{verbatim}
\axiomFun{exp}, \axiomFun{log}: \axiom\$ -> \$ \\
\axiomFun{sin}, \axiomFun{cos}, \axiomFun{tan}, \axiomFun{cot}, \axiomFun{sec}, \axiomFun{csc}: \axiom\$ -> \$
\axiomFun{sin}, \axiomFun{cos}, \axiomFun{tan}, \axiomFun{cot}, \axiomFun{sec}, \axiomFun{csc}: \axiom\$ -> \$
\axiomFun{asin}, \axiomFun{acos}, \axiomFun{atan}, \axiomFun{acot}, \axiomFun{asec}, \axiomFun{acsc}: \axiom\$ -> \$
\axiomFun{sinh}, \axiomFun{cosh}, \axiomFun{tanh}, \axiomFun{coth}, \axiomFun{sech}, \axiomFun{csch}: \axiom\$ -> \$
\axiomFun{asinh}, \axiomFun{acosh}, \axiomFun{atanh}, \axiomFun{acoth}, \axiomFun{asech}, \axiomFun{acsch}: \axiom\$ -> \$
\axiomFun{pi}: \axiom\$ -> \$
\axiomFun{sqrt}: \axiom\$ -> \$
\axiomFun{nthRoot}: \axiom{\(\$, \text{Integer}\) -> \$
\axiomFunFrom{**}{Float}: \axiom{\(\$, \text{Fraction Integer}\) -> \$
\axiomFunFrom{**}{Float}: \axiom{\$, \$} -> \$
\end{verbatim}

The handling of roots depends on whether the floating-point type is real or complex: for the real floating-point types, \axiomType{DoubleFloat} and \axiomType{Float}, if a real root exists the one with the same sign as the radicand is returned; for the complex floating-point types, the principal value is returned. Also, for real floating-point types the inverse functions produce errors if the results are not real. This includes cases such as \axiom{asin(1.2)}, \axiom{log(-3.2)}, \axiom{sqrt(-1.1)}.

The default floating-point type is \axiomType{Float} so to evaluate functions using \axiomType{Float} or \axiomType{Complex Float}, just use normal decimal notation.

\begin{verbatim}
}{\spadpaste{exp(3.1)}}
\end{verbatim}

To evaluate functions using \axiomType{DoubleFloat}
or \texttt{axiomType\{Complex DoubleFloat\}},
a declaration or conversion is required.
\}
\spadpaste{r: DFLOAT := 3.1; t: DFLOAT := 4.5; \exp(r + t*\%i)}
\}
\xtc{
\spadpaste{\exp(3.1 :: DFLOAT + 4.5 :: DFLOAT * \%i)}}
\}

A number of special functions are provided by the package
\texttt{axiomType\{DoubleFloatSpecialFunctions\}} for the machine-precision
floating-point types. The special functions provided are listed
below, where \texttt{axiom\{F\}} stands for the types \texttt{axiomType\{DoubleFloat\}}
and \texttt{axiomType\{Complex DoubleFloat\}}. The real versions of the
functions yield an error if the result is not real.
\n\noindent
\axiomFun{Gamma}: \texttt{axiom\{F -> F\}}
\axiom{Gamma(z)} is the Euler gamma function,
\n$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt.$$%
\n\axiom{Gamma(z) = integrate(t**(z-1)*exp(-t), t=0..infinity).}
\n\noindent
\axiomFun{Beta}: \texttt{axiom\{F -> F\}}
\axiom{Beta(u, v)} is the Euler Beta function,
\n$$B(u,v) = \int_{0}^{1} t^{u-1} (1-t)^{v-1} dt.$$%
\n\axiom{Beta(u,v) = integrate(t**(u-1)*(1-t)**(b-1), t=0..1).}
\nThis is related to \texttt{axiom\{Gamma\(z\)\}} by
\n$$B(u,v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}.$$%
\n\axiom{Beta(u,v) = Gamma(u)*Gamma(v)/Gamma(u + v).}
\n\noindent
\axiomFun{logGamma}: \texttt{axiom\{F -> F\}}
\axiom{logGamma(z)} is the natural logarithm of \texht{$\Gamma(z)$}{\axiom{Gamma(z)}}. This can often be computed even if \texht{$\Gamma(z)$}{\axiom{Gamma(z)}} cannot.

\noindent \axiomFun{digamma}: \axiom{F -> F}
\[\axiom{digamma(z)}, \text{ also called } \axiom{psi(z)}, \text{ is the function } \texht{$\psi(z) = \Gamma'(z)/\Gamma(z)$}{\axiom{psi(z) = Gamma'(z)/Gamma(z)}}. \]
\axiomFun{polygamma}: \axiom{(NonNegativeInteger, F) -> F}
\[\axiom{polygamma(n, z)} \text{ is the } n^{\text{th}} \text{ derivative of } \psi(z), \text{ written } \psi^{(n)}(z). \]
\axiomFun{besselJ}: \axiom{(F,F) -> F}
\[\axiom{besselJ(v,z)} \text{ is the Bessel function of the first kind, } J_\nu(z). \] This function satisfies the differential equation
\[\texht{z^2 w''(z) + z w'(z) + (z^2-\nu^2)w(z) = 0.}{z**2*w''(z) + z*w'(z) + (z**2-v**2)*w(z) = 0.} \]
\axiomFun{besselY}: \axiom{(F,F) -> F}
\[\axiom{besselY(v,z)} \text{ is the Bessel function of the second kind, } Y_\nu(z). \] This function satisfies the same differential equation as \axiomFun{besselJ}.
\[\text{The implementation simply uses the relation } \axiom{Y_\nu(z) = \frac{J_\nu(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \pi)}.} \]
\[\axiom{Y(v,z) = (J(v,z)*cos(v*\%pi) - J(-v,z)/sin(v*\%pi))} \]
\axiomFun{besselI}: \((\mathbb{F}, \mathbb{F}) \rightarrow \mathbb{F} \) \hfill\newline
\(\text{besselI}(\nu, z) \) is the modified Bessel function of the first kind, \(I_{\nu}(z) \).

This function satisfies the differential equation
\(z^2 \, w''(z) + z \, w'(z) - (z^2 + \nu^2)w(z) = 0. \)

\axiomFun{besselK}: \((\mathbb{F}, \mathbb{F}) \rightarrow \mathbb{F} \) \hfill\newline
\(\text{besselK}(\nu, z) \) is the modified Bessel function of the second kind, \(K_{\nu}(z) \).

This function satisfies the same differential equation as \(\text{besselI} \).

The implementation simply uses the relation
\(K_{\nu}(z) = \pi \frac{I_{-\nu}(z) - I_{\nu}(z)}{2 \sin(\nu \pi)}. \)

\axiomFun{airyAi}: \(\mathbb{F} \rightarrow \mathbb{F} \) \hfill\newline
\(\text{airyAi}(z) \) is the Airy function \(\text{Ai}(z) \).

This function satisfies the differential equation
\(w''(z) - z \, w(z) = 0. \)

The implementation simply uses the relation
\(\text{Ai}(-z) = \frac{1}{3} \sqrt{z} \left(J_{-1/3}(\frac{2}{3}z^{3/2}) + J_{1/3}(\frac{2}{3}z^{3/2}) \right). \)

\axiomFun{airyBi}: \(\mathbb{F} \rightarrow \mathbb{F} \) \hfill\newline
\(\text{airyBi}(z) \) is the Airy function \(\text{Bi}(z) \).

This function satisfies the same differential equation as \(\text{airyAi} \).

The implementation simply uses the relation
\text{Bi}(-z) = \frac{1}{3} \sqrt{3 z} (J_{-1/3}(\frac{2}{3}z^{3/2}) - J_{1/3}(\frac{2}{3}z^{3/2})) \\
\begin{axiom}
\text{hypergeometric0F1}: (F,F) -> F \\
\text{hypergeometric0F1}(c,z) \text{ is the hypergeometric function} \\
\text{0F1}(c;z) \\
\end{axiom}

The above special functions are defined only for small floating-point types. If you give \texttt{Float} arguments, they are converted to \texttt{DoubleFloat} by Axiom.

A number of additional operations may be used to compute numerical values. These are special polynomial functions that can be evaluated for values in any commutative ring \texttt{R}, and in particular for values in any floating-point type. The following operations are provided by the package \texttt{OrthogonalPolynomialFunctions}:

\begin{axiom}
\text{chebyshevT}: (NonNegativeInteger, R) -> R \\
\text{chebyshevT}(n,z) \text{ is the } n^{th} \text{ Chebyshev polynomial of the first kind.} \\
\end{axiom}

\begin{axiom}
\text{besselI}(a + \%i*b, b*a + 1)
\end{axiom}
Chebyshev polynomial of the second kind, $U_n(z)$. These are defined by
\[
\frac{1}{1-2tz+t^2} = \sum_{n=0}^\infty U_n(z) t^n.
\]

hermiteH: \((\text{NonNegativeInteger, R) -> R})

\text{hermiteH(n,z)} is the \(n\) Hermite polynomial, $H_n(z)$. These are defined by
\[
e^{2tz-t^2} = \sum_{n=0}^\infty H_n(z) \frac{t^n}{n!}.
\]

laguerreL: \((\text{NonNegativeInteger, NonNegativeInteger, R) -> R})

\text{laguerreL(m,n,z)} is the associated Laguerre polynomial, $L^m_n(z)$. This is the \(m\) derivative of $L_n(z)$.

legendreP: \((\text{NonNegativeInteger, R) -> R})

\text{legendreP(n,z)} is the \(n\) Legendre polynomial, $P_n(z)$. These are defined by
\[
\frac{e^{-\frac{tz}{1-t}}}{1-t} = \sum_{n=0}^\infty L_n(z) \frac{t^n}{n!}.
\]
\frac{1}{\sqrt{1-2 \, t \, z + t^2}} = \sum_{n=0}^{\text{infty}} P_n(z) \, t^n.}

These operations require non-negative integers for the indices, but otherwise the argument can be given as desired.

\spadpaste{[\text{chebyshevT}(i, z) \text{ for } i \text{ in 0..5}]}

The expression \texttt{chebyshevT(n,z)} evaluates to the \texttt{\text{eth}(\text{axiom}(n))} Chebyshev polynomial of the first kind.

\spadpaste{\text{chebyshevT}(3, 5.0 + 6.0*\%i)}

\spadpaste{\text{chebyshevT}(3, 5.0::\text{DoubleFloat})}

The expression \texttt{chebyshevU(n,z)} evaluates to the \texttt{\text{eth}(\text{axiom}(n))} Chebyshev polynomial of the second kind.

\spadpaste{[\text{chebyshevU}(i, z) \text{ for } i \text{ in 0..5}]}

\spadpaste{\text{chebyshevU}(3, 0.2)}

The expression \texttt{hermiteH(n,z)} evaluates to the \texttt{\text{eth}(\text{axiom}(n))} Hermite polynomial.

\spadpaste{[\text{hermiteH}(i, z) \text{ for } i \text{ in 0..5}]}

\spadpaste{\text{hermiteH}(100, 1.0)}

The expression \texttt{laguerreL(n,z)} evaluates to the \texttt{\text{eth}(\text{axiom}(n))} Laguerre polynomial.

\spadpaste{[\text{laguerreL}(i, z) \text{ for } i \text{ in 0..4}]}
\texttt{\spadpaste{laguerreL(4, 1.2)}}
\texttt{\spadpaste{[laguerreL(j, 3, z) for j in 0..4]}}
\texttt{\spadpaste{laguerreL(1, 3, 2.1)}}
\texttt{\spadpaste{legendreP(i,z) for i in 0..5]}}
\texttt{\spadpaste{legendreP(3, 3.0*\%i)}}
\texttt{\spadpaste{\texttt{bernoulliB}: \texttt{bernoulliB}(n,z) = B_n(z)}}
\texttt{\spadpaste{\texttt{eulerE}: \texttt{eulerE}(n,z) = E_n(z)}}

Finally, three number-theoretic polynomial operations may be evaluated. The following operations are provided by the package \texttt{NumberTheoreticPolynomialFunctions}.

\noindent\texttt{\axiomFun{bernoulliB}: \axiomFun{bernoulliB}(n,z) = B_n(z)}
\noindent\texttt{\axiomFun{eulerE}: \axiomFun{eulerE}(n,z) = E_n(z)}
\begin{axiom}
2*exp(z*t)/(exp t + 1) =
\sum(E[n](z)*t**n/n! for n = 0..)}
\end{axiom}

\axiomFun{cyclotomic}: \axiom{(NonNegativeInteger, R) -> R}
\hfill
\axiomFun{cyclotomic(n,z)} is the \eth\ axiom{n} cyclotomic polynomial
\texttt{\Phi}_n(z)\{\axiom{phi(n,z)}\}. This is the polynomial whose
roots are precisely the primitive \eth\ axiom{n} roots of unity.
This polynomial has degree given by the Euler totient function
\texttt{\phi}(n)\{\axiom{phi(n)}\}.

\xtc{The expression \axiom{bernoulliB(n,z)} evaluates to the
\eth\ axiom{n} Bernoulli polynomial.}
\spadpaste{bernoulliB(3, z)}
\xtc{The expression \axiom{eulerE(n,z)} evaluates to the \eth\ axiom{n} Euler polynomial.}
\spadpaste{eulerE(3, z)}
\xtc{The expression \axiom{cyclotomic(n,z)} evaluates to the
\eth\ axiom{n} cyclotomic polynomial.}
\spadpaste{cyclotomic(3, z)}

Drawing complex functions in Axiom is presently somewhat
awkward compared to drawing real functions.
It is necessary to use the \axiomFun{draw} operations that operate
on functions rather than expressions.
This is the complex exponential function. When this is displayed in color, the height is the value of the real part of the function and the color is the imaginary part. Red indicates large negative imaginary values, green indicates imaginary values near zero and blue/violet indicates large positive imaginary values.

\graphpaste{draw((x,y)\to real exp complex(x,y), -2..2, -2*\pi..2*\pi, colorFunction == (x, y) \to imag exp complex(x,y), title=="exp(x+%i*y)", style=="smooth")}

This is the complex arctangent function. Again, the height is the real part of the function value but here the color indicates the function value’s phase. The position of the branch cuts are clearly visible and one can see that the function is real only for a real argument.

\graphpaste{vp := draw((x,y) \to real atan complex(x,y), -\pi..\pi, -\pi..\pi, colorFunction== (x,y) \to argument atan complex(x,y), title=="atan(x+%i*y)", style=="shade"); rotate(vp,-160,-45); vp}

This is the complex Gamma function.

\graphpaste{draw((x,y) \to max(min(real Gamma complex(x,y),4),-4), -\pi..\pi, -\pi..\pi, style=="shade", colorFunction == (x,y) \to argument Gamma complex(x,y), title == "Gamma(x+%i*y)" , var1Steps == 50, var2Steps== 50}}

This shows the real Beta function near the origin.

\graphpaste{draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, style=="shade", title=="Beta(x,y)", var1Steps==40, var2Steps==40)}
This is the Bessel function \(J_\alpha(x) \) for index \(\alpha \) in the range \([-6..4]\) and argument \(x \) in the range \([2..14]\).

\[
\text{draw}((\alpha,x) \rightarrow \min(\max(besselJ(\alpha, x+8), -6), 6), -6..4, -6..6, \text{title}="besselJ(\alpha,x)", \text{style}="shade", \text{var1Steps}==40, \text{var2Steps}==40))
\]

\[
\text{epsffile}[0 0 295 295]{../ps/bessel.ps}
\]

This is the modified Bessel function \(I_\alpha(x) \) evaluated for various real values of the index \(\alpha \) and fixed argument \(x = 5 \).

\[
\text{draw}(besselI(\alpha, 5), \alpha = -12..12, \text{unit}=[5,20])
\]

\[
\text{epsffile}[0 0 295 295]{../ps/modbess.ps}
\]

This is similar to the last example except the index \(\alpha \) takes on complex values in a \(6 \times 6\) rectangle centered on the origin.

\[
\text{draw}((x,y) \rightarrow \text{real besselI(\text{complex}(x/20, y/20),5), -60..60, -60..60, colorFunction = \((x,y) \rightarrow \text{argument besselI(\text{complex}(x/20,y/20),5), title="besselI(x+i*y,5)"}, \text{style}="shade")})
\]

\[
\text{epsffile}[0 0 295 295]{../ps/modbessc.ps}
\]
\begin{verbatim}
(2) - 4.6792348860969906 - 21.699165928071732%i
Type: Complex Float
\end{verbatim}

\begin{verbatim}
(3) - 4.6792348860969906 - 21.699165928071732%i
Type: Complex DoubleFloat
\end{verbatim}

\begin{verbatim}
(4) - 4.6792348860969906 - 21.699165928071732%i
Type: Complex DoubleFloat
\end{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPageEmpty4}
\begin{paste}{ugProblemNumericPageEmpty4}{ugProblemNumericPagePatch4}
\pastebutton{ugProblemNumericPageEmpty4}{\showpaste}
\begin{verbatim}
\indentrel{3}
\spadcommand{exp(3.1::DFLOAT + 4.5::DFLOAT * \%i)}
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPagePatch5}
\begin{paste}{ugProblemNumericPageFull5}{ugProblemNumericPageEmpty5}
\pastebutton{ugProblemNumericPageFull5}{\hidepaste}
\tab{5}\spadcommand{Gamma(0.5)**2}
\indentrel{3}\begin{verbatim}
(5) 3.14159265358979
Type: DoubleFloat
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPageEmpty5}
\begin{paste}{ugProblemNumericPageEmpty5}{ugProblemNumericPagePatch5}
\pastebutton{ugProblemNumericPageEmpty5}{\showpaste}
\tab{5}\spadcommand{Gamma(0.5)**2}
\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPagePatch6}
\begin{paste}{ugProblemNumericPageFull6}{ugProblemNumericPageEmpty6}
\pastebutton{ugProblemNumericPageFull6}{\hidepaste}
\tab{5}\spadcommand{a := 2.1; b := 1.1; besselI(a + \%i*b, b*a + 1)}
\indentrel{3}\begin{verbatim}
(6) 2.489492417547372 - 2.3658460381468371%i
Type: Complex DoubleFloat
\indentrel{-3}\end{verbatim}
\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPageEmpty6}
\begin{paste}{ugProblemNumericPageEmpty6}{ugProblemNumericPagePatch6}
\pastebutton{ugProblemNumericPageEmpty6}{\showpaste}
\tab{5}\spadcommand{a := 2.1; b := 1.1; besselI(a + \%i*b, b*a + 1)}
\end{paste}\end{patch}

\begin{patch}{ugProblemNumericPagePatch7}
\begin{paste}{ugProblemNumericPageFull7}{ugProblemNumericPageEmpty7}
\pastebutton{ugProblemNumericPageFull7}{\hidepaste}
\tab{5}\spadcommand{\[chebyshevT(i, z) for i in 0..5\]}
\indentrel{3}\begin{verbatim}
(7)
\indentrel{3}[[1,z,2z - 1,4z - 3z,8z - 8z + 1,16z - 20z + 5z]]
Type: List Polynomial Integer
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{verbatim}
chebyshevT(i, z) for i in 0..5
\end{verbatim}
\begin{verbatim}
chebyshevT(3, 5.0 + 6.0*\%i)
\end{verbatim}
\begin{verbatim}
chebyshevT(3, 5.0::DoubleFloat)
\end{verbatim}
\begin{verbatim}
chebyshevU(i, z) for i in 0..5
\end{verbatim}
\begin{verbatim}
[chebyshevU(i, z) for i in 0..5]
\end{verbatim}

(11) \ - 0.736
Type: Float

\begin{verbatim}
[hermiteH(i, z) for i in 0..5]
\end{verbatim}

\begin{verbatim}
[1, 2z, 4z^3 - 2, 8z^4 - 12z, 16z^5 - 48z^3 + 12,
5 3
32z^6 - 160z^4 + 120z^2]
\end{verbatim}

Type: List Polynomial Integer

\begin{verbatim}
[hermiteH(i, z) for i in 0..5]
\end{verbatim}

\begin{verbatim}
[1, 2z, 4z^3 - 2, 8z^4 - 12z, 16z^5 - 48z^3 + 12,
5 3
32z^6 - 160z^4 + 120z^2]
\end{verbatim}

Type: List Polynomial Integer
\texttt{hermiteH(100, 1.0)} \\
\texttt{laguerreL(i, z) for i in 0..4} \\
\texttt{laguerreL(4, 1.2)}
\begin{verbatim}
\spadcommand{\[laguerreL(j, 3, z) for j in 0..4\]}
\indentrel{3}
\begin{verbatim}
(16)
3 2 2
[- z + 9z - 18z + 6, - 3z + 18z - 18, - 6z + 18, - 6, 0]
Type: List Polynomial Integer
\end{verbatim}
\indentrel{-3}
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
\spadcommand{\[laguerreL(j, 3, z) for j in 0..4\]}
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
\spadcommand{laguerreL(1, 3, 2.1)}
\indentrel{3}
\begin{verbatim}
(17) 6.57
Type: Float
\end{verbatim}
\indentrel{-3}
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
\spadcommand{\[legendreP(i,z) for i in 0..5\]}
\indentrel{3}
\begin{verbatim}
(18)
3 2 1 5 3 3 35 4 15 2 3
[1, z, z - , z - z, z - z + ,
 2 2 2 2 8 4 8
63 5 35 3 15
z - z + z]
8 4 8
Type: List Polynomial Fraction Integer
\end{verbatim}
\indentrel{-3}
\end{verbatim}
\end{patch}

\begin{patch}
\end{patch}

\begin{patch}
\end{patch}
\begin{spadcommand}{\legendreP(i, z) for i in 0..5}
\end{spadcommand}

\begin{spadcommand}{\legendreP(3, 3.0*\%i)}
(19) - 72.0 \%i
Type: \texttt{Complex Float}
\end{spadcommand}

\begin{spadcommand}{\bernoulliB(3, z)}
3 3 2 1
z - z + z
2 2
Type: \texttt{Polynomial Fraction Integer}
\end{spadcommand}

\begin{spadcommand}{\bernoulliB(3, 0.7 + 0.4 * \%i)}
(21) - 0.138 - 0.116 \%i
Type: \texttt{Complex Float}
\end{spadcommand}
\begin{paste}{ugProblemNumericPageFull21}{ugProblemNumericPageEmpty21}
\spadcommand{bernoulliB(3, 0.7 + 0.4 * \%i)}
\end{paste}

\begin{patch}{ugProblemNumericPagePatch21}
\begin{paste}{ugProblemNumericPageFull22}{ugProblemNumericPageEmpty22}
\spadcommand{eulerE(3, z)}
\begin{verbatim}
(22) z - z +
 3 3 2 1
 2 4
Type: Polynomial Fraction Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemNumericPageEmpty22}
\begin{paste}{ugProblemNumericPageEmpty22}{ugProblemNumericPagePatch22}
\spadcommand{eulerE(3, z)}
\end{paste}
\end{patch}

\begin{patch}{ugProblemNumericPagePatch23}
\begin{paste}{ugProblemNumericPageFull23}{ugProblemNumericPageEmpty23}
\spadcommand{cyclotomic(3, z)}
\begin{verbatim}
(24) z + z + 1
Type: Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemNumericPageEmpty23}
\begin{paste}{ugProblemNumericPageEmpty23}{ugProblemNumericPagePatch23}
\spadcommand{cyclotomic(3, z)}
\end{paste}
\end{patch}

\begin{patch}{ugProblemNumericPagePatch24}
\begin{paste}{ugProblemNumericPageFull24}{ugProblemNumericPageEmpty24}
\spadcommand{cyclotomic(3, z)}
\end{paste}
\end{patch}
\begin{spadcommand}\texttt{cyclotomic}(3, \texttt{z})\end{spadcommand}

\begin{verbatim}
0.0
\end{verbatim}

Type: Complex Float

\begin{spadcommand}\texttt{cyclotomic}(3, (-1.0 + 0.0 \times \%i)^{2/3})\end{spadcommand}

\begin{spadcommand}\texttt{atan}(x + \%i \times y)\end{spadcommand}

\begin{verbatim}
vp := \texttt{draw}(y \times \texttt{atan}(x + \%i \times y), -\%pi..\%pi, -\%pi..\%pi, \texttt{colorFunction} == (x, y) \times \texttt{argument}\texttt{atan}(x + \%i \times y), \texttt{title}==\texttt{atan}(x + \%i \times y), \texttt{style}==\texttt{shade}); \texttt{rotate}(vp,-160,-45); vp
\end{verbatim}

\begin{verbatim}
vp := \texttt{draw}(y \times \texttt{atan}(x + \%i \times y), -\%pi..\%pi, -\%pi..\%pi, \texttt{colorFunction} == (x, y) \times \texttt{argument}\texttt{atan}(x + \%i \times y), \texttt{title}==\texttt{atan}(x + \%i \times y), \texttt{style}==\texttt{shade}); \texttt{rotate}(vp,-160,-45); vp
\end{verbatim}

\begin{verbatim}
vp := \texttt{draw}(y \times \texttt{atan}(x + \%i \times y), -\%pi..\%pi, -\%pi..\%pi, \texttt{colorFunction} == (x, y) \times \texttt{argument}\texttt{atan}(x + \%i \times y), \texttt{title}==\texttt{atan}(x + \%i \times y), \texttt{style}==\texttt{shade}); \texttt{rotate}(vp,-160,-45); vp
\end{verbatim}

\begin{verbatim}
vp := \texttt{draw}(y \times \texttt{atan}(x + \%i \times y), -\%pi..\%pi, -\%pi..\%pi, \texttt{colorFunction} == (x, y) \times \texttt{argument}\texttt{atan}(x + \%i \times y), \texttt{title}==\texttt{atan}(x + \%i \times y), \texttt{style}==\texttt{shade}); \texttt{rotate}(vp,-160,-45); vp
\end{verbatim}
Polynomial Factorization

⇒ “notitle” (ugProblemFactorIntRatPage) 12 on page 2102
⇒ “notitle” (ugProblemFactorFFPage) 12 on page 2104
⇒ “notitle” (ugProblemFactorAlgPage) 12 on page 2106
⇒ “notitle” (ugProblemFactorRatFunPage) 12 on page 2111

The Axiom polynomial factorization facilities are available for all polynomial types and a wide variety of coefficient domains. Here are some examples.
Integer and Rational Number Coefficients

Polynomials with integer coefficients can be be factored.

\texttt{v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12) \bound{v}}

Also, Axiom can factor polynomials with rational number coefficients.

\texttt{w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12) \bound{w}}
\begin{patch}{ugProblemFactorIntRatPagePatch1}
\begin{paste}{ugProblemFactorIntRatPageFull1}{ugProblemFactorIntRatPageEmpty1}
\pastebutton{ugProblemFactorIntRatPageFull1}{\hidepaste}
\spadcommand{v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12)\bound{v}}
\indentrel{3}\begin{verbatim}
(1)
3 3 5 2 6 3 8 5
- 2x y + (24x + 24)y + (- 4x - x)y + 48x + 12x
+ 3
48x + 12
Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemFactorIntRatPagePatch2}
\begin{paste}{ugProblemFactorIntRatPageFull2}{ugProblemFactorIntRatPageEmpty2}
\pastebutton{ugProblemFactorIntRatPageFull2}{\hidepaste}
\spadcommand{w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12)\bound{v}}
\indentrel{3}\begin{verbatim}
8 7 6 35 5 95 3 2
(3) 48x + 8x - 2x + x + x + 8x + 12
3 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Finite Field Coefficients

⇒ “notitle” (ugProblemFinitePage) 12 on page 2235

Polynomials with coefficients in a finite field
can be also be factored.

\spadpaste{u : POLY(PF(19)) :=3*x**4+2*x**2+15*x+18 \bound{u}}
These include the integers mod $\text{axiom}{p}$, where $\text{axiom}{p}$ is prime, and extensions of these fields.

\{
\text{spadpaste}{\text{factor} u \ \text{\texttt{\textbackslash free}}\{u\}}
\}

\xtc{
Convert this to have coefficients in the finite field with \texttt{19^3} elements. See \downlink{'Finite Fields'}{ugProblemFinitePage} in Section 8.11 for more information about finite fields.
\}

\{
\text{spadpaste}{\text{factor}\left(u \ : \ \text{\texttt{POLY}} \ FFX(\text{\texttt{PF 19,3}})\right) \ \text{\texttt{\textbackslash free}}\{u\}}
\}

\%
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugProblemFactorFFPagePatch1}
\begin{paste}{ugProblemFactorFFPageFull1}{ugProblemFactorFFPageEmpty1}
\pastebutton{ugProblemFactorFFPageFull1}{\hidepaste}
\tab{5}\spadcommand{u : \text{\texttt{POLY}}(\text{\texttt{PF(19)}}) := 3*x**4 + 2*x**2 + 15*x + 18\ bound\{u \}}
\indentrel{3}\begin{verbatim}
4 2
(1) 3x + 2x + 15x + 18
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorFFPageEmpty1}
\begin{paste}{ugProblemFactorFFPageEmpty1}{ugProblemFactorFFPagePatch1}
\pastebutton{ugProblemFactorFFPageEmpty1}{\showpaste}
\tab{5}\spadcommand{u : \text{\texttt{POLY}}(\text{\texttt{PF(19)}}) := 3*x**4 + 2*x**2 + 15*x + 18\ bound\{u \}}
\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorFFPagePatch2}
\begin{paste}{ugProblemFactorFFPageFull2}{ugProblemFactorFFPageEmpty2}
\pastebutton{ugProblemFactorFFPageFull2}{\hidepaste}
\tab{5}\spadcommand{\text{\texttt{factor}} u \ \text{\texttt{\textbackslash free}}\{u \}}
\indentrel{3}\begin{verbatim}
3 2
(2) 3(x + 18)(x + x + 8x + 13)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorFFPageEmpty2}
\begin{paste}{ugProblemFactorFFPageEmpty2}{ugProblemFactorFFPagePatch2}
\end{patch}
Simple Algebraic Extension Field Coefficients

— ug08.ht —

Polynomials with coefficients in simple algebraic extensions of the rational numbers can be factored.

Here, \texttt{\textbackslash axiom(aa)} and \texttt{\textbackslash axiom(bb)} are symbolic roots of polynomials.

\begin{verbatim}
\spadpaste{aa := rootOf(aa**2+aa+1) \bound{aa}}
\end{verbatim}

\begin{verbatim}
\spadpaste{p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2}
\end{verbatim}
Note that the second argument to factor can be a list of algebraic extensions to factor over.

\spadpaste{factor(p, [aa]) \free{p aa}}

This factors $x^2 + 3$ over the integers.

\spadpaste{factor(x^2 + 3)}

Factor the same polynomial over the field obtained by adjoining aa to the rational numbers.

\spadpaste{factor(x^2 + 3, [aa]) \free{aa}}

Factor $x^6 + 108$ over the same field.

\spadpaste{factor(x^6 + 108, [aa]) \free{aa}}

\spadpaste{bb := \text{rootOf}(bb^3 - 2) \bound{bb}}

\spadpaste{factor(x^6 + 108, [bb]) \free{bb}}

Factor again over the field obtained by adjoining both aa and bb to the rational numbers.

\spadpaste{factor(x^6 + 108, [aa, bb]) \free{aa bb}}

\begin{verbatim}
(1) aa
Type: AlgebraicNumber
\end{verbatim}
\begin{verbatim}
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch1}
\begin{paste}{ugProblemFactorAlgPageFull1}{ugProblemFactorAlgPageEmpty1}
\pastebutton{ugProblemFactorAlgPageFull1}{\showpaste}
\indentrel{3}\begin{verbatim}
5 3 4
(- aa - 1)y + ((- aa - 1)x + aa x)y +
 2 3
((- 2aa - 2)x + (- 2aa - 2)x)y +
 5 4 3 2 2
((- 2aa - 2)x + (- 2aa - 2)x + 2aa x + 2aa x)y +
 4 3 2
((- aa - 1)x + (- 2aa - 2)x + (- aa - 1)x)y +
 7 6 5 4 3
(- aa - 1)x + (- 2aa - 2)x - x + 2aa x + aa x
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch2}
\begin{paste}{ugProblemFactorAlgPageFull2}{ugProblemFactorAlgPageEmpty2}
\pastebutton{ugProblemFactorAlgPageFull2}{\hidepaste}
\indentrel{5}\spadcommand{p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2\free{aa }}\bound{p }
\indentrel{3}\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch3}
\begin{paste}{ugProblemFactorAlgPageFull3}{ugProblemFactorAlgPageEmpty3}
\pastebutton{ugProblemFactorAlgPageFull3}{\hidepaste}
\indentrel{5}\spadcommand{factor(p,[aa])\free{p aa }}\bound{p }
\indentrel{3}\begin{verbatim}
3 2 2 2
(3) (- aa - 1)(y + x + (- aa - 1)x)(y + x + x)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugProblemFactorAlgPageEmpty3}
\begin{paste}{ugProblemFactorAlgPageFull3}{ugProblemFactorAlgPagePatch3}
\pastebutton{ugProblemFactorAlgPageFull3}{\showpaste}
\tab{5}\spadcommand{factor(p,[aa])\free{p aa }}
\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch4}
\begin{paste}{ugProblemFactorAlgPageFull4}{ugProblemFactorAlgPageEmpty4}
\pastebutton{ugProblemFactorAlgPageFull4}{\hidepaste}
\indentrel{3}\spadcommand{factor(x**2+3)}
2
\indentrel{-3}\begin{verbatim}
(4) x + 3
\end{verbatim}
Type: Factored Polynomial Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch5}
\begin{paste}{ugProblemFactorAlgPageFull5}{ugProblemFactorAlgPageEmpty5}
\pastebutton{ugProblemFactorAlgPageFull5}{\hidepaste}
\indentrel{3}\spadcommand{factor(x**2+3,[aa])\free{aa }}
(5) (x - 2aa - 1)(x + 2aa + 1)
\indentrel{-3}\begin{verbatim}
3 3
(6) (x - 12aa - 6)(x + 12aa + 6)
\end{verbatim}
Type: Factored Polynomial AlgebraicNumber
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch6}
\begin{paste}{ugProblemFactorAlgPageFull6}{ugProblemFactorAlgPageEmpty6}
\pastebutton{ugProblemFactorAlgPageFull6}{\hidepaste}
\indentrel{3}\spadcommand{factor(x**6+108,[aa])\free{aa }}
3
3
(6) (x - 12aa - 6)(x + 12aa + 6)
Type: Factored Polynomial AlgebraicNumber
\end{verbatim}
\end{patch}
\begin{patch}{ugProblemFactorAlgPageEmpty6}
\begin{paste}{ugProblemFactorAlgPageEmpty6}{ugProblemFactorAlgPagePatch6}
\tab{5}\spadcommand{factor(x**6+108,[aa])}\free{aa }
\end{paste}\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch7}
\begin{paste}{ugProblemFactorAlgPageFull7}{ugProblemFactorAlgPageEmpty7}
\tab{5}\spadcommand{bb:=rootOf(bb**3-2)\bound{bb }}
\indentrel{3}\begin{verbatim}
(7) bb
Type: AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch8}
\begin{paste}{ugProblemFactorAlgPageFull8}{ugProblemFactorAlgPageEmpty8}
\tab{5}\spadcommand{factor(x**6+108,[bb])}\free{bb }
\indentrel{3}\begin{verbatim}
(8) 2 2 2 2 2 2
(x - 3bb x + 3bb) (x + 3bb x + 3bb)
Type: Factored Polynomial AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemFactorAlgPagePatch9}
\begin{paste}{ugProblemFactorAlgPageFull9}{ugProblemFactorAlgPageEmpty9}
\tab{5}\spadcommand{factor(x**6+108,[aa,bb])}\free{aa bb }
\indentrel{3}\begin{verbatim}
(9) (x + (- 2aa - 1)bb)(x + (- aa - 2)bb)
* (x + (- aa + 1)bb)(x + (aa - 1)bb)(x + (aa + 2)bb)
*
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(x + (2aa + 1)bb)
Type: Factored Polynomial AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemFactorAlgPageEmpty9}
\begin{paste}{ugProblemFactorAlgPageEmpty9}{ugProblemFactorAlgPagePatch9}
\pastebutton{ugProblemFactorAlgPageEmpty9}{\showpaste}
\tab{5}\spadcommand{factor(x**6+108,[aa,bb])\free{aa bb}}
\end{paste}\end{patch}

Factoring Rational Functions

--- ug08.ht ---

\begin{page}{ugProblemFactorRatFunPage}
\{8.2.4. Factoring Rational Functions\}
\beginscroll

Since fractions of polynomials form a field, every element (other than zero) divides any other, so there is no useful notion of irreducible factors. Thus the \axiomFun{factor} operation is not very useful for fractions of polynomials.

\xtc{
There is, instead, a specific operation \axiomFun{factorFraction} that separately factors the numerator and denominator and returns a fraction of the factored results.
}{
\spadpaste{factorFraction((x**2-4)/(y**2-4))}
}

\xtc{
You can also use \axiomFun{map}. This expression applies the \axiomFun{factor} operation to the numerator and denominator.
}{
\spadpaste{map(factor,(x**2-4)/(y**2-4))}
}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugProblemFactorRatFunPagePatch1}
\begin{paste}{ugProblemFactorRatFunPageFull1}{ugProblemFactorRatFunPageEmpty1}
Manipulating Symbolic Roots of a Polynomial

\begin{page}{ugProblemSymRootPage}
\!
\begin{quote}
\begin{verbatim}
(x - 2)(x + 2) \\
(1) \\
(y - 2)(y + 2)
\end{verbatim}
\end{quote}
Type: Fraction Factored Polynomial Integer
\end{page}

\begin{page}{ugProblemSymRootPage}
\!
\begin{quote}
\begin{verbatim}
(x - 2)(x + 2) \\
(2) \\
(y - 2)(y + 2)
\end{verbatim}
\end{quote}
Type: Fraction Factored Polynomial Integer
\end{page}
In this section we show you how to work with one root or all roots of a polynomial. These roots are represented symbolically (as opposed to being numeric approximations).

See \downlink{``Solution of a Single Polynomial Equation''} in Section 8.5.2\ignore{ugxProblemOnePol} and \downlink{``Solution of Systems of Polynomial Equations''} in Section 8.5.3\ignore{ugxProblemPolSys} for information about solving for the roots of one or more polynomials.

\beginmenu
\menu\downlink{{8.3.1. Using a Single Root of a Polynomial}}\ignore{ugxProblemSymRootOne}
\menu\downlink{{8.3.2. Using All Roots of a Polynomial}}\ignore{ugxProblemSymRootAll}
\endmenu
\end{page}

Using a Single Root of a Polynomial

\begin{page}{ugxProblemSymRootOnePage}
\{8.3.1. Using a Single Root of a Polynomial\}
\beginscroll
Use \axiomFun{rootOf} to get a symbolic root of a polynomial: \axiom{rootOf(p, x)} returns a root of \axiom{p(x)}.

\labelSpace{2pc}
\xtc{
This creates an algebraic number \axiom{a}.
}
\spadpaste{a := rootOf(a**4+1,a) \bound(a)}
\xtc{
To find the algebraic relation that defines \axiom{a}, use \axiomFun{definingPolynomial}.
}
You can use \axiom{a} in any further expression, including a nested \axiomFun{rootOf}.

\spadpaste{b := rootOf(b**2-a-1,b) \free{a}\bound{b}}

Higher powers of the roots are automatically reduced during calculations.

\spadpaste{a + b \free{a b}\bound{c}}

The operation \axiomFun{zeroOf} is similar to \axiomFun{rootOf}, except that it may express the root using radicals in some cases.

\spadpaste{rootOf(c**2+c+1,c)}

\spadpaste{zeroOf(d**2+d+1,d)}

\spadpaste{rootOf(e**5-2,e)}

\spadpaste{zeroOf(f**5-2,f)}
\begin{verbatim}
4
\end{verbatim}
Type: Expression Integer

\begin{verbatim}
(3) b
\end{verbatim}
Type: Expression Integer

\begin{verbatim}
(4) b + a
\end{verbatim}
Type: Expression Integer
\begin{patch}{ugxProblemSymRootOnePageEmpty4}
\begin{paste}{ugxProblemSymRootOnePageEmpty4}{ugxProblemSymRootOnePagePatch4}
\pastebutton{ugxProblemSymRootOnePageEmpty4}{\showpaste}
\tab{5}\spadcommand{a + b\free{a b }\bound{c }}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootOnePagePatch5}
\begin{paste}{ugxProblemSymRootOnePageFull5}{ugxProblemSymRootOnePageEmpty5}
\pastebutton{ugxProblemSymRootOnePageFull5}{\hidepaste}
\tab{5}\spadcommand{\% ** 5\free{c }}
\indentrel{3}\begin{verbatim}
3 2 3 2
(5) (10a + 11a + 2a - 4)b + 15a + 10a + 4a - 10
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootOnePageEmpty5}
\begin{paste}{ugxProblemSymRootOnePageEmpty5}{ugxProblemSymRootOnePagePatch5}
\pastebutton{ugxProblemSymRootOnePageEmpty5}{\showpaste}
\tab{5}\spadcommand{\% ** 5\free{c }}
\end{patch}

\begin{patch}{ugxProblemSymRootOnePagePatch6}
\begin{paste}{ugxProblemSymRootOnePageFull6}{ugxProblemSymRootOnePageEmpty6}
\pastebutton{ugxProblemSymRootOnePageFull6}{\hidepaste}
\tab{5}\spadcommand{\rootOf(c**2+c+1,c)}
\indentrel{3}\begin{verbatim}
(6) c
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootOnePageEmpty6}
\begin{paste}{ugxProblemSymRootOnePageEmpty6}{ugxProblemSymRootOnePagePatch6}
\pastebutton{ugxProblemSymRootOnePageEmpty6}{\showpaste}
\tab{5}\spadcommand{\rootOf(c**2+c+1,c)}
\end{patch}

\begin{patch}{ugxProblemSymRootOnePagePatch7}
\begin{paste}{ugxProblemSymRootOnePageFull7}{ugxProblemSymRootOnePageEmpty7}
\pastebutton{ugxProblemSymRootOnePageFull7}{\hidepaste}
\tab{5}\spadcommand{\zeroOf(d**2+d+1,d)}
\indentrel{3}\begin{verbatim}
(7) - 3 - 1
2
Type: Expression Integer
\end{verbatim}
\end{patch}
Using All Roots of a Polynomial

⇒ “notitle” (ugxProblemOnePolPage)
Use `axiomFun{rootsOf}` to get all symbolic roots of a polynomial:
`axiom{rootsOf(p, x)}` returns a list of all the roots of `axiom{p(x)}`. If `axiom{p(x)}` has a multiple root of order `axiom{n}`, then that root appears `axiom{n}` times in the list.

{\texttt{Make sure these variables are x0 etc}\}}

\xtc{Compute all the roots of `axiom{x**4 + 1}`.}
\spadpaste{l := rootsOf(x**4+1,x) \bound{l}}
\xtc{As a side effect, the variables `axiom{\%x0, \%x1}` and `axiom{\%x2}` are bound to the first three roots of `axiom{x**4+1}`.}
\spadpaste{\%x0**5 \free{l}}
\xtc{Although they all satisfy `axiom{x**4 + 1 = 0, \%x0, \%x1,}` and `axiom{\%x2}` are different algebraic numbers. To find the algebraic relation that defines each of them, use `axiomFun{definingPolynomial}`.}
\spadpaste{definingPolynomial \%x0 \free{l}}
\spadpaste{definingPolynomial \%x1 \free{l}}
\spadpaste{definingPolynomial \%x2 \free{l}}
\xtc{We can check that the sum and product of the roots of `axiom{x**4+1}` are its trace and norm.}
\spadpaste{x3 := last l \bound{x3}}
\spadpaste{\%x0 + \%x1 + \%x2 + x3 \free{x3}}
Corresponding to the pair of operations \axiomFun{rootOf}/\axiomFun{zeroOf} in \downlink{‘Solution of a Single Polynomial Equation’} in Section 8.5.2, there is an operation \axiom{zerosOf} that, like \axiom{rootsOf}, computes all the roots of a given polynomial, but which expresses some of them in terms of radicals.

\spadpaste{zerosOf(y**4+1,y) \bound{z}}

As you see, only one implicit algebraic number was created (\axiom{\%y1}), and its defining equation is this. The other three roots are expressed in radicals.

\spadpaste{definingPolynomial \%y1 \free{z}}

As you see, only one implicit algebraic number was created (\axiom{\%y1}), and its defining equation is this. The other three roots are expressed in radicals.
Type: Expression Integer

\begin{verbatim}
4
(3) \%x0 + 1
\end{verbatim}

Type: Expression Integer

\begin{verbatim}
2
(4) \%x1 + 1
\end{verbatim}

Type: Expression Integer

(5) - \%x2 + \%var
\begin{verbatim}
(6) - %x0 %x1
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
(7) (- %x0 + 1)%x1 + %x0 + %x2
\end{verbatim}

\indentrel{-3}

\begin{verbatim}
(8) %x2 %x0
\end{verbatim}

Type: Expression Integer
\begin{verbatim}
(-1 + 1, -1 - 1, -1, -1 + 1
[, , ,]
\end{verbatim}

\end{verbatim}

\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSymRootAllPagePatch9}
\begin{paste}{ugxProblemSymRootAllPageFull9}{ugxProblemSymRootAllPageEmpty9}
\tab{5}\spadcommand{zerosOf(y**4+1,y)\bound{z }}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootAllPageEmpty9}
\begin{paste}{ugxProblemSymRootAllPageEmpty9}{ugxProblemSymRootAllPagePatch9}
\pastebutton{ugxProblemSymRootAllPageEmpty9}{\hidepaste}
\tab{5}\spadcommand{zerosOf(y**4+1,y)\bound{z }}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootAllPagePatch10}
\begin{paste}{ugxProblemSymRootAllPageFull10}{ugxProblemSymRootAllPageEmpty10}
\tab{5}\spadcommand{definingPolynomial \%y1\free{z}}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootAllPageEmpty10}
\begin{paste}{ugxProblemSymRootAllPageEmpty10}{ugxProblemSymRootAllPagePatch10}
\pastebutton{ugxProblemSymRootAllPageEmpty10}{\showpaste}
\tab{5}\spadcommand{definingPolynomial \%y1\free{z}}
\end{paste}
\end{patch}

2
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSymRootAllPagePatch10}
\begin{paste}{ugxProblemSymRootAllPageFull10}{ugxProblemSymRootAllPageEmpty10}
\tab{5}\spadcommand{definingPolynomial \%y1\free{z}}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSymRootAllPageEmpty10}
\begin{paste}{ugxProblemSymRootAllPageEmpty10}{ugxProblemSymRootAllPagePatch10}
\pastebutton{ugxProblemSymRootAllPageEmpty10}{\showpaste}
\tab{5}\spadcommand{definingPolynomial \%y1\free{z}}
\end{paste}
\end{patch}

\end{verbatim
Computation of Eigenvalues and Eigenvectors

Let's first create a matrix with integer entries.
\begin{spad}{m1}
\texttt{m1} := \texttt{matrix \begin{bmatrix} 1,2,1 \end{bmatrix}, \begin{bmatrix} 2,1,-2 \end{bmatrix}, \begin{bmatrix} 1,-2,4 \end{bmatrix}} \end{spad}

To get a list of the rational eigenvalues, use the operation \axiomFun{eigenvalues}.
\begin{spad}{leig}
\texttt{leig} := \texttt{eigenvalues(m1)} \end{spad}

Given an explicit eigenvalue, \axiomFun{eigenvector} computes the eigenvectors corresponding to it.
\begin{spad}{eigenvector(first(leig),m1)}
\end{spad}

The operation \axiomFun{eigenvectors} returns a list of pairs of values and vectors. When an eigenvalue is rational, Axiom gives you the value explicitly; otherwise, its minimal polynomial is given, (the polynomial of lowest degree with the eigenvalues as roots), together with a parametric representation of the eigenvector using the eigenvalue. This means that if you ask Axiom to \axiomFun{solve} the minimal polynomial, then you can substitute these roots into the parametric form of the corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the eigenvector may be badly in error.
Another possibility is to use the operation \texttt{radicalEigenvectors} tries to compute explicitly the eigenvectors in terms of radicals.

\begin{verbatim}
\spad{radicalEigenvectors(m1) \free{m1}}
\end{verbatim}

Alternatively, Axiom can compute real or complex approximations to the eigenvectors and eigenvalues using the operations \texttt{realEigenvectors} or \texttt{complexEigenvectors}. They each take an additional argument ϵ to specify the ‘precision’ required. In the real case, this means that each approximation will be within $\pm \epsilon$ of the actual result. In the complex case, this means that each approximation will be within $\pm \epsilon$ of the actual result in each of the real and imaginary parts.

\begin{verbatim}
\spad{realEigenvectors(m1,1/1000) \free{m1}}
\end{verbatim}

If an $n \times n$ matrix has n distinct eigenvalues (and therefore n eigenvectors) the operation \texttt{eigenMatrix} gives you a matrix of the eigenvectors.

\begin{verbatim}
\spad{eigenMatrix(m1) \free{m1}}
\end{verbatim}

\begin{verbatim}
\spad{m2 := matrix \begin{bmatrix} -5 & -2 \\ 18 & 7 \end{bmatrix} \bound{m2}}
\end{verbatim}

\begin{verbatim}
\spad{eigenMatrix(m2) \free{m2}}
\end{verbatim}

If a symmetric matrix has a basis of orthonormal eigenvectors, then \texttt{orthonormalBasis} computes a list of these vectors.
\spadpaste{m3 := matrix \[\[1,2\],\[2,1\]\] \bound{m3}}}
\xtc{
\spadpaste{orthonormalBasis(m3) \free{m3}}}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugProblemEigenPagePatch1}
\begin{paste}{ugProblemEigenPageFull1}{ugProblemEigenPageEmpty1}
\pastebutton{ugProblemEigenPageFull1}{\hidepaste}
\tab{5}\spadcommand{m1 := matrix \[\[1,2,1\],\[2,1,-2\],\[1,-2,4\]\] \bound{m1}}}
\indentrel{3}\begin{verbatim}
1 2 1
(1) 2 1 - 2
1 - 2 4
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemEigenPagePatch2}
\begin{paste}{ugProblemEigenPageFull2}{ugProblemEigenPageEmpty2}
\pastebutton{ugProblemEigenPageFull2}{\hidepaste}
\tab{5}\spadcommand{leig := eigenvalues(m1) \free{m1} \bound{leig}}}
\indentrel{3}\begin{verbatim}
2
(2) [5,DA | DA - DA - 5]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemEigenPagePatch3}
\begin{spadcommand}
eigenvector(first(leig),m1)\free{m1 leig }
\end{spadcommand}
\begin{verbatim}
0
1
(3) [-]
2
Type: List Matrix Fraction Polynomial Fraction Integer
\end{verbatim}
\begin{spadcommand}
eigenvectors(m1)\free{m1 }
\end{spadcommand}
\begin{verbatim}
(4)
0
1
[[eigval= 5,eigmult= 1,eigvec= [-]],
 2
 1
2
[eigval= (%DB | %DB - %DB - 5), eigmult= 1,
 %DB
 eigvec= [2]]
 1
] Type: List Record(eigval: Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer))),
\end{verbatim}
\begin{verbatim}
(5) \(\sqrt{21} + 1 \)
\[\begin{array}{c}
[[\text{radval} = \frac{2}{2}, \text{radmult} = 1, \text{radvect} = [2]], \\
2 \\
1
\end{array} \]
\[\begin{array}{c}
- \sqrt{21} + 1 \\
\end{array} \]
\[\begin{array}{c}
[[\text{radval} = \frac{2}{2}, \text{radmult} = 1, \text{radvect} = [2]], \\
2 \\
1
\end{array} \]
\[\begin{array}{c}
, \\
0
\end{array} \]
\[[\text{radval} = 5, \text{radmult} = 1, \text{radvect} = [-]] \]
\[1 \]
\end{verbatim}

Type: List Record(radval: Expression Integer, radmult: Integer, radvect: List Matrix Expression Integer)
\begin{verbatim}
(6) \[\begin{array}{c}
0 \\
1 \\
2 \\
5717 \\
5717 2048 \\
[\text{outval=} , \text{outmult=} 1 , \text{outvect=} []] , \\
2048 2 \\
1 \\
3669 \\
3669 - \\
2048 \\
[\text{outval=} - , \text{outmult=} 1 , \text{outvect=} []] \\
2048 2 \\
1 \\
\end{array}\]
Type: List Record(outval: Fraction Integer, outmult: Integer, outvect: List Matrix Fraction Integer)
\end{verbatim}
\end{patch}

\begin{verbatim}
(7) \[\begin{array}{c}
0 \\
2 \\
\end{array}\]
\end{verbatim}
\end{patch}
\begin{verbatim}
type: union(matrix expression integer,...)
\end{verbatim}
\begin{verbatim}
- 5 - 2
18 7
\end{verbatim}

\begin{verbatim}
(9) "failed"
\end{verbatim}

\begin{verbatim}
1 2
\end{verbatim}
\(\begin{align*} &2 \quad 1 \\ \text{Type: Matrix Integer} \end{align*} \)

\begin{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugProblemEigenPageEmpty10}
\begin{paste}{ugProblemEigenPageEmpty10}{ugProblemEigenPagePatch10}
\pastebutton{ugProblemEigenPageEmpty10}{\showpaste}
\tab{5}\spadcommand{m3 := matrix \[[1,2],[2,1]\]}\bound{m3 }
\end{paste}\end{patch}

\begin{patch}{ugProblemEigenPagePatch11}
\begin{paste}{ugProblemEigenPageFull11}{ugProblemEigenPageEmpty11}
\pastebutton{ugProblemEigenPageFull11}{\hidepaste}
\tab{5}\spadcommand{orthonormalBasis(m3)}\free{m3 }
\end{paste}\end{patch}

\begin{patch}{ugProblemEigenPageEmpty11}
\begin{paste}{ugProblemEigenPageEmpty11}{ugProblemEigenPagePatch11}
\pastebutton{ugProblemEigenPageEmpty11}{\showpaste}
\tab{5}\spadcommand{orthonormalBasis(m3)}\free{m3 }
\end{paste}\end{patch}

\begin{verbatim}
1 1
-2 -2
(11) \[\begin{array}{cc}
1 & 1 \\
2 & 2 \\
\end{array} \]
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{verbatim}
1 1
\end{verbatim}
\indentrel{-3}\end{verbatim}
\end{patch}

Solution of Linear and Polynomial Equations

⇒ “notitle” (ugProblemDEQPage) 12 on page 2211
⇒ “notitle” (ugxProblemLinSysPage) 12 on page 2131
⇒ “notitle” (ugxProblemOnePolPage) 12 on page 2135
⇒ “notitle” (ugxProblemPolSysPage) 12 on page 2140

— ug08.ht —

\begin{page}{ugProblemLinPolEqnPage}
In this section we discuss the Axiom facilities for solving systems of linear equations, finding the roots of polynomials and solving systems of polynomial equations. For a discussion of the solution of differential equations, see Solution of Differential Equations in Section 8.10.

You can use the operation \texttt{solve} to solve systems of linear equations.

The operation \texttt{solve} takes two arguments, the list of equations and the list of the unknowns to be solved for. A system of linear equations need not have a unique solution.

To solve the linear system:

\beginverbatim
\axiom{x + y + z = 8}
\axiom{3*x - 2*y + z = 0}
\axiom{x + 2*y + 2*z = 17}
\endverbatim

evaluate this expression.

\beginverbatim
\spadpaste{solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])}
\endverbatim
Parameters are given as new variables starting with a percent sign and the variables are expressed in terms of the parameters. If the system has no solutions then the empty list is returned.

When you solve the linear system
\begin{align*}
 x + 2y + 3z &= 2 \\
 2x + 3y + 4z &= 2 \\
 3x + 4y + 5z &= 2
\end{align*}
with this expression you get a solution involving a parameter.

To solve the system:
\begin{align*}
 x + y + z &= 8 \\
 3x - 2y + z &= 0 \\
 x + 2y + 2z &= 17
\end{align*}
in matrix form you would evaluate this expression.

The solutions are presented as a record with two components: the component containing a particular solution of the given system or the item \texttt{"failed"} if there are no solutions, the component containing a list of vectors that are a basis for the space of solutions of the corresponding homogeneous system.

This happens when you solve the linear system
\begin{align*}
 x + 2y + 3z &= 2 \\
 2x + 3y + 4z &= 2
\end{align*}
with this command.
}
\spadpaste{solve([[1,2,3],[2,3,4],[3,4,5]],[2,2,2])}

All solutions of this system are obtained by adding the particular solution
with a linear combination of the \texttt{basis} vectors.

When no solution exists then \texttt{"failed"} is returned as the
\texttt{particular} component, as follows:

\xtc{
}
\spadpaste{solve([[1,2,3],[2,3,4],[3,4,5]],[2,3,2])}

When you want to solve a system of homogeneous equations (that is,
a system where the numbers on the right-hand sides of the
equations are all zero) in the matrix form you can omit the second
argument and use the \axiomFun{nullSpace} operation.

\xtc{
This computes the solutions of the following system of equations:

\centerline{\axiom{ x + 2*y + 3*z = 0 }
\centerline{2*x + 3*y + 4*z = 0 }
\centerline{3*x + 4*y + 5*z = 0}}
The result is given as a list of vectors and these vectors form a basis for the solution space.
}
\spadpaste{nullSpace([[1,2,3],[2,3,4],[3,4,5]])}

\end{scroll}
\autobuttons
\end{page}
\spadcommand{solve([x+y+z=8, 3*x-2*y+z=0, x+2*y+2*z=17], [x, y, z])}
\begin{verbatim}
(2) \[
[\begin{array}{l}
1,1,1,3,-2,1,1,2,2
\end{array}\]
\end{verbatim}
Type: List List Equation Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemLinSysPagePatch3}
\begin{paste}{ugxProblemLinSysPageFull3}{ugxProblemLinSysPageEmpty3}
\spadcommand{solve([1,2,3,2,3,4,3,4,5],[2,2,2])}
\begin{verbatim}
(4) \[
[\begin{array}{l}
1,2,3,2,3,4,3,4,5
\end{array}\]
\end{verbatim}
Type: Record(particular= Union(Vector Fraction Integer, "failed"), basis= List Vector Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemLinSysPagePatch4}
\begin{paste}{ugxProblemLinSysPageFull4}{ugxProblemLinSysPageEmpty4}
\spadcommand{solve([[1,2,3],[2,3,4],[3,4,5],[2,2,2])}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemLinSysPagePatch2}
\begin{paste}{ugxProblemLinSysPageFull2}{ugxProblemLinSysPageEmpty2}
\spadcommand{solve([x+2*y+3*z=2, 2*x+3*y+4*z=2, 3*x+4*y+5*z=2], [x, y, z])}
\indentrel{3}(2) \[[x= %Y - 2, y= - 2%Y + 2, z= %Y]]
Type: List List Equation Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemLinSysPagePatch3}
\begin{paste}{ugxProblemLinSysPageFull3}{ugxProblemLinSysPageEmpty3}
\spadcommand{solve([1,1,1,3,-2,1,1,2,2],[8,0,17])}
\indentrel{3}(3) \[
[\begin{array}{l}
1,1,1,3,-2,1,1,2,2
\end{array}\]
\end{verbatim}
Type: Record(particular= Union(Vector Fraction Integer, "failed"), basis= List Vector Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemLinSysPagePatch4}
\begin{paste}{ugxProblemLinSysPageFull4}{ugxProblemLinSysPageEmpty4}
\spadcommand{solve([[1,2,3],[2,3,4],[3,4,5],[2,2,2])}
\indentrel{-3}\end{patch}
Solution of a Single Polynomial Equation

--- ug08.ht ---

Axiom can solve polynomial equations producing either approximate or exact solutions. Exact solutions are either members of the ground field or can be presented symbolically as roots of irreducible
polynomials.

\xtc{
This returns the one rational root along with an irreducible polynomial describing the other solutions.
}
\spadpaste{solve(x**3 = 8,x)}
}\xtc{
If you want solutions expressed in terms of radicals you would use this instead.
}
\spadpaste{radicalSolve(x**3 = 8,x)}

The \axiomFun{solve} command always returns a value but \axiomFun{radicalSolve} returns only the solutions that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approximations to its real roots by calling solve with a second argument that specifies the \texttt{\{\epsilon\}}.
\spadpaste{solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)}
\xtc{
Notice that the type of second argument controls the type of the result.
}
\spadpaste{solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25a/1000)}
\xtc{
If you give a floating-point precision you get a floating-point result; if you give the precision as a rational number you get a rational result.
}
\spadpaste{solve(x**3-2a1/1000)}
\xtc{
If you want approximate complex results you should use the command \axiomFun{complexSolve} that takes the same precision argument \texttt{\{\epsilon\}}.
}
\spadpaste{complexSolve(x**3-2,.0001)}
\xtc{
Each approximation will be within \texttt{\{\pm\epsilon\}} of the actual result in each of the real and imaginary parts.
}
\spadpaste{complexSolve(x**2-2*\%i+1,1/100)}

Note that if you omit the \axiomOp{=} from the first argument Axiom generates an equation by equating the first argument to zero. Also, when only one variable is present in the equation, you do not need to specify the variable to be solved for, that is, you can omit the second argument.

\xtc{
Axiom can also solve equations involving rational functions. Solutions where the denominator vanishes are discarded.
}
\spadpaste{radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)}

\begin{patch}{ugxProblemOnePolPagePatch1}
\begin{paste}{ugxProblemOnePolPageFull1}{ugxProblemOnePolPageEmpty1}
\pastebutton{ugxProblemOnePolPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) [x= 2,x + 2x + 4= 0]
Type: List Equation Fraction Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxProblemOnePolPagePatch2}
\begin{paste}{ugxProblemOnePolPageFull2}{ugxProblemOnePolPageEmpty2}
\pastebutton{ugxProblemOnePolPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
(2) [x= - \- 3 - 1,x= \- 3 - 1,x= 2]
Type: List Equation Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugxProblemOnePolPagePatch3}
\begin{paste}{ugxProblemOnePolPageFull3}{ugxProblemOnePolPageEmpty3}
\pastebutton{ugxProblemOnePolPageFull3}{\hidepaste}
\tab{5}\spadcommand{solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)}
\indentrel{3}\begin{verbatim}
(3) \[x= 3.6180114746 09375,x = 1.3819885253 90625\]
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemOnePolPageEmpty3}
\begin{paste}{ugxProblemOnePolPageEmpty3}{ugxProblemOnePolPagePatch3}
\pastebutton{ugxProblemOnePolPageEmpty3}{\showpaste}
\tab{5}\spadcommand{solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)}
\end{paste}\end{patch}
\begin{patch}{ugxProblemOnePolPagePatch4}
\begin{paste}{ugxProblemOnePolPageFull4}{ugxProblemOnePolPageEmpty4}
\pastebutton{ugxProblemOnePolPageFull4}{\hidepaste}
\tab{5}\spadcommand{solve(x**3-2,1/1000)}
\indentrel{3}\begin{verbatim}
(4) \[x = \]
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemOnePolPageEmpty4}
\begin{paste}{ugxProblemOnePolPageEmpty4}{ugxProblemOnePolPagePatch4}
\pastebutton{ugxProblemOnePolPageEmpty4}{\showpaste}
\tab{5}\spadcommand{solve(x**3-2,1/1000)}
\end{paste}\end{patch}
\begin{patch}{ugxProblemOnePolPagePatch5}
\begin{paste}{ugxProblemOnePolPageFull5}{ugxProblemOnePolPageEmpty5}
\pastebutton{ugxProblemOnePolPageFull5}{\hidepaste}
\tab{5}\spadcommand{complexSolve(x**3-2,.0001)}
\indentrel{3}\begin{verbatim}
(5) \[x= 1.2599182128 90625,\]
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemOnePolPageEmpty5}
\begin{paste}{ugxProblemOnePolPageEmpty5}{ugxProblemOnePolPagePatch5}
\pastebutton{ugxProblemOnePolPageEmpty5}{\showpaste}
\tab{5}\spadcommand{complexSolve(x**3-2,.0001)}
\end{paste}\end{patch}

\begin{patch}{ugxProblemOnePolPagePatch6}
\begin{paste}{ugxProblemOnePolPageFull6}{ugxProblemOnePolPageEmpty6}
\pastebutton{ugxProblemOnePolPageFull6}{\hidepaste}
\tab{5}\spadcommand{complexSolve(x**2-2*\%i+1,1/100)}
\indentrel{3}\begin{verbatim}
13028925 325 13028925 325
(6) [x= - - %i,x= + %i]
16777216 256 16777216 256
Type: List Equation Polynomial Complex Fraction Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemOnePolPagePatch7}
\begin{paste}{ugxProblemOnePolPageFull7}{ugxProblemOnePolPageEmpty7}
\pastebutton{ugxProblemOnePolPageFull7}{\hidepaste}
\tab{5}\spadcommand{radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)}
\indentrel{3}\begin{verbatim}
- \- 3 - 1 \- 3 - 1
(7) [x= ,x=]
2 2
Type: List Equation Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:
\[
\begin{align*}
\text{axiom} & \{ p_1(x_1, \ldots, x_n) \} \\
\text{axiom} & \{ . \} \\
\text{axiom} & \{ . \} \\
\text{axiom} & \{ p_m(x_1, \ldots, x_n) \}
\end{align*}
\]
Axiom can find numeric or symbolic solutions.

The system is first split into irreducible components, then for each component, a triangular system of equations is found that reduces the problem to sequential solution of univariate polynomials resulting from substitution of partial solutions from the previous stage.

\[
\begin{align*}
\text{axiom} & \{ q_1(x_1, \ldots, x_n) \} \\
\text{axiom} & \{ . \} \\
\text{axiom} & \{ . \} \\
\text{axiom} & \{ q_m(x_n) \}
\end{align*}
\]

Symbolic solutions can be presented using "implicit" algebraic numbers defined as roots of irreducible polynomials or in terms of radicals. Axiom can also find approximations to the real or complex roots of a system of polynomial equations to any user-specified accuracy.

The operation `\axiomFun{solve}` for systems is used in a way similar to `\axiomFun{solve}` for single equations. Instead of a polynomial equation, one has to give a list of equations and instead of a single variable to solve for, a list of variables.

For solutions of single equations see `\downlink{``Solution of a Single Polynomial Equation'')}{ugxProblemOnePolPage}` in Section 8.5.2\ignore{ugxProblemOnePol}.

\%
\xtc{
Use the operation `\axiomFun{solve}` if you want implicitly presented solutions.
}
\spadpaste{solve([3*x**3 + y + 1,y**2 -4],[x,y])}
\spadpaste{solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])}
}\xtc{
Use \axiomFun{radicalSolve} if you want your solutions expressed
in terms of radicals.
}\spadpaste{radicalSolve([3*x**3 + y + 1,y**2 -4],[x,y])}

To get numeric solutions you only need to give the list of
equations and the precision desired.
The list of variables would be redundant information since there
 can be no parameters for the numerical solver.
\xtc{
If the precision is expressed as a floating-point number you get
results expressed as floats.
}\spadpaste{solve([x**2*y - 1,x*y**2 - 2],[.01])}
\xtc{
To get complex numeric solutions, use the operation \axiomFun{complexSolve},
which takes the same arguments as in the real case.
}\spadpaste{complexSolve([x**2*y - 1,x*y**2 - 2],1/1000)}
\xtc{
It is also possible to solve systems of equations in rational functions
over the rational numbers.
Note that \axiom{[x = 0.0, a = 0.0]} is not returned as a solution since
the denominator vanishes there.
}\spadpaste{solve([x**2/a = a,a = a*x],[.001])}
\xtc{
When solving equations with
denominators, all solutions where the denominator vanishes are
discarded.
}\spadpaste{radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])}
\endscroll
\autobuttons
\end{page}
\begin{verbatim}
(1) \[
\begin{array}{l}
[x = -1, y = 2], [x - x + 1 = 0, y = 2], \\
[3x - 1 = 0, y = -2]
\end{array}
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(2) \[
\begin{array}{l}
z^2 + x + 9
\end{array}
\end{verbatim}
\end{verbatim}

\begin{verbatim}
(3) \[
\begin{array}{l}
[x = 2, y = 2], \\
[x = 2, y = -2]
\end{array}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
(4) [[y= 1.5859375, x= 0.79296875]]
\end{verbatim}

\begin{verbatim}
(5) [[y= , x=],
 [43545573689 1407,
 1024 2048
 [y= - \%i,
 549755813888 1024,
 43544573689 1407
 [x= - \%i],
 1099511627776 2048]]
\end{verbatim}
Type: List List Equation Polynomial Complex Fraction Integer

\begin{verbatim}
(6) \[[x= 1.0,a= - 1.0],[x= 1.0,a= 1.0]\]
\end{verbatim}

\begin{verbatim}
(7)
\[
\begin{array}{cccc}
4 & 3 & 2 & \\
- a + 2a & + 3a & + 3a & + 1 & - a - 1 \\
\end{array}
\end{verbatim}

\[
[[x= - ,y=],
\begin{array}{c}
2 \\
\end{array}
\begin{array}{c}
a \\
\end{array}
\begin{array}{c}
4 \\
\end{array}

\begin{array}{cccc}
4 & 3 & 2 & \\
- a + 2a & + 3a & + 3a & + 1 & - a - 1 \\
\end{array}
\end{verbatim}
\begin{verbatim}
% To compute a limit, you must specify a functional expression,
% a variable, and a limiting value for that variable.
% If you do not specify a direction, Axiom attempts to
% compute a two-sided limit.

\begin{xtc}
\texttt{Issue this to compute the limit}
\begin{texht}
\lim_{x \rightarrow 1}(x^2 - 3x + 2)/(x^2 - 1)\
\end{texht}
\end{xtc}
\begin{texht}
\texttt{of \axiom{(x**2 - 3*x + 2)/(x**2 - 1)}} as \axiom{x} approaches \axiom{1}.}
\end{texht}
\begin{spadpaste}
\texttt{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
\end{spadpaste}

Sometimes the limit when approached from the left is different from
the limit from the right and, in this case, you may wish to ask for a
one-sided limit. Also, if you have a function that is only defined on
one side of a particular value, you can compute a one-sided limit.

\begin{xtc}
The function \axiom{\log(x)} is only defined to the right of zero,
that is, for \axiom{x > 0}.
Thus, when computing limits of functions involving \axiom{\log(x)},
you probably want a ‘‘right-hand’’ limit.
\end{xtc}
When you do not specify \texttt{"right"} or \texttt{"left"} as the optional fourth argument, \texttt{limit} tries to compute a two-sided limit. Here the limit from the left does not exist, as Axiom indicates when you try to take a two-sided limit.

\begin{spadpaste}
\spad{limit(x * \log(x), x = 0, "right")}
\end{spadpaste}

A function can be defined on both sides of a particular value, but tend to different limits as its variable approaches that value from the left and from the right. We can construct an example of this as follows:

\begin{spadpaste}
\spad{limit(x * \log(x), x = 0)}
\end{spadpaste}

A function can be defined on both sides of a particular value, but tend to different limits as its variable approaches that value from the left and from the right. We can construct an example of this as follows:

Since \texttt{\sqrt{y^2}} is simply the absolute value of \texttt{y}, the function \texttt{\sqrt{y^2} / y} is simply the sign \texttt{+1} or \texttt{-1} of the nonzero real number \texttt{y}. Therefore,

\begin{spadpaste}
\spad{limit(\sqrt{y^2} / y, y = 0)}
\end{spadpaste}

This is what happens when we take the limit at \texttt{y = 0}. The answer returned by Axiom gives both a `left-hand’ and a `right-hand’ limit.

\begin{spadpaste}
\spad{limit((\sqrt{y^2})/y, y = 0)}
\end{spadpaste}

Here is another example, this time using a more complicated function.

\begin{spadpaste}
\spad{limit((\sqrt{1 - \cos(t)})/t, t = 0)}
\end{spadpaste}

You can compute limits at infinity by passing either \texttt{+∞} or \texttt{-∞} as the third argument of \texttt{limit}.

\begin{spadpaste}
\spad{limit((3*x^2 + 1)/(5*x), x = +\infty)}
\end{spadpaste}

To do this, use the constants \texttt{\plusInfinity} and \texttt{\minusInfinity}.

\begin{spadpaste}
\spad{limit((3*x**2 + 1)/(5*x), x = \plusInfinity)}
\end{spadpaste}
You can take limits of functions with parameters.
As you can see, the limit is expressed in terms of the parameters.
\[
\text{limit}(\sinh(a \cdot x)/\tan(b \cdot x), x = 0)
\]

When you use \texttt{axiomFun\{limit\}}, you are taking the limit of a real function of a real variable.

When you compute this, Axiom returns \texttt{0} because, as a function of a real variable, \texttt{axiom(sin(1/z))} is always between \texttt{axiom(-1)} and \texttt{axiom(1)}, so \texttt{axiom(z \cdot \sin(1/z))} tends to \texttt{axiom(0)} as \texttt{axiom(z)} tends to \texttt{axiom(0)}.

\[
\text{limit}(z \cdot \sin(1/z), z = 0)
\]

However, as a function of a complex variable, \texttt{axiom(sin(1/z))} is badly behaved near \texttt{axiom(0)} (one says that \texttt{axiom(sin(1/z))} has an essential singularity at \texttt{axiom(z = 0)}).

When viewed as a function of a complex variable, \texttt{axiom(z \cdot \sin(1/z))} does not approach any limit as \texttt{axiom(z)} tends to \texttt{axiom(0)} in the complex plane. Axiom indicates this when we call \texttt{axiomFun\{complexLimit\}}.

\[
\text{complexLimit}(z \cdot \sin(1/z), z = 0)
\]

You can also take complex limits at infinity, that is, limits of a function of \texttt{axiom(z)} as \texttt{axiom(z)} approaches infinity on the Riemann sphere. Use the symbol \texttt{\%infinity} to denote 'complex infinity.'

As above, to compute complex limits rather than real limits, use \texttt{axiomFun\{complexLimit\}}.

\[
\text{complexLimit}((2 + z)/(1 - z), z = \%infinity)
\]

In many cases, a limit of a real function of a real variable exists when the corresponding complex limit does not. This limit exists.

\[
\text{limit}(\sin(x)/x, x = \%plusInfinity)
\]
But this limit does not.

\spadpaste{complexLimit(sin(x)/x,x = \%infinity)}

\end{scroll}

\begin{patch}{ugProblemLimitsPagePatch1}
\begin{paste}{ugProblemLimitsPageFull1}{ugProblemLimitsPageEmpty1}
\pastebutton{ugProblemLimitsPageFull1}{\hidepaste}
\tab{5}\spadcommand{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
\indentrel{3}\begin{verbatim}
1
(1) - 2
Type: Union(OrderedCompletion Fraction Polynomial Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemLimitsPagePatch2}
\begin{paste}{ugProblemLimitsPageFull2}{ugProblemLimitsPageEmpty2}
\pastebutton{ugProblemLimitsPageFull2}{\hidepaste}
\tab{5}\spadcommand{limit(x * log(x),x = 0,"right"}
\indentrel{3}\begin{verbatim}
(2) 0
Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugProblemLimitsPagePatch3}
\begin{paste}{ugProblemLimitsPageFull3}{ugProblemLimitsPageEmpty3}
\pastebutton{ugProblemLimitsPageFull3}{\hidepaste}
\tab{5}\spadcommand{limit(x * log(x),x = 0)
\indentrel{3}\begin{verbatim}

\end{patch}
(3) \[\text{leftHandLimit= "failed", rightHandLimit= 0} \]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer, "failed"), rightHandLimit: Union(OrderedCompletion Expression Integer, "failed")),...)
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPageEmpty3}
\begin{paste}{ugProblemLimitsPageEmpty3}{ugProblemLimitsPagePatch3}
\pastebutton{ugProblemLimitsPageEmpty3}{\showpaste}
\tab{5}\spadcommand{limit(x \times \log(x), x = 0)}
\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPagePatch4}
\begin{paste}{ugProblemLimitsPageFull4}{ugProblemLimitsPageEmpty4}
\pastebutton{ugProblemLimitsPageFull4}{\hidepaste}
\tab{5}\spadcommand{limit(\sqrt{y^2}/y, y = 0)}
\indentrel{3}\begin{verbatim}
(4) \[\text{leftHandLimit= -1, rightHandLimit= 1} \]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer, "failed"), rightHandLimit: Union(OrderedCompletion Expression Integer, "failed")),...)
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPageEmpty4}
\begin{paste}{ugProblemLimitsPageEmpty4}{ugProblemLimitsPagePatch4}
\pastebutton{ugProblemLimitsPageEmpty4}{\showpaste}
\tab{5}\spadcommand{limit(\sqrt{y^2}/y, y = 0)}
\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPagePatch5}
\begin{paste}{ugProblemLimitsPageFull5}{ugProblemLimitsPageEmpty5}
\pastebutton{ugProblemLimitsPageFull5}{\hidepaste}
\tab{5}\spadcommand{limit(\sqrt{1 - \cos(t)}/t, t = 0)}
\indentrel{3}\begin{verbatim}
1 1
\2 \2
(5) \[\text{leftHandLimit= - , rightHandLimit= } \]
\end{verbatim}
\indentrel{3}\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPageEmpty5}
\begin{paste}{ugProblemLimitsPageEmpty5}{ugProblemLimitsPagePatch5}
\pastebutton{ugProblemLimitsPageEmpty5}{\showpaste}
\tab{5}\spadcommand{limit(\sqrt{1 - \cos(t)}/t, t = 0)}
\end{paste}\end{patch}
\begin{patch}{ugProblemLimitsPagePatch6}
\begin{paste}{ugProblemLimitsPageFull6}{ugProblemLimitsPageEmpty6}
\pastebutton{ugProblemLimitsPageFull6}{\hidepaste}
\tab{5}\spadcommand{limit(\sqrt{3x^2 + 1}/(5x), x = \%plusInfinity)}
\end{paste}\end{patch}
\begin{verbatim}
(6) \hspace{5ex} Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\indentrel{-3}
\end{paste}

\begin{patch}{ugProblemLimitsPagePatch6}
\begin{paste}{ugProblemLimitsPageFull6}{ugProblemLimitsPageEmpty6}
\pastebutton{ugProblemLimitsPageFull6}{\hidepaste}
\tab{5}\spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%plusInfinity)}
\end{paste}
\end{patch}

\begin{patch}{ugProblemLimitsPagePatch7}
\begin{paste}{ugProblemLimitsPageFull7}{ugProblemLimitsPageEmpty7}
\pastebutton{ugProblemLimitsPageFull7}{\hidepaste}
\tab{5}\spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%minusInfinity)}
\end{paste}
\end{patch}

\begin{patch}{ugProblemLimitsPagePatch8}
\begin{paste}{ugProblemLimitsPageFull8}{ugProblemLimitsPageEmpty8}
\pastebutton{ugProblemLimitsPageFull8}{\hidepaste}
\tab{5}\spadcommand{limit(sinh(a*x)/tan(b*x),x = 0)}
\end{paste}
\end{patch}

\indentrel{3}
\begin{verbatim}
(7) \hspace{5ex} Type: Union(OrderedCompletion Expression Integer,...)
\end{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{ugProblemLimitsPagePatch8}
\begin{paste}{ugProblemLimitsPageFull8}{ugProblemLimitsPageEmpty8}
\pastebutton{ugProblemLimitsPageFull8}{\hidepaste}
\tab{5}\spadcommand{limit(sinh(a*x)/tan(b*x),x = 0)}
\end{paste}
\end{patch}
\begin{verbatim}
(9) 0
\end{verbatim}

\begin{verbatim}
(10) "failed"
\end{verbatim}

\begin{verbatim}
(11) - 1
\end{verbatim}
Laplace Transforms

Axiom can compute some forward Laplace transforms, mostly of elementary functions not involving logarithms, although some cases of special functions are handled.
To compute the forward Laplace transform of \(F(t) \) with respect to \(t \) and express the result as \(f(s) \), issue the command
\[\text{\texttt{laplace}(F(t), t, s)}. \]

\spad{\texttt{laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)}}

\xtc{Here are some other non-trivial examples.}
\{\spad{\texttt{laplace}((exp(a*t) - exp(b*t))/t, t, s)}}\}

\texttt{\texttt{laplace}(2/t * (1 - cos(a*t)), t, s)}
\texttt{\texttt{laplace}(exp(-a*t) * sin(b*t) / b**2, t, s)}
\texttt{\texttt{laplace}((cos(a*t) - cos(b*t))/t, t, s)}

\xtc{Axiom also knows about a few special functions.}
\{\spad{\texttt{laplace}(exp(a*t+b)*Ei(c*t), t, s)}}\}

\texttt{\texttt{laplace}(a*Ci(b*t) + c*Si(d*t), t, s)}

\xtc{When Axiom does not know about a particular transform, it keeps it as a formal transform in the answer.}
\{\spad{\texttt{laplace}(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)}}\}

\endscroll
\autobuttons
\end{page}
(1) \[
\frac{4}{s + 4a}
\]
Type: Expression Integer

\begin{verbatim}
4 4
s + 4a
\end{verbatim}

\indentrel{-3} \end{patch}

\indentrel{-3} \end{paste} \end{patch}

\begin{patch}{ugProblemLaplacePagePatch2}
\begin{paste}{ugProblemLaplacePageFull2}{ugProblemLaplacePageEmpty2}
\pastebutton{ugProblemLaplacePageFull2}{\hidepaste}
\tab{5}\spadcommand{laplace((exp(a*t) - exp(b*t))/t, t, s)}
\indentrel{3} \begin{verbatim}
(2) - log(s - a) + log(s - b)
\end{verbatim}
\indentrel{-3} \end{paste} \end{patch}

\indentrel{-3} \end{paste} \end{patch}

\begin{patch}{ugProblemLaplacePagePatch3}
\begin{paste}{ugProblemLaplacePageFull3}{ugProblemLaplacePageEmpty3}
\pastebutton{ugProblemLaplacePageFull3}{\hidepaste}
\tab{5}\spadcommand{laplace(2/t * (1 - cos(a*t)), t, s)}
\indentrel{3} \begin{verbatim}
2 2
log(s + a) - 2log(s)
\end{verbatim}
\indentrel{-3} \end{paste} \end{patch}

\indentrel{-3} \end{paste} \end{patch}

\begin{patch}{ugProblemLaplacePagePatch4}
\begin{paste}{ugProblemLaplacePageFull4}{ugProblemLaplacePageEmpty4}
\pastebutton{ugProblemLaplacePageFull4}{\hidepaste}
\tab{5}\spadcommand{laplace(exp(-a*t) * sin(b*t) / b**2, t, s)}

\end{verbatim}
\indentrel{-3} \end{patch}
\end{paste} \end{patch}
\begin{verbatim}
2 3 2
b s + 2a b s + b + a b
\end{verbatim}

\begin{verbatim}
2 2 2
\log(s + b) - \log(s + a)
\end{verbatim}

\begin{verbatim}
b s + c - a
%e \log()
c
\end{verbatim}
\spadcommand{\text{laplace}(\exp(a*t+b)*\text{Ei}(c*t), t, s)}

\spadcommand{\text{laplace}(a*\text{Ci}(b*t) + c*\text{Si}(d*t), t, s)}

\verbatim
\begin{verbatim}
\begin{equation}
2 \quad 2 \\
\frac{a \log(t) + 2c \arctan(t)}{2 \quad s}
\end{equation}
\end{verbatim}
\end{verbatim}
\text{Type: Expression Integer}

\spadcommand{\text{laplace}(\sin(a*t) - a*t*\cos(a*t) + \exp(t**2), t, s)}

\verbatim
\begin{verbatim}
\begin{equation}
\begin{array}{c}
2 \quad 2 \quad 4 \\
4 \quad 2 \quad 2 \\
4 \quad 2 \quad 2 \\
\end{array}
\end{equation}
\end{verbatim}
\end{verbatim}
\text{Type: Expression Integer}

\spadcommand{\text{laplace}(\sin(a*t) - a*t*\cos(a*t) + \exp(t**2), t, s)}
Integration

Integration is the reverse process of differentiation, that is, an integral of a function \(f \) with respect to a variable \(x \) is any function \(g \) such that \(D(g, x) \) is equal to \(f \).

The package \texttt{FunctionSpaceIntegration} provides the top-level integration operation, \texttt{functionSpaceIntegrate}, \texttt{FunctionSpaceIntegration}, for integrating real-valued elementary functions.

\[
\int \cosh(a \cdot x) \cdot \sinh(a \cdot x) \, dx
\]

Unfortunately, antiderivatives of most functions cannot be expressed in terms of elementary functions.

\[
\int \frac{\log(1 + \sqrt{a \cdot x + b})}{x} \, dx
\]

Given an elementary function to integrate, Axiom returns a formal integral as above only when it can prove that the integral is not elementary and not when it cannot determine the integral. In this rare case it prints a message that it cannot determine if an elementary integral exists.

Similar functions may have antiderivatives that look quite different because the form of the antiderivative depends on the sign of a constant that appears in the function.

\[
\int \frac{1}{x^2 - 2} \, dx
\]

\[
\int \frac{1}{x^2 + 2} \, dx
\]

If the integrand contains parameters, then there may be several possible antiderivatives, depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the possible cases. Here you
use the answer involving the square root of \(\text{a} > 0\) and
the answer involving the square root of \(\text{a} < 0\).

\begin{verbatim}
\spadpaste{integrate(x**2 / (x**4 - a**2), x)}
\end{verbatim}

If the parameters and the variables of integration can be complex
numbers rather than real, then the notion of sign is not defined.
In this case all the possible answers can be expressed as one
complex function.
To get that function, rather than a list of real functions, use
\spadFun{complexIntegrate}{FunctionSpaceComplexIntegration},
which is provided by the package
\spadType{FunctionSpaceComplexIntegration}.

\begin{verbatim}
\spadpaste{complexIntegrate(x**2 / (x**4 - a**2), x)}
\end{verbatim}

As with the real case,
antiderivatives for most complex-valued functions cannot be expressed
in terms of elementary functions.

\begin{verbatim}
\spadpaste{complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)}
\end{verbatim}

Sometimes \spadFun{integrate} can involve symbolic algebraic numbers
such as those returned by \spadFun{rootOf}{Expression}.
To see how to work with these strange generated symbols (such as
\spad{s0}), see
\url{Using All Roots of a Polynomial}\ in Section 8.3.2
in Section 8.3.2\ignore{ugxProblemSymRootAll}.

Definite integration is the process of computing the area between the
\spad{x}-axis and the curve of a function \spad{f(x)}. The
fundamental theorem of calculus states that if \spad{f} is continuous
on an interval \spad{a..b} and if there exists a function \spad{g}
that is differentiable on \spad{a..b} and such that \spad{f(D(g, x))}
is equal to \spad{f}, then the definite integral of \spad{f} for
\spad{x} in the interval \spad{a..b} is equal to \spad{g(b) - g(a)}.

\begin{verbatim}
\spadFun{RationalFunctionDefiniteIntegration}
\end{verbatim}

The package \spadType{RationalFunctionDefiniteIntegration} provides
the top-level definite integration operation,
\spadFun{integrate}{RationalFunctionDefiniteIntegration},
for integrating real-valued rational functions.
Axiom checks beforehand that the function you are integrating is defined on the interval \(a..b\), and prints an error message if it finds that this is not case, as in the following example:

\begin{verbatim}
integrate(1/(x**2-a), x = 1..2)
\end{verbatim}

>> Error detected within library code:
 Pole in path of integration
 You are being returned to the top level
 of the interpreter.
\end{verbatim}

When parameters are present in the function, the function may or may not be defined on the interval of integration.

\xtc{
If this is the case, Axiom issues a warning that a pole might lie in the path of integration, and does not compute the integral.
}\}

\spadpaste{integrate(1/(x**2-a), x = 1..2, "noPole")}

If you know that you are using values of the parameter for which the function has no pole in the interval of integration, use the string \tt{"noPole"} as a third argument to \axiomFunFrom{integrate}{RationalFunctionDefiniteIntegration}:

\%
\xtc{
The value here is, of course, incorrect if \axiom{sqrt(a)} is between \axiom{1} and \axiom{2.}}

\spadpaste{integrate(cosh(a*x)*sinh(a*x), x)}
\begin{verbatim}
2 2
\quad sinh(a x) + cosh(a x)
\end{verbatim}

(1)
\[4a \]
\begin{verbatim}
Type: Union(Expression Integer,...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}\{ugProblemIntegrationPageEmpty1\}
\begin{paste}\{ugProblemIntegrationPageEmpty1\}\{ugProblemIntegrationPagePatch1\}
\pastebutton\{ugProblemIntegrationPageEmpty1\}\{\showpaste\}
\tab\{5\}\spadcommand{integrate(cosh(a*x)*sinh(a*x), x)}\end{paste}\end{patch}

\begin{patch}\{ugProblemIntegrationPagePatch2\}
\begin{paste}\{ugProblemIntegrationPageFull2\}\{ugProblemIntegrationPageEmpty2\}
\pastebutton\{ugProblemIntegrationPageFull2\}\{hidepaste\}
\tab\{5\}\spadcommand{integrate(log(1 + sqrt(a * x + b)) / x, x)}\end{paste}\end{patch}

\begin{patch}\{ugProblemIntegrationPageEmpty2\}
\begin{paste}\{ugProblemIntegrationPageEmpty2\}\{ugProblemIntegrationPagePatch2\}
\pastebutton\{ugProblemIntegrationPageEmpty2\}\{\showpaste\}
\tab\{5\}\spadcommand{integrate(log(1 + sqrt(a * x + b)) / x, x)}\end{paste}\end{patch}

\begin{patch}\{ugProblemIntegrationPagePatch3\}
\begin{paste}\{ugProblemIntegrationPageFull3\}\{ugProblemIntegrationPageEmpty3\}
\pastebutton\{ugProblemIntegrationPageFull3\}\{hidepaste\}
\tab\{5\}\spadcommand{integrate(1/(x**2 - 2),x)}\end{paste}\end{patch}

\begin{patch}\{ugProblemIntegrationPageEmpty3\}
\begin{paste}\{ugProblemIntegrationPageEmpty3\}\{ugProblemIntegrationPagePatch3\}
\pastebutton\{ugProblemIntegrationPageEmpty3\}\{\showpaste\}
\tab\{5\}\spadcommand{integrate(1/(x**2 - 2),x)}\end{paste}\end{patch}
\begin{verbatim}
\tab{5}\spadcommand{integrate(1/(x**2 + 2),x)}
\indentrel{3}x^2
atan()
2

(4)
\end{verbatim}

Type: Union(Expression Integer,...)

\begin{verbatim}
\tab{5}\spadcommand{integrate(x**2 / (x**4 - a**2), x)}
\indentrel{3}2
(x + a)^{\frac{1}{2}} - 2a x x^{\frac{1}{2}}
log() + 2atan()
2
x - a
[
2
(x - a)^{\frac{1}{2}} + 2a x x^{\frac{1}{2}}
log() - 2atan()
2
x + a
]

4\a

4\a

Type: Union(List Expression Integer,...)
\end{verbatim}
\begin{patch}{ugProblemIntegrationPagePatch5}
\begin{paste}{ugProblemIntegrationPageFull5}{ugProblemIntegrationPageEmpty5}
\pastebutton{ugProblemIntegrationPageFull5}{\showpaste}
\tab{5}\spadcommand{integrate(x**2 / (x**4 - a**2), x)}
\end{paste}\end{patch}

\begin{patch}{ugProblemIntegrationPagePatch6}
\begin{paste}{ugProblemIntegrationPageFull6}{ugProblemIntegrationPageEmpty6}
\pastebutton{ugProblemIntegrationPageFull6}{\hidepaste}
\tab{5}\spadcommand{complexIntegrate(x**2 / (x**4 - a**2), x)}
\indentrel{3}\begin{verbatim}
(6)
x\ - 4a + 2a x\4a + 2a
\4a log() - \ - 4a log()
\ +
\ - 4a
x\4a - 2a x\ - 4a - 2a
\ - 4a log() - \4a log()
\4a \ - 4a
/
\2\- 4a \4a
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemIntegrationPagePatch7}
\begin{paste}{ugProblemIntegrationPageFull7}{ugProblemIntegrationPageEmpty7}
\pastebutton{ugProblemIntegrationPageFull7}{\hidepaste}
\tab{5}\spadcommand{complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)}
\indentrel{3}\begin{verbatim}
(7)
x
log(b + %E a + 1)
(7)
d%E
\%E
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemIntegrationPagePatch8}
\begin{paste}{ugProblemIntegrationPageFull8}{ugProblemIntegrationPageEmpty8}
\pastebutton{ugProblemIntegrationPageFull8}{\hidepaste}
\tab{5}\spadcommand{complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)}
\indentrel{3}\begin{verbatim}
(8)
x
log(b + %E a + 1)
(7)
d%E
\%E
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemIntegrationPagePatch8}
\begin{paste}{ugProblemIntegrationPageFull8}{ugProblemIntegrationPageEmpty8}
\pastebutton{ugProblemIntegrationPageFull8}{\hidepaste}
\verbatim
\begin{verbatim}
\[1\]
\begin{align*}
\int \frac{x^4 - 3x^2 + 6}{x^6 - 5x^4 + 5x^2 + 4} \, dx, \quad x = 1..2
\end{align*}
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemIntegrationPagePatch9}
\begin{paste}{ugProblemIntegrationPageFull9}{ugProblemIntegrationPageEmpty9}
\pastebutton{ugProblemIntegrationPageFull9}{\hidepaste}
\verbatim
\begin{verbatim}
\[9\]
\begin{align*}
\int \frac{1}{x^2 - a} \, dx, \quad x = 1..2
\end{align*}
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugProblemIntegrationPagePatch10}
\begin{paste}{ugProblemIntegrationPageFull10}{ugProblemIntegrationPageEmpty10}
\pastebutton{ugProblemIntegrationPageFull10}{\hidepaste}
\verbatim
\begin{verbatim}
\[10\]
\begin{align*}
\int \frac{1}{x^2 - a} \, dx, \quad x = 1..2, \text{ "noPole"}
\end{align*}
\end{verbatim}
\end{paste}
\end{patch}
\[- \log() \]
\[\frac{2}{a - 2a + 1} + \frac{2}{(-8a - 32a)^2 + a + 24a + 16a} \log() \]
\[\frac{2}{a - 8a + 16} \]
\[4a \]
\[, \]
\[2^a \]
\[\text{atan}() + \text{atan}() \]
\[a \]
\[]
\[\text{Type: Union(f2: List OrderedCompletion Expression Integer,...)} \]

\begin{spadcommand}
\text{integrate(1/(x**2-a), x = 1..2, "noPole")}
\end{spadcommand}

Working with Power Series

⇒ “notitle” (ugxProblemDEQSeriesPage) 12 on page 2230
⇒ “notitle” (ugxProblemSeriesCreatePage) 12 on page 2166
⇒ “notitle” (ugxProblemSeriesCoefficientsPage) 12 on page 2172
⇒ “notitle” (ugxProblemSeriesArithmeticPage) 12 on page 2175
⇒ “notitle” (ugxProblemSeriesFunctionsPage) 12 on page 2178
⇒ “notitle” (ugxProblemSeriesConversionsPage) 12 on page 2186
⇒ “notitle” (ugxProblemSeriesFormulaPage) 12 on page 2194
⇒ “notitle” (ugxProblemSeriesSubstitutePage) 12 on page 2201
⇒ “notitle” (ugxProblemSeriesBernoulliPage) 12 on page 2203

\begin{page}{ugProblemSeriesPage}{8.9. Working with Power Series}
Axiom has very sophisticated facilities for working with power series. Infinite series are represented by a list of the coefficients that have already been determined, together with a function for computing the additional coefficients if needed. The system command that determines how many terms of a series is displayed is \spadcmd{)set streams calculate}. For the purposes of this book, we have used this system command to display fewer than ten terms. Series can be created from expressions, from functions for the series coefficients, and from applications of operations on existing series. The most general function for creating a series is called \axiomFun{series}, although you can also use \axiomFun{taylor}, \axiomFun{laurent} and \axiomFun{puiseux} in situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see \ugxProblemDEQSeriesPage in Section 8.10.3\ignore{ugxProblemDEQSeries}.\n
\beginmenu
\menudownlink{{8.9.1. Creation of Power Series}}\n\menudownlink{{8.9.2. Coefficients of Power Series}}\n\menudownlink{{8.9.3. Power Series Arithmetic}}\n\menudownlink{{8.9.4. Functions on Power Series}}\n\menudownlink{{8.9.5. Converting to Power Series}}\n\menudownlink{{8.9.6. Power Series from Formulas}}\n\menudownlink{{8.9.7. Substituting Numerical Values in Power Series}}\n\menudownlink{{8.9.8. Example: Bernoulli Polynomials and Sums of Powers}}\n\endmenu
Creation of Power Series

This is the easiest way to create a power series. This tells Axiom that \texttt{x} is to be treated as a power series, so functions of \texttt{x} are again power series.

\spad{\texttt{x := series 'x \bound{x}}}

We didn't say anything about the coefficients of the power series, so the coefficients are general expressions over the integers. This allows us to introduce denominators, symbolic constants, and other variables as needed.

\spad{\texttt{1/(1 - x - x**2) \free{x}}}

This series has coefficients that are rational numbers.

\spad{\texttt{\sin(x) \free{x}}}

When you enter this expression you introduce the symbolic constants \texttt{\sin(1)} and \texttt{\cos(1)}.

\spad{\texttt{\sin(1 + x) \free{x}}}

When you enter the expression the variable \texttt{\a} appears in the resulting series expansion.

\spad{\texttt{\sin(a * x) \free{x}}}
You can also convert an expression into a series expansion. This expression creates the series expansion of \(\frac{1}{\log(y)}\) about \(y = 1\).
For details and more examples, see
\downlink{``Converting to Power Series''} {ugxProblemSeriesConversionsPage} in Section 8.9.5
\ignore{ugxProblemSeriesConversions}.

\spadpaste{series(1/log(y),y = 1)}

You can create power series with more general coefficients. You normally accomplish this via a type declaration (see
\downlink{``Declarations''} {ugTypesDeclarePage} in Section 2.3
\ignore{ugTypesDeclare}).
See
\downlink{``Functions on Power Series''} {ugxProblemSeriesFunctionsPage} in Section 8.9.4
\ignore{ugxProblemSeriesFunctions} for some warnings about working with declared series.

We declare that \(y\) is a one-variable Taylor series
(\axiomType{UTS} is the abbreviation for \axiomType{UnivariateTaylorSeries})
in the variable \(x\) with \axiomType{FLOAT} coefficients, centered about \(0\).
Then, by assignment, we obtain the Taylor expansion of \(\exp(x)\) with floating-point coefficients.

\spadpaste{y : UTS(FLOAT,'z,0) := exp(z) \bound{y}}

You can also create a power series by giving an explicit formula for its \(\eth{n}\) coefficient.
For details and more examples, see
\downlink{``Power Series from Formulas''} {ugxProblemSeriesFormulaPage} in Section 8.9.6
\ignore{ugxProblemSeriesFormula}.

To create a series about \(w = 0\) whose \(\eth{n}\) Taylor coefficient is \(1/n!\), you can evaluate this expression.
This is the Taylor expansion of \(\exp(w)\) at \(w = 0\).

\spadpaste{series(1/factorial(n),n,w = 0)}

%
\begin{spadcommand}
x := \text{series } x\text{ \texttt{\textbackslash bound}}(x)
\end{spadcommand}

\begin{verbatim}
(1) x
Type: \text{UnivariatePuiseuxSeries(}\text{Expression Integer},x,0)\text{)}
\end{verbatim}

\begin{spadcommand}
1/(1 - x - x**2)\text{ \texttt{\textbackslash free}}(x)
\end{spadcommand}

\begin{verbatim}
(2)
2 3 4 5 6 7 8
1 + x + 2x + 3x + 5x + 8x + 13x + 21x + 34x
+ 9 10 11
55x + 89x + O(x^12)
Type: \text{UnivariatePuiseuxSeries(}\text{Expression Integer},x,0)\text{)}
\end{verbatim}

\begin{spadcommand}
\text{sin}(x)\text{ \texttt{\textbackslash free}}(x)
\end{spadcommand}

\begin{verbatim}
(3)
1 3 1 5 1 7 1 9
x - x + x - x + x
\end{verbatim}
\begin{verbatim}
(4)
 \sin(1) 2 \cos(1) 3 \sin(1) 4
 \sin(1) + \cos(1)x - x - x + x
 2 6 24
 +
 \cos(1) 5 \sin(1) 6 \cos(1) 7 \sin(1) 8
 x - x - x + x
 120 720 5040 40320
 +
 \cos(1) 9 \sin(1) 10 11
 x - x + 0(x)
 362880 3628800
 Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesCreatePageEmpty4}
\begin{paste}{ugxProblemSeriesCreatePageFull4}{ugxProblemSeriesCreatePageEmpty4}
\pastebutton{ugxProblemSeriesCreatePageEmpty4}{\showpaste}
\tab{5}\spadcommand{\sin(1 + x)\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesCreatePagePatch5}
\begin{paste}{ugxProblemSeriesCreatePageFull5}{ugxProblemSeriesCreatePageEmpty5}
\pastebutton{ugxProblemSeriesCreatePageEmpty5}{\hidepaste}
\tab{5}\spadcommand{\sin(a * x)\free{x}}
\end{paste}\end{patch}

\indentrel{3}\begin{verbatim}
(5)
 3 5 7 9
 a 3 a 5 a 7 a 9
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
a x - x + x - x + x
 6 120 5040 362880
+
 11
a 11 12
- x + O(x)
39916800
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesCreatePageEmpty5}
\begin{paste}{ugxProblemSeriesCreatePageEmpty5}{ugxProblemSeriesCreatePagePatch5}
\pastebutton{ugxProblemSeriesCreatePageEmpty5}{\showpaste}
\tab{5}\spadcommand{sin(a * x)\free{x}}
\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesCreatePagePatch6}
\begin{paste}{ugxProblemSeriesCreatePageFull6}{ugxProblemSeriesCreatePageEmpty6}
\pastebutton{ugxProblemSeriesCreatePageFull6}{\hidepaste}
\tab{5}\spadcommand{series(1/log(y),y = 1)}
\indentrel{3}\begin{verbatim}
(6)
 - 1 1 1 2
(y - 1) + - (y - 1) + (y - 1)
 2 12 24
+
 19 3 3 4 863 5
- (y - 1) + (y - 1) - (y - 1)
 720 160 60480
+
 275 6 33953 7 8183 8
(y - 1) - (y - 1) + (y - 1)
 24192 3628800 1036800
+
 3250433 9 10
- (y - 1) + O((y - 1))
479001600
Type: UnivariatePuiseuxSeries(Expression Integer,y,1)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesCreatePagePatch7}
\begin{paste}{ugxProblemSeriesCreatePageFull7}{ugxProblemSeriesCreatePageEmpty7}
\spadcommand{y : UTS(FLOAT,'z,0) := \exp(z)}
\indentrel{3}\begin{verbatim}
(7)
 \begin{align*}
 2 & \quad 3 \\
 1.0 + z + 0.5 z + 0.1666666666 \times 10^{6} z \\
 \quad + \\
 0.0416666666 \times 10^{6} z \\
 \quad + \\
 0.0083333333 \times 10^{5} z \\
 \quad + \\
 0.0013888889 \times 10^{5} z \\
 \quad + \\
 0.0001984127 \times 10^{4} z \\
 \quad + \\
 0.0000248016 \times 10^{3} z \\
 \quad + \\
 0.2755731922 \times 10^{-6} z \\
 \quad + \\
 O(z) \\
\end{align*}
\end{verbatim}
\indentrel{-3}\end{paste}

\spadcommand{series(1/factorial(n),n,w = 0)}
\indentrel{3}\begin{verbatim}
(8)
 \begin{align*}
 1 & \quad 2 \quad 1 \quad 3 \quad 1 \quad 4 \quad 1 \quad 5 \quad 1 \quad 6 \\
 1 + w + w + w + w + w + w \\
 \quad + \\
 2 \quad 6 \quad 24 \quad 120 \quad 720 \\
 \quad + \\
 1 \quad 7 \quad 1 \quad 8 \quad 1 \quad 9 \quad 1 \quad 10 \quad 11 \\
 w + w + w + w + O(w) \\
5040 \quad 40320 \quad 362880 \quad 3628800
\end{align*}
\end{verbatim}
\end{patch}
Type: UnivariatePuiseuxSeries(Expression Integer,w,0)

You can extract any coefficient from a power series---even one that hasn't been computed yet. This is possible because in Axiom, infinite series are represented by a list of the coefficients that have already been determined, together with a function for computing the additional coefficients. (This is known as \{\textit{lazy evaluation}\}.) When you ask for a coefficient that hasn't yet been computed, Axiom computes whatever additional coefficients it needs and then stores them in the representation of the power series.

Here's an example of how to extract the coefficients of a power series.

\begin{verbatim}
\spad{\texttt{x := series(x)}}
\end{verbatim}
\begin{verbatim}
\spad{\texttt{y := exp(x) \times sin(x)}}
\end{verbatim}
\begin{verbatim}
\spad{\texttt{coefficient(y,6)}}
\end{verbatim}

But let's get the fifteenth coefficient of \texttt{axiom(y)}.
If you look at `y` then you see that the coefficients up to order `15` have all been computed.

```spad
\spad{coefficient(y,15) \free{y} \bound{y15}}
```

```spad
\spad{y \free{y15}}
```
\begin{spadcommand}
y := \exp(x) \times \sin(x)\end{spadcommand}
\begin{verbatim}
1
(3) \hfill 90
\end{verbatim}
\begin{verbatim}
1
(4) \hfill 10216206000
\end{verbatim}
\begin{verbatim}
2 1 3 1 5 1 6 1 7 1 9
x + x + x - x - x - x + x
3 30 90 630 22680 +
You can manipulate power series using the usual arithmetic operations
\axiomOpFrom{+}{UnivariatePuiseuxSeries},
\axiomOpFrom{-}{UnivariatePuiseuxSeries},
\axiomOpFrom{*}{UnivariatePuiseuxSeries}, and
\axiomOpFrom{/}{UnivariatePuiseuxSeries}.

The results of these operations are also power series.

\spadpaste{x := series x \bound{x}}

\spadpaste{(3 + x) / (1 + 7*x)}

You can also compute \axiom{f(x) ** g(x)}, where
\axiom{f(x)} and \axiom{g(x)}
are two power series.
}\{
\spadpaste{base := 1 / (1 - x) \free{x} \bound{base}}
}\%
\xtc{
\spadpaste{expon := x * base \free{x base} \bound{expon}}
}\%
\xtc{
\spadpaste{base ** expon \free{base expon}}
}

\endscroll
\autobuttons
\end{page}
\begin{patch}{ugxProblemSeriesArithmeticPagePatch1}
\begin{paste}{ugxProblemSeriesArithmeticPageFull1}{ugxProblemSeriesArithmeticPageEmpty1}
\pastebutton{ugxProblemSeriesArithmeticPageFull1}{\hidepaste}
\indentrel{3}\spadcommand{x := series x\bound{x }}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugxProblemSeriesArithmeticPageEmpty1}
\begin{paste}{ugxProblemSeriesArithmeticPageEmpty1}{ugxProblemSeriesArithmeticPagePatch1}
\pastebutton{ugxProblemSeriesArithmeticPageEmpty1}{\showpaste}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugxProblemSeriesArithmeticPagePatch2}
\begin{paste}{ugxProblemSeriesArithmeticPageFull2}{ugxProblemSeriesArithmeticPageEmpty2}
\pastebutton{ugxProblemSeriesArithmeticPageFull2}{\hidepaste}
\indentrel{3}\spadcommand{((3 + x) / (1 + 7*x))}
\indentrel{-3}\end{paste}
\end{patch}
\indentrel{-3}\begin{verbatim}
(2) 2 3 4 5 6
 3 - 20x + 140x - 980x + 6860x - 48020x + 336140x +
 7 8 9 10
 - 2352980x + 16470860x - 115296020x + 807072140x +
 11
 0(x)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\indentrel{-3}\end{verbatim}
\begin{verbatim}
(3)
 2 3 4 5 6 7 8 9 10
 1 + x + x + x + x + x + x + x + x + x
 +
 11
 O(x)
 Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesArithmeticPagePatch4}
\begin{paste}{ugxProblemSeriesArithmeticPageFull4}{ugxProblemSeriesArithmeticPageEmpty4}
\pastebutton{ugxProblemSeriesArithmeticPageEmpty4}{\showpaste}
\indentrel{5}\spadcommand{expon := x * base}\free{x base}\bound{expon }
\indentrel{3}\begin{verbatim}
(4)
 2 3 4 5 6 7 8 9 10 11
 x + x + x + x + x + x + x + x + x + x
 +
 12
 O(x)
 Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\end{paste}\end{patch}
Functions on Power Series

— ug08.ht —

Once you have created a power series, you can apply transcendental functions (for example, \axiomFun{exp}, \axiomFun{log}, \axiomFun{sin}, \axiomFun{tan}, \axiomFun{cosh}, etc.) to it.

\begin{verbatim}
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}

To demonstrate this, we first create the power series expansion of the rational function:

\begin{verbatim}
% \xtc{
To demonstrate this, we first create the power series expansion of the rational function
\texht{
$\left\{\textstyle x^2 \over 1 - 6x + x^2}\right.$}$
\begin{block}
\axiom{x**2/(1 - 6*x + x**2)}
\end{block}

about \axiom{0}.

\begin{block}
\spadpaste{x := series \ 'x \bound{x}}
\end{block}

\begin{block}
\spadpaste{rat := x**2 / (1 - 6*x + x**2) \free{x} \bound{rat}}
\end{block}

If you want to compute the series expansion of
\begin{displaymath}
\sin \left(\frac{x^2}{1 - 6x + x^2} \right)
\end{displaymath}
you simply compute the sine of \axiom{rat}.

\begin{block}
\spadpaste{sin(rat) \free{rat}}
\end{block}

\begin{important}
\noindent \textbf{Warning:} the type of the coefficients of a power series may affect the kind of computations that you can do with that series. This can only happen when you have made a declaration to specify a series domain with a certain type of coefficient.
\end{important}

\begin{block}
\spadpaste{y : UTS(FRAC INT,y,0) := y \bound{y}}
\end{block}

You can now compute certain power series in \axiom{y}, (\it provided) that these series have rational coefficients.

\begin{block}
\spadpaste{exp(y) \free{y}}
\end{block}
You can get examples of such series by applying transcendental functions to series in \texttt{axiom(y)} that have no constant terms.\%
}\\%
\texttt{tan(y**2) free(y)}
\%
\texttt{cos(y + y**5) free(y)}
\%
\%
\texttt{Similarly, you can compute the logarithm of a power series with rational coefficients if the constant coefficient is \texttt{axiom(1.)}}\%
}\\%
\texttt{log(1 + sin(y)) free(y)}
\%
\%
\texttt{If you wanted to apply, say, the operation \texttt{axiomFun(exp)} to a power series with a nonzero constant coefficient \texttt{axiom(a0)}, then the constant coefficient of the result would be \texttt{exp(a0)}, which is not a rational number. Therefore, evaluating \texttt{exp(2 + tan(y))} would generate an error message.\%
}\\%
\texttt{If you want to compute the Taylor expansion of \texttt{exp(2 + tan(y))}, you must ensure that the coefficient domain has an operation \texttt{axiomFun(exp)} defined for it. An example of such a domain is \texttt{Expression Integer}, the type of formal functional expressions over the integers.\%
\texttt{When working with coefficients of this type,} \%
\texttt{z : UTS(EXPR INT,z,0) := z bound(z)}
\%
\texttt{this presents no problems.} \%
\texttt{exp(2 + tan(z)) free(z)}
\%
\%
\texttt{Another way to create Taylor series whose coefficients are expressions over the integers is to use \texttt{axiomFun(taylor)} which works similarly to \texttt{axiomFun(series)}.}
This is equivalent to the previous computation, except that now we are using the variable \(w\) instead of \(z\).

\[
\text{spadpaste}\{w := \text{taylor } 'w \\text{\smallbound{w}}\}\}
\]

\[
\text{spadpaste}\{\exp(2 + \tan(w)) \\text{\smallfree{w}}\}\}
\]

\begin{patch}{ugxProblemSeriesFunctionsPagePatch1}
\begin{paste}{ugxProblemSeriesFunctionsPageFull1}{ugxProblemSeriesFunctionsPageEmpty1}
\pastebutton{ugxProblemSeriesFunctionsPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) x
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPagePatch2}
\begin{paste}{ugxProblemSeriesFunctionsPageFull2}{ugxProblemSeriesFunctionsPageEmpty2}
\pastebutton{ugxProblemSeriesFunctionsPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
(2)
\begin{align*}
2 & + 3x + 15x^2 + 204x^3 + 1189x^4 + 6930x^5 + 40391x^6 \\
 & + 9x^7 + 10x^8 + 11x^9 + 12x^{10} \\
235416x & + 1372105x + 7997214x + 46611179x + 235416x^{13} \\
& + 13x^{14} + O(x^{15})
\end{align*}
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{spadcommand}{rat := x**2 / (1 - 6*x + x**2)}\free{x} \bound{rat} \end{spadcommand}

\indentrel{-3}\begin{verbatim}(3) 2 3 4 5 713 6 7 8071 11 8
x + 6x + 35x + 204x + x + 6927x + x
6 2
+ 9 164285281 10 3188513 11
235068x + x + x
120 4
+ 371324777 12 13
x + O(x)
8
\end{verbatim}

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)
\indentrel{-3}\end{verbatim}

\begin{spadcommand}{y : UTS(FRAC INT, y, 0) := y} \bound{y} \end{spadcommand}

\indentrel{-3}\begin{verbatim}(4) y
\end{verbatim}

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)
\indentrel{-3}\end{verbatim}

\begin{spadcommand}{y : UTS(FRAC INT, y, 0); := y} \bound{y} \end{spadcommand}

\indentrel{-3}\end{verbatim}

\begin{spadcommand}{y : UTS(FRAC INT, y, 0); := y} \bound{y} \end{spadcommand}

\indentrel{-3}\end{verbatim}
\begin{verbatim}
(5)
\hspace{1em}
1 2 1 3 1 4 1 5 1 6
1 + y + y + y + y + y + y
2 6 24 120 720
+
1 7 1 8 1 9 1 10 1 11
y + y + y + y + O(y)
5040 40320 362880 3628800
Type: UnivariateTaylorSeries(Fraction Integer,y,0)
\end{verbatim}
\end{patch}

\begin{verbatim}
(6) y + y + y + O(y)
3 15
Type: UnivariateTaylorSeries(Fraction Integer,y,0)
\end{verbatim}
\end{patch}

\begin{verbatim}
(7)
\hspace{1em}
1 2 1 4 721 6 6721 8 1844641 10
1 - y + y - y + y - y
2 24 720 40320 3628800
+
\end{verbatim}
\end{patch}
11

\begin{verbatim}
O(y)
Type: UnivariateTaylorSeries(Fraction Integer,y,0)
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPageEmpty7}
\begin{paste}{ugxProblemSeriesFunctionsPageEmpty7}{ugxProblemSeriesFunctionsPagePatch7}
\pastebutton{ugxProblemSeriesFunctionsPageEmpty7}{\showpaste}
\tab{5}\spadcommand{cos(y + y**5)/free(y)}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPagePatch8}
\begin{paste}{ugxProblemSeriesFunctionsPageFull8}{ugxProblemSeriesFunctionsPageEmpty8}
\pastebutton{ugxProblemSeriesFunctionsPageFull8}{\hidepaste}
\tab{5}\spadcommand{log(1 + sin(y))/free(y)}
\indentrel{3}\begin{verbatim}
(8)
 1 2 1 3 1 4 1 5 1 6 61 7
y - y + y - y + y - y + y
 2 6 12 24 45 5040
+
 17 8 277 9 31 10 11
- y + y - y + O(y)
 2520 72576 14175
Type: UnivariateTaylorSeries(Fraction Integer,y,0)
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPageEmpty8}
\begin{paste}{ugxProblemSeriesFunctionsPageEmpty8}{ugxProblemSeriesFunctionsPagePatch8}
\pastebutton{ugxProblemSeriesFunctionsPageEmpty8}{\showpaste}
\tab{5}\spadcommand{log(1 + sin(y))/free(y)}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPagePatch9}
\begin{paste}{ugxProblemSeriesFunctionsPageFull9}{ugxProblemSeriesFunctionsPageEmpty9}
\pastebutton{ugxProblemSeriesFunctionsPageFull9}{\hidepaste}
\tab{5}\spadcommand{z : UTS(EXPR INT,z,0) := z/bound(z)}
\indentrel{3}\begin{verbatim}
(9) z
Type: UnivariateTaylorSeries(Expression Integer,z,0)
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemSeriesFunctionsPageEmpty9}
\begin{paste}{ugxProblemSeriesFunctionsPageEmpty9}{ugxProblemSeriesFunctionsPagePatch9}
\pastebutton{ugxProblemSeriesFunctionsPageEmpty9}{\showpaste}
\tab{5}\spadcommand{z : UTS(EXPR INT,z,0) := z/bound(z)}
\end{paste}
\end{patch}
\begin{verbatim}
exp(2 + tan(z))
(10)
(12)
\end{verbatim}

\begin{verbatim}
w := taylor 'w\bound{w}
(11) w
\end{verbatim}

\begin{verbatim}
w := taylor 'w\bound{w}
\end{verbatim}
Converting to Power Series

— ug08.ht —

The \axiomType{ExpressionToUnivariatePowerSeries} package provides operations for computing series expansions of functions.

Evaluate this
to compute the Taylor expansion of \axiom{\sin x} about
\axiom{x = 0}.
The first argument, \axiom{\sin(x)}, specifies the function whose series expansion is to be computed and the second argument, \axiom{x = 0},
specifies that the series is to be expanded in power of \(x - 0\),
that is, in power of \(x\).
\begin{spad}
\text{taylor}(\sin(x), x = 0)
\end{spad}
Here is the Taylor expansion of \(\sin x\) about \(x = \frac{\pi}{6}\):
\begin{spad}
\text{taylor}(\sin(x), x = \frac{\pi}{6})
\end{spad}
The function to be expanded into a series may have variables other than
the series variable.
\begin{spad}
\text{taylor}(\tan(x*y), x = 0)
\end{spad}
or as a Taylor series in \(y\).
\begin{spad}
\text{taylor}(\tan(x*y), y = 0)
\end{spad}
A more interesting function is
\(\frac{t e^{xt}}{e^t - 1}\).
When we expand this function as a Taylor series in \(t\)
the \(n\) order coefficient is the \(n\) Bernoulli
divided by \(n!\).
\begin{spad}
\text{bern} := \text{taylor}(t * \exp(x*t)/(\exp(t) - 1), t = 0) \text{bern}
\end{spad}
Therefore, this and the next expression
produce the same result.
\begin{spad}
\text{factorial}(6) * \text{coefficient}(\text{bern}, 6) \text{bern}
\end{spad}
Technically, a series with terms of negative degree is not considered to
be a Taylor series, but, rather, a
Laurent series.

If you try to compute a Taylor series expansion of
\[\frac{x}{\log x} \]
at \(x = 1 \) via \(\text{taylor}(x/\log(x), x = 1) \)
you get an error message.

The reason is that the function has a pole at \(x = 1 \),
meaning that
its series expansion about this point has terms of negative degree.

A series with finitely many terms of negative degree is called a Laurent
series.

You get the desired series expansion by issuing this.

\(\text{laurent}(x/\log(x), x = 1) \)

Similarly, a series with terms of fractional degree is neither a
Taylor series nor a Laurent series. Such a series is called a Puiseux
series. The expression \(\text{laurent}(\sqrt{\sec(x)}, x = 3 \times \pi/2) \)
results in an error message because the series expansion
about this point has terms of fractional degree.

However, this command produces what you want.

\(\text{puiseux}(\sqrt{\sec(x)}, x = 3 \times \pi/2) \)

Finally, consider the case of functions that do not have Puiseux
expansions about certain points. An example of this is
\(x^x \) about \(x = 0 \).

\(\text{puiseux}(x^x, x = 0) \) produces an error message because of the
type of singularity of the function at \(x = 0 \).

The general function \(\text{series} \) can be used in this case.

Notice that the series returned is not, strictly speaking, a power series
because of the \(\log(x) \) in the expansion.

\(\text{series}(x^x, x = 0) \)

The operation \(\text{series} \) returns the most general type of
infinite series.

The user who is not interested in distinguishing
between various types of infinite series may wish to use this operation
exclusively.
\spadcommand{taylor(sin(x),\texttt{x} = 0)}

\begin{verbatim}
1 3 1 5 1 7 1 9 11
(1) \texttt{x - x + x - x + x + O(x)}
6 120 5040 362880
Type: UnivariateTaylorSeries(Expression Integer,\texttt{x},0)
\end{verbatim}

\spadcommand{taylor(sin(x),\texttt{x} = \texttt{\%pi}/6)}

\begin{verbatim}
1 \texttt{\%pi} 1 \texttt{\%pi} 2 \texttt{\%pi} 3
+ (x -) - (x -) - (x -)
2 2 6 4 6 12 6
+
1 \texttt{\%pi} 4 \texttt{\%pi} 5 1 \texttt{\%pi} 6
(x -) + (x -) - (x -)
48 6 240 6 1440 6
+
\texttt{\%pi} 7 1 \texttt{\%pi} 8
(x -) + (x -)
10080 6 80640 6
+
\texttt{\%pi} 9 1 \texttt{\%pi} 10
(x -) - (x -)
725760 6 7257600 6
+
\texttt{\%pi} 11
\end{verbatim}
$O((x - \pi/6)^6)$

Type: UnivariateTaylorSeries(Expression Integer, x, π/6)

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPageEmpty2}
\begin{paste}{ugxProblemSeriesConversionsPageEmpty2}{ugxProblemSeriesConversionsPagePatch2}
\pastebutton{ugxProblemSeriesConversionsPageEmpty2}{\showpaste}
\tab{5}\spadcommand{taylor(sin(x), x = π/6)}
\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPagePatch3}
\begin{paste}{ugxProblemSeriesConversionsPageFull3}{ugxProblemSeriesConversionsPageEmpty3}
\pastebutton{ugxProblemSeriesConversionsPageFull3}{\hidepaste}
\tab{5}\spadcommand{taylor(tan(x*y), x = 0)}
\indentrel{3}\begin{verbatim}
(3)
 3 5 7 9
 y 3 2y 5 17y 7 62y 9 11
 y x + x + x + x + x + O(x)
 3 15 315 2835
Type: UnivariateTaylorSeries(Expression Integer, x, 0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPageEmpty3}
\begin{paste}{ugxProblemSeriesConversionsPageEmpty3}{ugxProblemSeriesConversionsPagePatch3}
\pastebutton{ugxProblemSeriesConversionsPageEmpty3}{\showpaste}
\tab{5}\spadcommand{taylor(tan(x*y), x = 0)}
\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPagePatch4}
\begin{paste}{ugxProblemSeriesConversionsPageFull4}{ugxProblemSeriesConversionsPageEmpty4}
\pastebutton{ugxProblemSeriesConversionsPageFull4}{\hidepaste}
\tab{5}\spadcommand{taylor(tan(x*y), y = 0)}
\indentrel{3}\begin{verbatim}
(4)
 3 5 7 9
 x 3 2x 5 17x 7 62x 9 11
 x y + y + y + y + y + O(y)
 3 15 315 2835
Type: UnivariateTaylorSeries(Expression Integer, y, 0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPageEmpty4}
\begin{paste}{ugxProblemSeriesConversionsPageEmpty4}{ugxProblemSeriesConversionsPagePatch4}
\pastebutton{ugxProblemSeriesConversionsPageEmpty4}{\showpaste}
\tab{5}\spadcommand{taylor(tan(x*y), y = 0)}
\begin{verbatim}
(5)
\begin{tabular}{cccccc}
2 & 3 & 2 & 2x - 1 & 6x - 6x + 1 & 2 \\
1 & + & t & + & t & + \\
2 & 12 & 12 & 2 & 2 & 2x - 3x + x 3 \\
\end{tabular}
\begin{tabular}{cccccc}
4 & 3 & 2 & 5 & 4 & 3 \\
30x - 60x & + & 30x & - 1 & 4 & 6x - 15x & + & 10x & - & x 5 \\
t & + & t & + & t & + \\
720 & 720 & 720 & 720 & 720 & 720 \\
\end{tabular}
\begin{tabular}{cccccc}
6 & 5 & 4 & 2 & 42x - 126x & + & 105x & - & 21x & + & 16 \\
t & 30240 & 30240 & 30240 & 30240 & 30240 \\
\end{tabular}
\begin{tabular}{cccccc}
7 & 6 & 5 & 3 & 6x & - & 21x & + & 21x & - & 7x & + & x 7 \\
t & 30240 & 30240 & 30240 & 30240 & 30240 \\
\end{tabular}
\begin{tabular}{cccccc}
8 & 7 & 6 & 4 & 2 & 30x - 120x & + & 140x & - & 70x & + & 20x & - & 18 \\
t & 1209600 & 1209600 & 1209600 & 1209600 & 1209600 \\
\end{tabular}
\begin{tabular}{cccccc}
9 & 8 & 7 & 5 & 3 & 10x & - & 45x & + & 60x & - & 42x & + & 20x & - & 3x 9 \\
t & 3628800 & 3628800 & 3628800 & 3628800 & 3628800 \\
\end{tabular}
\begin{tabular}{cccccc}
10 & 9 & 8 & 6 & 4 & 2 & 66x - 330x & + & 495x & - & 462x & + & 330x & - & 99x & + & 5 10 \\
t & 239500800 & 239500800 & 239500800 & 239500800 & 239500800 \\
\end{tabular}
\begin{tabular}{cccccc}
11 & & & & & & 0(t \\
\end{tabular}
\end{verbatim}

Type: UnivariateTaylorSeries(Expression Integer,t,0)
\begin{spadcommand}
bern := taylor(t*exp(x*t)/(exp(t) - 1), t = 0)
\end{spadcommand}

\begin{spadcommand}
factorial(6) * coefficient(bern, 6)
\end{spadcommand}

\begin{verbatim}
 6 5 4 2
62x - 126x + 105x - 21x + 1
(6)
42
Type: Expression Integer
\end{verbatim}

\begin{spadcommand}
bernoulliB(6, x)
\end{spadcommand}

\begin{verbatim}
 6 5 4 1 2 1
(7)x - 3x + x - x +
 2 2 42
Type: Polynomial Fraction Integer
\end{verbatim}

\begin{spadcommand}
laurent(x/log(x), x = 1)
\end{spadcommand}

\begin{verbatim}
 -1 3 5 1 2
(x - 1) + + (x - 1) - (x - 1)
(8)
\end{verbatim}
\begin{verbatim}
\indentrel{-3}
\end{verbatim}
\begin{patch}{ugxProblemSeriesConversionsPageEmpty8}
\begin{paste}{ugxProblemSeriesConversionsPageEmpty8}{ugxProblemSeriesConversionsPagePatch8}
\pastebutton{ugxProblemSeriesConversionsPageEmpty8}{\showpaste}
\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPagePatch9}
\begin{paste}{ugxProblemSeriesConversionsPageFull9}{ugxProblemSeriesConversionsPageEmpty9}
\pastebutton{ugxProblemSeriesConversionsPageFull9}{\hidepaste}
\end{patch}

\begin{patch}{ugxProblemSeriesConversionsPagePatch10}
\begin{paste}{ugxProblemSeriesConversionsPageFull10}{ugxProblemSeriesConversionsPageEmpty10}
\pastebutton{ugxProblemSeriesConversionsPageFull10}{\hidepaste}
\end{patch}
\end{verbatim}
The \axiomType{GenerateUnivariatePowerSeries} package enables you to create power series from explicit formulas for their \axiom{n}th coefficients. In what follows, we construct series expansions for certain transcendental functions by giving formulas for their coefficients. You can also compute such series expansions directly...
simply by specifying the function and the point about which the series is to be expanded. See \downlink{‘Converting to Power Series’}{ugxProblemSeriesConversionsPage} in Section 8.9.5\ignore{ugxProblemSeriesConversions} for more information.

Consider the Taylor expansion of e^x about $x = 0$:
\begin{verbatim}
%e**x = 1 + x + x**2/2 + x**3/6 + ... = sum from n=0 to n=%infty of x**n / n!
\end{verbatim}

The nth Taylor coefficient is $1/n!$.

This is how you create this series in Axiom.

The first argument specifies a formula for the nth coefficient by giving a function that maps n to $1/n!$. The second argument specifies that the series is to be expanded in powers of $(x - 0)$, that is, in powers of x. Since we did not specify an initial degree, the first term in the series was the term of degree 0 (the constant term). Note that the formula was given as an anonymous function. These are discussed in \downlink{‘Anonymous Functions’}{ugUserAnonPage} in Section 6.17\ignore{ugUserAnon}.

Consider the Taylor expansion of $\log x$ about $x = 1$:
\begin{verbatim}
log x = (x - 1) - (x - 1)^2/2 + (x - 1)^3/3 - ... = sum from n=1 to n=%infty of (-1)**(n-1) (x - 1)**n / n!
\end{verbatim}

The first argument specifies a formula for the nth coefficient by giving a function that maps n to $1/n!$.
If you were to evaluate the expression
\begin{verbatim}
axiom{series(n +-> (-1)**(n-1) / n, x = 1)}
\end{verbatim}
you would get an error message because Axiom would try to
calculate a term of degree \axiom{0} and therefore divide by \axiom{0.}

Instead, evaluate this.
The third argument, \axiom{1..}, indicates that only terms of degree
\axiom{n = 1, ...} are to be computed.
\begin{verbatim}
\spadpaste{series(n +-> (-1)**(n-1)/n,x = 1,1..)}
\end{verbatim}

Next consider the Taylor expansion of an odd function, say,
\begin{verbatim}
\axiom{sin(x)}:
begin{verbatim}
sin x = x - x**3/3! + x**5/5! - ...
\end{verbatim}
\end{verbatim}
Here every other coefficient is zero and we would like to give an
explicit formula only for the odd Taylor coefficients.
\begin{verbatim}
%\spadpaste{series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)}
\end{verbatim}

This is one way to do it. The third argument, \axiom{1..}, specifies
that the first term to be computed is the term of degree 1. The
fourth argument, \axiom{2}, specifies that we increment by \axiom{2}
to find the degrees of subsequent terms, that is, the next term is of
degree \axiom{1 + 2}, the next of degree \axiom{1 + 2 + 2}, etc.
\begin{verbatim}
%\spadpaste{series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)}
\end{verbatim}

While the increment must be positive, the initial degree may be negative.
This yields the Laurent expansion of \axiom{\csc(x)} at
\axiom{x = 0}.
\begin{verbatim}
%\spadpaste{cscx :=
series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..2 \bound{cscx}}}
Of course, the reciprocal of this power series is the Taylor expansion of \(\sin(x) \).

\[
\frac{1}{\csc x}
\]

As a final example, here is the Taylor expansion of \(\arcsin(x) \) about \(x = 0 \).

\[
\arcsin(x) := \text{series}(n + \rightarrow \frac{\text{binomial}(n-1,(n-1)/2)}{n \times 2^{(n-1)}}, x=0,1\ldots,2) \quad \text{\texttt{bound(asinx)}}
\]

When we compute the \(\sin \) of this series, we get \(x \) (in the sense that all higher terms computed so far are zero).

As we discussed in \[\text{\texttt{Converting to Power Series}}\] in Section 8.9.5, you can also use the operations \(\text{taylor}, \text{laurent} \) and \(\text{puiseux} \) instead of \(\text{series} \) if you know ahead of time what kind of exponents a series has. You can't go wrong using \(\text{series} \), though.

\[
\sin(\arcsin(x)) \quad \text{\texttt{free(asinx)}}
\]

As we discussed in \[\text{\texttt{Converting to Power Series}}\] in Section 8.9.5, you can also use the operations \(\text{taylor}, \text{laurent} \) and \(\text{puiseux} \) instead of \(\text{series} \) if you know ahead of time what kind of exponents a series has. You can't go wrong using \(\text{series} \), though.

\[
\text{\texttt{series}}(n + \rightarrow 1/\text{factorial}(n), x = 0)
\]

Type: \text{UnivariatePuiseuxSeries(Expression Integer,x,0)}
\begin{patch}{ugxProblemSeriesFormulaPagePatch2}
\begin{paste}{ugxProblemSeriesFormulaPageFull2}{ugxProblemSeriesFormulaPageEmpty2}
\pastebutton{ugxProblemSeriesFormulaPageFull2}{\hidepaste}
\tab{5}\spadcommand{series(n +-> (-1)**(n-1)/n,x = 1,1..)}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPagePatch3}
\begin{paste}{ugxProblemSeriesFormulaPageFull3}{ugxProblemSeriesFormulaPageEmpty3}
\pastebutton{ugxProblemSeriesFormulaPageFull3}{\hidepaste}
\tab{5}\spadcommand{series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)}
\end{paste}
\end{patch}
\tab{5}\spadcommand{series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPagePatch4}
\begin{paste}{ugxProblemSeriesFormulaPageFull4}{ugxProblemSeriesFormulaPageEmpty4}
\pastebutton{ugxProblemSeriesFormulaPageFull4}{\hidepaste}
\tab{5}\spadcommand{series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)}
\indentrel{3}\begin{verbatim}
(4)
1 5 7
3 1 1 3 1 3 1 3
x - x + x - x + x
6 120 5040 362880
+ 11
1 3 4
- x + O(x)
39916800
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPagePatch5}
\begin{paste}{ugxProblemSeriesFormulaPageFull5}{ugxProblemSeriesFormulaPageEmpty5}
\pastebutton{ugxProblemSeriesFormulaPageFull5}{\hidepaste}
\tab{5}\spadcommand{cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1)) / factorial(n+1), x=0,-1..,2)}
\indentrel{3}\begin{verbatim}
(5)
- 1 1 7 3 31 5 127 7
x + x + x + x + x
6 360 15120 604800
+ 73 9 10
x + O(x)
3421440
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
\end{verbatim}
\end{paste}\end{patch}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPageEmpty5}\begin{paste}{ugxProblemSeriesFormulaPageEmpty5}{ugxProblemSeriesFormulaPagePatch5}\pastebutton{ugxProblemSeriesFormulaPageEmpty5}{\showpaste}\tab{5}\spadcommand{cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..,2)\bound{cscx}}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPagePatch6}\begin{paste}{ugxProblemSeriesFormulaPageFull6}{ugxProblemSeriesFormulaPageEmpty6}\pastebutton{ugxProblemSeriesFormulaPageFull6}{\hidepaste}\tab{5}\spadcommand{1/cscx\free{cscx}}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesFormulaPagePatch7}\begin{paste}{ugxProblemSeriesFormulaPageFull7}{ugxProblemSeriesFormulaPageEmpty7}\pastebutton{ugxProblemSeriesFormulaPageFull7}{\hidepaste}\tab{5}\spadcommand{asinx := series(n +-> binomial(n-1,(n-1)/2)/(n*2**(n-1)),x=0,1..,2)\bound{asinx}}\end{paste}\end{patch}

\begin{verbatim}(6)\indentrel{-3}\end{verbatim}

\begin{verbatim}(7)\indentrel{-3}\end{verbatim}

```
(6) \begin{verbatim}
x - x + x - x + x
   6  120  5040  362880
+ \begin{verbatim}
   1  11  12
   39916800
\end{verbatim}
\end{verbatim}
```

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

```
(7) \begin{verbatim}
x + x + x + x + x + 0(x )
   6  40  112  1152  2816
\end{verbatim}
```

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
Substituting Numerical Values in Power Series

Substituting Numerical Values in Power Series

Use \axiomFunFrom{eval}{UnivariatePowerSeriesCategory} to substitute a numerical value for a variable in a power series. For example, here's a way to obtain numerical approximations of \e{\%e} from the Taylor series expansion of \axiom{\%e}.

First you create the desired Taylor expansion.

\spadpaste{f := taylor(exp(x)) \bound{f}}

Then you evaluate the series at the value \axiom{1.0}. The result is a sequence of the partial sums.

\spadpaste{eval(f,1.0)}
\begin{verbatim}
(1)
 1 2 1 3 1 4 1 5 1 6
 1 + x + x + x + x + x + x
 2 6 24 120 720
+
 1 7 1 8 1 9 1 10 11
x + x + x + x + O(x)
5040 40320 362880 3628800
Type: UnivariateTaylorSeries(Expression Integer,x,0)
\end{verbatim}

\indentrel{-3}\end{patch}

\begin{verbatim}
(2)
[1.0, 2.0, 2.5, 2.6666666666 66666666, 6666666666, 2.7083333333 333333333, 2.7166666666 6666666666, 2.7180555555 5555555556, 2.7182539682 53968254, 2.7182787698 412698413, 2.7182815255 7319223999, ...]
Type: Stream Expression Float
\end{verbatim}

\indentrel{-3}\end{patch}
Example: Bernoulli Polynomials and Sums of Powers

\begin{page}{ugxProblemSeriesBernoulliPage}
\{8.9.8. Example: Bernoulli Polynomials and Sums of Powers\}
\beginscroll
Axiom provides operations for computing definite and indefinite sums.

\labelSpace{3pc}
\xtc{
You can compute the sum of the first ten fourth powers by evaluating this.
This creates a list whose entries are \texttt{\$m**4\$} as \texttt{\$m\$} ranges from 1 to 10, and then computes the sum of the entries of that list.
}{{\spadpaste{\reduce{+,[m**4 for m in 1..10]}}}}
\xtc{
You can also compute a formula for the sum of the first \texttt{\$k\$} fourth powers, where \texttt{\$k\$} is an unspecified positive integer.
}{{\spadpaste{\sum4 := \sum(m**4, m = 1..k) \bound{\sum4}}} \]
\xtc{
This formula is valid for any positive integer \texttt{\$k\$}. For instance, if we replace \texttt{\$k\$} by 10, we obtain the number we computed earlier.
}{{\spadpaste{\eval{\sum4, k = 10} \free{\sum4}}} \]
\xtc{
You can compute a formula for the sum of the first \texttt{\$k\$} \eth{\texttt{\$axiom\$\$n\$}} powers in a similar fashion. Just replace the \texttt{\$axiom\$\$4\$} in the definition of \texttt{\userfun{\$axiom\$\$\$sum4\$}} by any expression not involving \texttt{\$axiom\$\$k\$}. Axiom computes these formulas using Bernoulli polynomials; we use the rest of this section to describe this method.
}{{%
\xtc{
First consider this function of \texttt{\$axiom\$\$t\$} and \texttt{\$axiom\$\$x\$}.
}\{\spadpaste{f := t*exp(x*t) / (exp(t) - 1) \bound{f}}}}
Since the expressions involved get quite large, we tell Axiom to show us only terms of degree up to \texttt{5}.

\spadpaste{)set streams calculate 5 \set}

If we look at the Taylor expansion of \texttt{f(x, t)} about \texttt{t = 0}, we see that the coefficients of the powers of \texttt{t} are polynomials in \texttt{x}.

\spadpaste{ff := taylor(f,t = 0) \set \free{f set} \bound{ff}}

In fact, the \texttt{n} coefficient in this series is essentially the \texttt{n} Bernoulli polynomial: the \texttt{n} coefficient of the series is

\texttt{1/n! * Bn(x)},

where \texttt{B_n(x)} is the \texttt{n} Bernoulli polynomial. Thus, to obtain the \texttt{n} Bernoulli polynomial, we multiply the \texttt{n} coefficient of the series \texttt{ff} by \texttt{n!}.

\spadpaste{factorial(6) * coefficient(ff,6) \free{ff}}

We derive some properties of the function \texttt{f(x,t)}. First we compute \texttt{f(x + 1,t) - f(x,t)}.

\spadpaste{g := eval(f, x = x + 1) - f \set \free{f}}

If we normalize \texttt{g}, we see that it has a particularly simple form.

\spadpaste{normalize(g) \free{g}}

From this it follows that the \texttt{n} coefficient in the Taylor expansion of \texttt{g(x,t)} at \texttt{t = 0} is

\texttt{1/(n-1)!* x**(n-1)}.\texttt{Bn(x)/(n-1)!}}
If you want to check this, evaluate the next expression.

\{
\spad{taylor(g,t=0)}
\}

However, since \(g(x,t) = f(x+1,t)-f(x,t) \), it follows that the \(\text{eth}(g) \) coefficient is

\[\frac{1}{n!} \left(B_n(x+1)-B_n(x) \right) \]

Equating coefficients, we see that

\[\frac{1}{(n-1)!} x^{(n-1)} = \frac{1}{n!} \left(B_n(x+1)-B_n(x) \right) \]

and, therefore,

\[x^{(n-1)} = \frac{1}{n} \left(B_n(x+1)-B_n(x) \right) \]

Let's apply this formula repeatedly, letting \(x \) vary between two integers \(a \) and \(b \), with \(a < b \):

\begin{verbatim}
begin{verbatim}
a^{(n-1)} = \frac{1}{n} \left(B_n(a+1)-B_n(a) \right)
(a+1)^{(n-1)} = \frac{1}{n} \left(B_n(a+2)-B_n(a+1) \right)
(a+2)^{(n-1)} = \frac{1}{n} \left(B_n(a+3)-B_n(a+2) \right)
.
.
.
(b-1)^{(n-1)} = \frac{1}{n} \left(B_n(b)-B_n(b-1) \right)
b^{(n-1)} = \frac{1}{n} \left(B_n(b+1)-B_n(b) \right)
\end{verbatim}
\end{verbatim}

When we add these equations we find that the sum of the left-hand sides is

\[\sum_{m=a}^{b} m^{(n-1)} \]

the sum of the \((n-1)^{\text{st}} \) powers from \(a \) to \(b \). The sum of the right-hand sides is a "telescoping series."

After cancellation, the sum is simply

\[\frac{1}{n} \left(B_n(b+1)-B_n(a) \right) \]

Replacing \(n \) by \(n+1 \), we have shown that

\[\sum_{m=a}^{b} m^{(n+1)} = \frac{1}{(n+1)} \left(B_{n+1}(b+1)-B_{n+1}(a) \right) \]

Let's use this to obtain the formula for the sum of fourth powers.

First we obtain the Bernoulli polynomial \(B_5 \).

\{
\spad{B5 := factorial(5) * coefficient(ff,5) \free{ff} \bound{B5}}
\}
To find the sum of the first k 4th powers, we multiply $\frac{1}{5}$ by $B_5(k+1) - B_5(1)$.

$\frac{1}{5} \times (eval(B5, x = k + 1) - eval(B5, x = 1))$

This is the same formula that we obtained via $\sum(m^4, m = 1..k)$.

At this point you may want to do the same computation, but with an exponent other than 4.

For example, you might try to find a formula for the sum of the first k 20th powers.

\begin{verbatim}
reduce(+,[m**4 for m in 1..10])
\end{verbatim}

30
\begin{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty2}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty2}{ugxProblemSeriesBernoulliPagePatch2}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty2}{\showpaste}
\tab{5}\spadcommand{sum4 := sum(m**4, m = 1..k)\bound{sum4 }}
\end{paste}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch3}
\begin{paste}{ugxProblemSeriesBernoulliPageFull3}{ugxProblemSeriesBernoulliPageEmpty3}
\pastebutton{ugxProblemSeriesBernoulliPageFull3}{\hidepaste}
\tab{5}\spadcommand{eval(sum4, k = 10)\free{sum4 }}
\indentrel{3}\begin{verbatim}
(3) 25333
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty3}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty3}{ugxProblemSeriesBernoulliPagePatch3}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty3}{\showpaste}
\tab{5}\spadcommand{eval(sum4, k = 10)\free{sum4 }}
\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch4}
\begin{paste}{ugxProblemSeriesBernoulliPageFull4}{ugxProblemSeriesBernoulliPageEmpty4}
\pastebutton{ugxProblemSeriesBernoulliPageFull4}{\hidepaste}
\tab{5}\spadcommand{f := t*exp(x*t) / (exp(t) - 1)\bound{f }}
\indentrel{3}\begin{verbatim}
t x
t %e
(4)
t
%e - 1
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty4}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty4}{ugxProblemSeriesBernoulliPagePatch4}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty4}{\hidepaste}
\tab{5}\spadcommand{f := t*exp(x*t) / (exp(t) - 1)\bound{f }}
\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch5}
\begin{paste}{ugxProblemSeriesBernoulliPageFull5}{ugxProblemSeriesBernoulliPageEmpty5}
\pastebutton{ugxProblemSeriesBernoulliPageFull5}{\hidepaste}
\tab{5}\spadcommand{)set streams calculate 5\bound{set }}
\end{patch}
\end{verbatim}

Type: Fraction Polynomial Integer
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty2}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty2}{ugxProblemSeriesBernoulliPagePatch2}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty2}{\showpaste}
\tab{5}\spadcommand{sum4 := sum(m**4, m = 1..k)\bound{sum4 }}
\end{paste}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch3}
\begin{paste}{ugxProblemSeriesBernoulliPageFull3}{ugxProblemSeriesBernoulliPageEmpty3}
\pastebutton{ugxProblemSeriesBernoulliPageFull3}{\hidepaste}
\tab{5}\spadcommand{eval(sum4, k = 10)\free{sum4 }}
\indentrel{3}\begin{verbatim}
(3) 25333
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty3}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty3}{ugxProblemSeriesBernoulliPagePatch3}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty3}{\showpaste}
\tab{5}\spadcommand{eval(sum4, k = 10)\free{sum4 }}
\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch4}
\begin{paste}{ugxProblemSeriesBernoulliPageFull4}{ugxProblemSeriesBernoulliPageEmpty4}
\pastebutton{ugxProblemSeriesBernoulliPageFull4}{\hidepaste}
\tab{5}\spadcommand{f := t*exp(x*t) / (exp(t) - 1)\bound{f }}
\indentrel{3}\begin{verbatim}
t x
t %e
(4)
t
%e - 1
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPageEmpty4}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty4}{ugxProblemSeriesBernoulliPagePatch4}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty4}{\hidepaste}
\tab{5}\spadcommand{f := t*exp(x*t) / (exp(t) - 1)\bound{f }}
\end{patch}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch5}
\begin{paste}{ugxProblemSeriesBernoulliPageFull5}{ugxProblemSeriesBernoulliPageEmpty5}
\pastebutton{ugxProblemSeriesBernoulliPageFull5}{\hidepaste}
\tab{5}\spadcommand{)set streams calculate 5\bound{set }}
\end{patch}
\end{verbatim}

Type: Fraction Polynomial Integer
\indentrel{-3}\end{paste}\end{patch}
\indentrel{3}\begin{verbatim}
end\verbatim
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPageEmpty5}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty5}{ugxProblemSeriesBernoulliPagePatch5}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty5}{\showpaste}
\tab{5}\spadcommand{)set streams calculate 5\bound{set }}
\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPagePatch6}
\begin{paste}{ugxProblemSeriesBernoulliPageFull6}{ugxProblemSeriesBernoulliPageEmpty6}
\pastebutton{ugxProblemSeriesBernoulliPageFull6}{\hidepaste}
\tab{5}\spadcommand{ff := taylor(f,t = 0)\free{f set }\bound{ff }}
\indentrel{3}\begin{verbatim}
(5)
2 3 2
2x - 1 6x - 6x + 1 2x - 2x + x 2
1 + t + t + t 2 12 12
+
4 3 2 5 4 3
30x - 60x + 30x - 4x + 10x - x 5
+ t + t
720 720
+
6
0(t)
Type: UnivariateTaylorSeries(Expression Integer,t,0)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPageEmpty6}
\begin{paste}{ugxProblemSeriesBernoulliPageEmpty6}{ugxProblemSeriesBernoulliPagePatch6}
\pastebutton{ugxProblemSeriesBernoulliPageEmpty6}{\showpaste}
\tab{5}\spadcommand{ff := taylor(f,t = 0)\free{f set }\bound{ff }}
\begin{verbatim}
(6)
42
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
t(7)
\end{verbatim}

\begin{verbatim}
t(8)
\end{verbatim}

\begin{verbatim}
t(9)
\end{verbatim}
\begin{verbatim}
2 x 3 x 4 x 5 6
(9) t + x t + t + t + t + O(t)
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPageEmpty10}
\begin{paste}{ugxProblemSeriesBernoulliPageFull11}{ugxProblemSeriesBernoulliPageEmpty11}
\pastebutton{ugxProblemSeriesBernoulliPageFull11}{\showpaste}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch11}
\begin{paste}{ugxProblemSeriesBernoulliPageFull12}{ugxProblemSeriesBernoulliPageEmpty12}
\pastebutton{ugxProblemSeriesBernoulliPageFull12}{\hidepaste}
\end{paste}\end{patch}
\end{patch}\end{patch}

\begin{verbatim}
5 4 3
6x - 15x + 10x - x
(10)
6
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPageEmpty12}
\begin{paste}{ugxProblemSeriesBernoulliPageFull12}{ugxProblemSeriesBernoulliPageEmpty12}
\pastebutton{ugxProblemSeriesBernoulliPageFull12}{\showpaste}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch12}
\begin{paste}{ugxProblemSeriesBernoulliPageFull12}{ugxProblemSeriesBernoulliPageEmpty12}
\pastebutton{ugxProblemSeriesBernoulliPageFull12}{\hidepaste}
\end{patch}\end{patch}
\end{patch}\end{patch}

\begin{verbatim}
5 4 3
6k + 15k + 10k - k
(11)
30
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemSeriesBernoulliPageEmpty12}
\begin{paste}{ugxProblemSeriesBernoulliPageFull12}{ugxProblemSeriesBernoulliPageEmpty12}
\pastebutton{ugxProblemSeriesBernoulliPageFull12}{\showpaste}
\begin{patch}{ugxProblemSeriesBernoulliPagePatch12}
\begin{paste}{ugxProblemSeriesBernoulliPageFull12}{ugxProblemSeriesBernoulliPageEmpty12}
\pastebutton{ugxProblemSeriesBernoulliPageFull12}{\hidepaste}
\end{patch}\end{patch}
\end{patch}\end{patch}
\begin{verbatim}
5 4 3
6k + 15k + 10k - k
(12)
30
Type: Fraction Polynomial Integer
\end{verbatim}

Solution of Differential Equations

\begin{page}{ugProblemDEQPage}{8.10. Solution of Differential Equations}
\beginscroll
% In this section we discuss Axiom's facilities for solving differential equations in closed-form and in series.

Axiom provides facilities for closed-form solution of single differential equations of the following kinds:
\begin{verbatim}
\indent{4}
\begin{itemize}
\item[-] linear ordinary differential equations, and
\item[-] non-linear first order ordinary differential equations when integrating factors can be found just by integration.
\end{itemize}
\end{verbatim}
\end{scroll}
\end{page}
CHAPTER 12. USERS GUIDE CHAPTER 8 (UG08.HT)

For a discussion of the solution of systems of linear and polynomial equations, see \link{``Solution of Linear and Polynomial Equations''}{ugProblemLinPolEqnPage} in Section 8.5\ignore{ugProblemLinPolEqn}.

\beginmenu
\menudownlink{
{8.10.1. Closed-Form Solutions of Linear Differential Equations}}
\menudownlink{
{8.10.2. Closed-Form Solutions of Non-Linear Differential Equations}}
\menudownlink{
{8.10.3. Power Series Solutions of Differential Equations}}
\endmenu
\end{page}

Closed-Form Solutions of Linear Differential Equations

--- ug08.ht ---

\begin{page}{ugxProblemLDEQClosedPage}
{8.10.1. Closed-Form Solutions of Linear Differential Equations}
\beginscroll

A \it{differential equation} is an equation involving an unknown \it{function} and one or more of its derivatives. The equation is called \it{ordinary} if derivatives with respect to only one dependent variable appear in the equation (it is called \it{partial} otherwise). The package \axiomType{ElementaryFunctionODESolver} provides the top-level operation \spadfun{solve} for finding closed-form solutions of ordinary differential equations.

To solve a differential equation, you must first create an operator for the unknown function.

\xtc{
% \begin{spadpage}
\begin{spadblock}
\spad{y := operator 'y \bound{y}}
\end{spadblock}
\end{spadpage}
}

We let \axiom{y} be the unknown function in terms of \axiom{x}.

\{-
\spadpaste{y := operator 'y \bound{y}}
\}
You then type the equation using \axiomFun{D} to create the derivatives of the unknown function \axiom{y(x)} where \axiom{x} is any symbol you choose (the so-called \textit{dependent variable}).

This is how you enter the equation \axiom{y'' + y' + y = 0}.

```spadpaste
deq := D(y x, x, 2) + D(y x, x) + y x = 0
deq
```

The simplest way to invoke the \axiomFun{solve} command is with three arguments.

\begin{itemize}
 \item the differential equation,
 \item the operator representing the unknown function,
 \item the dependent variable.
\end{itemize}

So, to solve the above equation, we enter this.

```spadpaste
solve(deq, y, x)
```

Since linear ordinary differential equations have infinitely many solutions, \axiomFun{solve} returns a \textit{particular solution} \axiom{f_p} and a basis \axiom{f_1, \ldots, f_n} for the solutions of the corresponding homogeneous equation. Any expression of the form \axiom{f_p + c_1 f_1 + \ldots + c_n f_n} where the \axiom{c_i} do not involve the dependent variable is also a solution. This is similar to what you get when you solve systems of linear algebraic equations.

A way to select a unique solution is to specify \textit{initial conditions}: choose a value \axiom{a} for the dependent variable and specify the values of the unknown function and its derivatives at \axiom{a}. If the number of initial conditions is equal to the order of the equation, then the solution is unique (if it exists in closed form!) and \axiomFun{solve} tries to find it. To specify initial conditions to \axiomFun{solve}, use an \axiomType{Equation} of the form \axiom{x = a} for the third parameter instead of the dependent variable, and add a fourth parameter consisting of the list of values \axiom{y(a), y'(a), \ldots}.
To find the solution of \(y'' + y = 0 \) satisfying \(y(0) = y'(0) = 1 \), do this.

\[
deq := D(y(x), x, 2) + y(x)
\]

You can omit the \(= 0 \) when you enter the equation to be solved.

\[
solve(deq, y, x = 0, [1, 1])
\]

Axiom is not limited to linear differential equations with constant coefficients. It can also find solutions when the coefficients are rational or algebraic functions of the dependent variable. Furthermore, Axiom is not limited by the order of the equation.

\[
deq := x**3 * D(y(x), x, 3) + x**2 * D(y(x), x, 2) - 2 * x * D(y(x), x) + 2 * y(x) = 2 * x**4
\]

\[
solve(deq, y, x)
\]

Here we are solving a homogeneous equation.

\[
deq := (x**9 + x**3) * D(y(x), x, 3) + 18 * x**8 * D(y(x), x, 2) - 90 * x * D(y(x), x) - 30 * (11 * x**6 - 3) * y(x)
\]

On the other hand, and in contrast with the operation \(\text{integrate} \), it can happen that Axiom finds no solution and that some closed-form solution still exists. While it is mathematically complicated to describe exactly when the solutions are guaranteed to be found, the following statements are correct and form good guidelines for linear ordinary differential equations:
\begin{items}
\item If the coefficients are constants, Axiom finds a complete basis of solutions (i.e., all solutions).
\item If the coefficients are rational functions in the dependent variable, Axiom at least finds all solutions that do not involve algebraic functions.
\end{items}

Note that this last statement does not mean that Axiom does not find the solutions that are algebraic functions. It means that it is not guaranteed that the algebraic function solutions will be found.

This is an example where all the algebraic solutions are found.

\spadpaste{deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0}

\spadpaste{solve(deq, y, x)}

\begin{verbatim}
(1) y
Type: BasicOperator
\end{verbatim}

\begin{verbatim}
(1) y
Type: BasicOperator
\end{verbatim}
\begin{verbatim}
(2) \, \, \, y'(x) + y'(x) + y(x) = 0
\end{verbatim}

Type: Equation Expression Integer
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch2}
\begin{paste}{ugxProblemLDEQClosedPageFull2}{ugxProblemLDEQClosedPageEmpty2}
\pastebutton{ugxProblemLDEQClosedPageFull2}{\showpaste}
\tab{5}\spadcommand{deq := D(y(x), x, 2) + D(y(x), x) + y(x) = 0\bound{e1}\free{y}}\end{paste}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch3}
\begin{paste}{ugxProblemLDEQClosedPageFull3}{ugxProblemLDEQClosedPageEmpty3}
\pastebutton{ugxProblemLDEQClosedPageFull3}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e1}\free{y}}\end{paste}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch4}
\begin{paste}{ugxProblemLDEQClosedPageFull4}{ugxProblemLDEQClosedPageEmpty4}
\pastebutton{ugxProblemLDEQClosedPageFull4}{\showpaste}
\tab{5}\spadcommand{deq := D(y(x), x, 2) + y(x)\bound{e2}\free{y}}\end{paste}\end{patch}

\end{verbatim}

(3)

\[
\begin{align*}
\text{particular} &= 0, \\
\quad -x \quad -x \\
\text{basis} &= \left[\cos(%)^e, \sin(%)^e \right] \\
\end{align*}
\]

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch3}
\begin{paste}{ugxProblemLDEQClosedPageFull3}{ugxProblemLDEQClosedPageEmpty3}
\pastebutton{ugxProblemLDEQClosedPageFull3}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e1}\free{y}}\end{paste}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch4}
\begin{paste}{ugxProblemLDEQClosedPageFull4}{ugxProblemLDEQClosedPageEmpty4}
\pastebutton{ugxProblemLDEQClosedPageFull4}{\showpaste}
\tab{5}\spadcommand{deq := D(y(x), x, 2) + y(x)\bound{e2}\free{y}}\end{paste}\end{patch}

\end{verbatim}

(4) \, \, \, y'(x) + y(x)

Type: Expression Integer
\indentrel{-3}\end{patch}
\texttt{spadcommand\{deq := D(y \ x, \ x, \ 2) + y \ x\}\free\{y\}}
\texttt{\end{patch}}
\texttt{\indentrel{3}\begin{verbatim}
(5) \sin(x) + \cos(x)
\end{verbatim}}
\texttt{\indentrel{-3}\end{patch}}
\texttt{\indentrel{3}\begin{verbatim}
(6) x y(x) + x y(x) - 2 xy(x) + 2y(x) = 0x
\end{verbatim}}
\texttt{\indentrel{-3}\end{patch}}
\texttt{\indentrel{3}\begin{verbatim}
(7) \frac{5}{3} \frac{3}{2} \frac{2}{x - 10x + 20x + 4}
\end{verbatim}}
\texttt{\indentrel{-3}\end{patch}}
Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch7}
\begin{paste}{ugxProblemLDEQClosedPageFull7}{ugxProblemLDEQClosedPageEmpty7}
\pastebutton{ugxProblemLDEQClosedPageFull7}{\showpaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e3 }\free{y}}
\end{paste}\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch8}
\begin{paste}{ugxProblemLDEQClosedPageFull8}{ugxProblemLDEQClosedPageEmpty8}
\pastebutton{ugxProblemLDEQClosedPageFull8}{\hidepaste}
\tab{5}\spadcommand{deq := (x**9+x**3) * D(y x, x, 3) + 18 * x**8 * D(y x, x, 2) - 90 * x * D(y x, x) + 18 * x y (x) - 90xy (x) + 6 (- 330x + 90)y(x)}
\indentrel{3}\begin{verbatim}
(8)
9 3 ,,, 8 ,,
(x + x)y (x) + 18x y (x) - 90xy (x) + 6 (- 330x + 90)y(x)
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemLDEQClosedPagePatch9}
\begin{paste}{ugxProblemLDEQClosedPageFull9}{ugxProblemLDEQClosedPageEmpty9}
\pastebutton{ugxProblemLDEQClosedPageFull9}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e4 }\free{y}}
\indentrel{-3}\end{patch}

\begin{verbatim}
(9)
[particular= 0,
 - \91 log(x) \91 log(x)
 x x %e x x %e
basis= [,,]
6 6 6
x + 1 x + 1 x + 1
\indentrel{-3}\end{verbatim}
\end{patch}
\begin{patch}{ugxProblemLDEQClosedPageEmpty9}
\begin{paste}{ugxProblemLDEQClosedPageEmpty9}{ugxProblemLDEQClosedPagePatch9}
\pastebutton{ugxProblemLDEQClosedPageEmpty9}{\showpaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e4 }\free{y }}
\end{patch}
\end{patch}
\begin{patch}{ugxProblemLDEQClosedPagePatch10}
\begin{paste}{ugxProblemLDEQClosedPageFull10}{ugxProblemLDEQClosedPageEmpty10}
\pastebutton{ugxProblemLDEQClosedPageFull10}{\hidepaste}
\tab{5}\spadcommand{deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0\bound{e5 }\free{y }}
\indentrel{3}\begin{verbatim}
(10) (x + 1)y (x) + 3xy (x) + y(x)= 0
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{patch}{ugxProblemLDEQClosedPagePatch11}
\begin{paste}{ugxProblemLDEQClosedPageFull11}{ugxProblemLDEQClosedPageEmpty11}
\pastebutton{ugxProblemLDEQClosedPageFull11}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{e5 }\free{y }}
\indentrel{3}\begin{verbatim}
(11)
2
1 log(x + 1 - x)
\[
\text{particular= 0,basis= [],}
\]
2
2
\[
\text{x + 1}
\]
\[
\text{x + 1}
\]
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
Closed-Form Solutions of Non-Linear DEs

\begin{page}{ugxProblemNLDEQClosedPage}
\section{Closed-Form Solutions of Non-Linear DEs}
\begin{scroll}
This is an example that shows how to solve a non-linear first order ordinary differential equation manually when an integrating factor can be found just by integration. At the end, we show you how to solve it directly.

Let’s solve the differential equation \(y' = y / (x + y \log y) \).

\begin{axiom}
\text{Using the notation } \begin{cases} m(x, y) + n(x, y) y' = 0, \\
\text{we have } m = -y \text{ and } n = x + y \log y. \\
\end{cases}
\end{axiom}
\end{scroll}

\begin{spad}
\texttt{m := -y \bound{m}}
\begin{spad}
\texttt{n := x + y * log y \bound{n}}
\end{spad}
\end{spad}

We first check for exactness, that is, does \(\frac{dm}{dy} = \frac{dn}{dx} \)?

\begin{spad}
\texttt{D(m, y) - D(n, x) \free{m n}}
\end{spad}

This is not zero, so the equation is not exact. Therefore we must look for an integrating factor: a function \(\mu(x, y) \) such that \(\frac{d(\mu m)}{dy} = \frac{d(\mu n)}{dx} \).

Normally, we first search for \(\mu(x, y) \) depending only on \(x \) or only on \(y \).

\begin{spad}
\texttt{mu := operator 'mu \bound{mu}}
\end{spad}

Let’s search for such a \(\mu(x) \) first.

\begin{spad}
\texttt{a := D(mu(x) * m, y) - D(mu(x) * n, x) \bound{a}\free{m n mu}}
\end{spad}
If the above is zero for a function \(\mu \) that does \{it not\} depend on \(y \), then \(\mu(x) \) is an integrating factor.

\[
\text{solve}(a = 0, \mu, x) \quad \text{free}(\mu, a)
\]

The solution depends on \(y \), so there is no integrating factor that depends on \(x \) only.

Let’s look for one that depends on \(y \) only.

\[
b := D(\mu(y) \cdot m, y) - D(\mu(y) \cdot n, x) \quad \text{bound}(b) \quad \text{free}(\mu, m)
\]

\[
\text{solve}(b = 0, \mu, y) \quad \text{free}(\mu, b) \quad \text{bound}(sb)
\]

We’ve found one!

The above \(\mu(y) \) is an integrating factor. We must multiply our initial equation (that is, \(m \) and \(n \)) by the integrating factor.

\[
\text{intFactor := sb.basis.1} \quad \text{bound}(\text{intFactor}) \quad \text{free}(sb)
\]

\[
m := \text{intFactor} \cdot m \quad \text{bound}(m) \quad \text{free}(\text{intFactor})
\]

\[
n := \text{intFactor} \cdot n \quad \text{bound}(n) \quad \text{free}(\text{intFactor})
\]

Let’s check for exactness.

\[
D(m, y) - D(n, x) \quad \text{free}(m, n)
\]

We must solve the exact equation, that is, find a function \(s(x, y) \) such that \(ds/dx = m \) and \(ds/dy = n \).
We start by writing \(s(x, y) = h(y) + \int m(x) \, dx \) where \(h(y) \) is an unknown function of \(y \). This guarantees that \(\frac{ds}{dx} = m \).

\[
\text{spadpaste} \hspace{1em} h := \text{operator } 'h \hspace{1em} \text{Bound}{h} \\
\text{spadpaste} \hspace{1em} \text{sol} := h \, y + \int m(x) \, dx \hspace{1em} \text{Bound}{sol} \hspace{1em} \text{Free}{h \, m1} \\
\]

All we want is to find \(h(y) \) such that \(\frac{ds}{dy} = n \).

\[
\text{spadpaste} \hspace{1em} \text{dsol} := D(\text{sol}, y) \hspace{1em} \text{Free}{sol} \hspace{1em} \text{Bound}{dsol} \\
\]

\[
\text{spadpaste} \hspace{1em} \text{nsol} := \text{solve}(\text{dsol} = n, h, y) \hspace{1em} \text{Free}{dsol \, n1 \, h} \hspace{1em} \text{Bound}{nsol} \\
\]

The above particular solution is the \(h(y) \) we want, so we just replace \(h(y) \) by it in the implicit solution.

\[
\text{spadpaste} \hspace{1em} \text{eval(sol, h \, y = nsol.particular)} \hspace{1em} \text{Free}{sol \, h \, nsol} \\
\]

A first integral of the initial equation is obtained by setting this result equal to an arbitrary constant.

Now that we've seen how to solve the equation "by hand," we show you how to do it with the \text{axiomFun\{solve\}} operation.

First define \(y \) to be an operator.

\[
\text{spadpaste} \hspace{1em} y := \text{operator } 'y \hspace{1em} \text{Bound}{y} \\
\]

Next we create the differential equation.

\[
\text{spadpaste} \hspace{1em} \text{deq} := D(y \, x, x) = y(x) / (x + y(x) \ast \log y \, x) \hspace{1em} \text{Bound}{deqi} \hspace{1em} \text{Free}{y} \\
\]

Finally, we solve it.
}\spadpaste{solve(deq, y, x) \free{deq i y}}
}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugxProblemNLDEQClosedPagePatch1}
\begin{paste}{ugxProblemNLDEQClosedPageFull1}{ugxProblemNLDEQClosedPageEmpty1}
\pastebutton{ugxProblemNLDEQClosedPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) - y
\end{verbatim}
\end{patch}
\begin{patch}{ugxProblemNLDEQClosedPageEmpty1}
\begin{paste}{ugxProblemNLDEQClosedPageEmpty1}{ugxProblemNLDEQClosedPagePatch1}
\pastebutton{ugxProblemNLDEQClosedPageEmpty1}{\showpaste}
\indentrel{3}\begin{verbatim}
(1) - y
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch2}
\begin{paste}{ugxProblemNLDEQClosedPageFull2}{ugxProblemNLDEQClosedPageEmpty2}
\pastebutton{ugxProblemNLDEQClosedPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
(2) y log(y) + x
\end{verbatim}
\end{patch}
\begin{patch}{ugxProblemNLDEQClosedPageEmpty2}
\begin{paste}{ugxProblemNLDEQClosedPageEmpty2}{ugxProblemNLDEQClosedPagePatch2}
\pastebutton{ugxProblemNLDEQClosedPageEmpty2}{\showpaste}
\indentrel{3}\begin{verbatim}
(2) y log(y) + x
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch3}
\begin{paste}{ugxProblemNLDEQClosedPageFull3}{ugxProblemNLDEQClosedPageEmpty3}
\pastebutton{ugxProblemNLDEQClosedPageFull3}{\hidepaste}
\indentrel{3}\begin{verbatim}
(3) - 2
\end{verbatim}
\end{patch}
\begin{patch}{ugxProblemNLDEQClosedPageEmpty3}
\begin{paste}{ugxProblemNLDEQClosedPageEmpty3}{ugxProblemNLDEQClosedPagePatch3}
\pastebutton{ugxProblemNLDEQClosedPageEmpty3}{\showpaste}
\indentrel{3}\begin{verbatim}
(3) - 2
\end{verbatim}
\end{patch}
\begin{spadcommand}
\spad{D(m, y) - D(n, x)\free{m n}}
\end{spadcommand}

\begin{spadcommand}
\spad{mu := \operator 'mu\bound{mu}}
\end{spadcommand}

\begin{verbatim}
(4) mu
Type: BasicOperator
\end{verbatim}

\begin{spadcommand}
\spad{a := D(mu(x) * m, y) - D(mu(x) * n, x)\free{m n mu}}
\end{spadcommand}

\begin{verbatim}
(5) \(- y \log(y) - x)mu(x) - 2mu(x)
Type: Expression Integer
\end{verbatim}

\begin{spadcommand}
\spad{solve(a = 0, mu, x)\free{mu a}}
\end{spadcommand}

\begin{verbatim}
(6) 1
[particular= 0, basis= []]
\[2 2\]
y \log(y) + 2x \ y \log(y) + x
\end{verbatim}
Type: Union(Record(particular: Expression Integer, basis: List Expression Integer), ...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPageEmpty6}
\begin{paste}{ugxProblemNLDEQClosedPageEmpty6}{ugxProblemNLDEQClosedPagePatch6}
\tab{5}\spadcommand{solve(a = 0, mu, x)\free{mu a}}
\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch7}
\begin{paste}{ugxProblemNLDEQClosedPageFull7}{ugxProblemNLDEQClosedPageEmpty7}
\pastebutton{ugxProblemNLDEQClosedPageFull7}{\hidepaste}
\tab{5}\spadcommand{b := D(mu(y) * m, y) - D(mu(y) * n, x)\bound{b }\free{mu m}}
\indentrel{3}\begin{verbatim}
(7) - ymu (y) - 2mu(y)
Type: Expression Integer
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch8}
\begin{paste}{ugxProblemNLDEQClosedPageFull8}{ugxProblemNLDEQClosedPageEmpty8}
\pastebutton{ugxProblemNLDEQClosedPageFull8}{\hidepaste}
\tab{5}\spadcommand{sb := solve(b = 0, mu, y)\free{mu b}}
\indentrel{3}\begin{verbatim}
1
(8) [particular= 0, basis= []]
2
\end{verbatim}
\end{patch}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch9}
\begin{paste}{ugxProblemNLDEQClosedPageFull9}{ugxProblemNLDEQClosedPageEmpty9}
\pastebutton{ugxProblemNLDEQClosedPageFull9}{\hidepaste}
\end{patch}\end{patch}
\begin{verbatim}
1
(9)
\end{verbatim}

Type: Expression Integer

\begin{verbatim}
1
(10) -
\end{verbatim}

Type: Expression Integer

\begin{verbatim}
y log(y) + x
(11)
\end{verbatim}

Type: Expression Integer
\texttt{\textbackslash tab\{5\}\textbackslash spadcommand\{n := \textbackslash intFactor * n\textbackslash bound\{n1 \}\textbackslash free\{n \textbackslash intFactor \} \}}

\texttt{\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPagePatch12\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageFull112\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty12\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageFull112\}\{\textbackslash hide\textbackslash paste\\}\texttt{\textbackslash tab\{5\}\textbackslash spadcommand\{D(m, y) - D(n, x)\textbackslash free\{m1 n1 \}\}}

\texttt{\textbackslash indentrel\{3\}\begin\{verbatim\}}

\begin{verbatim}
(12) 0
\end{verbatim}

\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty12\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty12\}\{ugxProblemNLDEQC\textbackslash closedPagePatch12\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageEmpty12\}\{\textbackslash show\textbackslash paste\\}\texttt{\textbackslash tab\{5\}\textbackslash spadcommand\{D(m, y) - D(n, x)\textbackslash free\{m1 n1 \}\}}

\texttt{\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPagePatch13\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageFull113\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty13\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageFull113\}\{\textbackslash hide\textbackslash paste\\}\texttt{\textbackslash tab\{5\}\spadcommand\{h := \textbackslash operator 'h\textbackslash bound\{h \}\}}

\texttt{\textbackslash indentrel\{3\}\begin\{verbatim\}}

\begin{verbatim}
(13) h
\end{verbatim}

\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty13\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty13\}\{ugxProblemNLDEQC\textbackslash closedPagePatch13\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageEmpty13\}\{\textbackslash show\textbackslash paste\\}\texttt{\textbackslash tab\{5\}\spadcommand\{h := \operator 'h\textbackslash bound\{h \}\}}

\texttt{\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPagePatch14\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageFull114\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty14\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageFull114\}\{\textbackslash hide\textbackslash paste\\}\texttt{\textbackslash tab\{5\}\spadcommand\{sol := h \textbackslash y + \textbackslash integrate\{m, x\}\textbackslash bound\{\textbackslash free\{h \textbackslash m1 \}\}\}}

\texttt{\textbackslash indentrel\{3\}\begin\{verbatim\}}

\begin{verbatim}
y h(y) - x
(14)
\end{verbatim}

\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}}

\texttt{\textbackslash begin\{patch\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty14\}\textbackslash begin\{paste\}\{ugxProblemNLDEQC\textbackslash closedPageEmpty14\}\{ugxProblemNLDEQC\textbackslash closedPagePatch14\}\textbackslash paste\textbackslash button\{ugxProblemNLDEQC\textbackslash closedPageEmpty14\}\{\textbackslash show\textbackslash paste\\}
\tab{5}\spadcommand{sol := h y + \text{integrate}(m, x)\free{h m1}}
\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch15}\begin{paste}{ugxProblemNLDEQClosedPageFull15}{ugxProblemNLDEQClosedPageEmpty15}\pastebutton{ugxProblemNLDEQClosedPageFull15}{\hidepaste}\tab{5}\spadcommand{dsol := D(sol, y)\free{sol \dsol}}\indentrel{3}\begin{verbatim}
2 ,
y h (y) + x
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPageEmpty15}\begin{paste}{ugxProblemNLDEQClosedPageEmpty15}{ugxProblemNLDEQClosedPagePatch15}\pastebutton{ugxProblemNLDEQClosedPageEmpty15}{\showpaste}\tab{5}\spadcommand{nsol := \text{solve}(dsol = n, h, y)\free{dsol n1 h \nsol}}\indentrel{3}\begin{verbatim}
2
\log(y)
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch16}\begin{paste}{ugxProblemNLDEQClosedPageFull16}{ugxProblemNLDEQClosedPageEmpty16}\pastebutton{ugxProblemNLDEQClosedPageFull16}{\hidepaste}\tab{5}\spadcommand{nsol := \text{solve}(dsol = n, h, y)\free{dsol n1 h \nsol}}\indentrel{3}\begin{verbatim}
2
\log(y)
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPageEmpty16}\begin{paste}{ugxProblemNLDEQClosedPageEmpty16}{ugxProblemNLDEQClosedPagePatch16}\pastebutton{ugxProblemNLDEQClosedPageEmpty16}{\showpaste}\tab{5}\spadcommand{eval(sol, h y = nsol.particular)\free{sol h nsol}}\indentrel{3}\begin{verbatim}
2
y \log(y) - 2x
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}

Type: Expression Integer
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch17}
\begin{paste}{ugxProblemNLDEQClosedPageFull17}{ugxProblemNLDEQClosedPageEmpty17}
\pastebutton{ugxProblemNLDEQClosedPageEmpty17}{\showpaste}
\tab{5}\spadcommand{eval(sol, h y = nsol.particular)\free{sol h nsol }}
\end{paste}
\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch18}
\begin{paste}{ugxProblemNLDEQClosedPageFull18}{ugxProblemNLDEQClosedPageEmpty18}
\pastebutton{ugxProblemNLDEQClosedPageEmpty18}{\hidepaste}
\tab{5}\spadcommand{y := operator 'y\bound{y }}
\indentrel{3}\begin{verbatim}
(18) y
Type: BasicOperator
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch19}
\begin{paste}{ugxProblemNLDEQClosedPageFull19}{ugxProblemNLDEQClosedPageEmpty19}
\pastebutton{ugxProblemNLDEQClosedPageEmpty19}{\hidepaste}
\tab{5}\spadcommand{deq := D(y x, x) = y(x) / (x + y(x) * log y x)\bound{deqi }\free{y }}
\indentrel{3}\begin{verbatim}
, y(x) = y(x)log(y(x)) + x
Type: Equation Expression Integer
\indentrel{-3}\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemNLDEQClosedPagePatch20}
\begin{paste}{ugxProblemNLDEQClosedPageFull20}{ugxProblemNLDEQClosedPageEmpty20}
\pastebutton{ugxProblemNLDEQClosedPageEmpty20}{\hidepaste}
\tab{5}\spadcommand{solve(deq, y, x)\free{deqi y }}
\end{patch}

(17) 2y
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
\begin{verbatim}
\indentrel{3}2
y(x)\log(y(x)) - 2x
(20)
\indentrel{-3}
\end{verbatim}

\indentrel{3}2y(x)
Type: Union(Expression Integer,...)
\indentrel{-3}

\indentrel{3}\tab{5}\spadcommand{solve(deq, y, x)\free{deqi y }}
\indentrel{-3}

\section*{Power Series Solutions of Differential Equations}

\begin{quote}
— ug08.ht —
\end{quote}

The command to solve differential equations in power series around a particular initial point with specific initial conditions is called \axiomFun{seriesSolve}. It can take a variety of parameters, so we illustrate its use with some examples.

\section*{Example 1}

Since the coefficients of some solutions are quite large, we reset the default to compute only seven terms.

\spadpaste(){set streams calculate 7 \bound{c7}}

You can solve a single nonlinear equation of any order. For example, we solve \axiom{y''' = \sin(y'') * \exp(y) + \cos(x)} subject to \axiom{y(0) = 1, y'(0) = 0, y''(0) = 0}.

\axiom{We first tell Axiom}
that the symbol \axiom{y} denotes a new operator.
}\{
\spadpaste{y := operator 'y \bound{y}}
\}
\xtc{ Enter the differential equation using \axiom{y} like any system function. }\{
\spadpaste{eq := D(y(x), x, 3) - \sin(D(y(x), x, 2))*\exp(y(x)) = \cos(x)\bound{eq}\free{y}}
\}
% \xtc{ Solve it around \axiom{x = 0} with the initial conditions \axiom{y(0) = 1, y'(0) = y''(0) = 0}. }\{
\spadpaste{seriesSolve(eq, y, x = 0, \[1, 0, 0\])\free{y}\free{eq}\free{c7}}
\}

You can also solve a system of nonlinear first order equations. For example, we solve a system that has \axiom{\tan(t)} and \axiom{\sec(t)} as solutions.

\xtc{ We tell Axiom that \axiom{x} is also an operator. }\{
\spadpaste{x := operator 'x\bound{x}}
\}
\xtc{ Enter the two equations forming our system. }\{
\spadpaste{eq1 := D(x(t), t) = 1 + x(t)**2\free{x}\free{y}\bound{eq1}}
\}
% \xtc{ }
\spadpaste{eq2 := D(y(t), t) = x(t) * y(t)\free{x}\free{y}\bound{eq2}}
\}
% \xtc{ Solve the system around \axiom{t = 0} with the initial conditions \axiom{x(0) = 0} and \axiom{y(0) = 1}. Notice that since we give the unknowns in the order \axiom{\[x, y\]}, the answer is a list of two series in the order \axiom{\{series for x(t), series for y(t)\}}. }\{
\spadpaste{seriesSolve([eq2, eq1], \[x, y\], t = 0, [y(0) = 1, x(0) = 0]\free{x}\free{y}\free{eq1}\free{eq2}\free{c7}}
\}
\noindent
The order in which we give the equations and the initial conditions has no effect on the order of the solution.

\begin{verbatim}
(1) y \\
Type: BasicOperator
\end{verbatim}

\begin{verbatim}
(2) y (x) - %e sin(y (x))= cos(x) \\
Type: Equation Expression Integer
\end{verbatim}
\begin{spadcommand}
eq := D(y(x), x, 3) - \sin(D(y(x), x, 2))\cdot \exp(y(x)) = \cos(x)
\end{spadcommand}

\begin{verbatim}
(3)
1 3 3 2 2 1 3 %e - 1 5 %e - 2 %e 6
1 + x + x + x + x
6 24 120 720
+
4 2
%e - 8 %e + 4 %e + 1 7 8
x + O(x)
5040
Type: UnivariateTaylorSeries(Expression Integer,x,0)
\end{verbatim}

\begin{verbatim}
(4) x
\end{verbatim}

\begin{verbatim}
(4) x
\end{verbatim}

\begin{verbatim}
Type: BasicOperator
\end{verbatim}
\begin{verbatim}
(5) \(x(t) = x(t) + 1 \)
\end{verbatim}

Type: Equation Expression Integer

\begin{verbatim}
(6) \(y(t) = x(t)y(t) \)
\end{verbatim}

Type: Equation Expression Integer

\begin{verbatim}
(7) [t + t + t + t + O(t, 3),
 1 3 2 5 17 7 8
 3 15 315
 1 2 5 4 61 6 8
 2 24 720]
\end{verbatim}

Type: List UnivariateTaylorSeries(Expression Integer, t, 0)
Finite Fields

in Section 8.11.1. There are several ways of implementing extensions of finite fields, and Axiom provides quite a bit of freedom to allow you to choose the one that is best for your application. Moreover, we provide operations for converting among the different representations of extensions and different extensions of a single field. Finally, note that you usually need to package-call operations from finite fields if the operations do not take as an argument an object of the field. See "Package Calling and Target Types" in Section 2.9 for more information on package-calling.

\begin{itemize}
 \item 8.11.1. Modular Arithmetic and Prime Fields
 \item 8.11.2. Extensions of Finite Fields
 \item 8.11.3. Irreducible Modulus Polynomial Representations
 \item 8.11.4. Cyclic Group Representations
 \item 8.11.5. Normal Basis Representations
 \item 8.11.6. Conversion Operations for Finite Fields
 \item 8.11.7. Utility Operations for Finite Fields
\end{itemize}

\begin{page}{ugProblemFinitePage}{8.11. Finite Fields}
\beginscroll
A \textit{finite field} (also called a \textit{Galois field}) is a
finite algebraic structure where one can add, multiply and divide under the same laws (for example, commutativity, associativity or distributivity) as apply to the rational, real or complex numbers. Unlike those three fields, for any finite field there exists a positive prime integer \(p \), called the \(\text{characteristic} \), such that
\[
\forall x \in \mathbb{F} : p \cdot x = 0
\]
for any element \(x \) in the finite field. In fact, the number of elements in a finite field is a power of the characteristic and for each prime \(p \) and positive integer \(n \) there exists exactly one finite field with \(p^n \) elements, up to isomorphism. For more information about the algebraic structure and properties of finite fields, see, for example, S. Lang, \{it Algebra\}, Second Edition, New York: Addison-Wesley Publishing Company, Inc., 1984, ISBN 0 201 05487 6; or R. Lidl, H. Niederreiter, \{it Finite Fields\}, Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge: Cambridge Univ. Press, 1983, ISBN 0 521 30240 4.

When \(n = 1 \), the field has \(p \) elements and is called a \{it prime field\}, discussed in \(\text{the next section}\),

\[8.11.1. \text{Modular Arithmetic and Prime Fields}\]
\{ugxProblemFinitePrimePage\}
in Section 8.11.1\{ugxProblemFinitePrime\}. There are several ways of implementing extensions of finite fields, and Axiom provides quite a bit of freedom to allow you to choose the one that is best for your application. Moreover, we provide operations for converting among the different representations of extensions and different extensions of a single field. Finally, note that you usually need to package-call operations from finite fields if the operations do not take as an argument an object of the field.

See \(8.11.2. \text{Extensions of Finite Fields}\)
\{ugxProblemFiniteExtensionFinitePage\} in Section 2.9\{ugxTypesPkgCall\} for more information on package-calling.
Let \(n \) be a positive integer.
It is well known that you can get the same result if you perform
addition, subtraction or multiplication of integers and then take
the remainder on dividing by \(n \) as if
you had first done such remaindering on the operands, performed the
arithmetic and then (if necessary) done remaindering again.
This allows us to speak of arithmetic
\(\text{\it modulo} \ n \) or, more simply
\(\text{\it mod} \ n \).

In Axiom, you use \(\text{IntegerMod} \) to do such arithmetic.

If \(n \) is not prime, there is only a limited notion of
reciprocals and division.

Here \axiom{7} and \axiom{12} are relatively prime, so \axiom{7} has a multiplicative inverse modulo \axiom{12}.

If we take \(n\) to be a prime number \(p\), then taking inverses and, therefore, division are generally defined.

Use \axiomType{PrimeField} instead of \axiomType{IntegerMod} for \(n\) prime.

You can also use \axiom{1/c} and \axiom{c**(-1)} for the inverse of \(c\).

\axiomType{PrimeField} (abbreviation \axiomType{PF}) checks if its argument is prime when you try to use an operation from it.

If you know the argument is prime (particularly if it is large), \axiomType{InnerPrimeField} (abbreviation \axiomType{IPF}) assumes the argument has already been verified to be prime.

If you do use a number that is not prime, you will eventually get an error message, most likely a division by zero message.

For computer science applications, the most important finite fields are \axiomType{PrimeField 2} and its extensions.

In the following examples, we work with the finite field with \(p = 101\) elements.
for returning a random element of the domain.
}\{
\spadpaste{x := random()$GF101 \bound{x}\free{GF101}}
}\xtc{
}{
\spadpaste{y : GF101 := 37 \bound{y}\free{GF101}}
}\xtc{
}{
\spadpaste{z := x/y \bound{z}\free{x y}}
}\xtc{
}{
\spadpaste{z * y - x \free{x y z}}
}\%
\xtc{
\spadpaste{pe := primitiveElement()$GF101 \bound{pe}\free{GF101}}
}\%
\xtc{
{\spadpaste{[pe**i for i in 0..99] \free{pe}}}
}\%
\%
\xtc{
\spadpaste{ex := discreteLog(y) \bound{ex}\free{y}}
}\xtc{
}{
\spadpaste{pe ** ex \free{ex pe}}
}\%
\%
\xtc{
\spadpaste{order y \free{y}}
}
The order of a primitive element is the defining $p-1$.
\begin{spad}{order pe}
\end{spad}

\begin{verbatim}
(a,b) : IntegerMod 12
\end{verbatim}

\begin{verbatim}
(2) 7
Type: IntegerMod 12
\end{verbatim}

\begin{verbatim}
[a - b, a * b]
\end{verbatim}

\begin{verbatim}
(3) [9,4]
Type: List IntegerMod 12
\end{verbatim}
\begin{spad}
\begin{verbatim}
(a - b, a * b)
\end{verbatim}
\end{spad}

\begin{spad}
\begin{verbatim}
a / b
\end{verbatim}
\end{spad}

\begin{spad}
recip a
\end{spad}

\begin{spad}
recip b
\end{spad}

\begin{spad}
recip a
\end{spad}

(4) "failed"
Type: Union("failed",...)

\begin{spad}
recip a
\end{spad}

\begin{spad}
recip b
\end{spad}

(5) 7
Type: Union(IntegerMod 12,...)
\begin{verbatim}
(6) 8
Type: PrimeField 11
\end{verbatim}

\begin{verbatim}
(7) 7
Type: PrimeField 11
\end{verbatim}

\begin{verbatim}
(8) 8
Type: PrimeField 11
\end{verbatim}
\begin{verbatim}
(9) PrimeField 101
Type: Domain
\end{verbatim}
\begin{verbatim}
(10) 78
Type: PrimeField 101
\end{verbatim}
\begin{verbatim}
(11) 37
Type: PrimeField 101
\end{verbatim}
\begin{verbatim}
(12) 84
Type: PrimeField 101
\end{verbatim}

\begin{verbatim}
(13) 0
Type: PrimeField 101
\end{verbatim}

\begin{verbatim}
(14) 2
Type: PrimeField 101
\end{verbatim}
\tab{5}\spadcommand{[pe**i for i in 0..99]\free{pe}}
\indentrel{3}\begin{verbatim}
(15)
[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49, 98, 95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78, 55, 9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85, 69, 37, 74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52, 3, 6, 12, 24, 48, 96, 91, 81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65, 29, 58, 15, 30, 60, 19, 38, 76, 51]
Type: List PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemFinitePrimePagePatch16}\begin{paste}{ugxProblemFinitePrimePageFull16}{ugxProblemFinitePrimePageEmpty16}\pastebutton{ugxProblemFinitePrimePageEmpty16}{\showpaste}\tab{5}\spadcommand{[pe**i for i in 0..99]\free{pe}}\end{paste}\end{patch}
\begin{patch}{ugxProblemFinitePrimePagePatch17}\begin{paste}{ugxProblemFinitePrimePageFull17}{ugxProblemFinitePrimePageEmpty17}\pastebutton{ugxProblemFinitePrimePageEmpty17}{\hidepaste}\tab{5}\spadcommand{ex := discreteLog(y)\bound{ex }\free{y}}\indentrel{3}\begin{verbatim}
(16) 56
Type: PositiveInteger
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugxProblemFinitePrimePagePatch18}\begin{paste}{ugxProblemFinitePrimePageFull18}{ugxProblemFinitePrimePageEmpty18}\pastebutton{ugxProblemFinitePrimePageEmpty18}{\hidepaste}\tab{5}\spadcommand{pe ** ex\free{ex pe}}\indentrel{3}\begin{verbatim}
(17) 37
Type: PrimeField 101
\end{verbatim}\indentrel{-3}\end{paste}\end{patch}
When you want to work with an extension of a finite field in Axiom, you have three choices to make:
\item[1.] Do you want to generate an extension of the prime field (for example, \texttt{PrimeField 2}) or an extension of a given field?

\item[2.] Do you want to use a representation that is particularly efficient for multiplication, exponentiation and addition but uses a lot of computer memory (a representation that models the cyclic group structure of the multiplicative group of the field extension and uses a Zech logarithm table), one that uses a normal basis for the vector space structure of the field extension, or one that performs arithmetic modulo an irreducible polynomial?

The cyclic group representation is only usable up to ‘‘medium’’ sized fields.

If the field is large and the normal basis is relatively simple, the normal basis representation is more efficient for exponentiation than the irreducible polynomial representation.

\item[3.] Do you want to provide a polynomial explicitly, a root of which ‘‘generates’’ the extension in one of the three senses in (2), or do you wish to have the polynomial generated for you?

This illustrates one of the most important features of Axiom: you can choose exactly the right data-type and representation to suit your application best.

We first tell you what domain constructors to use for each case above, and then give some examples.

Constructors that automatically generate extensions of the prime field:

\begin{verbatim}
\texttt{FiniteField}\ \texttt{FiniteFieldCyclicGroup}\ \texttt{FiniteFieldNormalBasis}
\end{verbatim}

Constructors that generate extensions of an arbitrary field:

\begin{verbatim}
\texttt{FiniteFieldExtension}\ \texttt{FiniteFieldExtensionByPolynomial}\ \texttt{FiniteFieldCyclicGroupExtension}\ \texttt{FiniteFieldCyclicGroupExtensionByPolynomial}\ \texttt{FiniteFieldNormalBasisExtension}\ \texttt{FiniteFieldNormalBasisExtensionByPolynomial}
\end{verbatim}
Constructors that use a cyclic group representation:
\texttt{FiniteFieldCyclicGroup} \newline
\texttt{FiniteFieldCyclicGroupExtension} \newline
\texttt{FiniteFieldCyclicGroupExtensionByPolynomial}

Constructors that use a normal basis representation:
\texttt{FiniteFieldNormalBasis} \newline
\texttt{FiniteFieldNormalBasisExtension} \newline
\texttt{FiniteFieldNormalBasisExtensionByPolynomial}

Constructors that use an irreducible modulus polynomial representation:
\texttt{FiniteField} \newline
\texttt{FiniteFieldExtension} \newline
\texttt{FiniteFieldCyclicGroup} \newline
\texttt{FiniteFieldCyclicGroupExtension} \newline
\texttt{FiniteFieldNormalBasis} \newline
\texttt{FiniteFieldNormalBasisExtension}

Constructors that generate a polynomial for you:
\texttt{FiniteField} \newline
\texttt{FiniteFieldExtension} \newline
\texttt{FiniteFieldCyclicGroup} \newline
\texttt{FiniteFieldCyclicGroupExtension} \newline
\texttt{FiniteFieldNormalBasis} \newline
\texttt{FiniteFieldNormalBasisExtension}

Constructors for which you provide a polynomial:
\texttt{FiniteFieldExtensionByPolynomial} \newline
\texttt{FiniteFieldCyclicGroupExtensionByPolynomial} \newline
\texttt{FiniteFieldNormalBasisExtensionByPolynomial}

These constructors are discussed in the following sections where we collect together descriptions of extension fields that have the same underlying representation.\footnote{For more information on the implementation aspects of finite fields, see J. Grabmeier, A. Scheerhorn, \textit{Finite Fields in AXIOM}, Technical Report, IBM Heidelberg Scientific Center, 1992.}

If you don't really care about all this detail, just use \texttt{FiniteField}.

As your knowledge of your application and its Axiom implementation grows, you can come back and choose an alternative constructor that
Irreducible Mod Polynomial Representations

For \texttt{\texttt{FiniteField}} (abbreviation \texttt{\texttt{FF}}) you provide a prime number p and an extension degree n. This degree can be 1.

\begin{spad}
\spadpaste{GF4096 := FF(2,12); \bound{GF4096}}
\end{spad}

Axiom uses the prime field \texttt{\texttt{PrimeField}}(p), here \texttt{\texttt{PrimeField}}(2), and it chooses an irreducible polynomial of degree n, here 12, over the ground field.
The objects in the generated field extension are polynomials of degree at most \(n-1\) with coefficients in the prime field. The polynomial indeterminate is automatically chosen by Axiom and is typically something like \(\%A\) or \(\%D\). These (strange) variables are only for output display; there are several ways to construct elements of this field.

The operation \(\texttt{index}\) enumerates the elements of the field extension and accepts as argument the integers from 1 to \(p \times 2^n\).

\begin{verbatim}
\texttt{a := index(2)\$GF4096 \bound{a}\free{GF4096}}
\end{verbatim}

You can build polynomials in \(a\) and calculate in \(GF4096\).

\begin{verbatim}
\texttt{b := a**12 - a**5 + a \bound{b}\free{a}}
\end{verbatim}

\begin{verbatim}
\texttt{b ** 1000 \free{b}}
\end{verbatim}

\begin{verbatim}
\texttt{c := a/b \free{a b}\bound{c}}
\end{verbatim}

Among the available operations are \(\texttt{norm}\) and \(\texttt{trace}\).

\begin{verbatim}
\texttt{norm c \free{c}}
\end{verbatim}

\begin{verbatim}
\texttt{trace c \free{c}}
\end{verbatim}

Since any nonzero element is a power of a primitive element, how do we discover what the exponent is?
The operation \axiomFun{discreteLog} calculates the exponent and, if it is called with only one argument, always refers to the primitive element returned by \axiomFun{primitiveElement}.
\spad{dL := discreteLog a}\free{a}\bound{dL}
\spad{g ** dL}\free{dL g}

\axiomType{FiniteFieldExtension} (abbreviation \axiomType{FFX}) is similar to \axiomType{FiniteField} except that the ground-field for \axiomType{FiniteFieldExtension} is arbitrary and chosen by you.
\spad{GF16 := FF(2,4);}\bound{GF16}
\spad{GF4096 := FFX(GF16,3);}\bound{GF4096}\free{GF16}
\spad{r := (random()\$GF4096) ** 20}\free{GF4096}\bound{r}
\spad{norm(r)}

\axiomType{FiniteFieldExtensionByPolynomial} (abbreviation \axiomType{FFP}) is similar to \axiomType{FiniteField} and \axiomType{FiniteFieldExtension} but is more general.
\spad{GF4 := FF(2,2);}\bound{GF4}
\spad{f := nextIrreduciblePoly(random(6)\$FFPOLY(GF4))\$FFPOLY(GF4)}
For \texttt{FFP} you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

\begin{verbatim}
GF4096 := FFP(GF4, f);
\end{verbatim}

\begin{verbatim}
discreteLog random()$GF4096
\end{verbatim}

\begin{verbatim}
type: Domain
\end{verbatim}

\begin{verbatim}
Type: FiniteField(2, 12)
\end{verbatim}

\begin{verbatim}
(2) %CS
\end{verbatim}
\begin{verbatim}
5 3
(3) %CS + %CS + %CS + 1
Type: FiniteField(2,12)
\end{verbatim}

\begin{verbatim}
10 9 7 5 4 3
(4) %CS + %CS + %CS + %CS + %CS + %CS
Type: FiniteField(2,12)
\end{verbatim}

\begin{verbatim}
11 8 7 5 4 3 2
(5) %CS + %CS + %CS + %CS + %CS + %CS
Type: FiniteField(2,12)
\end{verbatim}
\begin{verbatim}
(6) 1
Type: PrimeField 2
\end{verbatim}

\begin{verbatim}
(7) 0
Type: PrimeField 2
\end{verbatim}

\begin{verbatim}
(8) 1729
Type: PositiveInteger
\end{verbatim}
\spadcommand{g ** dL\free{dL g}}

\begin{verbatim}
1729
\end{verbatim}

Type: Polynomial Integer

\spadcommand{GF16 := FF(2,4);\free{GF16}}

Type: Domain

\spadcommand{GF4096 := FFX(GF16,3);\free{GF16}}

Type: Domain

\spadcommand{r := (random()$GF4096) ** 20\free{GF4096}}
\indentrel{3}\begin{verbatim}
 3 2
(12) (%CT + %CT + 1)%CU + %CT %CU
 Type: FiniteFieldExtension(FiniteField(2,4),3)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteModulusPageEmpty12}
\begin{paste}{ugxProblemFiniteModulusPageFull12}{ugxProblemFiniteModulusPageEmpty12}
\pastebutton{ugxProblemFiniteModulusPageEmpty12}{\showpaste}
\begin{verbatim}
\indentrel{-3}
\begin{verbatim}
(13) %CT + %CT
 Type: FiniteField(2,4)
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{ugxProblemFiniteModulusPagePatch13}
\begin{paste}{ugxProblemFiniteModulusPageFull13}{ugxProblemFiniteModulusPageEmpty13}
\pastebutton{ugxProblemFiniteModulusPageEmpty13}{\hidepaste}
\begin{verbatim}
\indentrel{3}\begin{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{ugxProblemFiniteModulusPagePatch14}
\begin{paste}{ugxProblemFiniteModulusPageFull14}{ugxProblemFiniteModulusPageEmpty14}
\pastebutton{ugxProblemFiniteModulusPageEmpty14}{\hidepaste}
\begin{verbatim}
\indentrel{3}\begin{verbatim}
\indentrel{-3}
\end{patch}

\begin{patch}{ugxProblemFiniteModulusPagePatch15}
\begin{paste}{ugxProblemFiniteModulusPageFull15}{ugxProblemFiniteModulusPageEmpty15}
\pastebutton{ugxProblemFiniteModulusPageEmpty15}{\hidepaste}
\begin{verbatim}
\indentrel{3}\begin{verbatim}
\indentrel{-3}
\end{patch}
\begin{verbatim}
6 5 4 2
(15) ? + ? + (%CV + 1)? + (%CV + 1)? + ? + %CV
Type: Union(SparseUnivariatePolynomial FiniteField(2,2),...)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteModulusPageEmpty15}
\begin{paste}{ugxProblemFiniteModulusPageEmpty15}{ugxProblemFiniteModulusPagePatch15}
\pastebutton{ugxProblemFiniteModulusPageEmpty15}{\showpaste}
\begin{spadcommand}
f := nextIrreduciblePoly(random(6)$FFPOLY(GF4))$FFPOLY(GF4)\free{GF4 }\bound{f }
\end{spadcommand}
\indentrel{3}\begin{verbatim}
Type: Domain
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteModulusPagePatch16}
\begin{paste}{ugxProblemFiniteModulusPageFull16}{ugxProblemFiniteModulusPageEmpty16}
\pastebutton{ugxProblemFiniteModulusPageFull16}{\hidepaste}
\begin{spadcommand}
GF4096 := FFP(GF4,f)\free{f GF4 }
\end{spadcommand}
\indentrel{3}\begin{verbatim}
(17) 3370
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteModulusPagePatch17}
\begin{paste}{ugxProblemFiniteModulusPageFull17}{ugxProblemFiniteModulusPageEmpty17}
\pastebutton{ugxProblemFiniteModulusPageFull17}{\hidepaste}
\begin{spadcommand}
discreteLog random()$GF4096\free{GF4096y }
\end{spadcommand}
\indentrel{3}\begin{verbatim}
(17) 3370
Type: PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
Cyclic Group Representations

⇒ “notitle” (ugxProblemFiniteUtilityPage) 12 on page 2280

\begin{page}{ugxProblemFiniteCyclicPage}
\{8.11.4. Cyclic Group Representations\}
\beginscroll

In every finite field there exist elements whose powers are all the nonzero elements of the field. Such an element is called a \textit{primitive element}.

In \axiomType{FiniteFieldCyclicGroup} (abbreviation \axiomType{FFCG}) the nonzero elements are represented by the powers of a fixed primitive element of the field (that is, a generator of its cyclic multiplicative group). Multiplication (and hence exponentiation) using this representation is easy. To do addition, we consider our primitive element as the root of a primitive polynomial (an irreducible polynomial whose roots are all primitive). See \downlink{``Utility Operations for Finite Fields’’}{ugxProblemFiniteUtilityPage} in Section 8.11.7\ignore{ugxProblemFiniteUtility} for examples of how to compute such a polynomial.

\%
\xtc{
To use \axiomType{FiniteFieldCyclicGroup} you provide a prime number and an extension degree.
}\{spadpaste{GF81 := FFCG(3,4); \bound{GF81}}\}
\%
\%
\xtc{
Axiom uses the prime field, here \axiomType{PrimeField 3}, as the ground field and it chooses a primitive polynomial of degree \(n\), here 4, over the prime field.
}\{spadpaste{a := primitiveElement()\$GF81 \bound{a}\free{GF81}}\}
\%
\%
\xtc{
You can calculate in \axiom{GF81}.
}\{spadpaste{b := a\^{12} - a\^{5} + a \bound{b}\free{a}}\}
\%

}}
In this representation of finite fields the discrete logarithm of an element can be seen directly in its output form.

\spadpaste{b \free{b}}

\spadpaste{discreteLog b \free{b}}

\axiomType{FiniteFieldCyclicGroupExtension} (abbreviation \axiomType{FFCGX}) is similar to \axiomType{FiniteFieldCyclicGroup} except that the ground field for \axiomType{FiniteFieldCyclicGroupExtension} is arbitrary and chosen by you. In case you select the prime field as ground field, there is essentially no difference between the constructed two finite field extensions.

\spadpaste{GF9 := FF(3,2); \bound{GF9}}

\spadpaste{GF729 := FFCGX(GF9,3); \bound{GF729}\free{GF9}}

\spadpaste{r := (random()\$GF729) ** 20 \free{GF729}\bound{r}}

\spadpaste{trace(r) \free{r}}

\axiomType{FiniteFieldCyclicGroupExtensionByPolynomial} (abbreviation \axiomType{FFCGP}) is similar to \axiomType{FiniteFieldCyclicGroup} and \axiomType{FiniteFieldCyclicGroupExtension} but is more general. For \axiomType{FiniteFieldCyclicGroupExtensionByPolynomial} you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

\spadpaste{GF3 := PrimeField 3; \bound{GF3}}
We use a utility operation to generate an irreducible primitive polynomial (see \url{``Utility Operations for Finite Fields''}
{ugxProblemFiniteUtilityPage} in Section 8.11.7\ignore{ugxProblemFiniteUtility}). The polynomial has one variable that is ‘‘anonymous’’: it displays as a question mark.

\begin{spad}{f := createPrimitivePoly(4)$\text{FFPOLY(GF3)} \\text{\free{GF3}}}\end{spad}
\begin{spad}{GF81 := \text{FFCGP(GF3,f)}; \text{\free{GF81}}}\end{spad}
\begin{spad}{\text{random()$\text{GF81}}\text{\free{GF81}}}\end{spad}
\begin{spad Harmonic}{\text{Type: Domain}}\end{spad}
\begin{spad Harmonic}{\text{Type: FiniteFieldCyclicGroup(3,4)}}\end{spad}
\spadcommand{a := primitiveElement()$GF81\bound{a }\free{GF81 }}

\spadcommand{b := a**12 - a**5 + a\bound{b }\free{a }}

(3) \%BF

\indentrel{-3}

\begin{verbatim}
72
\end{verbatim}

\indentrel{3}

Type: FiniteFieldCyclicGroup(3,4)

\spadcommand{b\free{b }}

(4) \%BF

\indentrel{-3}

Type: FiniteFieldCyclicGroup(3,4)

\spadcommand{discreteLog b\free{b }}

(5) 72

Type: PositiveInteger
\spadcommand{discreteLog b\free{b}}

\spadcommand{GF9 := FF(3,2);\bound{GF9}}

Type: Domain

\spadcommand{GF729 := FFCGX(GF9,3);\free{GF9} \bound{GF729}}

Type: Domain

\spadcommand{r := (random()$GF729)**20\free{GF729} \bound{r}}

Type: FiniteFieldCyclicGroupExtension(FiniteField(3,2),3)
\begin{spad}
\spadcommand{r := (random()$GF729) ** 20\free{GF729 }\bound{r }}
\end{spad}

\begin{verbatim}
(9) 2
Type: FiniteField(3,2)
\end{verbatim}

\begin{spad}
\spadcommand{GF3 := PrimeField 3;\bound{GF3 }}
\end{spad}

\begin{verbatim}
4
(11) ? + ? + 2
Type: SparseUnivariatePolynomial PrimeField 3
\end{verbatim}
Normal Basis Representations

⇒ “notitle” (ugxProblemFiniteUtilityPage) 12 on page 2280 — ug08.ht —
Let \(K \) be a finite extension of degree \(n \) of the finite field \(F \) and let \(F \) have \(q \) elements.

An element \(x \) of \(K \) is said to be \(\text{normal} \) over \(F \) if the elements
\[
1, x^q, x^{q^2}, \ldots, x^{q^{(n-1)}}
\]
form a basis of \(K \) as a vector space over \(F \).

Such a basis is called a \(\text{normal basis} \).

If \(x \) is normal over \(F \), its minimal polynomial is also said to be \(\text{normal} \) over \(F \).

There exist normal bases for all finite extensions of arbitrary finite fields.

In \(\text{FiniteFieldNormalBasis} \) (abbreviation \(\text{FFNB} \)), the elements of the finite field are represented by coordinate vectors with respect to a normal basis.

You provide a prime \(p \) and an extension degree \(n \).

\begin{verbatim}
K := FFNB(3,8)
\end{verbatim}

Axiom uses the prime field \(\text{PrimeField}(p) \), here \(\text{PrimeField}(3) \), and it chooses a normal polynomial of degree \(n \), here 8, over the ground field. The remainder class of the indeterminate is used as the normal element. The polynomial indeterminate is automatically chosen by Axiom and is typically something like \(\%A \) or \(\%D \). These (strange) variables are only for output display; there are several ways to construct elements of this field. The output of the basis elements is something like
\[
\%A^{q^i}.
\]

\begin{verbatim}
a := normalElement()
\end{verbatim}
You can calculate in \mathbb{K} using a.

```spad
\spad{b := a**12 - a**5 + a \free b}
```

\axiomType{FiniteFieldNormalBasisExtension}
(abbreviation \axiomType{FFNBX}) is similar to \axiomType{FiniteFieldNormalBasis} except that the groundfield for \axiomType{FiniteFieldNormalBasisExtension} is arbitrary and chosen by you. In case you select the prime field as ground field, there is essentially no difference between the constructed two finite field extensions.

```spad
\spad{GF9 := FFNB(3,2); \free GF9}
```

```spad
\spad{GF729 := FFNBX(GF9,3); \free GF729}
```

```spad
\spad{r := random() \free GF729}
```

```spad
\spad{r + r**3 + r**9 + r**27 \free r}
```

\axiomType{FiniteFieldNormalBasisExtensionByPolynomial}
(abbreviation \axiomType{FFNBP}) is similar to \axiomType{FiniteFieldNormalBasis} and \axiomType{FiniteFieldNormalBasisExtension} but is more general. For \axiomType{FiniteFieldNormalBasisExtensionByPolynomial} you choose both the ground field and the irreducible polynomial used in the representation. The degree of the extension is the degree of the polynomial.

```spad
\spad{GF3 := PrimeField 3; \free GF3}
```

We use a utility operation to generate an irreducible normal
The polynomial has one variable that is "anonymous": it displays as a question mark.

\begin{verbatim}
spadpaste(f := createNormalPoly(4)$FFPOLY(GF3) \free{GF3}\bound{f})
\end{verbatim}

\begin{verbatim}
spadpaste(GF81 := FFNB(GF3,f); \bound{GF81}\free{f GF3})
\end{verbatim}

Let's look at a random element from this field.

\begin{verbatim}
spadpaste(r := random()$GF81 \free{GF81}\bound{r1})
\end{verbatim}

\begin{verbatim}
spadpaste(r * r**3 * r**9 * r**27 \free{r1})
\end{verbatim}

\begin{verbatim}
spadpaste(norm r \free{r1})
\end{verbatim}

\end{verbatim}
\tab{5}\spadcommand{a := normalElement()$K\bound{a }\free{K }}
\indentrel{3}\begin{verbatim}
(2) %CO
Type: FiniteFieldNormalBasis(3,8)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty2}
\begin{paste}{ugxProblemFiniteNormalPageEmpty2}{ugxProblemFiniteNormalPagePatch2}
\pastebutton{ugxProblemFiniteNormalPageEmpty2}{\showpaste}
\tab{5}\spadcommand{a := normalElement()$K\bound{a }\free{K }}
\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch3}
\begin{paste}{ugxProblemFiniteNormalPageFull3}{ugxProblemFiniteNormalPageEmpty3}
\pastebutton{ugxProblemFiniteNormalPageFull3}{\hidepaste}
\tab{5}\spadcommand{b := a**12 - a**5 + a\bound{b }\free{a }}
\indentrel{3}\begin{verbatim}
7 5
q q q
(3) 2%CO + %CO + %CO
Type: FiniteFieldNormalBasis(3,8)
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty3}
\begin{paste}{ugxProblemFiniteNormalPageEmpty3}{ugxProblemFiniteNormalPagePatch3}
\pastebutton{ugxProblemFiniteNormalPageEmpty3}{\showpaste}
\tab{5}\spadcommand{b := a**12 - a**5 + a\bound{b }\free{a }}
\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch4}
\begin{paste}{ugxProblemFiniteNormalPageFull4}{ugxProblemFiniteNormalPageEmpty4}
\pastebutton{ugxProblemFiniteNormalPageFull4}{\hidepaste}
\tab{5}\spadcommand{GF9 := FFNB(3,2);\bound{GF9 }}
\indentrel{3}\begin{verbatim}
Type: Domain
\end{verbatim}
\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty4}
\begin{paste}{ugxProblemFiniteNormalPageEmpty4}{ugxProblemFiniteNormalPagePatch4}
\pastebutton{ugxProblemFiniteNormalPageEmpty4}{\showpaste}
\tab{5}\spadcommand{GF9 := FFNB(3,2);\bound{GF9 }}
\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch5}
\begin{paste}{ugxProblemFiniteNormalPageFull5}{ugxProblemFiniteNormalPageEmpty5}
\pastebutton{ugxProblemFiniteNormalPageFull5}{\hidepaste}
\tab{5}\spadcommand{GF729 := FFNEX(GF9,3);\bound{GF729 }\free{GF9 }}
\end{patch}
\begin{verbatim}
Type: Domain
\end{verbatim}

\tab{5}\spadcommand{GF729 := FFNBX(GF9,3);\free{GF729}}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch6}
\begin{patch}{ugxProblemFiniteNormalPageFull6}{ugxProblemFiniteNormalPageEmpty6}\begin{paste}{ugxProblemFiniteNormalPageFull6}{ugxProblemFiniteNormalPageEmpty6}\pastebutton{ugxProblemFiniteNormalPageFull6}{\hidepaste}\tab{5}\spadcommand{r := random()$GF729;\free{GF729}}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch7}
\begin{patch}{ugxProblemFiniteNormalPageFull7}{ugxProblemFiniteNormalPageEmpty7}\begin{paste}{ugxProblemFiniteNormalPageFull7}{ugxProblemFiniteNormalPageEmpty7}\pastebutton{ugxProblemFiniteNormalPageFull7}{\hidepaste}\tab{5}\spadcommand{r + r**3 + r**9 + r**27;\free{r}}\end{paste}\end{patch}

\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch8}
\begin{patch}{ugxProblemFiniteNormalPageFull8}{ugxProblemFiniteNormalPageEmpty8}\pastebutton{ugxProblemFiniteNormalPageFull8}{\hidepaste}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q
(6) 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch6}
\begin{patch}{ugxProblemFiniteNormalPageFull6}{ugxProblemFiniteNormalPageEmpty6}\begin{paste}{ugxProblemFiniteNormalPageFull6}{ugxProblemFiniteNormalPageEmpty6}\pastebutton{ugxProblemFiniteNormalPageFull6}{\hidepaste}\tab{5}\spadcommand{r := random()$GF729;\free{GF729}}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch7}
\begin{patch}{ugxProblemFiniteNormalPageFull7}{ugxProblemFiniteNormalPageEmpty7}\begin{paste}{ugxProblemFiniteNormalPageFull7}{ugxProblemFiniteNormalPageEmpty7}\pastebutton{ugxProblemFiniteNormalPageFull7}{\hidepaste}\tab{5}\spadcommand{r + r**3 + r**9 + r**27;\free{r}}\end{paste}\end{patch}

\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch8}
\begin{patch}{ugxProblemFiniteNormalPageFull8}{ugxProblemFiniteNormalPageEmpty8}\pastebutton{ugxProblemFiniteNormalPageFull8}{\hidepaste}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(7) (2%CP + 2%CP)%CQ + 2%CP %CQ + 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(6) 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(7) (2%CP + 2%CP)%CQ + 2%CP %CQ + 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(6) 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(7) (2%CP + 2%CP)%CQ + 2%CP %CQ + 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(6) 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}

\indentrel{3}\begin{verbatim}
2
q q q q
(7) (2%CP + 2%CP)%CQ + 2%CP %CQ + 2%CP %CQ
Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)
\end{verbatim}
\indentrel{-3}\end{patch}
\texttt{spadcommand}\{GF3 := PrimeField 3;\}
\texttt{begin\{verbatim\}}
\begin{verbatim}
Type: Domain
\end{verbatim}
\texttt{end\{verbatim\}}
\texttt{indentrel\{-3\}\end\{paste\}\end\{patch\}}

\texttt{spadcommand}\{GF3 := PrimeField 3;\}
\texttt{begin\{verbatim\}}
\begin{verbatim}
Type: Domain
\end{verbatim}
\texttt{end\{verbatim\}}
\texttt{indentrel\{-3\}\end\{paste\}\end\{patch\}}

\texttt{spadcommand}\{f := createNormalPoly(4)$FFPOLY(GF3)\}
\texttt{begin\{verbatim\}}
\begin{verbatim}
4 3
(9) ? + 2? + 2
Type: SparseUnivariatePolynomial PrimeField 3
\end{verbatim}
\texttt{end\{verbatim\}}
\texttt{indentrel\{-3\}\end\{paste\}\end\{patch\}}

\texttt{spadcommand}\{GF81 := FFNBP(GF3,f);\}
\texttt{begin\{verbatim\}}
\begin{verbatim}
Type: Domain
\end{verbatim}
\texttt{end\{verbatim\}}
\texttt{indentrel\{-3\}\end\{paste\}\end\{patch\}}

\texttt{spadcommand}\{r := random()$GF81;\}
\texttt{begin\{verbatim\}}
\begin{verbatim}
\end{verbatim}
\texttt{end\{verbatim\}}
\texttt{indentrel\{-3\}\end\{paste\}\end\{patch\}}
(11) \(
q \quad \q \quad \q \quad \q
\)

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3,\(3^{4+2\cdot3+2}\))

\begin{verbatim}
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty11}
\begin{paste}{ugxProblemFiniteNormalPageEmpty11}{ugxProblemFiniteNormalPagePatch11}
\pastebutton{ugxProblemFiniteNormalPageEmpty11}{\showpaste}
\tab{5}\spadcommand{r := random()$GF81\free{GF81 }\bound{r1 }}
\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch12}
\begin{paste}{ugxProblemFiniteNormalPageFull12}{ugxProblemFiniteNormalPageEmpty12}
\pastebutton{ugxProblemFiniteNormalPageFull12}{\hidepaste}
\tab{5}\spadcommand{r * r**3 * r**9 * r**27\free{r1 }}
\indentrel{3}\begin{verbatim}
3 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty12}
\begin{paste}{ugxProblemFiniteNormalPageEmpty12}{ugxProblemFiniteNormalPagePatch12}
\pastebutton{ugxProblemFiniteNormalPageEmpty12}{\showpaste}
\tab{5}\spadcommand{r * r**3 * r**9 * r**27\free{r1 }}
\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPagePatch13}
\begin{paste}{ugxProblemFiniteNormalPageFull13}{ugxProblemFiniteNormalPageEmpty13}
\pastebutton{ugxProblemFiniteNormalPageFull13}{\hidepaste}
\tab{5}\spadcommand{norm r\free{r1 }}
\indentrel{3}\begin{verbatim}
(13) 2
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugxProblemFiniteNormalPageEmpty13}
\begin{paste}{ugxProblemFiniteNormalPageEmpty13}{ugxProblemFiniteNormalPagePatch13}
\pastebutton{ugxProblemFiniteNormalPageEmpty13}{\showpaste}
\tab{5}\spadcommand{norm r\free{r1 }}
\end{paste}\end{patch}
Conversion Operations for Finite Fields

⇒ “notitle” (ugxProblemFiniteExtensionFinitePage) 12 on page 2246
— ug08.ht —

\begin{page}{ugxProblemFiniteConversionPage}
\{8.11.6. Conversion Operations for Finite Fields\}
\beginscroll

\labelSpace{5pc}
%
\xtc{
Let K be a finite field.
}{
\spadpaste{K := PrimeField 3 \bound{K}}
}
%
An extension field K_m of degree m over K is a subfield of an
extension field K_n of degree n over K if and only if m divides
n.

\centerline{$\begin{array}{ccc}
K_n & | & K_m \\
| & \Longleftarrow & m | n \\
| & \text{K}
\end{array}$}

\begin{verbatim}
Kn
| Km <=> m | n
| K
\end{verbatim}

\axiomType{FiniteFieldHomomorphisms} provides conversion operations
between different extensions of one
fixed finite ground field and between different representations of
these finite fields.

\xtc{
Let’s choose m and n,
}{
\spadpaste{(m,n) := (4,8) \bound{m n}}
}
\xtc{

\end{page}{ugxProblemFiniteConversionPage}
build the field extensions,
}\{ \\
\spadpaste{Km := FiniteFieldExtension(K,m) \bound{Km}\free{K m}} \\
}\xtc{ and pick two random elements from the smaller field. } \\
}\{ \\
\spadpaste{Kn := FiniteFieldExtension(K,n) \bound{Kn}\free{K n}} \\
}\xtc{ } \\
}\{ \\
\spadpaste{a1 := random()\$Km \bound{a1}\free{Km}} \\
}\xtc{ } \\
}\{ \\
\spadpaste{b1 := random()\$Km \bound{b1}\free{Km}} \\
}% \\
}\xtc{ Since \texttt{m} divides \texttt{n}, \texttt{Km} is a subfield of \texttt{Kn}. } \\
}\{ \\
\spadpaste{a2 := a1 :: Kn \bound{a2}\free{a1 Kn}} \\
}\xtc{ Therefore we can convert the elements of \texttt{Km} into elements of \texttt{Kn}. } \\
}\{ \\
\spadpaste{b2 := b1 :: Kn \bound{b2}\free{b1 Kn}} \\
}% \\
}% \\
}\xtc{ To check this, let's do some arithmetic. } \\
}\{ \\
\spadpaste{a1+b1 - ((a2+b2) :: Km) \free{a1 a2 b1 b2 Km Kn}} \\
}% \\
}\{ \\
\spadpaste{a1*b1 - ((a2*b2) :: Km) \free{a1 a2 b1 b2 Km Kn}} \\
}% \\
There are also conversions available for the situation, when \texttt{Km} and \texttt{Kn} are represented in different ways (see \downlink{``Extensions of Finite Fields''} \ignore{ugxProblemFiniteExtensionFinite} in Section 8.11.2 \ignore{ugxProblemFiniteExtensionFiniteFinite}). For example let's choose \texttt{Km} where the representation is 0 plus the cyclic multiplicative group and
\texttt{K_n} with a normal basis representation.

\begin{verbatim}
Km := FFCGX(K, m) \\
Kn := FFNBX(K, n) \\
(a1, b1) := (random())Km, random())Km \\
a2 := a1 :: Kn \\
b2 := b1 :: Kn \\
(\text{Check the arithmetic again.}) \\
(a1+b1 - ((a2+b2) :: Km) \\
a1*b1 - ((a2*b2) :: Km)
\end{verbatim}
\begin{verbatim}
(2) 8
Type: PositiveInteger
\end{verbatim}

(3) \text{FiniteFieldExtension}(\text{PrimeField }3,4)
Type: Domain

(4) \text{FiniteFieldExtension}(\text{PrimeField }3,8)
Type: Domain
\begin{verbatim}
3 2
(5) 2%BD + 2%BD + 2%BD + 1
Type: FiniteFieldExtension(PrimeField 3, 4)
\end{verbatim}

\begin{verbatim}
3 2
(6) %BD + %BD + 2%BD + 2
Type: FiniteFieldExtension(PrimeField 3, 4)
\end{verbatim}

\begin{verbatim}
6
(7) 2%BE + 1
Type: FiniteFieldExtension(PrimeField 3, 8)
\end{verbatim}
\begin{verbatim}
2 4 2
(8) 2%BE + 2%BE + %BE + 2
 Type: FiniteFieldExtension(PrimeField 3,8)
\end{verbatim}
\end{verbatim}
\begin{verbatim}
0
 Type: FiniteFieldExtension(PrimeField 3,4)
\end{verbatim}
\begin{verbatim}
(11) FiniteFieldCyclicGroupExtension(PrimeField 3,4)
 Type: Domain
\end{verbatim}
\end{patch}

\begin{verbatim}
(12) FiniteFieldNormalBasisExtension(PrimeField 3,8)
 Type: Domain
\end{verbatim}
\end{patch}

\begin{verbatim}
(13) %BF
 Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)
\end{verbatim}
\end{patch}
tab\{5\}\spadcommand{a2 := a1 :: Kn\bound{a22 }\free{a12 Kn2 }}
\indentrel{3}\begin{verbatim}
 (14)
 6 5 4 2
 q q q q q
2%BG + 2%BG + 2%BG + 2%BG + 2%BG + 2%BG
Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)
\end{verbatim}
\indentrel{-3}\end{paste}

\begin{patch}{ugxProblemFiniteConversionPagePatch15}
\begin{paste}{ugxProblemFiniteConversionPageFull15}{ugxProblemFiniteConversionPageEmpty15}
\pastebutton{ugxProblemFiniteConversionPageFull15}{\hidepaste}
\tab\{5\}\spadcommand{b2 := b1 :: Kn\bound{b22 }\free{b12 Kn2 }}
\indentrel{3}\begin{verbatim}
 (15)
 7 6 5 4 3 2
 q q q q q q
2%BG + %BG + %BG + %BG + 2%BG + %BG + q
 +
%BG + %BG
Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugxProblemFiniteConversionPagePatch16}
\begin{paste}{ugxProblemFiniteConversionPageFull16}{ugxProblemFiniteConversionPageEmpty16}
\pastebutton{ugxProblemFiniteConversionPageFull16}{\hidepaste}
\tab\{5\}\spadcommand{a1+b1 - ((a2+b2) :: Km}\free{a12 a22 b12 b22 Km2 }}
\indentrel{3}\begin{verbatim}
 (16) 0
Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}
Utility Operations for Finite Fields

--- ug08.ht ---

\begin{page}\{ugxProblemFiniteUtilityPage\}
{8.11.7. Utility Operations for Finite Fields}
\beginscroll
axiomType\{FiniteFieldPolynomialPackage\} (abbreviation
axiomType\{FFPOLY\})
provides operations for generating, counting and testing polynomials
over finite fields. Let's start with a couple of definitions:
\indent{4}
\beginitems
\item[-] A polynomial is \{it primitive\} if its roots are primitive
 elements in an extension of the coefficient field of degree equal
 to the degree of the polynomial.
\item[-] A polynomial is \{it normal\} over its coefficient field
 if its roots are linearly independent
 elements in an extension of the coefficient field of degree equal
 to the degree of the polynomial.
\enditems
In what follows, many of the generated polynomials have one
'anonymous' variable. This indeterminate is displayed as a question mark (\texttt{?}).

To fix ideas, let's use the field with five elements for the first few examples.
\begin{verbatim}
GF5 := PF 5; \texttt{GF5}
\end{verbatim}

You can generate irreducible polynomials of any (positive) degree
(within the storage capabilities of the computer and your ability to wait) by using
\texttt{createIrreduciblePoly}\{FiniteFieldPolynomialPackage\}.

\begin{verbatim}
f := createIrreduciblePoly(8)\texttt{FFPOLY(GF5) \texttt{f}}
\end{verbatim}

Does this polynomial have other important properties? Use
\texttt{primitive?} to test whether it is a primitive polynomial.
\begin{verbatim}
primitive?(f)\texttt{FFPOLY(GF5) \texttt{f}}
\end{verbatim}

Use \texttt{normal?} to test whether it is a normal polynomial.
\begin{verbatim}
normal?(f)\texttt{FFPOLY(GF5) \texttt{f}}
\end{verbatim}

Note that this is actually a trivial case, because a normal polynomial of degree \texttt{n}
must have a nonzero term of degree \texttt{n-1}. We will refer back to this later.

To get a primitive polynomial of degree 8 just issue this.
\begin{verbatim}
p := createPrimitivePoly(8)\texttt{FFPOLY(GF5) \texttt{p}}
\end{verbatim}

This polynomial is not normal,
but if you want a normal one simply write this.
}\{
\spad{p := createNormalPoly(8) \free{GF5}}
\xtc{This polynomial is not primitive!}
}\{
\spad{primitive?(p) \free{GF5}}
\xtc{This could have been seen directly, as the constant term is 1 here, which is not a primitive element up to the factor (-1) raised to the degree of the polynomial.}
\xtc{What about polynomials that are both primitive and normal?}
\footnote{The existence of such polynomials is proved in Lenstra, H. W. \& Schoof, R. J., \textit{Primitive Normal Bases for Finite Fields}, Math. Comp. 48, 1987, pp. 217-231.}
\xtc{If you really need one use either \axiomFunFrom{createPrimitiveNormalPoly}{FiniteFieldPolynomialPackage} or \axiomFunFrom{createNormalPrimitivePoly}{FiniteFieldPolynomialPackage}.}
}\{
\spad{createPrimitiveNormalPoly(8) \free{GF5}}
\xtc{If you want to obtain additional polynomials of the various types above as given by the \textit{create...} operations above, you can use the \textit{next...} operations.}
For instance, \axiomFunFrom{nextIrreduciblePoly}{FiniteFieldPolynomialPackage} yields the next monic irreducible polynomial with the same degree as the input polynomial. By ``next'' we mean ``next in a natural order using the terms and coefficients.''
\xtc{This will become more clear in the following examples.}
}\{
This is the field with five elements.
}
Our first example irreducible polynomial, say of degree 3, must be "greater" than this.

\spadpaste{h := monomial(1,8)\$SUP(GF5) \free{GF5}}

You can generate it by doing this.

\spadpaste{nh := nextIrreduciblePoly(h)\$FFPOLY(GF5) \free{h}}

Notice that this polynomial is not the same as the one \axiomFunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage}.

\spadpaste{createIrreduciblePoly(3)\$FFPOLY(GF5) \free{GF5}}

You can step through all irreducible polynomials of degree 8 over the field with 5 elements by repeatedly issuing this.

\spadpaste{nh := nextIrreduciblePoly(nh)\$FFPOLY(GF5) \free{nh}}

You could also ask for the total number of these.

\spadpaste{numberOf IrreduciblePoly(5)\$FFPOLY(GF5) \free{GF5}}

We hope that "natural order" on polynomials is now clear: first we compare the number of monomials of two polynomials ("more" is "greater"); then, if necessary, the degrees of these monomials (lexicographically), and lastly their coefficients (also lexicographically, and using the operation \axiomFun{lookup} if our field is not a prime field). Also note that we make both polynomials monic before looking at the coefficients: multiplying either polynomial by a nonzero constant produces the same result.

The package \axiomType{FiniteFieldPolynomialPackage} also provides similar operations for primitive and normal polynomials. With
the exception of the number of primitive normal polynomials; we're not aware of any known formula for this.

\spadpaste{numberOfPrimitivePoly(3)\$FFPOLY(GF5) \free{GF5}}

\%
\%
\xtc{Take these,}
\spadpaste{m := monomial(1,1)\$SUP(GF5) \bound{m}\free{GF5}}
\%
\%
\xtc{and then we have:}
\spadpaste{f := m**3 + 4*m**2 + m + 2 \bound{fx}\free{m}}
\%
\%
\xtc{What happened?}
\spadpaste{f1 := nextPrimitivePoly(f)\$FFPOLY(GF5) \free{fx}\bound{f1}}
\%
Well, for the ordering used in
\axiomFunFrom{nextPrimitivePoly}{FiniteFieldPolynomialPackage} we use as first criterion a comparison of the constant terms of the polynomials. Analogously, in
\axiomFunFrom{nextNormalPoly}{FiniteFieldPolynomialPackage} we first compare the monomials of degree 1 less than the degree of the polynomials (which is nonzero, by an earlier remark).

\%
\%
\xtc{f := m**3 + m**2 + 4*m + 1 \bound{fy} \free{m}}
\%
\%
\xtc{f1 := nextNormalPoly(f)\$FFPOLY(GF5) \free{fy}\bound{f1y}}
We don't have to restrict ourselves to prime fields.

Let's consider, say, a field with 16 elements.

```
GF16 := FFX(FFX(PF 2,2),2); \text{free\{GF16\}}
```

We can apply any of the operations described above.

```
createIrreduciblePoly(5)\text{\textbackslash FFPOLY(GF16)} \text{free\{GF16\}}
```

Axiom also provides operations for producing random polynomials of a given degree

```
random(5)\text{\textbackslash FFPOLY(GF16)} \text{free\{GF16\}}
```

or with degree between two given bounds.

```
random(3,9)\text{\textbackslash FFPOLY(GF16)} \text{free\{GF16\}}
```

\text{\texttt{FiniteFieldPolynomialPackage2}} (abbreviation \text{\texttt{FFPOLY2}}) exports an operation \text{\texttt{rootOfIrreduciblePoly}} for finding one root of an irreducible polynomial \text{\texttt{f}} in an extension field of the coefficient field. The degree of the extension has to be a multiple of the degree of \text{\texttt{f}}. It is not checked whether \text{\texttt{f}} actually is irreducible.

To illustrate this operation, we fix a ground field \text{\texttt{GF}}

```
GF2 := PrimeField 2; \text{free\{GF2\}}
```

and then an extension field.

```
F := FFX(GF2,12) \text{free\{F\}}
```
We construct an irreducible polynomial over \texttt{GF2}.

\begin{verbatim}
\spad{f := createIrreduciblePoly(6)\$FFPOLY(GF2)}
\end{verbatim}

We compute a root of \texttt{f}.

\begin{verbatim}
\spad{root := rootOfIrreduciblePoly(f)\$FFPOLY2(F,GF2)}
\end{verbatim}

\begin{verbatim}
\spad{eval(f, monomial(1,1)\$SUP(F) = root) \free{fz F root}}
\end{verbatim}

\begin{verbatim}
\spad{GF5 := PF 5;}
\begin{verbatim}
8 4
(2) ? + ? + 2
\end{verbatim}
Type: SparseUnivariatePolynomial PrimeField 5
\end{verbatim}

\begin{verbatim}
\spad{f := createIrreduciblePoly(8)$FFPOLY(GF5)\free{GF5}}
\end{verbatim}

\begin{verbatim}
Type: Domain
\end{verbatim}
\begin{verbatim}
spadcommand{f := createIrreduciblePoly(8)$FFPOLY(GF5)}
\end{verbatim}
\begin{verbatim}
spadcommand{primitive?(f)$FFPOLY(GF5)}
\end{verbatim}
\begin{verbatim}
spadcommand{normal?(f)$FFPOLY(GF5)}
\end{verbatim}
\begin{verbatim}
spadcommand{p := createPrimitivePoly(8)$FFPOLY(GF5)}
\end{verbatim}
\begin{verbatim}
8 7 3
(8) ? + 4? + ? + 1
Type: SparseUnivariatePolynomial PrimeField 5
\end{verbatim}
\texttt{\textbackslash tab\{5\}\textbackslash spadcommand\{n := createNormalPoly(8)\textbar FFPOLY(GF5)\textbackslash bound\{n \}\textbackslash free\{GF5 \}\}\textbackslash end\{paste\}\textbackslash end\{patch\}\textbackslash begin\{patch\}\textbackslash begin\{paste\}\texttt{\textbackslash spadcommand\{\texttt{primitive\texttt{?}}(n)\textbar FFPOLY(GF5)\textbackslash free\{n \}\}\textbackslash indentrel\{3\}\textbackslash begin\{verbatim\}\texttt{(9) false}\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{verbatim\}\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}\textbackslash begin\{patch\}\texttt{\textbackslash spadcommand\{createPrimitiveNormalPoly(8)\textbar FFPOLY(GF5)\textbackslash free\{GF5 \}\}\textbackslash indentrel\{3\}\textbackslash begin\{verbatim\}\texttt{(10) ? + 4? + 2? + 2}\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{verbatim\}\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}\textbackslash begin\{patch\}\texttt{GF5 := PF\ 5;\textbackslash bound\{GF5 \}\textbackslash indentrel\{3\}\textbackslash begin\{verbatim\}\texttt{Type: Domain}\texttt{\textbackslash indentrel\{-3\}\textbackslash end\{verbatim\}\textbackslash indentrel\{-3\}\textbackslash end\{paste\}\textbackslash end\{patch\}}
\begin{verbatim}
8
(12) ?
Type: SparseUnivariatePolynomial PrimeField 5
\end{verbatim}

\begin{verbatim}
3
(14) ? + ? + 1
Type: SparseUnivariatePolynomial PrimeField 5
\end{verbatim}
\begin{verbatim}
8
(15) ? + 3
Type: Union(SparseUnivariatePolynomial PrimeField 5,...)
\end{verbatim}

\begin{verbatim}
(16) 624
Type: PositiveInteger
\end{verbatim}

\begin{verbatim}
(17) 20
Type: PositiveInteger
\end{verbatim}
\begin{verbatim}
(m := monomial(1,1)$SUP(GF5))
\end{verbatim}

```
(18) ?
```

Type: SparseUnivariatePolynomial PrimeField 5

\begin{verbatim}
f := m**3 + 4*m**2 + m + 2
\end{verbatim}

```
3 2
(19) ? + 4? + ? + 2
```

Type: SparseUnivariatePolynomial PrimeField 5

\begin{verbatim}
f1 := nextPrimitivePoly(f)$FFPOLY(GF5)
\end{verbatim}

```
3 2
(20) ? + 4? + 4? + 2
```

Type: Union(SparseUnivariatePolynomial PrimeField 5,....)
\begin{verbatim}
3 2
(21) ? + 2? + 3
Type: Union(SparseUnivariatePolynomial PrimeField 5,...)
\end{verbatim}

\begin{verbatim}
3 2
(22) ? + ? + 4? + 1
Type: SparseUnivariatePolynomial PrimeField 5
\end{verbatim}

\begin{verbatim}
3 2
(23) ? + ? + 4? + 3
Type: Union(SparseUnivariatePolynomial PrimeField 5,...)
\end{verbatim}
\begin{verbatim}
3 2
(24) 2 + 2? + 1
Type: Union(SparseUnivariatePolynomial PrimeField 5,...)
\end{verbatim}

\begin{verbatim}
5
(26) ? + %CZ
Type: SparseUnivariatePolynomial FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)
\end{verbatim}
\begin{verbatim}
(27) \end{verbatim}
\[5 + (CV + 1) + ((CV + 1)CZ + CV + 1) + 2 + (CV + 1)CZ + 1 \]
Type: SparseUnivariatePolynomial FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
(28) \end{verbatim}
\[4 + (CZ + CV + 1) + (CV CZ + CV + 1) + (CV + 1)CZ \]
Type: SparseUnivariatePolynomial FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)
\end{verbatim}
\end{patch}

\begin{patch}
\begin{verbatim}
(29) \end{verbatim}
\[GF2 := \text{PrimeField 2}; \bound{GF2} \]
\end{verbatim}
\end{patch}
\begin{verbatim}
GF2 := PrimeField 2;
F := FFX(GF2,12);
\end{verbatim}

\begin{verbatim}
f := createIrreduciblePoly(6)$FFPOLY(GF2);
\end{verbatim}

\begin{verbatim}
root := rootOfIrreduciblePoly(f)$FFPOLY2(F,GF2);
\end{verbatim}
Primary Decomposition of Ideals

— ug08.ht —

Axiom provides a facility for the primary decomposition of polynomial ideals over fields of characteristic zero. The algorithm and works in essentially two steps:

1. the problem is solved for 0-dimensional ideals by ‘‘generic’’ projection on the last coordinate
2. a ‘‘reduction process’’ uses localization and ideal quotients to reduce the general case to the 0-dimensional one.

The Axiom constructor \texttt{PolynomialIdeals} represents ideals with coefficients in any field and supports the basic ideal operations, including intersection, sum and quotient. \texttt{IdealDecompositionPackage} contains the specific operations for the primary decomposition and the computation of the radical of an ideal with polynomial coefficients in a field of characteristic 0 with an effective algorithm for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal generated by
\[x^2 + y^2 - 1 \]
(which defines a circle in the \mathbb{A}^2-plane) and the ideal
generated by $x^2 - y^2$ (corresponding to the
straight lines $x = y$ and $x = -y$).}{
\spadpaste{(n,m) : List DMP([x,y],FRAC INT) \bound{nm}}
}
\xtc{
\spadpaste{m := [x**2+y**2-1] \free{nm} \bound{m}}
}
\xtc{
\spadpaste{n := [x**2-y**2] \free{nm} \bound{n}}
}
% %
\xtc{
We find the equations defining the intersection of the two loci.
This correspond to the sum of the associated ideals.}{
\spadpaste{id := ideal m + ideal n \free{n m} \bound{id}}
}
% %
\xtc{
We can check if the locus contains only a finite number of points,
that is, if the ideal is zero-dimensional.}{
\spadpaste{zeroDim? id \free{id}}
}
\xtc{
\spadpaste{zeroDim?(ideal m) \free{m}}
}
\xtc{
\spadpaste{dimension ideal m \free{m}}
}
We can find polynomial relations among the generators
(f and g are the parametric equations of the knot).}{
\spadpaste{(f,g):DMP([x,y],FRAC INT) \bound{fg}}
}
\xtc{
\spadpaste{f := x**2-1 \free{fg} \bound{f}}
}
\xtc{
}
\spadpaste{g := x*(x**2-1) \free{fg} \bound{g}}
}
\xtc{
\spadpaste{relationsIdeal [f,g] \free{f g}}
}

\xtc{
We can compute the primary decomposition of an ideal.
}
\spadpaste{l: List DMP([x,y,z],FRAC INT) \bound{ll}}
}
\xtc{
\spadpaste{l:=[x**2+2*y**2,x*z**2-y*z,z**2-4] \free{ll} \bound{l}}
}
\xtc{
\spadpaste{ld:=primaryDecomp ideal l \free{l} \bound{ld}}
}
\xtc{
We can intersect back.
}
\spadpaste{reduce(intersect,ld) \free{ld}}
}
\xtc{
We can compute the radical of every primary component.
}
\spadpaste{reduce(intersect,[radical ld.i for i in 1..2]) \free{ld}}
}
\xtc{
Their intersection is equal to the radical of the ideal of \axiom{l}.
}
\spadpaste{radical ideal l \free{l}}
}

\endscroll
\autobuttons
\end{page}
\begin{spadcommand}(n,m) : List DMP([x,y,Frac INT])\end{spadcommand}

\begin{verbatim}
(2) \[x + y - 1 \]
Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)
\end{verbatim}

\begin{spadcommand}n := [x**2-y**2]\end{spadcommand}

\begin{verbatim}
(3) \[x - y \]
Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)
\end{verbatim}

\begin{spadcommand}id := ideal m + ideal n\end{spadcommand}

\begin{verbatim}
(4) \[x + y - 1 \]
\end{verbatim}

Type: PolynomialIdeals(Fraction Integer,DirectProduct(2,NonNegativeInteger),OrderedVariableList [x,y])
\tab{5}\spadcommand{id := ideal m + ideal n\free{n m }\bound{id }}

\indentrel{3}

\begin{verbatim}
(5) true
Type: Boolean
\end{verbatim}

\indentrel{-3}

\tab{5}\spadcommand{zeroDim? id\free{id }}

\indentrel{3}\begin{verbatim}
(6) false
Type: Boolean
\end{verbatim}

\indentrel{-3}

\tab{5}\spadcommand{dimension ideal m\free{m }}

\indentrel{3}\begin{verbatim}
(7) 1
Type: PositiveInteger
\end{verbatim}
\begin{patch}{ugProblemIdealPageEmpty7}
\begin{paste}{ugProblemIdealPageEmpty7}{ugProblemIdealPagePatch7}
\tab{5}\spadcommand{dimension ideal m\free{m}}
\end{paste}\end{patch}

\begin{patch}{ugProblemIdealPagePatch8}
\begin{paste}{ugProblemIdealPageFull8}{ugProblemIdealPageEmpty8}
\pastebutton{ugProblemIdealPageFull8}{\hidepaste}
\tab{5}\spadcommand{{(f,g)\colon DMP([x,y],\text{FRAC INT})\bound{fg}}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemIdealPageEmpty8}
\begin{paste}{ugProblemIdealPageEmpty8}{ugProblemIdealPagePatch8}
\pastebutton{ugProblemIdealPageEmpty8}{\showpaste}
\tab{5}\spadcommand{{(f,g)\colon DMP([x,y],\text{FRAC INT})\bound{fg}}}
\end{paste}\end{patch}

\begin{patch}{ugProblemIdealPagePatch9}
\begin{paste}{ugProblemIdealPageFull9}{ugProblemIdealPageEmpty9}
\pastebutton{ugProblemIdealPageFull9}{\hidepaste}
\tab{5}\spadcommand{{f := x**2-1\free{f}}}
\indentrel{3}\begin{verbatim}
2
(9) x - 1
Type: DistributedMultivariatePolynomial([x,y],\text{Fraction Integer})
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemIdealPageEmpty9}
\begin{paste}{ugProblemIdealPageEmpty9}{ugProblemIdealPagePatch9}
\pastebutton{ugProblemIdealPageEmpty9}{\showpaste}
\tab{5}\spadcommand{{f := x**2-1\free{f}}}
\end{paste}\end{patch}

\begin{patch}{ugProblemIdealPagePatch10}
\begin{paste}{ugProblemIdealPageFull10}{ugProblemIdealPageEmpty10}
\pastebutton{ugProblemIdealPageFull10}{\hidepaste}
\tab{5}\spadcommand{{g := x*(x**2-1)\free{g}}}
\indentrel{3}\begin{verbatim}
3
(10) x - x
Type: DistributedMultivariatePolynomial([x,y],\text{Fraction Integer})
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{spad}
g := x*(x**2-1)\end{spad}

\begin{spad}
relationsIdeal [f,g]
\end{spad}

\begin{verbatim}
(11) 2 3 2 2 3
[- %CY + %CX + %CX] | [%CX= x - 1,%CY= x - x]
Type: SuchThat(List Polynomial Fraction Integer,List Equation Polynomial Fraction Integer)
\end{verbatim}

\begin{spad}
l: List DMP([x,y,z],FRAC INT)
\end{spad}

\begin{verbatim}
2 2 2
(13) [x + 2y ,x z - y z,z - 4]
Type: List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)
\end{verbatim}
\begin{spad}
 \texttt{l:=\{x**2+2*y**2, x*z**2-y*z, z**2-4\}}\free{l}
\end{spad}

\begin{verbatim}
1 2 1 2
(14) \{[x + y, y, z + 2], [x - y, y, z - 2]\}
\end{verbatim}

\begin{spad}
 \texttt{ld:=primaryDecomp ideal l}\free{ld}
\end{spad}

\begin{verbatim}
2 2
(15) \{x - y z, y, z - 4\}
\end{verbatim}

\begin{spad}
 \texttt{reduce(intersect,ld)}\free{ld}
\end{spad}

\begin{verbatim}
2
(16) \{x,y,z - 4\}
\end{verbatim}
\text{\begin{verbatim}
2
(17) [x,y,z - 4]
Type: PolynomialIdeals(Fraction Integer,DirectProduct(3,NonNegativeInteger),OrderedVariableList [x,y,z],DistributedMultivariatePolynomial([x,y,z],Fraction Integer))
\end{verbatim}\end{patch}
As a sample use of Axiom’s algebraic number facilities, we compute the Galois group of the polynomial $p(x) = x^5 - 5x + 12$.

We would like to construct a polynomial $f(x)$ such that the splitting field of $p(x)$ is generated by one root of $f(x)$. First we construct a polynomial $r = r(x)$ such that one root of $r(x)$ generates the field generated by two roots of the polynomial $p(x)$. (As it will turn out, the field generated by two roots of $p(x)$ is, in fact, the splitting field of $p(x)$.)

From the proof of the primitive element theorem we know that if a and b are algebraic numbers, then the field $\mathbb{Q}(a,b)$ is equal to $\mathbb{Q}(a+kb)$ for an appropriately chosen integer k. In our case, we construct the minimal polynomial of $a[i] - a[j]$, where $a[i]$ and $a[j]$ are two roots of $p(x)$. We construct this polynomial using \texttt{resultant}. The main result we need is the following: If $f(x)$ is a polynomial with roots $a[1]...a[m]$ and $g(x)$ is a polynomial with roots $b[1]...b[n]$, then the polynomial $h(x) = \text{resultant}(f(y), g(x-y), y)$ is a polynomial of degree $m*n$ with roots $a[i] + b[j], 1 <= i <= m, 1 <= j <= n$.

For $f(x)$ we use the polynomial $p(x)$. For $g(x)$ we use the...
root of \(r(x) \) generates the field generated by two roots of the polynomial \(p(x) \).

(As it will turn out, the field generated by two roots of \(p(x) \) is, in fact, the splitting field of \(p(x) \).

From the proof of the primitive element theorem we know that if \(a \) and \(b \) are algebraic numbers, then the field \(\mathbb{Q}(a,b) \) is equal to \(\mathbb{Q}(a+kb) \) for an appropriately chosen integer \(k \).

In our case, we construct the minimal polynomial of \(a_i - a_j \), where \(a_i \) and \(a_j \) are two roots of \(p(x) \).

We construct this polynomial using \texttt{resultant}. The main result we need is the following:

If \(f(x) \) is a polynomial with roots \(a_1 \ldots a_m \) and \(g(x) \) is a polynomial with roots \(b_1 \ldots b_n \), then the polynomial \(h(x) = \text{resultant}(f(y), g(x-y), y) \) is a polynomial of degree \(m*n \) with roots \(a_i + b_j, i = 1 \ldots m, j = 1 \ldots n \).

\texttt{q := resultant(p(y), -p(y-x), y)}

The roots of \(q(x) \) are \(a_i - a_j, i \leq 1, j \leq 5 \).

Of course, there are five pairs \((i,j) \) with \(i = j \), so \(0 \) is a 5-fold root of \(q(x) \).

\texttt{q1 := exquo(q, x**5)}
Factor the polynomial \(q_1 \).

\[
\text{factoredQ := factor q1 \free{q1} \bound{factoredQ}}
\]

We see that \(q_1 \) has two irreducible factors, each of degree \(10 \). (The fact that the polynomial \(q_1 \) has two factors of degree \(10 \) is enough to show that the Galois group of the polynomial \(p(x) \) is the dihedral group of order \(10 \).\footnote{See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of Number Theory 20, 273-281 (1983). We do not assume the results of this paper, however, and we continue with the computation.} Note that the type of \(\text{factoredQ} \) is \(\text{Factored Polynomial Integer} \), that is, \(\text{Factored Polynomial Integer} \). This is a special data type for recording factorizations of polynomials with integer coefficients (see \(\text{Factored} \)).

\[
\text{We can access the individual factors using the operation}
\]

\[
\text{r := nthFactor(factoredQ,1) \free{factoredQ} \bound{r}}
\]

Consider the polynomial \(r = r(x) \). This is the minimal polynomial of the difference of two roots of \(p(x) \). Thus, the splitting field of \(p(x) \) contains a subfield of degree \(10 \).

We show that this subfield is, in fact, the splitting field of \(p(x) \) by showing that \(p(x) \) factors completely over this field.

\[
\text{First we create a symbolic root of the polynomial } r(x) \text{.}
\]

\[
\beta:AN := \text{rootOf(eval(r,x,b)) \free{r} \bound{beta}}
\]

\[
\text{We next tell Axiom to view } p(x) \text{ as a univariate polynomial in } x \text{ with algebraic number coefficients.}
\]

This is accomplished with this type declaration.

\[
\text{declareP := p::UP(x,INT)::UP(x,AN) \free{p} \bound{declareP}}
\]
Factor $p(x)$ over the field $\mathbb{Q}(\beta)$. (This computation will take some time!)

\[
\text{algFactors := factor(p,[\beta]) \free{declareP beta} \bound{algFactors}}
\]

When factoring over number fields, it is important to specify the field over which the polynomial is to be factored, as polynomials have different factorizations over different fields. When you use the operation \axiomFun{factor}, the field over which the polynomial is factored is the field generated by

1. the algebraic numbers that appear in the coefficients of the polynomial, and
2. the algebraic numbers that appear in a list passed as an optional second argument of the operation.

In our case, the coefficients of p are all rational integers and only β appears in the list, so the field is simply $\mathbb{Q}(\beta)$.

It was necessary to give the list $\alpha{\{\beta\}}$ as a second argument of the operation because otherwise the polynomial would have been factored over the field generated by its coefficients, namely the rational numbers.

We have shown that the splitting field of $p(x)$ has degree 10. Since the symmetric group of degree 5 has only one transitive subgroup of order 10, we know that the Galois group of $p(x)$ must be this group, the dihedral group of order 10. Rather than stop here, we explicitly compute the action of the Galois group on the roots of $p(x)$.

First we assign the roots of $p(x)$ as the values of five variables.
We can obtain an individual root by negating the constant coefficient of one of the factors of $p(x)$.

\begin{verbatim}
\spad{factor1 := nthFactor(algFactors,1) \free{algFactors} \bound{factor1}}
\end{verbatim}
\begin{verbatim}
\spad{root1 := -coefficient(factor1,0) \free{factor1} \bound{root1}}
\end{verbatim}

We can obtain a list of all the roots in this way.

\begin{verbatim}
\spad{roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5] \free{algFactors} \bound{roots}}
\end{verbatim}

The expression
\begin{verbatim}
- coefficient(nthFactor(algFactors, i), 0)
\end{verbatim}
is the ith root of $p(x)$ and the elements of roots are the ith roots of $p(x)$ as i ranges from 1 to 5.

\begin{verbatim}
Assign the roots as the values of the variables $a1,...,a5$.
\end{verbatim}
\begin{verbatim}
\spad{(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5) \free{roots} \bound{ais}}
\end{verbatim}

Next we express the roots of $r(x)$ as polynomials in β. We could obtain these roots by calling the operation \axiomFun{factor}(r, β) factors $r(x)$ over $\mathbb{Q}(eta)$. However, this is a lengthy computation and we can obtain the roots of $r(x)$ as differences of the roots $a1,...,a5$ of $p(x)$. Only ten of these differences are roots of $r(x)$ and the other ten are roots of the other irreducible factor of $q1$. We can determine if a given value is a root of $r(x)$ by evaluating $r(x)$ at that particular value. (Of course, the order in which factors are returned by the operation \axiomFun{factor} is unimportant and may change with different implementations of the operation. Therefore, we cannot predict in advance which differences are roots of $r(x)$)
and which are not.)

\begin{verbatim}
let's look at four examples (two are roots of r(x) and two are not).
}
\spadpaste{eval(r,x,a1 - a2) \free{ais}}
\begin{verbatim}
}
\spadpaste{eval(r,x,a1 - a3) \free{ais}}
\begin{verbatim}
}
\spadpaste{eval(r,x,a1 - a4) \free{ais}}
\begin{verbatim}
}
\spadpaste{eval(r,x,a1 - a5) \free{ais}}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
%
\end{verbatim}
\begin{verbatim}
% Take one of the differences that was a root of r(x) and assign it to the variable \axiom{bb}.
\begin{verbatim}
For example, if \axiom{eval(r,x,a1 - a4)} returned \axiom{0}, you would enter this.
}
\spadpaste{bb := a1 - a4 \free{ais} \bound{bb}}
\end{verbatim}
\begin{verbatim}
Of course, if the difference is, in fact, equal to the root \axiom{beta}, you should choose another root of r(x).
\begin{verbatim}
automorphisms of the splitting field are given by mapping a generator of the field, namely \axiom{beta}, to other roots of its minimal polynomial. Let's see what happens when \axiom{beta} is mapped to \axiom{bb}.
%
\end{verbatim}
\end{verbatim}
\begin{verbatim}
We compute the images of the roots \axiom{a1,...,a5} under this automorphism:
}
\spadpaste{aa1 := subst(a1,beta = bb) \free{beta bb ais} \bound{aa1}}
\end{verbatim}
\begin{verbatim}
}
\spadpaste{aa2 := subst(a2,beta = bb) \free{beta bb ais} \bound{aa2}}
\end{verbatim}
\begin{verbatim}
}
\spadpaste{aa3 := subst(a3,beta = bb) \free{beta bb ais} \bound{aa3}}
\end{verbatim}
\end{verbatim}
% Of course, the values $aa_1,...,aa_5$ are simply a permutation of the values $a_1,...,a_5$. Of course, the values $a_1,...,a_5$ are simply a permutation of the values $aa_1,...,aa_5$. Proceeding in this fashion, you can find the values of $aa_1,...,aa_5$. You should use the Clef line editor. See \downlink{``Clef''}{ugAvailCLEFFPage} in Section 1.1.1 for more information about Clef. You have represented the automorphism $beta -> bb$ as a permutation of the roots $a_1,...,a_5$. If you wish, you can repeat this computation for all the roots of $r(x)$ and represent the Galois group of $p(x)$ as a subgroup of the symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of
\(p(x) = x^4 + 2x^3 - 2x^2 - 3x + 1 \)

is the dihedral group of order eight.

(The splitting field of this polynomial is the Hilbert class field of the quadratic field \(\mathbb{Q}(\sqrt{145}) \).)

\item (2.) Show that the Galois group of \(p(x) = x^6 + 108 \) has order 6 and is isomorphic to \(S_3 \), the symmetric group on three letters.

(The splitting field of this polynomial is the splitting field of \(x^3 - 2 \).)

\enditems

\indent{0}

\endscroll

\autobuttons

\end{page}

\begin{patch}{ugProblemGaloisPagePatch1}
\begin{patch}{ugProblemGaloisPageFull1}{ugProblemGaloisPageEmpty1}
\patchbutton{ugProblemGaloisPageFull1}{hidepaste}
\indentrel{3}\begin{verbatim}
(1) x - 5x + 12
Type: Polynomial Integer
\end{verbatim}
\end{patch}
\end{patch}

\begin{patch}{ugProblemGaloisPageEmpty1}
\begin{patch}{ugProblemGaloisPageFull2}{ugProblemGaloisPageEmpty2}
\patchbutton{ugProblemGaloisPageFull2}{hidepaste}
\indentrel{3}\begin{verbatim}
(2)
25 21 17 15 13
x - 50x - 2375x + 90000x - 5000x +
 11 9 7 5
2700000x + 250000x + 18000000x + 64000000x
Type: Polynomial Integer
\end{verbatim}
\end{patch}
\end{patch}
\spadcommand{q := \text{resultant} (\text{eval}(p, x, y), -\text{eval}(p, x, y-x), y)}
\begin{verbatim}
20 16 12 10 8 6
x - 50x - 2375x + 90000x - 5000x + 2700000x
+ 4
250000x + 18000000x + 64000000
\end{verbatim}

\spadcommand{q1 := \text{exquo}(q, x^5)}
\begin{verbatim}
10 8 6 4 2
(x - 10x - 75x + 1500x - 5500x + 16000) *
10 8 6 4 2
(x + 10x + 125x + 500x + 2500x + 4000)
\end{verbatim}

\spadcommand{\text{factor}(q1)}
\begin{verbatim}
10 8 6 4 2
(x - 10x - 75x + 1500x - 5500x + 16000)
+ 10 8 6 4 2
(x + 10x + 125x + 500x + 2500x + 4000)
\end{verbatim}
\begin{verbatim}
10 8 6 4 2
(5) x - 10x - 75x + 1500x - 5500x + 16000
 Type: Polynomial Integer
\end{verbatim}

\begin{verbatim}
5
(7) x - 5x + 12
 Type: UnivariatePolynomial(x,AlgebraicNumber)
\end{verbatim}
\begin{verbatim}
(8)
x +
\indentrel{3}
\begin{verbatim}
9 8 7 6 5
- 85b - 116b + 780b + 2640b + 14895b
+ 4 3 2
- 8820b - 127050b - 327000b - 405200b
+ 2062400
/ 1339200
*
8 6 4 2
- 17b + 156b + 2979b - 25410b - 14080
(x +)
66960
*
x +
\indentrel{3}
\begin{verbatim}
8 6 4 2
143b - 2100b - 10485b + 290550b - 334800b
+ - 960800
/ 669600
*
x +
\indentrel{3}
\begin{verbatim}
8 6 4 2
143b - 2100b - 10485b + 290550b + 334800b
+ - 960800
/ 669600
*
x +
\indentrel{3}
\begin{verbatim}
9 8 7 6 5
85b - 116b - 780b + 2640b - 14895b
+ 4 3 2
- 8820b + 127050b - 327000b + 405200b
+ 2062400
\end{verbatim}
\end{verbatim}
\end{verbatim}

/ 1339200
Type: Factored UnivariatePolynomial(x,AlgebraicNumber)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPageEmpty8}
\begin{paste}{ugProblemGaloisPageEmpty8}{ugProblemGaloisPagePatch8}
\pastebutton{ugProblemGaloisPageEmpty8}{\showpaste}
\tab{5}\spadcommand{algFactors := factor(p,[beta])}\free{declareP beta }\bound{algFactors }
\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPagePatch9}
\begin{paste}{ugProblemGaloisPageFull9}{ugProblemGaloisPageEmpty9}
\pastebutton{ugProblemGaloisPageFull9}{\hidepaste}
\tab{5}\spadcommand{factor(p)\free{declareP }}
\indentrel{3}\begin{verbatim}
5
(9) x - 5x + 12
Type: Factored UnivariatePolynomial(x,AlgebraicNumber)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPageEmpty9}
\begin{paste}{ugProblemGaloisPageEmpty9}{ugProblemGaloisPagePatch9}
\pastebutton{ugProblemGaloisPageEmpty9}{\showpaste}
\tab{5}\spadcommand{factor(p)\free{declareP }}
\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPagePatch10}
\begin{paste}{ugProblemGaloisPageFull10}{ugProblemGaloisPageEmpty10}
\pastebutton{ugProblemGaloisPageFull10}{\hidepaste}
\tab{5}\spadcommand{factor1 := nthFactor(algFactors,1)\free{algFactors }\bound{factor1 }}
\indentrel{3}\begin{verbatim}
(10) x
+ 9 8 7 6 5
 - 86b - 116b + 780b + 2640b + 14895b
 + 4 3 2
 - 8820b - 127050b - 327000b - 405200b + 2062400
/
1339200
Type: UnivariatePolynomial(x,AlgebraicNumber)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPageEmpty10}
\begin{paste}{ugProblemGaloisPageEmpty10}{ugProblemGaloisPagePatch10}
\end{patch}
\spadcommand{factor1 := nthFactor(algFactors,1)\free{algFactors }\bound{factor1 }}

\spadcommand{root1 := -coefficient(factor1,0)\free{factor1 }\bound{root1 }}

\begin{verbatim}
(11)
9 8 7 6 5 4
85b + 116b - 780b - 2640b - 14895b + 8820b
+ 3 2
127050b + 327000b + 405200b - 2062400
/
1339200

Type: AlgebraicNumber
\end{verbatim}

\spadcommand{roots := [-coefficient(nthFactor(algFactors,i),0)\free{factor1 }\bound{root1 }}

\begin{verbatim}
(12)
[9 8 7 6 5 4
85b + 116b - 780b - 2640b - 14895b + 8820b
+ 3 2
127050b + 327000b + 405200b - 2062400
/
1339200
,
8 6 4 2
17b - 156b - 2979b + 25410b + 14080
,
66960
8 6 4 2
- 143b + 2100b + 10485b - 290550b + 334800b
+
\begin{verbatim}
960800
/ 669600,
8 6 4 2
- 143b + 2100b + 10485b - 290550b - 334800b
+ 960800
/ 669600,
9 8 7 6 5
- 85b + 116b + 780b - 2640b + 14895b
+ 4 3 2
8820b - 127050b + 327000b - 405200b - 2062400
/ 1339200
\end{verbatim}
Type: List AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPagePatch12}
\begin{paste}{ugProblemGaloisPageFull12}{ugProblemGaloisPageEmpty12}
\pastebutton{ugProblemGaloisPageFull12}{\showpaste}
\indentrel{3}\spadcommand{roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5]}\free{algFactors }\bound{roots }
\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPagePatch13}
\begin{paste}{ugProblemGaloisPageFull13}{ugProblemGaloisPageEmpty13}
\pastebutton{ugProblemGaloisPageFull13}{\hidepaste}
\indentrel{3}\spadcommand{(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5)}\free{roots }\bound{ais }
\end{paste}\end{patch}

\begin{verbatim}
(13)
9 8 7 6 5 4
- 85b + 116b + 780b - 2640b + 14895b + 8820b
+ 3 2
- 127050b + 327000b - 405200b - 2062400
/ 1339200
\end{verbatim}
Type: AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGaloisPagePatch13}
\begin{paste}{ugProblemGaloisPageFull13}{ugProblemGaloisPageEmpty13}
\pastebutton{ugProblemGaloisPageFull13}{\hidepaste}
\end{patch}

\begin{spad}{ugProblemGaloisPagePatch13}
\spad{(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5)\free{roots}}
\end{spad}

\begin{spad}{ugProblemGaloisPagePatch14}
\spad{eval(r,x,a1 - a2)\free{ais}}
\end{spad}

\begin{spad}{ugProblemGaloisPagePatch15}
\spad{eval(r,x,a1 - a3)\free{ais}}
\end{spad}

\begin{spad}{ugProblemGaloisPagePatch16}
\spad{eval(r,x,a1 - a4)\free{ais}}
\end{spad}
(16) 0
\begin{verbatim}
Type: Polynomial AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPageEmpty16}
\begin{paste}{ugProblemGaloisPageEmpty16}{ugProblemGaloisPagePatch16}
\pastebutton{ugProblemGaloisPageEmpty16}{\showpaste}
\begin{verbatim}
8 6 4 2
405b + 3450b - 19875b - 198000b - 588000
(17)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPagePatch17}
\begin{paste}{ugProblemGaloisPageFull17}{ugProblemGaloisPageEmpty17}
\pastebutton{ugProblemGaloisPageFull17}{\hidepaste}
\begin{verbatim}
8 6 4 2
405b + 3450b - 19875b - 198000b - 588000
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPageEmpty17}
\begin{paste}{ugProblemGaloisPageEmpty17}{ugProblemGaloisPagePatch17}
\pastebutton{ugProblemGaloisPageEmpty17}{\showpaste}
\begin{verbatim}
9 8 7 6 5 4
85b + 402b - 780b - 6840b - 14895b - 12150b +
3 2
127050b + 908100b + 1074800b - 3984000 / 1339200
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPagePatch18}
\begin{paste}{ugProblemGaloisPageFull18}{ugProblemGaloisPageEmpty18}
\pastebutton{ugProblemGaloisPageFull18}{\hidepaste}
\begin{verbatim}
9 8 7 6 5 4
85b + 402b - 780b - 6840b - 14895b - 12150b +
3 2
127050b + 908100b + 1074800b - 3984000 / 1339200
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPageEmpty18}
\begin{paste}{ugProblemGaloisPageEmpty18}{ugProblemGaloisPagePatch18}
\pastebutton{ugProblemGaloisPageEmpty18}{\showpaste}
\end{patch}
\begin{verbatim}
Type: AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPagePatch18}
\begin{paste}{ugProblemGaloisPageFull18}{ugProblemGaloisPageEmpty18}
\pastebutton{ugProblemGaloisPageFull18}{\hidepaste}
\begin{verbatim}
9 8 7 6 5 4
85b + 402b - 780b - 6840b - 14895b - 12150b +
3 2
127050b + 908100b + 1074800b - 3984000 / 1339200
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugProblemGaloisPageEmpty18}
\begin{paste}{ugProblemGaloisPageEmpty18}{ugProblemGaloisPagePatch18}
\pastebutton{ugProblemGaloisPageEmpty18}{\showpaste}
\end{patch}
\begin{verbatim}
Type: AlgebraicNumber
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(19)
 8 6 4 2
- 143b + 2100b + 10485b - 290550b + 334800b
+ 960800
/ 669600
 Type: AlgebraicNumber
\end{verbatim}

\begin{verbatim}
(20)
 9 8 7 6 5 4
- 85b + 116b + 780b - 2640b + 14895b + 8820b
+ 3 2
- 127050b + 327000b - 406200b - 2062400
/ 1339200
 Type: AlgebraicNumber
\end{verbatim}
\(\text{aa3 := subst(a3, \beta = \beta b) free(\beta b a i s) bound(\text{aa3})} \)

\[
\begin{verbatim}
\((21) \)
\begin{align*}
9 & 8 & 7 & 6 & 5 & 4 \\
85b & + 116b & - 780b & - 2640b & - 14895b & + 8820b \\
+ & 3 & 2 \\
127050b & + 327000b & + 405200b & - 2062400 \\
/ & 1339200
\end{align*}
\end{verbatim}
Type: AlgebraicNumber
\end{verbatim}
\]
\begin{verbatim}
\(\text{aa4 := subst(a4, \beta = \beta b) free(\beta b a i s) bound(\text{aa4})} \)
\end{verbatim}

\[
\begin{verbatim}
\((22) \)
\begin{align*}
8 & 6 & 4 & 2 \\
- 143b & + 2100b & + 10485b & - 290550b & - 334800b \\
+ & 960800 \\
/ & 669600
\end{align*}
\end{verbatim}
Type: AlgebraicNumber
\end{verbatim}
\]
\begin{verbatim}
\(\text{aa5 := subst(a5, \beta = \beta b) free(\beta b a i s) bound(\text{aa5})} \)
\end{verbatim}

\[
\begin{verbatim}
\((23) \)
\begin{align*}
8 & 6 & 4 & 2 \\
17b & - 156b & - 2979b & + 25410b & + 14080
\end{align*}
\end{verbatim}

\]
Type: AlgebraicNumber

(23)

66960

Type: Boolean

(24) false

(25) false

(26) true
Non-Associative Algebras and Genetic Laws

⇒ “notitle” (OctonionXmpPage) 3.81 on page 1044
Non-Associative Algebras and Genetic Laws

Many algebraic structures of mathematics and Axiom have a multiplication operation \(\texttt{\textast} \) that satisfies the associativity law
\[
\texttt{a*(b*c) = (a*b)*c}
\]
for all \(\texttt{a} \), \(\texttt{b} \) and \(\texttt{c} \).

The octonions (see \downlink{Octonion}{OctonionXmpPage}\ignore{Octonion}) are a well known exception.

There are many other interesting non-associative structures, such as the class of Lie algebras. \footnote{Two Axiom implementations of Lie algebras are \spadtype{LieSquareMatrix} and \spadtype{FreeNilpotentLie}.} Lie algebras can be used, for example, to analyse Lie symmetry algebras of partial differential equations.

In this section we show a different application of non-associative algebras, the modelling of genetic laws.

The Axiom library contains several constructors for creating non-associative structures, ranging from the categories \spadtype{Monad}, \spadtype{NonAssociativeRng}, and \spadtype{FramedNonAssociativeAlgebra}, to the domains \spadtype{AlgebraGivenByStructuralConstants} and \spadtype{GenericNonAssociativeAlgebra}.

Furthermore, the package \spadtype{AlgebraPackage} provides operations for analysing the structure of such algebras. \footnote{The interested reader can learn more about these aspects of the Axiom library from the paper ‘Computations in Algebras of Finite Rank,’ by Johannes Grabmeier and Robert Wisbauer, Technical Report, IBM Heidelberg Scientific Center, 1992.}

Mendel’s genetic laws are often written in a form like
\[
\texttt{Aa * Aa = (1/4)*AA + (1/2)*Aa + (1/4)*aa.}
\]
The implementation of general algebras in Axiom allows us to use this as the definition for multiplication in an algebra. Hence, it is possible to study questions of genetic inheritance using Axiom. To demonstrate this more precisely, we discuss one example from a monograph of \texttt{A. W"orz-Busekros}.\footnote{A. Woerz-Busekros},

\begin{verbatim}
\begin{page}{ugProblemGeneticPage}
\beginscroll

Mendel’s genetic laws are often written in a form like
\[
\texttt{Aa * Aa = (1/4)*AA + (1/2)*Aa + (1/4)*aa.}
\]

The implementation of general algebras in Axiom allows us to use this as the definition for multiplication in an algebra. Hence, it is possible to study questions of genetic inheritance using Axiom. To demonstrate this more precisely, we discuss one example from a monograph of \texttt{A. W"orz-Busekros}.\footnote{A. Woerz-Busekros},
\end{verbatim}
where you can also find a general setting of this theory.\footnote{\textit{Wörz-Busekros}, A., \textit{Algebras in Genetics}, Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980). In particular, see example 1.3.}

We assume that there is an infinitely large random mating population. Random mating of two gametes \(a_i\) and \(a_j\) gives zygotes \(a_ia_j\), which produce new gametes.

In classical Mendelian segregation we have
\[
a_ia_j = \frac{1}{2}a_i + \frac{1}{2}a_j
\]
In general, we have
\[
\sum_{k=1}^{n} \gamma_{i,j}^k a_k
\]
The segregation rates \(\gamma_{i,j}\) are the structural constants of an \(n\)-dimensional algebra.

This is provided in Axiom by the constructor \spadtype{AlgebraGivenByStructuralConstants} (abbreviation \spadtype{ALGSC}).

Consider two coupled autosomal loci with alleles \(A\), \(a\), \(B\), and \(b\), building four different gametes
\[
a_1 := AB, a_2 := Ab, a_3 := aB, a_4 := ab
\]
The zygotes \(a_ia_j\) produce gametes \(a_i\) and \(a_j\) with classical Mendelian segregation.

Zygote \(a_1a_4\) undergoes transition to \(a_2a_3\) and vice versa with probability \(\theta\) is provided in Axiom by the constructor \spadtype{AlgebraGivenByStructuralConstants} (abbreviation \spadtype{ALGSC}).

\xtc{
Define a list of four-by-four matrices giving the segregation rates.
We use the value \(1/10\) for \(\theta\).
}

\spad{segregationRates : List SquareMatrix(4,FRAC INT) :=
 matrix [[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0], [1/2, 1/20, 0, 0], [9/20, 0, 0, 0]],
 matrix [[0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0]],
 matrix [[0, 0, 1/2, 9/20], [0, 0, 1/20, 1/2], [9/20, 0, 0, 0], [1/2, 1/20, 1, 1/2]],
 matrix [[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20, 0, 0], [0, 1/20, 0, 0]]}
Choose the appropriate symbols for the basis of gametes,

```spadpaste```
```
\texttt{gametes := ['AB,'Ab,'aB,'ab] \bound{gametes}}
```
```
```
```
Define the algebra.

```spadpaste```
```
\texttt{A := ALGSC(FRAC INT, 4, gametes, segregationRates); \bound{A}\free{gametes, segregationRates}}
```
```
```
```
What are the probabilities for zygote $$a_1a_4$$ to produce the different gametes?

```spadpaste```
```
\texttt{a := basis()\$A; a.1*a.4}
```
```
```
```
Elements in this algebra whose coefficients sum to one play a distinguished role. They represent a population with the distribution of gametes reflected by the coefficients with respect to the basis of gametes.

Random mating of different populations $$x$$ and $$y$$ is described by their product $$x*y$$.

```spadpaste```
```
\texttt{commutative?()\$A \free{A}}
```
```
```
In general, it is not associative.

```spadpaste```
```
\texttt{associative?()\$A \free{A}}
```
```
```
```
Random mating within a population $$x$$ is described by $$x*x.$$ The next generation is $$(x*x)*(x*x).$$

Use decimal numbers to compare the distributions more easily.

```spadpaste```
```
\texttt{x : ALGSC(DECIMAL, 4, gametes, segregationRates) :=}
```
convert [3/10, 1/5, 1/10, 2/5] \{_\text{bound}\{x\}\{_\text{free}\}\text{gametes, segregationRates}\}

To compute directly the gametic distribution in the fifth generation, we use \texttt{spadfun\{plenaryPower\}}.

\texttt{plenaryPower(x,5) \{_\text{free}\}\text{x}}

We now ask two questions:
Does this distribution converge to an equilibrium state?
What are the distributions that are stable?

This is an invariant of the algebra and it is used to answer the first question.
The new indeterminates describe a symbolic distribution.

\texttt{q := leftRankPolynomial() \{_\text{bound}\}\text{q} \{_\text{free}\}\text{gametes, segregationRates}}

Because the coefficient \texttt{9/20} has absolute value less than 1, all distributions do converge, by a theorem of this theory.

\texttt{factor(q :: POLY FRAC INT) \{_\text{free}\}\text{q}}

The second question is answered by searching for idempotents in the algebra.

\texttt{cI := conditionsForIdempotents() \{_\text{bound}\}\text{cI} \{_\text{free}\}\text{gametes, segregationRates}}

Solve these equations and look at the first solution.

\texttt{gbs:= groebnerFactorize cI; gbs.1\{_\text{bound}\}\text{gbs}}

Further analysis using the package \texttt{PolynomialIdeals} shows that there is a two-dimensional variety of equilibrium states and all other solutions are contained in it.

Choose one equilibrium state by setting two indeterminates to concrete values.
\{\spadpaste{sol := solve concat(gbs.1,[\%x1-1/10,\%x2-1/10])}
\bound{sol} \free{gbs}}
\}
\xtc{
\spadpaste{e : A := represents reverse (map(rhs, sol.1)
:: List FRAC INT)}\bound{e} \free{A, sol}}
\}
\xtc{
Verify the result.
}\{\spadpaste{e*e-e \free{e}}\}
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugProblemGeneticPagePatch1}
\begin{paste}{ugProblemGeneticPageFull1}{ugProblemGeneticPageEmpty1}
\pastebutton{ugProblemGeneticPageFull1}{\hidepaste}
\tab{5}\spadcommand{segregationRates : List SquareMatrix(4,FRAC INT) := [matrix
[[1, 1/2, 1/2, 9/20],
[1/2, 0, 0, 0],
[1/2, 0, 1/20, 1/2],
[9/20, 1/2, 1/2, 1]]
}\bound{segregationRates}}

(1)
\[
\begin{array}{cccccc}
1 & 1 & 9 & 1 & 1 & 1 \\
2 & 2 & 20 & 2 & 20 & 20 \\
1 & 1 & 1 & 9 & 1 & 9 \\
0 & 0 & 1 & 0 & 0 & 0 \\
2 & 20 & 2 & 20 & 2 & 20 \\
\end{array}
\]
\[
\begin{array}{cccccc}
1 & 1 & 9 & 1 & 9 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
2 & 20 & 20 & 2 & 20 & 2 \\
9 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
20 & 20 & 20 & 20 & 20 & 20 \\
\end{array}
\]
\[
\begin{array}{cccc}
9 & 0 & 0 \\
20 & \\
\end{array}
\]
\[
\begin{array}{cccc}
1 & 1 \\
0 & 0 \\
20 & 2 \\
\end{array}
\]
\end{patch}
\begin{verbatim}
1 1 1
1
20 2 2
\end{verbatim}
Type: List SquareMatrix(4,Fraction Integer)
\end{verbatim}
\end{patch}

\begin{patch}{ugProblemGeneticPageEmpty1}
\begin{paste}{ugProblemGeneticPageEmpty1}{ugProblemGeneticPagePatch1}
\pastebutton{ugProblemGeneticPageEmpty1}{
\showpaste}
\tab{5}\spadcommand{segregationRates : List SquareMatrix(4,FRAC INT) := \[matrix \[
[1, 1/2, 1/2, 9/20],
[1/2, 0, 1/20, 1/2],
[1/20, 0, 1/2, 1/2],
[9/20, 1/2, 1/2, 1] \] \]
\bound{segregationRates }}
\end{paste}
\end{patch}

\begin{patch}{ugProblemGeneticPagePatch2}
\begin{paste}{ugProblemGeneticPageFull2}{ugProblemGeneticPageEmpty2}
\pastebutton{ugProblemGeneticPageFull2}{
\hidepaste}
\tab{5}\spadcommand{gametes := ['AB,'Ab,'aB,'ab]\bound{gametes }}
\indentrel{3}\begin{verbatim}
(2) [AB,Ab,aB,ab]
Type: List OrderedVariableList [AB,Ab,aB,ab]
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugProblemGeneticPagePatch3}
\begin{paste}{ugProblemGeneticPageFull3}{ugProblemGeneticPageEmpty3}
\pastebutton{ugProblemGeneticPageFull3}{
\hidepaste}
\tab{5}\spadcommand{A := ALGSC(FRAC INT, 4, gametes, segregationRates);\bound{A }\free{gametes segregationRates }}
\indentrel{3}\begin{verbatim}
Type: Domain
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugProblemGeneticPagePatch4}
\begin{paste}{ugProblemGeneticPageFull4}{ugProblemGeneticPageEmpty4}
\pastebutton{ugProblemGeneticPageFull4}{
\hidepaste}
\tab{5}\spadcommand{a := basis()$A; a.1*a.4}
\indentrel{3}\begin{verbatim}
\end{verbatim}
\end{patch}
\begin{verbatim}
(4) \(ab + aB + Ab + AB \\
20 20 20 20
\end{verbatim}

Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,\([AB,Ab,aB,ab\],\([\text{MATRIX,MATRIX,MATRIX,MATRIX}\])
\end{verbatim}

\begin{verbatim}
(5) \text{true} \\
Type: \text{Boolean}
\end{verbatim}

\begin{verbatim}
(6) \text{false} \\
Type: \text{Boolean}
\end{verbatim}
\begin{verbatim}
(7) 0.4ab + 0.1aB + 0.2Ab + 0.3AB
Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],[MATRIX,MATRIX,MATRIX,MATRIX])
\end{verbatim}

\begin{verbatim}
(8) 0.36561ab + 0.13439aB + 0.23439Ab + 0.26561AB
Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],[MATRIX,MATRIX,MATRIX,MATRIX])
\end{verbatim}

\begin{verbatim}
(9) 3 29 29 29 29 2
 Y + (- %x4 - %x3 - %x2 - %x1)Y
 20 20 20 20 20
 +
 9 2 9 9 9 9 2
 %x4 + (%x3 + %x2 + %x1)%x4 + %x3
 20 10 10 10 10 20
 +
 9 2 9 9 9 2
 (%x2 + %x1)%x3 + %x2 + %x1 %x2
 10 10 20 10 20
 +
 9 2
 %x1
 20
\end{verbatim}
* Y
Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugProblemGeneticPageEmpty9}
\begin{paste}{ugProblemGeneticPageEmpty9}{ugProblemGeneticPagePatch9}{\showpaste}
\tab{5}\spadcommand{q := leftRankPolynomial()$GCNAALG(FRAC INT, 4, gametes, segregationRates) :: UP(Y, POLY FRAC INT)}
\free{q}
\end{paste}\end{patch}

\begin{patch}{ugProblemGeneticPagePatch10}
\begin{paste}{ugProblemGeneticPageFull10}{ugProblemGeneticPageEmpty10}{\hidepaste}
\tab{5}\spadcommand{factor(q :: POLY FRAC INT)}
\free{q}
\end{paste}\end{patch}

\begin{patch}{ugProblemGeneticPageEmpty10}
\begin{paste}{ugProblemGeneticPageEmpty10}{ugProblemGeneticPagePatch10}{\showpaste}
\tab{5}\spadcommand{factor(q :: POLY FRAC INT)}
\free{q}
\end{paste}\end{patch}

\begin{patch}{ugProblemGeneticPagePatch11}
\begin{paste}{ugProblemGeneticPageFull11}{ugProblemGeneticPageEmpty11}{\hidepaste}
\tab{5}\spadcommand{cI := conditionsForIdempotents()$GCNAALG(FRAC INT, 4, gametes, segregationRates)}
\free{cI}
\end{paste}\end{patch}
\begin{verbatim}
(12)
[\$x4 + \$x3 + \$x2 + \$x1 - 1, \\
2
(\$x2 + \$x1)\$x3 + \$x1 \$x2 + \$x1 - \$x1]
\end{verbatim}

\begin{verbatim}
(13)
[[\$x4 = , \$x3 = , \$x2 = , \$x1 =]]
\end{verbatim}

\begin{verbatim}
(14)
[[\$x4 = , \$x3 = , \$x2 = , \$x1 =]]
\end{verbatim}

\spadcommand{\begin{verbatim}
2 2 1 1
(14) \texttt{ab + aB + Ab + AB}
 5 5 10 10
\end{verbatim}
\end{verbatim}}

\indentrel{-3}\begin{verbatim}
\end{verbatim}

\begin{verbatim}
(15) 0
\end{verbatim}

\indentrel{-3}\begin{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}
Chapter 13

Users Guide Chapter 10 (ug10.ht)

Interactive Programming

⇒ “notitle” (ugAppGraphicsPage) 20 on page 2589
⇒ “notitle” (ugIntProgDrawingPage) 13 on page 2338
⇒ “notitle” (ugIntProgRibbonPage) 13 on page 2344
⇒ “notitle” (ugIntProgColorPage) 13 on page 2347
⇒ “notitle” (ugIntProgPLCPage) 13 on page 2348
⇒ “notitle” (ugIntProgColorArrPage) 13 on page 2355
⇒ “notitle” (ugIntProgVecFieldsPage) 13 on page 2357
⇒ “notitle” (ugIntProgCompFunsPage) 13 on page 2361
⇒ “notitle” (ugIntProgFunctionsPage) 13 on page 2364
⇒ “notitle” (ugIntProgNewtonPage) 13 on page 2366
— ug10.ht —

\begin{page}{ugIntProgPage}{10. Interactive Programming}
\begin{scroll}
Programming in the interpreter is easy. So is the use of Axiom’s graphics facility. Both are rather flexible and allow you to use them for many interesting applications. However, both require learning some basic ideas and skills.

All graphics examples in the \Gallery{} section are either produced directly by interactive commands or by interpreter programs. Four of these programs are introduced here.
By the end of this chapter you will know enough about graphics and programming in the interpreter to not only understand all these examples, but to tackle interesting and difficult problems on your own.

Appendix G lists all the remaining commands and programs used to create these images.

Drawing Ribbons Interactively

We begin our discussion of interactive graphics with the creation of a useful facility: plotting ribbons of two-graphs in three-space.
Suppose you want to draw the twodim{} graphs of \(f_i(x) \), where \(1 \leq i \leq n \), all over some fixed range of \(x \).

One approach is to create a twodim{} graph for each one, then superpose one on top of the other.

What you will more than likely get is a jumbled mess.

Even if you make each function a different color, the result is likely to be confusing.

A better approach is to display each of the \(f_i(x) \) in three dimensions as a ‘ribbon’ of some appropriate width along the \(y \)-direction, laying down each ribbon next to the previous one.

A ribbon is simply a function of \(x \) and \(y \) depending only on \(x \).

We illustrate this for \(f_i(x) \) defined as simple powers of \(x \) for \(x \) ranging between \(-1\) and \(1\).

\begin{enumerate}
\item Draw the ribbon for \(z = x^2 \).
\item Re-draw the ribbon, but with option \(\text{var2Steps == 1} \) so that only \(\text{var2Steps == 1} \) step is computed in the \(y \)-direction.
\end{enumerate}

The operation has created a viewport, that is, a graphics window on your screen.
We assigned the viewport to \spad{vp} and now we manipulate its contents.

Graphs are objects, like numbers and algebraic expressions. You may want to do some experimenting with graphs. For example, say
\begin{verbatim}
showRegion(vp, "on")
\end{verbatim}
to put a bounding box around the ribbon. Try it! Issue \spad{rotate(vp, -45, 90)} to rotate the figure $\mathcal{\text{\scriptsize -45}}$ longitudinal degrees and $\mathcal{\text{\scriptsize 90}}$ latitudinal degrees.

\psXtc{
Here is a different rotation. This turns the graph so you can view it along the $\mathcal{\text{\scriptsize y}}$-axis.
}{
\spadpaste{rotate(vp, 0, -90)}
\bound{d3}
\free{d1}
}{
\epsffile[0 0 295 295]{../ps/ribbon2r.ps}
}

There are many other things you can do. In fact, most everything you can do interactively using the \threedim{} control panel (such as translating, zooming, resizing, coloring, perspective and lighting selections) can also be done directly by operations (see \downlink{``Graphics''}{ugGraphPage} in Chapter 7\ignore{ugGraph} for more details).

When you are done experimenting, say \spad{reset(vp)} to restore the picture to its original position and settings.

Let’s add another ribbon to our picture---one for x^3. Since $\mathcal{\text{\scriptsize y}}$ ranges from $\mathcal{\text{\scriptsize 0}}$ to $\mathcal{\text{\scriptsize 1}}$ for the first ribbon, now let $\mathcal{\text{\scriptsize y}}$ range from $\mathcal{\text{\scriptsize 1}}$ to $\mathcal{\text{\scriptsize 2}}$. This puts the second ribbon next to the first one.

How do you add a second ribbon to the viewport? One method is to extract the ‘‘space’’ component from the viewport using the operation \spadfunFrom{subspace}{ThreeDimensionalViewport}. You can think of the space component as the object inside the window (here, the ribbon).
Let's call it \spad{sp}.
To add the second ribbon, you draw the second ribbon using the option \spad{space == sp}.

\xtc{
Extract the space component of \spad{vp}.
}
{\spadpaste{sp := subspace(vp)\bound{d5}\free{d1}}}

\psXtc{
Add the ribbon for \\
$\spad{x^3}$ alongside that for \\
$\spad{x^2}$.
}
{\graphpaste{vp := draw(x**3,x=-1..1,y=1..2,var2Steps==1, space==sp) \bound{d6}\free{d5}}}
{\epsffile[0 0 295 295]{../ps/ribbons.ps}}

Unless you moved the original viewport, the new viewport covers the old one.
You might want to check that the old object is still there by moving the top window.

Let's show quadrilateral polygon outlines on the ribbons and then enclose the ribbons in a box.

\psXtc{
Show quadrilateral polygon outlines.
}
{\spadpaste{drawStyle(vp,"shade");outlineRender(vp,"on") \bound{d10}\free{d6}}}
{\epsffile[0 0 295 295]{../ps/ribbons2.ps}}

\psXtc{
Enclose the ribbons in a box.
}
{\spadpaste{rotate(vp,20,-60); showRegion(vp,"on")\bound{d11}\free{d10}}}
{\epsffile[0 0 295 295]{../ps/ribbons2b.ps}}

This process has become tedious!
If we had to add two or three more ribbons, we would have to repeat the above steps several more times.
It is time to write an interpreter program to help us take care of the details.
\begin{patch}{ugIntProgDrawingPagePatch1}
\begin{paste}{ugIntProgDrawingPageFull1}{ugIntProgDrawingPageEmpty1}
\pastebutton{ugIntProgDrawingPageFull1}{\hidepaste}
\tab{5}\spadgraph{draw(x**2,x=-1..1,y=0..1)}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/ugintprogdrawingpage1.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/ugintprogdrawingpage1}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty1}
\begin{paste}{ugIntProgDrawingPageEmpty1}{ugIntProgDrawingPagePatch1}
\pastebutton{ugIntProgDrawingPageEmpty1}{\showpaste}
\tab{5}\spadgraph{draw(x**2,x=-1..1,y=0..1)}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch2}
\begin{paste}{ugIntProgDrawingPageFull2}{ugIntProgDrawingPageEmpty2}
\pastebutton{ugIntProgDrawingPageFull2}{\hidepaste}
\tab{5}\spadgraph{vp := draw(x**2,x=-1..1,y=0..1, var2Steps==1)\bound{d1}}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/ugintprogdrawingpage2.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/ugintprogdrawingpage2}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty2}
\begin{paste}{ugIntProgDrawingPageEmpty2}{ugIntProgDrawingPagePatch2}
\pastebutton{ugIntProgDrawingPageEmpty2}{\showpaste}
\tab{5}\spadgraph{vp := draw(x**2,x=-1..1,y=0..1, var2Steps==1)\bound{d1}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch3}
\begin{paste}{ugIntProgDrawingPageFull3}{ugIntProgDrawingPageEmpty3}
\pastebutton{ugIntProgDrawingPageFull3}{\hidepaste}
\tab{5}\spadcommand{rotate(vp, 0, -90)\bound{d3}\free{d1}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty3}
\begin{paste}{ugIntProgDrawingPageEmpty3}{ugIntProgDrawingPagePatch3}
\pastebutton{ugIntProgDrawingPageEmpty3}{\showpaste}
\tab{5}\spadcommand{rotate(vp, 0, -90)\bound{d3}\free{d1}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch4}
\begin{paste}{ugIntProgDrawingPageFull4}{ugIntProgDrawingPageEmpty4}
\pastebutton{ugIntProgDrawingPageFull4}{\hidepaste}
\tab{5}\spadcommand{sp := subspace(vp)\bound{d5}\free{d1}}
\end{paste}
\end{patch}
(4) 3-Space with 1 component

Type: ThreeSpace DoubleFloat

\indent{3}\begin{verbatim}
3-Space with 1 component

Type: ThreeSpace DoubleFloat
\end{verbatim}\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty4}\
\begin{paste}{ugIntProgDrawingPageEmpty4}{ugIntProgDrawingPagePatch4}\
\pastebutton{ugIntProgDrawingPageEmpty4}{\showpaste}\
\begin{tab}{5}\
spadcommand{sp := subspace(vp)\bound{d5} \free{d1}}\
\end{tab}\
\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch5}\
\begin{paste}{ugIntProgDrawingPageFull5}{ugIntProgDrawingPageEmpty5}\
\pastebutton{ugIntProgDrawingPageFull5}{\hidepaste}\
\begin{tab}{5}\
spadcommand{sp := subspace(vp)\bound{d5} \free{d1}}\
\end{tab}\
\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty5}\
\begin{paste}{ugIntProgDrawingPageEmpty5}{ugIntProgDrawingPagePatch6}\
\pastebutton{ugIntProgDrawingPageEmpty5}{\showpaste}\
\begin{tab}{5}\
spadcommand{sp := subspace(vp)\bound{d5} \free{d1}}\
\end{tab}\
\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch6}\
\begin{paste}{ugIntProgDrawingPageFull6}{ugIntProgDrawingPageEmpty6}\
\pastebutton{ugIntProgDrawingPageFull6}{\hidepaste}\
\begin{tab}{5}\
spadcommand{drawStyle(vp,"shade");outlineRender(vp,"on")\bound{d10} \free{d6}}\
\end{tab}\
\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPageEmpty6}\
\begin{paste}{ugIntProgDrawingPageEmpty6}{ugIntProgDrawingPagePatch7}\
\pastebutton{ugIntProgDrawingPageEmpty6}{\showpaste}\
\begin{tab}{5}\
spadcommand{drawStyle(vp,"shade");outlineRender(vp,"on")\bound{d10} \free{d6}}\
\end{tab}\
\end{paste}\end{patch}

\begin{patch}{ugIntProgDrawingPagePatch7}\
\begin{paste}{ugIntProgDrawingPageFull7}{ugIntProgDrawingPageEmpty7}\
\pastebutton{ugIntProgDrawingPageFull7}{\hidepaste}\
\begin{tab}{5}\
spadcommand{rotate(vp,20,-60); showRegion(vp,"on")\bound{d11} \free{d10}}\
\end{tab}\
\end{paste}\end{patch}
The above approach creates a new viewport for each additional ribbon. A better approach is to build one object composed of all ribbons before creating a viewport. To do this, use \spadfun{makeObject} rather than \spadfun{draw}. The operations have similar formats, but \spadfun{draw} returns a viewport and \spadfun{makeObject} returns a space object.

We now create a function \userfun{drawRibbons} of two arguments: \spad{flist}, a list of formulas for the ribbons you want to draw, and \spad{xrange}, the range over which you want them drawn. Using this function, you can just say

\begin{verbatim}
drawRibbons([x**2, x**3], x=-1..1)
\end{verbatim}

to do all of the work required in the last section. Here is the \userfun{drawRibbons} program.

Invoke your favorite editor and create a file called {f ribbon.input} containing the following program.

\beginImportant

\beginverbatim
1. \ drawRibbons(flist, xrange) ==
2. sp := createThreeSpace()
3. y0 := 0
4. for f in flist repeat
5. \ makeObject(f, xrange, y=y0..y0+1,)
\endverbatim

\endImportant
Here are some remarks on the syntax used in the \pspadfun{drawRibbons} function (consult \downlink{``User-Defined Functions, Macros and Rules''}{ugUserPage} in Chapter 6 for more details). Unlike most other programming languages which use semicolons, parentheses, or \spad{begin}--\spad{end} brackets to delineate the structure of programs, the structure of an Axiom program is determined by indentation. The first line of the function definition always begins in column 1. All other lines of the function are indented with respect to the first line and form a pile (see \downlink{``Blocks''}{ugLangBlocksPage} in Section 5.2). The definition of \userfun{drawRibbons} consists of a pile of expressions to be executed one after another. Each expression of the pile is indented at the same level. Lines 4-7 designate one single expression: since lines 5-7 are indented with respect to the others, these lines are treated as a continuation of line 4. Also since lines 5 and 7 have the same indentation level, these lines designate a pile within the outer pile.

The last line of a pile usually gives the value returned by the pile. Here it is also the value returned by the function. Axiom knows this is the last line of the function because it is the last line of the file. In other cases, a new expression beginning in column one signals the end of a function.

The line \spad{drawStyle(vp,"shade")} is given after the viewport has been created to select the draw style. We have also used the \spadfunFrom{zoom}{ThreeDimensionalViewport} option. Without the zoom, the viewport region would be scaled equally in all three coordinate directions.

Let's try the function \userfun{drawRibbons}.
First you must read the file to give Axiom the function definition.
\xtc{
Read the input file.
}\{
\spadpaste{)read ribbon \bound{s0}}
}\psXtc{
Draw ribbons for $x, x^2,...,x^5$ for $-1 \leq x \leq 1$
}\{
\graphpaste{drawRibbons([x**i for i in 1..5],x=-1..1) \free{s0}}
}\{
\epsffile[0 0 295 295]{../ps/ribbons5.ps}
\
\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntProgRibbonPagePatch1}
\begin{paste}{ugIntProgRibbonPageFull1}{ugIntProgRibbonPageEmpty1}
\pastebutton{ugIntProgRibbonPageFull1}{\hidepaste}
\tab{5}\spadcommand{)read ribbon\bound{s0}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntProgRibbonPageEmpty1}
\begin{paste}{ugIntProgRibbonPageEmpty1}{ugIntProgRibbonPagePatch1}
\pastebutton{ugIntProgRibbonPageEmpty1}{\showpaste}
\tab{5}\spadcommand{)read ribbon\bound{s0}}
\end{paste}\end{patch}

\begin{patch}{ugIntProgRibbonPagePatch2}
\begin{paste}{ugIntProgRibbonPageFull2}{ugIntProgRibbonPageEmpty2}
\pastebutton{ugIntProgRibbonPageFull2}{\hidepaste}
\tab{5}\spadgraph{drawRibbons([x**i for i in 1..5],x=-1..1) \free{s0}}
\center{\unixcommand{\inputimage{env{AXIOM}/doc/viewports/ugintprogribbonpage2.view/image}}}{\view}
\end{paste}\end{patch}

\begin{patch}{ugIntProgRibbonPageEmpty2}
\begin{paste}{ugIntProgRibbonPageEmpty2}{ugIntProgRibbonPagePatch2}
\pastebutton{ugIntProgRibbonPageEmpty2}{\showpaste}
\tab{5}\spadgraph{drawRibbons([x**i for i in 1..5],x=-1..1) \free{s0}}
\end{paste}\end{patch}

Coloring and Positioning Ribbons

Before leaving the ribbon example, we make two improvements. Normally, the color given to each point in the space is a function of its height within a bounding box. The points at the bottom of the box are red, those at the top are purple.

To change the normal coloring, you can give an option \spad{colorFunction == \texttt{function}}. When Axiom goes about displaying the data, it determines the range of colors used for all points within the box. Axiom then distributes these numbers uniformly over the number of hues. Here we use the simple color function \texht{$(x,y) \mapsto i$}{(x,y) +-> i} for the \eth{i} ribbon.

Also, we add an argument \spad{yrange} so you can give the range of \spad{y} occupied by the ribbons. For example, if the \spad{yrange} is given as \spad{y=0..1} and there are \smath{5} ribbons to be displayed, each ribbon would have width \smath{0.2} and would appear in the range \texht{$0 \leq y \leq 1$}{\spad{0 <= y <= 1}}.

Refer to lines 4-9. Line 4 assigns to \spad{yVar} the variable part of the \spad{yrange} (after all, it need not be \spad{y}). Suppose that \spad{yrange} is given as \spad{t = a..b} where \spad{a} and \spad{b} have numerical values. Then line 5 assigns the value of \spad{a} to the variable \spad{y0}.

Line 6 computes the width of the ribbon by dividing the difference of \spad{a} and \spad{b} by the number, \spad{num}, of ribbons. The result is assigned to the variable \spad{width}.

Note that in the for-loop in line 7, we are iterating in parallel; it is not a nested loop.

\beginImportant

\noindent{\tt 1. \ drawRibbons(flist, \ xrange, \ yrange) ==}{\newline
\tt 2. \
\tt 3. \ num\ :=\ \#\ flist}{\newline
\tt 4. \ yVar\ :=\ variable\ yrange}{\newline

\endImportant
\begin{page}{ugIntProgPLCPage}{10.4. Points, Lines, and Curves}
\beginscroll
% What you have seen so far is a high-level program using the
graphics facility. We now turn to the more basic notions of points, lines, and curves
in \threedim{} graphs.
These facilities use small floats (objects of type \spadtype{DoubleFloat}) for data.
Let us first give names to the small float values \smath{0} and \smath{1}.
\xtc{
The small float 0.}
{(}{
\spadpaste{zero := 0.0@DFLOAT \bound{d1}}}{)}
\caption{The final \protect\pspadfun{drawRibbons} function.}
\label{fig-ribdraw2}
\endImportant
\endscroll
\autobuttons
\end{page}

Points, Lines, and Curves

— ug10.ht —
The small float 1.

\begin{verbatim}
one := 1.0D0 \text{ of the type DoubleFloat.}
\end{verbatim}

You can also say \texttt{0.0::DFLOAT}.

Points can have four small float components: \texttt{x, y, z} coordinates and an optional color. A `curve' is simply a list of points connected by straight line segments.

Create the point \texttt{origin} with color zero, that is, the lowest color on the color map.

\begin{verbatim}
origin := point [zero,zero,zero,zero] \free{d1,d2}
\end{verbatim}

Create the point \texttt{unit} with color zero.

\begin{verbatim}
unit := point [one,one,one,zero] \free{d1,d2,d3}
\end{verbatim}

Create the curve (well, here, a line) from \texttt{origin} to \texttt{unit}.

\begin{verbatim}
line := [origin, unit] \free{d3,d4}
\end{verbatim}

We make this line segment into an arrow by adding an arrowhead. The arrowhead extends to, say, \texttt{p3} on the left, and to, say, \texttt{p4} on the right. To describe an arrow, you tell Axiom to draw the two curves \texttt{[p1, p2, p3]} and \texttt{[p2, p4]}.

We also decide through experimentation on values for \texttt{arrowScale}, the ratio of the size of the arrowhead to the stem of the arrow, and \texttt{arrowAngle}, the angle between the arrowhead and the arrow.

Invoke your favorite editor and create an input file called \texttt{arrows.input}.

This input file first defines the values of \texttt{origin}, \texttt{unit}, \texttt{arrowAngle} and \texttt{arrowScale}, then defines the function \texttt{makeArrow(p1, p2)} to draw an arrow from point \texttt{p1} to \texttt{p2}.

\begin{verbatim}
\begin{Important}

\end{verbatim}
Read the file and then create an arrow from the point \spad{origin} to the point \spad{unit}.
\xtc{Read the input file defining \userfun{makeArrow}.}{\spadpaste{)read arrows\bound{v1}}}\xtc{Construct the arrow (a list of two curves).}{\spadpaste{arrow := makeArrow(origin,unit)\bound{v2}\free{v1 d3 d4}}}\xtc{Create an empty object \spad{sp} of type \spad{ThreeSpace}.}{\spadpaste{sp := createThreeSpace()\bound{c1}}}\xtc{Add each curve of the arrow to the space \spad{sp}.}{\spadpaste{for a in arrow repeat sp := curve(sp,a)\bound{v3}\free{v2 v3}}}\psXtc{Create a \threedim{} viewport containing that space.}{\graphpaste{vp := makeViewport3D(sp,"Arrow")\bound{v4}\free{v3}}}\epsffile[0 0 295 295]{../ps/arrow.ps}
Here is a better viewing angle.

\begin{verbatim}
(1) 0.0
Type: DoubleFloat
\end{verbatim}

\begin{verbatim}
(2) 1.0
Type: DoubleFloat
\end{verbatim}

\begin{verbatim}
(3)
\end{verbatim}
\begin{verbatim}
(3) [0.0,0.0,0.0,0.0] Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(4) [1.0,1.0,1.0,0.0] Type: Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(5) [[0.0,0.0,0.0,0.0],[1.0,1.0,1.0,0.0]] Type: List Point DoubleFloat
\end{verbatim}

\begin{verbatim}
(6) 2.8274333882308138 Type: DoubleFloat
\end{verbatim}
(7) 0.20000000000000001

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntProgPLCPagePatch7}
\begin{paste}{ugIntProgPLCPageFull7}{ugIntProgPLCPageEmpty7}
\pastebutton{ugIntProgPLCPageFull7}{\hidepaste}
\tab{5}\spadcommand{arrow := makeArrow(origin,unit)\bound{v2 }\free{v1 d3 d4 }}
\indentrel{3}\begin{verbatim}
(9) [
 [[0.0,0.0,0.0,0.0], [1.0,1.0,1.0,0.0],
 [0.69134628604607973, 0.842733077659504, 0.80000000000000004, 0.0]
],
 [[1.0,1.0,1.0,0.0],
 [0.842733077659504, 0.69134628604607973, 0.80000000000000004, 0.0]
]
]
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{patch}{ugIntProgPLCPagePatch8}
\begin{paste}{ugIntProgPLCPageFull8}{ugIntProgPLCPageEmpty8}
\pastebutton{ugIntProgPLCPageFull8}{\hidepaste}
\tab(5)\spadcommand{sp := createThreeSpace()\bound{c1 }}
\indentrel{3}\begin{verbatim}
(10) 3-Space with 0 components
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
Type: Void
\end{verbatim}

```
sp := createThreeSpace()

for a in arrow repeat
    sp := curve(sp,a)
```

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```

\begin{verbatim}
Type: Void
\end{verbatim}

```
vp := makeViewport3D(sp, "Arrow")
```

```
rotate(vp, 200, -60)
```

```
rotate(vp, 200, -60)
```
A Bouquet of Arrows

Let's draw a 'bouquet' of arrows. Each arrow is identical. The arrowheads are uniformly placed on a circle parallel to the xy-plane. Thus the position of each arrow differs only by the angle θ, $0 \leq \theta < 2\pi$, between the arrow and the x-axis on the xy-plane.

Our bouquet is rather special: each arrow has a different color (which won't be evident here, unfortunately). This is arranged by letting the color of each successive arrow be denoted by θ. In this way, the color of arrows ranges from red to green to violet.

Here is a program to draw a bouquet of n arrows.

\beginImportant
\noindent
\begin{verbatim}
1. drawBouquet(n,title) ==
2. angle := 0.0@DFLOAT
3. sp := createThreeSpace()
4. for i in 0..n-1 repeat
5. start := point[0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle]
6. end := point[cos angle, sin angle, 1.0@DFLOAT, angle]
7. for a in makeArrow(start,end) repeat
8. curve(sp,a)
9. angle := angle + 2*π/n
10. makeViewport3D(sp,title)
\end{verbatim}
\endImportant

Read the input file.
A bouquet of a dozen arrows.

```plaintext
(1) 0.20000000000000001
Type: DoubleFloat

(2) 2.8274333882308138
Type: DoubleFloat
  Type: Void
  Type: Void
```

```
\endscroll

\begin{patch}{ugIntProgColorArrPagePatch1}
\begin{paste}{ugIntProgColorArrPageFull1}{ugIntProgColorArrPageEmpty1}
\patchbutton{ugIntProgColorArrPageFull1}{\hidepaste}
\tab{5}\spadcommand{\readbouquet{b1} }
\indentrel{3}\begin{verbatim}
Type: DoubleFloat

Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugIntProgColorArrPageEmpty1}
\begin{paste}{ugIntProgColorArrPageEmpty1}{ugIntProgColorArrPagePatch1}
\patchbutton{ugIntProgColorArrPageEmpty1}{\showpaste}
\tab{5}\spadcommand{\readbouquet{b1} }
\end{paste}
\end{patch}

\begin{patch}{ugIntProgColorArrPagePatch2}
\begin{paste}{ugIntProgColorArrPageFull2}{ugIntProgColorArrPageEmpty2}
\patchbutton{ugIntProgColorArrPageFull2}{\hidepaste}
\tab{5}\spadgraph{\drawbouquet{12,"A Dozen Arrows"}{\free{b1} }}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgColorArrPageEmpty2}
\begin{paste}{ugIntProgColorArrPageEmpty2}{ugIntProgColorArrPagePatch2}
\patchbutton{ugIntProgColorArrPageEmpty2}{\showpaste}
\tab{5}\spadgraph{\drawbouquet{12,"A Dozen Arrows"}{\free{b1} }}
\end{paste}
\end{patch}
```
We now put our arrows to good use drawing complex vector fields. These vector fields give a representation of complex-valued functions of complex variables. Consider a Cartesian coordinate grid of points \text{(x, y)} in the plane, and some complex-valued function \text{f} defined on this grid. At every point on this grid, compute the value of \text{$f(x + y\times\%i)$} and call it \text{z}. Since \text{z} has both a real and imaginary value for a given \text{(x, y)} grid point, there are four dimensions to plot. What do we do? We represent the values of \text{z} by arrows planted at each grid point. Each arrow represents the value of \text{z} in polar coordinates \text{(r, θ)}. The length of the arrow is proportional to \text{r}. Its direction is given by \text{θ}.

The code for drawing vector fields is in the file \text{\bf vectors.input}. We discuss its contents from top to bottom.

Before showing you the code, we have two small matters to take care of. First, what if the function has large spikes, say, ones that go off to infinity? We define a variable \text{\spad{clipValue}} for this purpose. When \text{\spad{r}} exceeds the value of \text{\spad{clipValue}}, then the value of \text{\spad{clipValue}} is used instead of that for \text{\spad{r}}. For convenience, we define a function \text{\spad{clipFun(x)}} which uses \text{\spad{clipValue}} to ‘‘clip’’ the value of \text{\spad{x}}.

\begin{verbatim}
clipValue : DFLOAT := 6
clipFun(x) == min(max(x,-clipValue),clipValue)
\end{verbatim}

Notice that we identify \text{\spad{clipValue}} as a small float but do not declare the type of the function \text{\userfun{clipFun}}. As it turns out, \text{\userfun{clipFun}} is called with a
small float value. This declaration ensures that \userfun{clipFun} never does a conversion when it is called.

The second matter concerns the possible ‘poles’ of a function, the actual points where the spikes have infinite values. Axiom uses normal \spadtype{DoubleFloat} arithmetic which does not directly handle infinite values. If your function has poles, you must adjust your step size to avoid landing directly on them (Axiom calls \spadfun{error} when asked to divide a value by \axiom{0}, for example).

We set the variables \spad{realSteps} and \spad{imagSteps} to hold the number of steps taken in the real and imaginary directions, respectively. Most examples will have ranges centered around the origin. To avoid a pole at the origin, the number of points is taken to be odd.

\beginImportant
\noindent
{\tt 1. realSteps: INT := 25}
{\tt 2. imagSteps: INT := 25}
{\tt 3.)read arrows}
\endImportant

Now define the function \userfun{drawComplexVectorField} to draw the arrows. It is good practice to declare the type of the main function in the file. This one declaration is usually sufficient to ensure that other lower-level functions are compiled with the correct types.

\beginImportant
\noindent
{\tt 4. C := Complex DoubleFloat}
{\tt 5. S := Segment DoubleFloat}
{\tt 6. drawComplexVectorField: (C -> C, S, S) -> VIEW3D}
\endImportant

The first argument is a function mapping complex small floats into complex small floats. The second and third arguments give the range of real and imaginary values as segments like \spad{a..b}. The result is a \threedim{} viewport. Here is the full function definition:

\beginImportant
As a first example, let us draw \spad{f(z) == sin(z)}. There is no need to create a user function: just pass the \spadfunFrom{sin}{Complex DoubleFloat} from \spadtype{Complex DoubleFloat}.

\xtc{Read the file.}{\spadpaste{)read vectors \bound{readVI}}}
\xtc{Draw the complex vector field of \spad{sin(x)}.}{\graphpaste{drawComplexVectorField(sin,-2..2,-2..2) \free{readVI}}}
\epsffile[0 0 295 295]{../ps/vectorsin.ps}
\begin{verbatim}
\indentrel{3}
(1) 2.8274333882308138
Type: DoubleFloat
(2) 0.20000000000000001
Type: DoubleFloat
Type: Void
(4) 6.0
Type: DoubleFloat
Type: Void
(6) 25
Type: Integer
(7) 25
Type: Integer
(8) Complex DoubleFloat
Type: Domain
(9) Segment DoubleFloat
Type: Domain
Type: Void
Type: Void
Type: Void
Type: Void
\end{verbatim}
\indentrel{-3}
\end{verbatim}
Drawing Complex Functions

Here is another way to graph a complex function of complex arguments. For each complex value \(z \), compute \(f(z) \), again expressing the value in polar coordinates \((r, \theta) \). We draw the complex valued function, again considering the \((x,y) \)-plane as the complex plane, using \(r \) as the height (or \(z \)-coordinate) and \(\theta \) as the color. This is a standard plot—we learned how to do this in Chapter 7—but here we write a new program to illustrate the creation of polygon meshes, or grids.

Call this function \(\text{drawComplex} \).
It displays the points using the ‘‘mesh’’ of points.
The function definition is in three parts.

\beginImportant
\begin{verbatim}
1. \text{drawComplex}: (C \rightarrow C, S, S) \rightarrow \text{VIEW3D}
2. \text{drawComplex}(f, \text{realRange}, \text{imagRange}) ==
3. \hspace{1em} \text{delReal} := (\text{hi(\text{realRange})}-\text{lo(\text{realRange})})/\text{realSteps}
4. \hspace{1em} \text{delImag} := (\text{hi(\text{imagRange})}-\text{lo(\text{imagRange})})/\text{imagSteps}
5. \hspace{1em} \text{llp} := \[]
\end{verbatim}
\endImportant

Variables \(\text{delReal} \) and \(\text{delImag} \) give the step sizes along the real and imaginary directions as computed by the values of the global variables \(\text{realSteps} \) and \(\text{imagSteps} \). The mesh is represented by a list of lists of points \(\text{llp} \), initially empty. Now \(\text{llp}[[[]] \) alone is ambiguous, so to set this initial value you have to tell Axiom what type of empty list it is. Next comes the loop which builds \(\text{llp} \).

\beginImportant
\begin{verbatim}
\hspace{1em} real := \text{lo(\text{realRange})}
\hspace{1em} for i in 1..\text{realSteps+1} repeat
\hspace{1em} imag := \text{lo(\text{imagRange})}
\end{verbatim}
\endImportant
The code consists of both an inner and outer loop. Each pass through
the inner loop adds one list \spad{lp} of points to the list of lists
of points \spad{llp}. The elements of \spad{lp} are collected in
reverse order.

\beginImportant

\noindent

\tt 13. \ \ \ makeViewport3D(mesh(llp), \ "Complex\ Function")

\endImportant

The operation \spadfun{mesh} then creates an object of type
\spadtype{ThreeSpace(DoubleFloat)} from the list of lists of points.
This is then passed to \spadfun{makeViewport3D} to display the
image.

Now add this function directly to your \spad{vectors.input} file and
re-read the file using \spad{)read vectors}. We try
\spadfun{drawComplex} using a user-defined function \spad{f}.

\xtc{
Read the file.
}{
\spadpaste{)read vectors \bound{readVI}}
}
\xtc{
This one has a pole at \smath{z=0}.
}{
\spadpaste{f(z) == exp(1/z)\bound{e1}}
}
\psXtc{
Draw it with an odd number of steps to avoid the pole.
}{
\graphpaste{drawComplex(f,-2..2,-2..2)\free{e1 readVI}}
}
tab{5}\spadcommand{)read vectors\bound{readVI }}\indentrel{3}\begin{verbatim}
(1) 2.8274333882308138
 Type: DoubleFloat

(2) 0.20000000000000001
 Type: DoubleFloat
 Type: Void

(4) 6.0
 Type: DoubleFloat
 Type: Void

(6) 25
 Type: Integer

(7) 25
 Type: Integer

(8) Complex DoubleFloat
 Type: Domain

(9) Segment DoubleFloat
 Type: Domain
 Type: Void
 Type: Void
 Type: Void
 Type: Void
\end{verbatim}
\indentrel{-3}\end{verbatim}\end{patch}\end{patch}\end{patch}\end{patch}
Functions Producing Functions

⇒ “notitle” (ugUserMakePage) 10 on page 1889

— ug10.ht —

In \downlink{``Making Functions from Objects''}{ugUserMakePage} in Section 6.14, you learned how to use the operation \spad{functo} to create a function from symbolic formulas. Here we introduce a similar operation which not only creates functions, but functions from functions.

The facility we need is provided by the package \spadtype{MakeUnaryCompiledFunction(E,S,T)}. This package produces a unary (one-argument) compiled function from some symbolic data generated by a previous computation.\footnote{\spadtype{MakeBinaryCompiledFunction} is available for binary functions.} The \spad{E} tells where the symbolic data comes from; the \spad{S} and \spad{T} give Axiom the source and target type of the function, respectively. The compiled function produced has type \spadtype{compiledFunction}(). To produce a compiled function with definition \spad{\textit{p}(x) == expr}, call \spad{compiledFunction(expr, x)} from this package. The function you get has no name. You must to assign the function to the variable \spad{p} to give it that name. %

\xtc{ Do some computation. }{ \spadpaste{(x+1/3)**5\bound{p1}} }
\xtc{ Convert this to an anonymous function of \spad{x}. Assign it to the variable \spad{p} to give the function a name. }{ \spadpaste{p := compiledFunction(\%,x)\$MakeUnaryCompiledFunction(POLY FRAC INT,DFLOAT,DFLOAT)\bound{p2}\free{p1}} } \xtc{ Apply the function. }{ \spadpaste{p(sin(1.3))\bound{p3}\free{p2}} }

For a more sophisticated application, read on.

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntProgFunctionsPagePatch1}
\begin{paste}{ugIntProgFunctionsPageFull1}{ugIntProgFunctionsPageEmpty1}
\pastebutton{ugIntProgFunctionsPageFull1}{\hidepaste}
\begin{verbatim}
(1) x + x + x + x + x +
 3 9 27 81 243
 Type: Polynomial Fraction Integer
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgFunctionsPageEmpty1}
\begin{paste}{ugIntProgFunctionsPageEmpty1}{ugIntProgFunctionsPagePatch1}
\pastebutton{ugIntProgFunctionsPageEmpty1}{\showpaste}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgFunctionsPagePatch2}
\begin{paste}{ugIntProgFunctionsPageFull2}{ugIntProgFunctionsPageEmpty2}
\pastebutton{ugIntProgFunctionsPageFull2}{\hidepaste}
\begin{verbatim}
(2) theMap(MKUCFUNC;unaryFunction;SM;2!0,350)
 Type: (DoubleFloat -> DoubleFloat)
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgFunctionsPageEmpty2}
\begin{paste}{ugIntProgFunctionsPageEmpty2}{ugIntProgFunctionsPagePatch2}
\pastebutton{ugIntProgFunctionsPageEmpty2}{\showpaste}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgFunctionsPagePatch3}
\begin{paste}{ugIntProgFunctionsPageFull3}{ugIntProgFunctionsPageEmpty3}
\pastebutton{ugIntProgFunctionsPageFull3}{\hidepaste}
\end{paste}
\end{patch}
Automatic Newton Iteration Formulas

We resume our continuing saga of arrows and complex functions. Suppose we want to investigate the behavior of Newton’s iteration function in the complex plane. Given a function \(f \), we want to find the complex values \(z \) such that \(f(z) = 0 \).

The first step is to produce a Newton iteration formula for a given \(f \):
\[
\text{\texttt{x(n+1) = x(n) - f(x(n))/f'(x(n))}}.
\]

We represent this formula by a function \(g \) that performs the computation on the right-hand side, that is,
\[
\text{\texttt{g(x(n)) = g(x(n))}}.
\]

The type \texttt{Expression Integer} (abbreviated \texttt{EXPR INT}) is used to represent general symbolic expressions in Axiom.

To make our facility as general as possible, we assume \(f \) has this type. Given \(f \), we want to produce a Newton iteration function \(g \) which, given a complex point \(x(n) \), delivers the next Newton iteration point \(x(n+1) \).
This time we write an input file called New input.
We need to import \spadtype{MakeUnaryCompiledFunction} (discussed in the last section), call it with appropriate types, and then define the function \spad{newtonStep} which references it.

Here is the function \spad{newtonStep}:

\beginImportant
\beginverbatim
1. \ C := Complex DoubleFloat
2. complexFunPack:=MakeUnaryCompiledFunction(EXPR \ INT,C,C)
3.
4. newtonStep(f) ==
5. \ fun := complexNumericFunction f
6. \ deriv := complexDerivativeFunction(f,1)
7. \ (x:C):C ->
8. \ \ x - fun(x)/deriv(x)
9.
10. complexNumericFunction f ==
11. \ v := theVariableIn f
12. \ compiledFunction(f,\ v)\$complexFunPack
13.
14. complexDerivativeFunction(f,n) ==
15. \ v := theVariableIn f
16. \ df := D(f,v,n)
17. \ compiledFunction(df,\ v)\$complexFunPack
18.
19. theVariableIn f ==
20. \ v1 := variables f
21. \ nv := \# v1
22. \ nv > 1 => error "Expression is not univariate."
23. \ nv = 0 => 'x
24. \ first\ v1
\endverbatim
\endImportant

Do you see what is going on here? A formula \spad{f} is passed into the function \userfun{newtonStep}. First, the function turns \spad{f} into a compiled program mapping complex numbers into complex numbers. Next, it does the same thing for the derivative of \spad{f}. Finally, it returns a function which computes a single step of Newton's iteration.

The function \userfun{complexNumericFunction} extracts the variable from the expression \spad{f} and then turns \spad{f} into a function which maps complex numbers into complex numbers. The function \userfun{complexDerivativeFunction} does the same thing for the derivative of \spad{f}. The function \userfun{theVariableIn}
extracts the variable from the expression \spad{f}, calling the function
\spadfun{error} if \spad{f} has more than one variable.
It returns the dummy variable \spad{x} if \spad{f} has no variables.

Let’s now apply \userfun{newtonStep} to the formula for computing
cube roots of two.
%
\xtc{
Read the input file with the definitions.
}{
\spadpaste{)read newton\bound{n1}}
}
\xtc{
\spadpaste{)read vectors \bound{n1a}}
}
\xtc{
The cube root of two.
}{
\spadpaste{f := x**3 - 2\bound{n2}\free{n1 n1a}}
}
\xtc{
Get Newton’s iteration formula.
}{
\spadpaste{g := newtonStep f\bound{n3}\free{n2}}
}
\xtc{
Let \spad{a} denote the result of
applying Newton’s iteration once to the complex number \spad{1 + \%i}.
}{
\spadpaste{a := g(1.0 + \%i)\bound{n4}\free{n3}}
}
\xtc{
Now apply it repeatedly. How fast does it converge?
}{
\spadpaste{[(a := g(a)) for i in 1..]\bound{n5}\free{n4}}
}
\xtc{
Check the accuracy of the last iterate.
}{
\spadpaste{a**3\bound{n6}\free{n5}}
}

In
\downlink{`MappingPackage1'}{MappingPackageOneXmpPage}
\ignore{MappingPackage1},
we show how functions can be manipulated as objects in Axiom. A
useful operation to consider here is \spad{op*}, which means
composition. For example \spad{g*g} causes the Newton iteration
formula to be applied twice. Correspondingly, \spad{g**n} means to
apply the iteration formula \spad{n} times.

\%
\xtc{
Apply \spad{g} twice to the point \spad{1 + \%i}.
}{
\spadpaste{(g*g) (1.0 + \%i)\bound{n10}\free{n3}}
}
\xtc{
Apply \spad{g} 11 times.
}{
\spadpaste{(g**11) (1.0 + \%i)\bound{n11}\free{n10}}
}

Look now at the vector field and surface generated after two steps of Newton's formula for the cube root of two. The poles in these pictures represent bad starting values, and the flat areas are the regions of convergence to the three roots.

\%
\psXtc{
The vector field.
}{
\graphpaste{drawComplexVectorField(g**3,-3..3,-3..3)\free{n3}}
}{
\epsffile[0 0 295 295]{../ps/vectorroot.ps}
}
\psXtc{
The surface.
}{
\graphpaste{drawComplex(g**3,-3..3,-3..3)\free{n3}}
}{
\epsffile[0 0 295 295]{../ps/complexroot.ps}
}

\endscroll
\autobuttons
\end{page}

\begin{patch}{ugIntProgNewtonPagePatch1}
\begin{paste}{ugIntProgNewtonPageFull1}{ugIntProgNewtonPageEmpty1}
\pastebutton{ugIntProgNewtonPageFull1}{\hidepaste}
\tab{5}\spadcommand{read newton\bound{n1 } }
\indentrel{3}\begin{verbatim}
Type: Void
(2)
MakeUnaryCompiledFunction(Expression Integer,Complex DoubleFloat,Complex DoubleFloat)
Type: Domain
Type: Void
\begin{verbatim}
(6) 2.8274333882308138
Type: DoubleFloat

(7) 0.20000000000000001
Type: DoubleFloat
Type: Void

(9) 6.0
Type: DoubleFloat
Type: Void

(11) 25
Type: Integer

(12) 25
Type: Integer

(13) Complex DoubleFloat
Type: Domain

(14) Segment DoubleFloat
Type: Domain
Type: Void
Type: Void
Type: Void
Type: Void
\end{verbatim}

\end{verbatim}

\begin{verbatim}
(6) 2.8274333882308138
Type: DoubleFloat

(7) 0.20000000000000001
Type: DoubleFloat
Type: Void

(9) 6.0
Type: DoubleFloat
Type: Void

(11) 25
Type: Integer

(12) 25
Type: Integer

(13) Complex DoubleFloat
Type: Domain

(14) Segment DoubleFloat
Type: Domain
Type: Void
Type: Void
Type: Void
Type: Void
\end{verbatim}

\end{verbatim}
\begin{verbatim}
(19) x^3 - 2

Type: Polynomial Integer
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty3}
\begin{paste}{ugIntProgNewtonPageEmpty3}{ugIntProgNewtonPagePatch3}
\pastebutton{ugIntProgNewtonPageEmpty3}{\showpaste}
\tab{5}\spadcommand{f := x**3 - 2\free{n1 n1a}}
\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch4}
\begin{paste}{ugIntProgNewtonPageFull4}{ugIntProgNewtonPageEmpty4}
\pastebutton{ugIntProgNewtonPageFull4}{\hidepaste}
\tab{5}\spadcommand{g := newtonStep f\free{n2}}
\indentrel{3}\begin{verbatim}
(20) theMap(LAMBDA_f3lkwh_704,484)
Type: (Complex DoubleFloat -> Complex DoubleFloat)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty4}
\begin{paste}{ugIntProgNewtonPageEmpty4}{ugIntProgNewtonPagePatch4}
\pastebutton{ugIntProgNewtonPageEmpty4}{\showpaste}
\tab{5}\spadcommand{g := newtonStep f\free{n2}}
\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch5}
\begin{paste}{ugIntProgNewtonPageFull5}{ugIntProgNewtonPageEmpty5}
\pastebutton{ugIntProgNewtonPageFull5}{\hidepaste}
\tab{5}\spadcommand{a := g(1.0 + \%i)\free{n3}}
\indentrel{3}\begin{verbatim}
(21) 0.66666666666666674 + 0.33333333333333337%i
Type: Complex DoubleFloat
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty5}
\begin{paste}{ugIntProgNewtonPageEmpty5}{ugIntProgNewtonPagePatch5}
\pastebutton{ugIntProgNewtonPageEmpty5}{\showpaste}
\tab{5}\spadcommand{a := g(1.0 + \%i)\free{n3}}
\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch6}
\begin{paste}{ugIntProgNewtonPageFull6}{ugIntProgNewtonPageEmpty6}
\pastebutton{ugIntProgNewtonPageFull6}{\hidepaste}
\tab{5}\spadcommand{[a := g(a) for i in 1..]\free{n5}}
\indentrel{3}\begin{verbatim}
(22)
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\[\{1.1644444444444444 - 0.73777777777777775\%i, \\
0.92614004697164776 - 0.17463006425584393\%i, \\
1.3164444438140228 + 0.1569064583018852\%i, \\
1.2462991025761463 + 0.015454763610132094\%i, \\
1.2598725296532081 - 0.00033827162059311727\%i, \\
1.259920960928212 + 2.602354653422681e-08\%i, \\
1.2599210498948732 - 3.67519259161685e-15\%i, \\
1.2599210498948732 - 3.3132158019282496e-29\%i, \\
1.2599210498948732 - 5.6051938572992683e-45\%i, \\
1.2599210498948732, \ldots \} \]

Type: Stream Complex DoubleFloat
\tab{5}\spadcommand{(g**11) (1.0 + \%i)\bound{n11 }\free{n10 }}

\indentrel{3}\begin{verbatim}
(25) 1.2599210498948732
Type: Complex DoubleFloat
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty9}
\begin{paste}{ugIntProgNewtonPageEmpty9}{ugIntProgNewtonPagePatch9}
\pastebutton{ugIntProgNewtonPageEmpty9}{\showpaste}
\tab{5}\spadcommand{(g**11) (1.0 + \%i)\bound{n11 }\free{n10 }}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch10}
\begin{paste}{ugIntProgNewtonPageFull10}{ugIntProgNewtonPageEmpty10}
\pastebutton{ugIntProgNewtonPageFull10}{\hidepaste}
\tab{5}\spadgraph{drawComplexVectorField(g**3,-3..3,-3..3)\free{n3 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/ugintprognewtonpage10.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/ugintprognewtonpage10}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty10}
\begin{paste}{ugIntProgNewtonPageEmpty10}{ugIntProgNewtonPagePatch10}
\pastebutton{ugIntProgNewtonPageEmpty10}{\showpaste}
\tab{5}\spadgraph{drawComplexVectorField(g**3,-3..3,-3..3)\free{n3 }}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch11}
\begin{paste}{ugIntProgNewtonPageFull11}{ugIntProgNewtonPageEmpty11}
\pastebutton{ugIntProgNewtonPageFull11}{\hidepaste}
\tab{5}\spadgraph{drawComplex(g**3,-3..3,-3..3)\free{n3 }}
\center{\unixcommand{\inputimage{\env{AXIOM}/doc/viewports/ugintprognewtonpage11.view/image}}{viewalone\space{1} \env{AXIOM}/doc/viewports/ugintprognewtonpage11}}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty11}
\begin{paste}{ugIntProgNewtonPageEmpty11}{ugIntProgNewtonPagePatch11}
\pastebutton{ugIntProgNewtonPageEmpty11}{\showpaste}
\tab{5}\spadgraph{drawComplex(g**3,-3..3,-3..3)\free{n3 }}
\end{paste}
\end{patch}

\begin{patch}{ugIntProgNewtonPagePatch12}
\begin{paste}{ugIntProgNewtonPageFull12}{ugIntProgNewtonPageEmpty12}
\pastebutton{ugIntProgNewtonPageFull12}{\hidepaste}
\tab{5}\spadcommand{all}
\indentrel{-3}begin{verbatim}
(28) all
\end{verbatim}
\end{patch}
Type: Variable all

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugIntProgNewtonPageEmpty12}
\begin{paste}{ugIntProgNewtonPageEmpty12}{ugIntProgNewtonPagePatch12}
\pastebutton{ugIntProgNewtonPageEmpty12}{\showpaste}
\tab{5}\spadcommand{all}
\end{paste}\end{patch}
Chapter 14

Users Guide Chapter 11 (ug11.ht)

Packages

⇒ “notitle” (ugIntProgPage) 13 on page 2337
⇒ “notitle” (ugIntProgPage) 13 on page 2337
⇒ “notitle” (ugPackagesNamesPage) 14 on page 2377
⇒ “notitle” (ugPackagesSyntaxPage) 14 on page 2379
⇒ “notitle” (ugPackagesAbstractPage) 14 on page 2380
⇒ “notitle” (ugPackagesCapsulesPage) 14 on page 2381
⇒ “notitle” (ugPackagesInputFilesPage) 14 on page 2382
⇒ “notitle” (ugPackagesPackagesPage) 14 on page 2383
⇒ “notitle” (ugPackagesParametersPage) 14 on page 2387
⇒ “notitle” (ugPackagesCondsPage) 14 on page 2390
⇒ “notitle” (ugPackagesCompilingPage) 14 on page 2392
⇒ “notitle” (ugPackagesHowPage) 14 on page 2399

— ug11.ht —

\begin{page}{ugPackagesPage}{11. Packages}
\beginscroll

Packages provide the bulk of Axiom’s algorithmic library, from numeric packages for computing special functions to symbolic facilities for differential equations, symbolic integration, and limits.

In \downlink{‘Interactive Programming’}{ugIntProgPage} in Chapter 10\ignore{ugIntProg}, we developed several useful functions for drawing vector fields and complex functions. We now

\end{scroll}
\end{page}
show you how you can add these functions to the Axiom library to make them available for general use.

The way we created the functions in Interactive Programming in Chapter 10 is typical of how you, as an advanced Axiom user, may interact with Axiom. You have an application. You go to your editor and create an input file defining some functions for the application. Then you run the file and try the functions. Once you get them all to work, you will often want to extend them, add new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application, you may want to add them to your local Axiom library. To do this, you embed these function definitions in a package and add that package to the library.

To introduce new packages, categories, and domains into the system, you need to use the Axiom compiler to convert the constructors into executable machine code. An existing compiler in Axiom is available on an ‘as-is’ basis. A new, faster compiler will be available in version 2.0 of Axiom.

\beginImportant

\label{pak-cdraw}

\beginverbatim
1. C == Complex DoubleFloat
2. S == Segment DoubleFloat
3. INT == Integer
4. DFLOAT == DoubleFloat
5. VIEW3D == ThreeDimensionalViewport
6. CURVE == List List Point DFLOAT
7.)abbrev package DRAWCX DrawComplex
8. DrawComplex(): Exports == Implementation where
9.
10. Exports == with
11. drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
12. drawComplexVectorField: (C -> C,S,S) -> VIEW3D
13. setRealSteps: INT -> INT
14. setImagSteps: INT -> INT
15. setClipValue: DFLOAT -> DFLOAT
16. arrowScale: DFLOAT := (0.2)::DFLOAT --relative size
17. arrowAngle: DFLOAT := pi()-pi()/(20::DFLOAT)
\endverbatim
\endImportant
realSteps := INT := 11 --# real steps

imagSteps := INT := 11 --# imaginary steps

clipValue := DFLOAT := 10::DFLOAT --maximum vector length

setRealSteps(n) := realSteps := n

setImagSteps(n) := imagSteps := n

setClipValue(c) := clipValue := c

clipFun: DFLOAT -> DFLOAT --Clip large magnitudes.

clipFun(x) := min(max(x, -clipValue), clipValue)

makeArrow: (Point DFLOAT, Point DFLOAT, DFLOAT, DFLOAT) -> CURVE

makeArrow(p1, p2, len, arg) := ...

drawComplex(f, realRange, imagRange, arrows?) := ...

\caption{The DrawComplex package.}\label{fig-pak-cdraw}

Names, Abbreviations, and File Structure

⇒ “notitle” (ugIntProgPage) 13 on page 2337
Each package has a name and an abbreviation. For a package of the complex draw functions from \link{``Interactive Programming''}{ugIntProgPage} in Chapter 10\ignore{ugIntProg}, we choose the name \nonLibAxiomType{DrawComplex} and abbreviation \nonLibAxiomType{DRAWCX}. An abbreviation can be any string of between two and seven capital letters and digits, beginning with a letter. See \link{``Abbreviations''}{ugTypesWritingAbbrPage} in Section 2.5.5\ignore{ugTypesWritingAbbr} for more information. To be sure that you have not chosen a name or abbreviation already used by the system, issue the system command \spadcmd{)show} for both the name and the abbreviation.

Once you have named the package and its abbreviation, you can choose any new filename you like with extension \spadFileExt{}\spadFileExt{} to hold the definition of your package. We choose the name \spadFileExt{drawpak\spadFileExt{}}. If your application involves more than one package, you can put them all in the same file. Axiom assumes no relationship between the name of a library file, and the name or abbreviation of a package.

Near the top of the \spadFileExt{} file, list all the abbreviations for the packages using \spadcmd{)abbrev}, each command beginning in column one. Macros giving names to Axiom expressions can also be placed near the top of the file. The macros are only usable from their point of definition until the end of the file.

Consider the definition of \nonLibAxiomType{DrawComplex} in Figure \ref{fig-pak-cdraw}. After the macro definition \verbatim{S \spadFileExt{} \spadFileExt{}}

\begin{verbatim}
S ==> Segment DoubleFloat
\end{verbatim}

the name \ttit{S} can be used in the file as a shorthand for \axiomType{Segment DoubleFloat}. \footnote{The interpreter also allows \ttit{macro} for macro definitions.} The abbreviation command for the package \verbatim{S \spadFileExt{}}

\begin{verbatim}
S => Segment DoubleFloat
\end{verbatim}
Syntax

— ug11.ht —

The definition of a package has the syntax:
\begin{verbatim}
PackageForm : Exports == Implementation where
\end{verbatim}
The syntax for defining a package constructor is the same as that for defining any function in Axiom. In practice, the definition extends over many lines so that this syntax is not practical. Also, the type of a package is expressed by the operator \texttt{with} followed by an explicit list of operations. A preferable way to write the definition of a package is with a \texttt{where} expression:

\begin{verbatim}
PackageForm : Exports == with
\end{verbatim}

The definition of a package usually has the form: \texttt{
\begin{verbatim}
PackageForm : Exports == Implementation where
\end{verbatim}
}\texttt{
\begin{verbatim}
\begin{verbatim}

The \texttt{DrawComplex} package takes no parameters and exports five operations, each a separate item of a \texttt{pile}. Each operation is described as a \texttt{declaration}: a name, followed by a colon, followed by the type of the operation. All operations have types expressed as mappings with the syntax
Abstract Datatypes

A constructor as defined in Axiom is called an \spadgloss{abstract datatype} in the computer science literature. Abstract datatypes separate ‘‘specification’’ (what operations are provided) from ‘‘implementation’’ (how the operations are implemented). The \tt{Exports} (specification) part of a constructor is said to be ‘‘public’’ (it provides the user interface to the package) whereas the \tt{Implementation} part is ‘‘private’’ (information here is effectively hidden—programs cannot take advantage of it).

The \tt{Exports} part specifies what operations the package provides to users. As an author of a package, you must ensure that the \tt{Implementation} part provides a function for each operation in the \tt{Exports} part.\footnote{The \spadtype{DrawComplex} package enhances the facility described in \downlink{‘‘Drawing Complex Functions’’}{ugIntProgCompFunsPage} in Chapter 10.7\ignore{ugIntProgCompFuns} by allowing a complex function to have arrows emanating from the surface to indicate the direction of the complex argument.}

An important difference between interactive programming and the use of packages is in the handling of global variables such as \axiom{realSteps} and \axiom{imagSteps}. In interactive programming, you simply change the values of variables by \spadgloss{assignment}. With packages, such variables are local to the package—their values can only be set using functions exported by the package. In our example package, we provide two functions \fakeAxiomFun{setRealSteps} and \fakeAxiomFun{setImagSteps} for this purpose.

Another local variable is \axiom{clipValue} which can be changed using
the exported operation \fakeAxiomFun{setClipValue}. This value is referenced by the internal function \fakeAxiomFun{clipFun} that decides whether to use the computed value of the function at a point or, if the magnitude of that value is too large, the value assigned to \axiom{clipValue} (with the appropriate sign).

\endscroll
\autobuttons
\end{page}

Capsules

— ug11.ht —

\begin{page}{ugPackagesCapsulesPage}{11.4. Capsules}
\beginscroll
%
The part to the right of \{\tt add\} in the \{\tt Implementation\} \spadkey{add} part of the definition is called a \spadgloss{capsule}. The purpose of a capsule is:
\indent{4} \beginitems
\item[-] to define a function for each exported operation, and
\item[-] to define a \spadgloss{local environment} for these functions to run.
\enditems
\indent{0}

What is a local environment?
First, what is an environment?
Think of the capsule as an input file that Axiom reads from top to bottom.
Think of the input file as having a \axiom{)clear all} at the top so that initially no variables or functions are defined.
When this file is read, variables such as \axiom{realSteps} and \axiom{arrowSize} in \nonLibAxiomType{DrawComplex} are set to initial values. Also, all the functions defined in the capsule are compiled. These include those that are exported (like \axiom{drawComplex}), and those that are not (like \axiom{makeArrow}). At the end, you get a set of name-value pairs: variable names (like \axiom{realSteps} and \axiom{arrowSize}) are paired with assigned values, while operation names (like \axiom{drawComplex} and \axiom{makeArrow}) are paired with function values.
This set of name-value pairs is called an \spadgloss{environment}. Actually, we call this environment the ‘‘initial environment’’ of a package: it is the environment that exists immediately after the package is first built. Afterwards, functions of this capsule can access or reset a variable in the environment. The environment is called \{\it local\} since any changes to the value of a variable in this environment can be seen \{\it only\} by these functions.

Only the functions from the package can change the variables in the local environment. When two functions are called successively from a package, any changes caused by the first function called are seen by the second.

Since the environment is local to the package, its names don’t get mixed up with others in the system or your workspace. If you happen to have a variable called \axiom{realSteps} in your workspace, it does not affect what the \nonLibAxiomType{DrawComplex} functions do in any way.

The functions in a package are compiled into machine code. Unlike function definitions in input files that may be compiled repeatedly as you use them with varying argument types, functions in packages have a unique type (generally parameterized by the argument parameters of a package) and a unique compilation residing on disk.

The capsule itself is turned into a compiled function. This so-called \{\it capsule function\} is what builds the initial environment spoken of above. If the package has arguments (see below), then each call to the package constructor with a distinct pair of arguments builds a distinct package, each with its own local environment.

\endscroll
\autobuttons
\end{page}

Input Files vs. Packages

— ug11.ht —

\begin{page}{ugPackagesInputFilesPage}{11.5. Input Files vs. Packages}
\beginscroll

A good question at this point would be

‘‘Is writing a package more difficult than writing an input file?’’
The programs in input files are designed for flexibility and ease-of-use. Axiom can usually work out all of your types as it reads your program and does the computations you request. Let’s say that you define a one-argument function without giving its type. When you first apply the function to a value, this value is understood by Axiom as identifying the type for the argument parameter. Most of the time Axiom goes through the body of your function and figures out the target type that you have in mind. Axiom sometimes fails to get it right. Then—and only then—do you need a declaration to tell Axiom what type you want.

Input files are usually written to be read by Axiom—and by you. Without suitable documentation and declarations, your input files are likely incomprehensible to a colleague—and to you some months later!

Packages are designed for legibility, as well as run-time efficiency. There are few new concepts you need to learn to write packages. Rather, you just have to be explicit about types and type conversions. The types of all functions are pre-declared so that Axiom—and the reader—knows precisely what types of arguments can be passed to and from the functions (certainly you don’t want a colleague to guess or to have to work this out from context!). The types of local variables are also declared. Type conversions are explicit, never automatic.\footnote{There is one exception to this rule: conversions from a subdomain to a domain are automatic. After all, the objects both have the domain as a common type.}

In summary, packages are more tedious to write than input files. When writing input files, you can casually go ahead, giving some facts now, leaving others for later. Writing packages requires forethought, care and discipline.

Compiling Packages
Once you have defined the package \(*nonLibAxiomType{DrawComplex}*, you need to compile and test it. To compile the package, issue the system command \(*spadcmd{()compile drawpak}*. Axiom reads the file \(*bf drawpak\spadFileExt{}* and compiles its contents into machine binary. If all goes well, the file \(*bf DRAWCX.nrlib* is created in your local directory for the package. To test the package, you must load the package before trying an operation.

\nullXtc{ Compile the package. }\{ \spadpaste{)compile drawpak} \} \xtc{ Expose the package. }\{ \spadpaste{)expose DRAWCX \bound{dp}} \} \xtc{ Use an odd step size to avoid a pole at the origin. }\{ \spadpaste{setRealSteps 51 \free{dp}\bound{srs}} \} \xtc{ }\{ \spadpaste{setImagSteps 51 \free{dp}\bound{scs}} \} \xtc{ Define \userfun{f} to be the Gamma function. }\{ \spadpaste{f(z) == Gamma(z) \bound{f}} \} \xtc{ Clip values of function with magnitude larger than 7. }\{ \spadpaste{setClipValue 7} \} \psXtc{ Draw the \spadfun{Gamma} function. }\{ \graphpaste{drawComplex(f,\-%pi..\%pi,\-%pi..\%pi, false) \free{srs scs f}} \} \{ \epsffile[0 0 300 300]{../ps/3dgamma11.ps} \} \endscroll

\autobuttons
\end{page}
\begin{verbatim}
setRealSteps 51
\end{verbatim}

Type: PositiveInteger
(2) 51
\indentrel{-3}\end{verbatim}
\indentrel{-3}\end{patch}
\indentrel{-3}\end{paste}
Parameters

- “notitle” (ugTypesPage) 7 on page 1613
- “notitle” (ugUserBlocksPage) 10 on page 1898
- “notitle” (ugCategoriesAttributesPage) 15 on page 2416

The power of packages becomes evident when packages have parameters. Usually these parameters are domains and the exported operations have types involving these parameters.

In ‘‘Using Types and Modes’’ (ugTypesPage) in Chapter 2, you learned that categories denote classes of domains. Although we cover this notion in detail in the next chapter, we now give you a sneak preview of its usefulness.

In ‘‘Functions Defined with Blocks’’ (ugUserBlocksPage) in Section 6.15, we defined functions `bubbleSort(m)` and `insertionSort(m)` to sort a list of integers. If you look at the code for these functions, you see that they may be used to sort any structure `m` with the right properties. Also, the functions can be used to sort lists of any elements---not just integers. Let us now recall the code for `bubbleSort`.

```verbatim
bubbleSort(m) ==
    n := #m
    for i in 1..(n-1) repeat
        for j in n..(i+1) by -1 repeat
            if m.j < m.(j-1) then swap!(m,j,j-1)
    m
```

What properties of ‘‘lists of integers’’ are assumed by the sorting algorithm? In the first line, the operation `spadfun(#)` computes the
maximum index of the list. The first obvious property is that \texttt{m} must have a finite number of elements. In Axiom, this is done by your telling Axiom that \texttt{m} has the ‘‘attribute’’ \texttt{finiteAggregate}. An \texttt{attribute} is a property that a domain either has or does not have. As we show later in Section 12.9 in Section 12.9, programs can query domains as to the presence or absence of an attribute.

The operation \texttt{swap} swaps elements of \texttt{m}. Using \texttt{Browse()}, you find that \texttt{swap} requires its elements to come from a domain of category \texttt{IndexedAggregate} with attribute \texttt{shallowlyMutable}. This attribute means that you can change the internal components of \texttt{m} without changing its external structure. Shallowly-mutable data structures include lists, streams, one- and two-dimensional arrays, vectors, and matrices.

The category \texttt{IndexedAggregate} designates the class of aggregates whose elements can be accessed by the notation \texttt{m.s} for suitable selectors \texttt{s}. The category \texttt{IndexedAggregate} takes two arguments: \texttt{Index}, a domain of selectors for the aggregate, and \texttt{Entry}, a domain of entries for the aggregate. Since the sort functions access elements by integers, we must choose \texttt{Index = Integer}. The most general class of domains for which \texttt{bubbleSort} and \texttt{insertionSort} are defined are those of category \texttt{IndexedAggregate(Integer,Entry)} with the two attributes \texttt{shallowlyMutable} and \texttt{finiteAggregate}.

Using \texttt{Browse()}, you can also discover that Axiom has many kinds of domains with attribute \texttt{shallowlyMutable}. Those of class \texttt{IndexedAggregate(Integer,Entry)} include \texttt{Bits}, \texttt{FlexibleArray}, \texttt{OneDimensionalArray}, \texttt{List}, \texttt{String}, \texttt{Vector}, \texttt{HashTable}, and \texttt{EqTable} with integer keys. Although you may never want to sort all such structures, we nonetheless demonstrate Axiom’s ability to do so.

Another requirement is that \texttt{EqTable} has an operation \texttt{<}. One way to get this operation is to assume that \texttt{EqTable} has category \texttt{OrderedSet}. By definition, will then export a \texttt{<} operation. A more general approach is to allow any comparison function \texttt{f} to be used for sorting. This function will be passed as an argument to the sorting functions.
Our sorting package then takes two arguments: a domain $\text{axiom}\{S\}$ of objects of it any type, and a domain $\text{axiom}\{A\}$, an aggregate of type $\text{axiomType}\{\text{IndexedAggregate}(\text{Integer}, S)\}$ with the above two attributes. Here is its definition using what are close to the original definitions of $\text{axiom}\{\text{bubbleSort}\}$ and $\text{axiom}\{\text{insertionSort}\}$ for sorting lists of integers. The symbol $\text{axiomSyntax}\{!\}$ is added to the ends of the operation names. This uniform naming convention is used for Axiom operation names that destructively change one or more of their arguments.

\beginImportant
\verbatim
\begin{verbatim}
1. SortPackage(S,A) : Exports == Implementation where
2. S: Object
3. A: IndexedAggregate(Integer,S)
4. with (finiteAggregate; shallowlyMutable)
5.
6. Exports == with
7. bubbleSort!: (A,(S,S) -> Boolean) -> A
8. insertionSort!: (A, (S,S) -> Boolean) -> A
9. Implementation == add
10. bubbleSort!(m,f) ==
11. n := #m
12. for i in 1..(n-1) repeat
13. for j in n..(i+1) by -1 repeat
14. if f(m.j,m.(j-1)) then swap!(m,j,j-1)
15. insertionSort!(m,f) ==
16. for i in 2..#m repeat
17. j := i
18. while j > 1 and f(m.j,m.(j-1)) repeat
19. swap!(m,j,j-1)
20. pretend PositiveInteger
\end{verbatim}
\endImportant

When packages have parameters, you can say that an operation is or is not exported depending on the values of those parameters. When the domain of objects \(\text{axiom\{}S\text{\}} \) has an \(\text{axiomOp}<\) operation, we can supply one-argument versions of \(\text{axiom\{}\text{bubbleSort}\text{\}} \) and \(\text{axiom\{}\text{insertionSort}\text{\}} \) which use this operation for sorting. The presence of the operation \(\text{axiomOp}<\) is guaranteed when \(\text{axiom\{}S\text{\}} \) is an ordered set.

\beginImportant
\begin{verbatim}
1. \text{Exports} == \text{with} \\begin{verbatim}
2. \text{bubbleSort!} : (A, (S,S) -> Boolean) -> A
3. \text{insertionSort!} : (A, (S,S) -> Boolean) -> A
4. if S has OrderedSet then
5. \text{bubbleSort!} : A -> A
6. \text{insertionSort!} : A -> A
\end{verbatim}
\end{verbatim}
\endImportant

In addition to exporting the one-argument sort operations conditionally, we must provide conditional definitions for the operations in the \{tt Implementation\} part. This is easy: just have the one-argument functions call the corresponding two-argument functions with the operation \(\text{axiomOp}<\) from \(\text{axiom\{}S\text{\}} \).

\beginImportant
\begin{verbatim}
1. \text{Implementation} == \text{add} \\begin{verbatim}
2. \text{bubbleSort!}(m) == \text{bubbleSort!}(m,<\{}S\text{\})
\end{verbatim}
\end{verbatim}
\endImportant
In Section 6.15, we give an alternative definition of \fakeAxiomFun{bubbleSort} using \spadfun{first}{List} and \spadfun{rest}{List} that is more efficient for a list (for which access to any element requires traversing the list from its first node). To implement a more efficient algorithm for lists, we need the operation \spadfun{setelt} which allows us to destructively change the \spadfun{first} and \spadfun{rest} of a list. Using \Browse{}, you find that these operations come from category \axiomType{UnaryRecursiveAggregate}. Several aggregate types are unary recursive aggregates including those of \axiomType{List} and \axiomType{AssociationList}. We provide two different implementations for \fakeAxiomFun{bubbleSort!} and \fakeAxiomFun{insertionSort!}: one for list-like structures, another for array-like structures.

\beginImportant
\small

\beginverbatim
1. Implementation \(==\ add\)
2. \(\ldots\)
3. if \(A\) has \axiomType{UnaryRecursiveAggregate}(S) then
4. \(\ldots\)
5. empty? \(m\) \(=>\) \(m\)
6. \(l\) \(:=\ m\)
7. while not empty? \(r\) \(:=\ l\).rest \(\text{repeat}\)
8. \(\ldots\)
9. \(r\) \(:=\ \text{bubbleSort!}(r)\)
10. \(\ldots\)
11. \(\ldots\)
12. \(r\).first \(:=\ x\)
13. \(\ldots\)
14. \(\ldots\)
15. \(m\)
16. \(\ldots\)
17. \(\text{insertionSort!}(m,fn)\) \(==\)
\endverbatim
\endImportant

The ordering of definitions is important.
The standard definitions come first and then the predicate
\verb|\begin{verbatim}|
A has \axiomType{UnaryRecursiveAggregate}(S)
\verb|\end{verbatim}|
is evaluated.
If \tt{true}, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an \axiom{if-then-else} expression:

\begin{verbatim}
(if A has UnaryRecursiveAggregate(S) then ...
else ...
end)
\end{verbatim}

\beginImportant
\noindent
\begin{verbatim}
 1. \ if A has UnaryRecursiveAggregate(S) then
 2. ...
 3. \ else
 4. ...
\end{verbatim}
\endImportant

\Testing

\Rightarrow “notitle” (EqTableXmpPage) 3.26 on page 386

\— ug11.ht —

Once you have written the package, embed it in a file, for example, \bf{sortpak.spadFileExt{}}. Be sure to include an \axiom{abbrev} command at the top of the file:

\begin{verbatim}
)abbrev package SORTPAK SortPackage
\end{verbatim}

Now compile the file (using \spad{compile sortpak\spadFileExt{}}).

\xtc{
Expose the constructor.
You are then ready to begin testing.
}{
\spadpaste{expose SORTPAK}
}
\xtc{
Define a list.
}{
\spadpaste{l := [1,7,4,2,11,-7,3,2]}
}
Since the integers are an ordered set, a one-argument operation will do.

\spad{bubbleSort!(l)}

Re-sort it using `'greater than.'`

\spad{bubbleSort!(l,(x,y) +-> x > y)}

Now sort it again using \axiomOp{<} on integers.

\spad{bubbleSort!(l, <\$Integer)}

A string is an aggregate of characters so we can sort them as well.

\spad{bubbleSort! "Mathematical Sciences"}

Is \axiomOp{<} defined on booleans?

\spad{false < true}

Good! Create a bit string representing ten consecutive boolean values \axiom{true}.

\spad{u : Bits := new(10,true)}

Set bits 3 through 5 to \axiom{false}, then display the result.

\spad{u(3..5) := false; u}

Now sort these booleans.

\spad{bubbleSort! u}

Create an `'eq-table'` (see \down{EqTableXmpPage}\ignore{EqTable}), a table having integers as keys and strings as values.

\spad{t : EqTable(Integer,String) := table()}
Give the table a first entry.
\spadpaste{t.1 := "robert"}

And a second.
\spadpaste{t.2 := "richard"}

What does the table look like?
\spadpaste{t}

Now sort it.
\spadpaste{bubbleSort! t}

\endscroll

\begin{patch}{ugPackagesCompilingPagePatch1}
\begin{paste}{ugPackagesCompilingPageFull1}{ugPackagesCompilingPageEmpty1}
\pastebutton{ugPackagesCompilingPageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) [1,7,4,2,11,-7,3,2]
Type: List Integer
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugPackagesCompilingPagePatch2}
\begin{paste}{ugPackagesCompilingPageFull2}{ugPackagesCompilingPageEmpty2}
\pastebutton{ugPackagesCompilingPageFull2}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) [1,7,4,2,11,-7,3,2]
\end{verbatim}
\indentrel{-3}\end{patch}
\begin{spad}
l := [1,7,4,2,11,-7,3,2]
\end{spad}

\begin{spad}
\makelabel{Bubble Sort}\spadcommand{\texttt{bubbleSort!(l)}}
\begin{verbatim}
(2) [-7,1,2,2,3,4,7,11]
Type: List Integer
\end{verbatim}
\end{spad}

\begin{spad}
\makelabel{Bubble Sort with Custom Comparator}\spadcommand{\texttt{bubbleSort!(l, (x,y) \rightarrow x > y)}}
\begin{verbatim}
(3) [11,7,4,3,2,2,1,-7]
Type: List Integer
\end{verbatim}
\end{spad}

\begin{spad}
\makelabel{Bubble Sort with Limited Type}\spadcommand{\texttt{bubbleSort!(l, \texttt{<Integer>})}}
\begin{verbatim}
(4) [-7,1,2,2,3,4,7,11]
Type: List Integer
\end{verbatim}
\end{spad}
\begin{verbatim}
(5) "MSaaaccceeehiilmnntt"
Type: String
\end{verbatim}

\begin{verbatim}
(6) true
Type: Boolean
\end{verbatim}

\begin{verbatim}
(7) "1111111111"
Type: Bits
\end{verbatim}
\begin{verbatim}
(8) "1100011111"
Type: Bits
\end{verbatim}

\begin{verbatim}
(9) "0001111111"
Type: Bits
\end{verbatim}

\begin{verbatim}
(10) table()
Type: EqTable(Integer,String)
\end{verbatim}
\begin{patch}{ugPackagesCompilingPagePatch12}
\begin{paste}{ugPackagesCompilingPageFull12}{ugPackagesCompilingPageEmpty12}
\tab{5}\spadcommand{t.1 := "robert"}
\indentrel{3}\begin{verbatim}
(11) "robert"
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPageEmpty12}
\begin{paste}{ugPackagesCompilingPageEmpty12}{ugPackagesCompilingPagePatch12}
\pastebutton{ugPackagesCompilingPageEmpty12}{\showpaste}
\tab{5}\spadcommand{t.1 := "robert"}
\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPagePatch13}
\begin{paste}{ugPackagesCompilingPageFull13}{ugPackagesCompilingPageEmpty13}
\pastebutton{ugPackagesCompilingPageFull13}{\hidepaste}
\tab{5}\spadcommand{t.2 := "richard"}
\indentrel{3}\begin{verbatim}
(12) "richard"
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPageEmpty13}
\begin{paste}{ugPackagesCompilingPageEmpty13}{ugPackagesCompilingPagePatch13}
\pastebutton{ugPackagesCompilingPageEmpty13}{\showpaste}
\tab{5}\spadcommand{t.2 := "richard"}
\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPagePatch14}
\begin{paste}{ugPackagesCompilingPageFull14}{ugPackagesCompilingPageEmpty14}
\pastebutton{ugPackagesCompilingPageFull14}{\hidepaste}
\tab{5}\spadcommand{t}
\indentrel{3}\begin{verbatim}
(13) table(2= "richard",1= "robert")
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPageEmpty14}
\begin{paste}{ugPackagesCompilingPageEmpty14}{ugPackagesCompilingPagePatch14}
\pastebutton{ugPackagesCompilingPageEmpty14}{\showpaste}
\tab{5}\spadcommand{t}
\end{paste}\end{patch}

\begin{patch}{ugPackagesCompilingPagePatch15}
\begin{paste}{ugPackagesCompilingPageFull15}{ugPackagesCompilingPageEmpty15}
\end{patch}\end{patch}
How Packages Work

⇒ “notitle” (ugCategoriesHierPage) 15 on page 2410
— ug11.ht —

Recall that packages as abstract datatypes are compiled independently and put into the library. The curious reader may ask: ‘‘How is the interpreter able to find an operation such as \fakeAxiomFun{bubbleSort!}? Also, how is a single compiled function such as \fakeAxiomFun{bubbleSort!} able to sort data of different types? ’’

After the interpreter loads the package \nonLibAxiomType{SortPackage}, the four operations from the package become known to the interpreter. Each of these operations is expressed as a \{it modemap\} in which the type of the operation is written in terms of symbolic domains.

\nullXtc{
See the modemaps for \fakeAxiomFun{bubbleSort!}.
}
\spadpaste{display op bubbleSort!}
\end{verbatim}
There are 2 exposed functions called bubbleSort!:

- [1] D1 \rightarrow D1 from SortPackage(D2,D1)
 if D2 has ORDSET and D2 has OBJECT and D1 has IndexedAggregate(Integer, D2) with
finiteAggregate
shallowlyMutable

[2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
if D3 has OBJECT and D1 has
IndexedAggregate(Integer,D3) with
finiteAggregate
shallowlyMutable

What happens if you ask for \axiom{bubbleSort!([1,-5,3])}?
There is a unique modemap for an operation named \fakeAxiomFun{bubbleSort!} with one argument.
Since \axiom{[1,-5,3]} is a list of integers, the symbolic domain \axiom{D1} is defined as \axiomType{List(Integer)}.
For some operation to apply, it must satisfy the predicate for some \axiom{D2}.
What \axiom{D2}?
The third expression of the \axiom{and} requires \{tt D1 has
IndexedAggregate(Integer, D2) with\} two attributes.
So the interpreter searches for an \axiomType{IndexedAggregate}
among the ancestors of \axiomType{List (Integer)} (see \downlink{``Hierarchies''}{ugCategoriesHierPage} in Section 12.4\ignore{ugCategoriesHier}). It finds one: \axiomType{IndexedAggregate(Integer, Integer)}. The interpreter tries defining \axiom{D2} as \axiomType{Integer}. After substituting for \axiom{D1} and \axiom{D2}, the predicate evaluates to \axiom{true}.
An applicable operation has been found!

Now Axiom builds the package \axiomType{SortPackage(List(Integer), Integer)}. According to its definition, this package exports the required operation: \fakeAxiomFun{bubbleSort!}: \spad{List Integer}{List Integer}. The interpreter then asks the package for a function implementing this operation. The package gets all the functions it needs (for example, \axiomFun{rest} and \axiomFunX{swap}) from the appropriate domains and then it returns a \fakeAxiomFun{bubbleSort!} to the interpreter together with the local environment for \fakeAxiomFun{bubbleSort!}. The interpreter applies the function to the argument \axiom{[1,-5,3]}. The \fakeAxiomFun{bubbleSort!} function is executed in its local environment and produces the result.
\tab{5}\spadcommand{\display op bubbleSort!}
Chapter 15

Users Guide Chapter 12
(ug12.ht)

Categories

← “Domain Constructors” (ugTypesBasicDomainConsPage) 7 on page 1619
⇒ “Domain Constructors” (ugTypesBasicDomainConsPage) 7 on page 1619
⇒ “Definitions” (ugCategoriesDefsPage) 15 on page 2405
⇒ “Exports” (ugCategoriesExportsPage) 15 on page 2407
⇒ “Documentation” (ugCategoriesDocPage) 15 on page 2408
⇒ “Hierarchies” (ugCategoriesHierPage) 15 on page 2410
⇒ “Membership” (ugCategoriesMembershipPage) 15 on page 2411
⇒ “Defaults” (ugCategoriesDefaultsPage) 15 on page 2412
⇒ “Axioms” (ugCategoriesAxiomsPage) 15 on page 2414
⇒ “Correctness” (ugCategoriesCorrectnessPage) 15 on page 2415
⇒ “Attributes” (ugCategoriesAttributesPage) 15 on page 2416
⇒ “Parameters” (ugCategoriesParametersPage) 15 on page 2419
⇒ “Conditionals” (ugCategoriesConditionalsPage) 15 on page 2420
⇒ “Anonymous Categories” (ugCategoriesAndPackagesPage) 15 on page 2422

--- ug12.ht ---

\begin{page}{ugCategoriesPage}{12. Categories}
\beginscroll

This chapter unravels the mysteries of categories---what they are, how they are related to domains and packages, how they are defined in Axiom, and how you can extend the system to include new categories of your own.

We assume that you have read the introductory material on domains and
2404 CHAPTER 15. USERS GUIDE CHAPTER 12 (UG12.HT)

categories in
\downlink{``Domain Constructors''}{ugTypesBasicDomainConsPage}
in Section 2.1.1\ignore{ugTypesBasicDomainCons}. There
you learned that the notion of packages covered in the previous
chapter are special cases of domains. While this is in fact the case,
it is useful here to regard domains as distinct from packages.

Think of a domain as a datatype, a collection of objects (the objects
of the domain). From your ‘‘sneak preview’’ in the previous chapter,
you might conclude that categories are simply named clusters of
operations exported by domains. As it turns out, categories have a
much deeper meaning. Categories are fundamental to the design of
Axiom. They control the interactions between domains and algorithmic
packages, and, in fact, between all the components of Axiom.

Categories form hierarchies as shown on the inside cover pages of this
book. The inside front-cover pages illustrate the basic algebraic
hierarchy of the Axiom programming language. The inside back-cover
pages show the hierarchy for data structures.

Think of the category structures of Axiom as a foundation for a city
on which superstructures (domains) are built. The algebraic
hierarchy, for example, serves as a foundation for constructive
mathematical algorithms embedded in the domains of Axiom. Once in
place, domains can be constructed, either independently or from one
another.

Superstructures are built for quality—domains are compiled into
machine code for run-time efficiency. You can extend the foundation
in directions beyond the space directly beneath the superstructures,
then extend selected superstructures to cover the space. Because of
the compilation strategy, changing components of the foundation
generally means that the existing superstructures (domains) built on
the changed parts of the foundation (categories) have to be
rebuilt—that is, recompiled.

Before delving into some of the interesting facts about categories,
let’s see how you define them in Axiom.

\beginmenu
\menudownLink{{12.1. Definitions}}{ugCategoriesDefsPage}
\menudownLink{{12.2. Exports}}{ugCategoriesExportsPage}
\menudownLink{{12.3. Documentation}}{ugCategoriesDocPage}
\menudownLink{{12.4. Hierarchies}}{ugCategoriesHierPage}
\menudownLink{{12.5. Membership}}{ugCategoriesMembershipPage}
\menudownLink{{12.6. Defaults}}{ugCategoriesDefaultsPage}
\menudownLink{{12.7. Axioms}}{ugCategoriesAxiomsPage}
\menudownLink{{12.8. Correctness}}{ugCategoriesCorrectnessPage}
\menudownLink{{12.9. Attributes}}{ugCategoriesAttributesPage}
\menudownLink{{12.10. Parameters}}{ugCategoriesParametersPage}
Definitions

A category is defined by a function with exactly the same format as any other function in Axiom.

Important
The definition of a category has the syntax:
\begin{center}
\texttt{CategoryForm : Category} \quad \texttt{==} \quad \texttt{Extensions [with Exports]}
\end{center}

The brackets \texttt{[]} here indicate optionality.

Important
The first example of a category definition is \spadtype{SetCategory}, the most basic of the algebraic categories in Axiom.

Important

\begin{verbatim}
\spad{SetCategory(): Category == }
 \spad{Join(Type, CoercibleTo OutputForm) with }
 \spad{= : (\$, $) \to Boolean}
\end{verbatim}

The definition starts off with the name of the category (\spadtype{SetCategory}); this is always in column one in the source file.

\%\% maybe talk about naming conventions for source files? .spad or .ax?
All parts of a category definition are then indented with respect to this first line.

In \downlink{‘Using Types and Modes’}{ugTypesPage} in Chapter 2\ignore{ugTypes}, we talked about \spadtype{Ring} as denoting the class of all domains that are rings, in short, the class of all rings. While this is the usual naming convention in Axiom, it is also common to use the word ‘‘Category’’ at the end of a category name for clarity. The interpretation of the name \spadtype{SetCategory} is, then, ‘‘the category of all domains that are (mathematical) sets.’’

The name \spadtype{SetCategory} is followed in the definition by its formal parameters enclosed in parentheses \spadSyntax{()}. Here there are no parameters. As required, the type of the result of this category function is the distinguished name \sf{Category}.

Then comes the \spadSyntax{==}. As usual, what appears to the right of the \spadSyntax{==} is a definition, here, a category definition. A category definition always has two parts separated by the reserved word \spadkey{with}
\spad{with}.%\footnote{Debugging hint: it is very easy to forget %the \spad{with}!}

The first part tells what categories the category extends. Here, the category extends two categories: \spadtype{Type}, the category of all domains, and \spadtype{CoercibleTo(OutputForm)}. %\footnote{\spadtype{CoercibleTo(OutputForm)} can also be written (and is written in the definition above) without %parentheses.}

The operation \spad{Join} is a system-defined operation that forms a single category from two or more other categories. Every category other than \spadtype{Type} is an extension of some other category. If, for example, \spadtype{SetCategory} extended only the category \spadtype{Type}, the definition here would read ‘‘{\tt Type with ...}’’.

In fact, the {\tt Type} is optional in this line; ‘‘{\tt with ...}’’ suffices.

\endscroll
\autobuttons
\end{page}
Exports

To the right of the \spad{with} is a list of \spadkey{with}
all the \spadglossSee(exports){export} of the category.
Each exported operation has a name and a type expressed by a
\spadgloss{declaration} of the form
``\{\frenchspacing\tt \{\it name\}: \{\it type\}\}''.

Categories can export symbols, as well as
\{\tt 0\} and \{\tt 1\} which denote
domain constants.\footnote{The
numbers \{\tt 0\} and \{\tt 1\} are operation names in Axiom.}
In the current implementation, all other exports are operations with
types expressed as \spadglossSee(mappings){mapping} with the syntax
\centerline{\{\tt \}}
\centerline{\{\tt source\quad\tt ->\quad target\}}
\centerline{\{}

The category \spadtype{SetCategory} has a single export: the operation
\spadop{=} whose type is given by the mapping \{\tt (\$, \$) -> Boolean\}. The \spadSyntax{\$} in a mapping type always means 'the domain.' Thus the operation \spadop{=} takes two arguments from the domain and returns a value of type \spadtype{Boolean}.

The source part of the mapping here is given by a \{\tt tuple\}
consisting of two or more types separated by commas and enclosed in
parentheses.
If an operation takes only one argument, you can drop the parentheses
around the source type.
If the mapping has no arguments, the source part of the mapping is either
left blank or written as \spadSyntax{()}. Here are examples of formats of various operations with some contrived names.

\begin{verbatim}
someIntegerConstant : $ aZeroArgumentOperation: () -> Integer aOneArgumentOperation: Integer -> $ aTwoArgumentOperation: (Integer,$) -> Void
\end{verbatim}
The definition of \spadtype{SetCategory} above is missing an important component: its library documentation. Here is its definition, complete with documentation.

\beginImportant
\noindent
\texttt{1. ++ Description:}
\texttt{2. ++ \spad{axiomType\{SetCategory\}\ is\ the\ basic\ category}}
\texttt{3. ++ for\ describing\ a\ collection\ of\ elements\ with}}
\texttt{4. ++ \spad{axiomOp\{=\}}\ (equality)\ and\ a\ \spad{axiomFun\{coerce\}}}
\texttt{5. ++ \spad{axiom\{x\ =\ y\}}\ tests\ if\ \spad{axiom\{x\}}\ and\ \spad{axiom\{y\}}\ are\ equal.}}
\endImportant

Documentary comments are an important part of constructor definitions. Documentation is given both for the category itself and for each export. A description for the category precedes the code. Each line of the description begins in column one with \axiomSyntax{++}. The description starts with the word \texttt{Description:}.\footnote{Other
information such as the author's name, date of creation, and so on, can go in this area as well but are currently ignored by Axiom.) All lines of the description following the initial line are indented by the same amount.

{\texttt{\sloppy}} Surround the name of any constructor (with or without parameters) with an \texttt{\verb+\axiomType+}. Similarly, surround an operator name with \texttt{\verb+\axiomOp+}, an Axiom operation with \texttt{\verb+\axiomFun+}, and a variable or Axiom expression with \texttt{\verb+\axiom+}. Library documentation is given in a \TeX{}-like language so that it can be used both for hard-copy and for \Browse{}. These different wrappings cause operations and types to have mouse-active buttons in \Browse{}. For hard-copy output, wrapped expressions appear in a different font. The above documentation appears in hard-copy as:

\begin{quotation}
\axiomType{SetCategory} is the basic category for describing a collection of elements with \axiomOp{=} (equality) and a \spadfun{coerce} to \axiomType{OutputForm}.
\end{quotation}

\begin{quotation}
\axiom{x = y} tests if \axiom{x} and \axiom{y} are equal.
\end{quotation}

For our purposes in this chapter, we omit the documentation from further category descriptions.

\endscroll
\autobuttons
\end{page}
Hierarchies

A second example of a category is \spadtype{SemiGroup}, defined by:

\begin{verbatim}
1. SemiGroup(): Category == SetCategory with
2. "*": (\$,\$) -> $
3. "**": (\$, PositiveInteger) -> $
\end{verbatim}

This definition is as simple as that for \spadtype{SetCategory}, except that there are two exported operations.

Multiple exported operations are written as a \spadgloss{pile}, that is, they all begin in the same column.

Here you see that the category mentions another type, \spadtype{PositiveInteger}, in a signature.

Any domain can be used in a signature.

Since categories extend one another, they form hierarchies.

Each category other than \spadtype{Type} has one or more parents given by the one or more categories mentioned before the \spad{with} part of the definition.

\spadtype{SemiGroup} extends \spadtype{SetCategory} and \spadtype{SetCategory} extends both \spadtype{Type} and \spadtype{CoercibleTo (OutputForm)}.

Since \spadtype{CoercibleTo (OutputForm)} also extends \spadtype{Type}, the mention of \spadtype{Type} in the definition is unnecessary but included for emphasis.
Membership

We say a category designates a class of domains. What class of domains? That is, how does Axiom know what domains belong to what categories? The simple answer to this basic question is key to the design of Axiom:

Important
\begin{center}{\bf Domains belong to categories by assertion.}\end{center}
Important
\end{page}

When a domain is defined, it is asserted to belong to one or more categories. Suppose, for example, that an author of domain \texttt{String} wishes to use the binary operator \texttt{*} to denote concatenation. Thus \texttt{"hello " * "there"} would produce the string \texttt{"hello there"}. Actually, concatenation of strings in Axiom is done by juxtaposition or by using the operation \texttt{concat}\{\texttt{String}\}. The expression \texttt{"hello " "there"} produces the string \texttt{"hello there"}. The author of \texttt{String} could then assert that \texttt{String} is a member of \texttt{SemiGroup}. According to our definition of \texttt{SemiGroup}, strings would then also have the operation \texttt{**} defined automatically. Then \texttt{"--" ** 4} would produce a string of eight dashes \texttt{"--------"}. Since \texttt{String} is a member of \texttt{SemiGroup}, it also is a member of \texttt{SetCategory} and thus has an operation \texttt{=} for testing that two strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this book. Any domain that is a member of a category extending \texttt{SemiGroup} is a member of \texttt{SemiGroup} (that is, it \texttt{is} a semigroup). In particular, any domain asserted to be a \texttt{Ring} is a semigroup since \texttt{Ring} extends \texttt{Monoid}, that, in turn, extends \texttt{SemiGroup}. The definition of \texttt{Integer} in Axiom asserts that \texttt{Integer} is a member of category \texttt{IntegerNumberSystem}, that, in turn, asserts that it is
a member of \spadtype{EuclideanDomain}. Now \spadtype{EuclideanDomain} extends
\spadtype{PrincipalIdealDomain} and so on. If you trace up the hierarchy, you see that
\spadtype{EuclideanDomain} extends \spadtype{Ring}, and, therefore, \spadtype{SemiGroup}.
Thus \spadtype{Integer} is a semigroup and also exports the
operations \spadop{*} and \spadop{**}.

\endscroll
\autobuttons
\end{page}

Defaults

\begin{page}{ugCategoriesDefaultsPage}{12.6. Defaults}
\beginscroll

We actually omitted the last
part of the definition of
\spadtype{SemiGroup} in
\downlink{``Hierarchies''}{ugCategoriesHierPage} in Section 12.4\ignore{ugCategoriesHier}.
Here now is its complete Axiom definition.

\beginImportant

\beginverbatim
1. SemiGroup(): Category == SetCategory with
2. *: (\$, \$) -> $
3. **: (\$, PositiveInteger) -> \$
4. add
5. import RepeatedSquaring(\$
\endverbatim

\endImportant

The \spad{add} part at the end is used to give "default definitions"
for \spadkey{add} exported operations. Once you have a multiplication
operation \spadop{*}, you can define exponentiation for positive
integer exponents using repeated multiplication:
\[
\text{\spad{x ** n = x * x * \ldots * x} (\text{n copies of \spad{x}})}
\]
This definition for \spadop{**} is called a \{it default\} definition. In
general, a category can give default definitions for any operation it
exports. Since \spadtype{SemiGroup} and all its category descendants
in the hierarchy export \spadop{**}, any descendant category may
redefine \spadop{**} as well.

A domain of category \spadtype{SemiGroup} (such as \spadtype{Integer})
may or may not choose to define its own \spadop{**} operation. If it
does not, a default definition that is closest (in a \{‘tree-distance’\}
sense of the hierarchy) to the domain is chosen.

The part of the category definition following an \spadop{add} operation
is a \spadgloss{capsule}, as discussed in
\texht{the previous chapter.}
\{\downlink{‘Packages’}{ugPackagesPage}
in Chapter 11\ignore{ugPackages}.\}
The line
\begin{verbatim}
import RepeatedSquaring($)
\end{verbatim}
references the package
\spadtype{RepeatedSquaring($)}, that is, the package
\spadtype{RepeatedSquaring} that takes \{‘this domain’\} as its
parameter.
For example, if the semigroup \spadtype{Polynomial (Integer)}
does not define its own exponentiation operation, the
definition used may come from the package
\spadtype{RepeatedSquaring (Polynomial (Integer))}.
The next line gives the definition in terms of \spadfun{expt} from that
package.

The default definitions are collected to form a \{‘default package’\}
for the category. The name of the package is the same as the category
but with an ampersand (\spadSyntax{\&}) added at the end. A default
package always takes an additional argument relative to the category.
Here is the definition of the default package \spadtype{SemiGroup\&}
as automatically generated by Axiom from the above definition of
\spadtype{SemiGroup}.

\beginImportant

\beginverbatim
\noindent \tt 1. \ \ SemiGroup_\&($): Exports\ ==\ Implementation\ where
\noindent \tt 2. \ \ \ \ $: SemiGroup
\noindent \tt 3. \ \ \ \ Exports\ ==\ with
\endverbatim

\endImportant
Axioms

⇐ “Categories” (ugCategoriesPage) 15 on page 2403
⇒ “Defaults” (ugCategoriesDefaultsPage) 15 on page 2412

In the previous section
\begin{downlink}{'Defaults'}{ugCategoriesDefaultsPage}
in Section 12.6\ignore{ugCategoriesDefaults} you saw the complete Axiom program defining \index{axiom} \spadtype{SemiGroup}. According to this definition, semigroups (that is, are sets with the operations \spadopFrom{*}{SemiGroup} and \spadopFrom{**}{SemiGroup}.

You might ask: ‘‘Aside from the notion of default packages, isn’t a category just a \spadgloss{macro}, that is, a shorthand equivalent to the two operations \spadop{*}\spadtype{SemiGroup} and \spadop{**}\spadtype{SemiGroup} with their types?’’ If a category were a macro, every time you saw the word \spadtype{SemiGroup}, you would rewrite it by its list of exported operations. Furthermore, every time you saw the exported operations of \spadtype{SemiGroup} among the exports of a constructor, you could conclude that the constructor exported \spadtype{SemiGroup}.

A category is \{it not\} a macro and here is why.
The definition for \spadtype{SemiGroup} has documentation that states:

\texht\begin{quote}\indent(3)\end{quote}
\begin{quote}Category \spadtype{SemiGroup} denotes the class of all multiplicative semigroups, that is, a set with an associative operation \spadop{*}.\end{quote}
{Axioms:}

\begin{quote}
\tt associative("*": (\$,:\$)-:\$) -- (x*y)*z = x*(y*z) \end{quote}

According to the author's remarks, the mere exporting of an operation named \spad{op{*}} and \spad{op{**}} is not enough to qualify the domain as a \spad{SemiGroup}. In fact, a domain can be a semigroup only if it explicitly exports a \spad{op{**}} and a \spad{op{*}} satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical theorems. There are numerous axioms from \spad{Ring}, for example, that are well-understood from the literature. No attempt is made to list them all. Nonetheless, all such mathematical facts are implicit by the use of the name \spad{Ring}.

Correctness

\begin{page}{ugCategoriesCorrectnessPage}{12.8. Correctness}

While such statements are only comments, Axiom can enforce their intention simply by shifting the burden of responsibility onto the author of a domain. A domain belongs to category \spad{Ring} only if the author asserts that the domain belongs to \spad{Ring} or to a category that extends \spad{Ring}.

This principle of assertion is important for large user-extendable systems. Axiom has a large library of operations offering facilities in many areas. Names such as \spad{fun{norm}} and \spad{fun{product}}, for example, have diverse meanings in diverse contexts. An inescapable hindrance to users would be to force those who wish to extend Axiom to always invent new names for operations. \label{disambiguating} %>> I don't think disambiguate is really a word, though I like it
Axiom allows you to reuse names, and then use context to disambiguate one from another.

Here is another example of why this is important. Some languages, such as
\textbf{APL}, denote the \texttt{Boolean} constants \texttt{true} and \texttt{false} by the integers \texttt{1} and \texttt{0}. You may want to let infix operators \texttt{+} and \texttt{*} serve as the logical operators \texttt{or} and \texttt{and}, respectively. But note this: \texttt{Boolean} is not a ring. The \textit{inverse axiom} for \texttt{Ring} states:

\begin{center}
{Every element \texttt{x} has an additive inverse \texttt{y} such that}
{\texttt{x + y = 0}.}
\end{center}

\texttt{Boolean} is not a ring since \texttt{true} has no inverse---there is no inverse element \texttt{a} such that \texttt{1 + a = 0} (in terms of booleans, \texttt{(true or a) = false}). Nonetheless, Axiom \texttt{\{it could\}} easily and correctly implement \texttt{Boolean} this way. \texttt{Boolean} simply would not assert that it is of category \texttt{Ring}. Thus the \texttt{+} for \texttt{Boolean} values is not confused with the one for \texttt{Ring}.

Since the \texttt{Poly} constructor requires its argument to be a ring, Axiom would then refuse to build the domain \texttt{Poly(\texttt{Boolean})}. Also, Axiom would refuse to wrongfully apply algorithms to \texttt{Boolean} elements that presume that the ring axioms for \texttt{+} hold.

\begin{scroll}
\begin{center}
\texttt{Every element \texttt{x} has an additive inverse \texttt{y} such that}
\texttt{\texttt{x + y = 0}.}
\end{center}
\end{scroll}

\begin{autobuttons}
\end{page}

\section*{Attributes}

\begin{enumerate}
\item “Categories” (ugCategoriesPage) 15 on page 2403
\item “Category Assertions” (ugDomainsAssertionsPage) 16 on page 2429
\end{enumerate}

\texttt{Boolean} simply would not assert that it is of category \texttt{Ring}. Thus the \texttt{+} for \texttt{Boolean} values is not confused with the one for \texttt{Ring}.

Since the \texttt{Poly} constructor requires its argument to be a ring, Axiom would then refuse to build the domain \texttt{Poly(\texttt{Boolean})}. Also, Axiom would refuse to wrongfully apply algorithms to \texttt{Boolean} elements that presume that the ring axioms for \texttt{+} hold.

Most axioms are not computationally useful.
Those that are can be explicitly expressed by what Axiom calls an \spadgloss{attribute}.
The attribute \spadatt{commutative("*")}, for example, is used to assert that a domain has commutative multiplication.
Its definition is given by its documentation:

\begin{verbatim}
A domain \spad{R} has \spadatt{commutative("*")}
if it has an operation ": \spadsig{(R,R)}{R}
such that \spad{x * y = y * x}.
\end{verbatim}

Just as you can test whether a domain has the category \spadtype{Ring}, you can test that a domain has a given attribute.

\xtc{
Do polynomials over the integers have commutative multiplication?
}{
\spadpaste{Polynomial Integer has commutative("*")}
}
\xtc{
Do matrices over the integers have commutative multiplication?
}{
\spadpaste{Matrix Integer has commutative("*")}
}

Attributes are used to conditionally export and define operations for a domain (see \downlink{``Category Assertions''}{ugDomainsAssertionsPage} in Section 13.3). Attributes can also be asserted in a category definition.

After mentioning category \spadtype{Ring} many times in this book, it is high time that we show you its definition:

\beginImportant
\begin{verbatim}
1. Ring(): Category ==
2. Join(Rng,Monoid,LeftModule($: Rng) with)
3. \characteristic:: -> NonNegativeInteger
4. coerce:: Integer -> $\$
5. unitsKnown
6. add
7. n:Integer
8. coerce(n) == n * 1$\$
\end{verbatim}
\endImportant
There are only two new things here. First, look at the \spadSyntax{\$} on the last line. This is not a typographic error! The first \spadSyntax{\$} says that the \spad{1} is to come from some domain. The second \spadSyntax{\$} says that the domain is "this domain." If \spadSyntax{\$} is \spadtype{Fraction(Integer)}, this line reads \verb+coerce(n) == n * 1$Fraction(Integer)+.

The second new thing is the presence of attribute \verb+\spad(unitsKnown)+. Axiom can always distinguish an attribute from an operation. An operation has a name and a type. An attribute has no type. The attribute \spadatt{unitsKnown} asserts a rather subtle mathematical fact that is normally taken for granted when working with rings.\footnote{With this axiom, the units of a domain are the set of elements \spad{x} that each have a multiplicative inverse \spad{y} in the domain. Thus \spad{1} and \spad{-1} are units in domain \spadtype{Integer}. Also, for \spadtype{Fraction Integer}, the domain of rational numbers, all non-zero elements are units.} Because programs can test for this attribute, Axiom can correctly handle rather more complicated mathematical structures (ones that are similar to rings but do not have this attribute).

\begin{verbatim}
(1) true
Type: Boolean
(2) false
Type: Boolean
\end{verbatim}
Parameters

Like domain constructors, category constructors can also have parameters. For example, category \spad{MatrixCategory} is a parameterized category for defining matrices over a ring \spad{R} so that the matrix domains can have different representations and indexing schemes. Its definition has the form:

\begin{verbatim}
1. MatrixCategory(R,Row,Col): Category ==
2. TwoDimensionalArrayCategory(R,Row,Col) with ...
\end{verbatim}

The category extends \spad{TwoDimensionalArrayCategory} with the same arguments. You cannot find \spad{TwoDimensionalArrayCategory} in the algebraic hierarchy listing. Rather, it is a member of the data structure hierarchy, given inside the back cover of this book. In particular, \spad{TwoDimensionalArrayCategory} is an extension of \spad{HomogeneousAggregate} since its elements are all one type.

The domain \spad{Matrix(R)}, the class of matrices with coefficients from domain \spad{R}, asserts that it is a member of category \spad{MatrixCategory(R, Vector(R), Vector(R))}. The parameters of a category must also have types.

The first parameter to \spad{MatrixCategory} \spad{R} is required to be a ring. The second and third are required to be domains of category \spad{FiniteLinearAggregate(R)}.

This is another extension of
In practice, examples of categories having parameters other than domains are rare.

Adding the declarations for parameters to the definition for \spadtype{MatrixCategory}, we have:

\beginImportant
\noindent
\tt 1. \ R: Ring
\tt 2. \ (Row, Col): FiniteLinearAggregate(R)
\tt 3. \ MatrixCategory(R, Row, Col): Category ==
\tt 4. \ TwoDimensionalArrayCategory(R, Row, Col) with ...}
\endImportant

\endscroll

Conditionals

\begin{verbatim}
if R has commutative("*") then
 determinant: $ -> R
\end{verbatim}

Conditionals can also define conditional extensions of a category.
Here is a portion of the definition of \spadtype{QuotientFieldCategory}:

\beginImportant

\noindent
\beginverbatim
1. \ QuotientFieldCategory(R) : Category == ... with ...
endverbatim
\endverbatim
\btt
2. \ QuotientFieldCategory(R) has OrderedSet\n3. \ QuotientFieldCategory(R) has IntegerNumberSystem\n4. \ QuotientFieldCategory(R) ceiling : \$ -> R
endverbatim
\endverbatim
\btt
5. \ QuotientFieldCategory(R) ...
\endverbatim
\texttt
\endImportant

Think of category \spadtype{QuotientFieldCategory(R)} as denoting the domain \spadtype{Fraction(R)}, the class of all fractions of the form a/b for elements of \spad{R}. The first conditional means in English: ‘‘If the elements of \spad{R} are totally ordered (\spad{R} is an \spadtype{OrderedSet}), then so are the fractions a/b’’.

The second conditional is used to conditionally export an operation \spadfun{ceiling} which returns the smallest integer greater than or equal to its argument. Clearly, ‘‘ceiling’’ makes sense for integers but not for polynomials and other algebraic structures. Because of this conditional, the domain \spadtype{Fraction(Integer)} exports an operation \spadfun{ceiling}: \spadsig{Fraction Integer}{Integer}, but \spadtype{Fraction Polynomial Integer} does not.

Conditionals can also appear in the default definitions for the operations of a category. For example, a default definition for \spadfunFrom{ceiling}{Field} within the part following the \spadop{add} reads:

\beginverbatim
if R has IntegerNumberSystem then
 ceiling x == ...\n\endverbatim
\endverbatim
\verbatim
Here the predicate used is identical to the predicate in the \tt{Exports} part. This need not be the case. See \downlink{‘‘Conditionals’’}{ugPackagesCondsPage} in Section 11.8\ignore{ugPackagesConds} for a more complicated example.

\endscroll

\autobuttons
\end{page}
Anonymous Categories

⇐ “Categories” (ugCategoriesPage) 15 on page 2403
⇒ “Abstract Datatypes” (ugPackagesAbstractPage) 14 on page 2380

Anonymous Categories

The part of a category to the right of a \{\tt with\} is also regarded as a category---an ‘‘anonymous category.’’ Thus you have already seen a category definition The \{\tt Exports\} part of the package \spadtype{DrawComplex}
\{\downlink{‘‘Abstract Datatypes’’}{ugPackagesAbstractPage}\} in Section 11.3\ignore{ugPackagesAbstract} is an anonymous category. This is not necessary. We could, instead, give this category a name:

\beginImportant
\noindent
\begin{verbatim}
1. \ DrawComplexCategory(): Category == with
2. \drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
3. \drawComplexVectorField: (C -> C,S,S) -> VIEW3D
4. \setRealSteps: INT -> INT
5. \setImagSteps: INT -> INT
6. \setClipValue: DFLOAT-> DFLOAT
\end{verbatim}
\endImportant
\noindent
and then define \spadtype{DrawComplex} by:

\beginImportant
\noindent
\begin{verbatim}
1. \ DrawComplex(): DrawComplexCategory == Implementation
\end{verbatim}
\endImportant
\noindent
There is no reason, however, to give this list of exports a name since no other domain or package exports it.
In fact, it is rare for a package to export a named category. As you will see in the next chapter, however, it is very common for the definition of domains to mention one or more category before the {\tt with}.
\spadkey{with}
\endscroll
\autobuttons
\end{page}
Chapter 16

Users Guide Chapter 13
(ug13.ht)

Domains

⇒ “notitle” (ugPackagesDomsPage) 16 on page 2426
⇒ “notitle” (ugDomainsDefsPage) 16 on page 2427
⇒ “notitle” (ugDomainsAssertionsPage) 16 on page 2429
⇒ “notitle” (ugDomainsDemoPage) 16 on page 2431
⇒ “notitle” (ugDomainsBrowsePage) 16 on page 2435
⇒ “notitle” (ugDomainsRepPage) 16 on page 2436
⇒ “notitle” (ugDomainsMultipleRepsPage) 16 on page 2437
⇒ “notitle” (ugDomainsDefaultsPage) 16 on page 2438
⇒ “notitle” (ugDomainsOriginsPage) 16 on page 2441
⇒ “notitle” (ugDomainsShortFormsPage) 16 on page 2442
⇒ “notitle” (ugDomainsCliffordPage) 16 on page 2443
⇒ “notitle” (ugDomainsinsDatabasePage) 16 on page 2445

— ug13.ht —

\begin{page}{ugDomainsPage}{13. Domains}
\beginscroll

We finally come to the \spadgloss{domain constructor}. A few subtle differences between packages and domains turn up some interesting issues. We first discuss these differences then describe the resulting issues by illustrating a program for the \axiomType{QuadraticForm} constructor. After a short example of an algebraic constructor, \axiomType{CliffordAlgebra}, we show how you use domain constructors to build a database query facility.

— ug13.ht —

2425
Domains vs. Packages

Packages are special cases of domains. What is the difference between a package and a domain that is not a package? By definition, there is only one difference: a domain that is not a package has the symbol `\$` appearing somewhere among the types of its exported operations. The `\$` denotes "this domain." If the `\$` appears before the `->` in the type of a signature, it means the operation takes an element from the domain as an argument. If it appears after the `->`, then the operation returns an element of the domain.

If no exported operations mention `\$`, then evidently there is nothing of interest to do with the objects of the domain. You might then say that a package is a "boring" domain! But, as you saw in Chapter 11, packages are a very useful notion indeed. The exported operations of a package depend solely on
the parameters to the package constructor and other explicit domains.

To summarize, domain constructors are versatile structures that serve two distinct practical purposes: Those like \axiomType{Polynomial} and \axiomType{List} describe classes of computational objects; others, like \pspadtype{SortPackage}, describe packages of useful operations. As in the last chapter, we focus here on the first kind.

Definitions

— u13.2. Definitions —

The syntax for defining a domain constructor is the same as for any function in Axiom:

\begin{verbatim}
DomainForm : Exports == Implementation where
optional type declarations
Exports == [Category Assertions] with
list of exported operations
Implementation == [Add Domain] add
list of function definitions for exported operations
\end{verbatim}

A recommended format for the definition of a domain is:

\begin{verbatim}
DomainForm : Exports == Implementation where
optional type declarations
Exports == [Category Assertions] with
list of exported operations
Implementation == [Add Domain] add
list of function definitions for exported operations
\end{verbatim}
A complete domain constructor definition for \texttt{QuadraticForm} is shown in Figure \ref{fig-quadform}. Interestingly, this little domain illustrates all the new concepts you need to learn.

\beginImportant

\noindent \tt{1. \ abbrev \ domain \ QFORM \ QuadraticForm}\newline
\tt{2. \ ++ Description:}\newline
\tt{3. \ ++ This domain provides modest support for}\newline
\tt{4. \ ++ quadratic forms.}\newline
\tt{5. \ ++ \ quadratic forms.}\newline
\tt{6. \ QuadraticForm(n,K): Exports == Implementation where}\newline
\tt{7. \ n: PositiveInteger}\newline
\tt{8. \ K: Field}\newline
\tt{9. \ Exports == AbelianGroup with}\newline
\tt{10. \ quadraticForm: \ SquareMatrix(n,K) -> \$}\newline
\tt{11. \ matrix: \$ -> \ SquareMatrix(n,K)}
\tt{12. \ elt: \$(, DirectProduct(n,K)) -> K}\newline
\tt{13. \ quadratic\ form\ from\ a\ symmetric,}\newline
\tt{14. \ square\ matrix\ \texttt{axiom}\{m\}.}\newline
\tt{15. \ matrix: \$ -> \ SquareMatrix(n,K)}\newline
\tt{16. \ \texttt{axiom}\{matrix(qf)\}\ creates\ a\ square\ matrix}\newline
\tt{17. \ \texttt{axiom}\{qf(v)\}\ evaluates\ the\ quadratic\ form}\newline
\tt{18. \ \texttt{axiom}\{qf(v)\}\ on\ the\ texttt{axiom}\{v\}.}\newline
\tt{19. \ producing\ a\ scalar.}\newline
\tt{20. \ \texttt{Implementation} == \ SquareMatrix(n,K) add}\newline
\tt{21. \ Rep == \ SquareMatrix(n,K)}\newline
\tt{22. \ quadraticForm\ m == \ not\ symmetric?\ m => error}\newline
\tt{23. \ "quadraticForm requires a symmetric matrix"}\newline
\tt{24. \ m :: \$}\newline

\endImportant
\tt 29. \ \ \ \ \ \ \ \ \ \ matrix\ q \ == \ q\ ::\ \ Rep
\tt 30. \ \ \ \ \ \ \ \ \ \ elt(q, v) \ == \ \ dot(v, \ (matrix\ q \ *\ v))
\caption{The \protect\axiomType{QuadraticForm} domain.}\label{fig-quadform}
\endImportant

A domain constructor can take any number and type of parameters.
\axiomType{QuadraticForm} takes a positive integer \axiom{n} and a field
\axiom{K} as arguments.
Like a package, a domain has a set of explicit exports and an
implementation described by a capsule.
Domain constructors are documented in the same way as package constructors.

Domain \axiomType{QuadraticForm(n, K)}, for a given positive integer
\axiom{n} and domain \axiom{K}, explicitly exports three operations:
\begin{itemize}
\item \axiom{quadraticForm(A)} creates a quadratic form from a matrix
\axiom{A}.
\item \axiom{matrix(q)} returns the matrix \axiom{A} used to create
the quadratic form \axiom{q}.
\item \axiom{q.v} computes the scalar \texht{v^TAv}{transpose(v)*A*v}
for a given vector \axiom{v}.
\end{itemize}

Compared with the corresponding syntax given for the definition of a
package, you see that a domain constructor has three optional parts to
its definition: \{\it Category Assertions\}, \{\it Add Domain\}, and
\{\it Representation\}.

\endscroll
\autobuttons
\end{page}

Category Assertions

⇒ “notitle” (ugCategoriesCorrectnessPage) 15 on page 2415
⇒ “notitle” (ugCategoriesConditionalsPage) 15 on page 2420
— ug13.ht —

\begin{page}{ugDomainsAssertionsPage}{13.3. Category Assertions}
\beginscroll

———

Category Assertions

\endscroll

\begin{page}{ugDomainsAssertionsPage}{13.3. Category Assertions}

\end{page}
The \emph{Category Assertions} part of your domain constructor definition lists those categories of which all domains created by the constructor are unconditionally members. The word ‘‘unconditionally’’ means that membership in a category does not depend on the values of the parameters to the domain constructor. This part thus defines the link between the domains and the category hierarchies given on the inside covers of this book. As described in \ref{ugCategoriesCorrectness} in Section 12.8, it is this link that makes it possible for you to pass objects of the domains as arguments to other operations in Axiom.

Every \axiomType{QuadraticForm} domain is declared to be unconditionally a member of category \axiomType{AbelianGroup}. An abelian group is a collection of elements closed under addition. Every object \(x\) of an abelian group has an additive inverse \(y\) such that \(x + y = 0\). The exports of an abelian group include \axiom{0}, \axiomOp{+}, \axiomOp{-}, and scalar multiplication by an integer. After asserting that \axiomType{QuadraticForm} domains are abelian groups, it is possible to pass quadratic forms to algorithms that only assume arguments to have these abelian group properties.

In \ref{ugCategoriesConditionals} in Section 12.11, you saw that \axiomType{Fraction(R)}, a member of \axiomType{QuotientFieldCategory(R)}, is a member of \axiomType{OrderedSet} if \axiom{R} is a member of \axiomType{OrderedSet}. Likewise, from the \ttt Exports part of the definition of \axiomType{ModMonic(R, S)},
\begin{verbatim}
Join(ExtensibleLinearAggregate(S),
 OneDimensionalArrayAggregate(S)) with...
\end{verbatim}

you see that \axiomType{ModMonic(R, S)} is a member of \axiomType{Finite} if \axiom{R} has \axiom{Finite}.

The \ttt Exports part of a domain definition is the same kind of expression that can appear to the right of an \axiomSyntax{==} in a category definition. If a domain constructor is unconditionally a member of two or more categories, a \axiom{Join} form is used. \spadkey{Join} The \ttt Exports part of the definition of \axiomType{FlexibleArray(S)} reads, for example:
\begin{verbatim}
Join(ExtensibleLinearAggregate(S),
 OneDimensionalArrayAggregate(S)) with...
\end{verbatim}
A Demo

— ug13.ht —

Before looking at the \it Implementation part of \axiomType{QuadraticForm}, let’s try some examples.

\begin{verbatim}
Build a domain \axiom{QF}.
\spadpaste{QF := QuadraticForm(2,Fraction Integer)\bound{x2}\free{x1}}
\xtc{Define a matrix to be used to construct a quadratic form.}
\spadpaste{A := matrix \[[-1,1/2],[1/2,1]\] \bound{x3}\free{x2}}
\xtc{Construct the quadratic form.}
\spadpaste{q : QF := quadraticForm(A)\bound{x4}\free{x3}}
\xtc{Looks like a matrix. Try computing the number of rows. Axiom won’t let you.}
\spadpaste{nrows q\free{x3}}
\xtc{Create a direct product element \axiom{v}. A package call is again necessary, but Axiom understands your list as denoting a vector.}
\end{verbatim}
Compute the product v^TAv.

What is 3 times \axiom{q} minus \axiom{q} plus \axiom{q}?

```
\begin{verbatim}
QF := QuadraticForm(2,Fraction Integer)
1 QuadraticForm(2,Fraction Integer)
\end{verbatim}
```

```
\begin{verbatim}
A := matrix [[-1,1/2],[1/2,1]]
1 - 1
\end{verbatim}
```

```
\begin{verbatim}
1
2
\end{verbatim}
```

```
\begin{verbatim}
Type: Matrix Fraction Integer
```

```
\end{verbatim}
```
\begin{spadblock}
\spad{A := matrix \begin{bmatrix} -1, 1/2 \end{bmatrix}, \begin{bmatrix} 1/2, 1 \end{bmatrix}}
\end{spadblock}

\begin{spadblock}
\spad{q : QF := quadraticForm(A)}
\begin{verbatim}
1
- 1
2
(3)
1
1
2
\end{verbatim}
\end{spadblock}

\begin{verbatim}
Type: QuadraticForm(2,Fraction Integer)
\end{verbatim}

\begin{spadblock}
\spad{nrows q}
\begin{verbatim}
\end{verbatim}
\end{spadblock}

\begin{spadblock}
\spad{v := directProduct([2,-1])}
\begin{verbatim}
(4) \begin{bmatrix} 2, -1 \end{bmatrix}
\end{verbatim}
\end{spadblock}

\begin{verbatim}
Type: DirectProduct(2,Fraction Integer)
\end{verbatim}
\begin{verbatim}
\tab{5}\spadcommand{v := directProduct([2,-1])$
\text{DirectProduct}(2,\text{Fraction Integer})$
\text{bound}\{x5\}\text{free}\{x4\}}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugDomainsDemoPagePatch6}
\begin{paste}{ugDomainsDemoPageFull6}{ugDomainsDemoPageEmpty6}
\pastebutton{ugDomainsDemoPageFull6}{\hidepaste}
\tab{5}\spadcommand{q.v\text{free}\{x5\}}
\indentrel{3}\begin{verbatim}
(5) - 5
\text{Type: Fraction Integer}
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugDomainsDemoPageEmpty6}
\begin{paste}{ugDomainsDemoPageEmpty6}{ugDomainsDemoPagePatch6}
\pastebutton{ugDomainsDemoPageEmpty6}{\showpaste}
\tab{5}\spadcommand{q.v\text{free}\{x5\}}
\end{paste}
\end{patch}

\begin{patch}{ugDomainsDemoPagePatch7}
\begin{paste}{ugDomainsDemoPageFull7}{ugDomainsDemoPageEmpty7}
\pastebutton{ugDomainsDemoPageFull7}{\hidepaste}
\tab{5}\spadcommand{3*q-q+q\text{free}\{x4\}}
\indentrel{3}\begin{verbatim}
3
2
(6)
3
3
2
\text{Type: QuadraticForm}(2,\text{Fraction Integer})
\end{verbatim}
\indentrel{-3}\end{paste}
\end{patch}

\begin{patch}{ugDomainsDemoPageEmpty7}
\begin{paste}{ugDomainsDemoPageEmpty7}{ugDomainsDemoPagePatch7}
\pastebutton{ugDomainsDemoPageEmpty7}{\showpaste}
\tab{5}\spadcommand{3*q-q+q\text{free}\{x4\}}
\end{paste}
\end{patch}
The Browse{} facility of Hyperdoc is useful for investigating the properties of domains, packages, and categories. From the main Hyperdoc menu, move your mouse to \bf Browse\} and click on the left mouse button. This brings up the \bf Browse\} first page.

Now, with your mouse pointer somewhere in this window, enter the string ‘‘quadraticform’’ into the input area (all lower case letters will do).

Move your mouse to \bf Constructors\} and click. Up comes a page describing \axiomType{QuadraticForm}. From here, click on \bf Description\}.

This gives you a page that includes a part labeled by ‘‘{\it Description:\}''. You also see the types for arguments \axiom{n} and \axiom{K} displayed as well as the fact that \axiomType{QuadraticForm} returns an \axiomType{AbelianGroup}. You can go and experiment a bit by selecting \bf Field\} with your mouse. Eventually, use \UpButton{} several times to return to the first page on \axiomType{QuadraticForm}.

Select \bf Operations\} to get a list of operations for \axiomType{QuadraticForm}. You can select an operation by clicking on it to get an individual page with information about that operation. Or you can select the buttons along the bottom to see alternative views or get additional information on the operations. Then return to the page on \axiomType{QuadraticForm}.

Select \bf Cross Reference\} to get another menu. This menu has buttons for \bf Parents\}, \bf Ancestors\}, and others. Clicking on \bf Parents\}, you see that \axiomType{QuadraticForm} has one parent \axiomType{AbelianMonoid}.

\endscroll
\autobuttons
\end{page}
Representation

The \texttt{Implementation} part of an Axiom capsule for a domain constructor uses the special variable \texttt{Rep} to identify the lower level data type used to represent the objects of the domain. The \texttt{Rep} for quadratic forms is \texttt{SquareMatrix(n, K)}. This means that all objects of the domain are required to be \texttt{n} by \texttt{n} matrices with elements from \texttt{K}.

The code for \texttt{quadraticForm} in Figure \ref{fig-quadform} on page \pageref{fig-quadform} checks that the matrix is symmetric and then converts it to \texttt{\$}, which means, as usual, "this domain." Such explicit conversions \index{conversion} are generally required by the compiler. Aside from checking that the matrix is symmetric, the code for this function essentially does nothing. The \texttt{m :: \$} on line 28 coerces \texttt{m} to a quadratic form. In fact, the quadratic form you created in step (3) of \downlink{``A Demo''}{ugDomainsDemoPage} in Section 13.4\ignore{ugDomainsDemo} is just the matrix you passed it in disguise! Without seeing this definition, you would not know that. Nor can you take advantage of this fact now that you do know! When we try in the next step of \downlink{``A Demo''}{ugDomainsDemoPage} in Section 13.4\ignore{ugDomainsDemo} to regard \texttt{q} as a matrix by asking for \texttt{nrows}, the number of its rows, Axiom gives you an error message saying, in effect, "'Good try, but this won't work!'"

The definition for the \spadfun{matrix}{QuadraticForm} function could hardly be simpler: it just returns its argument after explicitly coercing its argument to a matrix. Since the argument is already a matrix, this coercion does no computation.

Within the context of a capsule, an object of \texttt{\$} is regarded both as a quadratic form \texttt{\it} and as a
matrix.\footnote{In case each of \axiomSyntax{\$} and \axiom{Rep} have the same named operation available, the one from \axiom{\$} takes precedence. Thus, if you want the one from \axiom{Rep}, you must package call it using a \axiomSyntax{\$Rep} suffix.} This makes the definition of \axiom{q.v} easy—it just calls the \spadfunFrom{dot}{DirectProduct} product from \axiomType{DirectProduct} to perform the indicated operation.

\endscroll
\autobuttons
\end{page}

Multiple Representations

\Rightarrow “notitle” (ugTypesUnionsPage) 7 on page 1656
— ug13.ht —

\begin{page}{ugDomainsMultipleRepsPage}{13.7. Multiple Representations}
\beginscroll
%
To write functions that implement the operations of a domain, you want to choose the most computationally efficient data structure to represent the elements of your domain.

A classic problem in computer algebra is the optimal choice for an internal representation of polynomials. If you create a polynomial, say \texht{$3x^2+ 5$} (\axiom{3*x**2 + 5}), how does Axiom hold this value internally? There are many ways. Axiom has nearly a dozen different representations of polynomials, one to suit almost any purpose. Algorithms for solving polynomial equations work most efficiently with polynomials represented one way, whereas those for factoring polynomials are most efficient using another. One often-used representation is a list of terms, each term consisting of exponent-coefficient records written in the order of decreasing exponents.

For example, the polynomial \texht{$3x^2+5$} (\axiom{3*x**2+5}) is %>> I changed the k's in next line to e's as I thought that was %>> clearer.
represented by the list \axiom{[[[e:2, c:3], [e:0, c:5]]]}.

What is the optimal data structure for a matrix?
It depends on the application.
For large sparse matrices, a linked-list structure of records
holding only the non-zero elements may be optimal.
If the elements can be defined by a simple formula
\(f(i,j) \), then a compiled function for
\(\text{axiom}(f) \) may be optimal.
Some programmers prefer to represent ordinary matrices as vectors.
Others prefer to represent matrices by one big linear array where
elements are accessed with linearly computable indexes.

While all these simultaneous structures tend to be confusing,
Axiom provides a helpful organizational tool for such a purpose:
categories.
\(\text{axiomType}(\text{PolynomialCategory}) \), for example, provides a uniform user
interface across all polynomial types.
Each kind of polynomial implements functions for
all these operations, each in its own way.
If you use only the top-level operations in
\(\text{axiomType}(\text{PolynomialCategory}) \) you usually do not care what kind
of polynomial implementation is used.

\%>> I've often thought, though, that it would be nice to be
\%>> be able to use conditionals for representations.

Within a given domain, however, you define (at most) one
representation.\footnote{You can make that representation a
\(\text{pspadtype}(\text{Union}) \) type, however. See
\downlink{``Unions''}{ugTypesUnionsPage} in Section
2.5\ignore{ugTypesUnions} for examples of unions.}
If you want to have multiple representations (that is, several
domains, each with its own representation), use a category to describe
the \(\text{tt Export} \), then define separate domains for each
representation.

\endscroll
\autobuttons
\end{page}

Add Domain

\=> “notitle” (ugDomainsDemoPage) 16 on page 2431
— ug13.ht —

\begin{page}{ugDomainsAddDomainPage}{13.8. Add Domain}
The capsule part of \{tt Implementation\} defines functions that implement the operations exported by the domain---usually only some of the operations. In our demo in \downlink{``A Demo''}{ugDomainsDemoPage} in Section 13.4\ignore{ugDomainsDemo}, we asked for the value of \axiom{3*q-q+q}. Where do the operations \axiomOp{*}, \axiomOp{+}, and \axiomOp{-} come from? There is no definition for them in the capsule!

The \{tt Implementation\} part of a definition can optionally specify an \{add-domain\} to the left of an \{add\} \spadkey{add} (for \axiomType{QuadraticForm}, defines \axiomType{SquareMatrix(n,K)} is the add-domain). The meaning of an add-domain is simply this: if the capsule part of the \{tt Implementation\} does not supply a function for an operation, Axiom goes to the add-domain to find the function. So do \axiomOpFrom{*}{QuadraticForm}, \axiomOpFrom{+}{QuadraticForm} and \axiomOpFrom{-}{QuadraticForm} come from \axiomType{SquareMatrix(n,K)}?

Defaults

\begin{tt}
\begin{verbatim}
``notitle'' (ugPackagesPage) 14 on page 2375
``notitle'' (ugCategoriesDefaultsPage) 15 on page 2412
\end{verbatim}
\end{tt}

In \downlink{``Packages''}{ugPackagesPage} in Chapter 11\ignore{ugPackages}, we saw that categories can provide default implementations for their operations. How and when are they used?

When Axiom finds that \axiomType{QuadraticForm(2, Fraction Integer)} does not implement the operations \axiomOp{*}, \axiomOp{+}, and \axiomOp{-}, it goes to \axiomType{SquareMatrix(2,Fraction Integer)} to find it.
As it turns out, \texttt{SquareMatrix(2, Fraction Integer)} does not implement \{it any\} of these operations!

What does Axiom do then? Here is its overall strategy. First, Axiom looks for a function in the capsule for the domain. If it is not there, Axiom looks in the add-domain for the operation. If that fails, Axiom searches the add-domain of the add-domain, and so on. If all those fail, it then searches the default packages for the categories of which the domain is a member. In the case of \texttt{QuadraticForm}, it searches \texttt{AbelianGroup}, then its parents, grandparents, and so on. If this fails, it then searches the default packages of the add-domain. Whenever a function is found, the search stops immediately and the function is returned. When all fails, the system calls \texttt{error} to report this unfortunate news to you. To find out the actual order of constructors searched for \texttt{QuadraticForm}, consult \texttt{Browse}: from the \texttt{QuadraticForm}, click on \texttt{Cross Reference}, then on \texttt{Lineage}.

Let's apply this search strategy for our example \texttt{3*q-q+q}. The scalar multiplication comes first. Axiom finds a default implementation in \texttt{AbelianGroup}. Remember from \texttt{Defaults} in Section 12.6 that \texttt{SemiGroup} provides a default definition for x^n by repeated squaring? \texttt{AbelianGroup} similarly provides a definition for nx by repeated doubling.

But the search of the defaults for \texttt{QuadraticForm} fails to find any \texttt{+} or \texttt{*} in the default packages for the ancestors of \texttt{QuadraticForm}. So it now searches among those for \texttt{SquareMatrix}. Category \texttt{MatrixCategory}, which provides a uniform interface for all matrix domains, is a grandparent of \texttt{SquareMatrix} and has a capsule defining many functions for matrices, including matrix addition, subtraction, and scalar multiplication. The default package \texttt{MatrixCategory} is where the functions for \texttt{QuadraticForm} and \texttt{spadfunFrom(-)} come from.

You can use \texttt{Browse} to discover where the operations for \texttt{QuadraticForm} are implemented. First, get the page describing \texttt{QuadraticForm}. With your mouse somewhere in this window, type a "2", press the text window\{\textbf{Tab}\} key, and then enter "Fraction Integer" to indicate that you want the domain \texttt{QuadraticForm(2, Fraction Integer)}. Now click on \{\textbf{Operations}\} to get a table of operations and on \texttt{OpFrom(+)} to get a page describing the \texttt{OpFrom(+)} operation. Finally, click on \{\textbf{implementation}\} at the bottom.
Aside from the notion of where an operation is implemented, a useful notion is the \{it origin\} or \"home\" of an operation. When an operation (such as \spadfunFrom{quadraticForm}{QuadraticForm}) is explicitly exported by a domain (such as \axiomType{QuadraticForm}), you can say that the origin of that operation is that domain. If an operation is not explicitly exported from a domain, it is inherited from, and has as origin, the (closest) category that explicitly exports it. The operations \axiomOpFrom{+}{AbelianMonoid} and \axiomOpFrom{-}{AbelianMonoid} of \axiomType{QuadraticForm}, for example, are inherited from \axiomType{AbelianMonoid}. As it turns out, \axiomType{AbelianMonoid} is the origin of virtually every \axiomOp{+} operation in Axiom!

Again, you can use \Browse{} to discover the origins of operations. From the \Browse{} page on \axiomType{QuadraticForm}, click on \{bf Operations\}, then on \{bf origins\} at the bottom of the page.

The origin of the operation is the \{it only\} place where on-line documentation is given. However, you can re-export an operation to give it special documentation. Suppose you have just invented the world’s fastest algorithm for inverting matrices using a particular internal representation for matrices. If your matrix domain just declares that it exports \axiomType{MatrixCategory}, it exports the \axiomFun{inverse} operation, but the documentation the user gets from \Browse{} is the standard one from \axiomType{MatrixCategory}. To give your version of \axiomFun{inverse} the attention it deserves, simply export the operation explicitly with new documentation. This redundancy gives \axiomFun{inverse} a new origin and tells \Browse{} to present your new documentation.
In Axiom, a domain could be defined using only an add-domain and no capsule. Although we talk about rational numbers as quotients of integers, there is no type \texttt{RationalNumber} in Axiom. To create such a type, you could compile the following `short-form' definition:

\beginImportant
\begin{verbatim}
1. RationalNumber() == Fraction(Integer)
\end{verbatim}
\endImportant

The \texttt{Exports} part of this definition is missing and is taken to be equivalent to that of \texttt{Fraction(Integer)}. Because of the add-domain philosophy, you get precisely what you want. The effect is to create a little stub of a domain. When a user asks to add two rational numbers, Axiom would ask \texttt{RationalNumber} for a function implementing this \texttt{add}. Since the domain has no capsule, the domain then immediately sends its request to \texttt{Fraction(Integer)}.

The short form definition for domains is used to define such domains as \texttt{MultivariatePolynomial}:

\beginImportant
\begin{verbatim}
1. MultivariatePolynomial(vl: List Symbol, R: Ring) ==
2. SparseMultivariatePolynomial(R, vl)
3. OrderedVariableList vl
\end{verbatim}
\endImportant
Example 1: Clifford Algebra

Now that we have \texttt{QuadraticForm} available, let’s put it to use. Given some quadratic form \texttt{Q} described by an \texttt{n} by \texttt{n} matrix over a field \texttt{K}, the domain \texttt{CliffordAlgebra(n, K, Q)} defines a vector space of dimension \(2^n\) over \texttt{K}. This is an interesting domain since complex numbers, quaternions, exterior algebras and spin algebras are all examples of Clifford algebras.

The basic idea is this: the quadratic form \texttt{Q} defines a basis \(e_1, e_2, \ldots, e_n\) for the vector space \(K^n\)---the direct product of \texttt{K} with itself \texttt{n} times. From this, the Clifford algebra generates a basis of \(2^n\) elements given by all the possible products of the \(e_i\)'s \texttt{ei} in order without duplicates, that is, \(1, e_1, e_2, e_1e_2, e_3, e_1e_3, e_2e_3, e_1e_2e_3\), and so on.

The algebra is defined by the relations
\begin{verbatim}
\begin{verbatim}
ei*ei = Q(ei)
ei*ej = -ej*ei, \ i \neq j
\end{verbatim}
\end{verbatim}
Now look at the snapshot of its definition given in Figure \ref{fig-clifalg}.

Lines 9-10 show part of the definitions of the \texttt{Exports}.

A Clifford algebra over a field \texttt{axiom(K)} is asserted to be a ring,
an algebra over \texttt{axiom(K)}, and a vector space over \texttt{axiom(K)}.

Its explicit exports include \texttt{axiom(e(n))}, which returns the \texttt{\eth(axiom(n))} unit element.

\beginImportant\noindent
\begin{itemize}
\item \texttt{1. NNI -> NonNegativeInteger}\newline
\item \texttt{2. PI -> PositiveInteger}\newline
\item \texttt{3.}\newline
\item \texttt{4. CliffordAlgebra(n,K,q): Exports == Implementation\ where}\newline
\item \texttt{5. n: PI}\newline
\item \texttt{6. K: Field}\newline
\item \texttt{7. q: QuadraticForm(n,K)}\newline
\item \texttt{8.}\newline
\item \texttt{9.}\newline
\item \texttt{10. Exports == Join(Ring,Algebra(K),VectorSpace(K)) with}\newline
\item \texttt{11. e: PI -> \$}\newline
\item \texttt{12.}\newline
\item \texttt{13. Implementation == add}\newline
\item \texttt{14. Qelist := \$}\newline
\item \texttt{15.}\newline
\item \texttt{16. dim := 2**n}\newline
\item \texttt{17. Rep := PrimitiveArray K}\newline
\item \texttt{18. New := new(dim, 0\$K)\$Rep}\newline
\item \texttt{19. z := \$}\newline
\item \texttt{20. z := \$}\newline
\item \texttt{21.}\newline
\item \texttt{22.}\newline
\item \texttt{23.}\newline
\item \texttt{24.}\newline
\item \texttt{25.}\newline
\item \texttt{26.}\newline
\item \texttt{27.}\newline
\item \texttt{28.}\newline
\item \texttt{29.}\newline
\item \texttt{30.}\newline
\item \texttt{31.}\newline
\end{itemize}\endImportant
The \tt{Implementation} part begins by defining a local variable
\axiom{Qeelist} to hold the list of all \axiom{q.v} where \axiom{v}
runs over the unit vectors from 1 to the dimension \axiom{n}.
Another local variable \axiom{dim} is set to \texttt{2^n},
computed once and for all.
The representation for the domain is
\axiomType{PrimitiveArray(K)},
which is a basic array of elements from domain \axiom{K}.
Line 18 defines \axiom{New} as shorthand for the more lengthy
expression \axiom{new(dim, 0\$K)\$Rep}, which computes a primitive
array of length \texttt{2^n} filled with \axiom{0}'s from
domain \axiom{K}.

Lines 19-22 define the sum of two elements \axiom{x} and \axiom{y}
straightforwardly.
First, a new array of all \axiom{0}'s is created, then filled with
the sum of the corresponding elements.
Indexing for primitive arrays starts at 0.
The definition of the product of \axiom{x} and \axiom{y} first requires
the definition of a local function \userfun{addMonomProd}.
Axiom knows it is local since it is not an exported function.
The types of all local functions must be declared.

For a demonstration of \axiomType{CliffordAlgebra}, see
\downlink{`CliffordAlgebra'}{CliffordAlgebraXmpPage}
\ignore{CliffordAlgebra}.

\endscroll
\autobuttons
\end{page}

\begin{example}{Example 2: Building A Query Facility}

\end{example}
We now turn to an entirely different kind of application, building a query language for a database.

Here is the practical problem to solve.
The \Browse{} facility of Axiom has a database for all operations and constructors which is stored on disk and accessed by Hyperdoc.
For our purposes here, we regard each line of this file as having eight fields: \{\tt class, name, type, nargs, exposed, kind, origin,\} and \{\tt condition.\}
Here is an example entry:

\begin{verbatim}
\texttt{odeterminant\$\rightarrow R\{1\}x'd'Matrix(R) has(R,commutative("*"))}
\end{verbatim}

In English, the entry means:
\begin{quotation}
\texttt{The operation \axiomFun{determinant}: \spadsig{\$}{R} with \it 1 argument, is \it exposed and is exported by \it domain \axiomType{Matrix(R)} if \it R has commutative("*")}.
\end{quotation}

Our task is to create a little query language that allows us to get useful information from this database.

\begin{menu}
\menuDownLink{13.1. A Little Query Language}{ugDomainsQueryLanguagePage}
\menuDownLink{13.2. The Database Constructor}{ugDomainsDatabaseConstructorPage}
\menuDownLink{13.3. Query Equations}{ugDomainsQueryEquationsPage}
\menuDownLink{13.4. DataLists}{ugDomainsDataListsPage}
\menuDownLink{13.5. Index Cards}{ugDomainsDatabasePage}
\menuDownLink{13.6. Creating a Database}{ugDomainsCreatingPage}
\menuDownLink{13.7. Putting It All Together}{ugDomainsPuttingPage}
\menuDownLink{13.8. Example Queries}{ugDomainsExamplesPage}
\end{menu}
A Little Query Language

First we design a simple language for accessing information from the database. We have the following simple model in mind for its design. Think of the database as a box of index cards. There is only one search operation—it takes the name of a field and a predicate (a boolean-valued function) defined on the fields of the index cards. When applied, the search operation goes through the entire box selecting only those index cards for which the predicate is true. The result of a search is a new box of index cards. This process can be repeated again and again.

The predicates all have a particularly simple form: "symbol" \(\tt = \) "pattern", where "symbol" designates one of the fields, and "pattern" is a "search string"—a string that may contain a "\(\tt * \)" as a wildcard. Wildcards match any substring, including the empty string. Thus the pattern "\(\tt * \mat\)" matches \(\tt "mat", "doormat" \) and \(\tt "smart".\)

To illustrate how queries are given, we give you a sneak preview of the facility we are about to create.

\xtc{ Extract the database of all Axiom operations. }

\spadpaste{ops := getDatabase("o")\bound{o1}}
\xtc{ How many exposed three-argument \axiomFun{map} operations involving streams? }

\spadpaste{ops.(\tt name=map).\tt nargs=3\tt .(\tt type=\tt Stream\tt)\tt \bound{o2}\tt \free{o1}}
As usual, the arguments of \axiomFun{elt} \axiomSyntax{.} associate to the left.
The first \axiomFun{elt} produces the set of all operations with
name \tt{map}.
The second \axiomFun{elt} produces the set of all map operations
with three arguments.
The third \axiomFun{elt} produces the set of all three-argument map
operations having a type mentioning \axiomType{Stream}.

Another thing we’d like to do is to extract one field from each of
the index cards in the box and look at the result.
Here is an example of that kind of request.

\xtc{\%
What constructors explicitly export a \axiomFun{determinant} operation?
}\%
\spadpaste{
elt(elt(elt(elt(ops,name=\"determinant\"),origin),sort),unique)\free{o1}}
}

The first \axiomFun{elt} produces the set of all index cards with
name \tt{determinant}.
The second \axiomFun{elt} extracts the \tt{origin} component from
each index card. Each origin component
is the name of a constructor which directly
exports the operation represented by the index card.
Extracting a component from each index card produces what we call
a \tt{datalist}.
The third \axiomFun{elt}, \tt{sort}, causes the datalist of
origins to be sorted in alphabetic
order.
The fourth, \tt{unique}, causes duplicates to be removed.

Before giving you a more extensive demo of this facility,
we now build the necessary domains and packages to implement it.
%We will introduce a few of our minor conveniences.
\begin{verbatim}
(1) 3
Type: Database IndexCard
\end{verbatim}
The Database Constructor

--- ug13.ht ---

We work from the top down. First, we define a database, our box of index cards, as an abstract datatype. For sake of illustration and generality, we assume that an index card is some type \texttt{\texttt{axiom}(S)}\text{, and that a database is a box of objects of type \texttt{\texttt{axiom}(S)}}\text{. Here is the Axiom program defining the \texttt\texttt{pspadtype\text{Database}}} domain.

\beginImportant
\noindent
\texttt{1. \ PI \ => \ PositiveInteger}
\texttt{2. \ Database(S): \ Exports \ => \ Implementation\ where}
\texttt{3. \ S:\ Object\ with\ }
\texttt{4. \ elt: \ ((S,\ Symbol)) \ -> \ String}
\texttt{5. \ display: \ S \ -> \ Void}
\texttt{6. \ fullDisplay: \ S \ -> \ Void}
\texttt{7. \ Exports \ => \ with}
\texttt{8. \ elt: \ ((S,\ QueryEquation)) \ -> \ S}
\texttt{9. \ elt: \ ((S,\ Symbol)) \ -> \ DataList\ String}
\texttt{10. \ elt: \ ((S,\ Symbol)) \ -> \ S\newline}
\texttt{11. \ elt: \ ((S,\ Symbol)) \ -> \ S\newline}
\texttt{12. \ elt: \ ((S,\ Symbol)) \ -> \ S\newline}
\texttt{13. \ display: \ S \ -> \ Void\newline}
\texttt{14. \ fullDisplay: \ S \ -> \ Void\newline}
\texttt{15. \ fullDisplay: \ (S,PI) \ -> \ Void\newline}
\texttt{16. \ coercion: \ S \ -> \ OutputForm\newline}
\texttt{17. \ Implementation \ => \ add\newline}
\texttt{18. \ ... }\newline
\endImportant

The domain constructor takes a parameter \texttt{\texttt{axiom}(S)}\text{, which stands for the class of index cards. We describe an index card later. Here think of an index card as a string which has the eight fields mentioned above.}

First, we tell Axiom what operations we are going to require from index cards. We need an \texttt{axiomFun\texttt{elt}} to extract the contents of a field (such as \texttt{name} and \texttt{type}) as a string.
For example, \axiom{c.name} returns a string that is the content of the \axiom{name} field on the index card \axiom{c}.
We need to display an index card in two ways: \pspadfun{display} shows only the name and type of an operation; \pspadfun{fullDisplay} displays all fields.
The display operations return no useful information and thus have return type \axiomType{Void}.

Next, we tell Axiom what operations the user can apply to the database.
This part defines our little query language.
The most important operation is
\tt db . field = pattern which
returns a new database, consisting of all index cards of \tt db such that the \axiom{field} part of the index card is matched by the string pattern called \axiom{pattern}.
The expression \tt field = pattern} is an object of type \axiomType{QueryEquation} (defined in the next section).

Another \axiomFun{elt} is needed to produce a \pspadtype{DataList} object.
Operation \axiomOp{+} is to merge two databases together; \axiomOp{-} is used to subtract away common entries in a second database from an initial database.
There are three display functions.
The \pspadfun{fullDisplay} function has two versions: one that prints all the records, the other that prints only a fixed number of records.
A \axiomFun{coerce} to \axiomType{OutputForm} creates a display object.

The \tt Implementation part of \axiomType{Database} is straightforward.

\beginImportant

\tt 1. Implementation\ ==\ add\newline
\tt 2. s:\ Symbol\newline
\tt 3. Rep\ :=\ List\ S\newline
\tt 4. elt(db,equation)\ ==\ ...
ewline
\tt 5. elt(db,key)\ ==\ [x.key\ for\ x\ in\ db]::DataList(String)
\tt 6. display(db)\ ==\ for\ x\ in\ db\ repeat\ display\ x\newline
\tt 7. fullDisplay(db)\ ==\ for\ x\ in\ db\ repeat\ fullDisplay\ x\newline
\tt 8. fullDisplay(db,\ n,\ m)\ ==\ for\ x\ in\ db\ for\ i\ in\ 1..m\newline
\tt 9. repeat\newline

The database is represented by a list of elements of \axiom{S} (index cards).
We leave the definition of the first \axiomFun{elt} operation (on line 4) until the next section.
The second \axiomFun{elt} collects all the strings with field name \it{key} into a list.
The \axiomFun{display} function and first \axiomFun{fullDisplay} function simply call the corresponding functions from \axiom{S}.
The second \axiomFun{fullDisplay} function provides an efficient way of printing out a portion of a large list.
The \axiomOp{+} is defined by using the existing \spadfunFrom{merge}{List} operation defined on lists, then removing duplicates from the result.
The \axiomOp{-} operation requires writing a corresponding subtraction operation.
A package \axiomType{MergeThing} (not shown) provides this.

The \axiomFun{coerce} function converts the database to an \axiomType{OutputForm} by computing the number of index cards.
This is a good example of the independence of the representation of an Axiom object from how it presents itself to the user. We usually do not want to look at a database---but do care how many \textquote{hits} we get for a given query.
So we define the output representation of a database to be simply the number of index cards our query finds.
The predicate for our search is given by an object of type \texttt{QueryEquation}. Axiom does not have such an object yet so we have to invent it.

\beginImportant
\begin{verbatim}
1. \texttt{QueryEquation(): Exports == Implementation where}
2. \texttt{Exports == with}
3. \texttt{equation: (Symbol, String) -> $}
4. \texttt{variable: $ -> Symbol}
5. \texttt{value: $ -> String}
6. \texttt{Implementation == add}
7. \texttt{Rep := Record(var:Symbol, val:String)}
8. \texttt{equation(x, s) == [x, s]}
9. \texttt{variable q == q.var}
10. \texttt{value q == q.val}
\end{verbatim}
\endImportant

Axiom converts an input expression of the form \texttt{a = b} to \texttt{equation(a, b)}. Our equations always have a symbol on the left and a string on the right. The \texttt{Exports} part thus specifies an operation \texttt{equation} to create a query equation, and \texttt{variable} and \texttt{value} to select the left- and right-hand sides.

The \texttt{Implementation} part uses \texttt{Record} for a space-efficient representation of an equation.

Here is the missing definition for the \texttt{elt} function of \texttt{Database} in the last section:

\beginImportant
\begin{verbatim}
1. \texttt{elt(db, eq) ==}
2. \texttt{field := variable eq}
3. \texttt{value := value eq}
4. \texttt{[x for x in db | matches?(value, x.field)]}
\end{verbatim}
\endImportant

Recall that a database is represented by a list. Line 4 simply runs over that list collecting all elements such that the pattern (that is, \texttt{value}) matches the selected field of the element.
DataLists

Type \texttt{DataList} is a new type invented to hold the result of selecting one field from each of the index cards in the box. It is useful to make datalists extensions of lists---lists that have special \axiomFun{elt} operations defined on them for sorting and removing duplicates.

\beginImportant

\begin{verbatim}

1. \ DataList(S:OrderedSet) : Exports ==
 Implementation

2. \ Exports == ListAggregate(S) with

3. \ elt : (S,"unique") -> S

4. \ elt : (S,"sort") -> S

5. \ elt : (S,"count") -> NonNegativeInteger

6. \ coerce : List S -> S

Implementation == List(S) add

Rep := List S

elt(x,"unique") == removeDuplicates(x)

elt(x,"sort") == sort(x)

elt(x,"count") == \#x

coerce(x:List S) == x :: S
\end{verbatim}
\endImportant

The \texttt{Exports} part asserts that datalists belong to the category \axiomType{ListAggregate}. Therefore, you can use all the usual list operations on datalists, such as \axiomFun{first}\{List\}, \axiomFun{rest}\{List\}, and \axiomFun{concat}\{List\}. In addition, datalists have four explicit operations. Besides the three \axiomFun{elt} operations, there is a \axiomFun{coerce} operation that creates datalists from lists.
The `\tt Implementation` part needs only to define four functions. All the rest are obtained from `\axiomType{List(S)}`.

\endscroll
\autobuttons
\end{page}

Index Cards

— *ug13.ht* —

\begin{page}{ugDomainsDatabasePage}{13.13.5. Index Cards}
\beginscroll

An index card comes from a file as one long string. We define functions that extract substrings from the long string. Each field has a name that is passed as a second argument to `\axiomFun{elt}`.

\beginImportant
\noindent

1. `\tt IndexCard() == Implementation where`
2. `\tt Exports == with`
3. `\tt elt: \$(\$, Symbol) -> String`
4. `\tt display: $ -> Void`
5. `\tt fullDisplay: $ -> Void`
6. `\tt coerce: String -> $`
7. `\tt Implementation == String add\ ...
\endImportant

We leave the `\tt Implementation` part to the reader. All operations involve straightforward string manipulations.

\endscroll
\autobuttons
\end{page}

Creating a Database

— *ug13.ht* —
We must not forget one important operation: one that builds the
database in the first place! We’ll name it `getDatabase` and
put it in a package. This function is implemented by calling the
\Lisp\ function `getBrowseDatabase(s)` to get appropriate
information from `\Browse\`. This operation takes a string indicating
which lines you want from the database: \axiom{"o"} gives you all
operation lines, and \axiom{"k"}, all constructor lines. Similarly,
\axiom{"c"}, \axiom{"d"}, and \axiom{"p"} give you all category,
domain and package lines respectively.

\beginImportant
\verbatim
1. OperationsQuery(): Exports == Implementation where
2. getDatabase: String -> Database(IndexCard)
\endImportant

We do not bother creating a special name for databases of index
cards: `Database (IndexCard)` will do.
Notice that we used the package `OperationsQuery` to create, in effect,
a new kind of domain: `Database(IndexCard)`.

\endscroll
\autobuttons
\end{page}

Putting It All Together

— ug13.ht —

\begin{page}{ugDomainsPuttingPage}{13.13.7. Putting It All Together}
\beginscroll

\verbatim
\verbatim
1. OperationsQuery(): Exports == Implementation where
2. getDatabase: String -> Database(IndexCard)
\endverbatim

We do not bother creating a special name for databases of index
cards: `Database (IndexCard)` will do.
Notice that we used the package `OperationsQuery` to create, in effect,
a new kind of domain: `Database(IndexCard)`.

\endverbatim
\autobuttons
\end{page}
To create the database facility, you put all these constructors into one file.\footnote{You could use separate files, but we are putting them all together because, organizationally, that is the logical thing to do.}

At the top of the file put \spadcmd{)abbrev} commands, giving the constructor abbreviations you created.

\beginImportant

\noindent
\tt 1.
\tt)abbrev domain ICARD IndexCard
\tt 2.
\tt)abbrev domain QEQUAT QueryEquation
\tt 3.
\tt)abbrev domain MTHING MergeThing
\tt 4.
\tt)abbrev domain DLIST DataList
\tt 5.
\tt)abbrev domain DBASE Database
\tt 6.
\tt)abbrev package OPQUERY OperationsQuery

\endImportant

With all this in \tt{alql.spad}, for example, compile it using
\beginverbatim
)compile alql
\endverbatim
and then load each of the constructors:
\beginverbatim
)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY
\endverbatim

You are ready to try some sample queries.

\endscroll
\autobuttons
\endpage

Example Queries

--- ug13.ht ---

Our first set of queries give some statistics on constructors in the current Axiom system.

\xtc{
How many constructors does Axiom have?
}
\spadpaste{ks := getDatabase "k"ound{q1}}

\xtc{
 Break this down into the number of categories, domains, and packages.
}{
 \spadpaste{[ks.(kind=k) for k in ["c","d","p"]]ound{q3}\free{q1}}
}

\xtc{
 What are all the domain constructors that take no parameters?
}{
 \spadpaste{elt(ks.(kind="d").(nargs="0"),name)ound{q4}\free{q1}}
}

\xtc{
 How many constructors have "Matrix" in their name?
}{
 \spadpaste{mk := ks.(name="*Matrix*")ound{q5}\free{q1}}
}

\xtc{
 What are the names of those that are domains?
}{
 \spadpaste{elt(mk.(kind="d"),name)ound{q6}\free{q5}}
}

\xtc{
 How many operations are there in the library?
}{
 \spadpaste{o := getDatabase "o"ound{o1}}
}

\xtc{
 Break this down into categories, domains, and packages.
}{
 \spadpaste{[o.(kind=k) for k in ["c","d","p"]]ree{o1}}
}

The query language is helpful in getting information about a particular operation you might like to apply. While this information can be obtained with \Browse{}, the use of the query database gives you data that you can manipulate in the workspace.

\xtc{
 How many operations have "eigen" in the name?
}{
 \spadpaste{eigens := o.(name="*eigen*")\bound{eigens}\free{o1}}
}

\xtc{
 What are their names?
}{
 \spadpaste{elt(eigens,name)\free{eigens}}
}
Where do they come from?

The operations \texttt{+} and \texttt{-} are useful for constructing small databases and combining them. However, remember that the only matching you can do is string matching. Thus a pattern such as \texttt{"*Matrix*"} on the type field matches any type containing \texttt{Matrix}, \texttt{MatrixCategory}, \texttt{SquareMatrix}, and so on.

\begin{verbatim}
How many operations mention "Matrix" in their type?
}\{\texttt{tm := o.(type="*Matrix*")}\} \texttt{How many operations come from constructors with "Matrix" in their name?}\{\texttt{fm := o.(origin="*Matrix*")}\} \texttt{How many operations are in \texttt{fm} but not in \texttt{tm}?}\{\texttt{fm-tm}\} \texttt{Display the operations that both mention "Matrix" in their type and come from a constructor having "Matrix" in their name.}\{\texttt{fullDisplay(fm-%)}\} \texttt{How many operations involve matrices?}\{\texttt{m := tm+fm}\} \texttt{Display 4 of them.}\{\texttt{fullDisplay(m, 202, 205)}\} \texttt{How many distinct names of operations involving matrices are there?}\{\texttt{elt(elt(elt(m,name),unique),count)}\}
\end{verbatim}
\begin{verbatim}
(1) 1067
\end{verbatim}

Type: Database IndexCard

\begin{verbatim}
(2) [205,393,469]
\end{verbatim}

Type: List Database IndexCard

"Exit", "ExtAlgBasis", "FileName", "Float",
"FortranCode", "FortranScalarType",
"FortranTemplate", "FortranType", "GraphImage",
"HexadecimalExpansion", "IVBaseColor", "IVBasicNode",
"IVCoordinate3", "IVCoordinate4", "IVFaceSet",
"IVField", "IVGroup", "IVIndexedLineSet",
"IVNodeConnection", "IVNodeObject", "IVPointSet",
"IVQuadMesh", "IVSimpleInnerNode",
"IVUtilities", "IVValue", "IndexCard",
"InnerAlgebraicNumber", "InputForm", "Integer",
"IntegrationFunctionsTable", "InventorDataSink",
"InventorRenderPackage", "InventorViewPort",
"Library", "MachineComplex", "MachineFloat",
"MachineInteger",
"NagDiscreteFourierTransformInterfacePackage",
"NagEigenInterfacePackage",
"NagOptimisationInterfacePackage",
"NagQuadratureInterfacePackage", "NagResultChecks",
"NagSpecialFunctionsInterfacePackage",
"NonNegativeInteger", "None",
"NumericalIntegrationProblem", "NumericalODEProblem",
"NumericalOptimizationProblem",
"NumericalPDEProblem", "ODEIntensityFunctionsTable",
"OrdSetInts", "OutputForm", "Palette", "Partition",
"Pi", "PlaneAlgebraicCurvePlot", "Plot3D", "Plot",
"PositiveInteger", "QueryEquation", "RenderTools",
"Result", "RomanNumeral", "RoutinesTable",
"SExpression", "ScriptFormulaFormat",
"SingletonInteger", "SingletonAsOrderedSet", "String",
"SubSpaceComponentProperty", "Switch", "SymbolTable",
"Symbol", "TexFormat", "TextFile", "TheSymbolTable",
"ThreeDimensionalViewport", "Timer",
"TwoDimensionalViewport", "Void",
"d01TransformFunctionType", "d01ajfAnnaType",
"d01akfAnnaType", "d01alfAnnaType", "d01amfAnnaType",
"d01anfAnnaType", "d01apfAnnaType", "d01aqfAnnaType",
"d01asfAnnaType", "d01bsfAnnaType", "d02cafAnnaType",
"d02cbfAnnaType", "d02cxfAnnaType", "d03eefAnnaType",
"e04dfhAnnaType", "e04djhAnnaType", "e04facAnnaType",
"e04jafAnnaType", "e04mafAnnaType", "e04nafAnnaType",
"Type: DataList String
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
(4) 26

Type: Database IndexCard

Type: DataList String

(6) 6315

Type: Database IndexCard
\texttt{o := getDatabase "o"}\free{o1}

\texttt{[o.(kind=k) for k in ["c","d","p"]]}\free{o1}

\begin{verbatim}
(7) [1646,2040,2629]
Type: List Database IndexCard
\end{verbatim}

\texttt{eigens := o.(name="*eigen*")}\free{eigens}

\begin{verbatim}
(8) 4
Type: Database IndexCard
\end{verbatim}

\texttt{elt(eigens,name)}\free{eigens}

\begin{verbatim}
(9) ["eigenMatrix", "eigenvalues", "eigenvector", "eigenvectors"]
Type: DataList String
\end{verbatim}
\begin{verbatim}
(10)
"EigenPackage","RadicalEigenPackage"
Type: DataList String
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(11) 353
Type: Database IndexCard
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(12) 192
Type: Database IndexCard
\end{verbatim}
\indentrel{-3}
\begin{verbatim}
(13) 146
Type: Database IndexCard
\end{verbatim}

CHAPTER 16. USERS GUIDE CHAPTER 13 (UG13.HT)

from NagMatrixOperationsPackage

f01bsf
 :
 (Integer,Integer,Integer,Matrix(Integer),Matrix(Integer),Matrix(Integer),Matrix(Integer),Boolean,DoubleFloat,Boolean,Matrix(Integer),Matrix(DoubleFloat),Integer)->Result
 from NagMatrixOperationsPackage

f01maf
 :
 (Integer,Integer,Integer,Integer,List(Boolean),Matrix(DoubleFloat),Matrix(Integer),Matrix(Integer),DoubleFloat,DoubleFloat,Integer)->Result
 from NagMatrixOperationsPackage

f01mcf
 :
 (Integer,Matrix(DoubleFloat),Integer,Matrix(Integer),Integer)->Result
 from NagMatrixOperationsPackage

f01qcf
 :
 (Integer,Integer,Integer,Matrix(DoubleFloat),Integer)->Result
 from NagMatrixOperationsPackage

f01qdf
 :
 (String,String,Integer,Integer,Matrix(DoubleFloat),Integer,Integer,Matrix(DoubleFloat),Integer,Integer,Matrix(DoubleFloat),Integer)->Result
 from NagMatrixOperationsPackage

f01qef
 :
 (String,Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer)->Result
 from NagMatrixOperationsPackage

f01rcf
 :
 (Integer,Integer,Integer,Matrix(Complex(DoubleFloat)),Integer)->Result
 from NagMatrixOperationsPackage

f01rdf
 :
 (String,String,Integer,Integer,Matrix(Complex(DoubleFloat)),Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(Complex(DoubleFloat)),Integer)->Result
 from NagMatrixOperationsPackage

f01ref
 :
 (String,Integer,Integer,Integer,Integer,Matrix(Complex(DoubleFloat)),Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(Complex(DoubleFloat)),Integer)->Result
 from NagMatrixOperationsPackage

f01rge
 :
 (Integer,Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFla...
\text{lex(DoubleFloat)}, \text{Matrix(Complex(DoubleFloat))}, \text{Integer}) \rightarrow \text{Result}
from \text{NagMatrixOperationsPackage}

\text{hasSolution?} : (\text{Matrix(F)}, \text{Vector(F)}) \rightarrow \text{Boolean}
from \text{LinearSystemMatrixPackage1(F)}

\text{leftScalarTimes!} : (\text{Matrix(R)}, \text{R}, \text{Matrix(R)}) \rightarrow \text{Matrix(R)}
from \text{StorageEfficientMatrixOperations(R) (unexposed)}

\text{minus!} : (\text{Matrix(R)}, \text{Matrix(R)}) \rightarrow \text{Matrix(R)}
from \text{StorageEfficientMatrixOperations(R) (unexposed)}

\text{minus!} : (\text{Matrix(R)}, \text{Matrix(R)}, \text{Matrix(R)}) \rightarrow \text{Matrix(R)}
from \text{StorageEfficientMatrixOperations(R) (unexposed)}

\text{particularSolution}
: (\text{Matrix(F)}, \text{Vector(F)}) \rightarrow \text{Union(\text{Vector(F)}, \text{"failed").}}
from \text{LinearSystemMatrixPackage1(F)}

\text{plus!} : (\text{Matrix(R)}, \text{Matrix(R)}, \text{Matrix(R)}) \rightarrow \text{Matrix(R)}
from \text{StorageEfficientMatrixOperations(R) (unexposed)}

\text{power!}
: (\text{Matrix(R)}, \text{Matrix(R)}, \text{Matrix(R)}, \text{Matrix(R)}, \text{NonNegativeInteger}) \rightarrow \text{Matrix(R)}
from \text{StorageEfficientMatrixOperations(R) (unexposed)}

\text{rank} : (\text{Matrix(F)}, \text{Vector(F)}) \rightarrow \text{NonNegativeInteger}
from \text{LinearSystemMatrixPackage1(F)}

\text{rectangularMatrix} : (\text{Matrix(R)}) \rightarrow _$
from \text{RectangularMatrix(m,n,R) (unexposed)}

\text{retractIfCan}
: (\text{Matrix(Expression(Float))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retractIfCan}
: (\text{Matrix(Expression(Integer))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retractIfCan}
: (\text{Matrix(Fraction(Polynomial(Float)))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retractIfCan}
: (\text{Matrix(Fraction(Polynomial(Integer)))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retractIfCan}
: (\text{Matrix(Polynomial(Float))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retractIfCan}
: (\text{Matrix(Polynomial(Integer))}) \rightarrow \text{Union(_$,"failed")}
from \text{FortranMatrixFunctionCategory}

\text{retract} : (\text{Matrix(Expression(Float))}) \rightarrow _$
from \text{FortranMatrixFunctionCategory}

\text{retract} : (\text{Matrix(Expression(Integer))}) \rightarrow _$
from FortranMatrixFunctionCategory
retract : (Matrix(Fraction(Polynomial(Float))))->$_$
from FortranMatrixFunctionCategory
retract : (Matrix(Fraction(Polynomial(Integer))))->$_$
from FortranMatrixFunctionCategory
retract : (Matrix(Polynomial(Float)))->$_$
from FortranMatrixFunctionCategory
retract : (Matrix(Polynomial(Integer)))->$_$
rightScalarTimes! : (Matrix(R),Matrix(R),R)->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)
solve :
 (Matrix(F),List(Vector(F)))->List(Record(particular :Union(Vector(F),"failed"),basis:List(Vector(F))))
from LinearSystemMatrixPackage1(F)
solve :
 (Matrix(F),Vector(F))->Record(particular:Union(Vector(F),"failed"),basis:List(Vector(F)))
from LinearSystemMatrixPackage1(F)
splitDenominator
 : (Matrix(Q))->Record(num:Matrix(R),den:R)
from MatrixCommonDenominator(R,Q)
squareMatrix : (Matrix(R))->_$
from SquareMatrix(ndim,R) (unexposed)
times! : (Matrix(R),Matrix(R),Matrix(R))->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)
Type: Void

\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
elt : ($$,List(Integer),List(Integer))$$->$$
 from MatrixCategory(R,Row,Col)
elt : $$,Integer,Integer,R$$->R
 from RectangularMatrixCategory(m,n,R,Row,Col)
elt : $$,NonNegativeInteger,NonNegativeInteger,NonNegativeInteger$$->R
 from ThreeDimensionalMatrix(R)
eval :
 (Matrix(Expression(DoubleFloat)),List(Symbol),Vector(Expression(DoubleFloat)))$$->$$Matrix(Expression(DoubleFloat))
from d02AgentsPackage

Type: Void
\end{verbatim}

\indentrel{-3}\end{patch}
\indentrel{-3}\end{patch}
\indentrel{-3}\end{patch}
\indentrel{-3}\end{patch}
\indentrel{-3}\end{patch}
\indentrel{-3}\end{patch}
Chapter 17

Users Guide Chapter 14 (ug14.ht)

Browse

⇒ “notitle” (ugBrowseStartPage) 17 on page 2472
⇒ “notitle” (ugBrowseDomainPage) 17 on page 2474
⇒ “notitle” (ugBrowseMiscellaneousFeaturesPage) 17 on page 2485

\begin{page}{ugBrowsePage}{14. Browse}
\beginscroll

This chapter discusses the \Browse{} component of Hyperdoc. We suggest you invoke Axiom and work through this chapter, section by section, following our examples to gain some familiarity with \Browse{}.

\begin{menu}
\menuDownLink{(14.1. The Front Page: Searching the Library)}{ugBrowseStartPage}
\menuDownLink{(14.2. The Constructor Page)}{ugBrowseDomainPage}
\menuDownLink{(14.3. Miscellaneous Features of Browse)}{ugBrowseMiscellaneousFeaturesPage}
\end{menu}
\endscroll

\autobuttons
\end{page}
The Front Page: Searching the Library

To enter \Browse{}, click on \bf{Browse} on the top level page of Hyperdoc to get the \it{front page} of \Browse{}. %

To use this page, you first enter a \spadgloss{search string} into the input area at the top, then click on one of the buttons below. We show the use of each of the buttons by example.

\subsection{Constructors}

First enter the search string \tt{Matrix} into the input area and click on \bf{Constructors}. What you get is the \it{constructor page} for \axiomType{Matrix}. We show and describe this page in detail in \downlink{``The Constructor Page''}{ugBrowseDomainPage} in Section 14.2.\ignore{ugBrowseDomain}. By convention, Axiom does a case-insensitive search for a match. Thus \tt{matrix} is just as good as \tt{Matrix}, has the same effect as \tt{MaTrix}, and so on. We recommend that you generally use small letters for names however. A search string with only capital letters has a special meaning (see \downlink{``Capitalization Convention''}{ugBrowseCapitalizationConventionPage} in Section 14.3.3\ignore{ugBrowseCapitalizationConvention}).

Click on \UpBitmap{} to return to the \Browse{} front page.

Use the symbol \tt{\^*} in search strings as a \spadgloss{wild card}. A wild card matches any substring, including the empty string. For example, enter the search string \tt{\^*matrix\^*} into the input
area and click on \bf{Constructors}.\footnote{To get only categories, domains, or packages, rather than all constructors, you can click on the corresponding button to the right of \bf{Constructors}.} What you get is a table of all constructors whose names contain the string ‘\tt{matrix}.’’

All constructors containing the string are listed, whether \spadglossSee{exposed}{expose} or \spadglossSee{unexposed}{expose}. You can hide the names of the unexposed constructors by clicking on the {\it *=}{\bf unexposed} button in the {\it Views} panel at the bottom of the window. (The button will change to {\bf exposed} {\it only}.)

One of the names in this table is \axiomType{Matrix}. Click on \axiomType{Matrix}. What you get is again the constructor page for \axiomType{Matrix}. As you see, \Browse{} gives you a large network of information in which there are many ways to reach the same pages.

Again click on the \UpBitmap{} to return to the table of constructors whose names contain {\tt matrix}. Below the table is a {\it Views} panel. This panel contains buttons that let you view constructors in different ways. To learn about views of constructors, skip to \downlink{‘‘Views Of Constructors’’}{ugBrowseViewsOfConstructorsPage} in Section 14.2.3\ignore{ugBrowseViewsOfConstructors}.

Click on \UpBitmap{} to return to the \Browse{} front page.

\subsection{Operations}

Enter {\tt *matrix} into the input area and click on \bf{Operations}. This time you get a table of {\it operations} whose names end with {\tt matrix} or {\tt Matrix}.

If you select an operation name, you go to a page describing all the operations in Axiom of that name. At the bottom of an operation page is another kind of {\it Views} panel, one for operation pages. To learn more about these views, skip to \downlink{‘‘Views of Operations’’}{ugBrowseViewsOfOperationsPage} in Section 14.3.2\ignore{ugBrowseViewsOfOperations}.

Click on \UpBitmap{} to return to the \Browse{} front page.

\subsection{Attributes}

This button gives you a table of attribute names that match the search string. Enter the search string {\tt *} and click on \bf{Attributes} to get a list of all system attributes.
Click on \UpBitmap{} to return to the \Browse{} front page.

Again there is a \it Views\ panel at the bottom with buttons that let you view the attributes in different ways.

\subsection{General}

This button does a general search for all constructor, operation, and attribute names matching the search string. Enter the search string \allowbreak \tt *matrix*\ into the input area. Click on \bf General to find all constructs that have \tt matrix as a part of their name.

The summary gives you all the names under a heading when the number of entries is less than 10.

Click on \UpBitmap{} to return to the \Browse{} front page.

\subsection{Documentation}

Again enter the search key \tt *matrix*\ and this time click on \bf Documentation.
This search matches any constructor, operation, or attribute name whose documentation contains a substring matching \tt matrix.

Click on \UpBitmap{} to return to the \Browse{} front page.

\subsection{Complete}

This search combines both \bf General and \bf Documentation.

\endscroll
\autobuttons
\end{page}

\begin{page}{ugBrowseDomainPage}{14.2. The Constructor Page}

\beginscroll

\section*{The Constructor Page}

\vspace{1cm}

--- ug14.ht ---

\endscroll
\autobuttons
\end{page}
In this section we look in detail at a constructor page for domain \(\text{Matrix}\).
Enter \(\texttt{matrix}\) into the input area on the main \(\text{Browse}\) page and click on \(\textbf{Constructors}\).

The header part tells you that \(\text{Matrix}\) has abbreviation \(\text{MATRIX}\) and one argument called \(\texttt{R}\) that must be a domain of category \(\text{Ring}\).

Just what domains can be arguments of \(\text{Matrix}\)? To find this out, click on the \(\texttt{R}\) on the second line of the heading.

What you get is a table of all acceptable domain parameter values of \(\texttt{R}\), or a table of \(\text{rings}\) in Axiom.

Click on \(\text{Up}{}\) to return to the constructor page for \(\text{Matrix}\).

If you have access to the source code of Axiom, the third line of the heading gives you the name of the source file containing the definition of \(\text{Matrix}\).

Click on it to pop up an editor window containing the source code of \(\text{Matrix}\).

We recommend that you leave the editor window up while working through this chapter as you occasionally may want to refer to it.

\beginmenu
\menudownlink{14.2.1. Constructor Page Buttons}
\{ugBrowseDomainButtonsPage\}
\menudownlink{14.2.2. Cross Reference}
\{ugBrowseCrossReferencePage\}
\menudownlink{14.2.3. Views Of Constructors}
\{ugBrowseViewsOfConstructorsPage\}
\menudownlink{14.2.4. Giving Parameters to Constructors}
\{ugBrowseGivingParametersPage\}
\endmenu
Constructor Page Buttons

⇒ “notitle” (ugBrowseViewsOfOperationsPage) 17 on page 2487

\begin{page}{ugBrowseDomainButtonsPage}{14.2.1. Constructor Page Buttons}
\beginscroll

We examine each button on this page in order.

\labelSpace{2pc}

\subsection{Description}

Click here to bring up a page with a brief description of constructor \axiomType{Matrix}.
If you have access to system source code, note that these comments can be found directly over the constructor definition.

\subsection{Operations}

Click here to get a table of operations exported by \axiomType{Matrix}.
You may wish to widen the window to have multiple columns as below.

If you click on an operation name, you bring up a description page for the operations. For a detailed description of these pages, skip to \downlink{''Views of Operations''}{ugBrowseViewsOfOperationsPage} in Section 14.3.2\ignore{ugBrowseViewsOfOperations}.

\subsection{Attributes}

Click here to get a table of the two attributes exported by \axiomType{Matrix}:
\spadatt{\text{finiteAggregate}} and \spadatt{shallowlyMutable}.
These are two computational properties that result from \axiomType{Matrix} being regarded as a data structure.

\subsection{Examples}

Click here to get an \it examples page with examples of operations to create and manipulate matrices.

Read through this section.
Try selecting the various buttons.
Notice that if you click on an operation name, such as \spadfunFrom{new}{Matrix}, you bring up a description page for that operation from \axiomType{Matrix}.

Example pages have several examples of Axiom commands. Each example has an active button to its left. Click on it! A pre-computed answer is pasted into the page immediately following the command. If you click on the button a second time, the answer disappears. This button thus acts as a toggle: ‘now you see it; now you don’t.’

Note also that the Axiom commands themselves are active. If you want to see Axiom execute the command, then click on it! A new Axiom window appears on your screen and the command is executed.

At the end of the page is generally a menu of buttons that lead you to further sections. Select one of these topics to explore its contents.\}

\subsubsection{Exports}

Click here to see a page describing the exports of \axiomType{Matrix} exactly as described by the source code.

As you see, \axiomType{Matrix} declares that it exports all the operations and attributes exported by category \axiomType{MatrixCategory(R, Row, Col)}. In addition, two operations, \axiomFun{diagonalMatrix} and \axiomFun{inverse}, are explicitly exported.

To learn a little about the structure of Axiom, we suggest you do the following exercise. Otherwise, click on \UpButton{} and go on to the next section. \axiomType{Matrix} explicitly exports only two operations. The other operations are thus exports of \axiomType{MatrixCategory}. In general, operations are usually not explicitly exported by a domain. Typically they are \spadglossSee{inherited}{inherit} from several different categories. Let’s find out from where the operations of \axiomType{Matrix} come.

\indent{4}
\begin{itemize}
\item Click on \textbf{MatrixCategory}, then on \textbf{Exports}. Here you see that \textbf{MatrixCategory} explicitly exports many matrix operations. Also, it inherits its operations from
\axiomType{TwoDimensionalArrayCategory}.

\item[2.] Click on \bf TwoDimensionalArrayCategory, then on \bf Exports. Here you see explicit operations dealing with rows and columns. In addition, it inherits operations from \axiomType{HomogeneousAggregate}.

%\item Click on \bf HomogeneousAggregate, then on \bf Exports. And so on.
%If you continue doing this, eventually you will

\item[3.] Click on \UpBitmap{} and then click on \bf Object, then on \bf Exports, where you see there are no exports.

\item[4.] Click on \UpBitmap{} repeatedly to return to the constructor page for \axiomType{Matrix}.

\enditems

\subsubsection{Related Operations}

Click here bringing up a table of operations that are exported by \spadglossSee{packages}{package} but not by \axiomType{Matrix} itself.

To see a table of such packages, use the \bf Relatives button on the \bf Cross Reference page described next.

\endscroll
\autobuttons
\end{page}

\begin{page}{ugBrowseCrossReferencePage}{14.2.2. Cross Reference}

Click on the \bf Cross Reference button on the main constructor page for \axiomType{Matrix}.

This gives you a page having various cross reference information stored under the respective buttons.
The parents of a domain are the same as the categories mentioned under the \bf{Exports} button on the first page. Domain \axiomType{Matrix} has only one parent but in general a domain can have any number.

The \spadglossSee{ancestors}{ancestor} of a constructor consist of its parents, the parents of its parents, and so on. Did you perform the exercise in the last section under \bf{Exports}? If so, you see here all the categories you found while ascending the \bf{Exports} chain for \axiomType{Matrix}.

The \spadglossSee{relatives}{relative} of a domain constructor are package constructors that provide operations in addition to those \spadglossSee{exported}{export} by the domain.

Try this exercise.

\beginitems
\item[1.] Click on \bf{Relatives}, bringing up a list of \spadglossSee{packages}{package}.
\item[2.] Click on \bf{LinearSystemMatrixPackage} bringing up its constructor page.\footnote{You may want to widen your Hyperdoc window to make what follows more legible.}
\item[3.] Click on \bf{Operations}. Here you see \axiomFun{rank}, an operation also exported by \axiomType{Matrix} itself.
\item[4.] Click on \bf{rank}. This \spadfunFrom{rank}{LinearSystemMatrixPackage} has two arguments and thus is different from the \spadfunFrom{rank}{Matrix} from \axiomType{Matrix}.
\item[5.] Click on \Up{} to return to the list of operations for the package \axiomType{LinearSystemMatrixPackage}.
\item[6.] Click on \bf{solve} to bring up a \spadfunFrom{solve}{LinearSystemMatrixPackage} for linear systems of equations.
\item[7.] Click on \Up{} several times to return to the cross
reference page for \axiomType{Matrix}.
\enditems

\subsection{Dependents}

The \spadgloss{dependents}{dependent} of a constructor are those \spadgloss{domains}{domain} or \spadgloss{packages}{package} that mention that constructor either as an argument or in its \spadgloss{exports}{export}.

If you click on \bf{Dependents} two entries may surprise you: \axiomType{RectangularMatrix} and \axiomType{SquareMatrix}. This happens because \axiomType{Matrix}, as it turns out, appears in signatures of operations exported by these domains.

\subsection{Lineage}

The term \spadgloss{lineage}{lineage} refers to the \it{search order} for functions.

If you are an expert user or curious about how the Axiom system works, try the following exercise.
Otherwise, you best skip this button and go on to \bf{Clients}.

Clicking on \bf{Lineage} gives you a list of domain constructors:
\axiomType{InnerIndexedTwoDimensionalArray}, \aliascon{MatrixCategory\&}{MATCAT-}, \aliascon{TwoDimensionalArrayCategory\&}{ARR2CAT-}, \aliascon{HomogeneousAggregate\&}{HOAGG-}, \aliascon{Aggregate\&}{AGG-}.

What are these constructors and how are they used?

We explain by an example. Suppose you create a matrix using the interpreter, then ask for its \axiomFun{rank}. Axiom must then find a function implementing the \axiomFun{rank} operation for matrices. The first place Axiom looks for \axiomFun{rank} is in the \axiomType{Matrix} domain.

If not there, the lineage of \axiomType{Matrix} tells Axiom where else to look. Associated with the matrix domain are five other lineage domains. Their order is important. Axiom first searches the first one, \axiomType{InnerIndexedTwoDimensionalArray}. If not there, it searches the second \aliascon{MatrixCategory\&}{MATCAT-}. And so on.

Where do these \it{lineage constructors} come from? The source code for \axiomType{Matrix} contains this syntax for the \spadgloss{function body} of \axiomType{Matrix}:
\footnote{\axiomType{InnerIndexedTwoDimensionalArray} is a special domain implemented for matrix-like domains to provide}
efficient implementations of \twodim{} arrays.
For example, domains of category \axiomType{TwoDimensionalArrayCategory} can have any integer as their \spad{minIndex}.
Matrices and other members of this special "inner" array have their \spad{minIndex} defined as \spad{1}.

\begin{verbatim}
InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)
 add ...
\end{verbatim}

where the "'\tt ...'" denotes all the code that follows.
In English, this means:
'The functions for matrices are defined as those from \axiomType{InnerIndexedTwoDimensionalArray} domain augmented by those
defined in '\tt ...'," where the latter take precedence.

This explains \axiomType{InnerIndexedTwoDimensionalArray}.
The other names, those with names ending with an ampersand \axiomSyntax{\&} are \spadglossSee{default packages}\{default package\}
for categories to which \axiomType{Matrix} belongs.
Default packages are ordered by the notion of 'closest ancestor.'

\subsection{Clients}
A client of \axiomType{Matrix} is any constructor that uses \axiomType{Matrix} in its implementation.
For example, \axiomType{Complex} is a client of \axiomType{Matrix}; it exports several operations that take matrices as arguments or return matrices as values.\footnote{A constructor is a client of \axiomType{Matrix} if it handles any matrix.
For example, a constructor having internal (unexported) operations dealing with matrices is also a client.}

\subsection{Benefactors}
A \spadgloss{benefactor} of \axiomType{Matrix} is any constructor that \axiomType{Matrix} uses in its implementation.
This information, like that for clients, is gathered from run-time structures.\footnote{The benefactors exclude constructors such as \axiomType{PrimitiveArray} whose operations macro-expand and so vanish from sight!}

Cross reference pages for categories have some different buttons on them.
Starting with the constructor page of \axiomType{Matrix}, click on \axiomType{Ring} producing its constructor page.
Click on \{\bf Cross Reference\}, producing the cross-reference page for \axiomType{Ring}.
Here are buttons \{\bf Parents\} and \{\bf Ancestors\} similar to the notion for domains, except for categories the relationship between parent and child is defined through \spadgloss{category extension}.

\subsection{Children}

Category hierarchies go both ways. There are children as well as parents. A child can have any number of parents, but always at least one. Every category is therefore a descendant of exactly one category: \axiomType{Object}.

\subsection{Descendants}

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take parameters. Where a parameterized category fits into a hierarchy \{it may\} depend on values of its parameters. In general, the set of categories in Axiom forms a \{it directed acyclic graph\}, that is, a graph with directed arcs and no cycles.

\subsection{Domains}

This produces a table of all domain constructors that can possibly be rings (members of category \axiomType{Ring}). Some domains are unconditional rings. Others are rings for some parameters and not for others. To find out which, select the \{bf conditions\} button in the views panel. For example, \axiomType{DirectProduct(n, R)} is a ring if \{tt R\} is a ring.

Views Of Constructors

--- ug14.ht ---

\begin{page}\{ugBrowseViewsOfConstructorsPage\}\{14.2.3. Views Of Constructors\}\begin{scroll}
Below every constructor table page is a \{it Views\} panel.
As an example, click on {\bf Cross Reference} from the constructor page of \axiomType{Matrix}, then on {\bf Benefactors} to produce a short table of constructor names.

The {\it Views} panel is at the bottom of the page. Two items, {\it names} and {\it conditions}, are in italics. Others are active buttons. The active buttons are those that give you useful alternative views on this table of constructors. Once you select a view, you notice that the button turns off (becomes italicized) so that you cannot reselect it.

\subsection*{names}
This view gives you a table of names. Selecting any of these names brings up the constructor page for that constructor.

\subsection*{abbrs}
This view gives you a table of abbreviations, in the same order as the original constructor names. Abbreviations are in capitals and are limited to 7 characters. They can be used interchangeably with constructor names in input areas.

\subsection*{kinds}
This view organizes constructor names into the three kinds: categories, domains and packages.

\subsection*{files}
This view gives a table of file names for the source code of the constructors in alphabetic order after removing duplicates.

\subsection*{parameters}
This view presents constructors with the arguments. This view of the benefactors of \axiomType{Matrix} shows that \axiomType{Matrix} uses as many as five different \axiomType{List} domains in its implementation.

\subsection*{filter}
This button is used to refine the list of names or abbreviations. Starting with the {\it names} view, enter {\tt m*} into the input area and click on {\bf filter}. You then get a shorter table with only the names beginning with {\tt m}.

Notice the input area at the bottom of the constructor page. If you leave this blank, then the information you get is for the domain constructor \axiomType{Matrix(R)}, that is, \axiomType{Matrix} for an arbitrary underlying domain \tt{R}.

In general, however, the exports and other information \tt{do} usually depend on the actual value of \tt{R}.
For example, \axiomType{Matrix} exports the \axiomFun{inverse} operation only if the domain \tt{R} is a \axiomType{Field}.
To see this, try this from the main constructor page:

- Enter \tt{Integer} into the input area at the bottom of the page.
\item[2.] Click on \textbf{Operations}, producing a table of operations. Note the number of operation names that appear at the top of the page.

\item[3.] Click on \texttt{UpBitmap} to return to the constructor page.

\item[4.] Use the \texttt{\fbox{Delete}} or \texttt{\fbox{Backspace}} keys to erase \texttt{Integer} from the input area.

\item[5.] Click on \texttt{Operations} to produce a new table of operations. Look at the number of operations you get. This number is greater than what you had before. Find, for example, the operation \texttt{\textbf{inverse}}.

\item[6.] Click on \texttt{inverse} to produce a page describing the operation \texttt{\textbf{inverse}}. At the bottom of the description, you notice that the \texttt{\textbf{Conditions}} line says \texttt{``\{\texttt{R} has \texttt{\textbf{Field}}\}''}. This operation is \texttt{not} exported by \texttt{\textbf{Matrix(Integer)}} since \texttt{\textbf{Integer}} is not a \texttt{\textbf{field}}.

Try putting the name of a domain such as \texttt{\textbf{Fraction Integer}} (which is a \texttt{field}) into the input area, then clicking on \texttt{Operations}. As you see, the operation \texttt{\textbf{inverse}} is exported.

\enditems

\indent{0}

\textbf{Miscellaneous Features of Browse}

--- ug14.ht ---

\begin{page}{ugBrowseMiscellaneousFeaturesPage}
{14.3. Miscellaneous Features of Browse}
\beginscroll
\labelSpace{4pc}
\beginmenu
\menuDownLink{14.3.1. The Description Page for Operations}}
{ugBrowseDescriptionPagePage}
\endmenu
\endscroll
\autobuttons
\end{page}
The Description Page for Operations

From the constructor page of \texttt{Matrix}, click on \textbf{Operations} to bring up the table of operations for \texttt{Matrix}.

Find the operation \textbf{inverse} in the table and click on it. This takes you to a page showing the documentation for this operation.

Here is the significance of the headings you see.

This lists each of the arguments of the operation in turn, paraphrasing the \texttt{signature} of the operation. As for signatures, a \texttt{\$} is used to designate \textit{this domain}, that is, \texttt{Matrix(R)}.

This describes the return value for the operation, analogous to the \textbf{Arguments} part.

This tells you which domain or category explicitly exports the operation. In this example, the domain itself is the \textit{Origin}.
This tells you that the operation is exported by \axiomType{Matrix(R)} only if
'\{\tt R\} has \axiomType{Field},'' that is, '\{\tt R\} is a member of
category \axiomType{Field}.'
When no \bf{Conditions} part is given, the operation is exported for
all values of \tt{R}.

Here are the \axiomSyntax{++} comments
that appear in the source code of its \it{Origin}, here
\axiomType{Matrix}.
You find these comments in the source code for \axiomType{Matrix}.

Click on \UpBitmap{} to return to the table of operations.
Click on \{\bf map\}.
Here you find three different operations named \axiomFun{map}.
This should not surprise you.
Operations are identified by name and \spadgloss{signature}.
There are three operations named \axiomFun{map}, each with
different signatures.
What you see is the \it{descriptions} view of the operations.
If you like, select the button in the heading of one of these
descriptions to get \it{only} that operation.

This part qualifies domain parameters mentioned in the arguments to the
operation.

We suggest that you go to the constructor page for \axiomType{Matrix}
and click on \{bf Operations\} to bring up a table of operations
with a \{it Views\} panel at the bottom.

\subsubsection{names}

This view lists the names of the operations.
Unlike constructors, however, there may be several operations with the
same name.
The heading for the page tells you the number of unique names and the
number of distinct operations when these numbers are different.

\subsubsection{filter}

As for constructors, you can use this button to cut down the list of
operations you are looking at.
Enter, for example, \{tt m*\} into the input area to the right of \{bf
filter\} then click on \{bf filter\}.
As usual, any logical expression is permitted.
For example, use
\begin{verbatim}
*! or *
\end{verbatim}
to get a list of destructive operations and predicates.

\subsubsection{documentation}

This gives you the most information:
a detailed description of all the operations in the form you have seen
before.
Every other button summarizes these operations in some form.

\subsubsection{signatures}

This views the operations by showing their signatures.

\subsubsection{parameters}

This views the operations by their distinct syntactic forms with
parameters.

\subsubsection{origins}

This organizes the operations according to the constructor that
explicitly exports them.

\subsubsection{conditions}

This view organizes the operations into conditional and unconditional
operations.
\subsubsection{usage}

This button is only available if your user-level is set to \textit{development}.
The \textbf{usage} button produces a table of constructors that reference this operation.
\footnote{Axiom requires an especially long time to produce this table, so anticipate this when requesting this information.}

\subsubsection{implementation}

This button is only available if your user-level is set to \textit{development}.
If you enter values for all domain parameters on the constructor page, then the \textbf{implementation} button appears in place of the \textbf{conditions} button.
This button tells you what domains or packages actually implement the various operations.
\footnote{This button often takes a long time; expect a delay while you wait for an answer.}

With your user-level set to \textit{development}, we suggest you try this exercise.
Return to the main constructor page for \texttt{Matrix}, then enter \texttt{Integer} into the input area at the bottom as the value of \texttt{R}.
Then click on \textbf{Operations} to produce a table of operations.
Note that the \textbf{conditions} part of the \textit{Views} table is replaced by \textbf{implementation}.
Click on \textbf{implementation}.
After some delay, you get a page describing what implements each of the matrix operations, organized by the various domains and packages.

\subsubsection{generalize}

This button only appears for an operation page of a constructor involving a unique operation name.

From an operations page for \texttt{Matrix}, select any operation name, say \texttt{rank}.
In the \textit{Views} panel, the \textbf{filter} button is replaced by \textbf{generalize}.
Click on it!
\footnote{If there were more than 10 operations of the name, you get instead a page with a \textit{Views} panel at the bottom and the message to \textbf{Select a view below}.}
To get the descriptions of all these operations as mentioned above, select the \textbf{description} button.}
This button only appears on an operation page resulting from a search from the front page of \Browse{} or from selecting \bf generalize\ from an operation page for a constructor. Note that the \bf filter\ button in the \it Views\ panel is replaced by \bf all domains\.

Click on it to produce a table of \it all\ domains or packages that export a \axiomFun{rank} operation.

We note that this table specifically refers to all the \axiomFun{rank} operations shown in the preceding page. Return to the descriptions of all the \axiomFun{rank} operations and select one of them by clicking on the button in its heading. Select \bf all domains\.

As you see, you have a smaller table of constructors. When there is only one constructor, you get the constructor page for that constructor.

\TeXHT\newpage{}

\begin{page}{ugBrowseCapitalizationConventionPage}
\autobuttons
\end{page}

Capitalization Convention

\hyphenation{constructor}

When entering search keys for constructors, you can use capital letters to search for abbreviations. For example, enter \tt UTS\ into the input area and click on \bf Constructors\.

Up comes a page describing \axiomType{UnivariateTaylorSeries} whose abbreviation is \axiomType{UTS}.

Constructor abbreviations always have three or more capital letters.
For short constructor names (six letters or less), abbreviations
Abbreviations can also contain numbers.
For example, \axiomType{POLY2} is the abbreviation for constructor \axiomType{PolynomialFunctions2}.
For default packages, the abbreviation is the same as the abbreviation for the corresponding category with the 'k' replaced by '-'.
For example, for the category default package \aliascon{MatrixCategory\&}{MATCAT-} the abbreviation is \axiomType{MATCAT-} since the corresponding category \axiomType{MatrixCategory} has abbreviation \axiomType{MATCAT}.
Chapter 18

Users Guide Chapter 15 (ug15.ht)

What’s New in Axiom Version 2.0

— ug15.ht —

Many things have changed in this new version of Axiom and we describe many of the more important topics here.

\begin{page}{ugWhatsNewPage}{15. What’s New in Axiom Version 2.0}
\beginscroll

\begin{menu}
\menudownlink{{15.1. Important Things to Read First}}{ugWhatsNewImportantPage}
\menudownlink{{15.3. The NAG Library Link}}{nagLinkIntroPage}
\menudownlink{{15.4. Interactive Front-end and Language}}{ugWhatsNewLanguagePage}
\menudownlink{{15.5. Library}}{ugWhatsNewLibraryPage}
\menudownlink{{15.6. \HyperName}}{ugWhatsNewHyperDocPage}
\menudownlink{{15.7. Documentation}}{ugWhatsNewDocumentationPage}
\endmenu
\endscroll

\autobuttons
\end{page}
Important Things to Read First

If you have any private .spad files (that is, library files which were not shipped with Axiom) you will need to recompile them. For example, if you wrote the file regress.spad then you should issue]compile regress.spad before trying to use it.

The internal representation of \texttt{Union} has changed. This means that Axiom data saved with Release 1.x may not be readable by this Release. If you cannot recreate the saved data by recomputing in Release 2.0, please contact NAG for assistance.

The NAG Library Link

The \texttt{NAG} link allows you to call NAG Fortran routines from within Axiom, passing Axiom objects as parameters and getting them back as results.

The \texttt{NAG} link allows you to call NAG Fortran routines from within Axiom, passing Axiom objects as parameters and getting them back as results.
statistical and sorting \textit{chapters} of the Library, however, are not included in the link and various support and utility routines (mainly the F06 and X \textit{chapters}) have been omitted.

Each \textit{chapter} has a short (at most three-letter) name; for example, the \textit{chapter} devoted to the solution of ordinary differential equations is called D02. When using the link via the \texttt{Hyperdoc interface}, you will be presented with a complete menu of these \textit{chapters}. The names of individual routines within each \textit{chapter} are formed by adding three letters to the \textit{chapter} name, so for example the routine for solving ODEs by Adams method is called \texttt{axiomFunFrom\{d02cjf\}\{NagOrdinaryDifferentialEquationsPackage\}}.

\begin{menu}
\texttt{\menudownlink{{15.3.1. Interpreting NAG Documentation}}\{nagDocumentationPage\}}
\texttt{\menudownlink{{15.3.2. Using the Link}}\{nagLinkUsagePage\}}
\texttt{\menudownlink{{15.3.3. Providing values for Argument Subprograms}}\{aspSectionPage\}}
\texttt{\menudownlink{{15.3.4. General Fortran-generation utilities in Axiom}}\{generalFortranPage\}}
\texttt{\menudownlink{{15.3.5. Some technical information}}\{nagTechnicalPage\}}
\end{menu}

\begin{scroll}
\end{scroll}

\begin{page}{nagDocumentationPage}{15.3.1. Interpreting NAG Documentation}

\section*{Interpreting NAG Documentation}

\begin{itemize}
\item “notitle” (manpageXXintro) 22.1 on page 2727
\item “notitle” (manpageXXonline) 22.1 on page 2703
\item “notitle” (FoundationLibraryDocPage) 3.1 on page 125
\item “notitle” (aspSectionPage) 18 on page 2501
\end{itemize}

\begin{scroll}

Information about using the \texttt{naglib} in general, and about using individual routines in particular, can be accessed via Hyperdoc. This documentation refers to the Fortran routines directly; the purpose of this subsection is to explain how this corresponds to the Axiom routines.
For general information about the \naglib{} users should consult \downlink{Essential Introduction to the NAG Foundation Library}{manpageXXintro}.
The documentation is in ASCII format, and a description of the conventions used to represent mathematical symbols is given in \downlink{Introduction to NAG On-Line Documentation}{manpageXXonline}.
Advice about choosing a routine from a particular \{em chapter\} can be found in the \downlink{Chapter Documents}{FoundationLibraryDocPage}.

\subsubsection{Correspondence Between Fortran and Axiom types}
The NAG documentation refers to the Fortran types of objects; in general, the correspondence to Axiom types is as follows.

\begin{itemize}
\item Fortran INTEGER corresponds to Axiom \axiomType{Integer}.
\item Fortran DOUBLE PRECISION corresponds to Axiom \axiomType{DoubleFloat}.
\item Fortran COMPLEX corresponds to Axiom \axiomType{Complex DoubleFloat}.
\item Fortran LOGICAL corresponds to Axiom \axiomType{Boolean}.
\item Fortran CHARACTER*(*) corresponds to Axiom \axiomType{String}.
\end{itemize}

(Exceptionally, for NAG EXTERNAL parameters -- ASPs in link parlance -- REAL and COMPLEX correspond to \axiomType{MachineFloat} and \axiomType{MachineComplex}, respectively; see \downlink{``Providing values for Argument Subprograms''}{aspSectionPage} in Section 15.3.3\ignore{aspSection}.)

The correspondence for aggregates is as follows.

\begin{itemize}
\item A one-dimensional Fortran array corresponds to an Axiom \texttt{\linebreak axiomType\{Matrix\}} with one column.
\item A two-dimensional Fortran ARRAY corresponds to an Axiom \texttt{\linebreak axiomType\{Matrix\}}.
\item A three-dimensional Fortran ARRAY corresponds to an Axiom \texttt{\linebreak axiomType\{ThreeDimensionalMatrix\}}.
\end{itemize}

Higher-dimensional arrays are not currently needed for the \naglib{}.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs correspond to special ASP domains in Axiom. See...
NAG parameters are classified as belonging to one (or more) of the following categories: \tt{Input}, \tt{Output}, \tt{Workspace} or \tt{External} procedure. Within \tt{External} procedures a similar classification is used, and parameters may also be \tt{Dummies}, or \tt{User Workspace} (data structures not used by the NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values for \tt{Input} and \tt{External} parameters.

The order of the parameters is, in general, different from the order specified in the \naglib{} documentation. The Browser description for each routine helps in determining the correspondence. As a rule of thumb, \tt{Input} parameters come first followed by \tt{Input/Output} parameters. The \tt{External} parameters are always found at the end.

NAG routines often return diagnostic information through a parameter called \axiom{ifail}. With a few exceptions, the principle is that on input \axiom{ifail} takes one of the values $-1,0,1$. This determines how the routine behaves when it encounters an error:

\begin{itemize}
 \item a value of 1 causes the NAG routine to return without printing an error message;
 \item a value of 0 causes the NAG routine to print an error message and abort;
 \item a value of -1 causes the NAG routine to return and print an error message.
\end{itemize}

The user is STRONGLY ADVISED to set \axiom{ifail} to \texht{-1} when using the link. If \axiom{ifail} has been set to \texht{1} or \texht{-1} on input, then its value on output will determine the possible cause of any error. A value of \texht{0} indicates successful completion, otherwise it provides an index into a table of diagnostics provided as part of the routine documentation (accessible via \Browse{}).
Using the Link

⇒ “notitle” (htxl1) 3.63 on page 845

— ug15.ht —

\begin{page}{nagLinkUsagePage}{15.3.2. Using the Link}
\beginscroll

The easiest way to use the link is via the \downlink{Hyperdoc interface}{htxl1}. You will be presented with a set of fill-in forms where you can specify the parameters for each call. Initially, the forms contain example values, demonstrating the use of each routine (these, in fact, correspond to the standard NAG example program for the routine in question). For some parameters, these values can provide reasonable defaults; others, of course, represent data. When you change a parameter which controls the size of an array, the data in that array are reset to a ‘‘neutral’’ value -- usually zero.

When you are satisfied with the values entered, clicking on the ‘‘Continue’’ button will display the Axiom command needed to run the chosen NAG routine with these values. Clicking on the ‘‘Do It’’ button will then cause Axiom to execute this command and return the result in the parent Axiom session, as described below. Note that, for some routines, multiple HyperDoc ‘‘pages’’ are required, due to the structure of the data. For these, returning to an earlier page causes HyperDoc to reset the later pages (this is a general feature of HyperDoc); in such a case, the simplest way to repeat a call, varying a parameter on an earlier page, is probably to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal Axiom session (that is, using the Axiom interpreter). Such calls return an object of type \axiomType{Result}. As not all parameters in the underlying NAG routine are required in the Axiom call (and the parameter ordering may be different), before calling a NAG routine you should consult the description of the Axiom operation in the Browser. (The quickest route to this is to type the routine name, in lower case, into the Browser’s input area, then click on \tt\tt\tt{Operations}.) The parameter names used coincide with NAG’s, although they will appear here in lower case. Of course, it is also possible to become familiar with the Axiom form of a routine by first using it through the
As an example of this mode of working, we can find a zero of a function, lying between 3 and 4, as follows:

\[
\text{answer} := \text{c05adf}(3.0, 4.0, 1.0e-5, 0.0, -1, \sin(X)::\text{ASP1}(F))
\]

By default, \texttt{Result} only displays the type of returned values, since the amount of information returned can be quite large. Individual components can be examined as follows:

\[
\text{answer} . x \text{free} \text{answer})
\]

In order to avoid conflict with names defined in the workspace, you can also get the values by using the \texttt{String} type (the interpreter automatically coerces them to \texttt{Symbol})

\[
\text{answer} "x" \text{free} \text{answer})
\]

It is possible to have Axiom display the values of scalar or array results automatically. For more details, see the commands \texttt{showScalarValues} and \texttt{showArrayValues}.

There is also a \texttt{.input} file for each NAG routine, containing Axiom interpreter commands to set up and run the standard NAG example for that routine.

\[
\text{read c05adf.input}
\]
\begin{verbatim}
(1) [ifail: Integer, x: DoubleFloat]
Type: Result
\end{verbatim}

\begin{verbatim}
(2) 3.14159265545896
Type: DoubleFloat
\end{verbatim}

\begin{verbatim}
(3) 0
Type: Integer
\end{verbatim}

\begin{verbatim}
(4) 3.14159265545896
\end{verbatim}
Providing values for Argument Subprograms

⇒ “notitle” (generalFortranPage) 18 on page 2505
There are a number of ways in which users can provide values for argument subprograms (ASPs). At the top level the user will see that NAG routines require an object from the \texttt{Union} of a \texttt{Filename} and an ASP. For example \texttt{c05adf} requires an object of type \texttt{Union}(fn: \texttt{FileName},fp: \texttt{Asp1 F})

The user thus has a choice of providing the name of a file containing Fortran source code, or of somehow generating the ASP within Axiom. If a filename is specified, it is searched for in the \texttt{local} machine, i.e., the machine that Axiom is running on.

The \texttt{FortranExpression} domain is used to represent expressions which can be translated into Fortran under certain circumstances. It is very similar to \texttt{Expression} except that only operators which exist in Fortran can be used, and only certain variables can occur. For example the instantiation \texttt{FortranExpression([X],[M],MachineFloat)} is the domain of expressions containing the scalar \texttt{X} and the array \texttt{M}.

This allows us to create expressions like:

\begin{verbatim}
 f : FortranExpression([X],[M],MachineFloat) := sin(X)+M[3,1]
\end{verbatim}

but not

\begin{verbatim}
 f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y
\end{verbatim}

Those ASPs which represent expressions usually export a \texttt{coerce} from an appropriate instantiation of \texttt{FortranExpression} (or perhaps \texttt{Vector FortranExpression} etc.). For convenience there are also retractions from appropriate instantiations of \texttt{Expression}, \texttt{Polynomial} and \texttt{Fraction Polynomial}.

Those ASPs which represent expressions usually export a \texttt{coerce} from an appropriate instantiation of \texttt{FortranExpression} (or perhaps \texttt{Vector FortranExpression} etc.). For convenience there are also retractions from appropriate instantiations of \texttt{Expression}, \texttt{Polynomial} and \texttt{Fraction Polynomial}.
\texttt{\textbackslash\texttt{FortranCode}} allows us to build arbitrarily complex ASPs via a kind of pseudo-code. It is described fully in \href{\texttt{General Fortran-generation utilities in Axiom'}}{\texttt{generalFortranPage}} in Section 15.3.4 of \texttt{generalFortran}.

Every ASP exports two \texttt{\textup{coerce}} functions: one from \texttt{\textup{FortranCode}} and one from \texttt{\textup{List FortranCode}}. There is also a \texttt{\textup{coerce}} from \texttt{Record(localSymbols: SymbolTable, code: List FortranCode)} which is used for passing extra symbol information about the ASP.

\begin{axiom}
\begin{spad}
so for example, to integrate the function abs(x) we could use the built-in \texttt{\textup{abs}} function. But suppose we want to get back to basics and define it directly, then we could do the following:
\begin{spad}
\begin{spadlong}
\begin{spad}
d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0), assign(F,-X), assign(F,X)) result
\end{spad}
\end{spadlong}
\end{spad}
\end{spad}
\end{axiom}

The \texttt{\textup{cond}}\texttt{\textup{\textup{\textup{\text{\textup{\\textup{\\text}\end{spad}
\end{spadlong}
\end{spad}
\end{axiom}

Suppose we have created the file `'asp.f'' as follows:
\begin{axiom}
\begin{verbatim}
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/(X*X+1.0D0)
RETURN
END
\end{verbatim}
\end{axiom}

and wish to pass it to the NAG routine \texttt{\textup{d01ajf}} which performs one-dimensional quadrature. We can do this as follows:
\begin{axiom}
\begin{verbatim}
d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")
\end{verbatim}
\end{axiom}

\end{page}
\begin{verbatim}
(1) sin(X) + M
 3,1
Type: FortranExpression([X],[M],MachineFloat)
\end{verbatim}

\begin{verbatim}
sin(M) + Y
Type: FortranExpression([X],[M],MachineFloat)
\end{verbatim}

\begin{verbatim}
d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0), assign(F,-X), assign(F,X))) result
(2) 1.0
Type: DoubleFloat
\end{verbatim}
General Fortran-generation utilities in Axiom

--- ug15.ht ---

This section describes more advanced facilities which are available to users who wish to generate Fortran code from within Axiom. There are facilities to manipulate templates, store type information, and generate code fragments or complete programs.

A template is a skeletal program which is ‘fleshed out’ with data when it is processed. It is a sequence of active and passive parts: active parts are sequences of Axiom commands which are processed as if they had been typed into the interpreter; passive parts are simply echoed verbatim on the Fortran output stream.

Suppose, for example, that we have the following template, stored in the file ‘test.tem’:

```plaintext
-- A simple template
beginVerbatim
  DOUBLE PRECISION FUNCTION F(X)
  DOUBLE PRECISION X
endVerbatim
outputAsFortran("F",f)
beginVerbatim
  RETURN
  END
endVerbatim
```

The passive parts lie between the two tokens `beginVerbatim` and `endVerbatim`. There are two active
statements: one which is simply an Axiom (\verb+--+\{-\})
comment, and one which produces an assignment to the current value of
\tt f. We could use it as follows:
\begin{verbatim}
(4) -> f := 4.0/(1+X**2)

\end{verbatim}

\begin{verbatim}
(4) 4

2
X + 1
\end{verbatim}

(5) -> processTemplate "test.tem"

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F = 4.0D0/(X*X+1.0D0)
RETURN
END

(5) "CONSOLE"

\begin{verbatim}
\end{verbatim}

(A more reliable method of specifying the filename will be introduced
below.) Note that the Fortran assignment \tt F=4.0D0/(X*X+1.0D0)
automatically converted 4.0 and 1 into DOUBLE PRECISION numbers; in
general, the Axiom Fortran generation facility will convert
anything which should be a floating point object into either
a Fortran REAL or DOUBLE PRECISION object.
\xtc{Which alternative is used is determined by the command}
{\spadpaste{)set fortran precision}}

It is sometimes useful to end a template before the file itself ends
(e.g. to allow the template to be tested incrementally or so that a
piece of text describing how the template works can be included). It
is of course possible to ‘‘comment-out’’ the remainder of the file.
Alternatively, the single token \tt endInput as part of an active
portion of the template will cause processing to be ended prematurely
at that point.

The \axiomFun{processTemplate} command comes in two flavours. In the
first case, illustrated above, it takes one argument of domain
\axiomType{FileName}, the name of the template to be processed, and
writes its output on the current Fortran output stream. In general, a
filename can be generated from \emph{directory}, \emph{name} and \emph{extension}
components, using the operation \axiomFun{filename}, as in
\begin{verbatim}
processTemplate filename("","test","tem")
\end{verbatim}
There is an alternative version of \texttt{processTemplate}, which takes two arguments (both of domain \texttt{FileName}). In this case the first argument is the name of the template to be processed, and the second is the file in which to write the results. Both versions return the location of the generated Fortran code as their result (\texttt{"CONSOLE"} in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or statement. For example you might want to generate a Fortran Comment describing your data set. For this kind of application we provide three functions as follows:

\begin{tabular}{p{1.8in}p{2.6in}}
\texttt{fortranLiteral} & writes a string on the Fortran output stream \\
\texttt{fortranCarriageReturn} & writes a carriage return on the Fortran output stream \\
\texttt{fortranLiteralLine} & writes a string followed by a return on the Fortran output stream
\end{tabular}

So we could create our comment as follows:

\begin{spad}{m := matrix [[1,2,3],[4,5,6]] \texttt{bound(m)}}
\end{spad}

\begin{spad}{\texttt{fortranLiteralLine concat \["C\ \ \ \ The\ Matrix\ has\ "}, \texttt{\ nrows(m)::String, \ "\ rows\ and\ "}, \texttt{\ ncols(m)::String, \ "\ columns"]\texttt{\free(m)}}}
\end{spad}

or, alternatively:

\begin{spad}{\texttt{fortranLiteral \["C\ \ \ \ The\ Matrix\ has\ "]}}
\end{spad}
We should stress that these functions, together with the \axiomFun{outputAsFortran} function are the \emph{only} sure ways of getting output to appear on the Fortran output stream. Attempts to use Axiom commands such as \axiomFun{output} or \axiomFun{writeline} may appear to give the required result when displayed on the console, but will give the wrong result when Fortran and algebraic output are sent to differing locations. On the other hand, these functions can be used to send helpful messages to the user, without interfering with the generated Fortran.

\subsection{Manipulating the Fortran Output Stream}

Sometimes it is useful to manipulate the Fortran output stream in a program, possibly without being aware of its current value. The main use of this is for gathering type declarations (see ‘‘Fortran Types’’ below) but it can be useful in other contexts as well. Thus we provide a set of commands to manipulate a stack of (open) output streams. Only one stream can be written to at any given time. The stack is never empty---its initial value is the console or the current value of the Fortran output stream, and can be determined using \spadpaste{topFortranOutputStack()}

(see below).

The commands available to manipulate the stack are:

\begin{tabular}{ll}
\axiomFun{clearFortranOutputStack} & resets the stack to the console \\
\axiomFun{pushFortranOutputStack} & adds a new output stream to the stack \\
\axiomFun{popFortranOutputStack} & removes the top output stream from the stack \\
\axiomFun{topFortranOutputStack} & returns the top output stream
\end{tabular}
These commands are all part of \axiomType{FortranOutputStackPackage}.

%

\subsection{Fortran Types}

When generating code it is important to keep track of the Fortran types of the objects which we are generating. This is useful for a number of reasons, not least to ensure that we are actually generating legal Fortran code. The current type system is built up in several layers, and we shall describe each in turn.

\subsubsection{FortranScalarType}

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, INTEGER, and CHARACTER. It is possible to \axiomFun{coerce} a \axiomType{String} or \axiomType{Symbol} into the domain, test whether two objects are equal, and also apply the predicate functions \axiomFunFrom{real?}{FortranScalarType} etc.

\subsubsection{FortranType}

This domain represents "full" types: i.e., datatype plus array dimensions (where appropriate) plus whether or not the parameter is an external subprogram. It is possible to \axiomFun{coerce} an object of \axiomType{FortranScalarType} into the domain or \axiomFun{construct} one from an element of \axiomType{FortranScalarType}, a list of \axiomType{Polynomial Integer}s (which can of course be simple
integers or symbols) representing its dimensions, and a
\axiomType{Boolean} declaring whether it is external or not. The list
of dimensions must be empty if the \axiomType{Boolean} is {\tt false}. The functions \axiomFun{scalarTypeOf}, \axiomFun{dimensionsOf} and
\axiomFun{external?} return the appropriate parts, and it is possible
to get the various basic Fortran Types via functions like
\axiomFun{fortranReal}.
\xtc{
For example:
}{
\spadpaste{type:=construct(real,[i,10],false)$FortranType}
}
\xtc{
or
}{
\spadpaste{type:=[real,[i,10],false]$FortranType\bound{type}}
}
\xtc{
}\{ \spadpaste{scalarTypeOf type\free{type}}
}
\xtc{
}\{ \spadpaste{dimensionsOf type\free{type}}
}
\xtc{
}\{ \spadpaste{external? type\free{type}}
}
\xtc{
}\{ \spadpaste{fortranLogical()}
}
\xtc{
}\{ \spadpaste{construct(integer,[],true)$FortranType}
}

\subsubsection{SymbolTable}
\texht{}\{\exptypeindex{SymbolTable}\}

This domain creates and manipulates a symbol table for generated
Fortran code. This is used by \axiomType{FortranProgram} to represent
the types of objects in a subprogram. The commands available are:
\begin{tabular}{ll}
\axiomFun{empty} & creates a new \axiomType{SymbolTable} \\
& & \\
\axiomFunX{declare} & creates a new entry in a table
\end{tabular}
\axiomFun{fortranTypeOf} & returns the type of an object in a table \\
& \\
\axiomFun{parametersOf} & returns a list of all the symbols in the table \\
& \\
\axiomFun{typeList} & returns a list of all objects of a given type \\
& \\
\axiomFun{typeLists} & returns a list of lists of all objects sorted by type \\
& \\
\axiomFun{externalList} & returns a list of all \tt EXTERNAL objects \\
& \\
\axiomFun{printTypes} & produces Fortran type declarations from a table \\
& \\
\end{tabular}

\tc{}

\spadpaste{symbols := empty()$SymbolTable\bound{symbols}}

\tc{}

\spadpaste{declare!(X,fortranReal(),symbols)$free{symbols}}

\tc{}

\spadpaste{declare!(M,construct(real,[i,j],false)$FortranType,symbols)$free{symbols}}

\tc{}

\spadpaste{declare!([i,j],fortranInteger(),symbols)$free{symbols}}

\tc{}

{
This domain creates and manipulates one global symbol table to be used, for example, during template processing. It is also used when linking to external Fortran routines. The information stored for each subprogram (and the main program segment, where relevant) is:

- its name;
- its return type;
- its argument list;
- and its argument types.

Initially, any information provided is deemed to be for the main program segment.

Issuing the following command indicates that from now on all information refers to the subprogram \texttt{F}.

\begin{verbatim}
newSubProgram F
\end{verbatim}

It is possible to return to processing the main program segment by issuing the command:

\begin{verbatim}
endSubProgram()
\end{verbatim}

The following commands exist:

\begin{verbatim}
 returnType & declares the return type of the current subprogram \\
\end{verbatim}
\begin{axiomFun}{returnTypeOf}
& returns the return type of a subprogram \\
& \\
\begin{axiomFunX}{argumentList}
& declares the argument list of the current subprogram \\
& \\
\begin{axiomFun}{argumentListOf}
& returns the argument list of a subprogram \\
& \\
\begin{axiomFunX}{declare}
& provides type declarations for parameters of the current subprogram \\
& \\
\begin{axiomFun}{symbolTableOf}
& returns the symbol table of a subprogram \\
& \\
\begin{axiomFun}{printHeader}
& produces the Fortran header for the current subprogram \\
\end{tabular}
\end{axiomFun}
\end{tabular}

In addition there are versions of these commands which are parameterised by the name of a subprogram, and others parameterised by both the name of a subprogram and by an instance of \axiomType{TheSymbolTable}.

\begin{spadpaste}
newSubProgram F \bound{forPleasure}
\end{spadpaste}

\begin{spadpaste}
argumentList!(F,[X])\free{forPleasure}
\end{spadpaste}
\subsection{Advanced Fortran Code Generation}

This section describes facilities for representing Fortran statements, and building up complete subprograms from them.

\subsection{Switch}

This domain is used to represent statements like `{\tt x < y}`. Although these can be represented directly in Axiom, it is a little cumbersome, since Axiom evaluates the last statement, for example, to `{\tt axiom(true)}` (since `{\tt axiom(x)}` is lexicographically less than `{\tt axiom(y)}`).

Instead we have a set of operations, such as `{\tt axiomFun(LT)}` to represent `{\tt x < y}`, to let us build such statements. The available constructors are:

\begin{tabular}{ll}
\verb|LT| & \verb|$<$ \\
\verb|GT| & \verb|$>$ \\
\verb|LE| & \verb|\leq \\
\verb|GE| & \verb|\geq \\
\verb|EQ| & \verb|$=$ \\
\verb|AND| & \verb|and \\
\verb|OR| & \verb|or \\
\verb|NOT| & \verb|not \\
\end{tabular}
So for example:

\spadpaste{LT(x,y)}

\subsubsection{FortranCode}

This domain represents code segments or operations: currently assignments, conditionals, blocks, comments, gotos, continues, various kinds of loops, and return statements.

For example we can create quite a complicated conditional statement using assignments, and then turn it into Fortran code:

\spadpaste{c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))}

The Fortran code is printed on the current Fortran output stream.

\subsubsection{FortranProgram}

This domain is used to construct complete Fortran subprograms out of elements of \axiomType{FortranCode}. It is parameterised by the name of the target subprogram (a \axiomType{Symbol}), its return type (from \axiomType{Union}(\axiomType{FortranScalarType},`void`)), its arguments (from \axiomType{List Symbol}), and its symbol table (from \axiomType{SymbolTable}). One can \axiomFun{coerce} elements of either \axiomType{FortranCode} or \axiomType{Expression} into it.

First of all we create a symbol table:

\spadpaste{symbols := empty()$SymbolTable\bound{symbols}}

Now put some type declarations into it:

\spadpaste{declare![X,Y],fortranReal(),symbols}$free{symbols}
Then (for convenience) we set up the particular instantiation of `FortranProgram`

```spadpaste```
FP := FortranProgram(F, real, [X, Y], symbols) \fre{symbols}
\bound{FP}
```endpaste`

Create an object of type `Expression(Integer)`: `asp := X*sin(Y)`

```
xtc{
outputAsFortran(asp::FP) \fre{FP asp}
}```endpaste`

We can generate a `FortranProgram` using `FortranCode`. For example:
```
xtc{
Augment our symbol table:
```endpaste`
```
xtc{
and transform the conditional expression we prepared earlier:
```endpaste`

\endscroll
\autobuttons
\end{page}

\begin{patch}{generalFortranPagePatch1}
\begin{paste}{generalFortranPageFull1}{generalFortranPageEmpty1}
\spadcommand{)set fortran precision}
\end{paste}
\end{patch}
\begin{patch}{generalFortranPageEmpty1}
\begin{paste}{generalFortranPageFull1}{generalFortranPagePatch1}
\hidepaste
\tab{5}\spadcommand{)set fortran precision}
\end{paste}
\end{patch}
\begin{patch}{generalFortranPagePatch2}
\begin{paste}{generalFortranPageFull2}{generalFortranPageEmpty2}
```
```endpaste`
```
\spadcommand{m := matrix \[\[1,2,3\],\[4,5,6\]\]}\bound{m}

\begin{verbatim}
1 2 3
(1)
4 5 6
\end{verbatim}

Type: Matrix Integer

\spadcommand{fortranLiteralLine concat \"C The Matrix has ", nrows(m)::String, " rows and ", ncols(m)::String\} \free{m}

\begin{verbatim}
Type: Void
\end{verbatim}

\spadcommand{fortranLiteral(nrows(m)::String)}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{generalFortranPageEmpty5}
\begin{paste}{generalFortranPageEmpty5}{generalFortranPagePatch5}
\pastebutton{generalFortranPageEmpty5}{\showpaste}
\tab{5}\spadcommand{fortranLiteral(nrows(m)::String)}
\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch6}
\begin{paste}{generalFortranPageFull6}{generalFortranPageEmpty6}
\pastebutton{generalFortranPageFull6}{\hidepaste}
\tab{5}\spadcommand{fortranLiteral " rows and "}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{generalFortranPageEmpty6}
\begin{paste}{generalFortranPageEmpty6}{generalFortranPagePatch6}
\pastebutton{generalFortranPageEmpty6}{\showpaste}
\tab{5}\spadcommand{fortranLiteral(ncols(m)::String)\free{m}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{generalFortranPagePatch7}
\begin{paste}{generalFortranPageFull7}{generalFortranPageEmpty7}
\pastebutton{generalFortranPageFull7}{\hidepaste}
\tab{5}\spadcommand{fortranLiteral " columns"}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{generalFortranPageEmpty7}
\begin{paste}{generalFortranPageEmpty7}{generalFortranPagePatch7}
\pastebutton{generalFortranPageEmpty7}{\showpaste}
\tab{5}\spadcommand{fortranLiteral(ncols(m)::String)\free{m}}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\begin{patch}{generalFortranPagePatch8}
\begin{paste}{generalFortranPageFull8}{generalFortranPageEmpty8}
\pastebutton{generalFortranPageFull8}{\hidepaste}
\tab{5}\spadcommand{fortranLiteral " columns"}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{patch}

\end{verbatim}
\begin{verbatim}
Type: Void
\end{verbatim}

\begin{verbatim}
Type: String
\end{verbatim}

\begin{verbatim}
Type: FortranType
\end{verbatim}
\begin{verbatim}
(11) REAL
 (i,10)
Type: FortranType
\end{verbatim}

\begin{verbatim}
(12) REAL
 Type: Union(fst: FortranScalarType,...)
\end{verbatim}

\begin{verbatim}
(13) [i,10]
Type: List Polynomial Integer
\end{verbatim}
\begin{verbatim}
(14) false
Type: Boolean
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(15) LOGICAL
Type: FortranType
\end{verbatim}
\indentrel{-3}

\begin{verbatim}
(16) EXTERNAL INTEGER
Type: FortranType
\end{verbatim}
\indentrel{-3}
\begin{patch}{generalFortranPagePatch18}
\begin{paste}{generalFortranPageFull18}{generalFortranPageEmpty18}
\pastebutton{generalFortranPageFull18}{\hidepaste}
\tab{5}\spadcommand{symbols := empty()$SymbolTable\bound{symbols}}
\indentrel{3}\begin{verbatim}
(17) table()
Type: SymbolTable
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPageEmpty18}
\begin{paste}{generalFortranPageEmpty18}{generalFortranPagePatch18}
\pastebutton{generalFortranPageEmpty18}{\showpaste}
\tab{5}\spadcommand{symbols := empty()$SymbolTable\bound{symbols}}
\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch19}
\begin{paste}{generalFortranPageFull19}{generalFortranPageEmpty19}
\pastebutton{generalFortranPageFull19}{\hidepaste}
\tab{5}\spadcommand{declare!(X,fortranReal(),symbols)$free{symbols}}
\indentrel{3}\begin{verbatim}
(18) REAL
(i,j)
Type: FortranType
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPageEmpty19}
\begin{paste}{generalFortranPageEmpty19}{generalFortranPagePatch19}
\pastebutton{generalFortranPageEmpty19}{\showpaste}
\tab{5}\spadcommand{declare!(X,fortranReal(),symbols)$free{symbols}}
\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch20}
\begin{paste}{generalFortranPageFull20}{generalFortranPageEmpty20}
\pastebutton{generalFortranPageFull20}{\hidepaste}
\tab{5}\spadcommand{declare!(M,construct(real,[i,j],false)$FortranType,symbols)$free{symbols}}
\end{paste}\end{patch}

\begin{patch}{generalFortranPageEmpty20}
\begin{paste}{generalFortranPageEmpty20}{generalFortranPagePatch20}
\pastebutton{generalFortranPageEmpty20}{\showpaste}
\tab{5}\spadcommand{declare!(M,construct(real,[i,j],false)$FortranType,symbols)$free{symbols}}
\end{paste}\end{patch}
\begin{verbatim}
(20) INTEGER
Type: FortranType
\end{verbatim}

\begin{verbatim}
(21)

\end{verbatim}

\begin{verbatim}
(22) INTEGER
Type: FortranType
\end{verbatim}
\begin{patch}{generalFortranPagePatch24}
\begin{paste}{generalFortranPageFull24}{generalFortranPageEmpty24}
\indentrel{3}\spadcommand{typeList(real,symbols)\free{symbols }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch25}
\begin{paste}{generalFortranPageFull25}{generalFortranPageEmpty25}
\indentrel{3}\spadcommand{printTypes symbols\free{symbols }}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch26}
\begin{paste}{generalFortranPageFull26}{generalFortranPageEmpty26}
\indentrel{3}\spadcommand{newSubProgram F} \quad \text{Type: Void}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch27}
\begin{paste}{generalFortranPageFull27}{generalFortranPageEmpty27}
\indentrel{3}\spadcommand{endSubProgram()}
\indentrel{-3}\end{paste}\end{patch}
\begin{verbatim}
(26) MAIN
Type: Symbol
\end{verbatim}
\begin{verbatim}
endSubProgram()
\end{verbatim}
\begin{verbatim}
newSubProgram F\bound{forPleasure }
Type: Void
\end{verbatim}
\begin{verbatim}
argumentList!(F,[X])\free{forPleasure }
Type: Void
\end{verbatim}
\begin{verbatim}
returnType!(F,real)\free{forPleasure }
Type: Void
\end{verbatim}
\begin{patch}{generalFortranPagePatch30}
\begin{paste}{generalFortranPageFull30}{generalFortranPageEmpty30}
\pastebutton{generalFortranPageFull30}{\showpaste}
\tab{5}\spadcommand{returnType!(F,real)\free{forPleasure }}
\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch31}
\begin{paste}{generalFortranPageFull31}{generalFortranPageEmpty31}
\pastebutton{generalFortranPageFull31}{\hidepaste}
\tab{5}\spadcommand{declare!(X,fortranReal(),F)\free{forPleasure }}
\indentrel{3}\begin{verbatim}
(30) REAL
Type: FortranType
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch32}
\begin{paste}{generalFortranPageFull32}{generalFortranPageEmpty32}
\pastebutton{generalFortranPageFull32}{\hidepaste}
\tab{5}\spadcommand{printHeader F}\free{forPleasure }}
\indentrel{3}\begin{verbatim}
Type: Void
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{generalFortranPagePatch33}
\begin{paste}{generalFortranPageFull33}{generalFortranPageEmpty33}
\pastebutton{generalFortranPageFull33}{\hidepaste}
\tab{5}\spadcommand{LT(x,y)}
\indentrel{3}\begin{verbatim}
(32) x < y
Type: Switch
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}
\spadcommand{LT(x,y)}
\begin{verbatim}
conditional
\end{verbatim}
Type: FortranCode

\spadcommand{c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))\free{c}}
\begin{verbatim}
(33) conditional
\end{verbatim}
Type: Void

\spadcommand{symbols := empty()}$SymbolTable\free{symbols}
\begin{verbatim}
table()
\end{verbatim}
Type: SymbolTable
\begin{verbatim}
(36) REAL
Type: FortranType
\end{verbatim}

\begin{verbatim}
(37) FortranProgram(F,REAL,[X,Y],table(......))
Type: Domain
\end{verbatim}

\begin{verbatim}
(38) X sin(Y)
Type: Expression Integer
\end{verbatim}
\begin{verbatim}
type: Void
\end{verbatim}

(40) REAL
\begin{verbatim}
type: FortranType
\end{verbatim}

\begin{verbatim}
type: Void
\end{verbatim}
Some technical information

--- ug15.ht ---

The model adopted for the link is a server-client configuration -- Axiom acting as a client via a local agent (a process called `nagman`). The server side is implemented by the `nagd` daemon process which may run on a different host. The `nagman` local agent is started by default whenever you start Axiom. The `nagd` server must be started separately. Instructions for installing and running the server are supplied in the NAG documentation. Use the `set naglink host` system command to point your local agent to a server in your network.

On the Axiom side, one sees a set of packages (ask `Browse` for `Nag*`) for each chapter, each exporting operations with the same name as a routine in the `naglib`. The arguments and return value of each operation belong to standard Axiom types.

The `man` pages for the `naglib` are accessible via the description of each operation in `Browse` (among other places).

In the implementation of each operation, the set of inputs is passed to the local agent `nagman`, which makes a Remote Procedure Call (RPC) to the remote `nagd` daemon process. The local agent receives the RPC results and forwards them to the Axiom workspace where they are interpreted appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran routine in the `naglib`, a C main() routine is supplied. Its job is to assemble the RPC input (numeric) data stream into the appropriate Fortran data structures for the routine, call the Fortran routine from C and serialize the results into an RPC output data stream.

Many `naglib` routines accept ASPs (Argument Subprogram Parameters). These specify user-supplied Fortran routines (e.g. a routine to supply values of a function is required for numerical integration). How are they handled? There are new facilities in Axiom to help. A set of Axiom domains has been provided to turn values in standard Axiom types (such as Expression Integer) into the appropriate piece of Fortran for each case (a filename pointing to Fortran source for the ASP can always be supplied instead). Ask `Browse` for `Asp*` to see these domains. The Fortran fragments are included in the outgoing RPC stream, but `nagd` intercepts them, compiles them, and links them with the main() C program before executing
the resulting program on the numeric part of the RPC stream.

\endscroll
\autobuttons
\end{page}

Interactive Front-end and Language

\begin{page}{ugWhatsNewLanguagePage}
{15.4. Interactive Front-end and Language}
\beginscroll

The \axiom{leave} keyword has been replaced by the \axiom{break}
keyword for compatibility with the new Axiom extension language. See
section \downlink{``break in Loops''}{ugLangLoopsBreakPage} in
Section 5.4.3\ignore{ugLangLoopsBreak} for more
information.

Curly braces are no longer used to create sets. Instead, use
\axiomFun{set} followed by a bracketed expression. For example,
\xtc{
}\spadpaste{set [1,2,3,4]}
}

Curly braces are now used to enclose a block (see section
\downlink{``Blocks''}{ugLangBlocksPage} in Section
5.2\ignore{ugLangBlocks} for more information). For
compatibility, a block can still be enclosed by parentheses as well.

New coercions to and from type \axiomType{Expression} have been
added. For example, it is now possible to map a polynomial
represented as an expression to an appropriate polynomial type.

Various messages have been added or rewritten for clarity.

\endscroll
\autobuttons
\end{page}
\begin{patch}{ugWhatsNewLanguagePagePatch1}
\begin{paste}{ugWhatsNewLanguagePageFull1}{ugWhatsNewLanguagePageEmpty1}
\pastebutton{ugWhatsNewLanguagePageFull1}{\hidepaste}
\indentrel{3}\begin{verbatim}
(1) {1,2,3,4}
Type: Set PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugWhatsNewLanguagePageEmpty1}
\begin{paste}{ugWhatsNewLanguagePageEmpty1}{ugWhatsNewLanguagePagePatch1}
\pastebutton{ugWhatsNewLanguagePageEmpty1}{\showpaste}
\tab{5}\spadcommand{set [1,2,3,4]}
\indentrel{3}\begin{verbatim}
(1) {1,2,3,4}
Type: Set PositiveInteger
\end{verbatim}
\indentrel{-3}\end{paste}\end{patch}

\begin{patch}{ugWhatsNewLanguagePagePatch1}

\begin{patch}{ugWhatsNewLibraryPagePatch1}

\begin{page}{ugWhatsNewLibraryPage}{15.5. Library}
\beginscroll
The \axiomType{FullPartialFracExpansion} domain has been added. This domain computes factor-free full partial fraction expansions. See section \downlink{`FullPartialFracExpansion'} \{FullPartialFracExpansionXmpPage\} for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hyperelliptic functions. This brings a major speedup for some classes of algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonometric functions. This brings a speedup and an improvement in the answer quality.

The \{\sf SmallFloat\} domain has been renamed \axiomType{DoubleFloat} and \{\sf SmallInteger\} has been renamed \axiomType{SingleInteger}. The new abbreviations as
\axiomType{DFLOAT} and \axiomType{SINT}, respectively.
We have defined the macro \{sf SF\}, the old abbreviation for \{sf SmallFloat\}, to expand to \axiomType{DoubleFloat} and modified the documentation and input file examples to use the new names and abbreviations. You should do the same in any private Axiom files you have.

There are many new categories, domains and packages related to the NAG Library Link facility. See the file
\unixcommand{\env{AXIOM}/../../src/algebra/exposed.lsp}
{xterm\ -e\ vi\ +"/naglink"\ \env{AXIOM}/../../src/algebra/exposed.lsp}
for a list of constructors in the \{bf naglink\} Axiom exposure group.

We have made improvements to the differential equation solvers and there is a new facility for solving systems of first-order linear differential equations.
In particular, an important fix was made to the solver for inhomogeneous linear ordinary differential equations that corrected the calculation of particular solutions.
We also made improvements to the polynomial and transcendental equation solvers including the ability to solve some classes of systems of transcendental equations.

The efficiency of power series have been improved and left and right expansions of \spad{\tan(f(x))} at \spad{x =} a pole of \spad{f(x)} can now be computed.
A number of power series bugs were fixed and the \axiomType{GeneralUnivariatePowerSeries} domain was added.
The power series variable can appear in the coefficients and when this happens, you cannot differentiate or integrate the series.
Differentiation and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used to treat certain exponential singularities. Previously, such singularities were treated in an \{it ad hoc\} way and only a few cases were covered. Now Axiom can do things like
\begin{verbatim}
\verb|limit((x+1)**(x+1)/x**x - x**x/(x-1)**(x-1), x = %plusInfinity) |
\end{verbatim}
in a systematic way. It only does one level of nesting, though. In
other words, we can handle \spad{exp()} some function with a pole \spad{()), but not \texht\linebreak\spad{exp(exp()) some function with a pole \spad{()}.}

The computation of integral bases has been improved through careful use of Hermite row reduction. A \(p\)-adic algorithm for function fields of algebraic curves in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite integrals to \axiomType{InputForm}; binomial coefficients are displayed in a new way; some new simplifications of radicals have been implemented; the operation \spadfun{complexForm} for converting to rectangular coordinates has been added; symmetric product operations have been added to \axiomType{LinearOrdinaryDifferentialOperator}.

HyperDoc

\begin{verbatim}
Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black
\end{verbatim}
For various reasons, Hyperdoc sometimes displays a secondary window. You can control the size and placement of this window by including and modifying the following line in your \(\text{\texttt{.Xdefaults}}\) file.\% \begin{verbatim}
Axiom.hyperdoc.FormGeometry: =950x450+100+0
\end{verbatim}
This setting is a standard X Window System geometry specification: you are requesting a window 950 pixels wide by 450 deep and placed in the upper left corner.

Some key definitions have been changed to conform more closely with the CUA guidelines. Press \texttt{F9} to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the X Window System. Use the second button to paste in something you have previously copied or cut. An example of how you can use this is that you can paste the type from an Axiom computation into the main Browser input box.

\begin{page}{ugWhatsNewDocumentationPage}{15.7. Documentation}

We describe here a few additions to the on-line version of the Axiom book which you can read with HyperDoc.

A section has been added to the graphics chapter, describing how to build \texttt{twodim} graphs from lists of points. An example is given showing how to read the points from a file. See section \texttt{Building Two-Dimensional Graphs”} in Section 7.1.9 for details.

A further section has been added to that same chapter, describing how to add a \texttt{twodim} graph to a viewport which already contains other
graphs. See section \downlink{``Appending a Graph to a Viewport Window Containing a Graph''}{ugGraphTwoDappendPage} in Section 7.1.10\ignore{ugGraphTwoDappend} for details.

Chapter 3
and the on-line Hyperdoc help have been unified.

An explanation of operation names ending in ‘`?`’ and ‘`!`’ has been added to the first chapter. See the end of the section \downlink{``Calling Functions''}{ugIntroCallFunPage} in Section 1.3.6\ignore{ugIntroCallFun} for details.

An expanded explanation of using predicates has been added to the sixth chapter. See the example involving \userfun{evenRule} in the middle of the section \downlink{``Rules and Pattern Matching''}{ugUserRulesPage} in Section 6.21\ignore{ugUserRules} for details.
Chapter 19

Users Guide Chapter 16 (ug16.ht)

— ug16.ht —

\newcommand{\lanb}{\tt [} \newcommand{\ranb}{\tt]}\newcommand{\vertline}{\texttt{|}}
\newcommand{\vertline}{\texttt{|}}
Axiom System Commands

This chapter describes system commands, the command-line facilities used to control the Axiom environment. The first section is an introduction and discusses the common syntax of the commands available.

A.1. Introduction
A.2.)abbreviation
A.3.)boot
A.4.)cd
A.5.)close
A.6.)clear
A.7.)compile
A.8.)display
A.9.)edit
A.10.)fin
A.11.)frame
A.12.)help
A.13.)history
A.14.)library
A.15.)lisp
A.16.)load
A.17.)ltrace
A.18.)pquit
A.19.)quit
A.20.)read
A.21.)set
A.22.)show
A.23.)spool
A.24.)synonym
A.25.)system
A.26.)trace
A.27.)undo
A.28.)what

↩ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “Introduction” (ugSysCmdOverviewPage) 19 on page 2540
⇒ “)abbreviation” (ugSysCmdabbreviationPage) 19 on page 2542
⇒ “)boot” (ugSysCmdbootPage) 19 on page 2544
⇒ “)cd” (ugSysCmddPage) 19 on page 2545
⇒ “)close” (ugSysCmdclosePage) 19 on page 2546
⇒ “)clear” (ugSysCmdclearPage) 19 on page 2547
⇒ “)compile” (ugSysCmdcompilePage) 19 on page 2549
⇒ “)display” (ugSysCmddisplayPage) 19 on page 2552
⇒ “)edit” (ugSysCmdeditPage) 19 on page 2554
⇒ “)fin” (ugSysCmdfinPage) 19 on page 2555
⇒ “)frame” (ugSysCmdframePage) 19 on page 2556
⇒ “)help” (ugSysCmdhelpPage) 19 on page 2558
⇒ “)history” (ugSysCmdhistoryPage) 19 on page 2559
⇒ “)library” (ugSysCmdlibraryPage) 19 on page 2563
⇒ “)lisp” (ugSysCmdlispPage) 19 on page 2565
⇒ “)load” (ugSysCmdloadPage) 19 on page 2566
⇒ “)ltrace” (ugSysCmdltracePage) 19 on page 2566
⇒ “)pquit” (ugSysCmdpquitPage) 19 on page 2567
⇒ “)quit” (ugSysCmdquitPage) 19 on page 2569
⇒ “)read” (ugSysCmdreadPage) 19 on page 2570
⇒ “)set” (ugSysCmdsetPage) 19 on page 2571
This chapter describes system commands, the command-line facilities used to control the Axiom environment. The first section is an introduction and discusses the common syntax of the commands available.

<table>
<thead>
<tr>
<th>ug16.ht</th>
</tr>
</thead>
</table>

\begin{page}{ugSysCmdPage}{B. Axiom System Commands}
\beginscroll
\texttt{\begingroup\baselineskip 10pt\ixpt{}\def\Isize{\SIsize}}{}

This chapter describes system commands, the command-line facilities used to control the Axiom environment. The first section is an introduction and discusses the common syntax of the commands available.

\table{
 \downlink{\menuitemstyle{A.1. Introduction}}{ugSysCmdOverviewPage}
 \downlink{\menuitemstyle{A.2.)abbreviation}}{ugSysCmdabbreviationPage}
 \downlink{\menuitemstyle{A.3.)boot}}{ugSysCmdbootPage}
 \downlink{\menuitemstyle{A.4.)cd}}{ugSysCmdcdPage}
 \downlink{\menuitemstyle{A.5.)close}}{ugSysCmdclosePage}
 \downlink{\menuitemstyle{A.6.)clear}}{ugSysCmdclearPage}
 \downlink{\menuitemstyle{A.7.)compile}}{ugSysCmdcompilePage}
 \downlink{\menuitemstyle{A.8.)display}}{ugSysCmddisplayPage}
 \downlink{\menuitemstyle{A.9.)edit}}{ugSysCmdeditPage}
 \downlink{\menuitemstyle{A.10.)fin}}{ugSysCmdfinPage}
 \downlink{\menuitemstyle{A.11.)frame}}{ugSysCmdframePage}
 \downlink{\menuitemstyle{A.12.)help}}{ugSysCmdhelpPage}
 \downlink{\menuitemstyle{A.13.)history}}{ugSysCmdhistoryPage}
 \downlink{\menuitemstyle{A.14.)library}}{ugSysCmdlibraryPage}
 \downlink{\menuitemstyle{A.15.)lisp}}{ugSysCmdlispPage}
 \downlink{\menuitemstyle{A.16.)load}}{ugSysCmdloadPage}
 \downlink{\menuitemstyle{A.17.)ltrace}}{ugSysCmdltracePage}
 \downlink{\menuitemstyle{A.18.)pquit}}{ugSysCmdpquitPage}
 \downlink{\menuitemstyle{A.19.)quit}}{ugSysCmdquitPage}
 \downlink{\menuitemstyle{A.20.)read}}{ugSysCmdreadPage}
 \downlink{\menuitemstyle{A.21.)set}}{ugSysCmdsetPage}
 \downlink{\menuitemstyle{A.22.)show}}{ugSysCmdshowPage}
 \downlink{\menuitemstyle{A.23.)spool}}{ugSysCmdspoolPage}
 \downlink{\menuitemstyle{A.24.)synonym}}{ugSysCmdsynonymPage}
 \downlink{\menuitemstyle{A.25.)system}}{ugSysCmdsystemPage}
 \downlink{\menuitemstyle{A.26.)trace}}{ugSysCmdtracePage}
 \downlink{\menuitemstyle{A.27.)undo}}{ugSysCmdundoPage}
 \downlink{\menuitemstyle{A.28.)what}}{ugSysCmdwhatPage}
}
Introduction

System commands are used to perform Axiom environment management. Among the commands are those that display what has been defined or computed, set up multiple logical Axiom environments (frames), clear definitions, read files of expressions and commands, show what functions are available, and terminate Axiom.

Some commands are restricted: the commands

\begin{verbatim}
)set userlevel interpreter
)set userlevel compiler
)set userlevel development
\end{verbatim}

set the user-access level to the three possible choices. All commands are available at \tti{development} level and the fewest are available at \tti{interpreter} level. The default user-level is \tti{interpreter}. In addition to the \spadcmd{)set} command (discussed in \downlink{``)set''}{ugSysCmdsetPage} in Section B.21\ignore{ugSysCmdset}) you can use the Hyperdoc settings facility to change the \tti{user-level}.

Each command listing begins with one or more syntax pattern descriptions plus examples of related commands. The syntax descriptions are intended to be easy to read and do not necessarily represent the most compact way of specifying all possible arguments and options; the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first available column of the input line (that is, immediately
after the input prompt, if any). System commands may be issued
directly to Axiom or be included in {\bf .input} files.

A system command \{it argument\} is a word that directly follows the
command name and is not followed or preceded by a right parenthesis.
A system command \{it option\} follows the system command and is
directly preceded by a right parenthesis. Options may have arguments:
they directly follow the option. This example may make it easier to
remember what is an option and what is an argument:

\begin{verbatim}
{	t)syscmd \{it arg1 arg2\})opt1
\{it opt1arg1 opt1arg2\})opt2 \{it opt2arg1\} ...}}
\end{verbatim}

In the system command descriptions, optional arguments and options are
enclosed in brackets (``\lanb'' and ``\ranb''). If an argument or
option name is in italics, it is meant to be a variable and must have
some actual value substituted for it when the system command call is
made. For example, the syntax pattern description

\begin{verbatim}
{\tt)read} \{it fileName\} \{\tt \lanb\})quietly\ranb{}\}
\end{verbatim}

would imply that you must provide an actual file name for
\{it fileName\} but need not use the \{tt \)quietly\} option.
Thus
\begin{verbatim}
)read matrix.input
\end{verbatim}
is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in
upper or lower case.
The case of actual arguments may be significant, depending on the
particular situation (such as in file names).
System command names and options may be abbreviated to the minimum
number of starting letters so that the name or option is unique.
Thus
\begin{verbatim}
)s Integer
\end{verbatim}
is not a valid abbreviation for the \{tt \)set\} command,
because both \{tt \)set\} and \{tt \)show\} begin with the letter \"s\".
Typically, two or three letters are sufficient for disambiguating names.
In our descriptions of the commands, we have used no abbreviations for
either command names or options.

In some syntax descriptions we use a vertical line \"\vertline\" to
indicate that you must specify one of the listed choices. For
example, in \begin{verbatim} set output fortran on | off \end{verbatim} only \{tt on\} and \{tt off\} are acceptable words for following \{tt boot\}. We also sometimes use ‘‘...’’ to indicate that additional arguments or options of the listed form are allowed. Finally, in the syntax descriptions we may also list the syntax of related commands.

\endscroll
\autobuttons
\end{page}

\section*{)abbreviation}

\begin{center}
— ug16.ht —
\end{center}

\begin{page}{ugSysCmdabbreviationPage}{B.2.)abbreviation}
\beginscroll

\par \noindent \bf User Level Required:} compiler

\par \noindent \bf Command Syntax:

\begin{itemize}
\item \tt \)abbreviation query \lanb{}\{\it nameOrAbbrev\}\ranb{} \)quiet\ranb{}
\item \tt \)abbreviation category \{\it abbrev fullname\} \lanb{} \)quiet\ranb{}
\item \tt \)abbreviation domain \{\it abbrev fullname\} \lanb{} \)quiet\ranb{}
\item \tt \)abbreviation package \{\it abbrev fullname\} \lanb{} \)quiet\ranb{}
\item \tt \)abbreviation remove \{\it nameOrAbbrev\}
\end{itemize}

\par \noindent \bf Command Description:

This command is used to query, set and remove abbreviations for category, domain and package constructors.
Every constructor must have a unique abbreviation.
This abbreviation is part of the name of the subdirectory under which the components of the compiled constructor are stored.
Furthermore, by issuing this command you let the system know what file to load automatically if you use a new constructor.
Abbreviations must start with a letter and then be followed by
up to seven letters or digits. Any letters appearing in the abbreviation must be in uppercase.

When used with the \tt{query} argument, this command may be used to list the name associated with a particular abbreviation or the abbreviation for a constructor. If no abbreviation or name is given, the names and corresponding abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor \spadtype{List}:
\begin{verbatim}
)abbreviation query List
\end{verbatim}
The following shows the constructor name corresponding to the abbreviation \spadtype{NNI}:
\begin{verbatim}
)abbreviation query NNI
\end{verbatim}
The following lists all constructor names and their abbreviations.
\begin{verbatim}
)abbreviation query
\end{verbatim}

To add an abbreviation for a constructor, use this command with \tt{domain}, \tt{category} or \tt{package}.
The following add abbreviations to the system for a category, domain and package, respectively:
\begin{verbatim}
)abbreviation domain SET Set
)abbreviation category COMPCAT ComplexCategory
)abbreviation package LIST2MAP ListToMap
\end{verbatim}
If the \tt{quiet} option is used, no output is displayed from this command.
You would normally only define an abbreviation in a library source file. If this command is issued for a constructor that has already been loaded, the constructor will be reloaded next time it is referenced. In particular, you can use this command to force the automatic reloading of constructors.

To remove an abbreviation, the \tt{remove} argument is used. This is usually only used to correct a previous command that set an abbreviation for a constructor name. If, in fact, the abbreviation does exist, you are prompted for confirmation of the removal request. Either of the following commands will remove the abbreviation \spadtype{VECTOR2} and the constructor name \spadtype{VectorFunctions2} from the system:
\begin{verbatim}
\begin{verbatim}
)boot times3(x) == 3*x
\end{verbatim}

creates and compiles the \Lisp{} function `times3' obtained by translating the BOOT code.

\par\noindent\bf Also See:
\downlink{``)fin''}{ugSysCmdfinPage} in section B.10
\downlink{``)lisp''}{ugSysCmdlispPage} in section B.15
\begin{page}{ugSysCmdcdPage}{B.4.)cd}
\beginscroll

\par
noindent{\bf User Level Required:} interpreter

\par
noindent{\bf Command Syntax:}
\begin{items}
\item \texttt{)cd} \textit{directory}
\end{items}

\par
noindent{\bf Command Description:}
This command sets the Axiom working current directory. The current directory is used for looking for input files (for \texttt{(\texttt{read})}), Axiom library source files (for \texttt{(\texttt{compile})}), saved history environment files (for \texttt{(\texttt{history}\texttt{\texttt{))restore})}), compiled Axiom library files (for \texttt{\spadcmd{library}}), and files to edit (for \texttt{(\texttt{)edit})}). It is also used for writing spool files (via \texttt{(\texttt{spool})}), writing history input files (via \texttt{(\texttt{)write})}) and history environment files (via \texttt{(\texttt{)save})}), and compiled Axiom library files (via \texttt{(\texttt{)compile})}).

If issued with no argument, this command sets the Axiom
current directory to your home directory. If an argument is used, it must be a valid directory name. Except for the ‘‘\(\tt cd \)’’ at the beginning of the command, this has the same syntax as the operating system ‘‘\(\tt cd \)’’ command.

\par
\bf Also See:\n\downlink{‘‘compile’’}{ugSysCmdcompilePage} in section B.7
\downlink{‘‘edit’’}{ugSysCmdeditPage} in section B.9
\downlink{‘‘history’’}{ugSysCmdhistoryPage} in section B.13
\downlink{‘‘library’’}{ugSysCmdlibraryPage} in section B.14
\downlink{‘‘read’’}{ugSysCmdreadPage} in section B.20
\downlink{‘‘spool’’}{ugSysCmdspoolPage} in section B.32

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdclosePage}{B.5.)close}
\beginscroll
\par
\bf User Level Required:} interpreter
\par
\bf Command Syntax:}
\begin{items}
\item{\tt)close}
\item{\tt)close)quietly}
\end{items}
\par
\bf Command Description:}
This command is used to close down interpreter client processes. Such processes are started by Hyperdoc to run Axiom examples when you click on their text. When you have finished examining or modifying the example and you do not want the extra window around anymore, issue \begin{verbatim}
)close
\end{verbatim}
to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client
process, Axiom will offer to close down the entire Axiom session and return you to the operating system by displaying something like

\begin{verbatim}
This is the last Axiom session. Do you want to kill Axiom?
\end{verbatim}

Type "y" (followed by the Return key) if this is what you had in mind. Type "n" (followed by the Return key) to cancel the command.

You can use the \{\tt\}quietly\} option to force Axiom to close down the interpreter client process without closing down the entire Axiom session.

\par\noindent{\bf Also See:}
\downlink{``)quit''}{ugSysCmdquitPage} in section B.19

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdclearPage}{B.6.)clear}
\beginscroll

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{itemize}
\item{\tt)clear all}
\item{\tt)clear completely}
\item{\tt)clear properties all}
\item{\tt)clear properties} \{\lit obj1 \lanb{}obj2 \ranb{}\}
\item{\tt)clear value all}
\item{\tt)clear value} \{\lit obj1 \lanb{}obj2 \ranb{}\}
\item{\tt)clear mode all}
\item{\tt)clear mode} \{\lit obj1 \lanb{}obj2 \ranb{}\}
\end{itemize}

\endscroll
\autobuttons
\end{page}
This command is used to remove function and variable declarations, definitions and values from the workspace. To empty the entire workspace and reset the step counter to 1, issue

\begin{verbatim}
)clear all
\end{verbatim}

To remove everything in the workspace but not reset the step counter, issue

\begin{verbatim}
)clear properties all
\end{verbatim}

To remove everything about the object \tt{x}, issue

\begin{verbatim}
)clear properties x
\end{verbatim}

To remove everything about the objects \tt{x, y} and \tt{f}, issue

\begin{verbatim}
)clear properties x y f
\end{verbatim}

The word \tt{properties} may be abbreviated to the single letter \tt{p}.

\begin{verbatim}
)clear p all
)clear p x
)clear p x y f
\end{verbatim}

All definitions of functions and values of variables may be removed by either

\begin{verbatim}
)clear value all
)clear v all
\end{verbatim}

This retains whatever declarations the objects had. To remove definitions and values for the specific objects \tt{x, y} and \tt{f}, issue

\begin{verbatim}
)clear value x y f
)clear v x y f
\end{verbatim}

To remove the declarations of everything while leaving the definitions and values, issue

\begin{verbatim}
)clear mode all
)clear m all
\end{verbatim}

To remove declarations for the specific objects \tt{x, y} and
The \verb+\)display names+ and \verb+\)display properties+ commands may be used to see what is currently in the workspace.

The command
\begin{verbatim}
\)clear completely
\end{verbatim}
does everything that \verb+\)clear all+ does, and also clears the internal system function and constructor caches.

\par
\noindent{\bf Also See:}
\downlink{``\)display''}{ugSysCmddisplayPage} in section B.8
\downlink{``\)history''}{ugSysCmdhistoryPage} in section B.13
\downlink{``\)undo''}{ugSysCmdundoPage} in section B.27

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdcompilePage}{B.7.)compile}
\beginscroll

\par
\noindent{\bf User Level Required:} compiler

\par
\noindent{\bf Command Syntax:}
\begin{items}
\item \verb+\)compile+
\end{items}

\endscroll
\autobuttons
\end{page}
\item \verb|)compile {it fileName}|
\item \verb|)compile {it fileName}.spad|
\item \verb|)compile {it directory/fileName}.spad|
\item \verb|)compile {it fileName})quiet|
\item \verb|)compile {it fileName})noquiet|
\item \verb|)compile {it fileName})break|
\item \verb|)compile {it fileName})nobreak|
\item \verb|)compile {it fileName})library|
\item \verb|)compile {it fileName})nolibrary|
\item \verb|)compile {it fileName})vartrace|
\item \verb|)compile {it fileName})constructor\{it nameOrAbbrev\}
\end{items}

\parnoindent\bf Command Description:

You use this command to invoke the Axiom library compiler. This compiles files with file extension \verb|.spad| with the Axiom system compiler. The command first looks in the standard system directories for files with extension \verb|.spad|.

Should you not want the \verb|)library| command automatically invoked, call \verb|)compile| with the \verb|)nolibrary| option. For example,
\begin{verbatim}
)compile mycode)nolibrary
\end{verbatim}
By default, the \verb|)library| system command exposes all domains and categories it processes. This means that the Axiom interpreter will consider those domains and categories when it is trying to resolve a reference to a function.

Sometimes domains and categories should not be exposed. For example, a domain may just be used privately by another domain and may not be meant for top-level use. The \verb|)library| command should still be used, though, so that the code will be loaded on demand. In this case, you should use the \verb|)nolibrary| option on \verb|)compile| and the \verb|)noexpose| option in the \verb|)library| command. For example,
\begin{verbatim}
)compile mycode.spad)nolibrary
)library mycode)noexpose
\end{verbatim}
Once you have established your own collection of compiled code, you may find it handy to use the \verb|)dir| option on the \verb|)library| command. This causes \verb|)library| to process all compiled code in the specified directory. For example,
\begin{verbatim}
)library)dir /u/jones/quantum
\end{verbatim}
You must give an explicit directory after \verb|)dir|, even if you want all compiled code in the current working directory processed.
\begin{verbatim}
)library)dir .
\end{verbatim}
You can compile category, domain, and package constructors contained in files with file extension `.spad`. You can compile individual constructors or every constructor in a file.

The full filename is remembered between invocations of this command and `)edit` commands. The sequence of commands
\begin{verbatim}
)compile matrix.spad
)edit
)compile
\end{verbatim}
will call the compiler, edit, and then call the compiler again on the file `matrix.spad`. If you do not specify a directory, the working current directory (see description of command `)cd`) is searched for the file. If the file is not found, the standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each constructor should have an `)abbreviation` command in the file in which it is defined. We suggest that you place the `)abbreviation` commands at the top of the file in the order in which the constructors are defined. The list of commands serves as a table of contents for the file.

The `)library` option causes directories containing the compiled code for each constructor to be created in the working current directory. The name of such a directory consists of the constructor abbreviation and the `.nrlib` file extension. For example, the directory containing the compiled code for the `MATRIX` constructor is called `MATRIX.nrlib`. The `)nolibrary` option says that such files should not be created.

The `)vartrace` option causes the compiler to generate extra code for the constructor to support conditional tracing of variable assignments. Without this option, this code is suppressed and one cannot use the `)vars` option for the trace command.

The `)constructor` option is used to specify a particular constructor to compile. All other constructors in the file are ignored. The constructor name or abbreviation follows `)constructor`. Thus either
\begin{verbatim}
)compile matrix.spad)constructor RectangularMatrix
\end{verbatim}
or
\begin{verbatim}
)compile matrix.spad)constructor RMATRIX
\end{verbatim}
compiles the `RectangularMatrix` constructor defined in `matrix.spad`.

The `)break` and `)nobreak` options determine what the compiler does when it encounters an error. `)break` is the default and it indicates that
processing should stop at the first error. The value of the \{tt \)set break\} variable then controls what happens.

\par\noindent{bf Also See:}
\downlink{``\)abbreviation''}\{ugSysCmdabbreviationPage\} in section B.2
\downlink{``\)edit''}\{ugSysCmdeditPage\} in section B.9
\downlink{``\)library''}\{ugSysCmdlibraryPage\} in section B.14

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmddisplayPage}{B.8.)display}
\beginscroll
\par\noindent\bf User Level Required:} interpreter
\par\noindent\bf Command Syntax:}
\begin{items}
\item \{tt \)display all\}
\item \{tt \)display properties\}
\item \{tt \)display properties all\}
\item \{tt \)display properties\} \{\it \lanb\{obj1 \lanb\{obj2 \ldots \ranb\}\ranb\}\}
\item \{tt \)display value all\}
\item \{tt \)display value\} \{\it \lanb\{obj1 \lanb\{obj2 \ldots \ranb\}\ranb\}\}
\item \{tt \)display mode all\}
\item \{tt \)display mode\} \{\it \lanb\{obj1 \lanb\{obj2 \ldots \ranb\}\ranb\}\}
\item \{tt \)display names\}
\item \{tt \)display operations\} \{\it opName\}
\end{items}
\par\noindent\bf Command Description:}

This command is used to display the contents of the workspace and
signatures of functions with a given name.\footnote{A \spadgloss{signature} gives the argument and return types of a function.}

The command
\begin{verbatim}
)display names
\end{verbatim}
lists the names of all user-defined objects in the workspace. This is useful if you do not wish to see everything about the objects and need only be reminded of their names.

The commands
\begin{verbatim}
)display all
)display properties
)display properties all
\end{verbatim}
all do the same thing: show the values and types and declared modes of all variables in the workspace. If you have defined functions, their signatures and definitions will also be displayed.

To show all information about a particular variable or user functions, for example, something named \tt{d}, issue
\begin{verbatim}
)display properties d
\end{verbatim}
To just show the value (and the type) of \tt{d}, issue
\begin{verbatim}
)display value d
\end{verbatim}
To just show the declared mode of \tt{d}, issue
\begin{verbatim}
)display mode d
\end{verbatim}

All modemap\(\text{s}\) for a given operation may be displayed by using \tt{\texttt{d op complex}}. A \spadgloss{modemap} is a collection of information about a particular reference to an operation. This includes the types of the arguments and the return value, the location of the implementation and any conditions on the types. The modemap may contain patterns. The following displays the modemap\(\text{s}\) for the operation \tt{\texttt{d op complex}}:
\begin{verbatim}
)display operations
\end{verbatim}

\par\noindent{bf Also See:}\downlink{``\texttt{clear}''}{ugSysCmdclearPage} in section B.6
\downlink{``\texttt{history}''}{ugSysCmdhistoryPage} in section B.13
\downlink{'''set''}{ugSysCmdsetPage} in section B.21
\downlink{'''show''}{ugSysCmdshowPage} in section B.22
\downlink{'''what''}{ugSysCmdwhatPage} in section B.28
\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdeditPage}{B.9.)edit}
\beginscroll
\par
\noindent {\bf User Level Required:} interpreter

\par
\noindent {\bf Command Syntax:}
\begin{items}
\item {\tt)edit} \lanb{}{\it filename}\ranb{}
\end{items}
\par
\noindent {\bf Command Description:}
This command is used to edit files. It works in conjunction with the {\tt)read} and {\tt)compile} commands to remember the name of the file on which you are working. By specifying the name fully, you can edit any file you wish. Thus
\begin{verbatim}
)edit /u/julius/matrix.input
\end{verbatim}
will place you in an editor looking at the file {\tt /u/julius/matrix.input}. By default, the editor is {\tt vi}, but if you have an EDITOR shell environment variable defined, that editor will be used. When Axiom is running under the X Window System, it will try to open a separate {\tt xterm} running your editor if it thinks one is necessary.
For example, under the Korn shell, if you issue
\begin{verbatim}
export EDITOR=emacs
\end{verbatim}
then the emacs
ditor will be used by \spadcmd{)edit}.

If you do not specify a file name, the last file you edited,
read or compiled will be used.
If there is no `last file' you will be placed in the editor editing
an empty unnamed file.

It is possible to use the \tt{system} command to edit a file directly.
For example,
\begin{verbatim}
)system emacs /etc/rc.tcpip
\end{verbatim}
calls \tt{emacs} to edit the file.

\parindent{bf Also See:}
\downlink{``system''}{ugSysCmdsystemPage} in section B.25
\downlink{``compile''}{ugSysCmdcompilePage} in section B.7
\downlink{``read''}{ugSysCmdreadPage} in section B.20

\endscroll
\autopage
}

\begin{page}{ugSysCmdfinPage}{B.10.)fin}
\beginscroll

\par User Level Required: development
\par Command Syntax:
\begin{items}
\item \tt{)fin}
\end{items}
\par Command Description:
This command is used by Axiom developers to leave the Axiom system and return to the underlying \Lisp{} system. To return to Axiom, issue the \tt \"(\vertline{}\text{spad}\vertline{})\" function call to \Lisp{}.

\noindent Also See: \downlink{\")pquit\"}{ugSysCmdpquitPage} in section B.18

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdframePage}{B.11.)frame}
\beginscroll

\bf User Level Required:} interpreter

\bf Command Syntax:
\begin{items}
\item \tt)frame new \{\it frameName}\}
\item \tt)frame drop \{\it \lanb{}frameName\ranb{}}\}
\item \tt)frame next\}
\item \tt)frame last\}
\item \tt)frame names\}
\item \tt)frame import \{\it frameName\}
\{\it \lanb{}objectName1 \lanb{}objectName2 ...\ranb{}}\ranb{}}\}
\item \tt)set message frame on \vertline{} off\}
\item \tt)set message prompt frame\}
\end{items}

\bf Command Description:

A \{\it frame\} can be thought of as a logical session within the physical session that you get when you start the system. You can have as many frames as you want, within the limits of your computer's
storage, paging space, and so on.
Each frame has its own \{it step number\}, \{it environment\} and \{it
history.\} You can have a variable named \{tt a\} in one frame and it
will have nothing to do with anything that might be called \{tt a\} in
any other frame.

Some frames are created by the Hyperdoc program and these can
have pretty strange names, since they are generated automatically.
To find out the names
of all frames, issue
\begin{verbatim}
)frame names
\end{verbatim}
It will indicate the name of the current frame.

You create a new frame
\texttt{``\{bf quark\}''} by issuing
\begin{verbatim}
)frame new quark
\end{verbatim}
The history facility can be turned on by issuing either
\{tt \}set history on\} or \{tt \}history \{on\}\}.
If the history facility is on and you are saving history information
in a file rather than in the Axiom environment
then a history file with filename \{bf quark.axh\} will
be created as you enter commands.
If you wish to go back to what
you were doing in the
\texttt{``\{bf initial\}''} frame, use
\begin{verbatim}
)frame next
\end{verbatim}
or
\begin{verbatim}
)frame last
\end{verbatim}
to cycle through the ring of available frames to get back to
\texttt{``\{bf initial\}''}.

If you want to throw
away a frame (say \texttt{``\{bf quark\}''}), issue
\begin{verbatim}
)frame drop quark
\end{verbatim}
If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file,
you may want to delete some of the older history files.
These are directories, so you may want to issue a command like
\texttt{\{tt rm -r quark.axh\}} to the operating system.
You can bring things from another frame by using \tt{frame import}. For example, to bring the \tt{f} and \tt{g} from the frame \tt{'\{bf quark\}'} to the current frame, issue
\begin{verbatim}
)frame import quark f g
\end{verbatim}
If you want everything from the frame \tt{'\{bf quark\}'}, issue
\begin{verbatim}
)frame import quark
\end{verbatim}
You will be asked to verify that you really want everything.

There are two \tt{set} flags to make it easier to tell where you are.
\begin{verbatim}
)set message frame on | off
\end{verbatim}
will print more messages about frames when it is set on. By default, it is off.
\begin{verbatim}
)set message prompt frame
\end{verbatim}
will give a prompt that looks like
\begin{verbatim}
initial (1) ->
\end{verbatim}
when you start up. In this case, the frame name and step make up the prompt.

Also See: \downlink{\tt{)}history} in section B.13 \downlink{\tt{)}set} in section B.21

)help

— ug16.ht —
\beginscroll

\noindent{\bf User Level Required:} interpreter
\noindent{\bf Command Syntax:}
\begin{items}
\item{\tt)help}
\item{\tt)help} {\it commandName}
\end{items}

\noindent{\bf Command Description:}
This command displays help information about system commands.
If you issue
\verbatim
)help
\endverbatim
then this very text will be shown.
You can also give the name or abbreviation of a system command
to display information about it.
For example,
\verbatim
)help clear
\endverbatim
will display the description of the \tt{clear} system command.

All this material is available in the Axiom User Guide
and in Hyperdoc.
In Hyperdoc, choose the \tt{Commands} item from the
\tt{Reference} menu.

\endscroll
\autobuttons
\end{page}

)history

⇒ “notitle” (ugSysCmdframePage) 19 on page 2556
⇒ “notitle” (ugSysCmdcdPage) 19 on page 2545
⇒ “notitle” (ugSysCmdreadPage) 19 on page 2570
⇒ “notitle” (ugSysCmdsetPage) 19 on page 2571
User Level Required: interpreter

Command Syntax:

- `)`history `)`on
- `)`history `)`off
- `)`history `)`write \{it historyInputFileName\}
- `)`history `)`show \lanb{}\{it n\}\ranb{} \lanb{}both\ranb{}\}
- `)`history `)`save \{it savedHistoryName\}
- `)`history `)`restore \lanb{}\{it savedHistoryName\}\ranb{}\}
- `)`history `)`reset
- `)`history `)`change \{it n\}
- `)`history `)`memory
- `)`history `)`file
- `)`history `)\%`
- `)`history `)\%\%({it n})`
- `)`set history on \vertline{} off

Command Description:

The \{it history\} facility within Axiom allows you to restore your
environment to that of another session and recall previous
computational results. Additional commands allow you to review previous
input lines and to create an \{bf .input\} file of the lines typed to
Axiom.

Axiom saves your input and output if the history facility is
turned on (which is the default).
This information is saved if either of
\begin{verbatim}
)`set history on
)`history on
\end{verbatim}
has been issued. Issuing either
\begin{verbatim}
)`set history off
)`history off
\end{verbatim}
will discontinue the recording of information.
Whether the facility is disabled or not, the value of \spadSyntax{\%} in Axiom always refers to the result of the last computation. If you have not yet entered anything, \spadSyntax{\%} evaluates to an object of type \spadtype{Variable('\%)}. The function \spadSyntax{\%\%} may be used to refer to other previous results if the history facility is enabled. In that case, \spadSyntax{\%\%(n)} is the output from step \spadSyntax{n} if \spadSyntax{n > 0}. If \spadSyntax{n < 0}, the step is computed relative to the current step. Thus \spadSyntax{\%\%(n-1)} is also the previous step, \spadSyntax{\%\%(n-2)}, is the step before that, and so on. If an invalid step number is given, Axiom will signal an error.

The \{it environment\} information can either be saved in a file or entirely in memory (the default). Each frame \{ugSysCmdframe\} has its own history database. When it is kept in a file, some of it may also be kept in memory for efficiency. When the information is saved in a file, the name of the file is of the form \{bf FRAME.axh\} where \{bf FRAME\} is the name of the current frame. The history file is placed in the current working directory (see \{ugSysCmdcd\}). Note that these history database files are not text files (in fact, they are directories themselves), and so are not in human-readable format.

The options to the \{tt \}history\} command are as follows:

\begin{itemize}
\item[\bf \{tt \}change \{it n\}] will set the number of steps that are saved in memory to \{it n\}. This option only has effect when the history data is maintained in a file.
\item[\bf \{tt \}on] will start the recording of information. If the workspace is not empty, you will be asked to confirm this request. If you do so, the workspace will be cleared and history data will begin being saved. You can also turn the facility on by issuing \{tt \}set history on\}.
\item[\bf \{tt \}off] will stop the recording of information. The \{tt \}history \}show\} command will not work after issuing this command. Note that this command may be issued to save time, as there is some performance penalty paid for saving the environment data.
You can also turn the facility off by issuing \tt{)set history off}.

\item[\tt{)file}]
indicates that history data should be saved in an external file on disk.

\item[\tt{)memory}]
indicates that all history data should be kept in memory rather than saved in a file.
Note that if you are computing with very large objects it may not be practical to keep this data in memory.

\item[\tt{)reset}]
will flush the internal list of the most recent workspace calculations so that the data structures may be garbage collected by the underlying \Lisp{} system.
Like \tt{)history)change}, this option only has real effect when history data is being saved in a file.

\item[\tt{)restore} \lanb{}\tt{savedHistoryName}\ranb{}]
completely clears the environment and restores it to a saved session, if possible.
The \tt{)save} option below allows you to save a session to a file with a given name. If you had issued
\tt{)history)save jacobi}
the command
\tt{)history)restore jacobi}
would clear the current workspace and load the contents of the named saved session. If no saved session name is specified, the system looks for a file called \tt{last.axh}.

\item[\tt{)save} \tt{savedHistoryName}]
is used to save a snapshot of the environment in a file.
This file is placed in the current working directory
(see \tt{)cd}) in Section B.4 in Section B.4).
Use \tt{)history)restore} to restore the environment to the state preserved in the file.
This option also creates an input file containing all the lines of input since you created the workspace frame (for example, by starting your Axiom session) or last did a \spadcmd{)clear all} or \spadcmd{)clear completely}.

\item[\tt{)show} \lanb{}\tt{n}\ranb{} \lanb{}\tt{both}\ranb{}]
can show previous input lines and output results.
\tt{)show} will display up to twenty of the last input lines (fewer if you haven’t typed in twenty lines).
\tt{)show} \tt{both} will display up to \tt{n} of the last input lines.
\tt{)show } \tt{both} will display up to five of the last input lines and output results.
\tt{)show } \tt{n} \tt{both} will display up to \tt{n} of the last
input lines and output results.

\item[\tt]\tt write \it historyInputFile\]
creates an \bf .input\ file with the input lines typed since the start of the session/frame or the last \tt clear all\ or \tt clear completely\.
If \it historyInputFileName\ does not contain a period (``.'') in the filename, \bf .input\ is appended to it.
For example, \tt history)write chaos\ and
\tt history write chaos.input\ both write the input lines to a file called \bf chaos.input\ in your current working directory.
If you issued one or more \tt undo\ commands, \tt history write\ eliminates all input lines backtracked over as a result of \tt undo\.
You can edit this file and then use \tt read\ to have Axiom process the contents.
\enditems
\indent{0}
\par
\ Also See:
\downlink{``)frame''}{ugSysCmdframePage} in section B.11
\downlink{``)read''}{ugSysCmdreadPage} in section B.20
\downlink{``)set''}{ugSysCmdsetPage} in section B.21
\downlink{``)undo''}{ugSysCmdundoPage} in section B.27
\endscroll
\autobuttons
\end{page}

)library

⇒ “notitle” (ugSysCmdcdPage) 19 on page 2545
⇒ “notitle” (ugSysCmdcompilePage) 19 on page 2549
⇒ “notitle” (ugSysCmdframePage) 19 on page 2556
⇒ “notitle” (ugSysCmdsetPage) 19 on page 2571
— ug16.ht —

\begin{page}{ugSysCmdlibraryPage}{B.14.)library}
\beginscroll
User Level Required: interpreter

Command Syntax:

\begin{itemize}
\item {\tt)library {\it libName1 \lanb{}libName2 ...\ranb{}}}
\item {\tt)library)dir {\it dirName}}
\item {\tt)library)only {\it objName1 \lanb{}objlib2 ...\ranb{}}}
\item {\tt)library)noexpose}
\end{itemize}

Command Description:

This command replaces the {\tt)load} system command that was available in Axiom releases before version 2.0. The \spadcmd{library} command makes available to Axiom the compiled objects in the libraries listed.

For example, if you {\tt)compile dopler.as} in your home directory, issue {\tt)library dopler} to have Axiom look at the library, determine the category and domain constructors present, update the internal database with various properties of the constructors, and arrange for the constructors to be automatically loaded when needed. If the {\tt)noexpose} option has not been given, the constructors will be exposed (that is, available) in the current frame.

If you compiled a file with the old system compiler, you will have an {\it nrlib} present, for example, {\it DOPLER.nrlib,} where {\it DOPLER} is a constructor abbreviation. The command {\tt)library DOPLER} will then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use \spadcmd{)library)dir dirName} where {\it dirName} is an explicit directory.

You may specify ‘‘.’’ as the directory, which means the current directory from which you started the system or the one you set via the \spadcmd{)cd} command. The directory name is required.

You may only want to tell the system about particular constructors within a library. In this case, use the {\tt)only} option. The command \spadcmd{)library dopler)only Test1} will only cause the {\it Test1} constructor to be analyzed, autoloaded, etc.

Finally, each constructor in a library are usually automatically exposed when the \spadcmd{library} command is used. Use the {\tt
\noexpose option if you not want them exposed. At a later time you can use \tt{set expose add constructor} to expose any hidden constructors.

\bf{Note for Axiom beta testers:} At various times this command was called \tt{local} and \tt{with} before the name \tt{library} became the official name.

\begin{scroll}
\par
\nindent{\bf Also See:}
\downlink{``)cd''}{ugSysCmdcdPage} in section B.4
\downlink{``)compile''}{ugSysCmdcompilePage} in section B.7
\downlink{``)frame''}{ugSysCmdframePage} in section B.11
\downlink{``)set''}{ugSysCmdsetPage} in section B.21
\end{scroll}

\begin{page}{ugSysCmdlispPage}{B.15.)lisp}
\beginscroll
\par
\nindent{\bf User Level Required:} development
\nindent{\bf Command Syntax:}
\begin{items}
\item \tt{)lisp \lanb{}lispExpression\ranb{}}
\end{items}
\par
\nindent{\bf Command Description:}
\nindent{This command is used by Axiom system developers to have single expressions evaluated by the \Lisp system on which Axiom is built. The \tt{lispExpression} is read by the \Lisp reader and evaluated. If this expression is not complete (unbalanced parentheses, say), the reader will wait until a complete expression is entered.}
Since this command is only useful for evaluating single expressions, the \texttt{)fin} command may be used to drop out of Axiom into \Lisp{}.

\textbf{Also See:}
\begin{itemize}
 \item \href{ugSysCmdsystemPage}{``)system''}
 \item \href{ugSysCmdbootPage}{``)boot''}
 \item \href{ugSysCmdfinPage}{``)fin''}
\end{itemize}

\section*{)load}

\textbf{User Level Required:} interpreter

\textbf{Command Description:}
This command is obsolete. Use \spadcmd{)library} instead.

\section*{)ltrace}

\Rightarrow \textit{``notitle''} \textbf{19} on page \pageref{ugSysCmdboot}
\Rightarrow \textit{``notitle''} \textbf{19} on page \pageref{ugSysCmdlisp}
\Rightarrow \textit{``notitle''} \textbf{19} on page \pageref{ugSysCmdtrace}

\section*{ug16.ht}

\section*{ug16.ht}

\section*{ug16.ht}

\section*{ug16.ht}
\par\noindent{\bf User Level Required:} development

\par\noindent{\bf Command Syntax:}

This command has the same arguments as options as the \spadcmd{)trace} command.

\par\noindent{\bf Command Description:}

This command is used by Axiom system developers to trace \Lisp{} or
BOOT functions.
It is not supported for general use.

\par\noindent{\bf Also See:}
\downlink{``)boot''}{ugSysCmdbootPage} in section B.3
\downlink{``)lisp''}{ugSysCmdlispPage} in section B.15
\downlink{``)trace''}{ugSysCmdtracePage} in section B.26

\endscroll
\autobuttons
\end{page}

)\pquit

\end{page}{ugSysCmdpquitPage}{B.18.)pquit}
\beginscroll

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{items}
\item{\tt pquit}
\end{items}
Command Description:

This command is used to terminate Axiom and return to the operating system. Other than by redoing all your computations or by using the \texttt{)history \restore} command to try to restore your working environment, you cannot return to Axiom in the same state.

\texttt{)pquit} differs from \texttt{)quit} in that it always asks for confirmation that you want to terminate Axiom (the ‘p’ is for ‘protected’).

When you enter the \texttt{)pquit} command, Axiom responds

\begin{verbatim}
Please enter \texttt{y} or \texttt{yes} if you really want to leave the interactive environment and return to the operating system:
\end{verbatim}

If you respond with \texttt{y} or \texttt{yes}, you will see the message

\begin{verbatim}
You are now leaving the Axiom interactive environment.
Issue the command \texttt{axiom} to the operating system to start a new session.
\end{verbatim}

and Axiom will terminate and return you to the operating system (or the environment from which you invoked the system).

If you responded with something other than \texttt{y} or \texttt{yes}, then the message

\begin{verbatim}
You have chosen to remain in the Axiom interactive environment.
\end{verbatim}

will be displayed and, indeed, Axiom would still be running.

Also See:

\begin{itemize}
\item \texttt{)fin} in section B.10
\item \texttt{)history} in section B.13
\item \texttt{)close} in section B.5
\item \texttt{)quit} in section B.19
\item \texttt{)system} in section B.25
\end{itemize}
)quit

⇒ “notitle” (ugSysCmdfinPage) 19 on page 2555
⇒ “notitle” (ugSysCmdhistoryPage) 19 on page 2559
⇒ “notitle” (ugSysCmdclosePage) 19 on page 2546
⇒ “notitle” (ugSysCmdpquitPage) 19 on page 2567
⇒ “notitle” (ugSysCmdsystemPage) 19 on page 2576
— ug16.ht —

\begin{page}\{ugSysCmdquitPage\}{B.19.)quit}\end{page}
\beginscroll

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{itemize}
 \item{\tt)quit}
 \item{\tt)set quit protected \vertline{} unprotected}
\end{itemize}

\par\noindent{\bf Command Description:}

This command is used to terminate Axiom and return to the
operating system.
Other than by redoing all your computations or by
using the \{\tt)history \restore\} command to try to restore your working environment,
you cannot return to Axiom in the same state.

\{\tt)quit\} differs from the \{\tt)pquit\} in that it asks for
confirmation only if the command
\begin{verbatim}
)set quit protected
\end{verbatim}
has been issued.
Otherwise, \{\tt)quit\} will make Axiom terminate and return you
to the operating system (or the environment from which you invoked the system).

The default setting is \{\tt)set quit protected\} so that \{\tt)quit\} and
\{\tt)pquit\} behave in the same way.
If you do issue
\begin{verbatim}
)set quit unprotected
\end{verbatim}
we suggest that you do not (somehow) assign \{\tt)quit\} to be
executed when you press, say, a function key.

\bf Also See:
\downlink{\texttt{\textbackslash fin}}\{ugSysCmdfinPage\} in section B.10
\downlink{\texttt{\textbackslash history}}\{ugSysCmdhistoryPage\} in section B.13
\downlink{\texttt{\textbackslash close}}\{ugSysCmdclosePage\} in section B.5
\downlink{\texttt{\textbackslash quit}}\{ugSysCmdpquitPage\} in section B.19
\downlink{\texttt{\textbackslash system}}\{ugSysCmdsystemPage\} in section B.25

\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdreadPage}{B.20. \texttt{\textbackslash read}}
\beginscroll
\par\noindent\bf User Level Required:} \textit{interpreter}

\par\noindent\bf Command Syntax:}
\begin{items}
\item \texttt{\textbackslash read} \{\texttt{\textbackslash lanb{}fileName\ranb{}}\}
\item \texttt{\textbackslash read} \{\texttt{\textbackslash lanb{}fileName\ranb{}}\}
\item \texttt{\textbackslash quiet}\{\texttt{\textbackslash lanb{}\textbackslash ifthere}\}\texttt{\textbackslash ranb{}}
\end{items}
\par\noindent\bf Command Description:}

This command is used to read \textit{\textbackslash .input} files into Axiom. The command
\begin{verbatim}
\texttt{\textbackslash read matrix.input}
\end{verbatim}
will read the contents of the file \textit{\textbackslash matrix.input} into Axiom. The
\textit{\textbackslash .input} file extension is optional. See
\downlink{\textit{\textbackslash Input Files and Output Styles}}\{ugInOutInPage\} in Section 4
\ignore{ugInOutIn} for more information about \textit{\textbackslash .input}.

\end{page}
.input} files.

This command remembers the previous file you edited, read or compiled. If you do not specify a file name, the previous file will be read.

The {\tt ifthere} option checks to see whether the {\bf .input} file exists. If it does not, the {\tt read} command does nothing. If you do not use this option and the file does not exist, you are asked to give the name of an existing {\bf .input} file.

The {\tt quiet} option suppresses output while the file is being read.

\par
\noindent{\bf Also See:}\n\downlink{``)compile''}{ugSysCmdcompilePage} in section B.7
\downlink{``)edit''}{ugSysCmdeditPage} in section B.9
\downlink{``)history''}{ugSysCmdhistoryPage} section B.13
\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdsetPage}{B.21.)set}
\beginscroll

\par
\noindent{\bf User Level Required:} interpreter
\par
\noindent{\bf Command Syntax:}
\begin{items}
\item {\tt)set}
\item {\tt)set} \it label1 \lanb{}... labelN\ranb{}}
\item {\tt)set} \it label1 \lanb{}... labelN\ranb{}} newValue
\end{items}

\par
\noindent{\bf Command Description:}

The {\tt set} command is used to view or set system variables that control what messages are displayed, the type of output desired, the status of the history facility, the way Axiom user functions are cached, and so on.

Since this collection is very large, we will not discuss them here.
Rather, we will show how the facility is used. We urge you to explore the \texttt{)set} options to familiarize yourself with how you can modify your Axiom working environment. There is a Hyperdoc version of this same facility available from the main Hyperdoc menu. Click \lispmemolink{here}{(|htSystemVariables|)} to go to it.

The \texttt{)set} command is command-driven with a menu display. It is tree-structured. To see all top-level nodes, issue \texttt{)set} by itself.

\begin{verbatim}
)set
\end{verbatim}

Variables with values have them displayed near the right margin. Subtrees of selections have ‘‘\texttt{...}’’ displayed in the value field. For example, there are many kinds of messages, so issue \texttt{)set message} to see the choices.

\begin{verbatim}
)set message
\end{verbatim}

The current setting for the variable that displays whether computation times are displayed is visible in the menu displayed by the last command. To see more information, issue

\begin{verbatim}
)set message time
\end{verbatim}

This shows that time printing is on now. To turn it off, issue

\begin{verbatim}
)set message time off
\end{verbatim}

As noted above, not all settings have so many qualifiers. For example, to change the \texttt{)quit} command to being unprotected (that is, you will not be prompted for verification), you need only issue

\begin{verbatim}
)set quit unprotected
\end{verbatim}

\par
\noindent\textbf{Also See:}
\downlink{``)quit''}{ugSysCmdquitPage} in section B.19

\endscroll
\autobuttons
\end{page}
)show

⇒ “notitle” (ugSysCmddisplayPage) 19 on page 2552
⇒ “notitle” (ugSysCmdsetPage) 19 on page 2571
⇒ “notitle” (ugSysCmdwhatPage) 19 on page 2586
— ug16.ht —

\begin{page}{ugSysCmdshowPage}{B.22.)show}
\beginscroll

\par
\noindent{\bf User Level Required:} \texttt{interpreter}

\par
\noindent{\bf Command Syntax:}
\begin{items}
\item{\tt)show \{it \ nameOrAbbrev\}}
\item{\tt)show \{it \ nameOrAbbrev\} \ operations}
\item{\tt)show \{it \ nameOrAbbrev\} \ attributes}
\end{items}

\par
\noindent{\bf Command Description:}
This command displays information about Axiom
domain, package and category \{it constructors\}.
If no options are given, the \{tt \ operations\} option is assumed.
For example,
\begin{verbatim}
)show POLY
)show POLY \ operations
)show Polynomial
)show Polynomial \ operations
\end{verbatim}
each display basic information about the
\spadtype{Polynomial} domain constructor and then provide a
listing of operations.
Since \spadtype{Polynomial} requires a \spadtype{Ring} (for example,
\spadtype{Integer}) as argument, the above commands all refer
to an unspecified ring \{tt R\}.
In the list of operations, \spadSyntax{\$} means
\spadtype{Polynomial(R)}.

The basic information displayed includes the \{it signature\}
of the constructor (the name and arguments), the constructor
\{it abbreviation\}, the \{it exposure status\} of the constructor, and the
name of the \{it library source file\} for the constructor.

If operation information about a specific domain is wanted,
the full or abbreviated domain name may be used.
For example,
are among the combinations that will display the operations exported by the domain \spadtype{Polynomial(Integer)} (as opposed to the general \spadtype{Polynomial}). Attributes may be listed by using the \spadtype{attributes} option.

\par

\noindent{\bf Also See:}
\downlink{``)display''}{ugSysCmddisplayPage} in section B.8
\downlink{``)set''}{ugSysCmdsetPage} in section B.21
\downlink{``)what''}{ugSysCmdwhatPage} in section B.28

\endscroll
\autobuttons
\end{page}

\begin{verbatim}
)spool
\end{verbatim}

\begin{scroll}
\par
\noindent{\bf User Level Required:} interpreter

\par
\noindent{\bf Command Syntax:}
\begin{items}
\item{\tt)spool} \lanb{}\it fileName\ranb{}
\item{\tt)spool}
\end{items}

\par
\noindent{\bf Command Description:}

This command is used to save \spad{(spool)} all Axiom input and output into a file, called a \spad{spool file.}
You can only have one spool file active at a time.
To start spool, issue this command with a filename. For example,
\begin{verbatim}

\end{verbatim}
To stop spooling, issue `\(\texttt{)spool}\)` with no filename.

If the filename is qualified with a directory, then the output will be placed in that directory. If no directory information is given, the spool file will be placed in the `{\it current directory}.` The current directory is the directory from which you started Axiom or is the directory you specified using the `{\it \texttt{)cd}}` command.

\par
\noindent\bf Also See:\n\downlink{``\(\texttt{)cd}\)''}{ugSysCmdcdPage} in section B.4
\ugSysCmdcdNumber
\endscroll
\autobuttons
\end{page}

\begin{page}{ugSysCmdsynonymPage}{B.24.)synonym}
\beginscroll

\par
\noindent\bf User Level Required:} interpreter

\par
\noindent\bf Command Syntax:}
\begin{items}
\item{\texttt{)synonym}}
\item{\texttt{)synonym} \it synonym fullCommand}
\item{\texttt{)what synonyms}}
\end{items}

\par
\noindent\bf Command Description:}

This command is used to create short synonyms for system command expressions. For example, the following synonyms might simplify commands you often use.
\begin{verbatim}
)synonym save history)save
\end{verbatim}
Once defined, synonyms can be used in place of the longer command expressions. Thus

\begin{verbatim}
)fortran on
\end{verbatim}

is the same as the longer

\begin{verbatim}
)set fortran output on
\end{verbatim}

To list all defined synonyms, issue either of

\begin{verbatim}
)synonyms
what synonyms
\end{verbatim}

To list, say, all synonyms that contain the substring ‘‘\texttt{ap}’’, issue

\begin{verbatim}
what synonyms ap
\end{verbatim}

Also See:
\textlink{``)set''}{ugSysCmdsetPage} in section B.21
\textlink{``)what''}{ugSysCmdwhatPage} in section B.28

)system
User Level Required: interpreter

Command Syntax:

```
)system cmdExpression
```

Command Description:

This command may be used to issue commands to the operating system while remaining in Axiom. The `cmdExpression` is passed to the operating system for execution.

To get an operating system shell, issue, for example, `)system sh`.

When you enter the key combination, `Ctrl-D` (pressing and holding the `Ctrl` key and then pressing the `D` key) the shell will terminate and you will return to Axiom.

We do not recommend this way of creating a shell because Lisp may field some interrupts instead of the shell. If possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to Axiom. If this happens, you may have no other choice than to restart Axiom and restore the environment via `)history)restore`, if possible.

Also See:

- `)boot` in section B.3
- `)fin` in section B.10
- `)lisp` in section B.15
- `)quit` in section B.18
- `)quit` in section B.19
(trace)

⇒ “notitle” (ugSysCmdcompilePage) 19 on page 2549
⇒ “notitle” (ugSysCmdbootPage) 19 on page 2544
⇒ “notitle” (ugSysCmdlispPage) 19 on page 2565
⇒ “notitle” (ugSysCmdltracePage) 19 on page 2566

--- ug16.ht ---

\begin{page}{ugSysCmdtracePage}{B.26.)trace}\beginscroll

\par
\noindent{\bf User Level Required:} interpreter
\begin{itemize}
\item{\tt)trace}
\item{\tt)trace)off}
\item{\tt)trace} {\it function \lanb{}options\ranb{}}
\item{\tt)trace} {\it constructor \lanb{}options\ranb{}}
\item{\tt)trace} {\it domainOrPackage \lanb{}options\ranb{}}
\end{itemize}

\% where options can be one or more of
\begin{itemize}
\item{\tt)after} {\it S-expression}
\item{\tt)before} {\it S-expression}
\item{\tt)break after}
\item{\tt)break before}
\item{\tt)cond} {\it S-expression}
\item{\tt)count}
\item{\tt)count} {\it n}
\item{\tt)depth} {\it n}
\item{\tt)local} {\it op1 \lanb{}... opN\ranb{}}
\item{\tt)nonquietly}
\item{\tt)nt}
\item{\tt)off}
\item{\tt)only} {\it listOfDataToDisplay}
\item{\tt)ops}
\item{\tt)ops} {\it op1 \lanb{}... opN \ranb{}}
\item{\tt)restore}
\item{\tt)stats}
\item{\tt)stats reset}
\item{\tt)timer}
\item{\tt)varbreak}
\item{\tt)varbreak} {\it var1 \lanb{}... varN \ranb{}}
This command is used to trace the execution of functions that make up the Axiom system, functions defined by users, and functions from the system library. Almost all options are available for each type of function but exceptions will be noted below.

To list all functions, constructors, domains and packages that are traced, simply issue
\begin{verbatim}
)trace
\end{verbatim}
To untrace everything that is traced, issue
\begin{verbatim}
)trace)off
\end{verbatim}
When a function is traced, the default system action is to display the arguments to the function and the return value when the function is exited. Note that if a function is left via an action such as a \tt{THROW}, no return value will be displayed. Also, optimization of tail recursion may decrease the number of times a function is actually invoked and so may cause less trace information to be displayed.

Other information can be displayed or collected when a function is traced and this is controlled by the various options. Most options will be of interest only to Axiom system developers. If a domain or package is traced, the default action is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names after \tt{trace}. Any options that are present must follow the functions to be traced.
\begin{verbatim}
)trace f
\end{verbatim}
traces the function \tt{f}. To untrace \tt{f}, issue
\begin{verbatim}
)trace f)off
\end{verbatim}
Note that if a function name contains a special character, it will be necessary to escape the character with an underscore

\begin{verbatim}
)trace /D_/1
\end{verbatim}

To trace all domains or packages that are or will be created from a particular constructor, give the constructor name or abbreviation after \{tt \}trace\}.

\begin{verbatim}
)trace MATRIX
)trace List Integer
\end{verbatim}

The first command traces all domains currently instantiated with \spadtype{Matrix}. If additional domains are instantiated with this constructor (for example, if you have used \spadtype{Matrix(Integer)} and \spadtype{Matrix(Float)}), they will be automatically traced. The second command traces \spadtype{List(Integer)}. It is possible to trace individual functions in a domain or package. See the \{tt \}ops\} option below.

The following are the general options for the \{tt \}trace\} command.

%!! system command parser doesn't treat general s-expressions correctly,
%!! I recommend not documenting \after \before and \cond
\indent{0}
\begin{itemizes}
%\item[\{tt \}after] \{it S-expression]\}
%causes the given \Lisp{} \{it S-expression\} to be
%executed after exiting the traced function.
%
%\item[\{tt \}before] \{it S-expression\}
%causes the given \Lisp{} \{it S-expression\} to be
%executed before entering the traced function.
%
\item[\{tt \}break after]
causes a \Lisp{} break loop to be entered after exiting the traced function.
%
\item[\{tt \}break before]
causes a \Lisp{} break loop to be entered before entering the traced function.
%
\item[\{tt \}break]
is the same as \spadcmd{break before}.\]
%\item[\texttt{\tt (count) } \texttt{\it n}]
causes information about the traced function to be displayed for the first \texttt{\it n} executions. After the \texttt{\eth\it n} execution, the function is untraced.

%\item[\texttt{\tt (depth) } \texttt{\it n}]
causes trace information to be shown for only \texttt{\it n} levels of recursion of the traced function. The command
\begin{verbatim}
)trace fib)depth 10
\end{verbatim}
will cause the display of only 10 levels of trace information for the recursive execution of a user function \texttt{\userfun{fib}}.

%\item[\texttt{\tt (math)}]
causes the function arguments and return value to be displayed in the Axiom monospace two-dimensional math format.

%\item[\texttt{\tt (nonquietly)}]
causes the display of additional messages when a function is traced.

%\item[\texttt{\tt (nt)}]
This suppresses all normal trace information. This option is useful if the \texttt{\tt (count)} or \texttt{\tt (timer)} options are used and you are interested in the statistics but not the function calling information.

%\item[\texttt{\tt (off)}]
causes untracing of all or specific functions. Without an argument, all functions, constructors, domains and packages are untraced. Otherwise, the given functions and other objects are untraced. To immediately retrace the untraced functions, issue \texttt{\tt (trace}
\item[\tt only] \{it list\tt\t\tt ofDataToDisplay\}\ncauses only specific trace information to be shown. The items are
listed by using the following abbreviations:
\item
\begin{itemize}
\item[a] display all arguments
\item[v] display return value
\item[1] display first argument
\item[2] display second argument
\item[15] display the 15th argument, and so on
\end{itemize}
\item[\tt restore] \ncauses the last untraced functions to be retraced. If additional
options are present, they are added to those previously in effect.
\item[\tt stats] \ncauses the display of statistics collected by the use of the
\{\tt count\} and \{\tt timer\} options.
\item[\tt stats reset] \nresets to 0 the statistics collected by the use of the
\{\tt count\} and \{\tt timer\} options.
\item[\tt timer] \ncauses the system to keep a count of execution times for the
traced function. The total can be displayed with \{\tt trace
\tt stats\} and cleared with \{\tt trace \tt stats reset\}.
\%!! only for lisp, boot, may not work in any case, recommend removing
\%\item[\tt varbreak] \ncauses a \Lisp{} break loop to be entered after
the assignment to any variable in the traced function.
\item[\tt varbreak \it{var1 \lanb{}... varN\ranb{}}] \ncauses a \Lisp{} break loop to be entered after
the assignment to any of the listed variables in the traced
function.
\item[\tt vars] \ncauses the display of the value of any variable after it is assigned
in the traced function. Note that library code must have been
compiled (see
The following are the options for tracing constructors, domains and packages.

\begin{verbatim}
)local \lanb{}op1 \lanb{}... opN\ranb{}\ranb{}\ranb{}
\end{verbatim}

By default, all operations from a domain or package are traced when the domain or package is traced. This option allows you to specify that only particular operations should be traced. The command

\begin{verbatim}
)trace Integer)ops min max _+ _-
\end{verbatim}

traces four operations from the domain \spadtype{Integer}. Since \{\tt +\} and \{\tt -\} are special characters, it is necessary to escape them with an underscore.

| undo |

⇒ “notitle” (ugSysCmdhistoryPage) 19 on page 2559

— ug16.ht —

\begin{page}{ugSysCmdundoPage}{B.27.)undo}
\beginscroll

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{itemize}
\item {\tt)undo}
\item {\tt)undo} {\it integer}
\item {\tt)undo} {\it integer \{lanb\}option\{ranb\}}
\item {\tt)undo} {\tt redo}
\end{itemize}

\%
where \{\it option\} is one of
\%
\begin{itemize}
\item {\tt }after
\item {\tt }before
\end{itemize}

\par\noindent{\bf Command Description:}

This command is used to
restore the state of the user environment to an earlier
point in the interactive session.
The argument of an \{\tt \}undo\} is an integer which must designate some
step number in the interactive session.

\begin{verbatim}
)undo n
\end{verbatim}

\)undo n
\begin{verbatim}
)undo n)after
\end{verbatim}
These commands return the state of the interactive environment to that immediately after step \{tt n\}.
If \{tt n\} is a positive number, then \{tt n\} refers to step number \{tt n\}. If \{tt n\} is a negative number, it refers to the \eth{tt n} previous command (that is, undoes the effects of the last \smath{-n} commands).

A \{tt clear all\} resets the \{tt undo\} facility.
Otherwise, an \{tt undo\} undoes the effect of \{tt clear\} with options \{tt properties\}, \{tt value\}, and \{tt mode\}, and that of a previous \{tt undo\}.
If any such system commands are given between steps \smath{n} and \smath{n + 1} (\smath{n > 0}), their effect is undone for \{tt undo m\} for any \texht{\smath{0 < m \leq n}.} \{0 < m <= n\}.

The command \{tt undo\} is equivalent to \{tt undo -1\} (it undoes the effect of the previous user expression).
The command \{tt undo 0\} undoes any of the above system commands issued since the last user expression.

\begin{verbatim}
)undo n)before
\end{verbatim}
This command returns the state of the interactive environment to that immediately before step \{tt n\}.
Any \{tt undo\} or \{tt clear\} system commands given before step \{tt n\} will not be undone.

\begin{verbatim}
)undo)redo
\end{verbatim}
This command reads the file \{tt redo.input\}.
created by the last \{tt undo\} command.
This file consists of all user input lines, excluding those backtracked over due to a previous \{tt undo\}.

\par
\noindent{\bf Also See:}
\downlink{``)history''}{ugSysCmdhistoryPage} in section B.13
The command \{tt history)write\} will eliminate the ‘‘undone’’ command lines of your program.

\endscroll
\autobuttons
\end{page}
)what

⇒ “notitle” (ugSysCmdddisplayPage) 19 on page 2552
⇒ “notitle” (ugSysCmdsetPage) 19 on page 2571
⇒ “notitle” (ugSysCmdshowPage) 19 on page 2573

This command is used to display lists of things in the system. The patterns are all strings and, if present, restrict the contents of the lists. Only those items that contain one or more of the strings as substrings are displayed. For example,

\begin{verbatim}
)what synonym
\end{verbatim}
displays all command synonyms,
\begin{verbatim}
)what synonym ver
\end{verbatim}
displays all command synonyms containing the substring ‘‘{\tt ver}’’.
\begin{verbatim}
what synonym ver pr
\end{verbatim}
displays all command synonyms
containing the substring '{\tt ver}' or the substring
'{\tt pr}'.
Output similar to the following will be displayed
\begin{verbatim}
---------------- System Command Synonyms ----------------
user-defined synonyms satisfying patterns:
 ver pr
 apr)what things
 apropos)what things
 prompt)set message prompt
 version)lisp *yearweek*
\end{verbatim}
Several other things can be listed with the '{\tt what}' command:

\begin{itemize}
 \item '{\tt categories}' displays a list of category constructors.
 \item '{\tt commands}' displays a list of system commands available
 at your user-level.
 Your user-level
 is set via the '{\tt set userlevel}' command.
 To get a description of a particular command, such as '{\tt what}',
 issue '{\tt help what}'.
 \item '{\tt domains}' displays a list of domain constructors.
 \item '{\tt operations}' displays a list of operations in the system
 library. It is recommended that you qualify this command with one or
 more patterns, as there are thousands of operations available. For
 example, say you are looking for functions that involve computation of
 eigenvalues. To find their names, try '{\tt what operations eig}'.
 A rather large list of operations is loaded into the workspace when
 this command is first issued. This list will be deleted when you
 clear the workspace via '{\tt clear all}' or '{\tt clear completely}'.
 It will be re-created if it is needed again.
 \item '{\tt packages}' displays a list of package constructors.
 \item '{\tt synonym}' lists system command synonyms.
 \item '{\tt things}' displays all of the above types for items
 containing the pattern strings as substrings.
 The command synonym '{\tt apropos}' is equivalent to
 '{\tt what things}'.
\end{itemize}
\begin{verbatim}
\end{verbatim}

\par\indent\noindent{\bf Also See:}
\downlink{``)display''}{ugSysCmddisplayPage} in section B.8
\texttt{\textbackslash downlink\{''set''\}\{ugSysCmdsetPage\} in section B.21}
\texttt{\textbackslash downlink\{''show''\}\{ugSysCmdshowPage\} in section B.22}

\texttt{\begin{verbatim}
\texttt{\textbackslash texht\{\texttt{\textbackslash egroup}\}{}\
\texttt{\textbackslash endscroll}\n\texttt{\textbackslash autobuttons}\n\texttt{\textbackslash end\{page\}}
\end{verbatim}

Chapter 20

Users Guide Chapter 21 (ug21.ht)

Programs for Axiom Images

— ug21.ht —

\begin{page}{ugAppGraphicsPage}{G. Programs for Axiom Images}
\beginscroll
%
This appendix contains the Axiom programs used to generate
the images in the \Gallery{} color insert of this book.
All these input files are included
with the Axiom system.
To produce the images
on page 6 of the \Gallery{} insert, for example, issue the command:
\begin{verbatim}
)read images6
\end{verbatim}

These images were produced on an IBM RS/6000 model 530 with a
standard color graphics adapter. The smooth shaded images
were made from X Window System screen dumps.
The remaining images were produced with Axiom-generated
PostScript output. The images were reproduced from slides made on an Agfa
ChromaScript PostScript interpreter with a Matrix Instruments QCR camera.

\begin{menu}
\menu\underline{\bf F.1. images1.input}}{ugImagesOnePage}
\menu\underline{\bf F.2. images2.input}}{ugImagesTwoPage}
\menu\underline{\bf F.3. images3.input}}{ugImagesThreePage}
\end{menu}
--- ug21.ht ---

```
\begin{page}{ugFimagesOnePage}{G.1. images1.input}
\beginscroll
\labelSpace{3pc}

\noindent
\tt 1. \ read \ tknot
\tt 2. \torusKnot(15,17, 0.1, 6, 700)

\noindent
\newpage
\endscroll
\autobuttons
\end{page}
```
These images illustrate how Newton's method converges when computing the complex cube roots of 2. Each point in the \((x,y) \)-plane represents the complex number \(x + iy \), which is given as a starting point for Newton's method. The poles in these images represent bad starting values. The flat areas are the regions of convergence to the three roots.

\begin{verbatim}
1. read newton
2. read vectors
3. f := newtonStep(x**3 \ - \ 2)
4.
1. clipValue := 4
2. drawComplexVectorField(f**3, \ -3..3, \ -3..3)
3. drawComplex(f**3, \ -3..3, \ -3..3)
4. drawComplex(f**4, \ -3..3, \ -3..3)
\end{verbatim}

The function \(f^n \) computes \(n \) steps of Newton's method.

\begin{verbatim}
1.
2. clipValue := 4
3. drawComplexVectorField(f**3, \ -3..3, \ -3..3)
4. drawComplex(f**3, \ -3..3, \ -3..3)
4. drawComplex(f**4, \ -3..3, \ -3..3)
\end{verbatim}

{
\begin{verbatim}
\end{verbatim}

— ug21.ht —

\begin{page}{ugFimagesThreePage}{G.3. images3.input}
Image 5: The parameterization of the Etruscan Venus is due to George Frances.

\begin{verbatim}
1. venus(a, r, steps) ==
2.
3. surf := (u:DFLOAT, v:DFLOAT): Point DFLOAT ->
4. cv := cos(v)
5. sv := sin(v)
6. cu := cos(u)
7. su := sin(u)
8. x := r * cos(2*u) * cv + r * sin(2*u) * sv * cu
9. y := r * sin(2*u) * cv - r * sin(2*u) * sv * su
10. z := a * cv
11. point [x, y, z]
12. draw(surf, 0..%pi, -%pi..%pi, var1Steps==steps,)
13. var2Steps==steps, title == "Etruscan Venus")
14. venus(5/2, 13/10, 50)
\end{verbatim}
The Figure-8 Klein Bottle parameterization is from
"Differential Geometry and Computer Graphics" by Thomas Banchoff,
in *Perspectives in Mathematics, Anniversary of Oberwolfach 1984,
Birkhäuser-Verlag, Basel, pp. 43-60.

```plaintext
1. klein(x,y) ==
2.   cx := cos(x)
3.   cy := cos(y)
4.   sx := sin(x)
5.   sy := sin(y)
6.   sx2 := sin(x/2)
7.   cx2 := cos(x/2)
8.   sq2 := sqrt(2.0@DFLOAT)
9.   point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _, _]
10. draw(klein, 0..4*%pi, 0..2*%pi, var1Steps==50, _)

11. sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _, _
12. -sx2 * (sq2 + cy) + cx2 * sy * cy]
13. draw(klein, .4*%pi, 0..2*%pi, var1Steps==50, _)
14. var2Steps==50, title=="Figure Eight Klein Bottle")

15. )read ntube
16. rotateBy(p, theta) ==
17.   c := cos(theta)
18.   s := sin(theta)
19.   point [p.1*c - p.2*s, p.1*s + p.2*c]
20. draw(bcircle, t, var1Steps==50, _)
21. twist(u, t) ==
22.   3*cos t, 3*sin t, 0]
23. draw(bcircle, twist, 0..2*%pi, 0..2*%pi, _)
24. draw(ntubeDrawOpt(bcircle, twist, 0..2*%pi, 0..2*%pi, _)
```

The next two images are examples of generalized tubes.
\begin{verbatim}
var1Steps == 70, var2Steps == 250)
vvar31.
vvar32.
 twist2(u, t) ==
vvar33.
 theta := t
var34.
 p := point [sin u, cos(u)]
var35.
 rotateBy(p, \ theta)
var36.

var37.
 cf(u,v) == \ sin(21*u)
var38.

var39.
 ntubeDrawOpt(bcircle, twist2, 0..2*\pi, 0..2*\pi, var1Steps == 168, var2Steps == 126)

\end{verbatim}

\begin{verbatim}
1.
 gam(x,y)
 g := Gamma complex(x,y)
 point\ [x,y,max(min(real\ g,\ 4),\ -4),\ argument\ g]

4.

5.
 draw(gam, \ -\%pi..\%pi, \ -\%pi..\%pi, \)

7.
 title\ == "Gamma(x + \%i*y)"

8.
 var1Steps == 100, var2Steps == 100)

9.

10.
 b(x,y)

11.

12.
 draw(b, \ -3.1..3, \ -3.1..3,\ title\ == "Beta(x,y)")
\end{verbatim}
First we look at the conformal map $z \mapsto z + 1/z$.

The map $z \mapsto -(z+1)/(z-1)$ maps the unit disk to the right half-plane, as shown on the Riemann sphere.
\noindent
\tt 1. \ \ f \ z \ == \ z
\tt 2. \ \
\tt 3. \ \ \texttt{riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")}
\noindent
\tt 4. \ \
\tt 5. \ \ f \ z \ == \ -(z+1)/(z-1)
\tt 6. \ \
\tt 7. \ \ \texttt{riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")}
\noindent
\tt 8. \ \
\tt 9. \ \ \texttt{riemannSphereDraw(-4..4,\ -4..4,7,7,"cartesian")}
\noindent

\nostend
\end{scroll}
\autobuttons
\end{page}

\begin{page}{ugFimagesEightPage}{G.7. images8.input}
\beginscroll
\labelSpace{1pc}
\noindent
\tt 1. \ \)read\ dhtri
\tt 2. \ \)read\ tetra
\tt 3. \ \)drawPyramid\ 4
\tt 4. \ \)
\tt 5. \ \)read\ antoine
\tt 6. \ \)drawRings\ 2
\tt 7. \ \)
\tt 8. \ \)read\ scherk
\tt 9. \ \)drawScherk(3,3)
\tt 10. \ \)
\tt 11. \ \)read\ ribbonsnew
\tt 12. \ \)drawRibbons([x**i \ for \ i \ in\ 1..5],\ x=-1..1,\ y=0..2)
\noindent
\nostend
\end{scroll}
\begin{page}{ugFimagesEightPage}
\beginscroll
\labelSpace{1pc}
\noindent
\tt 1. \ \)read\ dhtri
\tt 2. \ \)read\ tetra
\tt 3. \ \)drawPyramid\ 4
\tt 4. \ \)
\tt 5. \ \)read\ antoine
\tt 6. \ \)drawRings\ 2
\tt 7. \ \)
\tt 8. \ \)read\ scherk
\tt 9. \ \)drawScherk(3,3)
\tt 10. \ \)
\tt 11. \ \)read\ ribbonsnew
\tt 12. \ \)drawRibbons([x**i \ for \ i \ in\ 1..5],\ x=-1..1,\ y=0..2)
\noindent
\nostend
\end{scroll}
The functions in this section draw conformal maps both on the plane and on the Riemann sphere.

\begin{page}{ugFconformalPage}{G.8. conformal.input}
\beginscroll

\%-- Compile, don’t interpret functions.
\%\xmpLine{}\set fun comp on\{\}

\indent
\{\tt 1. \ \ \ C := \ Complex\ DoubleFloat\} new line
\{\tt 2. \ \ \ S := \ Segment\ DoubleFloat\} new line
\{\tt 3. \ \ \ R3 := \ Point\ DFLOAT\} new line
\{\tt 4. \ \ \ \ } new line

\indent
\userfun{conformalDraw}{\it (f, rRange, tRange, rSteps, tSteps, coord)} draws the image of the coordinate grid under \{\it f\} in the complex plane. The grid may be given in either polar or Cartesian coordinates. Argument \{\it f\} is the function to draw; \{\it rRange\} is the range of the radius (in polar) or real (in Cartesian); \{\it tRange\} is the range of θ (in polar) or imaginary (in Cartesian); \{\it tSteps, rSteps\}, are the number of intervals in the \{\it r\} and θ directions; and \{\it coord\} is the coordinate system to use (either \{\tt "polar"\} or \{\tt "cartesian"\}).

\indent
\{\tt 1. \ \ \ conformalDraw: \ (C -> C, S, S, PI, PI, String) -> VIEW3D\} new line
\{\tt 2. \ \ \ conformalDraw(f,rRange,tRange,rSteps,tSteps,coord) \ ==\} new line
3. transformC :=
4. coord = "polar" => polar2Complex
5. cartesian2Complex
6. cm := makeConformalMap(f, transformC)
7. sp := createThreeSpace()
8. adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
9. makeViewport3D(sp, "Conformal Map")

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the coordinate grid under {it f} on the Riemann sphere. The grid may be given in either polar or Cartesian coordinates. Its arguments are the same as those for conformalDraw.

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) :=
transformC :=
coord = "polar" => polar2Complex
cartesian2Complex
sp := createThreeSpace()
cm := makeRiemannConformalMap(f, transformC)
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
curve(sp, [point [0,0,2.0@DFLOAT,0], point [0,0,2.0@DFLOAT,0]], [point [0,0,2.0@DFLOAT,0]])
makeViewport3D(sp, "Map on the Riemann Sphere")
adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) :=
delU := (hi(uRange) - lo(uRange))/uSteps
delV := (hi(vRange) - lo(vRange))/vSteps
uSteps := uSteps + 1; vSteps := vSteps + 1
u := lo uRange
for i in 1..uSteps repeat
 c := curryLeft(f, u)
 cf := (t:DFLOAT):DFLOAT => 0
 cf := cf
 for i in 1..vSteps repeat
 makeObject(c, vRange::SEG Float, colorFunction==cf)

sp := sp, tubeRadius = .02, tubePoints = 6
u := u + delU
v := lo vRange
for i in 1..vSteps repeat
35. \[c := \text{curryRight}(f,v) \]
36. \[cf := (t:\text{DFLOAT}) :\text{DFLOAT} \rightarrow 1 \]
37. \[\text{makeObject}(c, uRange::\text{SEG}\ Float, \text{colorFunction}==cf,) \]
38. \[\text{space} := \text{sp}, \text{tubeRadius} \rightarrow 0.02, \text{tubePoints} \rightarrow 6 \]
39. \[v := v + \text{delV} \]
40. \[\text{void}() \]
41. \[\text{riemannTransform}(z) \rightarrow \]
42. \[r := \sqrt{\text{norm } z} \]
43. \[\cosTheta := (\text{real } z)/r \]
44. \[\sinTheta := (\text{imag } z)/r \]
45. \[cp := 4*r/(4+r**2) \]
46. \[sp := \sqrt{1-cp**2} \]
47. \[\text{if } r>2 \text{ then } sp := -sp \]
48. \[\text{point} \[\cosTheta*cp, \sinTheta*cp, -sp + 1\] \]
49. \[\text{cartesian2Complex}(r:\text{DFLOAT}, i:\text{DFLOAT}) :\text{C} \rightarrow \]
50. \[\text{polar2Complex}(r:\text{DFLOAT}, th:\text{DFLOAT}) :\text{C} \rightarrow \]
51. \[\text{makeConformalMap}(f, \text{transformC}) \rightarrow \]
52. \[(u:\text{DFLOAT}, v:\text{DFLOAT}) :\text{R3} \rightarrow \]
53. \[\text{connectPoints}(sp, grid, rRange, tRange, rSteps, tSteps) \]
54. \[\text{makeRiemannConformalMap}(f, \text{transformC}) \rightarrow \]
55. \[(u:\text{DFLOAT}, v:\text{DFLOAT}) :\text{R3} \rightarrow \]
56. \[\text{riemannSphereDraw}(S, S, \text{PI}, \text{PI}, \text{String}) \rightarrow \text{VIEW3D} \]
f := (z:C):C -> z

cm := makeRiemannConformalMap(f, transformC)

adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)

makeViewport3D(sp, "Riemann Sphere")

connectingLines(sp, f, uRange, vRange, uSteps, vSteps) ==

delU := (hi(uRange) - lo(uRange))/uSteps

delV := (hi(vRange) - lo(vRange))/vSteps

uSteps := uSteps + 1; vSteps := vSteps + 1

u := lo uRange

for i in 1..uSteps repeat

v := lo vRange

for j in 1..vSteps repeat

p1 := f(u, v)

p2 := riemannTransform complex(p1.1, p1.2)

fun := lineFromTo(p1, p2)

cf := (t:DFLOAT):DFLOAT -> 3

makeObject(fun, 0..1, space==sp, tubePoints==4, tubeRadius==0.01, colorFunction==cf)

v := v + delV

u := u + delU

void()

riemannSphere(u, v) ==

sv := sin(v)

0.99@DFLOAT*[cos(u)*sv, sin(u)*sv, cos(v), 0.0@DFLOAT] +

point[0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]

lineFromTo(p1, p2)

d := p2 - p1

(t:DFLOAT):Point ->

p1 + t*d

noindent

\%\input{gallery/tknot.htex}
\endscroll
\autobuttons
\end{page}
tknot.input

-- ug21.ht --

\begin{page}{ugFtknotPage}{G.9. tknot.input}
\beginscroll
% Create a (p,q) torus-knot with radius r around the curve.
The formula was derived by Larry Lambe.

\noindent (\tt 1.
\tt \
\tt \)read\ ntube\\
\tt 2.
\tt \
\tt \torusKnot:\ (DFLOAT, DFLOAT, DFLOAT, PI, PI) \to VIEW3D\\
\tt 3.
\tt \
\tt \torusKnot(p, q, r, uSteps, tSteps) \to\\
\tt 4.
\tt \
\tt knot\ :=\ (t:DFLOAT)\to Point DFLOAT\to\\
\tt 5.
\tt \
\tt fac\ :=\ 4/(2.2DFLOAT-sin(q*t))\\
\tt 6.
\tt \
\tt fac\ \times\ point\ [cos(p*t), sin(p*t), cos(q*t)]\\
\tt 7.
\tt \
\tt circle\ :=\ (u:DFLOAT, t:DFLOAT)\to Point DFLOAT\to\\
\tt 8.
\tt \
\tt circle\ \times\ point\ [cos u, sin u]\\
\tt 9.
\tt \
\tt ntubeDrawOpt(knot, circle, 0..2*%pi, 0..2*%pi,\\
\tt 10.
\tt \
\tt \var1Steps \to uSteps, \var2Steps \to tSteps)\\
\tt 11.\\
\noindent
\%\input{gallery/ntube.htex}
\endscroll
\autobuttons
\end{page}

ntube.input

⇒ “notitle” (ugFimagesFivePage) 20 on page 2592
-- ug21.ht --
The functions in this file create generalized tubes (also known as generalized cylinders). These functions draw a 2-d curve in the normal planes around a 3-d curve.

\begin{verbatim}
\userfun{ntubeDraw}{(spaceCurve, planeCurve, }$u_0 .. u_1,$ $t_0 .. t_1)$ draws
{\it planeCurve} in the normal planes of {\it spaceCurve}. The parameter $u_0 .. u_1$ specifies the parameter range for {\it planeCurve} and $t_0 .. t_1$ specifies the parameter range for {\it spaceCurve}. Additionally, the plane curve function takes a second parameter: the current parameter of {\it spaceCurve}. This allows the plane curve to change shape as it goes around the space curve.
\end{verbatim}

\begin{verbatim}
\userfun{ntubeDraw}{(ThreeCurve,TwoCurve,S,S) \rightarrow VIEW3D}
\userfun{ntubeDrawOpt}{(ThreeCurve,TwoCurve,S,S,List) \rightarrow VIEW3D}
\end{verbatim}
ntubeDrawOpt(spaceCurve,planeCurve,uRange,tRange,l) ==
{
 9.
 10.
 delT:DFLOAT := (hi(tRange) - lo(tRange))/10000
 11.
 oldT:DFLOAT := lo(tRange) - 1
 12.
 fun := ngeneralTube(spaceCurve,planeCurve,delT,oldT)
 13.
 draw(fun, uRange, tRange, l)
 14.
}

\noindent
userfun{nfre netFrame}{\it (c, t, delT)} numerically computes the Frenet frame about the curve \{\it c\} at \{\it t\}.
Parameter \{\it delT\} is a small number used to compute derivatives.

\noindent
{
 15.
 16.
 f0 := \{ c(t) \}
 17.
 f1 := \{ c(t+delT) \}
 18.
 t0 := f1 - f0
 19.
 n0 := f1 + f0
 20.
 21.
 b := cross(t0, n0)
 22.
 n := length n
 23.
 lb := length b
 24.
 ln := 0 \ or \ lb = 0 \ => \ error "Frenet Frame not well defined"
 25.
 26.
 n := (1/ln)*n
 27.
 b := (1/lb)*b
 28.
 \{ f0, t0, n, b \} FrenetFrame
}

\noindent
userfun{ngeneralTube}{\it (spaceCurve, planeCurve,}{\it delT, oltT)} creates a function that can be passed to the system axiomFun{draw} command.
The function is a parameterized surface for the general tube around \{\it spaceCurve\}.
\{\it delT\} is a small number used to compute derivatives. \{\it oldT\} is used to hold the current value of the \{\it t\} parameter for \{\it spaceCurve\}.
This is an efficiency measure to ensure that frames are only computed once for each value of \{\it t\}.

\noindent
{
 29.
 ngeneralTube:\ (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface
}
generalTube(spaceCurve, planeCurve, delT, oldT) ==
free frame (v:DFLOAT, t: DFLOAT): R3 +->
if (t \neq oldT) then
frame := nfrenetFrame(spaceCurve, t, delT)
oldT := t
p := planeCurve(v, t)
frame.value + p.1*frame.normal + p.2*frame.binormal

dhtri.input

— ug21.ht —
\begin{verbatim}
\tt 14. \ \ \ m := new(4,4,0)$DHMATRIX(DFLOAT)
\tt 15. \ \ \ for x in t for i in 1..repeat
\tt 16. \ \ \ \ \ \ for j in 1..3 repeat
\tt 17. \ \ \ \ \ \ \ m(j,i) := x.j
\tt 18. \ \ \ \ \ \ \ m(4,i) := 1
\tt 19. \ \ \ \ m
\tt 20. \ \ \ }
\tt 21. \ \ \ \ \ \ \ \ triangleNormal(t) \ == \ }
\tt 22. \ \ \ \ \ \ \ a := triangleArea \ t)
\tt 23. \ \ \ \ \ \ \ p1 := t.2 \ - \ t.1
\tt 24. \ \ \ \ \ \ \ p2 := t.3 \ - \ t.2
\tt 25. \ \ \ \ \ \ \ c := cross(p1, p2)
\tt 26. \ \ \ \ \ \ \ len := length(c)
\tt 27. \ \ \ \ \ \ \ len = 0 \ => \ error \ "degenerate\ triangle!"
\tt 28. \ \ \ \ \ \ \ c := (1/len)*c
\tt 29. \ \ \ \ \ \ \ t.1 + sqrt(a) \ * \ c
\tt 30. \ \ \ }
\tt 31. \ \ \ \ \ \ \ \ triangleArea \ t \ == \ }
\tt 32. \ \ \ \ \ \ \ a := length(t.2 \ - \ t.1)
\tt 33. \ \ \ \ \ \ \ b := length(t.3 \ - \ t.2)
\tt 34. \ \ \ \ \ \ \ c := length(t.1 \ - \ t.3)
\tt 35. \ \ \ \ \ \ \ s := (a+b+c)/2
\tt 36. \ \ \ \ \ \ \ sqrt(s*(s-a)*(s-b)*(s-c))
\end{verbatim}

tetra.input

— u21.ht —

\begin{verbatim}
\begin{page}{ugFtetraPage}{G.12. tetra.input}
\beginscroll
\tt %
% \input{gallery/tetra.htex}
% \outdent{Sierpinsky’s Tetrahedron}
\labelSpace{3pc}
\noindent
\end{scroll}
\end{page}
\end{verbatim}
(1) \texttt{set, expose, add, con, DenavitHartenbergMatrix}\newline
(2) \texttt{x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT)}\newline
(3) \texttt{x2:DFLOAT := sqrt(3.0@DFLOAT)/6)}\newline
(4) \texttt{p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT]}\newline
(5) \texttt{p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT]}\newline
(6) \texttt{p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT]}\newline
(7) \texttt{p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]}\newline
(8) \texttt{bt1 := tri2tri(baseTriangle, bt1)}\newline
(9) \texttt{bt2 := tri2tri(baseTriangle, bt2)}\newline
(10) \texttt{bt3 := tri2tri(baseTriangle, bt3)}\newline
(11) \texttt{bt4 := tri2tri(baseTriangle, bt4)}\newline
(12) \texttt{drawPyramid(n) ==} \newline
(13) \texttt{s := createThreeSpace()}\newline
(14) \texttt{dh := rotatex(0.0@DFLOAT)}\newline
(15) \texttt{drawPyramidInner(s, n, dh)}\newline
(16) \texttt{makeViewport3D(s, "Sierpinsky Tetrahedron")}\newline
(17) \texttt{makeTetrahedron(sp, dh, color)}\newline
(18) \texttt{void()}\newline

\noindent
Draw Antoine’s Necklace.

Thank you to Matthew Grayson at IBM’s T.J. Watson Research Center for the idea.

In order to draw Antoine rings, we take one ring, scale it down to a smaller size, rotate it around its central axis, translate it to the edge of the larger ring and rotate it around the edge to a point corresponding to its count (there are 10 positions around the edge of the larger ring). For each of these new rings we recursively perform the operations, each ring becoming 10 smaller rings. Notice how the \(\text{DHMatrix}\) operations are used to build up the proper matrix composing all these transformations.
2608 \textit{CHAPTER 20. USERS GUIDE CHAPTER 21 (UG21.HT)}

\begin{verbatim}
{\tt 2.
 n = 0 =>
}
{\tt 3.
 drawRing(s, dh)
}
{\tt 4.
 void()
}
{\tt 5.
 t := 0.0@DFLOAT
}
{\tt 6.
 p := 0.0@DFLOAT
}
{\tt 7.
 tr := 1.0@DFLOAT
}
{\tt 8.
 inc := 0.1@DFLOAT
}
{\tt 9.
 for i in 1..10 repeat
}
{\tt 10.
 tr := tr + inc
}
{\tt 11.
 n := n - inc
}
{\tt 12.
 dh' := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*
}
{\tt 13.
 rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)
}
{\tt 14.
 drawRingsInner(s, n-1, dh')
}
{\tt 15.
 t := t + 36.0@DFLOAT
}
{\tt 16.
 p := p + 90.0@DFLOAT
}
{\tt 17.
 void()
}
{\tt 18.
}
{\tt 19.
 drawRing(s, dh) ==
}
{\tt 20.
 free torusRot
}
{\tt 21.
 torusRot := dh
}
{\tt 22.
 makeObject(torus, 0..2*%pi, 0..2*%pi, var1Steps == 6, space == s, var2Steps == 15)
}
{\tt 23.
 cu := cos(u)/6
}
{\tt 24.
 torusRot*point\ [(1+cu)*cos(v),(1+cu)*sin(v),(sin\ u)/6]\}

\input{gallery/scherk.htex}
%\input{gallery/scherk.htex}

\end{verbatim}

\section*{scherk.input}

\begin{verbatim}
— ug21 ht —

\begin{verbatim}
\begin{page}{ugFscherkPage}{G.14. scherk.input}
\end{page}
\end{verbatim}
\end{verbatim}
Scherk's minimal surface, defined by:
\begin{equation}
\exp(z) \times \cos(x) = \cos(y).
\end{equation}
See: \textit{A Comprehensive Introduction to Differential Geometry,} Vol. 3,

```
1. (xOffset, yOffset):DFLOAT
2. drawScherk(m,n) ==
3. free xOffset, yOffset
4. space := createThreeSpace()
5. for i in 0..m-1 repeat
6.   xOffset := i*\%pi
7. for j in 0..n-1 repeat
8.   yOffset := j*\%pi
9.   drawOneScherk(space)
10. makeViewport3D(space, "Scherk's Minimal Surface")
11. scherk1(u,v) ==
12.   x := \cos(u)/\exp(v)
13.   point [xOffset + acos(x), yOffset + u, v, abs(v)]
14. scherk2(u,v) ==
15.   x := \cos(u)/\exp(v)
16.   point [xOffset - acos(x), yOffset + u, v, abs(v)]
17. scherk3(u,v) ==
18.   x := \exp(v) * \cos(u)
19.   point [xOffset + u, yOxff, + acos(x), v, abs(v)]
20. scherk4(u,v) ==
21.   x := \exp(v) * \cos(u)
22.   point [xOffset + u, yOxff, - acos(x), v, abs(v)]
23. drawOneScherk(s) ==
24. makeObject(scherk1,-\%pi/2..\%pi/2,0..\%pi/2,space==s)
25. var1Steps == 28, var2Steps == 28
```

%
makeObject(scherk2, \(-\pi/2..\pi/2, 0..\pi/2, \text{space}==s,\})

var1Steps \(==\) 28, var2Steps \(==\) 28

makeObject(scherk3, \(-\pi/2..\pi/2, -\pi/2..0, \text{space}==s,\})

var1Steps \(==\) 28, var2Steps \(==\) 28

makeObject(scherk4, \(-\pi/2..\pi/2, -\pi/2..0, \text{space}==s,\})

var1Steps \(==\) 28, var2Steps \(==\) 28

\textbf{void()}

\noindent
\endscroll
\autobuttons
\end{page}
Chapter 21

Hypertext Language Pages

Creating Hyperdoc Pages

⇒ “notitle” (ViewportPage) 3.50 on page 662
⇒ “notitle” (BitMaps) 3.9 on page 168
⇒ “notitle” (CPHelp) 3.18 on page 279
— hyperdoc.ht —

\begin{page}{Hyperdoc}{Creating Hyperdoc Pages}

\begin{scroll}
This document tells how to create \HyperName pages.
To start with, it is rather meager but it will grow with time.
\begin{menu}
\menulink{Viewports}{ViewportPage} Including live graphics in documents.
\menulink{Gadjets}{BitMaps} Bitmaps for use in macros.
\menulink{Control Panel Bits}{CPHelp} Development page for help
facility for viewports. yuck.
%\menulink{Test Pages}{TestPage} Some test pages left by J.M.
%\menulink{Paste Pages}{PastePage} Examples of how to use paste in areas.
\end{menu}

\end{scroll}
\autobuttons
\end{page}
21.1 htxadvpage1.ht

Input Areas

⇒ “notitle” (HTXAdvPage2) 21.2 on page 2615
— htxadvpage1.ht —

\begin{page}{HTXAdvPage1}{Input areas}
\centerline{\fbox{\tt \thispage}}\newline
\begin{scroll}
You have probably seen input areas in other Hyperdoc
pages. They provide \it{dynamic link} capabilities. Instead of having a choice between certain actions, they allow you to specify an action on-the-fly. To use them, you need the following commands:
\beginImportant
\newline
{\tt \inputstring\{{\it label}\}\{{\it length}\}\{{\it default value}\}}
\newline
{\tt \stringvalue\{{\it label}\}}
\endImportant

The first command puts up an input area of the \it{length} specified. The \it{default value} is placed in it. The first argument, \it{label} gives a name to the contents of the input area. You can refer to those contents by using the second command. Never place a \tt{\stringvalue} command in an "exposed" part of the page. It is only meant to be used as an argument to an \it{action}. Here are some examples.

\beginImportant
\begin{paste}{HTXAdvPage1xPaste1}{HTXAdvPage1xPatch1}
\pastebutton{HTXAdvPage1xPaste1}{Interpret}
\newline
{\tt \inputstring\{{pagetogo}\}\{30\}\{RootPage\}}\newline
{\tt \newline}\newline
{\tt \downlink\{GO!\}\{\tt \stringvalue\{{pagetogo}\}\}}\newline
\end{paste}
\endImportant
21.1. *HTXADVPAGE1.HT*

```latex
\begin{Important}
\begin{paste}{HTXAdvPage1xPaste2}{HTXAdvPage1xPatch2}
\pastebutton{HTXAdvPage1xPaste2}{Interpret}
newline
\{\tt File to edit \tab\{16\}}\newline
\{\tt \{inputstring\{filetoedit\}\{30\}\{/etc/passwd\}}\newline
\{\tt \{newline\}\newline
\{\tt \{unixcommand\{Ready!\}\{xterm -e vi \stringvalue\{filetoedit\}}\}
\end{paste}
\end{Important}
```

```latex
\end{scroll}
\begin{menu}
\menulink{Next Page --- Radio boxes}{HTXAdvPage2}
\end{menu}
\end{page}
```

HTXAdvPage1xPatch1 patch

--- *htxadpage1.ht* ---

```latex
\begin{patch}{HTXAdvPage1xPatch1}
\begin{paste}{HTXAdvPage1xPatch1A}{HTXAdvPage1xPatch1A}
\pastebutton{HTXAdvPage1xPatch1A}{Source}
newline
Page name \tab\{16\}
\inputstring{pagetogo}\{30\}\{RootPage\}
newline
\downlink{GO!}\{\stringvalue\{pagetogo\}}
\end{paste}
\end{patch}
```

HTXAdvPage1xPatch1A patch

--- *htxadpage1.ht* ---

```latex
\begin{patch}{HTXAdvPage1xPatch1A}
```

\begin{paste}{HTXAdvPage1xPaste1B}{HTXAdvPage1xPatch1}\n\pastebutton{HTXAdvPage1xPaste1B}{Interpret}\n\newline
\tt \tt Page name \tt \tab{16}\n\tt \inputstring{pagetogo}{30}{\{RootPage\}}\newline
\tt \newline\newline
\tt \\downlink{GO!}{\stringvalue{pagetogo}}\newline
\end{paste}\nend{patch}

HTXAdvPage1xPatch2 patch

\begin{patch}{HTXAdvPage1xPatch2}\n\begin{paste}{HTXAdvPage1xPatch2A}{HTXAdvPage1xPatch2}\n\pastebutton{HTXAdvPage1xPatch2A}{Source}\n\newline
File to edit \tt \tab{16}\n\inputstring{filetoedit}{30}{/etc/passwd}\newline
\newline
\unixcommand{Ready!}{xterm -e vi \stringvalue{filetoedit}}\n\end{paste}\nend{patch}

HTXAdvPage1xPatch2A patch

\begin{patch}{HTXAdvPage1xPatch2A}\n\begin{paste}{HTXAdvPage1xPatch2B}{HTXAdvPage1xPatch2}\n\pastebutton{HTXAdvPage1xPatch2B}{Interpret}\n\newline
\tt File to edit \tt \tab{16}\n\tt \inputstring{filetoedit}{30}{/etc/passwd}\newline
\tt \newline\newline
\tt \unixcommand{Ready!}{xterm -e vi \stringvalue{filetoedit}}\n\end{paste}\nend{patch}
Radio buttons

To make a multiple-choice type selection, why not use the \textit{radio buttons}. You need to use bitmaps for the active areas (the buttons) but Hyperdoc will keep track of the currently activated button. You can use this boolean information somewhere else on your page.

The commands to use are:

\beginImportant
\begin{verbatim}
\begin{tabular}{l}
\texttt{\radioboxes}\{\textit{group name}\}\{\textit{bitmap file1}\}\\
\{\textit{bitmap file0}\} \\
\end{tabular}
\end{verbatim}
\begin{verbatim}
\texttt{\radiobox}\{\textit{initial state}\}\{\textit{label}\}\\
\{\textit{group name}\} \\
\texttt{\boxvalue}\{\textit{label}\} \\
\end{verbatim}
\endImportant

The \texttt{\radioboxes} command sets up a group of \texttt{\radiobox} buttons. The \textit{group name} is a label for the group. The filenames for the bitmaps are specified in \textit{bitmap file1} and \textit{bitmap file0}. The first one should denote an activated button and the second a de-activated one.

To display each button in a group, use \texttt{\radiobox}. The \textit{initial state} should be either \texttt{1} or \texttt{0} depending on whether the button should first be displayed as activated or not. The second \textit{label} argument defines the name by which the current state of the button can be referred to. The third argument specifies which group this button belongs to.

The \texttt{\boxvalue} command can then be used in various
actions. The value of it will be either \tt \texttt{t} or \tt \texttt{nil}.

In the example below, we use the \tt \texttt{\htbmfile} macro defined in \tt \texttt{\bf{util.ht}} so that we do not have to write the full bitmap file pathnames.

This is how we set up the group. The \tt \texttt{\radioboxes} command does not display anything.

Note that these commands cannot be included in a \tt \texttt{\it patch}.

This is why we display this time the source and the result at the same time.

\beginImportant
\tt \texttt{\radioboxes\{group\}\{\htbmfile\{pick\}\}\{\htbmfile\{unpick\}\}}
\tt \texttt{\table{\radiobox[1]{b1}{group}\radiobox[0]{b2}{group}\radiobox[0]{b3}{group}}}
\tt \texttt{\lispcommand{lisp}{(pprint (list \boxvalue{b1} \boxvalue{b2} \boxvalue{b3}))}}
\tt \texttt{\unixcommand{unix}{echo '\boxvalue{b1} \boxvalue{b2} \boxvalue{b3}'}}
\endImportant

You can only set one radio button at a time. If you want a non-exclusive selection, try \tt \texttt{\inputbox}.

The syntax for this command is

\beginImportant
\tt \texttt{\inputbox[\texttt{initial state}]{\{\texttt{label}\}\{\texttt{bitmap file1}\}\{\texttt{bitmap file0}\}}}
\endImportant
There is no group command for these.

\begin{important}
\newpage
\begin{table}
\begin{tabular}{|c|}
\hline
(\inputbox[1]{c1}{\htbmf{pick}}{\htbmf{unpick}}) \\
(\inputbox{c2}{\htbmf{pick}}{\htbmf{unpick}}) \\
(\inputbox[1]{c3}{\htbmf{pick}}{\htbmf{unpick}}) \\
\hline
\end{tabular}
\end{table}
\end{important}

\begin{lispcommand}
(lisp)
\begin{list}{(pprint (list)}
\item (boxvalue{c1})
\item (boxvalue{c2})
\item (boxvalue{c3})
\end{list}
\end{lispcommand}

\begin{unixcommand}
(\begin{verbatim}
\lisp\begin{lisp}
\boxvalue{c1} \boxvalue{c2} \boxvalue{c3}
(\end{lisp})
\end{verbatim}
\end{unixcommand}

Note that the \begin{ital}
\it initial state\end{ital} is an
onoptional argument. If omitted
the button will initially
be deactivated.

\end{scroll}
\begin{menu}
\menulink{Next Page --- Macros}{HTXAdvPage3}
\end{menu}

\end{page}
21.3 htxadvpage3.ht

Macros

⇒ “notitle” (HTXAdvPage4) 21.4 on page 2619
— htxadvpage3.ht —

\begin{page}{HTXAdvPage3}{Macros}
\centerline{\fbox{{\tt \thispage}}}\newline
\begin{scroll}
Sometimes you may find yourself having to write almost the same piece of Hyperdoc text many times. Thankfully, there is a command to ease the work. It is the \tt \newcommand\{ command and provides a macro facility for Hyperdoc. In this way, you can give a short name to a sequence of Hyperdoc text and use that name to include the sequence in your pages. The way this works is the following
\beginImportant
\newline
\centerline{\tt \newcommand\{\\{it name\}\}\[\{it number of arguments\}\}\{\{it Hyperdoc text\}\}}
\endImportant
and here is an example from \bf util.ht
\beginImportant
\newline
{\tt \newcommand\{\axiomSig\}\[2\]\{\axiomType\{\#1\}\ \tt ->\ \axiomType\{\#2\}\}}
\newline
{\tt \newcommand\{\axiomType\}\[1\]\{\lispdownlink\{\#1\}\{(|spadType| '|\#1|)\}\}}
\endImportant
You see that a macro's definition can invoke another. Don’t create a circular definition though! Notice how the arguments of the macro are used in the definition. The {\tt \#{\it n}} construct is the place--holder of the \{\it n\}'th argument.

To use the macro, just treat it as an ordinary command. For instance
\beginImportant
\newline
{\tt \axiomSig\{Integer\}\{List Integer\}}
\endImportant displays and acts like this
\beginImportant
newline
axiomSig\{Integer\}\{List Integer\}
\endImportant

The best way to familiarise yourself to macros is to study the macros defined in
\centerline{\{\bf util.ht\}}
It is highly probable that a good many of them will prove useful to you. Clever use of macros will allow you to create Hyperdoc text that can be formatted by other programs (such as TeX). The Axiom User Guide was written in such a way as to make translation in Hyperdoc form and TeX form a mechanical process.

\end{scroll}
\beginmenu
\begin{scroll}
A powerful Hyperdoc feature is the ability to \texttt{\{it replace\}} part of a displayed page with another part when an active area is clicked. The group commands \texttt{\{it patch\}} and \texttt{\{it paste\}} offer this facility. A \texttt{\{it paste\}} region can appear anywhere
within a page or a \{it patch\}. A \{it patch\} region must be defined outside a page definition.

We need a few objects to define the \{it paste\} region. These are a \{it name\} with which to refer to it, some way of specifying what it is to be replaced by and a \{it trigger\} for the replacement. A \{it patch\} is how we specify the second of these objects.

The \{it patch\} is generally a sequence of Hyperdoc text.

If we want to have the option of returning to the original (or, indeed, proceeding to a \{it third\} alternative) we clearly must include a \{it paste\} in the \{it patch\}.

Let us start with a simple example. We wish to have the word \tt initial{} somewhere on the page replaced by the word \tt final{} at a click of a button.

Let us first define the \{it patch\}. It will just contain the word \tt final\}. Here is a definition of a patch called \tt patch1\} (note that the actual definition must be outside this page's definition).

\beginImportant
\begin\{patch\}\{patch1\} \tt final\end\{patch\}\endImportant

We now define a \{it paste\} region exactly where we want the word \tt initial\} to appear.

\beginImportant
\tt \begin\{paste\}\{paste1\}\{patch1\}\end\{paste\} \tt initial\endImportant

We have specified first the name of the \{it paste\} region which is \tt paste1\} and then the name of the replacement \{it patch\} which is \tt patch1\}.

Something is missing -- the trigger. To include a trigger we write

\beginImportant
\tt \begin{pastebutton}\{paste1\}\{trigger\} \tt results in\end{pastebutton}\endImportant
This new command {} displays the second argument as an active area. The first argument specifies the {} region it refers to. Clicking on {} above will replace the word {} with the word {}.

We can, if we like, include the {} in the {} region.

Let us improve on the situation by providing a way of going back to the original word {} on the page. The {} must itself include a {}.

What will the replacement {} for this new {} be? Well, we have to define a second {} that contains all the stuff in the original {} region. Here is the updated {} for the first replacement.

The {} macro is defined in {}. It displays a button bitmap.

This time we put the {} inside the {}.

Remember that these {} definitions must occur outside a {} group.

What is left now is to define the starting {} region.

and the new {} {}
Clicking on the button above next to \texttt{initial} will replace the \texttt{Paste1} region with \texttt{Patch1}. That \texttt{Patch1} also contains a \texttt{Patch2} region. Clicking on \texttt{Patch2} which has a \texttt{Patch3} region. Clicking on \texttt{Patch3} again will put up \texttt{Patch1} again. In that way, we close the chain of replacements.
Axiom paste-ins

⇒ “notitle” (HTXAdvPage6) 21.6 on page 2626

The \{\it paste\} and \{\it patch\} facility (see \downlink{previous page}{HTXAdvPage4}) is used to display (or hide) the Axiom output of an Axiom command (\{\tt \axiomcommand\}) included in a Hyperdoc page.

A mechanism has been set up to \{\it automatically\} generate these paste-ins. It amounts to replacing an \{\tt \axiomcommand\} by a \{\tt \pastecommand\} in the
In the case of an \aop{draw} Axiom command, where the result is to create an interactive viewport, the appropriate command to use is \pg\pastegraph\pg. The effect of this is to include (as the output) the Axiom generated \it image of the graph as an active area. Clicking on it will put up an interactive viewport. The \pg\pastegraph\pg command should be used only when the result of the associated Axiom operation is to \it create an interactive viewport. It is \it not necessarily appropriate for all commands whose result is a \axiomType{TwoDimensional{}Viewport} or \axiomType{ThreeDimensional{}Viewport}. The \pg\pastecommand\pg and \pg\pastegraph\pg are macros defined in \bfutil.ht.

There is no automatic paste-in generation facility for Axiom piles (the \pg\begin\axiomsrc\pg command).

The automatic paste-in generation mechanism works by invoking Axiom with a particular option. Hyperdoc is also started automatically. It reads the \pg\pastecommand\pg and \pg\pastegraph\pg commands in all pages in a specified \bf somefile.ht and passes them to Axiom for evaluation. Hyperdoc captures the output and writes it out (to a file called \bf somefile.pht) as the body of some \it patch definitions. The commands encountered are written to a file \bf somefile.input which you can \pg)read\pg from an Axiom session. It also creates directories for the graphics images encountered. Those files and directories will be written under the \it current directory. The idea is that you then include the \it patch definitions in \bf somefile.pht in your local database using \bf h tand. You can try this feature now. Edit a file called, say, \bf trypaste.ht in a directory, say \bf /tmp. Put the following Hyperdoc text in it.

\beginImportant\nlwline
\pg\begin\page\pg\TryPaste\pg\Trying out paste-in generation\pg\nlwline
\pg\begin\scroll\pg\nlwline
\pg\pastecommand\pg\f z == z**2 \bound\pg\f\pg\pg\nlwline
\pg\pastegraph\pg\draw(f,-1..1) \free\pg\f\pg\pg\nlwline
\pg\pastecommand\pg\x := f 3 \free\pg\f\pg\pg\nlwline
\pg\end\scroll\pg\nlwline
\endImportant
From the directory that contains the `trypaste.ht`, issue
\beginverbatim
\tt htadd -l ./trypaste.ht
\endverbatim
You will get the `ht.db` database file.

Set the environment variable `HTPATH` so that it points first to your directory and then the system directory.

In the `/bin/csh`, you might use
\beginverbatim
\tt setenv HTPATH /tmp:\$AXIOM/doc
\endverbatim

Make sure that no `trypaste.input` or `trypaste.pht` files exist in the directory.

Then issue
\beginverbatim
\tt axiom -paste trypaste.ht
\endverbatim
and wait for Axiom to finish.

There is a modification you will wish to make to the `trypaste.pht` file. This is because the generated Hyperdoc text will assume that the `viewport` data will be located in the `system` directory.

You may want to place your images in a different directory, say, `/u/sugar/viewports`. If so, then change all occurrences of
\beginverbatim
\tt /env\{AXIOM\}/doc/viewports/
\endverbatim
by
\beginverbatim
\tt /u/sugar/viewports/
\endverbatim
in the file `trypaste.pht`. The last step is to include the `patch` definitions in `trypaste.pht` to your local database.

Issue
\beginverbatim
\tt htadd -l ./trypaste.pht
\endverbatim
to update the database. If you have provided a link to your pages from the `RootPage` via the `localinfo` macro, you should now
be able to start Axiom or Hyperdoc
and see the computed Axiom output whenever you
click on the buttons to the left of each command.

We present here a few commands that may be of some use
to you. You may want to know certain parameters so that you can pass
them to one of the action \tt \command}s.

The \tt \thispage command shows the name of the
current page.
The `\texttt{\windowid}` command shows the X Windows \textit{WindowID} of the current window.

\begin{verbatim}
\begin{paste}{HTXAdvPage6xPaste2}{HTXAdvPage6xPatch2}
pastebutton{HTXAdvPage6xPaste2}{Interpret}
\newline
{\tt \windowid}\newline
{\tt \newline}\newline
{\tt \lispcommand\{Lisp\}\{(pprint \windowid)\}}\newline
\end{paste}
\end{verbatim}

% \examplenumber not documented

The `\texttt{\env}` command gets the value of an environment variable. It is an error to use `\texttt{\env}` with an undefined environment variable.

\begin{verbatim}
\begin{paste}{HTXAdvPage6xPaste3}{HTXAdvPage6xPatch3}
pastebutton{HTXAdvPage6xPaste3}{Interpret}
\newline
{\tt \env\{AXIOM\}}\newline
\end{paste}
\end{verbatim}

% \beep not documented

The `\texttt{\nolines}` command, if included somewhere in the page, eliminates the horizontal lines that delimit the header and footer regions.
HTXAdvPage6xPatch1 patch

--- htxadvpage6.ht ---

\begin{patch}{HTXAdvPage6xPatch1}
\begin{paste}{HTXAdvPage6xPaste1A}{HTXAdvPage6xPatch1A}
\pastebutton{HTXAdvPage6xPaste1A}{Source}
\newline
\thispage
\newline
\lispcommand{Lisp}{(pprint "\thispage")}
\end{paste}
\end{patch}

HTXAdvPage6xPatch1A patch

--- htxadvpage6.ht ---

\begin{patch}{HTXAdvPage6xPatch1A}
\begin{paste}{HTXAdvPage6xPaste1B}{HTXAdvPage6xPatch1}
\pastebutton{HTXAdvPage6xPaste1B}{Interpret}
\newline
{\tt \thispage}\newline
{\tt \newline}\newline
{\tt \lispcommand{Lisp}{(pprint "\thispage")}}\newline
\end{paste}
\end{patch}

HTXAdvPage6xPatch2 patch

--- htxadvpage6.ht ---

\begin{patch}{HTXAdvPage6xPatch2}
\begin{paste}{HTXAdvPage6xPaste2A}{HTXAdvPage6xPatch2A}
\pastebutton{HTXAdvPage6xPaste2A}{Source}
\newline
\windowid
\newline
\lispcommand{Lisp}{{(pprint \windowid)}}
\end{paste}
\end{patch}

HTXAdvPage6xPatch2A patch

— htxadvpage6.ht —

\begin{patch}{HTXAdvPage6xPatch2A}
\begin{paste}{HTXAdvPage6xPaste2B}{HTXAdvPage6xPatch2}
\pastebutton{HTXAdvPage6xPaste2B}{Interpret}
\newline
{\tt \windowid}\newline
{\tt \newline}\newline
{\tt \lispcommand{Lisp}\{(pprint \windowid)\}}\newline
\end{paste}
\end{patch}

HTXAdvPage6xPatch3 patch

— htxadvpage6.ht —

\begin{patch}{HTXAdvPage6xPatch3}
\begin{paste}{HTXAdvPage6xPaste3A}{HTXAdvPage6xPatch3A}
\pastebutton{HTXAdvPage6xPaste3A}{Source}
\newline
\env{AXIOM}
\end{paste}
\end{patch}

HTXAdvPage6xPatch3A patch

— htxadvpage6.ht —
21.7 htxadvtoppage.ht

Advanced features in Hyperdoc

⇒ “notitle” (HTXAdvPage1) 21.1 on page 2612
⇒ “notitle” (HTXAdvPage2) 21.2 on page 2615
⇒ “notitle” (HTXAdvPage3) 21.3 on page 2618
⇒ “notitle” (HTXAdvPage4) 21.4 on page 2619
⇒ “notitle” (HTXAdvPage5) 21.5 on page 2623
⇒ “notitle” (HTXAdvPage6) 21.6 on page 2626

— htxadvtoppage.ht —

\begin{page}{HTXAdvTopPage}{Advanced features in Hyperdoc}
\centerline{\fbox{\tt \thispage}}\newline
\beginscroll
\begin{menu}
\menudownlink{Creating input areas}{HTXAdvPage1}
\menudownlink{Creating radio boxes}{HTXAdvPage2}
\menudownlink{Define new macros }{HTXAdvPage3}
\menudownlink{Using patch and paste}{HTXAdvPage4}
\menudownlink{Generate paste-ins for Axiom commands}{HTXAdvPage5}
\menudownlink{Miscellaneous}{HTXAdvPage6}
\end{menu}
\endscroll
\end{page}
21.8 htxformatpage1.ht

Using the special characters

⇒ “notitle” (HTXFormatPage2) 21.9 on page 2633
— htxformatpage1.ht —

\begin{page}{HTXFormatPage1}{Using the special characters}
\begin{scroll}
You can display the special characters (\tt \$ \\% \#) by simply inserting the backslash (\tt \}) character just before any one of them. So,
\begin{Important}
\begin{paste}{HTXFormatPage1xPaste1}{HTXFormatPage1xPatch1}
\pastebutton{HTXFormatPage1xPaste1}{Interpret}
\begin{quote}
{\tt the characters \\$, \\%, \#}
\end{quote}
\end{paste}
\end{Important}
The \tt \% character is used in Hyperdoc as a comment marker. If it is encountered on any line (without being preceded by the \tt \} character, of course), Hyperdoc will ignore all remaining characters on that line.
\begin{Important}
\begin{paste}{HTXFormatPage1xPaste2}{HTXFormatPage1xPatch2}
\pastebutton{HTXFormatPage1xPaste2}{Interpret}
\begin{quote}
{\tt the latest figures indicate \% GET THE LATEST FIGURES}
{\tt a steady rise}
\end{quote}
\end{paste}
\end{Important}
Earlier versions of Hyperdoc merged the words "indicate" and "a" into one word in the example above. This no longer occurs.
\end{scroll}
\begin{menu}
\menulink{Next -- Formatting without commands}{HTXFormatPage2}
\end{menu}
\end{page}
HTXFormatPage1xPatch1 patch

— htxformatpage1.ht —

\begin{patch}{HTXFormatPage1xPatch1}
\begin{paste}{HTXFormatPage1xPaste1A}{HTXFormatPage1xPatch1A}
pastebutton{HTXFormatPage1xPaste1A}{Source}
\newline
the characters \$, \, \{, \}, \[, \], \%, \#
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage1xPatch1A}
\begin{paste}{HTXFormatPage1xPaste1B}{HTXFormatPage1xPatch1}
pastebutton{HTXFormatPage1xPatch1}{Interpret}
\newline
{\tt the characters \$\$, \, \{-, \}, \[\]}
\end{paste}
\end{patch}

HTXFormatPage1xPatch2 patch

— htxformatpage1.ht —

\begin{patch}{HTXFormatPage1xPatch2}
\begin{paste}{HTXFormatPage1xPaste2A}{HTXFormatPage1xPatch2A}
pastebutton{HTXFormatPage1xPatch2A}{Source}
\newline
the latest figures indicate % GET THE LATEST FIGURES
a steady rise
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage1xPatch2A}
\begin{paste}{HTXFormatPage1xPaste2B}{HTXFormatPage1xPatch2}
pastebutton{HTXFormatPage1xPatch2}{Interpret}
\newline
{\tt the latest figures indicate % GET THE LATEST FIGURES} \newline
{\tt a steady rise}\indent(0)
\end{paste}
\end{patch}
21.9 \ htxformatpage2.ht

Formatting without commands

--- htxformatpage2.ht ---

\begin{page}{HTXFormatPage2}{Formatting without commands}
\centerline{\fbox{{\tt \thispage}}}
\begin{scroll}
Hyperdoc will interpret normal text in a \em source file\ according to the following rules. \newline
\menuitemstyle{indentrel{4}}
Spaces mark the ends of words. The number of spaces between words is \em not\ significant, that is, you cannot control word spacing by inserting or removing extra space characters. \newline
\indentrel{-4}
\beginImportant
\begin{paste}{HTXFormatPage2xxPaste1}{HTXFormatPage2xPatch1}
\pastebutton{HTXFormatPage2xxPaste1}{Interpret}
\beginverbatim
word spacing is not important
\end{verbatim}
\end{paste}
\endImportant
\menuitemstyle{indentrel{4}}
End-of-line characters are not significant. You can break up lines in the source file as you like. The end-of-line will be interpreted as a space. Take advantage of this feature to improve the readability of the source file. \newline
\indentrel{-4}
\beginImportant
\begin{paste}{HTXFormatPage2xxPaste2}{HTXFormatPage2xPatch2}
\pastebutton{HTXFormatPage2xxPaste2}{Interpret}
\beginverbatim
This is one sentence.
\end{verbatim}
\end{paste}
\endImportant
\menuitemstyle{indentrel{4}}
A blank line marks the end of a paragraph. Leaving more blank lines that necessary has no effect. \newline
\indentrel{-4}
\beginImportant
\begin{paste}{HTXFormatPage2xxPaste3}{HTXFormatPage2xPatch3}
\pastebutton{HTXFormatPage2xxPaste3}{Interpret}
\end{paste}
\endImportant
some end. % A COMMENT

Start a paragraph

Start another paragraph.

The two-character combination \tt \{\} can be used to indicate possible breaking of long words. It does not affect the formatting in any other way.

Generalized\{\}Multivariate\{\}Factorize
One\{\}Dimensional\{\}Array\{\}Aggregate
Elementary\{\}Function\{\}Definite\{\}Integration
Elementary\{\}Functions\{\}Univariate\{\}Puiseux\{\}Series
Finite\{\}Field\{\}Cyclic\{\}Group\{\}Extension\{\}ByPolynomial

HTXFormatPage2xPatch1 patch

— htxformatpage2.HT —
word spacing is not important

HTXFormatPage2xPatch2 patch

— htxformatpage2.ht —

This is one sentence.

HTXFormatPage2xPatch2A patch

— htxformatpage2.ht —

This is one sentence.
\end{verbatim}
\end{paste}
\end{patch}

HTXFormatPage2xPatch3 patch

— htxformatpage2.ht —

\begin{patch}{HTXFormatPage2xPatch3}
\begin{paste}{HTXFormatPage2xxPaste3A}{HTXFormatPage2xPatch3A}
\pastebutton{HTXFormatPage2xxPaste3A}{Source}
\newline
some end.% A COMMENT
\end{paste}
\end{patch}

Start a paragraph.

Start another paragraph.
\end{paste}
\end{patch}

HTXFormatPage2xPatch3A patch

— htxformatpage2.ht —

\begin{patch}{HTXFormatPage2xPatch3A}
\begin{paste}{HTXFormatPage2xxPaste3B}{HTXFormatPage2xPatch3}
\pastebutton{HTXFormatPage2xxPaste3B}{Interpret}
\begin{verbatim}
some end.% A COMMENT
\end{verbatim}
\end{paste}
\end{patch}

Start a paragraph

Start another paragraph.
\end{verbatim}
\end{paste}
\end{patch}
HTXFormatPage2xPatch4 patch

\begin{patch}{HTXFormatPage2xPatch4}
\begin{paste}{HTXFormatPage2xxPaste4A}{HTXFormatPage2xPatch4A}
\pastebutton{HTXFormatPage2xxPaste4A}{Source}
\newline
Generalized Multivariate Factorize
One Dimensional Array Aggregate
Elementary Function Definite Integration
Elementary Functions Univariate Puiseux Series
Finite Field Cyclic Group Extension By Polynomial
\end{paste}
\end{patch}

HTXFormatPage2xPatch4A patch

\begin{patch}{HTXFormatPage2xPatch4A}
\begin{paste}{HTXFormatPage2xxPaste4B}{HTXFormatPage2xPatch4}
\pastebutton{HTXFormatPage2xxPaste4B}{Interpret}
\begin{verbatim}
Generalized Multivariate Factorize
One Dimensional Array Aggregate
Elementary Function Definite Integration
Elementary Functions Univariate Puiseux Series
Finite Field Cyclic Group Extension By Polynomial
\end{verbatim}
\end{paste}
\end{patch}

21.10 htxformatpage3.ht

Using different fonts

\begin{patch}{HTXFormatPage2xPatch4}
\begin{paste}{HTXFormatPage2xxPaste4A}{HTXFormatPage2xPatch4A}
\pastebutton{HTXFormatPage2xxPaste4A}{Source}
\newline
Generalized Multivariate Factorize
One Dimensional Array Aggregate
Elementary Function Definite Integration
Elementary Functions Univariate Puiseux Series
Finite Field Cyclic Group Extension By Polynomial
\end{paste}
\end{patch}
You can use various fonts for the text. Hyperdoc makes four \em logical fonts available to you: a \em roman font, an \em emphasised font, a \em bold font and a \em typewriter font. The actual font that corresponds to each logical font is determined by the end user via a defaults file. The colour for each of these fonts can also be specified.

Normal text is displayed with the roman font. If you want to emphasize some text, use the \tt \em command in the following way.

\beginImportant
\begin{paste}{HTXFormatPage3xPaste1}{HTXFormatPage3xPatch1}
\pastebutton{HTXFormatPage3xPaste1}{Interpret}
\newline
\tt this is \{\em emphasised\} text
\end{paste}
\endImportant

Note the use of the braces to enclose command and "arguments". All font commands are specified in the same way. The \tt \em command will in fact \em switch between roman and emphasised font every time it is used.

\beginImportant
\begin{paste}{HTXFormatPage3xPaste2}{HTXFormatPage3xPatch2}
\pastebutton{HTXFormatPage3xPaste2}{Interpret}
\newline
\tt this is \{\em emphasised\} text\}
\end{paste}
\endImportant

If you want to be sure that the emphasized font will be used, specify the \tt \it command. Similarly, you can explicitly select the roman font with the \tt \rm command.

\beginImportant
\begin{paste}{HTXFormatPage3xPaste3}{HTXFormatPage3xPatch3}
\pastebutton{HTXFormatPage3xPaste3}{Interpret}
\newline
\tt this is \{\it emphasised\} text and this is \{\rm roman\}
\end{paste}
\endImportant

The bold font is selected with the \tt \bf command and the typewriter font with the \tt \tt command. All these commands can be applied to individual characters, words, sentences etc.
Currently, Hyperdoc does not adjust its internal spacing rules to each font individually. This means that, for consistent results, users are encouraged to specify (in the defaults file) "character-cell" fonts that are not too small or too large for Hyperdoc. Here is the correspondence between the above font commands and the defaults names:

- \texttt{\textbf{\textit{\texttt{U\texttt{g\texttt{y\texttt{l\texttt{y}}}))))}

Hyperdoc uses two more logical fonts that can be specified by the end user: AxiomFont and ActiveFont. However, you cannot explicitly use these fonts in your text. The ActiveFont is automatically used for active area text and the AxiomFont is reserved for active Axiom commands.

HTXFormatPage3xPatch1 patch

--- htxformatpage3.ht ---

```latex
\begin{patch}{HTXFormatPage3xPatch1}
\begin{paste}{HTXFormatPage3xPaste1A}{HTXFormatPage3xPatch1A}
\pastebutton{HTXFormatPage3xPaste1A}{Source}
\newline
this is \emph{\texttt{ emphasised}} text
\end{paste}
\end{patch}
```
\end{patch}
\end{patch}
\begin{patch}{HTXFormatPage3xPatch1A}
\begin{paste}{HTXFormatPage3xPaste1B}{HTXFormatPage3xPatch1}
\pastebutton{HTXFormatPage3xPaste1B}{Interpret}
\newline
{\tt this is {\em emphasised} text}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage3xPatch2}
\begin{paste}{HTXFormatPage3xPaste2A}{HTXFormatPage3xPatch2A}
\pastebutton{HTXFormatPage3xPaste2A}{Source}
\newline
{\em this is {\em emphasised} text}
\end{paste}
\end{patch}
\begin{patch}{HTXFormatPage3xPatch2A}
\begin{paste}{HTXFormatPage3xPaste2B}{HTXFormatPage3xPatch2}
\pastebutton{HTXFormatPage3xPaste2B}{Interpret}
\newline
{\tt {\em this is {\em emphasised} text}}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage3xPatch3}
\begin{paste}{HTXFormatPage3xPaste3A}{HTXFormatPage3xPatch3A}
\pastebutton{HTXFormatPage3xPaste3A}{Source}
\newline
{\em this is {\em emphasised} text and this is {\rm roman}}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage3xPatch3A}
\begin{paste}{HTXFormatPage3xPaste3B}{HTXFormatPage3xPatch3}
\pastebutton{HTXFormatPage3xPaste3B}{Interpret}
\newline
{\tt {\em this is {\em emphasised} text and this is {\rm roman}}}
\end{paste}
\end{patch}
\begin{patch}{HTXFormatPage3xPatch4}
\begin{paste}{HTXFormatPage3xPaste4A}{HTXFormatPage3xPatch4A}
\pastebutton{HTXFormatPage3xPaste4A}{Source}
\\
{\bf U}{\tt g}{\it l}{\rm y}
\end{paste}
\end{patch}

\begin{scroll}
21.11 htxformatpage4.ht

Indentation

\begin{page}{HTXFormatPage4}{Indentation}
\centerline{\fbox{\tt \thispage}}
\begin{scroll}
\end{scroll}
\end{page}
\end{scroll}
You can control the indentation of lines of text in Hyperdoc with some useful commands.

Use the command {\tt \par} to force a new paragraph if you don’t want to use the blank-line rule. The first line of a new paragraph will normally be indented by a standard small amount. If you just want to start on a new line, use the {\tt \newline} command.

\begin{important}
\begin{paste}{HTXFormatPage4xPaste1}{HTXFormatPage4xPatch1}
\pastebutton{HTXFormatPage4xPaste1}{Interpret}
\newline
{\tt let us start a new line \newline here }
\end{paste}
\end{important}

The command {\tt \indent\{{it value}\}} will set the left-page-margin {it value} characters to the right of the standard left-page-margin. The initial (standard) state of a page can be reset by the {\tt \indent\{0\}} command. The first lines of paragraphs will be indented by the {it extra} standard amount. The {\tt \indent\{{it value}\}} command does {\em not} force a new line or paragraph.

You can also use the {\tt \indentrel\{{it value}\}} command. Here, the {it value} argument is a {\em relative} indentation which can be positive or negative. Otherwise, it behaves in the same way as the {\tt \indent} command.

\begin{important}
\begin{paste}{HTXFormatPage4xPaste2}{HTXFormatPage4xPatch2}
\pastebutton{HTXFormatPage4xPaste2}{Interpret}
\newline
{\tt let us start a new line \newline \indent\{10\} here }
{\tt \newline \indentrel\{-5\} there}\newline
{\tt \newline \indentrel\{-5\} back}
\end{paste}
\end{important}

The {\tt \centerline\{{it some text}\}} command will center its argument between the current left and right margins. The argument of the command should not be more than a paragraph of text and should not contain any commands that change the left margin. The centered text will start on a new line.

\begin{important}
\begin{paste}{HTXFormatPage4xPaste3}{HTXFormatPage4xPatch3}
\pastebutton{HTXFormatPage4xPaste3}{Interpret}
\newline
{\tt previous text. \centerline\{This could\}\newline
{\tt be some heading.\} Carry on}
Placing text in vertically aligned columns is easily done with the \tt \tab\{\it value\} command. The \tt \tab command has the immediate effect of placing the next word \tt \it value characters to the right of the current left margin.

If you wish to preserve the indentation of a piece of text you can use the \tt \begin{verbatim} and \tt \end{verbatim} around the text. Note that Hyperdoc commands will not be interpreted within the \tt \begin{verbatim} group.

\begin{verbatim}
This spacing will be preserved
\end{verbatim}
\end{page}

HTXFormatPage4xPatch1 patch

--- htxformatpage4.ht ---

\begin{patch}{HTXFormatPage4xPatch1}
\begin{paste}{HTXFormatPage4xPaste1A}{HTXFormatPage4xPatch1A}
\pastebutton{HTXFormatPage4xPaste1A}{Source}
\newline
let us start a new line \newline here
\end{paste}
\end{patch}

HTXFormatPage4xPatch1A patch

--- htxformatpage4.ht ---

\begin{patch}{HTXFormatPage4xPatch1A}
\begin{paste}{HTXFormatPage4xPaste1B}{HTXFormatPage4xPatch1}
\pastebutton{HTXFormatPage4xPaste1B}{Interpret}
\newline
{\tt let us start a new line \newline here}
\end{paste}
\end{patch}

HTXFormatPage4xPatch2 patch

--- htxformatpage4.ht ---

\begin{patch}{HTXFormatPage4xPatch2}
\begin{paste}{HTXFormatPage4xPaste2A}{HTXFormatPage4xPatch2A}
\pastebutton{HTXFormatPage4xPaste2A}{Source}
\newline
let us start a new line\newline\indent{10} here
\newline\indentrel{-5} there
\newline\indentrel{-5} back
\end{paste}
\end{patch}

HTXFormatPage4xPatch2A patch

— htxformatpage4.ht —

\begin{patch}{HTXFormatPage4xPatch2A}
\begin{paste}{HTXFormatPage4xPaste2B}{HTXFormatPage4xPatch2}
\pastebutton{HTXFormatPage4xPaste2B}{Interpret}
\newline
{"tt let us start a new line \newline \indent{10} here }\newline
{"tt \newline \indentrel{-5} there}\newline
{"tt \newline \indentrel{-5} back}\newline
\end{paste}
\end{patch}

HTXFormatPage4xPatch3 patch

— htxformatpage4.ht —

\begin{patch}{HTXFormatPage4xPatch3}
\begin{paste}{HTXFormatPage4xPaste3A}{HTXFormatPage4xPatch3A}
\pastebutton{HTXFormatPage4xPaste3A}{Source}
\newline
previous text. \centerline{This could be some heading.} Carry on
\end{paste}
\end{patch}
HTXFormatPage4xPatch3A patch

\begin{patch}{HTXFormatPage4xPatch3A}
\begin{paste}{HTXFormatPage4xPaste3B}{HTXFormatPage4xPatch3A}
\pastebutton{HTXFormatPage4xPaste3B}{Interpret}
\begin{text}
\tt previous text. \centerline\{This could\} newline
\tt be some heading.\} Carry on
\end{text}
\end{paste}
\end{patch}

HTXFormatPage4xPatch4 patch

\begin{patch}{HTXFormatPage4xPatch4}
\begin{paste}{HTXFormatPage4xPaste4A}{HTXFormatPage4xPatch4A}
\pastebutton{HTXFormatPage4xPaste4A}{Source}
\indent\{5\}
Team A \tab{17}Score\tab{25}Team B\tab{42}Score\newline
012345678901234567890123456789012345678901234567890\newline
Green-Red\tab{17}4\tab{25}Blue-Black\tab{42}6\newline
\indent\{0\}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage4xPatch4A}
\begin{paste}{HTXFormatPage4xPaste4B}{HTXFormatPage4xPatch4}
\pastebutton{HTXFormatPage4xPaste4B}{Interpret}
\indent\{5\}\newline
Team A \tab{17}Score\tab{25}Team B\tab{42}Score\newline
012345678901234567890123456789012345678901234567890\newline
Green-Red\tab{17}4\tab{25}Blue-Black\tab{42}6\newline
\indent\{0\}
\end{patch}
HTXFormatPage4xPatch5 patch

\begin{patch}{HTXFormatPage4xPatch5}
\begin{paste}{HTXFormatPage4xPaste5A}{HTXFormatPage4xPatch5A}
\pastebutton{HTXFormatPage4xPaste5A}{Source}
\begin{verbatim}
This spacing will be preserved
\{\bf is\} preserved
\end{verbatim}
\end{paste}
\end{patch}

HTXFormatPage4xPatch5A patch

\begin{patch}{HTXFormatPage4xPatch5A}
\begin{paste}{HTXFormatPage4xPaste5B}{HTXFormatPage4xPatch5}
\pastebutton{HTXFormatPage4xPaste5B}{Interpret}
\newline
\{\tt \begin{verbatim}\}
\begin{verbatim}
This spacing will be preserved
\{\bf is\} preserved
\end{verbatim}
\end{verbatim}\}
\newline
\end{paste}
\end{patch}
21.12 htxformatpage5.ht

Creating Lists and Tables

⇒ “notitle” (HTXFormatPage6) 21.13 on page 2653
— htxformatpage5.ht —

\begin{page}{HTXFormatPage5}{Creating Lists and Tables}
\centerline{\fbox{{\tt \thispage}}}
\begin{scroll}
The {\tt \begin\{items\} \item \end\{items\}}
group command constructs itemized lists. The {\tt \item} command separates the items in the list. The indentation rules for the list group are different from those of a paragraph. The first line of an item will normally extend further to the left than the rest of the lines. Both commands accept {\em optional} arguments. Optional arguments are enclosed in square brackets ({\tt \[\]}) rather than braces.

The indentation of subsequent lines in an item is determined by the optional argument {\it some text} in the {\tt \item\[\{\it some text\}\]} command. The optional argument is {\em not} displayed. Its width is calculated and used to indent all subsequent lines in the group except from the first line of each new item. This indentation rule applies to all text {\em before} the first {\tt \item} command as well.

The {\tt \item[\{\it some text\}\]} command specifies the start of a new item. The {\it some text} optional argument will be displayed in \{{\em bold}\} font at the current left-page-margin. Then, the text following the command will be displayed in normal fashion with the above indentation rule.
\begin{important}
\begin{paste}{HTXFormatPage5xPaste1}{HTXFormatPage5xPatch1}
\pastebutton{HTXFormatPage5xPaste1}{Interpret}
\newline
{\tt \indent\{5\}}
{\tt \begin\{items\}\[how wide am I\]}
{\tt Here we carry on but a \newline}
{\tt new line will be indented }
{\tt \item[how wide am I] fits nicely.}
{\tt Here is a \newline new line in an item.}
{\tt \item[again]} to show another item\newline
{\tt \item[\\tab\{0\}] can be used \tab\{15\} effectively}\newline
\newline
\end{important}
\newline

Note that the `\begin{items}` command immediately sets the left-page-margin to a new value. Subsequent `\tab` or `\centerline` commands refer to this new margin. Any explicit margin setting commands included in the group `{em will}` have the normal effect. The `\par` command does not produce the standard paragraph indentation within a list group --- it behaves instead like `{tt \newline}`.

You can nest list groups like the following example suggests.

Another facility for presenting lists is the `\table` command. The correct syntax for it is: `{tt \table\{{\it item a}\} \{{\it item b}\} \{{\it item c}\}}`. The items in the braces will be placed in as many aligned columns as is possible for the current window dimensions or page width. If one item is particularly long there will probably be only one column in the table. Here is a table of color names.
\beginImportant
\begin{paste}{HTXFormatPage5xPaste3}{HTXFormatPage5xPatch3}
\newline
{\tt\begin{table}\{
\{Dark Orchid\} \{Dark Salmon\} \{Dark Sea Green\} \{Dark Slate Blue\}
\{Dark Slate Gray\} \{Dark Turquoise\} \{Dark Violet\} \{Deep Pink\}
\{Deep Sky Blue\} \{Dodger Blue\} \{Floral White\} \{Forest Green\}
\{Ghost White\} \{Hot Pink\} \{Indian Red\} \{Lavender Blush\}\}
\end{table}\}
\end{paste}
\endImportant

\end{scroll}
\beginmenu
\menulink{Next -- Boxes and Lines}{HTXFormatPage6}
\endmenu

\end{page}

HTXFormatPage5xPatch1 patch

— htxformatpage5.ht —

\begin{patch}{HTXFormatPage5xPatch1}
\begin{paste}{HTXFormatPage5xPaste1A}{HTXFormatPage5xPatch1A}
\pastebutton{HTXFormatPage5xPaste1A}{Source}
\newline
\indent{5}
\begin{items}[how wide am I]
Here we carry on but a newline
new line will be indented
\item[how wide am I] fits nicely. Here is a newline new line in an item.
\item[again] to show another item
\item[\tab] \tab{0} can be used \tab{15} effectively
\end{items}
\indent{0}
\end{paste}
\end{patch}

HTXFormatPage5xPatch1A patch

--- htxformatpage5.ht ---

\begin{patch}{HTXFormatPage5xPatch1A}
\begin{paste}{HTXFormatPage5xPaste1B}{HTXFormatPage5xPatch1}
\pastebutton{HTXFormatPage5xPaste1B}{Interpret}
\newline
{\tt \indent\{5\}}
{\tt \begin\{items\}\[how wide am I\]}\newline
{\tt Here we carry on but a \newline \newe
This is the rest of the second item of the outer list. It is no more interesting than any other part of the item.
\item [The third] item of the list.
\end{items}
\end{paste}
\end{patch}

HTXFormatPage5xPatch2A patch

— htxformatpage5.ht —

\begin{patch}{HTXFormatPage5xPatch2A}
\begin{paste}{HTXFormatPage5xPaste2B}{HTXFormatPage5xPatch2}
\pastebutton{HTXFormatPage5xPaste2B}{Interpret}
\newline
\begin{item}[quitealot]\newline
A nested list:
\item [The first\] item of an itemized list is on this line.
\newline
\item [The second\] item of the list starts here. It contains another\newline
\item list nested inside it.\newline
\item [First]\tab{0}This is the first item of an enumerated list that is nested within the itemized list.\newline
\item [Second]\tab{0}This is the second item of the inner list.\newline
\end{item}
\newline
\item This is the rest of the second item of the outer list. It is no more interesting than any other part of the item.\newline
\item [The third\] item of the list.\newline
\end{item}
\newline
\end{paste}
\end{patch}

HTXFormatPage5xPatch3 patch

— htxformatpage5.ht —
21.13. HTXFORMATPAGE6

HTXFormatPage5xPatch3A patch

--- htxformatpage5.ht ---

```latex
\begin{patch}{HTXFormatPage5xPatch3A}
\begin{paste}{HTXFormatPage5xPaste3A}{HTXFormatPage5xPatch3A}
\pastebutton{HTXFormatPage5xPaste3A}{Source}
\newline
\table
{\{Dark Orchid\} \{Dark Salmon\} \{Dark Sea Green\} \{Dark Slate Blue\}
 {Dark Slate Gray\}
 {Dark Turquoise\} \{Dark Violet\} \{Deep Pink\} \{Deep Sky Blue\} \{Dodger Blue\}
 {Floral White\} \{Forest Green\} \{Ghost White\} \{Hot Pink\} \{Indian Red\}
 {Lavender Blush\}
}
\end{paste}
\end{patch}
```

21.13 htxformatpage6

Boxes and Lines

--- htxformatpage6.ht ---
The \tt \fbox command can be used to place a box around one or more words. The argument of the \tt \fbox command is the text that will be placed in the box. This command should only be used for text that can fit in one line.

\beginImportant
\begin{paste}{HTXFormatPage6xPaste1}{HTXFormatPage6xPatch1}
\pastebutton{HTXFormatPage6xPaste1}{Interpret}
\newline
\tt \fbox{Boxed!}
\newline
\end{paste}
\endImportant

Use the \tt \horizontalline command to draw a horizontal line across the window. This might be useful for added emphasis.

\beginImportant
\begin{paste}{HTXFormatPage6xPaste2}{HTXFormatPage6xPatch2}
\pastebutton{HTXFormatPage6xPaste2}{Interpret}
\newline
\tt \horizontalline
\newline
\end{paste}
\endImportant

HTXFormatPage6xPatch1 patch

— htxformatpage6.ht —

\begin{patch}{HTXFormatPage6xPatch1}
\begin{paste}{HTXFormatPage6xPaste1A}{HTXFormatPage6xPatch1A}
\pastebutton{HTXFormatPage6xPaste1A}{Source}
\newline
\fbox{Boxed!}
21.14. \textit{HTXFORMATPAGE7}

\begin{page}{HTXFormatPage7}\{Micro-Spacing\}
\centerline{\fbox{\tt thispage}}
\end{scroll}

\textbf{HTXFormatPage6xPatch2 patch}

--- htxformatpage6.ht ---

\begin{page}{HTXFormatPage6xPatch2}\{Micro-Spacing\}
\centerline{\fbox{\tt thispage}}
\end{scroll}

\textbf{21.14 htxformatpage7}

\textbf{Micro-Spacing}

--- htxformatpage7.ht ---

\begin{page}{HTXFormatPage7}\{Micro-Spacing\}
\centerline{\fbox{\tt thispage}}
\end{scroll}
There are three commands that one can use to exercise finer control over the appearance of text on a page: \tt \space, \tt \hspace and \tt \vspace.

The \tt \space\{{\it value}\}} command accepts an integer argument and simply changes the position of the next character to the right or to the left. A negative argument will move the next character to the left and a positive one to the right. The unit of movement is \tt the width of a character}. In this way one can overstrike characters to produce various effects.

\beginImportant
\begin{paste}{HTXFormatPage7xPaste1}{HTXFormatPage7xPatch1}
\pastebutton{HTXFormatPage7xPaste1}{Interpret}
\newline
{\tt 0\space\{-1\}\}
{\tt underlined\space\{-10\}__________}\newline
\end{paste}
\endImportant

The \tt \hspace\{{\it value}\}} command is similar to the \tt \space\{{\it value}\}} command. It also accepts an integer argument and changes the position of the next character to the right or to the left. A negative argument will move the next character to the left and a positive one to the right. The unit of movement is \tt a pixel}. The \tt \{it value\} argument specifies an offset from the default placement of the character.

\beginImportant
\begin{paste}{HTXFormatPage7xPaste2}{HTXFormatPage7xPatch2}
\pastebutton{HTXFormatPage7xPaste2}{Interpret}
\newline
{\tt x\hspace\{-4\}x\hspace\{-3\}x\hspace\{-2\}x\hspace\{-1\}x\%}\newline
{\tt x\hspace\{1\}x\hspace\{2\}x\hspace\{3\}x\hspace\{4\}x}\newline
\end{paste}
\endImportant

The \tt \vspace\{{\it value}\}} command is similar to the \tt \hspace\{{\it value}\}} command but (as the name suggests) works in the vertical direction. The unit of movement is \tt a pixel}. The \tt \{it value\} argument specifies an offset from \tt the next line}. A negative argument moves the next character up and a positive down. This command can be used for subscripts and superscripts. One drawback in the use of \tt \vspace is that it can only work with a particular font at a time. This is because the inter-line spacing depends on the font being used and the value of it is needed to get "back" on the line.
In general, the command {\tt \vspace\{{\it - ils}\}} will have a null effect when {\it ils} = (font ascent + font descent + 5). The example below assumes that {\it ils} = 25 e.g. the Rom14 font on the RISC System/6000.

\begin{paste}{HTXFormatPage7xPaste3}{HTXFormatPage7xPatch3}
\pastebutton{HTXFormatPage7xPaste3}{Interpret}
\begin{paste}{HTXFormatPage7xPatch3}{HTXFormatPage7xPatch1A}
\pastebutton{HTXFormatPage7xPatch1A}{Source}
\end{paste}
\end{paste}
\end{Important}

\begin{scroll}
\begin{paste}{HTXFormatPage7xPatch3}{HTXFormatPage7xPatch1A}
\pastebutton{HTXFormatPage7xPatch1A}{Interpret}
\end{patch}
\end{scroll}

\begin{menu}
\menulink{Next -- Bitmaps and Images}{HTXFormatPage8}
\endmenu

\end{page}

\---

HTXFormatPage7xPatch1 patch

--- htxformatpage7.h --

\begin{patch}{HTXFormatPage7xPatch1}
\begin{paste}{HTXFormatPage7xPaste1A}{HTXFormatPage7xPatch1A}
\pastebutton{HTXFormatPage7xPatch1A}{Source}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage7xPatch1A}
\begin{paste}{HTXFormatPage7xPaste1B}{HTXFormatPage7xPatch1}
\pastebutton{HTXFormatPage7xPatch1}{Interpret}
\end{patch}
\begin{patch}{HTXFormatPage7xPatch2}
\begin{paste}{HTXFormatPage7xPatch2A}{HTXFormatPage7xPatch2}
\pastebutton{HTXFormatPage7xPaste2A}{Source}
\newline
x\hspace{-4}x\hspace{-3}x\hspace{-2}x\hspace{-1}x%\hspace{1}x\hspace{2}x\hspace{3}x\hspace{4}x
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage7xPatch2A}
\begin{paste}{HTXFormatPage7xPatch2}{HTXFormatPage7xPatch2}
\pastebutton{HTXFormatPage7xPatch2}{Interpret}
\newline
\begin{paste}{HTXFormatPage7xPatch2A}{HTXFormatPage7xPatch2}
\pastebutton{HTXFormatPage7xPatch2A}{Source}
\newline
x\hspace{-4}x\hspace{-3}x\hspace{-2}x\hspace{-1}x\hspace{1}x\hspace{2}x\hspace{3}x\hspace{4}x
\end{paste}
\end{patch}
CO\vspace{-18}2\vspace{-32} + CaO ->
CaCO\vspace{-18}3\vspace{-32} \newline
R\vspace{-1}~\vspace{-18}v\vspace{-32} \newline\hspace{4}\hspace{8}---\hspace{12} \vspace{-32}1\vspace{-7}2 \newline\hspace{8}g\vspace{-18}v\vspace{-32} \newline R\vspace{-1}~ = T\vspace{-18}v\vspace{-32} \vspace{-25} \newline\end{paste}
\end{patch}

HTXFormatPage7xPatch3A patch

— htxformatpage7.ht —

\begin{patch}{HTXFormatPage7xPatch3A}
\begin{paste}{HTXFormatPage7xPaste3B}{HTXFormatPage7xPatch3}
\pastebutton{HTXFormatPage7xPaste3B}{Interpret}
{\tt CO\vspace{-18}2\vspace{-32} + CaO ->}
{\tt CaCO\vspace{-18}3\vspace{-32} \newline}
{\tt R\vspace{-1}~\vspace{-18}v\vspace{-32} \newline\hspace{4}\hspace{8}---\hspace{12} \vspace{-32}1\vspace{-7}2 \newline\hspace{8}g\vspace{-18}v\vspace{-32} \newline R\vspace{-1}~ = T\vspace{-18}v\vspace{-32} \vspace{-25} \newline\end{paste}
\end{patch}

21.15 htxformatpage8

Bitmaps and Images

—the htxformatpage8.ht—

\begin{page}{HTXFormatPage8}{Bitmaps and Images}
\centerline{\fbox{\tt \thispage}}
\begin{scroll}

The commands \tt \inputbitmap\{{\it filename}\} and \tt \inputimage\{{\it filename}\} allow you to include an X11 bitmap or an Axiom-generated viewport in a Hyperdoc page.

In the case of the \tt \inputbitmap command the \{\it filename\} parameter must be the full pathname of an X11 bitmap file.

\begin{Important}
\begin{paste}{HTXFormatPage8xPaste1}{HTXFormatPage8xPatch1}
\pastebutton{HTXFormatPage8xPaste1}{Interpret}
\newline
{\tt \inputbitmap\{{\tt \env{AXIOM}/doc/bitmaps/sup.bitmap}\}}
\end{paste}
\end{Important}

The \{\it filename\} parameter of the \tt \inputimage command must be the full pathname of a \{\it compressed XPM image\} file without the name extensions. Hyperdoc always adds ".xpm.Z" to whatever filename you give and looks for the augmented filename. Such files can be generated by Axiom command \axiomOp{write} with the \{\tt "image"\} or \{\tt "pixmap"\} options.

\begin{Important}
\begin{paste}{HTXFormatPage8xPaste2}{HTXFormatPage8xPatch2}
\pastebutton{HTXFormatPage8xPaste2}{Interpret}
\newline
{\tt \inputimage\{{\tt \env{AXIOM}/doc/viewports/ugProblemNumericPage30.view/image\}}}
\end{paste}
\end{Important}

Be careful not to break the pathname across lines.

The \tt \inputimage command will automatically select the \{\it image.xpm\} or the \{\it image.bm\} file for you based on the capabilities of your X server.
For your convenience, there are two macros defined in \centerline{\bf util.ht}.

The \tt{\\viewport} macro eliminates the need to specify the \tt{.view/image} part and the \tt{\axiomViewport} macro automatically selects viewport files in the system directories. The above \tt{\inputimage} could have been written

\begin{important}
\tt{\viewport{\env{AXIOM}/doc/viewports/ugProblemNumericPage30}}
\end{important}

or

\begin{important}
\tt{\axiomViewport{ugProblemNumericPage30}}
\end{important}

\end{scroll}

\begin{menu}
\menuLink{Back to Formatting menu}{HTXFormatTopPage}
\end{menu}

\end{page}

HTXFormatPage8xPatch1 patch

— htxformatpage8.ht —

\begin{patch}{HTXFormatPage8xPatch1}
\begin{paste}{HTXFormatPage8xPatch1A}{HTXFormatPage8xPatch1}
\pastebutton{HTXFormatPage8xPatch1A}{Source}
\newline
\inputbitmap{\env{AXIOM}/doc/bitmaps/sup.bitmap}
\end{paste}
\end{patch}

\begin{patch}{HTXFormatPage8xPatch1A}
\begin{paste}{HTXFormatPage8xPatch1B}{HTXFormatPage8xPatch1}
\pastebutton{HTXFormatPage8xPatch1B}{Interpret}
\newline
\tt{\inputbitmap{\env{AXIOM}/doc/bitmaps/sup.bitmap} }
\end{paste}
\end{patch}
21.16 \texttt{htxformattoppage.ht}

\textbf{Formatting in Hyperdoc}

\begin{itemize}
\item \texttt{"notitle"} (HTXFormatPage1) 21.8 on page 2631
\item \texttt{"notitle"} (HTXFormatPage2) 21.9 on page 2633
\item \texttt{"notitle"} (HTXFormatPage3) 21.10 on page 2637
\item \texttt{"notitle"} (HTXFormatPage4) 21.11 on page 2641
\item \texttt{"notitle"} (HTXFormatPage5) 21.12 on page 2648
\item \texttt{"notitle"} (HTXFormatPage6) 21.13 on page 2653
\end{itemize}
Hyperdoc offers various facilities for formatting text and images. You can learn about these facilities by clicking on the topics below.

- Special Characters
- Formatting without commands
- Using different fonts
- Indentation
- Creating Lists and Tables
- Boxes and Lines
- Micro-Spacing
- Bitmaps and Images

Take a close look at the objects in the Hyperdoc window you are now reading. Most of them are text. Resize the window using the window manager facilities. The text is reformatted to fit the window border. This action is performed by Hyperdoc. At the simplest level, it provides a method for \(\text{em} \) formatting text in a window. In fact, it can place other things on the window as well, such as bitmaps or color images. The \(\text{em} \) buttons you see at either side at the top of
the window are bitmaps.

Move the cursor so that it rests on one of those buttons. You notice that the cursor has changed appearance. This indicates that there is an action associated with the button. This action will be performed when you click the mouse button over the active area. If you are familiar with Hyperdoc, you know that the active area can be words, bitmaps, images or input areas. In fact, anything that can be displayed in a Hyperdoc window can be an active area.

So, what can the action associated with an active area be? Hyperdoc allows quite a bit of freedom in defining that action. We will have a close look at this issue later on. For now, recall the various actions that you have encountered so far --- executing Axiom commands, popping up new windows, providing parameters for other active areas, and replacing or changing the contents of the window. The most common action is to bring up some Hyperdoc text in the same or a different window. This lets us create links between pieces of text and images. A system with such capability is usually called a hypertext system. Hyperdoc is in fact much more.

Hyperdoc can read the hypertext information from standard text files. This means that you can create or change this information with

\begin{page}{HTXIntroPage2}{How Hyperdoc does it}
\fbox{	t \thispage}
\beginscroll
Hyperdoc can read the hypertext information from standard text files. This means that you can create or change this information with
any text editor. Once this information has been entered into the files, a special program, called \{bf htadd\}, scans these files and produces a database (another file called \{bf ht.db\}) of \{em objects\} encountered in the files. Hyperdoc consults this database when it first starts and so knows where it might find the definitions of these objects. You can maintain several such databases on different directories. You indicate which database you want Hyperdoc to consult by setting an \{em environment variable\} called \{bf HTPATH\}.

In general, hypertext must obviously use some kind of special (that is, non-textual) marks for all the extra functionality it provides. In Hyperdoc, these marks are some special characters --- special in the sense that they are not interpreted as ordinary displayable text. These characters, however, are part of the standard ASCII set. There is also a way to display these special characters as text.

The Hyperdoc special characters are:

\beginImportant

\verbatim
\n\table{\$}{\%}{\#}
\n\endverbatim
\endImportant

Hyperdoc uses the special characters to distinguish between \{em text\} and \{em commands\} (by \{em text\}, we mean here anything displayable). The commands are instructions to Hyperdoc to treat some text in a particular way. Some commands define special Hyperdoc objects. The most important objects are \{em pages\}, \{em patches\}, and \{em macros\}.

A \{em page\} is a description of the contents of a Hyperdoc window. A \{em patch\} is a portion of a page.

A \{em macro\} is a user-defined new Hyperdoc command.

Some commands allow special text \{em formatting\} and others associate some text with an action.

In order to display anything at all in HyperName, you must define a \{em page\}. The next section explains how to define a \{em page\} and put some simple text into it.

\endscroll
\beginmenu
\menudownlink{Next -- Define a simple text page}{HTXIntroPage3}
\endmenu

\end{page}
21.19 htxintropage3.ht

A simple text page

\begin{page}{HTXIntroPage3}{A simple text page}
\begin{scroll}
A page is defined by a \{em group\} command. Group commands are used to delimit a group, that is, to declare where a group starts and where it ends. The proper syntax for a page definition is as follows:
\beginImportant
\{tt \begin\{page\}\{\it name\}\{\it a title\}\}
\newline
\newline
\newline
\newline
\beginImportant
Note the use of the special characters \{tt \}, \{tt \} and \{tt \}. The \{tt \} (backslash) character introduces a command, in this case, \{tt begin\}. The \{tt \{ \} \} (braces) delimit the \{em parameters\} to the command. The first parameter (the word \{tt page\}) specifies this as a page definition command.

The second parameter can be any single unbroken word consisting of alphanumeric characters only, and specifies the name of the page by which it can be referred to by other commands. You should choose this internal name with care so as to avoid potential conflict with page names that are defined by the Axiom system. This caveat only applies in the case where you have started Hyperdoc with the Axiom database --- see \downlink{later on}{HTXLinkPage6}. It is suggested that the page names you define start with the letters \{tt UX\} (standing for \{tt UX\}ser e\{tt X\}ensions). You can have a look at the Axiom system database file \{centerline\{bf \env{AXIOM}/doc/ht.db\} \} which contains the names of all pages, macros and patches used by Axiom.
The third parameter specifies a title for the page. The title of a page is the area at the very top of the window, between the buttons. Virtually anything that can be put in the main page can also be put in the title. As an example, \em this page's declaration is like this:
\begin{verbatim}
\{page\}\{thispage\}\{A simple text page\}
\end{verbatim}
Everything you type between the \begin{page} command and the next \end{page} command will become the body of the page. It is an error to insert another \begin{page} between the two, that is, this group command cannot be nested.

There is another useful group command that should be mentioned here --- the \em scroll command. It controls the portion of the page that will be scrollable. Hyperdoc will split a page in three sections: a \em header, a \em scroll region and a \em footer. Hyperdoc will always try to keep the header and footer regions visible on the page; the header at the top and the footer at the bottom. The middle scroll region will be truncated and a scroll bar will be automatically provided if the window becomes too small for the whole contents of the page. Only one scroll region can be defined in a page and the correct syntax is as follows:
\begin{verbatim}
\begin{scroll}
\end{scroll}
\end{verbatim}
This group should be placed inside the relevant page group. The text between the \begin{page} and \begin{scroll} commands defines the header region, the text inside the scroll group defines the scroll region and the text between the \end{scroll} and \end{page} commands defines the footer region. It is important to keep the header and footer areas small. Use them to display information that might be needed at any time by the user. If you don't define a scroll region in your page, you may find that a portion of the page is truncated.

You are now ready to experiment with a page of your own. If you just want to display some text on a page, you don't need any other Hyperdoc commands. Just make sure that the text you type for the title, header, scroll and footer regions does not contain (for the moment) any of the Hyperdoc special characters.

21.20 htxintrotoppage.ht

First Steps

⇒ “notitle” (HTXIntroPage1) 21.17 on page 2663
⇒ “notitle” (HTXIntroPage2) 21.18 on page 2664
⇒ “notitle” (HTXIntroPage3) 21.19 on page 2666

Hyperdoc is both a way of presenting information and a customisable front-end. Axiom uses it for its own purpose as a front-end and documentation system. Hyperdoc has special facilities that allow it to interact very closely with Axiom. The \Browse{} facility, the Basic Commands section and the ability to execute Axiom commands by clicking on Hyperdoc text are witness to this.

These pages will show you the features of Hyperdoc that might make it appropriate for your own use in, for example, providing documentation for Axiom code that you write or some other purpose.

It is recommended that you get familiar with the \em use of Hyperdoc before proceeding.
21.21 \hspace{1em} \texttt{htxlinkpage1.ht}

Linking to a named page

\begin{itemize}
\item \texttt{\windowlink}\{\textit{trigger}\}\{\textit{page name}\}
\begin{centerline}
This link command, when activated, will create a new window for the named page.
\end{centerline}
\item \texttt{\downlink}\{\textit{trigger}\}\{\textit{page name}\}
\begin{centerline}
This link command, when activated, will cause the new page to appear.
\end{centerline}
\end{itemize}

In Hyperdoc, hypertext links are specified by different flavors of the \texttt{\link} command. These commands take two arguments. One argument specifies the active area, that is, the \textit{trigger} of the link. The second argument specifies the \textit{target} of the link, that is, a page. The trigger can be quite arbitrary Hyperdoc text and can include images or whole paragraphs. The trigger text will be formatted in the normal fashion but its default font will be the font specified by the ActiveFont resource.

The simplest kind of Hyperdoc link is a link to a named page. Clicking on the trigger will cause the named page to appear in a Hyperdoc window.

There are three flavors for such a link.
\begin{itemize}
\item \texttt{\windowlink}\{\textit{trigger}\}\{\textit{page name}\}
\begin{centerline}
This link command, when activated, will create a new window for the named page.
\end{centerline}
\item \texttt{\downlink}\{\textit{trigger}\}\{\textit{page name}\}
\begin{centerline}
This link command, when activated, will cause the new page to appear.
\end{centerline}
\end{itemize}

The new page will have a \texttt{\ExitBitmap} button, however. The original page containing the \texttt{\windowlink} command will be unaffected.
current page to be replaced by the target page
in the same Hyperdoc window.
A \centerline{UpBitmap{} button will automatically be placed
on the new page allowing you to get back to the page
containing the \tt \downlink command.
If the current page has a \centerline{ReturnBitmap{} button then
the target page will also carry it. The associated
target page of that button will be the same as it is
in the current page.
\item\menuitemstyle{memolink\{\tt trigger\}\{\it page name\}}
\newline This link command is similar to the \tt \downlink command.
In addition, it will cause a \centerline{ReturnBitmap{}}
button to be included in
the target page and all pages \tt \downlinked from it.
This button will act as a
direct link to the page containing the \tt \memolink command allowing
a short-cut to be taken.
\end{items}
\beginImportant
\begin{paste}{HTXLinkPage1xPaste1}{HTXLinkPage1xPatch1}
\pastebutton{HTXLinkPage1xPaste1}{Interpret}
\newline
{\tt \windowlink
{windowlink to Actions menu}\{HTXLinkTopPage\}\newline}
\newline
{\tt \downlink\{downlink to Actions menu\}\{HTXLinkTopPage\}\newline}
\newline
{\tt \memolink\{memolink to Actions menu\}\{HTXLinkTopPage\}}
\end{paste}
\endImportant

There is a fourth button that can appear at the top of the page
next to the \centerline{ExitBitmap{}} button.
Its purpose is to provide access to a particular \tt help page
associated with the current page.
That is the \centerline{HelpBitmap{}} button. The command to use is
\centerline{help\{\tt help page name\}}
The \tt \helppage command \tt must be placed
just before the \tt \end\{page\} command.
For instance, to get a help button on this page
the following command is used.
\centerline{help\{\tt TestHelpPage\}}
Clicking on the help button at the top
will display the \tt TestHelpPage page in a new window.

\end{scroll}
\beginmenu
\menu{Next -- Standard Pages}\endmenu

\helppage{TestHelpPage}\end{page}

\begin{patch}{HTXLinkPage1xPatch1}
\begin{paste}{HTXLinkPage1xPatch1A}{HTXLinkPage1xPatch1}
\pastebutton{HTXLinkPage1xPatch1A}{Source}
\windowlink{windowlink to Actions menu}{HTXLinkTopPage}\newline
\downlink{downlink to Actions menu}{HTXLinkTopPage}\newline
\memolink{memolink to Actions menu}{HTXLinkTopPage}\end{paste}
\end{patch}

\begin{patch}{HTXLinkPage1xPatch1A}
\begin{paste}{HTXLinkPage1xPatch1B}{HTXLinkPage1xPatch1}
\tt \windowlink{windowlink to Actions menu}{HTXLinkTopPage}\newline
\tt \downlink{downlink to Actions menu}{HTXLinkTopPage}\newline
\tt \memolink{memolink to Actions menu}{HTXLinkTopPage}\end{paste}
\end{patch}
Test Help Page

— htxlinkpage1.ht —

\begin{page}{TestHelpPage}{Test Help Page}
\begin{scroll}
\vspace{100}
\centerline{Is this any help?}
\end{scroll}
\end{page}

21.22 htxlinkpage2.ht

Standard Pages

⇒ “notitle” (HTXLinkPage6) 21.26 on page 2693
⇒ “notitle” (SpadNotConnectedPage) 2.1 on page 114
⇒ “notitle” (UnknownPage) 2.1 on page 114
⇒ “notitle” (ErrorPage) 2.1 on page 115
⇒ “notitle” (ProtectedQuitPage) 2.1 on page 114
⇒ “notitle” (HTXLinkPage3) 21.23 on page 2675

— htxlinkpage2.ht —

\begin{page}{HTXLinkPage2}{Standard Pages}
\centerline{\fbox{\tt \thispage}} \newline
\begin{scroll}
You have reached this page after performing a series of mouse clicks on Hyperdoc active areas. Each time, a \tt \link command was activated. Well, how does it all start? The answer is that Hyperdoc always puts up a particular page called \tt RootPage when it starts up. If this page is not found in the database, Hyperdoc will immediately exit. It is, of course, desirable that the \tt RootPage contains links to other pages! It is possible to override Axiom’s choice of \tt RootPage and provide your own to Hyperdoc. This is done in the same way as
you would override any Axiom-defined page and is discussed in \downlink{How to use your pages with Hyperdoc}{HTXLinkPage6}.

You may have noticed that Hyperdoc uses some pages when certain events occur. There is a page that is put up, for instance, whenever Hyperdoc cannot connect to Axiom. Another page is put up whenever there is a formatting error and yet another when a request for an unknown page is made. Finally, there is a page that prompts for confirmation when you press the exit button on the initial page.

These pages have standard names and must be provided in the Hyperdoc page database. They are already defined in the Axiom system Hyperdoc page database so that you do not have to define them yourself.

Here are the pages required by Hyperdoc. You can click on any of these to see their contents. Click on their exit buttons when you are finished.

\beginImportant
\begin{paste}{HTXLinkPage2xPaste1}{HTXLinkPage2xPatch1}
\pastebutton{HTXLinkPage2xPaste1}{Interpret}
\newline
\tt \table{}\newline
\tt \{\windowlink\{SpadNotConnectedPage\}\{SpadNotConnectedPage\}\}
\newline
\tt \{\windowlink\{UnknownPage\}\{UnknownPage\}\}\newline
\tt \{\windowlink\{ErrorPage\}\{ErrorPage\}\}\newline
\tt \{\windowlink\{ProtectedQuitPage\}\{ProtectedQuitPage\}\}\newline
\tt \}
\newline
\end{paste}
\endImportant

In addition, Hyperdoc uses certain bitmaps for its buttons. They are also provided in the Axiom system bitmap directory and Hyperdoc knows where to find them.

The bitmap files required by Hyperdoc are the following.
\newline
\tab{7}\{it exit.bitmap\}\{tab{22} = \{tab{25}\{ExitBitmap{}} \newline
\tab{7}\{it help2.bitmap\}\{tab{22} = \{tab{25}\{HelpBitmap{}} \newline
\tab{7}\{it up3.bitmap\}\{tab{22} = \{tab{25}\{UpBitmap{}}\newline
\tab{7}\{it return3.bitmap\}\{tab{22} = \{tab{25}\{ReturnBitmap{}}\newline
These files must exist in your current directory if the \{tt AXIOM\} environment variable is not set. If it is, then Hyperdoc will assume that it points to the Axiom system directory and will look for these files in \{\bf \$AXIOM/doc/bitmaps\}.

\end{scroll}
\begin{menu}
\menuLink{Next -- Active Axiom commands}{HTXLinkPage3}
\end{menu}
\end{page}
21.23 htxlinkpage3.ht

Active Axiom commands

⇒ “notitle” (HTXLinkPage4) 21.24 on page 2681

This section explains how to include Axiom commands in your page. The commands we will introduce are actually \texttt{macros} that are defined in \texttt{AXIOM/doc/util.ht}. This means that you can use them only if you include this file in your Hyperdoc database.

The first command to learn is

\begin{axiomcommand}
\texttt{command} \free{var1 \ldots} \bound{var}
\end{axiomcommand}

The \texttt{\free{}} and \texttt{\bound{}} directives are optional. We will come to them in a minute. The \texttt{\it command} above is the text of the Axiom command. Only single line commands are allowed here.

This text will be displayed in the reserved AxiomFont logical
font. The area of the text will be active and clicking on it will attempt to send the command to Axiom for evaluation.
A new Axiom interpreter window (and Axiom frame) will be created if this was the first Axiom command activated in the current page. If not, the command will be sent to the already opened Axiom interpreter window for the current page. Note that it \textit{is} necessary to escape special Hyperdoc characters with the \texttt{\textbackslash '} backslash character. The exceptions are the characters \texttt{\textbackslash [\]}; they do not need to be escaped in this context.

\begin{Important}
\begin{paste}{HTXLinkPage3xPaste1}{HTXLinkPage3xPatch1}
\pastebutton{HTXLinkPage3xPaste1}{Interpret}
\end{paste}
\end{Important}

The optional \texttt{\textbackslash free\{\}} and \texttt{\textbackslash bound\{\}} directives provide dependency control. The reader of a Hyperdoc page is not forced to click on the commands in the order in which they appear on the page. If the correct \texttt{\textbackslash free\{\}} and \texttt{\textbackslash bound\{\}} specifications are made, clicking on a command will result in execution of all those other commands that should be executed before it. This will \textit{only} happen the first time the command is clicked.

So, how are the dependencies specified? The arguments of the \texttt{\textbackslash free\{\}} directive must be space-separated words (labels). The argument of \texttt{\textbackslash bound\{\}} must be a single (unique for the page) label. Each label in the \texttt{\textbackslash free\{\}} list must exist as an argument to one (and only one) \texttt{\textbackslash bound\{\}} directive somewhere in the current page. When the command is activated, Hyperdoc will look in the \texttt{\textbackslash free\{\}} list and check each label. For each label, it will find the command that specifies that label in its \texttt{\textbackslash bound\{\}} directive and execute it if it has not been already executed. The order of labels in the \texttt{\textbackslash free\{\}} directive list is respected. Hyperdoc will follow all dependency links recursively.

Here is an example.
Clicking on the third command will automatically execute all of them in the correct sequence. Note that in this case the order of labels in the last line is immaterial since \texttt{v2} explicitly depends on \texttt{v1}.

\begin{Important}
The second command deals with multi-line Axiom code. This is the command to use for execution of an Axiom \{it pile\}. It is a \{it group\} command. The proper syntax for it is as follows:

\begin{spadsrc}
\[
\begin{array}{l}
{\tt \free\{\it var1 \, \it var2 \, \ldots\} \ \bound\{\it var\}}
\end{array}
\end{spadsrc}

Again, the \{tt \free\} and \{tt \bound\} directives are optional. If they are specified (in exactly the same way as \{tt \axiomcommand\}), they must be enclosed in square brackets \{tt \}. The lines between the \{tt \begin\} and \{tt \end\} contain the Axiom statements. Indentation will be respected. Hyperdoc will actually save this part in a temporary file and instruct Axiom to read the file with the \{tt \)read\} system command.

Here is an example. The execution of the following fragment is dependent on the \{tt v3\} label. Make sure that previous commands are active (and hence the label \{tt v3\} is "visible") before trying to execute it. If the label \{tt v3\} is not seen in the page, Hyperdoc will print an error message on standard output and ignore the dependency.
There is, in fact, more that one can do with Axiom commands. In pages elsewhere in the system, Axiom commands appear next to button like this. Clicking on this button, one can see the output for that command. The output has been pre-computed and is also stored in Hyperdoc files. This is done using \{it patch\} and \{it paste\}. It is the same mechanism that is used to alternatively display Hyperdoc source and interpreted result in this and other pages. It is explained \downlink{later on}{HTXAdvPage5}.

\close{scroll}
\begin{menu}
\menu{Next -- Linking to Lisp}{HTXLinkPage4}
\end{menu}
\end{page}

— htxlinkpage3.ht —

\begin{patch}{HTXLinkPage3xPatch1}
\begin{paste}{HTXLinkPage3xPaste1A}{HTXLinkPage3xPatch1A}
\pastebutton{HTXLinkPage3xPaste1A}{Source}
\axiomcommand{ l:=brace[1,2,3] ; length:=\# l ; m:=[1,2]}
\end{paste}
\end{patch}
HTXLinkPage3xPatch1A patch

— htxlinkpage3.ht —

\begin{patch}{HTXLinkPage3xPatch1A}
\begin{paste}{HTXLinkPage3xPaste1B}{HTXLinkPage3xPatch1}
\pastebutton{HTXLinkPage3xPaste1B}{Interpret}
\newline
{\tt \axiomcommand{ l:=brace[1,2,3] ; length:=\# 1 ; m:=[1,2]} }
\end{paste}
\end{patch}

HTXLinkPage3xPatch2 patch

— htxlinkpage3.ht —

\begin{patch}{HTXLinkPage3xPatch2}
\begin{paste}{HTXLinkPage3xPaste2A}{HTXLinkPage3xPatch2A}
\pastebutton{HTXLinkPage3xPaste2A}{Source}
\newline
\axiomcommand{a:=1;d:=4 \bound{v1}}
\newline
\axiomcommand{b:=a+3 \free{v1} \bound{v2}}
\newline
\axiomcommand{c:=b+d \free{v1 v2} \bound{v3}}
\end{paste}
\end{patch}

HTXLinkPage3xPatch2A patch

— htxlinkpage3.ht —

\begin{patch}{HTXLinkPage3xPatch2A}
\begin{paste}{HTXLinkPage3xPaste2B}{HTXLinkPage3xPatch2}
\pastebutton{HTXLinkPage3xPaste2B}{Interpret}
\newline
{\tt \axiomcommand\{a:=1;d:=4 \ \bound\{v1\}\}\newline
{\tt \newline
{\tt \axiomcommand\{b:=a+3 \ \free\{v1\} \ \bound\{v2\}\}\newline
{\tt \newline
{\tt \axiomcommand\{c:=b+d \ \free\{v1 \ v2\} \ \bound\{v3\}\}\newline
\end{paste}
\end{patch}

HTXLinkPage3xPatch3 patch

— htxlinkpage3.ht —

\begin{patch}{HTXLinkPage3xPatch3}
\begin{paste}{HTXLinkPage3xPatch3A}{HTXLinkPage3xPatch3}
\pastebutton{HTXLinkPage3xPatch3A}{Source}
\newline
\begin{spadsrc} \[\free\{v3\} \ \bound\{v4\}
\newline
f \ x \ ==
\newline
\begin{spadsrc} x+c
f 3
\end{spadsrc}
\newline
\end{spadsrc}
\newline
\end{paste}
\end{patch}

HTXLinkPage3xPatch3A patch

— htxlinkpage3A.ht —

\begin{patch}{HTXLinkPage3xPatch3A}
\begin{paste}{HTXLinkPage3xPatch3B}{HTXLinkPage3xPatch3}
\pastebutton{HTXLinkPage3xPatch3B}{Interpret}
\newline
{\tt \begin{spadsrc}\ [\free\{v3\} \ \bound\{v4\}\newline
{\tt f \ x \ ==}\newline
{\tt \ \ \ x+c}\newline
{\tt f \ 3}\newline
{\tt \end{spadsrc}\}
\end{patch}
Another feature of the Axiom-Hyperdoc link is the ability to execute \texttt{Lisp} code at a click of a button. There are two things one can do.

The first is to cause the evaluation of a \texttt{Lisp} form and ignore (as far as Hyperdoc is concerned) its value. The evaluation of the function might have an effect however on your Axiom session.

The command for this is

\begin{verbatim}
{\lispcommand\{Definition\}\{(defun HTXTESTFUNCTION ()
(print "Hello from HyperDoc \\
\{ \}")\}}
\end{verbatim}

Here is an example. We will first define a \texttt{Lisp} function and then execute it. Notice that the Hyperdoc special characters must be escaped (this is on top of \texttt{Lisp} escaping conventions).

\begin{verbatim}
{\lispcommand\{Definition\}\{(defun HTXTESTFUNCTION ()\)
(print "Hello from HyperDoc \ \ \ \ \ \ \ \ \ \ \ \ \\{ \}")\}}
{\lispcommand\{Execution\}\{(HTXTESTFUNCTION)\}}
\end{verbatim}
Your command will be executed as soon as Axiom completes any computation it might be carrying out.

\%\axiomcommand{lisp (defun f () (pprint "hello"))}
\%\lispcommand{f}{(|f|)}

The second thing you can do is quite powerful. It allows you to delegate to a \textit{Lisp} function the \textit{dynamic} creation of a page. This is used in \texttt{Browse} to present the Axiom Library in a hypertext form.

The command to use is a lot like the \texttt{link} commands you encountered \texttt{earlier} and comes in three flavors.
\centerline{\texttt{\lispwindowlink\{\it trigger\}\{\it Lisp form\}}}
\centerline{\texttt{\lispdownlink\{\it trigger\}\{\it Lisp form\}}}
\centerline{\texttt{\lispmemolink\{\it trigger\}\{\it Lisp form\}}}

The difference between the three versions is the same as before. When such a link is activated, Hyperdoc issues the \texttt{Lisp form} to Axiom and waits for a full page definition. An important point to note is that Hyperdoc does not use the value of the \texttt{Lisp form} but, instead, it depends on its side-effects. What must happen during evaluation of the form is enough evaluations of a special \texttt{Lisp} function called \texttt{issueHT} to define a page. The argument of \texttt{issueHT} is a string containing Hyperdoc text. Perhaps an example will clarify matters.

First we will define a \texttt{Lisp} function that accepts a string argument and calls \texttt{issueHT} a few times. The strings that are passed to \texttt{issueHT} construct a Hyperdoc page that would just contain our original argument centered roughly on the page. Then we write the \texttt{\lisplink} with a call to the function. Finally, we execute a \texttt{Lisp} command that just pretty--prints the function’s definition.

\beginImportant
\begin{paste}{HTXLinkPage4xPaste2}{HTXLinkPage4xPatch2}
The \{tt '{'} and \{tt '{'} is required to escape Hyperdoc's special characters \{tt '{'} and \{tt '{'}\}. The \{tt '{'} \{tt '{'} \} has the following rationale. We need to send to Hyperdoc (from \{it Lisp\}) the sequence \{tt '\\begin'} \begin. But \{tt '{'} is a special \{it Lisp\} character. Therefore the \{it Lisp\} string must be \{tt '\\begin}'. But to specify this in Hyperdoc we need to escape the two \{tt '{'}\}. Therefore, we write \{tt '\\begin'}\begin.\end{verbatim}

The definition of \{tt HTXTESTPAGE\} would have been written in \{it Lisp\} as follows.
\begin{verbatim}
(defun HTXTESTPAGE (X)
 (issueHT)
 "\\\\\\begin\{page\}{LispTestPage}{Lisp Test Page}\\\\\\vspace\{200\} \\\\\\\centerline{")
 (issueHT X)
 (issueHT "\} \\end\{page\}"))
\end{verbatim}

You should not execute \{tt HTXTESTPAGE\} in the \{it Lisp\} environment manually. It is meant to be executed \{it only\} in response to a Hyperdoc request.

Can you pop-up a named page from \{it Lisp\} regardless of user action? Yes --- use \{it Lisp\} function \{bf linkToHTPage\} with the page name as a string argument. Click on the \{tt \axiomcommand\} below. Then, in your Axiom session, you can repeat it if you like.
You can also pop-up a \it dynamic\ page regardless of user action. To do this, make sure you evaluate the \it Lisp form\
\bf (\startHTPage\ 50) before using \bf issueHT. The example below requires the \it HTXTESTPAGE\ function to be defined in \it Lisp\ so you should make sure you have executed the command above that defines it.

Now, the most important use of this facility so far has been in the \Browse{} and Basic Commands components of Hyperdoc. Instead of giving you details of the various \Browse{} \it Lisp\ functions, a few macros are defined in \centerline{\bf $\texttt{AXIOM/doc/util.ht}$}

The most important defined macros are

\beginImportant
\begin{table}
\begin{tabular}{|c|c|}
\hline
\texttt{\axiomType{Expression Integer}}
\hline
\texttt{\axiomOp{Expression}}
\hline
\texttt{\axiomOpFrom{Expression Integer}}
\hline
\end{tabular}
\end{table}
\end{Important}

Here are some examples of their use.

\beginImportant
\begin{paste}{HTXLinkPage4xPaste5}{HTXLinkPage4xPatch5}
\pastebutton{HTXLinkPage4xPaste5}{Interpret}
\newline
\texttt{\axiomType{Expression Integer}}\newline
\texttt{\newline}
\texttt{\axiomType{Expression}}\newline
\texttt{\newline}
\texttt{\axiomType{EXPR}}\newline
\texttt{\newline}
\end{paste}
\end{Important}
The macro \tt{\axiomType} brings up the \Browse{} constructor page for the constructor specified. You can specify a full name, or an abbreviation or just the top level name.

The macro \tt{\axiomOp} brings up a list of operations matching the argument.

The macro \tt{\axiomOpFrom} shows documentation about the specified operation whose origin is constructor. No wildcard in the operation name or type abbreviation is allowed here. You should also specify just the top level type.
HTXLinkPage4xPatch1A patch

— htxlinkpage4.ht —

\begin{patch}{HTXLinkPage4xPatch1A}
\begin{paste}{HTXLinkPage4xPaste1B}{HTXLinkPage4xPatch1}
pastebutton{HTXLinkPage4xPaste1B}{Interpret}
\newline
\lispcommand{Definition}{(defun HTXTESTFUNCTION ()
 (print "Hello from HyperDoc \\\
% \{}
"))}
\newline
\lispcommand{Execution}{(HTXTESTFUNCTION)}
\end{paste}
\end{patch}

HTXLinkPage4xPatch2 patch

⇒ “Definition” (LispFunctions) 3.71 on page 952
— htxlinkpage4.ht —

\begin{patch}{HTXLinkPage4xPatch2}
\begin{paste}{HTXLinkPage4xPaste2A}{HTXLinkPage4xPatch2A}
pastebutton{HTXLinkPage4xPaste2A}{Source}
\newline
\lispcommand{Definition}{(defun HTXTESTPAGE (x) (|\texttt{issueHT}|"
 \begin{page}\{LispTestPage\}\{Lisp Test Page\}
 \vspace{150} \centerline{") (|\texttt{issueHT}| x) (|\texttt{issueHT}|
 "} \end{page}"
))
\newline
\lispcommand{Link to it}{(HTXTESTPAGE "Hi there")}
\newline
\lispcommand{Show Lisp definition}{(pprint (symbol-function 'HTXTESTPAGE))}
\end{paste}
\end{patch}

HTXLinkPage4xPatch2A patch

— htxlinkpage4.ht —
\begin{patch}{HTXLinkPage4xPatch2A}
\begin{paste}{HTXLinkPage4xPaste2B}{HTXLinkPage4xPatch2}
\pastebutton{HTXLinkPage4xPaste2B}{Interpret}
\newline
\lispcommand\{Definition\}{{(defun HTXTESTPAGE (x)
 (|issueHT|)}}
\newline
\lispcommand\{Definition\}{{"\\\\begin\{page\}\{LispTestPage\}\{Lisp Test Page\}" \{\vspace{150}\}\{\centerline\{\}\{\)\}}}
\newline
\lispwindowlink\{Link to it\}{{(HTXTESTPAGE "Hi there")}}
\newline
\lispcommand\{Show Lisp definition\}{{(pprint (symbol-function 'HTXTESTPAGE))}}
\end{patch}

HTXLinkPage4xPatch3 patch

HTXLinkPage4xPatch3A patch

\newline
{\tt \axiomcommand \{\lisp \{\linktotoHTPage "RootPage"\}\}}
\end{paste}
\end{patch}

HTXLinkPage4xPatch4 patch

— htxlinkpage4.hl —

\begin{patch}{HTXLinkPage4xPatch4}
\begin{paste}{HTXLinkPage4xPatch4A}{HTXLinkPage4xPatch4}
\pastebutton{HTXLinkPage4xPatch4A}{Source}
\newline
\axiomcommand\{\lisp \{\progn \{\startHTPage\ 50\}\{\HTXTESTPAGE "Immediately"\}\}\}}
\end{paste}
\end{patch}

HTXLinkPage4xPatch4A patch

— htxlinkpage4.hl —

\begin{patch}{HTXLinkPage4xPatch4A}
\begin{paste}{HTXLinkPage4xPatch4B}{HTXLinkPage4xPatch4}
\pastebutton{HTXLinkPage4xPatch4B}{Interpret}
\newline
{\tt \axiomcommand\{\lisp \{\progn \{\startHTPage\ 50\}\{\HTXTESTPAGE "Immediately"\}\}\}}
\end{paste}
\end{patch}

HTXLinkPage4xPatch5 patch

— htxlinkpage4.hl —
\begin{patch}{HTXLinkPage4xPatch5A}
\begin{paste}{HTXLinkPage4xPaste5A}{HTXLinkPage4xPatch5A}
pastebutton{HTXLinkPage4xPaste5A}{Source}
\newline
axiomType{Expression Integer}
\newline
axiomType{Expression}
\newline
axiomType{EXPR}
\newline
axiomOp{reduce}
\newline
axiomOp{as*}
\newline
axiomOpFrom{reduce}{Expression}
\end{paste}
\end{patch}

HTXLinkPage4xPatch5A patch

— htxlinkpage4.ht —

\begin{patch}{HTXLinkPage4xPatch5A}
\begin{paste}{HTXLinkPage4xPaste5B}{HTXLinkPage4xPatch5}
pastebutton{HTXLinkPage4xPaste5B}{Interpret}
\newline
{\tt \axiomType{Expression Integer}}
\newline
{\tt \newline}
{\tt \axiomType{Expression}}
\newline
{\tt \newline}
{\tt \axiomType{EXPR}}
\newline
{\tt \newline}
{\tt \axiomOp{reduce}}
\newline
{\tt \newline}
{\tt \axiomOp{as*}}
\newline
{\tt \newline}
{\tt \axiomOpFrom{reduce}{Expression}}
\end{paste}
\end{patch}
Chapter 21. HyperTeX Language Pages

21.25 htxlinkpage5.ht

Linking to Unix

In htxlinkpage5.ht

\begin{page}{HTXLinkPage5}{Linking to Unix}
\centerline{\fbox{\tt thispage}}
\begin{scroll}
Let us conclude the tour of Hyperdoc actions that can be triggered with a click of a button with two more facilities. These are
\begin{table}
\begin{tabular}{|l|l|}
\hline
\tt \unixcommand{\it trigger text}{\it unix command} & \\
\hline
\tt \unixlink{\it trigger text}{\it unix command} & \\
\hline
\end{tabular}
\end{table}
The first one, \tt \unixcommand, is very much like \tt \axiomcommand and \tt \lispcommand. The trigger text becomes an active area. Clicking on it will force Hyperdoc to pass the second argument to the system as a shell command to be executed. The shell used is \bf /bin/sh. Hyperdoc ignores the output of the command.

\begin{important}
\begin{paste}{HTXLinkPage5xPaste1}{HTXLinkPage5xPatch1}
\pastebutton{HTXLinkPage5xPaste1}{Interpret}
\begin{verbatim}
\tt \unixcommand{List the \$HOME directory}{\ls \$HOME}\\
\end{verbatim}
\end{paste}
\end{important}
The \tt \unixlink command delegates to another program the creation of a dynamic page. When the trigger text is activated, Hyperdoc will invoke the command specified in the second argument. It will then start reading the \it standard output of the command until a complete page has been received. It is important that a single page and nothing more is written by the command. This command is essentially a \tt \downlink, i.e. the new page replaces the current page in the window. There aren’t any other flavours of \tt \unixlink.
A trivial example is to use \texttt{cat} on a Hyperdoc file known to contain just one page.

\begin{important}
\begin{paste}{HTXLinkPage5xPaste2}{HTXLinkPage5xPatch2}
\pastebutton{HTXLinkPage5xPaste2}{Interpret}
\newline
$\texttt{unixlink}\{\text{Some file}\}$ \newline
$\texttt{\{cat\ \ \env\{AXIOM\}/doc/HTXplay.ht\}}$
\end{paste}
\end{important}

Two things to notice in the second argument of $\texttt{unixlink}$: You must use a \texttt{\\ } to preserve the spacing in the command. Also, the $\texttt{\env}$ command allows you to use an environment variable in Hyperdoc text.

With a little ingenuity (and maybe some shell and \texttt{awk} scripts !), one can use these facilities to create, say, a point-and-click directory viewer which allows you to edit a file by clicking on its name.

\end{scroll}
\begin{menu}
\menu{Next -- How to use your pages with Hyperdoc}{HTXLinkPage6}
\end{menu}

\end{page}

\begin{patch}{HTXLinkPage5xPatch1}
\begin{paste}{HTXLinkPage5xPaste1A}{HTXLinkPage5xPatch1A}
\pastebutton{HTXLinkPage5xPaste1A}{Source}
\newline
$\texttt{ls \$HOME}$
\end{paste}
\end{patch}
HTXLinkPage5xPatch1A patch

htxlinkpage5.ht

\begin{patch}{HTXLinkPage5xPatch1A}
\begin{paste}{HTXLinkPage5xPaste1B}{HTXLinkPage5xPatch1}
\pastebutton{HTXLinkPage5xPaste1B}{Interpret}
\newline
\tt \unixcommand{List \$HOME directory}{ls \$HOME}\newline
\end{paste}
\end{patch}

HTXLinkPage5xPatch2 patch

htxlinkpage5.ht

\begin{patch}{HTXLinkPage5xPatch2}
\begin{paste}{HTXLinkPage5xPaste2A}{HTXLinkPage5xPatch2A}
\pastebutton{HTXLinkPage5xPaste2A}{Source}
\newline
\unixlink{Some file}
\{cat \ env{AXIOM}/doc/HTXplay.ht\}
\end{paste}
\end{patch}

HTXLinkPage5xPatch2A patch

htxlinkpage5.ht

\begin{patch}{HTXLinkPage5xPatch2A}
\begin{paste}{HTXLinkPage5xPaste2B}{HTXLinkPage5xPatch2}
\pastebutton{HTXLinkPage5xPaste2B}{Interpret}
\newline
\unixlink{Some file}\newline
\{cat \ env{AXIOM}/doc/HTXplay.ht\}

How to use your pages with Hyperdoc

Let us say that you have written a few Hyperdoc pages and you would like to incorporate them in the system. Here is what you should do.

Put all your files in some directory and make sure that they all have the \texttt{.ht} extension.

You will need a way of "hooking" into a system--defined Hyperdoc page. The proper way to do this is to use the \texttt{\localinfo} macro. The Axiom system Hyperdoc page database includes, as it should, a \texttt{RootPage}. This is the page that first comes up when you start Hyperdoc. This page contains a line like this.

This macro is defined in \texttt{\env{AXIOM}/doc/util.ht} to be (see \downlink{Macros}{HTXAdvPage3} to learn how to define macros):
put this definition in its own file if you like.
\beginImportant
\newline
{\tt \newcommand\{\localinfo\}
{\{\menuwindowlink\{{\it active text}\}} \newline
{\tt \{\it page name\} \tab\{16\}\{\it short description\}\}}
\endImportant

If you have a look at the initial Hyperdoc page, you will probably be able to decipher what this does. The macro {\tt \menuwindowlink} is defined (again in {\bf util.ht}) and is responsible for putting the little square to the left of the active area. Specify a word or two for {\it active text}. That will become the trigger of the {\tt \link}. Specify the page name of your top-level page in {\it page name}. Finally, you can give a comment about the topic under {\it short description}. That will appear to the right of the {\it active text}.

The next thing you need to do is to create a {\it local database} for your files. You will use the {\bf \env{AXIOM}/bin/htadd} program. This program will create a {\bf ht.db} file that summarises your definitions and acts as an index. Let us present an example of its use. Suppose you have two files {\bf user1.ht} and {\bf user2.ht} in directory {\bf /u/sugar/Hyperdoc}. You should create the {\bf ht.db} in that same directory. To create the {\bf ht.db} file you issue to the unix shell:
\beginImportant
\newline
{\tt htadd -f /u/sugar/Hyperdoc /u/sugar/Hyperdoc/user1.ht /u/sugar/Hyperdoc/user2.ht}
\centerline{or ,if you are already in /u/sugar/Hyperdoc}
{\tt htadd -l ./user1.ht ./user2.ht}
\endImportant

The options and conventions for {\bf htadd} will be explained below.
To start Hyperdoc with your own pages, you now need to tell it where to search for {\bf ht.db} files and Hyperdoc {\bf .ht} files. To do this, define the shell environment variable {\bf HTPATH}. The value should be a colon {\tt ':'} separated list of directory full pathnames.
The order of the directories is respected with earlier entries overriding later ones. Since we want all the Axiom pages but need to override the {\tt \localinfo} macro, we should use the value
\centerline{{\bf /u/sugar/Hyperdoc:\env{AXIOM}/doc}}
The way that you define environment variables depends on the shell you are using. In the {\bf /bin/csh}, it would be
\newline
{\bf setenv HTPATH /u/sugar/Hyperdoc:\env{AXIOM}/doc:\hypertex\pages}
important
\begin{paste}{HTXLinkPage6xPaste1}{HTXLinkPage6xPatch1}
pastebutton{HTXLinkPage6xPaste1}{Options for {\bf htadd}}
\newline
\end{paste}
\endimportant

\beginImportant
\begin{paste}{HTXLinkPage6xPaste2}{HTXLinkPage6xPatch2}
pastebutton{HTXLinkPage6xPaste2}{Where does Hyperdoc look for files}
\newline
\end{paste}
\endImportant

\end{scroll}
\begin{menu}
\menulink{Back to Actions menu}{HTXLinkTopPage}
\end{menu}
\end{page}

HTXLinkPage6xPatch1 patch

— htxlinkpage6.ht —

\begin{patch}{HTXLinkPage6xPatch1}
\begin{paste}{HTXLinkPage6xPatch1A}{HTXLinkPage6xPatch1A}
pastebutton{HTXLinkPage6xPaste1A}{Hide}
\newline
Name:

\{\tt htadd - create or modify a Hyperdoc database\}
\vspace{}
\newline
Syntax:

\{\tt htadd [-l | -s | -f \}{{\it path}}{{\tt]} \\
[-d | -n]}{{\it filename ...} \}
\vspace{}
\newline
CHAPTER 21. HYPERTEX LANGUAGE PAGES

Options:

- **\tt -l**

 build \{\textbf{ht.db}\} database in current working directory.
 This is the default behaviour if no \{\tt -l\}, \{\tt -s\} or \{\tt -f\} is specified.

- **\tt -s**

 build \{\textbf{ht.db}\} database in \{\it system\} directory. The system directory is built as follows. If the \{\tt AXIOM\} variable is defined, the \{\textbf{\$AXIOM/doc}\} directory is used. If \{\tt AXIOM\} is not defined, the \{\textbf{/usr/local/axiom/doc}\} directory is used.

- **\tt -f \{\it path\}**

 build \{\textbf{ht.db}\} database in specified \{\it path\}.

- **\tt -d**

 delete the entries in the specified files from \{\textbf{ht.db}\}.

- **\tt -n**

 delete \{\textbf{ht.db}\} and create a new one using only the files specified.

 If none of \{\tt -n\} and \{\tt -d\} is specified, the \{\textbf{ht.db}\} is updated with the entries in the file specified.

Filename interpretation:

A full pathname (i.e. anything that has a \{\tt '/\'} in it) will be taken do be a completely specified file. Otherwise, the following interpretation will occur:

If the \{\tt HTTPATH\} variable is defined, the directories specified in it will be tried in order. If \{\tt HTTPATH\} is not defined, then, if \{\tt AXIOM\} is defined, the \{\textbf{\$AXIOM/doc}\} will be tried, else the file will be deemed missing and \{\tt htadd\} will fail.
HTXLinkPage6xPatch1A patch

— htxlinkpage6.ht —

\begin{patch}{HTXLinkPage6xPatch1A}
\begin{paste}{HTXLinkPage6xPaste1B}{HTXLinkPage6xPatch1}
\pastebutton{HTXLinkPage6xPaste1B}{Options for \textbf{htadd}}
\newline
\end{paste}
\end{patch}

HTXLinkPage6xPatch2 patch

— htxlinkpage6.ht —

\begin{patch}{HTXLinkPage6xPatch2}
\begin{paste}{HTXLinkPage6xPaste2A}{HTXLinkPage6xPatch2A}
\pastebutton{HTXLinkPage6xPaste2A}{Hide}
\indentrel{12}\newline
\indentrel{-12}\newline
The Hyperdoc program is \texttt{AXIOM}/lib/hypertex} If \texttt{AXIOM} is defined and \texttt{HTPATH} is not (this is the case when Axiom starts Hyperdoc) Hyperdoc will look in \texttt{AXIOM}/doc} for the \texttt{ht.db} file and all Hyperdoc pages. If \texttt{HTPATH} is defined, it is assumed that it alone points to the directories to be searched (the above default will NOT be searched unless explicitly specified in \texttt{HTPATH}). For each directory in \texttt{HTPATH}, the \texttt{ht.db} file, if there, will be read. Each file listed in \texttt{ht.db} will then be searched for in the complete sequence of directories in \texttt{HTPATH}. Note that the \texttt{ht.db} does not keep full pathnames of files. If a \texttt{page}, \texttt{macro} or \texttt{patch} (specified in some \texttt{ht.db}) happens to be (in a file) in more than one of the directories specified in \texttt{HTPATH}, Hyperdoc will print a warning and explain which version in which file is ignored. Generally, earlier directories in \texttt{HTPATH} are preferred over later ones.

\indentrel{-12}\newline
\end{paste}
21.27 htxlinktoppage.ht

Actions in Hyperdoc

⇒ “notitle” (HTXLinkPage1) 21.21 on page 2669
⇒ “notitle” (HTXLinkPage2) 21.22 on page 2672
⇒ “notitle” (HTXLinkPage3) 21.23 on page 2675
⇒ “notitle” (HTXLinkPage4) 21.24 on page 2681
⇒ “notitle” (HTXLinkPage5) 21.25 on page 2690
⇒ “notitle” (HTXLinkPage6) 21.26 on page 2693
This is a guide to extending HyperDoc. You can learn how to write your own HyperDoc pages and link them to the HyperDoc page database that Axiom uses.

- **Introduction**: An easy start.
- **Formatting**: Learn how to format text.
- **Actions**: Learn how to define actions.
- **Advanced features**: More effects.
- **Try it!**: Try out what you learn.

⇐ “Reference” (TopReferencePage) 3.1 on page 123
⇒ “Introduction” (HTXIntroTopPage) 21.20 on page 2668
⇒ “Formatting” (HTXFormatTopPage) 21.16 on page 2662
⇒ “Actions” (HTXLinkTopPage) 21.27 on page 2698
⇒ “Advanced features” (HTXAdvTopPage) 21.7 on page 2630
⇒ “Try it!” (HTXTryPage) 21.29 on page 2700

— htxtoppage.ht —
21.29 htxtrypage.ht

Try out Hyperdoc

— htxtrypage.ht —

This page allows you to quickly experiment with Hyperdoc. It is a good idea to keep it handy as you learn about various commands.

We are going to use here the Hyperdoc facilities that allow us to communicate with external programs and files. For more information see \downlink{later on}{HTXLinkPage5}.

In order to use the buttons at the bottom of this page, you must first specify a name for the file you are going to use to hold Hyperdoc commands. Edit the input area below to change the name of the file.

If the file you specified does not yet exist, click on the \bf{Initialize} button below. This action will fill the file with the minimum of Hyperdoc commands necessary to define a page.

If you want to edit the file, just click on the \it{Edit} button. This action will pop up a window, and invoke the \it{vi}
editor on the file. Alternatively, use an editor of your choice.

Once you have finished making the changes to the file, update it and click on the \bf{Link} button. Hyperdoc will then read the file, interpret it as a new page, and display the page on this window. If you change the file and want to display it again, just get back to this page and click on \bf{Link} again.

\endmenu
endscroll

\beginmenu
\it{Filename: }\inputstring{filename}\{\environ{HOME}/HTXplay.ht\}
\menuunixcommand{Initialize}{\texttt{cp \environ{AXIOM}/doc/HTXplay.ht filename}} Get a fresh copy from the system.
\menuunixcommand{Edit}{xterm -T "\texttt{filename}" -e vi \texttt{filename}} Edit the file.
\menuunixwindow{Link}{cat \texttt{filename}} Link to the page defined in the file.
endmenu

\it{Important: The file must contain one and only one page definition and must not contain any macro or patch definitions.}

end{page}
Chapter 22

NAG Library Routines

22.1 nagaux.ht

NAG On-line Documentation

— nagaux.ht —

\begin{verbatim}

\end{verbatim}

The on-line documentation for the NAG Foundation Library has been generated automatically from the same base material used to create the printed Reference Manual. To make the documentation readable on the widest range of machines, only the basic set of ascii characters has been used.

Certain mathematical symbols have been constructed using plain ascii characters:

\begin{verbatim}

\end{verbatim}

2703
summation signs:

\[\sum \]

square root signs:

\[\sqrt{\ } \]

Large brackets are constructed using vertical stacks of the equivalent ASCII character:

\[
\begin{align*}
(&) \quad [&] \quad \{ & \} \quad | \\
(&) \quad [&] \quad \{ & \} \quad | \\
(&) \quad [&] \quad \{ & \} \quad |
\end{align*}
\]

Fractions are represented as:

\[
\frac{a}{x+1}
\]

Greek letters are represented by their names enclosed in round brackets:

\[
(\alpha) \quad (\beta) \quad (\gamma) \quad \ldots.
\]

\[
(\Alpha) \quad (\Beta) \quad (\Gamma) \quad \ldots.
\]

Some characters are accented using:

\[
\hat{X} \quad \tilde{X} \quad \overline{X}
\]

Other mathematical symbols are represented as follows:

\[
\times \quad \Rightarrow \quad \leftarrow \quad \approx
\]

\[
times \quad \text{left-right arrow} \\
\text{left arrow} \quad \text{similar to}
\]
NAG Documentation: summary

— nagaux.ht —

Introduction

List of Routines

List of Routines

The NAG Foundation Library contains three categories of routines which can be called by users. They are listed separately in the
three sections below.

Fully Documented Routines
254 routines, for each of which an individual routine
document is provided. These are regarded as the primary
contents of the Foundation Library.

Fundamental Support Routines
83 comparatively simple routines which are documented in
compact form in the relevant Chapter Introductions (F06,
X01, X02).

Routines from the NAG Fortran Library
An additional 167 routines from the NAG Fortran Library,
which are used as auxiliaries in the Foundation Library.
They are not documented in this publication, but can be
called if you are already familiar with their use in the
Fortran Library. Only their names are given here.

Note: all the routines in the above categories have names ending
in 'F'. Occasionally this publication may refer to routines whose
names end in some other letter (e.g. 'Z', 'Y', 'X'). These are
auxiliary routines whose names may be passed as parameters to a
Foundation Library routine; you only need to know their names,
not how to call them directly.

Fully Documented Routines

The Foundation Library contains 254 user-callable routines, for
each of which an individual routine document is provided, in the
following chapters:

C02 -- Zeros of Polynomials

C02AFF All zeros of complex polynomial, modified Laguerre method
C02AGF All zeros of real polynomial, modified Laguerre method

C05 -- Roots of One or More Transcendental Equations

C05ADF Zero of continuous function in given interval, Bus and
Dekker algorithm
C05NBF Solution of system of nonlinear equations using function
values only
C05PBF Solution of system of nonlinear equations using 1st
derivatives
22.1. NAGAUX.HT

C05ZAF Check user's routine for calculating 1st derivatives
C06 Summation of Series
C06EAF Single 1-D real discrete Fourier transform, no extra workspace
C06EBF Single 1-D Hermitian discrete Fourier transform, no extra workspace
C06ECF Single 1-D complex discrete Fourier transform, no extra workspace
C06EKF Circular convolution or correlation of two real vectors, no extra workspace
C06FPF Multiple 1-D real discrete Fourier transforms
C06FQF Multiple 1-D Hermitian discrete Fourier transforms
C06FRF Multiple 1-D complex discrete Fourier transforms
C06FUF 2-D complex discrete Fourier transform
C06GBF Complex conjugate of Hermitian sequence
C06GCF Complex conjugate of complex sequence
C06GQF Complex conjugate of multiple Hermitian sequences
C06GSF Convert Hermitian sequences to general complex sequences
D01 Quadrature
D01AJF 1-D quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly-behaved integrands
D01AKF 1-D quadrature, adaptive, finite interval, method suitable for oscillating functions
D01ALF 1-D quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
D01AMF 1-D quadrature, adaptive, infinite or semi-infinite interval
D01ANF 1-D quadrature, adaptive, finite interval, weight function cos((omega)x) or sin((omega)x)
CHAPTER 22. NAG LIBRARY ROUTINES

D01APF 1-D quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type

D01AQF 1-D quadrature, adaptive, finite interval, weight function 1/(x-c), Cauchy principal value (Hilbert transform)

D01ASF 1-D quadrature, adaptive, semi-infinite interval, weight function cos((omega)x) or sin((omega)x)

D01BBF Weights and abscissae for Gaussian quadrature rules

D01FCF Multi-dimensional adaptive quadrature over hyper-rectangle

D01GAF 1-D quadrature, integration of function defined by data values, Gill-Miller method

D01GBF Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

D02 -- Ordinary Differential Equations

D02BBF ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output

D02BHF ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero

D02CJF ODEs, IVP, Adams method, until function of solution is zero, intermediate output

D02EJF ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output

D02GAF ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem

D02GBF ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem

D02KEF 2nd order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points

D02RAF ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
22.1. NAGAUX.HT

D03 -- Partial Differential Equations

D03EDF Elliptic PDE, solution of finite difference equations by a multigrid technique

D03EEF Discretize a 2nd order elliptic PDE on a rectangle

D03FAF Elliptic PDE, Helmholtz equation, 3-D Cartesian coordinates

E01 -- Interpolation

E01BAF Interpolating functions, cubic spline interpolant, one variable

E01BEF Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable

E01BFF Interpolated values, interpolant computed by E01BEF, function only, one variable

E01BGF Interpolated values, interpolant computed by E01BEF, function and 1st derivative, one variable

E01BHF Interpolated values, interpolant computed by E01BEF, definite integral, one variable

E01DAF Interpolating functions, fitting bicubic spline, data on rectangular grid

E01SAF Interpolating functions, method of Renka and Cline, two variables

E01SBF Interpolated values, evaluate interpolant computed by E01SAF, two variables

E01SEF Interpolating functions, modified Shepard's method, two variables

E01SFF Interpolated values, evaluate interpolant computed by E01SEF, two variables

E02 -- Curve and Surface Fitting

E02ADF Least-squares curve fit, by polynomials, arbitrary data points

E02AEF Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points,

E02AHF Derivative of fitted polynomial in Chebyshev series form

E02AJF Integral of fitted polynomial in Chebyshev series form

E02AKF Evaluation of fitted polynomial in one variable, from Chebyshev series form

E02BAF Least-squares curve cubic spline fit (including interpolation)

E02BBF Evaluation of fitted cubic spline, function only

E02BCF Evaluation of fitted cubic spline, function and derivatives

E02BDF Evaluation of fitted cubic spline, definite integral

E02BEF Least-squares cubic spline curve fit, automatic knot placement

E02DAF Least-squares surface fit, bicubic splines

E02DCF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid

E02DDF Least-squares surface fit by bicubic splines with automatic knot placement, scattered data

E02DEF Evaluation of a fitted bicubic spline at a vector of points

E02DFF Evaluation of a fitted bicubic spline at a mesh of points

E02GAF L₁-approximation by general linear function

E02ZAF Sort 2-D data into panels for fitting bicubic splines

E04 -- Minimizing or Maximizing a Function

E04DGF Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables using 1st derivatives

E04DJF Read optional parameter values for E04DGF from external file
E04DKF Supply optional parameter values to E04DGF

E04FDF Unconstrained minimum of a sum of squares, combined
Gauss-Newton and modified Newton algorithm using function
values only

E04GCF Unconstrained minimum of a sum of squares, combined
Gauss-Newton and quasi-Newton algorithm, using 1st
derivatives

E04JAF Minimum, function of several variables, quasi-Newton
algorithm, simple bounds, using function values only

E04MBF Linear programming problem

E04NAF Quadratic programming problem

E04UCF Minimum, function of several variables, sequential QP
method, nonlinear constraints, using function values and
optionally 1st derivatives

E04UDF Read optional parameter values for E04UCF from external
file

E04UEF Supply optional parameter values to E04UCF

E04YCF Covariance matrix for nonlinear least-squares problem

F01 -- Matrix Factorizations

F01BRF LU factorization of real sparse matrix

F01BSF LU factorization of real sparse matrix with known
sparsity pattern

T

F01MAF LL factorization of real sparse symmetric positive-
definite matrix

T

F01MCF LDL factorization of real symmetric positive-definite
variable-bandwidth matrix

F01QCF QR factorization of real m by n matrix (m>=n)

T

F01QDF Operations with orthogonal matrices, compute QB or QB
after factorization by F01QCF

F01QEF Operations with orthogonal matrices, form columns of Q
after factorization by F01QCF

F01RCF QR factorization of complex m by n matrix (m>=n)

F01RDF Operations with unitary matrices, compute QB or Q B after factorization by F01RCF

F01REF Operations with unitary matrices, form columns of Q after factorization by F01RCF

F02 -- Eigenvalues and Eigenvectors

F02AAF All eigenvalues of real symmetric matrix

F02ABF All eigenvalues and eigenvectors of real symmetric matrix

F02ADF All eigenvalues of generalized real symmetric-definite eigenproblem

F02AEF All eigenvalues and eigenvectors of generalized real symmetric-definite eigenproblem

F02AFF All eigenvalues of real matrix

F02AGF All eigenvalues and eigenvectors of real matrix

F02AJF All eigenvalues of complex matrix

F02AKF All eigenvalues and eigenvectors of complex matrix

F02AWF All eigenvalues of complex Hermitian matrix

F02AXF All eigenvalues and eigenvectors of complex Hermitian matrix

F02BBF Selected eigenvalues and eigenvectors of real symmetric matrix

F02BJF All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, real matrices

F02FJF Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem

F02WEF SVD of real matrix

F02XEF SVD of complex matrix

F04 -- Simultaneous Linear Equations
F04ADF Approximate solution of complex simultaneous linear
 equations with multiple right-hand sides

F04ARF Approximate solution of real simultaneous linear
 equations, one right-hand side

F04ASF Accurate solution of real symmetric positive-definite
 simultaneous linear equations, one right-hand side

F04ATF Accurate solution of real simultaneous linear equations,
 one right-hand side

F04AXF Approximate solution of real sparse simultaneous linear
 equations (coefficient matrix already factorized by
 F01BRF or F01BSF)

F04FAF Approximate solution of real symmetric positive-definite
 tridiagonal simultaneous linear equations, one right-hand
 side

F04JGF Least-squares (if rank = n) or minimal least-squares (if
 rank <n) solution of m real equations in n unknowns, rank
 <=n, m>=n

F04MAF Real sparse symmetric positive-definite simultaneous
 linear equations (coefficient matrix already factorized)

F04MBF Real sparse symmetric simultaneous linear equations

F04MCF Approximate solution of real symmetric positive-definite
 variable-bandwidth simultaneous linear equations
 (coefficient matrix already factorized)

F04QAF Sparse linear least-squares problem, m real equations in
 n unknowns

F07 -- Linear Equations (LAPACK)

F07ADF (DGETRF) LU factorization of real m by n matrix

F07AEF (DGETRS) Solution of real system of linear equations,
 multiple right-hand sides, matrix already factorized by
 F07ADF

F07FDF (DPOTRF) Cholesky factorization of real symmetric
 positive-definite matrix

F07FEF (DPOTRS) Solution of real symmetric positive-definite
 system of linear equations, multiple right-hand sides,
matrix already factorized by F07FDF

G01 -- Simple Calculations on Statistical Data

G01AAF Mean, variance, skewness, kurtosis etc, one variable, from raw data

G01ADF Mean, variance, skewness, kurtosis etc, one variable, from frequency table

G01AEF Frequency table from raw data

G01AFF Two-way contingency table analysis, with (chi) /Fisher’s exact test

G01ALF Computes a five-point summary (median, hinges and extremes)

G01ARF Constructs a stem and leaf plot

G01EAF Computes probabilities for the standard Normal distribution

G01EBF Computes probabilities for Student’s t-distribution

G01ECF Computes probabilities for (chi) distribution

G01EDF Computes probabilities for F-distribution

G01EEF Computes upper and lower tail probabilities and probability density function for the beta distribution

G01EFF Computes probabilities for the gamma distribution

G01FAF Computes deviates for the standard Normal distribution

G01FBF Computes deviates for Student’s t-distribution

G01FCF Computes deviates for the (chi) distribution

G01FDF Computes deviates for the F-distribution

G01FEF Computes deviates for the beta distribution

G01FFF Computes deviates for the gamma distribution

G01HAF Computes probabilities for the bivariate Normal
distribution

G02 -- Correlation and Regression Analysis

G02BNF Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data

G02BQF Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data

G02BXF Computes (optionally weighted) correlation and covariance matrices

G02CAF Simple linear regression with constant term, no missing values

G02DAF Fits a general (multiple) linear regression model

G02DGF Fits a general linear regression model for new dependent variable

G02DNF Computes estimable function of a general linear regression model and its standard error

G02FAF Calculates standardized residuals and influence statistics

G02GBF Fits a generalized linear model with binomial errors

G02GCF Fits a generalized linear model with Poisson errors

G03 -- Multivariate Methods

G03AAF Performs principal component analysis

G03ADF Performs canonical correlation analysis

G03BAF Computes orthogonal rotations for loading matrix, generalized orthomax criterion

G05 -- Random Number Generators

G05CAF Pseudo-random double precision numbers, uniform distribution over (0,1)

G05CBF Initialise random number generating routines to give repeatable sequence

G05CCF Initialise random number generating routines to give non-repeatable sequence
G05CFF Save state of random number generating routines
G05CGF Restore state of random number generating routines
G05DDF Pseudo-random double precision numbers, Normal distribution
G05DFF Pseudo-random double precision numbers, Cauchy distribution
G05DPF Pseudo-random double precision numbers, Weibull distribution
G05DYF Pseudo-random integer from uniform distribution
G05DZF Pseudo-random logical (boolean) value
G05EAF Set up reference vector for multivariate Normal distribution
G05ECF Set up reference vector for generating pseudo-random integers, Poisson distribution
G05EDF Set up reference vector for generating pseudo-random integers, binomial distribution
G05EHF Pseudo-random permutation of an integer vector
G05EJF Pseudo-random sample from an integer vector
G05EXF Set up reference vector from supplied cumulative distribution function or probability distribution function
G05EYF Pseudo-random integer from reference vector
G05EZF Pseudo-random multivariate Normal vector from reference vector
G05FAF Generates a vector of pseudo-random numbers from a uniform distribution
G05FBF Generates a vector of pseudo-random numbers from a (negative) exponential distribution
G05FDF Generates a vector of pseudo-random numbers from a Normal distribution
G05FEF Generates a vector of pseudo-random numbers from a beta
distribution
G05FFF Generates a vector of pseudo-random numbers from a gamma
distribution
G05HDF Generates a realisation of a multivariate time series
from a VARMA model
G08 -- Nonparameteric Statistics
G08AAF Sign test on two paired samples
G08ACF Median test on two samples of unequal size
G08AEF Friedman two-way analysis of variance on k matched
samples
G08AFF Kruskal-Wallis one-way analysis of variance on k samples
of unequal size
G08AGF Performs the Wilcoxon one sample (matched pairs) signed
rank test
G08AHF Performs the Mann-Whitney U test on two independent
samples
G08AJF Computes the exact probabilities for the Mann-Whitney U
statistic, no ties in pooled sample
G08AKF Computes the exact probabilities for the Mann-Whitney U
statistic, ties in pooled sample
2
G08CGF Performs the (chi) goodness of fit test, for standard
continuous distributions
G13 -- Time Series Analysis
G13AAF Univariate time series, seasonal and non-seasonal
differencing
G13ABF Univariate time series, sample autocorrelation function
G13ACF Univariate time series, partial autocorrelations from
autocorrelations
G13ADF Univariate time series, preliminary estimation, seasonal
ARIMA model
G13AFF Univariate time series, estimation, seasonal ARIMA model
CHAPTER 22. NAG LIBRARY ROUTINES

G13AGF Univariate time series, update state set for forecasting

G13AHF Univariate time series, forecasting from state set

G13AJF Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model

G13ASF Univariate time series, diagnostic checking of residuals, following G13AFF

G13BAF Multivariate time series, filtering (pre-whitening) by an ARIMA model

G13BCF Multivariate time series, cross correlations

G13BDF Multivariate time series, preliminary estimation of transfer function model

G13BEF Multivariate time series, estimation of multi-input model

G13BJF Multivariate time series, state set and forecasts from fully specified multi-input model

G13CBF Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window

G13CDF Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window

M01 -- Sorting

M01CAF Sort a vector, double precision numbers

M01DAF Rank a vector, double precision numbers

M01DEF Rank rows of a matrix, double precision numbers

M01DJF Rank columns of a matrix, double precision numbers

M01EAF Rearrange a vector according to given ranks, double precision numbers

M01ZAF Invert a permutation

S -- Approximations of Special Functions

z
S01EAF Complex exponential, \(e \)
S13AAF Exponential integral \(E(x) \)
 \(1 \)
S13ACF Cosine integral \(\text{Ci}(x) \)
S13ADF Sine integral \(\text{Si}(x) \)
S14AAF Gamma function
S14ABF Log Gamma function
S14BAF Incomplete gamma functions \(P(a,x) \) and \(Q(a,x) \)
S15ADF Complement of error function \(\text{erfc}(x) \)
S15AEF Error function \(\text{erf}(x) \)
S17ACF Bessel function \(Y_0(x) \)
S17ADF Bessel function \(Y_1(x) \)
S17AEF Bessel function \(J_0(x) \)
S17AFF Bessel function \(J_1(x) \)
S17AGF Airy function \(\text{Ai}(x) \)
S17AHF Airy function \(\text{Bi}(x) \)
S17AJF Airy function \(\text{Ai}'(x) \)
S17AKF Airy function \(\text{Bi}'(x) \)
S17DCF Bessel functions \(Y_{\nu+a}(z) \), real \(a \geq 0 \), complex \(z \)
S17DEF Bessel functions \(J_{\nu+a}(z) \), real \(a \geq 0 \), complex \(z \)
S17DGF Airy functions \(\text{Ai}(z) \) and \(\text{Ai}'(z) \), complex \(z \)
S17DHF Airy functions \(\text{Bi}(z) \) and \(\text{Bi}'(z) \), complex \(z \)
S17DLF Hankel functions $H_j^{(nu)}(z)$, $j=1,2$, real $a \geq 0$, complex z,
 $\text{(nu)}=0,1,2,...$

S18ACF Modified Bessel function $K_0(x)$

S18ADF Modified Bessel function $K_1(x)$

S18AEF Modified Bessel function $I_0(x)$

S18AFF Modified Bessel function $I_1(x)$

S18DCF Modified Bessel functions $K_\nu(z)$, real $a \geq 0$, complex (nu)+a
 z, $\text{(nu)}=0,1,2,...$

S18DEF Modified Bessel functions $I_\nu(z)$, real $a \geq 0$, complex (nu)+a
 z, $\text{(nu)}=0,1,2,...$

S19AAF Kelvin function $\text{ber} x$

S19ABF Kelvin function $\text{bei} x$

S19ACF Kelvin function $\text{ker} x$

S19ADF Kelvin function $\text{kei} x$

S20ACF Fresnel integral $S(x)$

S20ADF Fresnel integral $C(x)$

S21BAF Degenerate symmetrised elliptic integral of 1st kind
 $R(x,y)$
 C

S21BBF Symmetrised elliptic integral of 1st kind $R(x,y,z)$
 F

S21BCF Symmetrised elliptic integral of 2nd kind $R(x,y,z)$
 D

S21BDF Symmetrised elliptic integral of 3rd kind $R(x,y,z,r)$
 J
X04 -- Input/Output Utilities
X04AAF Return or set unit number for error messages
X04ABF Return or set unit number for advisory messages
X04CAF Print a real general matrix
X04DAF Print a complex general matrix

X05 -- Date and Time Utilities
X05AAF Return date and time as an array of integers
X05ABF Convert array of integers representing date and time to character string
X05ACF Compare two character strings representing date and time
X05BAF Return the CPU time

Fundamental Support Routines
The following fundamental support routines are provided and are documented in compact form in the relevant chapter introductory material:

F06 -- Linear Algebra Support Routines
F06AAF (DROTG) Generate real plane rotation
F06EAF (DDOT) Dot product of two real vectors
F06ECF (DAXPY) Add scalar times real vector to real vector
F06EDF (DSCAL) Multiply real vector by scalar
F06EFF (DCOPY) Copy real vector
F06EGF (DSWAP) Swap two real vectors
F06EJF (DNRM2) Compute Euclidean norm of real vector
F06EKF (DASUM) Sum the absolute values of real vector elements
F06EPF (DROT) Apply real plane rotation
CHAPTER 22. NAG LIBRARY ROUTINES

F06GAF (ZDOTU) Dot product of two complex vectors, unconjugated
F06GBF (ZDOTC) Dot product of two complex vectors, conjugated
F06GCF (ZAXPY) Add scalar times complex vector to complex vector
F06GDF (ZSCAL) Multiply complex vector by complex scalar
F06GFF (ZCOPY) Copy complex vector
F06GGF (ZSWAP) Swap two complex vectors
F06JDF (ZDSCAL) Multiply complex vector by real scalar
F06JJF (DZNRM2) Compute Euclidean norm of complex vector
F06JKF (DZASUM) Sum the absolute values of complex vector elements
F06JLF (IDAMAX) Index, real vector element with largest absolute value
F06JMF (IZAMAX) Index, complex vector element with largest absolute value
F06PAF (DGEMV) Matrix-vector product, real rectangular matrix
F06PBF (DGBMV) Matrix-vector product, real rectangular band matrix
F06PCF (DSYMV) Matrix-vector product, real symmetric matrix
F06PDF (DSBMV) Matrix-vector product, real symmetric band matrix
F06PEF (DSPMV) Matrix-vector product, real symmetric packed matrix
F06PFF (DTRMV) Matrix-vector product, real triangular matrix
F06PGF (DTBMV) Matrix-vector product, real triangular band matrix
F06PHF (DTPMV) Matrix-vector product, real triangular packed matrix
F06PJF (DTRSV) System of equations, real triangular matrix
F06PKF (DTBSV) System of equations, real triangular band matrix
F06PLF (DTPSV) System of equations, real triangular packed
matrix

F06PMF (DGER) Rank-1 update, real rectangular matrix
F06PPF (DSYR) Rank-1 update, real symmetric matrix
F06PQF (DSPR) Rank-1 update, real symmetric packed matrix
F06PRF (DSYR2) Rank-2 update, real symmetric matrix
F06PSF (DSPR2) Rank-2 update, real symmetric packed matrix
F06SAF (ZGEMV) Matrix-vector product, complex rectangular matrix
F06SBF (ZGEMV) Matrix-vector product, complex rectangular band matrix
F06SCF (ZHEMV) Matrix-vector product, complex Hermitian matrix
F06SDF (ZHEMV) Matrix-vector product, complex Hermitian band matrix
F06SEF (ZHPMV) Matrix-vector product, complex Hermitian packed matrix
F06SFF (ZTRMV) Matrix-vector product, complex triangular matrix
F06SGF (ZTRMV) Matrix-vector product, complex triangular band matrix
F06SHF (ZTPMV) Matrix-vector product, complex triangular packed matrix
F06SFF (ZTRSV) System of equations, complex triangular matrix
F06SKF (ZTRSV) System of equations, complex triangular band matrix
F06SLF (ZTPSV) System of equations, complex triangular packed matrix
F06SMF (ZGERU) Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF (ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF (ZHER) Rank-1 update, complex Hermitian matrix
F06SQF (ZHER) Rank-1 update, complex Hermitian packed matrix
CHAPTER 22. NAG LIBRARY ROUTINES

F06SRF (ZHER2) Rank-2 update, complex Hermitian matrix
F06SSF (ZHPR2) Rank-2 update, complex Hermitian packed matrix
F06YAF (DGEMM) Matrix-matrix product, two real rectangular matrices
F06YCF (DSYMM) Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
F06YFF (DTRMM) Matrix-matrix product, one real triangular matrix, one real rectangular matrix
F06YJF (DTRSM) Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
F06YPF (DSYRK) Rank-k update of a real symmetric matrix
F06YRF (DSYR2K) Rank-2k update of a real symmetric matrix
F06ZAF (ZGEMM) Matrix-matrix product, two complex rectangular matrices
F06ZCF (ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
F06ZFF (ZTRMM) Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
F06ZJF (ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
F06ZPF (ZHERK) Rank-k update of a complex Hermitian matrix
F06ZRF (ZHER2K) Rank-2k update of a complex Hermitian matrix
F06ZTF (ZSYMM) Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
F06ZUF (ZSYRK) Rank-k update of a complex symmetric matrix
F06ZWF (ZSYR2K) Rank-2k update of a complex symmetric matrix

X01 -- Mathematical Constants
X01AAF (pi)
X01ABF Euler’s constant, (gamma)
22.1. NAGAUX.HT

X02 -- Machine Constants

X02AHF Largest permissible argument for SIN and COS

X02AJF Machine precision

X02AKF Smallest positive model number

X02ALF Largest positive model number

X02AMF Safe range of floating-point arithmetic

X02ANF Safe range of complex floating-point arithmetic

X02BBF Largest representable integer

X02BEF Maximum number of decimal digits that can be represented

X02BHF Parameter of floating-point arithmetic model, b

X02BJF Parameter of floating-point arithmetic model, p

X02BKF Parameter of floating-point arithmetic model, e

X02BLF Parameter of floating-point arithmetic model, e

X02DJF Parameter of floating-point arithmetic model, ROUNDS

Routines from the NAG Fortran Library

A number of routines from the NAG Fortran Library are used in the
Foundation Library as auxiliaries and are not documented here:

A00AAF
A02AAF A02ABF A02ACF
C02AJF
C05AZF C05NCF C05PCF
C06FAF C06FBF C06FCF C06FFF C06FJF C06FKF
C06HAF C06HBF C06HCF C06HDF
D02CBF D02CHF D02MNF D02NSF D02NVF D02PAF
D02XAF D02XKF D02YAF D02ZAF
E02AFF
E04GBF E04GEF E04YAF
F01ADF F01AEF F01AFF F01AGF F01AHF F01AIF
F01AKF F01AMF F01APF F01ATF F01AUF F01AVF
F01AWF F01AXF F01BCF F01BTF F01CRF F01LBF
F01LZF F01QAF F01QFF F01QGF F01QJF F01QKF
F01RFF F01RGF F01RJF F01RKF
F02AMF F02ANF F02APF F02AQF F02AVF F02AYF
F02BEF F02SWF F02SXF F02SYF F02SZF F02UWF
F02UXF F02UUF F02WDF F02WUF F02XUF
F03AAF F03ABF F03AEF F03AFF
F04AAF F04AEF F04AFF F04AGF F04AHF F04AJF
F04AMF F04ANF F04AYF F04LDF F04YAF F04YCF
F06BAF F06BCF F06BLF F06BMF F06BNF F06CAF
F06CCF F06CLF F06DBF F06DFD F06DBF F06FBC F06FCF
F06DFD F06GDF F06FGF F06FJF F06FLF F06FPF F06FQF
F06FRF F06FSF F06HGF F06HDF F06HGF F06HGF F06HRF
F06KFF F06KJF F06KLF F06QFF F06QHF F06QKF
F06QRF F06QSF F06QTF F06QVF F06QWF F06QXF
F06RAF F06RFJ F06TFF F06THF F06TFF F06TFF F06UXF
F06VJF F06VKF F06VXF
F07AGF F07AHF F07AJF F07FGF F07FHF F07JF
F07TJF
G01CEF
INTRO(3NAG) Foundation Library (12/10/92) INTRO(3NAG)

Introduction

Essential Introduction

Essential Introduction to the NAG Foundation Library

This document is essential reading for any prospective user of the Library.

This document appears in both the Handbook and the Reference Manual for the NAG Foundation Library, but with a different Section 3 to describe the different forms of routine documentation in the two publications.

1. The Library and its Documentation
1.1. Structure of the Library
1.2. Structure of the Documentation
1.3. On-line Documentation
1.4. Implementations of the Library
1.5. Library Identification
1.6. Fortran Language Standards
2. Using the Library
2.1. General Advice
2.2. Programming Advice
2.3. Error handling and the Parameter IFAIL
2.4. Input/output in the Library
2.5. Auxiliary Routines
3.1. General Guidance
3.2. Structure of Routine Documents
3.3. Specifications of Parameters
3.3.1. Classification of Parameters
3.3.2. Constraints and Suggested Values
3.3.3. Array Parameters
3.4. Implementation-dependent Information
3.5. Example Programs and Results
3.6. Summary for New Users
4. Relationship between the Foundation Library and other NAG Libraries
4.1. NAG Fortran Library
1. The Library and its Documentation

1.1. Structure of the Library

The NAG Foundation Library is a comprehensive collection of Fortran 77 routines for the solution of numerical and statistical problems. The word 'routine' is used to denote 'subroutine' or ' function'.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each chapter has a three-character name and a title, e.g.

D01 -- Quadrature

Exceptionally one chapter (S) has a one-character name. (The chapters and their names are based on the ACM modified SHARE classification index [1].)

All documented routines in the Library have six-character names, beginning with the characters of the chapter name, e.g.

D01AJF

Note that the second and third characters are digits, not letters; e.g. 0 is the digit zero, not the letter O. The last letter of each routine name is always 'F'.

1.2. Structure of the Documentation

There are two types of manual for the NAG Foundation Library: a Handbook and a Reference Manual.

The Handbook has the same chapter structure as the Library: each chapter of routines in the Library has a corresponding chapter (of the same name) in the Handbook. The chapters occur in alphanumerical order. General introductory documents and indexes are placed at the beginning of the Handbook.
Each chapter in the Handbook contains a Chapter Introduction, followed by concise summaries of the functionality and parameter specifications of each routine in the chapter. Exceptionally, in some chapters (F06, X01, X02) which contain simple support routines, there are no concise summaries: all the routines are described together in the Chapter Introduction.

The Reference Manual provides complete reference documentation for the NAG Foundation Library. In the Reference Manual, each chapter consists of the following documents:

- Chapter Introduction, e.g. Introduction -- D01;
- Chapter Contents, e.g. Contents -- D01;
- routine documents, one for each documented routine in the chapter.

A routine document has the same name as the routine which it describes. Within each chapter, routine documents occur in alphabetic order. As in the Handbook, chapters F06, X01 and X02 do not contain separate documentation for individual routines.

The general introductory documents, indexes and chapter introductions are the same in the Reference Manual as in the Handbook. The only exception is that the Essential Introduction contains a different Section 3 in the two publications, to describe the different forms of routine documentation.

1.3. On-line Documentation

Extensive on-line documentation is included as an integral part of the Foundation Library product. This consists of a number of components:

- general introductory material, including the Essential Introduction
- a summary list of all documented routines
- a KWIC Index
- Chapter Introductions
- routine documents
- example programs, data and results.

The material has been derived in a number of forms to cater for
different user requirements, e.g. UNIX man pages, plain text,
RICH TEXT format etc, and the appropriate version is included on
the distribution media. For each implementation of the Foundation
Library the specific documentation (Installers' Note, Users' Note
etc) gives details of what is provided.

1.4. Implementations of the Library

The NAG Foundation Library is available on many different
computer systems. For each distinct system, an implementation of
the Library is prepared by NAG, e.g. the IBM RISC System/6000
implementation. The implementation is distributed as a tested
compiled library.

An implementation is usually specific to a range of machines; it
may also be specific to a particular operating system or
compilation system.

Essentially the same facilities are provided in all
implementations of the Library, but, because of differences in
arithmetic behaviour and in the compilation system, routines
cannot be expected to give identical results on different
systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library,
with the help of a few simple conventions, and a small amount of
implementation-dependent information, which is published in a
separate Users' Note for each implementation (see Section 3.4).

1.5. Library Identification

You must know which implementation of the Library you are using
or intend to use. To find out which implementation of the Library
is available on your machine, you can run a program which calls
the NAG Foundation Library routine A00AAF. This routine has no
parameters; it simply outputs text to the advisory message unit
(see Section 2.4). An example of the output is:

*** Start of NAG Foundation Library implementation details ***
Implementation title: IBM RISC System/6000
Precision: FORTRAN double precision
Product Code: FFIB601D
Release: 1
*** End of NAG Foundation Library implementation details ***

(The product code can be ignored, except possibly when
communicating with NAG; see Section 4.)

1.6. Fortran Language Standards
All routines in the Library conform to ANSI Standard Fortran 90 [8].

Most of the routines in the Library were originally written to conform to the earlier Fortran 66 [6] and Fortran 77 [7] standards, and their calling sequences contain some parameters which are not strictly necessary in Fortran 90.

2. Using the Library

2.1. General Advice

A NAG Foundation Library routine cannot be guaranteed to return meaningful results, irrespective of the data supplied to it. Care and thought must be exercised in:

(a) formulating the problem;

(b) programming the use of library routines;

(c) assessing the significance of the results.

2.2. Programming Advice

The NAG Foundation Library and its documentation are designed on the assumption that users know how to write a calling program in Fortran.

When programming a call to a routine, read the routine document carefully, especially the description of the Parameters. This states clearly which parameters must have values assigned to them on entry to the routine, and which return useful values on exit. See Section 3.3 for further guidance.

If a call to a Library routine results in an unexpected error message from the system (or possibly from within the Library), check the following:

Has the NAG routine been called with the correct number of parameters?

Do the parameters all have the correct type?

Have all array parameters been dimensioned correctly?

Remember that all floating-point parameters must be declared to be double precision, either with an explicit DOUBLE PRECISION declaration (or COMPLEX(KIND(1.0D0)) if they are complex), or by
using a suitable IMPLICIT statement.

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not use names which contain a three-character NAG chapter name embedded in them; they may clash with the names of an auxiliary routine or COMMON block used by the NAG Library.

2.3. Error handling and the Parameter IFAIL

NAG Foundation Library routines may detect various kinds of error, failure or warning conditions. Such conditions are handled in a systematic way by the Library. They fall roughly into three classes:

(i) an invalid value of a parameter on entry to a routine;

(ii) a numerical failure during computation (e.g. approximate singularity of a matrix, failure of an iteration to converge);

(iii) a warning that although the computation has been completed, the results cannot be guaranteed to be completely reliable.

All three classes are handled in the same way by the Library, and are all referred to here simply as 'errors'.

The error-handling mechanism uses the parameter IFAIL, which is the last parameter in the calling sequence of most NAG Foundation Library routines. IFAIL serves two purposes:

(i) it allows users to specify what action a Library routine should take if it detects an error;

(ii) it reports the outcome of a call to a Library routine, either success (IFAIL = 0) or failure (IFAIL /= 0, with different values indicating different reasons for the failure, as explained in Section 6 of the routine document).

For the first purpose IFAIL must be assigned a value before calling the routine; since IFAIL is reset by the routine, it must be passed as a variable, not as an integer constant. Allowed values on entry are:

- IFAIL=0: an error message is output, and execution is terminated ('hard failure');
- IFAIL=+1: execution continues without any error message;
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL=-1: an error message is output, and execution continues.

The settings IFAIL =+-1 are referred to as 'soft failure'. The safest choice is to set IFAIL to 0, but this is not always convenient: some routines return useful results even though a failure (in some cases merely a warning) is indicated. However, if IFAIL is set to +-1 on entry, it is essential for the program to test its value on exit from the routine, and to take appropriate action.

The specification of IFAIL in Section 5 of a routine document suggests a suitable setting of IFAIL for that routine.

2.4. Input/output in the Library

Most NAG Foundation Library routines perform no output to an external file, except possibly to output an error message. All error messages are written to a logical error message unit. This unit number (which is set by default to 6 in most implementations) can be changed by calling the Library routine X04AAF.

Some NAG Foundation Library routines may optionally output their final results, or intermediate results to monitor the course of computation. All output other than error messages is written to a logical advisory message unit. This unit number (which is also set by default to 6 in most implementations) can be changed by calling the Library routine X04ABF. Although it is logically distinct from the error message unit, in practice the two unit numbers may be the same.

All output from the Library is formatted.

The only Library routines which perform input from an external file are a few 'option-setting' routines in Chapter E04: the unit number is a parameter to the routine, and all input is formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files, either by an OPEN statement in your calling program, or by operating system commands.

2.5. Auxiliary Routines

In addition to those Library routines which are documented and are intended to be called by users, the Library also contains many auxiliary routines.

In general, you need not be concerned with them at all, although
you may be made aware of their existence if, for example, you examine a memory map of an executable program which calls NAG routines. The only exception is that when calling some NAG Foundation Library routines, you may be required or allowed to supply the name of an auxiliary routine from the Library as an external procedure parameter. The routine documents give the necessary details. In such cases, you only need to supply the name of the routine; you never need to know details of its parameter-list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to which they are related, but with last letter 'Z', 'Y', and so on, e.g. D01AJZ is an auxiliary routine called by D01AJF.

3.1. General Guidance

The Reference Manual is designed to serve the following functions:

-- to give background information about different areas of numerical and statistical computation;

-- to advise on the choice of the most suitable NAG Foundation Library routine or routines to solve a particular problem;

-- to give all the information needed to call a NAG Foundation Library routine correctly from a Fortran program, and to assess the results.

At the beginning of the Manual are some general introductory documents. The following may help you to find the chapter, and possibly the routine, which you need to solve your problem:

Contents -- a list of routines in the Library, by chapter;

Summary

KWIC Index -- a keyword index to chapters and routines.

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction, which gives background information about that area of numerical computation, and recommendations on the choice of a routine, including indexes, tables or decision trees.

When you have chosen a routine, you must consult the routine document. Each routine document is essentially self-contained (it
may contain references to related documents. It includes a description of the method, detailed specifications of each parameter, explanations of each error exit, and remarks on accuracy.

Example programs which illustrate the use of each routine are distributed with the Library in machine-readable form.

3.2. Structure of Routine Documents

All routine documents have the same structure, consisting of nine numbered sections:

1. Purpose
2. Specification
3. Description
4. References
5. Parameters (see Section 3.3 below)
6. Error Indicators
7. Accuracy
8. Further Comments
9. Example (see Section 3.5 below)

In a few documents, Section 5 also includes a description of printed output which may optionally be produced by the routine.

3.3. Specifications of Parameters

Section 5 of each routine document contains the specification of the parameters, in the order of their appearance in the parameter list.

3.3.1. Classification of Parameters

Parameters are classified as follows:

Input : you must assign values to these parameters on or before entry to the routine, and these values are unchanged on exit from the routine.

Output : you need not assign values to these parameters on or before entry to the routine; the routine may assign values to
them.

Input/Output: you must assign values to these parameters on or before entry to the routine, and the routine may then change these values.

Workspace: array parameters which are used as workspace by the routine. You must supply arrays of the correct type and dimension, but you need not be concerned with their contents.

External Procedure: a subroutine or function which must be supplied (e.g. to evaluate an integrand or to print intermediate output). Usually it must be supplied as part of your calling program, in which case its specification includes full details of its parameter-list and specifications of its parameters (all enclosed in a box). Its parameters are classified in the same way as those of the Library routine, but because you must write the procedure rather than call it, the significance of the classification is different:

Input: values may be supplied on entry, which your procedure must not change.

Output: you may or must assign values to these parameters before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them before exit from your procedure.

Occasionally, as mentioned in Section 2.5, the procedure can be supplied from the NAG Library, and then you only need to know its name.

User Workspace: array parameters which are passed by the Library routine to an external procedure parameter. They are not used by the routine, but you may use them to pass information between your calling program and the external procedure.

3.3.2. Constraints and Suggested Values

The word 'Constraint:' or 'Constraints:' in the specification of an Input parameter introduces a statement of the range of valid values for that parameter, e.g.

Constraint: $N > 0$.

If the routine is called with an invalid value for the parameter (e.g. $N = 0$), the routine will usually take an error exit, returning a non-zero value of IFAIL (see Section 2.3).
In newer documents constraints on parameters of type CHARACTER only list uppercase alphabetic characters, e.g.

Constraint: STRING = 'A' or 'B'.

In practice all routines with CHARACTER parameters will permit the use of lower case characters.

The phrase 'Suggested Value:' introduces a suggestion for a reasonable initial setting for an Input parameter (e.g. accuracy or maximum number of iterations) in case you are unsure what value to use; you should be prepared to use a different setting if the suggested value turns out to be unsuitable for your problem.

3.3.3. Array Parameters

Most array parameters have dimensions which depend on the size of the problem. In Fortran terminology they have 'adjustable dimensions': the dimensions occurring in their declarations are integer variables which are also parameters of the Library routine.

For example, a Library routine might have the specification:

```fortran
SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB
```

For a one-dimensional array parameter, such as A in this example, the specification would begin:

3: A(N) -- DOUBLE PRECISION array Input

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as large as the value you supply for N. It may be larger; but the routine uses only the first N elements.

For a two-dimensional array parameter, such as B in the example, the specification might be:

4: B(LDB,N) -- DOUBLE PRECISION array Input/Output
 On entry: the m by n matrix B.

and the parameter LDB might be described as follows:

5: LDB -- INTEGER Input
 On entry: the first dimension of the array B as declared in
```
the (sub)program from which <name> is called. Constraint: LDB >= M.

You must supply the first dimension of the array B, as declared in your calling (sub)program, through the parameter LDB, even though the number of rows actually used by the routine is determined by the parameter M. You must ensure that the first dimension of the array is at least as large as the value you supply for M. The extra parameter LDB is needed because Fortran does not allow information about the dimensions of array parameters to be passed automatically to a routine.

You must also ensure that the second dimension of the array, as declared in your calling (sub)program, is at least as large as the value you supply for N. It may be larger, but the routine only uses the first N columns.

A program to call the hypothetical routine used as an example in this section might include the statements:

```
INTEGER AA(100), BB(100,50)
LDB = 100
.
.
M = 80
N = 20
CALL <name>(M,N,AA,BB,LDB)
```

Fortran requires that the dimensions which occur in array declarations, must be greater than zero. Many NAG routines are designed so that they can be called with a parameter like N in the above example set to 0 (in which case they would usually exit immediately without doing anything). If so, the declarations in the Library routine would use the 'assumed size' array dimension, and would be given as:

```
INTEGER M, N, A(*), B(LDB,*), LDB
```

However, the original declaration of an array in your calling program must always have constant dimensions, greater than or equal to 1.

Consult an expert or a textbook on Fortran, if you have difficulty in calling NAG routines with array parameters.

3.4. Implementation-dependent Information
In order to support all implementations of the Foundation Library, the Manual has adopted a convention of using bold italics to distinguish terms which have different interpretations in different implementations.

For example, machine precision denotes the relative precision to which double precision floating-point numbers are stored in the computer, e.g. in an implementation with approximately 16 decimal digits of precision, machine precision has a value of $10^{-16}$ approximately.

The precise value of machine precision is given by the function X02AJF. Other functions in Chapter X02 return the values of other implementation-dependent constants, such as the overflow threshold, or the largest representable integer. Refer to the X02 Chapter Introduction for more details.

For each implementation of the Library, a separate Users' Note is provided. This is a short document, revised at each Mark. At most installations it is available in machine-readable form. It gives any necessary additional information which applies specifically to that implementation, in particular:

- the interpretation of bold italicised terms;
- the values returned by X02 routines;
- the default unit numbers for output (see Section 2.4).

3.5. Example Programs and Results

The last section of each routine document describes an example problem which can be solved by simple use of the routine. The example programs themselves, together with data and results, are not printed in the routine document, but are distributed in machine-readable form with the Library. The programs are designed so that they can fairly easily be modified, and so serve as the basis for a simple program to solve a user's own problem.

The results distributed with each implementation were obtained using that implementation of the Library; they may not be identical to the results obtained with other implementations.

3.6. Summary for New Users

If you are unfamiliar with the NAG Foundation Library and are thinking of using a routine from it, please follow these instructions:
(a) read the whole of the Essential Introduction;

(b) consult the Contents Summary or KWIC Index to choose an appropriate chapter or routine;

(c) read the relevant Chapter Introduction;

(d) choose a routine, and read the routine document. If the routine does not after all meet your needs, return to steps (b) or (c);

(e) read the Users' Note for your implementation;

(f) consult local documentation, which should be provided by your local support staff, about access to the NAG Library on your computing system.

You should now be in a position to include a call to the routine in a program, and to attempt to run it. You may of course need to refer back to the relevant documentation in the case of difficulties, for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (f) can be omitted, but it is always essential to:

-- be familiar with the Chapter Introduction;

-- read the routine document;

-- be aware of the Users' Note for your implementation.

4. Relationship between the Foundation Library and other NAG Libraries

4.1. NAG Fortran Library

The Foundation Library is a strict subset of the full NAG Fortran Library (Mark 15 or later). Routines in both libraries have identical source code (apart from any modifications necessary for implementation on a specific system) and hence can be called in exactly the same way, though you should consult the relevant implementation-specific documentation for details such as values of machine constants.

By its very nature, the Foundation Library cannot contain the same extensive range of routines as the full Fortran Library. If your application requires a routine which is not in the Foundation Library, then please consult NAG for information on relevant material available in the Fortran Library.
Some routines which occur as user-callable routines in the full Fortran Library are included as auxiliary routines in the Foundation Library but they are not documented in this publication and direct calls to them should only be made if you are already familiar with their use in the Fortran Library. A list of all such auxiliary routines is given at the end of the Foundation Library Contents Summary.

Whereas the full Fortran Library may be provided in either a single precision or a double precision version, the Foundation Library is always provided in double precision.

4.2. NAG Workstation Library

The Foundation Library is a successor product to an earlier, smaller subset of the full NAG Fortran Library which was called the NAG Workstation Library. The Foundation Library has greater functionality than the Workstation Library but is not strictly upwards compatible, i.e., a number of routines in the earlier product have been replaced by new material to reflect recent algorithmic developments.

If you have used the Workstation Library and wish to convert your programs to call routines from the Foundation Library, please consult the document 'Converting from the Workstation Library' in this Manual.

4.3. NAG C Library

NAG has also developed a library of numerical and statistical software for use by C programmers. This now contains over 200 user-callable functions and provides similar (but not identical) coverage to that of the Foundation Library. Please contact NAG for further details if you have a requirement for similar quality library code in C.

5. Contact between Users and NAG

If you are using the NAG Foundation Library in a multi-user environment and require further advice please consult your local support staff who will be receiving regular information from NAG. This covers such matters as:

-- obtaining a copy of the Users’ Note for your implementation;

-- obtaining information about local access to the Library;

-- seeking advice about using the Library;
-- reporting suspected errors in routines or documents;
-- making suggestions for new routines or features;
-- purchasing NAG documentation.

If you are unable to make contact with a local source of support or are in a single-user environment then please contact NAG directly at any one of the addresses given at the beginning of this publication.

6. General Information about NAG

NAG produces and distributes numerical, symbolic, statistical and graphical software for the solution of problems in a wide range of applications in such areas as science, engineering, financial analysis and research.

For users who write programs and build packages NAG produces subprogram libraries in a range of computer languages (Ada, C, Fortran, Pascal, Turbo Pascal). NAG also provides a number of Fortran programming support products in the NAGware range -- Fortran 77 programming tools, Fortran 90 compilers for a number of machine platforms (including PC-DOS) and VecPar 77 for restructuring and tuning programs for execution on vector or parallel computers.

For users who do not wish to program in the traditional sense but want the same reliability and qualities offered by our libraries, NAG provides several powerful mathematical and statistical packages for interactive use. A major addition to this range of packages is Axiom -- the powerful symbolic solver which includes a Hypertext system and graphical capabilities.

For further details of any of these products, please contact NAG at one of the addresses given at the beginning of this publication.

References [2], [3], [4], and [5] discuss various aspects of the design and development of the NAG Library, and NAG's technical policies and organisation.

7. References


\end{verbatim}
\end{scroll}
\end{page}

---

**NAG Documentation: keyword in context**

— nagaux.ht —

\begin{page}{manpageXXkwic}{NAG Documentation: keyword in context}
\beginscroll
\begin{verbatim}
KWIC(3NAG)          Foundation Library (12/10/92)        KWIC(3NAG)

Introduction
Keywords in Context

Pre-computed weights and
abscissae

D01BBF
\end{verbatim}
\endscroll
\end{page}
for Gaussian quadrature rules, restricted choice of ...

Sum the absolute values of real vector elements (DASUM)

Sum the absolute values of complex vector elements (DZASUM)

Index, real vector element with largest absolute value (IDAMAX)

Index, complex vector element with largest absolute value (IZAMAX)

ODEs, IVP, Adams method, until function of solution is zero, ...

1-D quadrature, adaptive, finite interval, strategy due to Piessens and de ...

1-D quadrature, adaptive, finite interval, method suitable for oscillating ...

1-D quadrature, adaptive, finite interval, allowing for singularities at ...

1-D quadrature, adaptive, infinite or semi-infinite interval

1-D quadrature, adaptive, finite interval, weight function cos((omega)x) ...
1-D quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$

Multi-dimensional adaptive quadrature over hyper-rectangle

Add scalar times real vector to real vector (DAXPY)

Add scalar times complex vector to complex vector (ZAXPY)

Return or set unit number for advisory messages

Airy function $Ai(x)$

Airy function $Bi(x)$

Airy function $Ai'(x)$

Airy function $Bi'(x)$

Airy functions $Ai(z)$ and $Ai'(z)$, complex $z$

Airy functions $Bi(z)$ and $Bi'(z)$, complex $z$

Airy function $Ai(z)$

Airy function $Ai'(z)$

Airy functions $Ai(z)$ and $Ai'(z)$, complex $z$

Airy functions $Ai(z)$ and $Ai'(z)$, complex $z$ algebraico-logarithmic
22.1. NAGAUX.HT

- Two-way contingency table analysis with (chi) /Fisher's exact test
  - Performs principal component analysis
  - Performs canonical correlation analysis
  - Friedman two-way analysis of variance on k matched samples
  - Kruskal-Wallis one-way analysis of variance on k samples of unequal size

- Approximation by general linear function
  - L - 1
  - Approximation of special functions
    - ARIMA model
    - Univariate time series, estimation, seasonal ARIMA model
    - ARIMA model
    - ARIMA model
    - Safe range of floating-point arithmetic
    - Safe range of complex floating-point arithmetic
Parameter of floating-point arithmetic model, $b$

Parameter of floating-point arithmetic model, $p$

Parameter of floating-point arithmetic model, $e_{\text{min}}$

Parameter of floating-point arithmetic model, $e_{\text{max}}$

Parameter of floating-point arithmetic model, ROUNDS

Univariate time series, sample autocorrelation function

Univariate time series, partial autocorrelations from autocorrelations

Univariate time series, partial autocorrelations from autocorrelations

Least-squares cubic spline curve fit, automatic knot placement

Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid

Least-squares surface fit by bicubic splines with automatic knot placement, scattered data

B-splines

Matrix-vector product, real rectangular band matrix (DGBMV)
Matrix-vector product, real symmetric band matrix (DSBMV)

Matrix-vector product, real triangular band matrix (DTBMV)

System of equations, real triangular band matrix (DTBSV)

Matrix-vector product, complex rectangular band matrix (ZGBMV)

Matrix-vector product, complex Hermitian band matrix (ZHBMV)

Matrix-vector product, complex triangular band matrix (ZTBMV)

System of equations, complex triangular band matrix (ZTBSV)

bandwidth matrix

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix ...)

Basic Linear Algebra Subprograms

ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate ...

Kelvin function bei x

Kelvin function ber
Bessel function \( Y(x) \)

- \( S17ACF \)
- \( \text{S17ADF} \)
- \( \text{S17AEF} \)
- \( \text{S17AFF} \)

Bessel functions \( J(z) \), complex \( z \), real \( \nu \geq 0 \), ...

- \( \text{S17DCF} \)
- \( \text{S17DEF} \)

Modified Bessel function \( K(x) \)

- \( \text{S18ACF} \)
- \( \text{S18ADF} \)
- \( \text{S18AEF} \)
- \( \text{S18AFF} \)

Modified Bessel functions \( I(z) \), complex \( z \), real \( \nu \geq 0 \), ...

- \( \text{S18DCF} \)
22.1. NAGAUX.HT

Modified Bessel functions $I_n(z)$, complex $z$, real $(\nu) \geq 0$, ...

beta distribution

Computes deviates for the beta distribution

Generates a vector of pseudo-random numbers from a beta distribution

Interpolating functions, fitting bicubic spline, data on rectangular grid

Least-squares surface fit, bicubic splines

Least-squares surface fit by bicubic splines with automatic knot placement, data on ...

Least-squares surface fit by bicubic splines with automatic knot placement, scattered data

Evaluation of a fitted bicubic spline at a vector of points

Evaluation of a fitted bicubic spline at a mesh of points

Sort 2-D data into panels for fitting bicubic splines

Fits a generalized linear model with binomial errors

binomial
distribution

Computes probability for the bivariate Normal distribution

Airy function Bi(x) G01HAF

Airy function Bi'(x) S17AHF

Airy functions Bi(z) and Bi'(z), complex z S17AKF

Airy functions Bi(z) and Bi'(z), complex z S17DHF

BLAS F06

Pseudo-random logical (boolean) value G05DZF

ODEs, boundary value problem, finite difference technique with D02GAF ...

ODEs, boundary value problem, finite difference technique with D02GBF ...

ODEs, general nonlinear boundary value problem, finite difference technique with D02RAF ...

bounds using function values only

break-points

break-points

Zero of continuous function in given interval, Bus and Dekker algorithm C05ADF

Performs G03ADF
canonical correlation analysis

Carlo method

Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates

Cauchy principal value (Hilbert transform)

Pseudo-random real numbers,

Cauchy distribution

character string

Compare two character strings representing date and time

Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)

Derivative of fitted polynomial in Chebyshev series form

Integral of fitted polynomial in Chebyshev series form

Evaluation of fitted polynomial in one variable, from Chebyshev series form

Check user's routine for calculating 1st derivatives

Univariate time series, diagnostic checking of residuals, following G13AFF

Cholesky factorization of real symmetric positive-definite
<table>
<thead>
<tr>
<th>Routine Name</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C06EKF</td>
<td>Circular convolution or correlation of two real vectors, no ...</td>
</tr>
<tr>
<td>S13ACF</td>
<td>Cosine integral Ci(x)</td>
</tr>
<tr>
<td>E01SAF</td>
<td>Interpolating functions, method of Renka and Cline, two variables</td>
</tr>
<tr>
<td>D03FAF</td>
<td>Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates coefficient matrix already factorized by F01MCF)</td>
</tr>
<tr>
<td></td>
<td>coefficient matrix (DTRSM)</td>
</tr>
<tr>
<td></td>
<td>coefficient matrix (ZTRSM)</td>
</tr>
<tr>
<td>G02BNF</td>
<td>Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data</td>
</tr>
<tr>
<td>G02BQF</td>
<td>Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data</td>
</tr>
<tr>
<td>F01QEF</td>
<td>Operations with orthogonal matrices, form columns of Q after factorization by F01QCF</td>
</tr>
<tr>
<td>F01REF</td>
<td>Operations with unitary matrices, form columns of Q after factorization by F01RCF</td>
</tr>
<tr>
<td>M01DJF</td>
<td>Rank columns of a matrix, real numbers</td>
</tr>
<tr>
<td>X05ACF</td>
<td>Compare two character strings representing date and time</td>
</tr>
<tr>
<td>S15ADF</td>
<td>Complement of error function erfcx</td>
</tr>
<tr>
<td>E04DGF</td>
<td>Unconstrained minimum, pre-</td>
</tr>
</tbody>
</table>
conditioned conjugate gradient algorithm, function of several ... 

Complex conjugate of Hermitian sequence

Complex conjugate of complex sequence

Complex conjugate of multiple Hermitian sequences

Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables ...

Dot product of two complex vectors, conjugated (ZDOTC)

Rank-1 update, complex rectangular matrix, conjugated vector (ZGERC)

Mathematical Constants

Machine Constants

constrained, arbitrary data points

constraints, using function values and optionally 1st ...

Two-way contingency

2 table analysis, with (chi) /Fisher's ...

continuation facility

Zero of continuous function in given interval, Bus and Dekker algorithm
2
continuous
distributions

Convert
Hermitian sequences to general complex sequences

Convert
array of integers representing date and time to ...

Circular
convolution
or correlation of two real vectors, no extra ...

Copy
real vector (DCOPY)

Copy
complex vector (ZCOPY)
correction,
, simple nonlinear problem
correction,
, general linear problem
correction,
, continuation facility

Circular convolution or
correlation
of two real vectors, no extra workspace

Kendall/Spearman non-parametric rank
correlation
coefficients, no missing values, overwriting ...

Kendall/Spearman non-parametric rank
correlation
coefficients, no missing values, preserving input ...

Computes (optionally weighted)
correlation
and covariance matrices

Performs canonical
correlation
analysis
Multivariate time series, cross-correlations

\[ \cos((\omega)x) \text{ or } \sin((\omega)x) \]
\[ \cos((\omega)x) \text{ or } \sin((\omega)x) \]

Cosine integral \( C_i(x) \)

Covariance matrix for nonlinear least-squares problem

Computes (optionally weighted) correlation and covariance matrices

Return the CPU time

Multivariate time series, cross-correlations

Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium ...

Interpolating functions, cubic spline interpolant, one variable

cubic Hermite, one variable

Least-squares curve cubic spline fit (including interpolation)

Evaluation of fitted cubic spline, function only

Evaluation of fitted cubic spline, function and derivatives

Evaluation of fitted
cubic spline, definite integral

Least-squares cubic spline curve fit, automatic knot placement

Set up reference vector from supplied cumulative distribution function or probability distribution ...

Least-squares curve fit, by polynomials, arbitrary data points

Least-squares cubic spline fit (including interpolation)

Least-squares cubic spline curve fit, automatic knot placement

Fresnel integral C(x)

Daniell) window

Return date and time as an array of integers

Convert array of integers representing date and time to character string

Compare two character strings representing date and time

defered correction, simple nonlinear problem

defered correction, general linear problem
deferred correction, continuation facility

Interpolated values, interpolant computed by E01BEF, E01BHF
definite integral, one variable

Evaluation of fitted cubic spline, definite integral
definite matrix

\[ T \]

LDL factorization of real symmetric positive-definite variable-bandwidth matrix
definite

definite

Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side ...

Solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one ...

Real sparse symmetric positive-definite simultaneous linear equations (coefficient matrix ...)

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations ...

Cholesky factorization of real symmetric positive-definite matrix (DPOTRF)

Solution of real symmetric positive-definite system of linear equations, multiple right-hand ...

Degenerate symmetrised elliptic integral of 1st kind R ...
Dekker algorithm
Computes upper and lower tail and probability density function probabilities for the beta distribution G01EEF
Solution of system of nonlinear equations using 1st derivatives C05PBF
Check user’s routine for calculating 1st derivatives C05ZAF
Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points E02AGF
Derivative of fitted polynomial in Chebyshev series form E02AHF
Evaluation of fitted cubic spline, function and derivatives E02BCF
derivatives
derivatives
derivatives
Computes deviates for the standard Normal distribution G01FAF
Computes deviates for Student’s t-distribution G01FBF
Computes deviates for the (chi) distribution G01FCF
2
Computes deviates for the F-distribution G01FDF
22.1. NAGAUX.HT

Computes G01FEF deviates for the beta distribution

Computes G01FFF deviates for the gamma distribution

Univariate time series, G13ASF diagnostic checking of residuals, following G13AFF

ODEs, boundary value problem, finite difference technique with deferred correction, simple ...

ODEs, boundary value problem, finite difference technique with deferred correction, general linear ...

difference technique with deferred correction, continuation ...

Elliptic PDE, solution of finite difference equations by a multigrid technique

Univariate time series, seasonal and non-seasonal differencing G13AAF

Single 1-D real discrete Fourier transform, no extra workspace C06EAF

Single 1-D Hermitian discrete Fourier transform, no extra workspace C06EBF

Single 1-D complex discrete Fourier transform, no extra workspace C06ECF

Multiple 1-D real discrete Fourier transforms C06FFP

Multiple 1-D Hermitian discrete Fourier transforms C06FQP

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C06FRF</td>
<td>Multiple 1-D complex discrete Fourier transforms</td>
</tr>
<tr>
<td>C06FUF</td>
<td>2-D complex discrete Fourier transform</td>
</tr>
<tr>
<td>D03EEF</td>
<td>Discretize a 2nd order elliptic PDE on a rectangle</td>
</tr>
<tr>
<td>G01EAF</td>
<td>Computes probabilities for the standard Normal distribution</td>
</tr>
<tr>
<td>G01EBF</td>
<td>Computes probabilities for Student's t-distribution</td>
</tr>
<tr>
<td>G01ECF</td>
<td>Computes probabilities for (chi) distribution</td>
</tr>
<tr>
<td>G01EDF</td>
<td>Computes probabilities for F-distribution</td>
</tr>
<tr>
<td>G01EFF</td>
<td>Computes probabilities for the gamma distribution</td>
</tr>
<tr>
<td>G01FAF</td>
<td>Computes deviates for the standard Normal distribution</td>
</tr>
<tr>
<td>G01FBF</td>
<td>Computes deviates for Student's t-distribution</td>
</tr>
<tr>
<td>G01FCF</td>
<td>Computes deviates for the (chi) distribution</td>
</tr>
<tr>
<td>G01FDF</td>
<td>Computes deviates for the F-distribution</td>
</tr>
<tr>
<td>G01FEF</td>
<td>Computes deviates for the beta distribution</td>
</tr>
<tr>
<td>G01FFF</td>
<td>Computes deviates for the gamma distribution</td>
</tr>
<tr>
<td>G01HAF</td>
<td>Computes probability for the bivariate Normal distribution</td>
</tr>
</tbody>
</table>
22.1. NAGAUX.HT

- Pseudo-random real numbers, uniform distribution over (0,1), G05CAF
- Pseudo-random real numbers, Normal distribution, G05DDF
- Pseudo-random real numbers, Cauchy distribution, G05DFF
- Pseudo-random real numbers, Weibull distribution, G05DPF
- Pseudo-random integer from uniform distribution, G05DYF
- Set up reference vector for multivariate Normal distribution, G05EAF
- Set up reference vector from supplied cumulative distribution function or probability distribution function, G05EXF
- Generates a vector of random numbers from a uniform distribution, G05FAF
- Generates a vector of random numbers from a Normal distribution, G05FDF
- 2 (chi) goodness of fit test, for standard continuous distributions, G08CGF
- Inverse distributions, G01F
Doncker
\[ \text{, allowing for badly-behaved integrands} \]

\textbf{Dot F06EAF}  \nproduct of two real vectors \((DDOT)\)

\textbf{Dot F06GAF}  \nproduct of two complex vectors, unconjugated \((ZDOTU)\)

\textbf{Dot F06GBF}  \nproduct of two complex vectors, conjugated \((ZDOTC)\)

eigenfunction
\[ \text{, user-specified break-points} \]

\textbf{All eigenvalues of generalized real eigenproblem}  \(\text{F02ADF}\)
\[ \text{of the form } Ax = \lambda Bx \text{ where } A \text{ and } B \text{ are } \ldots \]

\textbf{All eigenvalues and eigenvectors of generalized real eigenproblem}  \(\text{F02AEF}\)
\[ \text{of the form } Ax = \lambda Bx \text{ where } A \text{ and } B \text{ are } \ldots \]

eigenproblem by QZ algorithm, real matrices

eigenproblem

eigenvalue
and eigenfunction, user-specified break-points

\textbf{All eigenvalues}  \(\text{F02AAF}\)
\[ \text{of real symmetric matrix} \]

\textbf{All eigenvalues}  \(\text{F02ABF}\)
\[ \text{and eigenvectors of real symmetric matrix} \]

\textbf{All eigenvalues}  \(\text{F02ADF}\)
\[ \text{of generalized real eigenproblem of the form } \]
\[ Ax = \lambda Bx \]

\textbf{All eigenvalues}  \(\text{F02AEF}\)
\[ \text{and eigenvectors of generalized real } \ldots \]

\textbf{All eigenvalues}  \(\text{F02AFF}\)
22.1. NAGAUX.HT

of real matrix

All eigenvalues and eigenvectors of real matrix

All eigenvalues of complex matrix

All eigenvalues and eigenvectors of complex matrix

All eigenvalues of complex Hermitian matrix

All eigenvalues and eigenvectors of complex Hermitian matrix

Selected eigenvalues and eigenvectors of real symmetric matrix

All eigenvalues and optionally eigenvectors of generalized ...

Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem

All eigenvalues and eigenvectors of real symmetric matrix

All eigenvalues and eigenvectors of generalized real eigenproblem of the form ...

All eigenvalues and eigenvectors of real matrix

All eigenvalues and eigenvectors of complex matrix
All eigenvalues and eigenvectors of complex Hermitian matrix

Selected eigenvalues and eigenvectors of real symmetric matrix

All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, ...

Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem

Elliptic
PDE, solution of finite difference equations by a ...

Discretize a 2nd order elliptic PDE on a rectangle

Elliptic
PDE, Helmholtz equation, 3-D Cartesian co-ordinates

Degenerate symmetrised elliptic integral of 1st kind \( R(x,y) \)

Symmetrised elliptic integral of 1st kind \( R(x,y,z) \)

Symmetrised elliptic integral of 2nd kind \( R(x,y,z) \)

Symmetrised elliptic integral of 3rd kind \( R(x,y,z,r) \)

end-point singularities of algebraico-logarithmic type

error
Fits a generalized linear model with binomial errors

Fits a generalized linear model with Poisson errors

Complement of error function erfc x

Error function erf x

Return or set unit number for error messages

Computes estimable function of a general linear regression model and ...

Univariate time series, preliminary estimation, seasonal ARIMA model

Univariate time series, estimation, seasonal ARIMA model

Multivariate time series, preliminary estimation of transfer function model

Multivariate time series, estimation of multi-input model

Compute Euclidean norm of real vector (DNRM2)

Compute Euclidean norm of complex vector (DZNRM2)

Evaluation of fitted polynomial in one variable from ...

Evaluation
of fitted polynomial in one variable, from ...

Evaluation E02BBF
of fitted cubic spline, function only

Evaluation E02BCF
of fitted cubic spline, function and derivatives

Evaluation E02BDF
of fitted cubic spline, definite integral

Evaluation E02DEF
of a fitted bicubic spline at a vector of points

Evaluation E02DFF
of a fitted bicubic spline at a mesh of points

Computes the G08AJF
exact test
probabilities for the Mann-Whitney U statistic, no ...

Computes the G08AKF
exact probabilities for the Mann-Whitney U statistic, ties..

Computes probabilities for G01ALF
F-distribution

Computes deviates for the G01FDF
F-distribution
22.1. NAGAUX.HT

- distribution

LU F01BRF
factorization
of real sparse matrix

LU F01BSF
factorization
of real sparse matrix with known sparsity pattern

T
LL F01MAF
factorization
of real sparse symmetric positive-definite matrix

T
LDL F01MCF
factorization
of real symmetric positive-definite ...

QR F01QCF
factorization
of real m by n matrix (m>=n)

T
factorization
by F01QCF

factorization
by F01QCF

QR F01RCF
factorization
of complex m by n matrix (m>=n)

H
factorization
by F01RCF

factorization
by F01RCF

LU F07ADF
factorization
of real m by n matrix (DGETRF)

Cholesky F07FDF
factorization
of real symmetric positive-definite matrix ...
Multivariate time series, filtering (pre-whitening) by an ARIMA model

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G13BAF</td>
<td>1-D quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, ...</td>
</tr>
<tr>
<td>D01AJF</td>
<td>1-D quadrature, adaptive, finite interval, method suitable for oscillating functions</td>
</tr>
<tr>
<td>D01AKF</td>
<td>1-D quadrature, adaptive, finite interval, allowing for singularities at user-specified</td>
</tr>
<tr>
<td>D01ALF</td>
<td>1-D quadrature, adaptive, finite interval, weight function ( \cos((\omega)x) ) or ( \sin )</td>
</tr>
<tr>
<td>D01ANF</td>
<td>1-D quadrature, adaptive, finite interval, weight function with end-point ...</td>
</tr>
<tr>
<td>D01APF</td>
<td>1-D quadrature, adaptive, finite interval, weight function ( 1/(x-c) ), Cauchy ...</td>
</tr>
<tr>
<td>D01AQF</td>
<td>ODEs, boundary value problem, finite difference technique with deferred correction, simple .</td>
</tr>
<tr>
<td>D02GAF</td>
<td>ODEs, boundary value problem, finite difference technique with deferred correction, general</td>
</tr>
<tr>
<td>D02GBF</td>
<td>finite/infinite range, eigenvalue and eigenfunction, ...</td>
</tr>
<tr>
<td>D02RAF</td>
<td>ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, ...</td>
</tr>
<tr>
<td>D03EDF</td>
<td>Elliptic PDE, solution of finite difference equations by a multigrid technique</td>
</tr>
</tbody>
</table>

Fisher’s exact test
Interpolating functions, fitting bicubic spline, data on rectangular grid

Least-squares curve fit, by polynomials, arbitrary data points

Evaluation of fitted polynomial in one variable from Chebyshev series form.

Least-squares polynomial fit, values and derivatives may be constrained, arbitrary

Derivative of fitted polynomial in Chebyshev series form

Integral of fitted polynomial in Chebyshev series form

Evaluation of fitted polynomial in one variable, from Chebyshev series form

Least-squares curve cubic spline fit (including interpolation)

Evaluation of fitted cubic spline, function only

Evaluation of fitted cubic spline, function and derivatives

Evaluation of fitted cubic spline, definite integral

Least-squares cubic spline curve fit, automatic knot placement

Least-squares surface
CHAPTER 22. NAG LIBRARY ROUTINES

fit
, bicubic splines

Least-squares surface E02DCF
fit
by bicubic splines with automatic knot placement, data
on ...

Least-squares surface E02DDF
fit
by bicubic splines with automatic knot placement, ...

Evaluation of a E02DEF
fitted
bicubic spline at a vector of points

Evaluation of a E02DFF
fitted
bicubic spline at a mesh of points

Sort 2-D data into panels for E02ZAF
fitting
bicubic splines

Fits G02DAF
a general (multiple) linear regression model

Fits G02DGF
a general linear regression model for new dependent ...

Fits G02GBF
a generalized linear model with binomial errors

Fits G02GCF
a generalized linear model with Poisson errors

2 Performs the (chi) goodness of G08CGF
fit
test, for standard continuous distributions

Goodness of G08
fit
tests

Computes a G01ALF
five-point
summary (median, hinges and extremes)

Safe range of X02AMF
22.1. NAGAUX.HT

floating-point arithmetic

Safe range of complex floating-point arithmetic X02ANF

Parameter of floating-point arithmetic model, b X02BHF

Parameter of floating-point arithmetic model, p X02BJF

Parameter of floating-point arithmetic model, e X02BKF

Parameter of floating-point arithmetic model, e min

Parameter of floating-point arithmetic model, e max

Parameter of floating-point arithmetic model, ROUNDS X02DJF

Univariate time series, update state set for forecasting G13AGF

Univariate time series, forecasting from state set G13AHF

Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model G13AJF

Multivariate time series, state set and forecasts from fully specified multi-input model G13BJF

Single 1-D real discrete Fourier transform, no extra workspace C06EAF

Single 1-D Hermitian discrete Fourier C06EBF
transform, no extra workspace

Single 1-D complex discrete Fourier transform, no extra workspace

Multiple 1-D real discrete Fourier transforms

Multiple 1-D Hermitian discrete Fourier transforms

Multiple 1-D complex discrete Fourier transforms

2-D complex discrete Fourier transform

frequency table

Frequency table from raw data

frequency (Daniell) window

frequency (Daniell) window

Fresnel integral $S(x)$

Fresnel integral $C(x)$

Friedman two-way analysis of variance on $k$ matched samples

Computes probabilities for the gamma distribution

Computes deviates for the gamma distribution
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generates a vector of pseudo-random numbers from a gamma distribution</td>
<td>G05FFF</td>
</tr>
<tr>
<td>Gamma function</td>
<td>S14AAF</td>
</tr>
<tr>
<td>Log Gamma function</td>
<td>S14ABF</td>
</tr>
<tr>
<td>Incomplete gamma functions P(a,x) and Q(a,x)</td>
<td>S14BAF</td>
</tr>
<tr>
<td>Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function ...</td>
<td>E04FDF</td>
</tr>
<tr>
<td>Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithms, using 1st derivatives</td>
<td>E04GCF</td>
</tr>
<tr>
<td>Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule</td>
<td>D01BBF</td>
</tr>
<tr>
<td>All eigenvalues of generalized real eigenproblem of the form Ax=(lambda)Bx where ...</td>
<td>F02ADF</td>
</tr>
<tr>
<td>All eigenvalues and eigenvectors of generalized real eigenproblem of the form Ax=(lambda)Bx where ...</td>
<td>F02AEF</td>
</tr>
<tr>
<td>All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, real matrices</td>
<td>F02BJF</td>
</tr>
<tr>
<td>Fits a generalized linear model with binomial errors</td>
<td>G02GBF</td>
</tr>
<tr>
<td>Fits a generalized linear model with Poisson errors</td>
<td>G02GCF</td>
</tr>
<tr>
<td>Computes orthogonal rotations for loading matrix, generalized</td>
<td>G03BAF</td>
</tr>
</tbody>
</table>
orthomax criterion

Generate
real plane rotation (DROTG)

Initialise random number generating routines to give repeatable sequence

Initialise random number generating routines to give non-repeatable sequence

Save state of random number generating routines

Restore state of random number generating routines

Set up reference vector for generating pseudo-random integers, Poisson distribution

Set up reference vector for generating pseudo-random integers, binomial distribution

Generates a vector of random numbers from a uniform ...

Generates a vector of random numbers from an (negative) ...

Generates a vector of random numbers from a Normal distribution

Generates a vector of pseudo-random numbers from a beta ...

Generates a vector of pseudo-random numbers from a gamma ...

Generates a realisation of a multivariate time series from a ...

Gill-Miller method
2
Performs the (chi) goodness of fit test, for standard continuous distributions

Goodness of fit tests

Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables using 1st...

Hankel functions $H^{(j)}(z), j=1,2, \ldots (\nu+n)$

Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates

Hermite, one variable

Single 1-D Hermitian discrete Fourier transform, no extra workspace

Multiple 1-D Hermitian discrete Fourier transforms

Complex conjugate of Hermitian sequence

Complex conjugate of multiple Hermitian sequences

Convert Hermitian sequences to general complex sequences

All eigenvalues of complex Hermitian matrix

All eigenvalues and eigenvectors of complex Hermitian
matrix

Matrix-vector product, complex Hermitian matrix (ZHEMV) F06SCF

Matrix-vector product, complex Hermitian band matrix (ZHBMV) F06SDF

Matrix-vector product, complex Hermitian packed matrix (ZHPMV) F06SEF

Rank-1 update, complex Hermitian matrix (ZHER) F06SPF

Rank-1 update, complex Hermitian packed matrix (ZHPR) F06SQF

Rank-2 update, complex Hermitian matrix (ZHER2) F06SRF

Rank-2 update, complex Hermitian packed matrix (ZHPR2) F06SSF

Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix (ZHEMM) F06ZCF

Rank-k update of a complex Hermitian matrix (ZHERK) F06ZPF

Rank-2k update of a complex Hermitian matrix (ZHER2K) F06ZRF

Hilbert transform)

Computes a five-point summary (median, hinges and extremes) G01ALF

Multi-dimensional adaptive quadrature over D01FCF
hyper-rectangle

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

Incomplete
gamma functions $P(a, x)$ and $Q(a, x)$

Index
, real vector element with largest absolute value (IDAMAX)

Index
, complex vector element with largest absolute value ..

1-D quadrature, adaptive, infinite or semi-infinite interval

1-D quadrature, adaptive, infinite or semi-infinite interval

1-D quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or ..

infinite range, eigenvalue and eigenfunction, user-specified ...

Calculates standardized residuals and influence statistics

Initialise random number generating routines to give ...

Initialise random number generating routines to give ...

input data

input data

Multivariate time series, estimation of multi-input model
CHAPTER 22. NAG LIBRARY ROUTINES

input
model

Input/output
utilities

Pseudo-random
integer
from uniform distribution

Set up reference vector for generating pseudo-random
integers
, Poisson distribution

Set up reference vector for generating pseudo-random
integers
, binomial distribution

Pseudo-random permutation of an
integer
vector

Pseudo-random sample from an
integer
vector

Pseudo-random
integer
from reference vector

Largest representable
integer

Return date and time as an array of
integers

Convert array of
integers
representing date and time to character string

integral
, one variable

Integral
of fitted polynomial in Chebyshev series form

Evaluation of fitted cubic spline, definite
integral
Exponential integral \( E(x) \)
\[ 1 \]

Cosine integral \( C_i(x) \)

Sine integral \( S_i(x) \)

Fresnel integral \( S(x) \)

Fresnel integral \( C(x) \)

Degenerate symmetrised elliptic integral of 1st kind \( R(x,y) \)

Symmetrised elliptic integral of 1st kind \( R(x,y,z) \)

Symmetrised elliptic integral of 2nd kind \( R(x,y,z) \)

Symmetrised elliptic integral of 3rd kind \( R(x,y,z,r) \)

1-D quadrature, integration of function defined by data values, Gill-Miller ...

Numerical integration

Interpolating functions, cubic spline interpolant, one variable
Interpolating functions, cubic spline interpolant, one variable

Interpolating functions, monotonicity-preserving, piecewise ...

Interpolated values, interpolant computed by E01BEF, function ...

Interpolated values, interpolant computed by E01BEF, function only, one variable

Interpolated values, interpolant computed by E01BEF, function and 1st derivative, ...

Interpolated values, interpolant computed by E01BEF, definite ...

Interpolating functions, fitting bicubic spline, data on ...

Interpolating functions, method of Renka and Cline, two ...

Interpolating functions, modified Shepard’s method, two ...

Least-squares curve cubic spline fit (including interpolation)

Inverse distributions

Invert a permutation

iterative refinement
iterative refinement

ODEs, IVP
, Runge-Kutta-Merson method, over a range, intermediate

ODEs, IVP
, Runge-Kutta-Merson method, until function of solution is ...

ODEs, IVP
, Adams method, until function of solution is zero, ...

ODEs, stiff IVP
, BDF method, until function of solution is zero, ...

Kelvin function
kei
x

Kelvin
function ber x

Kelvin
function bei x

Kelvin
function ker x

Kelvin
function kei x

Kendall/Spearman
non-parametric rank correlation ...

Kendall/Spearman
non-parametric rank correlation ...

Kelvin function
ker
x

Least-squares cubic spline curve fit, automatic
knot placement

E02BEF
knot
placement, data on rectangular grid

knot
placement, scattered data

Kruskal–Wallis
one-way analysis of variance on k samples of ...

Mean, variance, skewness,
kurtosis
etc, one variable, from raw data

Mean, variance, skewness,
kurtosis
etc, one variable, from frequency table

All zeros of complex polynomial, modified
Laguerre
method

All zeros of real polynomial, modified
Laguerre
method

Index, real vector element with
largest
absolute value (IDAMAX)

Index, complex vector element with
largest
absolute value (IZAMAX)

Largest
positive model number

Largest
representable integer

LDL
T
factorization of real symmetric positive-definite ...

Constructs a stem and
leaf
plot

Least-squares
curve fit, by polynomials, arbitrary data points
Least-squares polynomial fit, values and derivatives may be ... E02AGF

Least-squares cubic spline fit (including interpolation) E02BAF

Least-squares cubic spline curve fit, automatic knot placement E02BEF

Least-squares surface fit, bicubic splines E02DAF

Least-squares surface fit by bicubic splines with automatic ... E02DCF

Least-squares surface fit by bicubic splines with automatic ... E02DDF

Covariance matrix for nonlinear least-squares problem E04YCF

Least-squares (if rank=n) or minimal least-squares (if ... F04JGF

Least-squares (if rank=n) or minimal least-squares (if rank<n) solution of m real equations ... F04JGF

Sparse linear least-squares problem, m real equations in n unknowns F04QAF

linear problem

L-approximation by general linear function E02GAF

Linear programming problem E04MBF

Solution of complex simultaneous linear equations with multiple right-hand sides F04ADF

Solution of real simultaneous linear F04ARF
equations, one right-hand side

linear equations, one right-hand side using iterative ...

Solution of real simultaneous linear equations, one right-hand side using iterative ...

Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)

linear equations, one right-hand side

Real sparse symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized by ...)

Real sparse symmetric simultaneous linear equations

linear equations (coefficient matrix already factorized by ...)

Sparse linear least-squares problem, m real equations in n ...

Solution of real system of linear equations, multiple right-hand sides, matrix already ..

linear equations, multiple right-hand sides, matrix already ..

Simple linear regression with constant term, no missing values

Fits a general (multiple) linear regression model

Fits a general linear regression model for new dependent variable
Computes estimable function of a general linear regression model and its standard error

Fits a generalized linear model with binomial errors

Fits a generalized linear model with Poisson errors

Basic Linear Algebra Subprograms

2nd order Sturm-Liouville problem, regular/singular system, finite/infinite ...

Computes orthogonal rotations for loading matrix, generalized orthomax criterion

Location tests

Log Gamma function

algebraico-logarithmic type

Computes upper and lower tail and probability density function probabilities for

LU factorization of real sparse matrix

LU factorization of real sparse matrix with known sparsity

LU factorization of real m by n matrix (DGETRF)

Machine precision
CHAPTER 22. NAG LIBRARY ROUTINES

Machine

Constants

Performs the Mann-Whitney U test on two independent samples G08AHF

Computes the exact probabilities for the Mann-Whitney U statistic, no ties in pooled sample G08AJF

Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample G08AKF

Friedman two-way analysis of variance on k matched samples G08AEF

Performs the Wilcoxon one-sample (matched pairs) signed rank test G08AGF

Mathematical

Constants

Maximization

Maximum number of decimal digits that can be represented X02BEF

Mean , variance, skewness, kurtosis etc, one variable, from G01AAF

Mean , variance, skewness, kurtosis etc, one variable, from G01ADF

Computes a five-point summary (median , hinges and extremes) G01ALF

Median test on two samples of unequal size G08ACF

ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output D02BBF

ODEs, IVP, Runge-Kutta-Merson D02BHF
method, until function of solution is zero (simple ... 

Evaluation of a fitted bicubic spline at a mesh of points Miller method

Least-squares (if rank=n) or minimal least-squares (if rank<n) solution of m real ... 

Minimization

Unconstrained minimum, pre-conditioned conjugate gradient algorithm, ...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and ...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and ...

Minimum, function of several variables, quasi-Newton ...

Minimum, function of several variables, sequential QP method, missing values, overwriting input data

missing values, preserving input data

Simple linear regression with constant term, no missing values

Fits a general (multiple) linear regression model

Fits a general linear regression model for new dependent variable
model
and its standard error

Fits a generalized linear
model with binomial errors

Fits a generalized linear
model with Poisson errors

Univariate time series, estimation, seasonal ARIMA
model

Multivariate time series, estimation of multi-input
model

Smallest positive
model number

Largest positive
model number

Parameter of floating-point arithmetic
model, b

Parameter of floating-point arithmetic
model, p

Parameter of floating-point arithmetic
model, e

min
Parameter of floating-point arithmetic model, e
\[ e_{\text{max}} \]
Parameter of floating-point arithmetic model, \( \text{ROUNDS} \)
All zeros of complex polynomial, modified Laguerre method
All zeros of real polynomial, modified Laguerre method
Interpolating functions, modified Shepard’s method, two variables
modified Newton algorithm using function values only ...

Modified
Bessel function \( K(x) \)
\[ K_0(x) \]
Modified
Bessel function \( K(x) \)
\[ K_1(x) \]
Modified
Bessel function \( I(x) \)
\[ I_0(x) \]
Modified
Bessel function \( I(x) \)
\[ I_1(x) \]
Modified
Bessel functions \( K(z) \), real
\[ K_{(\nu)+n}(z) \]
Modified
Bessel functions \( I(z) \), real
\[ I_{(\nu)+n}(z) \]
Interpolating functions, monotonicity-preserving
, piecewise cubic Hermite, one variable

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
D01GBF

Multi-dimensional adaptive quadrature over hyper-rectangle
D01FCF

Multi-dimensional quadrature over hyper-rectangle, Monte ...
D01GBF

Multivariate time series, estimation of multi-input model
G13BEF

multi-input model

multigrid technique

Multiple 1-D real discrete Fourier transforms
C06FPF

Multiple 1-D Hermitian discrete Fourier transforms
C06FQF

Multiple 1-D complex discrete Fourier transforms
C06FRF

Complex conjugate of multiple Hermitian sequences
C06GQF

multiple right-hand sides

Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix ..
F06YJF

Solves system of equations with multiple right-hand sides, complex triangular coefficient ...
F06ZJF

Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by ...
F07AEF
multiple right-hand sides, matrix already factorized by ...

Fits a general (multiple) linear regression model

Multiply real vector by scalar (DSCAL)

Multiply complex vector by complex scalar (ZSCAL)

Multiply complex vector by real scalar (ZDSCAL)

Set up reference vector for multivariate Normal distribution

Pseudo-random multivariate Normal vector from reference vector

Generates a realisation of a multivariate time series from a VARMA model

Multivariate time series, filtering (pre-whitening) by an ...

Multivariate time series, cross-correlations

Multivariate time series, preliminary estimation of transfer ...

Multivariate time series, estimation of multi-input model

Multivariate time series, state set and forecasts from fully ...

Multivariate time series, smoothed sample cross spectrum ...

Generates a vector of random numbers from an (negative) exponential distribution

Newton
and modified Newton algorithm using function values ...

Newton algorithm using function values only
Newton algorithm, simple bounds, using function values only

Newton algorithm, using 1st derivatives
Minimum, function of several variables, quasi-Newton algorithm, using 1st derivatives
Kendall/Spearman non-parametric rank correlation coefficients, no missing ...
Kendall/Spearman non-parametric rank correlation coefficients, no missing ...
Initialise random number generating routines to give non-repeatable sequence
Univariate time series, seasonal and non-seasonal differencing
Non-parametric tests
Solution of system of nonlinear equations using function values only
Solution of system of nonlinear equations using 1st derivatives
nonlinear problem
ODEs, general nonlinear boundary value problem, finite difference technique ...
nonlinear constraints, using function values and optionally ...
Covariance matrix for nonlinear least-squares problem

Nonlinear optimization

Nonlinear regression

Compute Euclidean norm of real vector (DNRM2)

Compute Euclidean norm of complex vector (DZNRM2)

Computes probabilities for the standard Normal distribution

Computes deviates for the standard Normal distribution

Computes probability for the bivariate Normal distribution

Pseudo-random real numbers, Normal distribution

Set up reference vector for multivariate Normal distribution

Pseudo-random multivariate Normal vector from reference vector

Generates a vector of random numbers from a Normal distribution

Numerical integration
ODEs D02BBF, IVP, Runge-Kutta-Merson method, over a range, ...

ODEs D02BHF, IVP, Runge-Kutta-Merson method, until function of ...

ODEs D02CJF, IVP, Adams method, until function of solution is zero, ...

ODEs D02EJF, stiff IVP, BDF method, until function of solution is

ODEs D02GAF, boundary value problem, finite difference technique.

ODEs D02GBF, boundary value problem, finite difference technique.

ODEs D02RAF, general nonlinear boundary value problem, finite ...

Kruskal-Wallis G08AFF one-way analysis of variance on k samples of unequal size

Performs the Wilcoxon G08AGF one-sample (matched pairs) signed rank test

Operations F01QDF

with orthogonal matrices, compute QB or Q B ...

Operations F01QEF

with orthogonal matrices, form columns of Q ...

Operations F01RDF

with unitary matrices, compute QB or Q B ...

Operations F01REF

with unitary matrices, form columns of Q after ...

Nonlinear E04 optimization

Operations with orthogonal T
matrices, compute QB or QB after ...

Operations with orthogonal matrices, form columns of Q after factorization ...

Computes orthogonal rotations for loading matrix, generalized orthomax ...

orthomax criterion

oscillating functions

Incomplete gamma functions P(a,x) and Q(a,x)

Matrix-vector product, real symmetric packed matrix (DPMV)

Matrix-vector product, real triangular packed matrix (DTPMV)

System of equations, real triangular packed matrix (DTPSV)

Rank-1 update, real symmetric packed matrix (DSR)

Rank-2 update, real symmetric packed matrix (DSPR2)

Matrix-vector product, complex Hermitian packed matrix (ZPMV)

Matrix-vector product, complex triangular packed matrix (ZTPMV)

System of equations, complex triangular packed
matrix (ZTPSV)

Rank-1 update, complex Hermitian packed matrix (ZHPR)

Rank-2 update, complex Hermitian packed matrix (ZHPR2)

Sign test on two paired samples

Performs the Wilcoxon one-sample (matched pairs) signed rank test

Kendall/Spearman non-parametric rank correlation coefficients, no missing values, ...

Kendall/Spearman non-parametric rank correlation coefficients, no missing values, ...

Non-parametric tests

Univariate time series, partial autocorrelations from autocorrelations

Elliptic PDE, solution of finite difference equations by a multigrid ...

Discretize a 2nd order elliptic PDE on a rectangle

Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates

Pseudo-random permutation of an integer vector
22.1. NAGAUX.HT

Invert a permutation  M01ZAF

Interpolating functions, monotonicty-preserving, piecewise cubic Hermite, one variable E01BEF

Piessens and de Doncker, allowing for badly-behaved integrands

Generate real plane rotation (DROTG) F06AAF
Applying real plane rotation (DROT) F06EPF

Constructs a stem and leaf plot G01ARF

Fits a generalized linear model with Poisson errors G02GCF

Poisson distribution

All zeros of complex polynomial, modified Laguerre method C02AFF

All zeros of real polynomial, modified Laguerre method C02AGF

Least-squares curve fit, by polynomials, arbitrary data points E02ADF

Evaluation of fitted polynomial in one variable from Chebyshev series form ... E02AEF

Least-squares polynomial fit, values and derivatives may be constrained, ... E02AGF

Derivative of fitted polynomial E02AHF
in Chebyshev series form

Integral of fitted polynomial in Chebyshev series form

Evaluation of fitted polynomial in one variable, from Chebyshev series form

pooled sample

pooled sample

Pre-computed weights and abscissae for Gaussian quadrature ...

Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of ...

Multivariate time series, filtering (pre-whitening) by an ARIMA model

Machine precision

Univariate time series, preliminary estimation, seasonal ARIMA model

Multivariate time series, preliminary estimation of transfer function model

principal value (Hilbert transform)

Performs principal component analysis

Print a real general matrix

Print a complex general matrix
Computes \( G01EAF \) probabilities for the standard Normal distribution.

Computes \( G01EBF \) probabilities for Student’s \( t \)-distribution.

Computes \( G01ECF \) probabilities for (chi) distribution.

Computes \( G01EDF \) probabilities for \( F \)-distribution.

Computes upper and lower tail and probability density function probabilities for the beta distribution.

Computes \( G01EFF \) probabilities for the gamma distribution.

Computes \( G01HAF \) probability for the bivariate Normal distribution.

Computes the exact probabilities for the Mann-Whitney U statistic, no ties in ...

Computes the exact probabilities for the Mann-Whitney U statistic, ties in ...

Dot product of two real vectors (DDOT).

Dot product.
of two complex vectors, unconjugated (ZDOTU)

Dot product of two complex vectors, conjugated (ZDOTC)

Matrix-vector product, real rectangular matrix (DGEMV)

Matrix-vector product, real rectangular band matrix (DGBMV)

Matrix-vector product, real symmetric matrix (DSYMV)

Matrix-vector product, real symmetric band matrix (DSBMV)

Matrix-vector product, real symmetric packed matrix (DSPMV)

Matrix-vector product, real triangular matrix (DTRMV)

Matrix-vector product, real triangular band matrix (DTBMV)

Matrix-vector product, real triangular packed matrix (DTPMV)

Matrix-vector product, complex rectangular matrix (ZGEMV)

Matrix-vector product, complex rectangular band matrix (ZGBMV)

Matrix-vector product, complex Hermitian matrix (ZHEMV)

F06GBF

F06PAF

F06PBF

F06PCF

F06PDF

F06PEF

F06PFF

F06PGF

F06PHF

F06SAF

F06SBF

F06SCF
Matrix-vector product, complex Hermitian band matrix (ZHBMV) F06SDF

Matrix-vector product, complex Hermitian packed matrix (ZHPMV) F06SEF

Matrix-vector product, complex triangular matrix (ZTRMV) F06SFF

Matrix-vector product, complex triangular band matrix (ZTBMV) F06SGF

Matrix-vector product, complex triangular packed matrix (ZTPMV) F06SHF

Matrix-matrix product, two real rectangular matrices (Dgemm) F06YAF

Matrix-matrix product, one real symmetric matrix, one real rectangular ... F06YCF

Matrix-matrix product, one real triangular matrix, one real rectangular ... F06YFF

Matrix-matrix product, two complex rectangular matrices (Zgemm) F06ZAF

Matrix-matrix product, one complex Hermitian matrix, one complex ... F06ZCF

Matrix-matrix product, one complex triangular matrix, one complex ... F06ZFF

Matrix-matrix product, one complex symmetric matrix, one complex ... F06ZTF

Linear programming E04MBF
problem
Pseudo-random real numbers, uniform distribution over (0,1) G05CAF
Pseudo-random real numbers, Normal distribution G05DDF
Pseudo-random real numbers, Cauchy distribution G05DFF
Pseudo-random real numbers, Weibull distribution G05DPF
Pseudo-random integer from uniform distribution G05DYF
Pseudo-random logical (boolean) value G05DZF
Set up reference vector for generating pseudo-random integers, Poisson distribution G05ECF
Set up reference vector for generating pseudo-random integers, binomial distribution G05EDF
Pseudo-random permutation of an integer vector G05EHF
Pseudo-random sample from an integer vector G05EJF
Pseudo-random integer from reference vector G05EYF
Pseudo-random multivariate Normal vector from reference vector G05EZF
Generates a vector of pseudo-random numbers from a beta distribution G05FEF
Generates a vector of pseudo-random numbers from a gamma distribution G05FFF
Incomplete gamma functions P(a,x) and Q(a,x) S14BAF
QP problem

Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and ...

QR factorization of real m by n matrix (m<=n)

QR factorization of complex m by n matrix (m<=n)

1-D quadrature, adaptive, finite interval, strategy due to ...

1-D quadrature, adaptive, finite interval, method suitable for ...

1-D quadrature, adaptive, finite interval, allowing for ...

1-D quadrature, adaptive, infinite or semi-infinite interval

1-D quadrature, adaptive, finite interval, weight function $\cos(|\omega|x)$ ...

1-D quadrature, adaptive, finite interval, weight function with ...

1-D quadrature, adaptive, finite interval, weight function ...

1-D quadrature, adaptive, semi-infinite interval, weight function ...

Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
CHAPTER 22. NAG LIBRARY ROUTINES

Multi-dimensional adaptive quadrature over hyper-rectangle D01FCF

1-D quadrature, integration of function defined by data values, ... D01GAF

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method D01GBF

quasi-Newton algorithm, using 1st derivatives

Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values ... E04JAF

QZ algorithm, real matrices

Pseudo-random real numbers, uniform distribution over (0,1) G05CAF

Initialise random number generating routines to give repeatable sequence G05CBF

Initialise random number generating routines to give non-repeatable ... G05CCF

Save state of random number generating routines G05CFF

Restore state of random number generating routines G05CGF

Pseudo-random real numbers, Normal distribution G05DDF

Pseudo-random real numbers, Cauchy distribution G05DFF
Pseudo-
random
real numbers, Weibull distribution
G05DPF

Pseudo-
random
integer from uniform distribution
G05DYF

Pseudo-
random
logical (boolean) value
G05DZF

Set up reference vector for generating pseudo-
random
integers, Poisson distribution
G05ECF

Set up reference vector for generating pseudo-
random
integers, binomial distribution
G05EDF

Pseudo-
random
permutation of an integer vector
G05EHF

Pseudo-
random
take random
sample from an integer vector
G05EJF

Pseudo-
random
integer from reference vector
G05EYF

Pseudo-
random
multivariate Normal vector from reference vector
G05EZF

Generates a vector of
random
numbers from a uniform distribution
G05FAF

Generates a vector of
random
numbers from an (negative) exponential distribution
G05FBF

Generates a vector of
random
numbers from a Normal distribution
G05FDF

Generates a vector of pseudo-
random numbers from a beta distribution

Generates a vector of pseudo-random numbers from a gamma distribution

ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output

range, eigenvalue and eigenfunction, user-specified ...

Safe range of floating-point arithmetic

Safe range of complex floating-point arithmetic

Least-squares (if rank=n) or minimal least-squares (if rank<n) ...

rank <n) solution of m real equations in n unknowns, ...

rank <=n,m>=n

Rank-1 update, real rectangular matrix (DGER)

Rank-1 update, real symmetric matrix (DSYR)

Rank-1 update, real symmetric packed matrix (DSPR)

Rank-2 update, real symmetric matrix (DSYR2)

Rank-2 update, real symmetric packed matrix (DSPR2)

Rank-1 update, complex rectangular matrix, unconjugated ...
Rank-1 update, complex rectangular matrix, conjugated vector.

Rank-1 update, complex Hermitian matrix (ZHER)

Rank-1 update, complex Hermitian packed matrix (ZHPR)

Rank-2 update, complex Hermitian matrix (ZHER2)

Rank-2 update, complex Hermitian packed matrix (ZHPR2)

Rank-k update of a real symmetric matrix (DSYRK)

Rank-2k update of a real symmetric matrix (DSYR2K)

Rank-k update of a complex Hermitian matrix (ZHERK)

Rank-2k update of a complex Hermitian matrix (ZHER2K)

Rank-k update of a complex symmetric matrix (ZSYRK)

Rank-2k update of a complex symmetric matrix (ZHER2K)

Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting...

Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving rank test

Rank a vector, real numbers

Rank rows of a matrix, real numbers
CHAPTER 22. NAG LIBRARY ROUTINES

Rank
columns of a matrix, real numbers

Rearrange a vector according to given ranks
, real numbers

Generates a realisation
of a multivariate time series from a VARMA model

Rearrange
a vector according to given ranks, real numbers

Multi-dimensional adaptive quadrature over hyper-rectangle

Multi-dimensional quadrature over hyper-rectangle,
Monte Carlo method

Discretize a 2nd order elliptic PDE on a rectangle
rectangular grid

Matrix-vector product, real rectangular matrix (Dgemv)

Matrix-vector product, real rectangular band matrix (Dgbmv)

Rank-1 update, real rectangular matrix (Dger)

Matrix-vector product, complex rectangular matrix (Zgemv)

Matrix-vector product, complex rectangular band matrix (Zgbmv)
Rank-1 update, complex rectangular matrix, unconjugated vector (ZGERU)

Rank-1 update, complex rectangular matrix, conjugated vector (ZGERC)

Matrix-matrix product, two real rectangular matrices (DGEMM)

Matrix-matrix product, two complex rectangular matrices (ZGEMM)

rectangular matrix (DSYMM)

rectangular matrix (DTRMM)

rectangular matrix (ZHEMM)

rectangular matrix (ZTRMM)

rectangular matrix (ZSYMM)

Set up reference vector for multivariate Normal distribution

Set up reference vector for generating pseudo-random integers, ...

Set up reference vector for generating pseudo-random integers, ...

Set up reference vector from supplied cumulative distribution ...

Pseudo-random integer from reference
vector

Pseudo-random multivariate Normal vector from reference vector

refinement

refinement

Simple linear regression with constant term, no missing values

Fits a general (multiple) linear regression model

Fits a general linear regression model for new dependent variable

Computes estimable function of a general linear regression model and its standard error

Nonlinear regression

2nd order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue ...

Interpolating functions, method of Renka and Cline, two variables

Calculates standardized residuals and influence statistics

Univariate time series, diagnostic checking of residuals, following G13AFF

right-hand sides

Solution of real simultaneous linear equations, one right-hand side
right-hand side using iterative refinement

Solution of real simultaneous linear equations, one right-hand side using iterative refinement

right-hand side

Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix (DTRSM)

F06YJF

Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (ZTRSM)

F06ZJF

Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by F07ADF (DGETRS)

F07AEF

right-hand sides, matrix already factorized by F07FDF (DPOTRS)

Generate real plane rotation (DROTG)

F06AAF

Apply real plane rotation (DROT)

F06EPF

Computes orthogonal rotations for loading matrix, generalized orthomax criterion rules, restricted choice of rule

G03BAF

rule

ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output

D02BBF

ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero ...

D02BHF
Safe range of floating-point arithmetic

Safe range of complex floating-point arithmetic

Pseudo-random sample from an integer vector

Sign test on two paired samples

Median test on two samples of unequal size

Friedman two-way analysis of variance on k matched samples

Kruskal-Wallis one-way analysis of variance on k samples of unequal size

Performs the Wilcoxon one-sample (matched pairs) signed rank test

Performs the Mann-Whitney U test on two independent samples

Univariate time series, sample autocorrelation function

Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium ...

Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the ...

Add scalar times real vector to real vector (DAXPY)
Multiply real vector by scalar (DSCAL)
Add scalar times complex vector to complex vector (ZAXPY)
Multiply complex vector by complex scalar (ZSCAL)
Multiply complex vector by real scalar (ZDSCAL)
Scattered data
Univariate time series, seasonal and non-seasonal differencing
Univariate time series, seasonal and non-seasonal differencing
Univariate time series, preliminary estimation, seasonal ARIMA model
Univariate time series, estimation, seasonal ARIMA model
Seasonal ARIMA model
1-D quadrature, adaptive, infinite or semi-infinite interval
1-D quadrature, adaptive, semi-infinite interval, weight function \( \cos((\omega)x) \) ...
Complex conjugate of Hermitian sequence
Complex conjugate of complex
sequence

Complex conjugate of multiple Hermitian sequences C06GQF

Convert Hermitian sequences to general complex sequences C06GSF

Convert Hermitian sequences to general complex sequences C06GSF

sequence

sequence

Minimum, function of several variables, sequential QP method, nonlinear constraints, using function E04UCF ...

Interpolating functions, modified Shepard's method, two variables E01SEF

Sign test on two paired samples G08AAF

Performs the Wilcoxon one-sample (matched pairs) signed rank test G08AGF

Solution of complex simultaneous linear equations with multiple right-hand sides F04ADDF

Solution of real simultaneous linear equations, one right-hand side F04ARF

Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side using ... F04ASF

Solution of real simultaneous linear equations, one right-hand side using ... F04ATF

Solution of real sparse simultaneous linear equations (coefficient matrix already ...) F04AXF
simultaneous
linear equations, one right-hand side

Real sparse symmetric positive-definite F04MAF
simultaneous
linear equations (coefficient matrix already ...)

Real sparse symmetric F04MBF
simultaneous
linear equations
simultaneous
linear equations (coefficient matrix already ...)

\[ \sin((\omega)x) \]

\[ \sin((\omega)x) \]

Sine S13ADF
integral \( Si(x) \)

2nd order Sturm-Liouville problem, regular/ D02KEF
singular
system, finite/infinite range, eigenvalue and ...
singularities
at user-specified break-points

singularities
of algebraico-logarithmic type

Mean, variance, G01AAF
skewness
, kurtosis etc, one variable, from raw data

Mean, variance, G01ADF
skewness
, kurtosis etc, one variable, from frequency table

Smallest X02AKF
positive model number

Univariate time series, G13CBF
smoothed
sample spectrum using spectral smoothing by the ...

smoothing
by the trapezium frequency (Daniell) window

Multivariate time series, smoothed sample cross spectrum using spectral smoothing by ...

smoothing by the trapezium frequency (Daniell) window

Sort 2-D data into panels for fitting bicubic splines

Sort a vector, real numbers

LU factorization of real sparse matrix

LU factorization of real sparse matrix with known sparsity pattern

LU factorization of real sparse matrix with known sparsity pattern

T

LL factorization of real sparse symmetric positive-definite matrix

Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem

Solution of real sparse simultaneous linear equations (coefficient matrix ...)

Real sparse symmetric positive-definite simultaneous linear ...

Real sparse symmetric simultaneous linear equations

Sparse linear least-squares problem, m real equations in ...
Kendall/ Spearman non-parametric rank correlation coefficients, no ...

Kendall/ Spearman non-parametric rank correlation coefficients, no ...

Approximation of special functions

Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency ...

spectral smoothing by the trapezium frequency (Daniell) window

Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency ...

spectral smoothing by the trapezium frequency (Daniell) window

Interpolating functions, cubic spline interpolant, one variable

Interpolating functions, fitting bicubic spline, data on rectangular grid

Least-squares curve cubic spline fit (including interpolation)

Evaluation of fitted cubic spline, function only

Evaluation of fitted cubic spline, function and derivatives

Evaluation of fitted cubic spline, definite integral
CHAPTER 22. NAG LIBRARY ROUTINES

Least-squares cubic spline
  curve fit, automatic knot placement
Least-squares surface fit, bicubic splines
  E02BEF

Least-squares surface fit by bicubic splines
  with automatic knot placement, data on rectangular grid
  E02DCF

Least-squares surface fit by bicubic splines
  with automatic knot placement, scattered data
  E02DDF

Evaluation of a fitted bicubic spline
  at a vector of points
  E02DEF

Evaluation of a fitted bicubic spline
  at a mesh of points
  E02DFF

Sort 2-D data into panels for fitting bicubic splines
  E02ZAF

B-splines
  E02

Least-squares curve fit, by polynomials, arbitrary data points
  E02ADF

Least-squares polynomial fit, values and derivatives may be ...
  E02AGF

Least-squares curve cubic spline fit (including interpolation)
  E02BAF

Least-squares cubic spline curve fit, automatic knot placement
  E02BEF

Least-squares surface fit, bicubic splines
  E02DAF

Least-
squares
surface fit by bicubic splines with automatic knot ...

Least-
squares
surface fit by bicubic splines with automatic knot ...

Unconstrained minimum of a sum of
squares,
combined Gauss-Newton and modified Newton algorithm.

Unconstrained minimum of a sum of
squares,
combined Gauss-Newton and quasi-Newton algorithm, ...

Covariance matrix for nonlinear least-
squares problem

Least-
squares
(if rank=n) or minimal least-squares (if ...

Least-squares (if rank=n) or minimal least-
squares
(if rank<n) solution of \( m \) real equations in \( n \) ... 

Sparse linear least-
squares problem, \( m \) real equations in \( n \) unknowns

Computes probabilities for the
standard Normal distribution

Computes deviates for the
standard Normal distribution

standard error

\( \chi^2 \)
Perform the (chi) goodness of fit test, for standard continuous distributions

Calculates
standardized residuals and influence statistics
Calculates standardized residuals and influence
statistics
, no ties in pooled sample

statistic
, ties in pooled sample
Constructs a
stem
and leaf plot

ODEs,
stiff
IVP, BDF method, until function of solution is zero, ..

Computes probabilities for
Student’s
t-distribution
Computes deviates for
Student’s
t-distribution

2nd order
Sturm-Liouville
problem, regular/singular system, ...

Basic Linear Algebra
Subprograms

Unconstrained minimum of a
sum
of squares, combined Gauss-Newton and modified Newton .

Unconstrained minimum of a
sum
of squares, combined Gauss-Newton and quasi-Newton ...

Sum
the absolute values of real vector elements (DASUM)

Sum
the absolute values of complex vector elements (DZASUM)

Computes a five-point
summary
(median, hinges and extremes)

Least-squares
22.1. NAGAUX.HT

surface
fit, bicubic splines

Least-squares E02DCF
surface
fit by bicubic splines with automatic knot placement, .

Least-squares E02DDF
surface
fit by bicubic splines with automatic knot placement, .

SVD F02WEF
of real matrix

SVD F02XEF
of complex matrix

Swap F06EGF
two real vectors (DSWAP)

Swap F06GGF
two complex vectors (ZSWAP)

Fresnel integral S20ACF
S(x)

T
LL factorization of real sparse F01MAF
symmetric
positive-definite matrix

T
LDL factorization of real F01MCF
symmetric
positive-definite variable-bandwidth matrix

All eigenvalues of real F02AAF
symmetric
matrix

All eigenvalues and eigenvectors of real F02ABF
symmetric
matrix

symmetric
and B is positive-definite

Selected eigenvalues and eigenvectors of real F02BBF
symmetric
and B is positive-definite
CHAPTER 22. NAG LIBRARY ROUTINES

symmetric matrix

Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem F02FJF

Solution of real symmetric positive-definite simultaneous linear equations, ... F04ASF

Solution of real symmetric positive-definite tridiagonal simultaneous linear ... F04FAF

Real sparse symmetric positive-definite simultaneous linear equations ... F04MAF

Real sparse symmetric simultaneous linear equations F04MBF

Solution of real symmetric positive-definite variable-bandwidth simultaneous ... F04MCF

Matrix-vector product, real symmetric matrix (DSYMV) F06PCF

Matrix-vector product, real symmetric band matrix (DSBMV) F06PDF

Matrix-vector product, real symmetric packed matrix (DSPMV) F06PEF

Rank-1 update, real symmetric matrix (DSYR) F06PPF

Rank-1 update, real symmetric packed matrix (DSPR) F06PQF

Rank-2 update, real symmetric matrix (DSYR2) F06PRF
22.1. NAGAUX.HT

Rank-2 update, real symmetric packed matrix (DSPR2)

Matrix-matrix product, one real symmetric matrix, one real rectangular matrix (DSYMM)

Rank-k update of a real symmetric matrix (DSYRK)

Rank-2k update of a real symmetric matrix (DSYR2K)

Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix (ZSYMM)

Rank-k update of a complex symmetric matrix (ZSYRK)

Rank-2k update of a complex symmetric matrix (ZHER2K)

Cholesky factorization of real symmetric positive-definite matrix (DPOTRF)

Solution of real symmetric positive-definite system of linear equations, ...

Degenerate symmetrised elliptic integral of 1st kind $R(x,y)$

Symmetrised elliptic integral of 1st kind $R(x,y,z)$

Symmetrised elliptic integral of 2nd kind $R(x,y,z)$
CHAPTER 22. NAG LIBRARY ROUTINES

Symmetrised elliptic integral of 3rd kind $R(x,y,z,r)$

Solution of system of nonlinear equations using function values only

Solution of system of nonlinear equations using 1st derivatives

2nd order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction,

System of equations, real triangular matrix (DTRSV)

System of equations, real triangular band matrix (DTBSV)

System of equations, real triangular packed matrix (DTPSV)

System of equations, complex triangular matrix (ZTRSV)

System of equations, complex triangular band matrix (ZTBSV)

System of equations, complex triangular packed matrix (ZTPSV)

Solves a system of equations with multiple right-hand sides, real ...

Solves system of equations with multiple right-hand sides, complex..

Solution of real system of linear equations, multiple right-hand sides, matrix

Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix
Computes probabilities for Student’s t-distribution

Computes deviates for Student’s t-distribution

Frequency table from raw data

Two-way contingency table

Computes upper and lower tail and probability density function probabilities for the test

Sign test on two paired samples

Median test on two samples of unequal size test

Performs the Mann-Whitney U test on two independent samples

Performs the (chi) goodness of fit test, for standard continuous distributions

Goodness of fit tests

Location tests

Non-parametric
CHAPTER 22. NAG LIBRARY ROUTINES

tests
ties in pooled sample

ties in pooled sample

Generates a realisation of a multivariate time series from a VARMA model G05HDF

Univariate time series, seasonal and non-seasonal differencing G13AAF

Univariate time series, sample autocorrelation function G13ABF

Univariate time series, partial autocorrelations from autocorrelations G13ACF

Univariate time series, preliminary estimation, seasonal ARIMA model G13ADF

Univariate time series, estimation, seasonal ARIMA model G13AFF

Univariate time series, update state set for forecasting G13AGF

Univariate time series, forecasting from state set G13AHF

Univariate time series, state set and forecasts, from fully specified G13AJF

Univariate time series, diagnostic checking of residuals, following G13AFF

Multivariate G13BAF
time series, filtering (pre-whitening) by an ARIMA model

Multivariate time series, cross-correlations

Multivariate time series, preliminary estimation of transfer function model

Multivariate time series, estimation of multi-input model

Multivariate time series, state set and forecasts from fully specified...

Univariate time series, smoothed sample spectrum using spectral...

Multivariate time series, smoothed sample cross spectrum using spectral...

Return date and time as an array of integers

Convert array of integers representing date and time to character string

Compare two character strings representing date and time

Return the CPU time

Multivariate time series, preliminary estimation of transfer function model

Single 1-D real discrete Fourier transform, no extra workspace
CHAPTER 22. NAG LIBRARY ROUTINES

Single 1-D Hermitian discrete Fourier transform, no extra workspace C06EBF

Single 1-D complex discrete Fourier transform, no extra workspace C06ECF

Multiple 1-D real discrete Fourier transforms C06FPF

Multiple 1-D Hermitian discrete Fourier transforms C06FQF

Multiple 1-D complex discrete Fourier transforms C06FRF

2-D complex discrete Fourier transform C06FUF

Matrix-vector product, real triangular matrix (DTRMV) F06PFF

Matrix-vector product, real triangular band matrix (DTBMV) F06PGF

Matrix-vector product, real triangular packed matrix (DTPMV) F06PHF

System of equations, real triangular matrix (DTRSV) F06PJF

System of equations, real triangular band matrix (DTBSV) F06PKF

System of equations, real triangular packed matrix (DTPSV) F06PLF

Trapezium frequency (Daniell) window

Trapezium frequency (Daniell) window
Matrix-vector product, complex triangular matrix (ZTRMV)

Matrix-vector product, complex triangular band matrix (ZTBMV)

Matrix-vector product, complex triangular packed matrix (ZTPMV)

System of equations, complex triangular matrix (ZTRSV)

System of equations, complex triangular band matrix (ZTBSV)

System of equations, complex triangular packed matrix (ZTPSV)

Matrix-matrix product, one real triangular matrix, one real rectangular matrix (DTRMM)

triangular coefficient matrix (DTRSM)

Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix (ZTRMM)

triangular coefficient matrix (ZTRSM)

Solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one right-hand side

Two-way 2
contingency table analysis, with (chi) ...

Sign test on two
paired samples
Median test on two samples of unequal size

Friedman two-way analysis of variance on k matched samples

Performs the Mann-Whitney U test on two independent samples

Compare two character strings representing date and time

Dot product of two complex vectors, unconjugated (ZDOTU)

Rank-1 update, complex rectangular matrix, unconjugated vector (ZGERU)

Unconstrained minimum, pre-conditioned conjugate gradient ...

Unconstrained minimum of a sum of squares, combined ...

Unconstrained minimum of a sum of squares, combined ...

Switch for taking precautions to avoid underflow

Pseudo-random real numbers, uniform distribution over (0,1)

Pseudo-random integer from uniform distribution

Generates a vector of random numbers from a uniform distribution

Operations with
unitary matrices, compute QB or Q B after ...

Operations with unitary matrices, form columns of Q after factorization by ...

Univariate time series, seasonal and non-seasonal differencing
Univariate time series, sample autocorrelation function
Univariate time series, partial autocorrelations from ...
Univariate time series, preliminary estimation, seasonal ...
Univariate time series, estimation, seasonal ARIMA model
Univariate time series, update state set for forecasting
Univariate time series, forecasting from state set
Univariate time series, state set and forecasts, from fully ...
Univariate time series, diagnostic checking of residuals, ...
Univariate time series, smoothed sample spectrum using ...

Rank-1 update, real rectangular matrix (DGER)
Rank-1 update, real symmetric matrix (DSYR)
Rank-1 update, real symmetric packed matrix (DSPR)
CHAPTER 22. NAG LIBRARY ROUTINES

Rank-2 update, real symmetric matrix (DSYR2)

Rank-2 update, real symmetric packed matrix (DSPR2)

Rank-1 update, complex rectangular matrix, unconjugated vector (ZGERU)

Rank-1 update, complex rectangular matrix, conjugated vector (ZGERC)

Rank-1 update, complex Hermitian matrix (ZHER)

Rank-1 update, complex Hermitian packed matrix (ZHPR)

Rank-2 update, complex Hermitian matrix (ZHER2)

Rank-2 update, complex Hermitian packed matrix (ZHPR2)

Rank-k update of a real symmetric matrix (DSYRK)

Rank-2k update of a real symmetric matrix (DSYR2K)

Rank-k update of a complex Hermitian matrix (ZHERK)

Rank-2k update of a complex Hermitian matrix (ZHER2K)

Rank-k update
of a complex symmetric matrix (ZSYRK)

Rank-2k update
of a complex symmetric matrix (ZHER2K)

Univariate time series, update
state set for forecasting

Computes upper
and lower tail and probability density function ...

Input/output utilities

Mean, variance
, skewness, kurtosis etc, one variable, from raw data

Mean, variance
, skewness, kurtosis etc, one variable, from ...

Friedman two-way analysis of variance
on k matched samples

Kruskal-Wallis one-way analysis of variance
on k samples of unequal size

VARMA model

Circular convolution or correlation of two real vectors
, no extra workspace

Evaluation of a fitted bicubic spline at a vector of points

Dot product of two real vectors (DDOT)

Add scalar times real vector
to real vector (DAXPY)

Add scalar times real vector to real vector (DAXPY)  F06ECF

Multiply real vector by scalar (DSCAL)  F06EDF

Copy real vector (DCOPY)  F06EFF

Swap two real vectors (DSWAP)  F06EGF

Compute Euclidean norm of real vector (DNRM2)  F06EJF

Sum the absolute values of real vector elements (DASUM)  F06EXF

Dot product of two complex vectors, unconjugated (ZDOTU)  F06GAF

Dot product of two complex vectors, conjugated (ZDOTC)  F06GBF

Add scalar times complex vector to complex vector (ZAXPY)  F06GCF

Add scalar times complex vector to complex vector (ZAXPY)  F06GCF

Multiply complex vector by complex scalar (ZSCAL)  F06GDF

Copy complex vector (ZCOPY)  F06GFF
Swap two complex vectors (ZSWAP)

Multiply complex vector by real scalar (ZDSCAL)

Compute Euclidean norm of complex vector (DZNRM2)

Sum the absolute values of complex vector elements (DZASUM)

Index, real vector element with largest absolute value (IDAMAX)

Index, complex vector element with largest absolute value (IZAMAX)

Matrix-vector product, real rectangular matrix (DGEMV)

Matrix-vector product, real rectangular band matrix (DGBMV)

Matrix-vector product, real symmetric matrix (DSYMV)

Matrix-vector product, real symmetric band matrix (DSBMV)

Matrix-vector product, real symmetric packed matrix (DSPMV)

Matrix-vector product, real triangular matrix (DTRMV)

Matrix-vector product
product, real triangular band matrix (DTBMV)
Matrix-vector product, real triangular packed matrix (DTPMV)
Matrix-vector product, complex rectangular matrix (ZGEMV)
Matrix-vector product, complex rectangular band matrix (ZGBMV)
Matrix-vector product, complex Hermitian matrix (ZHEMV)
Matrix-vector product, complex Hermitian band matrix (ZHBMV)
Matrix-vector product, complex Hermitian packed matrix (ZHPMV)
Matrix-vector product, complex triangular matrix (ZTRMV)
Matrix-vector product, complex triangular band matrix (ZTBMV)
Matrix-vector product, complex triangular packed matrix (ZTPMV)
vector (ZGERU) 
Rank-1 update, complex rectangular matrix, conjugated vector (ZGERC)
Set up reference vector for multivariate Normal distribution 
Set up reference vector
for generating pseudo-random integers, Poisson ...

Set up reference vector for generating pseudo-random integers, binomial ...

Pseudo-random permutation of an integer vector G05EHF
Pseudo-random sample from an integer vector G05EJF
Set up reference vector from supplied cumulative distribution function or ...

Pseudo-random integer from reference vector G05EYF
Pseudo-random multivariate Normal vector from reference vector G05EZF

Generates a vector of random numbers from a uniform distribution G05FAF
Generates a vector of random numbers from an (negative) exponential ...

Generates a vector of random numbers from a Normal distribution G05FDF
Generates a vector of pseudo-random numbers from a beta distribution G05FEF
Generates a vector of pseudo-random numbers from a gamma distribution G05FFF

Sort a vector, real numbers MO1CAF
Rank a vector MO1DAF
vector
, real numbers

Rearrange a
vector
according to given ranks, real numbers

Kruskal-
Wallis
one-way analysis of variance on k samples of unequal ...

Pseudo-random real numbers,
Weibull
distribution

1-D quadrature, adaptive, finite interval,
weight
function \( \cos((\omega)x) \) or \( \sin((\omega)x) \)

1-D quadrature, adaptive, finite interval,
weight
function with end-point singularities of ...

1-D quadrature, adaptive, finite interval,
weight
function \( 1/(x-c) \), Cauchy principal value ...

1-D quadrature, adaptive, semi-infinite interval,
weight
function \( \cos((\omega)x) \) or \( \sin((\omega)x) \)

Pre-computed
weights
and abscissae for Gaussian quadrature rules, ...

Computes (optionally
weighted)
correlation and covariance matrices

Multivariate time series, filtering (pre-
whitening)
by an ARIMA model

Performs the Mann-
Whitney
U test on two independent samples

Computes the exact probabilities for the Mann-
Whitney
U statistic, no ties in pooled sample
Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample

Performs the Wilcoxon one-sample (matched pairs) signed rank test

Two-way contingency table analysis, with \( \chi^2 \) (Fisher’s exact test)

Computes probabilities for \( \chi^2 \) distribution

Computes deviates for the \( \chi^2 \) distribution

Performs the \( \chi^2 \) goodness of fit test, for standard continuous ...
CONVERSION(3NAG) Foundation Library (12/10/92) CONVERSION(3NAG)

Introduction

Converting from the Workstation Library

The NAG Foundation Library is a successor product to an earlier, smaller subset of the full NAG Fortran Library which was called the NAG Workstation Library. The Foundation Library has been designed to be upwards compatible, in terms of functionality, with the Workstation Library. However some routines that were present in the Workstation Library have been replaced by more up-to-date routines from the NAG Fortran Library, which provide improved algorithms or software design.

The list below gives the names of those routines which were available in the Workstation Library, but are not included in the Foundation Library. For each such routine, it also gives the name of the routine in the Foundation Library which best covers the same functionality.

<table>
<thead>
<tr>
<th>Workstation Library</th>
<th>Foundation Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>C02AEF</td>
<td>C02AGF</td>
</tr>
</tbody>
</table>
D02CBF D02CJF
D02CHF D02CJF
D02EBF D02EJF
D02EHF D02EJF
D02HAF D02GAF
D02HBF D02RAF
D02SAF D02RAF
E02DBF E02DEF
E04VDF E04UCF
E04ZCF E04UCF (see Note 1)
F01BTF F07ADF
F01BXF F07FDF
F02WAF F02WEF
F04AYF F07AEF
F04AZF F07FEF
F04YAF G02DAF
G01ABF G02BXF (with M = 2)
G01BAF G01EBF
G01BBF G01EDF
G01BCF G01ECF
G01BDF G01EEF
G01CAF G01FBF
G01CBF G01FDF
G01CCF G01PCF
G01CDF G01FEF
G01CEF  G01FAF
G02BAF  G02BXF
G02BGF  G02BXF
G02CEF  G02DAF (see Note 2)
G02CGF  G02DAF
G02CJF  G02DAF
G05DBF  G05FBF
G05DCF  G05CAF (see Note 3)
G05DEF  G05FFF
G05DHF  G05FFF (see Note 4)
G05EGF  G05HDF
G05EWF  G05HDF
G08ABF  G08AGF
G08ADF  G08AHF
M01AKF  M01DAF
M01APF  M01CAF
S15ABF  G01EAF
S15ACF  G01EAF
X02AAF  X02AJF
X02ACF  X02ALF

Notes:

1. E04ZCF checks user-supplied routines for evaluating the first derivatives of the objective function and constraint functions supplied to E04VDF. This functionality is now provided by E04UCF, using the optional parameters Verify Objective Gradients and Verify Constraint Gradients.

2. G02CEF selects variables to be included in a linear regression performed by G02CGF. This functionality is now
provided by the parameter ISX of G02DAF.

3. A call to G05DCF can be replaced by a simple transformation of the result of a call to G05CAF. The statement

\[ X = G05DCF(A,B) \]

can be replaced by the statements

\[ X = G05CAF(X) \]
\[ X = A + B \cdot \log\left(\frac{X}{1.0D0 - X}\right) \]

4. G05DHF generates random numbers from a (chi) distribution with N degrees of freedom. This can be achieved by calling G05FFF with the values DBLE(N)/2.0D0 and 2.0D0 for the parameters A and B respectively.
2. Background to the Problems

Let \( f(z) \) be a polynomial of degree \( n \) with complex coefficients \( a \):

\[
f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \quad a_0 \neq 0.
\]

A complex number \( z \) is called a zero of \( f(z) \) (or equivalently a root of the equation \( f(z) = 0 \)), if:

\[
f(z) = 0.
\]

If \( z \) is a zero, then \( f(z) \) can be divided by a factor \((z - z_1)\):

\[
f(z) = (z - z_1) f_1(z)
\]

where \( f_1(z) \) is a polynomial of degree \( n-1 \). By the Fundamental Theorem of Algebra, a polynomial \( f(z) \) always has a zero, and so the process of dividing out factors \((z - z_1)\) can be continued until we have a complete factorization of \( f(z) \):

\[
f(z) = a \prod_{i=0}^{n} (z - z_i).
\]

Here the complex numbers \( z_0, z_1, \ldots, z_n \) are the zeros of \( f(z) \); they may not all be distinct, so it is sometimes more convenient to write:

\[
f(z) = a \prod_{i=1}^{m} (z - z_i)^{m_i}
\]

with distinct zeros \( z_1, z_2, \ldots, z_k \) and multiplicities \( m_i \geq 1 \). If \( m_i = 1 \), \( z \) is called a single zero; if \( m_i > 1 \), \( z \) is called a multiple or repeated zero; a multiple zero is also a zero of the derivative of \( f(z) \).
If the coefficients of $f(z)$ are all real, then the zeros of $f(z)$ are either real or else occur as pairs of conjugate complex numbers $x+iy$ and $x-iy$. A pair of complex conjugate zeros are the zeros of a quadratic factor of $f(z)$, $(z + rz + s)$, with real coefficients $r$ and $s$.

Mathematicians are accustomed to thinking of polynomials as pleasantly simple functions to work with. However, the problem of numerically computing the zeros of an arbitrary polynomial is far from simple. A great variety of algorithms have been proposed, of which a number have been widely used in practice; for a fairly comprehensive survey, see Householder [1]. All general algorithms are iterative. Most converge to one zero at a time; the corresponding factor can then be divided out as in equation (1) above - this process is called deflation or, loosely, dividing out the zero - and the algorithm can be applied again to the polynomial $f(z)$. A pair of complex conjugate zeros can be divided out together - this corresponds to dividing $f(z)$ by a quadratic factor.

Whatever the theoretical basis of the algorithm, a number of practical problems arise: for a thorough discussion of some of them see Peters and Wilkinson [2] and Wilkinson [3]. The most elementary point is that, even if $z$ is mathematically an exact zero of $f(z)$, because of the fundamental limitations of computer arithmetic the computed value of $f(z)$ will not necessarily be exactly 0.0. In practice there is usually a small region of values of $z$ about the exact zero at which the computed value of $f(z)$ becomes swamped by rounding errors. Moreover in many algorithms this inaccuracy in the computed value of $f(z)$ results in a similar inaccuracy in the computed step from one iterate to the next. This limits the precision with which any zero can be computed. Deflation is another potential cause of trouble, since, in the notation of equation (1), the computed coefficients of $f(z)$ will not be completely accurate, especially if $z$ is not an exact zero of $f(z)$; so the zeros of the computed $f(z)$ will deviate from the zeros of $f(z)$.

A zero is called ill-conditioned if it is sensitive to small changes in the coefficients of the polynomial. An ill-conditioned zero is likewise sensitive to the computational inaccuracies just mentioned. Conversely, a zero is called well-conditioned if it is comparatively insensitive to such perturbations. Roughly speaking
a zero which is well separated from other zeros is well-conditioned, while zeros which are close together are ill-conditioned, but in talking about 'closeness' the decisive factor is not the absolute distance between neighbouring zeros but their ratio: if the ratio is close to 1 the zeros are ill-conditioned. In particular, multiple zeros are ill-conditioned. A multiple zero is usually split into a cluster of zeros by perturbations in the polynomial or computational inaccuracies.

2.1. References


3. Recommendations on Choice and Use of Routines

3.1. Discussion

Two routines are available: C02AFF for polynomials with complex coefficients and C02AGF for polynomials with real coefficients.

C02AFF and C02AGF both use a variant of Laguerre's Method due to BT Smith to calculate each zero until the degree of the deflated polynomial is less than 3, whereupon the remaining zeros are obtained using the 'standard' closed formulae for a quadratic or linear equation.

The accuracy of the roots will depend on how ill-conditioned they are. Peters and Wilkinson [2] describe techniques for estimating the errors in the zeros after they have been computed.

3.2. Index

Zeros of a complex polynomial C02AFF
Zeros of a real polynomial C02AGF
Roots of a complex polynomial equation

— nagc.ht —
The roots are located using a modified form of Laguerre's Method, originally proposed by Smith [2].

The method of Laguerre [3] can be described by the iterative scheme

\[
L(z_k) = z_k - \frac{-nP(z_k)}{P'(z_k) + \sqrt{H(z_k)}}
\]

where

\[
H(z_k) = (n-1)[(n-1)*P'(z_k)/(2n*(n-1))^2] - n*P(z_k)*P''(z_k)
\]

and \(z\) is specified. The sign in the denominator is chosen so that the modulus of the Laguerre step at \(z\), viz. \(|L(z)|\), is as small as possible. The method can be shown to be cubically convergent for isolated roots (real or complex) and linearly convergent for multiple roots. The routine generates a sequence of iterates \(z_1, z_2, z_3, \ldots\), such that \(|P(z_k)| < |P(z_{k+1})|\) and ensures that \(z_k + L(z_k) \) 'roughly' lies inside a circular region of radius \(F\) about \(z\) known to contain a zero of \(P(z)\); that is, \(|L(z_k)| < |F|\), where \(F\) denotes the Fejer bound (see Marden [1]) at the point \(z\). Following Smith [2], \(F\) is taken to be \(\min(B, 1.445*n*R)\), where \(B\) is an upper bound for the magnitude of the smallest zero given by

\[
B = 1.0001*\min(\sqrt[n]{L(z_k)}, |r|/|a_1/a_0|)
\]

\(r\) is the zero \(X\) of smaller magnitude of the quadratic equation

\[
2(P''(z_k)/(2n*(n-1)))X + 2(P'(z_k)/n)X + P(z_k) = 0
\]
and the Cauchy lower bound $R$ for the smallest zero is computed (using Newton’s Method) as the positive root of the polynomial equation

$$\sum_{i=0}^{n-1} |a_i z^i| = 0.$$  

Starting from the origin, successive iterates are generated according to the rule $z_{k+1} = z_k + L(z_k)$ for $k = 1, 2, 3, \ldots$ and $L(z_k)$ is "adjusted" so that $|P(z_k)| < |P(z_{k+1})|$ and $|L(z_k)| < |F|$. The iterative procedure terminates if $P(z_k)$ is smaller in absolute value than the bound on the rounding error in $P(z_{k+1})$ and the current iterate $z_k$ is taken to be a zero of $P(z)$. The deflated polynomial $P(z_k) = P(z)/(z - z_k)$ of degree $n-1$ is then formed, and the above procedure is repeated on the deflated polynomial until $n < 3$, whereupon the remaining roots are obtained via the 'standard' closed formulae for a linear ($n = 1$) or quadratic ($n = 2$) equation.

To obtain the roots of a quadratic polynomial, C02AHF(*) can be used.

4. References


5. Parameters

1: A(2,N+1) -- DOUBLE PRECISION array 
   On entry: if A is declared with bounds (2,0:N), then A(1,i) and A(2,i) must contain the real and imaginary parts of a
(i.e., the coefficient of $z^{n-i}$), for $i=0,1,...,n$.
Constraint: $A(1,0) \neq 0.0$ or $A(2,0) \neq 0.0$.

2: N -- INTEGER Input
On entry: the degree of the polynomial, $n$. Constraint: $N \geq 1$.

3: SCALE -- LOGICAL Input
On entry: indicates whether or not the polynomial is to be scaled. See Section 8 for advice on when it may be preferable to set $SCALE = .FALSE.$ and for a description of the scaling strategy. Suggested value: $SCALE = .TRUE.$.

4: Z(2,N) -- DOUBLE PRECISION array Output
On exit: the real and imaginary parts of the roots are stored in $Z(1,i)$ and $Z(2,i)$ respectively, for $i=1,2,...,n$.

5: W(4*(N+1)) -- DOUBLE PRECISION array Workspace

6: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry $A(1,0) = 0.0$ and $A(2,0) = 0.0$,
or $N < 1$.

IFAIL= 2
The iterative procedure has failed to converge. This error is very unlikely to occur. If it does, please contact NAG immediately, as some basic assumption for the arithmetic has been violated. See also Section 8.

IFAIL= 3
Either overflow or underflow prevents the evaluation of $P(z)$ near some of its zeros. This error is very unlikely to
7. Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem complete accuracy cannot be guaranteed.

8. Further Comments

If SCALE = .TRUE., then a scaling factor for the coefficients is chosen as a power of the base B of the machine so that the largest coefficient in magnitude approaches THRESH = B^(EMAX-P).

Users should note that no scaling is performed if the largest coefficient in magnitude exceeds THRESH, even if SCALE = .TRUE.. (For definition of B, EMAX and P see the Chapter Introduction X02.)

However, with SCALE = .TRUE., overflow may be encountered when the input coefficients a, a, a, ..., a vary widely in magnitude, particularly on those machines for which B overflows. In such cases, SCALE should be set to .FALSE. and the coefficients scaled so that the largest coefficient in magnitude does not exceed B^(EMAX-2*P).

Even so, the scaling strategy used in C02AFF is sometimes insufficient to avoid overflow and/or underflow conditions. In such cases, the user is recommended to scale the independent variable (z) so that the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the routine to locate the zeros of the polynomial d*P(cz) for some suitable values of c and d. For example, if the original polynomial was P(z)=2 i+2 z^4, then choosing c=2 and d=20, for instance, would yield the scaled polynomial i+z^10 which is well-behaved relative to overflow and underflow and has 10 zeros which are 2 times those of P(z).

If the routine fails with IFAIL = 2 or 3, then the real and imaginary parts of any roots obtained before the failure occurred are stored in Z in the reverse order in which they were found. Let n denote the number of roots found before the failure.
occurred. Then $Z(1,n)$ and $Z(2,n)$ contain the real and imaginary parts of the 1st root found, $Z(1,n-1)$ and $Z(2,n-1)$ contain the real and imaginary parts of the 2nd root found, ..., $Z(1,n)$ and $Z(2,n)$ contain the real and imaginary parts of the $n$th root found. After the failure has occurred, the remaining $2(n-n)$ elements of $Z$ contain a large negative number (equal to $-1/(X02AMF().\sqrt{2})$).

9. Example

To find the roots of the polynomial $a_5 z^5 + a_4 z^4 + a_3 z^3 + a_2 z^2 + a_1 z + a_0 = 0$, where $a_0 = (5.0+6.0i)$, $a_1 = (30.0+20.0i)$, $a_2 = -(0.2+6.0i)$, $a_3 = (50.0+100000.0i)$, $a_4 = -(2.0-40.0i)$ and $a_5 = (10.0+1.0i)$.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

C02AGF finds all the roots of a real polynomial equation, using a variant of Laguerre’s Method.

2. Specification

```fortran
SUBROUTINE C02AGF (A, N, SCALE, Z, W, IFAIL)
 INTEGER N, IFAIL
 DOUBLE PRECISION A(N+1), Z(2,N), W(2*(N+1))
 LOGICAL SCALE
```

3. Description

The routine attempts to find all the roots of the nth degree real polynomial equation

\[ P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_2 z^2 + a_1 z + a_0 = 0. \]

The roots are located using a modified form of Laguerre’s Method, originally proposed by Smith [2].

The method of Laguerre [3] can be described by the iterative scheme

\[ L(z)_k = z_k - z_k = \frac{-n*P(z)_k}{P'(z)_k + \sqrt{H(z)_k}}, \]

where \( H(z)_k = (n-1) \left[ (n-1) * (P'(z)_k) - n * P(z)_k P''(z)_k \right] \), and \( z_k \) is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at \( z_k \), viz. \( |L(z)_k| \), is as small as possible. The
method can be shown to be cubically convergent for isolated roots (real or complex) and linearly convergent for multiple roots. The routine generates a sequence of iterates \( z_1, z_2, z_3, \ldots \), such that \( |P(z_{k+1})| < |P(z_k)| \) and ensures that \( z_{k+1} + L(z_{k+1}) \) 'roughly' lies inside a circular region of radius \( |F_k| \) about \( z_k \) known to contain a zero of \( P(z) \); that is, \( |L(z_{k+1})| \leq |F_k| \), where \( F_k \) denotes the Fejer bound (see Marden [1]) at the point \( z_k \). Following Smith [2], \( F_k \) is taken to be \( \min(B, 1.445 \cdot n \cdot R_k) \), where \( B \) is an upper bound for the magnitude of the smallest zero given by

\[
B = 1.0001 \cdot \min(\sqrt[n]{L(z_k)}, |r_k|, |a_{k-1}/a_k|)
\]

\( r_k \) is the zero \( X_k \) of smaller magnitude of the quadratic equation

\[
\frac{2}{P''(z_k)/(2n(n-1))}X + 2(P'(z_k)/n)X + P(z_k) = 0
\]

and the Cauchy lower bound \( R_k \) for the smallest zero is computed (using Newton’s Method) as the positive root of the polynomial equation

\[
|a_0|z^n + |a_1|z^{n-1} + |a_2|z^{n-2} + \ldots + |a_{n-1}|z + |a_n| = 0.
\]

Starting from the origin, successive iterates are generated according to the rule \( z_{k+1} = z_k + L(z_k) \) for \( k = 1, 2, 3, \ldots \) and \( L(z_k) \) is the iterative procedure terminates if \( |P(z_k)| \) is smaller in absolute value than the bound on the rounding error in \( P(z_k) \) and the current iterate \( z_{k+1} \) is taken to be a zero of \( P(z) \) (as is its conjugate \( z_k \) if \( z_k \) is complex). The deflated polynomial

\[
P(z) = P(z)/(z-z_k)
\]

of degree \( n-1 \) if \( z \) is real.
(P(z)=P(z)/((z-z_{p})(z-z_{p}))) of degree n-2 if z is complex) is then formed, and the above procedure is repeated on the deflated polynomial until n<3, whereupon the remaining roots are obtained via the 'standard' closed formulae for a linear (n = 1) or quadratic (n = 2) equation.

To obtain the roots of a quadratic polynomial, C02AJF(*) can be used.

References


Parameters

1: A(N+1) -- DOUBLE PRECISION array Input
   On entry: if A is declared with bounds (0:N), then A(i)
   n-i
   must contain a (i.e., the coefficient of z ), for
   i
   i=0,1,...,n. Constraint: A(0) /= 0.0.

2: N -- INTEGER Input

3: SCALE -- LOGICAL Input
   On entry: indicates whether or not the polynomial is to be scaled. See Section 8 for advice on when it may be preferable to set SCALE = .FALSE. and for a description of the scaling strategy. Suggested value: SCALE = .TRUE..

4: Z(2,N) -- DOUBLE PRECISION array Output
   On exit: the real and imaginary parts of the roots are stored in Z(1,i) and Z(2,i) respectively, for i=1,2,...,n. Complex conjugate pairs of roots are stored in consecutive pairs of elements of Z; that is, Z(1,i+1) = Z(1,i) and Z(2,i+1) = -Z(2,i).
5. W(2*(N+1)) -- DOUBLE PRECISION array Workspace

6. IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   On entry A(0) = 0.0,
   or N < 1.

IFAIL= 2
   The iterative procedure has failed to converge. This error is very unlikely to occur. If it does, please contact NAG immediately, as some basic assumption for the arithmetic has been violated. See also Section 8.

IFAIL= 3
   Either overflow or underflow prevents the evaluation of P(z) near some of its zeros. This error is very unlikely to occur. If it does, please contact NAG immediately. See also Section 8.

7. Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem complete accuracy cannot be guaranteed.

8. Further Comments

If SCALE = .TRUE., then a scaling factor for the coefficients is chosen as a power of the base B of the machine so that the largest coefficient in magnitude approaches THRESH = B**EMAX-P.

Users should note that no scaling is performed if the largest coefficient in magnitude exceeds THRESH, even if SCALE = .TRUE. (For definition of B, EMAX and P see the Chapter Introduction X02.)
However, with SCALE = .TRUE., overflow may be encountered when
the input coefficients $a_0, a_1, a_2, \ldots, a_n$ vary widely in magnitude,
\[ (4^p) \]
particularly on those machines for which $B$ overflows. In
such cases, SCALE should be set to .FALSE. and the coefficients
scaled so that the largest coefficient in magnitude does not
\[ (\text{EMAX}-2^p) \]
exceed $B$.

Even so, the scaling strategy used in C02AGF is sometimes
insufficient to avoid overflow and/or underflow conditions. In
such cases, the user is recommended to scale the independent
variable ($z$) so that the disparity between the largest and
smallest coefficient in magnitude is reduced. That is, use the
routine to locate the zeros of the polynomial $d \times P(cz)$ for some
suitable values of $c$ and $d$. For example, if the original
$100 \quad 100 \quad 20 \quad -10$
polynomial was $P(z) = 2 + z + z$ , then choosing $c=2$ and
$100 \quad 20$
$d=2$ , for instance, would yield the scaled polynomial $1+z$ ,
which is well-behaved relative to overflow and underflow and has
10
zeros which are $2^n$ times those of $P(z)$.

If the routine fails with IFAIL = 2 or 3, then the real and
imaginary parts of any roots obtained before the failure occurred
are stored in Z in the reverse order in which they were found.
Let $n$ denote the number of roots found before the failure
occurred. Then Z(1, n) and Z(2, n) contain the real and imaginary
parts of the 1st root found, Z(1, n-1) and Z(2, n-1) contain the
real and imaginary parts of the 2nd root found, ..., Z(1, n) and
Z(2, n) contain the real and imaginary parts of the $n$th root
found. After the failure has occurred, the remaining $2 \times (n-n)$
elements of Z contain a large negative number (equal to
\[ -1/(\text{X02AMF}().\sqrt{2}) \]).

9. Example

To find the roots of the 5th degree polynomial
\[ 5 \quad 4 \quad 3 \quad 2 \]
\[ z +2z +3z +4z +5z+6=0. \]
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Roots of One or More Transcendental Equations

--- nagc.ht ---

1. Scope of the Chapter

This chapter is concerned with the calculation of real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.)

2. Background to the Problems

The chapter divides naturally into two parts.

2.1. A Single Equation

The first deals with the real zeros of a real function of a single variable f(x).

At present, there is only one routine with a simple calling sequence. This routine assumes that the user can determine an
initial interval \([a,b]\) within which the desired zero lies, that is \(f(a)f(b)<0\), and outside which all other zeros lie. The routine then systematically subdivides the interval to produce a final interval containing the zero. This final interval has a length bounded by the user's specified error requirements; the end of the interval where the function has smallest magnitude is returned as the zero. This routine is guaranteed to converge to a simple zero of the function. (Here we define a simple zero as a zero corresponding to a sign-change of the function.) The algorithm used is due to Bus and Dekker.

2.2. Systems of Equations

The routines in the second part of this chapter are designed to solve a set of nonlinear equations in \(n\) unknowns

\[
T
f(x) = 0, \quad i=1,2,...,n, \quad x=(x_1,x_2,...,x_n) \tag{1}
\]

where \(T\) stands for transpose.

It is assumed that the functions are continuous and differentiable so that the matrix of first partial derivatives of the functions, the Jacobian matrix \(J(x)=\frac{df}{dx}\) evaluated at \(x\), exists, though it may not be possible to calculate it directly.

The functions \(f\) must be independent, otherwise there will be an infinity of solutions and the methods will fail. However, even when the functions are independent the solutions may not be unique. Since the methods are iterative, an initial guess at the solution has to be supplied, and the solution located will usually be the one closest to this initial guess.

2.3. References


3. Recommendations on Choice and Use of Routines

3.1. Zeros of Functions of One Variable

There is only one routine (C05ADF) for solving a single nonlinear equation. This routine is designed for solving problems where the function $f(x)$ whose zero is to be calculated, can be coded as a user-supplied routine.

C05ADF may only be used when the user can supply an interval $[a,b]$ containing the zero, that is $f(a)f(b)<0$.

3.2. Solution of Sets of Nonlinear Equations

The solution of a set of nonlinear equations

$$f(x_1, x_2, \ldots, x_n) = 0, \quad i=1,2,\ldots,n$$

can be regarded as a special case of the problem of finding a minimum of a sum of squares

$$s(x) = \left| \frac{1}{2} \sum_{i=1}^{n} [f(x_1, x_2, \ldots, x_n)]^2 \right|, \quad m \geq n.$$  

So the routines in Chapter E04 of the Library are relevant as well as the special nonlinear equations routines.

There are two routines (C05NBF and C05PBF) for solving a set of nonlinear equations. These routines require the $f$ (and possibly their derivatives) to be calculated in user-supplied routines. These should be set up carefully so the Library routines can work as efficiently as possible.

The main decision which has to be made by the user is whether to supply the derivatives $d\frac{df}{dx}$. It is advisable to do so if possible, since the results obtained by algorithms which use derivatives are generally more reliable than those obtained by algorithms which do not use derivatives.
C05PBF requires the user to provide the derivatives, whilst C05NBF does not. C05NBF and C05PBF are easy-to-use routines. A routine, C05ZAF, is provided for use in conjunction with C05PBF to check the user-provided derivatives for consistency with the functions themselves. The user is strongly advised to make use of this routine whenever C05PBF is used.

Firstly, the calculation of the functions and their derivatives should be ordered so that cancellation errors are avoided. This is particularly important in a routine that uses these quantities to build up estimates of higher derivatives.

Secondly, scaling of the variables has a considerable effect on the efficiency of a routine. The problem should be designed so that the elements of \( x \) are of similar magnitude. The same comment applies to the functions, all the \( f \) should be of comparable size.

The accuracy is usually determined by the accuracy parameters of the routines, but the following points may be useful:

(i) Greater accuracy in the solution may be requested by choosing smaller input values for the accuracy parameters. However, if unreasonable accuracy is demanded, rounding errors may become important and cause a failure.

(ii) Some idea of the accuracies of the \( x \) may be obtained by monitoring the progress of the routine to see how many figures remain unchanged during the last few iterations.

(iii) An approximation to the error in the solution \( x \), given by \( e \) where \( e \) is the solution to the set of linear equations

\[
J(x)e = -f(x)
\]

where \( f(x) = (f_1(x), f_2(x), ..., f_n(x)) \) (see Chapter F04).

(iv) If the functions \( f_i(x) \) are changed by small amounts \( \epsilon_i \), for \( i = 1,2,...,n \), then the corresponding change in the solution \( x \) is given approximately by \( \sigma \), where \( \sigma \) is the solution of the set of linear equations

\[
J(x)\sigma = -(\epsilon_i), \text{ (see Chapter F04).}
\]
Thus one can estimate the sensitivity of $x$ to any uncertainties in the specification of $f(x)$, for $i = 1, 2, \ldots, n$.

3.3. Index

Zeros of functions of one variable:
- Bus and Dekker algorithm C05ADF

Zeros of functions of several variables:
- easy-to-use C05NBF
- easy-to-use, derivatives required C05PBF

Checking Routine:
- Checks user-supplied Jacobian C05ZAF

C05 -- Roots of One or More Transcendental Equations

Chapter C05

Roots of One or More Transcendental Equations

C05ADF Zero of continuous function in given interval, Bus and Dekker algorithm

C05NBF Solution of system of nonlinear equations using function values only

C05PBF Solution of system of nonlinear equations using 1st derivatives

C05ZAF Check user’s routine for calculating 1st derivatives

---

Zero of a continuous function in a given interval

--- nagc.ht ---
1. Purpose

C05ADF locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation, extrapolation and bisection.

2. Specification

```fortran
SUBROUTINE C05ADF (A, B, EPS, ETA, F, X, IFAIL)
 INTEGER IFAIL
 DOUBLE PRECISION A, B, EPS, ETA, F, X
 EXTERNAL F
```

3. Description

The routine attempts to obtain an approximation to a simple zero of the function \( f(x) \) given an initial interval \([a,b]\) such that \( f(a) \cdot f(b) \leq 0 \). The zero is found by calls to C05AZF(*) whose specification should be consulted for details of the method used.

The approximation \( x \) to the zero (alpha) is determined so that one or both of the following criteria are satisfied:

(i) \( |x - \alpha| < \text{EPS} \),

(ii) \( |f(x)| < \text{ETA} \).

4. References

None.

5. Parameters

1: A -- DOUBLE PRECISION

Input

On entry: the lower bound of the interval, \( a \).
2: B -- DOUBLE PRECISION
   On entry: the upper bound of the interval, b. Constraint: B 
   /= A.

3: EPS -- DOUBLE PRECISION
   On entry: the absolute tolerance to which the zero is 
   required (see Section 3). Constraint: EPS > 0.0.

4: ETA -- DOUBLE PRECISION
   On entry: a value such that if |f(x)|<ETA, x is accepted as 
   the zero. ETA may be specified as 0.0 (see Section 7).

5: F -- DOUBLE PRECISION FUNCTION, supplied by the user.
   External Procedure
   F must evaluate the function f whose zero is to be 
   determined.
   Its specification is:

   DOUBLE PRECISION FUNCTION F (XX)
   DOUBLE PRECISION XX

   1: XX -- DOUBLE PRECISION
      On entry: the point at which the function must be 
      evaluated.
      F must be declared as EXTERNAL in the (sub)program from 
      which C05ADF is called. Parameters denoted as Input 
      must not be changed by this procedure.

6: X -- DOUBLE PRECISION
   On exit: the approximation to the zero.

7: IFAIL -- INTEGER
   Input/Output
   Before entry, IFAIL must be assigned a value. For users not 
   familiar with this parameter (described in the Essential 
   Introduction) the recommended value is 0.
   Unless the routine detects an error (see Section 6), IFAIL 
   contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   On entry EPS <= 0.0,
   or       A = B,
or \( F(A) \cdot F(B) > 0.0 \).

**IFAIL** = 2  
Too much accuracy has been requested in the computation, that is, EPS is too small for the computer being used. The final value of \( X \) is an accurate approximation to the zero.

**IFAIL** = 3  
A change in sign of \( f(x) \) has been determined as occurring near the point defined by the final value of \( X \). However, there is some evidence that this sign-change corresponds to a pole of \( f(x) \).

**IFAIL** = 4  
Indicates that a serious error has occurred in C05AZF(*). Check all routine calls. Seek expert help.

### 7. Accuracy

This depends on the value of EPS and ETA. If full machine accuracy is required, they may be set very small, resulting in an error exit with IFAIL = 2, although this may involve more iterations than a lesser accuracy. The user is recommended to set ETA = 0.0 and to use EPS to control the accuracy, unless he has considerable knowledge of the size of \( f(x) \) for values of \( x \) near the zero.

### 8. Further Comments

The time taken by the routine depends primarily on the time spent evaluating \( F \) (see Section 5).

If it is important to determine an interval of length less than EPS containing the zero, or if the function \( F \) is expensive to evaluate and the number of calls to \( F \) is to be restricted, then use of C05AZF(*) is recommended. Use of C05AZF(*) is also recommended when the structure of the problem to be solved does not permit a simple function \( F \) to be written: the reverse communication facilities of C05AZF(*) are more flexible than the direct communication of \( F \) required by C05ADF.

### 9. Example

\[ -x \]

The example program below calculates the zero of \( e^{-x} \) within the interval \([0,1]\) to approximately 5 decimal places.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Solution of a system of nonlinear equations

--- nagc.ht ---

\begin{verbatim}

C05NBF(3NAG) Foundation Library (12/10/92) C05NBF(3NAG)

C05 -- Roots of One or More Transcendental Equations
C05NBF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C05NBF is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2. Specification

\begin{verbatim}
SUBROUTINE C05NBF (FCN, N, X, FVEC, XTOL, WA, LWA, IFAIL)
INTEGER N, LWA, IFAIL
EXTERNAL FCN
\end{verbatim}

3. Description

The system of equations is defined as:

\[ f(x_1, x_2, \ldots, x_n) = 0, \text{ for } i = 1, 2, \ldots, n. \]
C05NBF is based upon the MINPACK routine HYBRD1 (More et al [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References


5. Parameters

1: FCN -- SUBROUTINE, supplied by the user.

External Procedure
FCN must return the values of the functions $f_i$ at a point $x$.

Its specification is:

```
SUBROUTINE FCN (N, X, FVEC, IFLAG)
 INTEGER N, IFLAG
 DOUBLE PRECISION X(N), FVEC(N)
```

1: N -- INTEGER 

Input
On entry: the number of equations, $n$.

2: X(N) -- DOUBLE PRECISION array 

Input
On entry: the components of the point $x$ at which the functions must be evaluated.

3: FVEC(N) -- DOUBLE PRECISION array 

Output
On exit: the function values $f(x)$ (unless IFLAG is set to a negative value by FCN).

4: IFLAG -- INTEGER 

Input/Output
On entry: IFLAG > 0. On exit: in general, IFLAG should
not be reset by FCN. If, however, the user wishes to
terminate execution (perhaps because some illegal point
X has been reached), then IFLAG should be set to a
negative integer. This value will be returned through
IFAIL.
FCN must be declared as EXTERNAL in the (sub)program
from which C05NBF is called. Parameters denoted as
Input must not be changed by this procedure.

2: N -- INTEGER                              
    On entry: the number of equations, n. Constraint: N > 0.

3: X(N) -- DOUBLE PRECISION array            
    On entry: an initial guess at the solution vector. On
    exit: the final estimate of the solution vector.

4: FVEC(N) -- DOUBLE PRECISION array         
    On exit: the function values at the final point, X.

5: XTOL -- DOUBLE PRECISION                  
    On entry: the accuracy in X to which the solution is
    required. Suggested value: the square root of the machine
    precision. Constraint: XTOL >= 0.0.

6: WA(LWA) -- DOUBLE PRECISION array         
    Workspace

7: LWA -- INTEGER                           
    On entry: the dimension of the array WA. Constraint:
    LWA>=N*(3*N+13)/2.

8: IFAIL -- INTEGER                          
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see
    Section 6).
6. Error Indicators and Warnings
Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL< 0
The user has set IFLAG negative in FCN. The value of IFAIL
will be the same as the user’s setting of IFLAG.

IFAIL= 1
On entry $N \leq 0$,
or $\text{XTOL} < 0.0$,
or $\text{LWA} < N \cdot (3 \cdot N + 13) / 2$.

$\text{IFAIL} = 2$
There have been at least $200 \cdot (N + 1)$ evaluations of FCN.
Consider restarting the calculation from the final point held in $X$.

$\text{IFAIL} = 3$
No further improvement in the approximate solution $X$ is possible; XTOL is too small.

$\text{IFAIL} = 4$
The iteration is not making good progress. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7).
Otherwise, rerunning C05NBF from a different starting point may avoid the region of difficulty.

7. Accuracy

If $x$ is the true solution, C05NBF tries to ensure that

$$||x - x|| \leq \text{XTOL} \cdot ||x||.$$  

If this condition is satisfied with XTOL = 10, then the larger components of $x$ have $k$ significant decimal digits. There is a danger that the smaller components of $x$ may have large relative errors, but the fast rate of convergence of C05NBF usually avoids this possibility.

If XTOL is less than machine precision, and the above test is satisfied with the machine precision in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then C05NBF may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning C05NBF with a tighter tolerance.
8. Further Comments

The time required by C05NBF to solve a given problem depends on $n$, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05NBF to process each call of FCN is about $11.5 \times n$. Unless FCN can be evaluated quickly, the timing of C05NBF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that at the solution the function values are of comparable magnitude.

9. Example

To determine the values $x_1, \ldots, x_9$ which satisfy the tridiagonal equations:

\[
(3-2x_i)x_i -2x_i = -1, \quad i=1,2
\]
\[
-x_i + (3-2x_{i+1})x_i -2x_i = -1, \quad i=2,3,\ldots,8
\]
\[
-x_8 + (3-2x_9)x_8 = -1.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.2. NAGC.HT

C05 -- Roots of One or More Transcendental Equations

C05PBF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C05PBF is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian.

2. Specification

```fortran
SUBROUTINE C05PBF (FCN, N, X, FVEC, FJAC, LDFJAC, XTOL, WA, LWA, IFAIL)
INTEGER N, LDFJAC, LWA, IFAIL
DOUBLE PRECISION X(N), FVEC(N), FJAC(LDFJAC,N), XTOL, WA(LWA)
EXTERNAL FCN
```

3. Description

The system of equations is defined as:

\[ f(x_1, x_2, \ldots, x_n) = 0, \quad i = 1, 2, \ldots, n. \]

C05PBF is based upon the MINPACK routine HYBRJ1 (More et al [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is calculated, but it is not recalculated until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

5. Parameters

1: FCN -- SUBROUTINE, supplied by the user.

   External Procedure

   Depending upon the value of IFLAG, FCN must either return
   the values of the functions \( f \) at a point \( x \) or return the
   Jacobian at \( x \).

   Its specification is:

   ```
 SUBROUTINE FCN (N, X, FVEC, FJAC, LDFJAC, IFLAG)
 INTEGER N, LDFJAC, IFLAG
 DOUBLE PRECISION X(N), FVEC(N), FJAC(LDFJAC,N)
   ```

   1: \( N \) -- INTEGER
      On entry: the number of equations, \( n \).

   2: \( X(N) \) -- DOUBLE PRECISION array
      On entry: the components of the point \( x \) at which the
      functions or the Jacobian must be evaluated.

   3: \( FVEC(N) \) -- DOUBLE PRECISION array
      On exit: if IFLAG = 1 on entry, \( FVEC \) must contain the
      function values \( f(x) \) (unless IFLAG is set to a
      negative value by FCN). If IFLAG = 2 on entry, \( FVEC \)
      must not be changed.

   4: \( FJAC(LDFJAC,N) \) -- DOUBLE PRECISION array
      On exit: if IFLAG = 2 on entry, \( FJAC(i,j) \) must contain
      the value of \( \frac{\partial f_i}{\partial x_j} \) at the point \( x \), for \( i,j=1,2,\ldots,n \)
      (unless IFLAG is set to a negative value by FCN).

      If IFLAG = 1 on entry, \( FJAC \) must not be changed.

   5: \( LDFJAC \) -- INTEGER
      On entry: the first dimension of \( FJAC \).

   6: \( IFLAG \) -- INTEGER
      On entry: IFLAG = 1 or 2:
if IFLAG = 1, FVEC is to be updated;

if IFLAG = 2, FJAC is to be updated.
On exit: in general, IFLAG should not be reset by FCN.
If, however, the user wishes to terminate execution
(perhaps because some illegal point x has been reached)
then IFLAG should be set to a negative integer. This
value will be returned through IFAIL.
FCN must be declared as EXTERNAL in the (sub)program
from which C05PBF is called. Parameters denoted as
Input must not be changed by this procedure.

2: N -- INTEGER
On entry: the number of equations, n. Constraint: N > 0.

3: X(N) -- DOUBLE PRECISION array
On entry: an initial guess at the solution vector. On
exit: the final estimate of the solution vector.

4: FVEC(N) -- DOUBLE PRECISION array
On exit: the function values at the final point, X.

5: FJAC(LDFJAC,N) -- DOUBLE PRECISION array
On exit: the orthogonal matrix Q produced by the QR
factorization of the final approximate Jacobian.

6: LDFJAC -- INTEGER
On entry:
the first dimension of the array FJAC as declared in the
(sub)program from which C05PBF is called.
Constraint: LDFJAC >= N.

7: XTOL -- DOUBLE PRECISION
On entry: the accuracy in X to which the solution is
required. Suggested value: the square root of the machine
precision. Constraint: XTOL >= 0.0.

8: WA(LWA) -- DOUBLE PRECISION array
Workspace

9: LWA -- INTEGER
On entry: the dimension of the array WA. Constraint:
LWA>=N*(N+13)/2.

10: IFAIL -- INTEGER
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).
6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL< 0
A negative value of IFAIL indicates an exit from C05PBF because the user has set IFLAG negative in FCN. The value of IFAIL will be the same as the user’s setting of IFLAG.

IFAIL= 1
On entry N <= 0,
or LDFJAC < N,
or XTOL < 0.0,
or LWA<N*(N+13)/2.

IFAIL= 2
There have been 100*(N+1) evaluations of the functions. Consider restarting the calculation from the final point held in X.

IFAIL= 3
No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL= 4
The iteration is not making good progress. This failure exit may indicate that the system does not have a zero or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05PBF from a different starting point may avoid the region of difficulty.

7. Accuracy

If x is the true solution, C05PBF tries to ensure that

\[ ||x-x|| <= XTOL \cdot ||x|| . \]

\[ 2^-k \]

If this condition is satisfied with XTOL=10^k, then the larger components of x have k significant decimal digits. There is a
danger that the smaller components of \( x \) may have large relative errors, but the fast rate of convergence of \( \text{C05PBF} \) usually avoids the possibility.

If XTOL is less than machine precision and the above test is satisfied with the machine precision in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions and Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied then C05PBF may incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZAF. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05PBF with a tighter tolerance.

8. Further Comments

The time required by C05PBF to solve a given problem depends on \( n \), the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05PBF is about \( 11.5n^2 \) to process each evaluation of the

\[ \text{functions} \]

and about \( 1.3n^3 \) to process each evaluation of the

\[ \text{Jacobian} \]

Unless FCN can be evaluated quickly, the timing of C05PBF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

9. Example

To determine the values \( x_1, \ldots, x_9 \) which satisfy the tridiagonal equations:

\[
\begin{align*}
(3-2x_i)x - 2x &= -1 \\
1 &
\end{align*}
\]

\[1 \quad 1 \quad 2 \]

\[
\begin{align*}
-x + (3-2x_i)x - 2x &= -1, \quad i=2,3,\ldots,8. \\
i-1 &
\end{align*}
\]

\[i \quad i \quad i+1 \]

\[
\begin{align*}
-x + (3-2x_9)x &= -1. \\
8 &
\end{align*}
\]

\[9 \quad 9 \quad 9 \]
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Checks the gradients of a set of non-linear functions

---

Checks the gradients of a set of non-linear functions

---

Notes: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C05ZAF checks the user-provided gradients of a set of non-linear functions in several variables, for consistency with the functions themselves. The routine must be called twice.

2. Specification

```fortran
SUBROUTINE C05ZAF (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)
INTEGER M, N, LDFJAC, MODE
DOUBLE PRECISION X(N), FVEC(M), FJAC(LDFJAC,N), XP(N), FVECP(M), ERR(M)
```

3. Description
C05ZAF is based upon the MINPACK routine CHKDER (More et al [1]). It checks the ith gradient for consistency with the ith function by computing a forward-difference approximation along a suitably chosen direction and comparing this approximation with the user-supplied gradient along the same direction. The principal characteristic of C05ZAF is its invariance under changes in scale of the variables or functions.

4. References


5. Parameters

1: M -- INTEGER Input
   On entry: the number of functions.

2: N -- INTEGER Input
   On entry: the number of variables. For use with C05PBF and C05PCF(*), M = N.

3: X(N) -- DOUBLE PRECISION array Input
   On entry: the components of a point x, at which the consistency check is to be made. (See Section 8.)

4: FVEC(M) -- DOUBLE PRECISION array Input
   On entry: when MODE = 2, FVEC must contain the functions evaluated at x.

5: FJAC(LDFJAC,N) -- DOUBLE PRECISION array Input
   On entry: when MODE = 2, FJAC must contain the user-supplied gradients. (The ith row of FJAC must contain the gradient of the ith function evaluated at the point x.)

6: LDFJAC -- INTEGER Input
   On entry: the first dimension of the array FJAC as declared in the (sub)program from which C05ZAF is called.
   Constraint: LDFJAC >= M.

7: XP(N) -- DOUBLE PRECISION array Output
   On exit: when MODE = 1, XP is set to a neighbouring point to X.

8: FVECP(M) -- DOUBLE PRECISION array Input
   On entry: when MODE = 2, FVECP must contain the functions evaluated at XP.
9: MODE -- INTEGER
   Input
   On entry: the value 1 on the first call and the value 2 on the second call of C05ZAF.

10: ERR(M) -- DOUBLE PRECISION array
    Output
    On exit: when MODE = 2, ERR contains measures of correctness of the respective gradients. If there is no loss of significance (see Section 8), then if ERR(i) is 1.0 the ith user-supplied gradient is correct, whilst if ERR(i) is 0.0 the ith gradient is incorrect. For values of ERR(i) between 0.0 and 1.0 the categorisation is less certain. In general, a value of ERR(i)>0.5 indicates that the ith gradient is probably correct.

6. Error Indicators and Warnings

None.

7. Accuracy

See below.

8. Further Comments

The time required by C05ZAF increases with M and N.

C05ZAF does not perform reliably if cancellation or rounding errors cause a severe loss of significance in the evaluation of a function. Therefore, none of the components of x should be unusually small (in particular, zero) or any other value which may cause loss of significance. The relative differences between corresponding elements of FVECP and FVEC should be at least two orders of magnitude greater than the machine precision.

9. Example

This example checks the Jacobian matrix for a problem with 15 functions of 3 variables. The results indicate that the first 7 gradients are probably incorrect (this is caused by a deliberate error in the code to calculate the Jacobian).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Discrete Fourier transform of real or complex data values

--- nagc.ht ---

\begin{verbatim}
C06(3NAG) Foundation Library (12/10/92) C06(3NAG)

C06 -- Summation of Series  Introduction -- C06
Chapter C06
Summation of Series

1. Scope of the Chapter

This chapter is concerned with calculating the discrete Fourier transform of a sequence of real or complex data values, and applying it to calculate convolutions and correlations.

2. Background to the Problems

2.1. Discrete Fourier Transforms

2.1.1. Complex transforms

Most of the routines in this chapter calculate the finite discrete Fourier transform (DFT) of a sequence of $n$ complex numbers $z_j$, for $j=0,1,...,n-1$. The transform is defined by:

\[
z_k = \sum_{j=0}^{n-1} z_j \exp(-i 2\pi jk/n) \quad (1)
\]

for $k=0,1,...,n-1$. Note that equation (1) makes sense for all integral $k$ and with this extension $z_k$ is periodic with period $n$, $k$. 
i.e. $z = z_k$, and in particular $z = z_{k+n}$.

If we write $z = x + iy$ and $z = a + ib$, then the definition of $z_{j+k}$ may be written in terms of sines and cosines as:

$$
\begin{align*}
1 - \frac{1}{(2\pi)jk} & \frac{1}{(2\pi)jk} \\
\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} & \left( x \cos\left( \frac{j}{n} \right) + y \sin\left( \frac{j}{n} \right) \right) \\
\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} & \left( y \cos\left( \frac{j}{n} \right) - x \sin\left( \frac{j}{n} \right) \right).
\end{align*}
$$

The original data values $z_j$ may conversely be recovered from the transform $z_k$ by an inverse discrete Fourier transform:

$$
\begin{align*}
1 - \frac{1}{(2\pi)jk} & \frac{1}{(2\pi)jk} \\
\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} & \left( z \exp\left( +i \frac{j}{n} \right) \right) (2) \\
\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} & \left( \exp\left( -i \frac{k}{n} \right) \right)
\end{align*}
$$

for $j=0,1,...,n-1$. If we take the complex conjugate of (2), we find that the sequence $z_j$ is the DFT of the sequence $z_k$. Hence the inverse DFT of the sequence $z_k$ may be obtained by: taking the complex conjugates of the $z_j$; performing a DFT; and taking the complex conjugates of the result.

Notes: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the DFT, and (1) as
the definition of the inverse. Also the scale-factor of 1/\sqrt{n} may be omitted in the definition of the DFT, and replaced by 1/n in the definition of the inverse.

2.1.2. Real transforms

If the original sequence is purely real valued, i.e. \( z = x \), then

\[
\begin{align*}
\hat{z} &= \sum_{k=0}^{n-1} x_k \exp(-i \frac{2\pi jk}{n}) \\
&= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp(-i \frac{2\pi jk}{n})
\end{align*}
\]

and \( \hat{z} \) is the complex conjugate of \( z \). Thus the DFT of a real sequence is a particular type of complex sequence, called a Hermitian sequence, or half-complex or conjugate symmetric with the properties:

- \( a = a \in \mathbb{R} \), \( b = -b \in \mathbb{R} \), and, if \( n \) is even, \( b = 0 \).
- \( n-k \) \( k \) \( n-k \) \( k \) \( 0 \) \( n/2 \)

Thus a Hermitian sequence of \( n \) complex data values can be represented by only \( n \), rather than \( 2n \), independent real values. This can obviously lead to economies in storage, the following scheme being used in this chapter: the real parts \( a \) for \( 0 \leq k \leq n/2 \) are stored in normal order in the first \( n/2+1 \) locations of an array \( X \) of length \( n \); the corresponding non-zero imaginary parts are stored in reverse order in the remaining locations of \( X \). In other words, if \( X \) is declared with bounds (0:n-1) in the user's (sub)program, the real and imaginary parts of \( z \) are stored as follows:

<table>
<thead>
<tr>
<th>( X(0) )</th>
<th>a</th>
<th>a</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X(1) )</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( X(2) )</td>
<td>a</td>
<td>a</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Hence \( x = \frac{1}{\sqrt{n}} \left( \sum_{j=0}^{n/2-1} \left( \begin{array}{c} n/2-1 \\ j \end{array} \right) \right) \frac{1}{\sqrt{n}} \left( \begin{array}{c} n/2 \\ k \end{array} \right) a \cos \left( \frac{2\pi j k}{n} \right) - b \sin \left( \frac{2\pi j k}{n} \right) + a \) 

where \( a = 0 \) if \( n \) is odd.

2.1.3. Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the Fourier integral transform

\[
F(s) = \int_{-\infty}^{+\infty} f(t) \exp(-i2\pi st) dt
\]

when \( f(t) \) is negligible outside some region \((0,c)\). Dividing the
region into $n$ equal intervals we have

$$
F(s) \approx \sum_{j=0}^{n-1} f \exp\left(-i2\pi sjc/n\right)
$$

and so

$$
F(k) \approx \sum_{j=0}^{n-1} f \exp\left(-i2\pi jk/n\right)
$$

for $k=0,1,...,n-1$, where $f = f(jc/n)$ and $F = F(kc/n)$.

Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the region $s=0$ to $s=n/c$.

If the function $f(t)$ is defined over some more general interval $(a,b)$, then the integral transform can still be approximated by the discrete transform provided a shift is applied to move the point $a$ to the origin.

2.1.4. Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the discrete convolution or correlation of two vectors $x$ and $y$ defined (as in Brigham [1]) by:

$$
\text{convolution: } z = \sum_{j=0}^{n-1} x_{j} y_{k-j}
$$

$$
\text{correlation: } w = \sum_{j=0}^{n-1} x_{j} y_{k+j}
$$

(Here $x$ and $y$ are assumed to be periodic with period $n$.)

Under certain circumstances (see Brigham [1]) these can be used as approximations to the convolution or correlation integrals.
defined by:

\[
\begin{align*}
  z(s) &= \int_{-\infty}^{+\infty} x(t) y(s-t) dt \\
  w(s) &= \int_{-\infty}^{+\infty} x(t) y(s+t) dt,
\end{align*}
\]

and

For more general advice on the use of Fourier transforms, see Hamming [2]; more detailed information on the fast Fourier transform algorithms can be found in Van Loan [3] and Brigham [1].

2.2. References


3. Recommendations on Choice and Use of Routines

3.1. One-dimensional Fourier Transforms

The choice of routine is determined first of all by whether the data values constitute a real, Hermitian or general complex sequence. It is wasteful of time and storage to use an inappropriate routine.

Two groups, each of three routines, are provided

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real sequences</td>
<td>C06EAF</td>
</tr>
<tr>
<td>Hermitian sequences</td>
<td>C06EBF</td>
</tr>
<tr>
<td>General complex sequences</td>
<td>C06ECF</td>
</tr>
</tbody>
</table>
Group 1 routines each compute a single transform of length n,
without requiring any extra working storage. The Group 1 routines
impose some restrictions on the value of n, namely that no prime
factor of n may exceed 19 and the total number of prime factors
(including repetitions) may not exceed 20 (though the latter
restriction only becomes relevant when n>10).

Group 2 routines are designed to perform several transforms in a
single call, all with the same value of n. They do however
require more working storage. Even on scalar processors, they may
be somewhat faster than repeated calls to Group 1 routines
because of reduced overheads and because they pre-compute and
store the required values of trigonometric functions. Group 2
routines impose no practical restrictions on the value of n;
however the fast Fourier transform algorithm ceases to be ‘fast’
if applied to values of n which cannot be expressed as a product
of small prime factors. All the above routines are particularly
efficient if the only prime factors of n are 2, 3 or 5.

If extensive use is to be made of these routines, users who are
careful about efficiency are advised to conduct their own
timing tests.

To compute inverse discrete Fourier transforms the above routines
should be used in conjunction with the utility routines C06GBF,
C06GCF and C06GQF which form the complex conjugate of a Hermitian
or general sequence of complex data values.

3.2. Multi-dimensional Fourier Transforms

C06FUF computes a 2-dimensional discrete Fourier transform of a
2-dimensional sequence of complex data values. This is defined by

\[
\begin{align*}
    z_{jk} &= \sum_{i=0}^{n-1} z_{i} \exp(-i 2\pi j k) \exp(-i 2\pi j k) \\
    &= \sum_{i=0}^{n-1} z_{i} \exp(-i \frac{2\pi j k}{n}) \exp(-i \frac{2\pi j k}{n}) \\
    &= \sum_{i=0}^{n-1} z_{i} \exp(-i \frac{2\pi j k}{n}) \exp(-i \frac{2\pi j k}{n}) \\
    &= \sum_{i=0}^{n-1} z_{i} \exp(-i \frac{2\pi j k}{n}) \exp(-i \frac{2\pi j k}{n})
\end{align*}
\]

3.3. Convolution and Correlation

C06EKF computes either the discrete convolution or the discrete
correlation of two real vectors.

3.4. Index
Complex conjugate,
  complex sequence C06GCF
  Hermitian sequence C06GBF
  multiple Hermitian sequences C06GQF
Complex sequence from Hermitian sequences C06GSF
Convolution or Correlation
  real vectors C06EKF
Discrete Fourier Transform
  two-dimensional
    complex sequence C06FUF
  one-dimensional, multiple transforms
    complex sequence C06FRF
    Hermitian sequence C06FQF
    real sequence C06FPF
  one-dimensional, single transforms
    complex sequence C06ECF
    Hermitian sequence C06EBF
    real sequence C06EAF

C06 -- Summation of Series
Chapter C06

Summation of Series

C06EAF Single 1-D real discrete Fourier transform, no extra workspace
C06EBF Single 1-D Hermitian discrete Fourier transform, no extra workspace
C06ECF Single 1-D complex discrete Fourier transform, no extra workspace
C06EKF Circular convolution or correlation of two real vectors, no extra workspace
C06FPF Multiple 1-D real discrete Fourier transforms
C06FQF Multiple 1-D Hermitian discrete Fourier transforms
C06FRF Multiple 1-D complex discrete Fourier transforms
C06FUF 2-D complex discrete Fourier transform
C06GBF Complex conjugate of Hermitian sequence
C06GCF Complex conjugate of complex sequence
22.2. NAGC.HT

C06QF  Complex conjugate of multiple Hermitian sequences
C06GSF  Convert Hermitian sequences to general complex sequences

---

Discrete Fourier transform of n real data values

--- nagc.ht ---

---

Discrete Fourier transform of n real data values

--- nagc.ht ---
this routine calculates their discrete Fourier transform defined by:

\[ z = \sum_{j=0}^{n-1} x_j \exp\left(-i \frac{2\pi j k}{n}\right), \quad k=0,1,\ldots,n-1. \]

(Note the scale factor of \( \frac{1}{\sqrt{n}} \) in this definition.) The transformed values \( z \) are complex, but they form a Hermitian sequence (i.e., \( z_k \) is the complex conjugate of \( z_{n-k} \)), so they are completely determined by \( n \) real numbers (see also the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

\[ w = \sum_{j=0}^{n-1} x_j \exp\left(i \frac{2\pi j k}{n}\right), \quad k=0,1,\ldots,n-1. \]

this routine should be followed by a call of C06GBF to form the complex conjugates of the \( z_k \).

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of \( n \) (see Section 5).

4. References


5. Parameters

1: X(N) -- DOUBLE PRECISION array Input/Output
   On entry: if X is declared with bounds (0:N-1) in the (sub) program from which C06EAF is called, then X(j) must contain
22. NAGC.HT

x , for j=0,1,...,n-1. On exit: the discrete Fourier
j
transform stored in Hermitian form. If the components of the

transform z are written as a +ib , and if X is declared
k k k
with bounds (0:N-1) in the (sub)program from which C06EAF is
called, then for 0<k<=n/2, a is contained in X(k), and for
k
1<=k<=(n-1)/2, b is contained in X(n-k). (See also Section
k
2.1.2 of the Chapter Introduction, and the Example Program.)

2: N -- INTEGER Input
On entry: the number of data values, n. The largest prime
factor of N must not exceed 19, and the total number of
prime factors of N, counting repetitions, must not exceed

3: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
At least one of the prime factors of N is greater than 19.

IFAIL= 2
N has more than 20 prime factors.

IFAIL= 3
N <= 1.

7. Accuracy

Some indication of accuracy can be obtained by performing a
subsequent inverse transform and comparing the results with the
original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to
n*logn, but also depends on the factorization of n. The routine
is somewhat faster than average if the only prime factors of \( n \) are 2, 3 or 5; and fastest of all if \( n \) is a power of 2.

On the other hand, the routine is particularly slow if \( n \) has several unpaired prime factors, i.e., if the 'square-free' part of \( n \) has several factors. For such values of \( n \), routine C06FAF(*) (which requires an additional \( n \) elements of workspace) is considerably faster.

9. Example

This program reads in a sequence of real data values, and prints their discrete Fourier transform (as computed by C06EAF), after expanding it from Hermitian form into a full complex sequence.

It then performs an inverse transform using C06GBF and C06EBF, and prints the sequence so obtained alongside the original data values.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Discrete Fourier transform of a Hermitian sequence

— nagc.ht —

Note: Before using this routine, please read the Users’ Note for
your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

**C06EBF** calculates the discrete Fourier transform of a Hermitian sequence of n complex data values. (No extra workspace required.)

2. Specification

```
SUBROUTINE C06EBF (X, N, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N)
```

3. Description

Given a Hermitian sequence of n complex data values $z$ (i.e., a sequence such that $z$ is real and $z$ is the complex conjugate of $z$, for $j=1,2,...,n-1$) this routine calculates their discrete Fourier transform defined by:

$$
  x = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z \cdot e^{-i \frac{2\pi jk}{n}}, \quad k=0,1,...,n-1.
$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values $x$ are purely real (see also the the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$
  y = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z \cdot e^{+i \frac{2\pi jk}{n}}, \quad k=0,1,...,n-1.
$$

this routine should be preceded by a call of **C06GBF** to form the
complex conjugates of the \( z_j \).

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of \( n \) (see Section 5).

4. References


5. Parameters

1: \( X(N) \) -- DOUBLE PRECISION array Input/Output
On entry: the sequence to be transformed stored in Hermitian form. If the data values \( z_j \) are written as \( x_j + iy_j \) and if \( X \) is declared with bounds \((0:N-1)\) in the subroutine from which C06EBF is called, then for \( 0 \leq j \leq n/2 \), \( x_j \) is contained in \( X(j) \), and for \( 1 \leq j \leq (n-1)/2 \), \( y_j \) is contained in \( X(n-j) \). (See also Section 2.1.2 of the Chapter Introduction and the Example Program.) On exit: the components of the discrete Fourier transform \( x_k \). If \( X \) is declared with bounds \((0:N-1)\) in the (sub)program from which C06EBF is called, then \( x_k \) is stored in \( X(k) \), for \( k=0,1,\ldots,n-1 \).

2: \( N \) -- INTEGER Input
On entry: the number of data values, \( n \). The largest prime factor of \( N \) must not exceed 19, and the total number of prime factors of \( N \), counting repetitions, must not exceed 20. Constraint: \( N > 1 \).

3: \( IFAIL \) -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
IFAIL= 1
 At least one of the prime factors of \( N \) is greater than 19.

IFAIL= 2
 \( N \) has more than 20 prime factors.

IFAIL= 3
 \( N \leq 1 \).

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to \( n \log n \), but also depends on the factorization of \( n \). The routine is somewhat faster than average if the only prime factors of \( n \) are 2, 3 or 5; and fastest of all if \( n \) is a power of 2.

On the other hand, the routine is particularly slow if \( n \) has several unpaired prime factors, i.e., if the 'square-free' part of \( n \) has several factors. For such values of \( n \), routine C06FBF(*) (which requires an additional \( n \) elements of workspace) is considerably faster.

9. Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by C06EBF) is printed out.

The program then performs an inverse transform using C06EAF and C06GBF, and prints the sequence so obtained alongside the original data values.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Discrete Fourier transform of n complex data values

— nagc.ht —

\begin{verbatim}
C06ECF (3NAG) Foundation Library (12/10/92) C06ECF (3NAG)

C06 -- Summation of Series
C06ECF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06ECF calculates the discrete Fourier transform of a sequence of n complex data values. (No extra workspace required.)

2. Specification

SUBROUTINE C06ECF (X, Y, N, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N), Y(N)

3. Description

Given a sequence of n complex data values \( z_j \), for \( j = 0, 1, \ldots, n-1 \), this routine calculates their discrete Fourier transform defined by:

\[
\begin{align*}
    z_k &= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \exp(-i \frac{2\pi jk}{n}), \quad k = 0, 1, \ldots, n-1, \\
    \sqrt{n} j &= 0
\end{align*}
\]

To compute the inverse discrete Fourier transform defined by:

\[ w = \sum_{j=0}^{n-1} z_j \exp\left(i \frac{2\pi jk}{n}\right) \]

this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the \( z_j \) and the \( z_k \).

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of \( n \) (see Section 5).

### 4. References


### 5. Parameters

1. **X(N)** -- DOUBLE PRECISION array. Input/Output
   - On entry: if \( X \) is declared with bounds (0:N-1) in the (sub) program from which C06ECF is called, then \( X(j) \) must contain \( x_j \), the real part of \( z_j \), for \( j=0,1,...,n-1 \). On exit: the real parts \( a_k \) of the components of the discrete Fourier transform. If \( X \) is declared with bounds (0:N-1) in the (sub) program from which C06ECF is called, then \( a_k \) is contained in \( X(k) \), for \( k=0,1,...,n-1 \).

2. **Y(N)** -- DOUBLE PRECISION array. Input/Output
   - On entry: if \( Y \) is declared with bounds (0:N-1) in the (sub) program from which C06ECF is called, then \( Y(j) \) must contain \( y_j \), the imaginary part of \( z_j \), for \( j=0,1,...,n-1 \). On exit: the imaginary parts \( b_k \) of the components of the discrete Fourier transform. If \( Y \) is declared with bounds (0:N-1) in
the (sub)program from which C06ECF is called, then $b_k$ is contained in $Y(k)$, for $k=0,1,...,n-1$.

3: $N$ -- INTEGER Input
   On entry: the number of data values, $n$. The largest prime factor of $N$ must not exceed 19, and the total number of prime factors of $N$, counting repetitions, must not exceed 20. Constraint: $N > 1$.

4: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
   At least one of the prime factors of $N$ is greater than 19.

IFAIL = 2
   $N$ has more than 20 prime factors.

IFAIL = 3
   $N <= 1$.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to $n \log n$, but also depends on the factorization of $n$. The routine is somewhat faster than average if the only prime factors of $n$ are 2, 3 or 5; and fastest of all if $n$ is a power of 2.

On the other hand, the routine is particularly slow if $n$ has several unpaired prime factors, i.e., if the 'square-free' part of $n$ has several factors. For such values of $n$, routine C06FCF(*) (which requires an additional $n$ real elements of workspace) is considerably faster.
9. Example

This program reads in a sequence of complex data values and prints their discrete Fourier transform.

It then performs an inverse transform using C06GCF and C06ECF, and prints the sequence so obtained alongside the original data values.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Circular convolution or correlation of two real vectors

C06EKF calculates the circular convolution or correlation of two real vectors of period n. No extra workspace is required.

1. Purpose

C06EKF calculates the circular convolution or correlation of two real vectors of period n. No extra workspace is required.

2. Specification
CHAPTER 22. NAG LIBRARY ROUTINES

SUBROUTINE C06EKF (JOB, X, Y, N, IFAIL)
INTEGER JOB, N, IFAIL
DOUBLE PRECISION X(N), Y(N)

3. Description

This routine computes:

if JOB = 1, the discrete convolution of x and y, defined by:

\[
\begin{align*}
  z_k &= \sum_{j=0}^{n-1} x_j \cdot y_{k-j} \\
  &= \sum_{j=0}^{n-1} x_k \cdot y_j
\end{align*}
\]

if JOB = 2, the discrete correlation of x and y defined by:

\[
\begin{align*}
  w_k &= \sum_{j=0}^{n-1} x_j \cdot y_{k+j} \\
  &= \sum_{j=0}^{n-1} x_{k+j} \cdot y_j
\end{align*}
\]

Here x and y are real vectors, assumed to be periodic, with period n, i.e., x = x = x = ...; z and w are then also periodic with period n.

Note: this usage of the terms 'convolution' and 'correlation' is taken from Brigham [1]. The term 'convolution' is sometimes used to denote both these computations.

If x, y, z and w are the discrete Fourier transforms of these sequences,

\[
\begin{align*}
  x_k &= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \cdot \exp(-2\pi i jk/n) \\
  y_k &= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} y_j \cdot \exp(-2\pi i jk/n)
\end{align*}
\]

then

\[
\begin{align*}
  z_k &= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \cdot y_{k-j} \\
  w_k &= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \cdot y_{k+j}
\end{align*}
\]
and \( w = \overline{n.x \ y} \)

k k k

(the bar denoting complex conjugate).

This routine calls the same auxiliary routines as C06EAF and C06EBF to compute discrete Fourier transforms, and there are some restrictions on the value of \( n \).

4. References


5. Parameters

1: JOB -- INTEGER Input
On entry: the computation to be performed:

\[
\begin{align*}
\text{n-1} & \quad \text{if JOB = 1, } z = > x \ y \quad \text{(convolution);} \\
\text{k} & \quad \text{k-j} \\
\text{j=0} & \\
\text{n-1} & \quad \text{if JOB = 2, } w = > x \ y \quad \text{(correlation).} \\
\text{k} & \quad \text{k+j} \\
\text{j=0} & \\
\end{align*}
\]

Constraint: JOB = 1 or 2.

2: X(N) -- DOUBLE PRECISION array Input/Output
On entry: the elements of one period of the vector \( x \). If \( X \) is declared with bounds \((0:N-1)\) in the (sub)program from which C06EKF is called, then \( X(j) \) must contain \( x_j \), for \( j=0,1,\ldots,n-1 \). On exit: the corresponding elements of the discrete convolution or correlation.

3: Y(N) -- DOUBLE PRECISION array Input/Output
On entry: the elements of one period of the vector \( y \). If \( Y \) is declared with bounds \((0:N-1)\) in the (sub)program from which C06EKF is called, then \( Y(j) \) must contain \( y_j \), for \( j=0,1,\ldots,n-1 \). On exit: the discrete Fourier transform of the convolution or correlation returned in the array \( X \); the transform is stored in Hermitian form, exactly as described in the document C06EAF.
4: N -- INTEGER  
   Input
   On entry: the number of values, n, in one period of the
   vectors X and Y. The largest prime factor of N must not
   exceed 19, and the total number of prime factors of N,

5: IFAIL -- INTEGER  
   Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.

   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

   Errors detected by the routine:

   IFAIL= 1
       At least one of the prime factors of N is greater than 19.

   IFAIL= 2
       N has more than 20 prime factors.

   IFAIL= 3
       N <= 1.

   IFAIL= 4
       JOB /= 1 or 2.

7. Accuracy

   The results should be accurate to within a small multiple of the
   machine precision.

8. Further Comments

   The time taken by the routine is approximately proportional to
   n*logn, but also depends on the factorization of n. The routine
   is faster than average if the only prime factors are 2, 3 or 5;
   and fastest of all if n is a power of 2.

   The routine is particularly slow if n has several unpaired prime
   factors, i.e., if the 'square free' part of n has several
   factors. For such values of n, routine C06FKF(*) is considerably
   faster (but requires an additional workspace of n elements).

9. Example

   This program reads in the elements of one period of two real
vectors x and y and prints their discrete convolution and correlation (as computed by C06EKF). In realistic computations the number of data values would be much larger.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Discrete Fourier transforms of m sequences

C06FPF computes the discrete Fourier transforms of m sequences, each containing n real data values. This routine is designed to be particularly efficient on vector processors.

2. Specification

```fortran
SUBROUTINE C06FPF (M, N, X, INIT, TRIG, WORK, IFAIL)
 INTEGER M, N, IFAIL
 DOUBLE PRECISION X(M*N), TRIG(2*N), WORK(M*N)
```

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
3. Description

Given m sequences of n real data values \( x_j \), for \( j=0,1,\ldots,n-1; \)
\( p=1,2,\ldots,m \), this routine simultaneously calculates the Fourier
transforms of all the sequences defined by:

\[
\begin{align*}
\text{n-1} \\
\sum_{j=0}^{n-1} (\frac{2\pi}{n})^{jk} z_{k} = \prod x_j \exp(-i \frac{n}{n} j) \\
\text{k} \quad j \text{ ( } n \text{ )}
\end{align*}
\]

(Note the scale factor \( \frac{1}{\sqrt{n}} \) in this definition.)

The transformed values \( z \) are complex, but for each value of \( p \)
\( k \)
\( z^p \), so they are completely determined by \( mn \) real
\( k \)
\( k \)
\( z^p \). The discrete Fourier transform is sometimes defined using a
positive sign in the exponential term:

\[
\begin{align*}
\text{n-1} \\
\sum_{j=0}^{n-1} (\frac{2\pi}{n})^{jk} z_{k} = \prod x_j \exp(+i \frac{n}{n} j) \\
\text{k} \quad j \text{ ( } n \text{ )}
\end{align*}
\]

To compute this form, this routine should be followed by a call
\( \text{C06GQF} \) to form the complex conjugates of the \( z \).

The routine uses a variant of the fast Fourier transform (FFT)
algorithm (Brigham [1]) known as the Stockham self-sorting
algorithm, which is described in Temperton [2]. Special coding is
provided for the factors 2, 3, 4, 5, and 6. This routine is
designed to be particularly efficient on vector processors, and
it becomes especially fast as M, the number of transforms to be
computed in parallel, increases.

4. References

Hall.


5. Parameters

1: M -- INTEGER Input
   On entry: the number of sequences to be transformed, m.
   Constraint: M >= 1.

2: N -- INTEGER Input
   On entry: the number of real values in each sequence, n.
   Constraint: N >= 1.

3: X(M,N) -- DOUBLE PRECISION array Input/Output
   On entry: the data must be stored in X as if in a two-
dimensional array of dimension (1:M,0:N-1); each of the m
   sequences is stored in a row of the array. In other words,
   if the data values of the pth sequence to be transformed are
   \[ x_j \] p
   then the mn elements of
   \[ x_j \] 0
   the array X must contain the values
   \[ x, x, x, x, x, x, \ldots, x, x, x, x, x, \ldots, x. \]
   On exit: the m discrete Fourier transforms stored as if in
   a two-dimensional array of dimension (1:M,0:N-1). Each of
   the m transforms is stored in a row of the array in
   Hermitian form, overwriting the corresponding original
   sequence. If the n components of the discrete Fourier
   \[ z_p \]
   transform \( z \) are written as a \( a + ib \), then for \( 0 \leq k \leq n/2 \), a
   \[ k \]
   and for \( 1 \leq k \leq (n-1)/2 \), \( b \) is
   \[ k \]
   contained in \( X(p,n-k) \). (See also Section 2.1.2 of the
   Chapter Introduction.)

4: INIT -- CHARACTER*1 Input
On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06FPF, C06FQF or C06FRF.

If INIT contains 'R' (Restart then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06FPF, C06FQF or C06FRF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG. Constraint: INIT = 'I', 'S' or 'R'.

5: TRIG(2*N) -- DOUBLE PRECISION array Input/Output
On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set. On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

6: WORK(M*N) -- DOUBLE PRECISION array Workspace

7: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M < 1.

IFAIL= 2
N < 1.

IFAIL= 3
   INIT is not one of 'I', 'S' or 'R'.

IFAIL= 4
   INIT = 'S', but none of C06FPF, C06FQF or C06FRF has
   previously been called.

IFAIL= 5
   INIT = 'S' or 'R', but the array TRIG and the current value
   of N are inconsistent.

7. Accuracy

Some indication of accuracy can be obtained by performing a
subsequent inverse transform and comparing the results with the
original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to
\text{n}\ast\text{log}n, but also depends on the factors of n. The routine is
fastest if the only prime factors of n are 2, 3 and 5, and is
particularly slow if n is a large prime, or has large prime
factors.

9. Example

This program reads in sequences of real data values and prints
their discrete Fourier transforms (as computed by C06FPF). The
Fourier transforms are expanded into full complex form using
C06GSF and printed. Inverse transforms are then calculated by
calling C06GQF followed by C06FQF showing that the original
sequences are restored.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
Discrete Fourier transforms of m Hermitian sequences

— nage.ht —

\begin{page}{manpageXXc06fqf}{NAG Documentation: c06fqf}\begin{scroll}
\begin{verbatim}
C06FQF(3NAG) Foundation Library (12/10/92)  C06FQF(3NAG)
C06 -- Summation of Series  C06FQF
C06FQF -- NAG Foundation Library Routine Document
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06FQF computes the discrete Fourier transforms of m Hermitian sequences, each containing n complex data values. This routine is designed to be particularly efficient on vector processors.

2. Specification

SUBROUTINE C06FQF (M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL
DOUBLE PRECISION X(M*N), TRIG(2*N), WORK(M*N)
CHARACTER*1 INIT

3. Description

Given m Hermitian sequences of n complex data values \( z_j \), for \( j = 0, 1, ..., n-1 \); \( p = 1, 2, ..., m \), this routine simultaneously calculates the Fourier transforms of all the sequences defined by:

\[
\begin{align*}
  x_{kn} &= \sum_{j=0}^{n-1} z_{jp} \exp\left(-i \frac{2\pi jk}{n}\right), \quad k = 0, 1, ..., n-1; \quad p = 1, 2, ..., m. \\
\end{align*}
\]

The transformed values are purely real (see also the Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

\[
    x = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z \cdot \exp\left(\frac{2\pi ij}{n}\right).
\]

To compute this form, this routine should be preceded by a call

\[
    z^\text{p}
\]

to C06GQF to form the complex conjugates of the \(z\).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is included for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as \(m\), the number of transforms to be computed in parallel, increases.

4. References


5. Parameters

1:  \(M\) -- INTEGER  
\hspace{1cm} Input  
\hspace{1cm} On entry: the number of sequences to be transformed, \(m\).  
\hspace{1cm} Constraint: \(M \geq 1\).

2:  \(N\) -- INTEGER  
\hspace{1cm} Input  
\hspace{1cm} On entry: the number of data values in each sequence, \(n\).  
\hspace{1cm} Constraint: \(N \geq 1\).
3: X(M,N) -- DOUBLE PRECISION array                     Input/Output
On entry: the data must be stored in X as if in a two-
dimensional array of dimension (1:M,0:N-1); each of the m
sequences is stored in a row of the array in Hermitian form.

\[
\begin{array}{c}
\begin{array}{ccc}
p & p & p \\
\end{array} \\
\begin{array}{cccc}
\begin{array}{cccc}
0 & \leq & j & \leq & n/2, \ x \ is \ contained \ in \ X(p,j), \ and \ for & 1 & \leq & j & \leq & (n-1)/2, \\
\end{array} \\
\end{array} \\
\begin{array}{c}
ap \\
\end{array} \\
\begin{array}{cccc}
\begin{array}{cccc}
y \ is \ contained \ in \ X(p,n-j). \ (See \ also \ Section \ 2.1.2 \ of \ the \\
\end{array} \\
\end{array} \\
\begin{array}{c}
Chapter \ Introduction.) \ On \ exit: \ the \ components \ of \ the \ m
\end{array} \\
\begin{array}{c}
discrete \ Fourier \ transforms, \ stored \ as \ if \ in \ a \ two-
\end{array} \\
\begin{array}{c}
dimensional \ array \ of \ dimension \ (1:M,0:N-1). \ Each \ of \ the \ m
\end{array} \\
\begin{array}{c}
transforms \ is \ stored \ as \ a \ row \ of \ the \ array, \ overwriting \ the
\end{array} \\
\begin{array}{c}
corresponding \ original \ sequence. \ If \ the \ n \ components \ of \ the
\end{array} \\
\begin{array}{c}
^\m \ dis \ Fourier \ transform \ are \ denoted \ by \ x , \ for \ k
\end{array} \\
\begin{array}{c}
k=0,1,...,n-1, \ then \ the \ mn \ elements \ of \ the \ array \ X \ contain
\end{array} \\
\begin{array}{c}
the \ values
\end{array} \\
\begin{array}{c}
1 \ \ 2 \ \ 1 \ \ 2 \ \ 1 \ \ 2 \ \ 1 \ \ 2 \\
x , x , ..., x , x , x , ..., x , ..., x \\
0 \ 0 \ 0 \ 1 \ 1 \ 1 \ n-1 \ n-1 \ n-1
\end{array}
\end{array}
\]

4: INIT -- CHARACTER*1                               Input
On entry: if the trigonometric coefficients required to
compute the transforms are to be calculated by the routine
and stored in the array TRIG, then INIT must be set equal to
'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine
assumes that trigonometric coefficients for the specified
value of n are supplied in the array TRIG, having been
calculated in a previous call to one of C06FPF, C06FQF or
C06FRF.

If INIT contains 'R' (Restart), then the routine assumes
that trigonometric coefficients for the particular value of
N are supplied in the array TRIG, but does not check that
C06FPF, C06FQF or C06FRF have previously been called. This
option allows the TRIG array to be stored in an external
file, read in and re-used without the need for a call with
INIT equal to 'I'. The routine carries out a simple test to
check that the current value of n is compatible with the
array TRIG. Constraint: INIT = 'I', 'S' or 'R'.

5: TRIG(2*N) -- DOUBLE PRECISION array                 Input/Output
On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set. On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

6: WORK(M*N) -- DOUBLE PRECISION array Workspace

7: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M < 1.

IFAIL= 2
On entry N < 1.

IFAIL= 3
On entry INIT is not one of 'I', 'S' or 'R'.

IFAIL= 4
On entry INIT = 'S', but none of C06FPF, C06FQF and C06FRF has previously been called.

IFAIL= 5
On entry INIT = 'S' or 'R', but the array TRIG and the current value of n are inconsistent.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to nm*logn, but also depends on the factors of n. The routine is
fastest if the only prime factors of \( n \) are 2, 3 and 5, and is particularly slow if \( n \) is a large prime, or has large prime factors.

9. Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are expanded into full complex form using C06GSF and printed. The discrete Fourier transforms are then computed (using C06FQF) and printed out. Inverse transforms are then calculated by calling C06FPF followed by C06GQF showing that the original sequences are restored.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
C06FRF computes the discrete Fourier transforms of \( m \) sequences, each containing \( n \) complex data values. This routine is designed to be particularly efficient on vector processors.

2. Specification

```fortran
SUBROUTINE C06FRF (M, N, X, Y, INIT, TRIG, WORK, IFAIL)
INTEGER M, N, IFAIL
DOUBLE PRECISION X(M*N), Y(M*N), TRIG(2*N), WORK(2*M*N)
CHARACTER*1 INIT
```

3. Description

Given \( m \) sequences of \( n \) complex data values \( z_j, j = 0,1,\ldots,n-1; j = 1,2,\ldots,m \), this routine simultaneously calculates the Fourier transforms of all the sequences defined by:

\[
z^{(p)} = \sum_{j=0}^{n-1} z_j \exp\left(-i \frac{2\pi jk}{n}\right), \quad k = 0,1,\ldots,n-1; \quad p = 1,2,\ldots,m.
\]

(Note the scale factor \( \frac{1}{\sqrt{n}} \) in this definition.)

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

\[
z^{(p)} = \sum_{j=0}^{n-1} z_j \exp\left(+i \frac{2\pi jk}{n}\right),
\]

To compute this form, this routine should be preceded and followed by a call of C06GCF to form the complex conjugates of \( z^{(p)} \) and the \( z_k \).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is
provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as \( m \), the number of transforms to be computed in parallel, increases.

4. References


5. Parameters

1: M -- INTEGER
   Input
   On entry: the number of sequences to be transformed, \( m \).
   Constraint: \( M \geq 1 \).

2: N -- INTEGER
   Input
   On entry: the number of complex values in each sequence, \( n \).
   Constraint: \( N \geq 1 \).

3: X(M,N) -- DOUBLE PRECISION array
   Input/Output
   On entry: the real and imaginary parts of the complex data must be stored in \( X \) and \( Y \) respectively as if in a two-dimensional array of dimension \((1:M,0:N-1)\); each of the \( m \) sequences is stored in a row of each array. In other words, if the real parts of the \( p \)th sequence to be transformed are denoted by \( x_{p,j} \), for \( j=0,1,...,n-1 \), then the \( mn \) elements of the array \( X \) must contain the values
   \[
   x_0, x_1, ..., x_{m-1}, x_0, x_1, ..., x_{m-1}, x_0, x_1, ..., x_{m-1}, \quad \text{for } j=0,1,...,n-1.
   \]
   On exit: \( X \) and \( Y \) are overwritten by the real and imaginary parts of the complex transforms.

4: Y(M,N) -- DOUBLE PRECISION array
   Input/Output
   On entry: the real and imaginary parts of the complex data must be stored in \( X \) and \( Y \) respectively as if in a two-dimensional array of dimension \((1:M,0:N-1)\); each of the \( m \) sequences is stored in a row of each array. In other words, if the real parts of the \( p \)th sequence to be transformed are denoted by \( x_{p,j} \), for \( j=0,1,...,n-1 \), then the \( mn \) elements of the array \( X \) must contain the values
   \[
   x_0, x_1, ..., x_{m-1}, x_0, x_1, ..., x_{m-1}, x_0, x_1, ..., x_{m-1}, \quad \text{for } j=0,1,...,n-1.
   \]
   On exit: \( X \) and \( Y \) are overwritten by the real and imaginary parts of the complex transforms.

5: INIT -- CHARACTER*1
   Input
   On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

   If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of \( n \) are supplied in the array TRIG, having been
calculated in a previous call to one of C06FPF, C06FQF or C06FRF.

If INIT contains 'R' (Restart) then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06FPF, C06FQF or C06FRF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is compatible with the array TRIG. Constraint: INIT = 'I', 'S' or 'R'.

6: TRIG(2*N) -- DOUBLE PRECISION array Input/Output
On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set. On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

7: WORK(2*M*N) -- DOUBLE PRECISION array Workspace

8: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry M < 1.

IFAIL = 2
On entry N < 1.

IFAIL = 3
On entry INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4
On entry INIT = 'S', but none of C06FPF, C06FQF and C06FRF has previously been called.
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL = 5

On entry INIT = 'S' or 'R', but the array TRIG and the current value of n are inconsistent.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to nm*logn, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9. Example

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by C06FRF). Inverse transforms are then calculated using C06GCF and C06FRF and printed out, showing that the original sequences are restored.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Discrete Fourier transform of bivariate complex data

— nage.ht —

\begin{verbatim}
\end{verbatim}
\endscroll
\end{page}
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06FUF computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors.

2. Specification

```fortran
SUBROUTINE C06FUF (M, N, X, Y, INIT, TRIGM, TRIGN, WORK, IFAIL)
INTEGER M, N, IFAIL
DOUBLE PRECISION X(M*N), Y(M*N), TRIGM(2*M), TRIGN(2*N), WORK(2*M*N)
CHARACTER*1 INIT
```

3. Description

This routine computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values $z_{j_1j_2}$, where $j_1 = 0, 1, \ldots, m-1$, $j_2 = 0, 1, \ldots, n-1$.

The discrete Fourier transform is here defined by:

$$
\hat{z}_{k_1k_2} = \frac{1}{\sqrt{mn}} \sum_{j_1=0}^{m-1} \sum_{j_2=0}^{n-1} z_{j_1j_2} \exp\left(-2\pi i \left( \frac{j_1}{m} \frac{k_1}{m} + \frac{j_2}{n} \frac{k_2}{n} \right) \right),
$$

where $k_1 = 0, 1, \ldots, m-1$, $k_2 = 0, 1, \ldots, n-1$.

(Note the scale factor of $\sqrt{mn}$ in this definition.)
To compute the inverse discrete Fourier transform, defined with \( \exp(+2\pi i(...)) \) in the above formula instead of \( \exp(-2\pi i(...)) \), this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the data values and the transform.

This routine calls C06FRF to perform multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham [1]. It is designed to be particularly efficient on vector processors.

4. References


5. Parameters

1: M -- INTEGER Input
   On entry: the number of rows, \( m \), of the arrays X and Y.
   Constraint: \( M \geq 1 \).

2: N -- INTEGER Input
   On entry: the number of columns, \( n \), of the arrays X and Y.
   Constraint: \( N \geq 1 \).

3: X(M,N) -- DOUBLE PRECISION array Input/Output
   On entry: the real and imaginary parts of the complex data values must be stored in arrays X and Y respectively. If X and Y are regarded as two-dimensional arrays of dimension (0:M-1,0:N-1), then \( X(j,j) \) and \( Y(j,j) \) must contain the real and imaginary parts of \( z_{12} \). On exit: the real and imaginary parts respectively of the corresponding elements of the computed transform.

4: Y(M,N) -- DOUBLE PRECISION array Input/Output
   On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the arrays TRIGM and TRIGN, then INIT must be
set equal to 'I', (Initial call).

If INIT contains 'S', (Subsequent call), then the routine assumes that trigonometric coefficients for the specified values of m and n are supplied in the arrays TRIGM and TRIGN, having been calculated in a previous call to the routine.

If INIT contains 'R', (Restart), then the routine assumes that trigonometric coefficients for the particular values of m and n are supplied in the arrays TRIGM and TRIGN, but does not check that the routine has previously been called. This option allows the TRIGM and TRIGN arrays to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current values of m and n are compatible with the arrays TRIGM and TRIGN. Constraint: INIT = 'I', 'S' or 'R'.

6: TRIGM(2*M) -- DOUBLE PRECISION array Input/Output
7: TRIGN(2*N) -- DOUBLE PRECISION array Input/Output
On entry: if INIT = 'S' or 'R', TRIGM and TRIGN must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIGM and TRIGN need not be set.
If m=n the same array may be supplied for TRIGM and TRIGN.
On exit: TRIGM and TRIGN contain the required coefficients (computed by the routine if INIT = 'I').

8: WORK(2*M*N) -- DOUBLE PRECISION array Workspace
9: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M < 1.
IFAIL = 2
On entry $N < 1$.

IFAIL = 3
On entry INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4
On entry INIT = 'S', but C06FUF has not previously been called.

IFAIL = 5
On entry INIT = 'S' or 'R', but at least one of the arrays TRIGM and TRIGN is inconsistent with the current value of M or N.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to $mn \log(mn)$, but also depends on the factorization of the individual dimensions $m$ and $n$. The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9. Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Summation of Series

— nags.htm —

\begin{page}{manpageXXc06gbf}{NAG Documentation: c06gbf}
\beginscroll
\begin{verbatim}
C06GBF(3NAG) Foundation Library (12/10/92) C06GBF(3NAG)

C06 -- Summation of Series
C06GBF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06GBF forms the complex conjugate of a Hermitian sequence of n data values.

2. Specification

SUBROUTINE C06GBF (X, N, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N)

3. Description

This is a utility routine for use in conjunction with C06EAF, C06EBF, C06FAF(*) or C06FBF(*) to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.

5. Parameters

1: X(N) -- DOUBLE PRECISION array Input/Output
On entry: if the data values z are written as x +iy and
\[ x \quad y \quad j \quad j \quad j \]
if X is declared with bounds (0:N-1) in the (sub)program
\end{verbatim}
\end{scroll}

\end{page}
from which C06GBF is called, then for 0<=j<=n/2, X(j) must contain x (=x_\ j), while for n/2<j<=n-1, X(j) must contain -y (=y_\ j). In other words, X must contain the Hermitian sequence in Hermitian form. (See also Section 2.1.2 of the Chapter Introduction). On exit: the imaginary parts y are negated. The real parts x are not referenced.

2: N -- INTEGER Input
On entry: the number of data values, n. Constraint: N >= 1.

3: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
    N < 1.

7. Accuracy

Exact.

8. Further Comments

The time taken by the routine is negligible.

9. Example

This program reads in a sequence of real data values, calls C06EAF followed by C06GBF to compute their inverse discrete Fourier transform, and prints this after expanding it from Hermitian form into a full complex sequence.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Complex conjugate of a sequence of $n$ data values

---

\begin{verbatim}
C06GCF(3NAG) Foundation Library (12/10/92) C06GCF(3NAG)

C06 -- Summation of Series
    C06GCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06GCF forms the complex conjugate of a sequence of $n$ data values.

2. Specification

    SUBROUTINE C06GCF (Y, N, IFAIL)
    INTEGER N, IFAIL
    DOUBLE PRECISION Y(N)

3. Description

This is a utility routine for use in conjunction with C06ECF or C06FCF(*) to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.
5. Parameters

1: Y(N) -- DOUBLE PRECISION array Input/Output
   On entry: if Y is declared with bounds (0:N-1) in the (sub)
   program which C06GCF is called, then Y(j) must contain the
   imaginary part of the jth data value, for 0<=j<=n-1. On
   exit: these values are negated.

2: N -- INTEGER Input
   On entry: the number of data values, n. Constraint: N >= 1.

3: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   N < 1.

7. Accuracy

Exact.

8. Further Comments

The time taken by the routine is negligible.

9. Example

This program reads in a sequence of complex data values and
prints their inverse discrete Fourier transform as computed by
calling C06GCF, followed by C06ECF and C06GCF again.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
Complex conjugates of m Hermitian sequences

— nagc.ht —

\begin{verbatim}
C06GQF(3NAG) Foundation Library (12/10/92) C06GQF(3NAG)

C06 -- Summation of Series
    C06GQF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06GQF forms the complex conjugates of m Hermitian sequences, each containing n data values.

2. Specification

    SUBROUTINE C06GQF (M, N, X, IFAIL)
    INTEGER M, N, IFAIL
    DOUBLE PRECISION X(M*N)

3. Description

This is a utility routine for use in conjunction with C06FPF and C06FQF to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.

5. Parameters

1: M -- INTEGER
    Input
    On entry: the number of Hermitian sequences to be conjugated, m. Constraint: M >= 1.
2:  N -- INTEGER  
    Input
    On entry: the number of data values in each Hermitian 

3:  X(M,N) -- DOUBLE PRECISION array  
    Input/Output
    On entry: the data must be stored in array X as if in a 
    two-dimensional array of dimension (1:M,0:N-1); each of the 
    m sequences is stored in a row of the array in Hermitian 
    form. If the n data values z are written as x + iy, then 
    p p p
    j j j
    for 0 <= j <= n/2, x is contained in X(p,j), and for 1 <= j <= (n- 
    j p 1)/2, y is contained in X(p,n-j). (See also Section 2.1.2 
    j of the Chapter Introduction.) On exit: the imaginary parts 
    p p
    j j
    y are negated. The real parts x are not referenced.

4:  IFAIL -- INTEGER  
    Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. For users not 
    familiar with this parameter (described in the Essential 
    Introduction) the recommended value is 0.

    On exit: IFAIL = 0 unless the routine detects an error (see 
    Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are 
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
    On entry M < 1.

IFAIL= 2
    On entry N < 1.

7. Accuracy

Exact.

8. Further Comments

None.
9. Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are expanded into full complex form using C06GSF and printed. The sequences are then conjugated (using C06GQF) and the conjugated sequences are expanded into complex form using C06GSF and printed out.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Form real and imaginary parts of m Hermitian sequences

— nagi.ht —

C06GSF(3NAG) Foundation Library (12/10/92) C06GSF(3NAG)

C06 -- Summation of Series

C06GSF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

C06GSF takes m Hermitian sequences, each containing n data values, and forms the real and imaginary parts of the m corresponding complex sequences.
2. Specification

SUBROUTINE C06GSF (M, N, X, U, V, IFAIL)
INTEGER M, N, IFAIL
DOUBLE PRECISION X(M*N), U(M*N), V(M*N)

3. Description

This is a utility routine for use in conjunction with C06FPF and
C06FQF (see the Chapter Introduction).

4. References

None.

5. Parameters

1: M -- INTEGER Input
   On entry: the number of Hermitian sequences, m, to be
   converted into complex form. Constraint: M >= 1.

2: N -- INTEGER Input
   On entry: the number of data values, n, in each sequence.
   Constraint: N >= 1.

3: X(M,N) -- DOUBLE PRECISION array Input
   On entry: the data must be stored in X as if in a two-
   dimensional array of dimension (1:M,0:N-1); each of the m
   sequences is stored in a row of the array in Hermitian form.
   If the n data values z are written as x +iy , then for
     j j j
   0<=j<=n/2, x is contained in X(p,j), and for 1<=j<=(n-1)/2,
     j
   y is contained in X(p,n-j). (See also Section 2.1.2 of the
   Chapter Introduction.)

4: U(M,N) -- DOUBLE PRECISION array Output

5: V(M,N) -- DOUBLE PRECISION array Output
   On exit: the real and imaginary parts of the m sequences of
   length n, are stored in U and V respectively, as if in two-
   dimensional arrays of dimension (1:M,0:N-1); each of the m
   sequences is stored as if in a row of each array. In other
   words, if the real parts of the pth sequence are denoted by
   p
x, for j=0,1,...,n-1 then the mn elements of the array U
j
contain the values

\[ x_0, x_1, \ldots, x_m, x_0, x_1, \ldots, x_m, \ldots, x_{n-1}, x_{n-1}, \ldots, x_0, x_1, \ldots, x_m \]

6: IFAIL -- INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry M < 1.

IFAIL = 2
On entry N < 1.

7. Accuracy

Exact.

8. Further Comments

None.

9. Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are then expanded into full complex form using C06GSF and printed.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.3 nagd.ht

Quadrature

Introduction -- D01

1. Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more dimensions and for evaluating weights and abscissae of integration rules.

2. Background to the Problems

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional definite integral of the form:

\[
\int_{a}^{b} f(x) \, dx
\]

where \( f(x) \) is defined by the user, either at a set of points \((x_i, f(x_i))\), for \( i = 1, 2, \ldots, n \) where \( a = x_1 < x_2 < \ldots < x_n = b \), or in the form of a function; and the limits of integration \( a, b \) may be finite or infinite.
Some methods are specially designed for integrands of the form
\[ f(x) = w(x)g(x) \quad (2) \]
which contain a factor \( w(x) \), called the weight-function, of a specific form. These methods take full account of any peculiar behaviour attributable to the \( w(x) \) factor.

(b) the value of a multi-dimensional definite integral of the form:
\[
\int_{R} f(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \cdots dx_n \quad (3)
\]
where \( f(x_1, x_2, \ldots, x_n) \) is a function defined by the user and \( R \) is some region of \( n \)-dimensional space.

The simplest form of \( R \) is the \( n \)-rectangle defined by:
\[
a_i \leq x_i \leq b_i, \quad i = 1, 2, \ldots, n \quad (4)
\]
where \( a_i \) and \( b_i \) are constants. When \( a_i \) and \( b_i \) are functions of \( x_j \) (\( j < i \)), the region can easily be transformed to the rectangular form (see Davis and Rabinowitz [1] page 266). Some of the methods described incorporate the transformation procedure.

2.1. One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the form of a weighted sum of integrand values, i.e.,
\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{N} w_i f(x_i) \quad (5)
\]
The points \( x_i \) within the interval \([a, b]\) are known as the \( i \) abscissae, and the \( w_i \) are known as the weights.

More generally, if the integrand has the form (2), the corresponding formula is
If the integrand is known only at a fixed set of points, these points must be used as the abscissae, and the weighted sum is calculated using finite-difference methods. However, if the functional form of the integrand is known, so that its value at any abscissa is easily obtained, then a wide variety of quadrature rules are available, each characterised by its choice of abscissae and the corresponding weights.

The appropriate rule to use will depend on the interval \([a,b]\) - whether finite or otherwise - and on the form of any \(w(x)\) factor in the integrand. A suitable value of \(N\) depends on the general behaviour of \(f(x)\); or of \(g(x)\), if there is a \(w(x)\) factor present.

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of abscissae which is optimal for \(f(x)\) or \(g(x)\) of polynomial form.

The choice of basic rules constitutes one of the principles on which methods for one-dimensional integrals may be classified. The other major basis of classification is the implementation strategy, of which some types are now presented.

(a) Single rule evaluation procedures

A fixed number of abscissae, \(N\), is used. This number and the particular rule chosen uniquely determine the weights and abscissae. No estimate is made of the accuracy of the result.

(b) Automatic procedures

The number of abscissae, \(N\), within \([a,b]\) is gradually increased until consistency is achieved to within a level of accuracy (absolute or relative) requested by the user. There are essentially two ways of doing this; hybrid forms of these two methods are also possible:

(i) whole interval procedures (non-adaptive)

A series of rules using increasing values of \(N\) are successively applied over the whole interval \([a,b]\). It is clearly more economical if abscissae already used for a lower value of \(N\) can be used again as part of a higher-order formula. This principle is known as
optimal extension. There is no overlap between the abscissae used in Gaussian formulae of different orders. However, the Kronrod formulae are designed to give an optimal \((2N+1)\)-point formula by adding \((N+1)\) points to an \(N\)-point Gauss formula. Further extensions have been developed by Patterson.

(ii) adaptive procedures

The interval \([a,b]\) is repeatedly divided into a number of sub-intervals, and integration rules are applied separately to each sub-interval. Typically, the subdivision process will be carried further in the neighbourhood of a sharp peak in the integrand, than where the curve is smooth. Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval. The usual global acceptability criterion demands that the sum of the absolute values of the error estimates in the sub-intervals should meet the conditions required of the error over the whole interval. Automatic extrapolation over several levels of subdivision may eliminate the effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e., always gave results within the requested accuracy). Complete reliability is unobtainable, and generally higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be emphasised that the automatic routines in this chapter cannot be assumed to be 100% reliable. In general, however, the reliability is very high.

2.2. Multi-dimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional method may be applied to each dimension, according to some suitable strategy, and high accuracy may be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly with the number of dimensions, so that the accuracy obtainable with an acceptable amount of computational labour is limited; for example a product of 3-point rules in 20 dimensions would require more than 10
integrand evaluations. Special techniques such as the Monte Carlo methods can be used to deal with high dimensions.

(a) Products of one-dimensional rules

Using a two-dimensional integral as an example, we have

\[
\int_{a}^{b} \int_{a}^{b} f(x,y) \, dy \, dx = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i \cdot x_i \cdot v_j \cdot y_j
\]

where \((w_i, x_i)\) and \((v_j, y_j)\) are the weights and abscissae of the rules used in the respective dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range and any weight function present, and a different strategy may be used, as appropriate to the integrand behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is a problem in deciding what accuracy must be requested in the inner integral(s). Reference to formula (7) shows that the presence of a limited but random error in the \(y\)-integration for different values of \(x\) can produce a 'jagged' function of \(x\), which may be difficult to integrate to the desired accuracy and for this reason products of automatic one-dimensional routines should be used with caution (see also Lyness [3]).

(b) Monte Carlo methods

These are based on estimating the mean value of the integrand sampled at points chosen from an appropriate statistical distribution function. Usually a variance reducing procedure is incorporated to combat the
fundamentally slow rate of convergence of the rudimentary form of the technique. These methods can be effective by comparison with alternative methods when the integrand contains singularities or is erratic in some way, but they are of quite limited accuracy.

(c) Number theoretic methods

These are based on the work of Korobov and Conroy and operate by exploiting implicitly the properties of the Fourier expansion of the integrand. Special rules, constructed from so-called optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional space and from their number theoretic properties minimize the error on a prescribed class of integrals. The method can be combined with the Monte Carlo procedure.

(d) Sag-Szekeres method

By transformation this method seeks to induce properties into the integrand which make it accurately integrable by the trapezoidal rule. The transformation also allows effective control over the number of integrand evaluations.

(e) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into subregions, concentrating the divisions in those parts of the region where the integrand is worst behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s). For this reason, some methods use a region where all the limits are constants; this is called a hyper-rectangle. Integrals over regions defined by variable or infinite limits may be handled by transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation is not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and defining the integrand to be zero outside the desired region. Such a technique should always be followed by a Monte Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is usually one of three types: Monte Carlo, number theoretic or deterministic. Deterministic methods are usually the most rapidly convergent but are often expensive to use for high dimensionality and not as robust as the other techniques.
2.3. References

Comprehensive reference:


Special topics:


3. Recommendations on Choice and Use of Routines

The following three sub-sections consider in turn routines for: one-dimensional integrals over a finite interval, and over a semi-infinite or an infinite interval; and multi-dimensional integrals. Within each sub-section, routines are classified by the type of method, which ranges from simple rule evaluation to automatic adaptive algorithms. The recommendations apply particularly when the primary objective is simply to compute the value of one or more integrals, and in these cases the automatic adaptive routines are generally the most convenient and reliable, although also the most expensive in computing time.

Note however that in some circumstances it may be counter-productive to use an automatic routine. If the results of the quadrature are to be used in turn as input to a further computation (e.g. an 'outer' quadrature or an optimization problem), then this further computation may be adversely affected by the 'jagged performance profile' of an automatic routine; a simple rule-evaluation routine may provide much better overall performance. For further guidance, the article Lyness [3] is recommended.

3.1. One-dimensional Integrals over a Finite Interval
22.3. NAGD.HT

(a) Integrand defined as a set of points

If \( f(x) \) is defined numerically at four or more points, then the Gill-Miller finite difference method (D01GAF) should be used. The interval of integration is taken to coincide with the range of \( x \)-values of the points supplied. It is in the nature of this problem that any routine may be unreliable. In order to check results independently and so as to provide an alternative technique the user may fit the integrand by Chebyshev series using E02ADF and then use routines E02AJF and E02AKF to evaluate its integral (which need not be restricted to the range of the integration points, as is the case for D01GAF). A further alternative is to fit a cubic spline to the data using E02BAF and then to evaluate its integral using E02BDF.

(b) Integrand defined as a function

If the functional form of \( f(x) \) is known, then one of the following approaches should be taken. They are arranged in the order from most specific to most general, hence the first applicable procedure in the list will be the most efficient. However, if the user does not wish to make any assumptions about the integrand, the most reliable routine to use will be D01AJF, although this will in general be less efficient for simple integrals.

(i) Rule-evaluation routines

If \( f(x) \) is known to be sufficiently well-behaved (more precisely, can be closely approximated by a polynomial of moderate degree), a Gaussian routine with a suitable number of abscissae may be used.

D01BBF may be used if it is required to examine the weights and abscissae. In this case, the user should write the code for the evaluation of quadrature summation (6).

(ii) Automatic adaptive routines

Firstly, several routines are available for integrands of the form \( w(x)g(x) \) where \( g(x) \) is a ‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the interval of integration) and \( w(x) \) is a weight function of one of the following forms:

\[
\begin{align*}
(\alpha) & \quad (\beta) & \quad k & \quad l \\
\text{if } w(x) = (b-x) & \quad (x-a) & \quad (\log(b-x)) & \quad (\log(x-a))
\end{align*}
\]
where $k,l=0$ or $1$, $(\alpha), (\beta)>-1$: use D01APF;

if $w(x)=1/(x-c)$: use D01AQF (this integral is called the Hilbert transform of $g$);

if $w(x)=\cos((\omega)x)$ or $\sin((\omega)x)$: use D01ANF (this routine can also handle certain types of singularities in $g(x)$).

Secondly, there are some routines for general $f(x)$. If $f(x)$ is known to be free of singularities, though it may be oscillatory, D01AKF may be used.

The most powerful of the finite interval integration routine is D01AJF (which can cope with singularities of several types). It may be used if none of the more specific situations described above applies. D01AJF is very reliable, particularly where the integrand has singularities other than at an end-point, or has discontinuities or cusps, and is therefore recommended where the integrand is known to be badly-behaved, or where its nature is completely unknown.

Most of the routines in this chapter require the user to supply a function or subroutine to evaluate the integrand at a single point.

If $f(x)$ has singularities of certain types, discontinuities or sharp peaks occurring at known points, the integral should be evaluated separately over each of the subranges or D01ALF may be used.

3.2. One-dimensional Integrals over a Semi-infinite or Infinite Interval

(a) Integrand defined as a set of points

If $f(x)$ is defined numerically at four or more points, and the portion of the integral lying outside the range of the points supplied may be neglected, then the Gill-Miller finite difference method, D01GAF, should be used.

(b) Integrand defined as a function

(i) Rule evaluation routines

If $f(x)$ behaves approximately like a polynomial in $x$, apart from a weight function of the form $-(\beta)x e^{-(\beta)x}$ ($\beta)>0$ (semi-infinite interval, lower limit finite);
- (\beta)x
or e \quad (\beta) < 0 \text{ (semi-infinite interval, upper limit finite)};

\begin{align*}
2 \\
- (\beta)(x - (\alpha)) \\
\text{or e} \quad (\beta) > 0 \text{ (infinite interval)};
\end{align*}

or if \( f(x) \) behaves approximately like a \(-1\) polynomial in \((x + B)\) (semi-infinite range); then the Gaussian routines may be used.

\( D01BBF \) may be used if it is required to examine the weights and abscissae. In this case, the user should write the code for the evaluation of quadrature summation (6).

(ii) Automatic adaptive routines

\( D01AMF \) may be used, except for integrands which decay slowly towards an infinite end-point, and oscillate in sign over the entire range. For this class, it may be possible to calculate the integral by integrating between the zeros and invoking some extrapolation process.

\( D01ASF \) may be used for integrals involving weight functions of the form \( \cos((\omega)x) \) and \( \sin((\omega)x) \) over a semi-infinite interval (lower limit finite).

The following alternative procedures are mentioned for completeness, though their use will rarely be necessary:

(1) If the integrand decays rapidly towards an infinite end-point, a finite cut-off may be chosen, and the finite range methods applied.

(2) If the only irregularities occur in the finite part (apart from a singularity at the finite limit, with which \( D01AMF \) can cope), the range may be divided, with \( D01AMF \) used on the infinite part.

(3) A transformation to finite range may be employed, e.g.

\[
\begin{align*}
1 - t \\
x &= \frac{1}{t} \quad \text{or} \quad x = -\log t
\end{align*}
\]
will transform \((0, \infty)\) to \((1, 0)\) while for infinite ranges we have
\[
\begin{align*}
\int_{-\infty}^{\infty} f(x) \, dx &= \int_{-\infty}^{0} [f(x) + f(-x)] \, dx. \\
\int_{0}^{\infty} f(x) \, dx &= \int_{0}^{\infty} f(x) \, dx. \\
\int_{-\infty}^{0} f(x) \, dx &= \int_{0}^{\infty} f(x) \, dx.
\end{align*}
\]
If the integrand behaves badly on \((-\infty, 0)\) and well on \((0, \infty)\) or vice versa it is better to compute it as
\[
\begin{align*}
\int_{0}^{\infty} f(x) \, dx &= \int_{0}^{\infty} f(x) \, dx. \\
\int_{-\infty}^{0} f(x) \, dx &= \int_{-\infty}^{0} f(x) \, dx.
\end{align*}
\]
This saves computing unnecessary function values in the semi-infinite range where the function is well behaved.

3.3. Multi-dimensional Integrals

A number of techniques are available in this area and the choice depends to a large extent on the dimension and the required accuracy. It can be advantageous to use more than one technique as a confirmation of accuracy particularly for high dimensional integrations. Many of the routines incorporate the transformation procedure_REGION which allows general product regions to be easily dealt with in terms of conversion to the standard n-cube region.

(a) Products of one-dimensional rules (suitable for up to about 5 dimensions)

If \(f(x_1, x_2, \ldots, x_n)\) is known to be a sufficiently well-behaved function of each variable \(x_i\), apart possibly from weight functions of the types provided, a product of Gaussian rules may be used. These are provided by D01BBF. In this case, the user should write the code for the evaluation of quadrature summation (6). Rules for finite, semi-infinite and infinite ranges are included.

The one-dimensional routines may also be used recursively. For example, the two-dimensional integral
\[
\begin{align*}
I &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx. \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx.
\end{align*}
\]
may be expressed as

\[ \int_{a}^{b} \frac{1}{I} = \int_{a}^{b} F(x) \, dx, \]

where

\[ F(x) = \int_{a}^{b} f(x,y) \, dy. \]

The user segment to evaluate \( F(x) \) will call the integration routine for the \( y \)-integration, which will call another user segment for \( f(x,y) \) as a function of \( y \) (\( x \) being effectively a constant). Note that, as Fortran is not a recursive language, a different library integration routine must be used for each dimension. Apart from this restriction, the full range of one-dimensional routines are available, for finite/infinite intervals, constant/variable limits, rule evaluation/automatic strategies etc.

(b) Automatic routines (D01GBF and D01FCF)

Both routines are for integrals of the form

\[ \int_{a}^{b} \int_{a}^{b} \ldots \int_{a}^{b} f(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \ldots dx_n. \]

D01GBF is an adaptive Monte Carlo routine. This routine is usually slow and not recommended for high accuracy work. It is a robust routine that can often be used for low accuracy results with highly irregular integrands or when \( n \) is large.

D01FCF is an adaptive deterministic routine. Convergence is fast for well-behaved integrands. Highly accurate results can often be obtained for \( n \) between 2 and 5, using significantly fewer integrand evaluations than would be required by D01GBF. The routine will usually work when the integrand is mildly singular.
and for \( n \leq 10 \) should be used before D01GBF. If it is known in advance that the integrand is highly irregular, it is best to compare results from at least two different routines.

There are many problems for which one or both of the routines will require large amounts of computing time to obtain even moderately accurate results. The amount of computing time is controlled by the number of integrand evaluations allowed by the user, and users should set this parameter carefully, with reference to the time available and the accuracy desired.

### 3.4. Decision Trees

(i) One-dimensional integrals over a finite interval. (If in doubt, follow the downward branch.)

Please see figure in printed Reference Manual

(ii) One-dimensional integrals over a semi-infinite or infinite interval. (If in doubt, follow the downward branch.)

Please see figure in printed Reference Manual

D01 -- Quadrature

Chapter D01

Quadrature

D01AJF  1-D quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly-behaved integrands

D01AKF  1-D quadrature, adaptive, finite interval, method suitable for oscillating functions

D01ALF  1-D quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points

D01AMF  1-D quadrature, adaptive, infinite or semi-infinite interval

D01ANF  1-D quadrature, adaptive, finite interval, weight
function \cos((\omega)x) or \sin((\omega)x)

D01APF 1-D quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type

D01AQF 1-D quadrature, adaptive, finite interval, weight function 1/(x-c), Cauchy principal value (Hilbert transform)

D01ASF 1-D quadrature, adaptive, semi-infinite interval, weight function cos((\omega)x) or sin((\omega)x)

D01BBF Weights and abscissae for Gaussian quadrature rules

D01FCF Multi-dimensional adaptive quadrature over hyper-rectangle

D01GAF 1-D quadrature, integration of function defined by data values, Gill-Miller method

D01GBF Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

---

Approximation of the integral over a finite interval

--- nagd.ht ---

D01AJKF(3NAG) Foundation Library (12/10/92) D01AJKF(3NAG)

D01 -- Quadrature D01AJKF

D01AJKF -- NAG Foundation Library Routine Document
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01AJF is a general-purpose integrator which calculates an approximation to the integral of a function $f(x)$ over a finite interval $[a,b]$:

$$
\int_{a}^{b} f(x) \, dx.
$$

2. Specification

```fortran
SUBROUTINE D01AJF (F, A, B, EPSABS, EPSREL, RESULT,
 ABSERR, W, LW, IW, LIW, IFAIL)
 INTEGER LW, IW(LIW), LIW, IFAIL
 DOUBLE PRECISION F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W
 1 (LW)
 EXTERNAL F
```

3. Description

D01AJF is based upon the QUADPACK routine QAGS (Piessens et al [3]). It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by de Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together with the (epsilon)-algorithm (Wynn [4]) to perform extrapolation. The local error estimation is described by Piessens et al [3].

The routine is suitable as a general purpose integrator, and can be used when the integrand has singularities, especially when these are of algebraic or logarithmic type.

D01AJF requires the user to supply a function to evaluate the integrand at a single point.

The routine D01ATF(*) uses an identical algorithm but requires the user to supply a subroutine to evaluate the integrand at an array of points. Therefore D01ATF(*) will be more efficient if the evaluation can be performed in vector mode on a vector-processing machine.

4. References


5. Parameters

1: F -- DOUBLE PRECISION FUNCTION, supplied by the user.
   External Procedure
   F must return the value of the integrand f at a given point.
   Its specification is:

   DOUBLE PRECISION FUNCTION F (X)
   DOUBLE PRECISION X

   1: X -- DOUBLE PRECISION
      On entry: the point at which the integrand f must be evaluated.
      F must be declared as EXTERNAL in the (sub)program from which D01AJF is called. Parameters denoted as Input must not be changed by this procedure.

2: A -- DOUBLE PRECISION
   On entry: the lower limit of integration, a.

3: B -- DOUBLE PRECISION
   On entry: the upper limit of integration, b. It is not necessary that a<b.

4: EPSABS -- DOUBLE PRECISION
   On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See Section 7.

5: EPSREL -- DOUBLE PRECISION
   On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See Section 7.

6: RESULT -- DOUBLE PRECISION
   Output
On exit: the approximation to the integral $I$.

7: ABSERR -- DOUBLE PRECISION  
   Output  
   On exit: an estimate of the modulus of the absolute error, 
   which should be an upper bound for $|I-\text{RESULT}|$.

8: W(LW) -- DOUBLE PRECISION array  
   Output  
   On exit: details of the computation, as described in 
   Section 8.

9: LW -- INTEGER  
   Input  
   On entry: 
   the dimension of the array W as declared in the (sub)program 
   from which D01AJF is called. 
   The value of LW (together with that of LIW below) imposes a 
   bound on the number of sub-intervals into which the interval 
   of integration may be divided by the routine. The number of 
   sub-intervals cannot exceed LW/4. The more difficult the 
   integrand, the larger LW should be. Suggested value: a value 
   in the range 800 to 2000 is adequate for most problems. 
   Constraint: LW $\geq$ 4.

10: IW(LIW) -- INTEGER array  
    Output  
    On exit: IW(1) contains the actual number of sub-intervals 
    used. The rest of the array is used as workspace.

11: LIW -- INTEGER  
    Input  
    On entry: 
    the dimension of the array IW as declared in the 
    (sub)program from which D01AJF is called. 
    The number of sub-intervals into which the interval of 
    integration may be divided cannot exceed LIW. Suggested 

12: IFAIL -- INTEGER  
    Input/Output  
    On entry: IFAIL must be set to 0, -1 or 1. Users who are 
    unfamiliar with this parameter should refer to the Essential 
    Introduction for details. 
    
    On exit: IFAIL = 0 unless the routine detects an error or 
    gives a warning (see Section 6).
    
    For this routine, because the values of output parameters 
    may be useful even if IFAIL /=0 on exit, users are 
    recommended to set IFAIL to -1 before entry. It is then 
    essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc) you will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. The error may be under-estimated. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval.

IFAIL= 4
The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best which can be obtained. The same advice applies as in the case of IFAIL = 1.

IFAIL= 5
The integral is probably divergent, or slowly convergent. Please note that divergence can occur with any non-zero value of IFAIL.

IFAIL= 6
On entry LW < 4, or LIW < 1.

7. Accuracy
The routine cannot guarantee, but in practice usually achieves, the following accuracy:

\[ |I-RESULT| \leq tol, \]
where
\[
\text{tol} = \max(\{|\text{EPSABS}|, |\text{EPSREL}| \times |I|)\},
\]
and EPSABS and EPSREL are user-specified absolute and relative error tolerance. Moreover it returns the quantity ABSERR which, in normal circumstances, satisfies
\[
|I - \text{RESULT}| \leq \text{ABSERR} \leq \text{tol}.
\]

8. Further Comments

The time taken by the routine depends on the integrand and the accuracy required. If IFAIL \(\neq 0\) on exit, then the user may wish to examine the contents of the array W, which contains the end-points of the sub-intervals used by D01AJF along with the integral contributions and error estimates over the sub-intervals.

Specifically, for \(i=1,2,\ldots,n\), let \(r_i\) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i\) be the corresponding absolute error estimate.

\[
\begin{align*}
\int_{a_i}^{b_i} f(x) \, dx & = r_i, \\
i & = 1, 2, \ldots, n
\end{align*}
\]

Then, \(|f(x)dx| \leq r_i\) and \(\text{RESULT} \geq r_i\), unless D01AJF terminates while testing for divergence of the integral (see Piessens et al [3], Section 3.4.3). In this case, \(\text{RESULT}\) (and \(\text{ABSERR}\)) are taken to be the values returned from the extrapolation process. The value of \(n\) is returned in IW(1), and the values \(a\), \(b\), \(e\) and \(r\) are stored consecutively in the array W, that is:

\[
\begin{align*}
a & = W(i), \\
i & = 1, 2, \ldots, n, \\
b & = W(n+i), \\
i & = 1, 2, \ldots, n, \\
e & = W(2n+i)
\end{align*}
\]
9. Example

To compute

\[
\int_0^{(2\pi)} \frac{x \sin(30x)}{1 - (\frac{x}{(2\pi)})^2} \, dx.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Adaptive integration over a finite integral

nagd.ht

---

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
1. Purpose

D01AKF is an adaptive integrator, especially suited to oscillating, non-singular integrands, which calculates an approximation to the integral of a function \( f(x) \) over a finite interval \([a,b]\):

\[
\int_a^b f(x) \, dx.
\]

2. Specification

SUBROUTINE D01AKF (F, A, B, EPSABS, EPSREL, RESULT, 1  ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER LW, IW(LIW), LIW, IFAIL
DOUBLE PRECISION F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W 1  (LW)
EXTERNAL F

3. Description

D01AKF is based upon the QUADPACK routine QAG (Piessens et al [3] ). It is an adaptive routine, using the Gauss 30-point and Kronrod 61-point rules. A 'global' acceptance criterion (as defined by Malcolm and Simpson [1]) is used. The local error estimation is described in Piessens et al [3].

Because this routine is based on integration rules of high order, it is especially suitable for non-singular oscillating integrands.

D01AKF requires the user to supply a function to evaluate the integrand at a single point.

The routine D01AUF(*) uses an identical algorithm but requires the user to supply a subroutine to evaluate the integrand at an array of points. Therefore D01AUF(*) will be more efficient if the evaluation can be performed in vector mode on a vector-processing machine.

D01AUF(*) also has an additional parameter KEY which allows the user to select from six different Gauss-Kronrod rules.

4. References


5. Parameters

1: F -- DOUBLE PRECISION FUNCTION, supplied by the user. 
   External Procedure
   F must return the value of the integrand f at a given point.

   Its specification is:

   
   DOUBLE PRECISION FUNCTION F (X)
   DOUBLE PRECISION X

   1: X -- DOUBLE PRECISION Input
      On entry: the point at which the integrand f must be
      evaluated.
      F must be declared as EXTERNAL in the (sub)program from
      which D01AKF is called. Parameters denoted as Input
      must not be changed by this procedure.

2: A -- DOUBLE PRECISION Input
   On entry: the lower limit of integration, a.

3: B -- DOUBLE PRECISION Input
   On entry: the upper limit of integration, b. It is not
   necessary that a<b.

4: EPSABS -- DOUBLE PRECISION Input
   On entry: the absolute accuracy required. If EPSABS is
   negative, the absolute value is used. See Section 7.

5: EPSREL -- DOUBLE PRECISION Input
   On entry: the relative accuracy required. If EPSREL is
   negative, the absolute value is used. See Section 7.

6: RESULT -- DOUBLE PRECISION Output
   On exit: the approximation to the integral I.

7: ABSERR -- DOUBLE PRECISION Output
   On exit: an estimate of the modulus of the absolute error, 
   which should be an upper bound |I-RESULT|.
CHAPTER 22. NAG LIBRARY ROUTINES

8: W(LW) -- DOUBLE PRECISION array
   On exit: details of the computation, as described in Section 8.

9: LW -- INTEGER
   On entry: the dimension of W, as declared in the (sub) program from which D01AKF is called. The value of LW (together with that of LIW below) imposes a bound on the number of sub-intervals into which the interval of integration may be divided by the routine. The number of sub-intervals cannot exceed LW/4. The more difficult the integrand, the larger LW should be. Suggested value: a value in the range 800 to 2000 is adequate for most problems. Constraint: LW >= 4. See IW below.

10: IW(LIW) -- INTEGER array
    On exit: IW(1) contains the actual number of sub-intervals used. The rest of the array is used as workspace.

11: LIW -- INTEGER
    On entry: the dimension of the array IW as declared in the (sub)program from which D01AKF is called. The number of sub-intervals into which the interval of integration may be divided cannot exceed LIW. Suggested value: LIW = LW/4. Constraint: LIW >= 1.

12: IFAIL -- INTEGER
    On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

    On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

    For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements
being achieved. Look at the integrand in order to determine the integration difficulties. Probably another integrator which is designed for handling the type of difficulty involved must be used. Alternatively, consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

**IFAIL= 2**
Round-off error prevents the requested tolerance from being achieved. Consider requesting less accuracy.

**IFAIL= 3**
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

**IFAIL= 4**
On entry LW < 4, or LIW < 1.

### 7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

\[ |I-RESULT| \leq tol, \]

where

\[ tol = \max\{ |EPSABS|, |EPSREL| \times |I| \}, \]

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it returns the quantity ABSERR which, in normal circumstances satisfies

\[ |I-RESULT| \leq ABSERR \leq tol. \]

### 8. Further Comments

The time taken by the routine depends on the integrand and the accuracy required.

If IFAIL \( \neq 0 \) on exit, then the user may wish to examine the contents of the array W, which contains the end-points of the sub-intervals used by D01AKF along with the integral contributions and error estimates over these sub-intervals.

Specifically, for \( i=1,2,\ldots,n \), let \( r_i \) denote the approximation to
the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i\) be the corresponding absolute error estimate. Then, \(\int_{a_i}^{b_i} f(x)dx \approx r_i\) and \(\text{RESULT} = r_i\). The value of \(n\) is returned in \(IW(1)\), and the values \(a_i, b_i, e_i\) and \(r_i\) are stored consecutively in the array \(W\), that is:

\[
\begin{align*}
a &= W(i), \\
b &= W(n+i), \\
e &= W(2n+i) \quad \text{and} \\
r &= W(3n+i).
\end{align*}
\]

9. Example

To compute

\[
\int_0^{2\pi} x \sin(30x) \cos x \, dx.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Approximate integration with local singular points

--- nagd.ht ---

\begin{page}{manpageXXd01alf}{NAG Documentation: d01alf}
\beginscroll
\begin{verbatim}
D01ALF(3NAG) Foundation Library (12/10/92) D01ALF(3NAG)

D01 -- Quadrature

D01ALF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01ALF is a general purpose integrator which calculates an approximation to the integral of a function \( f(x) \) over a finite interval \([a, b]\):

\[
\int_{a}^{b} f(x) \, dx
\]

where the integrand may have local singular behaviour at a finite number of points within the integration interval.

2. Specification

SUBROUTINE D01ALF (F, A, B, NPTS, POINTS, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW, IFAIL)

INTEGER NPTS, LW, IW(LIW), LIW, IFAIL

DOUBLE PRECISION F, A, B, POINTS(*), EPSABS, EPSREL

EXTERNAL F

3. Description

D01ALF is based upon the QUADPACK routine QAGP (Piessens et al
It is very similar to D01AJF, but allows the user to supply difficult. It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm described by de Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together with the (epsilon)-algorithm (Wynn [4]) to perform extrapolation. The user-supplied 'break-points' always occur as the end-points of some sub-interval during the adaptive process. The local error estimation is described by Piessens et al [3].

4. References


\[ m n \]


5. Parameters

1: F -- DOUBLE PRECISION FUNCTION, supplied by the user.
   
   External Procedure

   F must return the value of the integrand f at a given point.

   Its specification is:

   \[
   \text{DOUBLE PRECISION FUNCTION } F (X) \\
   \text{DOUBLE PRECISION } X \\
   \]\n
1: X -- DOUBLE PRECISION

   Input

   On entry: the point at which the integrand f must be evaluated.

   F must be declared as EXTERNAL in the (sub)program from which D01ALF is called. Parameters denoted as Input must not be changed by this procedure.

2: A -- DOUBLE PRECISION

   Input

   On entry: the lower limit of integration, a.

3: B -- DOUBLE PRECISION

   Input

   On entry: the upper limit of integration, b. It is not
necessary that $a < b$.

4: NPTS -- INTEGER 
   On entry: the number of user-supplied break-points within 
   the integration interval. Constraint: $NPTS \geq 0$.

5: POINTS(NPTS) -- DOUBLE PRECISION array
   On entry: the user-specified break-points. Constraint: the 
   break-points must all lie within the interval of integration 
   (but may be supplied in any order).

6: EPSABS -- DOUBLE PRECISION
   On entry: the absolute accuracy required. If EPSABS is 
   negative, the absolute value is used. See Section 7.

7: EPSREL -- DOUBLE PRECISION
   On entry: the relative accuracy required. If EPSREL is 
   negative, the absolute value is used. See Section 7.

8: RESULT -- DOUBLE PRECISION
   On entry: the approximation to the integral $I$.

9: ABSERR -- DOUBLE PRECISION
   On exit: an estimate of the modulus of the absolute error, 
   which should be an upper bound for $|I - \text{RESULT}|$.

10: W(LW) -- DOUBLE PRECISION array
    On exit: details of the computation, as described in 
    Section 8.

11: LW -- INTEGER
    On entry:
    the dimension of the array W as declared in the (sub)program 
    from which D01ALF is called. 
    The value of LW (together with that of LIW below) imposes a 
    bound on the number of sub-intervals into which the interval 
    of integration may be divided by the routine. The number of 
    sub-intervals cannot exceed $(LW-2*NPTS-4)/4$. The more 
    difficult the integrand, the larger LW should be. Suggested 
    value: a value in the range 800 to 2000 is adequate for most 

12: IW(LIW) -- INTEGER array
    On exit: IW(1) contains the actual number of sub-intervals 
    used. The rest of the array is used as workspace.

13: LIW -- INTEGER
    On entry:
    the dimension of the array IW as declared in the 
    (sub)program from which D01ALF is called.
The number of sub-intervals into which the interval of integration may be divided cannot exceed \((\text{LIW}-\text{NPTS}-2)/2\). Suggested value: \(\text{LIW} = \text{LW}/2\). Constraint: \(\text{LIW} \geq \text{NPTS} + 4\).

14: IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached, without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc) it should be supplied to the routine as an element of the vector POINTS. If necessary, another integrator should be used, which is designed for handling the type of difficulty involved. Alternatively, consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. The error may be under-estimated. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL= 4
The requested tolerance cannot be achieved, because the
extrapolation does not increase the accuracy satisfactorily; the result returned is the best which can be obtained. The same advice applies as in the case IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can also occur with any other non-zero value of IFAIL.

IFAIL = 6

The input is invalid: break-points are specified outside the integration range, NPTS > LIMIT or NPTS < 0. RESULT and ABSERR are set to zero.

IFAIL = 7

On entry LW<2*NPTS+8,
or LIW<NPTS+4.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I-RESULT| \leq \text{tol},$$

where

$$\text{tol} = \max\{|\text{EPSABS}|, |\text{EPSREL}|*|I|\},$$

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it returns the quantity ABSERR which, in normal circumstances, satisfies

$$|I-RESULT| \leq \text{ABSERR} \leq \text{tol}.$$

8. Further Comments

The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL /= 0 on exit, then the user may wish to examine the contents of the array W, which contains the end-points of the sub-intervals used by D01ALF along with the integral contributions and error estimates over these sub-intervals.

Specifically, for i=1,2,...,n, let r denote the approximation to the value of the integral over the sub-interval $[a,b]$ in the partition of $[a,b]$ and e be the corresponding absolute error
estimate. Then, \( \int f(x)dx = r \) and RESULT = \( r \) unless D01ALF terminates while testing for divergence of the integral (see Piessens et al [3] Section 3.4.3). In this case, RESULT (and ABSERR) are taken to be the values returned from the extrapolation process. The value of \( n \) is returned in IW(1), and the values \( a \), \( b \), \( e \) and \( r \) are stored consecutively in the array \( W \), that is:

\[
\begin{align*}
  a &= W(i), \\
  b &= W(n+i), \\
  e &= W(2n+i) \text{ and} \\
  r &= W(3n+i).
\end{align*}
\]

9. Example

To compute

\[
\begin{align*}
  1 \\
  \int \frac{1}{|x-1/7|} dx.
\end{align*}
\]

A break-point is specified at \( x=1/7 \), at which point the integrand is infinite. (For definiteness the function FST returns the value 0.0 at this point.)

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Approximate integration over a (semi-)infinite interval

— nagd.ht —

D01AMF(3NAG) Foundation Library (12/10/92) D01AMF(3NAG)

D01 -- Quadrature
D01AMF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01AMF calculates an approximation to the integral of a function \( f(x) \) over an infinite or semi-infinite interval \([a,b]\):

\[
I = \int_a^b f(x) \, dx
\]

2. Specification

SUBROUTINE D01AMF (F, BOUND, INF, EPSABS, EPSREL, RESULT, 1
  ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER INF, LW, IW(LIW), LIW, IFAIL
DOUBLE PRECISION F, BOUND, EPSABS, EPSREL, RESULT, ABSERR, 1
  W(LW)
EXTERNAL F

3. Description

D01AMF is based on the QUADPACK routine QAGI (Piessens et al [3]) [0,1] using one of the identities:
CHAPTER 22. NAG LIBRARY ROUTINES

\[
\int_{\infty}^{\infty} \frac{1}{1-t} f(x) \, dx = \int_{a-\infty}^{a+\infty} \frac{1}{1-t} f(\frac{a-\infty}{t}) \, dt
\]

where \( a \) represents a finite integration limit. An adaptive procedure, based on the Gauss seven-point and Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by de Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together with the (epsilon)-algorithm (Wynn [4]) to perform extrapolation. The local error estimation is described by Piessens et al [3].

4. References


[4] Wynn P (1956) On a Device for Computing the \( e(S) \)

\[
\begin{align*}
&\text{Transformation. Math. Tables Aids Comput. 10 91--96.}
\end{align*}
\]

5. Parameters

1: F -- DOUBLE PRECISION FUNCTION, supplied by the user. External Procedure

On entry: the point at which the integrand \( f \) must be
evaluated.

Its specification is:

\[
\begin{align*}
\text{DOUBLE PRECISION FUNCTION } F \ (X) \\
\text{DOUBLE PRECISION } X
\end{align*}
\]

1: \(X\) -- DOUBLE PRECISION \quad \text{Input}
   On entry: the point at which the integrand \(f\) must be evaluated.
   
   F must be declared as EXTERNAL in the (sub)program from which D01AMF is called. Parameters denoted as Input must not be changed by this procedure.

2: \(\text{BOUND}\) -- DOUBLE PRECISION \quad \text{Input}
   On entry: the finite limit of the integration range (if present). BOUND is not used if the interval is doubly infinite.

3: \(\text{INF}\) -- INTEGER \quad \text{Input}
   On entry: indicates the kind of integration range:
   - if INF = 1, the range is \([\text{BOUND}, +\infty)\)
   - if INF = -1, the range is \((-\infty, \text{BOUND}]\)
   - if INF = +2, the range is \((-\infty, +\infty)\).
   
   Constraint: INF = -1, 1 or 2.

4: \(\text{EPSABS}\) -- DOUBLE PRECISION \quad \text{Input}
   On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See Section 7.

5: \(\text{EPSREL}\) -- DOUBLE PRECISION \quad \text{Input}
   On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See Section 7.

6: \(\text{RESULT}\) -- DOUBLE PRECISION \quad \text{Output}
   On exit: the approximation to the integral \(I\).

7: \(\text{ABSERR}\) -- DOUBLE PRECISION \quad \text{Output}
   On exit: an estimate of the modulus of the absolute error, which should be an upper bound for \(|I-\text{RESULT}|\).

8: \(\text{W(LW)}\) -- DOUBLE PRECISION array \quad \text{Output}
   On exit: details of the computation, as described in Section 8.

9: \(\text{LW}\) -- INTEGER \quad \text{Input}
   On entry:
   the dimension of the array \(W\) as declared in the (sub)program
from which D01AMF is called.
The value of LW (together with that of LIW below) imposes a
bound on the number of sub-intervals into which the interval
of integration may be divided by the routine. The number of
sub-intervals cannot exceed LW/4. The more difficult the
integrand, the larger LW should be. Suggested value: a value
in the range 800 to 2000 is adequate for most problems.
Constraint: LW >= 4.

10: IW(LIW) -- INTEGER array Output
On exit: IW(1) contains the actual number of sub-intervals
used. The rest of the array is used as workspace.

11: LIW -- INTEGER Input
On entry:
the dimension of the array IW as declared in the
(sub)program from which D01AMF is called.
The number of sub-intervals into which the interval of
integration may be divided cannot exceed LIW. Suggested

12: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are
unfamiliar with this parameter should refer to the Essential
Introduction for details.
On exit: IFAIL = 0 unless the routine detects an error or
gives a warning (see Section 6).
For this routine, because the values of output parameters
may be useful even if IFAIL /=0 on exit, users are
recommended to set IFAIL to -1 before entry. It is then
essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given
workspace has been reached without the requested accuracy
requirements being achieved. Look at the integrand in order
to determine the integration difficulties. If the position
of a local difficulty within the interval can be determined
(e.g. a singularity of the integrand or its derivative, a
peak, a discontinuity, etc) you will probably gain from
splitting up the interval at this point and calling D01AMF
on the infinite subrange and an appropriate integrator on
the finite subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. The error may be underestimated. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL= 4
The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best which can be obtained. The same advice applies as in the case of IFAIL = 1.

IFAIL= 5
The integral is probably divergent, or slowly convergent. It must be noted that divergence can also occur with any other non-zero value of IFAIL.

IFAIL= 6
On entry LW < 4,

or LIW < 1,

or INF /= -1, 1 or 2.
Please note that divergence can occur with any non-zero value of IFAIL.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I-\text{RESULT}| \leq \text{tol},$$

where

$$\text{tol} = \max\{|\text{EPSABS}|,|\text{EPSREL}|*|I|\},$$

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it returns the quantity ABSERR, which, in normal circumstances, satisfies

$$|I-\text{RESULT}| \leq \text{ABSERR} \leq \text{tol}.$$
8. Further Comments

The time taken by the routine depends on the integrand and the accuracy required.

If IFAIL /= 0 on exit, then the user may wish to examine the contents of the array W, which contains the end-points of the sub-intervals used by D01AMF along with the integral contributions and error estimates over these sub-intervals.

Specifically, for i=1,2,...,n, let \( r_i \) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \( e_i \) be the corresponding absolute error estimate. Then, \(|f(x)dx| \approx r_i \) and RESULT= \( \geq r_i \) unless D01AMF terminates while testing for divergence of the integral (see Piessens et al [3] Section 3.4.3). In this case, RESULT (and ABSERR) are taken to be the values returned from the extrapolation process. The value of \( n \) is returned in IW(1), and the values \( a_i, b_i, e_i \) and \( r_i \) are stored consecutively in the array W, that is:

\[
a_i = W(i), b_i = W(n+i), e_i = W(2n+i) \text{ and } r_i = W(3n+i).
\]

Note: that this information applies to the integral transformed to \((0,1)\) as described in Section 3, not to the original integral.

9. Example

To compute

\[
\text{infty} \quad / 1 \\
| \quad --------dx.
/ \\
0 \quad (x+1)\sqrt{x}
\]

The exact answer is \((\pi)\).
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Approximate sine or cosine transform over finite interval

---

D01ANF calculates an approximation to the sine or the cosine transform of a function \( g \) over \([a,b]\):

\[
\int_{a}^{b} |g(x)||\sin(\omega x)|| \, dx \quad \text{or} \quad \int_{a}^{b} |g(x)||\cos(\omega x)|| \, dx
\]

(for a user-specified value of \( \omega \)).

2. Specification
3. Description

D01ANF is based upon the QUADPACK routine QFOUR (Piessens et al [3]). It is an adaptive routine, designed to integrate a function of the form \( g(x)w(x) \), where \( w(x) \) is either \( \sin((\omega)x) \) or \( \cos((\omega)x) \). If a sub-interval has length

\[
L = \frac{|b-a|}{2}
\]

then the integration over this sub-interval is performed by means of a modified Clenshaw-Curtis procedure (Piessens and Branders [2]) if \( L(\omega)>4 \) and \( L \leq 20 \). In this case a Chebyshev-series approximation of degree 24 is used to approximate \( g(x) \), while an error estimate is computed from this approximation together with that obtained using Chebyshev-series of degree 12. If the above conditions do not hold then Gauss 7-point and Kronrod 15-point rules are used. The algorithm, described in [3], incorporates a global acceptance criterion (as defined in Malcolm and Simpson [1]) together with the (epsilon)-algorithm Wynn [4] to perform extrapolation. The local error estimation is described in [3].

4. References


5. Parameters

1: G -- DOUBLE PRECISION FUNCTION, supplied by the user.

External Procedure
G must return the value of the function g at a given point.

Its specification is:

```fortran
DOUBLE PRECISION FUNCTION G (X)
DOUBLE PRECISION X

1: X -- DOUBLE PRECISION Input
 On entry: the point at which the function g must be
 evaluated.
 G must be declared as EXTERNAL in the (sub)program from
 which D01ANF is called. Parameters denoted as Input
 must not be changed by this procedure.

2: A -- DOUBLE PRECISION Input
 On entry: the lower limit of integration, a.

3: B -- DOUBLE PRECISION Input
 On entry: the upper limit of integration, b. It is not
 necessary that a<b.

4: OMEGA -- DOUBLE PRECISION Input
 On entry: the parameter (omega) in the weight function of
 the transform.

5: KEY -- INTEGER Input
 On entry: indicates which integral is to be computed:
 if KEY = 1, w(x)=cos((omega)x);
 if KEY = 2, w(x)=sin((omega)x).
 Constraint: KEY = 1 or 2.

6: EPSABS -- DOUBLE PRECISION Input
 On entry: the absolute accuracy required. If EPSABS is
 negative, the absolute value is used. See Section 7.

7: EPSREL -- DOUBLE PRECISION Input
 On entry: the relative accuracy required. If EPSREL is
 negative, the absolute value is used. See Section 7.

8: RESULT -- DOUBLE PRECISION Output
 On exit: the approximation to the integral I.

9: ABSERR -- DOUBLE PRECISION Output
 On exit: an estimate of the modulus of the absolute error,
 which should be an upper bound for |I-RESULT|.

10: W(LW) -- DOUBLE PRECISION array Output
 On exit: details of the computation, as described in
 Section 8.
```
11: LW -- INTEGER Input
   On entry:
   the dimension of the array W as declared in the (sub)program
   from which D01ANF is called.
   The value of LW (together with that of LIW below) imposes a
   bound on the number of sub-intervals into which the interval
   of integration may be divided by the routine. The number of
   sub-intervals cannot exceed LW/4. The more difficult the
   integrand, the larger LW should be. Suggested value: a value
   in the range 800 to 2000 is adequate for most problems.
   Constraint: LW >= 4.

12: IW(LIW) -- INTEGER array Output
   On exit: IW(1) contains the actual number of sub-intervals
   used. The rest of the array is used as workspace.

13: LIW -- INTEGER Input
   On entry:
   the dimension of the array IW as declared in the
   (sub)program from which D01ANF is called.
   The number of sub-intervals into which the interval of
   integration may be divided cannot exceed LIW/2. Suggested

14: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. Users who are
   unfamiliar with this parameter should refer to the Essential
   Introduction for details.

   On exit: IFAIL = 0 unless the routine detects an error or
   gives a warning (see Section 6).

   For this routine, because the values of output parameters
   may be useful even if IFAIL /=0 on exit, users are
   recommended to set IFAIL to -1 before entry. It is then
   essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given
workspace has been reached without the accuracy requested
being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local
difficulty within the interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc) you will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing amount of workspace.

IFAIL = 2
Round-off error prevents the requested tolerance from being achieved. The error may be underestimated. Consider requesting less accuracy.

IFAIL = 3
Extremely bad local behaviour of $g(x)$ causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4
The requested tolerance cannot be achieved because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best which can be obtained. The same advice applies as in the case of IFAIL = 1.

IFAIL = 5
The integral is probably divergent, or slowly convergent. It must be noted that divergence can occur with any non-zero value of IFAIL.

IFAIL = 6
On entry KEY < 1,

or

KEY > 2.

IFAIL = 7
On entry LW < 4,

or

LIW < 2.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I - \text{RESULT}| \leq tol,$$

where
tol = max(|EPSABS|, |EPSREL| * |I|),

and EPSABS and EPSREL are user-specified absolute and relative
tolerances. Moreover it returns the quantity ABSERR, which, in
normal circumstances, satisfies

|I - RESULT| <= ABSERR <= tol.

8. Further Comments

The time taken by the routine depends on the integrand and on the
accuracy required.

If IFAIL /= 0 on exit, then the user may wish to examine the
contents of the array W, which contains the end-points of the
sub-intervals used by D01ANF along with the integral
contributions and error estimates over these sub-intervals.

Specifically, for i=1,2,...,n, let r denote the approximation to
the value of the integral over the sub-interval [a ,b ] in the
partition of [a,b] and e be the corresponding absolute error

\[ \int_a^b g(x)w(x)dx = r \]

\[ \text{RESULT} = r \] unless D01ANF
terminates while testing for divergence of the integral (see
Piessens et al [3] Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the
extrapolation process. The value of n is returned in IW(1), and
the values a , b , e and r are stored consecutively in the
array W, that is:

\[ a = W(i), \]
\[ b = W(n+i), \]
\[ e = W(2n+i) \] and
\[ r = W(3n+i). \]
9. Example

To compute

\[
\frac{1}{\ln(x)\sin(10\pi x)}\ dx.
\]

0

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

——

Adaptive integration of weighted function over an interval

—— nagd.ht ——

D01APF(3NAG) Foundation Library (12/10/92) D01APF(3NAG)

D01 -- Quadrature

D01APF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01APF is an adaptive integrator which calculates an approximation to the integral of a function \( g(x)w(x) \) over a
finite interval \([a,b]\):

\[
\frac{b}{a} = \int_{a}^{b} g(x)w(x)\,dx
\]

where the weight function \(w\) has end-point singularities of algebraico-logarithmic type.

2. Specification

```fortran
SUBROUTINE D01APF (G, A, B, ALFA, BETA, KEY, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER KEY, LW, IW(LIW), LIW, IFAIL
DOUBLE PRECISION G, A, B, ALFA, BETA, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL G
```

3. Description

D01APF is based upon the QUADPACK routine QAWSE (Piessens et al [3]) and integrates a function of the form \(g(x)w(x)\), where the weight function \(w(x)\) may have algebraico-logarithmic singularities at the end-points \(a\) and/or \(b\). The strategy is a modification of that in D01AKF. We start by bisecting the original interval and applying modified Clenshaw-Curtis integration of orders 12 and 24 to both halves. Clenshaw-Curtis integration is then used on all sub-intervals which have \(a\) or \(b\) as one of their end-points (Piessens et al [2]). On the other sub-intervals Gauss-Kronrod (7–15 point) integration is carried out.

A 'global' acceptance criterion (as defined by Malcolm and Simpson [1]) is used. The local error estimation control is described by Piessens et al [3].

4. References


5. Parameters

1: G -- DOUBLE PRECISION FUNCTION, supplied by the user.
   External Procedure
   G must return the value of the function g at a given point X.

   Its specification is:

   DOUBLE PRECISION FUNCTION G (X)
   DOUBLE PRECISION X

1: X -- DOUBLE PRECISION Input
   On entry: the point at which the function g must be evaluated.
   G must be declared as EXTERNAL in the (sub)program from which D01APF is called. Parameters denoted as Input must not be changed by this procedure.

2: A -- DOUBLE PRECISION Input
   On entry: the lower limit of integration, a.

3: B -- DOUBLE PRECISION Input
   On entry: the upper limit of integration, b. Constraint: B > A.

4: ALFA -- DOUBLE PRECISION Input

5: BETA -- DOUBLE PRECISION Input

6: KEY -- INTEGER Input
   On entry: indicates which weight function is to be used:
   (alpha) (beta)
   if KEY = 1, w(x)=(x-a) (b-x)

   (alpha) (beta)
   if KEY = 2, w(x)=(x-a) (b-x) ln(x-a)

   (alpha) (beta)
   if KEY = 3, w(x)=(x-a) (b-x) ln(b-x)

   (alpha) (beta)
   if KEY = 4, w(x)=(x-a) (b-x) ln(x-a)ln(b-x)
Constraint: KEY = 1, 2, 3 or 4

7: EPSABS -- DOUBLE PRECISION  Input
   On entry: the absolute accuracy required. If EPSABS is
   negative, the absolute value is used. See Section 7.

8: EPSREL -- DOUBLE PRECISION  Input
   On entry: the relative accuracy required. If EPSREL is
   negative, the absolute value is used. See Section 7.

9: RESULT -- DOUBLE PRECISION  Output
   On exit: the approximation to the integral I.

10: ABSERR -- DOUBLE PRECISION  Output
    On exit: an estimate of the modulus of the absolute error,
    which should be an upper bound for |I-RESULT|.

11: W(LW) -- DOUBLE PRECISION array  Output
    On exit: details of the computation, as described in
    Section 8.

12: LW -- INTEGER  Input
    On entry:
    the dimension of the array W as declared in the (sub)program
    from which D01APF is called.
    The value of LW (together with that of LIW below) imposes a
    bound on the number of sub-intervals into which the interval
    of integration may be divided by the routine. The number of
    sub-intervals cannot exceed LW/4. The more difficult the
    integrand, the larger LW should be. Suggested value: LW =
    800 to 2000 is adequate for most problems. Constraint: LW >=
    8.

13: IW(LIW) -- INTEGER array  Output
    On exit: IW(1) contains the actual number of sub-intervals
    used. The rest of the array is used as workspace.

14: LIW -- INTEGER  Input
    On entry:
    the dimension of the array IW as declared in the
    (sub)program from which D01APF is called.
    The number of sub-intervals into which the interval of
    integration may be divided cannot exceed LIW. Suggested

15: IFAIL -- INTEGER  Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. Users who are
    unfamiliar with this parameter should refer to the Essential
    Introduction for details.
On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a discontinuity or a singularity of algebraico-logarithmic type within the interval can be determined, the interval must be split up at this point and the integrator called on the subranges. If necessary, another integrator, which is designed for handling the difficulty involved, must be used. Alternatively consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL= 4
On entry B <= A,

or ALFA <= -1,

or BETA <= -1,

or KEY < 1,

or KEY > 4.
IFAIL= 5
On entry LW < 8,
or LIW < 2.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

$|I-RESULT| \leq \text{tol},$

where

$\text{tol} = \max\{|\text{EPSABS}|,|\text{EPSREL}|*|I|\},$

and EPSABS and EPSREL are user-specified absolute and relative error tolerances.

Moreover it returns the quantity ABSERR which, in normal circumstances, satisfies:

$|I-RESULT| \leq \text{ABSERR} \leq \text{tol}.$

8. Further Comments

The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL /= 0 on exit, then the user may wish to examine the contents of the array $W$, which contains the end-points of the sub-intervals used by D01APF along with the integral contributions and error estimates over these sub-intervals.

Specifically, for $i=1,2,\ldots,n$, let $r_i$ denote the approximation to the value of the integral over the sub-interval $[a_i,b_i]$ in the partition of $[a,b]$ and $e_i$ be the corresponding absolute error estimate. Then, $\int_a^b f(x)w(x)dx \approx r$ and $\text{RESULT} = r_i$. The value of $\int_a^b f(x)w(x)dx$ is returned in $\text{IW}(1)$, and the values $a_i, b_i, e_i$ and $r_i$ are stored consecutively in the array $W$, that is:
a = W(i),
i
b = W(n+i),
i
e = W(2n+i),
i
r = W(3n+i).
i
9. Example

To compute:

\[
\frac{1}{\ln(x) \cos(10\pi x) dx} \quad \text{and} \quad \frac{1}{\sin(10x)} \quad \frac{1}{\ln(1-x) dx}.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
D01AQF-- Quadrature
D01AQF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01AQF calculates an approximation to the Hilbert transform of a function \( g(x) \) over \([a,b]\):

\[
\frac{1}{g(x)} \int_{a}^{b} \frac{dx}{x-c}
\]

for user-specified values of \( a, b \) and \( c \).

2. Specification

```plaintext
SUBROUTINE D01AQF (G, A, B, C, EPSABS, EPSREL, RESULT,
1 ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER LW, IW(LIW), LIW, IFAIL
DOUBLE PRECISION G, A, B, C, EPSABS, EPSREL, RESULT,
1 ABSERR, W(LW)
EXTERNAL G
```

3. Description

D01AQF is based upon the QUADPACK routine QAWC (Piessens et al [3]) and integrates a function of the form \( g(x)w(x) \), where the weight function

\[
\frac{1}{x-c}
\]

is that of the Hilbert transform. (If \( a < c < b \) the integral has to be interpreted in the sense of a Cauchy principal value.) It is an adaptive routine which employs a 'global' acceptance criterion (as defined by Malcolm and Simpson [1]). Special care is taken to
ensure that $c$ is never the end-point of a sub-interval (Piessens et al[2]). On each sub-interval $(c, c)$ modified Clenshaw-Curtis integration of orders 12 and 24 is performed if $c - d <= c <= c + d$ where $d = (c - c) / 20$. Otherwise the Gauss 7-point and Kronrod 15-1 point rules are used. The local error estimation is described by Piessens et al [3].

4. References


5. Parameters

1: G -- DOUBLE PRECISION FUNCTION, supplied by the user.

**External Procedure**

G must return the value of the function $g$ at a given point.

Its specification is:

```plaintext
DOUBLE PRECISION FUNCTION G (X)
DOUBLE PRECISION X
```

1: X -- DOUBLE PRECISION

On entry: the point at which the function $g$ must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which D01AQF is called. Parameters denoted as Input must not be changed by this procedure.

2: A -- DOUBLE PRECISION

On entry: the lower limit of integration, $a$.

3: B -- DOUBLE PRECISION

On entry: the upper limit of integration, $b$. It is not necessary that $a < b$.

4: C -- DOUBLE PRECISION

On entry: the upper limit of integration, $b$. It is not necessary that $a < b$. 

...
On entry: the parameter c in the weight function.  
Constraint: C must not equal A or B.

5: EPSABS -- DOUBLE PRECISION  
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See Section 7.

6: EPSREL -- DOUBLE PRECISION  
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See Section 7.

7: RESULT -- DOUBLE PRECISION  
On exit: the approximation to the integral I.

8: ABSERR -- DOUBLE PRECISION  
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for |I-RESULT|.

9: W(LW) -- DOUBLE PRECISION array  
On exit: details of the computation, as described in Section 8.

10: LW -- INTEGER  
On entry: the dimension of the array W as declared in the (sub)program from which D01AQF is called. 
The value of LW (together with that of LIW below) imposes a bound on the number of sub-intervals into which the interval of integration may be divided by the routine. The number of sub-intervals cannot exceed LW/4. The more difficult the integrand, the larger LW should be. Suggested value: LW = 800 to 2000 is adequate for most problems. Constraint: LW >= 4.

11: IW(LIW) -- INTEGER array  
On exit: IW(1) contains the actual number of sub-intervals used. The rest of the array is used as workspace.

12: LIW -- INTEGER  
On entry: the dimension of the array IW as declared in the (sub)program from which D01AQF is called. 
The number of sub-intervals into which the interval of integration may be divided cannot exceed LIW. Suggested value: LIW = LW/4. Constraint: LIW >= 1.

13: IFAIL -- INTEGER  
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.
On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. Another integrator which is designed for handling the type of difficulty involved, must be used. Alternatively consider relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local behaviour of g(x) causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL= 4
On entry C = A or C = B.

IFAIL= 5
On entry LW < 4,

or
LIW < 1.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

|I-RESULT|<=tol,
where
\[ tol = \max\{|\text{EPSABS}|, |\text{EPSREL}| \times |I|\}, \]
and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it returns the quantity ABSERR which, in normal circumstances satisfies:
\[ |I - \text{RESULT}| \leq \text{ABSERR} \leq tol. \]

8. Further Comments

The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL \( \neq 0 \) on exit, then the user may wish to examine the contents of the array W, which contains the end-points of the sub-intervals used by D01AQF along with the integral contributions and error estimates over these sub-intervals.

Specifically, for \( i = 1, 2, \ldots, n \), let \( r \) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \( e \) be the corresponding absolute error estimate. Then, \[ \int_{a_i}^{b_i} w(x)g(x)dx \approx r \] and \( \text{RESULT} > r \). The value of \( \int_{a_i}^{b_i} \) is returned in \( \text{IW}(1) \), and the values \( a_i, b_i, e_i \) and \( r_i \) are stored consecutively in the array W, that is:
\[
\begin{align*}
a_i &= \text{W}(i), \\
b_i &= \text{W}(n+i), \\
e_i &= \text{W}(2n+i) \text{ and} \\
r_i &= \text{W}(3n+i).
\end{align*}
\]

9. Example
To compute the Cauchy principal value of

\[
\frac{1}{dx} \left| \begin{array}{cc}
-1 & (x + 0.01) (x - ) \\
2 & 2 & 1
\end{array} \right|
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Approximate Sine or Cosine over \([a, \infty]\)

— nagd.ht —
infty / I= | g(x)||sin((omega)x)dx or I= / a infty / | g(x)||cos((omega)x)dx / a

(for a user-specified value of (omega)).

2. Specification

SUBROUTINE D01ASF (G, A, OMEGA, KEY, EPSABS, RESULT,
1            ABSERR, LIMLST, LST, ERLST, RSLST,
2            IERLST, W, LW, IW, LIW, IFAIL)
 INTEGER KEY, LIMLST, LST, IERLST(LIMLST), LW, IW
1 (LIW), LIW, IFAIL
 DOUBLE PRECISION G, A, OMEGA, EPSABS, RESULT, ABSERR, ERLST
1 (LIMLST), RSLST(LIMLST), W(LW)
 EXTERNAL G

3. Description

D01ASF is based upon the QUADPACK routine QAWFE (Piessens et al [2]). It is an adaptive routine, designed to integrate a function of the form g(x)w(x) over a semi-infinite interval, where w(x) is either sin((omega)x) or cos((omega)x). Over successive intervals

C = [a+(k-1)c, a+kc], k=1,2,...,LST

integration is performed by the same algorithm as is used by D01ANF. The intervals C are of constant length

k

where \(|(omega)|\) represents the largest integer less than or equal to |(omega)|. Since c equals an odd number of half periods, the integral contributions over succeeding intervals will alternate in sign when the function g is positive and monotonically decreasing over [a,infty). The algorithm, described by [2], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [1]) together with the (epsilon)-algorithm (Wynn [3]) to perform extrapolation. The local error estimation is described by Piessens et al [2].
If \( \omega = 0 \) and \( \text{KEY} = 1 \), the routine uses the same algorithm as D01AMF (with \( \text{EPSREL} = 0.0 \)).

In contrast to the other routines in Chapter D01, D01ASF works only with a user-specified absolute error tolerance (EPSABS). Over the interval \( C \) it attempts to satisfy the absolute accuracy requirement

\[
\text{EPSA} = U \cdot \text{EPSABS} \\
_k \\
k-1
\]

where \( U = (1-p)^p \) for \( k = 1, 2, \ldots \) and \( p = 0.9 \).

However, when difficulties occur during the integration over the \( k \)-th sub-interval \( C \) such that the error flag \( \text{IERLST}(k) \) is non-zero, the accuracy requirement over subsequent intervals is relaxed. See Piessens et al [2] for more details.

4. References


5. Parameters

1: \( G \) -- DOUBLE PRECISION FUNCTION, supplied by the user.

\[\text{External Procedure} \]

\[G \text{ must return the value of the function } g \text{ at a given point.}\]

Its specification is:

\[
\text{DOUBLE PRECISION FUNCTION } G (X) \\
\text{DOUBLE PRECISION } X
\]

1: \( X \) -- DOUBLE PRECISION

\[\text{Input} \]

\[\text{On entry: the point at which the function } g \text{ must be evaluated.}\]

\[G \text{ must be declared as EXTERNAL in the (sub)program from}\]
which D01ASF is called. Parameters denoted as Input
must not be changed by this procedure.

2: A -- DOUBLE PRECISION
On entry: the lower limit of integration, a.

3: OMEGA -- DOUBLE PRECISION
On entry: the parameter (omega) in the weight function of
the transform.

4: KEY -- INTEGER
On entry: indicates which integral is to be computed:
if KEY = 1, w(x)=cos((omega)x);
if KEY = 2, w(x)=sin((omega)x).
Constraint: KEY = 1 or 2.

5: EPSABS -- DOUBLE PRECISION
On entry: the absolute accuracy requirement. If EPSABS is
negative, the absolute value is used. See Section 7.

6: RESULT -- DOUBLE PRECISION
On exit: the approximation to the integral I.

7: ABSERR -- DOUBLE PRECISION
On exit: an estimate of the modulus of the absolute error,
which should be an upper bound for |I-RESULT|.

8: LIMLST -- INTEGER
On entry: an upper bound on the number of intervals C
needed for the integration. Suggested value: LIMLST = 50 is
adequate for most problems. Constraint: LIMLST >= 3.

9: LST -- INTEGER
On exit: the number of intervals C actually used for the
integration.

10: ERLST(LIMLST) -- DOUBLE PRECISION array
On exit: ERLST(k) contains the error estimate corresponding
to the integral contribution over the interval C , for
k k=1,2,...,LST.

11: RSLST(LIMLST) -- DOUBLE PRECISION array
On exit: RSLST(k) contains the integral contribution over
the interval C for k=1,2,...,LST.
12: IERLST(LIMLST) -- INTEGER array
   Output
   On exit: IERLST(k) contains the error flag corresponding to
   RSLST(k), for k=1,2,...,LST. See Section 6.

13: W(LW) -- DOUBLE PRECISION array
    Workspace

14: LW -- INTEGER
    Input
    On entry:
    the dimension of the array W as declared in the (sub)program
    from which D01ASF is called.
    The value of LW (together with that of LIW below) imposes a
    bound on the number of sub-intervals into which each
    interval C may be divided by the routine. The number of
    sub-intervals cannot exceed LW/4. The more difficult the
    integrand, the larger LW should be. Suggested value: a value
    in the range 800 to 2000 is adequate for most problems.
    Constraint: LW >= 4.

15: IW(LIW) -- INTEGER array
    Output
    On exit: IW(1) contains the maximum number of sub-intervals
    actually used for integrating over any of the intervals C .
    The rest of the array is used as workspace.

16: LIW -- INTEGER
    Input
    On entry:
    the dimension of the array IW as declared in the
    (sub)program from which D01ASF is called.
    The number of sub-intervals into which each interval C may
    be divided cannot exceed LIW/2. Suggested value: LIW = LW/2.
    Constraint: LIW >= 2.

17: IFAIL -- INTEGER
    Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. Users who are
    unfamiliar with this parameter should refer to the Essential
    Introduction for details.
    On exit: IFAIL = 0 unless the routine detects an error or
    gives a warning (see Section 6).
    For this routine, because the values of output parameters
    may be useful even if IFAIL /=0 on exit, users are
    recommended to set IFAIL to -1 before entry. It is then
    essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc) you will probably gain from splitting up the interval at this point and calling D01ASF on the infinite subrange and an appropriate integrator on the finite subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS or increasing the amount of workspace.

IFAIL= 2
Round-off error prevents the requested tolerance from being achieved. The error may be underestimated. Consider requesting less accuracy.

IFAIL= 3
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL= 4
The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best which can be obtained. The same advice applies as in the case of IFAIL = 1.

IFAIL= 5
The integral is probably divergent, or slowly convergent. Please note that divergence can occur with any non-zero value of IFAIL.

IFAIL= 6
On entry KEY < 1, 
or KEY > 2, 
or LIMLST < 3.

IFAIL= 7
Bad integration behaviour occurs within one or more of the intervals C . Location and type of the difficulty involved
can be determined from the vector IERLST (see below).

IFAIL= 8
Maximum number of intervals \(C (\text{=} \text{LIMLST})\) allowed has been 
achieved. Increase the value of LIMLST to allow more cycles.

IFAIL= 9
The extrapolation table constructed for convergence 
acceleration of the series formed by the integral 
contribution over the intervals \(C_k\), does not converge to the 
required accuracy.

IFAIL= 10
On entry LW < 4,
or LIW < 2.

In the cases IFAIL = 7, 8 or 9, additional information about the 
cause of the error can be obtained from the array IERLST, as 
follows:

IERLST(k)=1
The maximum number of subdivisions = \(\min(LW/4,LIW/2)\) has 
been achieved on the \(k\)th interval.

IERLST(k)=2
Occurrence of round-off error is detected and prevents the 
tolerance imposed on the \(k\)th interval from being achieved.

IERLST(k)=3
Extremely bad integrand behaviour occurs at some points of 
the \(k\)th interval.

IERLST(k)=4
The integration procedure over the \(k\)th interval does not 
converge (to within the required accuracy) due to round-off 
in the extrapolation procedure invoked on this interval. It 
is assumed that the result on this interval is the best 
which can be obtained.

IERLST(k)=5
The integral over the \(k\)th interval is probably divergent or 
slowly convergent. It must be noted that divergence can 
occur with any other value of IERLST(k).

7. Accuracy
The routine cannot guarantee, but in practice usually achieves,
the following accuracy:

\[ |I-RESULT| \leq |\text{EPSABS}|, \]

where EPSABS is the user-specified absolute error tolerance. Moreover, it returns the quantity ABSERR, which, in normal circumstances, satisfies

\[ |I-RESULT| \leq \text{ABSERR} \leq |\text{EPSABS}|. \]

8. Further Comments

None.

9. Example

To compute

\[
\int_0^\infty \frac{1}{x} \cos\left(\frac{\pi x}{2}\right) dx.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library.

1. Purpose

D01BBF returns the weights and abscissae appropriate to a Gaussian quadrature formula with a specified number of abscissae. The formulae provided are Gauss-Legendre, Gauss-Rational, Gauss-Laguerre and Gauss-Hermite.

2. Specification

```fortran
SUBROUTINE D01BBF (A, B, ITYPE, N, WEIGHT, ABSCIS, GTYPE, IFAIL)
INTEGER ITYPE, N, GTYPE, IFAIL
DOUBLE PRECISION A, B, WEIGHT(N), ABSCIS(N)
```

3. Description

This routine returns the weights and abscissae for use in the Gaussian quadrature of a function \( f(x) \). The quadrature takes the form

\[
S = \sum_{i=1}^{n} w_i f(x_i)
\]

where \( w \) are the weights and \( x \) are the abscissae (see Davis and Rabinowitz [1], Froberg [2], Ralston [3] or Stroud and Secrest [4]).

Weights and abscissae are available for Gauss-Legendre, Gauss-Rational, Gauss-Laguerre and Gauss-Hermite quadrature, and for a selection of values of \( n \) (see Section 5).

(a) Gauss-Legendre Quadrature:
where \( a \) and \( b \) are finite and it will be exact for any
function of the form
\[
\sum_{i=0}^{2n-1} c_i x^i
\]

(b) Gauss-Rational quadrature:
\[
\int_a^\infty f(x) \, dx \quad \text{or} \quad \int_{-\infty}^a f(x) \, dx
\]
and will be exact for any function of the form
\[
\sum_{i=0}^{2n+1} \frac{c_i (x+b)^i}{(x+b)^i}
\]

(c) Gauss-Laguerre quadrature, adjusted weights option:
\[
\int_{-\infty}^a f(x) \, dx \quad \text{or} \quad \int_{b>0}^\infty f(x) \, dx \quad \text{or} \quad \int_{b<0}^{-\infty} f(x) \, dx
\]
and will be exact for any function of the form
\[
\sum_{i=0}^{2n+1} c_i x^i (x+b)^i
\]

(d) Gauss-Hermite quadrature, adjusted weights option:
\[
\int_{-\infty}^{+\infty} f(x) \, dx
\]
and will be exact for any function of the form
22.3. NAGD.HT

\[ f(x) = \sum_{i=0}^{2n-1} c_i x^i \quad (b > 0) \]

(e) Gauss-Laguerre quadrature, normal weights option:

\[
\int_{-\infty}^{\infty} e^{-bx} f(x) \, dx \quad (b > 0)
\]

\[
\text{or } \int_{-\infty}^{\infty} e^{-bx} f(x) \, dx
\]

(b < 0)

and will be exact for any function of the form

\[ f(x) = \sum_{i=0}^{2n-1} c_i x^i \]

(f) Gauss-Hermite quadrature, normal weights option:

\[
\int_{-\infty}^{\infty} e^{-bx} f(x) \, dx
\]

and will be exact for any function of the form:

\[ f(x) = \sum_{i=0}^{2n-1} c_i x^i \]

Note: that the Gauss-Legendre abscissae, with \(a=-1, b=+1\), are the zeros of the Legendre polynomials; the Gauss-Laguerre abscissae, with \(a=0, b=1\), are the zeros of the Laguerre polynomials; and the Gauss-Hermite abscissae, with \(a=0, b=1\), are the zeros of the Hermite polynomials.

4. References

5. Parameters

1: A -- DOUBLE PRECISION
   Input

2: B -- DOUBLE PRECISION
   Input
   On entry: the quantities a and b as described in the
   appropriate subsection of Section 3.

3: ITYPE -- INTEGER
   Input
   On entry: indicates the type of weights for Gauss-Laguerre
   or Gauss-Hermite quadrature (see Section 3):
   if ITYPE = 1, adjusted weights will be returned;
   if ITYPE = 0, normal weights will be returned.

   Constraint: ITYPE = 0 or 1.

   For Gauss-Legendre or Gauss-Rational quadrature, this
   parameter is not used.

4: N -- INTEGER
   Input
   On entry: the number of weights and abscissae to be
   returned, n. Constraint: N = 1,2,3,4,5,6,8,10,12,14,16,20,24,32,48 or 64.

5: WEIGHT(N) -- DOUBLE PRECISION array
   Output
   On exit: the N weights. For Gauss-Laguerre and Gauss-
   Hermite quadrature, these will be the adjusted weights if
   ITYPE = 1, and the normal weights if ITYPE = 0.

6: ABSCIS(N) -- DOUBLE PRECISION array
   Output
   On exit: the N abscissae.

7: GTYPE -- INTEGER
   Input
   On entry: The value of GTYPE indicates which quadrature
   formula are to be used:
   GTYPE = 0 for Gauss-Legendre weights and abscissae;
   GTYPE = 1 for Gauss-Rational weights and abscissae;
22.3. NAGD.HT

\[
\text{GTYPE} = 2 \text{ for Gauss-Laguerre weights and abscissae;}
\]

\[
\text{GTYPE} = 3 \text{ for Gauss-Hermite weights and abscissae.}
\]

8:  IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
The N-point rule is not among those stored. If the soft fail option is used, the weights and abscissae returned will be those for the largest valid value of N less than the requested value, and the excess elements of WEIGHT and ABSCIS (i.e., up to the requested N) will be filled with zeros.

IFAIL= 2
The value of A and/or B is invalid.
\quad \text{Gauss-Rational: } A + B = 0
\]

\[
\text{Gauss-Laguerre: } B = 0
\]

\[
\text{Gauss-Hermite: } B \leq 0
\]

If the soft fail option is used the weights and abscissae are returned as zero.

IFAIL= 3
Laguerre and Hermite normal weights only: underflow is occurring in evaluating one or more of the normal weights. If the soft fail option is used, the underflowing weights are returned as zero. A smaller value of N must be used; or adjusted weights should be used (ITYPE = 1). In the latter case, take care that underflow does not occur when evaluating the integrand appropriate for adjusted weights.

IFAIL=4
\quad \text{GTYPE} < 0 \text{ or GTYPE} > 3

7. Accuracy

The weights and abscissae are stored for standard values of A and B to full machine accuracy.
8. Further Comments

Timing is negligible.

9. Example

This example program returns the abscissae and (adjusted) weights for the six-point Gauss-Laguerre formula.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Multidimensional integrals with finite limits

— nagd.ht —

---

D01FCF(3NAG) Foundation Library (12/10/92) D01FCF(3NAG)

D01 -- Quadrature
D01FCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D01FCF attempts to evaluate a multi-dimensional integral (up to 15 dimensions), with constant and finite limits, to a specified relative accuracy, using an adaptive subdivision strategy.
2. Specification

SUBROUTINE D01FCF (NDIM, A, B, MINPTS, MAXPTS, FUNCTN,
  1 EPS, ACC, LENWRK, WRKSTR, FINVAL, IFAIL)
  INTEGER NDIM, MINPTS, MAXPTS, LENWRK, IFAIL
  DOUBLE PRECISION A(NDIM), B(NDIM), FUNCTN, EPS, ACC, WRKSTR
  1 (LENWRK), FINVAL
  EXTERNAL FUNCTN

3. Description

The routine returns an estimate of a multi-dimensional integral
ever a hyper-rectangle (i.e., with constant limits), and also an
estimate of the relative error. The user sets the relative
accuracy required, supplies the integrand as a function
subprogram (FUNCTN), and also sets the minimum and maximum
acceptable number of calls to FUNCTN (in MINPTS and MAXPTS).

The routine operates by repeated subdivision of the hyper-
rectangular region into smaller hyper-rectangles. In each
subregion, the integral is estimated using a seventh-degree rule,
and an error estimate is obtained by comparison with a fifth-
degree rule which uses a subset of the same points. The fourth
differences of the integrand along each co-ordinate axis are
evaluated, and the subregion is marked for possible future
subdivision in half along that co-ordinate axis which has the
largest absolute fourth difference.

If the estimated errors, totalled over the subregions, exceed the
requested relative error (or if fewer than MINPTS calls to FUNCTN
have been made), further subdivision is necessary, and is
performed on the subregion with the largest estimated error, that
subregion being halved along the appropriate co-ordinate axis.

The routine will fail if the requested relative error level has
not been attained by the time MAXPTS calls to FUNCTN have been
made; or, if the amount LENWRK of working storage is
insufficient. A formula for the recommended value of LENWRK is
given in Section 5. If a smaller value is used, and is exhausted
in the course of execution, the routine switches to a less
efficient mode of operation; only if this mode also breaks down
is insufficient storage reported.

D01FCF is based on the HALF subroutine developed by van Dooren
and de Ridder [1]. It uses a different basic rule, described by
Genz and Malik [2].

4. References


5. Parameters

1: NDIM -- INTEGER Input
   On entry: the number of dimensions of the integral, n.
   Constraint: 2 <= NDIM <= 15.

2: A(NDIM) -- DOUBLE PRECISION array Input
   On entry: the lower limits of integration, a , for
   \( i = 1,2,\ldots,n \).

3: B(NDIM) -- DOUBLE PRECISION array Input
   On entry: the upper limits of integration, b , for
   \( i = 1,2,\ldots,n \).

4: MINPTS -- INTEGER Input/Output
   On entry: MINPTS must be set to the minimum number of integrand evaluations to be allowed. On exit: MINPTS contains the actual number of integrand evaluations used by D01FCF.

5: MAXPTS -- INTEGER Input
   On entry: the maximum number of integrand evaluations to be allowed.
   Constraints:
   \[ \text{MAXPTS} \geq \text{MINPTS} \]
   \[ \text{MAXPTS} \geq (\alpha), \]
   \( \text{NDIM} \quad 2 \)
   \[ \text{where } (\alpha) = 2 + 2 \times \text{NDIM} + 2 \times \text{NDIM} + 1. \]

6: FUNCTN -- DOUBLE PRECISION FUNCTION, supplied by the user.

   External Procedure
   FUNCTN must return the value of the integrand \( f \) at a given point.

   Its specification is:

   \[
   \text{DOUBLE PRECISION FUNCTION FUNCTN (NDIM,Z)}
   \]
   \[ \text{INTEGER NDIM} \]
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL to 1.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL= 1
  On entry NDIM < 2,
  or NDIM > 15,
  or MAXPTS is too small,
  or LENWRK<2*NDIM+4,
  or EPS <= 0.0.

IFAIL= 2
  MAXPTS was too small to obtain the required relative accuracy EPS. On soft failure, FINVAL and ACC contain estimates of the integral and the relative error, but ACC will be greater than EPS.

IFAIL= 3
  LENWRK was too small. On soft failure, FINVAL and ACC contain estimates of the integral and the relative error, but ACC will be greater than EPS.

7. Accuracy

A relative error estimate is output through the parameter ACC.

8. Further Comments

Execution time will usually be dominated by the time taken to evaluate the integrand FUNCTN, and hence the maximum time that could be taken will be proportional to MAXPTS.

9. Example

This example program estimates the integral

\[
\begin{align*}
\int_{0}^{1} \int_{0}^{4} \int_{0}^{3} \int_{0}^{2} \int_{0}^{2} 4z^2 \exp(2z^2 z) dz \ dz \ dz \ dz \ dz = 0.575364.
\end{align*}
\]
The accuracy requested is one part in 10,000.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Third-order finite-difference integration

--- nagd.ht ---

SUBROUTINE D01GAF (X, Y, N, ANS, ER, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N), Y(N), ANS, ER
3. Description

This routine evaluates the definite integral

\[
\int_{x_1}^{x_n} y(x)\,dx,
\]

where the function \( y \) is specified at the \( n \)-points \( x_1, x_2, \ldots, x_n \), which should be all distinct, and in either ascending or descending order. The integral between successive points is calculated by a four-point finite-difference formula centred on the interval concerned, except in the case of the first and last intervals, where four-point forward and backward difference formulae respectively are employed. If \( n \) is less than 4, the routine fails. An approximation to the truncation error is integrated and added to the result. It is also returned separately to give an estimate of the uncertainty in the result. The method is due to Gill and Miller.

4. References


5. Parameters

1: \( X(N) \) -- DOUBLE PRECISION array  
   Input  
   On entry: the values of the independent variable, i.e., the \( x_1, x_2, \ldots, x_n \). Constraint: either \( x_1 < x_2 < \ldots < x(N) \) or \( x_1 > x_2 > \ldots > x(N) \).

2: \( Y(N) \) -- DOUBLE PRECISION array  
   Input  
   On entry: the values of the dependent variable \( y \) at the points \( x_i \), for \( i=1,2,\ldots,n \).

3: \( N \) -- INTEGER  
   Input  
   On entry: the number of points, \( n \). Constraint: \( N \geq 4 \).

4: \( ANS \) -- DOUBLE PRECISION  
   Output  
   On exit: the estimate of the integral.
5: ER -- DOUBLE PRECISION Output
   On exit: an estimate of the uncertainty in ANS.

6: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   Indicates that fewer than four-points have been supplied to
   the routine.

IFAIL= 2
   Values of X are neither strictly increasing nor strictly
   decreasing.

IFAIL= 3
   Two points have the same X-value.

No error is reported arising from the relative magnitudes of ANS
and ER on return, due to the difficulty when the true answer is
zero.

7. Accuracy

No accuracy level is specified by the user before calling the
routine but on return ABS(ER) is an approximation to, but not
necessarily a bound for, |1-ANS|. If on exit IFAIL > 0, both ANS
and ER are returned as zero.

8. Further Comments

The time taken by the routine depends on the number of points
supplied, n.

In their paper, Gill and Miller [1] do not add the quantity ER to
ANS before return. However, extensive tests have shown that a
dramatic reduction in the error often results from such addition.
In other cases, it does not make an improvement, but these tend
to be cases of low accuracy in which the modified answer is not
significantly inferior to the unmodified one. The user has the
option of recovering the Gill-Miller answer by subtracting ER
from ANS on return from the routine.
9. Example

The example program evaluates the integral

$$\int_{0}^{1} \frac{1}{4} \frac{1}{1+x} \, dx = \pi$$

reading in the function values at 21 unequally-spaced points.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
D01GBF returns an approximation to the integral of a function over a hyper-rectangular region, using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work.

2. Specification

SUBROUTINE D01GBF (NDIM, A, B, MINCLS, MAXCLS, FUNCTN, \
1 EPS, ACC, LENWRK, WRKSTR, FINEST, IFAIL)

INTEGER NDIM, MINCLS, MAXCLS, LENWRK, IFAIL

DOUBLE PRECISION A(NDIM), B(NDIM), FUNCTN, EPS, ACC, WRKSTR \
1 (LENWRK), FINEST

EXTERNAL FUNCTN

3. Description

D01GBF uses an adaptive Monte Carlo method based on the algorithm described by Lautrup [1]. It is implemented for integrals of the form:
\[
\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(x_1, x_2, \ldots, x_n) \, dx_n \cdots dx_2 \, dx_1.
\]

Upon entry, unless LENWRK has been set to the minimum value $10 \times \text{NDIM}$, the routine subdivides the integration region into a number of equal volume subregions. Inside each subregion the integral and the variance are estimated by means of pseudo-random sampling. All contributions are added together to produce an estimate for the whole integral and total variance. The variance along each co-ordinate axis is determined and the routine uses this information to increase the density and change the widths of the sub-intervals along each axis, so as to reduce the total variance. The total number of subregions is then increased by a factor of two and the program recycles for another iteration. The program stops when a desired accuracy has been reached or too many integral evaluations are needed for the next cycle.

4. References


5. Parameters
1: NDIM -- INTEGER Input
   On entry: the number of dimensions of the integral, n.
   Constraint: NDIM >= 1.

2: A(NDIM) -- DOUBLE PRECISION array Input
   On entry: the lower limits of integration, a, for
   \( i = 1, 2, \ldots, n \).

3: B(NDIM) -- DOUBLE PRECISION array Input
   On entry: the upper limits of integration, b, for
   \( i = 1, 2, \ldots, n \).

4: MINCLS -- INTEGER Input/Output
   On entry: MINCLS must be set:
   either to the minimum number of integrand evaluations to be
   allowed, in which case MINCLS >= 0;
   or to a negative value. In this case the routine assumes
   that a previous call had been made with the same parameters
   NDIM, A and B and with either the same integrand (in which
   case D01GBF continues calculation) or a similar integrand
   (in which case D01GBF begins the calculation with the
   subdivision used in the last iteration of the previous call)
   . See also WRKSTR. On exit: MINCLS contains the number of
   integrand evaluations actually used by D01GBF.

5: MAXCLS -- INTEGER Input
   On entry: the maximum number of integrand evaluations to be
   allowed. In the continuation case this is the number of new
   integrand evaluations to be allowed. These counts do not
   include zero integrand values.
   Constraints:
   \[ \text{MAXCLS} > \text{MINCLS}, \]
   \[ \text{MAXCLS} \geq 4 \times (\text{NDIM} + 1). \]

6: FUNCTN -- DOUBLE PRECISION FUNCTION, supplied by the user.
   External Procedure
   FUNCTN must return the value of the integrand f at a given
   point.

   Its specification is:

   \[
   \text{DOUBLE PRECISION FUNCTION FUNCTN (NDIM, X)}
   \]
   \[
   \text{INTEGER NDIM}
   \]
   \[
   \text{DOUBLE PRECISION X(NDIM)}
   \]
1: NDIM -- INTEGER  
   On entry: the number of dimensions of the integral, n.

2: X(NDIM) -- DOUBLE PRECISION array  
   On entry: the co-ordinates of the point at which the 
   integrand must be evaluated.

Functn must be declared as EXTERNAL in the (sub)program 
from which D01GBF is called. Parameters denoted as 
Input must not be changed by this procedure.

7: EPS -- DOUBLE PRECISION  
   On entry: the relative accuracy required. Constraint: EPS 
   >= 0.0.

8: ACC -- DOUBLE PRECISION  
   On exit: the estimated relative accuracy of FINEST.

9: LENWRK -- INTEGER  
   On entry: 
   the dimension of the array WRKSTR as declared in the 
   (sub)program from which D01GBF is called.
   For maximum efficiency, LENWRK should be about 
   1/NDIM
   3*NDIM*(MAXCLS/4) + 7*NDIM.
   If LENWRK is given the value 10*NDIM then the subroutine 
   uses only one iteration of a crude Monte Carlo method with 
   MAXCLS sample points. Constraint: LENWRK >= 10*NDIM.

10: WRKSTR(LENWRK) -- DOUBLE PRECISION array  
    On entry: if MINCLS<0, WRKSTR must be unchanged from the 
    previous call of D01GBF - except that for a new integrand 
    WRKSTR(LENWRK) must be set to 0.0. See also MINCLS. On 
    exit: WRKSTR contains information about the current sub- 
    interval structure which could be used in later calls of 
    D01GBF. In particular, WRKSTR(j) gives the number of sub-
    intervals used along the jth co-ordinate axis.

11: FINEST -- DOUBLE PRECISION  
    On exit: the best estimate obtained for the integral.

12: IFAIL -- INTEGER  
    On entry: IFAIL must be set to 0, -1 or 1. Users who are 
    unfamiliar with this parameter should refer to the Essential 
    Introduction for details.

    On exit: IFAIL = 0 unless the routine detects an error or 
    gives a warning (see Section 6).

For this routine, because the values of output parameters 
may be useful even if IFAIL /=0 on exit, users are
recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL= 1
0n entry NDIM < 1,
or MINCLS >= MAXCLS,
or LENWRK < 10*NDIM,
or MAXCLS < 4*(NDIM+1),
or EPS < 0.0.

IFAIL= 2
MAXCLS was too small for D01GBF to obtain the required relative accuracy EPS. In this case D01GBF returns a value of FINEST with estimated relative error ACC, but ACC will be greater than EPS. This error exit may be taken before MAXCLS non-zero integrand evaluations have actually occurred, if the routine calculates that the current estimates could not be improved before MAXCLS was exceeded.

7. Accuracy

A relative error estimate is output through the parameter ACC. The confidence factor is set so that the actual error should be less than ACC 90% of the time. If a user desires a higher confidence level then a smaller value of EPS should be used.

8. Further Comments

The running time for D01GBF will usually be dominated by the time used to evaluate the integrand FUNCTN, so the maximum time that could be used is approximately proportional to MAXCLS.

For some integrands, particularly those that are poorly behaved in a small part of the integration region, D01GBF may terminate with a value of ACC which is significantly smaller than the actual relative error. This should be suspected if the returned value of MINCLS is small relative to the expected difficulty of the integral. Where this occurs, D01GBF should be called again, but with a higher entry value of MINCLS (e.g. twice the returned value) and the results compared with those from the previous
call.

The exact values of FINEST and ACC on return will depend (within statistical limits) on the sequence of random numbers generated within D01GBF by calls to G05CAF. Separate runs will produce identical answers unless the part of the program executed prior to calling D01GBF also calls (directly or indirectly) routines from Chapter G05, and the series of such calls differs between runs. If desired, the user may ensure the identity or difference between runs of the results returned by D01GBF, by calling G05CBF or G05CCF respectively, immediately before calling D01GBF.

9. Example

This example program calculates the integral

\[
\int_{0}^{1} \frac{4x \exp(2x + x)}{1 + x + x^2 + x^3 + x^4} \, dx = 0.575364.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Scope of the Chapter

This chapter is concerned with the numerical solution of ordinary differential equations. There are two main types of problem, those in which all boundary conditions are specified at one point (initial-value problems), and those in which the boundary conditions are distributed between two or more points (boundary-value problems and eigenvalue problems). Routines are available for initial-value problems, two-point boundary-value problems and Sturm-Liouville eigenvalue problems.

2. Background to the Problems

For most of the routines in this chapter a system of ordinary differential equations must be written in the form

\[ y' = f(x, y_1, y_2, \ldots, y_n), \]
\[ y' = f(x, y_2, y_1, \ldots, y_n), \]
\[ \ldots \]
\[ y' = f(x, y_n, \ldots, y_1), \]

that is the system must be given in first-order form. The \( n \) dependent variables (also, the solution) \( y_1, y_2, \ldots, y_n \) are functions of the independent variable \( x \), and the differential equations give expressions for the first derivatives \( y_i = \frac{dy_i}{dx} \) in terms of \( x \) and \( y_1, y_2, \ldots, y_n \). For a system of \( n \) first-order equations, \( n \) associated boundary conditions are usually required to define the solution.

A more general system may contain derivatives of higher order, but such systems can almost always be reduced to the first-order form by introducing new variables. For example, suppose we have the third-order equation

\[ z''' + zz'' + k(1 - z') = 0. \]
We write \( y = z, y = z', y = z'' \), and the third order equation may then be written as the system of first-order equations

\[
\begin{align*}
y' &= y_1 y_2 \\
y' &= y_2 y_3 \\
y' &= -y_3 y_1 y_2 \\
\end{align*}
\]

For this system \( n = 3 \) and we require 3 boundary conditions in order to define the solution. These conditions must specify values of the dependent variables at certain points. For example, we have an initial-value problem if the conditions are:

\[
\begin{align*}
y_1 &= 0 \text{ at } x=0 \\
y_2 &= 0 \text{ at } x=0 \\
y_3 &= 0.1 \text{ at } x=0. \\
\end{align*}
\]

These conditions would enable us to integrate the equations numerically from the point \( x=0 \) to some specified end-point. We have a boundary-value problem if the conditions are:

\[
\begin{align*}
y_1 &= 0 \text{ at } x=0 \\
y_2 &= 0 \text{ at } x=0 \\
y_2 &= 1 \text{ at } x=10. \\
\end{align*}
\]

These conditions would be sufficient to define a solution in the range \( 0 \leq x \leq 10 \), but the problem could not be solved by direct integration (see Section 2.2). More general boundary conditions are permitted in the boundary-value case.

2.1. Initial-value Problems

To solve first-order systems, initial values of the dependent variables \( y \), for \( i=1,2,\ldots, n \) must be supplied at a given point,
a. Also a point, b, at which the values of the dependent
variables are required, must be specified. The numerical solution
is then obtained by a step-by-step calculation which approximates
values of the variables \( y_i \), for \( i=1,2,\ldots,n \) at finite intervals
over the required range \([a,b]\). The routines in this chapter
adjust the step length automatically to meet specified accuracy
tolerances. Although the accuracy tests used are reliable over
each step individually, in general an accuracy requirement cannot
be guaranteed over a long range. For many problems there may be
no serious accumulation of error, but for unstable systems small
perturbations of the solution will often lead to rapid divergence
of the calculated values from the true values. A simple check for
stability is to carry out trial calculations with different
tolerances; if the results differ appreciably the system is
probably unstable. Over a short range, the difficulty may
possibly be overcome by taking sufficiently small tolerances, but
over a long range it may be better to try to reformulate the
problem.

A special class of initial-value problems are those for which the
solutions contain rapidly decaying transient terms. Such problems
are called stiff; an alternative way of describing them is to say
that certain eigenvalues of the Jacobian matrix \( \frac{df}{dy} \) have
large negative real parts when compared to others. These problems
require special methods for efficient numerical solution; the
methods designed for non-stiff problems when applied to stiff
problems tend to be very slow, because they need small step
lengths to avoid numerical instability. A full discussion is
given in Hall and Watt [6] and a discussion of the methods for
stiff problems is given in Berzins, Brankin and Gladwell [1].

2.2. Boundary-value Problems

A full discussion of the design of the methods and codes for
boundary-value problems is given in Gladwell [4]. In general, a
system of nonlinear differential equations with boundary
conditions given at two or more points cannot be guaranteed to
have a solution. The solution has to be determined iteratively
(if it exists). Finite-difference equations are set up on a mesh
of points and estimated values for the solution at the grid
points are chosen. Using these estimated values as starting
values a Newton iteration is used to solve the finite-difference
equations. The accuracy of the solution is then improved by
defered corrections or the addition of points to the mesh or a
combination of both. Good initial estimates of the solution may
be required in some cases but results may be difficult to compute
when the solution varies very rapidly over short ranges. A
discussion is given in Chapters 9 and 11 of Gladwell and Sayers [5] and Chapter 4 of Childs et al [2].

2.3. Eigenvalue Problems

Sturm-Liouville problems of the form

\[(p(x)y')' + q(x, \lambda)y = 0\]

with appropriate boundary conditions given at two points, can be solved by a Scaled Pruefer method. In this method the differential equation is transformed to another which can be solved for a specified eigenvalue by a shooting method. A discussion is given in Chapter 11 of Gladwell and Sayers [5] and a complete description is given in Pryce [7].

2.6. References


3. Recommendations on Choice and Use of Routines

There are no routines which deal directly with COMPLEX equations. These may however be transformed to larger systems of real equations of the required form. Split each equation into its real and imaginary parts and solve for the real and imaginary parts of each component of the solution. Whilst this process doubles the
size of the system and may not always be appropriate it does make available for use the full range of routines provided presently.

3.1. Initial-value Problems

For simple first-order problems with low accuracy requirements, that is problems on a short range of integration, with derivative functions \( f \) which are inexpensive to calculate and where only a few correct figures are required, the best routines to use are likely to be the Runge-Kutta-Merson (RK) routines, D02BBF and D02BHF. For larger problems, over long ranges or with high accuracy requirements the variable-order, variable-step Adams routine D02CJF should usually be preferred. For stiff equations, that is those with rapidly decaying transient solutions, the Backward Differentiation Formula (BDF) variable-order, variable-step routine D02EJF should be used.

There are four routines for initial-value problems, two of which use the Runge-Kutta-Merson method:

- D02BBF integrates a system of first order ordinary differential equations over a range with intermediate output and a choice of error control
- D02BHF integrates a system of first order ordinary differential equations with a choice of error control until a position is determined where a function of the solution is zero.

one uses an Adams method:

- D02CJF combines the functionality of D02BBF and D02BHF

and one uses a BDF method:

- D02EJF combines the functionality of D02BBF and D02BHF.

3.2. Boundary-value Problems

D02GAF may be used for simple boundary-value problems with assigned boundary values. The user may find that convergence is difficult to achieve using D02GAF since only specifying the unknown boundary values and the position of the finite-difference mesh is permitted. In such cases the user may use D02RAF which permits specification of an initial estimate for the solution at all mesh points and allows the calculation to be influenced in other ways too. D02RAF is designed to solve a general nonlinear two-point boundary value problem with nonlinear boundary conditions.
A routine, D02GBF, is also supplied specifically for the general linear two-point boundary-value problem written in a standard way.

The user is advised to use interpolation routines from the E01 Chapter to obtain solution values at points not on the final mesh.

3.3. Eigenvalue Problems

There is one general purpose routine for eigenvalue problems, D02KEF. It may be used to solve regular or singular second-order Sturm-Liouville problems on a finite or infinite range. Discontinuous coefficient functions can be treated and eigenfunctions can be computed.

D02 -- Ordinary Differential Equations

Ordinary Differential Equations

D02BBF ODEs, IVP, Runge-Kutta-Merson method, over a range, intermediate output

D02BHF ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero

D02CJF ODEs, IVP, Adams method, until function of solution is zero, intermediate output

D02EJF ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output

D02GAF ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem

D02GBF ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem

D02KEF 2nd order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points

D02RAF ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
First-order ODE over an interval with initial conditions

— nagd.ht —

D02BBF(3NAG) D02BBF D02BBF(3NAG)

D02 -- Ordinary Differential Equations D02BBF
D02BBF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library.

1. Purpose

D02BBF integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, and returns the solution at points specified by the user.

2. Specification

SUBROUTINE D02BBF (X, XEND, M, N, Y, TOL, IRELAB, RESULT, 1
FCN, OUTPUT, W, IFAIL)
INTEGER M, N, IRELAB, IFAIL
DOUBLE PRECISION X, XEND, Y(N), TOL, W(N,7), RESULT(M,N)
EXTERNAL FCN, OUTPUT

3. Description
The routine integrates a system of ordinary differential equations

\[ y' = f(x, y_1, y_2, \ldots, y_n) \quad i=1,2,\ldots,n \]

from \( x = X \) to \( x = XEND \) using a Merson form of the Runge-Kutta method. The system is defined by a subroutine FCN supplied by the user, which evaluates \( f \) in terms of \( x \) and \( y_1, y_2, \ldots, y_n \), and the values of \( y_1, y_2, \ldots, y_n \) must be given at \( x = X \).

The solution is returned via the user-supplied routine OUTPUT at a set of points specified by the user. This solution is obtained by quintic Hermite interpolation on solution values produced by the Runge-Kutta method.

The accuracy of the integration and, indirectly, the interpolation is controlled by the parameters TOL and IRELAB.

For a description of Runge-Kutta methods and their practical implementation see Hall and Watt [1].

4. References


5. Parameters

1: X -- DOUBLE PRECISION Input/Output
   On entry: X must be set to the initial value of the independent variable x. On exit: XEND, unless an error has occurred, when it contains the value of x at the error.

2: XEND -- DOUBLE PRECISION Input
   On entry: the final value of the independent variable. If XEND < X on entry, integration will proceed in a negative direction.

3: M -- INTEGER Input
   On entry: the first dimension of the array RESULT. This will usually be equal to the number of points at which the solution is required. Constraint: M > 0.

4: N -- INTEGER Input
   On entry: the number of differential equations. Constraint: N > 0.
CHAPTER 22. NAG LIBRARY ROUTINES

5: Y(N) -- DOUBLE PRECISION array  Input/Output
On entry: the initial values of the solution \( y_1, y_2, \ldots, y_n \).
On exit: the computed values of the solution at the final value of \( X \).

6: TOL -- DOUBLE PRECISION  Input/Output
On entry: TOL must be set to a positive tolerance for controlling the error in the integration.

D02BBF has been designed so that, for most problems, a reduction in TOL leads to an approximately proportional reduction in the error in the solution at XEND. The relation between changes in TOL and the error at intermediate output points is less clear, but for TOL small enough the error at intermediate output points should also be approximately proportional to TOL. However, the actual relation between TOL and the accuracy achieved cannot be guaranteed. The user is strongly recommended to call D02BBF with more than one value for TOL and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge, the user might compare the results obtained by calling D02BBF with TOL=10.0 and TOL=10.0 if \( p \) correct decimal digits in the solution are required. Constraint: TOL > 0.0. On exit: normally unchanged. However if the range \( X \) to XEND is so short that a small change in TOL is unlikely to make any change in the computed solution then, on return, TOL has its sign changed. This should be treated as a warning that the computed solution is likely to be more accurate than would be produced by using the same value of TOL on a longer range of integration.

7: IRELAB -- INTEGER  Input
On entry: IRELAB determines the type of error control. At each step in the numerical solution an estimate of the local error, EST, is made. For the current step to be accepted the following condition must be satisfied:
  
  IRELAB = 0  
  EST = 10.0 <= TOL * max\{1.0, |y_1|, |y_2|, \ldots, |y_n|\};
  
  IRELAB = 1  
  EST <= TOL;
  
  IRELAB = 2  
  EST <= TOL * max\{(\text{epsilon}), |y_1|, |y_2|, \ldots, |y_n|\}, where \( (\text{epsilon}) \) is machine precision.

If the appropriate condition is not satisfied, the step size is reduced and the solution is recomputed on the current step.

If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then IRELAB should be given the value 1 on entry, whereas if the error requirement is in terms of the number of correct significant digits, then IRELAB should be given the value 2. Where there is no preference in the choice of error test IRELAB = 0 will result in a mixed error test. Constraint: 0 <= IRELAB <= 2.

8: RESULT(M,N) -- DOUBLE PRECISION array
   Output
   On exit: the computed values of the solution at the points given by OUTPUT.

9: FCN -- SUBROUTINE, supplied by the user.
   External Procedure
   FCN must evaluate the functions f (i.e., the derivatives
   \( y' \)) for given values of its arguments \( x,y,\ldots,y \).
   \( i \)
   \( i \)
   \( i \)
   \( i \)

   Its specification is:

   SUBROUTINE FCN (X, Y, F)
   DOUBLE PRECISION X, Y(n), F(n)

   where n is the actual value of N in the call of D02BBF.

1: X -- DOUBLE PRECISION
   Input
   On entry: the value of the argument x.

2: Y(*) -- DOUBLE PRECISION array
   Input
   On entry: the value of the argument \( y_i \), for \( i = 1,2,\ldots,n \).

3: F(*) -- DOUBLE PRECISION array
   Output
   On exit: the value of \( f_i \), for \( i = 1,2,\ldots,n \).

FCN must be declared as EXTERNAL in the (sub)program from which D02BBF is called. Parameters denoted as Input must not be changed by this procedure.

10: OUTPUT -- SUBROUTINE, supplied by the user.
    External Procedure
    OUTPUT allows the user to have access to intermediate values of the computed solution at successive points specified by the
user. These solution values may be returned to the user via the array RESULT if desired (this is a non-standard feature added for use with the Axiom system). OUTPUT is initially called by D02BBF with XSOL = X (the initial value of x). The user must reset XSOL to the next point where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to OUTPUT, the reset point XSOL is beyond XEND, D02BBF will integrate to XEND with no further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL = XEND, then XSOL must be given precisely the value XEND.

Its specification is:

```fortran
SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT)
 DOUBLE PRECISION Y(N),RESULT(M,N),XSOL
 INTEGER M,N,COUNT

1: XSOL -- DOUBLE PRECISION Input/Output
 On entry: the current value of the independent variable x. On exit: the next value of x at which OUTPUT is to be called.

2: Y(N) -- DOUBLE PRECISION array Input
 On entry: the computed solution at the point XSOL.

3: COUNT -- INTEGER Input/Output
 On entry: Zero if OUTPUT has not been called before, or the previous value of COUNT.
 On exit: A new value of COUNT: this can be used to keep track of the number of times OUTPUT has been called.

4: M -- INTEGER Input
 On entry: The first dimension of RESULT.

5: N -- INTEGER Input
 On entry: The dimension of Y.

6: RESULT(M,N) -- DOUBLE PRECISION array Input/Output
 On entry: the previous contents of RESULT.
 On exit: RESULT may be used to return the values of the intermediate solutions to the user.

OUTPUT must be declared as EXTERNAL in the (sub)program from which D02BBF is called. Parameters denoted as Input must not be changed by this procedure.

11: W(N,7) -- DOUBLE PRECISION array Workspace

12: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry TOL <= 0,
or N <= 0,
or IRELAB /= 0, 1 or 2.

IFAIL= 2
With the given value of TOL, no further progress can be made across the integration range from the current point $x = X$, or the dependence of the error on TOL would be lost if further progress across the integration range were attempted (see Section 8 for a discussion of this error exit). The components $Y(1), Y(2), \ldots, Y(n)$ contain the computed values of the solution at the current point $x = X$.

IFAIL= 3
TOL is too small for the routine to take an initial step (see Section 8). X and $Y(1), Y(2), \ldots, Y(n)$ retain their initial values.

IFAIL= 4
$X = XEND$ and $XSOL /= X$ after the initial call to OUTPUT.

IFAIL= 5
A value of XSOL returned by OUTPUT lies behind the previous value of XSOL in the direction of integration.

IFAIL= 6
A serious error has occurred in an internal call to D02PAF(*). Check all subroutine calls and array dimensions. Seek expert help.

IFAIL= 7
A serious error has occurred in an internal call to D02XAF(*). Check all subroutine calls and array dimensions. Seek expert help.

7. Accuracy
The accuracy depends on TOL, on the mathematical properties of the differential system, on the length of the range of integration and on the method. It can be controlled by varying TOL but the approximate proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too large, the underlying theory may break down and the result of varying TOL may be unpredictable. For TOL too small, rounding errors may affect the solution significantly and an error exit with IFAIL = 2 or IFAIL = 3 is possible.

At the intermediate output points the same remarks apply. For large values of TOL it is possible that the errors at some intermediate output points may be much larger than at XEND. In any case, it must not be expected that the error will have the same size at all output points. At any point, it is a combination of the errors arising from the integration of the differential equation and the interpolation. The effect of combining these errors will vary, though in most cases the integration error will dominate.

The user who requires a more reliable estimate of the accuracy achieved than can be obtained by varying TOL, is recommended to call D02BDF(*) where both the solution and a global error estimate are computed.

8. Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the system of differential equations defined by FCN, on the range, the tolerance and the number of calls to OUTPUT. There is also an overhead of the form a+b*n where a and b are machine-dependent computing times.

If the routine fails with IFAIL = 3, then it can be called again with a larger value of TOL (if this has not already been tried). If the accuracy requested is really needed and cannot be obtained with this routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If the routine fails with IFAIL = 2, it is probable that it has been called with a value of TOL which is so small that the solution cannot be obtained on the range X to XEND. This can happen for well-behaved systems and very small values of TOL. The user should, however, consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with IFAIL = 2, unless overflow occurs first. If overflow occurs using D02BBF, D02PAF(*) can be used instead to trap the
increasing solution before overflow occurs. In any case, numerical integration cannot be continued through a singularity, and analytic treatment should be considered;

(b) for 'stiff' equations, where the solution contains rapidly decaying components, the routine will use very small steps in x (internally to D02BBF) to preserve stability. This will usually exhibit itself by making the computing time excessively long, or occasionally by an exit with IFAIL = 2. Merson's method is not efficient in such cases, and the user should try using D02EBF(*) (Backward Differentiation Formula). To determine whether a problem is stiff, D02BDF(*) may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method should work well for low accuracy calculations (three or four figures). For higher accuracy calculations or where FCN is costly to evaluate, Merson's method may not be appropriate and a computationally less expensive method may be D02CBF(*) which uses an Adams method.

Users with problems for which D02BBF is not sufficiently general should consider using D02PAF(*) with D02XAF(*). D02PAF(*) is a more general Merson routine with many facilities including more general error control options and several criteria for interrupting the calculations. D02XAF(*) interpolates on values produced by D02PAF(*)

9. Example

To integrate the following equations (for a projectile)

\[y' = \tan(\phi) \]
\[-0.032\tan(\phi) \quad 0.02v \]
\[v' = \frac{-0.032}{v \cos(\phi)} \]
\[(\phi)' = \frac{-0.032}{\frac{2}{v}} \]

over an interval $X = 0.0$ to $XEND = 8.0$, starting with values $y=0.0$, $v=0.5$ and $(\phi)=(\pi)/5$ and printing the solution at steps of 1.0. We write $y=Y(1)$, $v=Y(2)$ and $(\phi)=Y(3)$, and we set TOL=1.0E-4 and TOL=1.0E-5 in turn so that we may compare the solutions. The value of (π) is obtained by using X01AAF(*)
Note the careful construction of routine OUT to ensure that the value of XEND is printed.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

First-order ODE with initial conditions and user function

--- nagd.ht ---

D02BHF(3NAG) Foundation Library (12/10/92) D02BHF(3NAG)

D02 -- Ordinary Differential Equations
D02BHF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D02BHF integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, until a user-specified function of the solution is zero.

2. Specification

SUBROUTINE D02BHF (X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, 1 G, W, IFAIL)
INTEGER N, IRELAB, IFAIL
DOUBLE PRECISION X, XEND, Y(N), TOL, HMAX, G, W(N,7)
3. Description

The routine advances the solution of a system of ordinary differential equations

\[y'_i = f(x, y_1, y_2, \ldots, y_n), \quad i=1,2,\ldots,n, \]

from \(x = X \) towards \(x = X_{END} \) using a Merson form of the Runge-Kutta method. The system is defined by a subroutine FCN supplied by the user, which evaluates \(f \) in terms of \(x \) and \(y_1, y_2, \ldots, y_n \) (see Section 5), and the values of \(y_1, y_2, \ldots, y_n \) must be given at \(x = X \).

As the integration proceeds, a check is made on the function \(g(x,y) \) specified by the user, to determine an interval where it changes sign. The position of this sign change is then determined accurately by interpolating for the solution and its derivative. It is assumed that \(g(x,y) \) is a continuous function of the variables, so that a solution of \(g(x,y) = 0 \) can be determined by searching for a change in sign in \(g(x,y) \).

The accuracy of the integration and, indirectly, of the determination of the position where \(g(x,y) = 0 \), is controlled by the parameter TOL.

For a description of Runge-Kutta methods and their practical implementation see Hall and Watt [1].

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION Input/Output
 On entry: \(X \) must be set to the initial value of the independent variable \(x \). On exit: the point where \(g(x,y) = 0 \).
 0 unless an error has occurred, when it contains the value of \(x \) at the error. In particular, if \(g(x,y) /= 0 \) anywhere on the range \(X \) to \(X_{END} \), it will contain \(X_{END} \) on exit.

2: \(X_{END} \) -- DOUBLE PRECISION Input
 On entry: the final value of the independent variable \(x \).
If XEND < X on entry, integration proceeds in a negative direction.

3: \(N \) -- INTEGER
 Input
 On entry: the number of differential equations, n.
 Constraint: \(N > 0 \).

4: \(Y(N) \) -- DOUBLE PRECISION array
 Input/Output
 On entry: the initial values of the solution \(y_1, y_2, \ldots, y_n \).
 On exit: the computed values of the solution at the final point \(x = X \).

5: \(TOL \) -- DOUBLE PRECISION
 Input/Output
 On entry: \(TOL \) must be set to a positive tolerance for controlling the error in the integration and in the determination of the position where \(g(x,y) = 0.0 \).
 D02BHF has been designed so that, for most problems, a reduction in \(TOL \) leads to an approximately proportional reduction in the error in the solution obtained in the integration. The relation between changes in \(TOL \) and the error in the determination of the position where \(g(x,y) = 0.0 \) is less clear, but for \(TOL \) small enough the error should be approximately proportional to \(TOL \). However, the actual relation between \(TOL \) and the accuracy cannot be guaranteed. The user is strongly recommended to call D02BHF with more than one value for \(TOL \) and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge the user might compare results obtained by calling D02BHF with \(TOL=10.0 \) and \(TOL=10.0 \) if \(p \) correct decimal digits in the solution are required. Constraint: \(TOL > 0.0 \).
 On exit: normally unchanged. However if the range from \(x = X \) to the position where \(g(x,y) = 0.0 \) (or to the final value of \(x \) if an error occurs) is so short that a small change in \(TOL \) is unlikely to make any change in the computed solution, then \(TOL \) is returned with its sign changed. To check results returned with \(TOL < 0.0 \), D02BHF should be called again with a positive value of \(TOL \) whose magnitude is considerably smaller than that of the previous call.

6: \(IRELAB \) -- INTEGER
 Input
 On entry: \(IRELAB \) determines the type of error control. At each step in the numerical solution an estimate of the local error, \(EST \), is made. For the current step to be accepted the following condition must be satisfied:
 \[
 IRELAB = 0 \quad \text{EST} \leq TOL \times \max\{1.0,|y_1|,|y_2|,\ldots,|y_n|\};
 \]
IRELAB = 1
EST \leq TOL;

IRELAB = 2
EST \leq TOL \times \max\{\epsilon, |y_1|, |y_2|, \ldots, |y_n|\},

where \(\epsilon\) is machine precision.

If the appropriate condition is not satisfied, the step size is reduced and the solution recomputed on the current step.

If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then IRELAB should be given the value 1 on entry, whereas if the error requirement is in terms of the number of correct significant digits, then IRELAB should be given the value 2. Where there is no preference in the choice of error test, IRELAB = 0 will result in a mixed error test. It should be borne in mind that the computed solution will be used in evaluating \(g(x,y)\). Constraint: \(0 \leq IRELAB \leq 2\).

7: HMAX -- DOUBLE PRECISION Input
On entry: if HMAX = 0.0, no special action is taken.

If HMAX /= 0.0, a check is made for a change in sign of \(g(x,y)\) at steps not greater than \(|HMAX|\). This facility should be used if there is any chance of ‘missing’ the change in sign by checking too infrequently. For example, if two changes of sign of \(g(x,y)\) are expected within a distance \(h\), say, of each other, then a suitable value for HMAX might be HMAX = \(h/2\). If only one change of sign in \(g(x,y)\) is expected on the range \(X\) to \(X_{END}\), then the choice HMAX = 0.0 is most appropriate.

8: FCN -- SUBROUTINE, supplied by the user.
External Procedure

FCN must evaluate the functions \(f\) (i.e., the derivatives \(y'\)) for given values of its arguments \(x, y, \ldots, y\).

Its specification is:

SUBROUTINE FCN (X, Y, F)
DOUBLE PRECISION X, Y(n), F(n)

1: X -- DOUBLE PRECISION Input
On entry: the value of the argument \(x\).
CHAPTER 22. NAG LIBRARY ROUTINES

2: \(Y(*) \) -- DOUBLE PRECISION array Input
 On entry: the value of the argument \(y \), for \(i = 1, 2, \ldots, n \).

3: \(F(*) \) -- DOUBLE PRECISION array Output
 On exit: the value of \(f \), for \(i = 1, 2, \ldots, n \).

FCN must be declared as EXTERNAL in the (sub)program from which D02BHF is called. Parameters denoted as Input must not be changed by this procedure.

9: \(G \) -- DOUBLE PRECISION FUNCTION, supplied by the user.
 External Procedure
 \(G \) must evaluate the function \(g(x, y) \) at a specified point.
 Its specification is:

 \[
 \text{DOUBLE PRECISION FUNCTION } G(X, Y)
 \text{DOUBLE PRECISION } X, Y(n)
 \]
 where \(n \) is the actual value of \(N \) in the call of D02BHF.

1: \(X \) -- DOUBLE PRECISION Input
 On entry: the value of the independent variable \(x \).

2: \(Y(*) \) -- DOUBLE PRECISION array Input
 On entry: the value of \(y \), for \(i = 1, 2, \ldots, n \).

\(G \) must be declared as EXTERNAL in the (sub)program from which D02BHF is called. Parameters denoted as Input must not be changed by this procedure.

10: \(W(N,7) \) -- DOUBLE PRECISION array Workspace

11: \(IFAIL \) -- INTEGER Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL = 1 \)
 On entry \(TOL \leq 0.0 \),
or \[N \leq 0, \]

or \[\text{IRELAB} \neq 0, 1 \text{ or } 2. \]

IFAIL= 2

With the given value of TOL, no further progress can be made across the integration range from the current point \(x = X \), or dependence of the error on TOL would be lost if further progress across the integration range were attempted (see Section 8 for a discussion of this error exit). The components \(Y(1), Y(2), \ldots, Y(n) \) contain the computed values of the solution at the current point \(x = X \). No point at which \(g(x,y) \) changes sign has been located up to the point \(x = X \).

IFAIL= 3

TOL is too small for the routine to take an initial step (see Section 8). \(X \) and \(Y(1), Y(2), \ldots, Y(n) \) retain their initial values.

IFAIL= 4

At no point in the range \(X \) to \(XEND \) did the function \(g(x,y) \) change sign. It is assumed that \(g(x,y) = 0.0 \) has no solution.

IFAIL= 5

A serious error has occurred in an internal call to C05AZF(*). Check all subroutine calls and array dimensions. Seek expert help.

IFAIL= 6

A serious error has occurred in an internal call to D02PAF(*). Check all subroutine calls and array dimensions. Seek expert help.

IFAIL= 7

A serious error has occurred in an internal call to D02XAF(*). Check all subroutine calls and array dimensions. Seek expert help.

7. **Accuracy**

The accuracy depends on TOL, on the mathematical properties of the differential system, on the position where \(g(x,y) = 0.0 \) and on the method. It can be controlled by varying TOL but the approximate proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too large, the underlying theory may break down and the result of varying TOL may be unpredictable. For TOL too small, rounding error may affect the solution significantly and an error exit with IFAIL = 2 or IFAIL = 3 is possible.
The accuracy may also be restricted by the properties of \(g(x,y) \). The user should try to code \(G \) without introducing any unnecessary cancellation errors.

8. Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the system of differential equations defined by FCN, the complexity of \(G \), on the range, the position of the solution and the tolerance. There is also an overhead of the form \(a+b*n \) where \(a \) and \(b \) are machine-dependent computing times.

For some problems it is possible that D02BHF will return IFAIL = 4 because of inaccuracy of the computed values \(Y \), leading to inaccuracy in the computed values of \(g(x,y) \) used in the search for the solution of \(g(x,y) = 0.0 \). This difficulty can be overcome by reducing TOL sufficiently, and if necessary, by choosing HMAX sufficiently small. If possible, the user should choose XEND well beyond the expected point where \(g(x,y) = 0.0 \); for example make \(|XEND-X|\) about 50 larger than the expected range. As a simple check, if, with XEND fixed, a change in TOL does not lead to a significant change in \(Y \) at XEND, then inaccuracy is not a likely source of error.

If the routine fails with IFAIL = 3, then it could be called again with a larger value of TOL if this has not already been tried. If the accuracy requested is really needed and cannot be obtained with this routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If the routine fails with IFAIL = 2, it is likely that it has been called with a value of TOL which is so small that a solution cannot be obtained on the range \(X \) to \(XEND \). This can happen for well-behaved systems and very small values of TOL. The user should, however, consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with IFAIL = 2, unless overflow occurs first. If overflow occurs using D02BHF, D02PAF(*) can be used instead to trap the increasing solution, before overflow occurs. In any case, numerical integration cannot be continued through a singularity, and analytical treatment should be considered;

(b) for ’stiff’ equations, where the solution contains rapidly decaying components, the routine will compute in very small
22.3. NAGD.HT

steps in x (internally to D02BHF) to preserve stability. This will usually exhibit itself by making the computing time excessively long, or occasionally by an exit with IFAIL = 2. Merson’s method is not efficient in such cases, and the user should try D02ZEHF(*) which uses a Backward Differentiation Formula method. To determine whether a problem is stiff, D02ZEDF(*) may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method should work well for low accuracy calculations (three or four figures). For high accuracy calculations or where FCN is costly to evaluate, Merson’s method may not be appropriate and a computationally less expensive method may be D02ZCHF(*) which uses an Adams method.

For problems for which D02BHF is not sufficiently general, the user should consider D02PAF(*). D02PAF(*) is a more general Merson routine with many facilities including more general error control options and several criteria for interrupting the calculations. D02PAF(*) can be combined with the rootfinder C05AZF(*) and the interpolation routine D02XAF(*) to solve equations involving y_1, y_2, \ldots, y_n and their derivatives.

D02BHF can also be used to solve an equation involving x, y_1, y_2, \ldots, y_n and the derivatives of y_1, y_2, \ldots, y_n. For example in Section 9, D02BHF is used to find a value of $X > 0.0$ where $Y(1) = 0.0$. It could instead be used to find a turning-point of y_1 by replacing the function $g(x,y)$ in the program by:

```fortran
DOUBLE PRECISION FUNCTION G(X,Y)
DOUBLE PRECISION X,Y(3),F(3)
CALL FCN(X,Y,F)
G = F(1)
RETURN
END
```

This routine is only intended to locate the first zero of $g(x,y)$. If later zeros are required, users are strongly advised to construct their own more general root finding routines as discussed above.

9. Example

To find the value $X > 0.0$ at which $y=0.0$, where $y, v, (\phi)$ are defined by

$$y' = \tan(\phi)$$
-0.032\tan(\phi) \quad 0.02v \\
\frac{v'}{v} = \frac{0.032}{\cos(\phi)} \\
(\phi)' = \frac{2}{v}

and where at \(X = 0.0 \) we are given \(y=0.5, v=0.5 \) and \((\phi)=(\pi)/5 \).

We write \(y=Y(1), v=Y(2) \) and \((\phi)=Y(3) \) and we set \(TOL=1.0E-4 \) and \(TOL=1.0E-5 \) in turn so that we can compare the solutions. We expect the solution \(X \approx 7.3 \) and so we set \(XEND = 10.0 \) to avoid determining the solution of \(y=0.0 \) too near the end of the range of integration. The value of \((\pi) \) is obtained by using \(X01AAF(*) \).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

First-order ODE with variable-order, variable-step
The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library.

1. Purpose

D02CJF integrates a system of first-order ordinary differential equations over a range with suitable initial conditions, using a variable-order, variable-step Adams method until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2. Specification

```fortran
SUBROUTINE D02CJF (X, XEND, M, N, Y, FCN, TOL, RELABS,
  RESULT, OUTPUT, G, W, IFAIL)
  INTEGER M, N, IFAIL
  DOUBLE PRECISION X, XEND, Y(N), TOL, G, W(28+21*N), RESULT(M,N)
  CHARACTER*1 RELABS
  EXTERNAL FCN, OUTPUT, G
```

3. Description

The routine advances the solution of a system of ordinary differential equations

\[
y' = f(x, y_1, y_2, ..., y_n), \quad i = 1, 2, ..., n,
\]

from \(x = X \) to \(x = XEND \) using a variable-order, variable-step Adams method. The system is defined by a subroutine FCN supplied by the user, which evaluates \(f \) in terms of \(x \) and \(y_1, y_2, ..., y_n \).

The initial values of \(y_1, y_2, ..., y_n \) must be given at \(x = X \).

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if desired: this solution is obtained by C interpolation on solution values produced by the method. As the integration proceeds a check can be made on the user-specified function \(g(x, y) \) to determine an interval where it changes sign. The position of this sign change is then determined accurately by C interpolation to the solution. It is assumed that \(g(x, y) \) is a continuous function of the variables, so that a solution of \(g(x, y) = 0.0 \) can be determined by searching for a
change in sign in \(g(x,y) \). The accuracy of the integration, the interpolation and, indirectly, of the determination of the position where \(g(x,y)=0.0 \), is controlled by the parameters TOL and RELABS.

For a description of Adams methods and their practical implementation see Hall and Watt [1].

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION
 Input/Output
 On entry: the initial value of the independent variable \(x \).
 Constraint: \(X \neq XEND \).
 On exit: if \(g \) is supplied by the user, it contains the point where \(g(x,y)=0.0 \), unless \(g(x,y)/=0.0 \) anywhere on the range \(X \) to \(XEND \), in which case, \(X \) will contain \(XEND \). If \(g \) is not supplied by the user it contains \(XEND \), unless an error has occurred, when it contains the value of \(x \) at the error.

2: \(XEND \) -- DOUBLE PRECISION
 Input
 On entry: the final value of the independent variable. If \(XEND < X \), integration proceeds in the negative direction.
 Constraint: \(XEND \neq X \).

3: \(M \) -- INTEGER
 Input
 On entry: the first dimension of the array RESULT. This will usually be equal to the number of points at which the solution is required.
 Constraint: \(M > 0 \).

4: \(N \) -- INTEGER
 Input
 On entry: the number of differential equations.
 Constraint: \(N \geq 1 \).

5: \(Y(N) \) -- DOUBLE PRECISION array
 Input/Output
 On entry: the initial values of the solution \(y_1, y_2, \ldots, y_n \) at \(x = X \).
 On exit: the computed values of the solution at the final point \(x = X \).

6: \(FCN \) -- SUBROUTINE, supplied by the user.
 External Procedure
 \(FCN \) must evaluate the functions \(f \) (i.e., the derivatives \(y' \)) for given values of their arguments \(x, y, y_1, \ldots, y_n \).
It's specification is:

```fortran
SUBROUTINE FCN (X, Y, F)
DOUBLE PRECISION X, Y(n), F(n)
```

where n is the actual value of N in the call of D02CJF.

1: X -- DOUBLE PRECISION
 On entry: the value of the independent variable x.

2: Y(*) -- DOUBLE PRECISION array
 On entry: the value of the variable y, for
 \[i = 1, 2, ..., n. \]

3: F(*) -- DOUBLE PRECISION array
 On exit: the value of f, for \[i = 1, 2, ..., n. \]

FCN must be declared as EXTERNAL in the (sub)program
from which D02CJF is called. Parameters denoted as
Input must not be changed by this procedure.

7: TOL -- DOUBLE PRECISION
 On entry: a positive tolerance for controlling the error in
 the integration. Hence TOL affects the determination of the
 position where \(g(x,y) = 0.0 \), if \(g \) is supplied.

D02CJF has been designed so that, for most problems, a
reduction in TOL leads to an approximately proportional
reduction in the error in the solution. However, the actual
relation between TOL and the accuracy achieved cannot be
guaranteed. The user is strongly recommended to call D02CJF
with more than one value for TOL and to compare the results
obtained to estimate their accuracy. In the absence of any
prior knowledge, the user might compare the results obtained
by calling D02CJF with \(TOL = 10.0 \) and \(TOL = 10.0 \) where \(p \)
correct decimal digits are required in the solution.
Constraint: \(TOL > 0.0 \).

8: RELABS -- CHARACTER*1
 On entry: the type of error control. At each step in the
 numerical solution an estimate of the local error, \(EST \), is
 made. For the current step to be accepted the following
 condition must be satisfied:

 \[
 \left| \frac{e}{(\tau)|y| + (\tau)} \right| ^ 2 \leq 1.0
 \]\n
 Constraint: \(RELABS \) must be set to 'E' or 'R'.

Constraint: \(RELABS \) must be set to 'E' or 'R'.

where \((\tau)\) and \((\tau)\) are defined by
\[
\begin{align*}
\text{RELABS} & (\tau) (\tau) \\
\text{r} & \text{a} \\
'M' & \text{TOL TOL} \\
'A' & 0.0 \text{TOL} \\
'R' & \text{TOL (epsilon)} \\
'D' & \text{TOL TOL}
\end{align*}
\]
where \((\text{epsilon})\) is a small machine-dependent number and \(e_i\) is an estimate of the local error at \(\gamma_i\), computed internally. If the appropriate condition is not satisfied, the step size is reduced and the solution is recomputed on the current step. If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then \text{RELABS} should be set to 'A' on entry, whereas if the error requirement is in terms of the number of correct significant digits, then \text{RELABS} should be set to 'R'. If the user prefers a mixed error test, then \text{RELABS} should be set to 'M', otherwise if the user has no preference, \text{RELABS} should be set to the default 'D'. Note that in this case 'D' is taken to be 'M'. Constraint: \text{RELABS} = 'M', 'A', 'R', 'D'.

9: \text{RESULT(M,N)} -- DOUBLE PRECISION array
\text{Output}
\text{On exit: the computed values of the solution at the points given by OUTPUT.}

10: \text{OUTPUT -- SUBROUTINE, supplied by the user.}
\text{External Procedure}
\text{OUTPUT allows the user to have access to intermediate values of the computed solution at successive points specified by the user. These solution values may be returned to the user via the array \text{RESULT} if desired (this is a non-standard feature added for use with the Axiom system). \text{OUTPUT} is initially called by \text{D02CJF} with \text{XSOL} = X (the initial value of \(x\)). The user must reset \text{XSOL} to the next point where \text{OUTPUT} is to be called, and so on at each call to \text{OUTPUT}. If, after a call to \text{OUTPUT}, the reset point \text{XSOL} is beyond \text{XEND}, \text{D02CJF} will integrate to \text{XEND} with no further calls to \text{OUTPUT}; if a call to \text{OUTPUT} is required at the point \text{XSOL} = \text{XEND}, then \text{XSOL} must be given precisely the value \text{XEND}.}
Its specification is:

```fortran
SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT)
DOUBLE PRECISION Y(N),RESULT(M,N),XSOL
INTEGER M,N,COUNT

1: XSOL -- DOUBLE PRECISION Input/Output
   On entry: the current value of the independent
   variable x. On exit: the next value of x at which
   OUTPUT is to be called.

2: Y(N) -- DOUBLE PRECISION array Input
   On entry: the computed solution at the point XSOL.

3: COUNT -- INTEGER Input/Output
   On entry: Zero if OUTPUT has not been called before, or
   the previous value of COUNT.
   On exit: A new value of COUNT: this can be used to keep
   track of the number of times OUTPUT has been called.

4: M -- INTEGER Input
   On entry: The first dimension of RESULT.

5: N -- INTEGER Input
   On entry: The dimension of Y.

6: RESULT(M,N) -- DOUBLE PRECISION array Input/Output
   On entry: the previous contents of RESULT.
   On exit: RESULT may be used to return the values of the
   intermediate solutions to the user.

OUTPUT must be declared as EXTERNAL in the (sub)program
from which D02CJF is called. Parameters denoted as
Input must not be changed by this procedure.

11: G -- DOUBLE PRECISION FUNCTION, supplied by the user.
    External Procedure
    G must evaluate the function g(x,y) for specified values x,y
    . It specifies the function g for which the first position x
    where g(x,y)=0 is to be found.

    If the user does not require the root finding option, the
    actual argument G must be the dummy routine D02CJW. (D02CJW
    is included in the NAG Foundation Library and so need not be
    supplied by the user).

    Its specification is:

    DOUBLE PRECISION FUNCTION G (X, Y)
    DOUBLE PRECISION X, Y(n)```
where \( n \) is the actual value of \( N \) in the call of D02CJF.

1: \( X \) -- DOUBLE PRECISION  
   On entry: the value of the independent variable \( x \).

2: \( Y(*) \) -- DOUBLE PRECISION array  
   On entry: the value of the variable \( y \), for \( i = 1,2,\ldots,n \).

G must be declared as EXTERNAL in the (sub)program from which D02CJF is called. Parameters denoted as Input must not be changed by this procedure.

12: \( W(28+21*N) \) -- DOUBLE PRECISION array  
   Workspace

13: \( IFAIL \) -- INTEGER  
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry TOL <= 0.0,
or \( N <= 0 \),
or RELABS /= 'M', 'A', 'R' or 'D'.
or \( X = XEND \).

IFAIL = 2
With the given value of TOL, no further progress can be made across the integration range from the current point \( x = X \). (See Section 8 for a discussion of this error exit.) The components \( Y(1),Y(2),\ldots,Y(N) \) contain the computed values of the solution at the current point \( x = X \). If the user has supplied g, then no point at which \( g(x,y) \) changes sign has been located up to the point \( x = X \).

IFAIL = 3
TOL is too small for D02CJF to take an initial step. \( X \) and \( Y \)
(1), Y(2), ..., Y(N) retain their initial values.

**IFAIL= 4**

X SOL has not been reset or XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the OUTPUT option was selected.

**IFAIL= 5**

A value of XSOL returned by OUTPUT has not been reset or lies behind the last value of XSOL in the direction of integration, if the OUTPUT option was selected.

**IFAIL= 6**

At no point in the range X to XEND did the function g(x,y) change sign, if g was supplied. It is assumed that g(x,y)=0 has no solution.

**IFAIL= 7**

A serious error has occurred in an internal call. Check all subroutine calls and array sizes. Seek expert help.

7. Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy. Users are advised to choose RELABS = 'M' unless they have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the properties of g(x,y). The user should try to code G without introducing any unnecessary cancellation errors.

8. Further Comments

If more than one root is required then D02QFF(*) should be used.

If the routine fails with IFAIL = 3, then it can be called again with a larger value of TOL if this has not already been tried. If the accuracy requested is really needed and cannot be obtained with this routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If the routine fails with IFAIL = 2, it is probable that it has been called with a value of TOL which is so small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved systems and very small values of TOL. The user should, however, consider whether there is a more fundamental difficulty. For example:
(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with IFAIL = 2, unless overflow occurs first. Numerical integration cannot be continued through a singularity, and analytic treatment should be considered;

(b) for 'stiff' equations where the solution contains rapidly decaying components, the routine will use very small steps in x (internally to D02CJF) to preserve stability. This will exhibit itself by making the computing time excessively long, or occasionally by an exit with IFAIL = 2. Adams methods are not efficient in such cases, and the user should try D02EJF.

9. Example

We illustrate the solution of four different problems. In each case the differential system (for a projectile) is

\[ y' = \tan(\phi) \]
\[ v' = \frac{-0.032\tan(\phi) + 0.02v}{\cos(\phi)} \]
\[ (\phi)' = \frac{-0.032}{v^2} \]

over an interval \( X = 0.0 \) to \( XEND = 10.0 \) starting with values \( y = 0.5, v = 0.5 \) and \( (\phi) = \pi/5 \). We solve each of the following problems with local error tolerances 1.0E-4 and 1.0E-5.

(i) To integrate to \( x = 10.0 \) producing output at intervals of 2.0 until a point is encountered where \( y = 0.0 \).

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Stiff First-order ODE with variable order and step

---

D02EJF(3NAG) D02EJF D02EJF(3NAG)

D02 -- Ordinary Differential Equations
D02EJF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library.

1. Purpose

D02EJF integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2. Specification

```
SUBROUTINE D02EJF (X, XEND, M, N, Y, FCN, PEDERV, TOL, 1
 RELABS, OUTPUT, G, IW, RESULT, IFAIL)
INTEGER M, N, IW, IFAIL
DOUBLE PRECISION X, XEND, Y(N), TOL, G(IW), RESULT(M,N)
CHARACTER*1 RELABS
```
3. Description

The routine advances the solution of a system of ordinary differential equations

\[ y' = f(x, y_1, y_2, ..., y_n), \quad i=1,2,...,n, \]

from \( x = X \) to \( x = X_{END} \) using a variable-order, variable-step method implementing the BDF. The system is defined by a subroutine FCN supplied by the user, which evaluates \( f \) in terms of \( x \) and \( y_1, y_2, ..., y_n \) (see Section 5). The initial values of \( y_1, y_2, ..., y_n \) must be given at \( x = X \).

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if desired: this solution is obtained by C interpolation on solution values produced by the method. As the integration proceeds a check can be made on the user-specified function \( g(x,y) \) to determine an interval where it changes sign. The position of this sign change is then determined accurately by C interpolation to the solution. It is assumed that \( g(x,y) \) is a continuous function of the variables, so that a solution of \( g(x,y) = 0.0 \) can be determined by searching for a change in sign in \( g(x,y) \). The accuracy of the integration, the interpolation and, indirectly, of the determination of the position where \( g(x,y) = 0.0 \), is controlled by the parameters TOL and RELABS. The Jacobian of the system \( y' = f(x,y) \) may be supplied in routine PEDERV, if it is available.

For a description of BDF and their practical implementation see Hall and Watt [1].

4. References


5. Parameters

1:  \( \text{X -- DOUBLE PRECISION} \quad \text{Input/Output} \)

   On entry: the initial value of the independent variable \( x \).
   Constraint: \( X \neq X_{END} \) On exit: if \( G \) is supplied by the user, \( X \) contains the point where \( g(x,y) = 0.0 \), unless \( g(x,y) \neq 0 \).
0 anywhere on the range \( X \) to \( X_{END} \), in which case, \( X \) will contain \( X_{END} \). If \( G \) is not supplied \( X \) contains \( X_{END} \), unless an error has occurred, when it contains the value of \( x \) at the error.

2: \( X_{END} \) -- DOUBLE PRECISION
   Input
   On entry: the final value of the independent variable. If \( X_{END} < X \), integration proceeds in the negative direction.
   Constraint: \( X_{END} \neq X \).

3: \( M \) -- INTEGER
   Input
   On entry: the first dimension of the array \( RESULT \). This will usually be equal to the number of points at which the solution is required.
   Constraint: \( M > 0 \).

4: \( N \) -- INTEGER
   Input
   On entry: the number of differential equations, \( n \).
   Constraint: \( N \geq 1 \).

5: \( Y(N) \) -- DOUBLE PRECISION array
   Input/Output
   On entry: the initial values of the solution \( y_{1}, y_{2}, \ldots, y_{n} \) at \( x = X \). On exit: the computed values of the solution at the final point \( x = X \).

6: FCN -- SUBROUTINE, supplied by the user.
   External Procedure
   FCN must evaluate the functions \( f \) (i.e., the derivatives \( y' \)) for given values of their arguments \( x, y_{1}, y_{2}, \ldots, y_{n} \).

   Its specification is:

   ```
 SUBROUTINE FCN (X, Y, F)
 DOUBLE PRECISION X, Y(n), F(n)
 where n is the actual value of N in the call of D02EJF.
   ```

   1: \( X \) -- DOUBLE PRECISION
      Input
      On entry: the value of the independent variable \( x \).

   2: \( Y(*) \) -- DOUBLE PRECISION array
      Input
      On entry: the value of the variable \( y_{i} \), for \( i = 1, 2, \ldots, n \).

   3: \( F(*) \) -- DOUBLE PRECISION array
      Output
      On exit: the value of \( f_{i} \), for \( i = 1, 2, \ldots, n \).
FCN must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters denoted as Input must not be changed by this procedure.

7: PEDERV -- SUBROUTINE, supplied by the user.

External Procedure

PEDERV must evaluate the Jacobian of the system (that is, the partial derivatives) for given values of the variables \(x, y_1, y_2, \ldots, y_n\).

Its specification is:

\[
\text{SUBROUTINE PEDERV (X, Y, PW)}
\]
\[
\text{DOUBLE PRECISION X, Y(n), PW(n,n)}
\]

where \(n\) is the actual value of \(N\) in the call of D02EJF.

1: \(X\) -- DOUBLE PRECISION
    On entry: the value of the independent variable \(x\).

2: \(Y(*)\) -- DOUBLE PRECISION array
    On entry: the value of the variable \(y_i\), for \(i = 1, 2, \ldots, n\).

3: \(PW(n,*)\) -- DOUBLE PRECISION array
    On exit: the value of \(\frac{df_i}{dy_j}\), for \(i,j = 1, 2, \ldots, n\).

If the user does not wish to supply the Jacobian, the actual argument PEDERV must be the dummy routine D02EJY. (D02EJY is included in the NAG Foundation Library and so need not be supplied by the user. The name may be implementation dependent: see the User’s Note for your implementation for details).

PEDERV must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters denoted as Input must not be changed by this procedure.

8: TOL -- DOUBLE PRECISION
    On entry: TOL must be set to a positive tolerance for controlling the error in the integration. Hence TOL affects the determination of the position where \(g(x,y) = 0.0\), if \(G\) is supplied.
D02EJF has been designed so that, for most problems, a reduction in TOL leads to an approximately proportional reduction in the error in the solution. However, the actual relation between TOL and the accuracy achieved cannot be guaranteed. The user is strongly recommended to call D02EJF with more than one value for TOL and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge, the user might compare the results obtained by calling D02EJF with TOL=10 and TOL=10^{-p} if p correct decimal digits are required in the solution. Constraint: TOL > 0.0. On exit: normally unchanged. However if the range X to XEND is so short that a small change in TOL is unlikely to make any change in the computed solution, then, on return, TOL has its sign changed.

9: RELABS -- CHARACTER*1 Input
On entry: the type of error control. At each step in the numerical solution an estimate of the local error, EST, is made. For the current step to be accepted the following condition must be satisfied:

\[
\frac{1}{n} \sum_{i=1}^{n} \left( e_i \left( |y_i| + (\tau) \right) \right) \leq 1.0
\]

where \( \tau \) and \( \alpha \) are defined by

\[
\begin{align*}
\text{RELABS} & \quad (\tau) & \quad (\alpha) \\
'M' & \quad TOL & \quad TOL \\
'A' & \quad 0.0 & \quad TOL \\
'R' & \quad TOL & \quad (\epsilon) \\
'D' & \quad TOL & \quad (\epsilon)
\end{align*}
\]

where \( \epsilon \) is a small machine-dependent number and \( e_i \) is an estimate of the local error at \( y_i \), computed internally. If the appropriate condition is not satisfied, the step size is reduced and the solution is recomputed on the current step. If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then RELABS should be set to 'A' on entry, whereas if the error requirement is in terms of the number
of correct significant digits, then RELABS should be set to 'R'. If the user prefers a mixed error test, then RELABS should be set to 'M', otherwise if the user has no preference, RELABS should be set to the default 'D'. Note that in this case 'D' is taken to be 'R'. Constraint: RELABS = 'A', 'M', 'R' or 'D'.

10: OUTPUT -- SUBROUTINE, supplied by the user.

External Procedure

OUTPUT allows the user to have access to intermediate values of the computed solution at successive points specified by the user. These solution values may be returned to the user via the array RESULT if desired (this is a non-standard feature added for use with the Axiom system). OUTPUT is initially called by D02EJF with XSOL = X (the initial value of x). The user must reset XSOL to the next point where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to OUTPUT, the reset point XSOL is beyond XEND, D02EJF will integrate to XEND with no further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL = XEND, then XSOL must be given precisely the value XEND.

Its specification is:

```fortran
SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT)
DOUBLE PRECISION Y(N),RESULT(M,N),XSOL
INTEGER M,N,COUNT

1: XSOL -- DOUBLE PRECISION Input/Output
On entry: the current value of the independent variable x. On exit: the next value of x at which OUTPUT is to be called.

2: Y(N) -- DOUBLE PRECISION array Input
On entry: the computed solution at the point XSOL.

3: COUNT -- INTEGER Input/Output
On entry: Zero if OUTPUT has not been called before, or the previous value of COUNT.
On exit: A new value of COUNT: this can be used to keep track of the number of times OUTPUT has been called.

4: M -- INTEGER Input
On entry: The first dimension of RESULT.

5: N -- INTEGER Input
On entry: The dimension of Y.

6: RESULT(M,N) -- DOUBLE PRECISION array Input/Output
On entry: the previous contents of RESULT.
```
On exit: RESULT may be used to return the values of the intermediate solutions to the user.

OUTPUT must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters denoted as Input must not be changed by this procedure.

11: G -- DOUBLE PRECISION FUNCTION, supplied by the user.

External Procedure

G must evaluate the function g(x,y) for specified values x,y. It specifies the function g for which the first position x where g(x,y) = 0 is to be found.

Its specification is:

DOUBLE PRECISION FUNCTION G (X, Y)
DOUBLE PRECISION X, Y(n)
where n is the actual value of N in the call of D02EJF.

1: X -- DOUBLE PRECISION Input
On entry: the value of the independent variable x.

2: Y(*) -- DOUBLE PRECISION array Input
On entry: the value of the variable y, for i = 1,2,...,n.

If the user does not require the root finding option, the actual argument G must be the dummy routine D02EJW. (D02EJW is included in the NAG Foundation Library and so need not be supplied by the user).

G must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters denoted as Input must not be changed by this procedure.

12: W(IW) -- DOUBLE PRECISION array Workspace

13: IW -- INTEGER Input
On entry: the dimension of the array W as declared in the (sub)program from which D02EJF is called.
Constraint: IW>=(12+N)*N+50.

14: RESULT(M,N) -- DOUBLE PRECISION array Output
On exit: the computed values of the solution at the points given by OUTPUT.

15: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry TOL <= 0.0,
or X = XEND,
or N <= 0,
or RELABS /= 'M', 'A', 'R', 'D'.
or IW<(12+N)*N+50.

IFAIL= 2
With the given value of TOL, no further progress can be made across the integration range from the current point x = X. (See Section 5 for a discussion of this error test.) The components Y(1),Y(2),...,Y(n) contain the computed values of the solution at the current point x = X. If the user has supplied G, then no point at which g(x,y) changes sign has been located up to the point x = X.

IFAIL= 3
TOL is too small for D02EJF to take an initial step. X and Y(1),Y(2),...,Y(n) retain their initial values.

IFAIL= 4
XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the OUTPUT option was selected.

IFAIL= 5
A value of XSOL returned by OUTPUT lies behind the last value of XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL= 6
At no point in the range X to XEND did the function g(x,y) change sign, if G was supplied. It is assumed that g(x,y) = 0 has no solution.
IFAIL= 7
A serious error has occurred in an internal call to
C05AZF(*). Check all subroutine calls and array dimensions.
Seek expert help.

IFAIL= 8
A serious error has occurred in an internal call to
D02XKF(*). Check all subroutine calls and array dimensions.
Seek expert help.

IFAIL= 9
A serious error has occurred in an internal call to
D02NMF(*). Check all subroutine calls and array dimensions.
Seek expert help.

7. Accuracy

The accuracy of the computation of the solution vector Y may be
controlled by varying the local error tolerance TOL. In general,
a decrease in local error tolerance should lead to an increase in
accuracy. Users are advised to choose RELABS = 'R' unless they
have a good reason for a different choice. It is particularly
appropriate if the solution decays.

If the problem is a root-finding one, then the accuracy of the
\[ \frac{dg}{dx} \quad \frac{dg}{dy} \quad \frac{ddx}{dy} \]
root determined will depend strongly on --- and ----, for
\[ i = 1, 2, \ldots, n. \]
Large values for these quantities may imply large
errors in the root.

8. Further Comments

If more than one root is required, then to determine the second
and later roots D02EJF may be called again starting a short
distance past the previously determined roots. Alternatively the
user may construct his own root finding code using D02QDF(*) (or
the routines of the subchapter D02M-D02N), D02XKF(*) and
C05AZF(*).

If it is easy to code, the user should supply the routine PEDERV.
However, it is important to be aware that if PEDERV is coded
incorrectly, a very inefficient integration may result and
possibly even a failure to complete the integration (IFAIL = 2).

9. Example

We illustrate the solution of five different problems. In each
case the differential system is the well-known stiff Robertson
problem.

\[
\begin{align*}
  a' &= -0.04a - 10bc \\
  b' &= 0.04a - 10bc - 3 \times 10^7 b \\
  c' &= 3 \times 10^7 b
\end{align*}
\]

with initial conditions \( a=1.0, b=c=0.0 \) at \( x=0.0 \). We solve each of the following problems with local error tolerances \( 1.0 \times 10^{-3} \) and \( 1.0 \times 10^{-4} \).

(i) To integrate to \( x=10.0 \) producing output at intervals of 2.0 until a point is encountered where \( a=0.9 \). The Jacobian is calculated numerically.

(ii) As (i) but with the Jacobian calculated analytically.

(iii) As (i) but with no intermediate output.

(iv) As (i) but with no termination on a root-finding condition.

(v) Integrating the equations as in (i) but with no intermediate output and no root-finding termination condition.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
D02 -- Ordinary Differential Equations

D02GAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D02GAF solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations, using a deferred correction technique and a Newton iteration.

2. Specification

```fortran
SUBROUTINE D02GAF (U, V, N, A, B, TOL, FCN, MNP, X, Y, NP,
 W, LW, IW, LIW, IFAIL)
INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
DOUBLE PRECISION U(N,2), V(N,2), A, B, TOL, X(MNP), Y
 (N,MNP), W(LW)
EXTERNAL FCN
```

3. Description

D02GAF solves a two-point boundary-value problem for a system of n differential equations in the interval \([a,b]\). The system is written in the form

\[
y'_i = f(x, y_{1\ i}, y_{2\ i}, \ldots, y_{n\ i}), \quad i=1,2,\ldots,n
\]

and the derivatives are evaluated by a subroutine FCN supplied by the user. Initially, n boundary values of the variables \(y_i\) must be specified (assigned), some at a and some at b. The user also supplies estimates of the remaining n boundary values and all the boundary values are used in constructing an initial approximation to the solution. This approximate solution is corrected by a finite-difference technique with deferred correction allied with a Newton iteration to solve the finite-difference equations. The technique used is described fully in Pereyra [1]. The Newton iteration requires a Jacobian matrix \( \frac{df}{dy} \) and this is calculated

\[
\frac{df}{dy} = \frac{df}{dy_i} \quad \text{and} \quad \text{this is calculated}
\]

\[
\frac{df}{dy_j}
\]
CHAPTER 22. NAG LIBRARY Routines

by numerical differentiation using an algorithm described in Curtis et al [2].

The user supplies an absolute error tolerance and may also supply an initial mesh for the construction of the finite-difference equations (alternatively a default mesh is used). The algorithm constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is everywhere less than the user's tolerance and so that the error is approximately equidistributed on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If on the other hand the solution is required at several specific points then the user should use the interpolation routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

4. References


5. Parameters

1: U(N,2) -- DOUBLE PRECISION array Input
On entry: U(i,1) must be set to the known (assigned) or estimated values of y at a and U(i,2) must be set to the
i
known or estimated values of y at b, for i=1,2,...,n.

2: V(N,2) -- DOUBLE PRECISION array Input
On entry: V(i,j) must be set to 0.0 if U(i,j) is a known (assigned) value and to 1.0 if U(i,j) is an estimated value, i=1,2,...,n; j=1,2. Constraint: precisely N of the V(i,j) must be set to 0.0, i.e., precisely N of the U(i,j) must be known values, and these must not be all at a or all at b.

3: N -- INTEGER Input
4: A -- DOUBLE PRECISION (Input)
   On entry: the left-hand boundary point, a.

5: B -- DOUBLE PRECISION (Input)
   On entry: the right-hand boundary point, b. Constraint: B > A.

6: TOL -- DOUBLE PRECISION (Input)
   On entry: a positive absolute error tolerance. If
     \[ a=x_1<x_2<\ldots<x_{NP}=b \]
   is the final mesh, \( z(x_i) \) is the jth component of the
   approximate solution at \( x_i \), and \( y(x_i) \) is the jth component
   of the true solution of equation (1) (see Section 3) and the
   boundary conditions, then, except in extreme cases, it is
   expected that
   \[ |z(x_i)-y(x_i)|\leq TOL, \quad i=1,2,\ldots, NP; j=1,2,\ldots,n \]  \hspace{1cm} (2)
   Constraint: \( TOL > 0.0 \).

7: FCN -- SUBROUTINE, supplied by the user. (External Procedure)
   FCN must evaluate the functions \( f \) (i.e., the derivatives \( y' \)) at the general point \( x \).
   Its specification is:

   \[ \text{SUBROUTINE FCN (X, Y, F)} \]
   \[ \quad \text{DOUBLE PRECISION X, Y(n), F(n)} \]
   where \( n \) is the actual value of \( N \) in the call of D02GAF.

   1: X -- DOUBLE PRECISION (Input)
      On entry: the value of the argument \( x \).

   2: Y(*) -- DOUBLE PRECISION array (Input)
      On entry: the value of the argument \( y_i \), for \( i=1,2,\ldots,n \).

   3: F(*) -- DOUBLE PRECISION array (Output)
      On exit: the values of \( f_i \), for \( i=1,2,\ldots,n \).

   FCN must be declared as EXTERNAL in the (sub)program
   from which D02GAF is called. Parameters denoted as
   Input must not be changed by this procedure.
8: \texttt{MNP -- INTEGER} \hspace{1cm} \textit{Input}\newline
On entry: the maximum permitted number of mesh points.\newline
Constraint: \quad \texttt{MNP} \geq 32.\newline

9: \texttt{X(MNP) -- DOUBLE PRECISION array} \hspace{1cm} \textit{Input/Output}\newline
On entry: if \texttt{NP} \geq 4 (see \texttt{NP} below), the first \texttt{NP} elements\newline
must define an initial mesh. Otherwise the elements of \texttt{X} need not be set. Constraint:\newline\quad \texttt{A=X(1)<X(2)<...<X(NP)=B} \text{ for } \texttt{NP}=4 \hspace{1cm} (3)\newline
On exit: \texttt{X(1),X(2),...,X(NP)} define the final mesh (with \newline
the returned value of \texttt{NP}) satisfying the relation \text{(3)}.\newline

10: \texttt{Y(N,MNP) -- DOUBLE PRECISION array} \hspace{1cm} \textit{Output}\newline
On exit: the approximate solution \( z(x) \) satisfying (2), on \newline
\( j \) \hspace{1cm} \( i \)\newline
the final mesh, that is \newline\quad \texttt{Y(j,i)=z(X(i))}, \text{ } i=1,2,...,\text{NP};j=1,2,...,n, \newline\quad \texttt{j}\hspace{1cm} \texttt{i}\newline
where \texttt{NP} is the number of points in the final mesh.\newline
The remaining columns of \texttt{Y} are not used.\newline

11: \texttt{NP -- INTEGER} \hspace{1cm} \textit{Input/Output}\newline
On entry: determines whether a default or user-supplied\newline
mesh is used. If \texttt{NP} = 0, a default value of 4 for \texttt{NP} and a\newline
corresponding equispaced mesh \texttt{X(1),X(2),...,X(NP)} are used.\newline
If \texttt{NP} \geq 4, then the user must define an initial mesh using\newline
the array \texttt{X} as described. Constraint: \texttt{NP} = 0 or 4 \leq \texttt{NP} \leq \texttt{MNP}. On exit: the number of points in the final (returned)\newline
mesh.\newline

12: \texttt{W(LW) -- DOUBLE PRECISION array} \hspace{1cm} \textit{Workspace}\newline

13: \texttt{LW -- INTEGER} \hspace{1cm} \textit{Input}\newline
On entry: the length of the array \texttt{W} as declared in the \newline\quad \texttt{2}\hspace{1cm} \texttt{2}\newline
calling (sub)program. Constraint: \texttt{LW} \geq \texttt{MNP*(3N +6N+2)+4N} \hspace{1cm} +4N \newline

14: \texttt{IW(LIW) -- INTEGER array} \hspace{1cm} \textit{Workspace}\newline

15: \texttt{LIW -- INTEGER} \hspace{1cm} \textit{Input}\newline
On entry: the length of the array \texttt{IW} as declared in the \newline\quad \texttt{2}\hspace{1cm} \texttt{2}\newline
calling (sub)program. Constraint: \texttt{LIW} \geq \texttt{MNP*(2N+1)+N} \hspace{1cm} +4N+2.\newline

16: \texttt{IFAIL -- INTEGER} \hspace{1cm} \textit{Input/Output}\newline
For this routine, the normal use of \texttt{IFAIL} is extended to\newline
control the printing of error and warning messages as well as specifying hard or soft failure (see the Essential\newline
Introduction).
Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal digits c, b and a must have a value of 0 or 1.
a=0 specifies hard failure, otherwise soft failure;
b=0 suppresses error messages, otherwise error messages will be printed (see Section 6);
c=0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
One or more of the parameters N, TOL, NP, MNP, LW or LIW has been incorrectly set, or B <= A, or the condition (3) on X is not satisfied, or the number of known boundary values (specified by V) is not N.

IFAIL= 2
The Newton iteration has failed to converge. This could be due to there being too few points in the initial mesh or to the initial approximate solution being too inaccurate. If this latter reason is suspected the user should use subroutine D02RAF instead. If the warning 'Jacobian matrix is singular' is printed this could be due to specifying zero estimated boundary values and these should be varied. This warning could also be printed in the unlikely event of the Jacobian matrix being calculated inaccurately. If the user cannot make changes to prevent the warning then subroutine D02RAF should be used.

IFAIL= 3
The Newton iteration has reached round-off level. It could be, however, that the answer returned is satisfactory. This error might occur if too much accuracy is requested.

IFAIL= 4
A finer mesh is required for the accuracy requested; that is
MNP is not large enough.

IFAIL= 5
A serious error has occurred in a call to D02GAF. Check all array subscripts and subroutine parameter lists in calls to D02GAF. Seek expert help.

7. Accuracy
The solution returned by the routine will be accurate to the user's tolerance as defined by the relation (2) except in extreme circumstances. If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

8. Further Comments
The time taken by the routine depends on the difficulty of the problem, the number of mesh points used (and the number of different meshes used), the number of Newton iterations and the number of deferred corrections.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring information about the course of the computation. The user may select the channel numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) – see Section 9 for an example. Otherwise the default channel numbers will be used, as specified in the implementation document.

A common cause of convergence problems in the Newton iteration is the user specifying too few points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is unable to do so until the solution on the initial mesh has been calculated in the Newton iteration.

If the user specifies zero known and estimated boundary values, the routine constructs a zero initial approximation and in many cases the Jacobian is singular when evaluated for this approximation, leading to the breakdown of the Newton iteration.

The user may be unable to provide a sufficiently good choice of initial mesh and estimated boundary values, and hence the Newton iteration may never converge. In this case the continuation facility provided in D02RAF is recommended.

In the case where the user wishes to solve a sequence of similar problems, the final mesh from solving one case is strongly recommended as the initial mesh for the next.
9. Example

We solve the differential equation

\[ y''' = -yy'' - (\beta)(1 - y') \]

with boundary conditions

\[ y(0) = y'(0) = 0, \]
\[ y'(10) = 1 \]

for \((\beta) = 0.0\) and \((\beta) = 0.2\) to an accuracy specified by \(TOL = 1.0 \times 10^{-3}\). We solve first the simpler problem with \((\beta) = 0.0\) using an equispaced mesh of 26 points and then we solve the problem with \((\beta) = 0.2\) using the final mesh from the first problem.

Note the call to \texttt{X04ABF prior to the call to D02GAF.}

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D02GBF solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique.

2. Specification

```fortran
SUBROUTINE D02GBF (A, B, N, TOL, FCNF, FCNG, C, D, GAM,
 MNP, X, Y, NP, W, LW, IW, LIW, IFAIL)
 INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
 DOUBLE PRECISION A, B, TOL, C(N,N), D(N,N), GAM(N), X(MNP),
 Y(N,MNP), W(LW)
 EXTERNAL FCNF, FCNG
```

3. Description

D02GBF solves the linear two-point boundary value problem for a system of n ordinary differential equations in the interval 

\[ [a,b] \]. The system is written in the form

\[ y' = F(x)y + g(x) \]  \hspace{1cm} (1)  

and the boundary conditions are written in the form

\[ Cy(a)+Dy(b):=(\gamma) \]  \hspace{1cm} (2)  

Here \( F(x), C \) and \( D \) are \( n \) by \( n \) matrices, and \( g(x) \) and \( (\gamma) \) are \( n \)-component vectors. The approximate solution to (1) and (2) is found using a finite-difference method with deferred correction. The algorithm is a specialisation of that used in subroutine D02RAF which solves a nonlinear version of (1) and (2). The nonlinear version of the algorithm is described fully in Pereyra [1].

The user supplies an absolute error tolerance and may also supply an initial mesh for the construction of the finite-difference equations (alternatively a default mesh is used). The algorithm constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is everywhere less than the user's tolerance and so that the error is approximately equidistributed on the final mesh. The solution is returned on this final mesh.
If the solution is required at a few specific points then these should be included in the initial mesh. If, on the other hand, the solution is required at several specific points, then the user should use the interpolation routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

4. References


5. Parameters

1: A -- DOUBLE PRECISION  
   On entry: the left-hand boundary point, a.

2: B -- DOUBLE PRECISION  
   On entry: the right-hand boundary point, b. Constraint: B > A.

3: N -- INTEGER  
   On entry: the number of equations; that is n is the order of system (1). Constraint: N >= 2.

4: TOL -- DOUBLE PRECISION  
   On entry: a positive absolute error tolerance. If
   \[ a = x_1 < x_2 < \ldots < x_N = b \]
   is the final mesh, \( z(x) \) is the approximate solution from D02GBF and \( y(x) \) is the true solution of equations (1) and (2) then, except in extreme cases, it is expected that
   \[ ||z-y|| < TOL \]  
   where
   \[ ||u|| = \max_{1 \leq i \leq N} \max_{1 \leq j \leq NP} |u_{ij}(x)|. \]
   Constraint: TOL > 0.0.

5: FCNF -- SUBROUTINE, supplied by the user.  
   External Procedure
   FCNF must evaluate the matrix \( F(x) \) in (1) at a general point x.

   Its specification is:

   ```fortran
 SUBROUTINE FCN (X, F)
 DOUBLE PRECISION X, F(n,n)
   ```
where \( n \) is the actual value of \( N \) in the call of D02GBF.

1: \( X \) -- DOUBLE PRECISION
   Input
   On entry: the value of the independent variable \( x \).

2: \( F(n,n) \) -- DOUBLE PRECISION array
   Output
   On exit: the \((i,j)\)th element of the matrix \( F(x) \), for
   \( i,j=1,2,\ldots,n \). (See Section 9 for an example.)
FCN must be declared as EXTERNAL in the (sub)program
from which D02GBF is called. Parameters denoted as
Input must not be changed by this procedure.

6: FCNG -- SUBROUTINE, supplied by the user.
   External Procedure
   FCNG must evaluate the vector \( g(x) \) in (1) at a general point
   \( x \).

   Its specification is:

   ```
 SUBROUTINE FCNG (X, G)
 DOUBLE PRECISION X, G(n)
 where \(n \) is the actual value of \(N \) in the call of D02GBF.
   ```

   1: \( X \) -- DOUBLE PRECISION
      Input
      On entry: the value of the independent variable \( x \).

   2: \( G(*) \) -- DOUBLE PRECISION array
      Output
      On exit: the \( i \)th element of the vector \( g(x) \), for
      \( i=1,2,\ldots,n \). (See Section 9 for an example.)
FCNG must be declared as EXTERNAL in the (sub)program
from which D02GBF is called. Parameters denoted as
Input must not be changed by this procedure.

7: \( C(N,N) \) -- DOUBLE PRECISION array
   Input/Output

8: \( D(N,N) \) -- DOUBLE PRECISION array
   Input/Output

9: \( GAM(N) \) -- DOUBLE PRECISION array
   Input/Output
   On entry: the arrays \( C \) and \( D \) must be set to the
   matrices \( C \) and \( D \) in (2). \( GAM \) must be set to the
   vector \( \gamma \) in (2).
   On exit: the rows of \( C \) and \( D \) and the components of \( GAM \)
   are re-ordered so that the boundary conditions are in the order:
   (i) conditions on \( y(a) \) only;
   (ii) condition involving \( y(a) \) and \( y(b) \); and
   (iii) conditions on \( y(b) \) only.

The routine will be slightly more efficient if the arrays \( C \),
\( D \) and \( GAM \) are ordered in this way before entry, and in this
event they will be unchanged on exit.

Note that the problems (1) and (2) must be of boundary value type, that is neither C nor D may be identically zero. Note also that the rank of the matrix \([C,D]\) must be \(n\) for the problem to be properly posed. Any violation of these conditions will lead to an error exit.

10: \textbf{MNP} -- \texttt{INTEGER} \hspace{1cm} \textbf{Input}
On entry: the maximum permitted number of mesh points.
Constraint: \(\text{MNP} \geq 32\).

11: \textbf{X(MNP)} -- \texttt{DOUBLE PRECISION} array \hspace{1cm} \textbf{Input/Output}
On entry: if \(\text{NP} \geq 4\) (see \text{NP} below), the first \text{NP} elements must define an initial mesh. Otherwise the elements of \(x\) need not be set. Constraint:
\[ A = X(1) < X(2) < \ldots < X(\text{NP}) = B, \text{ for } \text{NP} \geq 4. \]
On exit: \(X(1), X(2), \ldots, X(\text{NP})\) define the final mesh (with the returned value of \text{NP}) satisfying the relation (4).

12: \textbf{Y(N,MNP)} -- \texttt{DOUBLE PRECISION} array \hspace{1cm} \textbf{Output}
On exit: the approximate solution \(z(x)\) satisfying (3), on the final mesh, that is
\[
Y(j,i) = z(x), \quad i=1,2,\ldots,\text{NP}; j=1,2,\ldots,n
\]
where \(\text{NP}\) is the number of points in the final mesh.
The remaining columns of \(Y\) are not used.

13: \textbf{NP} -- \texttt{INTEGER} \hspace{1cm} \textbf{Input/Output}
On entry: determines whether a default mesh or user-supplied mesh is used. If \(\text{NP} = 0\), a default value of 4 for \text{NP} and a corresponding equispaced mesh \(X(1), X(2), \ldots, X(\text{NP})\) are used. If \(\text{NP} \geq 4\), then the user must define an initial mesh \(X\) as in (4) above. On exit: the number of points in the final (returned) mesh.

14: \textbf{W(LW)} -- \texttt{DOUBLE PRECISION} array \hspace{1cm} \textbf{Workspace}

15: \textbf{LW} -- \texttt{INTEGER} \hspace{1cm} \textbf{Input}
On entry: the length of the array \(W\), Constraint:
\[
2 \leq LW = \text{MNP} \times (3N + 5N + 2) + 3N. 
\]

16: \textbf{IW(LIW)} -- \texttt{INTEGER} array \hspace{1cm} \textbf{Workspace}

17: \textbf{LIW} -- \texttt{INTEGER} \hspace{1cm} \textbf{Input}
On entry: the length of the array \(IW\). Constraint:
\[
LIW = \text{MNP} \times (2N + 1) + N. 
\]
18: **IFAIL -- INTEGER**  
Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see the Essential Introduction).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal digits c, b and a must have a value of 0 or 1.

- **a=0** specifies hard failure, otherwise soft failure;
- **b=0** suppresses error messages, otherwise error messages will be printed (see Section 6);
- **c=0** suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as defined by X04AAF), unless suppressed by the value of IFAIL on entry.

**IFAIL= 1**

One or more of the parameters N, TOL, NP, MNP, LW or LIW is incorrectly set, B <= A or the condition (4) on X is not satisfied.

**IFAIL= 2**

There are three possible reasons for this error exit to be taken:

(i) one of the matrices C or D is identically zero (that is the problem is of initial value and not boundary value type). In this case, IW(1) = 0 on exit;

(ii) a row of C and the corresponding row of D are identically zero (that is the boundary conditions are rank deficient). In this case, on exit IW(1) contains the index of the first such row encountered; and

(iii) more than n of the columns of the n by 2n matrix [C,D] are identically zero (that is the boundary conditions are rank deficient). In this case, on exit
IW(1) contains minus the number of non-identically zero columns.

IFAIL = 3
The routine has failed to find a solution to the specified accuracy. There are a variety of possible reasons including:
(i) the boundary conditions are rank deficient, which may be indicated by the message that the Jacobian is singular. However this is an unlikely explanation for the error exit as all rank deficient boundary conditions should lead instead to error exits with either IFAIL = 2 or IFAIL = 5; see also (iv) below;
(ii) not enough mesh points are permitted in order to attain the required accuracy. This is indicated by NP = MNP on return from a call to D02GBF. This difficulty may be aggravated by a poor initial choice of mesh points;
(iii) the accuracy requested cannot be attained on the computer being used; and
(iv) an unlikely combination of values of F(x) has led to a singular Jacobian. The error should not persist if more mesh points are allowed.

IFAIL = 4
A serious error has occurred in a call to D02GBF. Check all array subscripts and subroutine parameter lists in calls to D02GBF. Seek expert help.

IFAIL = 5
There are two possible reasons for this error exit which occurs when checking the rank of the boundary conditions by reduction to a row echelon form:
(i) at least one row of the n by 2n matrix [C,D] is a linear combination of the other rows and hence the boundary conditions are rank deficient. The index of the first such row encountered is given by IW(1) on exit; and
(ii) as (i) but the rank deficiency implied by this error exit has only been determined up to a numerical tolerance. Minus the index of the first such row encountered is given by IW(1) on exit.
In case (ii) above there is some doubt as to the rank deficiency of the boundary conditions. However even if the boundary conditions are not rank deficient they are not posed in a suitable form for use with this routine.
For example, if
\[
(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array})
\]
\[
(\begin{array}{c}
1 \\
0 \\
\end{array})
\]
\[
\gamma = (\begin{array}{c}
1 \\
0 \\
\end{array})
\]

\[C = (\begin{array}{c}
1 \\
0 \\
\end{array}) , \hspace{1cm} D = (\begin{array}{c}
0 \\
0 \\
\end{array}) , \hspace{1cm} \gamma = (\begin{array}{c}
\epsilon \\
\gamma_n \\
\end{array})
\]

and \((\epsilon)\) is small enough, this error exit is likely to be taken. A better form for the boundary conditions in this case would be
\[
(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array})
\]
\[
(\begin{array}{c}
0 \\
0 \\
\end{array})
\]
\[
\gamma = (\begin{array}{c}
\epsilon \\
\gamma_n - \gamma_n \\
\end{array})
\]

7. Accuracy

The solution returned by the routine will be accurate to the user's tolerance as defined by the relation (3) except in extreme circumstances. If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

8. Further Comments

The time taken by the routine depends on the difficulty of the problem, the number of mesh points (and meshes) used and the number of deferred corrections.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring information about the course of the computation. The user may select the channel numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) - see Section 9 for an example. Otherwise the default channel numbers will be used, as specified in the implementation document.

In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh from one case is strongly recommended as the initial mesh for the next.

9. Example

We solve the problem (written as a first order system)

\[(\epsilon)y'' + y' = 0\]

with boundary conditions

\[y(0) = 0, \hspace{1cm} y(1) = 1\]
for the cases \((\epsilon)=10\) and \((\epsilon)=10\) using the default initial mesh in the first case, and the final mesh of the first case as initial mesh for the second (more difficult) case. We give the solution and the error at each mesh point to illustrate the accuracy of the method given the accuracy request \(TOL=1.0E-3\).

Note the call to \texttt{X04ABF} prior to the call to \texttt{D02GBF}.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

### Eignevalue of regular singular 2nd-order Sturm-Liouville

— nagd.ht —

---

\texttt{DO2KEF(3NAG)} \hspace{2cm} \texttt{DO2KEF} \hspace{2cm} \texttt{DO2KEF(3NAG)}

\texttt{DO2} -- Ordinary Differential Equations \hspace{2cm} \texttt{DO2KEF}

\texttt{DO2KEF} -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

\texttt{DO2KEF} finds a specified eigenvalue of a regular singular second-order Sturm-Liouville system on a finite or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is
made for discontinuities in the coefficient functions or their derivatives.

2. Specification

```fortran
SUBROUTINE D02KEF (XPOINT, M, MATCH, COEFFN, BDYVAL, K, 1
 TOL, ELAM, DELAM, HMAX, MAXIT, MAXFUN, 2
 MONIT, REPORT, IFAIL)
INTEGER M, MATCH, K, MAXIT, MAXFUN, IFAIL
DOUBLE PRECISION XPOINT(M), TOL, ELAM, DELAM, HMAX(2,M)
EXTERNAL COEFFN, BDYVAL, MONIT, REPORT
```

3. Description

D02KEF has essentially the same purpose as D02KDF(*) with minor modifications to enable values of the eigenfunction to be obtained after convergence to the eigenvalue has been achieved.

-------

It first finds a specified eigenvalue \((\lambda)\) of a Sturm-Liouville system defined by a self-adjoint differential equation of the second-order

\[
(p(x)y')' + q(x;\lambda)y = 0, \quad a < x < b
\]

together with the appropriate boundary conditions at the two (finite or infinite) end-points \(a\) and \(b\). The functions \(p\) and \(q\), which are real-valued, must be defined by a subroutine COEFFN. The boundary conditions must be defined by a subroutine BDYVAL, and, in the case of a singularity at \(a\) or \(b\), take the form of an asymptotic formula for the solution near the relevant end-point.

-------

When the final estimate \((\lambda) = (\lambda)\) of the eigenvalue has been found, the routine integrates the differential equation once more with that value of \((\lambda)\), and with initial conditions chosen so that the integral

\[
S = \left. \frac{1}{2} \int_a^b \frac{y(x)'}{q(x;\lambda)} \, dx \right| \frac{1}{\lambda}
\]

is approximately one. When \(q(x;\lambda)\) is of the form \((\lambda)w(x)+q(x)\), which is the most common case, \(S\) represents the square of the norm of \(y\) induced by the inner product

\[
\int_a^b
\]
\[ \langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x)dx, \]

with respect to which the eigenfunctions are mutually orthogonal. This normalisation of \( y \) is only approximate, but experience shows that \( S \) generally differs from unity by only one or two per cent.

During this final integration the REPORT routine supplied by the user is called at each integration mesh point \( x \). Sufficient information is returned to permit the user to compute \( y(x) \) and \( y'(x) \) for printing or plotting. For reasons described in Section 8.2, D02KEF passes across to REPORT, not \( y \) and \( y' \), but the Pruefer variables \( (\beta) \), \( (\phi) \) and \( (\rho) \) on which the numerical method is based. Their relationship to \( y \) and \( y' \) is given by the equations

\[
p(x)y' = \sqrt{\beta} \exp \left( \frac{\rho}{2} \right) \cos \left( \frac{\phi}{2} \right);
\]

\[
y = \frac{1}{\sqrt{\beta}} \exp \left( \frac{\rho}{2} \right) \sin \left( \frac{\phi}{2} \right).
\]

For the theoretical basis of the numerical method to be valid, the following conditions should hold on the coefficient functions:

(a) \( p(x) \) must be non-zero and of one sign throughout the interval \((a,b)\); and,

\[
\frac{d}{dx}q
\]

(b) \( \frac{d}{d\lambda} \left( \frac{d}{dx}q \right) \) must be of one sign throughout \((a,b)\) for all relevant values of \( \lambda \), and must not be identically zero as \( x \) varies, for any \( \lambda \).

Points of discontinuity in the functions \( p \) and \( q \) or their derivatives are allowed, and should be included as 'break-points' in the array XPOINT.

A good account of the theory of Sturm-Liouville systems, with some description of Pruefer transformations, is given in Birkhoff and Rota [4], Chapter X. An introduction for the user of Pruefer transformations for the numerical solution of eigenvalue problems arising from physics and chemistry is Bailey [2].
The scaled Pruefer method is fairly recent, and is described in a short note by Pryce [6] and in some detail in the technical report [5].

4. References


5. Parameters

1: XPOINT(M) -- DOUBLE PRECISION array
   Input
   On entry: the points where the boundary conditions computed by BDYVAL are to be imposed, and also any break-points, i.e., XPOINT(i) to XPOINT(m) must contain values x_1,...,x_m such that
   \[
   x_1 \leq x_2 \leq \ldots \leq x_{m-1} \leq x_m
   \]
   with the following meanings:
   (a) x_1 and x_m are the left and right end-points, a and b, of the domain of definition of the Sturm-Liouville system if these are finite. If either a or b is infinite, the corresponding value x_1 or x_m may be a more-or-less arbitrarily 'large' number of appropriate sign.
   (b) x_2 and x_{m-1} are the Boundary Matching Points (BMP's), that is the points at which the left and right
boundary conditions computed in BDYVAL are imposed.

If the left-hand end-point is a regular point then the user should set \( x = x = a \), while if it is a singular point the user must set \( x > x \). Similarly \( x = x = b \) if the right-hand end-point is regular, and \( x < x \) if it is singular.

(c) The remaining \( m-4 \) points \( x_3, \ldots, x_m \), if any, define 'break-points' which divide the interval \([x_2, x_{m-1}]\) into \( m-3 \) sub-intervals

\[
\begin{align*}
i = [x_1, x_2], & \quad i = [x_3, x_4], \quad \ldots, \quad i = [x_{m-3}, x_{m-2}], \quad i = [x_{m-1}, x_m]
\end{align*}
\]

Numerical integration of the differential equation is stopped and restarted at each break-point. In simple cases no break-points are needed. However if \( p(x) \) or \( q(x;\lambda) \) are given by different formulae in different parts of the range, then integration is more efficient if the range is broken up by break-points in the appropriate way. Similarly points where any jumps occur in \( p(x) \) or \( q(x;\lambda) \), or in their derivatives up to the fifth order, should appear as break-points.

Constraint: \( X(1) \leq X(2) < \ldots < X(M-1) \leq X(M) \).

2: \( M \) -- INTEGER  
Input
On entry: the number of points in the array XPOINT.
Constraint: \( M \geq 4 \).

3: MATCH -- INTEGER  
Input/Output
On entry: MATCH must be set to the index of the 'break-point' to be used as the matching point (see Section 8.3). If MATCH is set to a value outside the range \([2, m-1]\) then a default value is taken, corresponding to the break-point nearest the centre of the interval \([XPOINT(2), XPOINT(m-1)]\).
On exit: the index of the break-point actually used as the matching point.

4: COEFFFN -- SUBROUTINE, supplied by the user.  
External Procedure
COEFFFN must compute the values of the coefficient functions \( p(x) \) and \( q(x;\lambda) \) for given values of \( x \) and \( \lambda \).
Section 3 states conditions which \( p \) and \( q \) must satisfy.

Its specification is:
SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)
DOUBLE PRECISION P, Q, DQDL, X, ELAM
INTEGER JINT

1: P -- DOUBLE PRECISION  Output
On exit: the value of p(x) for the current value of x.

2: Q -- DOUBLE PRECISION  Output
On exit: the value of q(x;\lambda) for the current value of x and the current trial value of \lambda.

3: DQDL -- DOUBLE PRECISION  Output
\[
\frac{ddq}{dd(\lambda)}
\]
On exit: the value of \[
\frac{ddq}{dd(\lambda)}
\] for the current value of x and the current trial value of \lambda. However DQDL is only used in error estimation and an approximation (say to within 20\%) will suffice.

4: X -- DOUBLE PRECISION  Input
On entry: the current value of x.

5: ELAM -- DOUBLE PRECISION  Input
On entry: the current trial value of the eigenvalue parameter \lambda.

6: JINT -- INTEGER  Input
On entry: the index j of the sub-interval i (see specification of XPOINT) in which x lies.

See Section 8.4 and Section 9 for examples.

COEFFN must be declared as EXTERNAL in the (sub)program from which D02KEF is called. Parameters denoted as Input must not be changed by this procedure.

5: BDYVAL -- SUBROUTINE, supplied by the user.

External Procedure

BDYVAL must define the boundary conditions. For each end-point, BDYVAL must return (in YL or YR) values of y(x) and p(x)y'(x) which are consistent with the boundary conditions at the end-points; only the ratio of the values matters. Here x is a given point (XL or XR) equal to, or close to, the end-point.

For a regular end-point (a, say), x=a; and a boundary condition of the form
\[
c y(a)+c y'(a)=0
\]
1 2
can be handled by returning constant values in YL, e.g. 
YL(1)=c and YL(2)=−c p(a).

For a singular end-point however, YL(1) and YL(2) will in 
general be functions of XL and ELAM, and YR(1) and YR(2) 
functions of XR and ELAM, usually derived analytically from 
a power-series or asymptotic expansion. Examples are given 
in Section 8.5 Section 9.

Its specification is:

```fortran
SUBROUTINE BDYVAL (XL, XR, ELAM, YL, YR)
 DOUBLE PRECISION XL, XR, ELAM, YL(3), YR(3)

1: XL -- DOUBLE PRECISION Input
 On entry: if a is a regular end-point of the system (so
 that a=x=x), then XL contains a. If a is a singular
 1 2
 point (so that a<=x <x), then XL contains a point x
 1 2
 such that x <x=x).
 1 2

2: XR -- DOUBLE PRECISION Input
 On entry: if b is a regular end-point of the system (so
 that x =x =b), then XR contains b. If b is a singular
 m-1 m
 point (so that x <x <=b), then XR contains a point x
 m-1 m
 such that x <=x<x .
 m-1 m

3: ELAM -- DOUBLE PRECISION Input
 On entry: the current trial value of (lambda).

4: YL(3) -- DOUBLE PRECISION array Output
 On exit: YL(1) and YL(2) should contain values of y(x)
 and p(x)y'(x) respectively (not both zero) which are
 consistent with the boundary condition at the left-hand
 end-point, given by x = XL. YL(3) should not be set.

5: YR(3) -- DOUBLE PRECISION array Output
 On exit: YR(1) and YR(2) should contain values of y(x)
 and p(x)y'(x) respectively (not both zero) which are
 consistent with the boundary condition at the right-
 hand end-point, given by x = XR. YR(3) should not be
 set.

BDYVAL must be declared as EXTERNAL in the (sub)program
from which D02KEF is called. Parameters denoted as Input must not be changed by this procedure.

6: K -- INTEGER
 On entry: the index k of the required eigenvalue when the eigenvalues are ordered
 \((\lambda) < (\lambda) < (\lambda) < \ldots < (\lambda) < \ldots\)

 \[
 0 \quad 1 \quad 2 \quad k
 \]

 Constraint: \(K \geq 0\).

7: TOL -- DOUBLE PRECISION
 On entry: the tolerance parameter which determines the accuracy of the computed eigenvalue. The error estimate held in DELAM on exit satisfies the mixed absolute-relative error test
 \[
 \text{DELAM} \leq \text{TOL} \max(1.0, |\text{ELAM}|) (*)
 \]
 where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than the right-hand side of (*) but not several orders of magnitude smaller. Constraint: \(TOL > 0.0\).

8: ELAM -- DOUBLE PRECISION
 On entry: an initial estimate of the eigenvalue \((\lambda)\).
 On exit: the final computed estimate, whether or not an error occurred.

9: DELAM -- DOUBLE PRECISION
 On entry: an indication of the scale of the problem in the \((\lambda)\)-direction. DELAM holds the initial 'search step' (positive or negative). Its value is not critical but the first two trial evaluations are made at ELAM and ELAM + DELAM, so the routine will work most efficiently if the eigenvalue lies between these values. A reasonable choice (if a closer bound is not known) is half the distance between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there will often be a problem, similar to the one in hand but with known eigenvalues, which will help one to choose initial values for ELAM and DELAM.

 If \(\text{DELAM} = 0.0\) on entry, it is given the default value of \(0.25 \max(1.0, |\text{ELAM}|)\). On exit: with IFAIL = 0, DELAM holds an estimate of the absolute error in the computed eigenvalue, that is \(|(\lambda) - \text{ELAM}| \approx \text{DELAM}\). (In Section 8.2 we discuss the assumptions under which this is true.) The true error is rarely more than twice, or less than a tenth, of the estimated error.

 With IFAIL /= 0, DELAM may hold an estimate of the error, or
its initial value, depending on the value of IFAIL. See Section 6 for further details.

10: HMAX(2,M) -- DOUBLE PRECISION array
Input/Output
On entry: HMAX(1,j) a maximum step size to be used by the differential equation code in the jth sub-interval i (as described in the specification of parameter XPOINT), for j=1,2,...,m-3. If it is zero the routine generates a maximum step size internally.

It is recommended that HMAX(1,j) be set to zero unless the coefficient functions p and q have features (such as a narrow peak) within the jth sub-interval that could be 'missed' if a long step were taken. In such a case HMAX(1,j) should be set to about half the distance over which the feature should be observed. Too small a value will increase the computing time for the routine. See Section 8 for further suggestions.

The rest of the array is used as workspace. On exit: HMAX(1,m-1) and HMAX(1,m) contain the sensitivity coefficients (sigma) and (sigma), described in Section 8.6. Other entries contain diagnostic output in case of an error (see Section 6).

11: MAXIT -- INTEGER
Input/Output
On entry: a bound on n, the number of root-finding iterations allowed, that is the number of trial values of (lambda) that are used. If MAXIT <= 0, no such bound is assumed. (See also under MAXFUN.) Suggested value: MAXIT = 0. On exit: MAXIT will have been decreased by the number of iterations actually performed, whether or not it was positive on entry.

12: MAXFUN -- INTEGER
Input
On entry: a bound on n, the number of calls to CDEFFN made in any one root-finding iteration. If MAXFUN <= 0, no such bound is assumed. Suggested value: MAXFUN = 0.

MAXFUN and MAXIT may be used to limit the computational cost of a call to D02KEF, which is roughly proportional to n * n.

13: MONIT -- SUBROUTINE, supplied by the user.
External Procedure
MONIT is called by D02KEF at the end of each root-finding
chapter 22. nag library routines

iteration and allows the user to monitor the course of the
computation by printing out the parameters (see section 8
for an example).

If no monitoring is required, the dummy subroutine d02kay
may be used. (d02kay is included in the nag foundation
library).

Its specification is:

SUBROUTINE MONIT (MAXIT, IFLAG, ELAM, FINFO)
INTEGER MAXIT, IFLAG
DOUBLE PRECISION ELAM, FINFO(15)

1: MAXIT -- INTEGER Input
 On entry: the current value of the parameter MAXIT of
d02kef; this is decreased by one at each iteration.

2: IFLAG -- INTEGER Input
 On entry: IFLAG describes what phase the computation is
in, as follows:
 IFLAG < 0
 an error occurred in the computation of the 'miss-distance' at this iteration;

 an error exit from d02kef with IFAIL =-IFLAG will
 follow.

 IFLAG = 1
 the routine is trying to bracket the eigenvalue

 (lambda).

 IFLAG = 2
 the routine is converging to the eigenvalue

 (lambda) (having already bracketed it).

3: ELAM -- DOUBLE PRECISION Input
 On entry: the current trial value of (lambda).

4: FINFO(15) -- DOUBLE PRECISION array
 Input
 On entry: information about the behaviour of the
 shooting method, and diagnostic information in the case
 of errors. It should not normally be printed in full if
 no error has occurred (that is, if IFLAG > 0), though
 the first few components may be of interest to the
 user. In case of an error (IFLAG < 0) all the
 components of FINFO should be printed. The contents of
 FINFO are as follows:
FINFO(1): the current value of the 'miss-distance' or 'residual' function \(f(\lambda) \) on which the shooting method is based. FINFO(1) is set to zero if IFLAG < 0.

FINFO(2): an estimate of the quantity \(dd(\lambda) \) defined as follows. Consider the perturbation in the miss-distance \(f(\lambda) \) that would result if the local error, in the solution of the differential equation, were always positive and equal to its maximum permitted value. Then \(dd(\lambda) \) is the perturbation in \(f(\lambda) \) that would have the same effect on \(f(\lambda) \). Thus, at the zero of \(f(\lambda) \), \(|dd(\lambda)| \) is an approximate bound on the perturbation of the zero (that is the eigenvalue) caused by errors in numerical solution. If \(dd(\lambda) \) is very large then it is possible that there has been a programming error in COEFFFN such that \(q \) is independent of \(\lambda \). If this is the case, an error exit with IFAIL = 5 should follow. FINFO(2) is set to zero if IFLAG < 0.

FINFO(3): the number of internal iterations, using the same value of \(\lambda \) and tighter accuracy tolerances, needed to bring the accuracy (that is the value of \(dd(\lambda) \)) to an acceptable value. Its value should normally be 1.0, and should almost never exceed 2.0.

FINFO(4): the number of calls to COEFFFN at this iteration.

FINFO(5): the number of successful steps taken by the internal differential equation solver at this iteration. A step is successful if it is used to advance the integration (cf. COUT(8) in specification of D02PAF(*)).

FINFO(6): the number of unsuccessful steps used by the internal integrator at this iteration (cf. COUT(9) in specification of D02PAF(*)).

FINFO(7): the number of successful steps at the maximum step size taken by the internal integrator at this iteration (cf. COUT(3) in specification of D02PAF(*)).

FINFO(8): is not used.

FINFO(9) to FINFO(15): set to zero, unless IFLAG < 0 in which case they hold the following values describing the point of failure:

FINFO(9): contains the index of the sub-interval where
failure occurred, in the range 1 to \(m-3 \). In case of an error in \(\text{BDYVAL} \), it is set to 0 or \(m-2 \) depending on whether the left or right boundary condition caused the error.

\(\text{FINFO}(10) \): the value of the independent variable \(x \), the point at which error occurred. In case of an error in \(\text{BDYVAL} \), it is set to the value of \(\text{XL} \) or \(\text{XR} \) as appropriate (see the specification of \(\text{BDYVAL} \)).

\(\text{FINFO}(11), \text{FINFO}(12), \text{FINFO}(13) \): the current values of the Pruefer dependent variables \((\beta), (\phi), (\rho) \) respectively. These are set to zero in case of an error in \(\text{BDYVAL} \).

\(\text{FINFO}(14) \): the local-error tolerance being used by the internal integrator at the point of failure. This is set to zero in the case of an error in \(\text{BDYVAL} \).

\(\text{FINFO}(15) \): the last integration mesh point. This is set to zero in the case of an error in \(\text{BDYVAL} \).

\(\text{MONIT} \) must be declared as \text{EXTERNAL} in the (sub)program from which \text{D02KEF} is called. Parameters denoted as Input must not be changed by this procedure.

14: \text{REPORT -- SUBROUTINE, supplied by the user.}
\text{External Procedure}

This routine provides the means by which the user may compute the eigenfunction \(y(x) \) and its derivative at each integration mesh point \(x \). (See Section 8 for an example).

Its specification is:

\begin{verbatim}
SUBROUTINE REPORT (X, V, JINT)
INTEGER JINT
DOUBLE PRECISION X, V(3)
\end{verbatim}

1: \(X \) -- DOUBLE PRECISION
\text{Input}
On entry: the current value of the independent variable \(x \). See Section 8.3 for the order in which values of \(x \) are supplied.

2: \(V(3) \) -- DOUBLE PRECISION array
\text{Input}
On entry: \(V(1), V(2), V(3) \) hold the current values of the Pruefer variables \((\beta), (\phi), (\rho) \) respectively.

3: \(JINT \) -- INTEGER
\text{Input}
On entry: \(JINT \) indicates the sub-interval between break-points in which \(x \) lies exactly as for the routine
COEFFN, except that at the extreme left end-point (when \(x = \text{XPOINT}(2) \)) \(J \) is set to 0 and at the extreme right end-point (when \(x = \text{XPOINT}(m-1) \)) \(J \) is set to \(m-2 \).

\(\text{REPORT} \) must be declared as \texttt{EXTERNAL} in the \texttt{(sub)program} from which \texttt{D02KEF} is called. Parameters denoted as \texttt{Input} must not be changed by this procedure.

15: \(\texttt{IFAIL} \) -- INTEGER Input/Output
On entry: \(\texttt{IFAIL} \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \(\texttt{IFAIL} = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(\texttt{IFAIL} = 1 \)

A parameter error. All parameters (except \(\texttt{IFAIL} \)) are left unchanged. The reason for the error is shown by the value of \(\texttt{HMAX}(2,1) \) as follows:

\(\texttt{HMAX}(2,1) = 1: M < 4; \)

\(\texttt{HMAX}(2,1) = 2: K < 0; \)

\(\texttt{HMAX}(2,1) = 3: \text{TOL} \leq 0.0; \)

\(\texttt{HMAX}(2,1) = 4: \text{XPOINT}(1) \text{ to } \text{XPOINT}(m) \text{ are not in ascending order.} \)

\(\texttt{HMAX}(2,2) \) gives the position i in XPOINT where this was detected.

\(\texttt{IFAIL} = 2 \)

At some call to BDYVAL, invalid values were returned, that is, either \(\text{YL}(1) = \text{YL}(2) = 0.0 \), or \(\text{YR}(1) = \text{YR}(2) = 0.0 \) (a programming error in BDYVAL). See the last call of MONIT for details.

This error exit will also occur if \(p(x) \) is zero at the point where the boundary condition is imposed. Probably BDYVAL was called with \(XL \) equal to a singular end-point a or with \(XR \) equal to a singular end-point b.

\(\texttt{IFAIL} = 3 \)

At some point between \(XL \) and \(XR \) the value of \(p(x) \) computed
by COEFFN became zero or changed sign. See the last call of MONIT for details.

IFAIL= 4
MAXIT > 0 on entry, and after MAXIT iterations the eigenvalue had not been found to the required accuracy.

IFAIL= 5
The 'bracketing' phase (with parameter IFLAG of MONIT equal to 1) failed to bracket the eigenvalue within ten iterations. This is caused by an error in formulating the problem (for example, q is independent of (lambda)), or by very poor initial estimates of ELAM, DELAM.

On exit ELAM and ELAM + DELAM give the end-points of the interval within which no eigenvalue was located by the routine.

IFAIL= 6
MAXFUN > 0 on entry, and the last iteration was terminated because more than MAXFUN calls to COEFFN were used. See the last call of MONIT for details.

IFAIL= 7
To obtain the desired accuracy the local error tolerance was set so small at the start of some sub-interval that the differential equation solver could not choose an initial step size large enough to make significant progress. See the last call of MONIT for diagnostics.

IFAIL= 8
At some point inside a sub-interval the step size in the differential equation solver was reduced to a value too small to make significant progress (for the same reasons as with IFAIL = 7). This could be due to pathological behaviour of p(x) and q(x;(lambda)) or to an unreasonable accuracy requirement or to the current value of (lambda) making the equations 'stiff'. See the last call of MONIT for details.

IFAIL= 9
TOL is too small for the problem being solved and the machine precision is being used. The final value of ELAM should be a very good approximation to the eigenvalue.

IFAIL= 10
C05AZF(*), called by D02KEF, has terminated with the error exit corresponding to a pole of the residual function f((lambda)). This error exit should not occur, but if it does, try solving the problem again with a smaller value for TOL.
IFAIL= 11
A serious error has occurred in an internal call to D02KDY.
Check all subroutine calls and array dimensions. Seek expert help.

IFAIL= 12
A serious error has occurred in an internal call to
C05AZF(*). Check all subroutine calls and array dimensions.
Seek expert help.

HMAX(2,1) holds the failure exit number from the routine
where the failure occurred. In the case of a failure in
C05AZF(*), HMAX(2,2) holds the value of parameter IND of
C05AZF(*).

Note: error exits with IFAIL = 2, 3, 6, 7, 8, 11 are caused by
being unable to set up or solve the differential equation at some
iteration, and will be immediately preceded by a call of MONIT
giving diagnostic information. For other errors, diagnostic
information is contained in HMAX(2,j), for j=1,2,...,m, where
appropriate.

7. Accuracy

See the discussion in Section 8.2.

8. Further Comments

8.1. Timing

The time taken by the routine depends on the complexity of the
coefficient functions, whether they or their derivatives are
rapidly changing, the tolerance demanded, and how many iterations
are needed to obtain convergence. The amount of work per
iteration is roughly doubled when TOL is divided by 16. To make
the most economical use of the routine, one should try to obtain
good initial values for ELAM and DELAM, and, where appropriate,
good asymptotic formulae. The boundary matching points should not
be set unnecessarily close to singular points. The extra time
needed to compute the eigenfunction is principally the cost of
one additional integration once the eigenvalue has been found.

8.2. General Description of the Algorithm

A shooting method, for differential equation problems containing
unknown parameters, relies on the construction of a 'miss-
distance function', which for given trial values of the
parameters measures how far the conditions of the problem are
from being met. The problem is then reduced to one of finding the
values of the parameters for which the miss-distance function is zero, that is to a root-finding process. Shooting methods differ mainly in how the miss-distance is defined.

This routine defines a miss-distance \(f(\lambda) \) based on the rotation around the origin of the point \(P(x) = (p(x)y'(x), y(x)) \) in the Phase Plane as the solution proceeds from \(a \) to \(b \). The boundary-conditions define the ray (i.e., two-sided line through the origin) on which \(p(x) \) should start, and the ray on which it should finish. The eigenvalue index \(k \) defines the total number of half-turns it should make. Numerical solution is actually done by matching point \(x=c \). Then \(f(\lambda) \) is taken as the angle between the rays to the two resulting points \(P(c) \) and \(P(c) \). A relative scaling of the \(py' \) and \(y \) axes, based on the behaviour of the coefficient functions \(p \) and \(q \), is used to improve the numerical behaviour.

Please see figure in printed Reference Manual

The resulting function \(f(\lambda) \) is monotonic over

\[
\frac{dq}{d\lambda} < 0, \text{ increasing if } \frac{d^2q}{d\lambda^2} > 0 \text{ and decreasing if } \frac{d^2q}{d\lambda^2} < 0,
\]

with a unique zero at the desired eigenvalue \(\lambda \). The routine measures \(f(\lambda) \) in units of a half-turn. This means that as \(\lambda \) increases, \(f(\lambda) \) varies by about 1 as each eigenvalue is passed. (This feature implies that the values of \(f(\lambda) \) at successive iterations - especially in the early stages of the iterative process - can be used with suitable extrapolation or interpolation to help the choice of initial estimates for eigenvalues near to the one currently being found.)

The routine actually computes a value for \(f(\lambda) \) with errors, arising from the local errors of the differential equation code and from the asymptotic formulae provided by the user if singular points are involved. However, the error estimate output in \(\text{DELAM} \) is usually fairly realistic, in that the actual error \(|(\lambda) - \text{ELAM}| \) is within an order of magnitude of \(\text{DELAM} \).

We pass the values of \(\beta \), \(\phi \), \(\rho \) across through \text{REPORT} rather than converting them to values of \(y, y' \) inside \text{D02KF}, for the following reasons. First, there may be cases where auxiliary
quantities can be more accurately computed from the Pruefer variables than from y and y'. Second, in singular problems on an infinite interval y and y' may underflow towards the end of the range, whereas the Pruefer variables remain well-behaved. Third, with high-order eigenvalues (and therefore highly oscillatory eigenfunctions) the eigenfunction may have a complete oscillation (or more than one oscillation) between two mesh points, so that values of y and y' at mesh points give a very poor representation of the curve. The probable behaviour of the Pruefer variables in this case is that (β) and (ρ) vary slowly whilst (ϕ) increases quickly: for all three Pruefer variables linear interpolation between the values at adjacent mesh points is probably sufficiently accurate to yield acceptable intermediate values of (β), (ϕ), (ρ) (and hence of y, y') for graphical purposes.

Similar considerations apply to the exponentially decaying 'tails' here (ϕ) has approximately constant value whilst (ρ) increases rapidly in the direction of integration, though the step length is generally fairly small over such a range.

If the solution is output through REPORT at x-values which are too widely spaced, the step length can be controlled by choosing HMAX suitably, or, preferably, by reducing TOL. Both these choices will lead to more accurate eigenvalues and eigenfunctions but at some computational cost.

8.3. The Position of the Shooting Matching Point c

This point is always one of the values x_i in array XPOINT. It may be specified using the parameter MATCH. The default value is chosen to be the value of that x_i, $2 \leq i \leq m-1$, that lies closest to the middle of the interval $[x_2, x_{m-1}]$. If there is a tie, the rightmost candidate is chosen. In particular if there are no break-points then $c=x_2$ ($=x_m$) — that is the shooting is from left to right in this case. A break-point may be inserted purely to move c to an interior point of the interval, even though the form of the equations does not require it. This often speeds up convergence especially with singular problems.

Note that the shooting method used by the code integrates first from the left-hand end x_2, then from the right-hand end x_m, to meet at the matching point c in the middle. This will of course be reflected in printed or graphical output. The diagram shows a possible sequence of nine mesh points (τ_i) through (τ_3) in
the order in which they appear, assuming there are just two subintervals (so \(m=5 \)).

Figure 1
Please see figure in printed Reference Manual

Since the shooting method usually fails to match up the two 'legs \(p(x)y \)' or both, at the matching point \(c \). The code in fact 'shares large jump does not imply an inaccurate eigenvalue, but implies either

(a) a badly chosen matching point: if \(q(x;(\lambda)) \) has a 'humped' shape, \(c \) should be chosen near the maximum value of \(q \), especially if \(q \) is negative at the ends of the interval.

(b) An inherently ill-conditioned problem, typically one where another eigenvalue is pathologically close to the one being sought. In this case it is extremely difficult to obtain an accurate eigenfunction.

In Section 9 below, we find the 11th eigenvalue and corresponding eigenfunction of the equation

\[
y''+((\lambda)-x-2/x)y=0 \quad \text{on } 0<x<\infty
\]

the boundary conditions being that \(y \) should remain bounded as \(x \) tends to 0 and \(x \) tends to \(\infty \). The coding of this problem is discussed in detail in Section 8.5.

The choice of matching point \(c \) is open. If we choose \(c=30.0 \) as in the D02KDF(*) example program we find that the exponentially increasing component of the solution dominates and we get extremely inaccurate values for the eigenfunction (though the eigenvalue is determined accurately). The values of the eigenfunction calculated with \(c=30.0 \) are given schematically in Figure 2.

Figure 2
Please see figure in printed Reference Manual

If we choose \(c \) as the maximum of the hump in \(q(x;(\lambda)) \) (see (a) above) we instead obtain the accurate results given in Figure 3.

Figure 3
8.4. Examples of Coding the COEFFN Routine

Coding COEFFN is straightforward except when break-points are needed. The examples below show:

(a) a simple case,

(b) a case in which discontinuities in the coefficient functions or their derivatives necessitate break-points, and

(c) a case where break-points together with the HMAX parameter are an efficient way to deal with a coefficient function that is well-behaved except over one short interval.

Example A

The modified Bessel equation

\[x(y')'' + ((\lambda)x - (\nu))y = 0 \]

Assuming the interval of solution does not contain the origin, dividing through by \(x \), we have

\[p(x) = x, \]
\[q(x; (\lambda)) = (\lambda)x - (\nu)/x. \]

The code could be

```
SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
  P = X
  Q = ELAM*X + NU*NU/X
  DQDL = X
  RETURN
END
```

where \(NU \) (standing for \((\nu) \)) is a real variable that might be defined in a DATA statement, or might be in user-declared COMMON so that its value could be set in the main program.

Example B

The Schroedinger equation

\[y'' + ((\lambda) + q(x))y = 0 \]

\{ 2
\{x -10 (|x|<=4),

Please see figure in printed Reference Manual
where \(q(x) = \frac{6}{|x|} \) \((|x|>4)\),

over some interval 'approximating to \((-\infty, \infty)\)', say \([-20, 20]\). Here we need break-points at \(\pm 4 \), forming three sub-intervals \(i = [-20, -4], i = [-4, 4], i = [4, 20] \). The code could be

```subroutine coeffn(p,q,dqdl,x,elam,jint)
if (jint.eq.2) then
  q = elam + x*x - 10.0e0
else
  q = elam + 6.0e0/abs(x)
endif
p = 1.0e0
dqdl = 1.0e0
return
end
```

The array \(xpoint \) would contain the values \(x, -20.0, -4.0, +4.0, +20.0, x \) and \(m \) would be 6. The choice of appropriate values for \(x \) and \(x \) depends on the form of the asymptotic formula computed by \(\text{bdyval} \) and the technique is discussed in the next subsection.

Example C

\[y'' + (\lambda)(1-2e^{-100x})y = 0, \quad \text{over} \quad -10 \leq x \leq 10 \]

Here \(q(x; (\lambda)) \) is nearly constant over the range except for a sharp inverted spike over approximately \(-0.1 \leq x \leq 0.1\). There is a danger that the routine will build up to a large step size and 'step over' the spike without noticing it. By using break-points - say at \(\pm 0.5 \) - one can restrict the step size near the spike without impairing the efficiency elsewhere.

The code for \(\text{coeffn} \) could be

```subroutine coeffn(p,q,dqdl,x,elam,jint)
p = 1.0e0
dqdl = 1.0e0 - 2.0e0*exp(-100.0e0*x*x)
q = elam*dqdl
return
```
8.5. Examples of Boundary Conditions at Singular Points

Quoting from Bailey [2] page 243: 'Usually... the differential equation has two essentially different types of solution near a singular point, and the boundary condition there merely serves to distinguish one kind from the other. This is the case in all the standard examples of mathematical physics.'

In most cases the behaviour of the ratio \(p(x)y'/y \) near the point is quite different for the two types of solution. Essentially what the user provides through his BDYVAL routine is an approximation to this ratio, valid as \(x \) tends to the singular point (SP).

The user must decide (a) how accurate to make this approximation or asymptotic formula, for example how many terms of a series to use, and (b) where to place the boundary matching point (BMP) at which the numerical solution of the differential equation takes over from the asymptotic formula. Taking the BMP closer to the SP will generally improve the accuracy of the asymptotic formula, but will make the computation more expensive as the Pruefer differential equations generally become progressively more ill-behaved as the SP is approached. The user is strongly recommended to experiment with placing the BMFs. In many singular problems quite crude asymptotic formulae will do. To help the user avoid needlessly accurate formulae, D02KEF outputs two 'sensitivity coefficients' (\(\sigma \)) which estimate how much the errors at the BMP's affect the computed eigenvalue. They are described in detail below, see Section 8.6.

Example of coding BDYVAL:

The example below illustrates typical situations:

\[
\begin{align*}
(2) \\
y'' + (\lambda - x - 1)y &= 0, \text{ for } 0 < x < \infty \\
(2) \\
(x)
\end{align*}
\]

the boundary conditions being that \(y \) should remain bounded as \(x \) tends to 0 and \(x \) tends to \(\infty \).
At the end $x=0$ there is one solution that behaves like x and another that behaves like x^{-1}. For the first of these solutions $p(x)y'/y$ is asymptotically $2/x$ while for the second it is asymptotically $-1/x$. Thus the desired ratio is specified by setting

\[YL(1)=x \text{ and } YL(2)=2.0. \]

At the end $x=\infty$ the equation behaves like Airy's equation shifted through (λ), i.e., like $y''-ty=0$ where $t=x-(\lambda)$, so again there are two types of solution. The solution we require behaves as

\[
\left(\frac{2}{3}\right)^{\frac{3}{2}} \frac{4}{\sqrt{t}} \exp\left(-\frac{t^3}{3}\right)
\]

and the other as

\[
\left(\frac{2}{3}\right)^{\frac{3}{2}} \frac{4}{\sqrt{t}} \exp\left(\frac{t^3}{3}\right)
\]

once, the desired solution has $p(x)y'/y=-\sqrt{t}$ so that we could set

\[YR(1) = 1.0 \text{ and } YR(2)=-\sqrt{x-(\lambda)}. \]

The complete subroutine might thus be

```fortran
SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR)
real XL, XR, ELAM, YL(3), YR(3)
YL(1) = XL
YL(2) = 2.0E0
YR(1) = 1.0E0
YR(2) = -SQRT(XR - ELAM)
RETURN
END
```

Clearly for this problem it is essential that any value given by D02KEF to XR is well to the right of the value of ELAM, so that the user must vary the right-hand BMP with the eigenvalue index k, the function $\text{Ai}(x)$, so there is no problem in estimating ELAM.

More accurate asymptotic formulae are easily found - near $x=0$ by the standard Frobenius method, and near $x=\infty$ by using standard
asymptotics for $Ai(x)$, $Ai'(x)$ (see [1], p. 448). For example, by
the Frobenius method the solution near $x=0$ has the expansion

$$y(x) = c_0 + c_1 x + c_2 x^2 + \ldots$$

with

$$c_0 = \frac{-\lambda}{n(n+3)}, c_1 = 0, c_2 = \frac{n-3}{n-2}, \ldots, c_n = \frac{1}{n}$$

This yields

$$y(x) = \frac{2}{\lambda^2} - \frac{\lambda}{x} + \ldots$$

8.6. The Sensitivity Parameters (σ_l) and (σ_r)

The sensitivity parameters $(\sigma_l), (\sigma_r)$ (held in HMAX(1,m-1)
and HMAX(1,m) on output) estimate the effect of errors in the
boundary conditions. For sufficiently small errors $(\Delta)y,$
$(\Delta)y'$ in y and y' respectively, the relations

$$(\Delta)(\lambda) \sim (y.(\Delta)y' - py'.(\Delta)y) (\sigma_l)$$

$$(\Delta)(\lambda) \sim (y.(\Delta)y' - py'.(\Delta)y) (\sigma_r)$$

are satisfied where the subscripts l, r denote errors committed
at left- and right-hand BMP's respectively, and $(\Delta)(\lambda)$
denotes the consequent error in the computed eigenvalue.

8.7. Missed Zeros

This is a pitfall to beware of at a singular point. If the BMP is
chosen so far from the SP that a zero of the desired
eigenfunction lies in between them, then the routine will fail to
number of zeros of its eigenfunction, the result will be that:
(a) The wrong eigenvalue will be computed for the given index \(k \) - in fact some \(\lambda \) will be found where \(k' \geq 1 \).

\[
k + k'\]

(b) The same index \(k \) can cause convergence to any of several eigenvalues depending on the initial values of \(\text{ELAM} \) and \(\text{DELAM} \).

It is up to the user to take suitable precautions - for instance by varying the position of the BMP's in the light of his knowledge of the asymptotic behaviour of the eigenfunction at different eigenvalues.

9. Example

To find the 11th eigenvalue and eigenfunction of the example of Section 8.5, using the simple asymptotic formulae for the boundary conditions.

Comparison of the results from this example program with the corresponding results from D02KDF(*) example program shows that similar output is produced from the routine \text{MONIT}, followed by the eigenfunction values from \text{REPORT}, and then a further line of information from \text{MONIT} (corresponding to the integration to find the eigenfunction). Final information is printed within the example program exactly as with D02KDF(*).

3

Note the discrepancy at the matching point \(c = \sqrt{\lambda} \), the maximum of \(q(x; \lambda) \), in this case) between the solutions obtained by integrations from left and right end-points.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.3. NAGD.HT

\beginscroll
\begin{verbatim}
D02RAF(3NAG) Foundation Library (12/10/92) D02RAF(3NAG)

D02 -- Ordinary Differential Equations
D02RAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D02RAF solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations, using a deferred correction technique and Newton iteration.

2. Specification

SUBROUTINE D02RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT,
1 X, Y, IY, ABT, FCN, G, IJAC, JACOBF,
2 JACOBG, DELEPS, JACEPS, JACGEP, WORK,
3 LWORK, IWORK, LIWORK, IFAIL)

INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, IY,
1 IJAC, LWORK, LIWORK, IFAIL

DOUBLE PRECISION TOL, X(MNP), Y(IY, MNP), ABT(N), DELEPS,
1 WORK(LWORK)

EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP

3. Description

D02RAF solves a two-point boundary-value problem for a system of n ordinary differential equations in the interval (a,b) with b>a. The system is written in the form

\[y_i' = f(x, y_1, y_2, \ldots, y_n), \quad i=1,2,\ldots,n \] \hspace{1cm} (1)

and the derivatives \(f \) are evaluated by a subroutine FCN supplied by the user. With the differential equations (1) must be given a system of n (nonlinear) boundary conditions.
\end{verbatim}
\endscroll
CHAPTER 22. NAG LIBRARY ROUTINES

\[g(y(a), y(b)) = 0, \quad i = 1, 2, \ldots, n \]

where

\[
y(x) = [y(x), y(x), \ldots, y(x)]^T.
\]

The functions \(g \) are evaluated by a subroutine \(G \) supplied by the user. The solution is computed using a finite-difference technique with deferred correction allied to a Newton iteration to solve the finite-difference equations. The technique used is described fully in Pereyra [1].

The user must supply an absolute error tolerance and may also supply an initial mesh for the finite-difference equations and an initial approximate solution (alternatively a default mesh and approximation are used). The approximate solution is corrected using Newton iteration and deferred correction. Then, additional points are added to the mesh and the solution is recomputed with the aim of making the error everywhere less than the user's tolerance and of approximately equidistributing the error on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on the other hand, the solution is required at several specific points then the user should use the interpolation routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

The Newton iteration requires Jacobian matrices

\[
\begin{align*}
(\frac{df}{dx})_{ij} & \quad (\frac{dg}{dx})_{ij} \\
(\frac{df}{dy(a)})_{ij} & \quad (\frac{df}{dy(b)})_{ij} \\
(\frac{df}{dy(a)})_{ij} & \quad (\frac{df}{dy(b)})_{ij}
\end{align*}
\]

These may be supplied by the user through subroutines JACOBF for \((\frac{df}{dx}) \)
\((\frac{df}{dy(a)}) \) and JACOBG for the others. Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm described in Curtis et al [2].

For problems of the type (1) and (2) for which it is difficult to
determine an initial approximation from which the Newton
iteration will converge, a continuation facility is provided. The
user must set up a family of problems
\[y' = f(x, y, \epsilon), \quad g(y(a), y(b), \epsilon) = 0, \quad (3) \]

where \(f = [f_1, f_2, \ldots, f_n] \) etc, and where \(\epsilon \) is a
continuation parameter. The choice \(\epsilon = 0 \) must give a
problem (3) which is easy to solve and \(\epsilon = 1 \) must define
the problem whose solution is actually required. The routine
solves a sequence of problems with \(\epsilon \) values
\[0 = \epsilon_0 < \epsilon_1 < \ldots < \epsilon_p = 1. \quad (4) \]
The number \(p \) and the values \(\epsilon_i \) are chosen by the routine
so that each problem can be solved using the solution of its
predecessor as a starting approximation. Jacobians \(\frac{df}{d\epsilon} \)
and \(\frac{dg}{d\epsilon} \) are required and they may be supplied by the
user via routines JACEPS and JACGEP respectively or may be
computed by numerical differentiation.

4. References

Fortran Program for First Order Nonlinear, Ordinary Boundary
Problems. Codes for Boundary Value Problems in Ordinary
Differential Equations. Lecture Notes in Computer Science.
(ed B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer-Verlag.

Appics. 13 117--119.

5. Parameters

1: \(N \) -- INTEGER
 \text{Input}
 On entry: the number of differential equations, \(n \).
 Constraint: \(N > 0 \).

2: \(MNP \) -- INTEGER
 \text{Input}
 On entry: \(MNP \) must be set to the maximum permitted number
CHAPTER 22. NAG LIBRARY ROUTINES

of points in the finite-difference mesh. If LWORK or LIWORK (see below) is too small then internally MNP will be replaced by the maximum permitted by these values. (A warning message will be output if on entry IFAIL is set to obtain monitoring information.) Constraint: MNP >= 32.

3: NP -- INTEGER Input/Output
On entry: NP must be set to the number of points to be used in the initial mesh. Constraint: 4 <= NP <= MNP. On exit: the number of points in the final mesh.

4: NUMBEG -- INTEGER Input
On entry: the number of left-hand boundary conditions (that is the number involving y(a) only). Constraint: 0 <= NUMBEG < N.

5: NUMMIX -- INTEGER Input
On entry: the number of coupled boundary conditions (that is the number involving both y(a) and y(b)). Constraint: 0 <= NUMMIX <= N - NUMBEG.

6: TOL -- DOUBLE PRECISION Input
On entry: a positive absolute error tolerance. If

a=x <x <...<x =b
1 2 NP

is the final mesh, z(x) is the jth component of the
j i
approximate solution at x, and y(x) is the jth component
i j
of the true solution of (1) and (2), then, except in extreme circumstances, it is expected that

|z(x) - y(x)| <= TOL, i=1,2,...,NP ; j=1,2,...,n. (5)

j i j i
Constraint: TOL > 0.0.

7: INIT -- INTEGER Input
On entry: indicates whether the user wishes to supply an initial mesh and approximate solution (INIT /= 0) or whether default values are to be used, (INIT = 0).

8: X(MNP) -- DOUBLE PRECISION array Input/Output
On entry: the user must set X(1) = a and X(NP) = b. If INIT = 0 on entry a default equispaced mesh will be used, otherwise the user must specify a mesh by setting X(i) = x, i = 2,3,...,NP-1. Constraints:

X(1) < X(NP), if INIT = 0,
X(1) < X(2) <... < X(NP), if INIT /= 0.
On exit: X(1),X(2),...,X(NP) define the final mesh (with
the returned value of NP) and $X(1) = a$ and $X(NP) = b$.

9: $Y(IY,MNP) --$ DOUBLE PRECISION array Input/Output
On entry: if INIT = 0, then Y need not be set.

If INIT /= 0, then the array Y must contain an initial approximation to the solution such that $Y(j,i)$ contains an approximation to
$$y_j(x_i), \quad i = 1,2,\ldots, NP; \quad j = 1,2,\ldots, n.$$

On exit: the approximate solution $z_j(x_i)$ satisfying (5) on the final mesh, that is
$$Y(j,i) = z_j(x_i), \quad i = 1,2,\ldots, NP; \quad j = 1,2,\ldots, n,$$
where NP is the number of points in the final mesh. If an error has occurred then Y contains the latest approximation to the solution. The remaining columns of Y are not used.

10: $IY -- INTEGER$ Input
On entry:
the first dimension of the array Y as declared in the (sub)program from which D02RAF is called.
Constraint: $IY \geq N$.

11: $ABT(N) --$ DOUBLE PRECISION array Output
On exit: $ABT(i), \quad i = 1,2,\ldots, n$, holds the largest estimated error (in magnitude) of the ith component of the solution over all mesh points.

12: $FCN -- SUBROUTINE$, supplied by the user. External Procedure
FCN must evaluate the functions f (i.e., the derivatives y') at a general point x for a given value of $(epsilon)_i$, the continuation parameter (see Section 3).

Its specification is:

```
SUBROUTINE FCN (X, EPS, Y, F, N)
INTEGER N
DOUBLE PRECISION X, EPS, Y(N), F(N)
```

1: $X -- DOUBLE PRECISION$ Input
On entry: the value of the argument x.

2: $EPS -- DOUBLE PRECISION$ Input
On entry: the value of the continuation parameter, $(epsilon)$. This is 1 if continuation is not being used.
CHAPTER 22. NAG LIBRARY ROUTINES

3: Y(N) -- DOUBLE PRECISION array Input
On entry: the value of the argument y, for
\(i = 1, 2, \ldots, n \).

4: F(N) -- DOUBLE PRECISION array Output
On exit: the values of f, for \(i = 1, 2, \ldots, n \).

5: N -- INTEGER Input
On entry: the number of equations.

FCN must be declared as EXTERNAL in the (sub)program
from which D02RAF is called. Parameters denoted as
Input must not be changed by this procedure.

13: G -- SUBROUTINE, supplied by the user. External Procedure

G must evaluate the boundary conditions in equation (3) and
place them in the array BC.

Its specification is:

```fortran
SUBROUTINE G (EPS, YA, YB, BC, N)
INTEGER N
DOUBLE PRECISION EPS, YA(N), YB(N), BC(N)

1: EPS -- DOUBLE PRECISION Input
On entry: the value of the continuation parameter,
(epsilon). This is 1 if continuation is not being used.

2: YA(N) -- DOUBLE PRECISION array Input
On entry: the value y(a), for \( i = 1, 2, \ldots, n \).

3: YB(N) -- DOUBLE PRECISION array Input
On entry: the value y(b), for \( i = 1, 2, \ldots, n \).

4: BC(N) -- DOUBLE PRECISION array Output
On exit: the values g(y(a),y(b),(epsilon)), for
\( i = 1, 2, \ldots, n \). These must be ordered as follows:
(i) first, the conditions involving only y(a) (see NUMBEG description above);
(ii) next, the NUMMIX coupled conditions involving
both y(a) and y(b) (see NUMMIX description
above); and,
```
(iii) finally, the conditions involving only y(b) (N- NUMBEG-NUMMIX).

5: N -- INTEGER Input
 On entry: the number of equations, n.
G must be declared as EXTERNAL in the (sub)program from
which D02RAF is called. Parameters denoted as Input
must not be changed by this procedure.

14: IJAC -- INTEGER Input
 On entry: indicates whether or not the user is supplying
Jacobian evaluation routines. If IJAC /= 0 then the user
must supply routines JACOBF and JACOBG and also, when
continuation is used, routines JACEPS and JACGEP. If IJAC =
0 numerical differentiation is used to calculate the
Jacobian and the routines D02GAZ, D02GAY, D02GAZ and D02GAX

 (ddf)
 (i)
 (ddy)
 (j)

JACOBF must evaluate the Jacobian (-----) for i,j=1,2,...,n,
 (ddy)
 (j)
given x and y , for j=1,2,...,n.

Its specification is:

 SUBROUTINE JACOBF (X, EPS, Y, F, N)
 INTEGER N
 DOUBLE PRECISION X, EPS, Y(N), F(N,N)

 1: X -- DOUBLE PRECISION Input
 On entry: the value of the argument x.

 2: EPS -- DOUBLE PRECISION Input
 On entry: the value of the continuation parameter
 (epsilon). This is 1 if continuation is not being used.

 3: Y(N) -- DOUBLE PRECISION array Input
 On entry: the value of the argument y , for
 i
 i=1,2,...,n.

 4: F(N,N) -- DOUBLE PRECISION array Output
 On exit: F(i,j) must be set to the value of
 ----,
 ddy
 ddy
 j
 evaluated at the point (x,y), for i,j=1,2,...,n.
5: N -- INTEGER Input
 On entry: the number of equations, n.
JACOBF must be declared as EXTERNAL in the (sub)program
from which D02RAF is called. Parameters denoted as
Input must not be changed by this procedure.

16: JACOBG -- SUBROUTINE, supplied by the user.

External Procedure

\[
\begin{pmatrix}
 \frac{\partial y_i}{\partial y_j} \\
 \frac{\partial y_i}{\partial y_j}
\end{pmatrix}
\]

JACOBG must evaluate the Jacobians \(\frac{\partial y_i}{\partial y_j} \)
for \(i,j=1,2,\ldots,n \).

The ordering of the rows of AJ and BJ must correspond to
the ordering of the boundary conditions described in the
specification of subroutine G above.

Its specification is:

```fortran
SUBROUTINE JACOBG (EPS, YA, YB, AJ, BJ, N)
  INTEGER N
  DOUBLE PRECISION EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)

1: EPS -- DOUBLE PRECISION Input
   On entry: the value of the continuation parameter,
   (epsilon). This is 1 if continuation is not being used.

2: YA(N) -- DOUBLE PRECISION array Input
   On entry: the value y (a), for i=1,2,\ldots,n.

3: YB(N) -- DOUBLE PRECISION array Input
   On entry: the value y (b), for i=1,2,\ldots,n.

4: AJ(N,N) -- DOUBLE PRECISION array Output
   On exit: AJ(i,j) must be set to the value \( \frac{\partial y_i}{\partial y_j} \)
   for i,j=1,2,\ldots,n.

5: BJ(N,N) -- DOUBLE PRECISION array Output
   On exit: BJ(i,j) must be set to the value \( \frac{\partial y_i}{\partial y_j} \)
   for i,j=1,2,\ldots,n.
```
for $i,j=1,2,...,n$.

6: N -- INTEGER
 Input
 On entry: the number of equations, n.

JACOBG must be declared as EXTERNAL in the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

17: $DELEPS$ -- DOUBLE PRECISION
 Input/Output
 On entry: $DELEPS$ must be given a value which specifies whether continuation is required. If $DELEPS \leq 0.0$ or $DELEPS \geq 1.0$ then it is assumed that continuation is not required. If $0.0 < DELEPS < 1.0$ then it is assumed that continuation is required unless $DELEPS < \text{square root of machine precision}$ when an error exit is taken. $DELEPS$ is used as the increment $(\epsilon)_{-}^{(p)}$ (see (4)) and the choice $DELEPS = 0.1$ is recommended. On exit: an overestimate of the increment $(\epsilon)_{-}^{(p)}$ (in fact the value of the increment $\frac{1}{p-1}$ which would have been tried if the restriction $(\epsilon)_{-}^{(p)} = 1$ had not been imposed). If continuation was not requested then $DELEPS = 0.0$.

If continuation is not requested then the parameters JACEPS and JACGEP may be replaced by dummy actual parameters in the call to D02RAF. (D02GAZ and D02GAX respectively may be used as the dummy parameters.)

18: JACEPS -- SUBROUTINE, supplied by the user.
 External Procedure
 ddf
 i
 JACEPS must evaluate the derivative $\frac{d}{d(\epsilon)}y$ if continuation is being used.

Its specification is:

 SUBROUTINE JACEPS (X, EPS, Y, F, N)
 INTEGER N
 DOUBLE PRECISION X, EPS, Y(N), F(N)

1: X -- DOUBLE PRECISION
 Input
 On entry: the value of the argument x.

2: EPS -- DOUBLE PRECISION
 Input
 On entry: the value of the continuation parameter, $(\epsilon)_{-}^{(p)}$.

3: Y(N) -- DOUBLE PRECISION array
 On entry: the solution values \(y \) at the point \(x \), for \(i = 1, 2, \ldots, n \).

4: F(N) -- DOUBLE PRECISION array
 On exit: \(F(i) \) must contain the value \(\frac{d^2 f_i}{d(\epsilon)} \) at the point \((x, y) \), for \(i = 1, 2, \ldots, n \).

5: N -- INTEGER
 On entry: the number of equations, \(n \).

JACEPS must be declared as EXTERNAL in the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

19: JACGEP -- SUBROUTINE, supplied by the user.
 External Procedure

 JACGEP must evaluate the derivatives \(\frac{d^2 g_i}{d(\epsilon)} \) if continuation is being used.

Its specification is:

```fortran
SUBROUTINE JACGEP (EPS, YA, YB, BCEP, N)  
INTEGER N  
DOUBLE PRECISION EPS, YA(N), YB(N), BCEP(N)

1: EPS -- DOUBLE PRECISION  
   On entry: the value of the continuation parameter, \( \epsilon \).

2: YA(N) -- DOUBLE PRECISION array  
   On entry: the value of \( y(a) \), for \( i = 1, 2, \ldots, n \).

3: YB(N) -- DOUBLE PRECISION array  
   On entry: the value of \( y(b) \), for \( i = 1, 2, \ldots, n \).

4: BCEP(N) -- DOUBLE PRECISION array  
   On exit: BCEP(i) must contain the value of \( \frac{d^2 g_i}{d(\epsilon)} \) , for \( i = 1, 2, \ldots, n \).
```
5: N -- INTEGER
 On entry: the number of equations, n.
 JACGEP must be declared as EXTERNAL in the (sub)program
 from which D02RAF is called. Parameters denoted as
 Input must not be changed by this procedure.

20: WORK(LWORK) -- DOUBLE PRECISION array
 Workspace

21: LWORK -- INTEGER
 On entry:
 the dimension of the array WORK as declared in the
 (sub)program from which D02RAF is called.
 Constraint: LWORK>=MNP*(3N +6N+2)+4N +3N.

22: IWORK(LIWORK) -- INTEGER array
 Workspace

23: LIWORK -- INTEGER
 On entry:
 the dimension of the array IWORK as declared in the
 (sub)program from which D02RAF is called.
 Constraints:
 LIWORK>=MNP*(2*N+1)+N, if IJAC /= 0,
 LIWORK>=MNP*(2*N+1)+N +4*N+2, if IJAC = 0.

24: IFAIL -- INTEGER
 Input/Output
 For this routine, the normal use of IFAIL is extended to
 control the printing of error and warning messages as well
 as specifying hard or soft failure (see the Essential
 Introduction).
 Before entry, IFAIL must be set to a value with the decimal
 expansion cba, where each of the decimal digits c, b and a
 must have a value of 0 or 1.
 a=0 specifies hard failure, otherwise soft failure;
 b=0 suppresses error messages, otherwise error messages
 will be printed (see Section 6);
 c=0 suppresses warning messages, otherwise warning
 messages will be printed (see Section 6).
 The recommended value for inexperienced users is 110 (i.e.,
 hard failure with all messages printed).
 Unless the routine detects an error (see Section 6), IFAIL
 contains 0 on exit.
6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as defined by X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL = 1
One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or LIWORK has been incorrectly set, or X (1) >= X(NP) or the mesh points X(i) are not in strictly ascending order.

IFAIL = 2
A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error exit normally occurs when the problem being solved is difficult (for example, there is a boundary layer) and high accuracy is requested. A poor initial choice of mesh points will make this error exit more likely.

IFAIL = 3
The Newton iteration has failed to converge. There are several possible causes for this error:
(i) faulty coding in one of the Jacobian calculation routines;

(ii) if IJAC = 0 then inaccurate Jacobians may have been calculated numerically (this is a very unlikely cause); or,

(iii) a poor initial mesh or initial approximate solution has been selected either by the user or by default or there are not enough points in the initial mesh.
Possibly, the user should try the continuation facility.

IFAIL = 4
The Newton iteration has reached round-off error level. It could be however that the answer returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL = 5
The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some circumstances, to a zero initial choice of approximate
solution (such as is chosen when \(\text{INIT} = 0 \)).

IFAIL= 6

There is no dependence on \((\epsilon) \) when continuation is being used. This can be due to faulty coding of \text{JACEPS} or \text{JACGEP} or, in some circumstances, to a zero initial choice of approximate solution (such as is chosen when \(\text{INIT} = 0 \)).

IFAIL= 7

\(\text{DELEPS} \) is required to be less than machine precision for continuation to proceed. It is likely that either the problem (3) has no solution for some value near the current value of \((\epsilon) \) (see the advisory print out from \text{D02RAF}) or that the problem is so difficult that even with continuation it is unlikely to be solved using this routine. If the latter cause is suspected then using more mesh points initially may help.

IFAIL= 8

Indicates that a serious error has occurred in a call to \text{D02RAF}. Check all array subscripts and subroutine parameter lists in calls to \text{D02RAF}. Seek expert help.

IFAIL= 9

Indicates that a serious error has occurred in a call to \text{D02RAR}. Check all array subscripts and subroutine parameter lists in calls to \text{D02RAF}. Seek expert help.

7. **Accuracy**

The solution returned by the routine will be accurate to the user's tolerance as defined by the relation (5) except in extreme circumstances. The final error estimate over the whole mesh for each component is given in the array \text{ABT}. If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

8. **Further Comments**

There are too many factors present to quantify the timing. The time taken by the routine is negligible only on very simple problems.

The user is strongly recommended to set \text{IFAIL} to obtain self-explanatory error messages, and also monitoring information about the course of the computation.

In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh and solution from one case as
the initial mesh is strongly recommended for the next.

9. Example

We solve the differential equation

\[y''' = -yy'' - 2(\text{epsilon})(1-y') \]

with (\text{epsilon})=1 and boundary conditions

\[y(0) = y'(0) = 0, \quad y'(10) = 1 \]

to an accuracy specified by TOL=1.0E-4. The continuation facility is used with the continuation parameter (\text{epsilon}) introduced as in the differential equation above and with DELEPS = 0.1 initially. (The continuation facility is not needed for this problem and is used here for illustration.)

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Partial differential equations

— nagd.ht —

D03(3NAG) Foundation Library (12/10/92) D03(3NAG)

D03 -- Partial Differential Equations Introduction -- D03
Chapter D03
Partial Differential Equations
1. Scope of the Chapter

This chapter is concerned with the solution of partial differential equations.

2. Background to the Problems

The definition of a partial differential equation problem includes not only the equation itself but also the domain of interest and appropriate subsidiary conditions. Indeed, partial differential equations are usually classified as elliptic, hyperbolic or parabolic according to the form of the equation and the form of the subsidiary conditions which must be assigned to produce a well-posed problem. Ultimately it is hoped that this chapter will contain routines for the solution of equations of each of these types together with automatic mesh generation routines and other utility routines particular to the solution of partial differential equations. The routines in this chapter will often call upon routines from the Linear Algebra Chapter F04 -- Simultaneous Linear Equations.

The classification of partial differential equations is easily described in the case of linear equations of the second order in two independent variables, i.e., equations of the form

\[a_{xx}u + 2a_{xy}u + a_{yy}u + b_{xx}u + b_{xy}u + b_{yy}u + c = 0, \]

where \(a, b, c, d, e, f \) and \(g \) are functions of \(x \) and \(y \) only. Equation (1) is called elliptic, hyperbolic or parabolic according as \(ac - b^2 \) is positive, negative or zero. Useful definitions of the concepts of elliptic, hyperbolic and parabolic character can also be given for differential equations in more than two independent variables, for systems and for nonlinear differential equations.

For elliptic equations, of which Laplace’s equation

\[u_{xx} + u_{yy} = 0 \]

is the simplest example of second order, the subsidiary conditions take the form of boundary conditions, i.e., conditions which provide information about the solution at all points of a closed boundary. For example, if equation (2) holds in a plane domain \(D \) bounded by a contour \(C \), a solution \(u \) may be sought subject to the condition

\[u = f \text{ on } C, \]
where \(f \) is a given function. The condition (3) is known as a Dirichlet boundary condition. Equally common is the Neumann boundary condition

\[
u' = g \quad \text{on } C,
\]

which is one form of a more general condition

\[
u' + fu = g \quad \text{on } C,
\]

where \(u' \) denotes the derivative of \(u \) normal to the contour \(C \) and \(f \) and \(g \) are given functions. Provided that \(f \) and \(g \) satisfy certain restrictions, condition (5) yields a well-posed boundary value problem for Laplace’s equation. In the case of the Neumann problem, one further piece of information, e.g. the value of \(u \) at a particular point, is necessary for uniqueness of the solution. Boundary conditions similar to the above are applicable to more general second order elliptic equations, whilst two such conditions are required for equations of fourth order.

For hyperbolic equations, the wave equation

\[
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0
\]

is the simplest example of second order. It is equivalent to a first order system

\[
\frac{\partial u}{\partial t} - \frac{\partial v}{\partial x} = 0, \quad \frac{\partial v}{\partial t} - \frac{\partial u}{\partial x} = 0.
\]

The subsidiary conditions may take the form of initial conditions, i.e., conditions which provide information about the solution at points on a suitable open boundary. For example, if equation (6) is satisfied for \(t > 0 \), a solution \(u \) may be sought such that

\[
u(x,0) = f(x), \quad \frac{\partial u}{\partial t}(x,0) = g(x),
\]

where \(f \) and \(g \) are given functions. This is an example of an initial value problem, sometimes known as Cauchy’s problem.

For parabolic equations, of which the heat conduction equation

\[
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0
\]

is the simplest example, the subsidiary conditions always include
some of initial type and may also include some of boundary type. For example, if equation (9) is satisfied for \(t > 0 \) and \(0 < x < 1 \), a solution \(u \) may be sought such that

\[
 u(x,0) = f(x), \quad 0 < x < 1, \quad (10)
\]

and

\[
 u(0,t) = 0, \quad u(1,t) = 1, \quad t > 0. \quad (11)
\]

This is an example of a mixed initial/boundary value problem.

For all types of partial differential equations, finite difference methods (Mitchell and Griffiths [5]) and finite element methods (Wait and Mitchell [9]) are the most common means of solution and such methods obviously feature prominently either in this chapter or in the companion NAG Finite Element Library. Many of the utility routines in this chapter are concerned with the solution of the large sparse systems of equations which arise from the finite difference and finite element methods.

Alternative methods of solution are often suitable for special classes of problems. For example, the method of characteristics is the most common for hyperbolic equations involving time and one space dimension (Smith [7]). The method of lines (see Mikhlin and Smolitsky [4]) may be used to reduce a parabolic equation to a (stiff) system of ordinary differential equations, which may be solved by means of routines from Chapter D02 -- Ordinary Differential Equations. Similarly, integral equation or boundary element methods (Jaswon and Symm [3]) are frequently used for elliptic equations. Typically, in the latter case, the solution of a boundary value problem is represented in terms of certain boundary functions by an integral expression which satisfies the differential equation throughout the relevant domain. The boundary functions are obtained by applying the given boundary conditions to this representation. Implementation of this method necessitates discretisation of only the boundary of the domain, the dimensionality of the problem thus being effectively reduced by one. The boundary conditions yield a full system of simultaneous equations, as opposed to the sparse systems yielded by the finite difference and finite element methods, but the full system is usually of much lower order. Solution of this system yields the boundary functions, from which the solution of the problem may be obtained, by quadrature, as and where required.

2.1. References

3. Recommendations on Choice and Use of Routines

The choice of routine will depend first of all upon the type of partial differential equation to be solved. At present no special allowances are made for problems with boundary singularities such as may arise at corners of domains or at points where boundary conditions change. For such problems results should be treated with caution.

Users may wish to construct their own partial differential equation solution software for problems not solvable by the routines described in Sections 3.1 to 3.4 below. In such cases users can employ appropriate routines from the Linear Algebra Chapters to solve the resulting linear systems; see Section 3.5 for further details.

3.1. Elliptic Equations

The routine D03EDF solves a system of seven-point difference equations in a rectangular grid (in two dimensions), using the multigrid iterative method. The equations are supplied by the user, and the seven-point form allows cross-derivative terms to
be represented (see Mitchell and Griffiths [5]). The method is particularly efficient for large systems of equations with diagonal dominance.

The routine D03EWF discretises a second-order equation on a two-dimensional rectangular region using finite differences and a seven-point molecule. The routine allows for cross-derivative terms, Dirichlet, Neumann or mixed boundary conditions, and either central or upwind differences. The resulting seven-diagonal difference equations are in a form suitable for passing directly to the multigrid routine D03EDF, although other solution methods could easily be used.

The routine D03FAF, based on the routine HW3CRT from FISHPACK (Swarztrauber and Sweet [8]), solves the Helmholtz equation in a three-dimensional cuboidal region, with any combination of Dirichlet, Neumann or periodic boundary conditions. The method used is based on the fast Fourier transform algorithm, and is likely to be particularly efficient on vector-processing machines.

3.2. Hyperbolic Equations

There are no routines available yet for the solution of these equations.

3.3. Parabolic Equations

There are no routines available yet for the solution of these equations.

But problems in two space dimensions plus time may be treated as a succession of elliptic equations [1], [6] using appropriate D03E- routines or one may use codes from the NAG Finite Element Library.

3.4. Utility Routines

There are no utility routines available yet, but routines are available in the Linear Algebra Chapters for the direct and iterative solution of linear equations. Here we point to some of the routines that may be of use in solving the linear systems that arise from finite difference or finite element approximations to partial differential equation solutions. Chapters F01 and F04 should be consulted for further information and for the routine documents. Decision trees for the solution of linear systems are given in Section 3.5 of the F04 Chapter Introduction.

The following routines allow the direct solution of symmetric
positive-definite systems:

Band \quad F04ACF

Variable band \quad F01MCF and F04MCF
(skyline)

Tridiagonal \quad F04FAF

Sparse \quad F01MAF* and F04MAF

(* the parameter DROPTL should be set to zero for F01MAF to give a direct solution)

and the following routines allow the iterative solution of symmetric positive-definite systems:

Sparse (incomplete \quad F01MAF and F04MBF
Cholesky)

Sparse (conjugate \quad F04MBF
gradient)

The latter routine above allows the user to supply a pre-conditioner and also allows the solution of indefinite symmetric systems.

The following routines allow the direct solution of unsymmetric systems:

Band \quad F01LBF and F04LDF

Almost block-
diagonal \quad F01LHF and F04LHF

Tridiagonal \quad F01LEF and F04LEF or F04EAF

Sparse \quad F01BRF (and F01BSF) and F04AXF

and the following routine allows the iterative solution of unsymmetric systems:

Sparse \quad F04QAF

The above routine allows the user to supply a pre-conditioner and also allows the solution of least-squares systems.

3.5. Index

Elliptic equations
22.3. NAGD.HT

equations on rectangular grid (seven-point 2-D molecule) D03EDF
discretisation on rectangular grid (seven-point 2-D molecule) D03EEF
Helmholtz’s equation in three dimensions D03FAF

D03 -- Partial Differential Equations

Chapter D03

Partial Differential Equations

D03EDF Elliptic PDE, solution of finite difference equations by a multigrid technique

D03EEF Discretize a 2nd order elliptic PDE on a rectangle

D03FAF Elliptic PDE, Helmholtz equation, 3-D Cartesian coordinates

Discrete elliptic PDE on rectangular region

--- nagd.ht ---

\end{verbatim}
\endscroll
\end{page}
not included in the Foundation Library.

1. Purpose

D03EDF solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique.

2. Specification

```plaintext
SUBROUTINE D03EDF (NGX, NGY, LDA, A, RHS, UB, MAXIT, ACC, 1 US, U, IOUT, NUMIT, IFAIL)
  INTEGER NGX, NGY, LDA, MAXIT, IOUT, NUMIT, IFAIL
  DOUBLE PRECISION A(LDA,7), RHS(LDA), UB(NGX*NGY), ACC, US 
  1 (LDA), U(LDA)
```

3. Description

D03EDF solves, by multigrid iteration, the seven-point scheme

\[
\begin{align*}
A_{i,j} u_{i,j} + A_{i-1,j} u_{i-1,j} + A_{i,j+1} u_{i,j+1} \\
+ A_{i-1,j} u_{i-1,j} + A_{i,j} u_{i,j} + A_{i+1,j} u_{i+1,j} \\
+ A_{i,j} u_{i,j-1} + A_{i,j} u_{i+1,j-1} = f \\
i=1,2,...,n; j=1,2,...,n,
\end{align*}
\]

which arises from the discretization of an elliptic partial differential equation of the form

\[
\begin{align*}
(alpha)(x,y)U + (beta)(x,y)U + (gamma)(x,y)U + (delta)(x,y)U \\
xx \hspace{1cm} xy \hspace{1cm} yy \hspace{1cm} x \\
+ (epsilon)(x,y)U + (phi)(x,y)U = (psi)(x,y) \\
y
\end{align*}
\]

and its boundary conditions, defined on a rectangular region. This we write in matrix form as

\[
Au = f
\]
The algorithm is described in separate reports by Wesseling [2], [3] and McCarthy [1].

Systems of linear equations, matching the seven-point stencil defined above, are solved by a multigrid iteration. An initial estimate of the solution must be provided by the user. A zero guess may be supplied if no better approximation is available.

A 'smoother' based on incomplete Crout decomposition is used to eliminate the high frequency components of the error. A restriction operator is then used to map the system onto a sequence of coarser grids. The errors are then smoothed and prolongated (mapped onto successively finer grids). When the finest cycle is reached, the approximation to the solution is corrected. The cycle is repeated for MAXIT iterations or until the required accuracy, ACC, is reached.

D03EDF will automatically determine the number l of possible coarse grids, 'levels' of the multigrid scheme, for a particular problem. In other words, D03EDF determines the maximum integer l so that \(n = m^2 + 1 \) and \(n = n^2 + 1 \), with \(m \geq 2 \) and \(n \geq 2 \).

It should be noted that the rate of convergence improves significantly with the number of levels used (see McCarthy [1]), so that \(n \) and \(n \) should be carefully chosen so that \(n - 1 \) and \(n - 1 \) have factors of the form \(2^x \), with \(l \) as large as possible. For good convergence the integer \(l \) should be at least 2.

D03EDF has been found to be robust in application, but being an iterative method the problem of divergence can arise. For a strictly diagonally dominant matrix \(A \)

\[
\begin{align*}
4 & \quad k \\
i_{ij} & \quad i_{ij} \\
\lfloor A \rceil & \quad \lfloor A \rceil \\
\quad & \quad k/4
\end{align*}
\]

no such problem is foreseen. The diagonal dominance of \(A \) is not a necessary condition, but should this condition be strongly violated then divergence may occur. The quickest test is to try
the routine.

4. References

5. Parameters

1: NGX -- INTEGER Input
 On entry: the number of interior grid points in the x-direction, n. NGX-1 should preferably be divisible by as high a power of 2 as possible. Constraint: NGX >= 3.

2: NGY -- INTEGER Input
 On entry: the number of interior grid points in the y-direction, n. NGY-1 should preferably be divisible by as high a power of 2 as possible. Constraint: NGY >= 3.

3: LDA -- INTEGER Input
 On entry: the first dimension of the array A as declared in the (sub)program from which D03EDF is called, which must also be a lower bound for the dimensions of the arrays RHS, US and U. It is always sufficient to set LDA>=4*(NGX+1)*(NGY+1)/3, but slightly smaller values may be permitted, depending on the values of NGX and NGY. If on entry, LDA is too small, an error message gives the minimum permitted value. (LDA must be large enough to allow space for the coarse-grid approximations).

4: A(LDA,7) -- DOUBLE PRECISION array Input/Output
 On entry: A(i+(j-1)*NGX,k) must be set to A, for i = 1,2,...,NGX; j = 1,2,...,NGY and k = 1,2,...,7. On exit: A is overwritten.

5: RHS(LDA) -- DOUBLE PRECISION array Input/Output
 On entry: RHS(i+(j-1)*NGX) must be set to f, for i = 1,2,...,NGX; j = 1,2,...,NGY. On exit: the first NGX*NGY
elements are unchanged and the rest of the array is used as workspace.

6: UB(NGX*NGY) -- DOUBLE PRECISION array Input/Output
On entry: UB(i+(j-1)*NGX) must be set to the initial estimate for the solution \(u \). On exit: the corresponding \(u_{ij} \) component of the residual \(r = f - Au \).

7: MAXIT -- INTEGER Input
On entry: the maximum permitted number of multigrid iterations. If MAXIT = 0, no multigrid iterations are performed, but the coarse-grid approximations and incomplete Crout decompositions are computed, and may be output if IOUT is set accordingly. Constraint: MAXIT >= 0.

8: ACC -- DOUBLE PRECISION Input
On entry: the required tolerance for convergence of the residual 2-norm:

\[
\sqrt{\frac{\sum_{k=1}^{\text{NGX} \times \text{NGY}} \|r\|^2}{\text{NGX} \times \text{NGY}}} < \text{ACC}
\]

where \(r = f - Au \) and \(u \) is the computed solution. Note that the norm is not scaled by the number of equations. The routine will stop after fewer than MAXIT iterations if the residual 2-norm is less than the specified tolerance. (If MAXIT > 0, at least one iteration is always performed.)

If on entry ACC = 0.0, then the machine precision is used as a default value for the tolerance; if ACC > 0.0, but ACC is less than the machine precision, then the routine will stop when the residual 2-norm is less than the machine precision and IFAIL will be set to 4. Constraint: ACC >= 0.0.

9: US(LDA) -- DOUBLE PRECISION array Output
On exit: the residual 2-norm, stored in element US(1).

10: U(LDA) -- DOUBLE PRECISION array Output
On exit: the computed solution \(u \) is returned in \(U(i+(j-1)*\text{NGX}) \), for \(i = 1,2,\ldots,\text{NGX}; j = 1,2,\ldots,\text{NGY} \).

11: IOUT -- INTEGER Input
On entry: controls the output of printed information to the advisory message unit as returned by X04ABF:
IOUT = 0
IOUT = 1
The solution \(u_{ij} \), for \(i = 1,2,\ldots,NGX; j = 1,2,\ldots,NGY. \)

IOUT = 2
The residual 2-norm after each iteration, with the reduction factor over the previous iteration.

IOUT = 3
As for IOUT = 1 and IOUT = 2.

IOUT = 4
As for IOUT = 3, plus the final residual (as returned in UB).

IOUT = 5
As for IOUT = 4, plus the initial elements of A and RHS.

IOUT = 6
As for IOUT = 5, plus the Galerkin coarse grid approximations.

IOUT = 7
As for IOUT = 6, plus the incomplete Crout decompositions.

IOUT = 8
As for IOUT = 7, plus the residual after each iteration.

The elements \(A(p,k) \), the Galerkin coarse grid approximations and the incomplete Crout decompositions are output in the format:

\[
Y\text{-index} = j \\
X\text{-index} = i A(p,1) A(p,2) A(p,3) A(p,4) A(p,5) A(p,6) A(p,7)
\]

where \(p = i + (j-1) \times NGX \), \(i = 1,2,\ldots,NGX \) and \(j = 1,2,\ldots,NGY. \)

The vectors \(U(p) \), \(UB(p) \), \(RHS(p) \) are output in matrix form with NGY rows and NGX columns. Where NGX > 10, the NGX values for a given j-value are produced in rows of 10.

Values of IOUT > 4 may yield considerable amounts of output.

Constraint: \(0 \leq IOUT \leq 8. \)
On exit: the number of iterations performed.

13: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry NGX < 3,
or NGY < 3,
or LDA is too small,
or ACC < 0.0,
or MAXIT < 0,
or IOUT < 0,
or IOUT > 8.

IFAIL= 2
MAXIT iterations have been performed with the residual 2-norm decreasing at each iteration but the residual 2-norm has not been reduced to less than the specified tolerance (see ACC). Examine the progress of the iteration by setting IOUT >= 2.

IFAIL= 3
As for IFAIL = 2, except that at one or more iterations the residual 2-norm did not decrease. It is likely that the method fails to converge for the given matrix A.

IFAIL= 4
On entry ACC is less than the machine precision. The routine terminated because the residual norm is less than the machine precision.

7. Accuracy
See ACC (Section 5).

8. Further Comments

The rate of convergence of this routine is strongly dependent upon the number of levels, \(l \), in the multigrid scheme, and thus the choice of NGX and NGY is very important. The user is advised to experiment with different values of NGX and NGY to see the effect they have on the rate of convergence; for example, using a value such as NGX = 65 (=2 +1) followed by NGX = 64 (for which \(l = 1 \)).

9. Example

The program solves the elliptic partial differential equation

\[
U - (\alpha) U + U = -4, \quad (\alpha) = 1.7
\]

\[
\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}
\]

on the unit square \(0 \leq x, y \leq 1 \), with boundary conditions

\[
\begin{align*}
\{ & x=0, \ 0 \leq y \leq 1 \} \\
U = 0 \quad & \{ y=0, \ 0 \leq x \leq 1 \} \\
U = 1 \quad & \{ x=1, \ 0 \leq y \leq 1 \} \\
\{ & y=1, \ 0 \leq x \leq 1 \}
\end{align*}
\]

For the equation to be elliptic, \((\alpha) \) must be less than 2.

The equation is discretized on a square grid with mesh spacing \(h \) in both directions using the following approximations:

Please see figure in printed Reference Manual

\[
\begin{align*}
1 & \\
U &= -(U - 2U + U) \\
xx &= -2 E O W \\
& \quad h
\end{align*}
\]

\[
\begin{align*}
1 & \\
U &= -(U - 2U + U) \\
yy &= -2 N O S \\
& \quad h
\end{align*}
\]

\[
\begin{align*}
1 & \\
U &= -(U - U + U + U - U + U) \\
xy &= -2 N NW E O W SE S \\
& \quad 2h
\end{align*}
\]
Thus the following equations are solved:

\[\begin{align*}
1 & \quad -(\alpha)u + (1 - -(\alpha))u \\
2 & \quad i-1,j+1 \\
2 & \quad i,j+1 \\
1 & \quad + (1 - -(\alpha))u + (-4 + (\alpha))u + (1 - -(\alpha))u \\
2 & \quad i-1,j \\
2 & \quad ij \\
2 & \quad i+1,j \\
1 & \quad + (1 - -(\alpha))u + -(\alpha)u \\
2 & \quad i,j-1 \\
2 & \quad i+1,j-1 \\
2 & \quad = -4h
\end{align*} \]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

D03EEF discretizes a second order elliptic partial differential equation (PDE) on a rectangular region.

2. Specification

SUBROUTINE D03EEF (XMIN, XMAX, YMIN, YMAX, PDEF, BNDY, 1
NGX, NGY, LDA, A, RHS, SCHEME, IFAIL)

INTEGER NGX, NGY, LDA, IFAIL
DOUBLE PRECISION XMIN, XMAX, YMIN, YMAX, A(LDA,7), RHS(LDA)
CHARACTER*1 SCHEME
EXTERNAL PDEF, BNDY

3. Description

D03EEF discretizes a second order linear elliptic partial differential equation of the form

\[
\begin{align*}
2 & \frac{\partial^2 U}{\partial x^2} & 2 & \frac{\partial^2 U}{\partial y^2} & 2 & \frac{\partial^2 U}{\partial x \partial y} \\
& \alpha(x,y) & & \beta(x,y) & & \gamma(x,y) \\
2 & \frac{\partial U}{\partial x} & 2 & \frac{\partial U}{\partial y} & \\
& \delta(x,y) & & \epsilon(x,y) & & \phi(x,y) \\
& & & & & U = \psi(x,y)
\end{align*}
\]

on a rectangular region

\[
x \leq x \leq x \\
A \quad B
\]

\[
y \leq y \leq y \\
A \quad B
\]

subject to boundary conditions of the form

\[
\begin{align*}
\frac{\partial U}{\partial n} & = c(x,y) \\
a(x,y)U + b(x,y) & = c(x,y)
\end{align*}
\]
\[\text{ddU} \]
where \(\text{---} \) denotes the outward pointing normal derivative on the \(\text{ddn} \) boundary. Equation (1) is said to be elliptic if
\[
2 \quad 4(\alpha(x,y)\gamma(x,y)) > (\beta(x,y))
\]
for all points in the rectangular region. The linear equations produced are in a form suitable for passing directly to the multigrid routine D03EDF.

The equation is discretized on a rectangular grid, with \(n_x \) grid points in the \(x \)-direction and \(n_y \) grid points in the \(y \)-direction. The grid spacing used is therefore
\[
\begin{align*}
 h &= \frac{(x_B - x_A)}{(n_x - 1)} \\
 h &= \frac{(y_B - y_A)}{(n_y - 1)}
\end{align*}
\]
and the co-ordinates of the grid points \((x_i, y_j)\) are
\[
\begin{align*}
 x &= x_A + (i-1)h, \quad i=1,2,\ldots,n, \\
 y &= y_A + (j-1)h, \quad j=1,2,\ldots,n.
\end{align*}
\]
At each grid point \((x_i, y_j)\) six neighbouring grid points are used to approximate the partial differential equation, so that the equation is discretized on the following seven-point stencil:

Please see figure in printed Reference Manual

For convenience the approximation \(u_{ij} \) to the exact solution \(U(x_i, y_j) \) is denoted by \(u_{ij} \), and the neighbouring approximations \(u_{ij}^0 \) are labelled according to points of the compass as shown. Where numerical labels for the seven points are required, these are also shown above.
The following approximations are used for the second derivatives:

\[
\frac{2}{dd \ U_1} \frac{dd U}{dd x} \approx \frac{u - 2u + u}{2 h x}.
\]

\[
\frac{2}{dd \ U_2} \frac{dd U}{dd x} \approx \frac{u - 2u + u}{2 h x}.
\]

\[
\frac{2}{dd \ U_1} \frac{dd U}{dd y} \approx \frac{u - u + u - 2u + u - u + u}{2h y}.
\]

Two possible schemes may be used to approximate the first derivatives:

Central Differences

\[
\frac{dd U_1}{dd x} \approx \frac{u - u}{2h x}.
\]

\[
\frac{dd U_1}{dd y} \approx \frac{u - u}{2h y}.
\]

Upwind Differences

\[
\frac{dd U_1}{dd x} \approx \frac{u - u}{h \delta(x,y)} \quad \text{if} \quad \delta(x,y) > 0.
\]

\[
\frac{dd U_1}{dd y} \approx \frac{u - u}{h \delta(x,y)} \quad \text{if} \quad \delta(x,y) < 0.
\]
Central differences are more accurate than upwind differences, but upwind differences may lead to a more diagonally dominant matrix for those problems where the coefficients of the first derivatives are significantly larger than the coefficients of the second derivatives.

The approximations used for the first derivatives may be written in a more compact form as follows:

\[
\frac{\partial u}{\partial x} \approx (k - 1)u - 2ku + (k + 1)u_x
\]
\[
\frac{\partial u}{\partial y} \approx (k - 1)u - 2ku + (k + 1)u_y
\]

where \(k = \text{sign} (\delta) \) and \(k = \text{sign} (\epsilon) \) for upwind differences, and \(k = k = 0 \) for central differences.

At all points in the rectangular domain, including the boundary, the coefficients in the partial differential equation are evaluated by calling the user-supplied subroutine PDEF, and applying the approximations. This leads to a seven-diagonal system of linear equations of the form:

\[
\begin{align*}
A_{ij} u_{i-1,j+1} + A_{ij} u_{i,j+1} + A_{ij} u_{i-1,j} + A_{ij} u_{i,j} + A_{ij} u_{i+1,j} &= f_{ij} \quad i = 1, 2, \ldots, n; j = 1, 2, \ldots, n,
\end{align*}
\]

where the coefficients are given by
A = (beta)(x, y) - -(gamma)(x, y) -- + (epsilon)(x, y) --- (k - 1)

A = -(beta)(x, y) ------

A = (alpha)(x, y) -- + (beta)(x, y) -- + (delta)(x, y) -- (k - 1)

A = -(alpha)(x, y) -- -(beta)(x, y) ---- -(gamma)(x, y) --

A = (alpha)(x, y) --- + (beta)(x, y) --- + (delta)(x, y) ---- (k + 1)

A = -(beta)(x, y) ------

A = (beta)(x, y) ------ + (gamma)(x, y) -- + (epsilon)(x, y) --- (k + 1)

f = (psi)(x, y)

These equations then have to be modified to take account of the
boundary conditions. These may be Dirichlet (where the solution
is given), Neumann (where the derivative of the solution is
given), or mixed (where a linear combination of solution and
derivative is given).

If the boundary conditions are Dirichlet, there are an infinity
of possible equations which may be applied:

\[(\mu) u = (\mu) f, \quad (\mu) / = 0. \] \hspace{1cm} (2)

If DO3EDF is used to solve the discretized equations, it turns
out that the choice of \(\mu \) can have a dramatic effect on the
rate of convergence, and the obvious choice \(\mu = 1 \) is not the
best. Some choices may even cause the multigrid method to fail
altogether. In practice it has been found that a value of the
same order as the other diagonal elements of the matrix is best,
and the following value has been found to work well in practice:

\[(\begin{array}{cc} 2 & 2 \\ 4 \end{array}) \]
\[(\mu) = \min (\begin{array}{cc} \{ & \{2 & 2 \} \\ \{ h & h \} \\ \{ x & y \} \end{array}), A). \]

If the boundary conditions are either mixed or Neumann (i.e., \(B \)
\(\neq 0 \) on return from the user-supplied subroutine BNDY), then one
of the points in the seven-point stencil lies outside the domain.
In this case the normal derivative in the boundary conditions is
used to eliminate the 'fictitious' point, \(u \):

\[\frac{ddU}{dn} = -\frac{1}{2h}(u - u). \] \hspace{1cm} (3)

It should be noted that if the boundary conditions are Neumann
and \((\phi)(x,y) = 0 \), then there is no unique solution. The routine
returns with IFAIL = 5 in this case, and the seven-diagonal
matrix is singular.

The four corners are treated separately. The user-supplied
subroutine BNDY is called twice, once along each of the edges
meeting at the corner. If both boundary conditions at this point
are Dirichlet and the prescribed solution values agree, then this
value is used in an equation of the form (2). If the prescribed
solution is discontinuous at the corner, then the average of the
two values is used. If one boundary condition is Dirichlet and
the other is mixed, then the value prescribed by the Dirichlet
condition is used in an equation of the form given above.
Finally, if both conditions are mixed or Neumann, then two 'fictitious' points are eliminated using two equations of the form (3).

It is possible that equations for which the solution is known at all points on the boundary, have coefficients which are not defined on the boundary. Since this routine calls the user-supplied subroutine PDEF at all points in the domain, including boundary points, arithmetic errors may occur in the user's routine PDEF which this routine cannot trap. If the user has an equation with Dirichlet boundary conditions (i.e., $B = 0$ at all points on the boundary), but with PDE coefficients which are singular on the boundary, then D03EDF could be called directly only using interior grid points with the user's own discretization.

After the equations have been set up as described above, they are checked for diagonal dominance. That is to say,

$$
|A_{ij}| > \sum_{k=1}^{n} |A_{ik}|, \quad i=1,2,\ldots,n ; j=1,2,\ldots,n .
$$

If this condition is not satisfied then the routine returns with IFAIL = 6. The multigrid routine D03EDF may still converge in this case, but if the coefficients of the first derivatives in the partial differential equation are large compared with the coefficients of the second derivative, the user should consider using upwind differences (SCHEME = 'U').

Since this routine is designed primarily for use with D03EDF, this document should be read in conjunction with the document for that routine.

4. References

5. Parameters

1: XMINT -- DOUBLE PRECISION Input
 On entry: the lower and upper x co-ordinates of the rectangular region respectively, x and x . Constraint: XMINT
 A B
 < XMINT.
On entry: the lower and upper y co-ordinates of the
rectangular region respectively, \(y\) and \(y\). Constraint: \(YMIN < YMAX\).

5: PDEF -- SUBROUTINE, supplied by the user.

External Procedure

PDEF must evaluate the functions \((alpha)(x,y)\), \((beta)(x,y)\),
\((gamma)(x,y)\), \((delta)(x,y)\), \((epsilon)(x,y)\), \((phi)(x,y)\) and
\((psi)(x,y)\) which define the equation at a general point
\((x,y)\).

Its specification is:

\[
\text{SUBROUTINE PDEF (X, Y, ALPHA, BETA, GAMMA,}
\]
\[
\text{DELTA, EPSLON, PHI, PSI)}
\]
\[
\text{DOUBLE PRECISION X, Y, ALPHA, BETA, GAMMA, DELTA,}
\]
\[
\text{EPSLON, PHI, PSI)
\]
\[
1: X -- DOUBLE PRECISION Input
\]
\[
2: Y -- DOUBLE PRECISION Input
\]
\[
On entry: the x and y co-ordinates of the point at
which the coefficients of the partial differential
equation are to be evaluated. 8
\]
\[
3: ALPHA -- DOUBLE PRECISION Output
\]
\[
4: BETA -- DOUBLE PRECISION Output
\]
\[
5: GAMMA -- DOUBLE PRECISION Output
\]
\[
6: DELTA -- DOUBLE PRECISION Output
\]
\[
7: EPSLON -- DOUBLE PRECISION Output
\]
\[
8: PHI -- DOUBLE PRECISION Output
\]
\[
9: PSI -- DOUBLE PRECISION Output
\]
\[
On exit: ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI and PSI
must be set to the values of \((alpha)(x,y)\), \((beta)(x,y)\),
\((gamma)(x,y)\), \((delta)(x,y)\), \((epsilon)(x,y)\), \((phi)(x,y)\)
and \((psi)(x,y)\) respectively at the point specified by \(X\)
and \(Y\).

PDEF must be declared as EXTERNAL in the (sub)program
from which D03EEF is called. Parameters denoted as
Input must not be changed by this procedure.

6: BNDY -- SUBROUTINE, supplied by the user. External Procedure
BNDY must evaluate the functions \(a(x,y)\), \(b(x,y)\), and \(c(x,y)\) involved in the boundary conditions.

Its specification is:

```
SUBROUTINE BNDY (X, Y, A, B, C, IBND)
  INTEGER   IBND
  DOUBLE PRECISION X, Y, A, B, C
```

1: X -- DOUBLE PRECISION Input
2: Y -- DOUBLE PRECISION Input
 On entry: the x and y co-ordinates of the point at which the boundary conditions are to be evaluated.
3: A -- DOUBLE PRECISION Output
4: B -- DOUBLE PRECISION Output
5: C -- DOUBLE PRECISION Output
 On exit: A, B and C must be set to the values of the functions appearing in the boundary conditions.
6: IBND -- INTEGER Input
 On entry: specifies on which boundary the point \((X,Y)\) lies. \(IBND = 0, 1, 2\) or \(3\) according as the point lies on the bottom, right, top or left boundary.
BNDY must be declared as EXTERNAL in the (sub)program from which D03EEF is called. Parameters denoted as Input must not be changed by this procedure.

7: NGX -- INTEGER Input
8: NGY -- INTEGER Input
 On entry: the number of interior grid points in the x- and y-directions respectively, \(n\) and \(n\). If the seven-diagonal equations are to be solved by D03EDF, then \(NGX-1\) and \(NGY-1\) should preferably be divisible by as high a power of 2 as possible. Constraint: \(NGX >= 3, NGY >= 3\).
9: LDA -- INTEGER Input
 On entry: the first dimension of the array A as declared in the (sub)program from which D03EEF is called.
 Constraint: if only the seven-diagonal equations are...
required, then LDA \(\geq \) NGX*NGY. If a call to this routine is to be followed by a call to D03EDF to solve the seven-diagonal linear equations, LDA \(\geq (4*(NGX+1)*(NGY+1))/3 \).

Note: this routine only checks the former condition. D03EDF, if called, will check the latter condition.

10: \(A(LDA,7) \) -- DOUBLE PRECISION array

Output

On exit: \(A(i,j) \), for \(i=1,2,...,NGX*NGY; j = 1,2,...,7 \), contains the seven-diagonal linear equations produced by the discretization described above. If LDA > NGX*NGY, the remaining elements are not referenced by the routine, but if LDA \(\geq (4*(NGX+1)*(NGY+1))/3 \) then the array \(A \) can be passed directly to D03EDF, where these elements are used as workspace.

11: RHS(LDA) -- DOUBLE PRECISION array

Output

On exit: the first NGX*NGY elements contain the right-hand sides of the seven-diagonal linear equations produced by the discretization described above. If LDA > NGX*NGY, the remaining elements are not referenced by the routine, but if LDA \(\geq (4*(NGY+1)*(NGY+1))/3 \) then the array \(RHS \) can be passed directly to D03EDF, where these elements are used as workspace.

12: SCHEME -- CHARACTER*1

Input

On entry: the type of approximation to be used for the first derivatives which occur in the partial differential equation.

If SCHEME = 'C', then central differences are used.

If SCHEME = 'U', then upwind differences are used.

Constraint: SCHEME = 'C' or 'U'.

Note: generally speaking, if at least one of the coefficients multiplying the first derivatives (DELTA or EPSLON as returned by PDEF) are large compared with the coefficients multiplying the second derivatives, then upwind differences may be more appropriate. Upwind differences are less accurate than central differences, but may result in more rapid convergence for strongly convective equations. The easiest test is to try both schemes.

13: IFAIL -- INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or
gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry XMIN >= XMAX,
or YMIN >= YMAX,
or NGX < 3,
or NGY < 3,
or LDA < NGX*NGY,
or SCHEME is not one of 'C' or 'U'.

IFAIL= 2
At some point on the boundary there is a derivative in the boundary conditions (B /= 0 on return from a BNDY) and there is a non-zero coefficient of the mixed derivative (BETA /= 0 on return from PDEF).

IFAIL= 3
A null boundary has been specified, i.e., at some point both A and B are zero on return from a call to BNDY.

IFAIL= 4
The equation is not elliptic, i.e., 4*ALPHA*GAMMA<BETA after a call to PDEF. The discretization has been completed, but the convergence of D03EDF cannot be guaranteed.

IFAIL= 5
The boundary conditions are purely Neumann (only the derivative is specified) and there is, in general, no unique solution.
IFAIL= 6

The equations were not diagonally dominant. (See Section 3).

7. Accuracy

Not applicable.

8. Further Comments

If this routine is used as a pre-processor to the multigrid routine D03EDF it should be noted that the rate of convergence of that routine is strongly dependent upon the number of levels in the multigrid scheme, and thus the choice of NGX and NGY is very important.

9. Example

The program solves the elliptic partial differential equation

\[\begin{array}{c}
\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + 50 \left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \right) = f(x, y) \\
\frac{\partial U}{\partial x} \quad \text{and} \quad \frac{\partial U}{\partial y}
\end{array} \]

on the unit square $0 \leq x, y \leq 1$, with boundary conditions

\[\begin{array}{c}
\frac{\partial U}{\partial n} \quad \text{given on } x=0 \text{ and } y=0, \\
U \quad \text{given on } x=1 \text{ and } y=1.
\end{array} \]

The function $f(x, y)$ and the exact form of the boundary conditions are derived from the exact solution $U(x, y) = \sin x \sin y$.

The equation is first solved using central differences. Since the coefficients of the first derivatives are large, the linear equations are not diagonally dominated, and convergence is slow. The equation is solved a second time with upwind differences, showing that convergence is more rapid, but the solution is less accurate.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Helmholtz equation in 3 dimensions

— nagd.ht —

D03FAF solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors.

2. Specification

SUBROUTINE D03FAF (XS, XF, L, LBDCND, BDXS, BDXF, YS, YF,
1 M, MBDCND, BDYS, BDYF, ZS, ZF, N,
2 NBDCND, BDZS, BDZF, LAMBDA, LDIMF,
3 MDIMF, F, PERTRB, W, LWRK, IFAIL)
INTEGER L, LBDCND, M, MBDCND, N, NBDCND, LDIMF,
1 MDIMF, LWRK, IFAIL
DOUBLE PRECISION XS, XF, BDXS(MDIMF,N+1), BDXF(MDIMF,N+1),
1 YS, YF, BDYS(LDIMF,N+1), BDYF(LDIMF,N+1),
2 ZS, ZF, BDZS(LDIMF,M+1), BDZF(LDIMF,M+1),
3 LAMBDA, F(LDIMF,MDIMF,N+1), PERTRB, W
4 (LWRK)
3. Description

D03FAF solves the three-dimensional Helmholtz equation in cartesian co-ordinates:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \lambda u = f(x,y,z) \]

This subroutine forms the system of linear equations resulting from the standard seven-point finite difference equations, and then solves the system using a method based on the fast Fourier transform (FFT) described by Swarztrauber [1]. This subroutine is based on the routine HW3CRT from FISHPACK (see Swarztrauber and Sweet [2]).

More precisely, the routine replaces all the second derivatives by second-order central difference approximations, resulting in a block tridiagonal system of linear equations. The equations are modified to allow for the prescribed boundary conditions. Either the solution or the derivative of the solution may be specified on any of the boundaries, or the solution may be specified to be periodic in any of the three dimensions. By taking the discrete Fourier transform in the x- and y-directions, the equations are reduced to sets of tridiagonal systems of equations. The Fourier transforms required are computed using the multiple FFT routines found in Chapter C06 of the NAG Fortran Library.

4. References

5. Parameters

1: XS -- DOUBLE PRECISION
 Input
 On entry: the lower bound of the range of x, i.e., XS <= x <= XF. Constraint: XS < XF.

2: XF -- DOUBLE PRECISION
 Input
 On entry: the upper bound of the range of x, i.e., XS <= x <= XF. Constraint: XS < XF.
CHAPTER 22. NAG LIBRARY ROUTINES

3: \[L \rightarrow \text{INTEGER} \]
 Input
 On entry: the number of panels into which the interval
 \((XS,XF)\) is subdivided. Hence, there will be \(L+1\) grid points
 in the x-direction given by
 \[
 x = XS + (i-1) \times (\text{delta}x), \quad i = 1,2,\ldots,L+1,
 \]
 where \(\text{delta}x = (XF-XS)/L\) is the panel width.
 Constraint: \(L \geq 5\).

4: \[\text{LBDCND} \rightarrow \text{INTEGER} \]
 Input
 On entry: indicates the type of boundary conditions at \(x = XS\) and \(x = XF\).
 \[\text{LBDCND} = 0 \]
 if the solution is periodic in \(x\), i.e.,
 \[
 u(XS,y,z) = u(XF,y,z).
 \]
 \[\text{LBDCND} = 1 \]
 if the solution is specified at \(x = XS\) and \(x = XF\).
 \[\text{LBDCND} = 2 \]
 if the solution is specified at \(x = XS\) and the
 derivative of the solution with respect to \(x\) is
 specified at \(x = XF\).
 \[\text{LBDCND} = 3 \]
 if the derivative of the solution with respect to \(x\) is
 specified at \(x = XS\) and \(x = XF\).
 \[\text{LBDCND} = 4 \]
 if the derivative of the solution with respect to \(x\) is
 specified at \(x = XS\) and the solution is specified at \(x = XF\).
 Constraint: \(0 \leq \text{LBDCND} \leq 4\).

5: \[\text{BDXS(MDIMF,N+1)} \rightarrow \text{DOUBLE PRECISION array} \]
 Input
 On entry: the values of the derivative of the solution with
 respect to \(x\) at \(x = XS\). When \(\text{LBDCND} = 3\) or \(4\), \(\text{BDXS}\)
 \[
 (j,k) = u(XS,y,z), \quad j=1,2,\ldots,N+1; \quad k=1,2,\ldots,M+1.
 \]
 When \(\text{LBDCND}\) has any other value, \(\text{BDXS}\) is not referenced.

6: \[\text{BDXF(MDIMF,N+1)} \rightarrow \text{DOUBLE PRECISION array} \]
 Input
 On entry: the values of the derivative of the solution with
 respect to \(x\) at \(x = XF\). When \(\text{LBDCND} = 2\) or \(3\), \(\text{BDXF}\)
 \[
 (j,k) = u(XF,y,z), \quad j=1,2,\ldots,N+1; \quad k=1,2,\ldots,M+1.
 \]
 When \(\text{LBDCND}\) has any other value, \(\text{BDXF}\) is not referenced.

7: \[\text{YS} \rightarrow \text{DOUBLE PRECISION} \]
 Input
On entry: the lower bound of the range of y, i.e., YS <= y <= YF. Constraint: YS < YF.

8: YF -- DOUBLE PRECISION Input
On entry: the upper bound of the range of y, i.e., YS <= y <= YF. Constraint: YS < YF.

9: M -- INTEGER Input
On entry: the number of panels into which the interval (YS,YF) is subdivided. Hence, there will be M+1 grid points in the y-direction given by y = YS + (j-1)*(delta)y for j = 1, 2, ..., M+1, where (delta)y=(YF-YS)/M is the panel width. Constraint: M >= 5.

10: MBDCND -- INTEGER Input
On entry: indicates the type of boundary conditions at y = YS and y = YF.
MBDCND = 0
if the solution is periodic in y, i.e., u(x,YF,z)=u(x,YS,z).

MBDCND = 1
if the solution is specified at y = YS and y = YF.

MBDCND = 2
if the solution is specified at y = YS and the derivative of the solution with respect to y is specified at y = YF.

MBDCND = 3
if the derivative of the solution with respect to y is specified at y = YS and y = YF.

MBDCND = 4
if the derivative of the solution with respect to y is specified at y = YS and the solution is specified at y = YF.
Constraint: 0 <= MBDCND <= 4.

11: BDYS(LDIMF,N+1) -- DOUBLE PRECISION array Input
On entry: the values of the derivative of the solution with respect to y at y = YS. When MBDCND = 3 or 4, BDYS(i,k)=u(x,y,z), for i=1,2,...,L+1; k=1,2,...,N+1.

When MBDCND has any other value, BDYS is not referenced.

12: BDYF(LDIMF,N+1) -- DOUBLE PRECISION array Input
On entry: the values of the derivative of the solution with
respect to y at $y = YF$. When $\text{MBDCND} = 2$ or 3, $\text{BDYF}_{i,k} = u(x, yF, z)$, for $i=1,2,...,L+1$; $k=1,2,...,N+1$.

When MBDCND has any other value, BDYF is not referenced.

13: ZS -- DOUBLE PRECISION
On entry: the lower bound of the range of z, i.e., $ZS \leq z \leq ZF$. Constraint: $ZS < ZF$.

14: ZF -- DOUBLE PRECISION
On entry: the upper bound of the range of z, i.e., $ZS \leq z \leq ZF$. Constraint: $ZS < ZF$.

15: N -- INTEGER
On entry: the number of panels into which the interval (ZS, ZF) is subdivided. Hence, there will be $N+1$ grid points in the z-direction given by $z = ZS + (k-1) \times (\text{delta}z)$, for $k = 1,2,...,N+1$, where $(\text{delta}z) = (ZF - ZS) / N$ is the panel width. Constraint: $N \geq 5$.

16: NBDCND -- INTEGER
On entry: specifies the type of boundary conditions at $z = ZS$ and $z = ZF$.
$\text{NBDCND} = 0$
if the solution is periodic in z, i.e.,
$u(x, y, ZF) = u(x, y, ZS)$.

$\text{NBDCND} = 1$
if the solution is specified at $z = ZS$ and $z = ZF$.

$\text{NBDCND} = 2$
if the solution is specified at $z = ZS$ and the derivative of the solution with respect to z is specified at $z = ZF$.

$\text{NBDCND} = 3$
if the derivative of the solution with respect to z is specified at $z = ZS$ and $z = ZF$.

$\text{NBDCND} = 4$
if the derivative of the solution with respect to z is specified at $z = ZS$ and the solution is specified at $z = ZF$.
Constraint: $0 \leq \text{NBDCND} \leq 4$.

17: $\text{BDZS} (\text{LDIMF}, N+1)$ -- DOUBLE PRECISION array
On entry: the values of the derivative of the solution with respect to z at $z = ZS$. When $\text{NBDCND} = 3$ or 4, BDZS
(i,j)=u(x,y,ZS)=u(x,y,z), for i=1,2,...,L+1;
 z i j
j=1,2,...,M+1.

When NBDCND has any other value, BDZS is not referenced.

18: BDZF(LDIMF,M+1) -- DOUBLE PRECISION array Input
On entry: the values of the derivative of the solution with
respect to z at z = ZF. When NBDCND = 2 or 3, BDZF
(i,j)=u(x,y,ZF)=u(x,y,z), for i=1,2,...,L+1;
 z i j
j=1,2,...,M+1.

When NBDCND has any other value, BDZF is not referenced.

19: LAMBDA -- DOUBLE PRECISION Input
On entry: the constant (lambda) in the Helmholtz equation.
For certain positive values of (lambda) a solution to the
differential equation may not exist, and close to these
values the solution of the discretized problem will be
extremely ill-conditioned. If (lambda)>0, then D03FAF will
set IFAIL to 3, but will still attempt to find a solution.
However, since in general the values of (lambda) for which
no solution exists cannot be predicted a priori, the user is
advised to treat any results computed with (lambda)>0 with
great caution.

20: LDIMF -- INTEGER Input
On entry: the first dimension of the arrays F, BDYS, BDYF, BDZS and
BDZF as declared in the (sub)program from which D03FAF is
called.
Constraint: LDIMF >= L + 1.

21: MDIMF -- INTEGER Input
On entry: the second dimension of the array F and
the first dimension of the arrays BDXS and BDXF as declared
in the (sub)program from which D03FAF is called.
Constraint: MDIMF >= M + 1.

22: F(LDIMF,MDIMF,N+1) -- DOUBLE PRECISION array Input/Output
On entry: the values of the right-side of the Helmholtz
equation and boundary values (if any).

i j k
F(i,j,k)=f(x,y,z) i=2,3,...,L, j=2,3,...,M and k
 i j k
=2,3,...,N.

On the boundaries F is defined by
LBDCND F(1,j,k) F(L+1,j,k)
0 \quad f(XS,y,z)f(XS,y,z) \\
\quad j\ j\ \ j\ j \\
1 \quad u(XS,y,z)u(XF,y,z) \\
\quad j\ j\ \ j\ j \\
2 \quad u(XS,y,z)f(XF,y,z) \quad j=1,2,\ldots,M+1 \\
\quad j\ j\ \ j\ j \\
3 \quad f(XS,y,z)f(XF,y,z) \quad k=1,2,\ldots,N+1 \\
\quad j\ j\ \ j\ j \\
4 \quad f(XS,y,z)u(XF,y,z) \\
\quad j\ j\ \ j\ j \\

\textit{MBDCND} \quad F(i,1,k) \ F(i,M+1,k) \\
0 \quad f(x,YS,z)f(x,YS,z) \\
\quad i\ k\ i\ k \\
1 \quad u(x,YS,z)u(x,YF,z) \\
\quad i\ k\ i\ k \\
2 \quad u(x,YS,z)f(x,YF,z) \quad i=1,2,\ldots,L+1 \\
\quad i\ k\ i\ k \\
3 \quad f(x,YS,z)f(x,YF,z) \quad k=1,2,\ldots,N+1 \\
\quad i\ k\ i\ k \\
4 \quad f(x,YS,z)u(x,YF,z) \\
\quad i\ k\ i\ k \\

\textit{NBDCND} \quad F(i,j,1) \quad F(i,j,N+1) \\
0 \quad f(x,y,YS)f(x,y,YS) \\
\quad i\ j\ i\ j \\
1 \quad u(x,y,YS)u(x,y,ZF) \\
\quad i\ j\ i\ j \\
2 \quad u(x,y,YS)f(x,y,ZF) \quad i=1,2,\ldots,L+1 \\
\quad i\ j\ i\ j
Note: if the table calls for both the solution \(u \) and the right-hand side \(f \) on a boundary, then the solution must be specified. On exit: \(F \) contains the solution \(u(i,j,k) \) of the finite difference approximation for the grid point \((x_i, y_j, z_k) \) for \(i=1,2,...,L+1 \), \(j=1,2,...,M+1 \) and \(k=1,2,...,N+1 \).

PERTRB -- DOUBLE PRECISION

On exit: \(\text{PERTRB} = 0 \), unless a solution to Poisson’s equation \(\lambda = 0 \) is required with a combination of periodic or derivative boundary conditions \(\text{LBDCND}, \text{MBDCND} \) and \(\text{NBDCND} = 0 \) or 3). In this case a solution may not exist. \(\text{PERTRB} \) is a constant, calculated and subtracted from the array \(F \), which ensures that a solution exists. \text{D03FAF} \) then computes this solution, which is a least-squares solution to the original approximation. This solution is not unique and is unnormalised. The value of \(\text{PERTRB} \) should be small compared to the right-hand side \(F \), otherwise a solution has been obtained to an essentially different problem. This comparison should always be made to ensure that a meaningful solution has been obtained.

W(LWRK) -- DOUBLE PRECISION array

Workspace

LWRK -- INTEGER

Input
On entry: the dimension of the array \(W \) as declared in the (sub)program from which \text{D03FAF} \) is called.
\(\text{LWRK} \geq 2 \times (N+1) \times \max(L,M) + 3 \times L + 3 \times M + 4 \times N + 6 \) is an upper bound on the required size of \(W \). If \(\text{LWRK} \) is too small, the routine exits with \(\text{IFAIL} = 2 \), and if on entry \(\text{IFAIL} = 0 \) or \(\text{IFAIL} = -1 \), a message is output giving the exact value of \(\text{LWRK} \) required to solve the current problem.

IFAIL -- INTEGER

Input/Output
On entry: \(\text{IFAIL} \) must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.
On exit: \(\text{IFAIL} = 0 \) unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if \(\text{IFAIL} \neq 0 \) on exit, users are recommended to set \(\text{IFAIL} \) to -1 before entry. It is then
essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry XS >= XF,
 or L < 5,
 or LBDCND < 0,
 or LBDCND > 4,
 or YS >= YF,
 or M < 5,
 or MBDCND < 0,
 or MBDCND > 4,
 or ZS >= ZF,
 or N < 5,
 or NBDCND < 0,
 or NBDCND > 4,
 or LDIMF < L + 1 > 0,
 or MDIMF < M + 1.

IFAIL= 2
 On entry LWRK is too small.

IFAIL= 3
 On entry (lambda) > 0.

7. Accuracy

None.

8. Further Comments
The execution time is roughly proportional to
\[L^2 \times M^2 \times N^2 \times (\log L + \log M + 5) \],
but also depends on input parameters
\[LBDCND \] and \[MBDCND \].

9. Example

The example solves the Helmholtz equation
\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + (\lambda)u &= f(x, y, z) \\
\pi &
\end{align*}
\]
for \((x, y, z)\) in \([0,1] \times [0,2\pi] \times [0, \pi]\) where \(\lambda = -2\), and
\[f(x, y, z) \] is derived from the exact solution
\[u(x, y, z) = x \sin(y) \cos(z). \]

The equation is subject to the following boundary conditions,
again derived from the exact solution given above.

\[u(0, y, z) \] and \(u(1, y, z) \) are prescribed (i.e., \(LBDCND = 1 \)).

\[u(x, 0, z) = u(x, 2\pi, z) \] (i.e., \(MBDCND = 0 \)).

\[u(x, y, 0) \] and \(u(x, y, \pi) \) are prescribed (i.e. \(NBDCND = 2 \)).

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
22.4 nage.ht

Interpolation

--- nage.ht ---

E01(3NAG) Foundation Library (12/10/92) E01(3NAG)

E01 -- Interpolation Introduction -- E01

Chapter E01
Interpolation

1. Scope of the Chapter

This chapter is concerned with the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(s), the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions, there are supporting routines to evaluate, differentiate or integrate them.

2. Background to the Problems

In motivation and in some of its numerical processes, this chapter has much in common with Chapter E02 (Curve and Surface Fitting). For this reason, we shall adopt the same terminology and refer to dependent variable and independent variable(s) instead of function and variable(s). Where there is only one independent variable, we shall denote it by \(x \) and the dependent variable by \(y \). Thus, in the basic problem considered in this chapter, we are given a set of distinct values \(x_1, x_2, \ldots, x_m \) and a corresponding set of values \(y_1, y_2, \ldots, y_m \) of \(y \). and we shall describe the problem as being one of interpolating the data points \((x_1, y_1), \ldots, (x_m, y_m)\), rather than interpolating a function. In modern usage, however, interpolation can have either of two rather
different meanings, both relevant to routines in this chapter. They are

(a) the determination of a function of \(x \) which takes the value \(y \) at \(x=x_r \), for \(r=1,2,...,m \) (an interpolating function or interpolant),

(b) the determination of the value (interpolated value or interpolate) of an interpolating function at any given value, say \(x \), of \(x \) within the range of the \(x \) (so as to estimate the value at \(x \) of the function underlying the data).

The latter is the older meaning, associated particularly with the use of mathematical tables. The term 'function underlying the data', like the other terminology described above, is used so as to cover situations additional to those in which the data points have been computed from a known function, as with a mathematical table. In some contexts, the function may be unknown, perhaps representing the dependency of one physical variable on another, say temperature upon time.

Whether the underlying function is known or unknown, the object of interpolation will usually be to approximate it to acceptable accuracy by a function which is easy to evaluate anywhere in some range of interest. Piecewise polynomials such as cubic splines (see Section 2.2 of the E02 Chapter Introduction for definitions of terms in this case), being easy to evaluate and also capable of approximating a wide variety of functions, are the types of function mostly used in this chapter as interpolating functions.

Piecewise polynomials also, to a large extent, avoid the well-known problem of large unwanted fluctuations which can arise when interpolating a data set with a simple polynomial. Fluctuations can still arise but much less frequently and much less severely than with simple polynomials. Unwanted fluctuations are avoided altogether by a routine using piecewise cubic polynomials having only first derivative continuity. It is designed especially for monotonic data, but for other data still provides an interpolant which increases, or decreases, over the same intervals as the data.

The concept of interpolation can be generalised in a number of ways. For example, we may be required to estimate the value of the underlying function at a value \(x \) outside the range of the
data. This is the process of extrapolation. In general, it is a good deal less accurate than interpolation and is to be avoided whenever possible.

Interpolation can also be extended to the case of two independent variables. We shall denote these by x and y, and the dependent variable by f. Methods used depend markedly on whether or not the data values of f are given at the intersections of a rectangular mesh in the (x,y)-plane. If they are, bicubic splines (see Section 2.3.2 of the E02 Chapter Introduction) are very suitable and usually very effective for the problem. For other cases, perhaps where the f values are quite arbitrarily scattered in the (x,y)-plane, polynomials and splines are not at all appropriate and special forms of interpolating function have to be employed. Many such forms have been devised and two of the most successful are in routines in this chapter. They both have continuity in first, but not higher, derivatives.

2.1. References

3. Recommendations on Choice and Use of Routines

3.1. General

Before undertaking interpolation, in other than the simplest cases, the user should seriously consider the alternative of using a routine from Chapter E02 to approximate the data by a polynomial or spline containing significantly fewer coefficients than the corresponding interpolating function. This approach is much less liable to produce unwanted fluctuations and so can often provide a better approximation to the function underlying the data.

When interpolation is employed to approximate either an underlying function or its values, the user will need to be satisfied that the accuracy of approximation achieved is adequate. There may be a means for doing this which is particular to the application, or the routine used may itself provide a means. In other cases, one possibility is to repeat the interpolation using one or more extra data points, if they are available, or otherwise one or more fewer, and to compare the results. Other possibilities, if it is an interpolating function which is determined, are to examine the function graphically, if that gives sufficient accuracy, or to observe the behaviour of
the differences in a finite-difference table, formed from evaluations of the interpolating function at equally-spaced values of \(x \) over the range of interest. The spacing should be small enough to cause the typical size of the differences to decrease as the order of difference increases.

3.2. One Independent Variable

E01BAF computes an interpolating cubic spline, using a particular choice for the set of knots which has proved generally satisfactory in practice. If the user wishes to choose a different set, a cubic spline routine from Chapter E02, namely E02BAF, may be used in its interpolating mode, setting \(\text{NCAP7} = M+4 \) and all elements of the parameter \(W \) to unity. These routines provide the interpolating function in B-spline form (see Section 2.2.2 in the E02 Chapter Introduction). Routines for evaluating, differentiating and integrating this form are discussed in Section 3.7 of the E02 Chapter Introduction.

The cubic spline does not always avoid unwanted fluctuations, especially when the data show a steep slope close to a region of small slope, or when the data inadequately represent the underlying curve. In such cases, E01BEF can be very useful. It derives a piecewise cubic polynomial (with first derivative continuity) which, between any adjacent pair of data points, either increases all the way, or decreases all the way (or stays constant). It is especially suited to data which are monotonic over their whole range.

In this routine, the interpolating function is represented simply by its value and first derivative at the data points. Supporting routines compute its value and first derivative elsewhere, as well as its definite integral over an arbitrary interval.

3.3. Two Independent Variables

3.3.1. Data on a rectangular mesh

Given the value \(f \) of the dependent variable \(f \) at the point \((x_q, y_r) \) in the plane of the independent variables \(x \) and \(y \), for each \(q=1,2,\ldots,M \) and \(r=1,2,\ldots,N \) (so that the points \((x_q, y_r) \) lie at the \(M \times N \) intersections of a rectangular mesh), E01DAF computes an interpolating bicubic spline, using a particular choice for each of the spline’s knot-set. This choice, the same as in E01BAF, has proved generally satisfactory in practice. If, instead, the user wishes to specify his own knots, a routine from Chapter E02, namely E02DAF, may be adapted (it is more cumbersome for the
purpose, however, and much slower for larger problems). Using \(m \) and \(n \) in the above sense, the parameter \(M \) must be set to \(m \times n \), \(PX \) and \(PY \) must be set to \(m+4 \) and \(n+4 \) respectively and all elements of \(W \) should be set to unity. The recommended value for \(EPS \) is zero.

3.3.2. Arbitrary data

As remarked at the end of Section 2, special types of interpolating are required for this problem, which can often be difficult to solve satisfactorily. Two of the most successful are employed in E01SAF and E01SEF, the two routines which (with their respective evaluation routines E01SBF and E01SFF) are provided for the problem. Definitions can be found in the routine documents. Both interpolants have first derivative continuity and are 'local', in that their value at any point depends only on data in the immediate neighbourhood of the point. This latter feature is necessary for large sets of data to avoid prohibitive computing time.

The relative merits of the two methods vary with the data and it is not possible to predict which will be the better in any particular case.

3.4. Index

Derivative, of interpolant from E01BEF	E01BGF
Evaluation, of interpolant	
from E01BEF	E01BFF
from E01SAF	E01SBF
from E01SEF	E01SFF
Extrapolation, one variable	E01BEF
Integration (definite) of interpolant from E01BEF	E01BHF
Interpolated values, one variable, from interpolant from E01BEF	E01BFF
	E01BGF
Interpolated values, two variables,	
from interpolant from E01SAF	E01SBF
from interpolant from E01SEF	E01SFF
Interpolating function, one variable,	
cubic spline	E01BAF
other piecewise polynomial	E01BEF
Interpolating function, two variables	
bicubic spline	E01DAF
other piecewise polynomial	E01SAF
modified Shepard method	E01SEF
Chapter E01
Interpolation

E01BAF Interpolating functions, cubic spline interpolant, one variable

E01BEF Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable

E01BFF Interpolated values, interpolant computed by E01BEF, function only, one variable,

E01BGF Interpolated values, interpolant computed by E01BEF, function and 1st derivative, one variable

E01BHF Interpolated values, interpolant computed by E01BEF, definite integral, one variable

E01DAF Interpolating functions, fitting bicubic spline, data on rectangular grid

E01SAF Interpolating functions, method of Renka and Cline, two variables

E01SBF Interpolated values, evaluate interpolant computed by E01SAF, two variables

E01SEF Interpolating functions, modified Shepard’s method, two variables

E01SFF Interpolated values, evaluate interpolant computed by E01SEF, two variables

Cubic spline interpolant

— nage.ht —

\begin{page}{manpageXXe01baf}{NAG Documentation: e01baf}
\beginscroll
\begin{verbatim}
1. Purpose

E01BAF determines a cubic spline interpolant to a given set of data.

2. Specification

```fortran
SUBROUTINE E01BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)
    INTEGER M, LCK, LWRK, IFAIL
    DOUBLE PRECISION X(M), Y(M), LAMDA(LCK), C(LCK), WRK(LWRK)
```

3. Description

This routine determines a cubic spline \(s(x) \), defined in the range \(x \leq x \leq x \), which interpolates (passes exactly through) the set of \(m \) data points \((x_i, y_i)\), for \(i=1,2,...,m \), where \(m \geq 4 \) and \(x < x < ... < x \). End conditions are not imposed. The spline interpolant chosen has \(m-4 \) interior knots \((\lambda_5, \lambda_6, ..., \lambda_m)\), which are set to the values of \(x_3, x_4, ..., x_{m-2} \) respectively. This spline is represented in its B-spline form (see Cox [1]):

\[
 s(x) = \sum_{i=1}^{m} c_i N_i(x),
\]

where \(N_i(x) \) denotes the normalised B-Spline of degree 3, defined upon the knots \((\lambda_5, \lambda_6, ..., \lambda_m)\), and \(c \)
denotes its coefficient, whose value is to be determined by the routine.

The use of B-splines requires eight additional knots \((\lambda)\),\(\lambda_1\), \((\lambda)\), \((\lambda)\), \((\lambda)\), \((\lambda)\), \((\lambda)\), \((\lambda)\) to be specified; the routine sets the first four of these to \(x\) and the last four to \(x\) .

The algorithm for determining the coefficients is as described in [1] except that QR factorization is used instead of LU decomposition. The implementation of the algorithm involves setting up appropriate information for the related routine E02BAF followed by a call of that routine. (For further details of E02BAF, see the routine document.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be computed as detailed in Section 8.

4. References

5. Parameters

1: M -- INTEGER Input
On entry: \(m\), the number of data points. Constraint: \(M \geq 4\).

2: X(M) -- DOUBLE PRECISION array Input
On entry: \(X(i)\) must be set to \(x\) , the \(i\)th data value of the independent variable \(x\), for \(i=1,2,\ldots,m\). Constraint: \(X(i) < X(i+1)\), for \(i=1,2,\ldots,M-1\).

3: Y(M) -- DOUBLE PRECISION array Input
On entry: \(Y(i)\) must be set to \(y\) , the \(i\)th data value of the dependent variable \(y\), for \(i=1,2,\ldots,m\).

4: LAMDA(LCK) -- DOUBLE PRECISION array Output
3150

CHAPTER 22. NAG LIBRARY ROUTINES

On exit: the value of \((\lambda_i)\), the \(i\)th knot, for

\[i = 1, 2, \ldots, m + 4. \]

5: \(C(LCK)\) -- DOUBLE PRECISION array Output

On exit: the coefficient \(c_i\) of the B-spline \(N_i(x)\), for

\[i = 1, 2, \ldots, m. \]

The remaining elements of the array are not used.

6: \(LCK\) -- INTEGER Input

On entry:

the dimension of the arrays \(LAMDA\) and \(C\) as declared in the
(sub)program from which \(E01BAF\) is called.

Constraint: \(LCK \geq M + 4.\)

7: \(WRK(LWRK)\) -- DOUBLE PRECISION array Workspace

8: \(LWRK\) -- INTEGER Input

On entry:

the dimension of the array \(WRK\) as declared in the
(sub)program from which \(E01BAF\) is called.

Constraint: \(LWRK \geq 6M + 16.\)

9: \(IFAIL\) -- INTEGER Input/Output

On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not

familiar with this parameter (described in the Essential

Introduction) the recommended value is 0.

On exit: \(IFAIL = 0\) unless the routine detects an error (see

Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL= 1\)

On entry \(M < 4,\)

or \(LCK < M + 4,\)

or \(LWRK < 6M + 16.\)

\(IFAIL= 2\)

The \(X\)-values fail to satisfy the condition

\[X(1) < X(2) < X(3) < \ldots < X(M). \]

7. Accuracy
The rounding errors incurred are such that the computed spline is an exact interpolant for a slightly perturbed set of ordinates \(y_i + (\delta)y_i \). The ratio of the root-mean-square value of the \((\delta)y_i \) to that of the \(y_i \) is no greater than a small multiple of the relative machine precision.

8. Further Comments

The time taken by the routine is approximately proportional to \(m \).

All the \(x_i \) are used as knot positions except \(x_2 \) and \(x_{m-1} \). This choice of knots (see Cox [2]) means that \(s(x) \) is composed of \(m-3 \) cubic arcs as follows. If \(m=4 \), there is just a single arc space spanning the whole interval \(x_1 \) to \(x_4 \). If \(m\geq5 \), the first and last \(x_1 \) and \(x_4 \) arcs span the intervals \(x_1 \) to \(x_3 \) and \(x_3 \) to \(x_4 \) respectively. Additionally if \(m\geq6 \), the \(i \)th arc, for \(i=2,3,\ldots,m-4 \) spans the interval \(x_{i+1} \) to \(x_{i+2} \).

After the call

\[
\text{CALL E01BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)}
\]

the following operations may be carried out on the interpolant \(s(x) \).

The value of \(s(x) \) at \(x = \text{XVAL} \) can be provided in the real variable \(\text{SVAL} \) by the call

\[
\text{CALL E02BBF (M+4, LAMDA, C, XVAL, SVAL, IFAIL)}
\]

The values of \(s(x) \) and its first three derivatives at \(x = \text{XVAL} \) can be provided in the real array \(\text{SDIF} \) of dimension 4, by the call

\[
\text{CALL E02BCF (M+4, LAMDA, C, XVAL, LEFT, SDIF, IFAIL)}
\]

Here \(\text{LEFT} \) must specify whether the left- or right-hand value of the third derivative is required (see E02BCF for details).

The value of the integral of \(s(x) \) over the range \(x_1 \) to \(x_m \) provided in the real variable \(\text{SINT} \) by

\[
\text{CALL E02BDF (M+4, LAMDA, C, SINT, IFAIL)}
\]
9. Example

The example program sets up data from 7 values of the exponential function in the interval 0 to 1. E01BAF is then called to compute a spline interpolant to these data.

The spline is evaluated by E02BBF, at the data points and at points halfway between each adjacent pair of data points, and the x spline values and the values of e are printed out.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
interpolant to a set of data points.

2. Specification

SUBROUTINE E01BEF (N, X, F, D, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N), F(N), D(N)

3. Description

This routine estimates first derivatives at the set of data points \((x_r, f_r)\), for \(r=1,2,\ldots,n\), which determine a piecewise cubic Hermite interpolant to the data, that preserves monotonicity over ranges where the data points are monotonic. If the data points are only piecewise monotonic, the interpolant will have an extremum at each point where monotonicity switches direction. The estimates of the derivatives are computed by a formula due to Brodlie, which is described in Fritsch and Butland [1], with suitable changes at the boundary points.

The routine is derived from routine PCHIM in Fritsch [2].

Values of the computed interpolant, and of its first derivative and definite integral, can subsequently be computed by calling E01BFF, E01BGF and E01BHF, as described in Section 8.

4. References

5. Parameters

1: N -- INTEGER Input
 On entry: \(n\), the number of data points. Constraint: \(N \geq 2\).

2: X(N) -- DOUBLE PRECISION array Input
 On entry: \(X(r)\) must be set to \(x_r\), the \(r\)th value of the \(r\)
independent variable (abscissa), for \(r=1,2,\ldots,n\).
 Constraint: \(X(r) < X(r+1)\).

3: F(N) -- DOUBLE PRECISION array Input
 On entry: \(F(r)\) must be set to \(f_r\), the \(r\)th value of the \(r\)
dependent variable (ordinate), for \(r=1,2,\ldots,n \).

4: \(D(N) \) -- DOUBLE PRECISION array
Output
On exit: estimates of derivatives at the data points. \(D(r) \) contains the derivative at \(X(r) \).

5: \(IFAIL \) -- INTEGER
Input/Output
On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry \(IFAIL = 0 \) or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

\(IFAIL = 1 \)

On entry \(N < 2 \).

\(IFAIL = 2 \)

The values of \(X(r) \), for \(r=1,2,\ldots,N \), are not in strictly increasing order.

7. Accuracy

The computational errors in the array \(D \) should be negligible in most practical situations.

8. Further Comments

The time taken by the routine is approximately proportional to \(n \).

The values of the computed interpolant at the points \(PX(i) \), for \(i=1,2,\ldots,M \), may be obtained in the real array \(PF \), of length at least \(M \), by the call:

\[
\text{CALL E01BFF}(N,X,F,D,M,PX,PF,IFAIL)
\]

where \(N \), \(X \) and \(F \) are the input parameters to E01BEF and \(D \) is the output parameter from E01BEF.

The values of the computed interpolant at the points \(PX(i) \), for \(i = 1,2,\ldots,M \), together with its first derivatives, may be obtained in the real arrays \(PF \) and \(PD \), both of length at least \(M \), by the
call:

CALL E01BGF(N,X,F,D,M,PX,PF,PD,IFAIL)

where \(N, X, F \) and \(D \) are as described above.

The value of the definite integral of the interpolant over the interval \(A \) to \(B \) can be obtained in the real variable \(\text{PINT} \) by the call:

CALL E01BHF(N,X,F,D,A,B,\text{PINT},IFAIL)

where \(N, X, F \) and \(D \) are as described above.

9. Example

This example program reads in a set of data points, calls E01BEF to compute a piecewise monotonic interpolant, and then calls E01BFF to evaluate the interpolant at equally spaced points.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01BFF evaluates a piecewise cubic Hermite interpolant at a set of points.

2. Specification

SUBROUTINE E01BFF (N, X, F, D, M, PX, PF, IFAIL)
INTEGER N, M, IFAIL
DOUBLE PRECISION X(N), F(N), D(N), PX(M), PF(M)

3. Description

This routine evaluates a piecewise cubic Hermite interpolant, as computed by E01BEF, at the points PX(i), for i=1,2,...,m. If any point lies outside the interval from X(1) to X(N), a value is extrapolated from the nearest extreme cubic, and a warning is returned.

The routine is derived from routine PCHFE in Fritsch [1].

4. References

5. Parameters

1: N -- INTEGER Input
2: X(N) -- DOUBLE PRECISION array Input
3: F(N) -- DOUBLE PRECISION array Input
4: D(N) -- DOUBLE PRECISION array Input
 On entry: N, X, F and D must be unchanged from the previous call of E01BEF.
5: M -- INTEGER Input
 On entry: m, the number of points at which the interpolant is to be evaluated. Constraint: M >= 1.
6: PX(M) -- DOUBLE PRECISION array Input
 On entry: the m values of x at which the interpolant is to be evaluated.
7: PF(M) -- DOUBLE PRECISION array
 Output
 On exit: PF(i) contains the value of the interpolant
 evaluated at the point PX(i), for i=1,2,...,M.

8: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry N < 2.

IFAIL= 2
 The values of X(r), for r = 1,2,...,N, are not in strictly
 increasing order.

IFAIL= 3
 On entry M < 1.

IFAIL= 4
 At least one of the points PX(i), for i = 1,2,...,M, lies
 outside the interval [X(1),X(N)], and extrapolation was
 performed at all such points. Values computed at such points
 may be very unreliable.

7. Accuracy

The computational errors in the array PF should be negligible in
most practical situations.

8. Further Comments

The time taken by the routine is approximately proportional to
the number of evaluation points, m. The evaluation will be most
efficient if the elements of PX are in non-decreasing order (or,
more generally, if they are grouped in increasing order of the
intervals [X(r-1),X(r)]). A single call of E01BFF with m>1 is
more efficient than several calls with m=1.
9. Example

This example program reads in values of N, X, F and D, and then calls E01BFF to evaluate the interpolant at equally spaced points.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Piecewise cubic Hermite interpolant and 1st deriv

```plaintext
E01BGF(3NAG)  Foundation Library (12/10/92)  E01BGF(3NAG)

E01 -- Interpolation

SUBROUTINE E01BGF (N, X, F, D, M, PX, PF, PD, IFAIL)
  INTEGER N, M, IFAIL

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01BGF evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points.

2. Specification

SUBROUTINE E01BGF (N, X, F, D, M, PX, PF, PD, IFAIL)
  INTEGER N, M, IFAIL
```
3. Description

This routine evaluates a piecewise cubic Hermite interpolant, as computed by E01BEF, at the points PX(i), for i=1,2,...,m. The first derivatives at the points are also computed. If any point lies outside the interval from X(i) to X(N), values of the interpolant and its derivative are extrapolated from the nearest extreme cubic, and a warning is returned.

If values of the interpolant only, and not of its derivative, are required, E01BFF should be used.

The routine is derived from routine PCHFD in Fritsch [1].

4. References

5. Parameters

1: N -- INTEGER Input
2: X(N) -- DOUBLE PRECISION array Input
3: F(N) -- DOUBLE PRECISION array Input
4: D(N) -- DOUBLE PRECISION array Input
 On entry: N, X, F and D must be unchanged from the previous call of E01BEF.
5: M -- INTEGER Input
 On entry: m, the number of points at which the interpolant is to be evaluated. Constraint: M >= 1.
6: PX(M) -- DOUBLE PRECISION array Input
 On entry: the m values of x at which the interpolant is to be evaluated.
7: PF(M) -- DOUBLE PRECISION array Output
 On exit: PF(i) contains the value of the interpolant evaluated at the point PX(i), for i=1,2,...,m.
8: PD(M) -- DOUBLE PRECISION array Output
 On exit: PD(i) contains the first derivative of the interpolant evaluated at the point PX(i), for i=1,2,...,m.
9: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry N < 2.

IFAIL = 2
The values of X(r), for r = 1,2,...,N, are not in strictly increasing order.

IFAIL = 3
On entry M < 1.

IFAIL = 4
At least one of the points PX(i), for i = 1,2,...,M, lies outside the interval [X(1),X(N)], and extrapolation was performed at all such points. Values computed at these points may be very unreliable.

7. Accuracy

The computational errors in the arrays PF and PD should be negligible in most practical situations.

8. Further Comments

The time taken by the routine is approximately proportional to the number of evaluation points, m. The evaluation will be most efficient if the elements of PX are in non-decreasing order (or, more generally, if they are grouped in increasing order of the intervals [X(r-1),X(r)]). A single call of E01BGF with m>1 is more efficient than several calls with m=1.

9. Example

This example program reads in values of N, X, F and D, and calls E01BGF to compute the values of the interpolant and its derivative at equally spaced points.
22.4. NAGE.HT

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

Definite integral of piecewise cubic Hermite interpolant

--- nage.ht ---

\begin{page}{manpageXXe01bhf}{NAG Documentation: e01bhf}
\beginscroll
\begin{verbatim}
E01BHF(3NAG) Foundation Library (12/10/92) E01BHF(3NAG)

E01 -- Interpolation

E01BHF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01BHF evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval \([a,b]\).

2. Specification

\begin{verbatim}
SUBROUTINE E01BHF (N, X, F, D, A, B, PINT, IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N), F(N), D(N), A, B, PINT
\end{verbatim}

3. Description

This routine evaluates the definite integral of a piecewise cubic Hermite interpolant, as computed by E01BEF, over the interval
[a,b].

If either a or b lies outside the interval from X(1) to X(N) computation of the integral involves extrapolation and a warning is returned.

The routine is derived from routine PCHIA in Fritsch [1].

4. References

5. Parameters

1: N -- INTEGER Input
2: X(N) -- DOUBLE PRECISION array Input
3: F(N) -- DOUBLE PRECISION array Input
4: D(N) -- DOUBLE PRECISION array Input
 On entry: N, X, F and D must be unchanged from the previous call of E01BEF.
5: A -- DOUBLE PRECISION Input
6: B -- DOUBLE PRECISION Input
 On entry: the interval [a,b] over which integration is to be performed.
7: PINT -- DOUBLE PRECISION Output
 On exit: the value of the definite integral of the interpolant over the interval [a,b].
8: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).
22.4. NAGE.HT

IFAIL = 1
On entry N < 2.

IFAIL = 2
The values of X(r), for r = 1,2,...,N, are not in strictly increasing order.

IFAIL = 3
On entry at least one of A or B lies outside the interval [X(1),X(N)], and extrapolation was performed to compute the integral. The value returned is therefore unreliable.

7. Accuracy
The computational error in the value returned for PINT should be negligible in most practical situations.

8. Further Comments
The time taken by the routine is approximately proportional to the number of data points included within the interval [a,b].

9. Example
This example program reads in values of N, X, F and D. It then reads in pairs of values for A and B, and evaluates the definite integral of the interpolant over the interval [A,B] until end-of-file is reached.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

\begin{page}{manpageXXe01daf}{NAG Documentation: e01daf}

\begin{verbatim}

\end{verbatim}
\end{scroll}
\end{page}

Bicubic spline interpolated surface

--- nage.ht ---
1. Purpose

E01DAF computes a bicubic spline interpolating surface through a set of data values, given on a rectangular grid in the x-y plane.

2. Specification

```plaintext
SUBROUTINE E01DAF (MX, MY, X, Y, F, PX, PY, LAMDA, MU, C, WRK, IFAIL)
INTEGER MX, MY, PX, PY, IFAIL
DOUBLE PRECISION X(MX), Y(MY), F(MX*MY), LAMDA(MX+4), MU(MX+4), C(MX*MY), WRK((MX+6)*(MY+6))
```

3. Description

This routine determines a bicubic spline interpolant to the set of data points \((x_q, y_r, f_{qr})\), for \(q=1,2,\ldots,m\); \(r=1,2,\ldots,m\). The spline is given in the B-spline representation

\[
s(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} M_i(x) N_j(y),
\]

such that

\[
s(x_q, y_r) = f_{qr},
\]

where \(M_i(x)\) and \(N_j(y)\) denote normalised cubic B-splines, the former defined on the knots \((\lambda_i)\) to \((\lambda_{i+4})\) and the latter on the knots \((\mu_j)\) to \((\mu_{j+4})\).
latter on the knots \((\mu_l)\) to \((\mu_{l+4})\), and the \(c_{ij}\) are the spline coefficients. These knots, as well as the coefficients, are determined by the routine, which is derived from the routine B2IRE in Anthony et al[1]. The method used is described in Section 8.2.

Values of the computed spline can subsequently be obtained by calling E02DEF or E02DFF as described in Section 8.3.

4. References

5. Parameters

1: MX -- INTEGER Input

 On entry: MX and MY must specify \(m\) and \(m\) respectively, the number of points along the \(x\) and \(y\) axis that define the rectangular grid. Constraint: \(MX \geq 4\) and \(MY \geq 4\).

2: MY -- INTEGER Input

 On entry: MX and MY must specify \(m\) and \(m\) respectively, the number of points along the \(x\) and \(y\) axis that define the rectangular grid. Constraint: \(MX \geq 4\) and \(MY \geq 4\).

3: X(MX) -- DOUBLE PRECISION array Input

 On entry: \(X(q)\) and \(Y(r)\) must contain \(x\), for \(q=1,2,\ldots,m\), and \(y\), for \(r=1,2,\ldots,m\), respectively. Constraints:

 \[X(q) < X(q+1), \text{ for } q=1,2,\ldots,m-1, \]

 \[Y(r) < Y(r+1), \text{ for } r=1,2,\ldots,m-1. \]
5: \(F(MX*MY) \) -- DOUBLE PRECISION array
\textbf{Input}
On entry: \(F(m *(q-1)+r) \) must contain \(f_q,r \), for \(q=1,2,\ldots,m \);
\(r=1,2,\ldots,m \).

6: \(PX \) -- INTEGER
\textbf{Output}

7: \(PY \) -- INTEGER
\textbf{Output}
On exit: \(PX \) and \(PY \) contain \(m+4 \) and \(m+4 \), the total number
\(x \) of knots of the computed spline with respect to the \(x \) and \(y \) variables, respectively.

8: \(LAMDA(MX+4) \) -- DOUBLE PRECISION array
\textbf{Output}
On exit: \(LAMDA \) contains the complete set of knots (\(\lambda_i \)) associated with the \(x \) variable, i.e., the interior knots \(\lambda_5, \lambda_6, \ldots, \lambda_{PX-4} \), as well as the additional knots
\(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = X(1) \) and \(\lambda_{PX-3} = \lambda_{PX-2} = \lambda_{PX-1} = \lambda_{PX} = X(MX) \) needed for the B-spline representation. \(MU \) contains the corresponding complete set of knots (\(\mu_i \)) associated with the \(y \) variable.

9: \(MU(MY+4) \) -- DOUBLE PRECISION array
\textbf{Output}
On exit: \(LMADA \) contains the complete set of knots (\(\lambda_i \))
associated with the \(x \) variable, i.e., the interior knots \(\lambda_5, \lambda_6, \ldots, \lambda_{PX-4} \), as well as the additional knots \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = X(1) \) and \(\lambda_{PX-3} = \lambda_{PX-2} = \lambda_{PX-1} = \lambda_{PX} = X(MX) \) needed for the B-spline representation. \(MU \) contains the corresponding complete set of knots (\(\mu_i \)) associated with the \(y \) variable.

10: \(C(MX*MY) \) -- DOUBLE PRECISION array
\textbf{Output}
On exit: the coefficients of the spline interpolant. \(C(m *(i-1)+j) \) contains the coefficient \(c_{ij} \) described in Section 3.

11: \(WRK((MX+6)*(MY+6)) \) -- DOUBLE PRECISION array
\textbf{Workspace}

12: \(IFAIL \) -- INTEGER
\textbf{Input/Output}
On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry MX < 4,

or MY < 4.

IFAIL= 2
On entry either the values in the X array or the values in
the Y array are not in increasing order.

IFAIL= 3
A system of linear equations defining the B-spline
coefficients was singular; the problem is too ill-
conditioned to permit solution.

7. Accuracy
The main sources of rounding errors are in steps (2), (3), (6)
and (7) of the algorithm described in Section 8.2. It can be
shown (Cox [2]) that the matrix A formed in step (2) has
x
elements differing relatively from their true values by at most a
small multiple of $3(\varepsilon)$, where ε is the machine
precision. A is 'totally positive', and a linear system with
such a coefficient matrix can be solved quite safely by
elimination without pivoting. Similar comments apply to steps (6)
and (7). Thus the complete process is numerically stable.

8. Further Comments

8.1. Timing
The time taken by this routine is approximately proportional to
$m \times m$.

8.2. Outline of method used
The process of computing the spline consists of the following
steps:

(1) choice of the interior x-knots $(\lambda_5, \lambda_6, \ldots)$,

(2) $(\lambda_i) = \lambda_{i-2}$, for $i=5,6,\ldots,m$,

(3) $(\lambda_i) = x$, for $i=5,6,\ldots,m$,
(2) formation of the system
\[A E = F, \]
where \(A \) is a band matrix of order \(m \) and bandwidth 4, containing in its \(q \)th row the values at \(x \) of the B-splines \(q \) in \(x \), \(F \) is the \(m \) by \(m \) rectangular matrix of values \(f \), \(q, r \) and \(E \) denotes an \(m \) by \(m \) rectangular matrix of intermediate coefficients,

(3) use of Gaussian elimination to reduce this system to band triangular form,

(4) solution of this triangular system for \(E \),

(5) choice of the interior \(y \) knots \((\mu)_i \), \((\mu)_i \), \ldots, \((\mu)_m \) as
\[
(\mu)_i = y, \quad \text{for } i = 5, 6, \ldots, m,
\]

(6) formation of the system
\[T T \]
\[A C = E, \]
where \(A \) is the counterpart of \(A \) for the \(y \) variable, and \(C \) denotes the \(m \) by \(m \) rectangular matrix of values of \(c \), \(i j \)

(7) use of Gaussian elimination to reduce this system to band triangular form,

(8) solution of this triangular system for \(C \) and hence \(C \).

For computational convenience, steps (2) and (3), and likewise steps (6) and (7), are combined so that the formation of \(A \) and \(A \) and the reductions to triangular form are carried out one row at a time.

8.3. Evaluation of Computed Spline

The values of the computed spline at the points \((TX(r), TY(r))\), for \(r = 1, 2, \ldots, N \), may be obtained in the double precision array
22.4. NAGE.HT

FF, of length at least N, by the following call:

```fortran
IFAIL = 0
CALL E02DEF(N,PX,PY,TX,TY,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
```

where PX, PY, LAMDA, MU and C are the output parameters of E01DAF,
WRK is a double precision workspace array of length at least
PY-4, and IWRK is an integer workspace array of length at least
PY-4.

To evaluate the computed spline on an NX by NY rectangular grid
of points in the x-y plane, which is defined by the x co-
ordinates stored in TX(q), for q = 1,2,...,NX, and the y co-
ordinates stored in TY(r), for r = 1,2,...,NY, returning the
results in the double precision array FG which is of length at
least NX*NY, the following call may be used:

```fortran
IFAIL = 0
CALL E02DFF(NX,NY,PX,PY,TX,TY,LAMDA,MU,C,FG,WRK,LWRK,
             * IWRK,LIWRK,IFAIL)
```

where PX, PY, LAMDA, MU and C are the output parameters of E01DAF,
WRK is a double precision workspace array of length at least
LWRK = min(NWRK1,NWRK2), NWRK1 = NX*4+PX, NWRK2 = NY*4+PY, and
IWRK is an integer workspace array of length at least LIWRK = NY
+ PY - 4 if NWRK1 > NWRK2, or NX + PX - 4 otherwise. The result
of the spline evaluated at grid point (q,r) is returned in
element (NY*(q-1)+r) of the array FG.

9. Example

This program reads in values of m , x for q=1,2,...,m , m and
x q x y
y for r=1,2,...,m , followed by values of the ordinates f r y q,r
defined at the grid points (x ,y). It then calls E01DAF to
q r
compute a bicubic spline interpolant of the data values, and
prints the values of the knots and B-spline coefficients. Finally
it evaluates the spline at a small sample of points on a
rectangular grid.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.

```
\end{verbatim}
\endscroll
Two-D surface interpolating a set of scattered data points

---

E01SAF(3NAG)  Foundation Library (12/10/92)  E01SAF(3NAG)

---

E01 -- Interpolation

E01SAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01SAF generates a two-dimensional surface interpolating a set of scattered data points, using the method of Renka and Cline.

2. Specification

SUBROUTINE E01SAF (M, X, Y, F, TRIANG, GRADS, IFAIL)
INTEGER M, TRIANG(7*M), IFAIL
DOUBLE PRECISION X(M), Y(M), F(M), GRADS(2,M)

3. Description

This routine constructs an interpolating surface \( F(x,y) \) through a set of \( m \) scattered data points \( (x_r,y_r,f_r) \), for \( r=1,2,\ldots,m \), using a method due to Renka and Cline. In the \( (x,y) \) plane, the data points must be distinct. The constructed surface is continuous and has continuous first derivatives.

The method involves firstly creating a triangulation with all the
(x,y) data points as nodes, the triangulation being as nearly equiangular as possible (see Cline and Renka [1]). Then gradients in the x- and y-directions are estimated at node r, for r=1,2,...,m, as the partial derivatives of a quadratic function of x and y which interpolates the data value $f_r$, and which fits the data values at nearby nodes (those within a certain distance chosen by the algorithm) in a weighted least-squares sense. The weights are chosen such that closer nodes have more influence than more distant nodes on derivative estimates at node r. The computed partial derivatives, with the $f_r$ values, at the three nodes of each triangle define a piecewise polynomial surface of a certain form which is the interpolant on that triangle. See Renka and Cline [4] for more detailed information on the algorithm, a development of that by Lawson [2]. The code is derived from Renka [3].

The interpolant $F(x,y)$ can subsequently be evaluated at any point (x,y) inside or outside the domain of the data by a call to E01SBF. Points outside the domain are evaluated by extrapolation.

4. References


5. Parameters

1: M -- INTEGER
   Input
   On entry: m, the number of data points. Constraint: M >= 3.

2: X(M) -- DOUBLE PRECISION array
   Input

3: Y(M) -- DOUBLE PRECISION array
   Input
4: F(M) -- DOUBLE PRECISION array
   Input
   On entry: the co-ordinates of the rth data point, for
   r=1,2,...,m. The data points are accepted in any order, but
   see Section 8. Constraint: The (x,y) nodes must not all be
   collinear, and each node must be unique.

5: TRIANG(7*M) -- INTEGER array
   Output
   On exit: a data structure defining the computed
   triangulation, in a form suitable for passing to E01SBF.

6: GRADS(2,M) -- DOUBLE PRECISION array
   Output
   On exit: the estimated partial derivatives at the nodes, in
   a form suitable for passing to E01SBF. The derivatives at
   node r with respect to x and y are contained in GRADS(1,r)
   and GRADS(2,r) respectively, for r=1,2,...,m.

7: IFAIL -- INTEGER
   Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   On entry M < 3.

IFAIL= 2
   On entry all the (X,Y) pairs are collinear.

IFAIL= 3
   On entry (X(i),Y(i)) = (X(j),Y(j)) for some i/=j.

7. Accuracy

On successful exit, the computational errors should be negligible
in most situations but the user should always check the computed
surface for acceptability, by drawing contours for instance. The
surface always interpolates the input data exactly.

8. Further Comments

The time taken for a call of E01SAF is approximately proportional
to the number of data points, m. The routine is more efficient if, before entry, the values in X, Y, F are arranged so that the X array is in ascending order.

9. Example

This program reads in a set of 30 data points and calls E01SAF to construct an interpolating surface. It then calls E01SBF to evaluate the interpolant at a sample of points on a rectangular grid.

Note that this example is not typical of a realistic problem: the number of data points would normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an accurate plot, say.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

E01SBF evaluates at a given point the two-dimensional interpolant function computed by E01SAF.

2. Specification

```
SUBROUTINE E01SBF (M, X, Y, F, TRIANG, GRADS, PX, PY, PF, 1
 IFAIL)
 INTEGER M, TRIANG(7*M), IFAIL
 DOUBLE PRECISION X(M), Y(M), F(M), GRADS(2,M), PX, PY, PF
```

3. Description

This routine takes as input the parameters defining the interpolant $F(x,y)$ of a set of scattered data points $(x_r,y_r,f_r)$, for $r=1,2,...,m$, as computed by E01SAF, and evaluates the interpolant at the point $(px,py)$.

If $(px,py)$ is equal to $(x_r,y_r)$ for some value of $r$, the returned value will be equal to $f_r$.

If $(px,py)$ is not equal to $(x_r,y_r)$ for any $r$, the derivatives in GRADS will be used to compute the interpolant. A triangle is sought which contains the point $(px,py)$, and the vertices of the triangle along with the partial derivatives and $f$ values at the vertices are used to compute the value $F(px,py)$. If the point $(px,py)$ lies outside the triangulation defined by the input parameters, the returned value is obtained by extrapolation. In this case, the interpolating function $F$ is extended linearly beyond the triangulation boundary. The method is described in more detail in Renka and Cline [2] and the code is derived from Renka [1].

E01SBF must only be called after a call to E01SAF.

4. References


5. Parameters

1: M -- INTEGER Input
2: X(M) -- DOUBLE PRECISION array Input
3: Y(M) -- DOUBLE PRECISION array Input
4: F(M) -- DOUBLE PRECISION array Input
5: TRIANG(7*M) -- INTEGER array Input
6: GRADS(2,M) -- DOUBLE PRECISION array Input
   On entry: M, X, Y, F, TRIANG and GRADS must be unchanged from the previous call of E01SAF.
7: PX -- DOUBLE PRECISION Input
8: PY -- DOUBLE PRECISION Input
   On entry: the point (px,py) at which the interpolant is to be evaluated.
9: PF -- DOUBLE PRECISION Output
   On exit: the value of the interpolant evaluated at the point (px,py).
10: IFAIL -- INTEGER Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   On entry M < 3.

IFAIL= 2
   On entry the triangulation information held in the array TRIANG does not specify a valid triangulation of the data points. TRIANG may have been corrupted since the call to
CHAPTER 22. NAG LIBRARY ROUTINES

E01SAF.

IFAIL= 3
    The evaluation point (PX,PY) lies outside the nodal triangulation, and the value returned in PF is computed by extrapolation.

7. Accuracy

Computational errors should be negligible in most practical situations.

8. Further Comments

The time taken for a call of E01SBF is approximately proportional to the number of data points, m.

The results returned by this routine are particularly suitable for applications such as graph plotting, producing a smooth surface from a number of scattered points.

9. Example

See the example for E01SAF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
E01 -- Interpolation
E01SEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01SEF generates a two-dimensional surface interpolating a set of scattered data points, using a modified Shepard method.

2. Specification

```fortran
SUBROUTINE E01SEF (M, X, Y, F, RNW, RNQ, NW, NQ, FNODES, 1
 MINNQ, WRK, IFAIL)
 INTEGER M, NW, NQ, MINNQ, IFAIL
 DOUBLE PRECISION X(M), Y(M), F(M), RNW, RNQ, FNODES(5*M), 1
 WRK(6*M)
```

3. Description

This routine constructs an interpolating surface $F(x,y)$ through a set of $m$ scattered data points $(x_r, y_r, f_r)$, for $r=1,2,...,m$, using a modification of Shepard’s method. The surface is continuous and has continuous first derivatives.

The basic Shepard method, described in [2], interpolates the input data with the weighted mean

$$F(x,y) = \frac{\sum_{r=1}^{m} w(x,y) f_r}{\sum_{r=1}^{m} w(x,y)},$$

where $w(x,y) = \frac{1}{d^{2}}$ and $d = (x-x_r)^2 + (y-y_r)^2$. 

The basic method is global in that the interpolated value at any point depends on all the data, but this routine uses a modification due to Franke and Nielson described in [1], whereby the method becomes local by adjusting each \( w(x,y) \) to be zero outside a circle with centre \((x_0, y_0)\) and some radius \( R \). Also, to improve the performance of the basic method, each \( f \) above is replaced by a function \( f(x,y) \), which is a quadratic fitted by weighted least-squares to data local to \((x_0, y_0)\) and forced to interpolate \((x_0, y_0, f)\). In this context, a point \((x,y)\) is defined to be local to another point if it lies within some distance \( R \) of it. Computation of these quadratics constitutes the main work done by this routine. If there are less than 5 other points within distance \( R \) from \((x_0, y_0)\), the quadratic is replaced by a linear function. In cases of rank-deficiency, the minimum norm solution is computed.

The user may specify values for \( R \) and \( R \), but it is usually easier to choose instead two integers \( N \) and \( N \), from which the routine will compute \( R \) and \( R \). These integers can be thought of as the average numbers of data points lying within distances \( R \) and \( R \) respectively from each node. Default values are provided, and advice on alternatives is given in Section 8.2.

The interpolant \( F(x,y) \) generated by this routine can subsequently be evaluated for any point \((x,y)\) in the domain of the data by a call to E01SFF.

4. References


5. Parameters

1: $M$ -- INTEGER 
   Input
   On entry: $m$, the number of data points. Constraint: $M \geq 3$.

2: $X(M)$ -- DOUBLE PRECISION array 
   Input

3: $Y(M)$ -- DOUBLE PRECISION array 
   Input

4: $F(M)$ -- DOUBLE PRECISION array 
   Input
   On entry: the co-ordinates of the $r$th data point, for 
   $r=1,2,\ldots,m$. The order of the data points is immaterial. 
   Constraint: each of the $(X(r),Y(r))$ pairs must be unique.

5: $RNW$ -- DOUBLE PRECISION 
   Input/Output

6: $RNQ$ -- DOUBLE PRECISION 
   Input/Output
   On entry: suitable values for the radii $R_w$ and $R_q$ , 
   described in Section 3. Constraint: $RNQ \leq 0$ or $0 < RNW \leq RNQ$. 
   On exit: if $RNQ$ is set less than or equal to zero on 
   entry, then default values for both of them will be computed 
   from the parameters $NW$ and $NQ$, and $RNW$ and $RNQ$ will contain 
   these values on exit.

7: $NW$ -- INTEGER 
   Input

8: $NQ$ -- INTEGER 
   Input
   On entry: if $RNQ > 0.0$ and $RNW > 0.0$ then $NW$ and $NQ$ are not 
   referenced by the routine. Otherwise, $NW$ and $NQ$ must specify 
   suitable values for the integers $N_w$ and $N_q$ described in 
   Section 3.

   If $NQ$ is less than or equal to zero on entry, then default 
   values for both of them, namely $NW = 9$ and $NQ = 18$, will be 
   used. Constraint: $NQ \leq 0$ or $0 < NW \leq NQ$.

9: $FNODES(5*M)$ -- DOUBLE PRECISION array 
   Output
   On exit: the coefficients of the constructed quadratic 
   nodal functions. These are in a form suitable for passing to 
   E01SFF.

10: $MINNQ$ -- INTEGER 
    Output
    On exit: the minimum number of data points that lie within 
    radius $RNQ$ of any node, and thus define a nodal function. If 
    $MINNQ$ is very small (say, less than 5), then the interpolant 
    may be unsatisfactory in regions where the data points are
Chapter 22. NAG Library Routines

Sparse.

11: WRK(6*M) -- DOUBLE PRECISION array Workspace

12: IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry M < 3.

IFAIL = 2
On entry RNQ > 0 and either RNW > RNQ or RNW <= 0.

IFAIL = 3
On entry NQ > 0 and either NW > NQ or NW <= 0.

IFAIL = 4
On entry (X(i),Y(i)) is equal to (X(j),Y(j)) for some i/=j.

7. Accuracy

On successful exit, the computational errors should be negligible in most situations but the user should always check the computed surface for acceptability, by drawing contours for instance. The surface always interpolates the input data exactly.

8. Further Comments

8.1. Timing

The time taken for a call of E01SEF is approximately proportional to the number of data points, m, provided that N is of the same order as its default value (18). However if N is increased so that the method becomes more global, the time taken becomes approximately proportional to m.
8.2. Choice of \( N \)

Note first that the radii \( R \) and \( R \), described in Section 3, are \( w \) \( q \)

\[
\frac{D}{m} \quad \frac{D}{m}
\]
computed as \( \frac{D}{m} \) and \( \frac{D}{m} \) respectively, where \( D \) is the maximum distance between any pair of data points.

Default values \( N = 9 \) and \( N = 18 \) work quite well when the data points are fairly uniformly distributed. However, for data having some regions with relatively few points or for small data sets \( m < 25 \), a larger value of \( N \) may be needed. This is to ensure a reasonable number of data points within a distance \( R \) of each node, and to avoid some regions in the data area being left outside all the discs of radius \( R \) on which the weights \( w(x,y) \) are non-zero. Maintaining \( N \) approximately equal to \( 2N \) is usually an advantage.

Note however that increasing \( N \) and \( N \) does not improve the quality of the interpolant in all cases. It does increase the computational cost and makes the method less local.

9. Example

This program reads in a set of 30 data points and calls E01SEF to construct an interpolating surface. It then calls E01SFF to evaluate the interpolant at a sample of points on a rectangular grid.

Note that this example is not typical of a realistic problem: the number of data points would normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an accurate plot, say.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Evaluate 2D interpolating function from E01SEF

--- nage.ht ---

\begin{page}{manpageXXe01sff}\{NAG Documentation: e01sff\}
\beginscroll
\verb|
E01SFF(3NAG) Foundation Library (12/10/92) E01SFF(3NAG)

---

E01 -- Interpolation
E01SFF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01SFF evaluates at a given point the two-dimensional interpolating function computed by E01SEF.

2. Specification

\begin{verbatim}
SUBROUTINE E01SFF (M, X, Y, F, RNW, FNODES, PX, PY, PF, IFAIL)
    INTEGER M, IFAIL
    DOUBLE PRECISION X(M), Y(M), F(M), RNW, FNODES(5*M), PX, PY, PF
\end{verbatim}

3. Description

This routine takes as input the interpolant \( F(x,y) \) of a set of scattered data points \( (x_r, y_r, f_r) \), for \( r=1,2,\ldots,m \), as computed by E01SEF, and evaluates the interpolant at the point \( (px, py) \).

If \( (px, py) \) is equal to \( (x_r, y_r) \) for some value of \( r \), the returned value is

---

Evaluate 2D interpolating function from E01SEF

--- nage.ht ---

\begin{page}{manpageXXe01sff}\{NAG Documentation: e01sff\}
\beginscroll
\verb|
E01SFF(3NAG) Foundation Library (12/10/92) E01SFF(3NAG)

---

E01 -- Interpolation
E01SFF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E01SFF evaluates at a given point the two-dimensional interpolating function computed by E01SEF.

2. Specification

\begin{verbatim}
SUBROUTINE E01SFF (M, X, Y, F, RNW, FNODES, PX, PY, PF, IFAIL)
    INTEGER M, IFAIL
    DOUBLE PRECISION X(M), Y(M), F(M), RNW, FNODES(5*M), PX, PY, PF
\end{verbatim}

3. Description

This routine takes as input the interpolant \( F(x,y) \) of a set of scattered data points \( (x_r, y_r, f_r) \), for \( r=1,2,\ldots,m \), as computed by E01SEF, and evaluates the interpolant at the point \( (px, py) \).

If \( (px, py) \) is equal to \( (x_r, y_r) \) for some value of \( r \), the returned value is
value will be equal to \( f \).

If \((px, py)\) is not equal to \((x, y)\) for any \(r\), all points that are \(r\) \(r\) within distance \(RNW\) of \((px, py)\), along with the corresponding nodal functions given by \(FNODES\), will be used to compute a value of the interpolant.

E01SFF must only be called after a call to E01SEF.

4. References


5. Parameters

1: \( M \) -- INTEGER Input

2: \( X(M) \) -- DOUBLE PRECISION array Input

3: \( Y(M) \) -- DOUBLE PRECISION array Input

4: \( F(M) \) -- DOUBLE PRECISION array Input

5: \( RNW \) -- DOUBLE PRECISION Input

6: \( FNODES(5*M) \) -- DOUBLE PRECISION array Input

On entry: \( M, X, Y, F, RNW \) and \( FNODES \) must be unchanged from the previous call of E01SEF.

7: \( PX \) -- DOUBLE PRECISION Input

8: \( PY \) -- DOUBLE PRECISION Input

On entry: the point \((px, py)\) at which the interpolant is to be evaluated.

9: \( PF \) -- DOUBLE PRECISION Output

On exit: the value of the interpolant evaluated at the point \((px, py)\).

10: \( IFAIL \) -- INTEGER Input/Output

On entry: \( IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential
CHAPTER 22. NAG LIBRARY ROUTINES

Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M < 3.

IFAIL= 2
The interpolant cannot be evaluated because the evaluation point (PX,PY) lies outside the support region of the data supplied in X, Y and F. This error exit will occur if (PX,PY) lies at a distance greater than or equal to RNW from every point given by arrays X and Y.

The value 0.0 is returned in PF. This value will not provide continuity with values obtained at other points (PX,PY), i.e., values obtained when IFAIL = 0 on exit.

7. Accuracy

Computational errors should be negligible in most practical situations.

8. Further Comments

The time taken for a call of E01SFF is approximately proportional to the number of data points, m.

The results returned by this routine are particularly suitable for applications such as graph plotting, producing a smooth surface from a number of scattered points.

9. Example

See the example for E01SEF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Curve and Surface Fitting

---

Contents of this Introduction:

1. Scope of the Chapter

2. Background to the Problems
   2.1. Preliminary Considerations
      2.1.1. Fitting criteria: norms
      2.1.2. Weighting of data points
   2.2. Curve Fitting
      2.2.1. Representation of polynomials
      2.2.2. Representation of cubic splines
   2.3. Surface Fitting
      2.3.1. Bicubic splines: definition and representation
   2.4. General Linear and Nonlinear Fitting Functions
   2.5. Constrained Problems
The main aim of this chapter is to assist the user in finding a function which approximates a set of data points. Typically the data contain random errors, as of experimental measurement, which need to be smoothed out. To seek an approximation to the data, it is first necessary to specify for the approximating function a
an unspecified coefficient: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The chapter deals mainly with curve and surface fitting (i.e., fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function, since these cover the most common needs. However, fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other chapters) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph.

The chapter also contains routines for evaluating, differentiating and integrating polynomial and spline curves and surfaces, once the numerical values of their coefficients have been determined.

2. Background to the Problems

2.1. Preliminary Considerations

In the curve-fitting problems considered in this chapter, we have a dependent variable \( y \) and an independent variable \( x \), and we are given a set of data points \((x_r, y_r)\), for \( r=1,2,\ldots,m \). The preliminary matters to be considered in this section will, for simplicity, be discussed in this context of curve-fitting problems. In fact, however, these considerations apply equally well to surface and higher-dimensional problems. Indeed, the discussion presented carries over essentially as it stands if, for these cases, we interpret \( x \) as a vector of several independent variables and correspondingly each \( x_r \) as a vector containing the \( r \)th data value of each independent variable.

We wish, then, to approximate the set of data points as closely as possible with a specified function, \( f(x) \) say, which is as smooth as possible -- \( f(x) \) may, for example, be a polynomial. The requirements of smoothness and closeness conflict, however, and a balance has to be struck between them. Most often, the smoothness requirement is met simply by limiting the number of coefficients allowed in the fitting function -- for example, by restricting the degree in the case of a polynomial. Given a particular number of coefficients in the function in question, the fitting routines of this chapter determine the values of the coefficients such that the 'distance' of the function from the data points is as small as possible. The necessary balance is struck by the user
comparing a selection of such fits having different numbers of
coefficients. If the number of coefficients is too low, the
approximation to the data will be poor. If the number is too
high, the fit will be too close to the data, essentially
following the random errors and tending to have unwanted
fluctuations between the data points. Between these extremes,
there is often a group of fits all similarly close to the data
points and then, particularly when least-squares polynomials are
used, the choice is clear: it is the fit from this group having
the smallest number of coefficients.

The above process can be seen as the user minimizing the
smoothness measure (i.e., the number of coefficients) subject to
the distance from the data points being acceptably small. Some of
the routines, however, do this task themselves. They use a
different measure of smoothness (in each case one that is
continuous) and minimize it subject to the distance being less
than a threshold specified by the user. This is a much more
automatic process, requiring only some experimentation with the
threshold.

2.1.1. Fitting criteria: norms

A measure of the above 'distance' between the set of data points
and the function \( f(x) \) is needed. The distance from a single data
point \((x, y)\) to the function can simply be taken as

\[
(\epsilon) = y - f(x),
\]

and is called the residual of the point. (With this definition,
the residual is regarded as a function of the coefficients
contained in \( f(x) \); however, the term is also used to mean the
particular value of \( (\epsilon) \) which corresponds to the fitted
values of the coefficients.) However, we need a measure of
distance for the set of data points as a whole. Three different
measures are used in the different routines (which measure to
select, according to circumstances, is discussed later in this
sub-section). With \( (\epsilon) \) defined in (1), these measures, or

\[
\sum_{r=1}^{m} |(\epsilon)|
\]

norms, are

\[
m
--
> |(\epsilon)|,
--
r
r=1
\]
Minimization of one or other of these norms usually provides the fitting criterion, the minimization being carried out with respect to the coefficients in the mathematical form used for \( f(x) \): with respect to the \( b \) for example if the mathematical form is the power series in (8) below. The fit which results from minimizing (2) is known as the \( l^1 \) fit, or the fit in the \( l^1 \) norm:

\[
\min \sum \left| \epsilon \right|
\]

that which results from minimizing (3) is the \( l^2 \) fit, the well-known least-squares fit (minimizing (3) is equivalent to minimizing the square of (3), i.e., the sum of squares of residuals, and it is the latter which is used in practice), and that from minimizing (4) is the \( l^\infty \), or minimax, fit.

Strictly speaking, implicit in the use of the above norms are the statistical assumptions that the random errors in the \( y \) are independent of one another and that any errors in the \( x \) are negligible by comparison. From this point of view, the use of the \( l^1 \) norm is appropriate when the random errors in the \( y \) have a normal distribution, and the \( l^\infty \) norm is appropriate when they have a rectangular distribution, as when fitting a table of values rounded to a fixed number of decimal places. The \( l^2 \) norm is appropriate when the error distribution has its frequency function proportional to the negative exponential of the modulus of the normalised error -- not a common situation.

However, the user is often indifferent to these statistical considerations, and simply seeks a fit which he can assess by inspection, perhaps visually from a graph of the results. In this
CHAPTER 22. NAG LIBRARY ROUTINES

event, the $\ell_1$ norm is particularly appropriate when the data are
thought to contain some 'wild' points (since fitting in this norm
tends to be unaffected by the presence of a small number of such points),
though of course in simple situations the user may prefer to identify and reject these points. The $\ell_1$ norm $\ell_\infty$
should be used only when the maximum residual is of particular concern,
as may be the case for example when the data values have been obtained by accurate computation, as of a mathematical function. Generally, however, a routine based on least-squares should be preferred, as being computationally faster and usually providing more information on which to assess the results. In many problems the three fits will not differ significantly for practical purposes.

Some of the routines based on the $\ell_1$ norm do not minimize the $\ell_2$ norm itself but instead minimize some (intuitively acceptable) measure of smoothness subject to the norm being less than a user-specified threshold. These routines fit with cubic or bicubic splines (see (10) and (14) below) and the smoothing measures relate to the size of the discontinuities in their third derivatives. A much more automatic fitting procedure follows from this approach.

2.1.2. Weighting of data points

The use of the above norms also assumes that the data values $y_r$
are of equal (absolute) accuracy. Some of the routines enable an allowance to be made to take account of differing accuracies. The allowance takes the form of 'weights' applied to the $y$-values so that those values known to be more accurate have a greater influence on the fit than others. These weights, to be supplied by the user, should be calculated from estimates of the absolute accuracies of the $y$-values, these estimates being expressed as standard deviations, probable errors or some other measure which has the same dimensions as $y$. Specifically, for each $y$ the corresponding weight $w$ should be inversely proportional to the accuracy estimate of $y$. For example, if the percentage accuracy is the same for all $y$, then the absolute accuracy of $y$ is proportional to $y$ (assuming $y$ to be positive, as it usually is in such cases) and so $w = K/y$, for $r = 1, 2, \ldots, m$, for an arbitrary $r$.
positive constant $K$. (This definition of weight is stressed because often weight is defined as the square of that used here.)

The norms (2), (3) and (4) above are then replaced respectively by

\[
\sum_{r=1}^{m} |w(\epsilon)|, \quad (5)
\]

\[
\max_{r=1}^{m} |w(\epsilon)|. \quad (7)
\]

Again it is the square of (6) which is used in practice rather than (6) itself.

2.2. Curve Fitting

When, as is commonly the case, the mathematical form of the fitting function is immaterial to the problem, polynomials and cubic splines are to be preferred because their simplicity and ease of handling confer substantial benefits. The cubic spline is the more versatile of the two. It consists of a number of cubic polynomial segments joined end to end with continuity in first and second derivatives at the joins. The third derivative at the joins is in general discontinuous. The $x$-values of the joins are called knots, or, more precisely, interior knots. Their number determines the number of coefficients in the spline, just as the degree determines the number of coefficients in a polynomial.

2.2.1. Representation of polynomials

Rather than using the power-series form

\[
f(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_k x^k
\]

(8)

to represent a polynomial, the routines in this chapter use the Chebyshev series form
\[ f(x) = -a_0 T_0(x) + a_1 T_1(x) + a_2 T_2(x) + \ldots + a_k T_k(x), \quad (9) \]

where \( T_i(x) \) is the Chebyshev polynomial of the first kind of degree \( i \) (see Cox and Hayes \[1\], page 9), and where the range of \( x \) has been normalised to run from -1 to +1. The use of either form leads theoretically to the same fitted polynomial, but in practice results may differ substantially because of the effects of rounding error. The Chebyshev form is to be preferred, since it leads to much better accuracy in general, both in the computation of the coefficients and in the subsequent evaluation of the fitted polynomial at specified points. This form also has other advantages: for example, since the later terms in \((9)\) generally decrease much more rapidly from left to right than do those in \((8)\), the situation is more often encountered where the last terms are negligible and it is obvious that the degree of the polynomial can be reduced (note that on the interval \(-1 \leq x \leq 1\) for all \( i \), \( T_i(x) \) attains the value unity but never exceeds it, so that the coefficient \( a_i \) gives directly the maximum value of the \( i \) term containing it).

2.2.2. Representation of cubic splines

A cubic spline is represented in the form

\[ f(x) = c_1 N_1(x) + c_2 N_2(x) + \ldots + c_p N_p(x), \quad (10) \]

where \( N_i(x) \), for \( i = 1, 2, \ldots, p \), is a normalised cubic B-spline (see Hayes \[2\]). This form, also, has advantages of computational speed and accuracy over alternative representations.

2.3. Surface Fitting

There are now two independent variables, and we shall denote these by \( x \) and \( y \). The dependent variable, which was denoted by \( y \) in the curve-fitting case, will now be denoted by \( f \). (This is a rather different notation from that indicated for the general-dimensional problem in the first paragraph of Section 2.1, but it has some advantages in presentation.)

Again, in the absence of contrary indications in the particular application being considered, polynomials and splines are the approximating functions most commonly used. Only splines are used by the surface-fitting routines in this chapter.
2.3.1. Bicubic splines: definition and representation

The bicubic spline is defined over a rectangle \( R \) in the \((x,y)\) plane, the sides of \( R \) being parallel to the \( x-\) and \( y-\)axes. \( R \) is divided into rectangular panels, again by lines parallel to the axes. Over each panel the bicubic spline is a bicubic polynomial, that is it takes the form

\[
\sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^i y^j.
\]  

(13)

Each of these polynomials joins the polynomials in adjacent panels with continuity up to the second derivative. The constant \( x \)-values of the dividing lines parallel to the \( y-\)axis form the set of interior knots for the variable \( x \), corresponding precisely to the set of interior knots of a cubic spline. Similarly, the constant \( y \)-values of dividing lines parallel to the \( x-\)axis form the set of interior knots for the variable \( y \). Instead of representing the bicubic spline in terms of the above set of bicubic polynomials, however, it is represented, for the sake of computational speed and accuracy, in the form

\[
f(x,y) = \sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij} M_i(x)N_j(y),
\]

(14)

where \( M_i(x) \), for \( i=1,2,\ldots,p \), and \( N_j(y) \), for \( j=1,2,\ldots,q \), are normalised B-splines (see Hayes and Halliday [4] for further details of bicubic splines and Hayes [2] for normalised B-splines).

2.4. General Linear and Nonlinear Fitting Functions

We have indicated earlier that, unless the data-fitting application under consideration specifically requires some other type of fitting function, a polynomial or a spline is usually to be preferred. Special routines for these functions, in one and in two variables, are provided in this chapter. When the application does specify some other fitting function, however, it may be treated by a routine which deals with a general linear function, or by one for a general nonlinear function, depending on whether the coefficients in the given function occur linearly or nonlinearly.
The general linear fitting function can be written in the form

\[ f(x) = c_1 (\phi_1(x)) + c_2 (\phi_2(x)) + \ldots + c_p (\phi_p(x)), \]  

(15)

where \( x \) is a vector of one or more independent variables, and the \( \phi_i \) are any given functions of these variables (though they must be linearly independent of one another if there is to be the possibility of a unique solution to the fitting problem). This is not intended to imply that each \( \phi_i \) is necessarily a function of all the variables: we may have, for example, that each \( \phi_i \) is a function of a different single variable, and even that one of the \( \phi_i \) is a constant. All that is required is that a value of each \( \phi_i(x) \) can be computed when a value of each independent variable is given.

When the fitting function \( f(x) \) is not linear in its coefficients, no more specific representation is available in general than \( f(x) \) itself. However, we shall find it helpful later on to indicate the fact that \( f(x) \) contains a number of coefficients (to be determined by the fitting process) by using instead the notation \( f(x; c) \), where \( c \) denotes the vector of coefficients. An example of a nonlinear fitting function is

\[ f(x; c) = c_1 + c_2 \exp(-c_4 x) + c_3 \exp(-c_5 x), \]  

(16)

which is in one variable and contains five coefficients. Note that here, as elsewhere in this Chapter Introduction, we use the term 'coefficients' to include all the quantities whose values are to be determined by the fitting process, not just those which occur linearly. We may observe that it is only the presence of the coefficients \( c_4 \) and \( c_5 \) which makes the form (16) nonlinear. If the values of these two coefficients were known beforehand, (16) would instead be a linear function which, in terms of the general linear form (15), has \( p=3 \) and

\[ (\phi_1(x)) = 1, \quad (\phi_2(x)) = \exp(-c_4 x), \quad \text{and} \quad (\phi_3(x)) = \exp(-c_5 x). \]

We may note also that polynomials and splines, such as (9) and (14), are themselves linear in their coefficients. Thus if, when
fitting with these functions, a suitable special routine is not available (as when more than two independent variables are involved or when fitting in the $l_1$ norm), it is appropriate to use a routine designed for a general linear function.

2.5. Constrained Problems

So far, we have considered only fitting processes in which the values of the coefficients in the fitting function are determined by an unconstrained minimization of a particular norm. Some fitting problems, however, require that further restrictions be placed on the determination of the coefficient values. Sometimes these restrictions are contained explicitly in the formulation of the problem in the form of equalities or inequalities which the coefficients, or some function of them, must satisfy. For example, if the fitting function contains a term $A\exp(-kx)$, it may be required that $k \geq 0$. Often, however, the equality or inequality constraints relate to the value of the fitting function or its derivatives at specified values of the independent variable(s), but these too can be expressed in terms of the coefficients of the fitting function, and it is appropriate to do this if a general linear or nonlinear routine is being used. For example, if the fitting function is that given in (10), the requirement that the first derivative of the function at $x=x_0$ be non-negative can be expressed as

$$c N'(x_0)+c N'(x_0)+...+c N'(x_0) \geq 0, \quad (17)$$

where the prime denotes differentiation with respect to $x$ and each derivative is evaluated at $x=x_0$. On the other hand, if the requirement had been that the derivative at $x=x_0$ be exactly zero, the inequality sign in (17) would be replaced by an equality.

Routines which provide a facility for minimizing the appropriate norm subject to such constraints are discussed in Section 3.6.

2.6. References


3. Recommendations on Choice and Use of Routines

3.1. General

The choice of a routine to treat a particular fitting problem will depend first of all on the fitting function and the norm to be used. Unless there is good reason to the contrary, the fitting function should be a polynomial or a cubic spline (in the appropriate number of variables) and the norm should be the $l_2$ norm (leading to the least-squares fit). If some other function is to be used, the choice of routine will depend on whether the function is nonlinear (in which case see Section 3.5.2) or linear in its coefficients (see Section 3.5.1), and, in the latter case, on whether the $l_1$ or $l_2$ norm is to be used. The latter section is appropriate for polynomials and splines, too, if the $l_1$ norm is preferred.

In the case of a polynomial or cubic spline, if there is only one independent variable, the user should choose a spline (Section 3.3) when the curve represented by the data is of complicated form, perhaps with several peaks and troughs. When the curve is of simple form, first try a polynomial (see Section 3.2) of low degree, say up to degree 5 or 6, and then a spline if the polynomial fails to provide a satisfactory fit. (Of course, if third-derivative discontinuities are unacceptable to the user, a polynomial is the only choice.) If the problem is one of surface fitting, one of the spline routines should be used (Section 3.4). If the problem has more than two independent variables, it may be treated by the general linear routine in Section 3.5.1, again using a polynomial in the first instance.

Another factor which affects the choice of routine is the presence of constraints, as previously discussed in Section 2.5. Indeed this factor is likely to be overriding at present, because of the limited number of routines which have the necessary facility. See Section 3.6.
3.1.1. Data considerations

A satisfactory fit cannot be expected by any means if the number and arrangement of the data points do not adequately represent the character of the underlying relationship: sharp changes in behaviour, in particular, such as sharp peaks, should be well covered. Data points should extend over the whole range of interest of the independent variable(s): extrapolation outside the data ranges is most unwise. Then, with polynomials, it is advantageous to have additional points near the ends of the ranges, to counteract the tendency of polynomials to develop fluctuations in these regions. When, with polynomial curves, the user can precisely choose the x-values of the data, the special points defined in Section 3.2.2 should be selected. With splines the choice is less critical as long as the character of the relationship is adequately represented. All fits should be tested graphically before accepting them as satisfactory.

For this purpose it should be noted that it is not sufficient to plot the values of the fitted function only at the data values of the independent variable(s); at the least, its values at a similar number of intermediate points should also be plotted, as unwanted fluctuations may otherwise go undetected. Such fluctuations are the less likely to occur the lower the number of coefficients chosen in the fitting function. No firm guide can be given, but as a rough rule, at least initially, the number of coefficients should not exceed half the number of data points (points with equal or nearly equal values of the independent variable, or both independent variables in surface fitting, counting as a single point for this purpose). However, the situation may be such, particularly with a small number of data points, that a satisfactorily close fit to the data cannot be achieved without unwanted fluctuations occurring. In such cases, it is often possible to improve the situation by a transformation of one or more of the variables, as discussed in the next paragraph: otherwise it will be necessary to provide extra data points. Further advice on curve fitting is given in Cox and Hayes [1] and, for polynomials only, in Hayes [3] of Section 2.7. Much of the advice applies also to surface fitting; see also the Routine Documents.

3.1.2. Transformation of variables

Before starting the fitting, consideration should be given to the choice of a good form in which to deal with each of the variables: often it will be satisfactory to use the variables as they stand, but sometimes the use of the logarithm, square root, or some other function of a variable will lead to a better-behaved relationship. This question is customarily taken into
account in preparing graphs and tables of a relationship and the same considerations apply when curve or surface fitting. The practical context will often give a guide. In general, it is best to avoid having to deal with a relationship whose behaviour in one region is radically different from that in another. A steep rise at the left-hand end of a curve, for example, can often best be treated by curve fitting in terms of \( \log(x+c) \) with some suitable value of the constant \( c \). A case when such a transformation gave substantial benefit is discussed in Hayes [3] page 60. According to the features exhibited in any particular case, transformation of either dependent variable or independent variable(s) or both may be beneficial. When there is a choice it is usually better to transform the independent variable(s): if the dependent variable is transformed, the weights attached to the data points must be adjusted. Thus (denoting the dependent variable by \( y \), as in the notation for curves) if the \( y \) to be fitted have been obtained by a transformation \( y=g(Y) \) from original data values \( Y \), with weights \( W \), for \( r=1,2,\ldots,m \), we must take

\[
    w = W / (dy/dY),
\]

where the derivative is evaluated at \( Y \). Strictly, the transformation of \( Y \) and the adjustment of weights are valid only when the data errors in the \( Y \) are small compared with the range spanned by the \( Y \), but this is usually the case.

3.2. Polynomial Curves

3.2.1. Least-squares polynomials: arbitrary data points

E02ADF fits to arbitrary data points, with arbitrary weights, polynomials of all degrees up to a maximum degree \( k \), which is at choice. If the user is seeking only a low degree polynomial, up to degree 5 or 6 say, \( k=10 \) is an appropriate value, providing there are about 20 data points or more. To assist in deciding the degree of polynomial which satisfactorily fits the data, the routine provides the root-mean-square-residual \( s_i \) for all degrees \( i=1,2,\ldots,k \). In a satisfactory case, these \( s_i \) will decrease steadily as \( i \) increases and then settle down to a fairly constant value, as shown in the example.
If the $s_i$ values settle down in this way, it indicates that the closest polynomial approximation justified by the data has been achieved. The degree which first gives the approximately constant value of $s_i$ (degree 5 in the example) is the appropriate degree to select. (Users who are prepared to accept a fit higher than sixth degree, should simply find a high enough value of $k$ to enable the type of behaviour indicated by the example to be detected: thus they should seek values of $k$ for which at least 4 or 5 consecutive values of $s_i$ are approximately the same.) If the degree were allowed to go high enough, $s_i$ would, in most cases, eventually start to decrease again, indicating that the data points are being fitted too closely and that undesirable fluctuations are developing between the points. In some cases, particularly with a small number of data points, this final decrease is not distinguishable from the initial decrease in $s_i$. In such cases, users may seek an acceptable fit by examining the graphs of several of the polynomials obtained. Failing this, they may (a) seek a transformation of variables which improves the behaviour, (b) try fitting a spline, or (c) provide more data points. If data can be provided simply by drawing an
approximating curve by hand and reading points from it, use the points discussed in Section 3.2.2.

3.2.2. Least-squares polynomials: selected data points

When users are at liberty to choose the x-values of data points, such as when the points are taken from a graph, it is most advantageous when fitting with polynomials to use the values $x = \cos((\pi)r/n)$, for $r=0,1,\ldots,n$ for some value of $n$, a suitable value for which is discussed at the end of this section. Note that these $x$ relate to the variable $x$ after it has been normalised so that its range of interest is -1 to +1. E02ADF may then be used as in Section 3.2.1 to seek a satisfactory fit.

3.3. Cubic Spline Curves

3.3.1. Least-squares cubic splines

E02BAF fits to arbitrary data points, with arbitrary weights, a cubic spline with interior knots specified by the user. The choice of these knots so as to give an acceptable fit must largely be a matter of trial and error, though with a little experience a satisfactory choice can often be made after one or two trials. It is usually best to start with a small number of knots (too many will result in unwanted fluctuations in the fit, or even in there being no unique solution) and, examining the fit graphically at each stage, to add a few knots at a time at places where the fit is particularly poor. Moving the existing knots towards these places will also often improve the fit. In regions where the behaviour of the curve underlying the data is changing rapidly, closer knots will be needed than elsewhere. Otherwise, positioning is not usually very critical and equally-spaced knots are often satisfactory. See also the next section, however.

A useful feature of the routine is that it can be used in applications which require the continuity to be less than the normal continuity of the cubic spline. For example, the fit may be required to have a discontinuous slope at some point in the range. This can be achieved by placing three coincident knots at the given point. Similarly a discontinuity in the second derivative at a point can be achieved by placing two knots there. Analogy with these discontinuous cases can provide guidance in more usual cases: for example, just as three coincident knots can produce a discontinuity in slope, so three close knots can produce a rapid change in slope. The closer the knots are, the more rapid can the change be.
An example set of data is given in Figure 1. It is a rather tricky set, because of the scarcity of data on the right, but it will serve to illustrate some of the above points and to show some of the dangers to be avoided. Three interior knots (indicated by the vertical lines at the top of the diagram) are chosen as a start. We see that the resulting curve is not steep enough in the middle and fluctuates at both ends, severely on the right. The spline is unable to cope with the shape and more knots are needed.

In Figure 2, three knots have been added in the centre, where the data shows a rapid change in behaviour, and one further out at each end, where the fit is poor. The fit is still poor, so a further knot is added in this region and, in Figure 3, disaster ensues in rather spectacular fashion.

The reason is that, at the right-hand end, the fits in Figure 1 and Figure 2 have been interpreted as poor simply because of the fluctuations about the curve underlying the data (or what it is naturally assumed to be). But the fitting process knows only about the data and nothing else about the underlying curve, so it is important to consider only closeness to the data when deciding goodness of fit.

Thus, in Figure 1, the curve fits the last two data points quite well compared with the fit elsewhere, so no knot should have been added in this region. In Figure 2, the curve goes exactly through the last two points, so a further knot is certainly not needed here.

Figure 4 shows what can be achieved without the extra knot on each of the flat regions. Remembering that within each knot interval the spline is a cubic polynomial, there is really no need to have more than one knot interval covering each flat region.

What we have, in fact, in Figure 2 and Figure 3 is a case of too many knots (so too many coefficients in the spline equation) for
the number of data points. The warning in the second paragraph of Section 2.1 was that the fit will then be too close to the data, tending to have unwanted fluctuations between the data points. The warning applies locally for splines, in the sense that, in localities where there are plenty of data points, there can be a lot of knots, as long as there are few knots where there are few points, especially near the ends of the interval. In the present example, with so few data points on the right, just the one extra knot in Figure 2 is too many! The signs are clearly present, with the last two points fitted exactly (at least to the graphical accuracy and actually much closer than that) and fluctuations within the last two knot-intervals (cf. Figure 1, where only the final point is fitted exactly and one of the wobbles spans several data points).

The situation in Figure 3 is different. The fit, if computed exactly, would still pass through the last two data points, with even more violent fluctuations. However, the problem has become so ill-conditioned that all accuracy has been lost. Indeed, if the last interior knot were moved a tiny amount to the right, there would be no unique solution and an error message would have been caused. Near-singularity is, sadly, not picked up by the routine, but can be spotted readily in a graph, as Figure 3. B-spline coefficients becoming large, with alternating signs, is another indication. However, it is better to avoid such situations, firstly by providing, whenever possible, data adequately covering the range of interest, and secondly by placing knots only where there is a reasonable amount of data.

The example here could, in fact, have utilised from the start the observation made in the second paragraph of this section, that three close knots can produce a rapid change in slope. The example has two such rapid changes and so requires two sets of three close knots (in fact, the two sets can be so close that one knot can serve in both sets, so only five knots prove sufficient in Figure 4). It should be noted, however, that the rapid turn occurs within the range spanned by the three knots. This is the reason that the six knots in Figure 2 are not satisfactory as they do not quite span the two turns.

Some more examples to illustrate the choice of knots are given in Cox and Hayes [1].

3.3.2. Automatic fitting with cubic splines

E02BEF also fits cubic splines to arbitrary data points with arbitrary weights but itself chooses the number and positions of the knots. The user has to supply only a threshold for the sum of squares of residuals. The routine first builds up a knot set by a series of trial fits in the $l_1$ norm. Then, with the knot set
decided, the final spline is computed to minimize a certain smoothing measure subject to satisfaction of the chosen threshold. Thus it is easier to use than E02BAF (see previous section), requiring only some experimentation with this threshold. It should therefore be first choice unless the user has a preference for the ordinary least-squares fit or, for example, wishes to experiment with knot positions, trying to keep their number down (E02BEF aims only to be reasonably frugal with knots).

3.4. Spline Surfaces

3.4.1. Least-squares bicubic splines

E02DAF fits to arbitrary data points, with arbitrary weights, a bicubic spline with its two sets of interior knots specified by the user. For choosing these knots, the advice given for cubic splines, in Section 3.3.1 above, applies here too. (See also the next section, however.) If changes in the behaviour of the surface underlying the data are more marked in the direction of one variable than of the other, more knots will be needed for the former variable than the latter. Note also that, in the surface case, the reduction in continuity caused by coincident knots will extend across the whole spline surface: for example, if three knots associated with the variable $x$ are chosen to coincide at a value $L$, the spline surface will have a discontinuous slope across the whole extent of the line $x=L$.

With some sets of data and some choices of knots, the least-squares bicubic spline will not be unique. This will not occur, with a reasonable choice of knots, if the rectangle $R$ is well covered with data points: here $R$ is defined as the smallest rectangle in the $(x,y)$ plane, with sides parallel to the axes, which contains all the data points. Where the least-squares solution is not unique, the minimal least-squares solution is computed, namely that least-squares solution which has the smallest value of the sum of squares of the $B$-spline coefficients $c_{ij}$ (see the end of Section 2.3.2 above). This choice of least-squares solution tends to minimize the risk of unwanted fluctuations in the fit. The fit will not be reliable, however, in regions where there are few or no data points.

3.4.2. Automatic fitting with bicubic splines

E02DDF also fits bicubic splines to arbitrary data points with arbitrary weights but chooses the knot sets itself. The user has to supply only a threshold for the sum of squares of residuals. Just like the automatic curve E02BEF (Section 3.3.2), E02DDF then
builds up the knot sets and finally fits a spline minimizing a smoothing measure subject to satisfaction of the threshold. Again, this easier to use routine is normally to be preferred, at least in the first instance.

E02DCF is a very similar routine to E02DDF but deals with data points of equal weight which lie on a rectangular mesh in the \((x,y)\) plane. This kind of data allows a very much faster computation and so is to be preferred when applicable. Substantial departures from equal weighting can be ignored if the user is not concerned with statistical questions, though the quality of the fit will suffer if this is taken too far. In such cases, the user should revert to E02DDF.

3.5. General Linear and Nonlinear Fitting Functions

3.5.1. General linear functions

For the general linear function (15), routines are available for fitting in the 1 and 2 norms. The least-squares routines (which are to be preferred unless there is good reason to use another norm -- see Section 2.1.1) are in Chapter F04. The 1 routine is E02GAF.

All the above routines are essentially linear algebra routines, and in considering their use we need to view the fitting process in a slightly different way from hitherto. Taking \(y\) to be the dependent variable and \(x\) the vector of independent variables, we have, as for equation (1) but with each \(x\) now a vector,

\[
\epsilon = y - f(x)_{r=1,2,...,m}. 
\]

Substituting for \(f(x)\) the general linear form (15), we can write this as

\[
c \phi_1(x)_{r=1,2,...,p} + c \phi_2(x)_{r=1,2,...,p} + \ldots + c \phi_p(x)_{r=1,2,...,p} = y - \epsilon_{r=1,2,...,m} \quad (19) 
\]

Thus we have a system of linear equations in the coefficients \(c_{r=1,2,...,m}\). Usually, in writing these equations, the \(\epsilon\) are omitted and simply taken as implied. The system of equations is then described as an overdetermined system (since we must have \(m\geq p\) if
there is to be the possibility of a unique solution to our fitting problem), and the fitting process of computing the $c_j$ to minimize one or other of the norms (2), (3) and (4) can be described, in relation to the system of equations, as solving the overdetermined system in that particular norm. In matrix notation, the system can be written as

$$(\Phi)c=y,$$  \hspace{1cm} (20)

where $(\Phi)$ is the $m$ by $p$ matrix whose element in row $r$ and column $j$ is $(\phi_j)(x_r)$, for $r=1,2,...,m$; $j=1,2,...,p$. The vectors $c$ and $y$ respectively contain the coefficients $c_j$ and the data $y_r$ values.

The routines, however, use the standard notation of linear algebra, the overdetermined system of equations being denoted by

$$Ax=b$$ \hspace{1cm} (21)

The correspondence between this notation and that which we have used for the data-fitting problem (equation (20)) is therefore given by

$$A=\Phi, \hspace{0.5cm} x=c \hspace{0.5cm} b=y$$ \hspace{1cm} (22)

Note that the norms used by these routines are the unweighted norms (2) and (3). If the user wishes to apply weights to the data points, that is to use the norms (5) or (6), the equivalences (22) should be replaced by

$$A=D\Phi, \hspace{0.5cm} x=c \hspace{0.5cm} b= Dy$$

where $D$ is a diagonal matrix with $w_r$ as the $r$th diagonal element.

Here $w_r$, for $r=1,2,...,m$, is the weight of the $r$th data point as defined in Section 2.1.2.

3.5.2. Nonlinear functions

Routines for fitting with a nonlinear function in the 1 norm are provided in Chapter E04, and that chapter's Introduction should be consulted for the appropriate choice of routine. Again, however, the notation adopted is different from that we have used for data fitting. In the latter, we denote the fitting function
by \( f(x;c) \), where \( x \) is the vector of independent variables and \( c \) is the vector of coefficients, whose values are to be determined. The squared \( l \) norm, to be minimized with respect to the elements of \( c \), is then

\[
\sum_{r=1}^{m} w [y - f(x ;c)]^2 \tag{23}
\]

where \( y \) is the \( r \)th data value of the dependent variable, \( x \) is the vector containing the \( r \)th values of the independent variables, and \( w \) is the corresponding weight as defined in Section 2.1.2.

On the other hand, in the nonlinear least-squares routines of Chapter E04, the function to be minimized is denoted by

\[
\sum_{i=1}^{m} f(x), \tag{24}
\]

the minimization being carried out with respect to the elements of the vector \( x \). The correspondence between the two notations is given by

\[
x = c \quad \text{and} \quad f(x) = w [y - f(x ;c)], \quad i=r=1,2,...,m.
\]

Note especially that the vector \( x \) of variables of the nonlinear least-squares routines is the vector \( c \) of coefficients of the data-fitting problem, and in particular that, if the selected routine requires derivatives of the \( f(x) \) to be provided, these are derivatives of \( w [y - f(x ;c)] \) with respect to the coefficients of the data-fitting problem.

3.6. Constraints

At present, there are only a limited number of routines which fit subject to constraints. Chapter E04 contains a routine, E04UCF,
which can be used for fitting with a nonlinear function in the $l_2$ norm subject to equality or inequality constraints. This routine, unlike those in that chapter suited to the unconstrained case, is not designed specifically for minimizing functions which are sums of squares, and so the function (23) has to be treated as a general nonlinear function. The E04 Chapter Introduction should be consulted.

The remaining constraint routine relates to fitting with polynomials in the $l_2$ norm. E02AGF deals with polynomial curves and allows precise values of the fitting function and (if required) all its derivatives up to a given order to be prescribed at one or more values of the independent variable.

3.7. Evaluation, Differentiation and Integration

Routines are available to evaluate, differentiate and integrate polynomials in Chebyshev-series form and cubic or bicubic splines in B-spline form. These polynomials and splines may have been produced by the various fitting routines or, in the case of polynomials, from prior calls of the differentiation and integration routines themselves.

E02AEF and E02AKF evaluate polynomial curves: the latter has a longer parameter list but does not require the user to normalise the values of the independent variable and can accept coefficients which are not stored in contiguous locations. E02BBF evaluates cubic spline curves, and E02DEF and E02DFF bicubic spline surfaces.

Differentiation and integration of polynomial curves are carried out by E02AHF and E02AJF respectively. The results are provided in Chebyshev-series form and so repeated differentiation and integration are catered for. Values of the derivative or integral can then be computed using the appropriate evaluation routine.

For splines the differentiation and integration routines provided are of a different nature from those for polynomials. E02BCF provides values of a cubic spline curve and its first three derivatives (the rest, of course, are zero) at a given value of $x$ spline over its whole range. These routines can also be applied to surfaces of the form (14). For example, if, for each value of $j$ in turn, the coefficients $c_{ij}$, for $i=1,2,...,p$ are supplied to E02BCF with $x=x_j$ and on each occasion we select from the output the value of the second derivative, $d_{ij}$, say, and if the whole set $d_{ij}$
of \( d \) are then supplied to the same routine with \( x=y \), the output
\[
\begin{array}{c}
\text{will contain all the values at } (x,y) \text{ of } \\
0,0
\end{array}
\]
\[
\begin{array}{c}
2 & r+2 \\
dd f & dd f \\
----- & -------, \ r=1,2,3. \\
2 & 2r \\
dd fx & ddx ddy
\end{array}
\]

Equally, if after each of the first \( p \) calls of \( \text{E02BCF} \) we had
selected the function value (\( \text{E02BBF} \) would also provide this)
instead of the second derivative and we had supplied these values
to \( \text{E02BDF} \), the result obtained would have been the value of
\[
\begin{array}{c}
B \\
/ \\
|f(x,y)dy, \\
/ 0 \\
A
\end{array}
\]

where \( A \) and \( B \) are the end-points of the \( y \) interval over which the
spline was defined.

3.8. Index

Automatic fitting,

with bicubic splines \( \text{E02DCF} \)
with cubic splines \( \text{E02BEF} \)
Data on rectangular mesh \( \text{E02DCF} \)
Differentiation,

of cubic splines \( \text{E02BCF} \)
of polynomials \( \text{E02AHF} \)
Evaluation,

of bicubic splines \( \text{E02DEF} \)
of cubic splines \( \text{E02BBF} \)
of cubic splines and derivatives \( \text{E02BCF} \)
of definite integral of cubic splines \( \text{E02BDF} \)
of polynomials \( \text{E02AEF} \)
Integration,

of cubic splines (definite integral) \( \text{E02BDF} \)
of polynomials \( \text{E02AJF} \)
Least-squares curve fit,

with cubic splines \( \text{E02BAF} \)
with polynomials,

arbitrary data points \( \text{E02ADF} \)
with constraints E02AGF
Least-squares surface fit with bicubic splines E02DAF
l fit with general linear function, E02GAF
1 Sorting, E02ZAF
2-D data into panels E02ZAF

E02 -- Curve and Surface Fitting
Contents -- E02
Chapter E02

Curve and Surface Fitting

E02ADF Least-squares curve fit, by polynomials, arbitrary data points

E02AEF Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)

E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points,

E02AHF Derivative of fitted polynomial in Chebyshev series form

E02AJF Integral of fitted polynomial in Chebyshev series form

E02AKF Evaluation of fitted polynomial in one variable, from Chebyshev series form

E02BAF Least-squares curve cubic spline fit (including interpolation)

E02BBF Evaluation of fitted cubic spline, function only

E02BCF Evaluation of fitted cubic spline, function and derivatives

E02BDF Evaluation of fitted cubic spline, definite integral

E02BEF Least-squares cubic spline curve fit, automatic knot placement

E02DAF Least-squares surface fit, bicubic splines

E02DCF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid

E02DDF Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
Least-squares polynomial approximations

--- nage.ht ---

--- nage ht
3. Description

This routine determines least-squares polynomial approximations of degrees 0, 1, ..., k to the set of data points \((x_r, y_r)\) with weights \(w_r\), for \(r = 1, 2, ..., m\).

The approximation of degree \(i\) has the property that it minimizes the sum of squares of the weighted residuals \((\epsilon_r)\), where

\[
(\epsilon_r) = w_r (y_r - f(x_r))
\]

and \(f\) is the value of the polynomial of degree \(i\) at the \(r\)th data point.

Each polynomial is represented in Chebyshev-series form with normalised argument \(x\). This argument lies in the range \(-1\) to \(+1\) and is related to the original variable \(x\) by the linear transformation

\[
\frac{2x - x_{max} - x_{min}}{x_{max} - x_{min}} = \frac{2x - x_{max} - x_{min}}{x_{max} - x_{min}}.
\]

Here \(x\) and \(x\) are respectively the largest and smallest values of \(x\). The polynomial approximation of degree \(i\) is represented as

\[
1 - a_1 T(x) + a_2 T(x) + a_3 T(x) + ... + a_{i+1} T(x),
\]

where \(T(x)\) is the Chebyshev polynomial of the first kind of
degree \( j \) with argument \((x)\).

For \( i=0,1,\ldots,k \), the routine produces the values of \( a_{i+1,j+1} \), for \( j=0,1,\ldots,i \), together with the value of the root mean square residual

\[
\frac{\text{residual } s = \frac{1}{\sigma}}{\sqrt{i-m-i-1}}.
\]

In the case \( m=i+1 \) the routine sets the value of \( s \) to zero.

The method employed is due to Forsythe [4] and is based upon the generation of a set of polynomials orthogonal with respect to summation over the normalised data set. The extensions due to Clenshaw [1] to represent these polynomials as well as the approximating polynomials in their Chebyshev-series forms are incorporated. The modifications suggested by Reinsch and Gentleman (see [5]) to the method originally employed by Clenshaw for evaluating the orthogonal polynomials from their Chebyshev-series representations are used to give greater numerical stability.

For further details of the algorithm and its use see Cox [2] and [3].

Subsequent evaluation of the Chebyshev-series representations of the polynomial approximations should be carried out using E02AEF.

4. References


5. Parameters

1: \( M \) -- INTEGER                       Input
On entry: the number \( m \) of data points. Constraint: \( M \geq \)
\( MDIST \geq 2 \), where \( MDIST \) is the number of distinct \( x \) values
in the data.

2: \( KPLUS1 \) -- INTEGER                   Input
On entry: \( k+1 \), where \( k \) is the maximum degree required.
Constraint: \( 0 < KPLUS1 \leq MDIST \), where \( MDIST \) is the number
of distinct \( x \) values in the data.

3: \( NROWS \) -- INTEGER                   Input
On entry: the first dimension of the array \( A \) as declared in the
(sub)program from which E02ADF is called.
Constraint: \( NROWS \geq KPLUS1 \).

4: \( X(M) \) -- DOUBLE PRECISION array      Input
On entry: the values \( x \) of the independent variable, for
\( r=1,2,\ldots,m \). Constraint: the values must be supplied in non-
decreasing order with \( X(M) > X(1) \).

5: \( Y(M) \) -- DOUBLE PRECISION array      Input
On entry: the values \( y \) of the dependent variable, for
\( r=1,2,\ldots,m \).

6: \( W(M) \) -- DOUBLE PRECISION array      Input
On entry: the set of weights, \( w \), for \( r=1,2,\ldots,m \). For
advice on the choice of weights, see Section 2.1.2 of the
Chapter Introduction. Constraint: \( W(r) > 0.0 \), for \( r=1,2,\ldots,m \).

7: \( WORK1(3*M) \) -- DOUBLE PRECISION array Workspace

8: \( WORK2(2*KPLUS1) \) -- DOUBLE PRECISION array Workspace

9: \( A(NROWS,KPLUS1) \) -- DOUBLE PRECISION array Output
On exit: the coefficients of \(T(x)\) in the approximating polynomial of degree \(i\). \(A(i+1,j+1)\) contains the coefficient \(a_{i+1,j+1}\), for \(i=0,1,...,k; j=0,1,...,i\).

10: \(S(KPLUS1)\) -- DOUBLE PRECISION array  
Output  
On exit: \(S(i+1)\) contains the root mean square residual \(s_i\), for \(i=0,1,...,k\), as described in Section 3. For the interpretation of the values of the \(s_i\) and their use in selecting an appropriate degree, see Section 3.1 of the Chapter Introduction.

11: \(IFAIL\) -- INTEGER  
Input/Output  
On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \(IFAIL = 0\) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL= 1\)  
The weights are not all strictly positive.

\(IFAIL= 2\)  
The values of \(X(r)\), for \(r=1,2,...,M\) are not in non-decreasing order.

\(IFAIL= 3\)  
All \(X(r)\) have the same value: thus the normalisation of \(X\) is not possible.

\(IFAIL= 4\)  
On entry \(KPLUS1 < 1\) (so the maximum degree required is negative)

or \(KPLUS1 > MDIST\), where \(MDIST\) is the number of distinct \(x\) values in the data (so there cannot be a unique solution for degree \(k=KPLUS1-1\)).

\(IFAIL= 5\)  
\(NROWS < KPLUS1\).
7. Accuracy

No error analysis for the method has been published. Practical experience with the method, however, is generally extremely satisfactory.

8. Further Comments

The time taken by the routine is approximately proportional to \( m(k+1)(k+11) \).

The approximating polynomials may exhibit undesirable oscillations (particularly near the ends of the range) if the maximum degree \( k \) exceeds a critical value which depends on the number of data points \( m \) and their relative positions. As a rough guide, for equally-spaced data, this critical value is about \( 2\sqrt{m} \). For further details see Hayes [6] page 60.

9. Example

Determine weighted least-squares polynomial approximations of degrees 0, 1, 2 and 3 to a set of 11 prescribed data points. For the approximation of degree 3, tabulate the data and the corresponding values of the approximating polynomial, together with the residual errors, and also the values of the approximating polynomial at points half-way between each pair of adjacent data points.

The example program supplied is written in a general form that will enable polynomial approximations of degrees 0, 1, ..., \( k \) to be obtained to \( m \) data points, with arbitrary positive weights, and the approximation of degree \( k \) to be tabulated. E02AEF is used to evaluate the approximating polynomial. The program is self-starting in that any number of data sets can be supplied.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Evaluate polynomial from Chebyshev-series representation

--- nage.ht ---

\begin{verbatim}
E02AEF(3NAG)  Foundation Library (12/10/92)  E02AEF(3NAG)

E02  --  Curve and Surface Fitting
E02AEF  --  NAG Foundation Library Routine Document

Note:  Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02AEF evaluates a polynomial from its Chebyshev-series representation.

2. Specification

\begin{verbatim}
SUBROUTINE E02AEF (NPLUS1, A, XCAP, P, IFAIL)
    INTEGER NPLUS1, IFAIL
    DOUBLE PRECISION A(NPLUS1), XCAP, P
\end{verbatim}

3. Description

This routine evaluates the polynomial

\[
\frac{1}{2^n} \sum_{j=0}^{n} \left( a_j T_j(x) \right) \quad \text{for any value of } x \text{ satisfying } -1 \leq x \leq 1.
\]

Here \( T_j(x) \) denotes the Chebyshev polynomial of the first kind of degree \( j \) with argument \( x \). The value of \( n \) is prescribed by the user.
In practice, the variable $x$ will usually have been obtained from an original variable $x$, where $x_{\text{min}} \leq x \leq x_{\text{max}}$ and

$$x = \frac{(x_{\text{max}} - x_{\text{min}})(x_{\text{max}} - x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})}$$

Note that this form of the transformation should be used computationally rather than the mathematical equivalent

$$x = \frac{(2x_{\text{max}} - x_{\text{min}})(x_{\text{max}} - x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})}$$

since the former guarantees that the computed value of $x$ differs from its true value by at most $4(\epsilon)$, where $\epsilon$ is the machine precision, whereas the latter has no such guarantee.

The method employed is based upon the three-term recurrence relation due to Clenshaw [1], with modifications to give greater numerical stability due to Reinsch and Gentleman (see [4]).

For further details of the algorithm and its use see Cox [2] and [3].

4. References


CHAPTER 22. NAG LIBRARY ROUTINES

5. Parameters

1: NPLUS1 -- INTEGER \(\text{Input}\)
   \(\text{On entry: the number } n+1 \text{ of terms in the series (i.e., one}
   \text{greater than the degree of the polynomial). Constraint:}
   \text{NPLUS1 } \geq 1.\)

2: A(NPLUS1) -- DOUBLE PRECISION array \(\text{Input}\)
   \(\text{On entry: } A(i) \text{ must be set to the value of the } i\text{th}
   \text{coefficient in the series, for } i=1,2,...,n+1.\)

3: XCAP -- DOUBLE PRECISION \(\text{Input}\)
   \(\text{On entry: } x, \text{ the argument at which the polynomial is to be}
   \text{evaluated. It should lie in the range } -1 \text{ to } +1, \text{ but a value}
   \text{just outside this range is permitted (see Section 6) to}
   \text{allow for possible rounding errors committed in the}
   \text{transformation from } x \text{ to } x \text{ discussed in Section 3. Provided}
   \text{the recommended form of the transformation is used, a}
   \text{successful exit is thus assured whenever the value of } x \text{ lies}
   \text{in the range } x_{\text{min}} \text{ to } x_{\text{max}}.\)

4: P -- DOUBLE PRECISION \(\text{Output}\)
   \(\text{On exit: the value of the polynomial.}\)

5: IFAIL -- INTEGER \(\text{Input/Output}\)
   \(\text{On entry: IFAIL must be set to 0, -1 or 1. For users not}
   \text{familiar with this parameter (described in the Essential}
   \text{Introduction) the recommended value is 0.}

   \(\text{On exit: IFAIL = 0 unless the routine detects an error (see}
   \text{Section 6).}\)

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   \(\text{ABS(XCAP)} > 1.0 + 4(\text{epsilon}), \text{where (epsilon) is the}
   \text{machine precision. In this case the value of P is set}
   \text{arbitrarily to zero.}\)

IFAIL= 2
   \(\text{On entry NPLUS1 < 1.}\)
7. Accuracy

The rounding errors committed are such that the computed value of the polynomial is exact for a slightly perturbed set of coefficients $a + (\delta)a$. The ratio of the sum of the absolute values of the $(\delta)a$ to the sum of the absolute values of the $a$ is less than a small multiple of $(n+1)$ times machine precision.

8. Further Comments

The time taken by the routine is approximately proportional to $n+1$.

It is expected that a common use of E02AEF will be the evaluation of the polynomial approximations produced by E02ADF and E02AFF(*).

9. Example

Evaluate at 11 equally-spaced points in the interval $-1 \leq x \leq 1$ the polynomial of degree 4 with Chebyshev coefficients, 2.0, 0.5, 0.25, 0.125, 0.0625.

The example program is written in a general form that will enable a polynomial of degree $n$ in its Chebyshev-series form to be evaluated at $m$ equally-spaced points in the interval $-1 \leq x \leq 1$. The program is self-starting in that any number of data sets can be supplied.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Constrained weighted least-squares polynomial

--- nage.ht ---

\begin{verbatim}
E02AGF(3NAG) Foundation Library (12/10/92) E02AGF(3NAG)

E2 -- Curve and Surface Fitting
E02AGF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02AGF computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points.

2. Specification

SUBROUTINE E02AGF (M, KPLUS1, NROWS, XMIN, XMAX, X, Y, W,
1 MF, XF, YF, LYF, IP, A, S, NP1, WRK,
2 LWRK, IWRK, LIWRK, IFAIL)
INTEGER M, KPLUS1, NROWS, MF, LYF, IP(MF), NP1,
1 LWRK, IWRK, LIWRK, IFAIL
DOUBLE PRECISION XMIN, XMAX, X(M), Y(M), W(M), XF(MF), YF
1 (LYF), A(NROWS,KPLUS1), S(KPLUS1), WRK
2 (LWRK)

3. Description

This routine determines least-squares polynomial approximations of degrees up to k to the set of data points \((x^r, y^r)\) with weights \(w^r\), for \(r=1,2,\ldots,m\). The value of \(k\), the maximum degree required, is prescribed by the user. At each of the values \(x^r\), for \(r=1,2,\ldots,m\), the approximations and any number of their derivatives can be specified.
1, 2, ..., MF, of the independent variable x, the approximations and
their derivatives up to order p are constrained to have one of
r
MF
--
the user-specified values YF, for s = 1, 2, ..., n, where n = MF + \r
p -- r
r=1

The approximation of degree i has the property that, subject to
the imposed constraints, it minimizes (Sigma), the sum of the
squares of the weighted residuals (epsilon) for r = 1, 2, ..., m
r
where

(epsilon) = \omega (y - f (x ))
    r r r i r

and f (x ) is the value of the polynomial approximation of degree
i r
i at the rth data point.

Each polynomial is represented in Chebyshev-series form with

normalised argument x. This argument lies in the range -1 to +1
and is related to the original variable x by the linear
transformation

2x - (x + x )
max min
x = -----------------
(x - x )
max min
where x and x , specified by the user, are respectively the
min max
lower and upper end-points of the interval of x over which the
polynomials are to be defined.

The polynomial approximation of degree i can be written as

1
-a +a T (x )+...+a T (x )+...+a T (x )
2 i, 0 i, 1 1 i j j ii i

where T (x ) is the Chebyshev polynomial of the first kind of
degree \( j \) with argument \( x \). For \( i=n,n+1,...,k \), the routine produces
the values of the coefficients \( a_{ij} \), for \( j=0,1,...,i \), together
with the value of the root mean square residual, \( S_i \), defined as
\[
\sqrt{\frac{\sum_{j=n-i}^{m} (y_j - (\mu(x)))^2}{m'+n-i-1}}
\]
where \( m' \) is the number of data points with non-zero weight.

Values of the approximations may subsequently be computed using
\texttt{E02AEF} or \texttt{E02AKF}.

First \texttt{E02AGF} determines a polynomial \( (\mu(x)) \), of degree \( n-1 \),
which satisfies the given constraints, and a polynomial \( (\nu(x)) \),
of degree \( n \), which has value (or derivative) zero wherever a
constrained value (or derivative) is specified. It then fits \( y-(\mu(x)) \), for \( r=1,2,...,m \) with polynomials of the required
degree in \( x \) each with factor \( (\nu(x)) \). Finally the coefficients of
\( (\mu(x)) \) are added to the coefficients of these fits to give the
coefficients of the constrained polynomial approximations to the
data points \( (x_r,y_r) \), for \( r=1,2,...,m \). The method employed is
given in Hayes [3]: it is an extension of Forsythe's orthogonal

4. References


    polynomials for data fitting with a digital computer. J.
5. Parameters

1: M -- INTEGER
   On entry: the number m of data points to be fitted.
   Constraint: M >= 1.

2: KPLUS1 -- INTEGER
   On entry: k+1, where k is the maximum degree required.
   Constraint: n+1<=KPLUS1<=m''+n, where n is the total number
   of constraints and m'' is the number of data points with
   non-zero weights and distinct abscissae which do not
   coincide with any of the XF(r).

3: NROWS -- INTEGER
   On entry: the first dimension of the array A as declared in the
   (sub)program from which E02AGF is called.
   Constraint: NROWS >= KPLUS1.

4: XMIN -- DOUBLE PRECISION
   On entry: the lower and upper end-points, respectively, of
   the interval [x_min,x_max]. Unless there are specific reasons
   to the contrary, it is recommended that XMIN and XMAX be set
   respectively to the lowest and highest value among the x
   and XF(r). This avoids the danger of extrapolation provided
   there is a constraint point or data point with non-zero
   weight at each end-point. Constraint: XMAX > XMIN.

5: XMAX -- DOUBLE PRECISION
   On entry: the value x of the independent variable at the r
   th data point, for r=1,2,...,m. Constraint: the X(r) must be
   in non-decreasing order and satisfy XMIN <= X(r) <= XMAX.

6: X(M) -- DOUBLE PRECISION array
   On entry: the value x of the independent variable at the r
   th data point, for r=1,2,...,m. Constraint: the X(r) must be
   in non-decreasing order and satisfy XMIN <= X(r) <= XMAX.

7: Y(M) -- DOUBLE PRECISION array
   On entry: Y(r) must contain y, the value of the dependent
   variable at the rth data point, for r=1,2,...,m.

8: W(M) -- DOUBLE PRECISION array
   On entry: the weights w to be applied to the data points
   r
x, for \( r = 1, 2, \ldots, m \). For advice on the choice of weights see the Chapter Introduction. Negative weights are treated as positive. A zero weight causes the corresponding data point to be ignored. Zero weight should be given to any data point whose \( x \) and \( y \) values both coincide with those of a constraint (otherwise the denominators involved in the root-mean-square residuals \( s \) will be slightly in error).

9: \( MF --- INTEGER \quad \text{Input} \)

On entry: the number of values of the independent variable at which a constraint is specified. Constraint: \( MF \geq 1 \).

10: \( XF(MF) --- DOUBLE PRECISION \quad \text{array Input} \)

On entry: the \( r \)th value of the independent variable at which a constraint is specified, for \( r = 1, 2, \ldots, MF \).

Constraint: these values need not be ordered but must be distinct and satisfy \( XMIN \leq XF(r) \leq XMAX \).

11: \( YF(LYF) --- DOUBLE PRECISION \quad \text{array Input} \)

On entry: the values which the approximating polynomials and their derivatives are required to take at the points specified in \( XF \). For each value of \( XF(r) \), \( YF \) contains in successive elements the required value of the approximation, its first derivative, second derivative, \ldots, \( p \)th derivative, for \( r = 1, 2, \ldots, MF \). Thus the value which the \( k \)th derivative of each approximation (\( k = 0 \) referring to the approximation itself) is required to take at the point \( XF(r) \) must be contained in \( YF(s) \), where

\[
s = r + k + p + \ldots + p, \quad 1 \leq r \leq r-1
\]

for \( k = 0, 1, \ldots, p \) and \( r = 1, 2, \ldots, MF \). The derivatives are with respect to the user’s variable \( x \).

12: \( LYF --- INTEGER \quad \text{Input} \)

On entry: the dimension of the array \( YF \) as declared in the (sub)program from which \( E02AGF \) is called.

Constraint: \( LYF \geq n \), where \( n = MF + p + \ldots + p \).

13: \( IP(MF) --- INTEGER \quad \text{array Input} \)

On entry: \( IP(r) \) must contain \( p \), the order of the highest-order derivative specified at \( XF(r) \), for \( r = 1, 2, \ldots, MF \). \( p = 0 \) implies that the value of the approximation at \( XF(r) \) is
specified, but not that of any derivative. Constraint: \( IP(r) \geq 0 \), for \( r=1,2,...,MF \).

14: \( A(NROWS,KPLUS1) \) -- DOUBLE PRECISION array
    Output
    On exit: \( A(i+1,j+1) \) contains the coefficient \( a_{ij} \) in the
    approximating polynomial of degree \( i \), for \( i=n,n+1,...,k; j=0,1,...,i \).

15: \( S(KPLUS1) \) -- DOUBLE PRECISION array
    Output
    On exit: \( S(i+1) \) contains \( s_i \), for \( i=n,n+1,...,k \), the root-
    mean-square residual corresponding to the approximating
    polynomial of degree \( i \). In the case where the number of data
    points with non-zero weight is equal to \( k+1-n \), \( s_i \) is
    indeterminate: the routine sets it to zero. For the
    interpretation of the values of \( s_i \) and their use in
    selecting an appropriate degree, see Section 3.1 of the
    Chapter Introduction.

16: \( NP1 \) -- INTEGER
    Output
    On exit: \( n+1 \), where \( n \) is the total number of constraint
    conditions imposed: \( n=MF+p_1+p_2+...+p_M \).

17: \( WRK(LWRK) \) -- DOUBLE PRECISION array
    Output
    On exit: \( WRK \) contains weighted residuals of the highest
    degree of fit determined \( (k) \). The residual at \( x \) is in
    element \( 2(n+1)+3(m+k+1)+r \), for \( r=1,2,...,m \). The rest of the
    array is used as workspace.

18: \( LWRK \) -- INTEGER
    Input
    On entry:
    the dimension of the array \( WRK \) as declared in the
    (sub)program from which \( E02AGF \) is called.
    Constraint: \( LWRK \geq \max(4*M+3*KPLUS1, 8*n+5*IPMAX+MF+10)+2*n+2 \),
    where \( IPMAX = \max(IP(R)) \).

19: \( IWRK(LIWRK) \) -- INTEGER array
    Workspace

20: \( LIWRK \) -- INTEGER
    Input
    On entry:
    the dimension of the array \( IWRK \) as declared in the
    (sub)program from which \( E02AGF \) is called.
    Constraint: \( LIWRK \geq 2*MF+2 \).

21: \( IFAIL \) -- INTEGER
    Input/Output
    On entry: \( IFAIL \) must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry M < 1,
or KPLUS1 < n + 1,
or NROWS < KPLUS1,
or MF < 1,
or LYF < n,
or LWRK is too small (see Section 5),
or LIWRK<2*MF+2.
(Here n is the total number of constraint conditions.)

IFAIL= 2
IP(r) < 0 for some r = 1,2,...,MF.

IFAIL= 3
XMIN >= XMAX, or XF(r) is not in the interval XMIN to XMAX for some r = 1,2,...,MF, or the XF(r) are not distinct.

IFAIL= 4
X(r) is not in the interval XMIN to XMAX for some r=1,2,...,M.

IFAIL= 5
X(r) < X(r-1) for some r=2,3,...,M.

IFAIL= 6
KPLUS1>m''+n, where m'' is the number of data points with non-zero weight and distinct abscissae which do not coincide with any XF(r). Thus there is no unique solution.

IFAIL= 7
The polynomials (mu)(x) and/or (nu)(x) cannot be determined. The problem supplied is too ill-conditioned. This may occur when the constraint points are very close together, or large in number, or when an attempt is made to constrain high-
order derivatives.

7. Accuracy

No complete error analysis exists for either the interpolating algorithm or the approximating algorithm. However, considerable experience with the approximating algorithm shows that it is generally extremely satisfactory. Also the moderate number of constraints, of low order, which are typical of data fitting applications, are unlikely to cause difficulty with the interpolating routine.

8. Further Comments

The time taken by the routine to form the interpolating polynomial is approximately proportional to \( n^3 \), and that to form the approximating polynomials is very approximately proportional to \( m(k+1)(k+1-n) \).

To carry out a least-squares polynomial fit without constraints, use E02ADF. To carry out polynomial interpolation only, use E01AEF(*)

9. Example

The example program reads data in the following order, using the notation of the parameter list above:

\[
\begin{align*}
&MF \\
&\text{IP}(i), \text{XF}(i), \text{Y-value and derivative values (if any) at } \text{XF}(i), \text{for } i=1,2,\ldots,\text{MF} \\
&M \\
&\text{X}(i), \text{Y}(i), \text{W}(i), \text{for } i=1,2,\ldots,\text{M} \\
&k, \text{XMIN, XMAX}
\end{align*}
\]

The output is:

the root-mean-square residual for each degree from \( n \) to \( k \);
the Chebyshev coefficients for the fit of degree \( k \);
the data points, and the fitted values and residuals for the fit of degree \( k \).

The program is written in a generalized form which will read any
number of data sets.

The data set supplied specifies 5 data points in the interval [0, 0, 4.0] with unit weights, to which are to be fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:

\[ p(0.0) = 1.0, \quad p'(0.0) = -2.0, \quad p(4.0) = 9.0. \]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Coefficients of polynomial derivative

---

E02AHF(3NAG) Foundation Library (12/10/92) E02AHF(3NAG)

E02 -- Curve and Surface Fitting
E02AHF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02AHF determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form.

2. Specification
3. Description

This routine forms the polynomial which is the derivative of a given polynomial. Both the original polynomial and its derivative are represented in Chebyshev-series form. Given the coefficients $a_i$, for $i=0,1,...,n$, of a polynomial $p(x)$ of degree $n$, where

$$
p(x) = -a_0 + a_1 T_1(x) + \ldots + a_n T_n(x)
$$

the routine returns the coefficients $a_i$, for $i=0,1,...,n-1$, of the polynomial $q(x)$ of degree $n-1$, where

$$
\frac{dp(x)}{dx} = \frac{1}{2} -a_0 + a_1 T_1(x) + \ldots + a_{n-1} T_{n-1}(x).
$$

Here $T_j(x)$ denotes the Chebyshev polynomial of the first kind of degree $j$ with argument $x$. It is assumed that the normalised variable $x$ in the interval $[-1,+1]$ was obtained from the user's original variable $x$ in the interval $[x_{\min}, x_{\max}]$ by the linear transformation

$$
2x - (x_{\max} + x_{\min})
$$

$$
x_{\min} \rightarrow \frac{x_{\min} - x}{x_{\max} - x_{\min}}
$$

and that the user requires the derivative to be with respect to
the variable \( x \). If the derivative with respect to \( x \) is required, set \( x = 1 \) and \( x = -1 \).

\[ \max \min \]

Values of the derivative can subsequently be computed, from the coefficients obtained, by using E02AKF.

The method employed is that of \[1\] modified to obtain the derivative with respect to \( x \). Initially setting \( a = 0 \), the routine forms successively

\[ a = a + \frac{2a}{-x + x} , \quad i=n,n-1,\ldots,1. \]

\[ \max \min \]

4. References


5. Parameters

1: NP1 -- INTEGER
   On entry: \( n+1 \), where \( n \) is the degree of the given polynomial \( p(x) \). Thus NP1 is the number of coefficients in this polynomial. Constraint: \( NP1 \geq 1 \).

2: XMIN -- DOUBLE PRECISION

3: XMAX -- DOUBLE PRECISION
   On entry: the lower and upper end-points respectively of the interval \([x ,x ]\). The Chebyshev-series representation is in terms of the normalised variable \( x \), where

\[ 2x-(x +x ) \]

\[ \max \min \]

\[ x = \frac{x -x }{x -x} \]

\[ \max \min \]

Constraint: \( XMAX > XMIN \).
4: A(LA) -- DOUBLE PRECISION array
   Input
   On entry: the Chebyshev coefficients of the polynomial p(x).
   Specifically, element 1 + i*IA1 of A must contain the
   coefficient a_i for i=0,1,...,n. Only these n+1 elements
   will be accessed.

   Unchanged on exit, but see ADIF, below.

5: IA1 -- INTEGER
   Input
   On entry: the index increment of A. Most frequently the
   Chebyshev coefficients are stored in adjacent elements of A,
   and IA1 must be set to 1. However, if, for example, they are
   stored in A(1),A(4),A(7),..., then the value of IA1 must be
   3. See also Section 8. Constraint: IA1 >= 1.

6: LA -- INTEGER
   Input
   On entry: the dimension of the array A as declared in the (sub)program
   from which E02AHF is called.
   Constraint: LA>=1+(NP1-1)*IA1.

7: PATM1 -- DOUBLE PRECISION
   Output
   On exit: the value of p(x). If this value is passed to
   min
   the integration routine E02AJF with the coefficients of q(x)
   , then the original polynomial p(x) is recovered, including
   its constant coefficient.

8: ADIF(LADIF) -- DOUBLE PRECISION array
   Output
   On exit: the Chebyshev coefficients of the derived
   polynomial q(x). (The differentiation is with respect to the
   variable x). Specifically, element i+i*IADIF1 of ADIF

   contains the coefficient a_i, i=0,1,...,n-1. Additionally
   element 1+n*IADIF1 is set to zero. A call of the routine may
   have the array name ADIF the same as A, provided that note
   is taken of the order in which elements are overwritten,
   when choosing the starting elements and increments IA1 and
   IADIF1: i.e., the coefficients a_0,a_1,...,a_{i-1} must be intact
   after coefficient a_i is stored. In particular, it is
   possible to overwrite the a_i completely by having IA1 =
   IADIF1, and the actual arrays for A and ADIF identical.
CHAPTER 22. NAG LIBRARY ROUTINES

9: IADIF1 -- INTEGER  Input
On entry: the index increment of ADIF. Most frequently the
Chebyshev coefficients are required in adjacent elements of
ADIF, and IADIF1 must be set to 1. However, if, for example,
they are to be stored in ADIF(1),ADIF(4),ADIF(7),..., then
the value of IADIF1 must be 3. See Section 8. Constraint:
IADIF1 >= 1.

10: LADIF -- INTEGER  Input
On entry: the dimension of the array ADIF as declared in the
(sub)program from which E02AHF is called.
Constraint: LADIF>=1+(NP1-1)*IADIF1.

11: IFAIL -- INTEGER  Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry NP1 < 1,
    or  XMAX <= XMIN,
    or  IA1 < 1,
    or  LA<=(NP1-1)*IA1,
    or  IADIF1 < 1,
    or  LADIF<=(NP1-1)*IADIF1.

7. Accuracy

There is always a loss of precision in numerical differentiation,
in this case associated with the multiplication by 2i in the
formula quoted in Section 3.

8. Further Comments

The time taken by the routine is approximately proportional to
n+1.
The increments IA1, IADIF1 are included as parameters to give a
degree of flexibility which, for example, allows a polynomial in
two variables to be differentiated with respect to either
variable without rearranging the coefficients.

9. Example

Suppose a polynomial has been computed in Chebyshev-series form
to fit data over the interval [-0.5,2.5]. The example program
evaluates the 1st and 2nd derivatives of this polynomial at 4
equally spaced points over the interval. (For the purposes of
this example, XMIN, XMAX and the Chebyshev coefficients are
simply supplied in DATA statements. Normally a program would
first read in or generate data and compute the fitted
polynomial.)

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
not included in the Foundation Library.

1. Purpose

E02AJF determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form.

2. Specification

SUBROUTINE E02AJF (NP1, XM, XMAX, A, IA1, LA, QATM1, 1 AINT, IAINT1, LAINT, IFAIL)
INTEGER NP1, IA1, LA, IAINT1, LAINT, IFAIL
DOUBLE PRECISION XM, XMAX, A(LA), QATM1, AINT(LAINT)

3. Description

This routine forms the polynomial which is the indefinite integral of a given polynomial. Both the original polynomial and its integral are represented in Chebyshev-series form. If supplied with the coefficients $a_i$, for $i=0,1,...,n$, of a polynomial $p(x)$ of degree $n$, where

$$ p(x) = -a_0 + a_1 T_1(x) + \ldots + a_n T_n(x), $$

the routine returns the coefficients $a'_i$, for $i=0,1,...,n+1$, of the polynomial $q(x)$ of degree $n+1$, where

$$ q(x) = -a'_0 + a'_1 T_1(x) + \ldots + a'_{n+1} T_{n+1}(x), $$

and

$$ q(x) = \int p(x) \, dx. $$

Here $T_j(x)$ denotes the Chebyshev polynomial of the first kind of degree $j$ with argument $x$. It is assumed that the normalised variable $x$ in the interval $[-1,+1]$ was obtained from the user’s
original variable $x$ in the interval $[x_{\text{min}}, x_{\text{max}}]$ by the linear transformation

$$2x - (x_{\text{max}} + x_{\text{min}})$$

$$x = \frac{x_{\text{max}} - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}$$

and that the user requires the integral to be with respect to the variable $x$. If the integral with respect to $x$ is required, set $x_{\text{max}} = 1$ and $x_{\text{min}} = -1$.

Values of the integral can subsequently be computed, from the coefficients obtained, by using E02AKF.

The method employed is that of Chebyshev-series [1] modified for integrating with respect to $x$. Initially taking $a_{n+1} = a_{n+2} = 0$, the routine forms successively

$$a_i' = \frac{a_{i-1} - a_{i+1}}{x_{\text{max}} - x_{\text{min}}} \cdot \frac{x - x_i}{2i}$$

The constant coefficient $a_0'$ is chosen so that $q(x)$ is equal to a specified value, QATM1, at the lower end-point of the interval on which it is defined, i.e., $x=-1$, which corresponds to $x=x_{\text{min}}$.

4. References


5. Parameters

1: NP1 -- INTEGER

On entry: $n+1$, where $n$ is the degree of the given polynomial $p(x)$. Thus NP1 is the number of coefficients in this polynomial. Constraint: NP1 >= 1.
2: XMIN -- DOUBLE PRECISION  
   Input

3: XMAX -- DOUBLE PRECISION  
   Input
   On entry: the lower and upper end-points respectively of the interval [x ,x ]. The Chebyshev-series
   min   max

   representation is in terms of the normalised variable x, where

   \[
   x = \frac{2x-(x + x)}{x - x}.
   \]

   Constraint: XMAX > XMIN.

4: A(LA) -- DOUBLE PRECISION array  
   Input
   On entry: the Chebyshev coefficients of the polynomial p(x). Specifically, element 1+i*IA1 of A must contain the
   coefficient a , for i=0,1,...,n. Only these n+1 elements
   i
   will be accessed.

   Unchanged on exit, but see AINT, below.

5: IA1 -- INTEGER  
   Input
   On entry: the index increment of A. Most frequently the Chebyshev coefficients are stored in adjacent elements of A, and
   IA1 must be set to 1. However, if for example, they are stored in A(1),A(4),A(7),..., then the value of IA1 must be
   3. See also Section 8. Constraint: IA1 >= 1.

6: LA -- INTEGER  
   Input
   On entry:
   the dimension of the array A as declared in the (sub)program from which E02AJF is called.
   Constraint: LA >= 1+(NP1-1)*IA1.

7: QATM1 -- DOUBLE PRECISION  
   Input
   On entry: the value that the integrated polynomial is required to have at the lower end-point of its interval of

   definition, i.e., at x=x which corresponds to x=x . Thus,
   min

   QATM1 is a constant of integration and will normally be set to zero by the user.
8: AINT(LAINT) -- DOUBLE PRECISION array Output
On exit: the Chebyshev coefficients of the integral q(x).
(The integration is with respect to the variable x, and the
constant coefficient is chosen so that q(x =) equals QATM1)
min
Specifically, element 1+i*IAINT1 of AINT contains the
coefficient a’, for i=0,1,...,n+1. A call of the routine
1
may have the array name AINT the same as A, provided that
note is taken of the order in which elements are overwritten
when choosing starting elements and increments IA1 and
IAINT1: i.e., the coefficients, a ,a ,...,a must be
0 1 i-2
intact after coefficient a’ is stored. In particular it is
i
possible to overwrite the a entirely by having IA1 =
i
IAINT1, and the actual array for A and AINT identical.

9: IAINT1 -- INTEGER Input
On entry: the index increment of AINT. Most frequently the
Chebyshev coefficients are required in adjacent elements of
AINIT, and IAINT1 must be set to 1. However, if, for example,
they are to be stored in AINT(1),AINIT(4),AINIT(7),..., then
the value of IAINT1 must be 3. See also Section 8.
Constraint: IAINT1 >= 1.

10: LAINT -- INTEGER Input
On entry: the dimension of the array AINT as declared in the
(sub)program from which E02AJF is called.
Constraint: LAINT>=1+NP1*IAINT1.

11: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry NP1 < 1,
or XMAX <= XMIN,
or IA1 < 1,
or LA<=(NP1-1)*IA1,
or IAINT1 < 1,
or LAINT<=NP1*IAINT1.

7. Accuracy

In general there is a gain in precision in numerical integration, in this case associated with the division by 2i in the formula quoted in Section 3.

8. Further Comments

The time taken by the routine is approximately proportional to n+1.

The increments IA1, IAINT1 are included as parameters to give a degree of flexibility which, for example, allows a polynomial in two variables to be integrated with respect to either variable without rearranging the coefficients.

9. Example

Suppose a polynomial has been computed in Chebyshev-series form to fit data over the interval [-0.5, 2.5]. The example program evaluates the integral of the polynomial from 0.0 to 2.0. (For the purpose of this example, XMIN, XMAX and the Chebyshev coefficients are simply supplied in DATA statements. Normally a program would read in or generate data and compute the fitted polynomial).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

E02AKF evaluates a polynomial from its Chebyshev-series representation, allowing an arbitrary index increment for accessing the array of coefficients.

2. Specification

```
SUBROUTINE E02AKF (NP1, XMIN, XMAX, A, IA1, LA, X, RESULT, IFAIL)
 INTEGER NP1, IA1, LA, IFAIL
 DOUBLE PRECISION XMIN, XMAX, A(LA), X, RESULT
```

3. Description

If supplied with the coefficients $a_i$, for $i=0,1,\ldots,n$, of a polynomial $p(x)$ of degree $n$, where

$$p(x) = -a_0 + a_1 T_1(x) + \ldots + a_n T_n(x),$$

this routine returns the value of $p(x)$ at a user-specified value of the variable $x$. Here $T_j(x)$ denotes the Chebyshev polynomial of degree $j$. 
the first kind of degree j with argument x. It is assumed that
the independent variable x in the interval [-1,+1] was obtained
from the user’s original variable x in the interval [x_min, x_max]
by the linear transformation

\[
\frac{2x - (x_{\text{max}} + x_{\text{min}})}{x_{\text{max}} - x_{\text{min}}} = \frac{x_{\text{max}} - x}{x_{\text{max}} - x_{\text{min}}}.
\]

The coefficients a_i may be supplied in the array A, with any
increment between the indices of array elements which contain
successive coefficients. This enables the routine to be used in
surface fitting and other applications, in which the array might
have two or more dimensions.

The method employed is based upon the three-term recurrence
relation due to Clenshaw [1], with modifications due to Reinsch
and Gentleman (see [4]). For further details of the algorithm and
its use see Cox [2] and Cox and Hayes [3].

4. References

[1] Clenshaw C W (1955) A Note on the Summation of Chebyshev-
series. Math. Tables Aids Comput. 9 118--120.


suite of algorithms for the non-specialist user. Report

J. 12 160--165.

5. Parameters

1: NP1 -- INTEGER Input
   On entry: n+1, where n is the degree of the given
polynomial \( p(x) \). Constraint: \( \text{NP1} \geq 1 \).

2: \( XMIN \) -- DOUBLE PRECISION  
Input

3: \( XMAX \) -- DOUBLE PRECISION  
Input

On entry: the lower and upper end-points respectively of the interval \([x_{\text{min}}, x_{\text{max}}]\). The Chebyshev-series representation is in terms of the normalised variable \( x \), where

\[
\frac{2x - (x_{\text{max}} + x_{\text{min}})}{x_{\text{max}} - x_{\text{min}}} = x.
\]

Constraint: \( XMIN < XMAX \).

4: \( A(LA) \) -- DOUBLE PRECISION array  
Input

On entry: the Chebyshev coefficients of the polynomial \( p(x) \). Specifically, element \( i + i \times IA1 \) must contain the coefficient \( a_i \), for \( i = 0, 1, \ldots, n \). Only these \( n+1 \) elements will be accessed.

5: \( IA1 \) -- INTEGER  
Input

On entry: the index increment of \( A \). Most frequently, the Chebyshev coefficients are stored in adjacent elements of \( A \), and \( IA1 \) must be set to 1. However, if, for example, they are stored in \( A(1), A(4), A(7), \ldots \), then the value of \( IA1 \) must be \( 3 \). Constraint: \( IA1 \geq 1 \).

6: \( LA \) -- INTEGER  
Input

On entry: the dimension of the array \( A \) as declared in the (sub)program from which \( \text{E02AKF} \) is called. Constraint: \( LA \geq (\text{NP1}-1) \times IA1 + 1 \).

7: \( X \) -- DOUBLE PRECISION  
Input

On entry: the argument \( x \) at which the polynomial is to be evaluated. Constraint: \( XMIN \leq X \leq XMAX \).

8: \( \text{RESULT} \) -- DOUBLE PRECISION  
Output

On exit: the value of the polynomial \( p(x) \).

9: \( IFAIL \) -- INTEGER  
Input/Output

On entry: \( IFAIL \) must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
  On entry NP1 < 1,
  or IA1 < 1,
  or LA<= (NP1-1)*IA1,
  or XMIN >= XMAX.

IFAIL= 2
  X does not satisfy the restriction XMIN <= X <= XMAX.

7. Accuracy

The rounding errors are such that the computed value of the polynomial is exact for a slightly perturbed set of coefficients \( a_i + (\delta)a_i \). The ratio of the sum of the absolute values of the \( \delta a_i \) to the sum of the absolute values of the \( a_i \) is less than a small multiple of \((n+1)\)\times machine precision.

8. Further Comments

The time taken by the routine is approximately proportional to \( n+1 \).

9. Example

Suppose a polynomial has been computed in Chebyshev-series form to fit data over the interval \([-0.5,2.5]\). The example program evaluates the polynomial at 4 equally spaced points over the interval. (For the purposes of this example, XMIN, XMAX and the Chebyshev coefficients are supplied in DATA statements. Normally a program would first read in or generate data and compute the fitted polynomial.)

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.4. NAGE.HT

Weighted least-squares approximation to data points

--- nage.ht ---

E02BAF(3NAG) Foundation Library (12/10/92) E02BAF(3NAG)

E02 -- Curve and Surface Fitting
E02BAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02BAF computes a weighted least-squares approximation to an arbitrary set of data points by a cubic spline with knots prescribed by the user. Cubic spline interpolation can also be carried out.

2. Specification

```fortran
SUBROUTINE E02BAF (M, NCAP7, X, Y, W, LAMDA, WORK1, WORK2,
 1 C, SS, IFAIL)
 INTEGER M, NCAP7, IFAIL
 DOUBLE PRECISION X(M), Y(M), W(M), LAMDA(NCAP7), WORK1(M),
 1 WORK2(4*NCAP7), C(NCAP7), SS
```

3. Description

This routine determines a least-squares cubic spline
approximation \( s(x) \) to the set of data points \((x_r, y_r)\) with weights \( w_r \), for \( r=1,2,\ldots,m \). The value of \( NCAP7 = n+7 \), where \( n \) is the number of intervals of the spline (one greater than the number of interior knots), and the values of the knots \( (\lambda)_{5}, (\lambda)_{6}, \ldots, (\lambda)_{n+3} \), interior to the data interval, are prescribed by the user.

\( s(x) \) has the property that it minimizes \( \theta \), the sum of squares of the weighted residuals \( \epsilon_r \), for \( r=1,2,\ldots,m \),

\[
\epsilon_r = w_r (y_r - s(x_r)).
\]

The routine produces this minimizing value of \( \theta \) and the coefficients \( c_1, c_2, \ldots, c_q \), where \( q=n+3 \), in the B-spline representation

\[
s(x) = \sum_{i=1}^{q} c_i N_i(x).
\]

Here \( N_i(x) \) denotes the normalised B-spline of degree 3 defined upon the knots \( (\lambda)_{i}, (\lambda)_{i+1}, \ldots, (\lambda)_{i+4} \).

In order to define the full set of B-splines required, eight additional knots \( (\lambda)_{1}, (\lambda)_{2}, (\lambda)_{3}, (\lambda)_{4} \) and \( (\lambda)_{n+4}, (\lambda)_{n+5}, (\lambda)_{n+6}, (\lambda)_{n+7} \) are inserted automatically by the routine. The first four of these are set equal to the smallest \( x \) and the last four to the largest \( x \).

The representation of \( s(x) \) in terms of B-splines is the most compact form possible in that only \( n+3 \) coefficients, in addition
22.4. NAGE.HT

To the n+7 knots, fully define s(x).

The method employed involves forming and then computing the least-squares solution of a set of m linear equations in the coefficients $c_i$ (i=1,2,...,n+3). The equations are formed using a recurrence relation for B-splines that is unconditionally stable (Cox [1], de Boor [5]), even for multiple (coincident) knots. The least-squares solution is also obtained in a stable manner by using orthogonal transformations, viz. a variant of Givens rotations (Gentleman [6] and [7]). This requires only one equation to be stored at a time. Full advantage is taken of the structure of the equations, there being at most four non-zero values of $N_i(x)$ for any value of $x$ and hence at most four coefficients in each equation.

For further details of the algorithm and its use see Cox [2], [3] and [4].

Subsequent evaluation of $s(x)$ from its B-spline representation may be carried out using E02BBF. If derivatives of $s(x)$ are also required, E02BCF may be used. E02BDF can be used to compute the definite integral of $s(x)$.

4. References


CHAPTER 22. NAG LIBRARY ROUTINES

Large Sparse or Weighted Linear Least-squares Problems.
Appl. Statist. 23 448–454.


5. Parameters

1:  M -- INTEGER
    On entry: the number m of data points. Constraint: M >=
    MDIST >= 4, where MDIST is the number of distinct x values
    in the data.

2:  NCAP7 -- INTEGER
    On entry: n+7, where n is the number of intervals of the
    spline (which is one greater than the number of interior
    knots, i.e., the knots strictly within the range x to x)
    1 m
    over which the spline is defined. Constraint: 8 <= NCA7 <=
    MDIST + 4, where MDIST is the number of distinct x values in
    the data.

3:  X(M) -- DOUBLE PRECISION array
    On entry: the values x of the independent variable
    r
    (abscissa), for r=1,2,...,m. Constraint: x <= x <=...
    1 2 m

4:  Y(M) -- DOUBLE PRECISION array
    On entry: the values y of the dependent variable
    r
    (ordinate), for r=1,2,...,m.

5:  W(M) -- DOUBLE PRECISION array
    On entry: the values w of the weights, for r=1,2,...,m.
    r
    For advice on the choice of weights, see the Chapter
    Introduction. Constraint: W(r) > 0, for r=1,2,...,m.

6:  LAMDA(NCAP7) -- DOUBLE PRECISION array
    On entry: LAMDA(i) must be set to the (i-4)th (interior)
    knot, (lambda), for i=5,6,...,n+3. Constraint: X(i) < LAMDA
    i
(5) <= LAMDA(6) <=... <= LAMDA(NCAP7-4) < X(M). On exit: the input values are unchanged, and LAMDA(i), for i = 1, 2, 3, 4, NCAP7-3, NCAP7-2, NCAP7-1, NCAP7 contains the additional (exterior) knots introduced by the routine. For advice on the choice of knots, see Section 3.3 of the Chapter Introduction.

7: WORK1(M) -- DOUBLE PRECISION array workspace
8: WORK2(4*NCAP7) -- DOUBLE PRECISION array workspace
9: C(NCAP7) -- DOUBLE PRECISION array output
On exit: the coefficient c of the B-spline N(x), for i = 1, 2, ..., n+3. The remaining elements of the array are not used.

10: SS -- DOUBLE PRECISION output
On exit: the residual sum of squares, (theta).

11: IFAIL -- INTEGER input/output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
The knots fail to satisfy the condition
X(1) < LAMDA(5) <= LAMDA(6) <=... <= LAMDA(NCAP7-4) < X(M).
Thus the knots are not in correct order or are not interior to the data interval.

IFAIL= 2
The weights are not all strictly positive.

IFAIL= 3
The values of X(r), for r = 1, 2, ..., M are not in non-decreasing order.

IFAIL= 4
NCAP7 < 8 (so the number of interior knots is negative) or
NCAP7 > MDIST + 4, where MDIST is the number of distinct x values in the data (so there cannot be a unique solution).

IFAIL= 5
The conditions specified by Schoenberg and Whitney [8] fail to hold for at least one subset of the distinct data abscissae. That is, there is no subset of NCAP7-4 strictly increasing values, X(R(1)), X(R(2)), ..., X(R(NCAP7-4)), among the abscissae such that

\[ X(R(1)) < \Lambda(1) < X(R(5)), \]
\[ X(R(2)) < \Lambda(2) < X(R(6)), \]
\[ ... \]
\[ X(R(NCAP7-8)) < \Lambda(NCAP7-8) < X(R(NCAP7-4)). \]

This means that there is no unique solution: there are regions containing too many knots compared with the number of data points.

7. Accuracy
The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed set of ordinates \( y + (\text{delta})y \). The ratio of the root-mean-square value for the \( r \) \( r \)
\( (\text{delta})y \) to the root-mean-square value of the \( y \) can be expected \( r \) \( r \)
to be less than a small multiple of \( (\kappa)m\)*machine precision, where \( (\kappa) \) is a condition number for the problem. Values of \( (\kappa) \) for 20-30 practical data sets all proved to lie between 4.5 and 7.8 (see Cox [3]). (Note that for these data sets, replacing the coincident end knots at the end-points \( x_1 \) and \( x_m \) used in the routine by various choices of non-coincident exterior knots gave values of \( (\kappa) \) between 16 and 180. Again see Cox [3] for further details.) In general we would not expect \( (\kappa) \) to be large unless the choice of knots results in near-violation of the Schoenberg-Whitney conditions.

A cubic spline which adequately fits the data and is free from spurious oscillations is more likely to be obtained if the knots are chosen to be grouped more closely in regions where the function (underlying the data) or its derivatives change more rapidly than elsewhere.

8. Further Comments
The time taken by the routine is approximately $C(2m+n+7)$ seconds, where $C$ is a machine-dependent constant.

Multiple knots are permitted as long as their multiplicity does not exceed 4, i.e., the complete set of knots must satisfy

$$(\lambda_i)^{(i)} < (\lambda_{i+4})$$

for $i=1,2,...,n+3$, (cf. Section 6). At a knot of multiplicity one (the usual case), $s(x)$ and its first two derivatives are continuous. At a knot of multiplicity two, $s(x)$ and its first derivative are continuous. At a knot of multiplicity three, $s(x)$ is continuous, and at a knot of multiplicity four, $s(x)$ is generally discontinuous.

The routine can be used efficiently for cubic spline interpolation, i.e., if $m=n+3$. The abscissae must then of course satisfy $x_1 < x_2 < ... < x_m$. Recommended values for the knots in this case are $(\lambda_i) = x_i$, for $i=5,6,...,n+3$.

9. Example

Determine a weighted least-squares cubic spline approximation with five intervals (four interior knots) to a set of 14 given data points. Tabulate the data and the corresponding values of the approximating spline, together with the residual errors, and also the values of the approximating spline at points half-way between each pair of adjacent data points.

The example program is written in a general form that will enable a cubic spline approximation with $n$ intervals ($n-1$ interior knots) to be obtained to $m$ data points, with arbitrary positive weights, and the approximation to be tabulated. Note that E02BBF is used to evaluate the approximating spline. The program is self-starting in that any number of data sets can be supplied.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Evaluates a cubic spline from its B-spline representation

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose
E02BBF evaluates a cubic spline from its B-spline representation.

2. Specification

```fortran
SUBROUTINE E02BBF (NCAP7, LAMDA, C, X, S, IFAIL)
INTEGER NCAP7, IFAIL
DOUBLE PRECISION LAMDA(NCAP7), C(NCAP7), X, S
```

3. Description
This routine evaluates the cubic spline \( s(x) \) at a prescribed argument \( x \) from its augmented knot set \( (\lambda_i) \), for \( i = 1, 2, \ldots, n+7 \) (see E02BAF) and from the coefficients \( c_i \), for \( i = 1, 2, \ldots, q \) in its B-spline representation.
Here $q = n+3$, where $n$ is the number of intervals of the spline, and $N_i(x)$ denotes the normalised B-spline of degree 3 defined upon the knots $(\lambda_i), (\lambda_{i+1}), \ldots, (\lambda_{i+4})$. The prescribed argument $x$ must satisfy $(\lambda_i) \leq x \leq (\lambda_{i+4})$.

It is assumed that $(\lambda_j) \geq (\lambda_{j-1})$, for $j=2,3,\ldots,n+7$, and $(\lambda_{j-1}) > (\lambda_j)$.

The method employed is that of evaluation by taking convex combinations due to de Boor [4]. For further details of the algorithm and its use see Cox [1] and [3].

It is expected that a common use of E02BBF will be the evaluation of the cubic spline approximations produced by E02BAF. A generalization of E02BBF which also forms the derivative of $s(x)$ is E02BCF. E02BCF takes about 50% longer than E02BBF.

4. References


5. Parameters
1: NCAP7 -- INTEGER

   On entry: n+7, where n is the number of intervals (one
   greater than the number of interior knots, i.e., the knots
   strictly within the range (\lambda) to (\lambda) ) over
   \[ \frac{n+4}{4} \]
   which the spline is defined. Constraint: NCAP7 >= 8.

2: LAMDA(NCAP7) -- DOUBLE PRECISION array

   On entry: LAMDA(j) must be set to the value of the jth
   member of the complete set of knots, (\lambda) for
   \[ j = 1, 2, \ldots, n+7 \]. Constraint: the LAMDA(j) must be in non-
   decreasing order with LAMDA(NCAP7-3) > LAMDA(4).

3: C(NCAP7) -- DOUBLE PRECISION array

   On entry: the coefficient c of the B-spline N(x), for
   \[ i = 1, 2, \ldots, n+3 \]. The remaining elements of the array are not
   used.

4: X -- DOUBLE PRECISION

   On entry: the argument x at which the cubic spline is to be
   evaluated. Constraint: LAMDA(4) <= X <= LAMDA(NCAP7-3).

5: S -- DOUBLE PRECISION

   On exit: the value of the spline, s(x).

6: IFAIL -- INTEGER

   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.

   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1

   The argument X does not satisfy LAMDA(4) <= X <= LAMDA(NCAP7-3).
In this case the value of S is set arbitrarily to zero.

IFAIL= 2
   NCAP7 < 8, i.e., the number of interior knots is negative.

7. Accuracy

The computed value of s(x) has negligible error in most practical situations. Specifically, this value has an absolute error bounded in modulus by 18*c * machine precision, where c is the largest in modulus of c, c, c, and c, and j is an integer such that (lambda) <= x <= (lambda). If c, c, c, and c are all of the same sign, then the computed value of s(x) has a relative error not exceeding 20*machine precision in modulus. For further details see Cox [2].

8. Further Comments

The time taken by the routine is approximately C*(1+0.1*log(n+7)) seconds, where C is a machine-dependent constant.

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in Section 5, since to do this would result in a computation time approximately linear in n+7 instead of log(n+7). All the conditions are tested in E02BAF, however.

9. Example

Evaluate at 9 equally-spaced points in the interval 1.0<=x<=9.0 the cubic spline with (augmented) knots 1.0, 1.0, 1.0, 1.0, 3.0, 6.0, 8.0, 9.0, 9.0, 9.0, 9.0 and normalised cubic B-spline coefficients 1.0, 2.0, 4.0, 7.0, 6.0, 4.0, 3.0.

The example program is written in a general form that will enable a cubic spline with n intervals, in its normalised cubic B-spline form, to be evaluated at m equally-spaced points in the interval LAMDA(4) <= x <= LAMDA(n+4). The program is self-starting in that any number of data sets may be supplied.
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Evaluate cubic spline and 3 derivatives from B-spline

--- nage.ht ---

---

E02BCF(3NAG) Foundation Library (12/10/92) E02BCF(3NAG)

---

E02 -- Curve and Surface Fitting E02BCF
E02BCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02BCF evaluates a cubic spline and its first three derivatives from its B-spline representation.

2. Specification

```fortran
SUBROUTINE E02BCF (NCAP7, LAMDA, C, X, LEFT, S, IFAIL)
INTEGER NCAP7, LEFT, IFAIL
DOUBLE PRECISION LAMDA(NCAP7), C(NCAP7), X, S(4)
```

3. Description

This routine evaluates the cubic spline $s(x)$ and its first three derivatives at a prescribed argument $x$. It is assumed that $s(x)$
is represented in terms of its B-spline coefficients $c_i$, for $i = 1, 2, \ldots, n+3$ and (augmented) ordered knot set $(\lambda_i)$, for $i = 1, 2, \ldots, n+7$, (see E02BAF), i.e.,

$$q \rightarrow s(x) = \sum_{i=1}^{n+3} c_i N_i(x)$$

Here $q = n+3$, $n$ is the number of intervals of the spline and $N_i(x)$ denotes the normalised B-spline of degree 3 (order 4) defined upon the knots $(\lambda_i), (\lambda_{i+1}), \ldots, (\lambda_{i+4})$. The prescribed argument $x$ must satisfy

$$\lambda_i \leq x \leq \lambda_{i+4}$$

At a simple knot $(\lambda_i)$ (i.e., one satisfying $(\lambda_{i-1}) < (\lambda_i) < (\lambda_{i+1})$), the third derivative of the spline is in general discontinuous. At a multiple knot (i.e., two or more knots with the same value), lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point $x = u$ where (exactly) $r$ knots coincide (such a point is termed a knot of multiplicity $r$), the values of the derivatives of order $4-j$, for $j=1,2,\ldots,r$, are in general discontinuous. (Here $1 \leq r \leq 4$; $r > 4$ is not meaningful.) The user must specify whether the value at such a point is required to be the left- or right-hand derivative.

The method employed is based upon:

1. carrying out a binary search for the knot interval containing the argument $x$ (see Cox [3]),
2. evaluating the non-zero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox [2] and [3]).
(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these computed B-spline values (see de Boor [1]),

(iv) multiplying the 4th-order B-spline values and their derivative by the appropriate B-spline coefficients, and summing, to yield the values of \( s(x) \) and its derivatives.

E02BCF can be used to compute the values and derivatives of cubic spline fits and interpolants produced by E02BAF.

If only values and not derivatives are required, E02BBF may be used instead of E02BCF, which takes about 50% longer than E02BBF.

4. References


5. Parameters

1: NCAP7 -- INTEGER Input

On entry: \( n+7 \), where \( n \) is the number of intervals of the spline (which is one greater than the number of interior knots, i.e., the knots strictly within the range \( \lambda_4 \) to \( \lambda_{n+4} \) over which the spline is defined).

Constraint: \( NCAP7 \geq 8 \).

2: LAMDA(NCAP7) -- DOUBLE PRECISION array Input

On entry: \( \text{LAMDA}(j) \) must be set to the value of the \( j \)th member of the complete set of knots, \( (\lambda_j) \), for \( j=1,2,\ldots,n+7 \). Constraint: the \( \text{LAMDA}(j) \) must be in non-decreasing order with \( \text{LAMDA}(\text{NCAP7}-3) > \text{LAMDA}(4) \).

3: C(NCAP7) -- DOUBLE PRECISION array Input
On entry: the coefficient \( c_i \) of the B-spline \( N_i(x) \), for \( i = 1,2,\ldots,n+3 \). The remaining elements of the array are not used.

4: \( X \) -- DOUBLE PRECISION
   Input
   On entry: the argument \( x \) at which the cubic spline and its derivatives are to be evaluated. Constraint: \( \text{LAMDA}(4) \leq x \leq \text{LAMDA}(\text{NCAP7}-3) \).

5: \( LEFT \) -- INTEGER
   Input
   On entry: specifies whether left- or right-hand values of the spline and its derivatives are to be computed (see Section 3). Left- or right-hand values are formed according to whether \( LEFT \) is equal or not equal to 1. If \( x \) does not coincide with a knot, the value of \( LEFT \) is immaterial. If \( x = \text{LAMDA}(4) \), right-hand values are computed, and if \( x = \text{LAMDA}(\text{NCAP7}-3) \), left-hand values are formed, regardless of the value of \( LEFT \).

6: \( S(4) \) -- DOUBLE PRECISION array
   Output
   On exit: \( S(j) \) contains the value of the \((j-1)\)th derivative of the spline at the argument \( x \), for \( j = 1,2,3,4 \). Note that \( S(1) \) contains the value of the spline.

7: \( IFAIL \) -- INTEGER
   Input/Output
   On entry: \( IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: \( IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\( IFAIL = 1 \)
\( \text{NCAP7} < 8 \), i.e., the number of intervals is not positive.

\( IFAIL = 2 \)
Either \( \text{LAMDA}(4) \geq \text{LAMDA}(\text{NCAP7}-3) \), i.e., the range over which \( s(x) \) is defined is null or negative in length, or \( X \) is an invalid argument, i.e., \( X < \text{LAMDA}(4) \) or \( X > \text{LAMDA}(\text{NCAP7}-3) \).

7. Accuracy

The computed value of \( s(x) \) has negligible error in most practical
situations. Specifically, this value has an absolute error bounded in modulus by \(18c \times \text{machine precision}\), where \(c = \max\) the largest in modulus of \(c, c, c, c, c, c\) and \(j\) is an integer such that \((\lambda_j) \leq x \leq (\lambda_{j+3})\). If \(c, c, c, c, c, c\) and \(c\) are all of the same sign, then the computed value of \(s(x)\) has relative error bounded by \(18\times\text{machine precision}\). For full details see Cox [3].

No complete error analysis is available for the computation of the derivatives of \(s(x)\). However, for most practical purposes the absolute errors in the computed derivatives should be small.

8. Further Comments

The time taken by this routine is approximately linear in \(\log(n+7)\).

Note: the routine does not test all the conditions on the knots given in the description of LAMDA in Section 5, since to do this would result in a computation time approximately linear in \(n+7\) instead of \(\log(n+7)\). All the conditions are tested in E02BAF, however.

9. Example

Compute, at the 7 arguments \(x = 0, 1, 2, 3, 4, 5, 6\), the left- and right-hand values and first 3 derivatives of the cubic spline defined over the interval \(0 \leq x \leq 6\) having the 6 interior knots \(x = 1, 3, 3, 3, 4, 4\), the 8 additional knots \(0, 0, 0, 0, 6, 6, 6, 6\), and the 10 B-spline coefficients \(10, 12, 13, 15, 22, 26, 24, 18, 14, 12\).

The input data items (using the notation of Section 5) comprise the following values in the order indicated:

\[
\begin{align*}
n & \quad m \\
LAMDA(j), & \quad \text{for } j = 1, 2, \ldots, \text{NCAP7}
\end{align*}
\]
The example program is written in a general form that will enable the values and derivatives of a cubic spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any number of data sets may be supplied. The only changes required to the program relate to the dimensions of the arrays LAMDA and C.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

**Definite integral of cubic spline from B-spline**

--- nage.ht ---

E02BDF computes the definite integral of a cubic spline from its B-spline representation.
2. Specification

SUBROUTINE E02BDF (NCAP7, LAMDA, C, DEFINT, IFAIL)
INTEGER NCAP7, IFAIL
DOUBLE PRECISION LAMDA(NCAP7), C(NCAP7), DEFINT

3. Description

This routine computes the definite integral of the cubic spline
s(x) between the limits x=a and x=b, where a and b are
respectively the lower and upper limits of the range over which
s(x) is defined. It is assumed that s(x) is represented in terms
of its B-spline coefficients c , for i=1,2,...,n+3 and
i
(augmented) ordered knot set (lambda) , for i=1,2,...,n+7, with
i
(lambda) =a, for i = 1,2,3,4 and (lambda) =b, for
i
i=n+4,n+5,n+6,n+7, (see E02BAF), i.e.,

\[ s(x) = \sum_{i=1}^{q} c_i N_i(x). \]

Here q=n+3, \( n \) is the number of intervals of the spline and \( N_i(x) \)
denotes the normalised B-spline of degree 3 (order 4) defined
upon the knots (lambda) , (lambda) ,..., (lambda) .
i i+1 i+4

The method employed uses the formula given in Section 3 of Cox
[1].

E02BDF can be used to determine the definite integrals of cubic
spline fits and interpolants produced by E02BAF.

4. References

5. Parameters

1: NCAP7 -- INTEGER  
   Input

On entry: n+7, where n is the number of intervals of the
spline (which is one greater than the number of interior
knots, i.e., the knots strictly within the range a to b)
over which the spline is defined. Constraint: NCAP7 >= 8.

2: LAMDA(NCAP7) -- DOUBLE PRECISION array  
   Input

On entry: LAMDA(j) must be set to the value of the jth
member of the complete set of knots, (lambda) for
\[ j = 1, 2, \ldots , n+7. \]
Constraint: the LAMDA(j) must be in non-decreasing order with LAMDA(NCAP7-3) > LAMDA(4) and satisfy
LAMDA(1)=LAMDA(2)=LAMDA(3)=LAMDA(4)
and
LAMDA(NCAP7-3)=LAMDA(NCAP7-2)=LAMDA(NCAP7-1)=LAMDA(NCAP7).

3: C(NCAP7) -- DOUBLE PRECISION array  
   Input

On entry: the coefficient c of the B-spline N(x), for
\[ i = 1, 2, \ldots , n+3. \]
The remaining elements of the array are not
used.

4: DEFINT -- DOUBLE PRECISION  
   Output

On exit: the value of the definite integral of s(x) between
the limits x=a and x=b, where a=(lambda) and b=(lambda) .
\[ 4 \quad \text{to} \quad \text{n+4} \]

5: IFAIL -- INTEGER  
   Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1  
NCAP7 < 8, i.e., the number of intervals is not positive.

IFAIL= 2  
At least one of the following restrictions on the knots is violated:

\[ \text{LAMDA}(\text{NCAP7}-3) > \text{LAMDA}(4), \]
\[ \text{LAMDA}(j) \geq \text{LAMDA}(j-1), \]
for \( j = 2, 3, \ldots, \text{NCAP7}, \) with equality in the cases \( j=2, 3, 4, \text{NCAP7}-2, \text{NCAP7}-1, \) and NCAP7.

7. Accuracy
The rounding errors are such that the computed value of the integral is exact for a slightly perturbed set of B-spline coefficients \( c_i \) differing in a relative sense from those supplied by no more than \( 2.2 \times (n+3) \times \text{machine precision}. \)

8. Further Comments
The time taken by the routine is approximately proportional to \( n+7. \)

9. Example
Determine the definite integral over the interval \( 0 \leq x \leq 6 \) of a cubic spline having 6 interior knots at the positions (\( \lambda \))=1, 3, 3, 3, 4, 4, the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10 B-spline coefficients 10, 12, 13, 15, 22, 26, 24, 18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order indicated:

\[
\begin{align*}
n \\
\text{LAMDA}(j) & \text{ for } j = 1, 2, \ldots, \text{NCAP7} \\
\text{C}(j) & \text{ for } j = 1, 2, \ldots, \text{NCAP7-3}
\end{align*}
\]
The example program is written in a general form that will enable the definite integral of a cubic spline having an arbitrary number of knots to be computed. Any number of data sets may be supplied. The only changes required to the program relate to the dimensions of the arrays LAMDA and C.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Cubic spline approximation to an arbitrary set points

--- nage.ht ---

E02BEF(3NAG) Foundation Library (12/10/92) E02BEF(3NAG)

E02 -- Curve and Surface Fitting
E02BEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02BEF computes a cubic spline approximation to an arbitrary set of data points. The knots of the spline are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit.

2. Specification
This routine determines a smooth cubic spline approximation $s(x)$ to the set of data points $(x_r, y_r)$, with weights $w_r$, for $r = 1, 2, \ldots, m$.

The spline is given in the B-spline representation

$$ s(x) = \sum_{i=1}^{n-4} c_i N_i(x) $$

where $N_i(x)$ denotes the normalised cubic B-spline defined upon the knots $(\lambda_i, \lambda_{i+1}, \lambda_{i+4})$.

The total number $n$ of these knots and their values $(\lambda_1, \ldots, \lambda_n)$ are chosen automatically by the routine. The knots $(\lambda_5, \ldots, \lambda_{n-4})$ are the interior knots; they divide the approximation interval $[x_1, x_m]$ into $n-7$ sub-intervals. The coefficients $c_1, c_2, \ldots, c_{n-4}$ are then determined as the solution of the following constrained minimization problem:

$$ \minimize 2 \sum_{i=5}^{n-4} (\delta_i) $$

subject to the constraint

$$ m $$
\[ (\theta) = \frac{2}{r} \quad (\epsilon) \leq S \quad (3) \]

where: \( \delta \) stands for the discontinuity jump in the third order derivative of \( s(x) \) at the interior knot \( \lambda \),

\( \epsilon \) denotes the weighted residual \( w(y - s(x)) \),

\( S \) is a non-negative number to be specified by the user.

The quantity \( \eta \) can be seen as a measure of the (lack of) smoothness of \( s(x) \), while closeness of fit is measured through \( \theta \). By means of the parameter \( S \), 'the smoothing factor', the user will then control the balance between these two (usually conflicting) properties. If \( S \) is too large, the spline will be too smooth and signal will be lost (underfit); if \( S \) is too small, the spline will pick up too much noise (overfit). In the extreme cases the routine will return an interpolating spline ((\( \theta \)) = 0) if \( S \) is set to zero, and the weighted least-squares cubic polynomial ((\( \eta \)) = 0) if \( S \) is set very large. Experimenting with \( S \) values between these two extremes should result in a good compromise. (See Section 8.2 for advice on choice of \( S \).)

The method employed is outlined in Section 8.3 and fully described in Dierckx [1], [2] and [3]. It involves an adaptive strategy for locating the knots of the cubic spline (depending on the function underlying the data and on the value of \( S \)), and an iterative method for solving the constrained minimization problem once the knots have been determined.

Values of the computed spline, or of its derivatives or definite integral, can subsequently be computed by calling E02BBF, E02BCF or E02BDF, as described in Section 8.4.

4. References


5. Parameters

1: START -- CHARACTER*1 Input
   On entry: START must be set to 'C' or 'W'.
   If START = 'C' (Cold start), the routine will build up the
   knot set starting with no interior knots. No values need be
   assigned to the parameters N, LAMDA, WRK or IWRK.
   If START = 'W' (Warm start), the routine will restart the
   knot-placing strategy using the knots found in a previous
   call of the routine. In this case, the parameters N, LAMDA,
   WRK, and IWRK must be unchanged from that previous call.
   This warm start can save much time in searching for a
   satisfactory value of S. Constraint: START = 'C' or 'W'.

2: M -- INTEGER Input
   On entry: m, the number of data points. Constraint: M >= 4.

3: X(M) -- DOUBLE PRECISION array Input
   On entry: the values x of the independent variable
   \( r \) (abscissa) \( x \), for \( r=1,2,\ldots,m \). Constraint: \( x_1 < x_2 \ldots < x_m \)

4: Y(M) -- DOUBLE PRECISION array Input
   On entry: the values y of the dependent variable
   \( r \) (ordinate) \( y \), for \( r=1,2,\ldots,m \).

5: W(M) -- DOUBLE PRECISION array Input
   On entry: the values w of the weights, for \( r=1,2,\ldots,m \).
   For advice on the choice of weights, see the Chapter
   Introduction, Section 2.1.2. Constraint: \( W(r) > 0 \), for
   \( r=1,2,\ldots,m \).

6: S -- DOUBLE PRECISION Input
   On entry: the smoothing factor, S.
   If S=0.0, the routine returns an interpolating spline.
   If S is smaller than machine precision, it is assumed equal
to zero.

For advice on the choice of \( S \), see Section 3 and Section 8.2
Constraint: \( S \geq 0.0 \).

7: NEST -- INTEGER  
Input
On entry: an over-estimate for the number, \( n \), of knots 
required. Constraint: \( NEST \geq 8 \). In most practical 
situations, \( NEST = M/2 \) is sufficient. NEST never needs to be 
larger than \( M + 4 \), the number of knots needed for 
interpolation \( (S = 0.0) \).

8: N -- INTEGER  
Input/Output
On entry: if the warm start option is used, the value of \( N \) 
must be left unchanged from the previous call. On exit: the 
total number, \( n \), of knots of the computed spline.

9: LAMDA(NEST) -- DOUBLE PRECISION array  
Input/Output
On entry: if the warm start option is used, the values 
LAMDA(1), LAMDA(2),...,LAMDA(N) must be left unchanged from 
the previous call. On exit: the knots of the spline i.e., 
the positions of the interior knots LAMDA(5), LAMDA(6),...
,LAMDA(N-4) as well as the positions of the additional knots 
LAMDA(1) = LAMDA(2) = LAMDA(3) = LAMDA(4) = \( x \) and 
LAMDA(N-3) = LAMDA(N-2) = LAMDA(N-1) = LAMDA(N) = \( x \) needed 
m for the B-spline representation.

10: C(NEST) -- DOUBLE PRECISION array  
Output
On exit: the coefficient \( c \) of the B-spline \( N_i(x) \) in the 
spline approximation \( s(x) \), for \( i=1,2,...,n-4 \).

11: FP -- DOUBLE PRECISION  
Output
On exit: the sum of the squared weighted residuals, \( (\thetaeta) \), 
of the computed spline approximation. If \( FP = 0.0 \), this is 
an interpolating spline. \( FP \) should equal \( S \) within a relative 
tolerance of 0.001 unless \( n=8 \) when the spline has no 
interior knots and so is simply a cubic polynomial. For 
knots to be inserted, \( S \) must be set to a value below the 
value of \( FP \) produced in this case.

12: WRK(LWRK) -- DOUBLE PRECISION array  
Workspace
On entry: if the warm start option is used, the values WRK 
(1),...,WRK(n) must be left unchanged from the previous 
call.

13: LWRK -- INTEGER  
Input
On entry:
the dimension of the array WRK as declared in the
(sub)program from which E02BEF is called.
Constraint: LWRK > 4*M + 16*NEST + 41.

14: IWRK(NEST) -- INTEGER array Workspace
On entry: if the warm start option is used, the values IWRK
(1), ..., IWRK(n) must be left unchanged from the previous
call.
This array is used as workspace.

15: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry START /= 'C' or 'W',
or M < 4,
or S < 0.0,
or S = 0.0 and NEST < M + 4,
or NEST < 8,
or LWRK < 4*M + 16*NEST + 41.

IFAIL = 2
The weights are not all strictly positive.

IFAIL = 3
The values of X(r), for r=1,2,...,M, are not in strictly
increasing order.

IFAIL = 4
The number of knots required is greater than NEST. Try
increasing NEST and, if necessary, supplying larger arrays
for the parameters LAMDA, C, WRK and IWRK. However, if NEST is already large, say NEST > M/2, then this error exit may indicate that S is too small.

IFAIL= 5
The iterative process used to compute the coefficients of the approximating spline has failed to converge. This error exit may occur if S has been set very small. If the error persists with increased S, consult NAG.

If IFAIL = 4 or 5, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and (3) in Section 3) - perhaps by only a small amount, however.

7. Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals FP is equal to the smoothing factor S, up to a specified relative tolerance of 0.001 - except that if n=8, FP may be significantly less than S: in this case the computed spline is simply a weighted least-squares polynomial approximation of degree 3, i.e., a spline with no interior knots.

8. Further Comments

8.1. Timing

The time taken for a call of E02BEF depends on the complexity of the shape of the data, the value of the smoothing factor S, and the number of data points. If E02BEF is to be called for different values of S, much time can be saved by setting START =

8.2. Choice of S

If the weights have been correctly chosen (see Section 2.1.2 of the Chapter Introduction), the standard deviation of $w_y$ would be the same for all $r$, equal to (sigma), say. In this case, choosing the smoothing factor S in the range $(\sigma/\sqrt{2m})$, as suggested by Reinsch [4], is likely to give a good start in the search for a satisfactory value. Otherwise, experimenting with different values of S will be required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a very large value for S and so determine the least-squares cubic polynomial; the value returned for FP, call it FP, gives an upper bound for S.
Then progressively decrease the value of $S$ to obtain closer fits — say by a factor of 10 in the beginning, i.e., $S = FP/10$, $S = FP/100$, and so on, and more carefully as the approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of $S$ and on the behaviour of the function underlying the data. However, if E02BEF is called with \textsc{start} = 'W', the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a number of trials with different values of $S$ and \textsc{start} = 'W', a fit can finally be accepted as satisfactory, it may be worthwhile to call E02BEF once more with the selected value for $S$ but now using \textsc{start} = 'C'. Often, E02BEF then returns an approximation with the same quality of fit but with fewer knots, which is therefore better if data reduction is also important.

8.3. Outline of Method Used

If $S=0$, the requisite number of knots is known in advance, i.e., $n = m + 4$; the interior knots are located immediately as $(\lambda) = x_i$, for $i=5,6,\ldots,n-4$. The corresponding least-squares spline (see E02BAF) is then an interpolating spline and therefore a solution of the problem.

If $S>0$, a suitable knot set is built up in stages (starting with no interior knots in the case of a cold start but with the knot set found in a previous call if a warm start is chosen). At each stage, a spline is fitted to the data by least-squares (see E02BAF) and $(\theta)$, the weighted sum of squares of residuals, is computed. If $(\theta)>S$, new knots are added to the knot set to reduce $(\theta)$ at the next stage. The new knots are located in intervals where the fit is particularly poor, their number depending on the value of $S$ and on the progress made so far in reducing $(\theta)$. Sooner or later, we find that $(\theta)<=S$ and at that point the knot set is accepted. The routine then goes on to compute the (unique) spline which has this knot set and which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has $(\theta)=S$. The routine computes the spline by an iterative scheme which is ended when $(\theta)=S$ within a relative tolerance of 0.001. The main part of each iteration consists of a linear least-squares computation of special form, done in a similarly stable and efficient manner as in E02BAF.

An exception occurs when the routine finds at the start that, even with no interior knots ($n=8$), the least-squares spline
already has its weighted sum of squares of residuals \( \leq S \). In this case, since this spline (which is simply a cubic polynomial) also has an optimal value for the smoothness measure (\( \eta \)), namely zero, it is returned at once as the (trivial) solution. It will usually mean that \( S \) has been chosen too large.

For further details of the algorithm and its use, see Dierckx [3].

8.4. Evaluation of Computed Spline

The value of the computed spline at a given value \( X \) may be obtained in the double precision variable \( S \) by the call:

\[
\text{CALL E02BBF}(N, \text{LAMDA}, C, X, S, \text{IFAIL})
\]

where \( N, \text{LAMDA} \) and \( C \) are the output parameters of E02BEF.

The values of the spline and its first three derivatives at a given value \( X \) may be obtained in the double precision array \( \text{SDIF} \) of dimension at least 4 by the call:

\[
\text{CALL E02BCF}(N, \text{LAMDA}, C, X, \text{LEFT}, \text{SDIF}, \text{IFAIL})
\]

where if \( \text{LEFT} = 1 \), left-hand derivatives are computed and if \( \text{LEFT} \neq 1 \), right-hand derivatives are calculated. The value of \( \text{LEFT} \) is only relevant if \( X \) is an interior knot.

The value of the definite integral of the spline over the interval \( X(1) \) to \( X(M) \) can be obtained in the double precision variable \( \text{SINT} \) by the call:

\[
\text{CALL E02BDF}(N, \text{LAMDA}, C, \text{SINT}, \text{IFAIL})
\]

9. Example

This example program reads in a set of data values, followed by a set of values of \( S \). For each value of \( S \) it calls E02BEF to compute a spline approximation, and prints the values of the knots and the \( B \)-spline coefficients \( c_i \).

The program includes code to evaluate the computed splines, by calls to E02BBF, at the points \( x \) and at points mid-way between them. These values are not printed out, however; instead the results are illustrated by plots of the computed splines, together with the data points (indicated by \( * \)) and the positions of the knots (indicated by vertical lines): the effect of decreasing \( S \) can be clearly seen. (The plots were obtained by
Minimal, weighted least-squares bicubic spline fit

E02DAF forms a minimal, weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points.

1. Purpose

E02DAF forms a minimal, weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points.

2. Specification

SUBROUTINE E02DAF (M, PX, PY, X, Y, F, W, LAMDA, MU, 1  POINT, NPOINT, DL, C, NC, WS, NWS, EPS, 2  SIGMA, RANK, IFAIL)
INTEGER M, PX, PY, POINT(NPOINT), NPOINT, NC, NWS,
1 RANK, IFAIL
DOUBLE PRECISION X(M), Y(M), F(M), W(M), LAMDA(PX), MU(PY),
1 DL(NC), C(NC), WS(NWS), EPS, SIGMA

3. Description

This routine determines a bicubic spline fit \( s(x,y) \) to the set of data points \((x_r, y_r, f_r)\) with weights \(w_r\), for \(r=1,2,\ldots,m\). The two sets of internal knots of the spline, \(\{\lambda_r\}\) and \(\{\mu_r\}\), associated with the variables \(x\) and \(y\) respectively, are prescribed by the user. These knots can be thought of as dividing the data region of the \((x,y)\) plane into panels (see diagram in Section 5). A bicubic spline consists of a separate bicubic polynomial in each panel, the polynomials joining together with continuity up to the second derivative across the panel boundaries.

\( s(x,y) \) has the property that \((\Sigma_r)\), the sum of squares of its weighted residuals \((\rho_r)\), for \(r=1,2,\ldots,m\), where

\[
(\rho_r) = w_r (s(x_r, y_r) - f_r), \quad (1)
\]

is as small as possible for a bicubic spline with the given knot sets. The routine produces this minimized value of \((\Sigma_r)\) and the coefficients \(c_{ij}\) in the B-spline representation of \(s(x,y)\) - see Section 8. E02DEF and E02DFF are available to compute values of the fitted spline from the coefficients \(c_{ij}\).

The least-squares criterion is not always sufficient to determine the bicubic spline uniquely: there may be a whole family of splines which have the same minimum sum of squares. In these cases, the routine selects from this family the spline for which the sum of squares of the coefficients \(c_{ij}\) is smallest: in other words, the minimal least-squares solution. This choice, although arbitrary, reduces the risk of unwanted fluctuations in the spline fit. The method employed involves forming a system of \(m\) linear equations in the coefficients \(c_{ij}\) and then computing its least-squares solution, which will be the minimal least-squares solution when appropriate. The basis of the method is described in Hayes and Halliday [4]. The matrix of the equation is formed using a recurrence relation for B-splines which is numerically stable (see Cox [1] and de Boor [2] - the former contains the
more elementary derivation but, unlike [2], does not cover the case of coincident knots). The least-squares solution is also obtained in a stable manner by using orthogonal transformations, viz. a variant of Givens rotation (see Gentleman [3]). This requires only one row of the matrix to be stored at a time. Advantage is taken of the stepped-band structure which the matrix possesses when the data points are suitably ordered, there being at most sixteen non-zero elements in any row because of the definition of B-splines. First the matrix is reduced to upper triangular form and then the diagonal elements of this triangle are examined in turn. When an element is encountered whose square, divided by the mean squared weight, is less than a threshold (epsilon), it is replaced by zero and the rest of the elements in its row are reduced to zero by rotations with the remaining rows. The rank of the system is taken to be the number of non-zero diagonal elements in the final triangle, and the non-zero rows of this triangle are used to compute the minimal least-squares solution. If all the diagonal elements are non-zero, the rank is equal to the number of coefficients $c_{ij}$ and the solution obtained is the ordinary least-squares solution, which is unique in this case.

4. References


5. Parameters

1: M -- INTEGER Input
   On entry: the number of data points, m. Constraint: M > 1.

2: PX -- INTEGER Input

3: PY -- INTEGER Input
   On entry: the total number of knots (lambda) and (mu) associated with the variables x and y, respectively. Constraint: PX >= 8 and PY >= 8.
(They are such that PX-8 and PY-8 are the corresponding numbers of interior knots.) The running time and storage required by the routine are both minimized if the axes are labelled so that PY is the smaller of PX and PY.

4: X(M) -- DOUBLE PRECISION array Input

5: Y(M) -- DOUBLE PRECISION array Input

6: F(M) -- DOUBLE PRECISION array Input
On entry: the co-ordinates of the data point \((x_r, y_r, f_r)\), for \(r = 1, 2, \ldots, m\). The order of the data points is immaterial, but see the array POINT, below.

7: W(M) -- DOUBLE PRECISION array Input
On entry: the weight \(w_r\) of the \(r\)th data point. It is important to note the definition of weight implied by the equation (1) in Section 3, since it is also common usage to define weight as the square of this weight. In this routine, each \(w_r\) should be chosen inversely proportional to the \(r\) (absolute) accuracy of the corresponding \(f_r\), as expressed, for example, by the standard deviation or probable error of the \(f_r\). When the \(f_r\) are all of the same accuracy, all the \(w_r\) may be set equal to 1.0.

8: LAMDA(PX) -- DOUBLE PRECISION array Input/Output
On entry: LAMDA(i+4) must contain the \(i\)th interior knot (lambda) associated with the variable \(x\), for \(i+4\) \(i = 1, 2, \ldots, PX-8\). The knots must be in non-decreasing order and lie strictly within the range covered by the data values of \(x\). A knot is a value of \(x\) at which the spline is allowed to be discontinuous in the third derivative with respect to \(x\), though continuous up to the second derivative. This degree of continuity can be reduced, if the user requires, by the use of coincident knots, provided that no more than four knots are chosen to coincide at any point. Two, or three, coincident knots allow loss of continuity in, respectively, the second and first derivative with respect to \(x\) at the value of \(x\) at which they coincide. Four coincident knots split the spline surface into two independent parts. For choice of knots see Section 8. On exit: the interior knots LAMDA(5) to LAMDA(PX-4) are unchanged, and the segments LAMDA(1:4) and LAMDA(PX-3:PX)
contain additional (exterior) knots introduced by the routine in order to define the full set of B-splines required. The four knots in the first segment are all set equal to the lowest data value of x and the other four additional knots are all set equal to the highest value: there is experimental evidence that coincident end-knots are best for numerical accuracy. The complete array must be left undisturbed if E02DEF or E02DFF is to be used subsequently.

9: MU(PY) -- DOUBLE PRECISION array
   Input
   On entry: MU(i+4) must contain the ith interior knot (\(\mu\))
   associated with the variable y, i=1,2,...,PY-8. The same remarks apply to MU as to LAMDA above, with Y replacing X, and y replacing x.

10: POINT(NPOINT) -- INTEGER array
    Input
    On entry: indexing information usually provided by E02ZAF which enables the data points to be accessed in the order which produces the advantageous matrix structure mentioned in Section 3. This order is such that, if the \((x,y)\) plane is thought of as being divided into rectangular panels by the two sets of knots, all data in a panel occur before data in succeeding panels, where the panels are numbered from bottom to top and then left to right with the usual arrangement of axes, as indicated in the diagram.

    Please see figure in printed Reference Manual

    A data point lying exactly on one or more panel sides is considered to be in the highest numbered panel adjacent to the point. E02ZAF should be called to obtain the array POINT, unless it is provided by other means.

11: NPOINT -- INTEGER
    Input
    On entry: the dimension of the array POINT as declared in the (sub)program from which E02DAF is called.
    Constraint: NPOINT >= M + (PX-7)*(PY-7).

12: DL(NC) -- DOUBLE PRECISION array
    Output
    On exit: DL gives the squares of the diagonal elements of the reduced triangular matrix, divided by the mean squared weight. It includes those elements, less than (epsilon), which are treated as zero (see Section 3).

13: C(NC) -- DOUBLE PRECISION array
    Output
    On exit: C gives the coefficients of the fit. \(C((PY-4)*(i-1)+j)\) is the coefficient \(c_{ij}\) of Section 3 and Section 8 for
i=1,2,...,PX-4 and j=1,2,...,PY-4. These coefficients are used by E02DEF or E02DFF to calculate values of the fitted function.

14: NC -- INTEGER 
On entry: the value (PX-4)*(PY-4).

15: WS(NWS) -- DOUBLE PRECISION array 
Workspace

16: NWS -- INTEGER 
On entry: the dimension of the array WS as declared in the (sub)program from which E02DAF is called.
Constraint: NWS>=(2*NC+1)*(3*PY-6)-2.

17: EPS -- DOUBLE PRECISION 
On entry: a threshold (epsilon) for determining the effective rank of the system of linear equations. The rank is determined as the number of elements of the array DL (see below) which are non-zero. An element of DL is regarded as zero if it is less than (epsilon). Machine precision is a suitable value for (epsilon) in most practical applications which have only 2 or 3 decimals accurate in data. If some coefficients of the fit prove to be very large compared with the data ordinates, this suggests that (epsilon) should be increased so as to decrease the rank. The array DL will give a guide to appropriate values of (epsilon) to achieve this, as well as to the choice of (epsilon) in other cases where some experimentation may be needed to determine a value which leads to a satisfactory fit.

18: SIGMA -- DOUBLE PRECISION 
On exit: (Sigma), the weighted sum of squares of residuals. This is not computed from the individual residuals but from the right-hand sides of the orthogonally-transformed linear equations. For further details see Hayes and Halliday [4] page 97. The two methods of computation are theoretically equivalent, but the results may differ because of rounding error.

19: RANK -- INTEGER 
On exit: the rank of the system as determined by the value of the threshold (epsilon). When RANK = NC, the least-squares solution is unique: in other cases the minimal least-squares solution is computed.

20: IFAIL -- INTEGER 
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
At least one set of knots is not in non-decreasing order, or an interior knot is outside the range of the data values.

IFAIL = 2
More than four knots coincide at a single point, possibly because all data points have the same value of x (or y) or because an interior knot coincides with an extreme data value.

IFAIL = 3
Array POINT does not indicate the data points in panel order. Call E02ZAF to obtain a correct array.

IFAIL = 4
On entry M <= 1,
or PX < 8,
or PY < 8,
or NC /= (PX-4)*(PY-4),
or NWS is too small,
or NPOINT is too small.

IFAIL = 5
All the weights w are zero or rank determined as zero.

7. Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both numerically stable.

8. Further Comments

The time taken by this routine is approximately proportional to \( \frac{2}{m} \) the number of data points, m, and to \( 3\cdot(PY-4)+4 \).
The B-spline representation of the bicubic spline is

\[ s(x,y) = \sum_{i=1}^{PX-4} \sum_{j=1}^{PY-4} c_{ij} M_i(x) N_j(y) \]

summed over \( i=1,2,...,PX-4 \) and over \( j=1,2,...,PY-4 \). Here \( M_i(x) \) and \( N_j(y) \) denote normalised cubic B-splines, the former defined on the knots \( \lambda_i, \lambda_{i+1}, \ldots, \lambda_{i+4} \) and the latter on the knots \( \mu_j, \mu_{j+1}, \ldots, \mu_{j+4} \). For further details, see Hayes and Halliday [4] for bicubic splines and de Boor [2] for normalised B-splines.

The choice of the interior knots, which help to determine the spline's shape, must largely be a matter of trial and error. It is usually best to start with a small number of knots and, examining the fit at each stage, add a few knots at a time at places where the fit is particularly poor. In intervals of \( x \) or \( y \) where the surface represented by the data changes rapidly, in function value or derivatives, more knots will be needed than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident knots: for example, just as three coincident knots can produce a discontinuity in slope, three close knots can produce rapid change in slope. Of course, such rapid changes in behaviour must be adequately represented by the data points, as indeed must the behaviour of the surface generally, if a satisfactory fit is to be achieved. When there is no rapid change in behaviour, equally-spaced knots will often suffice.

In all cases the fit should be examined graphically before it is accepted as satisfactory.

The fit obtained is not defined outside the rectangle

\[
\lambda_4 \leq x \leq \lambda_{PX-3}, \quad \mu_4 \leq y \leq \mu_{PY-3}
\]

The reason for taking the extreme data values of \( x \) and \( y \) for these four knots is that, as is usual in data fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless, the user requires values over a larger rectangle, this can be achieved by augmenting the data with two artificial data points \((a,c,0)\) and \((b,d,0)\) with zero weight, where \( a \leq x \leq b, \quad c \leq y \leq d \) defines the enlarged rectangle. In the
case when the data are adequate to make the least-squares solution unique (RANK = NC), this enlargement will not affect the fit over the original rectangle, except for possibly enlarged rounding errors, and will simply continue the bicubic polynomials in the panels bordering the rectangle out to the new boundaries: in other cases the fit will be affected. Even using the original rectangle there may be regions within it, particularly at its corners, which lie outside the data region and where, therefore, the fit will be unreliable. For example, if there is no data point in panel 1 of the diagram in Section 5, the least-squares criterion leaves the spline indeterminate in this panel: the minimal spline determined by the subroutine in this case passes through the value zero at the point \((\lambda),(\mu)\).

9. Example

This example program reads a value for \((\epsilon)\), and a set of data points, weights and knot positions. If there are more y knots than x knots, it interchanges the x and y axes. It calls E02ZAF to sort the data points into panel order, E02DAF to fit a bicubic spline to them, and E02DEF to evaluate the spline at the data points.

Finally it prints:

- the weighted sum of squares of residuals computed from the linear equations;
- the rank determined by E02DAF;
- data points, fitted values and residuals in panel order;
- the weighted sum of squares of the residuals;
- the coefficients of the spline fit.

The program is written to handle any number of data sets.

Note: the data supplied in this example is not typical of a realistic problem: the number of data points would normally be much larger (in which case the array dimensions and the value of NWS in the program would have to be increased); and the value of \((\epsilon)\) would normally be much smaller on most machines (see Section 5; the relatively large value of 10\(^{-6}\) has been chosen in order to illustrate a minimal least-squares solution when RANK < NC; in this example NC = 24).

The example program is not reproduced here. The source code for
Bicubic spline approximation to a set of data values

--- nage.ht ---

E02DCF(3NAG)  Foundation Library (12/10/92)  E02DCF(3NAG)

E02 -- Curve and Surface Fitting  E02DCF
E02DCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02DCF computes a bicubic spline approximation to a set of data values, given on a rectangular grid in the x-y plane. The knots of the spline are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit.

2. Specification

```fortran
SUBROUTINE E02DCF (START, MX, X, MY, Y, F, S, NXEST,
1 NYEST, NX, LAMDA, NY, MU, C, FP, WRK,
2 LWRK, IWRK, LIWRK, IFAIL)
 INTEGER MX, MY, NXEST, NYEST, NX, NY, LWRK, IWRK
 DOUBLE PRECISION X(MX), Y(MY), F(MX*MY), S, LAMDA(NXEST),
```

all example programs is distributed with the NAG Foundation Library software and should be available on-line.
3. Description

This routine determines a smooth bicubic spline approximation $s(x,y)$ to the set of data points $(x_q,y_r,f_{qr})$, for $q=1,2,...,m$ and $r=1,2,...,m$.

The spline is given in the B-spline representation

$$s(x,y) = \sum_{i=1}^{n-4} \sum_{j=1}^{n-4} c_{ij} M_i(x) N_j(y),$$

where $M_i(x)$ and $N_j(y)$ denote normalised cubic B-splines, the former defined on the knots $(\lambda_i)$ to $(\lambda_{i+4})$ and the latter on the knots $(\mu_j)$ to $(\mu_{j+4})$. For further details, see Hayes and Halliday [4] for bicubic splines and de Boor [1] for normalised B-splines.

The total numbers $n_x$ and $n_y$ of these knots and their values $(\lambda_1,...,\lambda_{n_x})$ and $(\mu_1,...,\mu_{n_y})$ are chosen automatically by the routine. The knots $(\lambda_5,...,\lambda_{n_x-4})$ and $(\mu_5,...,\mu_{n_y-4})$ are the interior knots; they divide the approximation domain $[x_1,x_m] \times [y_1,y_m]$ into $(m-7) \times (m-7)$ subpanels $[(\lambda_i,\lambda_{i+1}) \times (\mu_j,\mu_{j+1})]$, for $i=4,5,...,n_x-4$, $j=4,5,...,n_y-4$. Then, much as in the curve case (see E02BEF), the coefficients $c_{ij}$ are determined as the solution of the following constrained minimization problem:
minimize

\[(\eta), \quad (2)\]

subject to the constraint

\[
\begin{align*}
\max & \ - \ (\theta) = > > (\epsilon) \leq S, \\
& \text{subject to} \quad q_1, r_1 \\
\end{align*}
\]

where \((\eta)\) is a measure of the (lack of) smoothness of \(s(x,y)\).
Its value depends on the discontinuity jumps in \(s(x,y)\) across the boundaries of the subpanels. It is zero only when there are no discontinuities and is positive otherwise, increasing with the size of the jumps (see Dierckx [2] for details).

\[(\epsilon)\] denotes the residual \(f - s(x,y), q_1, r_1\)
and \(S\) is a non-negative number to be specified by the user.

By means of the parameter \(S\), 'the smoothing factor', the user will then control the balance between smoothness and closeness of fit, as measured by the sum of squares of residuals in (3). If \(S\) is too large, the spline will be too smooth and signal will be lost (underfit); if \(S\) is too small, the spline will pick up too much noise (overfit). In the extreme cases the routine will return an interpolating spline ((\(\theta)=0)) if \(S\) is set to zero, and the least-squares bicubic polynomial ((\(\eta)=0)) if \(S\) is set very large. Experimenting with \(S\)-values between these two extremes should result in a good compromise. (See Section 8.3 for advice on choice of \(S\).)

The method employed is outlined in Section 8.5 and fully described in Dierckx [2] and [3]. It involves an adaptive strategy for locating the knots of the bicubic spline (depending on the function underlying the data and on the value of \(S\)), and an iterative method for solving the constrained minimization problem once the knots have been determined.

Values of the computed spline can subsequently be computed by calling E02DEF or E02DFF as described in Section 8.6.

4. References
5. Parameters

1: START -- CHARACTER*1  
   On entry: START must be set to 'C' or 'W'.
   If START = 'C' (Cold start), the routine will build up the
   knot set starting with no interior knots. No values need be
   assigned to the parameters NX, NY, LAMDA, MU, WRK or IWRK.

   If START = 'W' (Warm start), the routine will restart the
   knot-placing strategy using the knots found in a previous
   call of the routine. In this case, the parameters NX, NY,
   LAMDA, MU, WRK and IWRK must be unchanged from that previous
   call. This warm start can save much time in searching for a
   satisfactory value of S. Constraint: START = 'C' or 'W'.

2: MX -- INTEGER  
   On entry: m , the number of grid points along the x axis.  
   Constraint: MX >= 4.

3: X(MX) -- DOUBLE PRECISION array  
   On entry: X(q) must be set to x , the x co-ordinate of the
   qth grid point along the x axis, for q=1,2,...,m .  
   Constraint: x <x <...<x .  
                1 2     m           x

4: MY -- INTEGER  
   On entry: m , the number of grid points along the y axis.
Constraint: MY \geq 4.

5: $Y(MY)$ -- DOUBLE PRECISION array
   On entry: $Y(r)$ must be set to $y$, the $y$ co-ordinate of the $r$th grid point along the $y$ axis, for $r=1,2,\ldots,m$.
   Constraint: $y < y < \ldots < y$.
   \hspace{1cm} 1 \hspace{0.5cm} 2 \hspace{0.5cm} m \hspace{0.5cm} y

6: $F(MX*MY)$ -- DOUBLE PRECISION array
   On entry: $F(m*(q-1)+r)$ must contain the data value $f$, $y$
   for $q=1,2,\ldots,m$ and $r=1,2,\ldots,m$.
   \hspace{1cm} x \hspace{1cm} y

7: $S$ -- DOUBLE PRECISION
   On entry: the smoothing factor, $S$.

   If $S=0.0$, the routine returns an interpolating spline.

   If $S$ is smaller than machine precision, it is assumed equal to zero.

   For advice on the choice of $S$, see Section 3 and Section 8.3
   Constraint: $S \geq 0.0$.

8: $NXEST$ -- INTEGER
9: $NYEST$ -- INTEGER
   On entry: an upper bound for the number of knots $n$ and $n$ $x$ $y$
   required in the $x$- and $y$-directions respectively.

   In most practical situations, $NXEST = m / 2$ and $NYEST = m / 2$ is sufficient. $NXEST$ and $NYEST$ never need to be larger than $m + 4$ and $m + 4$ respectively, the numbers of knots needed for $x$ $y$
   interpolation ($S=0.0$). See also Section 8.4. Constraint:
   $NXEST \geq 8$ and $NYEST \geq 8$.

10: $NX$ -- INTEGER
    On entry: if the warm start option is used, the value of $NX$ must be left unchanged from the previous call. On exit: the total number of knots, $n$, of the computed spline with $x$
    respect to the $x$ variable.
11: LAMDA(NXEST) -- DOUBLE PRECISION array Input/Output
On entry: if the warm start option is used, the values
LAMDA(1), LAMDA(2),...,LAMDA(NX) must be left unchanged from
the previous call. On exit: LAMDA contains the complete set
of knots (lambda) associated with the x variable, i.e., the
interior knots LAMDA(5), LAMDA(6),..., LAMDA(NX-4) as well
as the additional knots LAMDA(1) = LAMDA(2) = LAMDA(3) =
LAMDA(4) = X(1) and LAMDA(NX-3) = LAMDA(NX-2) = LAMDA(NX-1)
= LAMDA(NX) = X(MX) needed for the B-spline representation.

12: NY -- INTEGER Input/Output
On entry: if the warm start option is used, the value of NY
must be left unchanged from the previous call. On exit: the
total number of knots, n , of the computed spline with
respect to the y variable.

13: MU(NYEST) -- DOUBLE PRECISION array Input/Output
On entry: if the warm start option is used, the values MU
(1), MU(2),...,MU(NY) must be left unchanged from the
previous call. On exit: MU contains the complete set of
knots (mu) associated with the y variable, i.e., the
interior knots MU(5), MU(6),...,MU(NY-4) as well as the
additional knots MU(1) = MU(2) = MU(3) = MU(4) = Y(1) and MU
(NY-3) = MU(NY-2) = MU(NY-1) = MU(NY) = Y(MY) needed for the
B-spline representation.

14: C((NXEST-4)*(NYEST-4)) -- DOUBLE PRECISION array Output
On exit: the coefficients of the spline approximation. C(n -4)*(i-1)+j) is the coefficient c defined in Section 3.
y

15: FP -- DOUBLE PRECISION Output
On exit: the sum of squared residuals, (theta), of the
computed spline approximation. If FP = 0.0, this is an
interpolating spline. FP should equal S within a relative
tolerance of 0.001 unless NX = NY = 8, when the spline has
no interior knots and so is simply a bicubic polynomial. For
knots to be inserted, S must be set to a value below the
value of FP produced in this case.

16: WRK(LWRK) -- DOUBLE PRECISION array Workspace
On entry: if the warm start option is used, the values WRK
(1),...,WRK(4) must be left unchanged from the previous
call.

This array is used as workspace.
17: LWRK -- INTEGER  
Input
On entry:
the dimension of the array WRK as declared in the
(sub)program from which E02DCF is called.
Constraint:
\[ LWRK \geq 4 \times (MX + MY) + 11 \times (NXEST + NYEST) + \text{NXEST} \times MY \\
+ \max(\text{MY}, \text{NXEST}) + 54. \]

18: IWRK(LIWRK) -- INTEGER array  
Workspace
On entry: if the warm start option is used, the values IWRK
(1), ..., IWRK(3) must be left unchanged from the previous
call.

This array is used as workspace.

19: LIWRK -- INTEGER  
Input
On entry:
the dimension of the array IWRK as declared in the
(sub)program from which E02DCF is called.
Constraint: LIWRK \geq 3 + MX + MY + NXEST + NYEST.

20: IFAIL -- INTEGER  
Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry START /= 'C' or 'W',
or \[ MX < 4, \]
or \[ MY < 4, \]
or \[ S < 0.0, \]
or \[ S = 0.0 \text{ and } \text{NXEST} < MX + 4, \]
or \[ S = 0.0 \text{ and } \text{NYEST} < MY + 4, \]
or \( \text{NXEST} < 8 \),

or \( \text{NYEST} < 8 \),

or \( \text{LWRK} < 4*(\text{MX}+\text{MY})+11*(\text{NXEST}+\text{NYEST})+\text{NXEST} \times \text{MY}+\text{max} (\text{MY}, \text{NXEST}) + 54 \)

or \( \text{LIWRK} < 3 + \text{MX} + \text{MY} + \text{NXEST} + \text{NYEST} \).

IFAIL= 2

The values of \( X(q) \), for \( q = 1,2,\ldots,\text{MX} \), are not in strictly increasing order.

IFAIL= 3

The values of \( Y(r) \), for \( r = 1,2,\ldots,\text{MY} \), are not in strictly increasing order.

IFAIL= 4

The number of knots required is greater than allowed by \( \text{NXEST} \) and \( \text{NYEST} \). Try increasing \( \text{NXEST} \) and/or \( \text{NYEST} \) and, if necessary, supplying larger arrays for the parameters \( \text{LAMDA}, \text{MU}, \text{C}, \text{WRK} \) and \( \text{IWRK} \). However, if \( \text{NXEST} \) and \( \text{NYEST} \) are already large, say \( \text{NXEST} > \text{MX}/2 \) and \( \text{NYEST} > \text{MY}/2 \), then this error exit may indicate that \( S \) is too small.

IFAIL= 5

The iterative process used to compute the coefficients of the approximating spline has failed to converge. This error exit may occur if \( S \) has been set very small. If the error persists with increased \( S \), consult NAG.

If IFAIL = 4 or 5, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and (3) in Section 3) -- perhaps by only a small amount, however.

7. Accuracy

On successful exit, the approximation returned is such that its sum of squared residuals \( FP \) is equal to the smoothing factor \( S \), up to a specified relative tolerance of 0.001 -- except that if \( n =8 \) and \( n =8 \), \( FP \) may be significantly less than \( S \): in this case the computed spline is simply the least-squares bicubic polynomial approximation of degree 3, i.e., a spline with no interior knots.

8. Further Comments

8.1. Timing
The time taken for a call of E02DCF depends on the complexity of the shape of the data, the value of the smoothing factor S, and the number of data points. If E02DCF is to be called for different values of S, much time can be saved by setting START =

8.2. Weighting of Data Points

E02DCF does not allow individual weighting of the data values. If these were determined to widely differing accuracies, it may be better to use E02DDF. The computation time would be very much longer, however.

8.3. Choice of S

If the standard deviation of \( f \) is the same for all \( q \) and \( r \)

\[ q,r \]

(the case for which this routine is designed - see Section 8.2.) and known to be equal, at least approximately, to \( \sigma \), say, then following Reinsch [5] and choosing the smoothing factor \( S \) in the range \( \sigma (m+\sqrt{2m}) \), where \( m=m_x m_y \), is likely to give a good start in the search for a satisfactory value. If the standard deviations vary, the sum of their squares over all the data points could be used. Otherwise experimenting with different values of \( S \) will be required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a very large value for \( S \) and so determine the least-squares bicubic polynomial; the value returned for \( FP \), call it \( FP_0 \), gives an upper bound for \( S \).

Then progressively decrease the value of \( S \) to obtain closer fits - say by a factor of 10 in the beginning, i.e., \( S=FP_0/10 \), \( S=FP_0/100 \), and so on, and more carefully as the approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of \( S \) and on the behaviour of the function underlying the data. However, if E02DCF is called with \( \text{START} = 'W' \), the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a number of trials with different values of \( S \) and \( \text{START} = 'W' \), a fit can finally be accepted as satisfactory, it may be worthwhile to call E02DCF once more with the selected value for \( S \) but now using \( \text{START} = 'C' \). Often, E02DCF then returns an approximation with the
same quality of fit but with fewer knots, which is therefore better if data reduction is also important.

8.4. Choice of NXEST and NYEST

The number of knots may also depend on the upper bounds NXEST and NYEST. Indeed, if at a certain stage in E02DCF the number of knots in one direction (say n) has reached the value of its upper bound (NXEST), then from that moment on all subsequent knots are added in the other (y) direction. Therefore the user has the option of limiting the number of knots the routine locates in any direction. For example, by setting NXEST = 8 (the lowest allowable value for NXEST), the user can indicate that he wants an approximation which is a simple cubic polynomial in the variable x.

8.5. Outline of Method Used

If S=0, the requisite number of knots is known in advance, i.e., n =m +4 and n =m +4; the interior knots are located immediately x x y y as (lambda) = x and (mu) = y , for i=5,6,...,n -4 and i i-2 j j-2 x and (mu) = y , for i=5,6,...,n -4 and i i-2 j j-2 y y interpolating spline and therefore a solution of the problem.

If S>0, suitable knot sets are built up in stages (starting with no interior knots in the case of a cold start but with the knot set found in a previous call if a warm start is chosen). At each stage, a bicubic spline is fitted to the data by least-squares, and (theta), the sum of squares of residuals, is computed. If (theta)>S, new knots are added to one knot set or the other so as to reduce (theta) at the next stage. The new knots are located in intervals where the fit is particularly poor, their number depending on the value of S and on the progress made so far in reducing (theta). Sooner or later, we find that (theta)<=S and at that point the knot sets are accepted. The routine then goes on to compute the (unique) spline which has these knot sets and which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has (theta)=S. The routine computes the spline by an iterative scheme which is ended when (theta)=S within a relative tolerance of 0.001. The main part of each iteration consists of a linear least-squares computation of special form, done in a similarly stable and efficient manner as in E02BAF for least-squares curve fitting.

An exception occurs when the routine finds at the start that, even with no interior knots (n =n =8), the least-squares spline
8.6. Evaluation of Computed Spline

The values of the computed spline at the points (TX(r),TY(r)), for \( r = 1,2,\ldots,N \), may be obtained in the double precision array FF, of length at least N, by the following code:

```fortran
IFAIL = 0
CALL E02DEF(N,NX,NY,TX,TY,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
```

where NX, NY, LAMDA, MU and C are the output parameters of E02DCF, WRK is a double precision workspace array of length at least NY-4, and IWRK is an integer workspace array of length at least NY-4.

To evaluate the computed spline on a \( KX \) by \( KY \) rectangular grid of points in the \( x-y \) plane, which is defined by the \( x \) co-ordinates stored in TX(q), for q=1,2,\ldots,KX, and the \( y \) co-ordinates stored in TY(r), for r=1,2,\ldots,KY, returning the results in the double precision array FG which is of length at least KX*KY, the following call may be used:

```fortran
IFAIL = 0
CALL E02DFF(KX,KY,NX,NY,TX,TY,LAMDA,MU,C,FG,WRK,LWRK,
 * IWRK,LIWRK,IFAIL)
```

where NX, NY, LAMDA, MU and C are the output parameters of E02DCF, WRK is a double precision workspace array of length at least LWRK = min(NWRK1,NWRK2), NWRK1 = KX*4+NX, NWRK2 = KY*4+NY, and IWRK is an integer workspace array of length at least LIWRK = KY + NY - 4 if NWRK1 > NWRK2, or KX + NX - 4 otherwise. The result of the spline evaluated at grid point (q,r) is returned in element (KY*(q-1)+r) of the array FG.

9. Example

This example program reads in values of MX, MY, \( x \), for \( q = 1,2,\ldots \)

\[
 x \quad y
\]

already has its sum of residuals \( \leq S \). In this case, since this spline (which is simply a bicubic polynomial) also has an optimal value for the smoothness measure (eta), namely zero, it is returned at once as the (trivial) solution. It will usually mean that \( S \) has been chosen too large.

For further details of the algorithm and its use see Dierckx [2].
specified value of $S$, and prints the values of the computed knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Bicubic spline approximation to a set of scattered data

--- nage.ht ---

---

SUBROUTINE E02DDF (START, M, X, Y, F, W, S, NXEST, NYEST,
3. Description

This routine determines a smooth bicubic spline approximation $s(x,y)$ to the set of data points $(x_r,y_r,f_r)$ with weights $w_r$, for $r=1,2,...,m$.

The approximation domain is considered to be the rectangle $[x_{\min},x_{\max}]*[y_{\min},y_{\max}]$, where $x_{\min}$ ($y_{\min}$) and $x_{\max}$ ($y_{\max}$) denote the lowest and highest data values of $x$ ($y$).

The spline is given in the B-spline representation

$$
\begin{align*}
\sum_{i=1}^{n-4} \sum_{j=1}^{n-4} c_{ij} M_i(x) N_j(y) = s(x,y),
\end{align*}
$$

where $M_i(x)$ and $N_j(y)$ denote normalised cubic B-splines, the former defined on the knots $(\lambda_i)$ to $(\lambda_{i+4})$ and the latter on the knots $(\mu_j)$ to $(\mu_{j+4})$. For further details, see Hayes and Halliday [4] for bicubic splines and de Boor [1] for normalised B-splines.

The total numbers $n_x$ and $n_y$ of these knots and their values $x_{\min},...,x_{\min}$ and $y_{\min},...,y_{\min}$ are chosen automatically by the routine. The knots $(\lambda_1),...,\lambda_{n_x-4}$ and $(\mu_1),...,\mu_{n_y-4}$ are the interior knots; they divide the approximation domain $[x_{\min},x_{\max}]*[y_{\min},y_{\max}]$ into (}
\[ \min_{ij} \max_{ij} \min_{ij} \max_{ij} \]

\[ (\lambda)_i, (\lambda)_{i+1} \]

\[ (\mu)_j, (\mu)_{j+1} \]

for \( i = 4, 5, \ldots, n - 4; j = 4, 5, \ldots, n - 4 \). Then, much as in the curve \( x \ y \) case (see E02BEF), the coefficients \( c_{ij} \) are determined as the solution of the following constrained minimization problem:

\[
\text{minimize} \quad (\eta), \quad (2)
\]

subject to the constraint

\[
\sum_{r=1}^{m-2} (\theta) = \epsilon \leq S, \quad (3)
\]

where: \( (\eta) \) is a measure of the (lack of) smoothness of \( s(x, y) \). Its value depends on the discontinuity jumps in \( s(x, y) \) across the boundaries of the subpanels. It is zero only when there are no discontinuities and is positive otherwise, increasing with the size of the jumps (see Dierckx [2] for details).

\( (\epsilon) \) denotes the weighted residual \( w(f - s(x, y)) \),

and \( S \) is a non-negative number to be specified by the user.

By means of the parameter \( S \), 'the smoothing factor', the user will then control the balance between smoothness and closeness of fit, as measured by the sum of squares of residuals in (3). If \( S \) is too large, the spline will be too smooth and signal will be lost (underfit); if \( S \) is too small, the spline will pick up too much noise (overfit). In the extreme cases the method would return an interpolating spline ((\( \theta) = 0 \)) if \( S \) were set to zero, and returns the least-squares bicubic polynomial ((\( \eta = 0 \)) if \( S \) is set very large. Experimenting with \( S \)-values between these two extremes should result in a good compromise. (See Section 8.2 for advice on choice of \( S \).) Note however, that this routine, unlike E02BEF and E02DCF, does not allow \( S \) to be set exactly to zero: to compute an interpolant to scattered data, E01SAF or E01SEF should be used.

The method employed is outlined in Section 8.5 and fully described in Dierckx [2] and [3]. It involves an adaptive
strategy for locating the knots of the bicubic spline (depending on the function underlying the data and on the value of $S$), and an iterative method for solving the constrained minimization problem once the knots have been determined.

Values of the computed spline can subsequently be computed by calling E02DEF or E02DFF as described in Section 8.6.

4. References


5. Parameters

1: START -- CHARACTER*1
   Input
   On entry: START must be set to 'C' or 'W'.

   If START = 'C' (Cold start), the routine will build up the knot set starting with no interior knots. No values need be assigned to the parameters NX, NY, LAMDA, MU or WRK.

   If START = 'W' (Warm start), the routine will restart the knot-placing strategy using the knots found in a previous call of the routine. In this case, the parameters NX, NY, LAMDA, MU and WRK must be unchanged from that previous call. This warm start can save much time in searching for a satisfactory value of $S$. Constraint: START = 'C' or 'W'.

2: M -- INTEGER
   Input
   On entry: $m$, the number of data points.

   The number of data points with non-zero weight (see W below)
must be at least 16.

3: X(M) -- DOUBLE PRECISION array Input

4: Y(M) -- DOUBLE PRECISION array Input

5: F(M) -- DOUBLE PRECISION array Input
On entry: X(r), Y(r), F(r) must be set to the co-ordinates
\( x^r, y^r, f^r \), the rth data point, for \( r=1,2,...,m \). The
\( r \) order of the data points is immaterial.

6: W(M) -- DOUBLE PRECISION array Input
On entry: W(r) must be set to \( w^r \), the rth value in the set
\( r \) of weights, for \( r=1,2,...,m \). Zero weights are permitted and
the corresponding points are ignored, except when
determining \( x^{\min}, x^{\max}, y^{\min}, y^{\max} \) (see Section 8.4). For
\( \min, \max, \min, \max \) advice on the choice of weights, see Section 2.1.2 of the
Chapter Introduction. Constraint: the number of data points
with non-zero weight must be at least 16.

7: S -- DOUBLE PRECISION Input
On entry: the smoothing factor, \( S \).
For advice on the choice of \( S \), see Section 3 and Section 8.2.
Constraint: \( S > 0.0 \).

8: NXEST -- INTEGER Input

9: NYEST -- INTEGER Input
On entry: an upper bound for the number of knots \( n_x \) and \( n_y \)
required in the x- and y-directions respectively.
In most practical situations, \( NXEST = NYEST = 4+\sqrt{m}/2 \) is
sufficient. See also Section 8.3. Constraint: \( NXEST \geq 8 \) and
\( NYEST \geq 8 \).

10: NX -- INTEGER Input/Output
On entry: if the warm start option is used, the value of \( NX \)
must be left unchanged from the previous call. On exit: the
total number of knots, \( n_x \), of the computed spline with
\( x \) respect to the x variable.

11: LAMDA(NXEST) -- DOUBLE PRECISION array Input/Output
On entry: if the warm start option is used, the values LAMDA
(1), LAMDA(2),...,LAMDA(NX) must be left unchanged from the previous call. On exit: LAMDA contains the complete set of knots \((\lambda_i)\) associated with the \(x\) variable, i.e., the interior knots LAMDA(5), LAMDA(6),...,LAMDA(NX-4) as well as the additional knots LAMDA(1) = LAMDA(2) = LAMDA(3) = LAMDA(4) = \(x\) and LAMDA(NX-3) = LAMDA(NX-2) = LAMDA(NX-1) = \(\min\) LAMDA(NX) = \(x\) needed for the B-spline representation \(\max\) (where \(x\) and \(x\) are as described in Section 3).

12: NY -- INTEGER Input/Output
On entry: if the warm start option is used, the value of NY must be left unchanged from the previous call. On exit: the total number of knots, \(n\), of the computed spline with respect to the \(y\) variable.

13: MU(NYEST) -- DOUBLE PRECISION array Input/Output
On entry: if the warm start option is used, the values MU(1) MU(2),...,MU(NY) must be left unchanged from the previous call. On exit: MU contains the complete set of knots \((\mu_i)\) associated with the \(y\) variable, i.e., the interior knots MU(5), MU(6),...,MU(NY-4) as well as the additional knots MU(1) = MU(2) = MU(3) = MU(4) = \(y\) and MU(NY-3) = MU(NY-2) = \(\min\) MU(NY-1) = MU(NY) = \(y\) needed for the B-spline representation (where \(y\) and \(y\) are as described in Section 3).

14: C((NXEST-4)*(NYEST-4)) -- DOUBLE PRECISION array Output
On exit: the coefficients of the spline approximation. \(C((n-4)*(i-1)+j)\) is the coefficient \(c_{ij}\) defined in Section 3.

15: FP -- DOUBLE PRECISION Output
On exit: the weighted sum of squared residuals, \((\theta)\), of the computed spline approximation. FP should equal \(S\) within a relative tolerance of 0.001 unless \(NX = NY = 8\), when the spline has no interior knots and so is simply a bicubic polynomial. For knots to be inserted, \(S\) must be set to a value below the value of FP produced in this case.

16: RANK -- INTEGER Output
On exit: RANK gives the rank of the system of equations used
to compute the final spline (as determined by a suitable machine-dependent threshold). When \( \text{RANK} = (\text{NX}-4) \times (\text{NY}-4) \), the solution is unique; otherwise the system is rank-deficient and the minimum-norm solution is computed. The latter case may be caused by too small a value of \( S \).

17: \( \text{WRK}(\text{LWRK}) \) -- DOUBLE PRECISION array \hspace{1cm} \text{Workspace}

On entry: if the warm start option is used, the value of \( \text{WRK}(1) \) must be left unchanged from the previous call.

This array is used as workspace.

18: \( \text{LWRK} \) -- INTEGER Input

On entry:
the dimension of the array \( \text{WRK} \) as declared in the (sub)program from which \( \text{E02DDF} \) is called.

Constraint: \( \text{LWRK} \geq (7 \times \text{u} \times \text{v} + 25 \times \text{w}) \times (\text{w} + 1) + 2 \times (\text{u} \times \text{v} + 4 \times \text{M}) + 23 \times \text{w} + 56 \),

where

\( \text{u} = \text{NXEST}-4, \text{v} = \text{NYEST}-4, \text{and} \text{v} = \text{max}(\text{u}, \text{v}) \).

For some problems, the routine may need to compute the minimal least-squares solution of a rank-deficient system of linear equations (see Section 3). The amount of workspace required to solve such problems will be larger than specified by the value given above, which must be increased by an amount, \( \text{LWRK2} \) say. An upper bound for \( \text{LWRK2} \) is given by \( 4 \times \text{u} \times \text{v} \times \text{w} + 2 \times \text{u} \times \text{v} + 4 \times \text{w} \), where \( \text{u}, \text{v} \) and \( \text{w} \) are as above.

However, if there are enough data points, scattered uniformly over the approximation domain, and if the smoothing factor \( S \) is not too small, there is a good chance that this extra workspace is not needed. A lot of memory might therefore be saved by assuming \( \text{LWRK2} = 0 \).

19: \( \text{IWRK}(\text{LIWRK}) \) -- INTEGER array \hspace{1cm} \text{Workspace}

20: \( \text{LIWRK} \) -- INTEGER Input

On entry:
the dimension of the array \( \text{IWRK} \) as declared in the (sub)program from which \( \text{E02DDF} \) is called.

Constraint: \( \text{LIWRK} \geq \text{M} \times 2 \times (\text{NXEST}-7) \times (\text{NYEST}-7) \).

21: \( \text{IFAIL} \) -- INTEGER Input/Output

On entry: \( \text{IFAIL} \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \( \text{IFAIL} = 0 \) unless the routine detects an error (see
6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry START /= 'C' or 'W',

or the number of data points with non-zero weight < 16,

or S <= 0.0,

or NXEST < 8,

or NYEST < 8,

or LWRK < (7*u*v+25*w)*(u+1)+2*(u+v+4*M)+23*v+56,
where u = NXEST - 4, v = NYEST - 4 and w=max(u,v),

or LIWRK <M+2*(NXEST-7)*(NYEST-7).

IFAIL = 2
On entry either all the X(r), for r = 1,2,...,M, are equal,
or all the Y(r), for r = 1,2,...,M, are equal.

IFAIL = 3
The number of knots required is greater than allowed by NXEST and NYEST. Try increasing NXEST and/or NYEST and, if necessary, supplying larger arrays for the parameters LAMDA, MU, C, WRK and IWRK. However, if NXEST and NYEST are already large, say NXEST, NYEST > 4 + \sqrt{M}/2, then this error exit may indicate that S is too small.

IFAIL = 4
No more knots can be added because the number of B-spline coefficients (NX-4)*(NY-4) already exceeds the number of data points M. This error exit may occur if either of S or M is too small.

IFAIL = 5
No more knots can be added because the additional knot would (quasi) coincide with an old one. This error exit may occur if too large a weight has been given to an inaccurate data
point, or if \( S \) is too small.

\textbf{IFAIL} = 6

The iterative process used to compute the coefficients of the approximating spline has failed to converge. This error exit may occur if \( S \) has been set very small. If the error persists with increased \( S \), consult NAG.

\textbf{IFAIL} = 7

\( LWRK \) is too small; the routine needs to compute the minimal least-squares solution of a rank-deficient system of linear equations, but there is not enough workspace. There is no approximation returned but, having saved the information contained in \( NX, LAMDA, NY, MU \) and \( WRK \), and having adjusted the value of \( LWRK \) and the dimension of array \( WRK \) accordingly, the user can continue at the point the program was left by calling E02DDF with \( \text{START} = 'W' \). Note that the requested value for \( LWRK \) is only large enough for the current phase of the algorithm. If the routine is restarted with \( LWRK \) set to the minimum value requested, a larger request may be made at a later stage of the computation. See Section 5 for the upper bound on \( LWRK \). On soft failure, the minimum requested value for \( LWRK \) is returned in \( IWRK(1) \) and the safe value for \( LWRK \) is returned in \( IWRK(2) \).

If \( IFAIL = 3,4,5 \) or 6, a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and (3) in Section 3 -- perhaps only by a small amount, however.

7. Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals \( FP \) is equal to the smoothing factor \( S \), up to a specified relative tolerance of 0.001 -- except that if \( n = 8 \) and \( n = 8 \), \( FP \) may be significantly less than \( S \): in this case the computed spline is simply the least-squares bicubic polynomial approximation of degree 3, i.e., a spline with no interior knots.

8. Further Comments

8.1. Timing

The time taken for a call of E02DDF depends on the complexity of the shape of the data, the value of the smoothing factor \( S \), and the number of data points. If E02DDF is to be called for different values of \( S \), much time can be saved by setting \( \text{START} = 'W' \). It should be noted that choosing \( S \) very small considerably increases computation time.
8.2. Choice of S

If the weights have been correctly chosen (see Section 2.1.2 of the Chapter Introduction), the standard deviation of \( w_f \) would be the same for all \( r \), equal to \( \sigma \), say. In this case, choosing the smoothing factor \( S \) in the range \( \sigma (m+\sqrt{2m}) \), as suggested by Reinsch [6], is likely to give a good start in the search for a satisfactory value. Otherwise, experimenting with different values of \( S \) will be required from the start.

In that case, in view of computation time and memory requirements, it is recommended to start with a very large value for \( S \) and so determine the least-squares bicubic polynomial; the value returned for FP, call it \( FP_0 \), gives an upper bound for \( S \).

Then progressively decrease the value of \( S \) to obtain closer fits - say by a factor of 10 in the beginning, i.e., \( S=FP_0/10 \), \( S=FP_0/100 \), and so on, and more carefully as the approximation shows more details.

To choose \( S \) very small is strongly discouraged. This considerably increases computation time and memory requirements. It may also cause rank-deficiency (as indicated by the parameter RANK) and endanger numerical stability.

The number of knots of the spline returned, and their location, generally depend on the value of \( S \) and on the behaviour of the function underlying the data. However, if E02DDF is called with \( \text{START} = 'W' \), the knots returned may also depend on the smoothing factors of the previous calls. Therefore if, after a number of trials with different values of \( S \) and \( \text{START} = 'W' \), a fit can finally be accepted as satisfactory, it may be worthwhile to call E02DDF once more with the selected value for \( S \) but now using \( \text{START} = 'C' \). Often, E02DDF then returns an approximation with the same quality of fit but with fewer knots, which is therefore better if data reduction is also important.

8.3. Choice of NXEST and NYEST

The number of knots may also depend on the upper bounds NXEST and NYEST. Indeed, if at a certain stage in E02DDF the number of knots in one direction (say \( n_x \)) has reached the value of its upper bound (NXEST), then from that moment on all subsequent knots are added in the other (\( y \)) direction. This may indicate
that the value of NXEST is too small. On the other hand, it gives
the user the option of limiting the number of knots the routine
locates in any direction. For example, by setting NXEST = 8 (the
lowest allowable value for NXEST), the user can indicate that he
wants an approximation which is a simple cubic polynomial in the
variable x.

8.4. Restriction of the approximation domain

The fit obtained is not defined outside the rectangle
[\{(\lambda) , (\lambda) \}*[\{(\mu) , (\mu) \}]. The reason for taking
\[
4 \quad n - 3 \quad 4 \quad n - 3
\]
\[
x \quad y
\]
the extreme data values of x and y for these four knots is that,
as is usual in data fitting, the fit cannot be expected to give
satisfactory values outside the data region. If, nevertheless,
the user requires values over a larger rectangle, this can be
achieved by augmenting the data with two artificial data points
(a,c,0) and (b,d,0) with zero weight, where [a,b]*[c,d] denotes
the enlarged rectangle.

8.5. Outline of method used

First suitable knot sets are built up in stages (starting with no
interior knots in the case of a cold start but with the knot set
found in a previous call if a warm start is chosen). At each
stage, a bicubic spline is fitted to the data by least-squares
and (theta), the sum of squares of residuals, is computed. If
(theta)>S, a new knot is added to one knot set or the other so as
to reduce (theta) at the next stage. The new knot is located in
an interval where the fit is particularly poor. Sooner or later,
we find that (theta)≤S and at that point the knot sets are
accepted. The routine then goes on to compute a spline which has
these knot sets and which satisfies the full fitting criterion
specified by (2) and (3). The theoretical solution has (theta)=S.
The routine computes the spline by an iterative scheme which is
ended when (theta)=S within a relative tolerance of 0.001. The
main part of each iteration consists of a linear least-squares
computation of special form, done in a similarly stable and
efficient manner as in E02DAF. As there also, the minimal least-
squares solution is computed wherever the linear system is found
to be rank-deficient.

An exception occurs when the routine finds at the start that,
even with no interior knots (N = 8), the least-squares spline
already has its sum of squares of residuals ≤S. In this case,
since this spline (which is simply a bicubic polynomial) also has
an optimal value for the smoothness measure (eta), namely zero,
it is returned at once as the (trivial) solution. It will usually
mean that S has been chosen too large.
For further details of the algorithm and its use see Dierckx [2].

8.6. Evaluation of computed spline

The values of the computed spline at the points (TX(r),TY(r)), for r = 1,2,...,N, may be obtained in the double precision array FF, of length at least N, by the following code:

```fortran
IFAIL = 0
CALL E02DEF(N,NX,NY,TX,TY,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
```

where NX, NY, LAMDA, MU and C are the output parameters of E02DDF, WRK is a double precision workspace array of length at least NY-4, and IWRK is an integer workspace array of length at least NY-4.

To evaluate the computed spline on a KX by KY rectangular grid of points in the x-y plane, which is defined by the x co-ordinates stored in TX(q), for q=1,2,...,KX, and the y co-ordinates stored in TY(r), for r=1,2,...,KY, returning the results in the double precision array FG which is of length at least KX*KY, the following call may be used:

```fortran
IFAIL = 0
CALL E02DFF(KX,KY,NX,NY,TX,TY,LAMDA,MU,C,FG,WRK,LWRK, *
 IWRK,LIWRK,IFAIL)
```

where NX, NY, LAMDA, MU and C are the output parameters of E02DDF, WRK is a double precision workspace array of length at least $LWRK = \min(NWRK1,NWRK2)$, $NWRK1 = KX*4+NX$, $NWRK2 = KY*4+NY$, and IWRK is an integer workspace array of length at least $LIWRK = KY + NY - 4$ if $NWRK1 > NWRK2$, or $KX + NX - 4$ otherwise. The result of the spline evaluated at grid point (q,r) is returned in element $(KY*(q-1)+r)$ of the array FG.

9. Example

This example program reads in a value of M, followed by a set of M data points $(x_r, y_r, f_r)$ and their weights $w_r$. It then calls E02DDF to compute a bicubic spline approximation for one specified value of S, and prints the values of the computed knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Calculates values of a bicubic spline from B-spline

--- nage.ht ---

--- manpageXXe02def ---

E02DEF(3NAG) Foundation Library (12/10/92) E02DEF(3NAG)

E02 -- Curve and Surface Fitting

E02DEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02DEF calculates values of a bicubic spline from its B-spline representation.

2. Specification

```fortran
SUBROUTINE E02DEF (M, PX, PY, X, Y, LAMDA, MU, C, FF, WRK, 1 IWRK, IFAIL)
 INTEGER M, PX, PY, IWRK(PY-4), IFAIL
 DOUBLE PRECISION X(M), Y(M), LAMDA(PX), MU(PY), C((PX-4)*1 (PY-4)), FF(M), WRK(PY-4)
```

3. Description
This routine calculates values of the bicubic spline \( s(x,y) \) at prescribed points \((x_r,y_r)\), for \(r=1,2,\ldots,m\), from its augmented knot sets \(\{\lambda_i\}\) and \(\{\mu_j\}\) and from the coefficients \(c_{ij}\) for \(i=1,2,\ldots,\text{PX}-4; j=1,2,\ldots,\text{PY}-4\), in its B-spline representation

\[
\begin{align*}
\text{--} \\
\text{--} \\
\begin{array}{llllll}
(i) & j & ij \\
& & & & & \\
\end{array}
\end{align*}
\]

Here \(M_i(x)\) and \(N_j(y)\) denote normalised cubic B-splines, the former defined on the knots \(\lambda_i\) to \(\lambda_{i+4}\) and the latter on the knots \(\mu_j\) to \(\mu_{j+4}\).

This routine may be used to calculate values of a bicubic spline given in the form produced by \texttt{E01DAF}, \texttt{E02DAF}, \texttt{E02DCF} and \texttt{E02DDF}. It is derived from the routine \texttt{B2VRE} in Anthony et al [1].

4. References


5. Parameters

1: \texttt{M -- INTEGER} \\
On entry: \(m\), the number of points at which values of the spline are required. Constraint: \(M \geq 1\).

2: \texttt{PX -- INTEGER} \\

3: \texttt{PY -- INTEGER} \\
On entry: \(PX\) and \(PY\) must specify the total number of knots associated with the variables \(x\) and \(y\) respectively. They are such that \(PX-8\) and \(PY-8\) are the corresponding numbers of interior knots. Constraint: \(PX \geq 8\) and \(PY \geq 8\).

4: \texttt{X(M) -- DOUBLE PRECISION array} \\

5: \texttt{Y(M) -- DOUBLE PRECISION array}
On entry: X and Y must contain x and y, for r=1,2,...,m, respectively. These are the co-ordinates of the points at which values of the spline are required. The order of the points is immaterial. Constraint: X and Y must satisfy

LAMDA(4) <= X(r) <= LAMDA(PX-3)

and

MU(4) <= Y(r) <= MU(PY-3), for r=1,2,...,m.

The spline representation is not valid outside these intervals.

6: LAMDA(PX) -- DOUBLE PRECISION array Input
7: MU(PY) -- DOUBLE PRECISION array Input
   On entry: LAMDA and MU must contain the complete sets of knots \{\lambda\} and \{\mu\} associated with the x and y variables respectively. Constraint: the knots in each set must be in non-decreasing order, with LAMDA(PX-3) > LAMDA(4) and MU(PY-3) > MU(4).

8: C((PX-4)*(PY-4)) -- DOUBLE PRECISION array Input
   On entry: C((PY-4)*(i-1)+j) must contain the coefficient c described in Section 3, for i=1,2,...,PX-4; j=1,2,...,PY-4.

9: FF(M) -- DOUBLE PRECISION array Output
   On exit: FF(r) contains the value of the spline at the point (x ,y ), for r=1,2,...,m.
   r r

10: WRK(PY-4) -- DOUBLE PRECISION array Workspace
11: IWRK(PY-4) -- INTEGER array Workspace
12: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M < 1,
or PY < 8,
or PX < 8.

IFAIL= 2
On entry the knots in array LAMDA, or those in array MU, are not in non-decreasing order, or LAMDA(PX-3) <= LAMDA(4), or MU(PY-3) <= MU(4).

IFAIL= 3
On entry at least one of the prescribed points (x_r, y_r) lies outside the rectangle defined by LAMDA(4), LAMDA(PX-3) and MU(4), MU(PY-3).

7. Accuracy
The method used to evaluate the B-splines is numerically stable, in the sense that each computed value of s(x_r, y_r) can be regarded as the value that would have been obtained in exact arithmetic from slightly perturbed B-spline coefficients. See Cox [2] for details.

8. Further Comments
Computation time is approximately proportional to the number of points, m, at which the evaluation is required.

9. Example
This program reads in knot sets LAMDA(1),..., LAMDA(PX) and MU(1),..., MU(PY), and a set of bicubic spline coefficients c_{ij}.

Following these are a value for m and the co-ordinates (x_r, y_r), for r=1,2,...,m, at which the spline is to be evaluated.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Calculates values of a bicubic spline from B-spline

---

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02DFF calculates values of a bicubic spline from its B-spline representation. The spline is evaluated at all points on a rectangular grid.

2. Specification

```fortran
SUBROUTINE E02DFF (MX, MY, PX, PY, X, Y, LAMDA, MU, C, FF, WRK, LWRK, IWRK, LIWRK, IFAIL)
INTEGER MX, MY, PX, PY, LWRK, IWRK(LIWRK), LIWRK, IFAIL
DOUBLE PRECISION X(MX), Y(MY), LAMDA(PX), MU(PY), C((PX-4)*(PY-4)), FF(MX*MY), WRK(LWRK)
```

3. Description

This routine calculates values of the bicubic spline \( s(x,y) \) on a rectangular grid of points in the \( x-y \) plane, from its augmented knot sets \{\{\lambda\}\} and \{\{\mu\}\} and from the coefficients \( c \),
for \( i=1,2,\ldots,\text{PX}-4; j=1,2,\ldots,\text{PY}-4, \) in its B-spline representation

\[
\begin{align*}
s(x,y) &= \sum_{ij} c_{ij} M_i(x)N_j(y) \\
&= \sum_{ij} c_{ij} M_i(x)N_j(y)
\end{align*}
\]

Here \( M_i(x) \) and \( N_j(y) \) denote normalised cubic B-splines, the \( i \)
former defined on the knots \( \lambda_i \) to \( \lambda_{i+4} \) and the \( j \)
latter on the knots \( \mu_j \) to \( \mu_{j+4} \).

The points in the grid are defined by co-ordinates \( x_q \), for \( q=1,2,\ldots,m \), along the x axis, and co-ordinates \( y_r \), for \( x_r \)
\( r=1,2,\ldots,m \) along the y axis.

This routine may be used to calculate values of a bicubic spline given in the form produced by E01DAF, E02DAF, E02DCF and E02DDF. It is derived from the routine B2VRE in Anthony et al [1].

4. References


5. Parameters

1: \( \text{MX} \) -- INTEGER Input

2: \( \text{MY} \) -- INTEGER Input

On entry: \( \text{MX} \) and \( \text{MY} \) must specify \( m \) and \( m \) respectively, \( x \) \( y \)
the number of points along the x and y axis that define the rectangular grid. Constraint: \( \text{MX} \geq 1 \) and \( \text{MY} \geq 1 \).

3: \( \text{PX} \) -- INTEGER Input

4: \( \text{PY} \) -- INTEGER Input

On entry: \( \text{PX} \) and \( \text{PY} \) must specify the total number of knots
CHAPTER 22. NAG LIBRARY ROUTINES

associated with the variables x and y respectively. They are such that PX-8 and PY-8 are the corresponding numbers of interior knots. Constraint: PX >= 8 and PY >= 8.

5: X(MX) -- DOUBLE PRECISION array Input

6: Y(MY) -- DOUBLE PRECISION array Input
On entry: X and Y must contain x, for q=1,2,...,m, and y, for r=1,2,...,m, respectively. These are the x and y co-ordinates that define the rectangular grid of points at which values of the spline are required. Constraint: X and Y must satisfy

\[ \text{LAMDA}(4) \leq X(q) < X(q+1) \leq \text{LAMDA}(\text{PX}-3), \text{for } q=1,2,...,m-1 \]

\[ \text{and} \]

\[ \text{MU}(4) \leq Y(r) < Y(r+1) \leq \text{MU}(\text{PY}-3), \text{for } r=1,2,...,m-1. \]

The spline representation is not valid outside these intervals.

7: LAMDA(PX) -- DOUBLE PRECISION array Input

8: MU(PY) -- DOUBLE PRECISION array Input
On entry: LAMDA and MU must contain the complete sets of knots \{\text{(lambda)}\} and \{\text{mu}\} associated with the x and y variables respectively. Constraint: the knots in each set must be in non-decreasing order, with LAMDA(PX-3) > LAMDA(4) and MU(PY-3) > MU(4).

9: C((PX-4)*(PY-4)) -- DOUBLE PRECISION array Input
On entry: C((PY-4)*(i-1)+j) must contain the coefficient \( c_{ij} \) described in Section 3, for i=1,2,...,PX-4; j=1,2,...,PY-4.

10: FF(MX*MY) -- DOUBLE PRECISION array Output
On exit: FF(MY*(q-1)+r) contains the value of the spline at the point \((x,y)\), for q=1,2,...,m; r=1,2,...,m.

11: WRK(LWRK) -- DOUBLE PRECISION array Workspace

12: LWRK -- INTEGER Input
On entry: the dimension of the array WRK as declared in the
(sub)program from which E02DFF is called.
Constraint: LWRK >= min(NWRK1,NWRK2), where NWRK1=4*MX+PX,
NWRK2=4*MY+PY.

13: IWRK(LIWRK) -- INTEGER array Workspace

14: LIWRK -- INTEGER Input
On entry:
the dimension of the array IWRK as declared in the
(sub)program from which E02DFF is called.
Constraint: LIWRK >= MY + PY - 4 if NWRK1 > NWRK2, or MX +
PX - 4 otherwise, where NWRK1 and NWRK2 are as defined in
the description of argument LWRK.

15: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry MX < 1,
or MY < 1,
or PY < 8,
or PX < 8.

IFAIL= 2
On entry LWRK is too small,
or LIWRK is too small.

IFAIL= 3
On entry the knots in array LAMDA, or those in array MU, are
not in non-decreasing order, or LAMDA(PX-3) <= LAMDA(4), or
MU(PY-3) <= MU(4).

IFAIL= 4
On entry the restriction LAMDA(4) <= X(1) <... < X(MX) <=
7. Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value of \( s(x, y) \) can be regarded as the value that would have been obtained in exact arithmetic from slightly perturbed B-spline coefficients. See Cox [2] for details.

8. Further Comments

Computation time is approximately proportional to \( m_x m_y + 4(m_x + m_y) \).

9. Example

This program reads in knot sets \( \text{LAMDA}(1), \ldots, \text{LAMDA}(P_X) \) and \( \text{MU}(1), \ldots, \text{MU}(P_Y) \), and a set of bicubic spline coefficients \( c_{ij} \).

Following these are values for \( m_x \) and the \( x \) co-ordinates \( x_q \), for \( q = 1, 2, \ldots, m_x \), and values for \( m_y \) and the \( y \) co-ordinates \( y_r \), for \( r = 1, 2, \ldots, m_y \), defining the grid of points on which the spline is to be evaluated.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

E02GAF calculates an $l_1$ solution to an over-determined system of
1 linear equations.

2. Specification

```fortran
SUBROUTINE E02GAF (M, A, LA, B, NPLUS2, TOLER, X, RESID,
IRANK, ITER, IWORK, IFAIL)
 INTEGER M, LA, NPLUS2, IRANK, ITER, IWORK(M),
 IFAIL
 DOUBLE PRECISION A(LA,NPLUS2), B(M), TOLER, X(NPLUS2),
 RESID
```

3. Description

Given a matrix $A$ with $m$ rows and $n$ columns ($m \geq n$) and a vector $b$ with $m$ elements, the routine calculates an $l_1$ solution to the $1$ over-determined system of equations

$$Ax = b.$$ 

That is to say, it calculates a vector $x$, with $n$ elements, which minimizes the $l_1$-norm (the sum of the absolute values) of the $1$ residuals

$$
\sum_{i=1}^{m} |r_i| = \min \sum_{i=1}^{m} |r_i|
$$
where the residuals $r$ are given by

$$r_i = b_i - a_{ij} x_j, \quad i = 1, 2, \ldots, m.$$  

Here $a_{ij}$ is the element in row $i$ and column $j$ of $A$, $b_i$ is the $i$th element of $b$ and $x_j$ is the $j$th element of $x$. The matrix $A$ need not be of full rank.

Typically in applications to data fitting, data consisting of $m$ points with co-ordinates $(t_i, y_i)$ are to be approximated in the $l_1$-norm by a linear combination of known functions $(\phi_j(t))$, $j$

$$(\alpha_1) \phi_1(t) + (\alpha_2) \phi_2(t) + \ldots + (\alpha_n) \phi_n(t).$$

This is equivalent to fitting an $l_1$ solution to the over-determined system of equations

$$\sum_{j=1}^{n} (\phi_j(t)) \alpha_j = y_i, \quad i = 1, 2, \ldots, m.$$  

Thus if, for each value of $i$ and $j$, the element $a_{ij}$ of the matrix $A$ in the previous paragraph is set equal to the value of $(\phi_j(t))$ and $b_i$ is set equal to $y_i$, the solution vector $x_i$ will contain the required values of the $(\alpha_j)$. Note that the independent variable $t_i$ above can, instead, be a vector of several independent variables (this includes the case where each $(\phi_i)$ is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the primal formulation of the $l_1$ problem (see Barrodale and Roberts [1] and [2]). The modification allows
several neighbouring simplex vertices to be passed through in a single iteration, providing a substantial improvement in efficiency.

4. References


5. Parameters

1: M -- INTEGER Input
On entry: the number of equations, m (the number of rows of the matrix A). Constraint: M >= n >= 1.

2: A(LA,NPLUS2) -- DOUBLE PRECISION array Input/Output
On entry: A(i,j) must contain $a_{ij}$, the element in the ith row and jth column of the matrix A, for $i=1,2,...,m$ and $j=1,2,...,n$. The remaining elements need not be set. On exit: A contains the last simplex tableau generated by the simplex method.

3: LA -- INTEGER Input
On entry: the first dimension of the array A as declared in the (sub)program from which E02GAF is called. Constraint: LA >= M + 2.

4: B(M) -- DOUBLE PRECISION array Input/Output
On entry: $b_i$, the ith element of the vector b, for $i=1,2,...,m$. On exit: the ith residual $r_i$ corresponding to the solution vector $x_i$ for $i=1,2,...,m$.

5: NPLUS2 -- INTEGER Input
On entry: n+2, where n is the number of unknowns (the number of columns of the matrix A). Constraint: 3 <= NPLUS2 <= M + 2.

6: TOLER -- DOUBLE PRECISION Input
On entry: a non-negative value. In general TOLER specifies
a threshold below which numbers are regarded as zero. The recommended threshold value is \((\epsilon)\) where \((\epsilon)\) is the machine precision. The recommended value can be computed within the routine by setting \(TOLER\) to zero. If premature termination occurs a larger value for \(TOLER\) may result in a valid solution. Suggested value: 0.0.

7: \(X(NPLUS2)\) -- DOUBLE PRECISION array Output
On exit: \(X(j)\) contains the \(j\)th element of the solution vector \(x\), for \(j=1,2,\ldots,n\). The elements \(X(n+1)\) and \(X(n+2)\) are unused.

8: \(RESID\) -- DOUBLE PRECISION Output
On exit: the sum of the absolute values of the residuals for the solution vector \(x\).

9: \(IRANK\) -- INTEGER Output
On exit: the computed rank of the matrix \(A\).

10: \(ITER\) -- INTEGER Output
On exit: the number of iterations taken by the simplex method.

11: \(IWORK(M)\) -- INTEGER array Workspace

12: \(IFAIL\) -- INTEGER Input/Output
On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: \(IFAIL = 0\) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL = 1\)
An optimal solution has been obtained but this may not be unique.

\(IFAIL = 2\)
The calculations have terminated prematurely due to rounding errors. Experiment with larger values of \(TOLER\) or try scaling the columns of the matrix (see Section 8).

\(IFAIL = 3\)
On entry \(NPLUS2 < 3\),
or $NPLUS2 > M + 2$,
or $LA < M + 2$.

7. Accuracy

Experience suggests that the computational accuracy of the solution $x$ is comparable with the accuracy that could be obtained by applying Gaussian elimination with partial pivoting to the $n$ equations satisfied by this algorithm (i.e., those equations with zero residuals). The accuracy therefore varies with the conditioning of the problem, but has been found generally very satisfactory in practice.

8. Further Comments

The effects of $m$ and $n$ on the time and on the number of iterations in the Simplex Method vary from problem to problem, but typically the number of iterations is a small multiple of $n$ and the total time taken by the routine is approximately $2^n$ proportional to $mn$.

It is recommended that, before the routine is entered, the columns of the matrix $A$ are scaled so that the largest element in each column is of the order of unity. This should improve the conditioning of the matrix, and also enable the parameter TOLER to perform its correct function. The solution $x$ obtained will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each $j=1,2,...,n$, the elements of the $j$th column are multiplied by the constant $k_j$, the element $x_j$ of the solution vector $x$ must be multiplied by $k_j$ if it is desired to recover the solution corresponding to the original matrix $A$.

9. Example

Suppose we wish to approximate a set of data by a curve of the form

$$t - t_i$$

$$y = Ke^{t_i} + Le^{t_i} + M$$

where $K$, $L$ and $M$ are unknown. Given values $y_i$ at 5 points $t_i$ we may form the over-determined set of equations for $K$, $L$ and $M$
\end{verbatim}
\end{scroll}
\end{page}

---

**Sorts two-dimensional data into rectangular panels**

— nage.ht —

\begin{page}{manpageXXe02zaf}{NAG Documentation: e02zaf}
\begin{scroll}
\begin{verbatim}
E02ZAF(3NAG) Foundation Library (12/10/92) E02ZAF(3NAG)

E02 -- Curve and Surface Fitting
E02ZAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E02ZAF sorts two-dimensional data into rectangular panels.

2. Specification

\texttt{SUBROUTINE E02ZAF (PX, PY, LAMDA, MU, M, X, Y, POINT, 1 NPOINT, ADRES, NADRES, IFAIL)}

\end{verbatim}
\end{scroll}
\end{page}

3. Description

A set of m data points with rectangular Cartesian co-ordinates \(x, y\) are sorted into panels defined by lines parallel to the y and x axes. The intercepts of these lines on the x and y axes are given in \(\text{LAMDA}(i)\), for \(i=5, 6, \ldots, \text{PX}-4\) and \(\text{MU}(j)\), for \(j=5, 6, \ldots, \text{PY}-4\), respectively. The subroutine orders the data so that all points in a panel occur before data in succeeding panels, where the panels are numbered from bottom to top and then left to right, with the usual arrangement of axes, as shown in the diagram. Within a panel the points maintain their original order.

Please see figure in printed Reference Manual

A data point lying exactly on one or more panel sides is taken to be in the highest-numbered panel adjacent to the point. The subroutine does not physically rearrange the data, but provides the array \(\text{POINT}\) which contains a linked list for each panel, pointing to the data in that panel. The total number of panels is \((\text{PX-7})\times(\text{PY-7})\).

4. References

None.

5. Parameters

1: \(\text{PX} -- \text{INTEGER}\) Input

On entry: \(\text{PX}\) and \(\text{PY}\) must specify eight more than the number of intercepts on the x axis and y axis, respectively. Constraint: \(\text{PX} \geq 8\) and \(\text{PY} \geq 8\).

2: \(\text{PY} -- \text{INTEGER}\) Input

3: \(\text{LAMDA}(\text{PX}) -- \text{DOUBLE PRECISION array}\) Input

On entry: \(\text{LAMDA}(5)\) to \(\text{LAMDA}(\text{PX}-4)\) must contain, in non-decreasing order, the intercepts on the x axis of the sides of the panels parallel to the y axis.

4: \(\text{MU}(\text{PY}) -- \text{DOUBLE PRECISION array}\) Input

On entry: \(\text{MU}(5)\) to \(\text{MU}(\text{PY}-4)\) must contain, in non-decreasing order, the intercepts on the y axis of the sides of the panels parallel to the x axis.
5: M -- INTEGER Input
   On entry: the number m of data points.

6: X(M) -- DOUBLE PRECISION array Input

7: Y(M) -- DOUBLE PRECISION array Input
   On entry: the co-ordinates of the rth data point (x ,y ),
             r  r
   for r=1,2,...,m.

8: POINT(NPOINT) -- INTEGER array Output
   On exit: for i = 1,2,...,NADRES, POINT(m+i) = I1 is the
   index of the first point in panel i, POINT(I1) = I2 is the
   index of the second point in panel i and so on.

   POINT(IN) = 0 indicates that X(IN),Y(IN) was the last point
   in the panel.

   The co-ordinates of points in panel i can be accessed in
   turn by means of the following instructions:
   IN = M + I
   10 IN = POINT(IN)
   IF (IN.EQ. 0) GOTO 20
   XI = X(IN)
   YI = Y(IN)
   ... 10
   GOTO 10
   20...

9: NPOINT -- INTEGER Input
   On entry:
   the dimension of the array POINT as declared in the
   (sub)program from which E02ZAF is called.
   Constraint: NPOINT >= M + (PX-7)*(PY-7).

10: ADRES(NADRES) -- INTEGER array Workspace

11: NADRES -- INTEGER Input
   On entry: the value (PX-7)*(PY-7), the number of panels
   into which the (x,y) plane is divided.

12: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.

   On exit: IFAIL = 0 unless the routine detects an error (see
6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The intercepts in the array LAMDA, or in the array MU, are not in non-decreasing order.

IFAIL= 2
On entry PX < 8,
or PY < 8,
or M <= 0,
or NADRES /= (PX-7)*(PY-7),
or NPOINT < M + (PX-7)*(PY-7).

7. Accuracy

Not applicable.

8. Further Comments

The time taken by this routine is approximately proportional to m*log(NADRES).

This subroutine was written to sort two dimensional data in the manner required by routines E02DAF and E02DBF(*). The first 9 parameters of E02ZAF are the same as the parameters in E02DAF and E02DBF(*) which have the same name.

9. Example

This example program reads in data points and the intercepts of the panel sides on the x and y axes; it calls E02ZAF to set up the index array POINT; and finally it prints the data points in panel order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
Minimizing or Maximizing a Function

Contents of this Introduction:

1. Scope of the Chapter
2. Background to the Problems
   2.1. Types of Optimization Problems
       2.1.1. Unconstrained minimization
       2.1.2. Nonlinear least-squares problems
       2.1.3. Minimization subject to bounds on the variables
       2.1.4. Minimization subject to linear constraints
       2.1.5. Minimization subject to nonlinear constraints
   2.2. Geometric Representation and Terminology
       2.2.1. Gradient vector
       2.2.2. Hessian matrix
2.2.3. Jacobian matrix; matrix of constraint normals

2.3. Sufficient Conditions for a Solution

2.3.1. Unconstrained minimization

2.3.2. Minimization subject to bounds on the variables

2.3.3. Linearly-constrained minimization

2.3.4. Nonlinearly-constrained minimization

2.4. Background to Optimization Methods

2.4.1. Methods for unconstrained optimization

2.4.2. Methods for nonlinear least-squares problems

2.4.3. Methods for handling constraints

2.5. Scaling

2.5.1. Transformation of variables

2.5.2. Scaling the objective function

2.5.3. Scaling the constraints

2.6. Analysis of Computed Results

2.6.1. Convergence criteria

2.6.2. Checking results

2.6.3. Monitoring progress

2.6.4. Confidence intervals for least-squares solutions

2.7. References

3. Recommendations on Choice and Use of Routines

3.1. Choice of Routine

3.2. Service Routines

3.3. Function Evaluations at Infeasible Points

3.4. Related Problems
1. Scope of the Chapter

An optimization problem involves minimizing a function (called the objective function) of several variables, possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only, since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by -1.

This introduction is only a brief guide to the subject of optimization designed for the casual user. Anyone with a difficult or protracted problem to solve will find it beneficial to consult a more detailed text, such as Gill et al [5] or Fletcher [3].

Readers who are unfamiliar with the mathematics of the subject may find some sections difficult at first reading; if so, they should concentrate on Sections 2.1, 2.2, 2.5, 2.6 and 3.

2. Background to the Problems

2.1. Types of Optimization Problems

Solution of optimization problems by a single, all-purpose, method is cumbersome and inefficient. Optimization problems are therefore classified into particular categories, where each category is defined by the properties of the objective and constraint functions, as illustrated by some examples below.

<table>
<thead>
<tr>
<th>Properties of Objective Function</th>
<th>Properties of Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear</td>
<td>Nonlinear</td>
</tr>
<tr>
<td>Sums of squares of nonlinear functions</td>
<td>Sparse linear</td>
</tr>
<tr>
<td>Quadratic</td>
<td>Linear</td>
</tr>
<tr>
<td>Sums of squares of linear functions</td>
<td>Bounds</td>
</tr>
<tr>
<td>Linear</td>
<td>None</td>
</tr>
</tbody>
</table>

For instance, a specific problem category involves the minimization of a nonlinear objective function subject to bounds on the variables. In the following sections we define the
particular categories of problems that can be solved by routines contained in this Chapter.

2.1.1. Unconstrained minimization

In unconstrained minimization problems there are no constraints on the variables. The problem can be stated mathematically as follows:

\[
\text{minimize } F(x) \\
\text{subject to } x \in \mathbb{R}^n, \text{ that is, } x=(x_1, x_2, ..., x_n).
\]

2.1.2. Nonlinear least-squares problems

Special consideration is given to the problem for which the function to be minimized can be expressed as a sum of squared functions. The least-squares problem can be stated mathematically as follows:

\[
\text{minimize } \left\{ \sum_{i=1}^{m} f_i(x) \right\}, \quad x \in \mathbb{R}^n
\]

where the \( i \)th element of the \( m \)-vector \( f \) is the function \( f_i(x) \).

2.1.3. Minimization subject to bounds on the variables

These problems differ from the unconstrained problem in that at least one of the variables is subject to a simple restriction on its value, e.g. \( x_i \leq 10 \), but no constraints of a more general form are present.

The problem can be stated mathematically as follows:

\[
\text{minimize } F(x), \quad x \in \mathbb{R}^n
\]

subject to \( l_i \leq x_i \leq u_i \), \( i=1,2,...,n \).

This format assumes that upper and lower bounds exist on all the
variables. By conceptually allowing \( u = \text{infty} \) and \( l = -\text{infty} \) all the variables need not be restricted.

2.1.4. Minimization subject to linear constraints

A general linear constraint is defined as a constraint function that is linear in more than one of the variables, e.g. \( 3x_1 + 2x_2 \geq 4 \)

The various types of linear constraint are reflected in the following mathematical statement of the problem:

\[
\begin{align*}
\text{minimize } & F(x), \ x \text{ is in } \mathbb{R}^n \\
\text{subject to the } & \\
\text{equality } & a_i^T x = b_i, \ i = 1, 2, \ldots, m; \\
\text{constraints: } & i i 1 \\
\text{inequality } & a_i^T x \geq b_i, \ i = m + 1, m + 2, \ldots, m; \\
\text{constraints: } & i i 1 1 2 \\
\text{inequality } & a_i^T x \leq b_i, \ i = m + 1, m + 2, \ldots, m; \\
\text{constraints: } & i i 2 2 3 \\
\text{range } & s_j \leq a_j x \leq t_j, \ i = m + 1, m + 2, \ldots, m; \\
\text{constraints: } & j i j 3 3 4 \quad j = 1, 2, \ldots, m - m \quad 4 3 \\
\text{bounds } & l_i \leq x_i \leq u_i, \ i = 1, 2, \ldots, n \\
\text{constraints: } & i i i
\end{align*}
\]

where each \( a_i \) is a vector of length \( n \); \( b_i \), \( s_j \), and \( t_j \) are constant scalars; and any of the categories may be empty.

Although the bounds on \( x \) could be included in the definition of general linear constraints, we prefer to distinguish between them for reasons of computational efficiency.

If \( F(x) \) is a linear function, the linearly-constrained problem is
termed a linear programming problem (LP problem); if \( F(x) \) is a quadratic function, the problem is termed a quadratic programming problem (QP problem). For further discussion of LP and QP problems, including the dual formulation of such problems, see Dantzig [2].

2.1.5. Minimization subject to nonlinear constraints

A problem is included in this category if at least one constraint function is nonlinear, e.g. \( x_1 + x_3 + x_4 - 2 \geq 0 \). The mathematical statement of the problem is identical to that for the linearly-constrained case, except for the addition of the following constraints:

- **equality constraints:** \( c_i(x) = 0 \) for \( i = 1, 2, \ldots, m \);
- **inequality constraints:** \( c_i(x) \geq 0 \) for \( i = m+1, m+2, \ldots, m \);
- **range constraints:** \( v_i \leq c_j(x) \leq w_j \) for \( i = m+1, m+2, \ldots, m \), \( j = 1, 2, \ldots, m - m \).

where each \( c_i \) is a nonlinear function; \( v_i \) and \( w_i \) are constant scalars; and any category may be empty. Note that we do not include a separate category for constraints of the form \( c_i(x) \leq 0 \), since this is equivalent to \( -c_i(x) \geq 0 \).

2.2. Geometric Representation and Terminology

To illustrate the nature of optimization problems it is useful to consider the following example in two dimensions

\[
x = \\
\begin{pmatrix}
  1 & 2 & 2 \\
  \end{pmatrix}
\]

\( F(x) = e^{(4x_1 + 2x_2 + 4x_3 + x_4 + 2x_5)} \).

(This function is used as the example function in the documentation for the unconstrained routines.)

Figure 1
Figure 1 is a contour diagram of \( F(x) \). The contours labelled \( F_0, F_1, \ldots, F_4 \) are isovalue contours, or lines along which the function \( F(x) \) takes specific constant values. The point \( x^* \) is a local unconstrained minimum, that is, the value of \( F(x^*) \) is less than at all the neighbouring points. A function may have several such minima. The lowest of the local minima is termed a global minimum. In the problem illustrated in Figure 1, \( x^* \) is the only local minimum. The point \( x^* \) is said to be a saddle point because it is a minimum along the line \( AB \), but a maximum along \( CD \).

If we add the constraint \( x \geq 0 \) to the problem of minimizing \( F(x) \), the solution remains unaltered. In Figure 1 this constraint is represented by the straight line passing through \( x = 0 \), and the shading on the line indicates the unacceptable region. The region in \( \mathbb{R}^n \) satisfying the constraints of an optimization problem is termed the feasible region. A point satisfying the constraints is defined as a feasible point.

If we add the nonlinear constraint \( x_1 + x_2 - x_1 - x_2 \geq 1.5 \), represented by the curved shaded line in Figure 1, then \( x^* \) is not a feasible point. The solution of the new constrained problem is \( x^* \), the feasible point with the smallest function value.

2.2.1. Gradient vector

The vector of first partial derivatives of \( F(x) \) is called the gradient vector, and is denoted by \( g(x) \), i.e.,

\[
g(x) = \begin{bmatrix} \frac{ddF(x)}{dx} & \frac{ddF(x)}{dx} & \cdots & \frac{ddF(x)}{dx} \\ \frac{ddx}{dx} & \frac{ddx}{dx} & \cdots & \frac{ddx}{dx} \\ \frac{ddx}{dx} & \frac{ddx}{dx} & \cdots & \frac{ddx}{dx} \\ 1 & 2 & \cdots & n \end{bmatrix}.
\]

For the function illustrated in Figure 1,
The gradient vector is of importance in optimization because it must be zero at an unconstrained minimum of any function with continuous first derivatives.

2.2.2. Hessian matrix

The matrix of second partial derivatives of a function is termed its Hessian matrix. The Hessian matrix of $F(x)$ is denoted by $G(x)$

$$
G(x) = \begin{bmatrix}
1 & 2 \\
x & 1 \\
2 & 1 
\end{bmatrix}
$$

and its $(i,j)$th element is given by $\frac{\partial^2 F(x)}{\partial x_i \partial x_j}$. If $F(x)$ has continuous second derivatives, then $G(x)$ must be positive semi-definite at any unconstrained minimum of $F$.

2.2.3. Jacobian matrix; matrix of constraint normals

In nonlinear least-squares problems, the matrix of first partial derivatives of the vector-valued function $f(x)$ is termed the Jacobian matrix of $f(x)$ and its $(i,j)$th component is $\frac{\partial f_i}{\partial x_j}$.

The vector of first partial derivatives of the constraint $c_i(x)$ is denoted by

$$
a_i(x) = \begin{bmatrix}
\frac{\partial c_i(x)}{\partial x_1}, & \ldots, & \frac{\partial c_i(x)}{\partial x_n}
\end{bmatrix}^T.
$$

At a point, $x$, the vector $a_i(x)$ is orthogonal (normal) to the isovalue contour of $c_i(x)$ passing through $x$; this relationship is illustrated for a two-dimensional function in Figure 2.

Figure 2
Please see figure in printed Reference Manual
The matrix whose columns are the vectors \{a_i\} is termed the matrix of constraint normals. Note that if \(c_i(x)\) is a linear constraint involving \(a_i^T\) \(x\), then its vector of first partial derivatives is simply the vector \(a_i\).

2.3. Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of the solution.

2.3.1. Unconstrained minimization

The following conditions are sufficient for the point \(x\) to be an unconstrained local minimum of \(F(x)\):

(i) \(|||g(x)|||=0\); and

(ii) \(G(x)\) is positive-definite,

where \(|||g|||\) denotes the Euclidean length of \(g\).

2.3.2. Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed free variables. If it is known in advance which variables are on their bounds at the solution, the problem can be solved as an unconstrained problem in just the free variables; thus, the sufficient conditions for a solution are similar to those for the unconstrained case, applied only to the free variables.

Sufficient conditions for a feasible point \(x\) to be the solution of a bound-constrained problem are as follows:

(i) \(|||g(x)|||=0\); and

(ii) \(G(x)\) is positive-definite; and
(iii) $g_j(x) < 0, x = u_j$; $g_j(x) > 0, x = l_j$

where $g(x)$ is the gradient of $F(x)$ with respect to the free variables, and $G(x)$ is the Hessian matrix of $F(x)$ with respect to the free variables. The extra condition (iii) ensures that $F(x)$ cannot be reduced by moving off one or more of the bounds.

2.3.3. Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or range constraints, since the results for general linear inequality constraints can be applied directly to these cases.

At a solution $x$, of a linearly-constrained problem, the constraints which hold as equalities are called the active or binding constraints. Assume that there are $t$ active constraints at the solution $x$, and let $A$ denote the matrix whose columns are the columns of $A$ corresponding to the active constraints, with $b$ the vector similarly obtained from $b$; then

$$
\begin{align*}
A^T x &= b. \\
A^T A &= 0; \\
Z^T Z &= I.
\end{align*}
$$

The matrix $Z$ is defined as an $n$ by $(n-t)$ matrix satisfying:

$$
\begin{align*}
\begin{bmatrix} Z & I \end{bmatrix} = \begin{bmatrix} A & 1 \end{bmatrix}.
\end{align*}
$$

The columns of $Z$ form an orthogonal basis for the set of vectors orthogonal to the columns of $A$.

Define

$$
\begin{align*}
g^T(x) &= Z^T g(x), \text{ the projected gradient vector of } F(x); \\
g^T(x) &= Z^T G(x) Z, \text{ the projected Hessian matrix of } F(x).
\end{align*}
$$
At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which implies that the gradient vector $g(x)$ can be written as a linear combination of the columns of $A$, i.e., $g(x) = \sum_{i=1}^{t} \lambda_i a_i = A(\lambda)$. The scalar $\lambda_i$ is defined as the Lagrange multiplier corresponding to the $i$th active constraint. A simple interpretation of the $i$th Lagrange multiplier is that it gives the gradient of $F(x)$ along the $i$th active constraint normal; a convenient definition of the Lagrange multiplier vector (although not a recommended method for computation) is:

$$\lambda^T = (A^T A)^{-1} A^T g(x).$$

Sufficient conditions for $x$ to be the solution of a linearly-constrained problem are:

1. $x$ is feasible, and $A x = b$; and
2. $\|g(x)\| = 0$, or equivalently, $g(x) = A(\lambda)$; and
3. $G(x)$ is positive-definite; and
4. $(\lambda_i) > 0$ if $(\lambda_i)$ corresponds to a constraint $a_i^T x \geq b_i$; and
5. $(\lambda_i) < 0$ if $(\lambda_i)$ corresponds to a constraint $a_i^T x \leq b_i$.
The sign of \((\lambda_i)\) is immaterial for equality constraints, which by definition are always active.

### 2.3.4. Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-constrained case. The set of active constraints at \(x\) again means the set of constraints that hold as equalities at \(x\), with corresponding definitions of \(c\) and \(A\): the vector \(c(x)\) contains the active constraint functions, and the columns of \(A(x)\) are the gradient vectors of the active constraints. As before, \(Z\) is defined in terms of \(A(x)\) as a matrix such that:

\[
^T\begin{align*}
A Z &= 0; \quad Z Z = I
\end{align*}
\]

where the dependence on \(x\) has been suppressed for compactness.

The projected gradient vector \(g_z(x)\) is the vector \(Z g(x)\). At the solution \(x^*\) of a nonlinearly-constrained problem, the projected gradient must be zero, which implies the existence of Lagrange multipliers corresponding to the active constraints, i.e.,

\[
g(x^*) = A(x^*)(\lambda^*).\]

The Lagrangian function is given by:

\[
^T L(x, (\lambda)) = F(x) - (\lambda^*) c(x).
\]

We define \(g_L(x)\) as the gradient of the Lagrangian function; \(G_L(x)\) as its Hessian matrix, and \(G^T_L(x)\) as its projected Hessian matrix, i.e.,

\[
G^T_L = Z^T G_L Z.
\]
Sufficient conditions for \( x \) to be a solution of nonlinearly-constrained problem are:

1. \( x \) is feasible, and \( c(x) = 0 \); and
2. \( ||g(x)|| = 0 \), or, equivalently, \( g(x) = A(x)(\lambda) \); and
3. \( G(x) \) is positive-definite; and
4. \( \lambda > 0 \) if \( \lambda \) corresponds to a constraint of the form \( c \geq 0 \); the sign of \( \lambda \) is immaterial for an equality constraint.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero at \( x \), since the application of \( Z \) annihilates the matrix \( A(x) \).

2.4. Background to Optimization Methods

All the algorithms contained in this Chapter generate an iterative sequence \( \{x^{(k)}\} \) that converges to the solution \( x \) in the limit, except for some special problem categories (i.e., linear and quadratic programming). To terminate computation of the sequence, a convergence test is performed to determine whether the current estimate of the solution is an adequate approximation. The convergence tests are discussed in Section 2.6.

Most of the methods construct a sequence \( \{x^{(k)}\} \) satisfying:

\[
    x^{(k+1)} = x^{(k)} + (\alpha^{(k)}) p^{(k)}
\]

where the vector \( p^{(k)} \) is termed the direction of search, and \( (\alpha^{(k)}) \) is the steplength. The steplength \( (\alpha^{(k)}) \) is chosen so that \( F(x^{(k+1)}) < F(x^{(k)}) \).
2.4.1. Methods for unconstrained optimization

The distinctions among methods arise primarily from the need to use varying levels of information about derivatives of $F(x)$ in defining the search direction. We describe three basic approaches to unconstrained problems, which may be extended to other problem categories. Since a full description of the methods would fill several volumes, the discussion here can do little more than allude to the processes involved, and direct the reader to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix $G(x^{(k)})$, or a finite difference approximation to $G(x^{(k)})$, to define the search direction. The routines in the Library either require a subroutine that computes the elements of $G(x^{(k)})$, or they approximate $G(x^{(k)})$ by finite differences.

Newton-type methods are the most powerful methods available for general problems and will find the minimum of a quadratic function in one iteration. See Sections 4.4. and 4.5.1. of Gill et al [5].

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian $G(x^{(k)})$ by a matrix $B$ which is modified at each iteration to include information obtained about the curvature of $F$ along the latest search direction. Although not as robust as Newton-type methods, quasi-Newton methods can be more efficient because $G(x^{(k)})$ is not computed, or approximated by finite-differences. Quasi-Newton methods minimize a quadratic function in $n$ iterations. See Section 4.5.2 of Gill et al [5].

(c) Conjugate-Gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate gradient methods do not require the storage of an $n$ by $n$ matrix and so are ideally suited to solve large problems.
Conjugate-gradient type methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See Section 4.8.3 of Gill et al [5].

2.4.2. Methods for nonlinear least-squares problems

These methods are similar to those for unconstrained optimization, but exploit the special structure of the Hessian matrix to give improved computational efficiency.

Since

\[
F(x) = \sum_{i=1}^{m} f_i(x) \text{ and } G(x) = 2 \sum_{i=1}^{m} (J(x)^T J(x)) + f_i(x) G_i(x),
\]

where \( J(x) \) is the Jacobian matrix of \( f(x) \), and \( G_i(x) \) is the Hessian matrix of \( f_i(x) \).

In the neighbourhood of the solution, \( |||f(x)||| \) is often small compared to \( |||J(x) J(x)^T||| \) (for example, when \( f(x) \) represents the goodness of fit of a nonlinear model to observed data). In such cases, \( 2J(x)^T J(x) \) may be an adequate approximation to \( G(x) \), thereby avoiding the need to compute or approximate second derivatives of \( f_i(x) \). See Section 4.7 of Gill et al [5].

2.4.3. Methods for handling constraints

Bounds on the variables are dealt with by fixing some of the variables on their bounds and adjusting the remaining free variables to minimize the function. By examining estimates of the Lagrange multipliers it is possible to adjust the set of variables fixed on their bounds so that eventually the bounds active at the solution should be correctly identified. This type
of method is called an active set method. One feature of such methods is that, given an initial feasible point, all \( x^{(k)} \) approximations are feasible. This approach can be extended to general linear constraints. At a point, \( x \), the set of constraints which hold as equalities being used to predict, or approximate, the set of active constraints is called the working set.

Nonlinear constraints are more difficult to handle. If at all possible, it is usually beneficial to avoid including nonlinear constraints during the formulation of the problem. The methods currently implemented in the Library handle nonlinearly constrained problems either by transforming them into a sequence of bound constraint problems, or by transforming them into a sequence of quadratic programming problems. A feature of almost all methods for nonlinear constraints is that \( x^{(k)} \) is not guaranteed to be feasible except in the limit, and this is certainly true of the routines currently in the Library. See Chapter 6, particularly Section 6.4 and Section 6.5 of Gill et al [5].

Anyone interested in a detailed description of methods for optimization should consult the references.

2.5. Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization methods. Since convergence tolerances and other criteria are necessarily based on an implicit definition of 'small' and 'large', problems with unusual or unbalanced scaling may cause difficulties for some algorithms. Nonetheless, there are currently no scaling routines in the Library, although the position is under constant review. In light of the present state of the art, it is considered that sensible scaling by the user is likely to be more effective than any automatic routine. The following sections present some general comments on problem scaling.

2.5.1. Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect the physical nature of the problem, to variables that have certain desirable properties in terms of optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;
(ii) a fixed change in any of the variables results in similar changes in $F(x)$. Ideally, a unit change in any variable produces a unit change in $F(x)$;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of $F(x)$.

Normally, users should restrict themselves to linear transformations of variables, although occasionally nonlinear transformations are possible. The most common such transformation (and often the most appropriate) is of the form

$$x = Dx,$$

where $D$ is a diagonal matrix with constant coefficients. Our experience suggests that more use should be made of the transformation

$$x = Dx + v,$$

where $v$ is a constant vector.

Consider, for example, a problem in which the variable $x^3$ represents the position of the peak of a Gaussian curve to be fitted to data for which the extreme values are 150 and 170; therefore $x^3$ is known to lie in the range 150--170. One possible scaling would be to define a new variable $x^3$, given by

$$x^3 = \frac{\text{value}}{170}.$$

A better transformation, however, is given by defining $x^3$ as

$$x^3 = \frac{x - 160}{170}.$$
Frequently, an improvement in the accuracy of evaluation of \( F(x) \) can result if the variables are scaled before the routines to evaluate \( F(x) \) are coded. For instance, in the above problem just mentioned of Gaussian curve fitting, \( x \) may always occur in terms of the form \( (x - x_3) \), where \( x_3 \) is a constant representing the mean peak position.

2.5.2. Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The solution of a given problem is unaltered if \( F(x) \) is multiplied by a positive constant, or if a constant value is added to \( F(x) \). It is generally preferable for the objective function to be of the order of unity in the region of interest; thus, if in the original formulation \( F(x) \) is always of the order of \( 10^{10} \) (say), then the value of \( F(x) \) should be multiplied by \( 10^5 \) when evaluating the function within the optimization routines. If a constant is added or subtracted in the computation of \( F(x) \), usually it should be omitted – i.e., it is better to formulate \( x_1^2 + x_2^2 \) rather than as \( x_1^2 + x_2^2 + 1000 \) or even \( x_1^2 + x_2^2 + 1 \). The inclusion of such a constant in the calculation of \( F(x) \) can result in a loss of significant figures.

2.5.3. Scaling the constraints

The solution of a nonlinearly-constrained problem is unaltered if the \( i \)th constraint is multiplied by a positive weight \( w_i \). At the \( i \)th approximation of the solution determined by a Library routine, the active constraints will not be satisfied exactly, but will have 'small' values (for example, \( c_1 = 10^{-8} \), \( c_2 = 10^{-6} \), etc.). In general, this discrepancy will be minimized if the constraints are weighted so that a unit change in \( x \) produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the Lagrange multiplier estimates and, consequently, on the active set strategy. Additional discussion is given in Gill et al [5].
2.6. Analysis of Computed Results

2.6.1. Convergence criteria

The convergence criteria inevitably vary from routine to routine, since in some cases more information is available to be checked (for example, is the Hessian matrix positive-definite?), and different checks need to be made for different problem categories (for example, in constrained minimization it is necessary to verify whether a trial solution is feasible). Nonetheless, the underlying principles of the various criteria are the same; in non-mathematical terms, they are:

(i) is the sequence \{x\} converging?

(ii) is the sequence \{F\} converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the present routines is to assume convergence if the relative change occurring between two successive iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the conditions cannot be checked fully because not all the required information may be available.

2.6.2. Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization algorithm, since no guarantees can be given that the methods will always work. Therefore, it is necessary for the user to check the computed solution even if the routine reports success. Frequently a 'solution' may have been found even when the routine does not report a success. The reason for this apparent contradiction is that the routine needs to assess the accuracy of the solution. This assessment is not an exact process and consequently may be unduly pessimistic. Any 'solution' is in general only an approximation to the exact solution, and it is possible that the accuracy specified by the user is too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that a routine has returned a non-zero value of IFAIL
only because the requirements for 'success' were too stringent it may be worth restarting with increased convergence tolerances.

For nonlinearly-constrained problems, check whether the solution returned is feasible, or nearly feasible; if not, the solution returned is not an adequate solution.

Confidence in a solution may be increased by resolving the problem with a different initial approximation to the solution. See Section 8.3 of Gill et al [5] for further information.

2.6.3. Monitoring progress

Many of the routines in the Chapter have facilities to allow the user to monitor the progress of the minimization process, and users are encouraged to make use of these facilities. Monitoring information can be a great aid in assessing whether or not a satisfactory solution has been obtained, and in indicating difficulties in the minimization problem or in the routine’s ability to cope with the problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether a solution is acceptable and what to do in the event of a return with a non-zero value of IFAIL.

2.6.4. Confidence intervals for least-squares solutions

When estimates of the parameters in a nonlinear least-squares problem have been found, it may be necessary to estimate the variances of the parameters and the fitted function. These can be calculated from the Hessian of $F(x)$ at the solution.

In many least-squares problems, the Hessian is adequately approximated at the solution by $G = 2J^T J$ (see Section 2.4.3). The Jacobian, $J$, or a factorization of $J$ is returned by all the comprehensive least-squares routines and, in addition, a routine is supplied in the Library to estimate variances of the parameters following the use of most of the nonlinear least-squares routines, in the case that $G = 2J^T J$ is an adequate approximation.

Let $H$ be the inverse of $G$, and $S$ be the sum of squares, both calculated at the solution $x$; an unbiased estimate of the variance of the $i$th parameter $x_i$ is
and an unbiased estimate of the covariance of \( x \) and \( x \) is

\[
\text{covar}(x, x) = \frac{\text{---}}{\text{---}} = \frac{\text{---}}{\text{---}}.
\]

*If \( x \) is the true solution, then the \( 100(1-\text{(beta)}) \) confidence interval on \( x \) is

\[
\frac{x - \ell}{\sqrt{\text{var}x}} < x < x + \ell,
\]

where \( t \) is the \( 100(1-\text{(beta)})/2 \) percentage point (1-\(\text{(beta)}/2, m-n\)) of the \( t \)-distribution with \( m-n \) degrees of freedom.

In the majority of problems, the residuals \( f_i \), for \( i=1,2,...,m \), contain the difference between the values of a model function \( (\phi)(z,x) \) calculated for \( m \) different values of the independent variable \( z \), and the corresponding observed values at these points. The minimization process determines the parameters, or constants \( x \), of the fitted function \( (\phi)(z,x) \). For any value, \( z \), of the independent variable \( z \), an unbiased estimate of the variance of \( (\phi) \) is

\[
n\ n
\]
The 100(1-(beta)) confidence interval on $F$ at the point $z$ is

$$
(\phi(z,x) - \sqrt{\text{var}(\phi)} \cdot t < (\phi(z,x) \\
(\beta)/2,m-n) \\
< (\phi(z,x) + \sqrt{\text{var}(\phi)} \cdot t \\
(\beta)/2,m-n)
$$

For further details on the analysis of least-squares solutions see Bard [1] and Wolberg [7].

2.7. References


3. Recommendations on Choice and Use of Routines

The choice of routine depends on several factors: the type of problem (unconstrained, etc.); the level of derivative information available (function values only, etc.); the experience of the user (there are easy-to-use versions of some routines); whether or not storage is a problem; and whether
computational time has a high priority.

3.1. Choice of Routine

Routines are provided to solve the following types of problem:

Nonlinear Programming E04UCF
Quadratic Programming E04NAF
Linear Programming E04MBF
Nonlinear Function E04DGF
(using 1st derivatives)
Nonlinear Function, unconstrained or simple bounds E04JAF
(using function values only)
Nonlinear least-squares E04PDF
(using function values only)
Nonlinear least-squares E04GCF
(using function values and 1st derivatives)

E04UCF can be used to solve unconstrained, bound-constrained and linearly-constrained problems.

E04NAF can be used as a comprehensive linear programming solver; however, in most cases the easy-to-use routine E04MBF will be adequate.

E04MBF can be used to obtain a feasible point for a set of linear constraints.

E04DGF can be used to solve large scale unconstrained problems.

The routines can be used to solve problems in a single variable.

3.2. Service Routines

One of the most common errors in use of optimization routines is that the user's subroutines incorrectly evaluate the relevant partial derivatives. Because exact gradient information normally enhances efficiency in all areas of optimization, the user should be encouraged to provide analytical derivatives whenever possible. However, mistakes in the computation of derivatives can result in serious and obscure run-time errors, as well as complaints that the Library routines are incorrect.

E04UCF incorporates a check on the gradients being supplied and users are encouraged to utilize this option; E04GCF also incorporates a call to a derivative checker.

E04YCF estimates selected elements of the variance-covariance matrix for the computed regression parameters following the use
of a nonlinear least-squares routine.

3.3. Function Evaluations at Infeasible Points

Users must not assume that the routines for constrained problems will require the objective function to be evaluated only at points which satisfy the constraints, i.e., feasible points. In the first place some of the easy-to-use routines call a service routine which will evaluate the objective function at the user-supplied initial point, and at neighbouring points (to check user-supplied derivatives or to estimate intervals for finite differencing). Apart from this, all routines will ensure that any evaluations of the objective function occur at points which approximately satisfy any simple bounds or linear constraints. Satisfaction of such constraints is only approximate because:

(a) routines which have a parameter FEATOL may allow such constraints to be violated by a margin specified by FEATOL;

(b) routines which estimate derivatives by finite differences may require function evaluations at points which just violate such constraints even though the current iteration just satisfies them.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. Users who wish to prevent their objective function being evaluated outside some known region (where it may be undefined or not practically computable), may try to confine the iteration within this region by imposing suitable simple bounds or linear constraints (but beware as this may create new local minima where these constraints are active).

Note also that some routines allow the user-supplied routine to return a parameter (MODE) with a negative value to force an immediate clean exit from the minimization when the objective function cannot be evaluated.

3.4. Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be solved by routines in this or other chapters of the Library.

E04MBF can be used to find a feasible point for a set of linear constraints and simple bounds.

Two routines in Chapter F04 solve linear least-squares problems,

\[ \minimize \quad r(x) \quad \text{where} \quad r(x) = b - a^T x. \]
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E02GAF</td>
<td>Solves an overdetermined system of linear equations in the $m$ norm, i.e., minimizes $\sum_{i=1}^{m}</td>
</tr>
<tr>
<td>E04DGF</td>
<td>Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables using 1st derivatives</td>
</tr>
<tr>
<td>E04DJF</td>
<td>Read optional parameter values for E04DGF from external file</td>
</tr>
<tr>
<td>E04DKF</td>
<td>Supply optional parameter values to E04DGF</td>
</tr>
<tr>
<td>E04FDF</td>
<td>Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only</td>
</tr>
<tr>
<td>E04GCF</td>
<td>Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithms, using 1st derivatives</td>
</tr>
<tr>
<td>E04JAF</td>
<td>Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values only</td>
</tr>
<tr>
<td>E04MBF</td>
<td>Linear programming problem</td>
</tr>
<tr>
<td>E04NAF</td>
<td>Quadratic programming problem</td>
</tr>
<tr>
<td>E04UCF</td>
<td>Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally 1st derivatives</td>
</tr>
<tr>
<td>E04UDF</td>
<td>Read optional parameter values for E04UCF from external file</td>
</tr>
<tr>
<td>E04UEF</td>
<td>Supply optional parameter values to E04UCF</td>
</tr>
<tr>
<td>E04YCF</td>
<td>Covariance matrix for nonlinear least-squares problem</td>
</tr>
</tbody>
</table>
Minimizes a nonlinear function of several variable

--- nage.ht ---

```
E04DGF(3NAG) E04DGF E04DGF(3NAG)

E04 -- Minimizing or Maximizing a Function

E04DGF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library. In particular, the optional parameters of the NAG routine are now included in the parameter list. These are described in section 5.1.2, below.

1. Purpose

E04DGF minimizes an unconstrained nonlinear function of several variables using a pre-conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems.

2. Specification

SUBROUTINE E04DGF(N,OBJFUN,ITER,OBJF,OBJGRD,X,IWORK,WORK,IUSER,
3348

CHAPTER 22. NAG LIBRARY ROUTINES

USER, ES, FU, IT, LIN, LIST, MA, OP, PR, STA, STO, VE, IFAIL)

INTEGER N, ITER, IWORK(N+1), IUSER(*), IT, PR, STA, STO, VE, IFAIL

DOUBLE PRECISION OBJF, OBJGRD(N), X(N), WORK(13*N), USER(*)

LOGICAL LIST

EXTERNAL OBJFUN

3. Description

E04DGF uses a pre-conditioned conjugate gradient method and is based upon algorithm PLMA as described in Gill and Murray [1] and Gill et al [2] Section 4.8.3.

The algorithm proceeds as follows:

Let \(x \) be a given starting point and let \(k \) denote the current iteration, starting with \(k = 0 \). The iteration requires \(g_k \), the gradient vector evaluated at \(x_k \), the \(k \)th estimate of the minimum. At each iteration a vector \(p_k \) (known as the direction of search) is computed and the new estimate \(x_{k+1} \) is given by \(x_k + (\alpha_k) p_k \) where \((\alpha_k) \) (the step length) minimizes the function \(F(x_k + (\alpha_k) p_k) \) with respect to the scalar \((\alpha_k) \). A choice of initial step \((\alpha_0) \) is taken as

\[
(\alpha_0) = \min\{1, 2|F - F_{est}| / g_{est} g_k \}
\]

where \(F \) is a user-supplied estimate of the function value at the solution. If \(F \) is not specified, the software always chooses the unit step length for \((\alpha_k) \). Subsequent step length estimates are computed using cubic interpolation with safeguards.

A quasi-Newton method can be used to compute the search direction \(p_k \) by updating the inverse of the approximate Hessian \((H_k) \) and computing
The updating formula for the approximate inverse is given by

\[p = -H g \quad (1) \]

\[
\begin{align*}
H &= H - \frac{1}{y s} (H y + s y H) + \frac{1}{y s} (1 + \frac{1}{y s}) s s (2)
\end{align*}
\]

where \(y = g - g \) and \(s = x - x = \alpha p \).

The method used by E04DGF to obtain the search direction is based upon computing \(p \) as \(-H g \) where \(H \) is a matrix obtained by updating the identity matrix with a limited number of quasi-Newton corrections. The storage of an \(n \) by \(n \) matrix is avoided by storing only the vectors that define the rank two corrections - hence the term limited-memory quasi-Newton method. The precise method depends upon the number of updating vectors stored. For example, the direction obtained with the 'one-step' limited memory update is given by (1) using (2) with \(H \) equal to the identity matrix, viz.

\[
\begin{align*}
p &= -g + \frac{1}{s g} (s g y + y g s) - \frac{1}{s g} (1 + \frac{1}{s g}) s s
\end{align*}
\]

E04DGF uses a two-step method described in detail in Gill and Murray [1] in which restarts and pre-conditioning are incorporated. Using a limited-memory quasi-Newton formula, such as the one above, guarantees \(p \) to be a descent direction if all the inner products \(y \) are positive for all vectors \(y \) and \(s \) used in the updating formula.

The termination criterion of E04DGF is as follows:

Let \((\text{tau}) \) specify a parameter that indicates the number of
correct figures desired in F ((tau) is equivalent to Optimality Tolerance in the optional parameter list, see Section 5.1). If the following three conditions are satisfied

(i) $F - F < (\text{tau}) (1 + |F|)_{k-1}$

(ii) $||x - x|| < (\text{tau}) (1 + ||x||)_{k-1}$

(iii) $||g|| < 3 (\text{tau}) (1 + |F|)_{k}$ or $||g|| < (\epsilon)$,

where (epsilon) is the absolute error associated with A computing the objective function

then the algorithm is considered to have converged. For a full discussion on termination criteria see Gill et al [2] Chapter 8.

4. References

5. Parameters

1: N -- INTEGER
Input
On entry: the number n of variables. Constraint: $N \geq 1$.

2: OBJFUN -- SUBROUTINE, supplied by the user.
External Procedure
OBJFUN must calculate the objective function $F(x)$ and its gradient for a specified n element vector x.

Its specification is:

```fortran
SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, 1 NSTATE, IUSER, USER)
INTEGER MODE, N, NSTATE, IUSER(*)
DOUBLE PRECISION X(N), OBJF, OBJGRD(N), USER(*)
```

1: MODE -- INTEGER
Input/Output
MODE is a flag that the user may set within OBJFUN to indicate a failure in the evaluation of the objective function. On entry: MODE is always non-negative. On exit: if MODE is negative the execution of E04DGF is terminated with IFAIL set to MODE.

2: N -- INTEGER Input
 On entry: the number n of variables.

3: X(N) -- DOUBLE PRECISION array Input
 On entry: the point x at which the objective function is required.

4: OBJF -- DOUBLE PRECISION Output
 On exit: the value of the objective function F at the current point x.

5: OBJGRD(N) -- DOUBLE PRECISION array Output
 OBJGRD(i) must contain the value of \(\frac{\partial F}{\partial x_i} \)
 at the point x, for \(i=1,2,\ldots,n \).

6: NSTATE -- INTEGER Input
 On entry: NSTATE will be 1 on the first call of OBJFUN by E04DGF, and is 0 for all subsequent calls. Thus, if the user wishes, NSTATE may be tested within OBJFUN in order to perform certain calculations once only. For example the user may read data or initialise COMMON blocks when NSTATE = 1.

7: IUSER(*) -- INTEGER array User Workspace

8: USER(*) -- DOUBLE PRECISION array User Workspace
 OBJFUN is called from E04DGF with the parameters IUSER and USER as supplied to E04DGF. The user is free to use arrays IUSER and USER to supply information to OBJFUN as an alternative to using COMMON.
 OBJFUN must be declared as EXTERNAL in the (sub)program from which E04DGF is called. Parameters denoted as Input must not be changed by this procedure.

3: ITER -- INTEGER Output
 On exit: the number of iterations performed.

4: OBJF -- DOUBLE PRECISION Output
 On exit: the value of the objective function F(x) at the final iterate.
CHAPTER 22. NAG LIBRARY ROUTINES

5: OBJGRD(N) -- DOUBLE PRECISION array
 Output
 On exit: the objective gradient at the final iterate.

6: X(N) -- DOUBLE PRECISION array
 Input/Output
 On entry: an initial estimate of the solution. On exit: the
 final estimate of the solution.

7: IWORK(N+1) -- INTEGER array
 Workspace

8: WORK(13*N) -- DOUBLE PRECISION array
 Workspace

9: IUSER(*) -- INTEGER array
 User Workspace
 Note: the dimension of the array IUSER must be at least 1.
 This array is not used by E04DGF, but is passed directly to
 routine OBJFUN and may be used to supply information to
 OBJFUN.

10: USER(*) -- DOUBLE PRECISION array
 User Workspace
 Note: the dimension of the array USER must be at least 1.
 This array is not used by E04DGF, but is passed directly to
 routine OBJFUN and may be used to supply information to
 OBJFUN.

11: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. Users who are
 unfamiliar with this parameter should refer to the Essential
 Introduction for details.

 On exit: IFAIL = 0 unless the routine detects an error or
 gives a warning (see Section 6).

 For this routine, because the values of output parameters
 may be useful even if IFAIL /=0 on exit, users are
 recommended to set IFAIL to -1 before entry. It is then
 essential to test the value of IFAIL on exit.

5.1. Optional Input Parameters

Several optional parameters in E04DGF define choices in the
behaviour of the routine. In order to reduce the number of formal
parameters of E04DGF these optional parameters have associated
default values (see Section 5.1.3) that are appropriate for most
problems. Therefore the user need only specify those optional
parameters whose values are to be different from their default
values.

The remainder of this section can be skipped by users who wish to
use the default values for all optional parameters. A complete
list of optional parameters and their default values is given in
Section 5.1.3.

5.1.1. Specification of the Optional Parameters

Optional parameters may be specified by calling one, or both, of E04DJF and E04DKF prior to a call to E04DGF.

E04DJF reads options from an external options file, with Begin and End as the first and last lines respectively and each intermediate line defining a single optional parameter. For example,

```
Begin
  Print Level = 1
End
```

The call

```
CALL E04DJF(IOPTNS, INFORM)
```

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04DJF should be consulted for a full description of this method of supplying optional parameters.

E04DKF can be called to supply options directly, one call being necessary for each optional parameter.

For example,

```
CALL E04DKF('Print level = 1')
```

E04DKF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters specified by the user are unaltered by E04DGF (unless they define invalid values) and so remain in effect for subsequent calls to E04DGF, unless altered by the user.

5.1.2. Description of the Optional Parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword, any essential optional qualifiers, the default value, and the definition. The minimum valid abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be omitted. The letter a denotes a phrase (character string)
that qualifies an option. The letters i and r denote INTEGER and
real values required with certain options. The number (epsilon)
is a generic notation for machine precision, and (epsilon)
\[R \]
denotes the relative precision of the objective function (the
optional parameter Function Precision; see below).

Defaults

This special keyword may be used to reset the default values
following a call to E04DGF.

Estimated Optimal Function Value r

(Axiom parameter ES)

This value of r specifies the user-supplied guess of the optimum
objective function value. This value is used by E04DGF to
calculate an initial step length (see Section 3). If the value of
r is not specified by the user (the default), then this has the
effect of setting the initial step length to unity. It should be
noted that for badly scaled functions a unit step along the
steepest descent direction will often compute the function at
very large values of x.

0.9

Function Precision r Default = (epsilon)

(Axiom parameter FU)

The parameter defines (epsilon), which is intended to be a
\[R \]
measure of the accuracy with which the problem function F can be
computed. The value of (epsilon) should reflect the relative
\[R \]
precision of \(1+|F(x)|\); i.e. (epsilon) acts as a relative
\[R \]
precision when \(|F|\) is large, and as an absolute precision when
\(|F|\) is small. For example, if \(F(x)\) is typically of order 1000 and
the first six significant digits are known to be correct, an
appropriate value for (epsilon) would be 1.0E-6. In contrast, if
\[R \]
\(-4\)
\(F(x)\) is typically of order 10 \(\text{and the first six significant}
\text{digits are known to be correct, an appropriate value for}
(epsilon) would be 1.0E-10. The choice of (epsilon) can be
\[R \]
\[R \]
quite complicated for badly scaled problems; see Chapter 8 of
Gill and Murray [2], for a discussion of scaling techniques. The
default value is appropriate for most simple functions that are
computed with full accuracy. However when the accuracy of the
computed function values is known to be significantly worse than
full precision, the value of \((\varepsilon)\) should be large enough so
\[\frac{1}{R} \]
that E04DGF will not attempt to distinguish between function
values that differ by less than the error inherent in the
calculation. If \(0 \leq \varepsilon \leq (\varepsilon)\), where \((\varepsilon)\) is the machine
precision then the default value is used.

Iteration Limit \(i\) Default = \(\max(50,5n)\)

Iters

Itns

\((\text{Axiom parameter IT})\)

The value \(i\) \((i \geq 0)\) specifies the maximum number of iterations
allowed before termination. If \(i < 0\) the default value is used. See
Section 8 for further information.

Linesearch Tolerance \(r\) Default = 0.9

\((\text{Axiom parameter LIN})\)

The value \(r\) \((0 \leq r < 1)\) controls the accuracy with which the step
\((\alpha)\) taken during each iteration approximates a minimum of the
function along the search direction \((\text{the smaller the value of } r, \text{the}
\text{more accurate the linesearch})\). The default value \(r = 0.9\)
requests an inaccurate search, and is appropriate for most
problems. A more accurate search may be appropriate when it is
desirable to reduce the number of iterations - for example, if
the objective function is cheap to evaluate.

List \(\text{Default = List}\)

Nolist

\((\text{Axiom parameter LIST})\)

Normally each optional parameter specification is printed as it
is supplied. Nolist may be used to suppress the printing and List
may be used to restore printing.

10

Maximum Step Length \(r\) Default = 10

\((\text{Axiom parameter MA})\)

The value \(r\) \((r > 0)\) defines the maximum allowable step length for
the line search. If \(r \leq 0\) the default value is used.
Optimality Tolerance \(r \) Default = \((\text{epsilon})\)

(Axiom parameter OP)

The parameter \(r \) \((\text{epsilon}) \leq r < 1\) specifies the accuracy to which the user wishes the final iterate to approximate a solution of the problem. Broadly speaking, \(r \) indicates the number of correct figures desired in the objective function at the solution. For example, if \(r \) is 10 and E04DGF terminates successfully, the final value of \(F \) should have approximately six correct figures. E04DGF will terminate successfully if the iterative sequence of \(x \)-values is judged to have converged and the final point satisfies the termination criteria (see Section 3, where \((\text{tau})\) represents \(F \) Optimality Tolerance).

Print Level \(i \) Default = 10

(Axiom parameter PR)

The value \(i \) controls the amount of printout produced by E04DGF. The following levels of printing are available.

\(i \) Output.
0 No output.
1 The final solution.
5 One line of output for each iteration.
10 The final solution and one line of output for each iteration.

Start Objective Check at Variable \(i \) Default = 1

(Axiom parameter STA)

Stop Objective Check at Variable \(i \) Default = \(n \)

(Axiom parameter STD)

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the verification of gradient elements computed by subroutine OBJFUN. For example if the first 30 variables appear linearly in the objective, so that the
corresponding gradient elements are constant, then it is reasonable to specify Start Objective Check at Variable 31.

Verify Level i Default = 0

Verify No

Verify Level -1

Verify Level 0

Verify

Verify Yes

Verify Objective Gradients

Verify Gradients

Verify Level 1

(Axiom parameter VE)

These keywords refer to finite-difference checks on the gradient elements computed by the user-provided subroutine OBJFUN. It is possible to set Verify Level in several ways, as indicated above. For example, the gradients will be verified if Verify, Verify Yes, Verify Gradients, Verify Objective Gradients or Verify Level = 1 is specified.

If $i<0$ then no checking will be performed. If $i>0$ then the gradients will be verified at the user-supplied point. If $i=0$ only a 'cheap' test will be performed, requiring one call to OBJFUN. If $i=1$, a more reliable (but more expensive) check will be made on individual gradient components, within the ranges specified by the Start and Stop keywords as described above. A result of the form OK or BAD? is printed by E04DGF to indicate whether or not each component appears to be correct.

5.1.3. Optional parameter checklist and default values

For easy reference, the following sample list shows all valid keywords and their default values. The default options Function Precision and Optimality Tolerance depend upon (ϵ), the machine precision.

Optional Parameters Default Values

Estimated Optimal Function Value
0.9
Function precision (epsilon)

Iterations \(\max(50, 5n) \)

Linesearch Tolerance 0.9

Maxnum Step Length 10

List/Nolist List

0.8
Optimality Tolerance (epsilon)

Print Level 10

Start Objective Check at 1
Variable

Stop Objective Check at n
Variable

Verify Level 0

5.2. Description of Printed Output

The level of printed output from E04DGF is controlled by the user (see the description of Print Level in Section 5.1).

When Print Level \(\geq 5 \), the following line of output is produced at each iteration.

- **Itn** is the iteration count.
- **Step** is the step (alpha) taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.
- **Nfun** is the cumulated number of evaluations of the objective function needed for the linesearch. Evaluations needed for the estimation of the gradients by finite differences are not included. Nfun is printed as a guide to the amount of work required for the linesearch. E04DGF will perform at most 16 function evaluations per iteration.
- **Objective** is the value of the objective function.
Norm G is the Euclidean norm of the gradient of the objective function.

Norm X is the Euclidean norm of x.

Norm $(X(k-1)-X(k))$ is the Euclidean norm of $x_{k-1} - x_k$.

When Print Level = 1 or Print Level >= 10 then the solution at the end of execution of E04DGF is printed out.

The following describes the printout for each variable:

Variable gives the name (VARBL) and index j ($j = 1$ to n) of the variable.

Value is the value of the variable at the final iterate.

Gradient Value is the value of the gradient of the objective function with respect to the jth variable at the final iterate.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

On exit from E04DGF, IFAIL should be tested. If Print Level > 0 then a short description of IFAIL is printed.

Errors and diagnostics indicated by IFAIL from E04DGF are as follows:

IFAIL< 0
A negative value of IFAIL indicates an exit from E04DGF because the user set MODE negative in routine OBJFUN. The value of IFAIL will be the same as the user’s setting of MODE.

IFAIL= 1
Not used by this routine.

IFAIL= 2
Not used by this routine.

IFAIL= 3
The maximum number of iterations has been performed. If the
algorithm appears to be making progress the iterations value may be too small (see Section 5.1.2) so the user should increase iterations and rerun E04DGF. If the algorithm seems to be 'bogged down', the user should check for incorrect gradients or ill-conditioning as described below under IFAIL = 6.

IFAIL = 4
The computed upper bound on the step length taken during the linesearch was too small. A rerun with an increased value of the Maximum Step Length ((\rho) say) may be successful unless \(10^{(\rho)} \geq 10\) (the default value), in which case the current point cannot be improved upon.

IFAIL = 5
Not used by this routine.

IFAIL = 6
A sufficient decrease in the function value could not be attained during the final linesearch. If the subroutine OBJFUN computes the function and gradients correctly, then this may occur because an overly stringent accuracy has been requested, i.e., Optimality Tolerance is too small or if the minimum lies close to a step length of zero. In this case the user should apply the four tests described in Section 3 to determine whether or not the final solution is acceptable (the user will need to set Print Level >= 5). For a discussion of attainable accuracy see Gill and Murray [2].

If many iterations have occurred in which essentially no progress has been made or E04DGF has failed to move from the initial point, subroutine OBJFUN may be incorrect. The user should refer to the comments below under IFAIL = 7 and check the gradients using the Verify parameter. Unfortunately, there may be small errors in the objective gradients that cannot be detected by the verification process. Finite-difference approximations to first derivatives are catastrophically affected by even small inaccuracies.

IFAIL = 7
Large errors were found in the derivatives of the objective function. This value of IFAIL will occur if the verification process indicated that at least one gradient component had no correct figures. The user should refer to the printed output to determine which elements are suspected to be in error.

As a first step, the user should check that the code for the objective values is correct - for example, by computing the
function at a point where the correct value is known. However, care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable how often the values $x=0$ or $x=1$ are used to test function evaluation procedures, and how often the special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves subsidiary data communicated in COMMON storage. Although the first evaluation of the function may be correct, subsequent calculations may be in error because some of the subsidiary data has accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function value is 'almost' correct. For example, the function may not be accurate to full precision because of the inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A common error on machines where numerical calculations are usually performed in double precision is to include even one single-precision constant in the calculation of the function; since some compilers do not convert such constants to double precision, half the correct figures may be lost by such a seemingly trivial error.

IFAIL = 8
The gradient (\mathbf{g}) at the starting point is too small. The value $\mathbf{g}^T \mathbf{g}$ is less than $(\epsilon) \, |F(x)|$, where $(\epsilon)_m$, m is the machine precision.

The problem should be rerun at a different starting point.

IFAIL = 9
On entry $N < 1$.

7. Accuracy

On successful exit the accuracy of the solution will be as defined by the optional parameter Optimality Tolerance.

8. Further Comments

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to be minimized in significantly fewer than n iterations. Problems without this property may require anything between n and $5n$ iterations, with approximately $2n$ iterations being a common figure for moderately difficult
problems.

9. Example

To find a minimum of the function

\[
F = e^{(4x_1 + 2x_2 + 4x_1x_2 + 2x_2 + 1)}.
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Supply optional parameters to E04DGF from file

— nage.ht —

E04 -- Minimizing or Maximizing a Function

E04DJF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

To supply optional parameters to E04DGF from an external file.

2. Specification
SUBROUTINE E04DJF (IOPTNS, INFORM)
INTEGER IOPTNS, INFORM

3. Description

E04DJF may be used to supply values for optional parameters to E04DGF. E04DJF reads an external file and each line of the file defines a single optional parameter. It is only necessary to supply values for those parameters whose values are to be different from their default values.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one or more items. The items associated with a given option must be separated by spaces, or equal signs (=). Alphabetic characters may be upper or lower case. The string

 Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or more of the following items:

(a) A mandatory keyword.

(b) A phrase that qualifies the keyword.

(c) A number that specifies an INTEGER or real value. Such numbers may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent characters in the string are regarded as part of the comment.

The file containing the options must start with BEGIN and must finish with END. An example of a valid options file is:

 BEGIN * Example options file
 Print level = 10
 END

Normally each line of the file is printed as it is read, on the current advisory message unit (see X04ABF), but printing may be suppressed using the keyword nolist. To suppress printing of begin, nolist must be the first option supplied as in the file:
Begin
 Nolist
 Print level = 10
End

Printing will automatically be turned on again after a call to E04DGF and may be turned on again at any time by the user by using the keyword list.

Optional parameter settings are preserved following a call to E04DGF, and so the keyword defaults is provided to allow the user to reset all the optional parameters to their default values prior to a subsequent call to E04DGF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in Section 5.1 of the routine document for E04DGF.

4. References

None.

5. Parameters

1: IOPTNS -- INTEGER Input
 On entry: IOPTNS must be the unit number of the options file. Constraint: 0 <= IOPTNS <= 99.

2: INFORM -- INTEGER Output
 On exit: INFORM will be zero if an options file with the correct structure has been read. Otherwise INFORM will be positive. Positive values of INFORM indicate that an options file may not have been successfully read as follows:
 INFORM = 1
 IOPTNS is not in the range [0,99].
 INFORM = 2
 begin was found, but end-of-file was found before end was found.
 INFORM = 3
 end-of-file was found before begin was found.

6. Error Indicators and Warnings

If a line is not recognised as a valid option, then a warning message is output on the current advisory message unit (see X04ABF).

7. Accuracy
Not applicable.

8. Further Comments

E04DKF may also be used to supply optional parameters to E04DGF.

9. Example

See the example for E04DGF.

Supply individual optional params to E04DGF

--- nage.ht ---
3. Description

E04DKF may be used to supply values for optional parameters to E04DGF. It is only necessary to call E04DKF for those parameters whose values are to be different from their default values. One call to E04DKF sets one parameter value.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one or more items. The items associated with a given option must be separated by spaces, or equal signs (=). Alphabetic characters may be upper or lower case. The string

 Print Level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or more of the following items:

(a) A mandatory keyword.

(b) A phrase that qualifies the keyword.

(c) A number that specifies an INTEGER or real value. Such numbers may be up to 16 contiguous characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent characters in the string are regarded as part of the comment.

Normally, each user-specified option is printed as it is defined, on the current advisory message unit (see X04ABF), but this printing may be suppressed using the keyword nolist Thus the statement

 CALL E04DKF (‘Nolist’)

suppresses printing of this and subsequent options. Printing will automatically be turned on again after a call to E04DGF, and may be turned on again at any time by the user, by using the keyword list.

Optional parameter settings are preserved following a call to E04DGF, and so the keyword defaults is provided to allow the user to reset all the optional parameters to their default values by the statement,
CALL E04DKF ('Defaults')

prior to a subsequent call to E04DGF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in Section 5.1 of the routine document for E04DGF.

4. References

None.

5. Parameters

1: STRING -- CHARACTER(*) Input
 On entry: STRING must be a single valid option string. See Section 3 above, and Section 5.1 of the routine document for E04DGF.

6. Error Indicators and Warnings

If the parameter STRING is not recognised as a valid option string, then a warning message is output on the current advisory message unit (see X04ABF).

7. Accuracy

Not applicable.

8. Further Comments

E04DJF may also be used to supply optional parameters to E04DGF.

9. Example

See the example for E04DGF.

Finding an unconstrained minimum of a sum of squares

— nage.ht —
1. Purpose

E04FDF is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \(m \) nonlinear functions in \(n \) variables \((m \geq n)\). No derivatives are required.

It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2. Specification

```
SUBROUTINE E04FDF (M, N, X, FSUMSQ, IW, LIW, W, LW, IFAIL)
INTEGER M, N, IW(LIW), LIW, LW, IFAIL
DOUBLE PRECISION X(N), FSUMSQ, W(LW)
```

3. Description

This routine is essentially identical to the subroutine LSNDN1 in the National Physical Laboratory Algorithms Library. It is applicable to problems of the form

\[
\min_{x} \sum_{i=1}^{m} f_i(x)^2
\]

where \(x = (x_1, x_2, \ldots, x_n) \) and \(m \geq n \). (The functions \(f_1(x) \) are often referred to as 'residuals'.) The user must supply a subroutine
LSFUN1 to evaluate functions \(f(x) \) at any point \(x \).

From a starting point supplied by the user, a sequence of points is generated which is intended to converge to a local minimum of the sum of squares. These points are generated using estimates of the curvature of \(F(x) \).

4. References

5. Parameters

1: \(M \) -- INTEGER Input

2: \(N \) -- INTEGER Input
 On entry: the number \(m \) of residuals \(f(x) \), and the number \(n \) of variables, \(x \). Constraint: \(1 \leq N \leq M \).

3: \(X(N) \) -- DOUBLE PRECISION array Input/Output
 On entry: \(X(j) \) must be set to a guess at the \(j \)th component of the position of the minimum, for \(j = 1, 2, \ldots, n \). On exit: the lowest point found during the calculations. Thus, if \(IFAIL = 0 \) on exit, \(X(j) \) is the \(j \)th component of the position of the minimum.

4: \(FSUMSQ \) -- DOUBLE PRECISION Output
 On exit: the value of the sum of squares, \(F(x) \), corresponding to the final point stored in \(X \).

5: \(IW(LIW) \) -- INTEGER array Workspace

6: \(LIW \) -- INTEGER Input
 On entry: the length of \(IW \) as declared in the (sub)program from which E04FDF has been called. Constraint: \(LIW \geq 1 \).

7: \(W(LW) \) -- DOUBLE PRECISION array Workspace

8: \(LW \) -- INTEGER Input
 On entry: the length of \(W \) as declared in the (sub)program from which E04FDF is called. Constraints:
 \[
 LW \geq N*(7 + N + 2*M + (N-1)/2) + 3*M, \text{ if } N > 1, \\
 LW \geq 9 + 5*M, \text{ if } N = 1.
 \]
CHAPTER 22. NAG LIBRARY ROUTINES

9: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

5.1. Optional Parameters

LSFUN1 -- SUBROUTINE, supplied by the user.

External Procedure

This routine must be supplied by the user to calculate the vector of values f(x) at any point x. Since the routine is not a parameter to E04FDF, it must be called LSFUN1. It should be tested separately before being used in conjunction with E04FDF (see the Chapter Introduction).

Its specification is:

```fortran
SUBROUTINE LSFUN1 (M, N, XC, FVECC)
INTEGER M, N
DOUBLE PRECISION XC(N), FVECC(M)
```

1: M -- INTEGER Input

2: N -- INTEGER Input
On entry: the numbers m and n of residuals and variables, respectively.

3: XC(N) -- DOUBLE PRECISION array Input
On entry: the point x at which the values of the f are required.

4: FVECC(M) -- DOUBLE PRECISION array Output
On exit: FVECC(i) must contain the value of f at the point x, for i=1,2,...,m.

LSFUN1 must be declared as EXTERNAL in the (sub)program from which E04FDF is called. Parameters denoted as Input must not be changed by this procedure.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry N < 1,
or M < N,
or LIW < 1,
or LW < N*(7 + N + 2*M + (N-1)/2) + 3*M, when N > 1,
or LW < 9 + 5*M, when N = 1.

IFAIL= 2
There have been 400*n calls of LSFUN1, yet the algorithm does not seem to have converged. This may be due to an awkward function or to a poor starting point, so it is worth restarting E04FDF from the final point held in X.

IFAIL= 3
The final point does not satisfy the conditions for acceptance as a minimum, but no lower point could be found.

IFAIL= 4
An auxiliary routine has been unable to complete a singular value decomposition in a reasonable number of sub-iterations.

IFAIL= 5

IFAIL= 6

IFAIL= 7

IFAIL= 8
There is some doubt about whether the point x found by E04FDF is a minimum of F(x). The degree of confidence in the result decreases as IFAIL increases. Thus when IFAIL = 5, it is probable that the final x gives a good estimate of the position of a minimum, but when IFAIL = 8 it is very unlikely that the routine has found a minimum.

If the user is not satisfied with the result (e.g. because IFAIL lies between 3 and 8), it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the
failure. Repeated failure may indicate some defect in the formulation of the problem.

7. Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a mantissa of t decimals, one would expect to get about $t/2 - 1$ decimals accuracy in the components of x and between $t - 1$ (if $F(x)$ is of order 1 at the minimum) and $2t - 2$ (if $F(x)$ is close to zero at the minimum) decimals accuracy in $F(x)$.

8. Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their behaviour, and the distance of the starting point from the solution. The number of multiplications performed per iteration of E04FDF varies, but for $m \gg n$ is approximately $n^2m + O(n)$. In addition, each iteration makes at least $n+1$ calls of LSFUN1. So, unless the residuals can be evaluated very quickly, the run time will be dominated by the time spent in LSFUN1.

Ideally, the problem should be scaled so that the minimum value of the sum of squares is in the range (0,1), and so that at points a unit distance away from the solution the sum of squares is approximately a unit value greater than at the minimum. It is unlikely that the user will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that E04FDF will take less computer time.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data, elements of the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent call to E04YCF, using information returned in segments of the workspace array W. See E04YCF for further details.

9. Example

To find least-squares estimates of x_1, x_2 and x_3 in the model

$$ t $$

$$ y = x_1 + \frac{1}{x_2 + x_3} $$

$$ 1 $$

$$ 1 \ x \ t + x \ t $$
using the 15 sets of data given in the following table.

<table>
<thead>
<tr>
<th>y</th>
<th>t</th>
<th>t</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>11.0</td>
<td>11.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>12.0</td>
<td>12.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>13.0</td>
<td>13.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>14.0</td>
<td>14.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>15.0</td>
<td>15.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The program uses (0.5, 1.0, 1.5) as the initial guess at the position of the minimum.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
E04 -- Minimizing or Maximizing a Function E04GCF
E04GCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E04GCF is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of a sum of squares of \(m \) nonlinear functions in \(n \) variables \((m \geq n) \). First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2. Specification

SUBROUTINE E04GCF (M, N, X, FSUMSQ, IW, LIW, W, LW, IFAIL)
INTEGER M, N, IW(LIW), LIW, LW, IFAIL
DOUBLE PRECISION X(N), FSUMSQ, W(LW)

3. Description

This routine is essentially identical to the subroutine LSFDQ2 in the National Physical Laboratory Algorithms Library. It is applicable to problems of the form

\[
\text{Minimize } F(x) = \sum_{i=1}^{m} \left[f_i(x) \right]^{\top} \]

where \(x = (x_1, x_2, \ldots, x_n) \) and \(m \geq n \). (The functions \(f_i(x) \) are often referred to as \('\text{residuals}' \).) The user must supply a subroutine LSFUN2 to evaluate the residuals and their first derivatives at any point \(x \).

Before attempting to minimize the sum of squares, the algorithm checks LSFUN2 for consistency. Then, from a starting point supplied by the user, a sequence of points is generated which is intended to converge to a local minimum of the sum of squares. These points are generated using estimates of the curvature of
22.4.

\[F(x) \]

4. References

5. Parameters

1: M -- INTEGER Input
2: N -- INTEGER Input
 On entry: the number \(m \) of residuals \(f(x) \), and the number \(n \) of variables, \(x \). Constraint: \(1 \leq N \leq M \).

3: X(N) -- DOUBLE PRECISION array Input/Output
 On entry: \(X(j) \) must be set to a guess at the \(j \)th component of the position of the minimum, for \(j=1,2,\ldots,n \). The routine checks the first derivatives calculated by LSFUN2 at the starting point, and so is more likely to detect an error in the user’s routine if the initial \(X(j) \) are non-zero and mutually distinct. On exit: the lowest point found during the calculations. Thus, if IFAIL = 0 on exit, \(X(j) \) is the \(j \)th component of the position of the minimum.

4: FSUMSQ -- DOUBLE PRECISION Output
 On exit: the value of the sum of squares, \(F(x) \), corresponding to the final point stored in \(X \).

5: IW(LIW) -- INTEGER array Workspace
6: LIW -- INTEGER Input
 On entry: the length of IW as declared in the (sub)program from which E04GCF is called. Constraint: \(LIW \geq 1 \).

7: W(LW) -- DOUBLE PRECISION array Workspace
8: LW -- INTEGER Input
 On entry: the length of W as declared in the (sub)program from which E04GCF is called. Constraints:
 \[LW \geq 2N(4 + N + M) + 3M, \text{ if } N > 1, \]
 \[LW \geq 11 + 5M, \text{ if } N = 1. \]

9: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential
Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

5.1. Optional Parameters

LSFUN2 -- SUBROUTINE, supplied by the user.

External Procedure
This routine must be supplied by the user to calculate the vector of values f (x) and the Jacobian matrix of first derivatives at any point x. Since the routine is not a parameter to E04GCF, it must be called LSFUN2. It should be tested separately before being used in conjunction with E04GCF (see the Chapter Introduction).

Its specification is:

```
SUBROUTINE LSFUN2 (M, N, XC, FVECC, FJACC, LJC)
  INTEGER M, N, LJC
  DOUBLE PRECISION XC(N), FVECC(M), FJACC(LJC,N)
```

Important: The dimension declaration for FJACC must contain the variable LJC, not an integer constant.

1: M -- INTEGER Input

2: N -- INTEGER Input
 On entry: the numbers m and n of residuals and variables, respectively.

3: XC(N) -- DOUBLE PRECISION array Input
 On entry: the point x at which the values of the f
 i ddf
 i and the ---- are required.
 ddx
 j

4: FVECC(M) -- DOUBLE PRECISION array Output
On exit: FVECC(i) must contain the value of f at the point x, for $i=1,2,...,m$.

5: FJACC(LJC,N) -- DOUBLE PRECISION array

On exit: FJACC(i,j) must contain the value of $\frac{\partial f}{\partial x_j}$ at the point x, for $i=1,2,...,m$; $j=1,2,...,n$.

6: LJC -- INTEGER

On entry: the first dimension of the array FJACC.

LSFUN2 must be declared as EXTERNAL in the (sub)program from which E04GCF is called. Parameters denoted as Input must not be changed by this procedure.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry $N < 1$,
or $M < N$,
or $LIW < 1$,
or $LW < 2*N*(4 + N + M) + 3*M$, when $N > 1$,
or $LW < 9 + 5*M$, when $N = 1$.

IFAIL= 2
There have been $50*n$ calls of LSFUN2, yet the algorithm does not seem to have converged. This may be due to an awkward function or to a poor starting point, so it is worth restarting E04GCF from the final point held in X.

IFAIL= 3
The final point does not satisfy the conditions for acceptance as a minimum, but no lower point could be found.

IFAIL= 4
An auxiliary routine has been unable to complete a singular value decomposition in a reasonable number of sub-iterations.
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL= 5

There is some doubt about whether the point X found by
E04GCF is a minimum of F(x). The degree of confidence in the
result decreases as IFAIL increases. Thus, when IFAIL = 5,
it is probable that the final x gives a good estimate of the
position of a minimum, but when IFAIL = 8 it is very
unlikely that the routine has found a minimum.

IFAIL= 8

It is very likely that the user has made an error in forming
\[\frac{\partial f}{\partial x_i} \]
the derivatives \(\frac{\partial f}{\partial x_j} \) in LSFUN2.

If the user is not satisfied with the result (e.g. because IFAIL
lies between 3 and 8), it is worth restarting the calculations
from a different starting point (not the point at which the
failure occurred) in order to avoid the region which caused the
failure. Repeated failure may indicate some defect in the
formulation of the problem.

7. Accuracy

If the problem is reasonably well scaled and a successful exit is
made then, for a computer with a mantissa of t decimals, one
would expect to get \(t/2-1 \) decimals accuracy in the components of
x and between \(t-1 \) (if \(F(x) \) is of order 1 at the minimum) and \(2t-2 \)
(if \(F(x) \) is close to zero at the minimum) decimals accuracy in
\(F(x) \).

8. Further Comments

The number of iterations required depends on the number of
variables, the number of residuals and their behaviour, and the
distance of the starting point from the solution. The number of
multiplications performed per iteration of E04GCF varies, but for
\[2 \quad 3 \]
m\(\gg \)n is approximately n+m +O(n). In addition, each iteration
makes at least one call of LSFUN2. So, unless the residuals and
their derivatives can be evaluated very quickly, the run time
will be dominated by the time spent in LSFUN2.
Ideally the problem should be scaled so that the minimum value of the sum of squares is in the range (0,1) and so that at points a unit distance away from the solution the sum of squares is approximately a unit value greater than at the minimum. It is unlikely that the user will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that E04GCF will take less computer time.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data, elements of the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent call to E04YCF, using information returned in segments of the workspace array W. See E04YCF for further details.

9. Example

To find the least-squares estimates of x_1, x_2, and x_3 in the model

$$y = x_1 + \frac{1}{x_2 + x_3}$$

using the 15 sets of data given in the following table.

<table>
<thead>
<tr>
<th>y</th>
<th>t</th>
<th>t</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.18</td>
<td>2.0</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.22</td>
<td>3.0</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.25</td>
<td>4.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.29</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.32</td>
<td>6.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.35</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.39</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>0.37</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.58</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.73</td>
<td>11.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.96</td>
<td>12.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.34</td>
<td>13.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.10</td>
<td>14.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.39</td>
<td>15.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The program uses (0.5, 1.0, 1.5) as the initial guess at the
Finding a minimum of a function

--- nage.ht ---

--- nage.ht ---
2. Specification

SUBROUTINE E04JAF (N, IBOUND, BL, BU, X, F, IW, LIW, W, LW, IFAIL)
INTEGER N, IBOUND, IW(LIW), LIW, LW, IFAIL
DOUBLE PRECISION BL(N), BU(N), X(N), F, W(LW)

3. Description

This routine is applicable to problems of the form:

Minimize \(F(x_1, x_2, \ldots, x_n) \) subject to \(1 \leq x_j \leq u_j \), \(j=1,2,\ldots,n \)

when derivatives of \(F(x) \) are unavailable.

Special provision is made for problems which actually have no bounds on the \(x_j \), problems which have only non-negativity bounds \(x_j \) and problems in which \(l_1 = l_2 = \ldots = l_n \) and \(u_1 = u_2 = \ldots = u_n \). The user must supply a subroutine FUNCT1 to calculate the value of \(F(x) \) at any point \(x \).

From a starting point supplied by the user there is generated, on the basis of estimates of the gradient and the curvature of \(F(x) \), a sequence of feasible points which is intended to converge to a local minimum of the constrained function. An attempt is made to verify that the final point is a minimum.

4. References

5. Parameters

1: N -- INTEGER
 On entry: the number \(n \) of independent variables.
 Constraint: \(N \geq 1 \).

2: IBOUND -- INTEGER
 On entry: indicates whether the facility for dealing with bounds of special forms is to be used.

 It must be set to one of the following values:
 \(IBOUND = 0 \)
 if the user will be supplying all the \(l_j \) and \(u_j \)
 \(j \) \(j \)
individually.

IBOUND = 1
 if there are no bounds on any x_j.

IBOUND = 2
 if all the bounds are of the form $0 \leq x_j$.

IBOUND = 3
 if $l_1 = l_2 = \ldots = l_n$ and $u_1 = u_2 = \ldots = u_n$.

3: \text{BL(N)} -- DOUBLE PRECISION array Input/Output
On entry: the lower bounds l_j.

If IBOUND is set to 0, the user must set BL(j) to l_j, for $j=1,2,\ldots,n$. (If a lower bound is not specified for a particular x_j, the corresponding BL(j) should be set to -10.)

If IBOUND is set to 3, the user must set BL(1) to l_1; E04JAF will then set the remaining elements of BL equal to BL(1).
On exit: the lower bounds actually used by E04JAF.

4: \text{BU(N)} -- DOUBLE PRECISION array Input/Output
On entry: the upper bounds u_j.

If IBOUND is set to 0, the user must set BU(j) to u_j, for $j=1,2,\ldots,n$. (If an upper bound is not specified for a particular x_j, the corresponding BU(j) should be set to 10.)

If IBOUND is set to 3, the user must set BU(1) to u_1; E04JAF will then set the remaining elements of BU equal to BU(1).
On exit: the upper bounds actually used by E04JAF.

5: \text{X(N)} -- DOUBLE PRECISION array Input/Output
On entry: $X(j)$ must be set to an estimate of the jth component of the position of the minimum, for $j=1,2,\ldots,n$.
On exit: the lowest point found during the calculations.
Thus, if IFAIL = 0 on exit, X(j) is the jth component of the position of the minimum.

6: F -- DOUBLE PRECISION Output
 On exit: the value of F(x) corresponding to the final point stored in X.

7: IW(LIW) -- INTEGER array Workspace

8: LIW -- INTEGER Input
 On entry: the length of IW as declared in the (sub)program from which E04JAF is called. Constraint: LIW >= N + 2.

9: W(LW) -- DOUBLE PRECISION array Workspace

10: LW -- INTEGER Input
 On entry: the length of W as declared in the (sub)program from which E04JAF is called. Constraint: LW >= max(N*(N-1)/2+12*N,13).

11: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

 On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

 For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

5.1. Optional Parameters

FUNCT1 -- SUBROUTINE, supplied by the user.

 External Procedure

This routine must be supplied by the user to calculate the value of the function F(x) at any point x. Since this routine is not a parameter to E04JAF, it must be called FUNCT1. It should be tested separately before being used in conjunction with E04JAF (see the Chapter Introduction).

Its specification is:

```fortran
SUBROUTINE FUNCT1 (N, XC, FC)
   INTEGER N
   DOUBLE PRECISION XC(N), FC
```
CHAPTER 22. NAG LIBRARY ROUTINES

1: N -- INTEGER Input
 On entry: the number n of variables.

2: XC(N) -- DOUBLE PRECISION array Input
 On entry: the point x at which the function value is
 required.

3: FC -- DOUBLE PRECISION Output
 On exit: the value of the function F at the current
 point x.

FUNCT1 must be declared as EXTERNAL in the (sub)program
from which E04JAF is called. Parameters denoted as
Input must not be changed by this procedure.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL= 1
 On entry N < 1,
 or IBOUND < 0,
 or IBOUND > 3,
 or IBOUND = 0 and BL(j) > BU(j) for some j,
 or IBOUND = 3 and BL(1) > BU(1),
 or LIW < N + 2,
 or LW<max(13,12*N+N*(N-1)/2).

IFAIL= 2
 There have been 400*n function evaluations, yet the
 algorithm does not seem to be converging. The calculations
 can be restarted from the final point held in X. The error
 may also indicate that F(x) has no minimum.

IFAIL= 3
 The conditions for a minimum have not all been met but a
 lower point could not be found and the algorithm has failed.

IFAIL= 4
 An overflow has occurred during the computation. This is an
 unlikely failure, but if it occurs the user should restart
 at the latest point given in X.

IFAIL= 5
IFAIL = 6

IFAIL = 7

IFAIL = 8
There is some doubt about whether the point x found by E04JAF is a minimum. The degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL = 5 it is probable that the final x gives a good estimate of the position of a minimum, but when IFAIL = 8 it is very unlikely that the routine has found a minimum.

IFAIL = 9
In the search for a minimum, the modulus of one of the 6 variables has become very large (~10^10). This indicates that there is a mistake in FUNCT1, that the user's problem has no finite solution, or that the problem needs rescaling (see Section 8).

If the user is dissatisfied with the result (e.g. because IFAIL = 5, 6, 7 or 8), it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the failure. If persistent trouble occurs and the gradient can be calculated, it may be advisable to change to a routine which uses gradients (see the Chapter Introduction).

7. Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to get about t/2 - 1 decimals accuracy in x and about t - 1 decimals accuracy in F, provided the problem is reasonably well scaled.

8. Further Comments

The number of iterations required depends on the number of variables, the behaviour of F(x) and the distance of the starting point from the solution. The number of operations performed in an iteration of E04JAF is roughly proportional to n^2. In addition, each iteration makes at least m+1 calls of FUNCT1, where m is the number of variables not fixed on bounds. So, unless F(x) can be evaluated very quickly, the run time will be dominated by the time spent in FUNCT1.

Ideally the problem should be scaled so that at the solution the value of F(x) and the corresponding values of x, x, ..., x are
each in the range (-1,+1), and so that at points a unit distance away from the solution, F is approximately a unit value greater than at the minimum. It is unlikely that the user will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that E04JAF will take less computer time.

9. Example

To minimize

$$
F = (x_1 + 10x_2) + 5(x_3 - x_1) + (x_4 - 2x_2) + 10(x_4 - x_3)
$$

subject to

$$
\begin{align*}
1 & \leq x_1 \leq 3 \\
1 & \leq x_2 \leq 3, \\
-2 & \leq x_3 \leq 0 \\
1 & \leq x_4 \leq 3,
\end{align*}
$$

starting from the initial guess (3, -1, 0, 1).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
E04MBF is an easy-to-use routine for solving linear programming problems, or for finding a feasible point for such problems. It is not intended for large sparse problems.

2. Specification

SUBROUTINE E04MBF (ITMAX, MSGLEV, N, NCLIN, NCTOTL, NROWA, A, BL, BU, CVEC, LINOBJ, X, ISTATE, OBJLP, CLAMDA, IWORK, LIWORK, WORK, LWORK, IFAIL)

3. Description

E04MBF solves linear programming (LP) problems of the form

\[\text{Minimize } c^T x \text{ subject to } l \leq (Ax) \leq u \quad (LP) \]

where \(c \) is an \(n \) element vector and \(A \) is an \(m \) by \(n \) matrix i.e., there are \(n \) variables and \(m \) general linear constraints. \(m \) may be zero in which case the LP problem is subject only to bounds on the variables. Notice that upper and lower bounds are specified for all the variables and constraints. This form allows full generality in specifying other types of constraints. For example
the ith constraint may be specified as equality by setting \(l = u \).

If certain bounds are not present the associated elements of \(l \) or \(u \) can be set to special values that will be treated as -infty or +infty.

The routine allows the linear objective function to be omitted in which case a feasible point for the set of constraints is sought.

The user must supply an initial estimate of the solution.

Users who wish to exercise additional control and users with problems whose solution would benefit from additional flexibility should consider using the comprehensive routine E04NAF.

4. References

5. Parameters

1: ITMAX -- INTEGER Input
 On entry: an upper bound on the number of iterations to be taken. If ITMAX is not positive, then the value 50 is used in place of ITMAX.

2: MSGLVL -- INTEGER Input
 On entry: indicates whether or not printout is required at the final solution. When printing occurs the output is on the advisory message channel (see X04ABF). A description of the printed output is given in Section 5.1. The level of printing is determined as follows:
 MSGLVL < 0
 No printing.
 MSGLVL = 0
 Printing only if an input parameter is incorrect, or if the problem is so ill-conditioned that subsequent overflow is likely. This setting is strongly recommended in preference to MSGLVL < 0.
 MSGLVL = 1
 Printing at the solution.
 MSGLVL > 1
Values greater than 1 should normally be used only at the direction of NAG; such values may generate large amounts of printed output.

3: N -- INTEGER

4: NCLIN -- INTEGER
 On entry: the number of general linear constraints in the problem. Constraint: NCLIN >= 0.

5: NCTOTL -- INTEGER
 On entry: the value (N+NCLIN).

6: NROWA -- INTEGER
 On entry: the first dimension of the array A as declared in the (sub)program from which E04MBF is called.
 Constraint: NROWA >= max(1,NCLIN).

7: A(NROWA,N) -- DOUBLE PRECISION array
 On entry: the leading NCLIN by n part of A must contain the NCLIN general constraints, with the coefficients of the i-th constraint in the i-th row of A. If NCLIN = 0, then A is not referenced.

8: BL(NCTOTL) -- DOUBLE PRECISION array
 On entry: the first n elements of BL must contain the lower bounds on the n variables, and when NCLIN > 0, the next NCLIN elements of BL must contain the lower bounds on the NCLIN general linear constraints. To specify a non-existent lower bound (l = -infty), set BL(j) <= -1.0E+20.

9: BU(NCTOTL) -- DOUBLE PRECISION array
 On entry: the first n elements of BU must contain the upper bounds on the n variables, and when NCLIN > 0, the next NCLIN elements of BU must contain the upper bounds on the NCLIN general linear constraints. To specify a non-existent upper bound (u = +infty), set BU(j) >= 1.0E+20. Constraint: j
 BL(j) <= BU(j), for j=1,2,...,NCTOTL.

10: CVEC(N) -- DOUBLE PRECISION array
 On entry: with LINOBJ = .TRUE., CVEC must contain the coefficients of the objective function. If LINOBJ = .FALSE., then CVEC is not referenced.

11: LINOBJ -- LOGICAL
 On entry: indicates whether or not a linear objective
function is present. If LINOBJ = .TRUE., then the full LP
problem is solved, but if LINOBJ = .FALSE., only a feasible
point is found and the array CVEC is not referenced.

12: X(N) -- DOUBLE PRECISION array Input/Output
On entry: an estimate of the solution, or of a feasible
point. Even when LINOBJ = .TRUE. it is not necessary for the
point supplied in X to be feasible. In the absence of better
information all elements of X may be set to zero. On exit:
the solution to the LP problem when LINOBJ = .TRUE., or a
feasible point when LINOBJ = .FALSE..

When no feasible point exists (see IFAIL = 1 in Section 6)
then X contains the point for which the sum of the
infeasibilities is a minimum. On return with IFAIL = 2, 3 or
4, X contains the point at which E04MBF terminated.

13: ISTATE(NCTOTL) -- INTEGER array Output
On exit: with IFAIL < 5, ISTATE indicates the status of
every constraint at the final point. The first n elements of
ISTATE refer to the upper and lower bounds on the variables
and when NCLIN > 0 the next NCLIN elements refer to the
general constraints.

Their meaning is:
ISTATE(j) Meaning
-2 The constraint violates its lower bound. This
 value cannot occur for any element of ISTATE when
 a feasible point has been found.
-1 The constraint violates its upper bound. This
 value cannot occur for any element of ISTATE when
 a feasible point has been found.
0 The constraint is not in the working set (is not
 active) at the final point. Usually this means
 that the constraint lies strictly between its
 bounds.
1 This inequality constraint is in the working set
 (is active) at its lower bound.
2 This inequality constraint is in the working set
 (is active) at its upper bound.
3 This constraint is included in the working set (is
 active) as an equality. This value can only occur
 when BL(j) = BU(j).
22.4. NAGE.HT

14: OBJLP -- DOUBLE PRECISION
On exit: when LINOBJ = .TRUE., then on successful exit, OBJLP contains the value of the objective function at the solution, and on exit with IFAIL = 2, 3 or 4, OBJLP contains the value of the objective function at the point returned in X.

When LINOBJ = .FALSE., then on successful exit OBJLP will be zero and on return with IFAIL = 1, OBJLP contains the minimum sum of the infeasibilities corresponding to the point returned in X.

15: CLAMDA(NCTOTL) -- DOUBLE PRECISION array
On exit: when LINOBJ = .TRUE., then on successful exit, or on exit with IFAIL = 2, 3, or 4, CLAMDA contains the Lagrange multipliers (reduced costs) for each constraint with respect to the working set. The first n components of CLAMDA contain the multipliers for the bound constraints on the variables and the remaining NCLIN components contain the multipliers for the general linear constraints.

If ISTATE(j) = 0 so that the jth constraint is not in the working set then CLAMDA(j) is zero. If X is optimal and ISTATE(j) = 1, then CLAMDA(j) should be non-negative, and if ISTATE(j) = 2, then CLAMDA(j) should be non-positive.

When LINOBJ = .FALSE., all NCTOTL elements of CLAMDA are returned as zero.

16: IWORK(LIWORK) -- INTEGER array
Workspace

17: LIWORK -- INTEGER
Input
On entry: the length of the array IWORK as declared in the (sub)program from which E04MBF is called. Constraint: LIWORK>=2*N.

18: WORK(LWORK) -- DOUBLE PRECISION array
Workspace

19: LWORK -- INTEGER
Input
On entry: the length of the array WORK as declared in the (sub)program from which E04MBF is called. Constraints:
when N <= NCLIN then
2
LWORK>=2*N +6*N+4*NCLIN+NROWA;

when 0 <= NCLIN < N then
2
LWORK>=2*(NCLIN+1) +4*NCLIN+6*N+NROWA.

20: IFAIL -- INTEGER
Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

5.1. Description of the Printed Output

When MSG_LVL = 1, then E04MBF will produce output on the advisory message channel (see X04ABF), giving information on the final point. The following describes the printout associated with each variable.

<table>
<thead>
<tr>
<th>Output</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARBL</td>
<td>The name (V) and index j, for j=1,2,...,n, of the variable.</td>
</tr>
<tr>
<td>STATE</td>
<td>The state of the variable. (FR if neither bound is in the working set, EQ for a fixed variable, LL if on its lower bound, UL if on its upper bound and TB if held on a temporary bound.) If the value of the variable lies outside the upper or lower bound then STATE will be ++ or -- respectively.</td>
</tr>
<tr>
<td>VALUE</td>
<td>The value of the variable at the final iteration.</td>
</tr>
<tr>
<td>LOWER BOUND</td>
<td>The lower bound specified for the variable.</td>
</tr>
<tr>
<td>UPPER BOUND</td>
<td>The upper bound specified for the variable.</td>
</tr>
<tr>
<td>LAGR MULT</td>
<td>The value of the Lagrange multiplier for the associated bound.</td>
</tr>
<tr>
<td>RESIDUAL</td>
<td>The difference between the value of the variable and the nearer of its bounds.</td>
</tr>
</tbody>
</table>

For each of the general constraints the printout is as above with refers to the jth element of Ax, except that VARBL is replaced by:

| LNCON | The name (L) and index j, for j = 1,2,...,NCLIN of |
the constraint.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

Note: when MSGLVL=1 a short description of the error is printed.

IFAIL= 1
No feasible point could be found. Moving violated
constraints so that they are satisfied at the point returned
in X gives the minimum moves necessary to make the LP
problem feasible.

IFAIL= 2
The solution to the LP problem is unbounded.

IFAIL= 3
A total of 50 changes were made to the working set without
altering x. Cycling is probably occurring. The user should
consider using E04NAF with MSGLVL >= 5 to monitor constraint
additions and deletions in order to determine whether or not
cycling is taking place.

IFAIL= 4
The limit on the number of iterations has been reached.
Increase ITMAX or consider using E04NAF to monitor progress.

IFAIL= 5
An input parameter is invalid. Unless MSGLVL < 0 a message
will be printed.

IFAIL=Overflow
If the printed output before the overflow occurred contains
a warning about serious ill-conditioning in the working set
when adding the jth constraint, then either the user should
try using E04NAF and experiment with the magnitude of FEATOL
(j) in that routine, or the offending linearly dependent
constraint (with index j) should be removed from the
problem.

7. Accuracy

The routine implements a numerically stable active set strategy
and returns solutions that are as accurate as the condition of
the LP problem warrants on the machine.

8. Further Comments

The time taken by each iteration is approximately proportional to
Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem less sensitive to perturbations in the data, thus improving the condition of the LP problem. In the absence of better information it is usually sensible to make the Euclidean lengths of each constraint of comparable magnitude. See Gill et al [1] for further information and advice.

Note that the routine allows constraints to be violated by an absolute tolerance equal to the machine precision (see X02AJF(*))

Example

To minimize the function

\[-0.02x -0.2x -0.2x -0.2x -0.2x +0.04x +0.04x\]

subject to the bounds

\[-0.01 \leq x \leq 0.01\]

\[-0.1 \leq x \leq 0.15,\]

\[-0.01 \leq x \leq 0.03,\]

\[-0.04 \leq x \leq 0.02,\]

\[-0.1 \leq x \leq 0.05,\]

\[-0.01 \leq x\]

subject to the general constraints

\[x + x + x + x + x + x = -0.13\]

\[0.15x + 0.04x + 0.02x + 0.04x + 0.02x + 0.01x + 0.03x <= -0.0049\]

\[0.03x + 0.05x + 0.08x + 0.02x + 0.06x + 0.01x <= -0.0064\]

\[0.02x + 0.04x + 0.01x + 0.02x <= -0.0037\]
Solving linear or quadratic problems

— nage.ht —

The initial point, which is infeasible, is
\[x^T = (-0.01, -0.03, 0.0, -0.01, -0.01, 0.02, 0.01) . \]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
not included in the Foundation Library.

1. Purpose

E04NAF is a comprehensive routine for solving quadratic programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems.

2. Specification

```fortran
SUBROUTINE E04NAF (ITMAX, MSGLVL, N, NCLIN, NCTOTL, NROWA,
1 NROWH, NCOLH, BIGBND, A, BL, BU, CVEC,
2 FEATOL, HESS, QPHESS, COLD, LP, ORTHOG,
3 X, ISTATE, ITER, OBJ, CLAMDA, IWORK,
4 LIWORK, WORK, LWORK, IFAIL)

INTEGER ITMAX, MSGLVL, N, NCLIN, NCTOTL, NROWA,
1 NROWH, NCOLH, ISTATE(NCTOTL), ITER, IWORK,
2 LIWORK, LWORK, IFAIL

DOUBLE PRECISION BIGBND, A(NROWA,N), BL(NCTOTL),
1 BU(NCTOTL), CVEC(N), FEATOL(NCTOTL), HESS,
2 (NROWH,NCOLH), X(N), OBJ, CLAMDA(NCTOTL),
3 WORK(LWORK)

LOGICAL COLD, LP, ORTHOG

EXTERNAL QPHESS
```

3. Description

E04NAF is essentially identical to the subroutine SOL/QPSOL described in Gill et al [1].

E04NAF is designed to solve the quadratic programming (QP) problem - the minimization of a quadratic function subject to a set of linear constraints on the variables. The problem is assumed to be stated in the following form:

\[\text{Minimize } c^T x + \frac{1}{2} x^T H x \text{ subject to } l \leq (A x) \leq u, \]

where \(c \) is a constant n-vector and \(H \) is a constant n by n symmetric matrix; note that \(H \) is the Hessian matrix (matrix of second partial derivatives) of the quadratic objective function. The matrix \(A \) is m by n, where m may be zero; \(A \) is treated as a dense matrix.

The constraints involving \(A \) will be called the general constraints. Note that upper and lower bounds are specified for all the variables and for all the general constraints. The form of (1) allows full generality in specifying other types of constraints. In particular, an equality constraint is specified.
by setting \(l_i = u_i \). If certain bounds are not present, the associated elements of \(l \) or \(u \) can be set to special values that will be treated as \(-\infty\) or \(+\infty\).

The user must supply an initial estimate of the solution to (1), and a subroutine that computes the product \(Hx \) for any given vector \(x \). If \(H \) is positive-definite or positive semi-definite, \(\text{E04NAF} \) will obtain a global minimum; otherwise, the solution obtained will be a local minimum (which may or may not be a global minimum). If \(H \) is defined as the zero matrix, \(\text{E04NAF} \) will solve the resulting linear programming (LP) problem; however, this can be accomplished more efficiently by setting a logical variable in the call of the routine (see the parameter LP in Section 5).

\(\text{E04NAF} \) allows the user to provide the indices of the constraints that are believed to be exactly satisfied at the solution. This facility, known as a warm start, can lead to significant savings in computational effort when solving a sequence of related problems.

The method has two distinct phases. In the first (the LP phase), an iterative procedure is carried out to determine a feasible point. In this context, feasibility is defined by a user-provided array \(\text{FEATOL} \); the \(j \)th constraint is considered satisfied if its violation does not exceed \(\text{FEATOL}(j) \). The second phase (the QP phase) generates a sequence of feasible iterates in order to minimize the quadratic objective function. In both phases, a subset of the constraints - called the working set - is used to define the search direction at each iteration; typically, the working set includes constraints that are satisfied to within the corresponding tolerances in the \(\text{FEATOL} \) array.

We now briefly describe a typical iteration in the QP phase. Let \(x \) denote the estimate of the solution at the \(k \)th iteration; the next iterate is defined by

\[
x_{k+1} = x_k + (\alpha_k) p_k
\]

where \(p \) is an \(n \)-dimensional search direction and \((\alpha_k) \) is a scalar step length. Assume that the working (active) set contains \(t \) linearly independent constraints, and let \(C_k \) denote the matrix

\[
k of coefficients of the bounds and general constraints in the current working set.
Let Z denote a matrix whose columns form a basis for the null space of C, so that $C Z = 0$. (Note that Z has n columns, where $n = n-t$.) The vector $Z (c+Hx)$ is called the projected gradient at x. If the projected gradient is zero at x (i.e., x is a constrained stationary point in the subspace defined by Z), Lagrange multipliers (λ) are defined as the solution of the compatible overdetermined system

\[
T \quad C (\lambda) = c + Hx \quad (2)
\]

The Lagrange multiplier (λ) corresponding to an inequality constraint in the working set is said to be optimal if $(\lambda) \leq 0$ when the associated constraint is at its upper bound, or if $(\lambda) \geq 0$ when the associated constraint is at its lower bound. If a multiplier is non-optimal, the objective function can be reduced by deleting the corresponding constraint (with index $JDEL$, see Section 5.1) from the working set.

If the projected gradient at x is non-zero, the search direction p is defined as

\[
p = Z p \quad (3)
\]

where p is an n-vector. In effect, the constraints in the working set are treated as equalities, by constraining p to lie within the subspace of vectors orthogonal to the rows of C. This definition ensures that $C p = 0$, and hence the values of the constraints in the working set are not altered by any move along p.

The vector p is obtained by solving the equations
\[
\begin{align*}
T & \quad T \\
Z^T H Z \ p &= -Z \ (c+H x) \quad (4) \\
k & \quad k \quad z & \quad k \quad k
\end{align*}
\]

(The matrix \(Z^T H Z \) is called the projected Hessian matrix.) If the projected Hessian is positive-definite, the vector defined by (3) and (4) is the step to the minimum of the quadratic function in the subspace defined by \(Z \).

If the projected Hessian is positive-definite and \(x+p \) is feasible, \((\alpha)\) will be taken as unity. In this case, the projected gradient at \(x \) will be zero (see NORM ZTG in Section 5.1), and Lagrange multipliers can be computed (see Gill et al [2]). Otherwise, \((\alpha)\) is set to the step to the 'nearest' constraint (with index \(JADD \), see Section 5.1), which is added to the working set at the next iteration.

The matrix \(Z \) is obtained from the TQ factorization of \(C \), in which \(C = Q (0 \ T) \quad (5) \)

\[
\begin{align*}
C & = T \\
k & \quad k \quad k
\end{align*}
\]

where \(T \) is reverse-triangular. It follows from (5) that \(Z \) may be taken as the first \(n \) columns of \(Q \). If the projected Hessian is positive-definite, (3) is solved using the Cholesky factorization

\[
\begin{align*}
T & \quad T \\
Z^T H Z &= R R \\
k & \quad k \quad k \quad k \quad k
\end{align*}
\]

where \(R \) is upper triangular. These factorizations are updated as constraints enter or leave the working set (see Gill et al [2] for further details).

An important feature of E04NBF is the treatment of indefiniteness in the projected Hessian. If the projected Hessian is positive-
definite, it may become indefinite only when a constraint is deleted from the working set. In this case, a temporary modification (of magnitude HESS MOD, see Section 5.1) is added to the last diagonal element of the Cholesky factor. Once a modification has occurred, no further constraints are deleted from the working set until enough constraints have been added so that the projected Hessian is again positive-definite. If equation (1) has a finite solution, a move along the direction obtained by solving (4) with the modified Cholesky factor must encounter a constraint that is not already in the working set.

In order to resolve indefiniteness in this way, we must ensure that the projected Hessian is positive-definite at the first iterate in the QP phase. Given the $n \times n$ projected Hessian, a step-wise Cholesky factorization is performed with symmetric interchanges (and corresponding rearrangement of the columns of Z), terminating if the next step would cause the matrix to become indefinite. This determines the largest possible positive-definite principal sub-matrix of the (permuted) projected Hessian. If n steps of the Cholesky factorization have been successfully completed, the relevant projected Hessian is an $n \times n$ positive-definite matrix $Z^T H Z$, where Z comprises the first n columns of Z. The quadratic function will subsequently be minimized within subspaces of reduced dimension until the full projected Hessian is positive-definite.

If a linear program is being solved and there are fewer general constraints than variables, the method moves from one vertex to another while minimizing the objective function. When necessary, an initial vertex is defined by temporarily fixing some of the variables at their initial values.

Several strategies are used to control ill-conditioning in the working set. One such strategy is associated with the FEATOL array. Allowing the jth constraint to be violated by as much as FEATOL(j) often provides a choice of constraints that could be added to the working set. When a choice exists, the decision is based on the conditioning of the working set. Negative steps are occasionally permitted, since x_k may violate the constraint to be added.

4. References
5. Parameters

1: ITMAX -- INTEGER \hspace{1em} \text{Input}
\hspace{1em} On entry: an upper bound on the number of iterations to be taken during the LP phase or the QP phase. If ITMAX is not positive, then the value 50 is used in place of ITMAX.

2: MSGLVL -- INTEGER \hspace{1em} \text{Input}
\hspace{1em} On entry: MSGLVL must indicate the amount of intermediate output desired (see Section 5.1 for a description of the printed output). All output is written to the current advisory message unit (see X04ABF). For MSGLVL >= 10, each level includes the printout for all lower levels.
\hspace{1em} Value Definition
\hspace{1em} <0 No printing.
\hspace{1em} 0 Printing only if an input parameter is incorrect, or if the working set is so ill-conditioned that subsequent overflow is likely. This setting is strongly recommended in preference to MSGLVL < 0.
\hspace{1em} 1 The final solution only.
\hspace{1em} 5 One brief line of output for each constraint addition or deletion (no printout of the final solution).
\hspace{1em} >=10 The final solution and one brief line of output for each constraint addition or deletion.
\hspace{1em} >=15 At each iteration, X, ISTATE, and the indices of the free variables (i.e., the variables not currently held on a bound).
\hspace{1em} >=20 At each iteration, the Lagrange multiplier estimates and the general constraint values.
At each iteration, the diagonal elements of the matrix T associated with the TQ factorization of the working set, and the diagonal elements of the Cholesky factor R of the projected Hessian.

Debug printout.

The arrays $CVEC$ and $HESS$.

3: N -- INTEGER
Input
On entry: the number, n, of variables. Constraint: $N \geq 1$.

4: $NCLIN$ -- INTEGER
Input
On entry: the number of general linear constraints in the problem. Constraint: $NCLIN \geq 0$.

5: $NCTOTL$ -- INTEGER
Input
On entry: the value $(N+NCLIN)$.

6: $NROWA$ -- INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which $E04NAF$ is called. Constraint: $NROWA \geq \max(1,NCLIN)$.

7: $NROWH$ -- INTEGER
Input
On entry: the first dimension of the array $HESS$ as declared in the (sub)program from which $E04NAF$ is called. Constraint: $NROWH \geq 1$.

8: $NCOLH$ -- INTEGER
Input
On entry: the column dimension of the array $HESS$ as declared in the (sub)program from which $E04NAF$ is called. Constraint: $NCOLH \geq 1$.

9: $BIGBND$ -- DOUBLE PRECISION
Input
On entry: $BIGBND$ must denote an 'infinite' component of l and u. Any upper bound greater than or equal to $BIGBND$ will be regarded as plus infinity, and a lower bound less than or equal to $-BIGBND$ will be regarded as minus infinity. Constraint: $BIGBND > 0.0$.

10: $A(NROWA,N)$ -- DOUBLE PRECISION array
Input
On entry: the leading $NCLIN$ by n part of A must contain the $NCLIN$ general constraints, with the ith constraint in the ith row of A. If $NCLIN = 0$, then A is not referenced.

11: $BL(NCTOTL)$ -- DOUBLE PRECISION array
Input
On entry: the lower bounds for all the constraints, in the following order. The first n elements of BL must contain the

...
lower bounds on the variables. If NCLIN > 0, the next NCLIN
elements of BL must contain the lower bounds for the general
linear constraints. To specify a non-existent lower bound
(i.e., \(l = -\infty \)), the value used must satisfy \(BL(j) \leq -j \)

BIGBND To specify the jth constraint as an equality, the
user must set \(BL(j) = BU(j) \). Constraint: \(BL(j) \leq BU(j) \),
\(j=1,2,\ldots,NCTOTL \).

12: BU(NCTOTL) -- DOUBLE PRECISION array Input
On entry: the upper bounds for all the constraints, in the
following order. The first n elements of BU must contain the
upper bounds on the variables. If NCLIN > 0, the next NCLIN
elements of BU must contain the upper bounds for the general
linear constraints. To specify a non-existent upper bound
(i.e., \(u = +\infty \)), the value used must satisfy \(BU(j) \geq j \)

BIGBND. To specify the jth constraint as an equality, the
user must set \(BU(j) = BL(j) \). Constraint: \(BU(j) \geq BL(j) \),
\(j=1,2,\ldots,NCTOTL \).

13: CVEC(N) -- DOUBLE PRECISION array Input
On entry: the coefficients of the linear term of the
objective function (the vector c in equation (1)).

14: FEATOL(NCTOTL) -- DOUBLE PRECISION array Input
On entry: a set of positive tolerances that define the
maximum permissible absolute violation in each constraint in
order for a point to be considered feasible, i.e., if the
violation in constraint j is less than \(FEATOL(j) \), the point
is considered to be feasible with respect to the jth
constraint. The ordering of the elements of FEATOL is the
same as that described above for BL.

The elements of FEATOL should not be too small and a warning
message will be printed on the current advisory message
channel if any element of FEATOL is less than the machine
precision (see X02AJF(*)). As the elements of FEATOL
increase, the algorithm is less likely to encounter
difficulties with ill-conditioning and degeneracy. However,
larger values of \(FEATOL(j) \) mean that constraint j could be
violated by a significant amount. It is recommended that
FEATOL(j) be set to a value equal to the largest acceptable
violation for constraint j. For example, if the data
defining the constraints are of order unity and are correct
to about 6 decimal digits, it would be appropriate to choose

-6

FEATOL(j) as 10 for all relevant j. Often the square root
of the machine precision is a reasonable choice if the
constraint is well scaled.
15: HESS(NROWH,NCOLH) -- DOUBLE PRECISION array
 On entry: HESS may be used to store the Hessian matrix H of
 equation (1) if desired. HESS is accessed only by the
 subroutine QPHESS and is not accessed if LP = .TRUE.. Refer
 to the specification of QPHESS (below) for further details
 of how HESS may be used to pass data to QPHESS.

16: QPHESS -- SUBROUTINE, supplied by the user.
 External Procedure
 QPHESS must define the product of the Hessian matrix H and a
 vector x. The elements of H need not be defined explicitly.
 QPHESS is not accessed if LP is set to .TRUE. and in this
 case QPHESS may be the dummy routine E04NAN. (E04NAN is
 included in the NAG Foundation Library and so need not be
 supplied by the user. Its name may be implementation-
 dependent: see the Users' Note for your implementation for
details.)

 Its specification is:

 SUBROUTINE QPHESS (N, NROWH, NCOLH, JTHCOL,
 1 HESS, X, HX)
 INTEGER N, NROWH, NCOLH, JTHCOL
 DOUBLE PRECISION HESS(NROWH,NCOLH), X(N), HX(N)

 1: N -- INTEGER
 On entry: the number n of variables.

 2: NROWH -- INTEGER
 On entry: the row dimension of the array HESS.

 3: NCOLH -- INTEGER
 On entry: the column dimension of the array HESS.

 4: JTHCOL -- INTEGER
 The input parameter JTHCOL is included to allow
 flexibility for the user in the special situation when
 x is the jth co-ordinate vector (i.e., the jth column of
 the identity matrix). This may be of interest because
 the product Hx is then the jth column of H, which can
 sometimes be computed very efficiently. The user may
 code QPHESS to take advantage of this case. On entry:
 if JTHCOL = j, where j>0, HX must contain column JTHCOL
 of H, and hence special code may be included in QPHESS
 to test JTHCOL if desired. However, special code is not
 necessary, since the vector x always contains column
 JTHCOL of the identity matrix whenever QPHESS is called
 with JTHCOL > 0.
5: HESS(NROWH,NCOLH) -- DOUBLE PRECISION array Input
On entry: the Hessian matrix H.
In some cases, it may be desirable to use a one-dimensional array to transmit data or workspace to QPHESS; HESS should then be declared with dimension (NROWH) in the (sub)program from which E04NAF is called and the parameter NCOLH must be 1.

In other situations, it may be desirable to compute Hx without accessing HESS - for example, if H is sparse or has special structure. (This is illustrated in the subroutine QPHESS1 in the example program in Section 9.) The parameters HESS, NROWH and NCOLH may then refer to any convenient array.

When MSG_LVL = 99, the (possibly undefined) contents of HESS will be printed, except if NROWH and NCOLH are both 1. Also printed are the results of calling QPHESS with JTHCOL = 1,2,...,n.

6: X(N) -- DOUBLE PRECISION array Input
On entry: the vector x.

7: HX(N) -- DOUBLE PRECISION array Output
On exit: HX must contain the product Hx.
QPHESS must be declared as EXTERNAL in the (sub)program from which E04NAF is called. Parameters denoted as Input must not be changed by this procedure.

17: COLD -- LOGICAL Input
On entry: COLD must indicate whether the user has specified an initial estimate of the active set of constraints. If COLD is set to .TRUE., the initial working set is determined by E04NAF. If COLD is set to .FALSE. (a 'warm start'), the user must define the ISTATE array which gives the status of each constraint with respect to the working set. E04NAF will override the user’s specification of ISTATE if necessary, so that a poor choice of working set will not cause a fatal error.

The warm start option is particularly useful when E04NAF is called repeatedly to solve related problems.

18: LP -- LOGICAL Input
On entry: if LP = .FALSE., E04NAF will solve the specified quadratic programming problem. If LP = .TRUE., E04NAF will treat H as zero and solve the resulting linear programming problem; in this case, the parameters HESS and QPHESS will not be referenced.
19: ORTHOG -- LOGICAL
 Input
 On entry: ORTHOG must indicate whether orthogonal
 transformations are to be used in computing and updating the
 TQ factorization of the working set
 \[A Q = \begin{pmatrix} 0 & T \end{pmatrix}, \]
 where \(A \) is a sub-matrix of \(A \) and \(T \) is reverse-triangular.
 If ORTHOG = .TRUE., the TQ factorization is computed using
 Householder reflections and plane rotations, and the matrix
 \(Q \) is orthogonal. If ORTHOG = .FALSE., stabilized elementary
 transformations are used to maintain the factorization, and
 \(Q \) is not orthogonal. A rule of thumb in making the choice is
 that orthogonal transformations require more work, but
 provide greater numerical stability. Thus, we recommend
 setting ORTHOG to .TRUE. if the problem is reasonably small
 or the active set is ill-conditioned. Otherwise, setting
 ORTHOG to .FALSE. will often lead to a reduction in solution
 time with negligible loss of reliability.

20: X(N) -- DOUBLE PRECISION array
 Input/Output
 On entry: an estimate of the solution. In the absence of
 better information all elements of \(X \) may be set to zero. On
 exit: from E04NAF, \(X \) contains the best estimate of the
 solution.

21: ISTATE(NCTOTL) -- INTEGER array
 Input/Output
 On entry: with COLD as .FALSE., ISTATE must indicate the
 status of every constraint with respect to the working set.
 The ordering of ISTATE is as follows; the first \(n \) elements
 of ISTATE refer to the upper and lower bounds on the
 variables and elements \(n+1 \) through \(n + NCLIN \) refer to the
 upper and lower bounds on \(Ax \). The significance of each
 possible value of ISTATE(j) is as follows:
 ISTATE(j) Meaning
 -2 The constraint violates its lower bound by more
 than FEATOL(j). This value of ISTATE cannot occur
 after a feasible point has been found.
 -1 The constraint violates its upper bound by more
 than FEATOL(j). This value of ISTATE cannot occur
 after a feasible point has been found.
 0 The constraint is not in the working set. Usually,
 this means that the constraint lies strictly
 between its bounds.
 1 This inequality constraint is included in the
working set at its lower bound. The value of the constraint is within FEATOL(j) of its lower bound.

2 This inequality constraint is included in the working set at its upper bound. The value of the constraint is within FEATOL(j) of its upper bound.

3 The constraint is included in the working set as an equality. This value of ISTATE can occur only when BL(j) = BU(j). The corresponding constraint is within FEATOL(j) of its required value.

If COLD = .TRUE., ISTATE need not be set by the user. However, when COLD = .FALSE., every element of ISTATE must be set to one of the values given above to define a suggested initial working set (which will be changed by E04NAF if necessary). The most likely values are:

<table>
<thead>
<tr>
<th>ISTATE(j)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The corresponding constraint should not be in the initial working set.</td>
</tr>
<tr>
<td>1</td>
<td>The constraint should be in the initial working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>The constraint should be in the initial working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>The constraint should be in the initial working set as an equality. This value must not be specified unless BL(j) = BU(j). The values 1, 2 or 3 all have the same effect when BL(j) = BU(j).</td>
</tr>
</tbody>
</table>

Note that if E04NAF has been called previously with the same values of N and NCLIN, ISTATE already contains satisfactory values. On exit: when E04NAF exits with IFAIL set to 0, 1 or 3, the values in the array ISTATE indicate the status of the constraints in the active set at the solution. Otherwise, ISTATE indicates the composition of the working set at the final iterate.

22: ITER -- INTEGER Output
On exit: the number of iterations performed in either the LP phase or the QP phase, whichever was last entered.
Note that ITER is reset to zero after the LP phase.

23: OBJ -- DOUBLE PRECISION Output
On exit: the value of the quadratic objective function at x if x is feasible (IFAIL <= 5), or the sum of infeasibilities at x otherwise (6 <= IFAIL <= 8).
24: CLAMDA(NCTOTL) -- DOUBLE PRECISION array
On exit: the values of the Lagrange multiplier for each
constraint with respect to the current working set. The
ordering of CLAMDA is as follows; the first n components
contain the multipliers for the bound constraints on the
variables, and the remaining components contain the
multipliers for the general linear constraints. If ISTATE(j)
= 0 (i.e., constraint j is not in the working set), CLAMDA(j)
is zero. If x is optimal and ISTATE(j) = 1, CLAMDA(j) should
be non-negative; if ISTATE(j) = 2, CLAMDA(j) should be non-
positive.

25: IWORK(LIWORK) -- INTEGER array
Workspace

26: LIWORK -- INTEGER
Input
On entry:
the dimension of the array IWORK as declared in the
(sub)program from which E04NAF is called.
Constraint: LIWORK>=2*N.

27: WORK(LWORK) -- DOUBLE PRECISION array
Workspace

28: LWORK -- INTEGER
Input
On entry:
the dimension of the array WORK as declared in the
(sub)program from which E04NAF is called.
Constraint if LP = .FALSE. or NCLIN >= N then
nts: 2
LWORK>=2*N +4*N*NCLIN+NROWA.
if LP = .TRUE. and NCLIN < N then
2
LWORK>=2*(NCLIN+1) +4*N+2*NCLIN+NROWA.
If MSGLVL > 0, the amount of workspace provided and the
amount of workspace required are output on the current
advisory message unit (as defined by X04ABF). As an
alternative to computing LWORK from the formula given above,
the user may prefer to obtain an appropriate value from the
output of a preliminary run with a positive value of MSGLVL
and LWORK set to 1 (E04NAF will then terminate with IFAIL =
9).

29: IFAIL -- INTEGER
Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are
unfamiliar with this parameter should refer to the Essential
Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or
gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

IFAIL contains zero on exit if x is a strong local minimum. i.e., the projected gradient is negligible, the Lagrange multipliers are optimal, and the projected Hessian is positive-definite. In some cases, a zero value of IFAIL means that x is a global minimum (e.g. when the Hessian matrix is positive-definite).

5.1. Description of the Printed Output

When MSGVL >= 5, a line of output is produced for every change in the working set (thus, several lines may be printed during a single iteration).

To aid interpretation of the printed results, we mention the convention for numbering the constraints: indices 1 through to n refer to the bounds on the variables, and when NCLIN > 0 indices n+1 through to n + NCLIN refer to the general constraints. When the status of a constraint changes, the index of the constraint is printed, along with the designation L (lower bound), U (upper bound) or E (equality).

In the LP phase, the printout includes the following:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITN</td>
<td>is the iteration count.</td>
</tr>
<tr>
<td>JDEL</td>
<td>is the index of the constraint deleted from the working set. If JDEL is zero, no constraint was deleted.</td>
</tr>
<tr>
<td>JADD</td>
<td>is the index of the constraint added to the working set. If JADD is zero, no constraint was added.</td>
</tr>
<tr>
<td>STEP</td>
<td>is the step taken along the computed search direction.</td>
</tr>
<tr>
<td>COND T</td>
<td>is a lower bound on the condition number of the matrix of predicted active constraints.</td>
</tr>
<tr>
<td>NUMINF</td>
<td>is the number of violated constraints (infeasibilities).</td>
</tr>
</tbody>
</table>
| SUMINF | is a weighted sum of the magnitudes of the
constraint violations.

\[T \]

LPOBJ is the value of the linear objective function $c^T x$. It is printed only if LP = .TRUE..

During the QP phase, the printout includes the following:

ITN is the iteration count (reset to zero after the LP phase).

JDEL is the index of the constraint deleted from the working set. If JDEL is zero, no constraint was deleted.

JADD is the index of the constraint added to the working set. If JADD is zero, no constraint was added.

STEP is the step (alpha) taken along the direction of k search (if STEP is 1.0, the current point is a minimum in the subspace defined by the current working set).

NHESS is the number of calls to subroutine QPHESS.

OBJECTIVE is the value of the quadratic objective function.

NCOLZ is the number of columns of Z (see Section 3). In general, it is the dimension of the subspace in which the quadratic is currently being minimized.

NORM GFREE is the Euclidean norm of the gradient of the objective function with respect to the free variables, i.e. variables not currently held at a bound (NORM GFREE is not printed if ORTHOG = .FALSE.). In some cases, the objective function and gradient are updated rather than recomputed. If so, this entry will be -- to indicate that the gradient with respect to the free variables has not been computed.

NORM QTG is a weighted norm of the gradient of the objective function with respect to the free variables (NORM QTG is not printed if ORTHOG = .TRUE.). In some cases, the objective function and gradient are updated rather than recomputed. If so, this entry will be -- to indicate that the gradient with respect to the free variables has
not been computed.

NORM ZTG is the Euclidean norm of the projected gradient (see Section 3).

COND T is a lower bound on the condition number of the matrix of constraints in the working set.

COND ZHZ is a lower bound on the condition number of the projected Hessian matrix.

HESS MOD is the correction added to the diagonal of the projected Hessian to ensure that a satisfactory Cholesky factorization exists (see Section 3). When the projected Hessian is sufficiently positive-definite, HESS MOD will be zero.

When **MSG_LVL = 1** or **MSG_LVL >= 10**, the summary printout at the end of execution of **E04NAF** includes a listing of the status of every constraint. Note that default names are assigned to all variables and constraints.

The following describes the printout for each variable.

VARBL is the name (V) and index j, j=1,2,...,n, of the variable.

STATE gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound, TB if held on a temporary bound). If VALUE lies outside the upper or lower bounds by more than **FEATOL(j)**, STATE will be ++ or -- respectively.

VALUE is the value of the variable at the final iteration.

LOWER BOUND is the lower bound specified for the variable.

UPPER BOUND is the upper bound specified for the variable.

LAGR MULT is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if STATE is FR. If x is optimal and STATE is LL, the multiplier should be non-negative; if STATE is UL, the multiplier should be non-positive.

RESIDUAL is the difference between the variable and the nearer of its bounds BL(j) and BU(j).
For each of the general constraints the printout is as above with
refers to the jth element of Ax, except that VARBL is replaced by

LNCON The name (L) and index j, j=1,2,...,NCLIN, of the
constraint.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL= 1
x is a weak local minimum (the projected gradient is
negligible, the Lagrange multipliers are optimal, but the
projected Hessian is only semi-definite). This means that
the solution is not unique.

IFAIL= 2
The solution appears to be unbounded, i.e., the quadratic
function is unbounded below in the feasible region. This
value of IFAIL occurs when a step of infinity would have to
be taken in order to continue the algorithm.

IFAIL= 3
x appears to be a local minimum, but optimality cannot be
verified because some of the Lagrange multipliers are very
small in magnitude.

E04NAF has probably found a solution. However, the presence
of very small Lagrange multipliers means that the predicted
active set may be incorrect, or that x may be only a
constrained stationary point rather than a local minimum.
The method in E04NAF is not guaranteed to find the correct
active set when there are very small multipliers. E04NAF
attempts to delete constraints with zero multipliers, but
this does not necessarily resolve the issue. The
determination of the correct active set is a combinatorial
problem that may require an extremely large amount of time.
The occurrence of small multipliers often (but not always)
indicates that there are redundant constraints.

IFAIL= 4
The iterates of the QP phase could be cycling, since a total
of 50 changes were made to the working set without altering
x.

This value will occur if 50 iterations are performed in the
QP phase without changing x. The user should check the
printed output for a repeated pattern of constraint
deletions and additions. If a sequence of constraint changes
is being repeated, the iterates are probably cycling.
(E04NAF does not contain a method that is guaranteed to avoid cycling, which would be combinatorial in nature.) Cycling may occur in two circumstances: at a constrained stationary point where there are some small or zero Lagrange multipliers (see the discussion of IFAIL = 3); or at a point (usually a vertex) where the constraints that are satisfied exactly are nearly linearly dependent. In the latter case, the user has the option of identifying the offending dependent constraints and removing them from the problem, or restarting the run with larger values of FEATOL for nearly dependent constraints. If E04NAF terminates with IFAIL = 4, but no suspicious pattern of constraint changes can be observed, it may be worthwhile to restart with the final x (with or without the warm start option).

IFAIL= 5
The limit of ITMAX iterations was reached in the QP phase before normal termination occurred.

The value of ITMAX may be too small. If the method appears to be making progress (e.g. the objective function is being satisfactorily reduced), increase ITMAX and rerun E04NAF (possibly using the warm start facility to specify the initial working set). If ITMAX is already large, but some of the constraints could be nearly linearly dependent, check the output for a repeated pattern of constraints entering and leaving the working set. (Near-dependencies are often indicated by wide variations in size in the diagonal elements of the T matrix, which will be printed if MSGLVL >= 30.) In this case, the algorithm could be cycling (see the comments for IFAIL = 4).

IFAIL= 6
The LP phase terminated without finding a feasible point, and hence it is not possible to satisfy all the constraints to within the tolerances specified by the FEATOL array. In this case, the final iterate will reveal values for which there will be a feasible point (e.g. a feasible point will exist if the feasibility tolerance for each violated constraint exceeds its RESIDUAL at the final point). The modified problem (with altered values in FEATOL) may then be solved using a warm start.

The user should check that there are no constraint redundancies. If the data for the jth constraint are accurate only to the absolute precision (delta), the user should ensure that the value of FEATOL(j) is greater than (delta). For example, if all elements of A are of order unity and are accurate only to three decimal places, every
component of FEATOL should be at least 10.

IFAIL= 7
The iterates may be cycling during the LP phase; see the comments above under IFAIL = 4.

IFAIL= 8
The limit of ITMAX iterations was reached during the LP phase. See comments above under IFAIL = 5.

IFAIL= 9
An input parameter is invalid.

Overflow
If the printed output before the overflow error contains a warning about serious ill-conditioning in the working set when adding the jth constraint, it may be possible to avoid the difficulty by increasing the magnitude of FEATOL(j) and rerunning the program. If the message recurs even after this change, the offending linearly dependent constraint (with index j) must be removed from the problem. If a warning message did not precede the fatal overflow, the user should contact NAG.

7. Accuracy
The routine implements a numerically stable active set strategy and returns solutions that are as accurate as the condition of the QP problem warrants on the machine.

8. Further Comments
The number of iterations depends upon factors such as the number of variables and the distances of the starting point from the solution. The number of operations performed per iteration is roughly proportional to (NFREE)^2, where NFREE (NFREE<=n) is the number of variables fixed on their upper or lower bounds.

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem less sensitive to perturbations in the data, thus improving the condition of the QP problem. See the Chapter Introduction and Gill et al [1] for further information and advice.

9. Example
To minimize the function c x+ -x Hx, where
subject to the bounds

Minimize an arbitrary smooth constrained function

— nage.ht —

E04UCF(3NAG) E04UCF E04UCF(3NAG)

E04 -- Minimizing or Maximizing a Function
E04UCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

Note for users via the Axiom system: the interface to this routine has been enhanced for use with Axiom and is slightly different to that offered in the standard version of the Foundation Library. In

\begin{verbatim}
T
c=[-0.02,-0.2,-0.2,-0.2,-0.2,0.04,0.04]

[2 0 0 0 0 0 0]
[0 2 0 0 0 0 0]
[0 0 2 0 0 0 0]
H=[0 0 2 0 0 0 0]
[0 0 0 0 2 0 0]
[0 0 0 0 -2 -2]
[0 0 0 0 -2 -2]
\end{verbatim}
\end{scroll}
\end{page}
particular, the optional parameters of the NAG routine are now included in the parameter list. These are described in section 5.1.2, below.

1. Purpose

E04UCF is designed to minimize an arbitrary smooth function subject to constraints, which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints. (E04UCF may be used for unconstrained, bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense, and hence E04UCF is not intended for large sparse problems.

E04UCF uses a sequential quadratic programming (SQP) algorithm in which the search direction is the solution of a quadratic programming (QP) problem. The algorithm treats bounds, linear constraints and nonlinear constraints separately.

2. Specification

```fortran
SUBROUTINE E04UCF (N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
  1 A, BL, BU, CONFUN, OBJFUN, ITER,
  2 ISTATE, C, CIAC, CLAMDA, OBJF, OBJGRD,
  3 R, X, IWORK, LIWORK, WORK, LWORK,
  4 IUSER, USER, STA, CRA, DER, FEA, FUN,
  5 HES, INFB, INFN, LINF, LINT, LIST,
  6 MAJI, MAJP, MINI, MINP, MON, NONF,
  7 OPT, STE, STAO, STAC, STOG, STOC, VE,
  8 IFAIL)

INTEGER N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
  1 ITER, ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK)
  2 , LIWORK, LWORK, IUSER(*), DER, MAJI,
  3 MAJP, MINI, MINP, MON, STAO, STAC, STOG,
  4 STOC, VE, IFAIL

DOUBLE PRECISION A(NROWA,*), BL(N+NCLIN+NCNLN), BU
  1 ( N+NCLIN+NCNLN), C(*), CIAC(NROWJ,*),
  2 CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N), R
  3 ( NROWR,N), X(N), WORK(LWORK), USER(*),
  4 CRA, FEA, FUN, INFB, INFN, LINF, LINT,
  5 NONF, OPT, STE

LOGICAL LIST, STA, HES

EXTERNAL CONFUN, OBJFUN
```

3. Description

E04UCF is designed to solve the nonlinear programming problem --
the minimization of a smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be stated in the following form:

\[
\text{Minimize } F(x) \text{ subject to } \begin{cases} \{ x \} \\ \text{subject to } l \leq \{ A x \} \leq u, \\ \text{n} \end{cases} \begin{cases} \{ L \} \\ \text{subject to } c(x) \text{ is in } R \end{cases} \\
\text{where } F(x), \text{ the objective function, is a nonlinear function, } A \text{ is an } n \times n \text{ constant matrix, and } c(x) \text{ is an } n \text{ element vector of nonlinear constraint functions. (The matrix } A \text{ and the vector } c(x) \text{ may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of E04UCF will usually solve (1) if there are only isolated discontinuities away from the solution.)}
\]

This routine is essentially identical to the subroutine SOL/NPSOL described in Gill et al [8].

Note that upper and lower bounds are specified for all the variables and for all the constraints.

An equality constraint can be specified by setting \(l = u \). If certain bounds are not present, the associated elements of \(l \) or \(u \) can be set to special values that will be treated as \(-\infty\) or \(+\infty\).

If there are no nonlinear constraints in (1) and \(F \) is linear or quadratic then one of E04MBF, E04NAF or E04NCF(*) will generally be more efficient. If the problem is large and sparse the MINOS package (see Murtagh and Saunders [13]) should be used, since E04UCF treats all matrices as dense.

The user must supply an initial estimate of the solution to (1), together with subroutines that define \(F(x) \), \(c(x) \) and as many first partial derivatives as possible; unspecified derivatives are approximated by finite differences.

The objective function is defined by subroutine OBJFUN, and the nonlinear constraints are defined by subroutine CONFUN. On every call, these subroutines must return appropriate values of the objective and nonlinear constraints. The user should also provide the available partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section 5.1 for a
discussion of the optional parameter Derivative Level. Just before either OBJFUN or CONFUN is called, each element of the current gradient array OBJGRD or CJAC is initialised to a special value. On exit, any element that retains the value is estimated by finite differences. Note that if there are nonlinear constraints, then the first call to CONFUN will precede the first call to OBJFUN.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of Gill et al [10], for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to provide as many as possible. While developing the subroutines OBJFUN and CONFUN, the optional parameter Verify (see Section 5.1) should be used to check the calculation of any known gradients.

E04UCF implements a sequential quadratic programming (SQP) method. The document for E04NCF(*) should be consulted in conjunction with this document.

In the rest of this section we briefly summarize the main features of the method of E04UCF. Where possible, explicit reference is made to the names of variables that are parameters of subroutines E04UCF or appear in the printed output (see Section 5.2).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active general linear and nonlinear constraints. The number of fixed variables will be denoted by n_X, with n = n_X + n_FR the number of free variables. The subscripts 'FX' and 'FR' on a vector or matrix will denote the vector or matrix composed of the components corresponding to fixed or free variables.

A point x is a first-order Kuhn-Tucker point for (1) (see, e.g., Powell [14]) if the following conditions hold:

(i) x is feasible;

(ii) there exist vectors (xi) and (lambda) (the Lagrange multiplier vectors for the bound and general constraints) such that

\[g = (\lambda) + (\xi), \]

where g is the gradient of F evaluated at x, and \((\xi)_j = 0 \) if
the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be non-negative, and non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of C; i.e., $C^T Z = 0$. An equivalent statement of the condition (2) in terms of Z is

$$T \begin{bmatrix} Z \\ g \end{bmatrix} = 0.$$

The vector $Z^T g$ is termed the projected gradient of F at x.

Certain additional conditions must be satisfied in order for a first-order Kuhn-Tucker point to be a solution of (1) (see, e.g., Powell [14]).

The method of E04UCF is a sequential quadratic programming (SQP) method. For an overview of SQP methods, see, for example, Fletcher [5], Gill et al [10] and Powell [15].

The basic structure of E04UCF involves major and minor iterations. The major iterations generate a sequence of iterates $\{x_k\}$ that converge to x, a first-order Kuhn-Tucker point of (1).

At a typical major iteration, the new iterate x is defined by

$$x = x + (\alpha)p$$

(3)

where x is the current iterate, the non-negative scalar (α) is the step length, and p is the search direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the index of the iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

$$\begin{bmatrix} T & 1 \\ -p^T & -p \\ \end{bmatrix} \{ p \} \begin{bmatrix} T \end{bmatrix}$$

Minimize $g^T p + p^T H p$, subject to $l \leq\{A p\} \leq u,$

(4)
where \(g \) is the gradient of \(F \) at \(x \), the matrix \(H \) is a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function (see Section 8.3), and \(A \) is the Jacobian matrix of \(c \) evaluated at \(x \). (Finite-difference estimates may be used for \(g \) and \(A \); see the optional parameter Derivative Level in Section 5.1.) Let \(l \) in (1) be partitioned into three sections: \(l_B \), \(l_L \) and \(l_N \), corresponding to the bound, linear and nonlinear constraints. The vector \(l \) in (4) is similarly partitioned, and is defined as

\[
\begin{align*}
 l &= l_B - x, \\
 l_L &= l_L - A x, \\
 l_N &= l_N - c,
\end{align*}
\]

where \(c \) is the vector of nonlinear constraints evaluated at \(x \).

The vector \(u \) is defined in an analogous fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and nonlinear constraints in the QP active set are the quantities \(Bnd \), \(Lin \) and \(Nln \) in the printed output of E04UCF.) In E04UCF, (4) is solved using E04NCF(*). Since solving a quadratic program as an iterative procedure, the minor iterations of E04UCF are the iterations of E04NCF(*). (More details about solving the subproblem are given in Section 8.1.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let \(C \) denote the \(m \) by \(n \) matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we have available the TQ factorization of \(C \):

\[
C = QT, \quad (5)
\]

where \(T \) is a nonsingular \(m \) by \(m \) reverse-triangular matrix (i.e., \(t_{ij} = 0 \) if \(i+j<m \)), and the non-singular \(n \) by \(n \) matrix \(Q \) is
the product of orthogonal transformations (see Gill et al [6]).

Second, we have the upper-triangular Cholesky factor R of the transformed and re-ordered Hessian matrix

$$R^T R = Q H Q^T,$$

(6)

where H is the Hessian H with rows and columns permuted so that the free variables are first, and Q is the $n \times n$ matrix

$$Q = \begin{pmatrix} I \\ F_x \\ F_{x'} \end{pmatrix},$$

(7)

with I the identity matrix of order n. If the columns of Q

$$Q = \begin{pmatrix} Z \\ Y \end{pmatrix},$$

FR

are partitioned so that

the $n (n = n - m)$ columns of Z form a basis for the null space of

$$C.$$

The matrix Z is used to compute the projected gradient $Z g$

$$z$$

at the current iterate. (The values N_z, N_{g_f} and N_{g_z}

printed by E04UCF give n and the norms of g and $Z g$.)

A theoretical characteristic of SQP methods is that the predicted
active set from the QP subproblem (4) is identical to the correct
active set in a neighbourhood of x. In E04UCF, this feature is
exploited by using the QP active set from the previous iteration
as a prediction of the active set for the next QP subproblem,
which leads in practice to optimality of the subproblems in only
one iteration as the solution is approached. Separate treatment
of bound and linear constraints in E04UCF also saves computation
in factorizing C and H.

Once p has been computed, the major iteration proceeds by
determining a step length (α) that produces a 'sufficient
decrease' in an augmented Lagrangian merit function (see Section
8.2). Finally, the approximation to the transformed Hessian
matrix H is updated using a modified BFGS quasi-Newton update Q
(see Section 8.3) to incorporate new curvature information obtained in the move from x to x.

On entry to E04UCF, an iterative procedure from E04NCF(*) is executed, starting with the user-provided initial point, to find a point that is feasible with respect to the bounds and linear constraints (using the tolerance specified by Linear Feasibility Tolerance see Section 5.1). If no feasible point exists for the bound and linear constraints, (1) has no solution and E04UCF terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible with respect to the bounds and linear constraints. The only exception involves variables whose bounds differ by an amount comparable to the finite-difference interval (see the discussion of Difference Interval in Section 5.1). In contrast to the bounds and linear constraints, it must be emphasised that the nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see the optional parameter Verify in Section 5.1). In general, the check is provided at the first point that is feasible with respect to the linear constraints and bounds. However, the user may request that the check be performed at the initial point.

In summary, the method of E04UCF first determines a point that satisfies the bound and linear constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem;

(b) a linesearch with an augmented Lagrangian merit function; and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function.

These three procedures are described in more detail in Section 8.

4. References

5. Parameters

1: \(N \) -- INTEGER
 Input
 On entry: the number, \(n \), of variables in the problem.
 Constraint: \(N > 0 \).

2: \(NCLIN \) -- INTEGER
 Input
 On entry: the number, \(n \), of general linear constraints in the problem.
 Constraint: \(NCLIN \geq 0 \).

3: \(NCNLN \) -- INTEGER
 Input
 On entry: the number, \(n \), of nonlinear constraints in the problem.
 Constraint: \(NCNLN \geq 0 \).

4: \(NROWA \) -- INTEGER
 Input
 On entry: the first dimension of the array \(A \) as declared in the (sub)program from which E04UCF is called.
 Constraint: \(NROWA \geq \max(1,NCLIN) \).

5: \(NROWJ \) -- INTEGER
 Input
 On entry: the first dimension of the array \(CJAC \) as declared in the (sub)program from which E04UCF is called.
 Constraint: \(NROWJ \geq \max(1,NCNLN) \).

6: \(NROWR \) -- INTEGER
 Input
 On entry: the first dimension of the array \(R \) as declared in the (sub)program from which E04UCF is called.
 Constraint: \(NROWR \geq N \).

7: \(A(NROWA,*) \) -- DOUBLE PRECISION array
 Input
 The second dimension of the array \(A \) must be \(\geq N \) for \(NCLIN > 0 \).
 On entry: the \(i \)th row of the array \(A \) must contain the \(i \)th row of the matrix \(A \) of general linear constraints in (1).
 That is, the \(i \)th row contains the coefficients of the \(i \)th general linear constraint, for \(i = 1,2,...,NCLIN \).
If NCLIN = 0 then the array A is not referenced.

8: BL(N+NCLIN+NCNLN) -- DOUBLE PRECISION array
On entry: the lower bounds for all the constraints, in the
following order. The first n elements of BL must contain the
lower bounds on the variables. If NCLIN > 0, the next n
elements of BL must contain the lower bounds on the general
linear constraints. If NCNLN > 0, the next n elements of BL
must contain the lower bounds for the nonlinear constraints.
To specify a non-existent lower bound (i.e., \(l = -\infty \)), the
value used must satisfy BL(j) <= -BIGBND, where BIGBND is the
value of the optional parameter Infinite Bound Size whose
default value is 10 (see Section 5.1). To specify the jth
constraint as an equality, the user must set BL(j) = BU(j) =
(beta), say, where |(beta)| < BIGBND. Constraint: BL(j) <= BU(j),
for \(j=1,2,...,N+NCLIN+NCNLN \).

9: BU(N+NCLIN+NCNLN) -- DOUBLE PRECISION array
On entry: the upper bounds for all the constraints in the
following order. The first n elements of BU must contain the
upper bounds on the variables. If NCLIN > 0, the next n
elements of BU must contain the upper bounds on the general
linear constraints. If NCNLN > 0, the next n elements of BU
must contain the upper bounds for the nonlinear constraints.
To specify a non-existent upper bound (i.e., \(u = +\infty \)), the
value used must satisfy BU(j) >= BIGBND, where BIGBND is the
value of the optional parameter Infinite Bound Size, whose
default value is 10 (see Section 5.1). To specify the jth
constraint as an equality, the user must set BU(j) = BL(j) =
(beta), say, where |(beta)| < BIGBND. Constraint: BU(j) >=
BL(j), for \(j=1,2,...,N+NCLIN+NCNLN \).

10: CONFUN -- SUBROUTINE, supplied by the user.
External Procedure
CONFUN must calculate the vector c(x) of nonlinear
constraint functions and (optionally) its Jacobian for a
specified n element vector x. If there are no nonlinear
constraints (NCNLN=0), CONFUN will never be called by E04UCF
and CONFUN may be the dummy routine E04UDM. (E04UDM is
included in the NAG Foundation Library and so need not be
supplied by the user. Its name may be implementation-
dependent: see the Users' Note for your implementation for
If there are nonlinear constraints, the first call to CONFUN will occur before the first call to OBJFUN.

Its specification is:

```plaintext
SUBROUTINE CONFUN (MODE, NCNLN, N, NROWJ, NEEDC, 
1 X, C, CJAC, NSTATE, IUSER, 
2 USER)

INTEGER MODE, NCNLN, N, NROWJ, NEEDC, (NCNLN), NSTATE, IUSER(*)
DOUBLE PRECISION X(N), C(NCNLN), CJAC(NROWJ,N), USER(*)

1: MODE -- INTEGER Input/Output
On entry: MODE indicates the values that must be assigned during each call of CONFUN. MODE will always have the value 2 if all elements of the Jacobian are available, i.e., if Derivative Level is either 2 or 3 (see Section 5.1). If some elements of CJAC are unspecified, E04UCF will call CONFUN with MODE = 0, 1, or 2:

If MODE = 2, only the elements of C corresponding to positive values of NEEDC must be set (and similarly for the available components of the rows of CJAC).

If MODE = 1, the available components of the rows of CJAC corresponding to positive values in NEEDC must be set. Other rows of CJAC and the array C will be ignored.

If MODE = 0, the components of C corresponding to positive values in NEEDC must be set. Other components and the array CJAC are ignored. On exit: MODE may be set to a negative value if the user wishes to terminate the solution to the current problem. If MODE is negative on exit from CONFUN then E04UCF will terminate with IFAIL set to MODE.

2: NCNLN -- INTEGER Input
On entry: the number, $n$, of nonlinear constraints.

3: N -- INTEGER Input
On entry: the number, $n$, of variables.

4: NROWJ -- INTEGER Input
On entry: the first dimension of the array CJAC.

5: NEEDC(NCNLN) -- INTEGER array Input

On entry: the indices of the elements of C or CJAC that must be evaluated by CON FUN. If NEEDC(i) > 0 then the ith element of C and/or the ith row of CJAC (see parameter MODE above) must be evaluated at x.

6: X(N) -- DOUBLE PRECISION array 
On entry: the vector x of variables at which the constraint functions are to be evaluated.

7: C(NCNLN) -- DOUBLE PRECISION array 
On exit: if NEEDC(i) > 0 and MODE = 0 or 2, C(i) must contain the value of the ith constraint at x. The remaining components of C, corresponding to the non-positive elements of NEEDC, are ignored.

8: CJAC(NROWJ,N) -- DOUBLE PRECISION array 
On exit: if NEEDC(i) > 0 and MODE = 1 or 2, the ith row of CJAC must contain the available components of the vector (nabla)C given by

\[
(\text{nabla})C = \begin{pmatrix}
\frac{\partial C_i}{\partial x_1} & \cdots & \frac{\partial C_i}{\partial x_n}
\end{pmatrix}^T,
\]

where \( \frac{\partial C_i}{\partial x_j} \) is the partial derivative of the ith constraint with respect to the jth variable, evaluated at the point x. See also the parameter NSTATE below.

The remaining rows of CJAC, corresponding to non-positive elements of NEEDC, are ignored.

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3; see Section 5.1) any constant elements may be assigned to CJAC one time only at the start of the optimization. An element of CJAC that is not subsequently assigned in CON FUN will retain its initial value throughout. Constant elements may be loaded into CJAC either before the call to E04UCF or during the first call to CON FUN (signalled by the value NSTATE = 1). The ability to preload constants is useful when many Jacobian elements are identically zero, in which case CJAC may be initialised to zero and non-zero elements may be reset by CON FUN.

Note that constant non-zero elements do affect the values of the constraints. Thus, if CJAC(i,j) is set to
a constant value, it need not be reset in subsequent
calls to CONFUN, but the value CJAC(i,j)*X(j) must
nonetheless be added to C(i).

It must be emphasized that, if Derivative Level < 2,
unassigned elements of CJAC are not treated as
constant; they are estimated by finite differences, at
non-trivial expense. If the user does not supply a
value for Difference Interval (see Section 5.1), an
interval for each component of x is computed
automatically at the start of the optimization. The
automatic procedure can usually identify constant
elements of CJAC, which are then computed once only by
finite differences.

9: NSTATE -- INTEGER Input
On entry: if NSTATE = 1 then E04UCF is calling CONFUN
for the first time. This parameter setting allows the
user to save computation time if certain data must be
read or calculated only once.

10: IUSER(*) -- INTEGER array User Workspace

11: USER(*) -- DOUBLE PRECISION array User Workspace
CONFUN is called from E04UCF with the parameters IUSER
and USER as supplied to E04UCF. The user is free to use
the arrays IUSER and USER to supply information to
CONFUN as an alternative to using COMMON.
CONFUN must be declared as EXTERNAL in the (sub)program
from which E04UCF is called. Parameters denoted as
Input must not be changed by this procedure.

11: OBJFUN -- SUBROUTINE, supplied by the user.
External Procedure
OBJFUN must calculate the objective function F(x) and
(optionally) the gradient g(x) for a specified n element
vector x.

Its specification is:

```
SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, ISTATE, IUSER, USER)
INTEGER MODE, N, ISTATE, IUSER(*)
DOUBLE PRECISION X(N), OBJF, OBJGRD(N), USER(*)
```

1: MODE -- INTEGER Input/Output
On entry: MODE indicates the values that must be
assigned during each call of OBJFUN.

MODE will always have the value 2 if all components of
the objective gradient are specified by the user, i.e.,
if Derivative Level is either 1 or 3. If some gradient
elements are unspecified, E04UCF will call OBJFUN with
MODE = 0, 1 or 2.
If MODE = 2, compute OBJF and the available
components of OBJGRD.

If MODE = 1, compute all available components of
OBJGRD; OBJF is not required.

If MODE = 0, only OBJF needs to be computed;
OBJGRD is ignored.
On exit: MODE may be set to a negative value if the
user wishes to terminate the solution to the current
problem. If MODE is negative on exit from OBJFUN, then
E04UCF will terminate with IFAIL set to MODE.

2: N -- INTEGER Input
On entry: the number, n, of variables.

3: X(N) -- DOUBLE PRECISION array Input
On entry: the vector x of variables at which the
objective function is to be evaluated.

4: OBJF -- DOUBLE PRECISION Output
On exit: if MODE = 0 or 2, OBJF must be set to the
value of the objective function at x.

5: OBJGRD(N) -- DOUBLE PRECISION array Output
On exit: if MODE = 1 or 2, OBJGRD must return the
available components of the gradient evaluated at x.

6: NSTATE -- INTEGER Input
On entry: if NSTATE = 1 then E04UCF is calling OBJFUN
for the first time. This parameter setting allows the
user to save computation time if certain data must be
read or calculated only once.

7: IUSER(*) -- INTEGER array User Workspace

8: USER(*) -- DOUBLE PRECISION array User Workspace
OBJFUN is called from E04UCF with the parameters IUSER
and USER as supplied to E04UCF. The user is free to use
the arrays IUSER and USER to supply information to
OBJFUN as an alternative to using COMMON.
OBJFUN must be declared as EXTERNAL in the (sub)program
from which E04UCF is called. Parameters denoted as
Input must not be changed by this procedure.

12: ITER -- INTEGER Output
On exit: the number of iterations performed.

13: ISTATE(N+NCLIN+NCNLN) -- INTEGER array Input/Output

On entry: ISTATE need not be initialised if E04UCF is called with (the default) Cold Start option. The ordering of ISTATE is as follows. The first n elements of ISTATE refer to the upper and lower bounds on the variables, elements n+1 through n+n refer to the upper and lower bounds on A x, and elements n+n+1 through n+n+n refer to the upper and lower bounds on c(x). When a Warm Start option is chosen, the elements of ISTATE corresponding to the bounds and linear constraints define the initial working set for the procedure that finds a feasible point for the linear constraints and bounds. The active set at the conclusion of this procedure and the elements of ISTATE corresponding to nonlinear constraints then define the initial working set for the first QP subproblem. Possible values for ISTATE(j) are:

<table>
<thead>
<tr>
<th>ISTATE(j)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The corresponding constraint is not in the initial QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint should be in the working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint should be in the working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This equality constraint should be in the initial working set. This value must not be specified unless BL(j) = BU(j). The values 1, 2 or 3 all have the same effect when BL(j) = BU(j).</td>
</tr>
</tbody>
</table>

Note that if E04UCF has been called previously with the same values of N, NCLIN and NCNLN, ISTATE already contains satisfactory values. If necessary, E04UCF will override the user’s specification of ISTATE so that a poor choice will not cause the algorithm to fail. On exit: with IFAIL = 0 or 1, the values in the array ISTATE correspond to the active set of the final QP subproblem, and are a prediction of the status of the constraints at the solution of the problem. Otherwise, ISTATE indicates the composition of the QP working set at the final iterate. The significance of each possible value of ISTATE(j) is as follows:

-2 This constraint violates its lower bound by more than the appropriate feasibility tolerance (see the optional parameters LinearFeasibility Tolerance and Nonlinear Feasibility Tolerance in
This value can occur only when no feasible point can be found for a QP subproblem.

This constraint violates its upper bound by more than the appropriate feasibility tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear Feasibility Tolerance in Section 5.1). This value can occur only when no feasible point can be found for a QP subproblem.

The constraint is satisfied to within the feasibility tolerance, but is not in the working set.

This inequality constraint is included in the QP working set at its upper bound.

This inequality constraint is included in the QP working set at its upper bound.

This constraint is included in the QP working set as an equality. This value of ISTATE can occur only when BL(j) = BU(j).

Note: the dimension of the array C must be at least max(1,NCNLN).

On exit: if NCNLN > 0, C(i) contains the value of the ith nonlinear constraint function c at the final iterate, for i=1,2,...,NCNLN. If NCNLN = 0, then the array C is not referenced.

Note: the second dimension of the array CJAC must be at least N for NCNLN >0 and 1 otherwise On entry: in general, CJAC need not be initialised before the call to E04UCF. However, if Derivative Level = 3, the user may optionally set the constant elements of CJAC (see parameter NSTATE in the description of CONFUN). Such constant elements need not be re-assigned on subsequent calls to CONFUN. If NCNLN = 0, then the array CJAC is not referenced. On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., CJAC(i,j) contains the partial derivative of the ith constraint function with respect to the jth variable, for i=1,2,...,NCNLN; j = 1,2,...,N. (See the discussion of parameter CJAC under CONFUN.)

CLAMDA(N+NCLIN+NCNLN) -- DOUBLE PRECISION array Input/Output
On entry: CLAMDA need not be initialised if E04UCF is called with the (default) Cold Start option. With the Warm Start option, CLAMDA must contain a multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint specified by the ISTATE array (as above). The ordering of CLAMDA is as follows; the first \( n \) elements contain the multipliers for the bound constraints on the variables, elements \( n + 1 \) through \( n + L \) contain the multipliers for the general linear constraints, and elements \( n + L + 1 \) through \( n + L + N \) contain the multipliers for the nonlinear constraints. If the \( j \)th constraint is defined as 'inactive' by the initial value of the ISTATE array, CLAMDA\((j)\) should be zero; if the \( j \)th constraint is an inequality active at its lower bound, CLAMDA\((j)\) should be non-negative; if the \( j \)th constraint is an inequality active at its upper bound, CLAMDA\((j)\) should be non-positive. On exit: the values of the QP multipliers from the last QP subproblem. CLAMDA\((j)\) should be non-negative if ISTATE\((j) = 1\) and non-positive if ISTATE\((j) = 2\).

17: OBJF -- DOUBLE PRECISION Output
On exit: the value of the objective function, \( F(x) \), at the final iterate.

18: OBJGRD(N) -- DOUBLE PRECISION array Output
On exit: the gradient (or its finite-difference approximation) of the objective function at the final iterate.

19: R(NROWR,N) -- DOUBLE PRECISION array Input/Output
On entry: R need not be initialised if E04UCF is called with a Cold Start option (the default), and will be taken as the identity. With a Warm Start R must contain the upper-triangular Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with the variables in the natural order. Elements not in the upper-triangular part of R are assumed to be zero and need not be assigned. On exit: if Hessian = No, (the default; see Section 5.1), R contains the upper-triangular Cholesky factor R of \( Q^T HQ \), an estimate of the transformed and re-ordered Hessian of the Lagrangian at \( x \) (see (6) in Section 3). If Hessian = Yes, R contains the upper-triangular Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

20: X(N) -- DOUBLE PRECISION array Input/Output
On entry: an initial estimate of the solution. On exit: the final estimate of the solution.

21: IWORK(LIWORK) -- INTEGER array  Workspace

22: LIWORK -- INTEGER  Input
On entry: the dimension of the array IWORK as declared in the (sub)program from which E04UCF is called.
Constraint: LIWORK>=3*N+NCLIN+2*NCNLN.

23: WORK(LWORK) -- DOUBLE PRECISION array  Workspace

24: LWORK -- INTEGER  Input
On entry: the dimension of the array WORK as declared in the (sub)program from which E04UCF is called.
Constraints:
if NCLIN = NCNLN = 0 then
  LWORK >=20*N
if NCNLN = 0 and NCLIN > 0 then
  LWORK >=2*N+20*N+11*NCLIN
if NCNLN > 0 and NCLIN >= 0 then
  LWORK>=2*N+N*NCLIN+20*N*NCNLN+20*N+11*NCLIN+21*NCNLN

If Major Print Level > 0, the required amounts of workspace are output on the current advisory message channel (see X04ABF). As an alternative to computing LIWORK and LWORK from the formulas given above, the user may prefer to obtain appropriate values from the output of a preliminary run with a positive value of Major Print Level and LIWORK and LWORK set to 1. (E04UCF will then terminate with IFAIL = 9.)

25: IUSER(*) -- INTEGER array  User Workspace
Note: the dimension of the array IUSER must be at least 1. IUSER is not used by E04UCF, but is passed directly to routines CONFUN and OBJFUN and may be used to pass information to those routines.

26: USER(*) -- DOUBLE PRECISION array  User Workspace
Note: the dimension of the array USER must be at least 1. USER is not used by E04UCF, but is passed directly to routines CONFUN and OBJFUN and may be used to pass information to those routines.

27: IFAIL -- INTEGER  Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL /= 0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

E04UCF returns with IFAIL = 0 if the iterates have converged to a point x that satisfies the first-order Kuhn-Tucker conditions to the accuracy requested by the optional parameter Optimality Tolerance (see Section 5.1), i.e., the projected gradient and active constraint residuals are negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of Norm Gz is significantly less than that at the starting point;

(ii) during the final major iterations, the values of Step and ItQP are both one;

(iii) the last few values of both Norm Gz and Norm C become small at a fast linear rate;

(iv) Cond Hz is small.

If all these conditions hold, x is almost certainly a local minimum of (1). (See Section 9 for a specific example.)

5.1. Optional Input Parameters

Several optional parameters in E04UCF define choices in the behaviour of the routine. In order to reduce the number of formal parameters of E04UCF these optional parameters have associated default values (see Section 5.1.3) that are appropriate for most problems. Therefore the user need only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional parameters. A complete list of optional parameters and their default values is given in Section 5.1.3

5.1.1. Specification of the optional parameters
Optional parameters may be specified by calling one, or both, of E04UDF and E04UEF prior to a call to E04UCF.

E04UDF reads options from an external options file, with Begin and End as the first and last lines respectively and each intermediate line defining a single optional parameter. For example,

```
Begin
 Print Level = 1
End
```

The call

```
CALL E04UDF (IOPTNS, INFORM)
```

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04UDF should be consulted for a full description of this method of supplying optional parameters.

E04UEF can be called directly to supply options, one call being necessary for each optional parameter. For example,

```
CALL E04UEF ("Print level = 1")
```

E04UEF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters specified by the user are unaltered by E04UCF (unless they define invalid values) and so remain in effect for subsequent calls to E04UCF, unless altered by the user.

5.1.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword, any essential optional qualifiers, the default value, and the definition. The minimum valid abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote INTEGER and DOUBLE PRECISION values required with certain options. The number (epsilon) is a generic notation for machine precision (see X02AJF(*) ), and (epsilon) denotes the relative precision of the objective function (the optional parameter Function Precision see below).
Central Difference Interval $r$ Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not sufficiently accurate, the value of $r$ is used as the difference interval for every component of $x$. The use of finite-differences is discussed further below under the optional parameter Difference Interval.

Cold Start Default = Cold Start

Warm Start

(Axiom parameter STA, warm start when .TRUE.)

This option controls the specification of the initial working set in both the procedure for finding a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter. With a Cold Start, the first working set is chosen by E04UCF based on the values of the variables and constraints at the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or inequality constraints that violate or 'nearly' satisfy their bounds (within Crash Tolerance; see below). With a Warm Start, the user must set the ISTATE array and define CLAMDA and R as discussed in Section 5. ISTATE values associated with bounds and linear constraints determine the initial working set of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE values associated with nonlinear constraints determine the initial working set of the first QP subproblem after such a feasible point has been found. E04UCF will override the user’s specification of ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. A warm start will be advantageous if a good estimate of the initial working set is available - for example, when E04UCF is called repeatedly to solve related problems.

Crash Tolerance $r$ Default = 0.01

(Axiom parameter CRA)

This value is used in conjunction with the optional parameter Cold Start (the default value). When making a cold start, the QP algorithm in E04UCF must select an initial working set. When $r\geq 0$, the initial working set will include (if possible) bounds or general inequality constraints that lie within $r$ of their bounds.

In particular, a constraint of the form $a_{T} x_{j} \geq 1$ will be included.
in the initial working set if \(|a x_j - 1| < r(1 + |l_j|)\). If \(r < 0\) or \(r > 1\), the default value is used.

Defaults

This special keyword may be used to reset the default values following a call to E04UCF.

Derivative Level i Default = 3

(Axiom parameter DER)

This parameter indicates which derivatives are provided by the user in subroutines OBJFUN and CONFUN. The possible choices for i are the following.

<table>
<thead>
<tr>
<th>i</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>All objective and constraint gradients are provided by the user.</td>
</tr>
<tr>
<td>2</td>
<td>All of the Jacobian is provided, but some components of the objective gradient are not specified by the user.</td>
</tr>
<tr>
<td>1</td>
<td>All elements of the objective gradient are known, but some elements of the Jacobian matrix are not specified by the user.</td>
</tr>
<tr>
<td>0</td>
<td>Some elements of both the objective gradient and the Jacobian matrix are not specified by the user.</td>
</tr>
</tbody>
</table>

The value i=3 should be used whenever possible, since E04UCF is more reliable and will usually be more efficient when all derivatives are exact.

If i=0 or 2, E04UCF will estimate the unspecified components of the objective gradient, using finite differences. The computation of finite-difference approximations usually increases the total run-time, since a call to OBJFUN is required for each unspecified element. Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al [10], for a discussion of limiting accuracy).

If i=0 or 1, E04UCF will approximate unspecified elements of the Jacobian. One call to CONFUN is needed for each variable for which partial derivatives are not available. For example, if the Jacobian has the form

\((* * * *)\)
where '*' indicates an element provided by the user and '?' indicates an unspecified element, E04UCF will call CONFUN twice: once to estimate the missing element in column 2, and again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls to OBJFUN and CONFUN are needed. (The switch to central differences is not under the user’s control.)

Difference Interval $r$ Default values are computed

(Axiom parameter DIF)

This option defines an interval used to estimate gradients by finite differences in the following circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of Verify, below).

(b) For estimating unspecified elements of the objective gradient of the Jacobian matrix.

In general, a derivative with respect to the $j$th variable is approximated using the interval $(\delta)$, where $(\delta)_j = r(1+|x_j|)$ with $x$ the first point feasible with respect to the bounds and linear constraints. If the functions are well scaled, the resulting derivative approximation should be accurate to $O(r)$.

See Gill et al [10] for a discussion of the accuracy in finite-difference approximations.

If a difference interval is not specified by the user, a finite-difference interval will be computed automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN for each component. This option is recommended if the function is badly scaled or the user wishes to have E04UCF determine constant elements in the objective and constraint gradients (see the descriptions of CONFUN and OBJFUN in Section 5).
Feasibility Tolerance $r$ Default = $\sqrt{\text{epsilon}}$

(Axiom parameter FEA)

The scalar $r$ defines the maximum acceptable absolute violations in linear and nonlinear constraints at a 'feasible' point; i.e., a constraint is considered satisfied if its violation does not exceed $r$. If $r<\text{epsilon}$ or $r=1$, the default value is used. Using this keyword sets both optional parameters Linear Feasibility Tolerance and Nonlinear Feasibility Tolerance to $r$, if $(\text{epsilon})<r<1$. (Additional details are given below under the descriptions of these parameters.)

0.9

Function Precision $r$ Default = $\text{epsilon}$

(Axiom parameter FUN)

This parameter defines $\text{epsilon}$, which is intended to be a measure of the accuracy with which the problem functions $f$ and $c$ can be computed. If $r<\text{epsilon}$ or $r=1$, the default value is used. The value of $\text{epsilon}$ should reflect the relative precision of $1+|F(x)|$; i.e., $\text{epsilon}$ acts as a relative precision when $|F|$ is large, and as an absolute precision when $|F|$ is small. For example, if $F(x)$ is typically of order 1000 and the first six significant digits are known to be correct, an appropriate value for $\text{epsilon}$ would be $1.0E-6$. In contrast, if $F(x)$ is typically of order $10^{-4}$ and the first six significant digits are known to be correct, an appropriate value for $\text{epsilon}$ would be $1.0E-10$. The choice of $\text{epsilon}$ can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al [10] for a discussion of scaling techniques. The default value is appropriate for most simple functions that are computed with full accuracy. However, when the accuracy of the computed function values is known to be significantly worse than full precision, the value of $\text{epsilon}$ should be large enough so that E04UCF will not attempt to distinguish between function values that differ by less than the error inherent in the calculation.

Hessian No Default = No

Hessian Yes
This option controls the contents of the upper-triangular matrix R (see Section 5). E04UCF works exclusively with the transformed and re-ordered Hessian $H$, and hence extra computation is required to form the Hessian itself. If Hessian = No, R contains the Cholesky factor of the transformed and re-ordered Hessian. If Hessian = Yes the Cholesky factor of the approximate Hessian itself is formed and stored in R. The user should select Hessian = Yes if a warm start will be used for the next call to E04UCF.

10

Infinite Bound Size r Default = 10

(Axiom parameter INFB)

If r > 0, r defines the 'infinite' bound BIGBND in the definition of the problem constraints. Any upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a lower bound less than or equal to -BIGBND). If r <= 0, the default value is used.

10

Infinite Step Size r Default = max(BIGBND,10)

(Axiom parameter INFS)

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded solution. If the change in x during an iteration would exceed the value of Infinite Step Size, the objective function is considered to be unbounded below in the feasible region. If r <= 0, the default value is used.

Iteration limit i Default = max(50,3(n+n)+10n)

See Major Iteration Limit below.

------------

Linear Feasibility Tolerance r Default = $\sqrt[\text{L}](\epsilon)$

1

(Axiom parameter LINF)

------------

Nonlinear Feasibility Tolerance r Default = $\sqrt[\text{1}](\epsilon)$ if

2
(Axiom parameter NONF)

0.33

Derivative Level >= 2 and (epsilon) otherwise

The scalars $r_1$ and $r_2$ define the maximum acceptable absolute violations in linear and nonlinear constraints at a 'feasible' point; i.e., a linear constraint is considered satisfied if its violation does not exceed $r_1$, and similarly for a nonlinear constraint and $r_2$. If $r_1 \leq (\epsilon)$ or $r_2 \geq 1$, the default value is used, for $i=1,2$.

On entry to E04UCF, an iterative procedure is executed in order to find a point that satisfies the linear constraint and bounds on the variables to within the tolerance $r_1$. All subsequent iterates will satisfy the linear constraints to within the same tolerance (unless $r_1$ is comparable to the finite-difference interval).

For nonlinear constraints, the feasibility tolerance $r_2$ defines the largest constraint violation that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate, the value of Nonlinear Feasibility Tolerance acts as a partial termination criterion for the iterative sequence generated by E04UCF (see the discussion of Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the variables and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify $r_1 = 10^{-6}$.

Linesearch Tolerance $r$ Default = 0.9

(Axiom parameter LINT)

The value $r$ (0 <= $r$ < 1) controls the accuracy with which the step ($\alpha$) taken during each iteration approximates a minimum of the merit function along the search direction (the smaller the value of $r$, the more accurate the linesearch). The default value $r=0.9$ requests an inaccurate search, and is appropriate for most
problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to reduce the number of major iterations - for example, if the objective function is cheap to evaluate, or if a substantial number of gradients are unspecified.

List Default = List
Nolist

(Axiom parameter LIST)

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress the printing and List may be used to restore printing.

Major Iteration Limit $i$ Default = \( \max(50,3(n+n) + 10n) \)

Iteration Limit
Iters
Itns

(Axiom parameter MAJI)

The value of $i$ specifies the maximum number of major iterations allowed before termination. Setting $i=0$ and Major Print Level > 0 means that the workspace needed will be computed and printed, but no iterations will be performed.

Major Print level $i$ Default = 10

Print Level

(Axiom parameter MAJP)

The value of $i$ controls the amount of printout produced by the major iterations of E04UCF. (See also Minor Print level below.) The levels of printing are indicated below.

<table>
<thead>
<tr>
<th>$i$</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output</td>
</tr>
<tr>
<td>1</td>
<td>The final solution only.</td>
</tr>
</tbody>
</table>
One line for each major iteration (no printout of the final solution).

>=10 The final solution and one line of output for each iteration.

>=20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint violations, the values of the nonlinear constraints (the vector c), the values of the linear constraints (the vector A x),

and the current values of the variables (the vector x).

>=30 At each major iteration, the diagonal elements of the matrix T associated with the TQ factorization (5) of the QP working set, and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (6).

Minor Iteration Limit i Default = max(50,3(n+n +n ))
L N

(Axiom parameter MINI)

The value of i specifies the maximum number of iterations for the optimality phase of each QP subproblem.

Minor Print Level i Default = 0

(Axiom parameter MINP)

The value of i controls the amount of printout produced by the minor iterations of E04UCF, i.e., the iterations of the quadratic programming algorithm. (See also Major Print Level, above.) The following levels of printing are available.

i Output

0 No output.

1 The final QP solution.

5 One line of output for each minor iteration (no printout of the final QP solution).

>=10 The final QP solution and one brief line of output for each minor iteration.

>=20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the QP search
direction, the QP constraint values, and the status of each QP constraint.

\[ \geq 30 \quad \text{At each minor iteration, the diagonal elements of the matrix } T \text{ associated with the } TQ \text{ factorization (5) of the QP working set, and the diagonal elements of the Cholesky factor } R \text{ of the transformed Hessian (6).} \]

---

**Nonlinear Feasibility Tolerance** \( r \) Default = \( \sqrt{\text{epsilon}} \)

See Linear Feasibility Tolerance, above.

0.8

**Optimality Tolerance** \( r \) Default = \( \text{epsilon} \)

(Axiom parameter OPT)

The parameter \( r \) (\( \text{epsilon} \leq r < 1 \)) specifies the accuracy to which the user wishes the final iterate to approximate a solution of the problem. Broadly speaking, \( r \) indicates the number of correct figures desired in the objective function at the solution. For example, if \( r \) is 10 and E04UCF terminates successfully, the final value of \( F \) should have approximately six correct figures. If \( r \leq \text{epsilon} \) or \( r \geq 1 \) the default value is used.

E04UCF will terminate successfully if the iterative sequence of \( x \) values is judged to have converged and the final point satisfies the first-order Kuhn-Tucker conditions (see Section 3). The sequence of iterates is considered to have converged at \( x \) if

\[
(\alpha) \|p\| \leq r(1+\|x\|), \quad (8a)
\]

where \( p \) is the search direction and \( (\alpha) \) the step length from (3). An iterate is considered to satisfy the first-order conditions for a minimum if

\[
\|Z_g\| \leq r(1+\max(1+|F(x)|,\|g\|)) \quad (8b)
\]

and

\[
|\text{res}| \leq \text{ftol} \text{ for all } j, \quad (8c)
\]

\( j \)
where $Z_g^T$ is the projected gradient (see Section 3), $g^T$ is the gradient of $F(x)$ with respect to the free variables, $res_j$ is the violation of the $j$th active nonlinear constraint, and $ftol$ is the Nonlinear Feasibility Tolerance.

Step Limit $r$ Default = 2.0

(Axiom parameter STE)

If $r>0$, $r$ specifies the maximum change in variables at the first step of the linesearch. In some cases, such as $F(x)=ae$ or $F(x)=ax$, even a moderate change in the components of $x$ can lead to floating-point overflow. The parameter $r$ is therefore used to encourage evaluation of the problem functions at meaningful points. Given any major iterate $x$, the first point $x$ at which $F$ and $c$ are evaluated during the linesearch is restricted so that

$$||x-x|| \leq r(1+||x||).$$

The linesearch may go on and evaluate $F$ and $c$ at points further from $x$ if this will result in a lower value of the merit function. In this case, the character $L$ is printed at the end of the optional line of printed output, (see Section 5.2). If $L$ is printed for most of the iterations, $r$ should be set to a larger value.

Wherever possible, upper and lower bounds on $x$ should be used to prevent evaluation of nonlinear functions at wild values. The default value Step Limit = 2.0 should not affect progress on well-behaved functions, but values 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a small value of Step Limit is selected, a good starting point may be required. An important application is to the class of nonlinear least-squares problems. If $r\leq0$, the default value is used.

Start Objective Check At Variable $k$ Default = 1

(Axiom parameter STAO)

Start Constraint Check At Variable $k$ Default = 1

(Axiom parameter STAC)
Stop Objective Check At Variable l Default = n

(Axiom parameter STDD)

Stop Constraint Check At Variable l Default = n

(Axiom parameter STDC)

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the verification of gradient elements computed by subroutines OBJFUN and CONFUN. For example, if the first 30 components of the objective gradient appeared to be correct in an earlier run, so that only component 31 remains questionable, it is reasonable to specify Start Objective Check At Variable 31. If the first 30 variables appear linearly in the objective, so that the corresponding gradient elements are constant, the above choice would also be appropriate.

Verify Level i Default = 0

Verify No

Verify Level - 1

Verify Level 0

Verify Objective Gradients

Verify Level 1

Verify Constraint Gradients

Verify Level 2

Verify

Verify Yes

Verify Gradients

Verify Level 3

(Axiom parameter VE)

These keywords refer to finite-difference checks on the gradient elements computed by the user-provided subroutines OBJFUN and CONFUN. (Unspecified gradient components are not checked.) It is possible to specify Verify Levels 0–3 in several ways, as indicated above. For example, the nonlinear objective gradient
(if any) will be verified if either Verify Objective Gradients or Verify Level 1 is specified. Similarly, the objective and the constraint gradients will be verified if Verify Yes or Verify Level 3 or Verify is specified.

If $0 \leq i \leq 3$, gradients will be verified at the first point that satisfies the linear constraints and bounds. If $i=0$, only a 'cheap' test will be performed, requiring one call to OBJFUN and one call to CONFUN. If $1 \leq i \leq 3$, a more reliable (but more expensive) check will be made on individual gradient components, within the ranges specified by the Start and Stop keywords described above. A result of the form OK or BAD? is printed by E04UCF to indicate whether or not each component appears to be correct.

If $10 \leq i \leq 13$, the action is the same as for $i - 10$, except that it will take place at the user-specified initial value of $x$.

We suggest that Verify Level 3 be specified whenever a new function routine is being developed.

5.1.3. Optional parameter checklist and default values

For easy reference, the following list shows all the valid keywords and their default values. The symbol (epsilon) represents the machine precision (see X02AJF(*)).

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central difference interval</td>
<td>Computed automatically</td>
</tr>
<tr>
<td>Cold/Warm start</td>
<td>Cold start</td>
</tr>
<tr>
<td>Crash tolerance</td>
<td>0.01</td>
</tr>
<tr>
<td>Defaults</td>
<td>0.01</td>
</tr>
<tr>
<td>Derivative level</td>
<td>3</td>
</tr>
<tr>
<td>Difference interval</td>
<td>Computed automatically</td>
</tr>
<tr>
<td>Feasibility tolerance</td>
<td>\sqrt{\text{epsilon}}</td>
</tr>
<tr>
<td>Function precision</td>
<td>(epsilon)</td>
</tr>
</tbody>
</table>
Hessian No 10
Infinite bound size 10
Infinite step size 10

---

Linear feasibility tolerance \\/(\text{epsilon})

Linesearch tolerance 0.9
List/Nolist List

Major iteration limit \[ \max(50, 3(n+N)+10n) \] 10

Minor iteration limit \[ \max(50, 3(n+N)) \] 0

Nonlinear feasibility tolerance \\/(\text{epsilon}) \text{ if Derivative Level} \geq 2 0.33

Optimality tolerance (epsilon) R 0.8

Step limit 2.0
Start objective check 1
Start constraint check 1
Stop objective check n
Stop constraint check n
Verify level 0

5.2. Description of Printed Output

The level of printed output from E04UCF is controlled by the user
(see the description of Major Print Level and Minor Print Level in Section 5.1). If Minor Print Level > 0, output is obtained from the subroutines that solve the QP subproblem. For a detailed description of this information the reader should refer to E04NCF(*).

When Major Print Level >= 5, the following line of output is produced at every major iteration of E04UCF. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

- **Itn** is the iteration count.
- **ItQP** is the sum of the iterations required by the feasibility and optimality phases of the QP subproblem. Generally, ItQP will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 3).
  
  Note that ItQP may be greater than the Minor Iteration Limit if some iterations are required for the feasibility phase.

- **Step** is the step (alpha) taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

- **Nfun** is the cumulative number of evaluations of the objective function needed for the linesearch. Evaluations needed for the estimation of the gradients by finite differences are not included. Nfun is printed as a guide to the amount of work required for the linesearch.

- **Merit** is the value of the augmented Lagrangian merit function (12) at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty parameters (see Section 8.2). As the solution is approached, Merit will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty parameters. During a sequence of major iterations with infeasible subproblems, the
sequence of Merit values will decrease monotonically until either a feasible subproblem is obtained or E04UCF terminates with IFAIL = 3 (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., NCNLN = 0), this entry contains Objective, the value of the objective function $F(x)$. The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

- **Bnd** is the number of simple bound constraints in the predicted active set.
- **Lin** is the number of general linear constraints in the predicted active set.
- **Nln** is the number of nonlinear constraints in the predicted active set (not printed if NCNLN is zero).
- **Nz** is the number of columns of $Z$ (see Section 8.1). The value of $Nz$ is the number of variables minus the number of constraints in the predicted active set; i.e., $Nz = n - (Bnd + Lin + Nln)$.
- **Norm Gf** is the Euclidean norm of $g^T$, the gradient of the FR objective function with respect to the free variables, i.e., variables not currently held at a bound.
- **Norm Gz** is $||Z^T g||$, the Euclidean norm of the projected FR gradient (see Section 8.1). $Norm Gz$ will be approximately zero in the neighbourhood of a solution.
- **Cond H** is a lower bound on the condition number of the Hessian approximation $H$.
- **Cond Hz** is a lower bound on the condition number of the projected Hessian approximation $H$ (\[ H = Z^T H Z = R^T R ; \] see (6) and (12) in Sections 3.)
and 8.1). The larger this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active constraints.

Norm C is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if NCNLN is zero). Norm C will be approximately zero in the neighbourhood of a solution.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit function (not printed if NCNLN is zero).

Conv is a three-letter indication of the status of the three convergence tests (8a)-(8c) defined in the description of the optional parameter Optimality Tolerance in Section 5.1. Each letter is T if the test is satisfied, and F otherwise. The three tests indicate whether:

(a) the sequence of iterates has converged;

(b) the projected gradient (Norm Gz) is sufficiently small; and

(c) the norm of the residuals of constraints in the predicted active set (Norm C) is small enough.

If any of these indicators is F when E04UCF terminates with IFAIL = 0, the user should check the solution carefully.

M is printed if the Quasi-Newton update was modified to ensure that the Hessian approximation is positive-definite (see Section 8.3).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the linesearch. (In this case, the QP subproblem is resolved with the central-difference gradient and Jacobian.) If the value of Step is non-zero, central differences were computed because Norm Gz and Norm C imply
that $x$ is close to a Kuhn-Tucker point.

$L$ is printed if the linesearch has produced a relative change in $x$ greater than the value defined by the optional parameter Step Limit. If this output occurs frequently during later iterations of the run, Step Limit should be set to a larger value.

$R$ is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of $R$ indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, $R$ is modified so that its diagonal condition estimator is bounded.

When Major Print Level = 1 or Major Print Level $\geq$ 10, the summary printout at the end of execution of E04UCF includes a listing of the status of every variable and constraint. Note that default names are assigned to all variables and constraints.

The following describes the printout for each variable.

- **Varbl** gives the name (V) and index $j=1,2,\ldots,n$ of the variable.
- **State** gives the state of the variable in the predicted active set (FR if neither bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If the variable is predicted to lie outside its upper or lower bound by more than the feasibility tolerance, State will be ++ or -- respectively. (The latter situation can occur only when there is no feasible point for the bounds and linear constraints.)
- **Value** is the value of the variable at the final iteration.
- **Lower bound** is the lower bound specified for the variable. (None indicates that $BL(j)\leq -BIGBND$.)
- **Upper bound** is the upper bound specified for the variable. (None indicates that $BL(j)\geq BIGBND$.)
- **Lagr Mult** is the value of the Lagrange-multiplier for the associated bound constraint. This will be zero if State is FR. If $x$ is optimal, the multiplier should be non-negative if State is LL, and non-
positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds BL(j) and BU(j).

The printout for general constraints is the same as for variables, except for the following:

L Con is the name (L) and index i, for i = 1,2,...,NCLIN of a linear constraint.

N Con is the name (N) and index i, for i = 1,2,...,NCNLN of a nonlinear constraint.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

The input data for E04UCF should always be checked (even if E04UCF terminates with IFAIL=0).

Note that when Print Level>0, a short description of IFAIL is printed.

Errors and diagnostics indicated by IFAIL, together with some recommendations for recovery are indicated below.

IFAIL = 1

The final iterate x satisfies the first-order Kuhn-Tucker conditions to the accuracy requested, but the sequence of iterates has not yet converged. E04UCF was terminated because no further improvement could be made in the merit function.

This value of IFAIL may occur in several circumstances. The most common situation is that the user asks for a solution with accuracy that is not attainable with the given precision of the problem (as specified by Function Precision see Section 5). This condition will also occur if, by chance, an iterate is an 'exact' Kuhn-Tucker point, but the change in the variables was significant at the previous iteration. (This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL = 0 are satisfied, x is likely to be a solution of (1) even if IFAIL = 1.
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL = 2
E04UCF has terminated without finding a feasible point for the linear constraints and bounds, which means that no feasible point exists for the given value of Linear Feasibility Tolerance (see Section 5.1). The user should check that there are no constraint redundancies. If the data for the constraints are accurate only to an absolute precision (sigma), the user should ensure that the value of the optional parameter Linear Feasibility Tolerance is greater than (sigma). For example, if all elements of A are of order unity and are accurate to only three decimal places, Linear Feasibility Tolerance should be at least 10^-3.

IFAIL = 3
No feasible point could be found for the nonlinear constraints. The problem may have no feasible solution. This means that there has been a sequence of QP subproblems for which no feasible point could be found (indicated by I at the end of each terse line of output). This behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is no general test that can determine whether a feasible point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier subproblems have been feasible, small constraint inconsistencies may be present. The user should check the validity of constraints with negative values of ISTATE. If the user is convinced that a feasible point does exist, E04UCF should be restarted at a different starting point.

IFAIL = 4
The limiting number of iterations (determined by the optional parameter Major Iteration Limit see Section 5.1) has been reached.

If the algorithm appears to be making progress, Major Iteration Limit may be too small. If so, increase its value and rerun E04UCF (possibly using the Warm Start option). If the algorithm seems to be 'bogged down', the user should check for incorrect gradients or ill-conditioning as described below under IFAIL = 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the algorithm, in which case performing additional iterations may be helpful. However, ill-conditioning in the Hessian approximation tends to persist once it has begun, so that allowing additional
iterations without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation was modified during the latter iterations (i.e., an M occurs at the end of each terse line), it may be worthwhile to try a warm start at the final point as suggested above.

IFAIL = 6
x does not satisfy the first-order Kuhn-Tucker conditions, and no improved point for the merit function could be found during the final line search.

A sufficient decrease in the merit function could not be attained during the final line search. This sometimes occurs because an overly stringent accuracy has been requested, i.e., Optimality Tolerance is too small. In this case the user should apply the four tests described under IFAIL = 0 above to determine whether or not the final solution is acceptable (see Gill et al [10], for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and E04UCF has failed completely to move from the initial point then subroutines OBJFUN or CONFUN may be incorrect. The user should refer to comments below under IFAIL = 7 and check the gradients using the Verify parameter. Unfortunately, there may be small errors in the objective and constraint gradients that cannot be detected by the verification process. Finite-difference approximations to first derivatives are catastrophically affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the iterates if the finite-difference interval is altered. One might also suspect this type of error if a switch is made to central differences even when Norm Gz and Norm C are large.

Another possibility is that the search direction has become inaccurate because of ill-conditioning in the Hessian approximation or the matrix of constraints in the working set; either form of ill-conditioning tends to be reflected in large values of ItQp (the number of iterations required to solve each QP subproblem).

If the condition estimate of the projected Hessian (Cond Hz) is extremely large, it may be worthwhile to rerun E04UCF from the final point with the Warm Start option. In this situation, ISTATE should be left unaltered and R should be reset to the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large), it may be
helpful to run E04UCF with a relaxed value of the Feasibility Tolerance (Constraint dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T, whose diagonals will be printed for Major Print Level >= 30).

IFAIL= 7
The user-provided derivatives of the objective function and/or nonlinear constraints appear to be incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints. This value of IFAIL will occur if the verification process indicated that at least one gradient or Jacobian component had no correct figures. The user should refer to the printed output to determine which elements are suspected to be in error.

As a first-step, the user should check that the code for the objective and constraint values is correct - for example, by computing the function at a point where the correct value is known. However, care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable how often the values x=0 or x=1 are used to test function evaluation procedures, and how often the special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves subsidiary data communicated in COMMON storage. Although the first evaluation of the function may be correct, subsequent calculations may be in error because some of the subsidiary data has accidently been overwritten.

Errors in programming the function may be quite subtle in that the function value is 'almost' correct. For example, the function may not be accurate to full precision because of the inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A common error on machines where numerical calculations are usually performed in double precision is to include even one single-precision constant in the calculation of the function; since some compilers do not convert such constants to double precision, half the correct figures may be lost by such a seemingly trivial error.

IFAIL= 9
An input parameter is invalid. The user should refer to the printed output to determine which parameter must be redefined.
22.4. NAGE.HT

IFAIL Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning in the working set when adding the jth constraint, it may be possible to avoid the difficulty by increasing the magnitude of the optional parameter Linear Feasibility Tolerance or Nonlinear Feasibility Tolerance, and rerunning the program. If the message recurs even after this change, the offending linearly dependent constraint (with index 'j') must be removed from the problem. If overflow occurs in one of the user-supplied routines (e.g. if the nonlinear functions involve exponentials or singularities), it may help to specify tighter bounds for some of the variables (i.e., reduce the gap between appropriate l_j and u_j).

7. Accuracy

If IFAIL = 0 on exit then the vector returned in the array X is an estimate of the solution to an accuracy of approximately Feasibility Tolerance (see Section 5.1), whose default value is 0.8 (epsilon), where (epsilon) is the machine precision (see X02AJF(*)).

8. Further Comments

In this section we give some further details of the method used by E04UCF.

8.1. Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using the method of E04NCF(*) (Gill et al [8]), which was specifically designed to be used within an SQP algorithm for nonlinear programming.

The method of E04UCF is a two-phase (primal) quadratic programming method. The two phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible region (the optimality phase). The computations in both phases are performed by the same subroutines. The two-phase nature of the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the solution of (4); the new
iterate \( p \) is defined by

\[
  p = p + (\sigma) d, \quad \text{(9)}
\]

where, as in (3), \((\sigma)\) is a non-negative step length and \(d\) is a search direction.

At the beginning of each iteration of E04UCF, a working set is defined of constraints (general and bound) that are satisfied exactly. The vector \(d\) is then constructed so that the values of constraints in the working set remain unaltered for any move along \(d\). For a bound constraint in the working set, this property is achieved by setting the corresponding component of \(d\) to zero, i.e., by fixing the variable at its bound. As before, the subscripts 'FX' and 'FR' denote selection of the components associated with the fixed and free variables.

Let \(C\) denote the sub-matrix of rows of

\[
\begin{pmatrix}
  (A) \\
  (L) \\
  (A) \\
  (N)
\end{pmatrix}
\]

corresponding to general constraints in the working set. The general constraints in the working set will remain unaltered if

\[
C_{\text{FR}} d_{\text{FR}} = 0, \quad \text{(10)}
\]

which is equivalent to defining \(d_{\text{FR}}\) as

\[
  d_{\text{FR}} = Z d_{z}, \quad \text{(11)}
\]

for some vector \(d_{z}\), where \(Z\) is the matrix associated with the TQ factorization (5) of \(C_{\text{FR}}\).

The definition of \(d_{z}\) in (11) depends on whether the current \(p\) is\(z\) feasible. If not, \(d_{z}\) is zero except for a component \((\gamma)\) in\(z\) the \(j\)th position, where \(j\) and \((\gamma)\) are chosen so that the sum of infeasibilities is decreasing along \(d_{z}\). (For further details, see Gill et al [8].) In the feasible case, \(d_{z}\) satisfies the

\[
C_{\text{FR}} d_{z} = 0.
\]
equations

\[ \begin{align*}
    R^T R^{-1} d &= -Z q, \\
    z^T z &= 0
\end{align*} \tag{12} \]

where \( R \) is the Cholesky factor of \( Z^T Z \) and \( q \) is the gradient of the quadratic objective function \( (q=g+Hp) \). (The vector \( z^T q \) is the projected gradient of the QP.) With (12), \( P+d \) is the minimizer of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace defined by the working set. During the feasibility phase, the projected gradient will usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero projected gradient implies that \( p \) minimizes the quadratic objective function when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are computed. Given a positive constant \( (\delta) \) of the order of the machine precision, the Lagrange multiplier \( (\mu) \) corresponding to an inequality constraint in the working set at its upper bound is said to be optimal if

\[ (\mu) \leq (\delta) \] when the \( j \)th constraint is at its upper bound, or

\[ (\mu) \geq -(\delta) \] when the associated constraint is at its lower bound. If any multiplier is non-optimal, the current objective function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, no feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of infeasibilities. At this point, the Lagrange multiplier \( (\mu) \) will satisfy

\[ -(1+(\delta)) \leq (\mu) \leq (\delta) \] for an inequality constraint at its upper bound, and

\[ -(\delta) \leq (\mu) \leq 1+(\delta) \] for an inequality at its lower bound.

The Lagrange multiplier for an equality constraint will satisfy

\[ |(\mu)| \leq 1+(\delta). \]
The choice of step length (\( \sigma \)) in the QP iteration (9) is based on remaining feasible with respect to the satisfied constraints. During the optimality phase, if \( p+d \) is feasible, (\( \sigma \)) will be taken as unity. (In this case, the projected gradient at \( p \) will be zero.) Otherwise, (\( \sigma \)) is set to (\( \sigma \)), the step to the 'nearest' constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to \( C \):

- if the status of a general constraint changes, a row of \( C \) is altered;
- if a bound constraint enters or leaves the working set, a column of \( C \) changes. Explicit representations are recurred of \( T, Q \) and \( R \), and of the vectors \( q \) and \( g \).

8.2. The Merit Function

After computing the search direction as described in Section 3, each major iteration proceeds by determining a step length (\( \alpha \)) in (3) that produces a 'sufficient decrease' in the augmented Lagrangian merit function

\[
L(x, (\lambda), s) = F(x) - > (\lambda) \ (c(x) - s) \\
= F(x) + > (\rho) \ (c(x) - s),
\]

where \( x, (\lambda) \) and \( s \) vary during the line search. The summation terms in (13) involve only the nonlinear constraints. The vector (\( \lambda \)) is an estimate of the Lagrange multipliers for the nonlinear constraints of (1). The non-negative slack variables \{s\} allow nonlinear inequality constraints to be treated without introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves as a direction of search for the three sets of variables. The non-negative vector (\( \rho \)) of penalty parameters is initialised to zero at the beginning of the
first major iteration. Thereafter, selected components are increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of \( p_i \) (the printed quantity Penalty, see Section 5.2) is generally non-decreasing, although each \( p_i \) may be reduced a limited number of times.

The merit function (13) and its global convergence properties are described in Gill et al [9].

8.3. The Quasi-Newton Update

The matrix \( H \) in (4) is a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel [3].) At the end of each major iteration, a new Hessian approximation \( H \) is defined as a rank-two modification of \( H \). In E04UCF, the BFGS quasi-Newton update is used:

\[
H = H - \frac{1}{T} H s s^T H + \frac{1}{T} y y^T,
\]

where \( s = x - x \) (the change in \( x \)).

In E04UCF, \( H \) is required to be positive-definite. If \( H \) is positive-definite, \( H \) defined by (14) will be positive-definite if and only if \( y \) is positive (see, e.g. Dennis and More [1]). Ideally, \( y \) in (14) would be taken as \( y \), the change in gradient of the Lagrangian function

\[
y_L = y^{(N)} (\mu_L) - g + A (\mu_L),
\]

where \( (\mu_L) \) denotes the QP multipliers associated with the nonlinear constraints of the original problem. If \( y_L \) is not sufficiently positive, an attempt is made to perform the update with a vector \( y \) of the form
\[ y = y + \sum_{i=1}^{\infty} (\omega_i) (a_i(x)c_i(x) - a_i(x)c_i(x)), \]

where \((\omega_i) \geq 0\). If no such vector can be found, the update is performed with a scaled \(y\); in this case, \(M\) is printed to indicate that the update is modified.

Rather than modifying \(H\) itself, the Cholesky factor of the transformed Hessian \(H\) (6) is updated, where \(Q\) is the matrix from (5) associated with the active set of the QP subproblem. The update (13) is equivalent to the following update to \(H\):

\[
Q^{-1} H Q^{-T} = \begin{bmatrix} 1 & T & 1 & T \\ Q & Q & T & Q \\ Q & Q & Q & Q \\ Q & Q & Q & Q \end{bmatrix} \begin{bmatrix} H + s s s y s y s \end{bmatrix},
\]

where \(y = Q y\), and \(s = Q s\). This update may be expressed as a rank-one update to \(R\) (see Dennis and Schnabel [2]).

9. Example

This section describes one version of the so-called 'hexagon' problem (a different formulation is given as Problem 108 in Hock and Schittkowski [11]). The problem is to determine the hexagon of maximum area such that no two of its vertices are more than one unit apart (the solution is not a regular hexagon).

All constraint types are included (bounds, linear, nonlinear), and the Hessian of the Lagrangian function is not positive-definite at the solution. The problem has nine variables, non-infinite bounds on seven of the variables, four general linear constraints, and fourteen nonlinear constraints.

The objective function is

\[
F(x) = -x_{2} x_{6} + x_{3} x_{7} - x_{2} x_{5} + x_{x} x_{4} + x_{x} x_{9} + x_{3} x_{8},
\]

2 6 1 7 3 7 5 8 4 9 3 8

The bounds on the variables are
\( x \geq 0, -1 \leq x \leq 1, x \geq 0, x \geq 0, x \leq 0, \text{ and } x \leq 0. \)

Thus,

\[
T_l = (0, -\infty, -1, -\infty, 0, 0, 0, -\infty, -\infty)
\]

\[
B_T = (\infty, \infty, 1, \infty, \infty, \infty, \infty, 0, 0)
\]

The general linear constraints are

\[
x - x \geq 0, x - x \geq 0, x - x \geq 0, \text{ and } x - x \geq 0.
\]

Hence,

\[
(0) (-1 1 0 0 0 0 0 0 0) (\infty)
\]

\[
(0) (0 -1 1 0 0 0 0 0 0) (\infty)
\]

\[
l = (0), A = (0 0 1 -1 0 0 0 0 0) \text{ and } u = (\infty).
\]

\[
L (0) L (0 0 0 1 -1 0 0 0 0) L (\infty)
\]

The nonlinear constraints are all of the form \( c_i(x) \leq 1, \) for \( i = 1, 2, \ldots, 14; \) hence, all components of \( l \) are \( -\infty, \) and all \( N \) components of \( u \) are 1. The fourteen functions \( \{c_i(x)\} \) are

\[
c_i(x) = x^2 + x^2, \quad i = 1, 2, 3, 4, \ldots, 14
\]

\[
c_2(x) = (x - x)^2 + (x - x)^2, \quad 2 2 1 7 6
\]

\[
c_3(x) = (x - x)^2 + x^2, \quad 3 3 1 6
\]

\[
c_4(x) = (x - x)^2 + (x - x)^2, \quad 4 1 4 6 8
\]
c (x)=(x -x ) +(x -x ) ,
5 1 5 6 9

2 2
c (x)=x +x ,
6 2 7

2 2
c (x)=(x -x ) +x ,
7 3 2 7

2 2
c (x)=(x -x ) +(x -x ) ,
8 4 2 8 7

2 2
c (x)=(x -x ) +(x -x ) ,
9 2 5 7 9

2 2
c (x)=(x -x ) +x ,
10 4 3 8

2 2
c (x)=(x -x ) +x ,
11 5 3 9

2 2
c (x)=x +x ,
12 4 8

2 2
c (x)=(x -x ) +(x -x ) ,
13 4 5 9 8

2 2
c (x)=x +x .
14 5 9

An optimal solution (to five figures) is

* x =(0.060947,0.59765,1.0,0.59765,0.060947,0.34377,0.5,
T -0.5,0.34377),
*

and F(x )=-1.34996. (The optimal objective function is unique,
but is achieved for other values of x.) Five nonlinear
constraints and one simple bound are active at \( x \). The sample solution output is given later in this section, following the sample main program and problem definition.

Two calls are made to E04UCF in order to demonstrate some of its features. For the first call, the starting point is:

\[
\begin{align*}
T \\
x &= (0.1, 0.125, 0.66666, 0.142857, 0.111111, 0.2, 0.25, -0.2, -0.25) \\
0
\end{align*}
\]

All objective and constraint derivatives are specified in the user-provided subroutines OBJFN1 and CONFN1, i.e., the default option Derivative Level =3 is used.

On completion of the first call to E04UCF, the optimal variables are perturbed to produce the initial point for a second run in which the problem functions are defined by the subroutines OBJFN2 and CONFN2. To illustrate one of the finite-difference options in E04UCF, these routines are programmed so that the first six components of the objective gradient and the constant elements of the Jacobian matrix are not specified; hence, the option Derivative Level =0 is chosen. During computation of the finite-difference intervals, the constant Jacobian elements are identified and set, and E04UCF automatically increases the derivative level to 2.

The second call to E04UCF illustrates the use of the Warm Start Level option to utilize the final active set, nonlinear multipliers and approximate Hessian from the first run. Note that Hessian = Yes was specified for the first run so that the array R would contain the Cholesky factor of the approximate Hessian of the Lagrangian.

The two calls to E04UCF illustrate the alternative methods of assigning default parameters. (There is no special significance in the order of these assignments; an options file may just as easily be used to modify parameters set by E04UEF.)

The results are typical of those obtained from E04UCF when solving well behaved (non-trivial) nonlinear problems. The approximate Hessian and working set remain relatively well-conditioned. Similarly the penalty parameters remain small and approximately constant. The numerical results illustrate much of the theoretically predicted behaviour of a quasi-Newton SQP method. As \( x \) approaches the solution, only one minor iteration is performed per major iteration, and the Norm Gz and Norm C columns exhibit the fast linear convergence rate mentioned in Sections 5 and 6. Note that the constraint violations converge earlier than
the projected gradient. The final values of the project gradient norm and constraint norm reflect the limiting accuracy of the two quantities. It is possible to achieve almost full precision in the constraint norm but only half precision in the projected gradient norm. Note that the final accuracy in the nonlinear constraints is considerably better than the feasibility tolerance, because the constraint violations are being refined during the last few iterations while the algorithm is working to reduce the projected gradient norm. In this problem, the constraint values and Lagrange multipliers at the solution are 'well balanced', i.e., all the multipliers are approximately the same order of magnitude. The behaviour is typical of a well-scaled problem.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Supply optional parameters to E04UCF from file

--- nage.ht ---

E04UDF(3NAG) Foundation Library (12/10/92) E04UDF(3NAG)
To supply optional parameters to E04UCF from an external file.

2. Specification

SUBROUTINE E04UDF (IOPTNS, INFORM)
  INTEGER IOPTNS, INFORM

3. Description

E04UDF may be used to supply values for optional parameters to E04UCF. E04UDF reads an external file and each line of the file defines a single optional parameter. It is only necessary to supply values for those parameters whose values are to be different from their default values.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one or more items. The items associated with a given option must be separated by spaces, or equal signs (=). Alphabetic characters may be upper or lower case. The string

Print level = 1

is an example of a string used to set an optional parameter. For each option the string contains one or more of the following items:

(a) A mandatory keyword.
(b) A phrase that qualifies the keyword.
(c) A number that specifies an INTEGER or real value. Such numbers may be up to 16 contiguous characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent characters in the string are regarded as part of the comment.

The file containing the options must start with begin and must finish with end. An example of a valid options file is:

Begin * Example options file
   Print level =10
End

Normally each line of the file is printed as it is read, on the current advisory message unit (see X04ABF), but printing may be suppressed using the keyword nolist. To suppress printing of begin,
nolist must be the first option supplied as in the file:

    Begin
    Nolist
    Print level = 10
    End

Printing will automatically be turned on again after a call to E04UCF and may be turned on again at any time by the user by using the keyword list.

Optional parameter settings are preserved following a call to E04UCF, and so the keyword defaults is provided to allow the user to reset all the optional parameters to their default values prior to a subsequent call to E04UCF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in Section 5.1 of the document for E04UCF.

4. References

None.

5. Parameters

1: IOPTNS -- INTEGER Input
   On entry: IOPTNS must be the unit number of the options file. Constraint: 0 <= IOPTNS <= 99.

2: INFORM -- INTEGER Output
   On exit: INFORM will be zero, if an options file with the current structure has been read. Otherwise INFORM will be positive. Positive values of INFORM indicate that an options file may not have been successfully read as follows:
   INFORM = 1
   IOPTNS is not in the range [0,99].

   INFORM = 2
   begin was found, but end-of-file was found before end was found.

   INFORM = 3
   end-of-file was found before begin was found.

6. Error Indicators and Warnings

If a line is not recognised as a valid option, then a warning message is output on the current advisory message unit (X04ABF).
7. Accuracy

Not applicable.

8. Further Comments

E04UEF may also be used to supply optional parameters to E04UCF.

9. Example

See the example for E04UCF.

---

Supply individual optional params to E04UCF

--- nage.ht ---

E04UEF(3NAG) Foundation Library (12/10/92) E04UEF(3NAG)

E04 -- Minimizing or Maximizing a Function

E04UEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

To supply individual optional parameters to E04UCF.

2. Specification

SUBROUTINE E04UEF (STRING)
3. Description

E04UEF may be used to supply values for optional parameters to E04UCF. It is only necessary to call E04UEF for those parameters whose values are to be different from their default values. One call to E04UEF sets one parameter value.

Each optional parameter is defined by a single character string of up to 72 characters, consisting of one or more items. The items associated with a given option must be separated by spaces, or equal signs (=). Alphabetic characters may be upper or lower case. The string

```
Print level = 1
```

is an example of a string used to set an optional parameter. For each option the string contains one or more of the following items:

(a) A mandatory keyword.

(b) A phrase that qualifies the keyword.

(c) A number that specifies an INTEGER or real value. Such numbers may be up to 16 contiguous characters in Fortran 77's I, F, E or D formats, terminated by a space if this is not the last item on the line.

Blank strings and comments are ignored. A comment begins with an asterisk (*) and all subsequent characters in the string are regarded as part of the comment.

Normally, each user-specified option is printed as it is defined, on the current advisory message unit (see X04ABF), but this printing may be suppressed using the keyword nolist. Thus the statement

```
CALL E04UEF ("Nolist")
```

suppresses printing of this and subsequent options. Printing will automatically be turned on again after a call to E04UCF, and may be turned on again at any time by the user, by using the keyword list.

Optional parameter settings are preserved following a call to E04UCF, and so the keyword defaults is provided to allow the user to reset all the optional parameters to their default values by the statement,
CALL E04UEF ('Defaults')

prior to a subsequent call to E04UCF.

A complete list of optional parameters, their abbreviations, synonyms and default values is given in Section 5.1 of the document for E04UCF.

4. References
None.

5. Parameters

1: STRING -- CHARACTER*(*) Input

On entry: STRING must be a single valid option string. See Section 3 above and Section 5.1 of the routine document for E04UCF. On entry: STRING must be a single valid option string. See Section 3 above and Section 5.1 of the routine document for E04UCF.

6. Error Indicators and Warnings

If the parameter STRING is not recognised as a valid option string, then a warning message is output on the current advisory message unit (X04ABF).

7. Accuracy

Not applicable.

8. Further Comments

E04UDF may also be used to supply optional parameters to E04UCF.

9. Example

See the example for E04UCF.
Estimates of elements of the variance-covariance matrix

--- nage.ht ---

E04YCF(3NAG) Foundation Library (12/10/92) E04YCF(3NAG)

E04 -- Minimizing or Maximizing a Function
E04YCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

E04YCF returns estimates of elements of the variance-covariance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \( f(x) \) at the solution.

This routine may be used following any one of the nonlinear least-squares routines E04FCF(*), E04FDF, E04GBF(*), E04GCF, E04GDF(*), E04GEF(*), E04HEF(*), E04HFF(*).

2. Specification

```fortran
SUBROUTINE E04YCF (JOB, M, N, FSUMSQ, S, V, LV, CJ, WORK, IFAIL)
INTEGER JOB, M, N, LV, IFAIL
DOUBLE PRECISION FSUMSQ, S(N), V(LV,N), CJ(N), WORK(N)
```

3. Description

E04YCF is intended for use when the nonlinear least-squares function, \( F(x) = f(x)^T f(x) \), represents the goodness of fit of a nonlinear model to observed data. The routine assumes that the Hessian of \( F(x) \), at the solution, can be adequately approximated by \( 2J^T J \), where \( J \) is the Jacobian of \( f(x) \) at the solution. The
estimated variance-covariance matrix $C$ is then given by

\[ C = (\sigma) (J'J)^{-1} J' \]

where $(\sigma)$ is the estimated variance of the residual at the solution, $x$, given by

\[ (\sigma) = \frac{F(x)}{m-n} \]

$m$ being the number of observations and $n$ the number of variables.

The diagonal elements of $C$ are estimates of the variances of the estimated regression coefficients. See the Chapter Introduction E04 and Bard [1] and Wolberg [2] for further information on the use of $C$.

When $J'J$ is singular then $C$ is taken to be

\[ C = (\sigma) (J'J)^{-1} J' \]

where $(J'J)^{-1}$ is the pseudo-inverse of $J'J$, but in this case the parameter IFAIL is returned as non-zero as a warning to the user that $J$ has linear dependencies in its columns. The assumed rank of $J$ can be obtained from IFAIL.

The routine can be used to find either the diagonal elements of $C$, or the elements of the $j$th column of $C$, or the whole of $C$.

E04YCF must be preceded by one of the nonlinear least-squares routines mentioned in Section 1, and requires the parameters FSUMSQ, $S$ and $V$ to be supplied by those routines. FSUMSQ is the residual sum of squares $F(x)$, and $S$ and $V$ contain the singular values and right singular vectors respectively in the singular value decomposition of $J$. $S$ and $V$ are returned directly by the comprehensive routines E04FCF(*), E04GBF(*), E04GDF(*) and E04HEF(*), but are returned as part of the workspace parameter $W$ from the easy-to-use routines E04FDF, E04GCF, E04GEF(*) and
E04HFF(*). In the case of E04FDF, S starts at \( W(\text{NS}) \), where

\[
\text{NS} = 6N + 2M + M\cdot N + 1 + \max(1, N\cdot (N-1)/2)
\]

and in the cases of the remaining easy-to-use routines, S starts at \( W(\text{NS}) \), where

\[
\text{NS} = 7N + 2M + M\cdot N + N\cdot (N+1)/2 + 1 + \max(1, N\cdot (N-1)/2)
\]

The parameter \( V \) starts immediately following the elements of \( S \), so that \( V \) starts at \( W(\text{NV}) \), where

\[
\text{NV} = \text{NS} + N.
\]

For all the easy-to-use routines the parameter \( L\text{V} \) must be supplied as \( N \). Thus a call to E04YCF following E04FDF can be illustrated as

```fortran
CALL E04FDF (M, N, X, FSUMSQ, IW, LIW, W, LW, IFAIL)
NS = 6*N + 2*M + M*N + 1 + MAX((1, (N*(N-1))/2)
NV = NS + N
CALL E04YCF (JOB, M, N, FSUMSQ, W(NS), W(NV),
* N, CJ, WORK, IFAIL)
```

where the parameters \( M, N, \) FSUMSQ and the \((n+n)\) elements \( W(NS), W(NS+1), \ldots, W(NV+N\ast N-1) \) must not be altered between the calls to E04FDF and E04YCF. The above illustration also holds for a call to E04YCF following a call to one of E04GCF, E04GEF(*), E04HFF(*) except that \( NS \) must be computed as

\[
\text{NS} = 7N + 2M + M\cdot N + (N\ast (N+1))/2 + 1 + \max((1, N\ast (N-1))/2)
\]

4. References


5. Parameters

1: \( \text{JOB} \) -- INTEGER
   Input
   On entry: which elements of \( C \) are returned as follows:
   \( \text{JOB} = -1 \)
   The \( n \) by \( n \) symmetric matrix \( C \) is returned.

   \( \text{JOB} = 0 \)
   The diagonal elements of \( C \) are returned.
JOB > 0
The elements of column JOB of C are returned.
Constraint: -1 <= JOB <= N.

2: M -- INTEGER  
   Input
On entry: the number m of observations (residuals f(x)).
Constraint: M >= N.

3: N -- INTEGER  
   Input
On entry: the number n of variables (x). Constraint: 1 <=
   j
   N <= M.

4: FSUMSQ -- DOUBLE PRECISION  
   Input
On entry: the sum of squares of the residuals, F(x), at the
solution x, as returned by the nonlinear least-squares
routine. Constraint: FSUMSQ >= 0.0.

5: S(N) -- DOUBLE PRECISION array  
   Input
On entry: the n singular values of the Jacobian as returned
by the nonlinear least-squares routine. See Section 3 for
information on supplying S following one of the easy-to-use
routines.

6: V(LV,N) -- DOUBLE PRECISION array  
   Input/Output
On entry: the n by n right-hand orthogonal matrix (the
right singular vectors) of J as returned by the nonlinear
least-squares routine. See Section 3 for information on
supplying V following one of the easy-to-use routines. On
exit: when JOB > 0 then V is unchanged.

When JOB = -1 then the leading n by n part of V is
overwritten by the n by n matrix C. When E04YCF is called
with JOB = -1 following an easy-to-use routine this means
that C is returned, column by column, in the n elements of
2
W given by W(NV),W(NV+1),...,W(NV+N -1). (See Section 3 for
the definition of NV).

7: LV -- INTEGER  
   Input
On entry:
the first dimension of the array V as declared in the
(sub)program from which E04YCF is called.
When V is passed in the workspace parameter W following one of the easy-to-use least-square routines, LV must be the value N.

8: CJ(N) -- DOUBLE PRECISION array Output
On exit: with JOB = 0, CJ returns the n diagonal elements of C.
With JOB = j>0, CJ returns the n elements of the jth column of C.
When JOB = -1, CJ is not referenced.

9: WORK(N) -- DOUBLE PRECISION array Workspace
When JOB = -1 or 0 then WORK is used as internal workspace.
When JOB > 0, WORK is not referenced.

10: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to the Essential Introduction for details.
On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL /=0 on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL= 1
On entry JOB < -1,
or JOB > N,
or N < 1,
or M < N,
or FSUMSQ < 0.0.

IFAIL= 2
The singular values are all zero, so that at the solution
the Jacobian matrix J has rank 0.

IFAIL> 2
At the solution the Jacobian matrix contains linear, or near linear, dependencies amongst its columns. In this case the required elements of C have still been computed based upon J having an assumed rank given by (IFAIL-2). The rank is computed by regarding singular values SV(j) that are not larger than 10*(epsilon)*SV(1) as zero, where (epsilon) is the machine precision (see X02AJF(*)). Users who expect near linear dependencies at the solution and are happy with this tolerance in determining rank should call E04YCF with IFAIL = 1 in order to prevent termination by P01ABF(*). It is then essential to test the value of IFAIL on exit from E04YCF.

IFAILOverflow
If overflow occurs then either an element of C is very large, or the singular values or singular vectors have been incorrectly supplied.

7. Accuracy
The computed elements of C will be the exact covariances corresponding to a closely neighbouring Jacobian matrix J.

8. Further Comments
When JOB = -1 the time taken by the routine is approximately 3 proportional to n . When JOB >= 0 the time taken by the routine 2 is approximately proportional to n .

9. Example
To estimate the variance-covariance matrix C for the least-squares estimates of x , x and x in the model

\[ y = x + \frac{1}{x + t} \]

using the 15 sets of data given in the following table:

<table>
<thead>
<tr>
<th>y</th>
<th>t</th>
<th>t</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The program uses (0.5, 1.0, 1.5) as the initial guess at the position of the minimum and computes the least-squares solution using E04FDF. See the routine document E04FDF for further information.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Chapter F
Linear Algebra

1. Introduction

The F Chapters of the Library are concerned with linear algebra and cover a large area. This general introduction is intended to help users decide which particular F Chapter is relevant to their problem. There are F Chapters with the following titles:

- F01 -- Matrix Factorizations
- F02 -- Eigenvalues and Eigenvectors
- F04 -- Simultaneous Linear Equations
- F06 -- Linear Algebra Support Routines
- F07 -- Linear Equations (LAPACK)

The principal problem areas addressed by the above Chapters are:

- Systems of linear equations
- Linear least-squares problems
- Eigenvalue and singular value problems

The solution of these problems usually involves several matrix operations, such as a matrix factorization followed by the solution of the factorized form, and the routines for these operations themselves utilize lower level support routines; typically routines from Chapter F06. Most users will not normally need to be concerned with these support routines.

NAG has been involved in a project, called LAPACK [1], to develop a linear algebra package for modern high-performance computers and some of the routines developed within that project are incorporated into the Library as Chapter F07. It should be emphasised that, while the LAPACK project has been concerned with high-performance computers, the routines do not compromise efficiency on conventional machines.

For background information on numerical algorithms for the solution of linear algebra problems see Golub and Van Loan [4]. For some problem areas the user has the choice of selecting a single routine to solve the problem, a so-called Black Box routine, or selecting more than one routine to solve the problem, such as a factorization routine followed by a solve routine, so-
called General Purpose routines. The following sections indicate which chapters are relevant to particular problem areas.

2. Linear Equations

The Black Box routines for solving linear equations of the form

$$Ax=b \quad \text{and} \quad AX=B,$$

where $A$ is an $n$ by $n$ real or complex, non-singular matrix, are to be found in Chapter F04. Such equations can also be solved by selecting a General Purpose factorization routine from Chapter F01 and combining it with a solve routine in Chapter F04, or by selecting a factorization and a solve routine from Chapter F07.

There are routines to cater for a variety of types of matrix, including general, symmetric or Hermitian, symmetric or Hermitian positive definite, tridiagonal, skyline and sparse matrices.

In order to select the appropriate routine, users are recommended to consult the F04 Chapter Introduction in the first instance.

3. Linear Least-squares

Routines for solving linear least-squares problems of the form

$$\min_T r^T r, \quad \text{where} \quad r=b-Ax,$$

where $A$ is an $m$ by $n$, possibly rank deficient, matrix are to be found in Chapter F04. Linear least-squares problems can also be solved by routines in the statistical Chapter G02.

In order to select the appropriate routine, users are recommended to consult the F04 Chapter Introduction in the first instance, but users with additional statistical requirements may prefer to consult the G02 Chapter Introduction.

4. Eigenvalue Problems and Singular Value Problems

Routines for solving standard matrix eigenvalue problems of the form

$$Ax=(\lambda)x,$$

where $A$ is an $n$ by $n$ real or complex matrix, and generalized matrix eigenvalue problems of the form
Ax=(\lambda)Bx

where B is also an n by n matrix are to be found in Chapter F02.

There are routines to cater for various types of matrices, including general, symmetric or Hermitian and sparse matrices.

Similarly, the routines for finding singular values and/or singular vectors of an m by n real or complex matrix A are to be found in Chapter F02.

In order to select the appropriate routine, users are recommended to consult the F02 Chapter Introduction in the first instance.

5. Matrix Factorizations

Routines for various sorts of matrix factorization are to be found in Chapters F01 and F07 together with associated transformation routines. In order to select the appropriate routine users are recommended to consult the F01 Chapter Introduction in the first instance.

6. Support Routines

Chapter F06 contains a variety of routines to perform elementary algebraic operations involving scalars, vectors and matrices, such as setting up a plane rotation, performing a dot product and computing a matrix-vector product. Chapter F06 contains routines that meet the specification of the BLAS (Basic Linear Algebra Subprograms) [5, 3, 2]. The routines in this chapter will not normally be required by the general user, but are intended for use by those who require to build specialist linear algebra modules. The BLAS are extensively used by other NAG Foundation Library routines.

References


Matrix Factorization
1. Scope of the Chapter

This chapter provides facilities for matrix factorizations and associated transformations.

2. Background to the Problems

An $n$ by $n$ matrix may be factorized as

$$ A = PLUQ, $$

where $L$ and $U$ are respectively lower and upper triangular matrices, and $P$ and $Q$ are permutation matrices. This is called an LU factorization. For general dense matrices it is usual to choose $Q=I$ and to then choose $P$ to ensure that the factorization is numerically stable. For sparse matrices, judicious choice of $P$ and $Q$ ensures numerical stability as well as maintaining as much sparsity as possible in the factors $L$ and $U$. The LU factorization is normally used in connection with the solution of the linear equations

$$ Ax = b, $$

whose solution, $x$, may then be obtained by solving in succession the simpler equations

$$ L y = P b, \quad U z = y, \quad x = Q z $$

the first by forward substitution and the second by backward substitution. Routines to perform this solution are to be found in Chapter F04.

When $A$ is symmetric positive-definite then we can choose $U=L$ and $Q=P$, to give the Cholesky factorization. This factorization is numerically stable without permutations, but in the sparse case the permutations can again be used to try to maintain sparsity. The Cholesky factorization is sometimes expressed as

$$ A = P D T L D T P, $$

where $D$ is a diagonal matrix with positive diagonal elements and
L is unit lower triangular.

The LU factorization can also be performed on rectangular matrices, but in this case it is more usual to perform a QR factorization. When \( A \) is an \( m \) by \( n \) \((m\geq n)\) matrix this is given by

\[
\begin{align*}
A &= QR, \\
(Q) &= Q(0),
\end{align*}
\]

where \( R \) is an \( n \) by \( n \) upper triangular matrix and \( Q \) is an orthogonal (unitary in the complex case) matrix.

3. Recommendations on Choice and Use of Routines

Routine F07ADF performs the LU factorization of a real \( m \) by \( n \) dense matrix.

The LU factorization of a sparse matrix is performed by routine F01BRF. Following the use of F01BRF, matrices with the same sparsity pattern may be factorized by routine F01BSF.

The Cholesky factorization of a real symmetric positive-definite dense matrix is performed by routine F07FDF.

Routine F01MCF performs the Cholesky factorization of a real symmetric positive-definite variable band (skyline) matrix, and a general sparse symmetric positive-definite matrix may be factorized using routine F01MAF.

The QR factorization of an \( m \) by \( n \) \((m\geq n)\) matrix is performed by routine F01QCF in the real case, and F01RCF in the complex case. Following the use of F01QCF, operations with \( Q \) may be performed using routine F01QDF and some, or all, of the columns of \( Q \) may be formed using routine F01QEF. Routines F01RDF and F01REF perform the same tasks following the use of F01RCF.

F01 -- Matrix Factorizations

Chapter F01

Matrix Factorizations

F01BRF  LU factorization of real sparse matrix

F01BSF  LU factorization of real sparse matrix with known sparsity pattern

F01MCF  Cholesky factorization of real symmetric positive-definite

F01MAF  LL factorization of real sparse symmetric positive-
Factorizes a real sparse matrix
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F01BRF factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix, or, optionally, first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks.

2. Specification

```fortran
SUBROUTINE F01BRF (N, NZ, A, LICN, IRN, LIRN, ICN, PIVOT,
 1 IKEEP, IW, LBLOCK, GROW, ABORT,
 2 IDISP, IFAIL)

INTEGER N, NZ, LICN, IRN(LIRN), LIRN, ICN(LICN),
1 IKEEP(5*N), IW(8*N), IDISP(10), IFAIL
DOUBLE PRECISION A(LICN), PIVOT, W(N)
LOGICAL LBLOCK, GROW, ABORT(4)
```

3. Description

Given a real sparse matrix A, this routine may be used to obtain the LU factorization of a permutation of A,

$$PAQ = LU$$

where P and Q are permutation matrices, L is unit lower triangular and U is upper triangular. The routine uses a sparse variant of Gaussian elimination, and the pivotal strategy is designed to compromise between maintaining sparsity and controlling loss of accuracy through round-off.

Optionally the routine first permutes the matrix into block lower triangular form and then only factorizes the diagonal blocks. For some matrices this gives a considerable saving in storage and execution time.

Extensive data checks are made; duplicated non-zeros can be accumulated.

The factorization is intended to be used by F04AXF to solve sparse systems of linear equations $Ax=b$ or $A^Tx=b$. If several matrices of the same sparsity pattern are to be factorized, F01BSF should be used for the second and subsequent matrices.

The method is fully described by Duff [1].
4. References


5. Parameters

1: N -- INTEGER
   On entry: n, the order of the matrix A. Constraint: N > 0.

2: NZ -- INTEGER
   On entry: the number of non-zero elements in the matrix A.
   Constraint: NZ > 0.

3: A(LICN) -- DOUBLE PRECISION array
   On entry: A(i), for i = 1,2,...,NZ must contain the non-zero elements of the sparse matrix A. They can be in any order since the routine will reorder them. On exit: the non-zero elements in the LU factorization. The array must not be changed by the user between a call of this routine and a call of F04AXF.

4: LICN -- INTEGER
   On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which F01BRF is called. Since the factorization is returned in A and ICN, LICN should be large enough to accommodate this and should ordinarily be 2 to 4 times as large as NZ. Constraint: LICN >= NZ.

5: IRN(LIRN) -- INTEGER array
   On entry: IRN(i), for i = 1,2,...,NZ must contain the row index of the non-zero element stored in A(i). On exit: the array is overwritten and is not needed for subsequent calls of F01BSF or F04AXF.

6: LIRN -- INTEGER
   On entry: the dimension of the array IRN as declared in the (sub)program from which F01BRF is called. It need not be as large as LICN; normally it will not need to be very much greater than NZ. Constraint: LIRN >= NZ.

7: ICN(LICN) -- INTEGER array
   On entry: ICN(i), for i = 1,2,...,NZ must contain the column index of the non-zero element stored in A(i). On exit: the column indices of the non-zero elements in the
factorization. The array must not be changed by the user between a call of this routine and subsequent calls of F01BSF or F04AXF.

8: PIVOT -- DOUBLE PRECISION
On entry: PIVOT should have a value in the range 0.0 <= PIVOT <= 0.9999 and is used to control the choice of pivots. If PIVOT < 0.0, the value 0.0 is assumed, and if PIVOT > 0.9999, the value 0.9999 is assumed. When searching a row for a pivot, any element is excluded which is less than PIVOT times the largest of those elements in the row available as pivots. Thus decreasing PIVOT biases the algorithm to maintaining sparsity at the expense of stability. Suggested value: PIVOT = 0.1 has been found to work well on test examples.

9: IKEEP(5*N) -- INTEGER array
On exit: indexing information about the factorization. The array must not be changed by the user between a call of this routine and calls of F01BSF or F04AXF.

10: IW(8*N) -- INTEGER array
Workspace

11: W(N) -- DOUBLE PRECISION array
On exit: if GROW = .TRUE., W(1) contains an estimate (an upper bound) of the increase in size of elements encountered during the factorization (see GROW); the rest of the array is used as workspace.

If GROW = .FALSE., the array is not used.

12: LBLOCK -- LOGICAL
On entry: if LBLOCK = .TRUE., the matrix is pre-ordered into block lower triangular form before the LU factorization is performed; otherwise the entire matrix is factorized. Suggested value: LBLOCK = .TRUE. unless the matrix is known to be irreducible.

13: GROW -- LOGICAL
On entry: if GROW = .TRUE., then on exit W(1) contains an estimate (an upper bound) of the increase in size of elements encountered during the factorization. If the matrix is well-scaled (see Section 8.2), then a high value for W(1) indicates that the LU factorization may be inaccurate and the user should be wary of the results and perhaps increase the parameter PIVOT for subsequent runs (see Section 7). Suggested value: GROW = .TRUE..

14: ABORT(4) -- LOGICAL array
On entry:
if ABORT(1) = .TRUE., the routine will exit immediately on detecting a structural singularity (one that depends on the pattern of non-zeros) and return IFAIL = 1; otherwise it will complete the factorization (see Section 8.3).

If ABORT(2) = .TRUE., the routine will exit immediately on detecting a numerical singularity (one that depends on the numerical values) and return IFAIL = 2; otherwise it will complete the factorization (see Section 8.3).

If ABORT(3) = .TRUE., the routine will exit immediately (with IFAIL = 5) when the arrays A and ICN are filled up by the previously factorized, active and unfactorized parts of the matrix; otherwise it continues so that better guidance on necessary array sizes can be given in IDISP(6) and IDISP(7), and will exit with IFAIL in the range 4 to 6. Note that there is always an immediate error exit if the array IRN is too small.

If ABORT(4) = .TRUE., the routine exits immediately (with IFAIL = 13) if it finds duplicate elements in the input matrix. If ABORT(4) = .FALSE., the routine proceeds using a value equal to the sum of the duplicate elements. In either case details of each duplicate element are output on the current advisory message unit (see X04ABF), unless suppressed by the value of IFAIL on entry.

Suggested values:
ABORT(1) = .TRUE.
ABORT(2) = .TRUE.
ABORT(3) = .FALSE.
ABORT(4) = .TRUE..

15: IDISP(10) -- INTEGER array
Output
On exit: IDISP is used to communicate information about the factorization to the user and also between a call of F01BRF and subsequent calls to F01BSF or F04AXF.
IDISP(1) and IDISP(2), indicate the position in arrays A and ICN of the first and last elements in the LU factorization of the diagonal blocks. (IDISP(2) gives the number of non-zeros in the factorization.)
IDISP(3) and IDISP(4), monitor the adequacy of 'elbow
CHAPTER 22. NAG LIBRARY ROUTINES

room’ in the arrays IRN and A/ICN respectively, by
giving the number of times that the data in these
arrays has been compressed during the factorization to
release more storage. If either IDISP(3) or IDISP(4)
is quite large (say greater than 10), it will probably
pay the user to increase the size of the corresponding
array(s) for subsequent runs. If either is very low or
zero, then the user can perhaps save storage by
reducing the size of the corresponding array(s).

IDISP(5), gives an upper bound on the rank of the
matrix.

IDISP(6) and IDISP(7), give the minimum size of arrays
IRN and A/ICN respectively which would enable a
successful run on an identical matrix (but some ‘
elbow-room’ should be allowed - see Section 8).

IDISP(8) to (10), are only used if LBLOCK = .TRUE..

IDISP(8), gives the structural rank of the matrix.

IDISP(9), gives the number of diagonal blocks.

IDISP(10), gives the size of the largest diagonal
block.

IDISP(1) and IDISP(2), must not be changed by the user
between a call of F01BRF and subsequent calls to
F01BSF or F04AXF.

16: IFAIL -- INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to
control the printing of error and warning messages as well
as specifying hard or soft failure (see the Essential
Introduction).

Before entry, IFAIL must be set to a value with the decimal
expansion cba, where each of the decimal digits c, b and a
must have a value of 0 or 1.

a=0 specifies hard failure, otherwise soft failure;

b=0 suppresses error messages, otherwise error messages
will be printed (see Section 6);

c=0 suppresses warning messages, otherwise warning
messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e.,
hard failure with all messages printed).
Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as defined by X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL=-2
   Successful factorization of a numerically singular matrix (which may also be structurally singular) (see Section 8.3).

IFAIL=-1
   Successful factorization of a structurally singular matrix (see Section 8.3).

IFAIL= 1
   The matrix is structurally singular and the factorization has been abandoned (ABORT(1) was .TRUE. on entry).

IFAIL= 2
   The matrix is numerically singular and the factorization has been abandoned (ABORT(2) was .TRUE. on entry).

IFAIL= 3
   LIRN is too small: there is not enough space in the array IRN to continue the factorization. The user is recommended to try again with LIRN (and the length of IRN) equal to at least IDISP(6) + N/2.

IFAIL= 4
   LICN is much too small: there is much too little space in the arrays A and ICN to continue the factorization.

IFAIL= 5
   LICN is too small: there is not enough space in the arrays A and ICN to store the factorization. If ABORT(3) was .FALSE. on entry, the factorization has been completed but some of the LU factors have been discarded to create space, IDISP(7) then gives the minimum value of LICN (i.e., the minimum length of A and ICN) required for a successful factorization of the same matrix.

IFAIL= 6
   LICN and LIRN are both too small: effectively this is a combination of IFAIL = 3 and IFAIL = 5 (with ABORT(3) = .FALSE.).
IFAIL= 7  
   LICN is too small: there is not enough space in the arrays A 
   and ICN for the permutation to block triangular form.

IFAIL= 8  
   On entry N <= 0.

IFAIL= 9  
   On entry NZ <= 0.

IFAIL= 10  
   On entry LICN < NZ.

IFAIL= 11  
   On entry LIRN < NZ.

IFAIL= 12  
   On entry an element of the input matrix has a row or column 
   index (i.e., an element of IRN or ICN) outside the range 1 
   to N.

IFAIL= 13  
   Duplicate elements have been found in the input matrix and 
   the factorization has been abandoned (ABORT(4) = .TRUE. on 
   entry).

7. Accuracy

The factorization obtained is exact for a perturbed matrix whose 
(i,j)th element differs from a by less than 3(epsilon)(rho)m 
ij 

ij

where (epsilon) is the machine precision, (rho) is the growth 
value returned in W(i) if GROW = .TRUE., and m the number of 
ij

Gaussian elimination operations applied to element (i,j). The 
value of m is not greater than n and is usually much less. 
ij

Small (rho) values therefore guarantee accurate results, but 
unfortunately large (rho) values may give a very pessimistic 
indication of accuracy.

8. Further Comments

8.1. Timing

The time required may be estimated very roughly from the number 
(tau) of non-zeros in the factorized form (output as IDISP(2)) 
and for this routine and its associates is
22.5. NAGF.HT

\[ F01BRF: \frac{5(\tau)}{n} \text{ units} \]

\[ F01BSF: \frac{(\tau)}{n} \text{ units} \]

\[ F04AXF: \frac{2(\tau)}{n} \text{ units} \]

where our unit is the time for the inner loop of a full matrix code (e.g. solving a full set of equations takes about \(-n^{1.3}\) units). Note that the faster F01BSF time makes it well worthwhile to use this for a sequence of problems with the same pattern.

It should be appreciated that \((\tau)\) varies widely from problem to problem. For network problems it may be little greater than \(NZ\), the number of non-zeros in \(A\); for discretisation of 2-dimensional and 3-dimensional partial differential equations it may be about \(-n^{1.5/3}\) and \(-n^{2}\), respectively.

The time taken to find the block lower triangular form (\(LBLOCK = \) it is not found (\(LBLOCK = .FALSE.\)). If the matrix is irreducible (\(IDISP(9) = 1\) after a call with \(LBLOCK = .TRUE.\)) then this time is wasted. Otherwise, particularly if the largest block is small (\(IDISP(10)<<n\)), the consequent savings are likely to be greater.

The time taken to estimate growth (\(GROW = .TRUE.\)) is typically under 2\% of the overall time.

The overall time may be substantially increased if there is inadequate 'elbow-room' in the arrays \(A\), IRN and ICN. When the sizes of the arrays are minimal (\(IDISP(6)\) and \(IDISP(7)\)) it can execute as much as three times slower. Values of \(IDISP(3)\) and \(IDISP(4)\) greater than about 10 indicate that it may be worthwhile to increase array sizes.

8.2. Scaling

The use of a relative pivot tolerance \(PIVOT\) essentially presupposes that the matrix is well-scaled, i.e., that the matrix elements are broadly comparable in size. Practical problems are often naturally well-scaled but particular care is needed for problems containing mixed types of variables (for example millimetres and neutron fluxes).

8.3. Singular and Rectangular Systems
It is envisaged that this routine will almost always be called for square non-singular matrices and that singularity indicates an error condition. However, even if the matrix is singular it is possible to complete the factorization. It is even possible for F04AXF to solve a set of equations whose matrix is singular provided the set is consistent.

Two forms of singularity are possible. If the matrix would be singular for any values of the non-zeros (e.g. if it has a whole row of zeros), then we say it is structurally singular, and continue only if ABORT(1) = .FALSE.. If the matrix is non-singular by virtue of the particular values of the non-zeros, then we say that it is numerically singular and continue only if ABORT(2) = .FALSE..

Rectangular matrices may be treated by setting N to the larger of the number of rows and numbers of columns and setting ABORT(1) =

Note: the soft failure option should be used (last digit of IFAIL = 1) if the user wishes to factorize singular matrices with ABORT (1) or ABORT(2) set to .FALSE..

8.4. Duplicated Non-zeros

The matrix A may consist of a sum of contributions from different sub-systems (for example finite elements). In such cases the user may rely on this routine to perform assembly, since duplicated elements are summed.

9. Example

To factorize the real sparse matrix:

\[
\begin{pmatrix}
5 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 2 & 0 \\
0 & 0 & 3 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 \\
-1 & 0 & 0 & -1 & 2 \\
-1 & -1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

This example program simply prints out some information about the factorization as returned by F01BRF in W(1) and IDISP. Normally the call of F01BRF would be followed by a call of F04AXF (see Example for F04AXF).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.5. NAGF.HT

Factorizes a real sparse matrix

— nagf.ht —

<table>
<thead>
<tr>
<th>1. Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F01BSF factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Specification</th>
</tr>
</thead>
</table>
| SUBROUTINE F01BSF (N, NZ, A, LICN, IVECT, JVECT, ICN, 
| 1. IKEEP, IW, W, GROW, ETA, RPMIN, ABORT, 
| 2. IDISP, IFAIL) |
| INTEGER N, NZ, LICN, IVECT(NZ), JVECT(NZ), ICN 
| 1 (LICN), IKEEP(5*N), IW(8*N), IDISP(2), 
| 2 IFAIL |
| DOUBLE PRECISION A(LICN), W(N), ETA, RPMIN |
| LOGICAL GROW, ABORT |

<table>
<thead>
<tr>
<th>3. Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This routine accepts as input a real sparse matrix of the same</td>
</tr>
</tbody>
</table>
sparsity pattern as a matrix previously factorized by a call of F01BRF. It first applies to the matrix the same permutations as were used by F01BRF, both for permutation to block triangular form and for pivoting, and then performs Gaussian elimination to obtain the LU factorization of the diagonal blocks.

Extensive data checks are made; duplicated non-zeros can be accumulated.

The factorization is intended to be used by F04AXF to solve \( T \) sparse systems of linear equations \( Ax=b \) or \( A^T x=b \).

F01BSF is much faster than F01BRF and in some applications it is expected that there will be many calls of F01BSF for each call of F01BRF.

The method is fully described in Duff [1].

4. References


5. Parameters

1: N -- INTEGER Input
   On entry: n, the order of the matrix A. Constraint: \( N > 0 \).

2: NZ -- INTEGER Input
   On entry: the number of non-zeros in the matrix A.
   Constraint: \( NZ > 0 \).

3: A(LICN) -- DOUBLE PRECISION array Input/Output
   On entry: \( A(i) \), for \( i = 1,2,\ldots,NZ \) must contain the non-zero elements of the sparse matrix A. They can be in any order since the routine will reorder them. On exit: the non-zero elements in the factorization. The array must not be changed by the user between a call of this routine and a call of F04AXF.

4: LICN -- INTEGER Input
   On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which F01BSF is called.
   It should have the same value as it had for F01BRF.
   Constraint: \( LICN \geq NZ \).

5: IVECT(NZ) -- INTEGER array Input
6: JVECT(NZ) -- INTEGER array
   On entry: JVECT(i) and JVECT(i), for i = 1,2,...,NZ must
   contain the row index and the column index respectively of
   the non-zero element stored in A(i).

7: ICN(LICN) -- INTEGER array
   On entry: the same information as output by F01BRF. It must
   not be changed by the user between a call of this routine
   and a call of F04AXF.

8: IKEEP(5*N) -- INTEGER array
   On entry: the same indexing information about the
   factorization as output from F01BRF. It must not be changed
   between a call of this routine and a call of F04AXF.

9: IW(8*N) -- INTEGER array
    Workspace

10: W(N) -- DOUBLE PRECISION array
    On exit: if GROW = .TRUE., W(1) contains an estimate (an
    upper bound) of the increase in size of elements encountered
    during the factorization (see GROW); the rest of the array
    is used as workspace.

   If GROW = .FALSE., the array is not used.

11: GROW -- LOGICAL
    On entry: if GROW = .TRUE., then on exit W(1) contains an
    estimate (an upper bound) of the increase in size of
    elements encountered during the factorization. If the matrix
    is well-scaled (see Section 8.2), then a high value for W(1)
    indicates that the LU factorization may be inaccurate and
    the user should be wary of the results and perhaps increase
    the parameter PIVOT for subsequent runs (see Section 7).

12: ETA -- DOUBLE PRECISION
    On entry: the relative pivot threshold below which an error
    diagnostic is provoked and IFAIL is set to 7. If ETA is
    greater than 1.0, then no check on pivot size is made.
    Suggested value: ETA = 10 .

13: RPMIN -- DOUBLE PRECISION
    On exit: if ETA is less than 1.0, then RPMIN gives the
    smallest ratio of the pivot to the largest element in the
    row of the corresponding upper triangular factor thus
    monitoring the stability of the factorization. If RPMIN is
    very small it may be advisable to perform a new
    factorization using F01BRF.
14: ABORT -- LOGICAL
On entry: if ABORT = .TRUE., the routine exits immediately
(with IFAIL = 8) if it finds duplicate elements in the input
matrix. If ABORT = .FALSE., the routine proceeds using a
value equal to the sum of the duplicate elements. In either
case details of each duplicate element are output on the
current advisory message unit (see X04ABF), unless
suppressed by the value of IFAIL on entry. Suggested value:
ABORT = .TRUE..

15: IDISP(2) -- INTEGER array
On entry: IDISP(1) and IDISP(2) must be unchanged since the
previous call of F01BRF.

16: IFAIL -- INTEGER
For this routine, the normal use of IFAIL is extended to
control the printing of error and warning messages as well
as specifying hard or soft failure (see the Essential
Introduction).

Before entry, IFAIL must be set to a value with the decimal
expansion cba, where each of the decimal digits c, b and a
must have a value of 0 or 1.
a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages
will be printed (see Section 6);
c = 0 suppresses warning messages, otherwise warning
messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e.,
hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL
contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the
current error message unit (as defined by X04AAF), unless
suppressed by the value of IFAIL on entry.

IFAIL = 1
On entry: N <= 0.

IFAIL = 2
On entry: NZ <= 0.
IFAIL= 3
On entry LICN < NZ.

IFAIL= 4
On entry an element of the input matrix has a row or column
index (i.e., an element of IVECT or JVECT) outside the range
1 to N.

IFAIL= 5
The input matrix is incompatible with the matrix factorized
by the previous call of F01BRF (see Section 8).

IFAIL= 6
The input matrix is numerically singular.

IFAIL= 7
A very small pivot has been detected (see Section 5, ETA).
The factorization has been completed but is potentially
unstable.

IFAIL= 8
Duplicate elements have been found in the input matrix and
the factorization has been abandoned (ABORT = .TRUE. on
entry).

7. Accuracy

The factorization obtained is exact for a perturbed matrix whose
(i,j)th element differs from a by less than 3(epsilon)(rho)m
ij
where (epsilon) is the machine precision, (rho) is the growth
value returned in W(1) if GROW = .TRUE., and m the number of
ij
Gaussian elimination operations applied to element (i,j).

If (rho) = W(1) is very large or RPMIN is very small, then a
fresh call of F01BRF is recommended.

8. Further Comments

If the user has a sequence of problems with the same sparsity
pattern then this routine is recommended after F01BRF has been
called for one such problem. It is typically 4 to 7 times faster
but is potentially unstable since the previous pivotal sequence
is used. Further details on timing are given in document F01BRF.

If growth estimation is performed (GROW = .TRUE.), then the time
increases by between 5% and 10%. Pivot size monitoring (ETA <= 1.0)
involves a similar overhead.
We normally expect this routine to be entered with a matrix having the same pattern of non-zeros as was earlier presented to F01BRF. However there is no record of this pattern, but rather a record of the pattern including all fill-ins. Therefore we permit additional non-zeros in positions corresponding to fill-ins.

If singular matrices are being treated then it is also required that the present matrix be sufficiently like the previous one for the same permutations to be suitable for factorization with the same set of zero pivots.

9. Example

To factorize the real sparse matrices

\[
\begin{pmatrix}
5 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 2 & 0 \\
0 & 0 & 3 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 \\
-1 & 0 & 0 & -1 & 2 & -3 \\
-1 & -1 & 0 & 0 & 0 & 6
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
10 & 0 & 0 & 0 & 0 \\
0 & 12 & -3 & -1 & 0 \\
0 & 0 & 15 & 0 & 0 \\
-2 & 0 & 0 & 10 & -1 \\
-1 & 0 & 0 & -5 & 1 & -1 \\
-1 & -2 & 0 & 0 & 0 & 6
\end{pmatrix}
\]

This example program simply prints the values of W(1) and RPMIN returned by F01BSF. Normally the calls of F01BRF and F01BSF would be followed by calls of F04AXF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Incomplete Cholesky factorization

— nagf.ht —

\begin{verbatim}
F01MAF(3NAG) Foundation Library (12/10/92) F01MAF(3NAG)

F01 -- Matrix Factorizations
F01MAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for
your implementation to check implementation-dependent details.
The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

F01MAF computes an incomplete Cholesky factorization of a real
sparse symmetric positive-definite matrix A.

2. Specification

```fortran
SUBROUTINE F01MAF (N, NZ, A, LICN, IRN, LIRN, ICN, DROPTL,
1 DENSW, WKEEP, IKEEP, IWORK, ABORT,
2 INFORM, IFAIL)

INTEGER N, NZ, LICN, IRN(LIRN), LIRN, ICN(LICN),
1 IKEEP(2*N), IWORK(6*N), INFORM(4), IFAIL
DOUBLE PRECISION A(LICN), DROPTL, DENSW, WKEEP(3*N)
LOGICAL ABORT(3)
```

3. Description

F01MAF computes an incomplete Cholesky factorization

\[ C = PLDL^T P, \quad WAW = C + E \]

for the sparse symmetric positive-definite matrix A, where P is a
permutation matrix, L is a unit lower triangular matrix, D is a
diagonal matrix with positive diagonal elements, E is an error
matrix representing elements dropped during the factorization and
diagonal elements that have been modified to ensure that C is
positive-definite, and $W$ is a diagonal matrix, chosen to make the diagonal elements of $W^2 A W$ unity.

$W CW$ is a pre-conditioning matrix for $A$, and the factorization of $C$ is intended to be used by F04MAF to solve systems of linear equations $Ax = b$.

The permutation matrix $P$ is chosen to reduce the amount of fill-in that occurs in $L$ and the user-supplied parameter DROPTL can also be used to control the amount of fill-in that occurs.

Full details on the factorization can be found in Munksgaard [1].

F01MAF is based on the Harwell Library routine MA31A.

4. References


5. Parameters

1: $N$ -- INTEGER
   Input
   On entry: $n$, the order of the matrix $A$. Constraint: $N \geq 1$.

2: $NZ$ -- INTEGER
   Input
   On entry: the number of non-zero elements in the upper triangular part of the matrix $A$, including the number of elements on the leading diagonal. Constraint: $NZ \geq N$.

3: $A$([ICN]) -- DOUBLE PRECISION array
   Input/Output
   On entry: the first $NZ$ elements of the array $A$ must contain the non-zero elements of the upper triangular part of the sparse positive-definite symmetric matrix $A$, including the elements on the leading diagonal. On exit: the first $(NZ-N)$ elements of $A$ contain the elements above the diagonal of the matrix $W^2 A W$, where $W$ is a diagonal matrix whose $i$th diagonal element is $\frac{1}{\sqrt{w}}$. These elements are returned in order by rows and the value returned in $ICN(k)$ gives the column index of the element returned in $A(k)$. The value $w$ is returned in the $i$th element of the array $WKEEP$. The remaining $LROW-NZ+N$ elements of $A$, where $LROW$ is the value returned in $INFORM(1)$, return details of the factorization for use by F04MAF.

4: $ICN$ -- INTEGER
   Input
On entry:
the dimension of the array A as declared in the (sub)program from which F01MAF is called.
If fill-in is expected during the factorization, then a larger value of LICN will allow fewer elements to be dropped during the factorization, thus giving a more accurate factorization, which in turn will almost certainly mean that fewer iterations will be required by F04MAF. Constraint: LICN \geq 2 \times NZ.

5: IRN(LIRN) -- INTEGER array Input/Output
On entry: IRN(k), for k = 1, 2, ..., NZ must contain the row index of the non-zero element of the matrix A supplied in A (k). On exit: the first LCOL elements of IRN, where LCOL is the value returned in INFORM(2), return details of the factorization for use by F04MAF.

6: LIRN -- INTEGER Input
On entry:
the dimension of the array IRN as declared in the (sub)program from which F01MAF is called.
LIRN must be at least NZ, but, as with LICN, if fill-in is expected then a larger value of LIRN will allow a more accurate factorization. For this purpose LIRN should exceed NZ by the same amount that LICN exceeds 2 \times NZ. Constraint: LIRN \geq NZ.

7: ICN(LICN) -- INTEGER array Input/Output
On entry: ICN(k), for k = 1, 2, ..., NZ must contain the column index of the non-zero element of the matrix A supplied in A (k). Thus a_{ij} = A(k), where i = IRN(k) and j = ICN(k). On exit: the first (NZ-N) elements of ICN give the column indices of the first (NZ-N) elements returned in A. The remaining LROW - NZ + N elements of ICN return details of the factorization for use by F04MAF.

8: DROPTL -- DOUBLE PRECISION Input/Output
On entry: a value in the range [-1.0, 1.0] to be used as a tolerance in deciding whether or not to drop elements during the factorization. At the kth pivot step the element a_{ij} is dropped if it would cause fill-in and if

\[
\frac{(k+1)}{(k)} \frac{|a_{ij}|}{|a_{ii}| a_{jj}} < |DROPTL|\]

If DROPTL is supplied as negative, then it is not altered.
during the factorization and so is unchanged on exit, but if DROPTL is supplied as positive then it may be altered by the routine with the aim of obtaining an accurate factorization in the space available. If DROPTL is supplied as -1.0, then no fill-in will occur during the factorization; and if DROPTL is supplied as 0.0 then a complete factorization is performed. On exit: may be overwritten with the value used by the routine in order to obtain an accurate factorization in the space available, if DROPTL > 0.0 on entry.

9: DENSW -- DOUBLE PRECISION
On entry: a value in the range [0.0,1.0] to be used in deciding whether or not to regard the active part of the matrix at the kth pivot step as being full. If the ratio of non-zero elements to the total number of elements is greater than or equal to DENSW, then the active part is regarded as full. If DENSW < 1.0, then the storage used is likely to increase compared to the case where DENSW = 0, but the execution time is likely to decrease. Suggested value: DENSW = 0.8. On exit: if on entry DENSW is not in the range [0.0,1.0], then it is set to 0.8. Otherwise it is unchanged.

10: WKEEP(3*N) -- DOUBLE PRECISION array
On exit: information which must be passed unchanged to F04MAF. The first N elements contain the values $w_i$, for $i=1,2,...,n$, and the next N elements contain the diagonal elements of D.

11: IKEEP(2*N) -- INTEGER array
On exit: information which must be passed unchanged to F04MAF.

12: IWORK(6*N) -- INTEGER array
Workspace

13: ABORT(3) -- LOGICAL array
On entry:
if ABORT(1) = .TRUE., the routine will exit immediately on detecting duplicate elements and return IFAIL = 5. Otherwise when ABORT(1) = .FALSE., the calculations will continue using the sum of the duplicate entries. In either case details of the duplicate elements are output on the current advisory message unit (see X04ABF), unless suppressed by the value of IFAIL on entry.

If ABORT(2) = .TRUE., the routine will exit immediately on detecting a zero or negative pivot element and return IFAIL = 6. Otherwise when ABORT(2) = .FALSE., the zero or negative pivot element will be
modified to ensure positive-definiteness and a message will be printed on the current advisory message unit, unless suppressed by the value of IFAIL on entry.

If ABORT(3) = .TRUE., the routine will exit immediately if the arrays A and ICN have been filled up and return IFAIL = 7. Otherwise when ABORT(3) = .FALSE., the data in the arrays is compressed to release more storage and a message will be printed on the current advisory message unit, unless suppressed by the value of IFAIL on entry. If DROPTL is positive on entry, it may be modified in order to allow a factorization to be completed in the available space.

Suggested values:
ABORT(1) = .TRUE.,
ABORT(2) = .TRUE.,
ABORT(3) = .TRUE..

14: INFORM(4) -- INTEGER array
On exit:
INFORM(1) returns the number of elements of A and ICN that have been used by the routine. Thus at least the first INFORM(1) elements of A and of ICN must be supplied to F04MAF.

Similarly, INFORM(2) returns the number of elements of IRN that have been used by the routine and so at least the first INFORM(2) elements must be supplied to F04MAF.

INFORM(3) returns the number of entries supplied in A that corresponded to diagonal and duplicate elements. If no duplicate entries were found, then INFORM(3) will return the value of N.

INFORM(4) returns the value k of the pivot step from which the active matrix was regarded as full.
INFORM must be passed unchanged to F04MAF.

15: IFAIL -- INTEGER
For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see the Essential Introduction).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal digits c, b and a must have a value of 0 or 1.
a=0 specifies hard failure, otherwise soft failure;
b=0 suppresses error messages, otherwise error messages
    will be printed (see Section 6);
c=0 suppresses warning messages, otherwise warning
    messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e.,
    hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL
    contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the
    current error message unit (as defined by X04AAF), unless
    suppressed by the value of IFAIL on entry.

IFAIL= 1
    On entry N < 1,
    or     NZ < N,
    or     LIRN < NZ,
    or     LICN<2*NZ.

IFAIL= 2
    One of the conditions 0 < IRN(k) <= ICN(k) <= N is not
    satisfied so that A(k) is not in the upper triangle of the
    matrix. No further computation is attempted.

IFAIL= 3
    One of the diagonal elements of the matrix A is zero or
    negative so that A is not positive-definite. No further
    computation is attempted.

IFAIL= 4
    The available space has been used and no further
    compressions are possible. The user should either increase
    DROPTL, or allocate more space to A, IRN and ICN.

    For all the remaining values of IFAIL the computations will
    continue in the case of soft failure, so that more than one
    advisory message may be printed.

IFAIL= 5
Duplicate elements have been detected and ABORT(1) = .TRUE..

IFAIL= 6
   A zero or negative pivot element has been detected during
   the factorization and ABORT(2) = .TRUE..
   
   This should not happen if A is an M-matrix (see Munksgaard
   [1]), but may occur for other types of positive-definite
   matrix.

IFAIL= 7
   The available space has been used and ABORT(3) = .TRUE..

7. Accuracy

The accuracy of the factorization will be determined by the size
of the elements that are dropped and the size of the
modifications made to the diagonal elements. If these sizes are
small then the computed factors will correspond to a matrix close
to A and the number of iterations required by F04MAF will be
small. The more incomplete the factorization, the higher the
number of iterations required by F04MAF.

8. Further Comments

The time taken by the routine will depend upon the sparsity
pattern of the matrix and the number of fill-ins that occur
during the factorization. At the very least the time taken can be
expected to be roughly proportional to n(tau), where (tau) is the
number of non-zeros.

The routine is intended for use with positive-definite matrices,
but the user is warned that it will not necessarily detect non-
positive-definiteness. Indeed the routine may return a
factorization that can satisfactorily be used by F04MAF even when
A is not positive-definite, but this should not be relied upon as
F04MAF may not converge.

9. Example

The example program illustrates the use of F01MAF in conjunction
with F04MAF to solve the 16 linear equations Ax=b, where

\[
\begin{pmatrix}
1 & z & z & & \\
& z & 1 & z & z \\
& & z & 1 & z & z \\
& & & z & 1 & 0 & z \\
& z & 0 & 1 & z & z \\
& z & z & 1 & z & z \\
& & & z & z & 1 & 0 & z \\
\end{pmatrix}
\]
A =

\[
\begin{pmatrix}
  z & 0 & 1 & z & z \\
  z & z & 1 & z & z \\
  z & z & 1 & 0 & z \\
  z & z & 1 & z & 0 \\
  z & z & 1 & z & 0 \\
  z & z & 1 & z & 0 \\
\end{pmatrix}
\]

\[T (1 1 1 1 1 1 1 1 1 1 1 1)\]
\[b = (- - - - - 0 0 - - 0 0 - - - - -),\]
\[(2 4 4 2 4 4 4 4 2 4 4 2)\]

1

where \(z=-\).

4

The \(n\) by \(n\) matrix \(A\) arises in the solution of Laplace’s equation in a unit square, using a 5-point formula with a 6 by 6 discretisation, with unity on the boundaries.

The drop tolerance, \(DROPTL\), is taken as 0.1, and the density factor, \(DENS\), is taken as 0.8. The value \(IFAIL = 111\) is used so that advisory and error messages will be printed, but soft failure would occur if \(IFAIL\) were returned as non-zero.

A relative accuracy of about 0.0001 is requested in the solution from \(F04MAF\), with a maximum of 50 iterations.

The example program for \(F02FJF\) illustrates the use of \(F01MAF\) and \(F04MAF\) in solving an eigenvalue problem.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Cholesky factor of a symmetric positive-definite matrix

--- nagf.h ---

\begin{page}
\manpageXXf01mcf\{NAG Documentation: f01mcf\}

F01MCF computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix.

2. Specification

SUBROUTINE F01MCF (N, A, LAL, NROW, AL, D, IFAIL)
INTEGER N, LAL, NROW(N), IFAIL
DOUBLE PRECISION A(LAL), AL(LAL), D(N)

3. Description

This routine determines the unit lower triangular matrix L and the diagonal matrix D in the Cholesky factorization \( A = L D L^T \) of a symmetric positive-definite variable-bandwidth matrix \( A \) of order \( n \). (Such a matrix is sometimes called a 'sky-line' matrix.)

The matrix \( A \) is represented by the elements lying within the envelope of its lower triangular part, that is, between the first non-zero of each row and the diagonal (see Section 9 for an example). The width \( \text{NROW}(i) \) of the \( i \)th row is the number of elements between the first non-zero element and the element on the diagonal, inclusive. Although, of course, any matrix possesses an envelope as defined, this routine is primarily intended for the factorization of symmetric positive-definite matrices with an average bandwidth which is small compared with \( n \) (also see Section 8).

The method is based on the property that during Cholesky factorization there is no fill-in outside the envelope.
The determination of $L$ and $D$ is normally the first of two steps in the solution of the system of equations $Ax=b$. The remaining step, viz. the solution of $LDL^T x=b$ may be carried out using F04MCF.

4. References


5. Parameters

1: $N$ -- INTEGER Input
On entry: $n$, the order of the matrix $A$. Constraint: $N \geq 1$.

2: $A(LAL)$ -- DOUBLE PRECISION array Input
On entry: the elements within the envelope of the lower triangle of the positive-definite symmetric matrix $A$, taken in row by row order. The following code assigns the matrix elements within the envelope to the correct elements of the array:

$$
\begin{align*}
K &= 0 \\
\text{DO } 20 & I = 1, N \\
\text{DO } 10 & J = I-\text{NROW}(I)+1, I \\
& K = K + 1 \\
& A(K) = \text{matrix } (I,J) \\
& 10 \quad \text{CONTINUE} \\
& 20 \quad \text{CONTINUE}
\end{align*}
$$

See also Section 8.

3: $\text{LAL}$ -- INTEGER Input
On entry: the smaller of the dimensions of the arrays $A$ and $AL$ as declared in the calling (sub)program from which F04MCF is called. Constraint: $\text{LAL} \geq \text{NROW}(1) + \text{NROW}(2) + \ldots + \text{NROW}(n)$.

4: $\text{NROW}(N)$ -- INTEGER array Input
On entry: $\text{NROW}(i)$ must contain the width of row $i$ of the matrix $A$, i.e., the number of elements between the first (leftmost) non-zero element and the element on the diagonal, inclusive. Constraint: $1 \leq \text{NROW}(i) \leq i$, for $i=1,2,\ldots,n$.

5: $AL(LAL)$ -- DOUBLE PRECISION array Output
On exit: the elements within the envelope of the lower triangular matrix $L$, taken in row by row order. The envelope of $L$ is identical to that of the lower triangle of $A$. The unit diagonal elements of $L$ are stored explicitly. See also Section 8.

6: $D(N)$ -- DOUBLE PRECISION array
On exit: the diagonal elements of the the diagonal matrix $D$. Note that the determinant of $A$ is equal to the product of these diagonal elements. If the value of the determinant is required it should not be determined by forming the product explicitly, because of the possibility of overflow or underflow. The logarithm of the determinant may safely be formed from the sum of the logarithms of the diagonal elements.

7: IFAIL -- INTEGER
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry $N < 1$,

or for some $i$, $NROW(i) < 1$ or $NROW(i) > i$, 

or $LAL < NROW(1) + NROW(2) +... + NROW(N)$.

IFAIL= 2
$A$ is not positive-definite, or this property has been destroyed by rounding errors. The factorization has not been completed.

IFAIL= 3
$A$ is not positive-definite, or this property has been destroyed by rounding errors. The factorization has been completed but may be very inaccurate (see Section 7).

7. Accuracy

If IFAIL = 0 on exit, then the computed $L$ and $D$ satisfy the relation $LDL = A + F$, where
where \( k \) is a constant of order unity, \( m \) is the largest value of \( \text{NROW}(i) \), and \( \epsilon \) is the machine precision. See Wilkinson and Reinsch [2], pp 25--27, 54--55. If \( IFAIL = 3 \) on exit, then the factorization has been completed although the matrix was not positive-definite. However the factorization may be very inaccurate and should be used only with great caution. For instance, if it is used to solve a set of equations \( Ax = b \) using F04MCF, the residual vector \( b - Ax \) should be checked.

8. Further Comments

The time taken by the routine is approximately proportional to the sum of squares of the values of \( \text{NROW}(i) \).

The distribution of row widths may be very non-uniform without undue loss of efficiency. Moreover, the routine has been designed to be as competitive as possible in speed with routines designed for full or uniformly banded matrices, when applied to such matrices.

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the same actual array supplied for parameters \( A \) and \( AL \), in which case \( L \) overwrites the lower triangle of \( A \). However this is not standard Fortran 77 and may not work in all implementations.

9. Example

To obtain the Cholesky factorization of the symmetric matrix, whose lower triangle is:

\[
\begin{bmatrix}
1 \\
2 & 5 \\
0 & 3 & 13 \\
0 & 0 & 16 & 16 \\
5 & 14 & 18 & 8 & 55 \\
0 & 0 & 24 & 17 & 77
\end{bmatrix}
\]

For this matrix, the elements of \( \text{NROW} \) must be set to 1, 2, 2, 1,
5, 3, and the elements within the envelope must be supplied in row order as:

1, 2, 5, 3, 13, 16, 5, 14, 18, 8, 55, 24, 17, 77.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

QR factorization of the real m by n matrix A

--- nagf.ht ---

F01QCF finds the QR factorization of the real m by n matrix A, where m>=n.

1. Purpose

F01QCF finds the QR factorization of the real m by n matrix A, where m>=n.

2. Specification

SUBROUTINE F01QCF (M, N, A, LDA, ZETA, IFAIL)
    INTEGER M, N, LDA, IFAIL

CHAPTER 22. NAG LIBRARY ROUTINES

DOUBLE PRECISION A(LDA,*), ZETA(*)

3. Description

The m by n matrix A is factorized as

\[
A = Q(0) \quad \text{when } m>n, \\
A = QR \quad \text{when } m=n,
\]

where Q is an m by m orthogonal matrix and R is an n by n upper triangular matrix. The factorization is obtained by Householder’s method. The kth transformation matrix, Q, which is used to introduce zeros into the kth column of A is given in the form

\[
\begin{pmatrix}
I & 0 \\
0 & T \\
\end{pmatrix}
\]

\[
Q_k = \begin{pmatrix}
I & u_k \\
0 & T_k \\
\end{pmatrix}
\]

where

\[
T_k = I - u_k u_k^T,
\]

\[
u_k = (zeta)_k, \\
\]

\[
(1_k)
\]

(zeta)_k is a scalar and z is an (m-k) element vector. (zeta)_k and z are chosen to annihilate the elements below the triangular part of A.

The vector u is returned in the kth element of the array ZETA_k and in the kth column of A, such that (zeta)_k is in ZETA(k) and the elements of z are in A(k+1,k),...,A(m,k). The elements of R_k are returned in the upper triangular part of A.

Q is given by

\[
Q = \begin{pmatrix}
Q & \ldots & Q \\
\end{pmatrix}
\]
Good background descriptions to the QR factorization are given in Dongarra et al [1] and Golub and Van Loan [2], but note that this routine is not based upon LINPACK routine DQRDC.

4. References


5. Parameters

1: M -- INTEGER Input
   On entry: m, the number of rows of A. Constraint: M >= N.

2: N -- INTEGER Input
   On entry: n, the number of columns of A.
   When N = 0 then an immediate return is effected.
   Constraint: N >= 0.

3: A(LDA,*) -- DOUBLE PRECISION array Input/Output
   Note: the second dimension of the array A must be at least max(1,n).
   On entry: the leading m by n part of the array A must contain the matrix to be factorized. On exit: the n by n upper triangular part of A will contain the upper triangular matrix R and the m by n strictly lower triangular part of A will contain details of the factorization as described in Section 3.

4: LDA -- INTEGER Input
   On entry: the first dimension of the array A as declared in the (sub)program from which F01QCF is called.
   Constraint: LDA >= max(1,M).

5: ZETA(*) -- DOUBLE PRECISION array Output
   Note: the dimension of the array ZETA must be at least max (1,n) On exit: ZETA(k) contains the scalar (zeta) for the k th transformation. If T =I then ZETA(k)=0.0, otherwise ZETA(
CHAPTER 22. NAG LIBRARY ROUTINES

k
k) contains (zeta) as described in Section 3 and (zeta) is
k
k
always in the range (1.0, \sqrt{2.0}).

6: IFAIL -- INTEGER  Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL=-1
On entry M < N,
or N < 0,
or LDA < M.

7. Accuracy

The computed factors Q and R satisfy the relation

\[(R)\]
\[Q(0)=A+E,\]

where

||E||\leq c(\text{epsilon})||A||,

and (\text{epsilon}) is the machine precision (see X02AJF(*)), c is a
modest function of m and n and ||.|| denotes the spectral (two)

8. Further Comments

The approximate number of floating-point operations is given by

\[2 \times 2n \times (3m-n)/3.\]

Following the use of this routine the operations
T

B:=QB and B:=QB,

where B is an m by k matrix, can be performed by calls to F01QDF. The operation B:=QB can be obtained by the call:

```
IFAIL = 0
CALL F01QDF('No transpose', 'Separate', M, N, A, LDA, ZETA,
* K, B, LDB, WORK, IFAIL)
```

and B:=QB can be obtained by the call:

```
IFAIL = 0
CALL F01QDF('Transpose', 'Separate', M, N, A, LDA, ZETA,
* K, B, LDB, WORK, IFAIL)
```

In both cases WORK must be a k element array that is used as workspace. If B is a one-dimensional array (single column) then the parameter LDB can be replaced by M. See F01QDF for further details.

The first k columns of the orthogonal matrix Q can either be obtained by setting B to the first k columns of the unit matrix and using the first of the above two calls, or by calling F01QEF, which overwrites the k columns of Q on the first k columns of the array A. Q is obtained by the call:

```
CALL F01QEF('Separate', M, N, K, A, LDA, ZETA, WORK, IFAIL)
```

As above WORK must be a k element array. If k is larger than N, then A must have been declared to have at least k columns.

Operations involving the matrix R can readily be performed by the Level 2 BLAS routines DTRSV and DTRMV (see Chapter F06), but note that no test for near singularity of R is incorporated in DTRSV. If R is singular, or nearly singular then F02WUF(*) can be used to determine the singular value decomposition of R.

9. Example

To obtain the QR factorization of the 5 by 3 matrix

\[
\begin{pmatrix}
2.0 & 2.5 & 2.5 \\
2.0 & 2.5 & 2.5 \\
1.6 & -0.4 & 2.8
\end{pmatrix}
\]
The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\begin{verbatim}
\end{verbatim}
\end{scroll}
\end{page}

\begin{center}
\begin{tabular}{l}
\textbf{B} := \textbf{QB} or \textbf{B} := \textbf{Q}^T\textbf{B}
\end{tabular}
\end{center}

\begin{page}{manpageXXf01qdf}{NAG Documentation: f01qdf}
\beginscroll
\begin{verbatim}
F01QDF(3NAG) Foundation Library (12/10/92) F01QDF(3NAG)
\end{verbatim}
\end{scroll}
\end{page}

\begin{center}
\begin{tabular}{l}
F01 -- Matrix Factorizations \hspace{2cm} F01QDF
F01QDF -- NAG Foundation Library Routine Document
\end{tabular}
\end{center}

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F01QDF performs one of the transformations

\[ T \text{ B} := \text{QB} \text{ or } \text{B} := \text{Q}^T\text{B}, \]

where \text{B} is an \text{m} by \text{ncolb} real matrix and \text{Q} is an \text{m} by \text{m} orthogonal matrix, given as the product of Householder transformation matrices.

This routine is intended for use following F01QCF or F01QFF(*).
2. Specification

SUBROUTINE F01QDF (TRANS, WHERE, M, N, A, LDA, ZETA, NCOLB, B, LDB, WORK, IFAIL)
INTEGER M, N, LDA, NCOLB, LDB, IFAIL
DOUBLE PRECISION A(LDA,*), ZETA(*), B(LDB,*), WORK(*)
CHARACTER*1 TRANS, WHERE

3. Description

Q is assumed to be given by

T
Q=(Q Q ...Q ),
n n-1 1

Q being given in the form

k

(I 0 )
Q=(0 T )
( k)

where

T
T =I-u u ,
k k k

((zeta) )
( k)
(k
u =(z ),
( k

(zeta) is a scalar and z is an (m-k) element vector. z must be
k supplied in the kth column of A in elements A(k+1,k),...,A(m,k)
and (zeta) must be supplied either in A(k,k) or in ZETA(k),
 depending upon the parameter WHERE.

To obtain Q explicitly B may be set to I and pre-multiplied by Q.
T
This is more efficient than obtaining Q.

4. References

Edition). Johns Hopkins University Press, Baltimore,
Maryland.


5. Parameters

1: TRANS -- CHARACTER*1 Input
   On entry: the operation to be performed as follows:
   TRANS = 'N' (No transpose)
       Perform the operation B := QB.
   TRANS = 'T' or 'C' (Transpose)
       Perform the operation B := QT B.
   Constraint: TRANS must be one of 'N', 'T' or 'C'.

2: WHERET -- CHARACTER*1 Input
   On entry: indicates where the elements of (zeta) are to be found as follows:
   WHERET = 'I' (In A)
       The elements of (zeta) are in A.
   WHERET = 'S' (Separate)
       The elements of (zeta) are separate from A, in ZETA.
   Constraint: WHERET must be one of 'I' or 'S'.

3: M -- INTEGER Input
   On entry: m, the number of rows of A. Constraint: M >= N.

4: N -- INTEGER Input
   On entry: n, the number of columns of A.

   When N = 0 then an immediate return is effected.
   Constraint: N >= 0.

5: A(LDA,*) -- DOUBLE PRECISION array Input
   Note: the second dimension of the array A must be at least max(1,N).
   On entry: the leading m by n strictly lower triangular part of the array A must contain details of the matrix Q. In addition, when WHERET = 'I', then the diagonal elements of A must contain the elements of (zeta) as described under the argument ZETA below.

   When WHERET = 'S', the diagonal elements of the array A are referenced, since they are used temporarily to store the (zeta), but they contain their original values on return.
6: LDA -- INTEGER  
   On entry: 
   the first dimension of the array A as declared in the 
   (sub)program from which F01QDF is called. 
   Constraint: LDA >= max(1,M).

7: ZETA(*) -- DOUBLE PRECISION array  
   Note: when WHERE = 'S', the dimension of the array ZETA 
   must be greater than or equal to max(1,N). On entry: if 
   WHERE = 'S', the array ZETA must contain the elements of 
   (zeta). If ZETA(k) = 0.0 then T is assumed to be I 
   
   otherwise ZETA(k) is assumed to contain (zeta). 

When WHERE = 'I', ZETA is not referenced.

8: NCOLB -- INTEGER  
   On entry: ncolb, number of columns of B. 

   When NCOLB = 0 then an immediate return is effected. 
   Constraint: NCOLB >= 0.

9: B(LDB,*) -- DOUBLE PRECISION array  
   Note: the second dimension of the array B must be at least 
   max(1,NCOLB). 
   On entry: the leading m by ncolb part of the array B must 
   contain the matrix to be transformed. On exit: B is 
   overwritten by the transformed matrix.

10: LDB -- INTEGER  
    On entry: 
    the first dimension of the array B as declared in the 
    (sub)program from which F01QDF is called. 
    Constraint: LDB >= max(1,M).

11: WORK(*) -- DOUBLE PRECISION array  
    Note: the dimension of the array WORK must be at least 
    max(1,NCOLB).

12: IFAIL -- INTEGER  
    On entry: IFAIL must be set to 0, -1 or 1. For users not 
    familiar with this parameter (described in the Essential 
    Introduction) the recommended value is 0. 
    
    On exit: IFAIL = 0 unless the routine detects an error (see 
    Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL=-1
On entry TRANS /= 'N', 'T' or 'C',

or WHERE1 /= 'I' or 'S',

or M < N,

or N < 0,

or LDA < M,

or NCOLB < 0,

or LDB < M.

7. Accuracy

\[ QC = B + E, \]

where

\[ ||E|| \leq c(\text{epsilon})||B||, \]

and (epsilon) the machine precision (see X02AJF(*)), c is a modest function of m and \[ ||.|| \] denotes the spectral (two) norm. An equivalent result holds for the computed matrix QB. See also Section 7 of F01QCF.

8. Further Comments

The approximate number of floating-point operations is given by

\[ 2n(2m-n)ncolb. \]

9. Example

To obtain the matrix Q B for the matrix B given by

\[
\begin{pmatrix}
1.1 & 0.00 \\
0.9 & 0.00 \\
0.6 & 1.32
\end{pmatrix}
\]
following the QR factorization of the 5 by 3 matrix A given by

\[
\begin{bmatrix}
2.0 & 2.5 & 2.5 \\
2.0 & 2.5 & 2.5 \\
1.6 & -0.4 & 2.8 \\
2.0 & -0.5 & 0.5 \\
1.2 & -0.3 & -2.9
\end{bmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

First ncolq columns of the real m by m orthogonal matrix

— nagf.ht —
Householder transformation matrices.

This routine is intended for use following F01QCF or F01QFF(*).

2. Specification

```fortran
SUBROUTINE F01QEF (WHEREQ, M, N, NCOLQ, A, LDA, ZETA,
 WORK, IFAIL)
 INTEGER M, N, NCOLQ, LDA, IFAIL
 DOUBLE PRECISION A(LDA,*), ZETA(*), WORK(*)
 CHARACTER*1 WHEREQ
```

3. Description

Q is assumed to be given by

\[
Q = (Q \quad \cdots \quad Q),
\]

\[
Q = (I \ 0),
\]

\[
Q = (0 \ T),
\]

where

\[
T = I - u u^T,
\]

\[
(((zeta))
\]

\[
(zeta) \] is a scalar and z is an (m-k) element vector. z must be supplied in the kth column of A in elements A(k+1,k),...,A(m,k) and (zeta) must be supplied either in A(k,k) or in ZETA(k), depending upon the parameter WHEREQ.

4. References

Parameters

1: WHERE -- CHARACTER*1 Input
   On entry: indicates where the elements of \(zeta\) are to be found as follows:
   WHERE = 'I' (In A)
      The elements of \(zeta\) are in A.
   WHERE = 'S' (Separate)
      The elements of \(zeta\) are separate from A, in ZETA.
   Constraint: WHERE must be one of 'I' or 'S'.

2: M -- INTEGER Input
   On entry: \(m\), the number of rows of A. Constraint: \(M \geq N\).

3: N -- INTEGER Input
   On entry: \(n\), the number of columns of A. Constraint: \(N > 0\).

4: NCOLQ -- INTEGER Input
   On entry: \(ncolq\), the required number of columns of Q.
   Constraint: \(0 \leq NCOLQ \leq M\).
   When NCOLQ = 0 then an immediate return is effected.

5: A(LDA,*) -- DOUBLE PRECISION array Input/Output
   Note: the second dimension of the array A must be at least \(\max(1,N,NCOLQ)\).
   On entry: the leading \(m\) by \(n\) strictly lower triangular part of the array A must contain details of the matrix Q. In addition, when WHERE = 'I', then the diagonal elements of A must contain the elements of \(zeta\) as described under the argument ZETA below. On exit: the first NCOLQ columns of the array A are overwritten by the first NCOLQ columns of the \(m\) by \(m\) orthogonal matrix Q. When \(N = 0\) then the first NCOLQ columns of A are overwritten by the first NCOLQ columns of the identity matrix.

6: LDA -- INTEGER Input
   On entry: the first dimension of the array A as declared in the (sub)program from which F01QEF is called.
   Constraint: \(LDA \geq \max(1,M)\).

7: ZETA(*) -- DOUBLE PRECISION array Input
   Note: the dimension of the array ZETA must be at least
max(1,N).

On entry: with WHERE = 'S', the array ZETA must contain the
elements of (zeta). If ZETA(k) = 0.0 then T is assumed to

be I, otherwise ZETA(k) is assumed to contain (zeta).

When WHERE = 'I', the array ZETA is not referenced.

8: WORK(*) -- DOUBLE PRECISION array Workspace

Note: the dimension of the array WORK must be at least

max(1,NCOLQ).

9: IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not

familiar with this parameter (described in the Essential

Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see

Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are

output on the current error message unit (as defined by X04AAF).

IFAIL=-1

On entry WHERE /= 'I' or 'S',

or M < N,

or N < 0,

or NCOLQ < 0 or NCOLQ > M,

or LDA < M.

7. Accuracy

The computed matrix Q satisfies the relation

Q=P+E,

where P is an exactly orthogonal matrix and

||E||<=c(epsilon)

(epsilon) is the machine precision (see X02AJF(*)), c is a modest
function of \( m \) and \( ||.|| \) denotes the spectral (two) norm. See also Section 7 of F01QCF.

8. Further Comments

The approximate number of floating-point operations required is given by

\[
2^{-n((3m-n)(2ncolq-n)-n(ncolq-n))}, \quad ncolq>n, \\
3
\]

\[
2^{-ncolq (3m-ncolq)}, \quad ncolq\leq n.
3
\]

9. Example

To obtain the 5 by 5 orthogonal matrix \( Q \) following the QR factorization of the 5 by 3 matrix \( A \) given by

\[
\begin{pmatrix}
2.0 & 2.5 & 2.5 \\
2.0 & 2.5 & 2.5 \\
1.6 & -0.4 & 2.8 \\
2.0 & -0.5 & 0.5 \\
1.2 & -0.3 & -2.9
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F01RCF finds the QR factorization of the complex m by n matrix A, where m>=n.

2. Specification

SUBROUTINE F01RCF (M, N, A, LDA, THETA, IFAIL)
INTEGER M, N, LDA, IFAIL
COMPLEX(KIND(1.0D0)) A(LDA,*), THETA(*)

3. Description

The m by n matrix A is factorized as

\[ A = \begin{cases} \begin{pmatrix} R \\ Q(0) \end{pmatrix} & \text{when } m>n, \\ QR & \text{when } m=n, \end{cases} \]

where Q is an m by m unitary matrix and R is an n by n upper triangular matrix with real diagonal elements.

The factorization is obtained by Householder's method. The kth transformation matrix, Q_k, which is used to introduce zeros into the kth column of A is given in the form

\[ Q_k = \begin{pmatrix} I & 0 \\ 0 & T_k \end{pmatrix}, \]

where

\[ T_k = I - (\gamma) u_k u_k^T. \]
((zeta) )
( k)
u =((z ) ),
k ( k )

(gamma) is a scalar for which Re (gamma) =1.0, (zeta) is a real
k k k scalar and z is an (m-k) element vector. (gamma), (zeta) and
k k k z are chosen to annihilate the elements below the triangular
k part of A and to make the diagonal elements real.

The scalar (gamma) and the vector u are returned in the kth
k k element of the array THETA and in the kth column of A, such that
k (theta), given by

k
k (theta) =((zeta) ,Im(gamma) ),
k k k

is in THETA(k) and the elements of z are in a ,...,a . The
k k k k+1,k m,k elements of R are returned in the upper triangular part of A.

Q is given by

H
Q=(Q Q ...Q ) .
n n-1 1

A good background description to the QR factorization is given in
Dongarra et al [1], but note that this routine is not based upon
LINPACK routine ZQRDC.

4. References

LINPACK Users' Guide. SIAM, Philadelphia.

Oxford University Press.

5. Parameters

1: M -- INTEGER
Input
On entry: m, the number of rows of A. Constraint: M >= N.

2: N -- INTEGER
Input
On entry: \( n \), the number of columns of \( A \). Constraint: \( N \geq 0 \).

When \( N = 0 \) then an immediate return is effected.

3: \( A(LDA,*) \) -- COMPLEX(KIND(1.0D0)) array Input/Output

Note: the second dimension of the array \( A \) must be at least \( \max(1,N) \).

On entry: the leading \( m \) by \( n \) part of the array \( A \) must contain the matrix to be factorized. On exit: the \( n \) by \( n \) upper triangular part of \( A \) will contain the upper triangular matrix \( R \), with the imaginary parts of the diagonal elements set to zero, and the \( m \) by \( n \) strictly lower triangular part of \( A \) will contain details of the factorization as described above.

4: \( LDA \) -- INTEGER Input

On entry: the first dimension of the array \( A \) as declared in the (sub)program from which F01RCF is called. Constraint: \( LDA \geq \max(1,M) \).

5: \( \text{THETA}(*) \) -- COMPLEX(KIND(1.0D0)) array Output

Note: the dimension of the array \( \text{THETA} \) must be at least \( \max(1,N) \).

On exit: the scalar (theta) for the \( k \)th transformation. If \( kT = I \) then \( \text{THETA}(k) = 0.0 \); if \( k \)

\[ T = \begin{pmatrix} (\alpha) & 0 \\ 0 & 1 \end{pmatrix} \quad \text{Re}(\alpha) < 0.0, \]

then \( \text{THETA}(k) = (\alpha) \); otherwise \( \text{THETA}(k) \) contains \( \text{THETA}(k) \) as described in Section 3 and \( \text{Re}(\text{THETA}(k)) \) is always in the range \((1.0, \sqrt{2.0})\).

6: \( \text{IFAIL} \) -- INTEGER Input/Output

On entry: \( \text{IFAIL} \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \( \text{IFAIL} = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL=-1
On entry M < N,

or N < 0,

or LDA < M.

7. Accuracy
The computed factors Q and R satisfy the relation

\[
(R) \quad Q(0)=A+E,
\]

where

\[ ||E|| \leq c(\text{epsilon})||A||,\]

(epsilon) being the machine precision, c is a modest function of m and n and ||.|| denotes the spectral (two) norm.

8. Further Comments
The approximate number of real floating-point operations is given by

\[ 2n \cdot (3m-n)/3. \]

Following the use of this routine the operations

\[ H \quad B:=QB \quad \text{and} \quad B:=Q B, \]

where B is an m by k matrix, can be performed by calls to F01RDF.

The operation B:=QB can be obtained by the call:

```
IFAIL = 0
CALL F01RDF('No conjugate', 'Separate', M, N, A, LDA, THETA,
* K, B, LDB, WORK, IFAIL)
```

and B:=Q B can be obtained by the call:

```
IFAIL = 0
CALL F01RDF('Conjugate', 'Separate', M, N, A, LDA, THETA,
* K, B, LDB, WORK, IFAIL)
```
In both cases WORK must be a k element array that is used as workspace. If B is a one-dimensional array (single column) then the parameter LDB can be replaced by M. See F01RDF for further details.

The first k columns of the unitary matrix Q can either be obtained by setting B to the first k columns of the unit matrix and using the first of the above two calls, or by calling F01REF, which overwrites the k columns of Q on the first k columns of the array A. Q is obtained by the call:

\[ \text{CALL F01REF('Separate', M, N, K, A, LDA, THETA, WORK, IFAIL)} \]

As above, WORK must be a k element array. If k is larger than n, then A must have been declared to have at least k columns.

Operations involving the matrix R can readily be performed by the Level 2 BLAS routines ZTRSV and ZTRMV (see Chapter F06), but note that no test for near singularity of R is incorporated in ZTRSV. If R is singular, or nearly singular, then F02XUF(*) can be used to determine the singular value decomposition of R.

9. Example

To obtain the QR factorization of the 5 by 3 matrix

\[
A = \begin{pmatrix}
0.5i & -0.5+1.5i & -1.0+1.0i \\
0.4+0.3i & 0.9+1.3i & 0.2+1.4i \\
0.4 & -0.4+0.4i & 1.8 \\
0.3-0.4i & 0.1+0.7i & 0.0 \\
-0.3i & 0.3+0.3i & 2.4i
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\begin{verbatim}
\end{verbatim}

\end{scroll}

\end{page}
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F01RDF performs one of the transformations

\[ H \]
\[ B := QB \text{ or } B := Q B, \]

where \( B \) is an \( m \) by \( n \) colb complex matrix and \( Q \) is an \( m \) by \( m \) unitary matrix, given as the product of Householder transformation matrices.

This routine is intended for use following F01RCF or F01RFF(*).

2. Specification

\[
\text{SUBROUTINE F01RDF (TRANS, WHERET, M, N, A, LDA, THETA, NCOLB, B, LDB, WORK, IFAIL)}
\]

INTEGER M, N, LDA, NCOLB, LDB, IFAIL
COMPLEX(KIND(1.0D0)) A(LDA,*), THETA(*), B(LDB,*), WORK(*)
CHARACTER*1 TRANS, WHERET

3. Description

The unitary matrix \( Q \) is assumed to be given by

\[ H \]
\[ Q = (Q \ldots Q), \]
\[ n \quad n-1 \quad 1 \]

\( Q \) being given in the form

\[ Q \]
where

\[ H = I - (\text{gamma}) u u^T, \]
\[ u = (z), \]
\[ k (k) \]

(gamma) is a scalar for which Re (gamma) = 1.0, (zeta) is a real scalar and z is an (m-k) element vector.

z must be supplied in the kth column of A in elements

\[ a, \ldots, a_{k+1, k} \]

and (theta), given by

\[ (\theta)_k = (zeta)_k, \]
\[ m (k) \]

must be supplied either in a or in THETA(k), depending upon the parameter WHERET.

To obtain Q explicitly B may be set to I and pre-multiplied by Q. This is more efficient than obtaining Q. Alternatively, F01REF may be used to obtain Q overwritten on A.

4. References


5. Parameters

1: TRANS -- CHARACTER*1

On entry: the operation to be performed as follows:

\[ \text{TRANS} = 'N' \] (No transpose)
\[ \text{TRANS} = 'C' \] (Conjugate transpose)
Perform the operation $B := Q B$.
Constraint: TRANS must be one of 'N' or 'C'.

2: WHERE = -- CHARACTER*1 Input
On entry: the elements of $(\theta)$ are to be found as follows:
WHERE = 'I' (In A)
The elements of $(\theta)$ are in A.
WHERE = 'S' (Separate)
The elements of $(\theta)$ are separate from A, in THETA.
Constraint: WHERE must be one of 'I' or 'S'.

3: M -- INTEGER Input
On entry: $m$, the number of rows of A. Constraint: $M \geq N$.

4: N -- INTEGER Input
On entry: $n$, the number of columns of A. Constraint: $N \geq 0$.
When $N = 0$ then an immediate return is effected.

5: A(LDA,*) -- COMPLEX(KIND(1.0D)) array Input
Note: the second dimension of the array A must be at least max(1,N).
On entry: the leading $m$ by $n$ strictly lower triangular part of
the array A must contain details of the matrix Q. In
addition, when WHERE = 'I', then the diagonal elements of A
must contain the elements of $(\theta)$ as described under the
argument THETA below.

When WHERE = 'S', then the diagonal elements of the array A
are referenced, since they are used temporarily to store the
$(\zeta)_k$, but they contain their original values on return.

6: LDA -- INTEGER Input
On entry:
the first dimension of the array A as declared in the
(sub)program from which F01RDF is called.
Constraint: $LDA \geq \max(1, M)$.

7: THETA(*) -- COMPLEX(KIND(1.0D)) array Input
Note: the dimension of the array THETA must be at least
max(1,N).
On entry: with WHERE = 'S', the array THETA must contain
the elements of $(\theta)$. If $\text{THETA}(k)=0.0$ then $T$ is assumed
$k$
to be I; if $\text{THETA}(k)=(\alpha)$, with $\text{Re}(\alpha)<0.0$, then $T$ is
assumed to be of the form
\[
T = \begin{pmatrix} 0 & 1 \\ - & - \end{pmatrix};
\]
otherwise \( \text{THETA}(k) \) is assumed to contain \((\text{theta})\) given by
\[
(\text{theta}) = \left( \begin{pmatrix} \text{zeta} \\ \text{Im}(\gamma) \end{pmatrix} \right).
\]
When \( \text{WHERE} = 'I' \), the array \( \text{THETA} \) is not referenced, and
may be dimensioned of length 1.

8: \text{NCOLB} -- INTEGER \hspace{1cm} \text{Input}
On entry: \text{ncolb}, the number of columns of \( B \). Constraint:
\text{NCOLB} >= 0.
When \( \text{NCOLB} = 0 \) then an immediate return is effected.

9: \text{B}(\text{LDB},*) -- COMPLEX(KIND(1.0D)) array \hspace{1cm} \text{Input/Output}
Note: the second dimension of the array \( B \) must be at least
\( \max(1,\text{NCOLB}) \).
On entry: the leading \( m \) by \text{ncolb} part of the array \( B \) must
contain the matrix to be transformed. On exit: \( B \) is
overwritten by the transformed matrix.

10: \text{LDB} -- INTEGER \hspace{1cm} \text{Input}
On entry:
the first dimension of the array \( B \) as declared in the
(sub)program from which \text{F01RDF} is called.
Constraint: \text{LDB} >= \( \max(1,M) \).

11: \text{WORK(*)} -- COMPLEX(KIND(1.0D)) array \hspace{1cm} \text{Workspace}
Note: the dimension of the array \text{WORK} must be at least
\( \max(1,\text{NCOLB}) \).

12: \text{IFAIL} -- INTEGER \hspace{1cm} \text{Input/Output}
On entry: \text{IFAIL} must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: \text{IFAIL} = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry \text{IFAIL} = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by \text{X04AAF}).
IFAIL=-1
On entry TRANS /= 'N' or 'C',
or WHERET /= 'I' or 'S',
or M < N,
or N < 0,
or LDA < M,
or NCOLB < 0,
or LDB < M.

7. Accuracy

Letting C denote the computed matrix Q B, C satisfies the relation

$$QC = B + E,$$

where

$$||E|| <= c(\epsilon)||B||,$$

(\epsilon) being the machine precision, c is a modest function of m and |||| denotes the spectral (two) norm. An equivalent result holds for the computed matrix QB. See also Section 7 of F01RCF.

8. Further Comments

The approximate number of real floating-point operations is given by 8n(2m-n)ncolb.

9. Example

To obtain the matrix Q B for the matrix B given by

$$B = \begin{pmatrix}
-0.55+1.05i & 0.45+1.05i \\
0.49+0.93i & 1.09+0.13i \\
0.56-0.16i & 0.64+0.16i \\
0.39+0.23i & -0.39-0.23i \\
1.13+0.83i & -1.13+0.77i
\end{pmatrix}$$

following the QR factorization of the 5 by 3 matrix A given by

$$A = \begin{pmatrix}
0.5i & -0.5+1.5i & -1.0+1.0i
\end{pmatrix}$$


\[ A = \begin{pmatrix}
0.4 & 0.3 + 0.4i & 1.8 \\
0.3 & 0.1 + 0.7i & 0.0 \\
-0.3i & 0.3 + 0.3i & 2.4i
\end{pmatrix} \]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

**First ncolq columns of the complex m by m unitary matrix**

---

---

---

---
SUBROUTINE F01REF (WERET, M, N, NCOLQ, A, LDA, THETA, WORK, IFAIL)
INTEGER M, N, NCOLQ, LDA, IFAIL
COMPLEX(KIND(1.0D0)) A(LDA,*), THETA(*), WORK(*)
CHARACTER*1 WERET

3. Description

The unitary matrix Q is assumed to be given by

\[
H
Q = (Q \quad \ldots \quad Q)
\]
\[
\begin{array}{cc}
Q & n\quad n-1\quad 1 \\
\end{array}
\]

Q being given in the form

\[
\begin{array}{c}
(I \quad 0) \\
0 \quad T,
\end{array}
\begin{array}{c}
k \\
( k)
\end{array}
\]

where

\[
H
T = I - (\gamma) u u,
\begin{array}{c}
k \\
k \quad k \quad k
\end{array}
\]

\[
\begin{array}{c}
((\zeta)) \\
( k)
\end{array}
\begin{array}{c}
u = (z) \\
k \quad k
\end{array}
\]

(\gamma) is a scalar for which Re(\gamma) = 1.0, (\zeta) is a real scalar and \(z\) is an (m-k) element vector.

\(z\) must be supplied in the kth column of A in elements

\[
\begin{array}{c}
a \quad \ldots \quad a \\
\end{array}
\begin{array}{c}
k+1 \quad k \\
(\kappa \quad k \quad k)
\end{array}
\]

(\theta) = ((\zeta), Im(\gamma)),

\[
\begin{array}{c}
k \quad k \quad k
\end{array}
\]

must be supplied either in \(a\) or in THETA(k) depending upon the parameter WERET.
### 4. References


### 5. Parameters

1: \( \text{WHERE}T \rightarrow \text{CHARACTER*1} \) Input
   
   On entry: the elements of \((\theta)\) are to be found as follows:
   
   \( \text{WHERE}T = 'I' \) (In \(A\))
   
   The elements of \((\theta)\) are in \(A\).
   
   \( \text{WHERE}T = 'S' \) (Separate)
   
   The elements of \((\theta)\) are separate from \(A\), in \(\text{THETA}\).
   
   Constraint: \( \text{WHERE}T \) must be one of \('I' \) or \('S' \).

2: \( M \rightarrow \text{INTEGER} \) Input
   
   On entry: \(m\), the number of rows of \(A\). Constraint: \(M \geq N\).

3: \( N \rightarrow \text{INTEGER} \) Input
   
   On entry: \(n\), the number of columns of \(A\). Constraint: \(N \geq 0\).

4: \( \text{NCOLQ} \rightarrow \text{INTEGER} \) Input
   
   On entry: \(\text{ncolq}\), the required number of columns of \(Q\).
   
   Constraint: \(0 \leq \text{NCOLQ} \leq M\).

   When \(\text{NCOLQ} = 0\) then an immediate return is effected.

5: \( \text{A(LDA,*)} \rightarrow \text{COMPLEX(KIND(1.0D))} \) array Input/Output
   
   Note: the second dimension of the array \(A\) must be at least \(\max(1,N,\text{NCOLQ})\).
   
   On entry: the leading \(m\) by \(n\) strictly lower triangular part of the array \(A\) must contain details of the matrix \(Q\). In addition, when \(\text{WHERE}T = 'I'\), then the diagonal elements of \(A\) must contain the elements of \((\theta)\) as described under the argument \(\text{THETA}\) below. On exit: the first \(\text{NCOLQ}\) columns of the array \(A\) are overwritten by the first \(\text{NCOLQ}\) columns of the \(m\) by \(m\) unitary matrix \(Q\). When \(N = 0\) then the first \(\text{NCOLQ}\) columns of \(A\) are overwritten by the first \(\text{NCOLQ}\) columns of the unit matrix.

6: \( \text{LDA} \rightarrow \text{INTEGER} \) Input
   
   On entry:
   
   the first dimension of the array \(A\) as declared in the
   
   (sub)program from which \(\text{F01REF}\) is called.
   
   Constraint: \(\text{LDA} \geq \max(1,M)\).

7: \( \text{THETA(*)} \rightarrow \text{COMPLEX(KIND(1.0D))} \) array Input
Note: the dimension of the array THETA must be at least max(1,N).
On entry: if WHERE = 'S', the array THETA must contain the elements of (theta). If THETA(k)=0.0 then T is assumed to
be I; if THETA(k)=(alpha), with Re(alpha)<0.0, then T is
assumed to be of the form
\[
T = \begin{pmatrix}
\alpha & 0 \\
0 & 1
\end{pmatrix};
\]
otherwise THETA(k) is assumed to contain (theta) given by
\[
(\text{theta}) = (\zeta_k, \text{Im}(\gamma_k)).
\]
When WHERE = 'I', the array THETA is not referenced.

8: WORK(*) -- COMPLEX(KIND(1.0D)) array Workspace
Note: the dimension of the array WORK must be at least max(1,NCOLQ).

9: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL=-1
On entry WHERE /= 'I' or 'S',
or \( M < N \),
or \( N < 0 \),
or \( NCOLQ < 0 \) or \( NCOLQ > M \),
or \( LDA < M \).

7. Accuracy
The computed matrix $Q$ satisfies the relation

$$Q = P + E,$$

where $P$ is an exactly unitary matrix and

$$||E|| \leq c(\epsilon),$$

$(\epsilon)$ being the machine precision, $c$ is a modest function of $m$ and $||.||$ denotes the spectral (two) norm. See also Section 7 of F01RCF.

8. Further Comments

The approximate number of real floating-point operations required is given by

$$8 -n((3m-n)(2n\text{colq}-n)-n(n\text{colq}-n)), \quad n\text{colq}>n$$

$$3$$

$$8 2 -n\text{colq} (3m-n\text{colq}), \quad n\text{colq} \leq n$$

$$3$$

9. Example

To obtain the 5 by 5 unitary matrix $Q$ following the QR factorization of the 5 by 3 matrix $A$ given by

$$A = \begin{pmatrix}
0.5i & -0.5+1.5i & -1.0+1.4i \\
0.4+0.3i & 0.9+1.3i & 0.2+1.4i \\
0.4 & -0.4+0.4i & 1.8 \\
0.3-0.4i & 0.1i+0.7i & 0.0 \\
-0.3i & 0.3+0.3i & 2.4i
\end{pmatrix}. \nonumber$$

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Eigenvalues and Eigenvectors

--- nagf.ht ---

\begin{page}{manpageXXf02}{NAG Documentation: f02}
\beginscroll
\begin{verbatim}
F02(3NAG) Foundation Library (12/10/92) F02(3NAG)

F02 -- Eigenvalues and Eigenvectors

Introduction -- F02
Chapter F02

1. Scope of the Chapter

This chapter is concerned with computing

-- eigenvalues and eigenvectors of a matrix
-- eigenvalues and eigenvectors of generalized matrix
-- singular values and singular vectors of a matrix.

2. Background to the Problems

2.1. Eigenvalue Problems

In the most usual form of eigenvalue problem we are given a
square n by n matrix A and wish to compute \((\lambda)\) (an
eigenvalue) and \(x\neq0\) (an eigenvector) which satisfy the equation

\[Ax=(\lambda)x\]

Such problems are called 'standard' eigenvalue problems in
contrast to 'generalized' eigenvalue problems where we wish to
satisfy the equation

\[Ax=(\lambda)Bx\]

B also being a square n by n matrix.

Section 2.1.1 and Section 2.1.2 discuss, respectively, standard
and generalized eigenvalue problems where the matrices involved
are dense; Section 2.1.3 discusses both types of problem in the case where $A$ and $B$ are sparse (and symmetric).

2.1.1. Standard eigenvalue problems

Some of the routines in this chapter find all the $n$ eigenvalues, some find all the $n$ eigensolutions (eigenvalues and corresponding eigenvectors), and some find a selected group of eigenvalues and/or eigenvectors. The matrix $A$ may be:

(i) general (real or complex)

(ii) real symmetric, or

(iii) complex Hermitian (so that if $a_{ij} = (\alpha + i\beta)$ then $a_{ji} = (\alpha - i\beta)$).

In all cases the computation starts with a similarity transformation $S^{-1} AS = T$, where $S$ is non-singular and is the product of fairly simple matrices, and $T$ has an 'easier form' than $A$ so that its eigensolutions are easily determined. The matrices $A$ and $T$, of course, have the same eigenvalues, and if $y$ is an eigenvector of $T$ then $Sy$ is the corresponding eigenvector of $A$.

In case (i) (general real or complex $A$), the selected form of $T$ is an upper Hessenberg matrix ($t_{ij} = 0$ if $i-j>1$) and $S$ is the product of $n-2$ stabilised elementary transformation matrices. There is no easy method of computing selected eigenvalues of a Hessenberg matrix, so that all eigenvalues are always calculated. In the real case this computation is performed via the Francis QR algorithm with double shifts, and in the complex case by means of the LR algorithm. If the eigenvectors are required they are computed by back-substitution following the QR and LR algorithm.

In case (ii) (real and symmetric $A$) the selected simple form of $T$ is a tridiagonal matrix ($t_{ij} = 0$ if $|i-j|>1$), and $S$ is the product of $n-2$ orthogonal Householder transformation matrices. If only selected eigenvalues are required, they are obtained by the method of bisection using the Sturm sequence property, and the corresponding eigenvectors of $T$ are computed by inverse iteration. If all eigenvalues are required, they are computed from $T$ via the QL algorithm (an adaptation of the QR algorithm), and the corresponding eigenvectors of $T$ are the product of the transformations for the QL reduction. In all cases the
corresponding eigenvectors of A are recovered from the computation of \( x = S y \).

In case (iii) (complex Hermitian A) analogous transformations as in case (ii) are used. T has complex elements in off-diagonal positions, but a simple diagonal similarity transformation is then used to produce a real tridiagonal form, after which the QL algorithm and succeeding methods described in the previous paragraph are used to complete the solution.

2.1.2. Generalized eigenvalue problems

Here we distinguish as a special case those problems in which both A and B are symmetric and B is positive-definite and well-conditioned with respect to inversion (i.e., all the eigenvalues of B are significantly greater than zero). Such problems can be satisfactorily treated by first reducing them to case (ii) of Section 2.1.1 and then using the methods described there to compute the eigensolutions. If B is factorized as LL (L lower triangular), then \( A x = (\lambda) B x \) is equivalent to the standard \( T^{-1} T^{-1} T \) symmetric problem \( R y = (\lambda) y \), where \( R = L A (L^T) \) and \( y = L x \). After finding an eigenvector \( y \) of \( R \), the required \( x \) is computed \( T \) by back-substitution in \( y = L x \).

For generalized problems of the form \( A x = (\lambda) B x \) which do not fall into the special case, the QZ algorithm is provided.

In order to appreciate the domain in which this algorithm is appropriate we remark first that when B is non-singular the problem \( A x = (\lambda) B x \) is fully equivalent to the problem \( -1 \) \( (B A)^{-1} x = (\lambda) x \); both the eigenvalues and eigenvectors being the same. When A is non-singular \( A x = (\lambda) B x \) is equivalent to \( -1 \) \( (A B)^{-1} x = (\mu) x \); the eigenvalues (\( \mu \)) being the reciprocals of the required eigenvalues and the eigenvectors remaining the same. In theory then, provided at least one of the matrices A and B is non-singular, the generalized problem \( A x = (\lambda) B x \) could be solved via the standard problem \( C x = (\lambda) C x \) with an appropriate matrix C, and as far as economy of effort is concerned this is quite satisfactory. However, in practice, for this reduction to be satisfactory from the standpoint of numerical stability, one requires more than the \( -1 \) \text{ mere non-singularity of A or B. It is necessary that B A (or A B) should not only exist but that B (or A) should be well-}
conditioned with respect to inversion. The nearer $B$ (or $A$) is to $-1$ $-1$ singularity the more unsatisfactory $B^{-1} A$ (or $A^{-1} B$) will be as a vehicle for determining the required eigenvalues. Unfortunately one cannot counter ill-conditioning in $B$ (or $A$) by computing $B^{-1} A$ (or $A^{-1} B$) accurately to single precision using iterative refinement. Well-determined eigenvalues of the original $A \mathbf{x} = \lambda B \mathbf{x}$ may be poorly determined even by the correctly rounded version of $B^{-1} A$ (or $A^{-1} B$). The situation may in some instances be saved by the observation that if $A \mathbf{x} = \lambda B \mathbf{x}$ then $(A-kB)\mathbf{x} = ((\lambda)-k)B\mathbf{x}$. Hence if $A-kB$ is non-singular we may solve the standard problem $[(A-kB)^{-1} B] \mathbf{x} = \mu \mathbf{x}$ and for numerical stability we require only that $(A-kB)^{-1}$ be well-conditioned with respect to inversion.

In practice one may well be in a situation where no $k$ is known for which $(A-kB)$ is well-conditioned with respect to inversion and indeed $(A-kB)$ may be singular for all $k$. The QZ algorithm is designed to deal directly with the problem $A \mathbf{x} = \lambda B \mathbf{x}$ itself and its performance is unaffected by singularity or near-singularity of $A$, $B$ or $A-kB$.

2.1.3. Sparse symmetric problems

If the matrices $A$ and $B$ are large and sparse (i.e., only a small proportion of the elements are non-zero), then the methods described in the previous Section are unsuitable, because in reducing the problem to a simpler form, much of the sparsity of the problem would be lost; hence the computing time and the storage required would be very large. Instead, for symmetric problems, the method of simultaneous iteration may be used to determine selected eigenvalues and the corresponding eigenvectors. The routine provided has been designed to handle both symmetric and generalized symmetric problems.

2.2. Singular Value Problems

The singular value decomposition of an $m$ by $n$ real matrix $A$ is given by

$$ A = QDP^T $$

where $Q$ is an $m$ by $m$ orthogonal matrix, $P$ is an $n$ by $n$ orthogonal matrix and $D$ is an $m$ by $n$ diagonal matrix with non-negative diagonal elements. The first $k = \min(m,n)$ columns of $Q$ and $P$ are
the left- and right-hand singular vectors of $A$ and the $k$ diagonal elements of $D$ are the singular values.

When $A$ is complex then the singular value decomposition is given by

$$A = QDP^T,$$

where $Q$ and $P$ are unitary, $P^T$ denotes the complex conjugate of $P$ and $D$ is as above for the real case.

If the matrix $A$ has column means of zero, then $AP$ is the matrix of principal components of $A$ and the singular values are the square roots of the sample variances of the observations with respect to the principal components. (See also Chapter G03.)

Routines are provided to return the singular values and vectors of a general real or complex matrix.

3. Recommendations on Choice and Use of Routines

3.1. General Discussion

There is one routine, F02FJF, which is designed for sparse symmetric eigenvalue problems, either standard or generalized. The remainder of the routines are designed for dense matrices.

3.2. Eigenvalue and Eigenvector Routines

These reduce the matrix $A$ to a simpler form by a similarity transformation $S^{-1}AS=T$ where $T$ is an upper Hessenberg or tridiagonal matrix, compute the eigensolutions of $T$, and then recover the eigenvectors of $A$ via the matrix $S$. The eigenvectors are normalised so that $x^*x=1$, $x$ being the $r$th component of the eigenvector $x$, and so that the $r$th element of largest modulus is real if $x$ is complex. For problems of the type $Ax=(\lambda)x$ with $A$ and $B$ symmetric and $B$ positive-definite, the eigenvectors are normalised so that $x^*Bx=1$, $x$
always being real for such problems.

3.3. Singular Value and Singular Vector Routines

These reduce the matrix $A$ to real bidiagonal form, $B$ say, by $T$ orthogonal transformations $QA^T B = B$ in the real case, and by $H$ unitary transformations $QA^H B = B$ in the complex case, and the singular values and vectors are computed via this bidiagonal form. The singular values are returned in descending order.

3.4. Decision Trees

(i) Eigenvalues and Eigenvectors

Please see figure in printed Reference Manual

(ii) Singular Values and Singular Vectors

Please see figure in printed Reference Manual

F02 -- Eigenvalues and Eigenvectors

Chapter F02

Eigenvalues and Eigenvectors

F02AAF All eigenvalues of real symmetric matrix

F02ABF All eigenvalues and eigenvectors of real symmetric matrix

F02ADF All eigenvalues of generalized real symmetric-definite eigenproblem

F02AEF All eigenvalues and eigenvectors of generalized real symmetric-definite eigenproblem

F02AFF All eigenvalues of real matrix

F02AGF All eigenvalues and eigenvectors of real matrix

F02AJF All eigenvalues of complex matrix

F02AKF All eigenvalues and eigenvectors of complex matrix

F02AWF All eigenvalues of complex Hermitian matrix
Calculates all the eigenvalues of a real symmetric matrix

— nagf.ht —

F02AAF calculates all the eigenvalues of a real symmetric matrix.

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AAF calculates all the eigenvalues of a real symmetric matrix.
CHAPTER 22. NAG LIBRARY ROUTINES

2. Specification

SUBROUTINE F02AAF (A, IA, N, R, E, IFAIL)
INTEGER IA, N, IFAIL
DOUBLE PRECISION A(IA,N), R(N), E(N)

3. Description

This routine reduces the real symmetric matrix A to a real symmetric tridiagonal matrix using Householder's method. The eigenvalues of the tridiagonal matrix are then determined using the QL algorithm.

4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array Input/Output
On entry: the lower triangle of the n by n symmetric matrix A. The elements of the array above the diagonal need not be set. On exit: the elements of A below the diagonal are overwritten, and the rest of the array is unchanged.

2: IA -- INTEGER Input
On entry: the first dimension of the array A as declared in the (sub)program from which F02AAF is called.
Constraint: IA >= N.

3: N -- INTEGER Input
On entry: n, the order of the matrix A.

4: R(N) -- DOUBLE PRECISION array Output
On exit: the eigenvalues in ascending order.

5: E(N) -- DOUBLE PRECISION array Workspace

6: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1

Failure in F02AVF(*) indicating that more than 30*N iterations are required to isolate all the eigenvalues.

7. Accuracy

The accuracy of the eigenvalues depends on the sensitivity of the matrix to rounding errors produced in tridiagonalisation. For a detailed error analysis see Wilkinson and Reinsch [1] pp 222 and 235.

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues of the real symmetric matrix:

\[
\begin{pmatrix}
0.5 & 0.0 & 2.3 & -2.6 \\
0.0 & 0.5 & -1.4 & -0.7 \\
2.3 & -1.4 & 0.5 & 0.0 \\
-2.6 & -0.7 & 0.0 & 0.5
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F02 -- Eigenvalue and Eigenvectors

F02ABF

F02ABF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02ABF calculates all the eigenvalues and eigenvectors of a real symmetric matrix.

2. Specification

```fortran
SUBROUTINE F02ABF (A, IA, N, R, V, IV, E, IFAIL)
INTEGER IA, N, IV, IFAIL
DOUBLE PRECISION A(IA,N), R(N), V(IV,N), E(N)
```

3. Description

This routine reduces the real symmetric matrix A to a real symmetric tridiagonal matrix by Householder’s method. The eigenvalues and eigenvectors are calculated using the QL algorithm.

4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array
   Input
   On entry: the lower triangle of the n by n symmetric matrix A. The elements of the array above the diagonal need not be set. See also Section 8.

2: IA -- INTEGER
   Input
   On entry:
   the first dimension of the array A as declared in the (sub)program from which F02ABF is called.
   Constraint: IA >= N.

3: N -- INTEGER
   Input
On entry: n, the order of the matrix A.

4: R(N) -- DOUBLE PRECISION array
Output
On exit: the eigenvalues in ascending order.

5: V(IV,N) -- DOUBLE PRECISION array
Output
On exit: the normalised eigenvectors, stored by columns;
the ith column corresponds to the ith eigenvalue. The
eigenvectors are normalised so that the sum of squares of
the elements is equal to 1.

6: IV -- INTEGER
Input
On entry:
the first dimension of the array V as declared in the
(sub)program from which F02ABF is called.
Constraint: IV >= N.

7: E(N) -- DOUBLE PRECISION array
Workspace

8: IFAIL -- INTEGER
Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
Failure in F02AMF(*) indicating that more than 30*N
iterations are required to isolate all the eigenvalues.

7. Accuracy

The eigenvectors are always accurately orthogonal but the
accuracy of the individual eigenvectors is dependent on their
inherent sensitivity to changes in the original matrix. For a
detailed error analysis see Wilkinson and Reinsch [1] pp 222 and
235.

8. Further Comments

The time taken by the routine is approximately proportional to n

Unless otherwise stated in the Users' Note for your
implementation, the routine may be called with the same actual
array supplied for parameters A and V, in which case the eigenvectors will overwrite the original matrix. However this is not standard Fortran 77, and may not work on all systems.

9. Example

To calculate all the eigenvalues and eigenvectors of the real symmetric matrix:

\[
\begin{pmatrix}
0.5 & 0.0 & 2.3 & -2.6 \\
0.0 & 0.5 & -1.4 & -0.7 \\
2.3 & -1.4 & 0.5 & 0.0 \\
-2.6 & -0.7 & 0.0 & 0.5
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

Calculates all the eigenvalues of \( Ax = \lambda Bx \)

\begin{verbatim}
\end{verbatim}
\end{scroll}
\end{page}

F02ADF(3NAG)  Foundation Library (12/10/92)  F02ADF(3NAG)

F02 -- Eigenvalue and Eigenvectors  F02ADF
F02ADF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose
F02ADF calculates all the eigenvalues of \( Ax = \lambda B x \), where \( A \) is a real symmetric matrix and \( B \) is a real symmetric positive-definite matrix.

2. Specification

```plaintext
SUBROUTINE F02ADF (A, IA, B, IB, N, R, DE, IFAIL)
INTEGER IA, IB, N, IFAIL
DOUBLE PRECISION A(IA,N), B(IB,N), R(N), DE(N)
```

3. Description

The problem is reduced to the standard symmetric eigenproblem using Cholesky's method to decompose \( B \) into triangular matrices, \( T B = LL \), where \( L \) is lower triangular. Then \( Ax = \lambda B x \) implies

\[
-L^{-1} T^{-1} T^{-1} T^{-1} L^{-1} x = \lambda x;
\]

hence the eigenvalues of \( Ax = \lambda B x \) are those of \( Py = \lambda y \) where \( P \) is the symmetric matrix \( L A L^{-1} \). Householder's method is used to tridiagonalise the matrix \( P \) and the eigenvalues are then found using the QL algorithm.

4. References


5. Parameters

1: \( A(IA,N) \) -- DOUBLE PRECISION array Input/Output
   On entry: the upper triangle of the \( n \) by \( n \) symmetric matrix \( A \). The elements of the array below the diagonal need not be set. On exit: the lower triangle of the array is overwritten. The rest of the array is unchanged.

2: \( IA \) -- INTEGER Input
   On entry: the first dimension of the array \( A \) as declared in the (sub)program from which F02ADF is called.
   Constraint: \( IA \geq N \).

3: \( B(IB,N) \) -- DOUBLE PRECISION array Input/Output
   On entry: the upper triangle of the \( n \) by \( n \) symmetric positive-definite matrix \( B \). The elements of the array below the diagonal need not be set. On exit: the elements below the diagonal are overwritten. The rest of the array is unchanged.
CHAPTER 22. NAG LIBRARY ROUTINES

4: IB -- INTEGER  
   On entry:  
   the first dimension of the array B as declared in the  
   (sub)program from which F02ADF is called.  
   Constraint: IB >= N.

5: N -- INTEGER  
   On entry: n, the order of the matrices A and B.

6: R(N) -- DOUBLE PRECISION array  
   On exit: the eigenvalues in ascending order.

7: DE(N) -- DOUBLE PRECISION array  
   Workspace

8: IFAIL -- INTEGER  
   On entry: IFAIL must be set to 0, -1 or 1. For users not  
   familiar with this parameter (described in the Essential  
   Introduction) the recommended value is 0.  
   On exit: IFAIL = 0 unless the routine detects an error (see  
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1  
   Failure in F01AEF(*); the matrix B is not positive-definite  
   possibly due to rounding errors.

IFAIL= 2  
   Failure in F02AVF(*), more than 30*N iterations are required  
   to isolate all the eigenvalues.

7. Accuracy

In general this routine is very accurate. However, if B is ill-  
conditioned with respect to inversion, the eigenvalues could be  
inaccurately determined. For a detailed error analysis see  

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues of the general symmetric
eigenproblem $Ax = \lambda Bx$ where $A$ is the symmetric matrix:

\begin{equation}
\begin{pmatrix}
0.5 & 1.5 & 6.6 & 4.8 \\
1.5 & 6.5 & 16.2 & 8.6 \\
6.6 & 16.2 & 37.6 & 9.8 \\
4.8 & 8.6 & 9.8 & -17.1
\end{pmatrix}
\end{equation}

and $B$ is the symmetric positive-definite matrix:

\begin{equation}
\begin{pmatrix}
1 & 3 & 4 & 1 \\
3 & 13 & 16 & 11 \\
4 & 16 & 24 & 18 \\
1 & 11 & 18 & 27
\end{pmatrix}
\end{equation}

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

**Eigenvalues and eigenvectors of** $Ax = \lambda Bx$

--- nagf.ht ---

\begin{verbatim}
F02AEF(3NAG) Foundation Library (12/10/92) F02AEF(3NAG)

F02 -- Eigenvalue and Eigenvectors
F02AEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose
\end{verbatim}
F02AEF calculates all the eigenvalues and eigenvectors of 
$Ax = \lambda Bx$, where $A$ is a real symmetric matrix and $B$ is a 
real symmetric positive-definite matrix.

2. Specification

```fortran
SUBROUTINE F02AEF (A, IA, B, IB, N, R, V, DL, E, IFAIL)
INTEGER IA, IB, N, IV, IFAIL
DOUBLE PRECISION A(IA,N), B(IB,N), R(N), V(IV,N), DL(N), E
```

3. Description

The problem is reduced to the standard symmetric eigenproblem
using Cholesky's method to decompose $B$ into triangular matrices
$B = LL^T$, where $L$ is lower triangular. Then $Ax = \lambda Bx$ implies
$-1 -T
(LAL)(Lx) = (\lambda)(Lx)$; hence the eigenvalues of
$Ax = \lambda Bx$ are those of $Py = \lambda y$, where $P$ is the symmetric
$-1 -T
matrix $LAL$. Householder's method is used to tridiagonalize
the matrix $P$ and the eigenvalues are found using the QL
algorithm. An eigenvector $z$ of the derived problem is related to
an eigenvector $x$ of the original problem by $z = Lx$. The
eigenvectors $z$ are determined using the QL algorithm and are
normalized so that $z^T z = 1$; the eigenvectors of the original
problem are then determined by solving $Lx = z$, and are normalized
so that $x^T Bx = 1$.

4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array        Input/Output

On entry: the upper triangle of the $n$ by $n$ symmetric matrix
$A$. The elements of the array below the diagonal need not be
set. On exit: the lower triangle of the array is
overwritten. The rest of the array is unchanged. See also
Section 8.
2: IA -- INTEGER
   On entry:
   the first dimension of the array A as declared in the
   (sub)program from which F02AEF is called.
   Constraint: IA >= N.

3: B(IB,N) -- DOUBLE PRECISION array
   On entry: the upper triangle of the n by n symmetric
   positive-definite matrix B. The elements of the array below
   the diagonal need not be set. On exit: the elements below
   the diagonal are overwritten. The rest of the array is
   unchanged.

4: IB -- INTEGER
   On entry:
   the first dimension of the array B as declared in the
   (sub)program from which F02AEF is called.
   Constraint: IB >= N.

5: N -- INTEGER
   On entry: n, the order of the matrices A and B.

6: R(N) -- DOUBLE PRECISION array
   On exit: the eigenvalues in ascending order.

7: V(IV,N) -- DOUBLE PRECISION array
   On exit: the normalised eigenvectors, stored by columns;
   the ith column corresponds to the ith eigenvalue. The
   eigenvectors x are normalised so that x Bx=1. See also
   Section 8.

8: IV -- INTEGER
   On entry:
   the first dimension of the array V as declared in the
   (sub)program from which F02AEF is called.
   Constraint: IV >= N.

9: DL(N) -- DOUBLE PRECISION array
10: E(N) -- DOUBLE PRECISION array
11: IFAIL -- INTEGER
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see
    Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL= 1
   Failure in F01AEF(*); the matrix B is not positive-definite, possibly due to rounding errors.

IFAIL= 2
   Failure in F02AMF(*); more than 30*N iterations are required to isolate all the eigenvalues.

7. Accuracy

In general this routine is very accurate. However, if B is ill-conditioned with respect to inversion, the eigenvectors could be inaccurately determined. For a detailed error analysis see Wilkinson and Reinsch [1] pp 310, 222 and 235.

8. Further Comments

The time taken by the routine is approximately proportional to n

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the same actual array supplied for parameters A and V, in which case the eigenvectors will overwrite the original matrix A. However this is not standard Fortran 77, and may not work on all systems.

9. Example

To calculate all the eigenvalues and eigenvectors of the general symmetric eigenproblem Ax=(lambda) Bx where A is the symmetric matrix:

\[
\begin{pmatrix}
0.5 & 1.5 & 6.6 & 4.8 \\
1.5 & 6.5 & 16.2 & 8.6 \\
6.6 & 16.2 & 37.6 & 9.8 \\
4.8 & 8.6 & 9.8 & -17.1
\end{pmatrix}
\]

and B is the symmetric positive-definite matrix:

\[
\begin{pmatrix}
1 & 3 & 4 & 1 \\
3 & 13 & 16 & 11 \\
4 & 16 & 24 & 18 \\
1 & 11 & 18 & 27
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Calculates all the eigenvalues of a real unsymmetric matrix

---

F02AFF(3NAG)  Foundation Library (12/10/92)  F02AFF(3NAG)

F02 -- Eigenvalue and Eigenvectors

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AFF calculates all the eigenvalues of a real unsymmetric matrix.

2. Specification

SUBROUTINE F02AFF (A, IA, N, RR, RI, INTGER, IFAIL)
INTEGER IA, N, INTGER(N), IFAIL
DOUBLE PRECISION A(IA,N), RR(N), RI(N)

3. Description

The matrix A is first balanced and then reduced to upper Hessenberg form using stabilised elementary similarity transformations. The eigenvalues are then found using the QR algorithm for real Hessenberg matrices.
4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array Input/Output
   On entry: the n by n matrix A. On exit: the array is overwritten.

2: IA -- INTEGER Input
   On entry: the dimension of the array A as declared in the (sub)program from which F02AFF is called.
   Constraint: IA >= N.

3: N -- INTEGER Input
   On entry: n, the order of the matrix A.

4: RR(N) -- DOUBLE PRECISION array Output
   On exit: the real parts of the eigenvalues.

5: RI(N) -- DOUBLE PRECISION array Output
   On exit: the imaginary parts of the eigenvalues.

6: INTEGER(N) -- INTEGER array Output
   On exit: INTEGER(i) contains the number of iterations used to find the ith eigenvalue. If INTEGER(i) is negative, the ith eigenvalue is the second of a pair found simultaneously.

   Note that the eigenvalues are found in reverse order, starting with the nth.

7: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
   More than 30*N iterations are required to isolate all the eigenvalues.
7. Accuracy

The accuracy of the results depends on the original matrix and the multiplicity of the roots. For a detailed error analysis see Wilkinson and Reinsch [1] pp 352 and 367.

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues of the real matrix:

\[
\begin{pmatrix}
1.5 & 0.1 & 4.5 & -1.5 \\
-22.5 & 3.5 & 12.5 & -2.5 \\
-2.5 & 0.3 & 4.5 & -2.5 \\
-2.5 & 0.1 & 4.5 & 2.5
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AGF calculates all the eigenvalues and eigenvectors of a real unsymmetric matrix.

2. Specification

```fortran
SUBROUTINE F02AGF (A, IA, N, RR, RI, VR, IVR, VI, IVI, INTEGER, IFAIL)
INTEGER IA, N, IVR, IVI, INTEGER(N), IFAIL
DOUBLE PRECISION A(IA,N), RR(N), RI(N), VR(IVR,N), VI (IVI,N)
```

3. Description

The matrix A is first balanced and then reduced to upper Hessenberg form using real stabilised elementary similarity transformations. The eigenvalues and eigenvectors of the Hessenberg matrix are calculated using the QR algorithm. The eigenvectors of the Hessenberg matrix are back-transformed to give the eigenvectors of the original matrix A.

4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array Input/Output
    On entry: the n by n matrix A. On exit: the array is overwritten.

2: IA -- INTEGER Input
    On entry: the first dimension of the array A as declared in the (sub)program from which F02AGF is called.
    Constraint: IA >= N.

3: N -- INTEGER Input
    On entry: n, the order of the matrix A.

4: RR(N) -- DOUBLE PRECISION array Output
    On exit: the real parts of the eigenvalues.
5: RI(N) -- DOUBLE PRECISION array  
   On exit: the imaginary parts of the eigenvalues.
6: VR(IVR,N) -- DOUBLE PRECISION array  
   On exit: the real parts of the eigenvectors, stored by 
   columns. The ith column corresponds to the ith eigenvalue. 
   The eigenvectors are normalised so that the sum of the 
   squares of the moduli of the elements is equal to 1 and the 
   element of largest modulus is real. This ensures that real 
   eigenvalues have real eigenvectors.
7: IVR -- INTEGER 
   On entry: 
   the first dimension of the array VR as declared in the 
   (sub)program from which F02AGF is called. 
   Constraint: IVR >= N.
8: VI(IVI,N) -- DOUBLE PRECISION array  
   On exit: the imaginary parts of the eigenvectors, stored by 
   columns. The ith column corresponds to the ith eigenvalue.
9: IVI -- INTEGER 
   On entry: 
   the first dimension of the array VI as declared in the 
   (sub)program from which F02AGF is called. 
   Constraint: IVI >= N.
10: INTEGER(N) -- INTEGER array  
    On exit: INTEGER(i) contains the number of iterations used 
    to find the ith eigenvalue. If INTEGER(i) is negative, the i 
    th eigenvalue is the second of a pair found simultaneously. 
    Note that the eigenvalues are found in reverse order, 
    starting with the nth.
11: IFAIL -- INTEGER  
    On entry: IFAIL must be set to 0, -1 or 1. For users not 
    familiar with this parameter (described in the Essential 
    Introduction) the recommended value is 0. 
    On exit: IFAIL = 0 unless the routine detects an error (see 
    Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1 
   More than 30*N iterations are required to isolate all the 
eigenvalues.
7. Accuracy

The accuracy of the results depends on the original matrix and the multiplicity of the roots. For a detailed error analysis see Wilkinson and Reinsch [1] pp 352 and 390.

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues and eigenvectors of the real matrix:

\[
\begin{pmatrix}
1.5 & 0.1 & 4.5 & -1.5 \\
-22.5 & 3.5 & 12.5 & -2.5 \\
-2.5 & 0.3 & 4.5 & -2.5 \\
-2.5 & 0.1 & 4.5 & 2.5
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F02AJF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AJF calculates all the eigenvalues of a complex matrix.

2. Specification

```plaintext
SUBROUTINE F02AJF (AR, IAR, AI, IAI, N, RR, RI, INTGER, IFAIL)
 INTEGER IAR, IAI, N, INTGER(N), IFAIL
 DOUBLE PRECISION AR(IAR,N), AI(IAI,N), RR(N), RI(N)
```

3. Description

The complex matrix A is first balanced and then reduced to upper Hessenberg form using stabilised elementary similarity transformations. The eigenvalues are then found using the modified LR algorithm for complex Hessenberg matrices.

4. References


5. Parameters

1: AR(IAR,N) -- DOUBLE PRECISION array Input/Output
   On entry: the real parts of the elements of the n by n complex matrix A. On exit: the array is overwritten.

2: IAR -- INTEGER Input
   On entry: the first dimension of the array AR as declared in the (sub)program from which F02AJF is called.
   Constraint: IAR >= N.

3: AI(IAI,N) -- DOUBLE PRECISION array Input/Output
   On entry: the imaginary parts of the elements of the n by n complex matrix A. On exit: the array is overwritten.

4: IAI -- INTEGER Input
   On entry: the first dimension of the array AI as declared in the (sub)program from which F02AJF is called.
CHAPTER 22. NAG LIBRARY ROUTINES

Constraint: IAI >= N.

5: N -- INTEGER Input
   On entry: n, the order of the matrix A.

6: RR(N) -- DOUBLE PRECISION array Output
   On exit: the real parts of the eigenvalues.

7: RI(N) -- DOUBLE PRECISION array Output
   On exit: the imaginary parts of the eigenvalues.

8: INTEGER(N) -- INTEGER array Workspace

9: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   More than 30*N iterations are required to isolate all the
   eigenvalues.

7. Accuracy

The accuracy of the results depends on the original matrix and
the multiplicity of the roots. For a detailed error analysis see

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues of the complex matrix:

\[ \begin{bmatrix}
-21.0-5.0i & 24.60i & 13.6+10.2i & 4.0i \\
22.5i & 26.00-5.00i & 7.5-10.0i & 2.5 \\
-2.0+1.5i & 1.68+2.24i & 4.5-5.0i & 1.5+2.0i \\
-2.5i & -2.60 & -2.7+3.6i & 2.5-5.0i
\end{bmatrix} \]

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation Library software and should be available on-line.

-- nagf.ht --

Eigenvalues and eigenvectors of a complex matrix

SUBROUTINE F02AKF (AR, IAR, AI, IAI, N, RR, RI, VR, IVR, VI, IVI, INTGER, IFAIL)
INTEGER IAR, IAI, N, IVR, IVI, INTGER(N), IFAIL
DOUBLE PRECISION AR(IAR,N), AI(IAI,N), RR(N), RI(N), VR(IVR,N), VI(IVI,N)

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AKF calculates all the eigenvalues and eigenvectors of a complex matrix.

2. Specification

SUBROUTINE F02AKF (AR, IAR, AI, IAI, N, RR, RI, VR, IVR, 1 VI, IVI, INTGER, IFAIL)
INTEGER IAR, IAI, N, IVR, IVI, INTGER(N), IFAIL
DOUBLE PRECISION AR(IAR,N), AI(IAI,N), RR(N), RI(N), VR(IVR,N), VI(IVI,N)

3. Description

The complex matrix A is first balanced and then reduced to upper
Hessenberg form by stabilised elementary similarity transformations. The eigenvalues and eigenvectors of the Hessenberg matrix are calculated using the LR algorithm. The eigenvectors of the Hessenberg matrix are back-transformed to give the eigenvectors of the original matrix.

4. References


5. Parameters

1: AR(IAR,N) -- DOUBLE PRECISION array Input/Output
   On entry: the real parts of the elements of the n by n complex matrix A. On exit: the array is overwritten.

2: IAR -- INTEGER Input
   On entry: the first dimension of the array AR as declared in the (sub)program from which F02AKF is called.
   Constraint: IAR >= N.

3: AI(IAI,N) -- DOUBLE PRECISION array Input/Output
   On entry: the imaginary parts of the elements of the n by n complex matrix A. On exit: the array is overwritten.

4: IAI -- INTEGER Input
   On entry: the first dimension of the array AI as declared in the (sub)program from which F02AKF is called.
   Constraint: IAI >= N.

5: N -- INTEGER Input
   On entry: n, the order of the matrix A.

6: RR(N) -- DOUBLE PRECISION array Output
   On exit: the real parts of the eigenvalues.

7: RI(N) -- DOUBLE PRECISION array Output
   On exit: the imaginary parts of the eigenvalues.

8: VR(IVR,N) -- DOUBLE PRECISION array Output
   On exit: the real parts of the eigenvectors, stored by columns. The ith column corresponds to the ith eigenvalue. The eigenvectors are normalised so that the sum of squares of the moduli of the elements is equal to 1 and the element of largest modulus is real.

9: IVR -- INTEGER Input
On entry:
the first dimension of the array VR as declared in the
(sub)program from which F02AKF is called.
Constraint: IVR >\( N \).

10: VI(IVI,N) -- DOUBLE PRECISION array Output
On exit: the imaginary parts of the eigenvectors, stored by
columns. The \( i \)th column corresponds to the \( i \)th eigenvalue.

11: IVI -- INTEGER Input
On entry:
the first dimension of the array VI as declared in the
(sub)program from which F02AKF is called.
Constraint: IVI >\( N \).

12: INTEGER(N) -- INTEGER array Workspace

13: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
More than 30*\( N \) iterations are required to isolate all the
eigenvalues.

7. Accuracy

The accuracy of the results depends on the conditioning of the
original matrix and the multiplicity of the roots. For a detailed

8. Further Comments

3
The time taken by the routine is approximately proportional to \( n \)

9. Example

To calculate all the eigenvalues and eigenvectors of the complex
matrix:

\((-21.0-5.0i \quad 24.60i \quad 13.6+10.2i \quad 4.0i)\)
Eigenvalues of a complex Hermitian matrix

--- nagf.ht ---

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

**1. Purpose**

F02AWF calculates all the eigenvalues of a complex Hermitian matrix.

**2. Specification**

```fortran
SUBROUTINE F02AWF (AR, IAR, AI, IAI, N, R, WK1, WK2, WK3,
1 IFAIL)
INTEGER IAR, IAI, N, IFAIL
DOUBLE PRECISION AR(IAR,N), AI(IAI,N), R(N), WK1(N),
```
3. Description

The complex Hermitian matrix A is first reduced to a real tridiagonal matrix by \(n-2\) unitary transformations, and a subsequent diagonal transformation. The eigenvalues are then derived using the QL algorithm, an adaptation of the QR algorithm.

4. References


5. Parameters

1: \(AR(IAR,N)\) -- DOUBLE PRECISION array Input/Output
   On entry: the real parts of the elements of the lower triangle of the \(n\) by \(n\) complex Hermitian matrix \(A\). Elements of the array above the diagonal need not be set. On exit: the array is overwritten.

2: \(IAR\) -- INTEGER Input
   On entry: the first dimension of the array \(AR\) as declared in the (sub)program from which F02AWF is called.
   Constraint: \(IAR \geq N\).

3: \(AI(IAI,N)\) -- DOUBLE PRECISION array Input/Output
   On entry: the imaginary parts of the elements of the lower triangle of the \(n\) by \(n\) complex Hermitian matrix \(A\). Elements of the array above the diagonal need not be set. On exit: the array is overwritten.

4: \(IAI\) -- INTEGER Input
   On entry: the first dimension of the array \(AI\) as declared in the (sub)program from which F02AWF is called.
   Constraint: \(IAI \geq N\).

5: \(N\) -- INTEGER Input
   On entry: \(n\), the order of the complex Hermitian matrix, \(A\).

6: \(R(N)\) -- DOUBLE PRECISION array Output
   On exit: the eigenvalues in ascending order.
7: \( \text{WK1}(N) \) -- DOUBLE PRECISION array
     Workspace
8: \( \text{WK2}(N) \) -- DOUBLE PRECISION array
     Workspace
9: \( \text{WK3}(N) \) -- DOUBLE PRECISION array
     Workspace
10: IFAIL -- INTEGER
     Input/Output
     On entry: IFAIL must be set to 0, -1 or 1. For users not
     familiar with this parameter (described in the Essential
     Introduction) the recommended value is 0.
     On exit: IFAIL = 0 unless the routine detects an error (see
     Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
     More than 30*N iterations are required to isolate all the
     eigenvalues.

7. Accuracy

For a detailed error analysis see Peters [1] page 3 and Wilkinson

8. Further Comments

The time taken by the routine is approximately proportional to n

9. Example

To calculate all the eigenvalues of the complex Hermitian matrix:

\[
\begin{pmatrix}
0.50 & 0.00 & 1.84+1.38i & 2.08-1.56i \\
0.00 & 0.50 & 1.12+0.84i & -0.56+0.42i \\
1.84-1.38i & 1.12-0.84i & 0.50 & 0.00 \\
2.08+1.56i & -0.56-0.42i & 0.00 & 0.50 \\
\end{pmatrix}
\]

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
Eigenvalues/eigenvectors complex Hermitian matrix

---

NAGF.HT

--- nagf.ht ---

\begin{page}\{manpageXXf02axf\}\{NAG Documentation: f02axf\}
\beginscroll
\begin{verbatim}
F02AXF(3NAG) Foundation Library (12/10/92) F02AXF(3NAG)

F02 -- Eigenvalue and Eigenvectors
F02AXF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02AXF calculates all the eigenvalues and eigenvectors of a complex Hermitian matrix.

2. Specification

\begin{verbatim}
SUBROUTINE F02AXF (AR, IAR, AI, IAI, N, R, VR, IVR, VI, 1 IVI, WK1, WK2, WK3, IFAIL)
INTEGER IAR, IAI, N, IVR, IVI, IFAIL
DOUBLE PRECISION AR(IAR,N), AI(IAI,N), R(N), VR(IVR,N), VI 1 (IVI,N), WK1(N), WK2(N), WK3(N)
\end{verbatim}

3. Description

The complex Hermitian matrix is first reduced to a real tridiagonal matrix by n-2 unitary transformations and a subsequent diagonal transformation. The eigenvalues and eigenvectors are then derived using the QL algorithm, an adaptation of the QR algorithm.

4. References

5. Parameters

1: AR(IAR,N) -- DOUBLE PRECISION array Input
   On entry: the real parts of the elements of the lower triangle of the n by n complex Hermitian matrix A. Elements of the array above the diagonal need not be set. See also Section 8.

2: IAR -- INTEGER Input
   On entry: the first dimension of the array AR as declared in the (sub)program from which F02AXF is called.
   Constraint: IAR >= N.

3: AI(IAI,N) -- DOUBLE PRECISION array Input
   On entry: the imaginary parts of the elements of the lower triangle of the n by n complex Hermitian matrix A. Elements of the array above the diagonal need not be set. See also Section 8.

4: IAI -- INTEGER Input
   On entry: the first dimension of the array AI as declared in the (sub)program from which F02AXF is called.
   Constraint: IAI >= N.

5: N -- INTEGER Input
   On entry: n, the order of the matrix, A.

6: R(N) -- DOUBLE PRECISION array Output
   On exit: the eigenvalues in ascending order.

7: VR(IVR,N) -- DOUBLE PRECISION array Output
   On exit: the real parts of the eigenvectors, stored by columns. The i-th column corresponds to the i-th eigenvector. The eigenvectors are normalised so that the sum of the squares of the moduli of the elements is equal to 1 and the element of largest modulus is real. See also Section 8.

8: IVR -- INTEGER Input
   On entry: the first dimension of the array VR as declared in the (sub)program from which F02AXF is called.
   Constraint: IVR >= N.
9: VI(IVI,N) -- DOUBLE PRECISION array Output
On exit: the imaginary parts of the eigenvectors, stored by columns. The ith column corresponds to the ith eigenvector.
See also Section 8.

10: IVI -- INTEGER Input
On entry:
the first dimension of the array VI as declared in the (sub)program from which F02AXF is called.
Constraint: IVI >= N.

11: WK1(N) -- DOUBLE PRECISION array Workspace
12: WK2(N) -- DOUBLE PRECISION array Workspace
13: WK3(N) -- DOUBLE PRECISION array Workspace

14: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
More than 30*N iterations are required to isolate all the eigenvalues.

IFAIL= 2
The diagonal elements of AI are not all zero, i.e., the complex matrix is not Hermitian.

7. Accuracy

The eigenvectors are always accurately orthogonal but the accuracy of the individual eigenvalues and eigenvectors is dependent on their inherent sensitivity to small changes in the original matrix. For a detailed error analysis see Peters [1] page 3 and [2] page 3.

8. Further Comments

The time taken by the routine is approximately proportional to n
Unless otherwise stated in the implementation document, the routine may be called with the same actual array supplied for parameters AR and VR, and for AI and VI, in which case the eigenvectors will overwrite the original matrix A. However this is not standard Fortran 77, and may not work on all systems.

9. Example

To calculate the eigenvalues and eigenvectors of the complex Hermitian matrix:

\begin{verbatim}
(0.50  0.00  1.84+1.38i  2.08-1.56i)
(0.00  0.50  1.12+0.84i  0.00+0.42i)
(1.84-1.38i 1.12-0.84i  0.50  0.00)
(2.08+1.56i -0.56-0.42i  0.00  0.50)
\end{verbatim}

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Eigenvalues and eigenvectors of a real symmetric matrix

— nagf.ht —

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
1. Purpose

F02BBF calculates selected eigenvalues and eigenvectors of a real symmetric matrix by reduction to tridiagonal form, bisection and inverse iteration, where the selected eigenvalues lie within a given interval.

2. Specification

```fortran
 INTEGER IA, N, M, MM, IV, ICOUNT(M), IFAIL
 DOUBLE PRECISION A(IA,N), ALB, UB, R(M), V(IV,M), D(N), E(N), E2(N), X(N,7), G(N)
 LOGICAL C(N)
```

3. Description

The real symmetric matrix A is reduced to a symmetric tridiagonal matrix T by Householder's method. The eigenvalues which lie within a given interval \([l,u]\), are calculated by the method of bisection. The corresponding eigenvectors of T are calculated by inverse iteration. A back-transformation is then performed to obtain the eigenvectors of the original matrix A.

4. References


5. Parameters

1: A(IA,N) -- DOUBLE PRECISION array
   On entry: the lower triangle of the n by n symmetric matrix A. The elements of the array above the diagonal need not be set. On exit: the elements of A below the diagonal are overwritten, and the rest of the array is unchanged.

2: IA -- INTEGER
   On entry: the first dimension of the array A as declared in the (sub)program from which F02BBF is called.
   Constraint: IA >= N.

3: N -- INTEGER
   On entry: n, the order of the matrix A.

4: ALB -- DOUBLE PRECISION
   Input
CHAPTER 22. NAG LIBRARY ROUTINES

5: UB -- DOUBLE PRECISION Input
   On entry: l and u, the lower and upper end-points of the
   interval within which eigenvalues are to be calculated.

6: M -- INTEGER Input
   On entry: an upper bound for the number of eigenvalues
   within the interval.

7: MM -- INTEGER Output
   On exit: the actual number of eigenvalues within the
   interval.

8: R(M) -- DOUBLE PRECISION array Output
   On exit: the eigenvalues, not necessarily in ascending
   order.

9: V(IV,M) -- DOUBLE PRECISION array Output
   On exit: the eigenvectors, stored by columns. The ith
   column corresponds to the ith eigenvalue. The eigenvectors
   are normalised so that the sum of the squares of the
   elements are equal to 1.

10: IV -- INTEGER Input
    On entry:
        the first dimension of the array V as declared in the
        (sub)program from which F02BBF is called.
    Constraint: IV >= N.

11: D(N) -- DOUBLE PRECISION array Workspace

12: E(N) -- DOUBLE PRECISION array Workspace

13: E2(N) -- DOUBLE PRECISION array Workspace

14: X(N,7) -- DOUBLE PRECISION array Workspace

15: G(N) -- DOUBLE PRECISION array Workspace

16: C(N) -- LOGICAL array Workspace

17: ICOUNT(M) -- INTEGER array Output
   On exit: ICOUNT(i) contains the number of iterations for
   the ith eigenvalue.

18: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.

   On exit: IFAIL = 0 unless the routine detects an error (see
6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
  M is less than the number of eigenvalues in the given interval. On exit MM contains the number of eigenvalues in the interval. Rerun with this value for M.

IFAIL= 2
  More than 5 iterations are required to determine any one eigenvector.

7. Accuracy

There is no guarantee of the accuracy of the eigenvectors as the results depend on the original matrix and the multiplicity of the roots. For a detailed error analysis see Wilkinson and Reinsch [1] pp 222 and 436.

8. Further Comments

The time taken by the routine is approximately proportional to n.

This subroutine should only be used when less than 25% of the eigenvalues and the corresponding eigenvectors are required. Also this subroutine is less efficient with matrices which have multiple eigenvalues.

9. Example

To calculate the eigenvalues lying between -2.0 and 3.0, and the corresponding eigenvectors of the real symmetric matrix:

\[
\begin{pmatrix}
0.5 & 0.0 & 2.3 & -2.6 \\
0.0 & 0.5 & -1.4 & -0.7 \\
2.3 & -1.4 & 0.5 & 0.0 \\
-2.6 & -0.7 & 0.0 & 0.5 \\
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Eigenvalues of generalized eigenproblem $Ax = \lambda Bx$

— nagf.ht —

\begin{verbatim}
F02BJF(3NAG)  Foundation Library (12/10/92)  F02BJF(3NAG)

F02 -- Eigenvalue and Eigenvectors  
F02BJF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for
your implementation to check implementation-dependent details.
The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

F02BJF calculates all the eigenvalues and, if required, all the
eigenvectors of the generalized eigenproblem $Ax = \lambda Bx$
where $A$ and $B$ are real, square matrices, using the QZ algorithm.

2. Specification

SUBROUTINE F02BJF (N, A, IA, B, IB, EPS1, ALFR, ALFI,
1  BETA, MATV, V, IV, ITER, IFAIL)
INTEGER N, IA, IB, IV, ITER(N), IFAIL
DOUBLE PRECISION A(IA,N), B(IB,N), EPS1, ALFR(N), ALFI(N),
1  BETA(N), V(IV,N)
LOGICAL MATV

3. Description

All the eigenvalues and, if required, all the eigenvectors of the
generalized eigenproblem $Ax = \lambda Bx$ where $A$ and $B$ are real,
square matrices, are determined using the QZ algorithm. The QZ
algorithm consists of 4 stages:

(a) $A$ is reduced to upper Hessenberg form and at the same time
$B$ is reduced to upper triangular form.
(b) A is further reduced to quasi-triangular form while the triangular form of B is maintained.

(c) The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted. This routine does not actually produce the eigenvalues (\( \lambda_j \)), but instead returns \((\alpha_j)\) and \((\beta_j)\) such that

\[
\frac{\lambda_j}{\beta_j} = \frac{\alpha_j}{\beta_j}, \quad j=1,2,\ldots,n
\]

The division by \((\beta_j)\) becomes the responsibility of the user's program, since \((\beta_j)\) may be zero indicating an infinite eigenvalue. Pairs of complex eigenvalues occur with \((\alpha_j)/(\beta_j)\) and \((\alpha_{j+1})/(\beta_{j+1})\) complex conjugates, even though \((\alpha_j)\) and \((\alpha_{j+1})\) are not conjugate.

(d) If the eigenvectors are required (\(\text{MATV} = \text{.TRUE.}\)), they are obtained from the triangular matrices and then transformed back into the original co-ordinate system.

4. References


5. Parameters

1: N -- INTEGER Input
   On entry: n, the order of the matrices A and B.

2: A(IA,N) -- DOUBLE PRECISION array Input/Output
   On entry: the n by n matrix A. On exit: the array is overwritten.
3: IA -- INTEGER
   On entry: the first dimension of the array A as declared in
   the (sub)program from which F02BJF is called.
   Constraint: IA >= N.

4: B(IB,N) -- DOUBLE PRECISION array
   On entry: the n by n matrix B. On exit: the array is overwritte.

5: IB -- INTEGER
   On entry: the first dimension of the array B as declared in
   the (sub)program from which F02BJF is called.
   Constraint: IB >= N.

6: EPS1 -- DOUBLE PRECISION
   On entry: the tolerance used to determine negligible
   elements. If EPS1 > 0.0, an element will be considered
   negligible if it is less than EPS1 times the norm of its
   matrix. If EPS1 <= 0.0, machine precision is used in place
   of EPS1. A positive value of EPS1 may result in faster
   execution but less accurate results.

7: ALFR(N) -- DOUBLE PRECISION array

8: ALFI(N) -- DOUBLE PRECISION array
   On exit: the real and imaginary parts of (alpha), for
   j=1,2,...,n.

9: BETA(N) -- DOUBLE PRECISION array
   On exit: (beta), for j=1,2,...,n.

10: MATV -- LOGICAL
    On entry: MATV must be set .TRUE. if the eigenvectors are
    required, otherwise .FALSE..

11: V(IV,N) -- DOUBLE PRECISION array
    On exit: if MATV = .TRUE., then
    (i) if the jth eigenvalue is real, the jth column of V
    contains its eigenvector;
    (ii) if the jth and (j+1)th eigenvalues form a complex
    pair, the jth and (j+1)th columns of V contain the
    real and imaginary parts of the eigenvector associated
    with the first eigenvalue of the pair. The conjugate
    of this vector is the eigenvector for the conjugate
eigenvalue.
Each eigenvector is normalised so that the component of largest modulus is real and the sum of squares of the moduli equal one.

If MATV = .FALSE., V is not used.

12: IV -- INTEGER
    On entry:
    the first dimension of the array V as declared in the
    (sub)program from which F02BJF is called.
    Constraint: IV >= N.

13: ITER(N) -- INTEGER array
    On exit: ITER(j) contains the number of iterations needed
    to obtain the jth eigenvalue. Note that the eigenvalues are
    obtained in reverse order, starting with the nth.

14: IFAIL -- INTEGER
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see
    Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= i

More than 30*N iterations are required to determine all the
diagonal 1 by 1 or 2 by 2 blocks of the quasi-triangular
form in the second step of the QZ algorithm. IFAIL is set to
the index i of the eigenvalue at which this failure occurs.
If the soft failure option is used, (alpha) and (beta) are
\[ j \]
correct for \( j=i+1,i+2,...,n \), but V does not contain any
correct eigenvectors.

7. Accuracy

The computed eigenvalues are always exact for a problem
\( (A+E)x=(\lambda)(B+F)x \) where \( ||E||/||A|| \) and \( ||F||/||B|| \)
are both of the order of \( \text{max}(\text{EPS1},(\epsilon)) \), \( \text{EPS1} \) being defined
as in Section 5 and \( (\epsilon) \) being the machine precision.

Note: interpretation of results obtained with the QZ algorithm
often requires a clear understanding of the effects of small
changes in the original data. These effects are reviewed in
Wilkinson [3], in relation to the significance of small values of
(alpha) and (beta). It should be noted that if (alpha) and j
j j j
(beta) are both small for any j, it may be that no reliance can j
be placed on any of the computed eigenvalues
(lambda) = (alpha) / (beta). The user is recommended to study [3] i i i
and, if in difficulty, to seek expert advice on determining the sensitivity of the eigenvalues to perturbations in the data.

8. Further Comments

The time taken by the routine is approximately proportional to n
and also depends on the value chosen for parameter EPS1.

9. Example

To find all the eigenvalues and eigenvectors of Ax=(lambda) Bx
where

\[
\begin{pmatrix}
3.9 & 12.5 & -34.5 & -0.5 \\
4.3 & 21.5 & -47.5 & 7.5 \\
4.3 & 21.5 & -43.5 & 3.5 \\
4.4 & 26.0 & -46.0 & 6.0
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
1 & 2 & -3 & 1 \\
1 & 3 & -5 & 4 \\
1 & 3 & -4 & 4
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F02FJF finds the m eigenvalues of largest absolute value and the corresponding eigenvectors for the real eigenvalue problem

\[ Cx = \lambda x \]  

where \( C \) is an n by n matrix such that

\[ TCT = C \]  

for a given positive-definite matrix \( B \). \( C \) is said to be \( B \)-symmetric. Different specifications of \( C \) allow for the solution of a variety of eigenvalue problems. For example, when
the routine finds the $m$ eigenvalues of largest absolute magnitude for the standard symmetric eigenvalue problem

$$Ax = (\lambda)x.$$  \hspace{1cm} (3)

The routine is intended for the case where $A$ is sparse.

As a second example, when

$$-1$$

$C = B \quad A$

where

$$T$$

$A = A$

the routine finds the $m$ eigenvalues of largest absolute magnitude for the generalized symmetric eigenvalue problem

$$Ax = (\lambda)Bx.$$  \hspace{1cm} (4)

The routine is intended for the case where $A$ and $B$ are sparse.

The routine does not require $C$ explicitly, but $C$ is specified via a user-supplied routine IMAGE which, given an $n$ element vector $z$, computes the image $w$ given by

$$w = Cz.$$  \hspace{1cm} \(-1\)

For instance, in the above example, where $C = B \quad A$, routine IMAGE will need to solve the positive-definite system of equations $Bw = Az$ for $w$.

To find the $m$ eigenvalues of smallest absolute magnitude of (3) we can choose $C = A$ and hence find the reciprocals of the required eigenvalues, so that IMAGE will need to solve $Aw = z$ for $-1w$, and correspondingly for (4) we can choose $C = A \quad B$ and solve $Aw = Bz$ for $w$.

A table of examples of choice of IMAGE is given in Table 3.1. It should be remembered that the routine also returns the corresponding eigenvectors and that $B$ is positive-definite. Throughout $A$ is assumed to be symmetric and, where necessary,
non-singularity is also assumed.

**Eigenvalues Problem**

**Required**

\[
Ax = (\lambda)x \quad (B=I)Ax = (\lambda)Bx \quad ABx = (\lambda)x
\]

**Largest Compute Solve Compute**

- \(w = Az\)
- \(Bw = Az\)
- \(w = ABz\)

**Smallest Solve Solve Solve**

- \(Aw = z\)
- \(Bw = Az\)
- \(Aw = z, \ Bw = (\nu)1/(\lambda)\)

**Furthest Compute Solve Compute**

- \(w = (A-(\sigma)I)z\)
- \(Bw = (A-(\sigma)B)z\)
- \(w = (AB-(\sigma)I)z\)

**Closest to Solve Solve Solve**

- \((A-(\sigma)I)w = z\)
- \((A-(\sigma)B)w = Bz\)
- \((AB-(\sigma)I)w = z\)

\(F02FJF\) is based upon routine SIMITZ (see Nikolai [1]), which is itself a derivative of the Algol procedure ritzit (see Rutishauser [4]), and uses the method of simultaneous (subspace) iteration. (See Parlett [2] for description, analysis and advice on the use of the method.)

The routine performs simultaneous iteration on \(k > m\) vectors.

Initial estimates to \(p < k\) eigenvectors, corresponding to the \(p\) eigenvalues of \(C\) of largest absolute value, may be supplied by the user to \(F02FJF\). When possible \(k\) should be chosen so that the \(k\)th eigenvalue is not too close to the \(m\) required eigenvalues, but if \(k\) is initially chosen too small then \(F02FJF\) may be re-entered, supplying approximations to the \(k\) eigenvectors found so far and with \(k\) then increased.
At each major iteration F02FJF solves an r by r \((r \leq k)\) eigenvalue sub-problem in order to obtain an approximation to the eigenvalues for which convergence has not yet occurred. This approximation is refined by Chebyshev acceleration.

4. References


5. Parameters

1: \textbf{N} -- INTEGER \hspace{1cm} \textbf{Input}
On entry: \(n\), the order of the matrix \(C\). Constraint: \(N \geq 1\).

2: \textbf{M} -- INTEGER \hspace{1cm} \textbf{Input/Output}
On entry: \(m\), the number of eigenvalues required.
Constraint: \(M \geq 1\). On exit: \(m\), the number of eigenvalues actually found. It is equal to \(m\) if IFAIL = 0 on exit, and is less than \(m\) if IFAIL = 2, 3 or 4. See Section 6 and Section 8 for further information.

3: \textbf{K} -- INTEGER \hspace{1cm} \textbf{Input}
On entry: the number of simultaneous iteration vectors to be used. Too small a value of \(K\) may inhibit convergence, while a larger value of \(K\) incurs additional storage and additional work per iteration. Suggested value: \(K = M + 4\) will often be a reasonable choice in the absence of better information.
Constraint: \(M < K \leq N\).

4: \textbf{NOITS} -- INTEGER \hspace{1cm} \textbf{Input/Output}
On entry: the maximum number of major iterations (eigenvalue sub-problems) to be performed. If NOITS <= 0, then the value 100 is used in place of NOITS. On exit: the number of iterations actually performed.

5: \textbf{TOL} -- DOUBLE PRECISION \hspace{1cm} \textbf{Input}
On entry: a relative tolerance to be used in accepting
eigenvalues and eigenvectors. If the eigenvalues are required to about \( t \) significant figures, then TOL should be set to about \( 10^{-t} \). \( \lambda \) is accepted as an eigenvalue as soon as two successive approximations to \( \lambda \) differ by less than \( \frac{(|\lambda| \times \text{TOL})}{10} \), where \( \lambda \) is the latest approximation to \( \lambda \).

Once an eigenvalue has been accepted, then an eigenvector is accepted as soon as \( \frac{(|\mathbf{f}| \times \text{TOL})}{10} \), where \( \mathbf{f} \) is the normalised residual of the current approximation to the eigenvector (see Section 8 for further information). The values of the \( \mathbf{f} \) and \( \lambda \) can be printed from routine MONIT.

If TOL is supplied outside the range \( ((\text{epsilon}), 1.0) \), where \( \text{epsilon} \) is the machine precision, then the value \( \text{epsilon} \) is used in place of TOL.

6: **DOT** -- **DOUBLE PRECISION FUNCTION**, supplied by the user.

*External Procedure*

**T**

**DOT** must return the value \( \mathbf{w} \mathbf{Bz} \) for given vectors \( \mathbf{w} \) and \( \mathbf{z} \). For the standard eigenvalue problem, where \( \mathbf{B} = \mathbf{I} \), **DOT** must return the dot product \( \mathbf{w} \mathbf{z} \).

Its specification is:

```fortran
DOUBLE PRECISION FUNCTION DOT (IFLAG, N, Z, W, RWORK, LRWORK, IWORK, LIWORK)
INTEGER IFLAG, N, LRWORK, IWORK(LIWORK), LIWORK
DOUBLE PRECISION Z(N), W(N), RWORK(LRWORK)
```

1: **IFLAG** -- **INTEGER** Input/Output

On entry: IFLAG is always non-negative. On exit: IFLAG may be used as a flag to indicate a failure in the computation of \( \mathbf{w} \mathbf{Bz} \). If IFLAG is negative on exit from **DOT**, then **F02FJF** will exit immediately with **IFAIL** set to IFLAG. Note that in this case **DOT** must still be assigned a value.

2: **N** -- **INTEGER** Input

On entry: the number of elements in the vectors \( \mathbf{z} \) and \( \mathbf{w} \) and the order of the matrix \( \mathbf{B} \). 
CHAPTER 22. NAG LIBRARY ROUTINES

3: \(Z(N)\) -- DOUBLE PRECISION array

\[ T \]

On entry: the vector \(z\) for which \(w\ Bz\) is required.

4: \(W(N)\) -- DOUBLE PRECISION array

\[ T \]

On entry: the vector \(w\) for which \(w\ Bz\) is required.

5: \(RWORK(LRWORK)\) -- DOUBLE PRECISION array

User Workspace

6: \(LRWORK\) -- INTEGER

Input

7: \(IWORK(LIWORK)\) -- INTEGER array

User Workspace

8: \(LIWORK\) -- INTEGER

Input

DOT is called from F02FJF with the parameters \(RWORK\), \(LRWORK\), \(IWORK\) and \(LIWORK\) as supplied to F02FJF. The user is free to use the arrays \(RWORK\) and \(IWORK\) to supply information to DOT and to IMAGE as an alternative to using COMMON.

DOT must be declared as EXTERNAL in the (sub)program from which F02FJF is called. Parameters denoted as Input must not be changed by this procedure.

7: \(IMAGE\) -- SUBROUTINE, supplied by the user.

External Procedure

IMAGE must return the vector \(w=Cz\) for a given vector \(z\).

Its specification is:

\[
\text{SUBROUTINE IMAGE (IFLAG, N, Z, W, RWORK, LRWORK, LWORK, IWORK, LIWORK)}
\]

\[ \text{INTEGER IFLAG, N, LRWORK, IWORK(LIWORK), LIWORK} \]

\[ \text{DOUBLE PRECISION Z(N), W(N), RWORK(LRWORK)} \]

1: \(IFLAG\) -- INTEGER

Input/Output

On entry: IFLAG is always non-negative. On exit: IFLAG may be used as a flag to indicate a failure in the computation of \(w\). If IFLAG is negative on exit from IMAGE, then F02FJF will exit immediately with IFAIL set to IFLAG.

2: \(N\) -- INTEGER

Input

On entry: \(n\), the number of elements in the vectors \(w\) and \(z\), and the order of the matrix \(C\).
3: Z(N) -- DOUBLE PRECISION array  
   Input  
   On entry: the vector z for which Cz is required.

4: W(N) -- DOUBLE PRECISION array  
   Output  
   On exit: the vector w=Cz.

5: RWORK(LRWORK) -- DOUBLE PRECISION array  
   User Workspace  
   LRWORK -- INTEGER Input

6: IWORK(LIWORK) -- INTEGER array  
   User Workspace  
   LIWORK -- INTEGER Input

IMAGE is called from F02FJF with the parameters RWORK,  
LRWORK, IWORK and LIWORK as supplied to F02FJF. The  
user is free to use the arrays RWORK and IWORK to  
supply information to IMAGE and DOT as an alternative  
to using COMMON.

IMAGE must be declared as EXTERNAL in the (sub)program  
from which F02FJF is called. Parameters denoted as  
Input must not be changed by this procedure.

8: MONIT -- SUBROUTINE, supplied by the user.

External Procedure  
MONIT is used to monitor the progress of F02FJF. MONIT may  
be the dummy subroutine F02JZ if no monitoring is actually  
required. (F02JZ is included in the NAG Foundation Library  
and so need not be supplied by the user. The routine name  
F02JZ may be implementation dependent: see the Users' Note  
for your implementation for details.) MONIT is called after  
the solution of each eigenvalue sub-problem and also just  
prior to return from F02FJF. The parameters ISTATE and  
NEXTIT allow selective printing by MONIT.

Its specification is:

```
SUBROUTINE MONIT (ISTATE, NEXTIT, NEVALS,
 NEVECS, K, F, D)
 INTEGER ISTATE, NEXTIT, NEVALS, NEVECS,
 K
 DOUBLE PRECISION F(K), D(K)
```

1: ISTATE -- INTEGER  
   Input  
   On entry: ISTATE specifies the state of F02FJF and will  
   have values as follows:
   ISTATE = 0  
   No eigenvalue or eigenvector has just been accepted.
CHAPTER 22. NAG LIBRARY ROUTINES

ISTATE = 1
One or more eigenvalues have been accepted since the last call to MONIT.

ISTATE = 2
One or more eigenvectors have been accepted since the last call to MONIT.

ISTATE = 3
One or more eigenvalues and eigenvectors have been accepted since the last call to MONIT.

ISTATE = 4
Return from F02FJF is about to occur.

2: NEXTIT -- INTEGER Input
On entry: the number of the next iteration.

3: NEVALS -- INTEGER Input
On entry: the number of eigenvalues accepted so far.

4: NEVECS -- INTEGER Input
On entry: the number of eigenvectors accepted so far.

5: K -- INTEGER Input
On entry: k, the number of simultaneous iteration vectors.

6: F(K) -- DOUBLE PRECISION array Input
On entry: a vector of error quantities measuring the state of convergence of the simultaneous iteration vectors. See the parameter TOL of F02FJF above and Section 8 for further details. Each element of F is initially set to the value 4.0 and an element remains at 4.0 until the corresponding vector is tested.

7: D(K) -- DOUBLE PRECISION array Input
On entry: D(i) contains the latest approximation to the absolute value of the ith eigenvalue of C.
MONIT must be declared as EXTERNAL in the (sub)program from which F02FJF is called. Parameters denoted as Input must not be changed by this procedure.

9: NOVECS -- INTEGER Input
On entry: the number of approximate vectors that are being supplied in X. If NOVECS is outside the range (0,K), then the value 0 is used in place of NOVECS.

10: X(NRX,K) -- DOUBLE PRECISION array Input/Output
On entry: if 0 < NOVECS <= K, the first NOVECS columns of X...
must contain approximations to the eigenvectors corresponding to the NOVECS eigenvalues of largest absolute value of C. Supplying approximate eigenvectors can be useful when reasonable approximations are known, or when the routine is being restarted with a larger value of K. Otherwise it is not necessary to supply approximate vectors, as simultaneous iteration vectors will be generated randomly by the routine. On exit: if IFAIL = 0, 2, 3 or 4, the first m' columns contain the eigenvectors corresponding to the eigenvalues returned in the first m' elements of D (see below); and the next k-m'-1 columns contain approximations to the eigenvectors corresponding to the approximate eigenvalues returned in the next k-m'-1 elements of D. Here m' is the value returned in M (see above), the number of eigenvalues actually found. The kth column is used as workspace.

11: NRX -- INTEGER Input
On entry: the first dimension of the array X as declared in the (sub)program from which F02FJF is called.
Constraint: NRX >= N.

12: D(K) -- DOUBLE PRECISION array Output
On exit: if IFAIL = 0, 2, 3 or 4, the first m' elements contain the first m' eigenvalues in decreasing order of magnitude; and the next k-m'-1 elements contain approximations to the next k-m'-1 eigenvalues. Here m' is the value returned in M (see above), the number of eigenvalues actually found. D(k) contains the value e where (-e,e) is the latest interval over which Chebyshev acceleration is performed.

13: WORK(LWORK) -- DOUBLE PRECISION array Workspace

14: LWORK -- INTEGER Input
On entry: the length of the array WORK, as declared in the (sub)program from which F02FJF is called. Constraint: LWORK >= 3*K+max(K*K,2*N).

15: RWORK(LRWORK) -- DOUBLE PRECISION array User Workspace
RWORK is not used by F02FJF, but is passed directly to routines DUT and IMAGE and may be used to supply information to these routines.

16: LRWORK -- INTEGER Input
On entry: the length of the array RWORK, as declared in the (sub)program from which F02FJF is called. Constraint: LRWORK >= 1.
17: IWORK(LIWORK) -- INTEGER array
   User Workspace
   IWORK is not used by F02FJF, but is passed directly to
   routines DOT and IMAGE and may be used to supply information
   to these routines.

18: LIWORK -- INTEGER
   Input
   On entry: the length of the array IWORK, as declared in the
   (sub)program from which F02FJF is called. Constraint: LIWORK
   >= 1.

19: IFAIL -- INTEGER
   Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. Users who are
   unfamiliar with this parameter should refer to the Essential
   Introduction for details.

   On exit: IFAIL = 0 unless the routine detects an error or
   gives a warning (see Section 6).

   For this routine, because the values of output parameters
   may be useful even if IFAIL /=0 on exit, users are
   recommended to set IFAIL to -1 before entry. It is then
   essential to test the value of IFAIL on exit. To suppress
   the output of an error message when soft failure occurs, set
   IFAIL to 1.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL< 0
   A negative value of IFAIL indicates an exit from F02FJF
   because the user has set IFLAG negative in DOT or IMAGE. The
   value of IFAIL will be the same as the user's setting of
   IFLAG.

IFAIL= 1
   On entry N < 1,
   or M < 1,
   or M >= K,
   or K > N,
   or NRX < N,
   or LWORK <3*K+max(K*K*N),
   or LRWORK < 1,
or \( \text{LIWORK} < 1 \).

**IFAIL= 2**
Not all the requested eigenvalues and vectors have been obtained. Approximations to the \( r \)th eigenvalue are oscillating rapidly indicating that severe cancellation is occurring in the \( r \)th eigenvector and so \( M \) is returned as \( (r-1) \). A restart with a larger value of \( K \) may permit convergence.

**IFAIL= 3**
Not all the requested eigenvalues and vectors have been obtained. The rate of convergence of the remaining eigenvectors suggests that more than NOITS iterations would be required and so the input value of \( M \) has been reduced. A restart with a larger value of \( K \) may permit convergence.

**IFAIL= 4**
Not all the requested eigenvalues and vectors have been obtained. NOITS iterations have been performed. A restart, possibly with a larger value of \( K \), may permit convergence.

**IFAIL= 5**
This error is very unlikely to occur, but indicates that convergence of the eigenvalue sub-problem has not taken place. Restarting with a different set of approximate vectors may allow convergence. If this error occurs the user should check carefully that F02FJF is being called correctly.

### 7. Accuracy

Eigenvalues and eigenvectors will normally be computed to the accuracy requested by the parameter TOL, but eigenvectors corresponding to small or to close eigenvalues may not always be computed to the accuracy requested by the parameter TOL. Use of the routine MONIT to monitor acceptance of eigenvalues and eigenvectors is recommended.

### 8. Further Comments

The time taken by the routine will be principally determined by the time taken to solve the eigenvalue sub-problem and the time taken by the routines DOT and IMAGE. The time taken to solve an eigenvalue sub-problem is approximately proportional to \( nk^2 \). It is important to be aware that several calls to DOT and IMAGE may occur on each major iteration.
As can be seen from Table 3.1, many applications of F02FJF will require routine IMAGE to solve a system of linear equations. For example, to find the smallest eigenvalues of $Ax = (\lambda)Bx$, IMAGE needs to solve equations of the form $Aw = Bz$ for $w$ and routines from Chapters F01 and F04 of the NAG Foundation Library will frequently be useful in this context. In particular, if $A$ is a positive-definite variable band matrix, F04MCF may be used after $A$ has been factorized by F01MCF. Thus factorization need be performed only once prior to calling F02FJF. An illustration of this type of use is given in the example program in Section 9.

An approximation $d_\text{h}$ to the $i$th eigenvalue, is accepted as soon as $d_\text{h}$ and the previous approximation differ by less than $h \cdot |d| \cdot \text{TOL}/10$. Eigenvectors are accepted in groups corresponding to clusters of eigenvalues that are equal, or nearly equal, in absolute value and that have already been accepted. If $d$ is the last eigenvalue in such a group and we define the residual $r$ as

$$r = Cx - y$$

where $y$ is the projection of $Cx$, with respect to $B$, onto the space spanned by $x_1, x_2, \ldots, x_j$ and $x_j$ is the current approximation to the $j$th eigenvector, then the value $f$ returned in MONIT is given by

$$f = \max \left( \frac{\|r_i\|}{\|x_i\|} \right) = \frac{\|r\|}{\|Cx\|}$$

and each vector in the group is accepted as an eigenvector if

$$\frac{|d_i| \cdot f}{|d_i| - e} < \text{TOL}$$

where $e$ is the current approximation to $|d_i|$. The values of the $f_k$ are systematically increased if the convergence criteria
appear to be too strict. See Rutishauser [4] for further details.

The algorithm implemented by F02FJF differs slightly from SIMITZ (Nikolai [1]) in that the eigenvalue sub-problem is solved using the singular value decomposition of the upper triangular matrix \( R^T \) of the Gram-Schmidt factorization of \( Cx \), rather than forming \( RR^r \).

9. Example

To find the four eigenvalues of smallest absolute value and corresponding eigenvectors for the generalized symmetric eigenvalue problem \( Ax = \lambda Bx \), where \( A \) and \( B \) are the 16 by 16 matrices

\[
A = \begin{pmatrix}
1 & a & a \\
\frac{1}{a} & 1 & a \\
& \frac{1}{a} & 1 \\
& & \frac{1}{a} \\
& & & 1 \\
& & & & \ddots \\
& & & & & & 1
\end{pmatrix}
\]

where \( a = -\frac{4}{1} \)

\[
B = \begin{pmatrix}
1 & b & b \\
& 1 & b \\
&& 1 \\
&& & \ddots \\
&& & & 1 \\
&& & & & \ddots \\
&& & & & & 1
\end{pmatrix}
\]
\begin{verbatim}
( 1 b b )
( 1 b b )
( 1 b b )

1
where b= -
2

TOL is taken as 0.0001 and 6 iteration vectors are used. F01MAF
is used to factorize the matrix A, prior to calling F02FJF, and
F04MAF is used within IMAGE to solve the equations Aw=Bz for w.
Details of the factorization of A are passed from F01MAF to
F04MAF by means of the COMMON block BLOCK1.

Output from MONIT occurs each time ISTATE is non-zero. Note that
the required eigenvalues are the reciprocals of the eigenvalues
returned by F02FJF.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
\end{verbatim}

Singular value decomposition of a general real matrix

--- nagf.ht ---

\begin{verbatim}
F02WEF(3NAG) Foundation Library (12/10/92) F02WEF(3NAG)

F02 -- Eigenvalue and Eigenvectors
F02WEF
F02WEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for
your implementation to check implementation-dependent details.
\end{verbatim}
The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02WEF returns all, or part, of the singular value decomposition of a general real matrix.

2. Specification

```fortran
SUBROUTINE F02WEF (M, N, A, LDA, NCOLB, B, LDB, WANTQ, Q, 1
 LDQ, SV, WANTP, PT, LDPT, WORK, IFAIL)
 INTEGER M, N, LDA, NCOLB, LDB, LDQ, LDPT, IFAIL
 DOUBLE PRECISION A(LDA,*), B(LDB,*), Q(LDQ,*), SV(*), PT 1
 (LDPT,*), WORK(*)
 LOGICAL WANTQ, WANTP
```

3. Description

The m by n matrix A is factorized as

\[ T \]
\[ A = QDP , \]

where

\[ (S) \]
\[ D = (0), \quad m > n, \]
\[ D = S , \quad m = n , \]
\[ D = (S 0), \quad m < n , \]

Q is an m by m orthogonal matrix, P is an n by n orthogonal matrix and S is a \( \min(m,n) \) by \( \min(m,n) \) diagonal matrix with non-negative diagonal elements, \( sv_1, sv_2, \ldots, sv_{\min(m,n)} \), ordered such that

\[ sv_1 \geq sv_2 \geq \ldots \geq sv_{\min(m,n)} \geq 0 . \]

The first \( \min(m,n) \) columns of Q are the left-hand singular vectors of A, the diagonal elements of S are the singular values of A and the first \( \min(m,n) \) columns of P are the right-hand singular vectors of A.

Either or both of the left-hand and right-hand singular vectors of A may be requested and the matrix C given by
where $B$ is an $m$ by $n_{colb}$ given matrix, may also be requested.

The routine obtains the singular value decomposition by first reducing $A$ to upper triangular form by means of Householder transformations, from the left when $m \geq n$ and from the right when $m < n$. The upper triangular form is then reduced to bidiagonal form by Givens plane rotations and finally the QR algorithm is used to obtain the singular value decomposition of the bidiagonal form.

Good background descriptions to the singular value decomposition are given in Dongarra et al [1], Hammarling [2] and Wilkinson [3] DSVDC.

Note that if $K$ is any orthogonal diagonal matrix so that

\[
    T \quad KK = I,
\]

(so that $K$ has elements +1 or -1 on the diagonal)

then

\[
    T \quad A = (QK)D(PK)
\]

is also a singular value decomposition of $A$.

4. References


5. Parameters

1: $M$ -- INTEGER

Input

On entry: the number of rows, $m$, of the matrix $A$.

Constraint: $M \geq 0$.

When $M = 0$ then an immediate return is effected.
2: N -- INTEGER 
   Input
   On entry: the number of columns, n, of the matrix A.
   Constraint: N >= 0.
   When N = 0 then an immediate return is effected.

3: A(LDA,*) -- DOUBLE PRECISION array 
   Input/Output
   Note: the second dimension of the array A must be at least
   max(1,N).
   On entry: the leading m by n part of the array A must
   contain the matrix A whose singular value decomposition is
   required. On exit: if M >= N and WANTQ = .TRUE., then the
   leading m by n part of A will contain the first n columns of
   the orthogonal matrix Q.
   If M < N and WANTP = .TRUE., then the leading m by n part of
   A will contain the first m rows of the orthogonal matrix P.
   If M >= N and WANTQ = .FALSE. and WANTP = .TRUE., then the
   leading n by n part of A will contain the first n rows of
   the orthogonal matrix P.
   Otherwise the leading m by n part of A is used as internal
   workspace.

4: LDA -- INTEGER 
   Input
   On entry: the first dimension of the array A as declared in the
   (sub)program from which F02WEF is called.
   Constraint: LDA >= max(1,M).

5: NCOLB -- INTEGER 
   Input
   On entry: ncolb, the number of columns of the matrix B.
   When NCOLB = 0 the array B is not referenced. Constraint:
   NCOLB >= 0.

6: B(LDB,*) -- DOUBLE PRECISION array 
   Input/Output
   Note: the second dimension of the array B must be at least
   max(1,ncolb) On entry: if NCOLB > 0, the leading m by ncolb
   part of the array B must contain the matrix to be
   transformed. On exit: B is overwritten by the m by ncolb
   matrix Q B.

7: LDB -- INTEGER 
   Input
   On entry: the first dimension of the array B as declared in the
   (sub)program from which F02WEF is called.
Constraint: if NCOLB > 0 then LDB >= max(1,M).

8: WANTQ -- LOGICAL
   On entry: WANTQ must be .TRUE., if the left-hand singular
   vectors are required. If WANTQ = .FALSE., then the array Q
   is not referenced.

9: Q(LDQ,*) -- DOUBLE PRECISION array
   Note: the second dimension of the array Q must be at least
   max(1,M).
   On exit: if M < N and WANTQ = .TRUE., the leading m by m
   part of the array Q will contain the orthogonal matrix Q.
   Otherwise the array Q is not referenced.

10: LDQ -- INTEGER
    On entry: the first dimension of the array Q as declared in the
            (sub)program from which F02WEF is called.
    Constraint: if M < N and WANTQ = .TRUE., LDQ >= max(1,M).

11: SV(*) -- DOUBLE PRECISION array
    Note: the length of SV must be at least min(M,N). On exit:
         the min(M,N) diagonal elements of the matrix S.

12: WANTP -- LOGICAL
    On entry: WANTP must be .TRUE. if the right-hand singular
    vectors are required. If WANTP = .FALSE., then the array PT
    is not referenced.

13: PT(LDPT,*) -- DOUBLE PRECISION array
    Note: the second dimension of the array PT must be at least
    max(1,N).
    On exit: if M >= N and WANTQ and WANTP are .TRUE., the
    leading n by n part of the array PT will contain the
    orthogonal matrix P . Otherwise the array PT is not
    referenced.

14: LDPT -- INTEGER
    On entry: the first dimension of the array PT as declared in the
            (sub)program from which F02WEF is called.
    Constraint: if M >= N and WANTQ and WANTP are .TRUE., LDPT
                 >= max(1,N).

15: WORK(*) -- DOUBLE PRECISION array
    Note: the length of WORK must be at least max(1,lwork),
    where lwork must be as given in the following table:

    M >= N
WANTQ is .TRUE. and WANTP = .TRUE.
\[ lwork = \max(N + 5 \times (N-1), N+NCOLB, 4) \]

WANTQ = .TRUE. and WANTP = .FALSE.
\[ lwork = \max(N + 4 \times (N-1), N+NCOLB, 4) \]

WANTQ = .FALSE. and WANTP = .TRUE.
\[ lwork = \max(3 \times (N-1), 2) \text{ when } NCOLB = 0 \]
\[ lwork = \max(5 \times (N-1), 2) \text{ when } NCOLB > 0 \]

WANTQ = .FALSE. and WANTP = .FALSE.
\[ lwork = \max(3 \times (N-1), 2) \text{ when } NCOLB = 0 \]
\[ lwork = \max(5 \times (N-1), 2) \text{ when } NCOLB > 0 \]

M < N
WANTQ = .TRUE. and WANTP = .TRUE.
\[ lwork = \max(M + 5 \times (M-1), 2) \]

WANTQ = .TRUE. and WANTP = .FALSE.
\[ lwork = \max(3 \times (M-1), 1) \]

WANTQ = .FALSE. and WANTP = .TRUE.
\[ lwork = \max(M + 3 \times (M-1), 2) \text{ when } NCOLB = 0 \]
\[ lwork = \max(M + 5 \times (M-1), 2) \text{ when } NCOLB > 0 \]

WANTQ = .FALSE. and WANTP = .FALSE.
\[ lwork = \max(2 \times (M-1), 1) \text{ when } NCOLB = 0 \]
\[ lwork = \max(3 \times (M-1), 1) \text{ when } NCOLB > 0 \]

On exit: WORK(min(M,N)) contains the total number of iterations taken by the R algorithm.

The rest of the array is used as workspace.

16: IFAIL -- INTEGER         Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL=-1
One or more of the following conditions holds:
M < 0,
N < 0,
LDA < M,
NCOLB < 0,
LDB < M and NCOLB > 0,
LDQ < M and M < N and WANTQ = .TRUE.,
LDPT < N and M >= N and WANTQ = .TRUE., and WANTP = .TRUE..

IFAIL> 0
The QR algorithm has failed to converge in 50*min(m,n) iterations. In this case SV(1), SV(2),..., SV(IFAIL) may not have been found correctly and the remaining singular values may not be the smallest. The matrix A will nevertheless have been factorized as \( A = QEP \), where the leading \( \min(m,n) \) by \( \min(m,n) \) part of \( E \) is a bidiagonal matrix with \( \text{SV}(1), \text{SV}(2),..., \text{SV}(\text{min}(m,n)) \) as the diagonal elements and \( \text{WORK}(1), \text{WORK}(2),..., \text{WORK}(\text{min}(m,n)-1) \) as the super-diagonal elements.

This failure is not likely to occur.

7. Accuracy

The computed factors Q, D and P satisfy the relation

\[ T \]
\[ QDP = A + E, \]

where

\[ ||E|| \leq c(\epsilon)||A||, \]

(\( \epsilon \)) being the machine precision, \( c \) is a modest function of \( m \) and \( n \) and \( ||.|| \) denotes the spectral (two) norm. Note that
8. Further Comments

Following the use of this routine the rank of $A$ may be estimated by a call to the INTEGER FUNCTION F06KLF(*). The statement:

$$\text{IRANK} = \text{F06KLF(MIN(M, N), SV, 1, TOL)}$$

returns the value $(k-1)$ in IRANK, where $k$ is the smallest integer for which $SV(k) < \text{tol} \times SV(1)$, where tol is the tolerance supplied in TOL, so that IRANK is an estimate of the rank of $S$ and thus also of $A$. If TOL is supplied as negative then the machine precision is used in place of TOL.

9. Example

9.1. Example 1

To find the singular value decomposition of the 5 by 3 matrix

$$A = \begin{pmatrix}
2.0 & 2.5 & 2.5 \\
2.0 & 2.5 & 2.5 \\
1.6 & -0.4 & 2.8 \\
2.0 & -0.5 & 0.5 \\
1.2 & -0.3 & -2.9
\end{pmatrix}$$

T

together with the vector $Q$ for the vector

$$b = \begin{pmatrix}
1.1 \\
0.9 \\
0.6 \\
0.0 \\
-0.8
\end{pmatrix}$$

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

9.2. Example 2

To find the singular value decomposition of the 3 by 5 matrix

$$A = \begin{pmatrix}
2.0 & 2.0 & 1.6 & 2.0 & 1.2 \\
2.5 & 2.5 & -0.4 & -0.5 & -0.3 \\
2.5 & 2.5 & 2.8 & 0.5 & -2.9
\end{pmatrix}$$

The example program is not reproduced here. The source code for
Singular value decomposition of a general complex matrix

--- nagf.ht ---

<table>
<thead>
<tr>
<th>F02XEF(3NAG)</th>
<th>Foundation Library (12/10/92)</th>
<th>F02XEF(3NAG)</th>
</tr>
</thead>
</table>

F02 -- Eigenvalue and Eigenvectors

F02XEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F02XEF returns all, or part, of the singular value decomposition of a general complex matrix.

2. Specification

```fortran
SUBROUTINE F02XEF (M, N, A, NCOLB, B, LDB, WANTQ, Q,
 1 LDQ, SV, WANTP, PH, LDPH, RWORK, CWORK, IFAIL)
INTEGER M, N, LDA, NCOLB, LDB, LDQ, LDPH, IFAIL
DOUBLE PRECISION SV(*), RWORK(*)
COMPLEX(KIND=KIND(1.0D0)) A(LDA,*), B(LDB,*), Q(LDQ,*),
 1 PH(LDPH,*), CWORK(*)
LOGICAL WANTQ, WANTP
```
3. Description

The m by n matrix A is factorized as

\[ H \]
\[ A = QDP, \]

where

\[(S) \]
\[ D = (0) \quad \text{if} \quad m > n, \]
\[ D = S, \quad \text{if} \quad m = n, \]
\[ D = (S \ 0), \quad \text{if} \quad m < n, \]

Q is an m by m unitary matrix, P is an n by n unitary matrix and S is a min(m,n) by min(m,n) diagonal matrix with real non-negative diagonal elements, \( s_1, s_2, \ldots, s_{\min(m,n)} \), ordered such that

\[ s_1 \geq s_2 \geq \ldots \geq s_{\min(m,n)} \geq 0. \]

The first \( \min(m,n) \) columns of Q are the left-hand singular vectors of A, the diagonal elements of S are the singular values of A and the first \( \min(m,n) \) columns of P are the right-hand singular vectors of A.

Either or both of the left-hand and right-hand singular vectors of A may be requested and the matrix C given by

\[ H \]
\[ C = QB, \]

where B is an m by ncolb given matrix, may also be requested.

The routine obtains the singular value decomposition by first reducing A to upper triangular form by means of Householder transformations, from the left when \( m \geq n \) and from the right when \( m < n \). The upper triangular form is then reduced to bidiagonal form by Givens plane rotations and finally the QR algorithm is used to obtain the singular value decomposition of the bidiagonal form.

Good background descriptions to the singular value decomposition are given in Dongarra et al [1], Hammarling [2] and Wilkinson [3] ZSVDC.
Note that if $K$ is any unitary diagonal matrix so that
\[
H
\]
\[
KK = I,
\]
then
\[
H
\]
\[
A = (QK)D(PK)
\]
is also a singular value decomposition of $A$.

4. References


5. Parameters

1: $M$ -- INTEGER Input
   On entry: the number of rows, $m$, of the matrix $A$.
   Constraint: $M \geq 0$.
   When $M = 0$ then an immediate return is effected.

2: $N$ -- INTEGER Input
   On entry: the number of columns, $n$, of the matrix $A$.
   Constraint: $N \geq 0$.
   When $N = 0$ then an immediate return is effected.

3: $A(LDA,*)$ -- COMPLEX(KIND(1.0D)) array Input/Output
   Note: the second dimension of the array $A$ must be at least max(1,N).
   On entry: the leading $m$ by $n$ part of the array $A$ must contain the matrix $A$ whose singular value decomposition is required. On exit: if $M \geq N$ and WANTQ = .TRUE., then the leading $m$ by $n$ part of $A$ will contain the first $n$ columns of the unitary matrix $Q$.
   If $M < N$ and WANTP = .TRUE., then the leading $m$ by $n$ part of $A$ will contain the first $m$ rows of the unitary matrix $P$.
$\geq N$ and $\text{WANTQ} = \text{.FALSE.}$ and $\text{WANTP} = \text{.TRUE.}$., then the leading $n$ by $n$ part of $A$ will contain the first $n$ rows of the unitary matrix $P$. Otherwise the leading $m$ by $n$ part of $A$ is used as internal workspace.

4:   
   **LDA** -- INTEGER Input
   On entry: the first dimension of the array $A$ as declared in the (sub)program from which F02XEF is called.
   Constraint: $\text{LDA} \geq \max(1, M)$.

5:   
   **NCOLB** -- INTEGER Input
   On entry: $\text{ncolb}$, the number of columns of the matrix $B$. When $\text{NCOLB} = 0$ the array $B$ is not referenced. Constraint: $\text{NCOLB} \geq 0$.

6:   
   **B(LDB,*)** -- COMPLEX(KIND(1.0D)) array Input/Output
   Note: the second dimension of the array $B$ must be at least $\max(1, \text{NCOLB})$.
   On entry: if $\text{NCOLB} > 0$, the leading $m$ by $\text{ncolb}$ part of the array $B$ must contain the matrix to be transformed. On exit: $H$ $B$ is overwritten by the $m$ by $\text{ncolb}$ matrix $Q B$.

7:   
   **LDB** -- INTEGER Input
   On entry: the first dimension of the array $B$ as declared in the (sub)program from which F02XEF is called.
   Constraint: if $\text{NCOLB} > 0$, then $\text{LDB} \geq \max(1, M)$.

8:   
   **WANTQ** -- LOGICAL Input
   On entry: $\text{WANTQ}$ must be .TRUE. if the left-hand singular vectors are required. If $\text{WANTQ} = \text{.FALSE.}$ then the array $Q$ is not referenced.

9:   
   **Q(LDQ,*)** -- COMPLEX(KIND(1.0D)) array Output
   Note: the second dimension of the array $Q$ must be at least $\max(1, M)$.
   On exit: if $M < N$ and $\text{WANTQ} = \text{.TRUE.}$, the leading $m$ by $m$ part of the array $Q$ will contain the unitary matrix $Q$. Otherwise the array $Q$ is not referenced.

10:  
   **LDQ** -- INTEGER Input
   On entry: the first dimension of the array $Q$ as declared in the (sub)program from which F02XEF is called.
   Constraint: if $M < N$ and $\text{WANTQ} = \text{.TRUE.}$, $\text{LDQ} \geq \max(1, M)$.

11:  
   **SV(*)** -- DOUBLE PRECISION array Output
Note: the length of SV must be at least \( \min(M,N) \). On exit: the \( \min(m,n) \) diagonal elements of the matrix \( S \).

12: WANTP -- LOGICAL Input
On entry: WANTP must be .TRUE. if the right-hand singular vectors are required. If WANTP = .FALSE. then the array PH is not referenced.

13: PH(LDPH,*) -- DOUBLE PRECISION array Output
Note: the second dimension of the array PH must be at least \( \max(1,N) \).
On exit: if \( M \geq N \) and WANTQ and WANTP are .TRUE., the leading \( n \) by \( n \) part of the array PH will contain the unitary matrix \( P \). Otherwise the array PH is not referenced.

14: LDPH -- INTEGER Input
On entry: the first dimension of the array PH as declared in the (sub)program from which F02XEF is called.
Constraint: if \( M \geq N \) and WANTQ and WANTP are .TRUE., \( LDPH \geq \max(1,N) \).

15: RWORK(*) -- DOUBLE PRECISION array Output
Note: the length of RWORK must be at least \( \max(1,lrwork) \), where \( lrwork \) must satisfy:
\[ lrwork=2*(\min(M,N)-1) \]
when \( M \geq N \) and WANTQ and WANTP are both .TRUE.,
\[ lrwork=3*(\min(M,N)-1) \]
when either \( NCOLB=0 \) and WANTQ and WANTP are .FALSE.,
\[ \text{TRUE.}, \text{ or WANTP= .FALSE. and one or both of NCOLB > 0 and WANTQ= .TRUE.} \]
\[ lrwork=5*(\min(M,N)-1) \]
o otherwise.
On exit: RWORK(min(M,N)) contains the total number of iterations taken by the QR algorithm.
The rest of the array is used as workspace.

16: CWORK(*) -- COMPLEX(KIND(1.0D)) array Workspace
Note: the length of CWORK must be at least \( \max(1,lcwork) \), where \( lcwork \) must satisfy:
\[ 2 \]
\[ lcwork=N+\max(N ,NCOLB) \] when \( M \geq N \) and WANTQ and WANTP are both .TRUE.
\[ 2 \]
\[ lcwork=N+\max(N +N,NCOLB) \] when
M >= N and WANTQ = .TRUE., but WANTP = .FALSE.

lwork = N + \max(N, NCOLB) when
M >= N and WANTQ = .FALSE.

2
lwork = M + M when
M < N and WANTP = .TRUE.

lwork = M when
M < N and WANTP = .FALSE.

17: IFAIL -- INTEGER
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL=-1
One or more of the following conditions holds:
M < 0,
N < 0,
LDA < M,
NCOLB < 0,
LDB < M and NCOLB > 0,
LDQ < M and M < N and WANTQ = .TRUE.,
LDPH < N and M >= N and WANTQ = .TRUE. and WANTP = .TRUE.

IFAIL> 0
The QR algorithm has failed to converge in 50*\min(m,n)
iterations. In this case SV(1), SV(2),..., SV(IFAIL) may not
have been found correctly and the remaining singular values
may not be the smallest. The matrix A will nevertheless have
been factorized as $A = QEP$ where the leading $\min(m,n)$ by $\min(m,n)$ part of $E$ is a bidiagonal matrix with $SV(1)$, $SV(2)$, ..., $SV(\min(m,n))$ as the diagonal elements and $RWORK(1)$, $RWORK(2)$, ..., $RWORK(\min(m,n)-1)$ as the super-diagonal elements.

This failure is not likely to occur.

7. Accuracy

The computed factors $Q$, $D$ and $P$ satisfy the relation

$$H = QDP = A + E,$$

where

$$||E|| \leq c(\epsilon)||A||,$$

$\epsilon$ being the machine precision, $c$ is a modest function of $m$ and $n$ and $||.||$ denotes the spectral (two) norm. Note that $||A|| = sv$.

8. Further Comments

Following the use of this routine the rank of $A$ may be estimated by a call to the INTEGER FUNCTION F06KLF(*). The statement:

$$IRANK = F06KLF(MIN(M, N), SV, 1, TOL)$$

returns the value $(k-1)$ in IRANK, where $k$ is the smallest integer for which $SV(k) < tol \times SV(1)$, where $tol$ is the tolerance supplied in TOL, so that IRANK is an estimate of the rank of $S$ and thus also of $A$. If TOL is supplied as negative then the machine precision is used in place of TOL.

9. Example

9.1. Example 1

To find the singular value decomposition of the 5 by 3 matrix

$$A = \begin{pmatrix}
0.5i & -0.5+1.5i & -1.0+1.0i \\
0.4+0.3i & 0.9+1.3i & 0.2+1.4i \\
0.4 & -0.4+0.4i & 1.8 \\
0.3-0.4i & 0.1+0.7i & 0.0 \\
-0.3i & 0.3+0.3i & 2.4i
\end{pmatrix}$$
together with the vector $Q^T b$ for the vector

\begin{align*}
(-0.55+1.05i) \\
(0.49+0.93i) \\
(0.56-0.16i) \\
(0.39+0.23i) \\
(1.13+0.83i)
\end{align*}

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

9.2. Example 2

To find the singular value decomposition of the 3 by 5 matrix

\begin{align*}
A &=
\begin{pmatrix}
0.5i & 0.4-0.3i & 0.4 & 0.3+0.4i & 0.3i \\
-0.5-1.5i & 0.9-1.3i & -0.4-0.4i & 0.1-0.7i & 0.3-0.3i \\
-1.0-1.0i & 0.2-1.4i & 1.8 & 0.0 & -2.4i
\end{pmatrix}
\end{align*}

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Simultaneous Linear Equations

1. Scope of the Chapter

This chapter, together with two routines in Chapter F07, is concerned with the solution of the matrix equation $AX=B$, where $B$ may be a single vector or a matrix of multiple right-hand sides. The matrix $A$ may be real, complex, symmetric, Hermitian positive-definite, or sparse. It may also be rectangular, in which case a least-squares solution is obtained.

2. Background to the Problems

A set of linear equations may be written in the form

$$Ax=b$$

where the known matrix $A$, with real or complex coefficients, is of size $m$ by $n$, ($m$ rows and $n$ columns), the known right-hand vector $b$ has $m$ components ($m$ rows and one column), and the required solution vector $x$ has $n$ components ($n$ rows and one column). There may sometimes be $p$ vectors $b_i$, $i=1,2,...,p$ on the right-hand side and the equations may then be written as

$$AX=B$$

the required matrix $X$ having as its $p$ columns the solutions of $Ax=b_i$, $i=1,2,...,p$. Some routines deal with the latter case, but for clarity only the case $p=1$ is discussed here.

The most common problem, the determination of the unique solution of $Ax=b$, occurs when $m=n$ and $A$ is non-singular, that is $\text{rank}(A)=n$ problem, discussed in Section 2.2 below, is the determination of the least-squares solution of $Ax^*=b$, i.e., the determination of a vector $x$ which minimizes the Euclidean length (two norm) of the residual vector $r=b-Ax$. The usual case has $m>n$ and $\text{rank}(A)=n$, in which case $x$ is unique.

2.1. Unique Solution of $Ax=b$

Most of the routines in this chapter, as well as two routines in Chapter F07, solve this particular problem. The solution is obtained by performing either an LU factorization, or a Cholesky factorization, as discussed in Section 2 of the F01 Chapter Introduction.

Two of the routines in this chapter use a process called iterative refinement to improve the initial solution in order to
obtain a solution that is correct to working accuracy. It should be emphasised that if A and b are not known exactly then not all the figures in this solution may be meaningful. To be more precise, if x is the exact solution of the equations

\[ Ax = b \]

and x is the solution of the perturbed equations

\[ (A+E)x = b+e, \]

then, provided that \((\kappa(A)) \leq 1, \)

\[ \frac{||x-x||}{||x||} \leq \frac{||E||}{||A||} \left( \frac{||A||}{||b||} \right) \]

where \((\kappa(A)) = ||A||/||A||\) is the condition number of A with respect to inversion. Thus, if A is ill-conditioned (\(\kappa(A)\) is large), x may differ significantly from x. Often \(\frac{||E||}{||A||} \ll 1\) in which case the above bound effectively reduces to

\[ \frac{||x-x||}{||x||} \leq \kappa(A) \left( \frac{||E||}{||A||} + \frac{||e||}{||b||} \right) \]

2.2. The Least-squares Solution of \(Ax^\sim = b\)

The least-squares problem is to find a vector x to minimize
When \( m \geq n \) and \( \text{rank}(A) = n \) then the solution vector \( x \) is unique. For the cases where \( x \) is not unique the routines in this chapter obtain the minimal length solution, that is the vector \( x \) for which \( x^T x \) is a minimum.

### 2.3. Calculating the Inverse of a Matrix

The routines in this chapter can also be used to calculate the inverse of a square matrix \( A \) by solving the equation

\[
AX = I,
\]

where \( I \) is the identity matrix.

### 3. Recommendations on Choice and Use of Routines

#### 3.1. General Purpose Routines

Many of the routines in this chapter perform the complete solution of the required equations, but some of the routines, as well as the routines in Chapter F07, assume that a prior factorization has been performed, using the appropriate factorization routine from Chapter F01 or Chapter F07. These, so-called, general purpose routines can be useful when explicit information on the factorization is required, as well as the solution of the equations, or when the solution is required for multiple right-hand sides, or for a sequence of right-hand sides.

Note that some of the routines that perform a complete solution also allow multiple right-hand sides.

#### 3.2. Iterative Refinement

The routines that perform iterative refinement are more costly than those that do not perform iterative refinement, both in terms of time and storage, and should only be used if the problem really warrants the additional accuracy provided by these routines. The storage requirements are approximately doubled, while the additional time is not usually prohibitive since the initial factorization is used at each iteration.

#### 3.3. Sparse Matrix Routines

The routines for sparse matrices should usually be used only when the number of non-zero elements is very small, less than 10% of
the total number of elements of $A$. Additionally, when the matrix is symmetric positive-definite the sparse routines should generally be used only when $A$ does not have a (variable) band structure.

There are four routines for solving sparse linear equations, two for solving general real systems (F04AXF and F04QAF), one for solving symmetric positive-definite systems (F04MAF) and one for solving symmetric systems that may, or may not, be positive-definite (F04MBF). F04AXF and F04MAF utilise factorizations of the matrix $A$ obtained by routines in Chapter F01, while the other two routines use iterative techniques and require a user-supplied $T$ function to compute matrix-vector products $Ac$ and $A^TC$ for any given vector $c$. The routines requiring factorizations will usually be faster and the factorization can be utilised to solve for several right-hand sides, but the original matrix has to be explicitly supplied and is overwritten by the factorization, and the storage requirements will usually be substantially more than those of the iterative routines.

Routines F04MBF and F04QAF both allow the user to supply a preconditioner.

F04MBF can be used to solve systems of the form $(A-(\lambda I))x=b$, which can be useful in applications such as Rayleigh quotient iteration.

F04QAF also solves sparse least-squares problems and allows the solution of damped (regularized) least-squares problems.

3.4. Decision Trees

If at any stage the answer to a question is 'Don't know' this should be read as 'No'.

For those routines that need to be preceded by a factorization routine, the appropriate routine name is given in brackets after the name of the routine for solving the equations. Note also that you may be directed to a routine in Chapter F07.

3.4.1. Routines for unique solution of $Ax=b$

Please see figure in printed Reference Manual

3.4.2. Routines for Least-squares problems
Please see figure in printed Reference Manual

F04 -- Simultaneous Linear Equations

Chapter F04

Eigenvalues and Eigenvectors

F04ADF Approximate solution of complex simultaneous linear equations with multiple right-hand sides

F04ARF Approximate solution of real simultaneous linear equations, one right-hand side

F04ASF Accurate solution of real symmetric positive-definite simultaneous linear equations, one right-hand side

F04ATF Accurate solution of real simultaneous linear equations, one right-hand side

F04AXF Approximate solution of real sparse simultaneous linear equations (coefficient matrix already factorized by F01BRF or F01BSF)

F04FAF Approximate solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one right-hand side

F04JGF Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m real equations in n unknowns, rank <= n, m > n

F04MAF Real sparse symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized)

F04MBF Real sparse symmetric simultaneous linear equations

F04MCF Approximate solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized)

F04QAF Sparse linear least-squares problem, m real equations in n unknowns
Approximate solution of a set of complex linear equations

--- 

F04ADF calculates the approximate solution of a set of complex linear equations with multiple right-hand sides, using an LU factorization with partial pivoting.

2. Specification

```fortran
SUBROUTINE F04ADF (A, IA, B, IB, N, M, C, IC, WKSPCE, IFAIL)
INTEGER IA, IB, N, M, IC, IFAIL
DOUBLE PRECISION WKSPCE(*)
COMPLEX(KIND(1.0D0)) A(IA,*), B(IB,*), C(IC,*)
```

3. Description

Given a set of complex linear equations AX=B, the routine first computes an LU factorization of A with partial pivoting, PA=LU, where P is a permutation matrix, L is lower triangular and U is unit upper triangular. The columns x of the solution X are found by forward and backward substitution in Ly=Pb and Ux=y, where b
is a column of the right-hand side matrix B.

4. References


5. Parameters

1: A(IA,*) -- COMPLEX(KIND(1.0D)) array Input/Output
   Note: the second dimension of the array A must be at least max(1,N).
   On entry: the n by n matrix A. On exit: A is overwritten by the lower triangular matrix L and the off-diagonal elements of the upper triangular matrix U. The unit diagonal elements of U are not stored.

2: IA -- INTEGER Input
   On entry: the first dimension of the array A as declared in the (sub)program from which F04ADF is called.
   Constraint: IA >= max(1,N).

3: B(IB,*) -- COMPLEX(KIND(1.0D)) array Input
   Note: the second dimension of the array B must be at least max(1,M).
   On entry: the n by m right-hand side matrix B. See also Section 8.

4: IB -- INTEGER Input
   On entry: the first dimension of the array B as declared in the (sub)program from which F04ADF is called.
   Constraint: IB >= max(1,N).

5: N -- INTEGER Input
   On entry: n, the order of the matrix A. Constraint: N >= 0.

6: M -- INTEGER Input
   On entry: m, the number of right-hand sides. Constraint: M >= 0.

7: C(IC,*) -- COMPLEX(KIND(1.0D)) array Output
   Note: the second dimension of the array C must be at least max(1,M).
   On exit: the n by m solution matrix X. See also Section 8.

8: IC -- INTEGER Input
   On entry: the first dimension of the array C as declared in the
(sub)program from which F04ADF is called.
Constraint: IC >= max(1,N).

9: WKSPCE(*): DOUBLE PRECISION array Workspace
Note: the dimension of the array WKSPCE must be at least max(1,N).

10: IFAIL: INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
The matrix A is singular, possibly due to rounding errors.

IFAIL= 2
On entry N < 0,

or M < 0,

or IA < max(1,N),

or IB < max(1,N),

or IC < max(1,N).

7. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix. For a detailed error analysis see Wilkinson and Reinsch [1] page 106.

8. Further Comments

The time taken by the routine is approximately proportional to n

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the same actual array supplied for parameters B and C, in which case the solution
vectors will overwrite the right-hand sides. However this is not standard Fortran 77, and may not work on all systems.

9. Example

To solve the set of linear equations \( AX = B \) where

\[
A = \begin{pmatrix}
1 & 1+2i & 2+10i \\
1+i & 3i & -5+14i \\
1+i & 5i & -8+20i
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F04ARF calculates the approximate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting.

2. Specification

```fortran
SUBROUTINE F04ARF (A, IA, B, N, C, WKSPCE, IFAIL)
 INTEGER IA, N, IFAIL
 DOUBLE PRECISION A(IA,*), B(*), C(*), WKSPCE(*)
```

3. Description

Given a set of linear equations, \( Ax=b \), the routine first computes an LU factorization of \( A \) with partial pivoting, \( PA=LU \), where \( P \) is a permutation matrix, \( L \) is lower triangular and \( U \) is unit upper triangular. The approximate solution \( x \) is found by forward and backward substitution in \( Ly=Pb \) and \( Ux=y \), where \( b \) is the right-hand side.

4. References


5. Parameters

1: \( A(IA,*) \) -- DOUBLE PRECISION array Input/Output

   Note: the second dimension of the array \( A \) must be at least \( \max(1,N) \).

   On entry: the \( n \) by \( n \) matrix \( A \). On exit: \( A \) is overwritten by the lower triangular matrix \( L \) and the off-diagonal elements of the upper triangular matrix \( U \). The unit diagonal elements of \( U \) are not stored.

2: \( IA \) -- INTEGER Input

   On entry:

   the first dimension of the array \( A \) as declared in the (sub)program from which F04ARF is called.

   Constraint: \( IA >= \max(1,N) \).

3: \( B(*) \) -- DOUBLE PRECISION array Input

   Note: the dimension of the array \( B \) must be at least \( \max(1,N) \).

   On entry: the right-hand side vector \( b \).
4: N -- INTEGER Input
   On entry: n, the order of the matrix A. Constraint: N >= 0.

5: C(*) -- DOUBLE PRECISION array Output
   Note: the dimension of the array C must be at least
   max(1,N).
   On exit: the solution vector x.

6: WKSPCE(*) -- DOUBLE PRECISION array Workspace
   Note: the dimension of the array WKSPCE must be at least
   max(1,N).

7: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not
   familiar with this parameter (described in the Essential
   Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see
   Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   The matrix A is singular, possibly due to rounding errors.

IFAIL= 2
   On entry N < 0,
   or IA < max(1,N).

7. Accuracy

The accuracy of the computed solution depends on the conditioning
of the original matrix. For a detailed error analysis see

8. Further Comments

The time taken by the routine is approximately proportional to n

Unless otherwise stated in the Users' Note for your
implementation, the routine may be called with the same actual
array supplied for parameters B and C, in which case the solution
vector will overwrite the right-hand side. However this is not
standard Fortran 77, and may not work on all systems.

9. Example

To solve the set of linear equations $Ax=b$ where

\[
\begin{pmatrix}
33 & 16 & 72 \\
-24 & -10 & -57 \\
-8 & -4 & -17
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
-359 \\
281 \\
85
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
not included in the Foundation Library.

1. Purpose

F04ASF calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right-hand side, \( Ax=b \), using a Cholesky factorization and iterative refinement.

2. Specification

```plaintext
SUBROUTINE F04ASF (A, IA, B, N, C, WK1, WK2, IFAIL)
INTEGER IA, N, IFAIL
DOUBLE PRECISION A(IA,*), B(*), C(*), WK1(*), WK2(*)
```

3. Description

Given a set of real linear equations \( Ax=b \), where \( A \) is a symmetric positive-definite matrix, the routine first computes a Cholesky factorization of \( A = LL^T \) where \( L \) is lower triangular. An approximation to \( x \) is found by forward and backward substitution. The residual vector \( r=b-Ax \) is then calculated using additional precision and a correction \( d \) to \( x \) is found by solving \( LL^T d=r \). \( x \) is then replaced by \( x+d \), and this iterative refinement of the solution is repeated until machine accuracy is obtained.

4. References


5. Parameters

1: A(IA,*) -- DOUBLE PRECISION array Input/Output
   Note: the second dimension of the array A must be at least \( \max(1,N) \).
   On entry: the upper triangle of the \( n \) by \( n \) positive-definite symmetric matrix \( A \). The elements of the array below the diagonal need not be set. On exit: the elements of the array below the diagonal are overwritten; the upper triangle of \( A \) is unchanged.

2: IA -- INTEGER
   On entry:
   the first dimension of the array A as declared in the (sub)program from which F04ASF is called.
   Constraint: IA >= \( \max(1,N) \).
3: B(*) -- DOUBLE PRECISION array Input
   Note: the dimension of the array B must be at least max(1,N).
   On entry: the right-hand side vector b.

4: N -- INTEGER Input
   On entry: n, the order of the matrix A. Constraint: N >= 0.

5: C(*) -- DOUBLE PRECISION array Output
   Note: the dimension of the array C must be at least max(1,N).
   On exit: the solution vector x.

6: WK1(*) -- DOUBLE PRECISION array Workspace
   Note: the dimension of the array WK1 must be at least max(1,N).

7: WK2(*) -- DOUBLE PRECISION array Workspace
   Note: the dimension of the array WK2 must be at least max(1,N).

8: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   The matrix A is not positive-definite, possibly due to rounding errors.

IFAIL= 2
   Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL= 3
   On entry N < 0,
   or IA < max(1,N).

7. Accuracy
The computed solutions should be correct to full machine accuracy. For a detailed error analysis see Wilkinson and Reinsch [1] page 39.

8. Further Comments

The time taken by the routine is approximately proportional to n

The routine must not be called with the same name for parameters B and C.

9. Example

To solve the set of linear equations $Ax=b$ where

$$
A = \begin{pmatrix}
5 & 7 & 6 & 5 \\
7 & 10 & 8 & 7 \\
6 & 8 & 10 & 9 \\
5 & 7 & 9 & 10
\end{pmatrix}
$$

and

$$
b = \begin{pmatrix}
23 \\
32 \\
33 \\
31
\end{pmatrix}
$$

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

---

Set of real linear equations with a single right-hand side

— nagf.ht —

\begin{verbatim}
\end{verbatim}
\end{scroll}
\end{page}
F04ATF -- Simultaneous Linear Equations

F04ATF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F04ATF calculates the accurate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting, and iterative refinement.

2. Specification

```fortran
SUBROUTINE F04ATF (A, IA, B, N, C, AA, IAA, WKS1, WKS2, IFAIL)
INTEGER IA, N, IAA, IFAIL
DOUBLE PRECISION A(IA,*), B(*), C(*), AA(IAA,*), WKS1(*), WKS2(*)
```

3. Description

Given a set of real linear equations, $Ax=b$, the routine first computes an LU factorization of $A$ with partial pivoting, $PA=LU$, where $P$ is a permutation matrix, $L$ is lower triangular and $U$ is unit upper triangular. An approximation to $x$ is found by forward and backward substitution in $Ly=Pb$ and $Ux=y$. The residual vector $r=b-Ax$ is then calculated using additional precision, and a correction $d$ to $x$ is found by solving $LUd=r$. $x$ is replaced by $x+d$, and this iterative refinement of the solution is repeated until full machine accuracy is obtained.

4. References


5. Parameters

1: A(IA,*) -- DOUBLE PRECISION array Input
   Note: the second dimension of the array A must be at least
max(1,N).
On entry: the n by n matrix A.

2: IA -- INTEGER
   On entry: the first dimension of the array A as declared in the
   (sub)program from which F04ATF is called.
   Constraint: IA >= max(1,N).

3: B(*) -- DOUBLE PRECISION array
   Note: the dimension of the array B must be at least
   max(1,N).
   On entry: the right-hand side vector b.

4: N -- INTEGER
   On entry: n, the order of the matrix A. Constraint: N >= 0.

5: C(*) -- DOUBLE PRECISION array
   Note: the dimension of the array C must be at least
   max(1,N).
   On exit: the solution vector x.

6: AA(IAA,*) -- DOUBLE PRECISION array
   Note: the second dimension of the array AA must be at least
   max(1,N).
   On exit: the triangular factors L and U, except that the
   unit diagonal elements of U are not stored.

7: IAA -- INTEGER
   On entry: the first dimension of the array AA as declared in the
   (sub)program from which F04ATF is called.
   Constraint: IAA >= max(1,N).

8: WKS1(*) -- DOUBLE PRECISION array
   Note: the dimension of the array WKS1 must be at least
   max(1,N).

9: WKS2(*) -- DOUBLE PRECISION array
   Note: the dimension of the array WKS2 must be at least
   max(1,N).

10: IFAIL -- INTEGER
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see
    Section 6).
6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
   The matrix A is singular, possibly due to rounding errors.

IFAIL= 2
   Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.

IFAIL= 3
   On entry N < 0,
   or IA < max(1,N),
   or IAA < max(1,N).

7. Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see Wilkinson and Reinsch [1] page 107.

8. Further Comments

The time taken by the routine is approximately proportional to n

The routine must not be called with the same name for parameters B and C.

9. Example

To solve the set of linear equations Ax=b where

\[
\begin{pmatrix}
33 & 16 & 72 \\
-24 & -10 & -57 \\
-8 & -4 & -17
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
-359 \\
281 \\
85
\end{pmatrix}
\]
Solution of a set of real sparse linear equations

\section*{1. Purpose}

F04AXF calculates the approximate solution of a set of real sparse linear equations with a single right-hand side, \( Ax=b \) or \( A^T x=b \), where \( A \) has been factorized by F01BRF or F01BSF.

\section*{2. Specification}

\begin{verbatim}
SUBROUTINE F04AXF (N, A, LICN, ICN, IKEEP, RHS, W, MTYPE, 
1 IDISP, RESID)
INTEGER N, LICN, ICN(LICN), IKEEP(5*N), MTYPE, 
1 IDISP(2)
DOUBLE PRECISION A(LICN), RHS(N), W(N), RESID
\end{verbatim}
3. Description

To solve a system of real linear equations $Ax=b$ or $Ax=b$, where $A$ is a general sparse matrix, $A$ must first be factorized by F01BRF or F01BSF. F04AXF then computes $x$ by block forward or backward substitution using simple forward and backward substitution within each diagonal block.

The method is fully described in Duff [1].

4. References


5. Parameters

1: $N$ -- INTEGER  
   Input  
   On entry: $n$, the order of the matrix $A$.

2: $A(LICN)$ -- DOUBLE PRECISION array  
   Input  
   On entry: the non-zero elements in the factorization of the matrix $A$, as returned by F01BRF or F01BSF.

3: $LICN$ -- INTEGER  
   Input  
   On entry: the dimension of the arrays $A$ and $ICN$ as declared in the (sub)program from which F04AXF is called.

4: $ICN(LICN)$ -- INTEGER array  
   Input  
   On entry: the column indices of the non-zero elements of the factorization, as returned by F01BRF or F01BSF.

5: $IKEEP(5*N)$ -- INTEGER array  
   Input  
   On entry: the indexing information about the factorization, as returned by F01BRF or F01BSF.

6: $RHS(N)$ -- DOUBLE PRECISION array  
   Input/Output  
   On entry: the right-hand side vector $b$. On exit: RHS is overwritten by the solution vector $x$.

7: $W(N)$ -- DOUBLE PRECISION array  
   Workspace

8: $M>Type$ -- INTEGER  
   Input  
   On entry: $M>Type$ specifies the task to be performed:
   if $M>Type = 1$, solve $Ax=b$,
if \( MTYPE \neq 1 \), solve \( A \ x = b \).

9: IDISP(2) -- INTEGER array
   Input
   On entry: the values returned in IDISP by F01BRF.

10: RESID -- DOUBLE PRECISION
    Output
    On exit: the value of the maximum residual,
    
    \[ \max(|b - A \ x|), \text{over all the unsatisfied equations, in} \]
    
    \[ i \ -- ij \]
    
    \[ j \]
    
    case F01BRF or F01BSF has been used to factorize a singular
    or rectangular matrix.

6. Error Indicators and Warnings

None.

7. Accuracy

The accuracy of the computed solution depends on the conditioning
of the original matrix. Since F04AXF is always used with either
F01BRF or F01BSF, the user is recommended to set GROW = .TRUE. on
entry to these routines and to examine the value of W(1) on exit
(see the routine documents for F01BRF and F01BSF). For a detailed
error analysis see Duff [1] page 17.

If storage for the original matrix is available then the error
can be estimated by calculating the residual

\[ T \]

\[ r = b - A \ x \] (or \( b - A \ x \))

and calling F04AXF again to find a correction (delta) for \( x \) by
solving

\[ T \]

\[ A(\delta) = r \] (or \( A(\delta) = r \)).

8. Further Comments

If the factorized form contains \( (\tau) \) non-zeros \( (IDISP(2) = (\tau) \) )
then the time taken is very approximately \( 2(\tau) \) times longer
than the inner loop of full matrix code. Some advantage is taken
of zeros in the right-hand side when solving \( A \ x = b \) \( (MTYPE \neq 1) \).

9. Example
To solve the set of linear equations $Ax = b$ where

\[
A = \begin{pmatrix}
5 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & -1 & 2 & -3 \\
-1 & -1 & 0 & 0 & 0 & 6
\end{pmatrix}
\]

and

\[
b = \begin{pmatrix}
15 \\
12 \\
18 \\
3 \\
-6 \\
0
\end{pmatrix}
\]

The non-zero elements of $A$ and indexing information are read in by the program, as described in the document for F01BRF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

F04FAF calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations.

2. Specification

```fortran
SUBROUTINE F04FAF (JOB, N, D, E, B, IFAIL)
INTEGER JOB, N, IFAIL
DOUBLE PRECISION D(N), E(N), B(N)
```

3. Description

F04FAF is based upon the Linpack routine DPTSL (see Dongarra et al [1]) and solves the equations

\[ Tx=b, \]

where \( T \) is a real \( n \) by \( n \) symmetric positive-definite tridiagonal matrix, using a modified symmetric Gaussian elimination algorithm to factorize \( T \) as \( T=MKM \), where \( K \) is diagonal and \( M \) is a matrix of multipliers as described in Section 8.

When the input parameter \( JOB \) is supplied as 1, then the routine assumes that a previous call to F04FAF has already factorized \( T \); otherwise \( JOB \) must be supplied as 0.

4. References


5. Parameters

1: \( JOB \) -- INTEGER Input
On entry: specifies the job to be performed by F04FAF as follows:

\[ JOB = 0 \]

The matrix \( T \) is factorized and the equations \( Tx=b \) are solved for \( x \).

\[ JOB = 1 \]
The matrix T is assumed to have already been factorized by a previous call to F04FAF with JOB = 0; the equations Tx=b are solved for x.

2: N -- INTEGER Input
   On entry: n, the order of the matrix T. Constraint: N >= 1.

3: D(N) -- DOUBLE PRECISION array Input/Output
   On entry: if JOB = 0, D must contain the diagonal elements of T. If JOB = 1, D must contain the diagonal matrix K, as returned by a previous call of F04FAF with JOB = 0. On exit: if JOB = 0, D is overwritten by the diagonal matrix K of the factorization. If JOB = 1, D is unchanged.

4: E(N) -- DOUBLE PRECISION array Input/Output
   On entry: if JOB = 0, E must contain the super-diagonal elements of T, stored in E(2) to E(n). If JOB = 1, E must contain the off-diagonal elements of the matrix M, as returned by a previous call of F04FAF with JOB = 0. E(1) is not used. On exit: if JOB = 0, E(2) to E(n) are overwritten by the off-diagonal elements of the matrix M of the factorization. If JOB = 1, E is unchanged.

5: B(N) -- DOUBLE PRECISION array Input/Output
   On entry: the right-hand side vector b. On exit: B is overwritten by the solution vector x.

6: IFAIL -- INTEGER Input/Output
   On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
   On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
   On entry N < 1,
   or       JOB /= 0 or 1.

IFAIL= 2
   The matrix T is either not positive-definite or is nearly singular. This failure can only occur when JOB = 0 and inspection of the elements of D will give an indication of why failure has occurred. If an element of D is close to zero, then T is probably nearly singular; if an element of D
is negative but not close to zero, then T is not positive-definite.

IFAILOverflow
If overflow occurs during the execution of this routine, then either T is very nearly singular or an element of the right-hand side vector b is very large. In this latter case the equations should be scaled so that no element of b is very large. Note that to preserve symmetry it is necessary to scale by a transformation of the form (PTP)b=Px, where P is a diagonal matrix.

IFAILUnderflow
Any underflows that occur during the execution of this routine are harmless.

7. Accuracy
The computed factorization (see Section 8) will satisfy the equation

\[ T \times MKM = T + E \]

where \( \|E\| \leq 2(\epsilon)\|T\| \), \( p=1,F,\infty \),

\[ \frac{\|E\|}{\|T\|} \leq 2(\epsilon)\|T\| \],

\( \epsilon \) being the machine precision. The computed solution of the equations \( Tx=b \), say \( x \), will satisfy an equation of the form

\[ (T+F)x=b, \]

where F can be expected to satisfy a bound of the form

\[ \|F\| \leq (\alpha)(\epsilon)\|T\|, \]

\( \alpha \) being a modest constant. This implies that the relative error in \( x \) satisfies

\[ \frac{\|x-x\|}{\|x\|} \leq c(T)(\alpha)(\epsilon), \]
\[ ||x|| \]

where \( c(T) \) is the condition number of \( T \) with respect to inversion. Thus if \( T \) is nearly singular, \( x \) can be expected to have a large relative error.

8. Further Comments

The time taken by the routine is approximately proportional to \( n \).

The routine eliminates the off-diagonal elements of \( T \) by simultaneously performing symmetric Gaussian elimination from the top and the bottom of \( T \). The result is that \( T \) is factorized as

\[
T = MKM,
\]

where \( K \) is a diagonal matrix and \( M \) is a matrix of the form

\[
\begin{pmatrix}
1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & m & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
2 & 0 & m & 1 & \ldots & 0 & 0 & \ldots & 0 & 0 & 0 \\
3 & 0 & 0 & m & 1 & \ldots & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
M = \begin{pmatrix}
0 & 0 & 0 & \ldots & m & 1 & m & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & m & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & m & 1 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & m & 1 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\( j \) being the integer part of \( n/2 \). (For example when \( n=5,j=2 \).) The diagonal elements of \( K \) are returned in \( D \) with \( k \) in the \( i \)th element of \( D \) and \( m \) is returned in the \( i \)th element of \( E \). The routine fails with \( IFAIL = 2 \) if any diagonal element of \( K \) is non-positive. It should be noted that \( T \) may be nearly singular even if all the diagonal elements of \( K \) are positive, but in this case at least one element of \( K \) is almost certain to be small.
relative to $|||T|||$. If there is any doubt as to whether or not $T$
is nearly singular, then the user should consider examining the
diagonal elements of $K$.

9. Example

To solve the symmetric positive-definite equations

\[
\begin{align*}
T \mathbf{x} &= \mathbf{b} \\
1 &\quad 1
\end{align*}
\]

and

\[
\begin{align*}
T \mathbf{x} &= \mathbf{b} \\
2 &\quad 2
\end{align*}
\]

where

\[
\begin{align*}
T &= \begin{pmatrix} 4 & -2 & 0 & 0 & 0 \\ -2 & 10 & -6 & 0 & 0 \\ 0 & -6 & 29 & 15 & 0 \\ 0 & 0 & 15 & 25 & 8 \\ 0 & 0 & 0 & 8 & 5 \end{pmatrix}, \\
\mathbf{b} &= \begin{pmatrix} 6 \\ 9 \\ 14 \\ 7 \\ 23 \end{pmatrix}.
\end{align*}
\]

The equations are solved by two calls to F04FAF, the first with
\texttt{JOB} = 0 and the second, using the factorization from the first
call, with \texttt{JOB} = 1.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.

---

Solution of a linear least-squares problem, $Ax = b$
1. Purpose

F04JGF finds the solution of a linear least-squares problem, $Ax=b$, where $A$ is a real $m$ by $n$ ($m\geq n$) matrix and $b$ is an $m$ element vector. If the matrix of observations is not of full rank, then the minimal least-squares solution is returned.

2. Specification

```fortran
SUBROUTINE F04JGF (M, N, NRA, A, B, TOL, SVD, SIGMA, IRANK, WORK, LWORK, IFAIL)
INTEGER M, N, NRA, IRANK, LWORK, IFAIL
DOUBLE PRECISION A(NRA,N), B(M), TOL, SIGMA, WORK(LWORK)
LOGICAL SVD
```

3. Description

The minimal least-squares solution of the problem $Ax=b$ is the vector $x$ of minimum (Euclidean) length which minimizes the length of the residual vector $r=b-Ax$.

The real $m$ by $n$ ($m\geq n$) matrix $A$ is factorized as

$$(U)$$

$$A=Q(0)$$

where $Q$ is an $m$ by $m$ orthogonal matrix and $U$ is an $n$ by $n$ upper triangular matrix. If $U$ is of full rank, then the least-squares solution is given by

$$x=(U^T 0)Q b.$$ 

If $U$ is not of full rank, then the singular value decomposition of $U$ is obtained so that $U$ is factorized as

$$T$$
where $R$ and $P$ are $n$ by $n$ orthogonal matrices and $D$ is the $n$ by $n$
diagonal matrix

$$D = \text{diag}((\sigma_1), (\sigma_2), \ldots, (\sigma_n)),$$

with $(\sigma_1) \geq (\sigma_2) \geq \ldots \geq (\sigma_n) \geq 0$, these being the singular
values of $A$. If the singular values $(\sigma_1), \ldots, (\sigma_n)$ are
negligible, but $(\sigma_{k+1})$ is not negligible, relative to the data
elements in $A$, then the rank of $A$ is taken to be $k$ and the minimal
least-squares solution is given by

$$x = P(0 0 \cdots 0)Q b,$$

where $S = \text{diag}((\sigma_1), (\sigma_2), \ldots, (\sigma_k))$.

This routine obtains the factorizations by a call to F02WDF(*).

The routine also returns the value of the standard error

$$\begin{align*}
\text{standard error} &= \frac{\sqrt{\sum r^2}}{m-k}, \\
&\quad \text{if } m > k,
\end{align*}$$

$$T = 0, \quad \text{if } m = k,$$

if $m = k$, $r$ being the residual sum of squares and $k$ the rank of $A$.

4. References

Problems. Prentice-Hall.

5. Parameters

1: $M$ -- INTEGER \hspace{1cm} Input
\hspace{1cm} On entry: $m$, the number of rows of $A$. Constraint: $M \geq N$.

2: $N$ -- INTEGER \hspace{1cm} Input
\hspace{1cm} On entry: $n$, the number of columns of $A$. Constraint: $1 \leq N$.
3: A(NRA,N) -- DOUBLE PRECISION array 
On entry: the m by n matrix A. On exit: if SVD is returned as .FALSE., A} is overwritten by details of the QU factorization of A (see F02WDF(*) for further details). If SVD is returned as .TRUE., the first n rows of A are overwritten by the right-hand singular vectors, stored by rows; and the remaining rows of the array are used as workspace.

4: NRA -- INTEGER 
On entry:
the first dimension of the array A as declared in the (sub)program from which F04JGF is called.
Constraint: NRA >= M.

5: B(M) -- DOUBLE PRECISION array 
On entry: the right-hand side vector b. On exit: the first n elements of B contain the minimal least-squares solution vector x. The remaining m-n elements are used for workspace.

6: TOL -- DOUBLE PRECISION 
On entry: a relative tolerance to be used to determine the rank of A. TOL should be chosen as approximately the largest relative error in the elements of A. For example, if the elements of A are correct to about 4 significant figures \[-4\]
then TOL should be set to about \[5\times 10^{-4}\]. See Section 8 for a description of how TOL is used to determine rank. If TOL is outside the range ((epsilon),1.0), where (epsilon) is the machine precision, then the value (epsilon) is used in place of TOL. For most problems this is unreasonably small.

7: SVD -- LOGICAL 
On exit: SVD is returned as .FALSE. if the least-squares solution has been obtained from the QU factorization of A. In this case A is of full rank. SVD is returned as .TRUE. if the least-squares solution has been obtained from the singular value decomposition of A.

8: SIGMA -- DOUBLE PRECISION 
On exit: the standard error, i.e., the value \[\sqrt{r r/(m-k)}\] when m>k, and the value zero when m=k. Here r is the residual vector b-Ax and k is the rank of A.

9: IRANK -- INTEGER 
On exit: the rank of A.
On exit: k, the rank of the matrix A. It should be noted that it is possible for IRANK to be returned as n and SVD to be returned as .TRUE.. This means that the matrix U only just failed the test for non-singularity.

10: WORK(LWORK) -- DOUBLE PRECISION array Output
On exit: if SVD is returned as .FALSE., then the first n elements of WORK contain information on the QU factorization of A (see parameter A above and F02WDF(*)), and WORK(n+1)
contains the condition number $||U|| \times ||U^\dagger||$ of the upper triangular matrix U.

If SVD is returned as .TRUE., then the first n elements of WORK contain the singular values of A arranged in descending order and WORK(n+1) contains the total number of iterations taken by the QR algorithm. The rest of WORK is used as workspace.

11: LWORK -- INTEGER Input
On entry:
the dimension of the array WORK as declared in the (sub)program from which F04JGF is called.
Constraint: LWORK $\geq 4*N$.

12: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry N $< 1$,
or M $< N$,
or NRA $< M$,
or LWORK $< 4*N$.

IFAIL= 2
The QR algorithm has failed to converge to the singular values in 50*N iterations. This failure can only happen when
the singular value decomposition is employed, but even then it is not likely to occur.

7. Accuracy

\[ \text{T} \]

The computed factors \( Q, U, R, D \) and \( P \) satisfy the relations

\[
(U) (R\ O)(D) T
Q(0) = A + E, \quad Q(0) I (0)P = A + F,
\]

where

\[
||E|| \leq c (\epsilon) ||A||,
\]

\[
||F|| \leq c (\epsilon) ||A||,
\]

(\( \epsilon \)) being the machine precision, and \( c \) and \( c \) being modest functions of \( m \) and \( n \). Note that \( ||A|| = (\sigma) \).

For a fuller discussion, covering the accuracy of the solution \( x \) see Lawson and Hanson [1], especially pp 50 and 95.

8. Further Comments

If the least-squares solution is obtained from the QU factorization then the time taken by the routine is approximately

\[ \text{proportional to } n (3m-n). \]

If the least-squares solution is obtained from the singular value decomposition then the time taken is approximately proportional to \( n (3m+19n) \). The approximate proportionality factor is the same in each case.

This routine is column biased and so is suitable for use in paged environments.

Following the QU factorization of \( A \) the condition number

\[ c(U) = ||U|| ||U||^{-1} \]

\[ E \quad E \]

is determined and if \( c(U) \) is such that
then U is regarded as singular and the singular values of A are computed. If this test is not satisfied, U is regarded as non-singular and the rank of A is set to n. When the singular values are computed the rank of A, say k, is returned as the largest integer such that

\[ \text{(sigma)} > \text{TOL} \times \text{(sigma)}, \]

\[ k \leq 1 \]

unless \( \text{(sigma)} = 0 \) in which case k is returned as zero. That is,

1 singular values which satisfy \( \text{(sigma)} \leq \text{TOL} \times \text{(sigma)} \) are regarded

\[ i \leq 1 \]

as negligible because relative perturbations of order TOL can make such singular values zero.

9. Example

To obtain a least-squares solution for \( r=b-Ax \), where

\[
\begin{align*}
(0.05 &
0.05
0.25
-0.25) & (1) \\
(0.25 &
0.25
0.05
-0.05) & (2) \\
(0.35 &
0.35
1.75
-1.75) & (3) \\
A=(1.75 &
1.75
0.35
-0.35), & (4) \\
B=(0.30 &
-0.30
0.30
0.30) & (5) \\
(0.40 &
-0.40
0.40
0.40) & (6) \\
\end{align*}
\]

and the value TOL is to be taken as \( 5 \times 10^{-4} \).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
To solve a sparse symmetric positive-definite system of linear equations, \( Ax = b \), using a pre-conditioned conjugate gradient method, where \( A \) has been factorized by F01MAF.

2. Specification

```fortran
SUBROUTINE F04MAF (N, NZ, A, LICN, IRN, LIRN, ICN, B, ACC,
1 NOITS, WKEEP, WORK, IKEEP, INFORM,
2 IFAIL)
INTEGER N, NZ, LICN, IRN(LIRN), LIRN, ICN(LICN),
1 NOITS(2), IKEEP(2*N), INFORM(4), IFAIL
DOUBLE PRECISION A(LICN), B(N), ACC(2), WKEEP(3*N), WORK
1 (3*N)
```

3. Description

F04MAF solves the \( n \) linear equations

\[
Ax = b, 
\]

where \( A \) is a sparse symmetric positive-definite matrix, following the incomplete Cholesky factorization by F01MAF, given by

\[
C = PLDL^T P, \quad WAW = C + E, 
\]

where \( P \) is a permutation matrix, \( L \) is a unit lower triangular matrix, \( D \) is a diagonal matrix with positive diagonal elements, \( E \) is an error matrix representing elements dropped during the factorization and diagonal elements that have been modified to ensure that \( C \) is positive-definite, and \( W \) is a diagonal matrix.
chosen to make the diagonal elements of $WAW$ unity.

Equation (1) is solved by applying a pre-conditioned conjugate gradient method to the equations

$$-1\begin{align} (WAW)(Wx) &= Wb, \end{align} \tag{2}$$

using $C$ as the pre-conditioning matrix. Details of the conjugate gradient method are given in Munksgaard [1].

The iterative procedure is terminated if

$$||Wr|| \leq (\eta), \tag{3}$$

where $r$ is the residual vector $r = b - Ax$, $||r||$ denotes the Euclidean length of $r$, $(\eta)$ is a user-supplied tolerance and $x$ is the current approximation to the solution. Notice that

$$-1\begin{align} Wr &= Wb - (WAW)(Wx) \end{align}$$

so that $Wr$ is the residual of the normalised equations (2).

F04MAF is based on the Harwell Library routine MA31B.

4. References


5. Parameters

1: $N$ -- INTEGER Input
   On entry: $n$, the order of the matrix $A$. Constraint: $N \geq 1$.

2: $NZ$ -- INTEGER Input
   On entry: the number of non-zero elements in the upper triangular part of the matrix $A$, including the number of elements on the leading diagonal. Constraint: $NZ \geq N$.

3: $A(LICN)$ -- DOUBLE PRECISION array Input
   On entry: the first $LROW$ elements, where $LROW$ is the value supplied in INFORM(1), must contain details of the factorization, as returned by F01MAF.

4: $LICN$ -- INTEGER Input
On entry: the length of the array A, as declared in the (sub)program from which F04MAF is called. It need never be larger than the value of LICN supplied to F01MAF. Constraint: LICN >= INFORM(1).

5: IRN(LIRN) -- INTEGER array Input
On entry: the first LCDL elements, where LCDL is the value supplied in INFORM(2), must contain details of the factorization, as returned by F01MAF.

6: LIRN -- INTEGER Input
On entry: the length of the array IRN, as declared in the (sub)program from which F04MAF is called. It need never be larger than the value of LIRN supplied to F01MAF. Constraint: LIRN >= INFORM(2).

7: ICN(LICN) -- INTEGER array Input
On entry: the first LROW elements, where LROW is the value supplied in INFORM(1), must contain details of the factorization, as returned by F01MAF.

8: B(N) -- DOUBLE PRECISION array Input/Output
On entry: the right-hand side vector b. On exit: B is overwritten by the solution vector x.

9: ACC(2) -- DOUBLE PRECISION array Input/Output
On entry: ACC(1) specifies the tolerance for convergence, (eta), in equation (3) of Section 3. If ACC(1) is outside the range [(epsilon),1], where (epsilon) is the machine precision, then the value (epsilon) is used in place of ACC(1). ACC(2) need not be set. On exit: ACC(2) contains the actual value of ||W|| at the final point. ACC(1) is unchanged.

10: NOITS(2) -- INTEGER array Input/Output
On entry: NOITS(1) specifies the maximum permitted number of iterations. If NOITS(1) < 1, then the value 100 is used in its place. NOITS(2) need not be set. On exit: NOITS(2) contains the number of iterations taken to converge. NOITS(1) is unchanged.

11: WKEEP(3*N) -- DOUBLE PRECISION array Input
On entry: WKEEP must be unchanged from the previous call of F01MAF.

12: WORK(3*N) -- DOUBLE PRECISION array Output
On exit: WORK(1) contains a lower bound for the condition number of A. The rest of the array is used for workspace.
13: IKEEP(2*N) -- INTEGER array

Input

On entry: IKEEP must be unchanged from the previous call of F01MAF.

14: INFORM(4) -- INTEGER array

Input

On entry: INFORM must be unchanged from the previous call of F01MAF.

15: IFAIL -- INTEGER

Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see the Essential Introduction).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal digits c, b and a must have a value of 0 or 1.

a=0 specifies hard failure, otherwise soft failure;

b=0 suppresses error messages, otherwise error messages will be printed (see Section 6);

b=0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as defined by X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL= 1

On entry N < 1,

or NZ < N,

or LICN < INFORM(1),

or LIRN < INFORM(2).

IFAIL= 2

Convergence has not taken place within the requested NOITS (1) number of iterations. ACC(2) gives the value ||Wr||,
for the final point. Either too few iterations have been allowed, or the requested convergence criterion cannot be met.

IFAIL = 3
The matrix A is singular, or nearly singular. Singularity has been detected during the conjugate gradient iterations, so that the computations are not complete.

IFAIL = 4
The matrix A is singular, or nearly singular. The message output on the current error message channel will include an estimate of the condition number of A. In the case of soft failure an approximate solution is returned such that the value $||W_r||$ is given by ACC(2) and the estimate (a lower bound) of the condition number is returned in WORK(1).

7. Accuracy
On successful return, or on return with IFAIL = 2 or IFAIL = 4 the computed solution will satisfy equation (3) of Section 3, with (eta) = ACC(2).

8. Further Comments
The time taken by the routine will depend upon the sparsity of the factorization and the number of iterations required. The number of iterations will be affected by the nature of the factorization supplied by F01MAF. The more incomplete the factorization, the higher the number of iterations required by F04MAF.

When the solution of several systems of equations, all with the same matrix of coefficients, A, is required, then F01MAF need be called only once to factorize A. This is illustrated in the context of an eigenvalue problem in the example program for F02FJF.

9. Example
The example program illustrates the use of F01MAF in conjunction with F04MAF to solve the 16 linear equations Ax = b, where

\[
\begin{pmatrix}
1 & a & a \\
(a & 1 & a ) \\
( a & 1 & a ) \\
( a & 0 & 1 & a ) \\
\end{pmatrix}
\]
The n by n matrix $A$ arises in the solution of Laplace's equation in a unit-square, using a five-point formula with a 6 by 6 discretisation, with unity on the boundaries.

The drop tolerance, DROPTL, is taken as 0.1 and the density factor, DENSW, is taken as 0.8. The value IFAIL = 111 is used so that advisory and error messages will be printed, but soft failure would occur if IFAIL were returned as non-zero.

A relative accuracy of about 0.0001 is requested in the solution from F04MAF, with a maximum of 50 iterations.

The example program for F02FJF illustrates the use of routines F01MAF and F04MAF in solving an eigenvalue problem.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Solves a system of real sparse symmetric linear equations

— nagf.ht —

\begin{verbatim}
F04MBF(3NAG) Foundation Library (12/10/92) F04MBF(3NAG)

F04 -- Simultaneous Linear Equations
F04MBF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details.
The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F04MBF solves a system of real sparse symmetric linear equations using a Lanczos algorithm.

2. Specification

SUBROUTINE F04MBF (N, B, X, APROD, MSOLVE, PRECON, SHIFT,
1 RTOL, ITNLI M, MSGVL, ITN, ANORM,
2 ACOND, RNORM, XNORM, WORK, RWORK,
3 LAWORK, IWORK, LIWORK, INFORM, IFAIL)
INTEGER N, ITNLI M, MSGVL, ITN, LAWORK, IWORK
1 (LIWORK), LIWORK, INFORM, IFAIL
DOUBLE PRECISION B(N), X(N), SHIFT, RTUL, ANORM, ACOND,
1 RNORM, XNORM, WORK(N,5), RWORK(LWORK)
LOGICAL PRECON
EXTERNAL APROD, MSOLVE

3. Description

F04MBF solves the system of linear equations

(A-(\lambda)I)x=b \quad (3.1)

where A is an n by n sparse symmetric matrix and (\lambda) is a scalar, which is of course zero if the solution of the equations
Ax=b

is required. It should be noted that neither A nor (A-(lambda)I) need be positive-definite.

(lambda) is supplied as the parameter SHIFT, and allows F04MBF to be used for finding eigenvectors of A in methods such as Rayleigh quotient iteration (see for example Lewis [1]), in which case (lambda) will be an approximation to an eigenvalue of A and b an approximation to an eigenvector of A.

The routine also provides an option to allow pre-conditioning and this will often reduce the number of iterations required by F04MBF.

F04MBF is based upon algorithm SYMMLQ (see Paige and Saunders [2]) and solves the equations by an algorithm based upon the Lanczos process. Details of the method are given in Paige and Saunders [2]. The routine does not require A explicitly, but A is specified via a user-supplied routine APROD which, given an n element vector c, must return the vector z given by

\[ z = Ac. \]

The pre-conditioning option is based on the following reasoning. If A can be expressed in the form

\[ A = I + B \]

where B is of rank (rho), then the Lanczos process converges (in exact arithmetic) in at most (rho) iterations. If more generally A can be expressed in the form

\[ A = M + C \]

where M is symmetric positive-definite and C has rank (rho), then

\[
\begin{bmatrix}
-(1/2) & -(1/2) & -(1/2) & -(1/2) \\
M & AM & I+M & CM \\
-(1/2) & -(1/2) & -(1/2)
\end{bmatrix}
\]

and M AM also has rank (rho), and the Lanczos process applied to M AM would again converge in at most (rho) iterations. On a computer, the number of iterations may be greater than (rho), but the Lanczos process may still be expected to converge rapidly. F04MBF does not require M AM to be formed explicitly, but implicitly solves the equations.
with the user being required to supply a routine MSOLVE to solve the equations

\[ Mz = c. \quad (3.3) \]

For the pre-conditioning option to be effective, it is desirable that equations (3.3) can be solved efficiently. The example program in Section 9 illustrates the use of this option.

If we let \( r \) denote the residual vector

\[ r = b - (A-(\lambda)I)x \]

corresponding to an iterate \( x \), then, when pre-conditioning has not been requested, the iterative procedure is terminated if it is estimated that

\[ ||r|| \leq \text{tol} \cdot ||A-(\lambda)I|| \cdot ||x||, \quad (3.4) \]

where \( \text{tol} \) is a user-supplied tolerance, \( ||r|| \) denotes the Euclidean length of the vector \( r \) and \( ||A|| \) denotes the Frobenius (Euclidean) norm of the matrix \( A \). When pre-conditioning has been requested, the iterative procedure is terminated if it is estimated that

\[ -(1/2) \quad -(1/2) \quad -(1/2) \quad 1/2 \]

\[ ||M^{-1/2} r|| \leq \text{tol} \cdot ||M^{-1/2} (A-(\lambda)I)M^{-1/2}|| \cdot ||M^{-1/2} x||. \quad (3.5) \]

Note that

\[ -(1/2) \quad -(1/2) \quad -(1/2) \quad -(1/2) \quad 1/2 \]

\[ M^{-1/2} r = (M^{-1/2} b) - (M^{-1/2} (A-(\lambda)I)M^{-1/2} x) \]

\[ -(1/2) \]

so that \( M^{-1/2} r \) is the residual vector corresponding to equation (3.2). The routine will also terminate if it is estimated that

\[ ||A-(\lambda)I|| \cdot ||x|| \geq ||b||/(\epsilon), \quad (3.6) \]

where \( \epsilon \) is the machine precision, when pre-conditioning has not been requested; or if it is estimated that

\[ -(1/2) \quad -(1/2) \quad 1/2 \quad -(1/2) \]

\[ ||M^{-1/2} (A-(\lambda)I)M^{-1/2}|| \cdot ||M^{-1/2} x|| \geq ||M^{-1/2} b||/(\epsilon) \]
when pre-conditioning has been requested. If (3.6) is satisfied
then x is almost certainly an eigenvector of A corresponding to
the eigenvalue (lambda). If (lambda) was set to 0 (for the
solution of Ax=b), then this condition simply means that A is
effectively singular.

4. References

Department, Stanford University.

12 617--629.

5. Parameters

1: N -- INTEGER Input
On entry: n, the order of the matrix A. Constraint: N >= 1.

2: B(N) -- DOUBLE PRECISION array Input
On entry: the right-hand side vector b.

3: X(N) -- DOUBLE PRECISION array Output
On exit: the solution vector x.

4: APROD -- SUBROUTINE, supplied by the user.
External Procedure
APROD must return the vector y=Ax for a given vector x.

Its specification is:

SUBROUTINE APROD (IFLAG, N, X, Y, RWORK, LRWORK,
1 INTEGER IWORK,LIWORK)
INTEGER IFLAG, N, LRWORK, LIWORK, IWORK
1 (LIWORK)
DOUBLE PRECISION X(N), Y(N), RWORK(LRWORK)

1: IFLAG -- INTEGER Input/Output
On entry: IFLAG is always non-negative. On exit: IFLAG
may be used as a flag to indicate a failure in the
computation of Ax. If IFLAG is negative on exit from
APROD, F04MBF will exit immediately with IFAIL set to
IFLAG.

2: N -- INTEGER Input
On entry: n, the order of the matrix A.
3: x(n) -- double precision array  
   input
   on entry: the vector x for which ax is required.

4: y(n) -- double precision array  
   output
   on exit: the vector y=ax.

5: rwork(lrwork) -- double precision array  
   user workspace

6: lrwork -- integer  
   input

7: iwork(liwork) -- integer array  
   user workspace

8: liwork -- integer  
   input
   aprod is called from f04mbf with the parameters rwork, 
   lrwork, iwork and liwork as supplied to f04mbf. the 
   user is free to use the arrays rwork and iwork to 
   supply information to aprod and msolve as an 
   alternative to using common.
   aprod must be declared as external in the (sub)program 
   from which f04mbf is called. parameters denoted as 
   input must not be changed by this procedure.

5: msolve -- subroutine, supplied by the user.  
   external procedure
   msolve is only referenced when precon is supplied as .true.. 
   when precon is supplied as .false., then f04mbf may be 
   called with aprod as the actual argument for msolve. when 
   precon is supplied as .true., then msolve must return the 
   solution y of the equations my=x for a given vector x, where 
   m must be symmetric positive-definite.

its specification is:

   subroutine msolve (iflag, n, x, y, rwork, 
   1 lrwork, iwork,liwork)
   integer iflag, n, lrwork, liwork, iwork
   1 (liwork)
   double precision x(n), y(n), rwork(lrwork)

1: iflag -- integer  
   input/output
   on entry: iflag is always non-negative. on exit: iflag 
   may be used as a flag to indicate a failure in the 
   solution of my=x.

   if iflag is negative on exit from msolve, f04mbf will 
   exit immediately with ifail set to iflag.

2: n -- integer  
   input
   on entry: n, the order of the matrix m.
CHAPTER 22. NAG LIBRARY Routines

3: X(N) -- DOUBLE PRECISION array Input
   On entry: the vector x for which the equations My=x are to be solved.

4: Y(N) -- DOUBLE PRECISION array Output
   On exit: the solution to the equations My=x.

5: RWORK(LRWORK) -- DOUBLE PRECISION array User Workspace

6: LRWORK -- INTEGER Input

7: IWORK(LIWORK) -- INTEGER array User Workspace

8: LIWORK -- INTEGER Input
   MSOLVE is called from F04MBF with the parameters RWORK, LRWORK, IWORK and LIWORK as supplied to F04MBF. The user is free to use the arrays RWORK and IWORK to supply information to APROD and MSOLVE as an alternative to using COMMON. MSOLVE must be declared as EXTERNAL in the (sub)program from which F04MBF is called. Parameters denoted as Input must not be changed by this procedure.

6: PRECON -- LOGICAL Input
   On entry: PRECON specifies whether or not pre-conditioning is required. If PRECON = .TRUE., then pre-conditioning will be invoked and MSOLVE will be referenced by F04MBF; if PRECON = .FALSE., then MSOLVE is not referenced.

7: SHIFT -- DOUBLE PRECISION Input
   On entry: the value of (lambda). If the equations Ax=b are to be solved, then SHIFT must be supplied as zero.

8: RTOL -- DOUBLE PRECISION Input
   On entry: the tolerance for convergence, tol, of equation (3.4). RTOL should not normally be less than (epsilon), where (epsilon) is the machine precision.

9: ITNLIM -- INTEGER Input
   On entry: an upper limit on the number of iterations. If ITNLIM <= 0, then the value N is used in place of ITNLIM.

10: MSG_LVL -- INTEGER Input
    On entry: the level of printing from F04MBF. If MSG_LVL <= 0, then no printing occurs, but otherwise messages will be output on the advisory message channel (see X04ABF). A description of the printed output is given in Section 5.1 below. The level of printing is determined as follows: MSG_LVL <= 0
No printing.

MSGLVL = 1
A brief summary is printed just prior to return from F04MBF.

MSGLVL >= 2
A summary line is printed periodically to monitor the progress of F04MBF, together with a brief summary just prior to return from F04MBF.

11: ITN -- INTEGER Output
On exit: the number of iterations performed.

12: ANORM -- DOUBLE PRECISION Output
On exit: an estimate of \[||A-(\lambda)I||\] when PRECON = -\((1/2)\) -\((1/2)\) .FALSE., and \[||M (A-(\lambda)I)M ||\] when PRECON = .TRUE.. This will usually be a substantial under-estimate.

13: ACOND -- DOUBLE PRECISION Output
On exit: an estimate of the condition number of \((A-(\lambda)I)\) when PRECON = .FALSE., and of -\((1/2)\) -\((1/2)\) \(M (A-(\lambda)I)M \) when PRECON = .TRUE.. This will usually be a substantial under-estimate.

14: RNORM -- DOUBLE PRECISION Output
On exit: \(||r||\), where \(r=b-(A-(\lambda)I)x\) and \(x\) is the solution returned in \(X\).

15: XNORM -- DOUBLE PRECISION Output
On exit: \(||x||\), where \(x\) is the solution returned in \(X\).

16: WORK(5*N) -- DOUBLE PRECISION array Workspace

17: RWORK(LRWORK) -- DOUBLE PRECISION array User Workspace
RWORK is not used by F04MBF, but is passed directly to routines APROD and MSOLVE and may be used to pass information to these routines.

18: LRWORK -- INTEGER Input
On entry: the length of the array RWORK as declared in the (sub)program from which F04MBF is called. Constraint: LRWORK >= 1.

19: IWORK(LIWORK) -- INTEGER array User Workspace
IWORK is not used by F04MBF, but is passed directly to routines APROD and MSOLVE and may be used to pass information to these routines.
CHAPTER 22. NAG LIBRARY ROUTINES

20: LIWORK -- INTEGER  
    Input
    On entry: the length of the array IWORK as declared in the
    (sub)program from which F04MBF is called. Constraint: LIWORK
    >= 1.

21: INFORM -- INTEGER  
    Output
    On exit: the reason for termination of F04MBF as follows:
    INFORM = 0
        The right-hand side vector b=0 so that the exact
        solution is x=0. No iterations are performed in this
        case.
    INFORM = 1
        The termination criterion of equation (3.4) has been
        satisfied with tol as the value supplied in RTOL.
    INFORM = 2
        The termination criterion of equation (3.4) has been
        satisfied with tol equal to (epsilon), where (epsilon)
        is the machine precision. The value supplied in RTOL
        must have been less than (epsilon) and was too small
        for the machine.
    INFORM = 3
        The termination criterion of equation (3.5) has been
        satisfied so that X is almost certainly an eigenvector
        of A corresponding to the eigenvalue SHIFT.
        The values INFORM = 4 and INFORM = 5 correspond to failure
        with IFAIL = 3 or IFAIL = 2 respectively (see Section 6) and
        when IFAIL is negative, INFORM will be set to the same
        negative value.

22: IFAIL -- INTEGER  
    Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    On exit: IFAIL = 0 unless the routine detects an error (see
    Section 6).

5.1. Description of the Printed Output

When MSGLVL > 0, then F04MBF will produce output (except in the
    case where the routine fails with IFAIL = 1) on the advisory
message channel (see X04ABF).

The following notation is used in the output:

Output  Meaning
\[-\frac{1}{2}\] 
\[\text{RBAR} \quad M \quad (b-(A-(\lambda)I)x)=r\]
\[-\frac{1}{2}\]
\[\text{ABAR} \quad M \quad (A-(\lambda)I)M = A \]
\[\frac{1}{2}\]
\[Y \quad M \quad x\]
\[R \quad b-(A-(\lambda)I)x\]
\[\text{NORM(A)} \quad ||A||\]

Of course, when pre-conditioning has not been requested then the first three reduce to \((b-(A-(\lambda)I)x)\), \((A-(\lambda)I)x\) and \(x\) respectively. When MSGLVL >= 2 then some initial information is printed and the following notation is used.

<table>
<thead>
<tr>
<th>Output</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1 (1/2)</td>
</tr>
<tr>
<td>BETA1</td>
<td>((b \quad M \quad b) = (\beta))</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALFA1</td>
<td>(\frac{1}{(\beta)} \quad (M \quad b) \quad (M \quad AM) \quad (M \quad b) = (\alpha))</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

and a summary line is printed periodically giving the following information:

<table>
<thead>
<tr>
<th>Output</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITN</td>
<td>Iteration number, (k).</td>
</tr>
<tr>
<td>L (LQ)</td>
<td>The first element of the vector (x), where (x) is the current iterate. See Paige and Saunders [2] for details.</td>
</tr>
<tr>
<td>C (C)</td>
<td>The first element of the vector (x), where (x) is the vector that would be obtained by conjugate gradients. See Paige and Saunders [2] for details.</td>
</tr>
</tbody>
</table>
NORM(RBAR) \|r\|, where r is as defined above and x is either
L C
x or x depending upon which is the best current
k k
approximation to the solution. (See LQ/CG below).

NORM(T) The value \|T\|, where T is the tridiagonal
k k
matrix of the Lanczos process. This increases
monotonically and is a lower bound on \|A\|.

COND(L) A monotonically increasing lower bound on the
\-1
condition number of A, \|A\|/\|A\|.

L
LQ/CG L is printed if x is the best current
k
approximation to the solution and C is printed
otherwise.

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL< 0
A negative value of IFAIL indicates an exit from F04MBF
because the user has set IFLAG negative in APROD or MSOLVE.
The value of IFAIL will be the same as the user’s setting of
IFLAG.

IFAIL= 1
On entry N < 1,
or LRWORK < 1,
or LIWORK < 1.

IFAIL= 2
The pre-conditioning matrix M does not appear to be
positive-definite. The user should check that MSOLVE is
working correctly.

IFAIL= 3
The limit on the number of iterations has been reached. If
IFAIL = 1 on entry then the latest approximation to the
solution is returned in X and the values ANORM, ACOND, RNORM
and XNORM are also returned.

The value of INFORM contains additional information about the termination of the routine and users must examine INFORM to judge whether the routine has performed successfully for the problem in hand. In particular INFORM = 3 denotes that the matrix A-(\lambda)I is effectively singular: if the purpose of calling F04MBF is to solve a system of equations \(Ax=b\), then this condition must be regarded as a failure, but if the purpose is to compute an eigenvector, this result would be very satisfactory.

7. Accuracy

The computed solution \(x\) will satisfy the equation

\[r = b - (A-(\lambda)I)x\]

where the value \(\|r\|\) is as returned in the parameter RNORM.

8. Further Comments

The time taken by the routine is likely to be principally determined by the time taken in APROD and, when pre-conditioning has been requested, in MSOLVE. Each of these routines is called once every iteration.

The time taken by the remaining operations in F04MBF is approximately proportional to \(n\).

9. Example

To solve the 10 equations \(Ax=b\) given by

\[
\begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\
\end{pmatrix}
\begin{pmatrix}
4 \\
4 \\
4 \\
4 \\
4 \\
4 \\
4 \\
6 \\
4 \\
4 \\
\end{pmatrix}
\]

The tridiagonal part of \(A\) is positive-definite and such tridiagonal equations can be solved efficiently by F04FAF. The form of \(A\) suggests that this tridiagonal part is a good candidate for the pre-conditioning matrix \(M\) and so we illustrate the use of F04MBF by pre-conditioning with the 10 by 10 matrix
Since $A-M$ has only 2 non-zero elements and is obviously of rank 2, we can expect F04MBF to converge very quickly in this example. Of course, in practical problems we shall not usually be able to make such a good choice of $M$.

The example sets the tolerance $RTOL = 10^{-5}$.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F04MCF computes the approximate solution of a system of real linear equations with multiple right-hand sides, \( AX = B \), where \( A \) is a symmetric positive-definite variable-bandwidth matrix, which has previously been factorized by F01MCF. Related systems may also be solved.

2. Specification

```plaintext
SUBROUTINE F04MCF (N, AL, LAL, D, NROW, IR, B, NRB,
 1 ISELCT, X, NRX, IFAIL)
 INTEGER N, LAL, NROW(N), IR, NRB, ISELCT, NRX,
 1 IFAIL
 DOUBLE PRECISION AL(LAL), D(N), B(NRB,IR), X(NRX,IR)
```

3. Description

The normal use of this routine is the solution of the systems \( AX = B \), following a call of F01MCF to determine the Cholesky factorization \( A = LDL^T \) of the symmetric positive-definite variable-bandwidth matrix \( A \).

However, the routine may be used to solve any one of the following systems of linear algebraic equations:

- \( (1) \) \( LDL^T X = B \) (usual system),
- \( (2) \) \( LDLX = B \) (lower triangular system),
- \( (3) \) \( DLX^T = B \) (upper triangular system),
- \( (4) \) \( LLX^T = B \) (unit lower triangular system),
- \( (5) \) \( LX = B \) (unit lower triangular system),
- \( (6) \) \( LX^T = B \) (unit upper triangular system).

\( L \) denotes a unit lower triangular variable-bandwidth matrix of order \( n \), \( D \) a diagonal matrix of order \( n \), and \( B \) a set of right-hand sides.

The matrix \( L \) is represented by the elements lying within its
envelope i.e., between the first non-zero of each row and the
diagonal (see Section 9 for an example). The width NROW(i) of the
ith row is the number of elements between the first non-zero
element and the element on the diagonal inclusive.

4. References


5. Parameters

1: N -- INTEGER Input
   On entry: n, the order of the matrix L. Constraint: N >= 1.

2: AL(LAL) -- DOUBLE PRECISION array Input
   On entry: the elements within the envelope of the lower
   triangular matrix L, taken in row by row order, as returned
   by F01MCF. The unit diagonal elements of L must be stored
   explicitly.

3: LAL -- INTEGER Input
   On entry:
   the dimension of the array AL as declared in the
   (sub)program from which F04MCF is called.
   Constraint: LAL >= NROW(1) + NROW(2) +... + NROW(n).

4: D(N) -- DOUBLE PRECISION array Input
   On entry: the diagonal elements of the diagonal matrix D. D
   is not referenced if ISELCT >= 4.

5: NROW(N) -- INTEGER array Input
   On entry: NROW(i) must contain the width of row i of L,
   i.e., the number of elements between the first (leftmost)
   non-zero element and the element on the diagonal, inclusive.
   Constraint: 1 <= NROW(i)<=i.

6: IR -- INTEGER Input
   On entry: r, the number of right-hand sides. Constraint: IR
   >= 1.

7: B(NRB,IR) -- DOUBLE PRECISION array Input
   On entry: the n by r right-hand side matrix B. See also
   Section 8.

8: NRB -- INTEGER Input
   On entry:
   the first dimension of the array B as declared in the
   (sub)program from which F04MCF is called.
   Constraint: NRB >= N.
9: ISELCT -- INTEGER  
   Input  
   On entry: ISELCT must specify the type of system to be 
   solved, as follows:

   T
   ISELCT = 1: solve LDL X = B,
   ISELCT = 2: solve LDX = B,
   T
   ISELCT = 3: solve DL X = B,
   T
   ISELCT = 4: solve LL X = B,
   ISELCT = 5: solve LX = B,
   T
   ISELCT = 6: solve L X = B.

10: X(NRX,IR) -- DOUBLE PRECISION array  
    Output  
    On exit: the n by r solution matrix X. See also Section 8.

11: NRX -- INTEGER  
    Input  
    On entry: the first dimension of the array X as declared in the 
    (sub)program from which F04MCF is called. 
    Constraint: NRX >= N.

12: IFAIL -- INTEGER  
    Input/Output  
    On entry: IFAIL must be set to 0, -1 or 1. For users not 
    familiar with this parameter (described in the Essential 
    Introduction) the recommended value is 0. 
    On exit: IFAIL = 0 unless the routine detects an error (see 
    Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1  
On entry N < 1, 
or for some i, NROW(i)<i or NROW(i) > i,  
or LAL < NROW(1) + NROW(2) +... + NROW(N).

IFAIL = 2
On entry $IR < 1$, 
or $NRB < N$, 
or $NRX < N$.

IFAIL= 3
   On entry $ISELCT < 1$, 
or $ISELCT > 6$.

IFAIL= 4
   The diagonal matrix $D$ is singular, i.e., at least one of the
   elements of $D$ is zero. This can only occur if $ISELCT <= 3$.

IFAIL= 5
   At least one of the diagonal elements of $L$ is not equal to
   unity.

7. Accuracy

The usual backward error analysis of the solution of triangular
system applies: each computed solution vector is exact for
slightly perturbed matrices $L$ and $D$, as appropriate (cf.

8. Further Comments

The time taken by the routine is approximately proportional to
$pr$, where

$$p=NROW(1)+NROW(2)+...+NROW(n).$$

Unless otherwise stated in the Users' Note for your
implementation, the routine may be called with the same actual
array supplied for the parameters $B$ and $X$, in which case the
solution matrix will overwrite the right-hand side matrix.
However this is not standard Fortran 77 and may not work in all
implementations.

9. Example

To solve the system of equations $AX=B$, where

$$
\begin{align*}
(1 & 2 & 0 & 0 & 5 & 0) \\
(2 & 5 & 3 & 0 & 14 & 0) \\
(0 & 3 & 13 & 0 & 18 & 0) \\
(5 & 14 & 18 & 8 & 55 & 17)
\end{align*}
$$
Here $A$ is symmetric and positive-definite and must first be factorized by F01MCF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
F04QAF solves sparse unsymmetric equations, sparse linear least-squares problems and sparse damped linear least-squares problems, using a Lanczos algorithm.

2. Specification

```fortran
SUBROUTINE F04QAF (M, N, B, X, SE, APROD, DAMP, ATOL, BTOL, CONLIM, ITNLIM, MSGLVL, ITN, ANORM, ACOND, RNORM, ARNORM, RNORM, LIWORK, LRWORK, WORK, RWORK, INFORM, IFAIL)
 INTEGER M, N, ITNLIM, MSGLVL, ITN, LIWORK, INFORM, IFAIL
 DOUBLE PRECISION B(M), X(N), SE(N), DAMP, ATOL, BTOL, CONLIM, ANORM, ACOND, RNORM, ARNORM, RNORM, XNORM, WORK(N,2), RWORK(LRWORK)
 EXTERNAL APROD
```

3. Description

F04QAF can be used to solve a system of linear equations

\[ Ax = b \]  

where \( A \) is an \( n \) by \( n \) sparse unsymmetric matrix, or can be used to solve linear least-squares problems, so that F04QAF minimizes the value (\( \rho \)) given by

\[ \rho = ||r||, \quad r = b - Ax \]  

where \( A \) is an \( m \) by \( n \) sparse matrix and \( ||r|| \) denotes the Euclidean length of \( r \).

A damping parameter, \( \lambda \), may be included in the least-squares problem in which case F04QAF minimizes the value (\( \rho \)) given by

\[ \rho = ||r||^2 + \lambda ||x||^2 \]  

(\( \lambda \)) is supplied as the parameter DAMP and should of course be zero if the solution to problems (3.1) or (3.2) is required. Minimizing (\( \rho \)) in (3.3) is often called ridge regression.

F04QAF is based upon algorithm LSQR (see Paige and Saunders [1] and [2]) and solves the problems by an algorithm based upon the Lanczos process. Details of the method are given in [1]. The routine does not require \( A \) explicitly, but \( A \) is specified via a user-supplied routine APROD which must perform the operations (
y+Ax) and (x+A y) for a given n element vector x and m element vector y. A parameter to APROD specifies which of the two operations is required on a given entry.

The routine also returns estimates of the standard errors of the sample regression coefficients (x_i, for i=1,2,...,n) given by the diagonal elements of the estimated variance-covariance matrix V. When problem (3.2) is being solved and A is of full rank, then V is given by

\[ V = s (A^T A)^{-1} \]

and when problem (3.3) is being solved then V is given by

\[ V = s (A^T (A + \lambda I))^{-1} \]

Let A denote the matrix

\[
A = \begin{cases} A, & (\lambda) = 0; \\ A + (\lambda) I, & (\lambda) \neq 0. \end{cases}
\]  

(3.4)

Let r denote the residual vector

\[
r = r, \quad (\lambda) = 0; \quad r = (0) - Ax, \quad (\lambda) \neq 0
\]  

(3.5)

corresponding to an iterate \( x \), so that \( (\rho) = ||r|| \) is the function being minimized, and let \( ||A|| \) denote the Frobenius (Euclidean) norm of A. Then the routine accepts \( x \) as a solution if it is estimated that one of the following two conditions is satisfied:

\[
(\rho) \leq \text{tol} ||A|| ||x|| + \text{tol} ||b||
\]

(3.6)

\[
||A r|| \leq \text{tol} ||A|| (\rho)
\]

(3.7)
where tol and tol\, are user-supplied tolerances which estimate the relative errors in A and b respectively. Condition (3.6) is appropriate for compatible problems where, in theory, we expect the residual to be zero and will be satisfied by an acceptable solution x to a compatible problem. Condition (3.7) is appropriate for incompatible systems where we do not expect the residual to be zero and is based upon the observation that, in theory,

\[
\begin{align*}
T \\
A \ r=0
\end{align*}
\]

when x is a solution to the least-squares problem, and so (3.7) will be satisfied by an acceptable solution x to a linear least-squares problem.

The routine also includes a test to prevent convergence to solutions, x, with unacceptably large elements. This can happen if A is nearly singular or is nearly rank deficient. If we let the singular values of A be

\[
\begin{align*}
(s_1) &\geq (s_2) & \geq \ldots & \geq (s_n) & \geq 0 \\
1 & & 2 & & n
\end{align*}
\]

then the condition number of A is defined as

\[
\text{cond}(A) = \frac{(s_1)}{(s_k)}
\]

where (s_1) is the smallest non-zero singular value of A and k

hence k is the rank of A. When k<n, then A is rank deficient, the least-squares solution is not unique and F04QAF will normally converge to the minimal length solution. In practice A will not have exactly zero singular values, but may instead have small singular values that we wish to regard as zero.
The routine provides for this possibility by terminating if

\[
\text{cond}(A) \geq c \quad \text{(3.8)}
\]

where \(c\) is a user-supplied limit on the condition number of \(A\).

For problem (3.1) termination with this condition indicates that \(A\) is nearly singular and for problem (3.2) indicates that \(A\) is nearly rank deficient and so has near linear dependencies in its \(T\) columns. In this case inspection of \(\|r\|, \|Ar\|\) and \(\|x\|\), which are all returned by the routine, will indicate whether or not an acceptable solution has been found. Condition (3.8), perhaps in conjunction with \((\lambda) /=0\), can be used to try and 'regularise' least-squares solutions. A full discussion of the stopping criteria is given in Section 6 of reference Paige and Saunders [1].

Introduction of a non-zero damping parameter \((\lambda)\) tends to reduce the size of the computed solution and to make its components less sensitive to changes in the data, and F04QAF is applicable when a value of \((\lambda)\) is known a priori. To have an effect, \((\lambda)\) should normally be at least \(\sqrt{\text{\text{epsilon}}\|A\|}\) where \((\text{\text{epsilon}})\) is the machine precision. For further discussion see Paige and Saunders [2] and the references given there.

Whenever possible the matrix \(A\) should be scaled so that the relative errors in the elements of \(A\) are all of comparable size. Such a scaling helps to prevent the least-squares problem from being unnecessarily sensitive to data errors and will normally reduce the number of iterations required. At the very least, in the absence of better information, the columns of \(A\) should be scaled to have roughly equal column length.

4. References


5. Parameters

1: M -- INTEGER  
   Input
   On entry: m, the number of rows of the matrix A.
   Constraint: M >= 1.

2: N -- INTEGER  
   Input
   On entry: n, the number of columns of the matrix A.
   Constraint: N >= 1.

3: B(M) -- DOUBLE PRECISION array  
   Input/Output
   On entry: the right-hand side vector b. On exit: the array
   is overwritten.

4: X(N) -- DOUBLE PRECISION array  
   Output
   On exit: the solution vector x.

5: SE(N) -- DOUBLE PRECISION array  
   Output
   On exit: the estimates of the standard errors of the
   components of x. Thus SE(i) contains an estimate of the
   element $v_{ii}$ of the estimated variance-covariance matrix V.
   The estimates returned in SE will be the lower bounds on the
   actual estimated standard errors, but will usually have at
   least one correct figure.

6: APROD -- SUBROUTINE, supplied by the user.  
   External Procedure

   APROD must perform the operations $y := y + Ax$ and $x := x + A y$ for
   given vectors $x$ and $y$.

   Its specification is:

   SUBROUTINE APROD (MODE, M, N, X, Y, RWORK,
   1   LRWORK, IWORK, LIWORK)
   INTEGER MODE, M, N, LRWORK, LIWORK,
   1   IWORK(LIWORK)
   DOUBLE PRECISION X(N), Y(M), RWORK(LRWORK)

   1: MODE -- INTEGER  
      Input/Output
      On entry: MODE specifies which operation is to be performed:
      - If MODE = 1, then APROD must compute $y + Ax$.
      - If MODE = 2, then APROD must compute $x + A y$.
      On exit: MODE may be used as a flag to indicate a
failure in the computation of \( y + Ax \) or \( x^T A y \). If \( \text{MODE} \) is negative on exit from \text{APROD}, \text{F04QAF} \) will exit immediately with \( \text{IFAIL} \) set to \( \text{MODE} \).

2: \( M \) -- INTEGER Input
On entry: \( m \), the number of rows of \( A \).

3: \( N \) -- INTEGER Input
On entry: \( n \), the number of columns of \( A \).

4: \( X(N) \) -- DOUBLE PRECISION array Input/Output
On entry: the vector \( x \). On exit: if \( \text{MODE} = 1 \), \( X \) must be unchanged;

\[ T \]
If \( \text{MODE} = 2 \), \( X \) must contain \( x + A y \).

5: \( Y(M) \) -- DOUBLE PRECISION array Input/Output
On entry: the vector \( y \). On exit: if \( \text{MODE} = 1 \), \( Y \) must contain \( y + Ax \);
If \( \text{MODE} = 2 \), \( Y \) must be unchanged.

6: \( \text{RWORK}(\text{LRWORK}) \) -- DOUBLE PRECISION array User Workspace

7: \( \text{LRWORK} \) -- INTEGER Input

8: \( \text{IWORK}(\text{LIWORK}) \) -- INTEGER array User Workspace

9: \( \text{LIWORK} \) -- INTEGER Input
\text{APROD} \) is called from \text{F04QAF} with the parameters \( \text{RWORK} \), \( \text{LRWORK} \), \( \text{IWORK} \) and \( \text{LIWORK} \) as supplied to \text{F04QAF}. The user is free to use the arrays \( \text{RWORK} \) and \( \text{IWORK} \) to supply information to \text{APROD} as an alternative to using COMMON.
\text{APROD} \) must be declared as EXTERNAL in the (sub)program from which \text{F04QAF} is called. Parameters denoted as Input must not be changed by this procedure.

7: \( \text{DAMP} \) -- DOUBLE PRECISION Input
On entry: the value (\( \lambda \)). If either problem (3.1) or problem (3.2) is to be solved, then \( \text{DAMP} \) must be supplied as zero.

8: \( \text{ATOL} \) -- DOUBLE PRECISION Input
On entry: the tolerance, \( \text{tol} \), of the convergence criteria
\[ (3.6) \text{ and } (3.7) \); it should be an estimate of the largest relative error in the elements of \( A \). For example, if the elements of \( A \) are correct to about 4 significant figures,
then ATOL should be set to about $5 \times 10^{-4}$. If ATOL is supplied as less than (epsilon), where (epsilon) is the machine precision, then the value (epsilon) is used in place of ATOL.

9: BTOL -- DOUBLE PRECISION
On entry: the tolerance, tol, of the convergence criterion $(3.6)$; it should be an estimate of the largest relative error in the elements of B. For example, if the elements of B are correct to about 4 significant figures, then BTOL should be set to about $5 \times 10^{-4}$. If BTOL is supplied as less than (epsilon), where (epsilon) is the machine precision, then the value (epsilon) is used in place of BTOL.

10: CONLIM -- DOUBLE PRECISION
On entry: the value $c$ of equation $(3.8)$; it should be an upper limit on the condition number of A. CONLIM should not normally be chosen much larger than $1.0/\text{ATOL}$. If CONLIM is supplied as zero then the value $1.0/(\text{epsilon})$, where (epsilon) is the machine precision, is used in place of CONLIM.

11: ITNLIM -- INTEGER
On entry: an upper limit on the number of iterations. If ITNLIM $\leq 0$, then the value $N$ is used in place of ITNLIM, but for ill-conditioned problems a higher value of ITNLIM is likely to be necessary.

12: MSGLVL -- INTEGER
On entry: the level of printing from F04QAF. If MSGLVL $\leq 0$, then no printing occurs, but otherwise messages will be output on the advisory message channel (see X04ABF). A description of the printed output is given in Section 5.2 below. The level of printing is determined as follows:

- MSGLVL $= 0$
  No printing.

- MSGLVL $= 1$
  A brief summary is printed just prior to return from F04QAF.

- MSGLVL $\geq 2$
  A summary line is printed periodically to monitor the progress of F04QAF, together with a brief summary just
prior to return from F04QAF.

13: ITN -- INTEGER
    Output
    On exit: the number of iterations performed.

14: ANORM -- DOUBLE PRECISION
    Output
    On exit: an estimate of \( ||A|| \) for the matrix \( A \) of equation (3.4).

15: ACOND -- DOUBLE PRECISION
    Output
    On exit: an estimate of \( \text{cond}(A) \) which is a lower bound.

16: RNORM -- DOUBLE PRECISION
    Output
    On exit: an estimate of \( ||r|| \) for the residual, \( r \), of equation (3.5) corresponding to the solution \( x \) returned in \( X \). Note that \( ||r|| \) is the function being minimized.

17: ARNORM -- DOUBLE PRECISION
    Output
    On exit: an estimate of the \( ||A r|| \) corresponding to the solution \( x \) returned in \( X \).

18: XNORM -- DOUBLE PRECISION
    Output
    On exit: an estimate of \( ||x|| \) for the solution \( x \) returned in \( X \).

19: WORK(2*N) -- DOUBLE PRECISION array
    Workspace

20: RWORK(LRWORK) -- DOUBLE PRECISION array
    User Workspace
    RWORK is not used by F04QAF, but is passed directly to routine APROD and may be used to pass information to that routine.

21: LRWORK -- INTEGER
    Input
    On entry: the length of the array RWORK as declared in the (sub)program from which F04QAF is called. Constraint: \( LRWORK \geq 1 \).

22: IWORK(LIWORK) -- INTEGER array
    User Workspace
    IWORK is not used by F04QAF, but is passed directly to routine APROD and may be used to pass information to that routine.
CHAPTER 22. NAG LIBRARY Routines

23: LIWORK -- INTEGER
    Input
    On entry: the length of the array IWORK as declared in the
    (sub)program from which F04QAF is called. Constraint: LIWORK >= 1.

24: INFORM -- INTEGER
    Output
    On exit: the reason for termination of F04QAF as follows:
    INFORM = 0
    The exact solution is x = 0. No iterations are performed
    in this case.
    
    INFORM = 1
    The termination criterion of equation (3.6) has been
    satisfied with tol and tol_2 as the values supplied in
    1 2
    ATOL and BTOL respectively.
    
    INFORM = 2
    The termination criterion of equation (3.7) has been
    satisfied with tol_1 as the value supplied in ATOL.
    1
    
    INFORM = 3
    The termination criterion of equation (3.6) has been
    satisfied with tol_1 and/or tol_2 as the value (epsilon)
    1 2
    , where (epsilon) is the machine precision. One or
    both of the values supplied in ATOL and BTOL must have
    been less than (epsilon) and was too small for this
    machine.
    
    INFORM = 4
    The termination criterion of equation (3.7) has been
    satisfied with tol_1 as the value (epsilon), where
    1
    (epsilon) is the machine precision. The value supplied
    in ATOL must have been less than (epsilon) and was too
    small for this machine.
    
    The values INFORM = 5, INFORM = 6 and INFORM = 7 correspond
    to failure with IFAIL = 2, IFAIL = 3 and IFAIL = 4
    respectively (see Section 6) and when IFAIL is negative
    INFORM will be set to the same negative value.

25: IFAIL -- INTEGER
    Input/Output
    On entry: IFAIL must be set to 0, -1 or 1. For users not
    familiar with this parameter (described in the Essential
    Introduction) the recommended value is 0.
    
    On exit: IFAIL = 0 unless the routine detects an error (see
5.1. Description of the printed output

When MSGLVL > 0, then F04QAF will produce output (except in the case where the routine fails with IFAIL = 1) on the advisory message channel (see X04ABF).

When MSGLVL >= 2 then a summary line is printed periodically giving the following information:

<table>
<thead>
<tr>
<th>Output</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITN</td>
<td>Iteration number, ( k ).</td>
</tr>
<tr>
<td>X(1)</td>
<td>The first element of the current iterate ( x^k ).</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>The current value of the function, ( \rho ), being minimized.</td>
</tr>
<tr>
<td>COMPAT</td>
<td>An estimate of ( |</td>
</tr>
<tr>
<td>T INCOMPAT</td>
<td>An estimate of ( |</td>
</tr>
<tr>
<td>NRM(ABAR)</td>
<td>A monotonically increasing estimate of (</td>
</tr>
<tr>
<td>COND(ABAR)</td>
<td>A monotonically increasing estimate of the condition number ( \text{cond}(A) ).</td>
</tr>
</tbody>
</table>

6. Error Indicators and Warnings

Errors detected by the routine:
IFAIL< 0
A negative value of IFAIL indicates an exit from F04QAF because the user has set MODE negative in APROD. The value of IFAIL will be the same as the user’s setting of MODE.

IFAIL= 1
On entry M < 1,
or N < 1,
or LRWORK < 1,
or LIWORK < 1.

IFAIL= 2
The condition of equation (3.8) has been satisfied for the value of c supplied in CONLIM. If this failure is unexpected the user should check that APROD is working correctly. Although conditions (3.6) or (3.7) have not been satisfied, the values returned in RNORM, ARNORM and XNORM may nevertheless indicate that an acceptable solution has been reached.

IFAIL= 3
The conditions of equation (3.8) has been satisfied for the value $c = 1.0/(\varepsilon)$, where (\varepsilon) is the machine precision. The matrix $A$ is nearly singular or rank deficient and the problem is too ill-conditioned for this machine. If this failure is unexpected, the user should check that APROD is working correctly.

IFAIL= 4
The limit on the number of iterations has been reached. The number of iterations required by F04QAF and the condition of the matrix $A$ can depend strongly on the scaling of the problem. Poor scaling of the rows and columns of $A$ should be avoided whenever possible.

7. Accuracy

When the problem is compatible, the computed solution $x$ will satisfy the equation
where an estimate of $||r||$ is returned in the parameter RNORM. When the problem is incompatible, the computed solution $x$ will satisfy the equation

$$A^T r = e,$$

where an estimate of $||e||$ is returned in the parameter ARNORM. See also Section 6.2 of Paige and Saunders [1].

8. Further Comments

The time taken by the routine is likely to be principally determined by the time taken in APROD, which is called twice on each iteration, once with MODE = 1 and once with MODE = 2. The time taken per iteration by the remaining operations in F04QAF is approximately proportional to max(m,n).

The Lanczos process will usually converge more quickly if $A$ is pre-conditioned by a non-singular matrix $M$ that approximates $A$ in some sense and is also chosen so that equations of the form $My = c$ can efficiently be solved for $y$. Some discussion of pre-conditioning in the context of symmetric matrices is given in Section 3 of the document for F04MBF. In the context of F04QAF, problem (3.1) is equivalent to

$$-1 \quad (AM^T)y = b, \quad Mx = y$$

and problem (3.2) is equivalent to minimizing

$$-1 \quad \langle \rho \rangle = ||r||, \quad r = b - (AM^T)y, \quad Mx = y.$$  

Note that the normal matrix $(AM^T)(AM^T)^{-1} = M(AA^T)^{-1}$ so that the pre-conditioning $AM$ is equivalent to the pre-conditioning

$$-1 \quad T^T \quad -1 \quad -T \quad T \quad -1$$

pre-conditioning $AM$ is equivalent to the pre-conditioning

$$-1 \quad T \quad T^T \quad -1$$

$M = (A^TAM)^{-1}$ of the normal matrix $AA^T$.

Pre-conditioning can be incorporated into F04QAF simply by coding

the routine APROD to compute $y + AMx$ and $x + M^T y$ in place of

$y + Ax$ and $x + A^T y$ respectively, and then solving the equations $Mx = y$ for $x$ on return from F04QAF. $y + AMx$ should be computed by
-T T
solving Mz=x for z and then computing y+Az, and x+M A y should
T T
be computed by solving M z=A y for z and then forming x+z.

9. Example

To solve the linear least-squares problem

\[ \min (\rho) = |r|, \quad r = b - Ax \]

where \( A \) is the 13 by 12 matrix and \( b \) is the 13 element vector
given by

\[
A = \begin{pmatrix}
  1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
  0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
  0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
  -1 & 0 & -1 & 4 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
  0 & -1 & 0 & -1 & 4 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

\[
b = -h \begin{pmatrix}
  0 \\
  0 \\
  1 \\
  1 \\
  2 \\
\end{pmatrix}
\]

with \( h = 0.1 \).

Such a problem can arise by considering the Neumann problem on a
rectangle

\[
(\delta)u = 0
\]
\[(\Delta n) \quad \frac{(\Delta u)}{2} \quad \frac{(\Delta u)}{\nabla u} = 0 \quad |u = 1\]

\[\frac{(\Delta n)}{c} \quad \frac{(\Delta u)}{\Delta n} = 0\]

where \(C\) is the boundary of the rectangle, and discretising as illustrated below with the square mesh:

Please see figure in printed Reference Manual.

The 12 by 12 symmetric part of \(A\) represents the difference equations and the final row comes from the normalising condition. The example program has \(g(x,y)=1\) at all the internal mesh points, but apart from this is written in a general manner so that the number of rows (NROWS) and columns (NCOLS) in the grid can readily be altered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Scope of the Chapter

This Chapter is concerned with basic linear algebra routines which perform elementary algebraic operations involving scalars, vectors and matrices.

2. Background to the Problems
All the routines in this Chapter meet the specification of the Basic Linear Algebra Subprograms (BLAS) as described in Lawson et al [6], Dongarra et al [3] and [4]. The first reference describes a set of routines concerned with operations on scalars and vectors: these will be referred to here as the Level-0 and the Level-1 BLAS; the second reference describes a set of routines concerned with matrix-vector operations: these will be referred to here as the Level-2 BLAS; and the third reference describes a set of routines concerned with matrix-matrix operations: these will be referred to here as the Level-3 BLAS. The terminology reflects the number of operations involved. For example, a Level-2 routine involves $O(n^2)$ operations for an $n \times n$ matrix.

Table 1.1 indicates the naming scheme for the routines in this Chapter. The heading 'mixed type' is for routines where a mixture of data types is involved, such as a routine that returns the real Euclidean length of a complex vector.

<table>
<thead>
<tr>
<th>Level-0</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>'real' BLAS routine</td>
<td>F06A F</td>
<td>F06E F</td>
<td>F06P F</td>
</tr>
<tr>
<td>'complex' BLAS routine</td>
<td>-</td>
<td>F06G F</td>
<td>F06S F</td>
</tr>
</tbody>
</table>

Table 1.1

The routines in this chapter do not have full routine documents, but instead are covered by some relevant background material, in Section 2.2, together with general descriptions, in Section 4, sufficient to enable their use. As this chapter is concerned only with basic linear algebra operations, the routines will not normally be required by the general user. The functionality of each routine is indicated in Section 3 so that those users requiring these routines to build specialist linear algebra modules can determine which routines are of interest.

2.1. The Use of BLAS Names

Many of the routines in other chapters of the Library call the BLAS in this chapter. These routines are usually called by the BLAS name and so, for correct operation of the Library, it is essential that users do not attempt to link their own versions of these routines. If users are in any doubt about how to avoid this, please consult your local support staff or the NAG Response Centre.

The BLAS names are used in order to make use of efficient
implementations of the routines when these exist. Such implementations are stringently tested before being used, to ensure that they correctly meet the specification of the BLAS, and that they return the desired accuracy (see, for example, Dongarra et al. [3] and [4]).

2.2. Background Information

Most of the routines in this chapter implement straightforward scalar, vector and matrix operations that need no further explanation beyond a statement of the purpose of the routine. In this section we give some additional background information for those few cases where additional explanation may be necessary.

2.2.1. Real plane rotations

Two routines in the chapter are concerned with setting up and applying plane rotations. For further background information see Golub and Van Loan [5].

A plane rotation matrix for the (i,j) plane, \( R_{ij} \), is an orthogonal matrix that is different from the unit matrix only in the elements \( r_{ii} \), \( r_{jj} \), \( r_{ij} \) and \( r_{ji} \). If we put

\[
\begin{pmatrix}
  r_{ii} & r_{ij} \\
  r_{ji} & r_{jj}
\end{pmatrix}
\]

then, in the real case, it is usual to choose \( R_{ij} \) so that

\[
( c \ s )
\]

\[
R = (\begin{pmatrix}
  c & s \\
  -s & c
\end{pmatrix} , \quad c=\cos(\theta), \quad s=\sin(\theta).
\]

(2.1)

The application of plane rotations is straightforward and needs no further elaboration, so further comment is made only on the construction of plane rotations.

The most common use of plane rotations is to choose \( c \) and \( s \) so that for given \( a \) and \( b \),

\[
\begin{pmatrix}
  c & s \\
-\ s & c
\end{pmatrix}(a) = (d)
\]

\[
(\begin{pmatrix}
  c & s \\
-\ s & c
\end{pmatrix})(b) = (0)
\]

(2.2)

In such an application the matrix \( R \) is often termed a Givens...
rotation matrix.

The BLAS routine F06AAF(*) (DROTG), see Lawson et al [6] and Dodson and Grimes [1, 2], computes c, s and d as

\[
d = (\sigma) (a + b),
\]

\[
\begin{cases}
  a/d, & d\neq 0 \\
  b/d, & d=0
\end{cases}
\]

\[
c = \begin{cases}
  1, & d=0 \\
  \frac{1}{2}, & d\neq 0
\end{cases}
\]

\[
s = \begin{cases}
  0, & d=0 \\
  2, & d\neq 0
\end{cases}
\]

(2.3)

where \((\sigma) = \{\text{sign } b, |a| \leq |b|\}.

The value \(z\) defined as

\[
z = \begin{cases}
  s, & |s| < |c| \text{ or } c=0 \\
  \frac{1}{c}, & 0 < |c| \leq |s|
\end{cases}
\]

(2.4)

is also computed and this enables \(c\) and \(s\) to be reconstructed from the single value \(z\) as

\[
c = \begin{cases}
  0, & z=1 \\
  (1-z), & |z| < 1 \\
  2, & |z| > 1
\end{cases}
\]

\[
s = \begin{cases}
  z, & |z| < 1 \\
  (1-c), & |z| > 1
\end{cases}
\]

2.3. References


Basic Linear Algebra Subprograms for Fortran Usage. ACM
Trans. Math. Softw. 5 308--325.

3. Recommendations on Choice and Use of Routines

This section lists the routines in each of the categories Level-0 (scalar), Level-1 (vector), Level-2 (matrix-vector and matrix) and Level-3 (matrix-matrix). The corresponding double precision BLAS name is indicated in brackets.

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so that corresponding real and complex routines may have adjacent entries.

3.1. The Level-0 Scalar Routine

The Level-0 routine performs the scalar operation of generating a plane rotation.

F06AAF (DROTG) generates a real plane rotation.

3.2. The Level-1 Vector Routines

The Level-1 routines perform operations on or between vectors, such as computing dot products and Euclidean lengths.

F06EAF (DDOT) computes the dot product of two real vectors
F06GAF (ZDOTU) computes the dot product of two complex vectors (unconjugated)
F06GBF (ZDOTC) computes the dot product of two complex vectors (conjugated)
F06ECF (DAXPY) adds a scalar times a vector to another real vector
F06GCF (ZAXPY) adds a scalar times a vector to another complex vector
F06EDF (DSCAL) multiplies a real vector by a scalar
F06GDF (ZSCAL) multiplies a complex vector by a scalar
F06JDF (ZDSCAL) multiplies a complex vector by a real scalar
F06EFF (DCOPY) copies a real vector
F06GFF (ZCOPY) copies a complex vector
22.5. NAGF.HT

F06EGF (DSWAP) swaps two real vectors
F06GGF (ZSWAP) swaps two complex vectors
F06EJF (DNRM2) computes the Euclidean length of a real vector
F06JLF (DZNRMD2) computes the Euclidean length of a complex vector
F06EKF (DASUM) sums the absolute values of the elements of a real vector
F06JKF (DZASUM) sums the absolute values of the elements of a complex vector
F06JLF (IDAMAX) finds the index of the element of largest absolute value of a real vector
F06JMF (IZAMAX) finds the index of the element of largest absolute value of a complex vector
F06EPF (DROT) applies a real plane rotation

3.3. The Level-2 Matrix-vector Routines

The Level-2 routines perform matrix-vector operations, such as forming the product between a matrix and a vector.

F06PAF (DGEMV) computes a matrix-vector product; real general matrix
F06SAF (ZGEMV) computes a matrix-vector product; complex general matrix
F06PBF (DGBMV) computes a matrix-vector product; real general band matrix
F06SBF (ZGBMV) computes a matrix-vector product; complex general band matrix
F06PCF (DSYMV) computes a matrix-vector product; real symmetric matrix
F06SCF (ZHENV) computes a matrix-vector product; complex Hermitian matrix
F06PDF (DSHBV) computes a matrix-vector product; real symmetric band matrix
F06SDF (ZHBMV) computes a matrix-vector product; complex Hermitian band matrix
F06PEF (DSPMV) computes a matrix-vector product; real symmetric packed matrix

F06SEF (ZHPMV) computes a matrix-vector product; complex Hermitian packed matrix

F06PFF (DTRMV) computes a matrix-vector product; real triangular matrix

F06SFF (ZTRMV) computes a matrix-vector product; complex triangular matrix

F06PGF (DTBMV) computes a matrix-vector product; real triangular band matrix

F06SGF (ZTBMV) computes a matrix-vector product; complex triangular band matrix

F06PHF (DTPMV) computes a matrix-vector product; real triangular packed matrix

F06SHF (ZTPMV) computes a matrix-vector product; complex triangular packed matrix

F06PJF (DTRSV) solves a system of equations; real triangular coefficient matrix

F06SJF (ZTRSV) solves a system of equations; complex triangular coefficient matrix

F06PKF (DTBSV) solves a system of equations; real triangular band coefficient matrix

F06SKF (ZTBSV) solves a system of equations; complex triangular band coefficient matrix

F06PLF (DTPSV) solves a system of equations; real triangular packed coefficient matrix

F06SLF (ZTPSV) solves a system of equations; complex triangular packed coefficient matrix

F06PMF (DGER) performs a rank-one update; real general matrix

F06SMF (ZGERU) performs a rank-one update; complex general matrix (unconjugated vector)

F06SNF (ZGERC) performs a rank-one update;
complex general matrix (conjugated vector)

F06PPF (DSYR) performs a rank-one update;
real symmetric matrix

F06SPF (ZHER) performs a rank-one update;
complex Hermitian matrix

F06PQF (DSPR) performs a rank-one update;
real symmetric packed matrix

F06SQF (ZHPR) performs a rank-one update;
complex Hermitian packed matrix

F06PRF (DSYR2) performs a rank-two update;
real symmetric matrix

F06SRF (ZHER2) performs a rank-two update;
complex Hermitian matrix

F06PSF (DSPR2) performs a rank-two update;
real symmetric packed matrix

F06SSF (ZHPR2) performs a rank-two update;
complex Hermitian packed matrix

3.4. The Level-3 Matrix-matrix Routines

The Level-3 routines perform matrix-matrix operations, such as forming the product of two matrices.

F06YAF (DGEMM) computes a matrix-matrix product; two real rectangular matrices

F06ZAF (ZGEMM) computes a matrix-matrix product; two complex rectangular matrices

F06YCF (DSYMM) computes a matrix-matrix product; one real symmetric matrix, one real rectangular matrix

F06ZCF (ZHEMM) computes a matrix-matrix product; one complex Hermitian matrix, one complex rectangular matrix

F06YFF (DTRMM) computes a matrix-matrix product; one real triangular matrix, one real rectangular matrix

F06ZFF (ZTRMM) computes a matrix-matrix product; one complex triangular matrix, one complex rectangular matrix

F06YJF (DTRSM) solves a system of equations with multiple right-
hand sides, real triangular coefficient matrix

F06ZJF (ZTRSM) solves a system of equations with multiple right-hand sides, complex triangular coefficient matrix

F06YPF (DSYRK) performs a rank-k update of a real symmetric matrix

F06ZPF (ZHERK) performs a rank-k update of a complex hermitian matrix

F06YRF (DSYR2K) performs a rank-2k update of a real symmetric matrix

F06ZRF (ZHER2K) performs a rank-2k update of a complex Hermitian matrix

F06ZTF (ZSYMM) computes a matrix-matrix product: one complex symmetric matrix, one complex rectangular matrix

F06ZUF (ZSYRK) performs a rank-k update of a complex symmetric matrix

F06ZWF (ZSYR2K) performs a rank-2k update of a complex symmetric matrix

4. Description of the F06 Routines

In this section we describe the purpose of each routine and give information on the parameter lists, where appropriate indicating their general nature. Usually the association between the routine arguments and the mathematical variables is obvious and in such cases a description of the argument is omitted.

Within each section, the parameter lists for all routines are presented, followed by the purpose of the routines and information on the parameter lists. The double precision BLAS names are given in ENTRY statements.

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so that corresponding real and complex routines may have adjacent entries.

4.1. The Level-0 Scalar Routines

The scalar routines have no array arguments.

SUBROUTINE F06AAF( A,B,C,S )
ENTRY DROTG ( A,B,C,S )
4.2. The Level-1 Vector Routines

The vector routines all have one or more one-dimensional arrays as arguments, each representing a vector.

The length of each vector, \( n \), is represented by the argument \( N \), and the routines may be called with non-positive values of \( N \), in which case the routine returns immediately except for the functions, which set the function value to zero before returning.

In addition to the argument \( N \), each array argument is also associated with an increment argument that immediately follows the array argument, and whose name consists of the three characters INC, followed by the name of the array. For example, a vector \( x \) will be represented by the two arguments \( X, \text{INCX} \). The increment argument is the spacing (stride) in the array for which the elements of the vector occur. For instance, if \( \text{INCX} = 2 \), then the elements of \( x \) are in locations \( X(1), X(3), \ldots, X(2\cdot N-1) \) of the array \( X \) and the intermediate locations \( X(2), X(4), \ldots, X(2\cdot N-2) \) are not referenced.

Thus when \( \text{INCX} > 0 \), the vector element \( x \) is in the array element \( X(1+(i-1)\cdot \text{INCX}) \). When \( \text{INCX} \leq 0 \) the elements are stored in the reverse order so that the vector element \( x \) is in the array element \( X(1-(n-i)\cdot \text{INCX}) \) and hence, in particular, the element \( x \) is in \( X(1) \). The declared length of the array \( X \) in the calling (sub)program must be at least \( (1+(N-1)\cdot |\text{INCX}|) \).

Non-positive increments are permitted only for those routines that have more than one array argument. While zero increments are formally permitted for such routines, their use in Chapter F06 is strongly discouraged since the effect may be implementation dependent.

```plaintext
DOUBLE PRECISION FUNCTION F06EAF (N, X,INCX,Y,INCY)
DOUBLE PRECISION DDOT
ENTRY DDOT (N, X,INCX,Y,INCY)
INTEGER N, INCX, INCY
DOUBLE PRECISION X(*), Y(*)
```
CHAPTER 22. NAG LIBRARY ROUTINES

COMPLEX(KIND(1.0D0)) FUNCTION F06GAF ( N, X, INCX, Y, INCY )
ENTRY ZDOTU ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) X(*), Y(*)

COMPLEX(KIND(1.0D0)) FUNCTION F06GBF ( N, X, INCX, Y, INCY )
ENTRY ZDOTC ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) X(*), Y(*)

SUBROUTINE F06ECF ( N, ALPHA, X, INCX, Y, INCY )
ENTRY DAXPY ( N, ALPHA, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
DOUBLE PRECISION ALPHA, X(*), Y(*)

SUBROUTINE F06GCF ( N, ALPHA, X, INCX, Y, INCY )
ENTRY ZAXPY ( N, ALPHA, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) ALPHA, X(*), Y(*)

SUBROUTINE F06EDF ( N, ALPHA, X, INCX )
ENTRY DSCAL ( N, ALPHA, X, INCX )
INTEGER N, INCX
DOUBLE PRECISION ALPHA, X(*)

SUBROUTINE F06GDF ( N, ALPHA, X, INCX )
ENTRY ZSCAL ( N, ALPHA, X, INCX )
INTEGER N, INCX
COMPLEX(KIND(1.0D0)) ALPHA, X(*)

SUBROUTINE F06JDF ( N, ALPHA, X, INCX )
ENTRY ZDSCAL ( N, ALPHA, X, INCX )
INTEGER N, INCX
DOUBLE PRECISION ALPHA
COMPLEX(KIND(1.0D0)) X(*)

SUBROUTINE F06EFF ( N, X, INCX, Y, INCY )
ENTRY DCOPY ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
DOUBLE PRECISION X(*), Y(*)

SUBROUTINE F06GFF ( N, X, INCX, Y, INCY )
ENTRY ZCOPY ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) X(*), Y(*)

SUBROUTINE F06EGF ( N, X, INCX, Y, INCY )
ENTRY DSWAP ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
DOUBLE PRECISION X(*), Y(*)

SUBROUTINE F06GGF ( N, X, INCX, Y, INCY )
ENTRY ZSWAP ( N, X, INCX, Y, INCY )
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) X(*), Y(*)

DOUBLE PRECISION FUNCTION F06EJF ( N, X, INCX )
DOUBLE PRECISION DNRM2
ENTRY DNRM2 ( N, X, INCX )
INTEGER N, INCX
DOUBLE PRECISION X(*)

DOUBLE PRECISION FUNCTION F06JJF ( N, X, INCX )
DOUBLE PRECISION DZNRM2
ENTRY DZNRM2 ( N, X, INCX )
INTEGER N, INCX
COMPLEX(KIND(1.0D0)) X(*)

DOUBLE PRECISION FUNCTION F06EKF ( N, X, INCX )
DOUBLE PRECISION DASUM
ENTRY DASUM ( N, X, INCX )
INTEGER N, INCX
DOUBLE PRECISION X(*)

DOUBLE PRECISION FUNCTION F06JKF ( N, X, INCX )
DOUBLE PRECISION DZASUM
ENTRY DZASUM ( N, X, INCX )
INTEGER N, INCX
COMPLEX(KIND(1.0D0)) X(*)

INTEGER FUNCTION F06JLF ( N, X, INCX )
INTEGER IDAMAX
ENTRY IDAMAX ( N, X, INCX )
INTEGER N, INCX
DOUBLE PRECISION X(*)

INTEGER FUNCTION F06JMF ( N, X, INCX )
INTEGER IZAMAX
ENTRY IZAMAX ( N, X, INCX )
INTEGER N, INCX
COMPLEX(KIND(1.0D0)) X(*)

SUBROUTINE F06EPF ( N, X, INCX, Y, INCY, C, S )
ENTRY DROT ( N, X, INCX, Y, INCY, C, S )
INTEGER N, INCX, INCY
DOUBLE PRECISION X(*), Y(*), C, S
CHAPTER 22. NAG LIBRARY ROUTINES

F06EAF(*) and F06GAF(*)

\[ \text{T} \]

return the dot product \( x^T y \).

F06GBF(*)

\[ \text{H} \]

returns the dot product \( x^H y \), where \( x^T \) denotes the complex conjugate of \( x \).

F06ECF(*) and F06GCF(*)

perform the operation \( y \leftarrow (\alpha)x + y \), often called an axpy operation.

F06EDF(*), F06GDF(*) and F06JDF(*)

perform the operation \( x \leftarrow (\alpha)x \).

F06EFF(*) and F06GFF(*)

perform the operation \( y \leftarrow -x \).

F06EGF(*) and F06GGF(*)

perform the operation \( x \leftrightarrow y \), that is \( x \) and \( y \) are swapped.

F06EJF(*) and F06JJF(*)

\[
\begin{pmatrix}
\frac{n}{1/2} \\
\frac{n}{2}
\end{pmatrix}
\]

\[
\frac{2}{2}
\]

\[
\begin{pmatrix}
\frac{i=1}{i}
\end{pmatrix}
\]

return the value \( ||x|| \) defined by \( ||x|| = \left( \sum_{i=1}^{n} |x_i|^2 \right)^{1/2} \).

F06EKF(*)

\[
\begin{pmatrix}
\frac{n}{-}
\end{pmatrix}
\]

returns the value \( ||x|| \) defined by \( ||x|| = \left( \sum_{i=1}^{n} |x_i| \right) \).

F06JKF(*)

\[
\begin{pmatrix}
\frac{n}{-}
\end{pmatrix}
\]

returns the value asum defined by \( \text{asum} = \left( \sum_{i=1}^{n} (|\text{Re}(x)| + |\text{Im}(x)|) \right) \).
returns the first index j such that \( |x_j| = \max |x_i| \).

\[ F06JMF(*) \]

returns the first index j such that \( |\text{Re}(x_j)| + |\text{Im}(x_j)| = \max (|\text{Re}(x_i)| + |\text{Im}(x_i)|) \).

\[ F06EPF(*) \]

performs the plane rotation \( (y) \leftarrow (-s \ c)(y) \).

4.3. The Level-2 Matrix-vector Routines

The matrix-vector routines all have one array argument representing a matrix; usually this is a two-dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments M and N for an m by n rectangular matrix; and by the argument N for an n by n symmetric, Hermitian, or triangular matrix. Note that it is permissible to call the routines with M or N = 0, in which case the routines exit immediately without referencing their array arguments. For band matrices, the bandwidth is determined by the arguments KL and KU for a rectangular matrix with kl sub-diagonals and ku super-diagonals; and by the argument K for a symmetric, Hermitian, or triangular matrix with k sub-diagonals and/or super-diagonals.

The description of the matrix consists either of the array name \( (A) \) followed by the first dimension of the array as declared in the calling (sub)program \( (\text{LDA}) \), when the matrix is being stored in a two-dimensional array; or the array name \( (\text{AP}) \) alone when the matrix is being stored as a (packed) vector. In the former case the actual array must contain at least \((n-1)d+1\) elements, where d is the first dimension of the array, \(d \geq 1\), and \(l=m\) for arrays representing general matrices, \(l=n\) for arrays representing symmetric, Hermitian and triangular matrices, \(l=kl+ku+1\) for arrays representing general band matrices and \(l=k+1\) for symmetric, Hermitian and triangular band matrices. For one-
dimensional arrays representing matrices (packed storage) the actual array must contain at least \(-n(n+1)\) elements.

As with the vector routines, vectors are represented by one-dimensional arrays together with a corresponding increment argument (see Section 4.2). The only difference is that for these routines a zero increment is not permitted.

When the vector \(x\) consists of \(k\) elements then the declared length of the array \(X\) in the calling (sub)program must be at least \((1+(k-1)|\text{INCX}|)\).

The arguments that specify options are character arguments with the names TRANS, UPLO and DIAG. TRANS is used by the matrix-vector product routines as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>Operate with the matrix</td>
</tr>
<tr>
<td>'T' or 't'</td>
<td>Operate with the transpose of the matrix</td>
</tr>
<tr>
<td>'C' or 'c'</td>
<td>Operate with the conjugate transpose of the matrix</td>
</tr>
</tbody>
</table>

In the real case the values 'T', 't', 'C' and 'c' have the same meaning.

UPLO is used by the Hermitian, symmetric, and triangular matrix routines to specify whether the upper or lower triangle is being referenced as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'U' or 'u'</td>
<td>Upper triangle</td>
</tr>
<tr>
<td>'L' or 'l'</td>
<td>Lower triangle</td>
</tr>
</tbody>
</table>

DIAG is used by the triangular matrix routines to specify whether or not the matrix is unit triangular, as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'U' or 'u'</td>
<td>Unit triangular</td>
</tr>
<tr>
<td>'N' or 'n'</td>
<td>Non-unit triangular</td>
</tr>
</tbody>
</table>

When DIAG is supplied as 'U' or 'u' the diagonal elements are not
It is worth noting that actual character arguments in Fortran may be longer than the corresponding dummy arguments. So that, for example, the value 'T' for TRANS may be passed as 'TRANSPOSE'.

The routines for real symmetric and complex Hermitian matrices allow for the matrix to be stored in either the upper (UPLO = 'U') to be packed in a one-dimensional array. In the latter case the upper triangle may be packed sequentially column by column (UPLO = 'U'), or the lower triangle may be packed sequentially column by column (UPLO = 'L'). Note that for real symmetric matrices packing the upper triangle by column is equivalent to packing the lower triangle by rows, and packing the lower triangle by columns is equivalent to packing the upper triangle by rows. (For complex Hermitian matrices the only difference is that the off-diagonal elements are conjugated.)

For triangular matrices the argument UPLO serves to define whether the matrix is upper (UPLO = 'U') or lower (UPLO = 'L') triangular. In packed storage the triangle has to be packed by column.

The band matrix routines allow storage so that the jth column of the matrix is stored in the jth column of the Fortran array. For a general band matrix the diagonal of the matrix is stored in the (ku+1)th row of the array. For a Hermitian or symmetric matrix either the upper triangle (UPLO = 'U') may be stored in which case the leading diagonal is in the (k+1)th row of the array, or the lower triangle (UPLO = 'L') may be stored in which case the leading diagonal is in the first row of the array. For an upper triangular band matrix (UPLO = 'U') the leading diagonal is in the (k+1)th row of the array and for a lower triangular band matrix (UPLO = 'L') the leading diagonal is in the first row.

For a Hermitian matrix the imaginary parts of the diagonal elements are of course zero and thus the imaginary parts of the corresponding Fortran array elements need not be set, but are assumed to be zero.

For packed triangular matrices the same storage layout is used whether or not DIAG = 'U', i.e., space is left for the diagonal elements even if those array elements are not referenced.

Throughout the following sections A denotes the complex $A^\dagger$ conjugate of A.
CHAPTER 22. NAG LIBRARY ROUTINES

SUBROUTINE F06PAF( TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY DGEMV ( TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 TRANS
INTEGER M,N,LDA,INCX,INCY
DOUBLE PRECISION ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06SAF( TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY ZGEMV ( TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 TRANS
INTEGER M,N,LDA,INCX,INCY
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06PBF( TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY DGBMV ( TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 TRANS
INTEGER M,N,KL,KU,LDA,INCX,INCY
DOUBLE PRECISION ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06SBF( TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY ZGBMV ( TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 TRANS
INTEGER M,N,KL,KU,LDA,INCX,INCY
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06PCF( UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY DSYMV ( UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 UPLO
INTEGER N,LDA,INCX,INCY
DOUBLE PRECISION ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06SCF( UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY ZHEMV ( UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 UPLO
INTEGER N,LDA,INCX,INCY
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06PDF( UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY DSBMV ( UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 UPLO
INTEGER N,K,LDA,INCX,INCY
DOUBLE PRECISION ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06SDF( UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
ENTRY ZHBMV ( UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY )
CHARACTER*1 UPLO
INTEGER N,K,LDA,INCX,INCY
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*),X(*),BETA,Y(*)

SUBROUTINE F06PEF( UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY )
ENTRY DSPMV ( UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY
DOUBLE PRECISION ALPHA, AP(*), X(*), BETA, Y(*)

SUBROUTINE F06SEF( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
ENTRY ZHPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) ALPHA, AP(*), X(*), BETA, Y(*)

SUBROUTINE F06PFF( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
ENTRY DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, LDA, INCX
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE F06SFF( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
ENTRY ZTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, LDA, INCX
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE F06PGF( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
ENTRY DTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, K, LDA, INCX
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE F06SGF( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
ENTRY ZTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, K, LDA, INCX
COMPLEX(KIND(1.0D0)) A(LDA,*), X(*)

SUBROUTINE F06PHF( UPLO, TRANS, DIAG, N, AP, X, INCX )
ENTRY DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, INCX
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE F06SHF( UPLO, TRANS, DIAG, N, AP, X, INCX )
ENTRY ZTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, INCX
COMPLEX(KIND(1.0D0)) AP(*), X(*)

SUBROUTINE F06PJF( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
ENTRY DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER N, LDA, INCX
DWORD PRECISION A(LDA,*), X(*)

SUBROUTINE F06SJF( UPLO,TRANS,DIAG,N,A,LDA,X,INCX )
ENTRY ZTRSV ( UPLO,TRANS,DIAG,N,A,LDA,X,INCX )
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER N,LDA,INCX
COMPLEX(KIND(1.0D0)) A(LDA,*), X(*)

SUBROUTINE F06PKF( UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX )
ENTRY DTBSV ( UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX )
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER N,K,LDA,INCX
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE F06SKF( UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX )
ENTRY ZTBSV ( UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX )
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER N,K,LDA,INCX
COMPLEX(KIND(1.0D0)) A(LDA,*), X(*)

SUBROUTINE F06PLF( UPLO,TRANS,DIAG,N,AP,X,INCX )
ENTRY DTPSV ( UPLO,TRANS,DIAG,N,AP,X,INCX )
INTEGER N,INCX
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE F06SLF( UPLO,TRANS,DIAG,N,AP,X,INCX )
ENTRY ZTPSV ( UPLO,TRANS,DIAG,N,AP,X,INCX )
INTEGER N,INCX
COMPLEX(KIND(1.0D0)) AP(*), X(*)

SUBROUTINE F06PMF( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
ENTRY DGER ( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
INTEGER M,N,INCX,INCY,LDA
DOUBLE PRECISION ALPHA,X(*), Y(*), A(LDA,*)

SUBROUTINE F06SMF( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
ENTRY ZGERU ( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
INTEGER M,N,INCX,INCY,LDA
COMPLEX(KIND(1.0D0)) ALPHA,X(*), Y(*), A(LDA,*)

SUBROUTINE F06SNF( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
ENTRY ZGERC ( M,N,ALPHA,X,INCX,Y,INCY,A,LDA )
INTEGER M,N,INCX,INCY,LDA
COMPLEX(KIND(1.0D0)) ALPHA,X(*), Y(*), A(LDA,*)

SUBROUTINE F06PPF( UPLO,N,ALPHA,X,INCX,A,LDA )
ENTRY DSYR ( UPLO,N,ALPHA,X,INCX,A,LDA )
CHARACTER*1 UPLO
INTEGER N, INCX, LDA
DOUBLE PRECISION ALPHA, X(*), A(LDA, *)

SUBROUTINE F06SPF( UPLO, N, ALPHA, X, INCX, A, LDA )
ENTRY ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA )
CHARACTER*1 UPLO
INTEGER N, INCX, LDA
DOUBLE PRECISION ALPHA
COMPLEX(KIND(1.0D0)) X(*), A(LDA, *)

SUBROUTINE F06PQF( UPLO, N, ALPHA, X, INCX, AP )
ENTRY DSPR ( UPLO, N, ALPHA, X, INCX, AP )
CHARACTER*1 UPLO
INTEGER N, INCX
DOUBLE PRECISION ALPHA
COMPLEX(KIND(1.0D0)) X(*), AP(*)

SUBROUTINE F06SQF( UPLO, N, ALPHA, X, INCX, AP )
ENTRY ZHPR ( UPLO, N, ALPHA, X, INCX, AP )
CHARACTER*1 UPLO
INTEGER N, INCX
DOUBLE PRECISION ALPHA
COMPLEX(KIND(1.0D0)) X(*), AP(*)

SUBROUTINE F06PRF( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
ENTRY DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY, LDA
DOUBLE PRECISION ALPHA, X(*), Y(*), A(LDA, *)

SUBROUTINE F06SRF( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
ENTRY ZHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY, LDA
COMPLEX(KIND(1.0D0)) ALPHA, X(*), Y(*), A(LDA, *)

SUBROUTINE F06PSF( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
ENTRY DSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY
DOUBLE PRECISION ALPHA, X(*), Y(*), AP(*)

SUBROUTINE F06SSF( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
ENTRY ZHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
CHARACTER*1 UPLO
INTEGER N, INCX, INCY
COMPLEX(KIND(1.0D0)) ALPHA, X(*), Y(*), AP(*)

F06PAF(*), F06SAF(*), F06PBF(*) and F06SBF(*)

perform the operation
$y \leftarrow (\alpha)Ax + (\beta)y$, when $\text{TRANS} = 'N'$,

$T$

$y \leftarrow (\alpha)A^T x + (\beta)y$, when $\text{TRANS} = 'T'$,

$H$

$y \leftarrow (\alpha)A^H x + (\beta)y$, when $\text{TRANS} = 'C'$,

where $A$ is a general matrix for F06PAF(*) and F06SAF(*), and is a general band matrix for F06PBF(*) and F06SBF(*).

F06PCF(*), F06SCF(*), F06PEF(*), F06SEF(*), F06PDF(*) and F06SDF(*)

perform the operation

$y \leftarrow (\alpha)Ax + (\beta)y$

where $A$ is symmetric and Hermitian for F06PCF(*) and F06SCF(*) respectively, is symmetric and Hermitian stored in packed form for F06PEF(*) and F06SEF(*) respectively, and is symmetric and Hermitian band for F06PDF(*) and F06SDF(*).

F06PFF(*), F06SFF(*), F06PHF(*), F06SHF(*), F06PGF(*) and F06SGF(*)

perform the operation

$x \leftarrow Ax$, when $\text{TRANS} = 'N'$,

$T$

$x \leftarrow A^T x$, when $\text{TRANS} = 'T'$,

$H$

$x \leftarrow A^H x$, when $\text{TRANS} = 'C'$,

where $A$ is a triangular matrix for F06PFF(*) and F06SFF(*), is a triangular matrix stored in packed form for F06PHF(*) and F06SHF(*), and is a triangular band matrix for F06PGF(*) and F06SGF(*)

F06PJF(*), F06SJF(*), F06PLF(*), F06SLF(*), F06PKF(*) and F06SKF(*)

solve the equations

$Ax=b$, when $\text{TRANS} = 'N'$,

$T$
\[ A \ x = b, \quad \text{when } \text{TRANS} = 'T', \]

\[ H \ A \ x = b, \quad \text{when } \text{TRANS} = 'C', \]

where \( A \) is a triangular matrix for F06PJF(*) and F06SJF(*), is a triangular matrix stored in packed form for F06PLF(*) and F06SLF(*), and is a triangular band matrix for F06PKF(*) and F06SKF(*). The vector \( b \) must be supplied in the array \( X \) and is overwritten by the solution. It is important to note that no test for singularity is included in these routines.

F06PMF(*) and F06SMF(*)

\[ T \]

perform the operation \( A \leftarrow (\alpha)xy + A \), where \( A \) is a general matrix.

F06SNF(*)

\[ H \]

performs the operation \( A \leftarrow (\alpha)xy + A \), where \( A \) is a general complex matrix.

F06PPF(*) and F06PQF(*)

\[ T \]

perform the operation \( A \leftarrow (\alpha)xx + A \), where \( A \) is a symmetric matrix for F06PPF(*) and is a symmetric matrix stored in packed form for F06PQF(*).

F06SPF(*) and F06SQF(*)

\[ H \]

perform the operation \( A \leftarrow (\alpha)xx + A \), where \( A \) is an Hermitian matrix for F06SPF(*) and is an Hermitian matrix stored in packed form for F06SQF(*).

F06PRF(*) and F06PSF(*)

\[ T \ T \]

perform the operation \( A \leftarrow (\alpha)xy + (\alpha)yx + A \), where \( A \) is a symmetric matrix for F06PRF(*) and is a symmetric matrix stored in packed form for F06PSF(*)

F06SRF(*) and F06SSF(*)

\[ H \ H \]

perform the operation \( A \leftarrow (\alpha)xy + (\alpha)yx + A \), where \( A \) is an Hermitian matrix for F06SRF(*) and is an Hermitian matrix stored
in packed form for F06SSF(*).

The following argument values are invalid:

- Any value of the character arguments DIAG, TRANS, or UPL0 whose meaning is not specified.
- \( M < 0 \)
- \( N < 0 \)
- \( KL < 0 \)
- \( KU < 0 \)
- \( K < 0 \)
- \( LDA < M \)
- \( LDA < KL + KU + 1 \)
- \( LDA < N \) for the routines involving full Hermitian, symmetric or triangular matrices
- \( LDA < K + 1 \) for the routines involving band Hermitian, symmetric or triangular matrices
- \( INCX = 0 \)
- \( INCY = 0 \)

If a routine is called with an invalid value then an error message is output, on the error message unit (see X04AAF), giving the name of the routine and the number of the first invalid argument, and execution is terminated.

4.4. The Level-3 Matrix-matrix Routines

The matrix-matrix routines all have either two or three arguments representing a matrix, one of which is an input-output argument, and in each case the arguments are two-dimensional arrays.

The sizes of the matrices are determined by one or more of the arguments \( M, N \) and \( K \). The size of the input-output array is always determined by the arguments \( M \) and \( N \) for a rectangular \( m \) by \( n \) matrix, and by the argument \( N \) for a square \( n \) by \( n \) matrix. It is permissible to call the routines with \( M = 0 \) or \( N = 0 \), in which case the routines exit immediately without referencing their array arguments.
Many of the routines perform an operation of the form

$$C \leftarrow P + (\beta)C,$$

where $P$ is the product of two matrices, or the sum of two such products. When the inner dimension of the matrix product is different from $m$ or $n$ it is denoted by $K$. Again it is permissible to call the routines with $K = 0$ and if $M > 0$, but $K = 0$, then the routines perform the operation

$$C \leftarrow (\beta)C.$$

As with the Level-2 routines (see Section 4.3) the description of the matrix consists of the array name ($A$ or $B$ or $C$) followed by the first dimension ($LDA$ or $LDB$ or $LDC$).

The arguments that specify options are character arguments with the names $SIDE$, $TRANSA$, $TRANSB$, $TRANS$, $UPLO$ and $DIAG$. $UPLO$ and $DIAG$ have the same values and meanings as for the Level-2 routines (see Section 4.3); $TRANSA$, $TRANSB$ and $TRANS$ have the same values and meanings as $TRANS$ in the Level-2 routines, where $TRANSA$ and $TRANSB$ apply to the matrices $A$ and $B$ respectively. $SIDE$ is used by the routines as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L'</td>
<td>Multiply general matrix by symmetric, Hermitian or triangular matrix on the left</td>
</tr>
<tr>
<td>'R'</td>
<td>Multiply general matrix by symmetric, Hermitian or triangular matrix on the right</td>
</tr>
</tbody>
</table>

The storage conventions for matrices are as for the Level-2 routines (see Section 4.3).

SUBROUTINE F06YAF( TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
ENTRY DGEMM( TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
CHARACTER TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

SUBROUTINE F06ZAF( TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
ENTRY ZGEMM( TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
CHARACTER TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*) ,B(LDB,*) ,BETA,C(LDC,*)

SUBROUTINE F06YCF( SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
ENTRY DSYMM( SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC )
CHARACTER SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

```
CHAPTER 22. NAG LIBRARY ROUTINES

CHARACTER SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
DOUBLE PRECISION ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC, :)

SUBROUTINE F06ZCF (SIDE, UPLO, M, N, ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:))
ENTRY ZHEMM (SIDE, UPLO, M, N, ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:))
CHARACTER SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
COMPLEX(KIND(1.0D0)) ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:)

SUBROUTINE F06ZTF (SIDE, UPLO, M, N, ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:))
ENTRY ZSYMM (SIDE, UPLO, M, N, ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:))
CHARACTER SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
COMPLEX(KIND(1.0D0)) ALPHA, A(LDA,:), B(LDB,:), BETA, C(LDC,:)

SUBROUTINE F06YFF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
ENTRY DTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
CHARACTER SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
DOUBLE PRECISION ALPHA, A(LDA,:), B(LDB,:)

SUBROUTINE F06ZFF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
ENTRY ZTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
CHARACTER SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
COMPLEX(KIND(1.0D0)) ALPHA, A(LDA,:), B(LDB,:)

SUBROUTINE F06YJF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
ENTRY DTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
CHARACTER SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
DOUBLE PRECISION ALPHA, A(LDA,:), B(LDB,:)

SUBROUTINE F06ZJF (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
ENTRY ZTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A(LDA,:), B(LDB,:))
CHARACTER SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
COMPLEX(KIND(1.0D0)) ALPHA, A(LDA,:), B(LDB,:)

SUBROUTINE F06YPF (UPLO, TRANS, N, K, ALPHA, A(LDA,:), BETA, C(LDC))
ENTRY DSYRK (UPLO, TRANS, N, K, ALPHA, A(LDA,:), BETA, C(LDC))
CHARACTER UPLO, TRANS
INTEGER N, K, LDA, LDC
DOUBLE PRECISION ALPHA, A(LDA,:), BETA, C(LDC,:)

SUBROUTINE F06ZPF (UPLO, TRANS, N, K, ALPHA, A(LDA,:), BETA, C(LDC,:))
ENTRY ZHERK (UPLO, TRANS, N, K, ALPHA, A(LDA,:), BETA, C(LDC,:))
CHARACTER UPLO, TRANS
INTEGER N, K, LDA, LDC
DOUBLE PRECISION ALPHA,BETA
COMPLEX(KIND(1.0D0)) A(LDA,*) , C(LDC,*)

SUBROUTINE F06ZUF(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
ENTRY ZSYRK (UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
CHARACTER UPLO,TRANS
INTEGER N,K,LDA,LDC
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*) , BETA,C(LDC,*)

SUBROUTINE F06YRF(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
ENTRY DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
CHARACTER UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,A(LDA,*) , B(LDB,*) , BETA,C(LDC,*)

SUBROUTINE F06ZRF(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
ENTRY ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
CHARACTER UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION BETA
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*) , B(LDB,*) , C(LDC,*)

SUBROUTINE F06ZWF(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
ENTRY ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
CHARACTER UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
COMPLEX(KIND(1.0D0)) ALPHA,A(LDA,*) , B(LDB,*) , BETA,C(LDC,*)

F06YAF(*) and F06ZAF(*)

perform the operation indicated in the following table:

<table>
<thead>
<tr>
<th>TRANSA</th>
<th>TRANSB</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N'</td>
<td>'N'</td>
<td>C <- (alpha)AB + (beta)C</td>
</tr>
<tr>
<td>'T'</td>
<td>'N'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
<tr>
<td>'C'</td>
<td>'N'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSA</th>
<th>TRANSB</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N'</td>
<td>'T'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
<tr>
<td>'T'</td>
<td>'T'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
<tr>
<td>'C'</td>
<td>'T'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSA</th>
<th>TRANSB</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N'</td>
<td>'C'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
<tr>
<td>'T'</td>
<td>'C'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
<tr>
<td>'C'</td>
<td>'C'</td>
<td>C <- (alpha)A B + (beta)C</td>
</tr>
</tbody>
</table>
where A and B are general matrices and C is a general m by n matrix.

F06YCF(*), F06ZCF(*) and F06ZTF(*) perform the operation indicated in the following table:

<table>
<thead>
<tr>
<th>SIDE = 'L'</th>
<th>SIDE = 'R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<-(alpha)AB+(beta)C</td>
<td>C<-(alpha)BA+(beta)C</td>
</tr>
<tr>
<td>A is m*m</td>
<td>B is m*n</td>
</tr>
<tr>
<td>B is m*n</td>
<td>A is n*n</td>
</tr>
</tbody>
</table>

where A is symmetric for F06YCF(*) and F06ZTF(*) and is Hermitian for F06ZCF(*), B is a general matrix and C is a general m by n matrix.

F06YFF(*) and F06ZFF(*) perform the operation indicated in the following table:

<table>
<thead>
<tr>
<th>TRANSA = 'N'</th>
<th>TRANSA = 'T'</th>
<th>TRANSA = 'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SIDE='L'</td>
<td>B <- (alpha)AB</td>
<td>B <- (alpha)A B</td>
</tr>
<tr>
<td>A is triangular</td>
<td>A is m*m</td>
<td>A is triangular</td>
</tr>
<tr>
<td>m*m</td>
<td>A is m*m</td>
<td>m*m</td>
</tr>
<tr>
<td>SIDE='R'</td>
<td>B <- (alpha)BA</td>
<td>B <- (alpha)BA</td>
</tr>
<tr>
<td>A is triangular</td>
<td>A is n*n</td>
<td>A is triangular</td>
</tr>
<tr>
<td>n*n</td>
<td>A is n*n</td>
<td>n*n</td>
</tr>
</tbody>
</table>

where B is a general m by n matrix.

F06YJF(*) and F06ZJF(*) solve the equations, indicated in the following table, for X:

<table>
<thead>
<tr>
<th>TRANSA = 'N'</th>
<th>TRANSA = 'T'</th>
<th>TRANSA = 'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SIDE='L'</td>
<td>B <- (alpha)AB</td>
<td>B <- (alpha)BA</td>
</tr>
<tr>
<td>A is triangular</td>
<td>A is m*m</td>
<td>A is triangular</td>
</tr>
<tr>
<td>m*m</td>
<td>A is m*n</td>
<td>m*n</td>
</tr>
<tr>
<td>SIDE='R'</td>
<td>B <- (alpha)BA</td>
<td>B <- (alpha)BA</td>
</tr>
<tr>
<td>A is triangular</td>
<td>A is n*n</td>
<td>A is triangular</td>
</tr>
<tr>
<td>n*n</td>
<td>A is n*n</td>
<td>n*n</td>
</tr>
</tbody>
</table>

where B is a general m by n matrix.
22.5. NAGF.HT

\[
\begin{array}{ccc}
\text{SIDE='L'} & AX=(\alpha)B & A X=(\alpha)B & A X=(\alpha)B \\
A & \text{is} & \text{is} & \text{is} \\
\text{triangular} & \text{triangular} & \text{triangular} \\
m*m & m*m & m*m \\
T & H \\
\text{SIDE='R'} & XA=(\alpha)B & XA=(\alpha)B & XA=(\alpha)B \\
A & \text{is} & \text{is} & \text{is} \\
\text{triangular} & \text{triangular} & \text{triangular} \\
n*n & n*n & n*n \\
\end{array}
\]

where \(B \) is a general \(m \times n \) matrix. The \(m \times n \) solution matrix \(X \) is overwritten on the array \(B \). It is important to note that no test for singularity is included in these routines.

F06YPF(*), F06ZPF(*) and F06ZUF(*) perform the operation indicated in the following table:

\[
\begin{array}{cccc}
\text{TRANS = 'N'} & \text{TRANS = 'T'} & \text{TRANS = 'C'} \\
T & T & T \\
\text{F06YPF} & \text{C} \leftarrow (\alpha)AA & \text{C} \leftarrow (\alpha)A A & \text{C} \leftarrow (\alpha)A A \\
& +(\beta)C & +(\beta)C & +(\beta)C \\
T & T & T \\
\text{F06ZUF} & \text{C} \leftarrow (\alpha)AA & \text{C} \leftarrow (\alpha)A A & -- \\
& +(\beta)C & +(\beta)C & \\
H & H & \\
\text{F06ZPF} & \text{C} \leftarrow (\alpha)AA & -- & \text{C} \leftarrow (\alpha)A A \\
& +(\beta)C & + & +(\beta)C \\
A & \text{is } n*k & A & \text{is } k*n & A & \text{is } k*n \\
\end{array}
\]

where \(A \) is a general matrix and \(C \) is an \(n \times n \) symmetric matrix for F06YPF(*) and F06ZUF(*), and is an \(n \times n \) Hermitian matrix for F06ZPF(*).

F06YRF(*), F06ZRF(*) and F06ZWF(*) perform the operation indicated in the following table:

\[
\begin{array}{cccc}
\text{TRANS = 'N'} & \text{TRANS = 'T'} & \text{TRANS = 'C'} \\
T & T & T \\
\text{F06YRF} & \text{C} \leftarrow (\alpha)AB & \text{C} \leftarrow (\alpha)A B & \text{C} \leftarrow (\alpha)A B \\
& +(\alpha)BA & +(\alpha)B A & +(\alpha)B A \\
T & T & T \\
\text{F06ZRF} & \text{C} \leftarrow (\alpha)AB & \text{C} \leftarrow (\alpha)A B & -- \\
& +(\alpha)BA & +(\alpha)B A & + & +(\alpha)B A \\
& +(\beta)C & +(\beta)C & +(\beta)C \\
T & T & \\
\end{array}
\]
CHAPTER 22. NAG LIBRARY ROUTINES

\[
\begin{align*}
F06ZWF & \quad C \leftarrow (\alpha)AB \\
& \quad T \quad T \\
& \quad +(\alpha)BA \\
& \quad +(\beta)C \\
F06ZRF & \quad C \leftarrow (\alpha)AB \\
& \quad H \\
& \quad +(\alpha)BA \\
& \quad +(\beta)C \\
\end{align*}
\]

\[A \text{ and } B \text{ are n*k } \quad A \text{ and } B \text{ are k*n } \quad A \text{ and } B \text{ are k*n}\]

where \(A \) and \(B \) are general matrices and \(C \) is an \(n \) by \(n \) symmetric matrix for \(F06YRF(*) \) and \(F06ZWF(*) \), and is an \(n \) by \(n \) Hermitian matrix for \(F06ZPF(*) \).

The following values of arguments are invalid:

- Any value of the character arguments \(\text{SIDE}, \text{TRANSA}, \text{TRANSB}, \text{TRANS}, \text{UPLO} \) or \(\text{DIAG} \), whose meaning is not specified.
- \(M < 0 \)
- \(N < 0 \)
- \(K < 0 \)
- \(LDA < \text{the number of rows in the matrix } A \).
- \(LDB < \text{the number of rows in the matrix } B \).
- \(LDC < \text{the number of rows in the matrix } C \).

If a routine is called with an invalid value then an error message is output, on the error message unit (see \textit{X04AAF}), giving the name of the routine and the number of the first invalid argument, and execution is terminated.

F06 -- Linear Algebra Support Routines

\textit{Linear Algebra Support Routines}

\textit{F06AAF} (DROTG) Generate real plane rotation
\textit{F06EAF} (DDOT) Dot product of two real vectors
\textit{F06ECF} (DAXPY) Add scalar times real vector to real vector
F06EDF (DSCAL) Multiply real vector by scalar
F06EFF (DCOPY) Copy real vector
F06EGF (DSWAP) Swap two real vectors
F06EJF (DNRM2) Compute Euclidean norm of real vector
F06EKF (DASUM) Sum the absolute values of real vector elements
F06EPF (DROT) Apply real plane rotation
F06GAF (ZDOTU) Dot product of two complex vectors, unconjugated
F06GBF (ZDOTC) Dot product of two complex vectors, conjugated
F06GCF (ZAXPY) Add scalar times complex vector to complex vector
F06GDF (ZSCAL) Multiply complex vector by complex scalar
F06GFF (ZCOPY) Copy complex vector
F06GGF (ZSWAP) Swap two complex vectors
F06JDF (ZDSCAL) Multiply complex vector by real scalar
F06JJF (DZNRM2) Compute Euclidean norm of complex vector
F06JKF (DZASUM) Sum the absolute values of complex vector elements
F06JLF (IDAMAX) Index, real vector element with largest absolute value
F06JMF (IZAMAX) Index, complex vector element with largest absolute value
F06PAF (DGEMV) Matrix-vector product, real rectangular matrix
F06PBF (DGBMV) Matrix-vector product, real rectangular band matrix
F06PCF (DSYMV) Matrix-vector product, real symmetric matrix
F06PDF (DSBMV) Matrix-vector product, real symmetric band matrix
F06PEF (DSPMV) Matrix-vector product, real symmetric packed matrix
F06PFF (DTRMV) Matrix-vector product, real triangular matrix
CHAPTER 22. NAG LIBRARY ROUTINES

F06PGF (DTMV) Matrix-vector product, real triangular band matrix

F06PHF (DTPMV) Matrix-vector product, real triangular packed matrix

F06PJF (DTRSV) System of equations, real triangular matrix

F06PKF (DTBSV) System of equations, real triangular band matrix

F06PLF (DTPSV) System of equations, real triangular packed matrix

F06PMF (DGER) Rank-1 update, real rectangular matrix

F06PPF (DSYR) Rank-1 update, real symmetric matrix

F06PQF (DSPR) Rank-1 update, real symmetric packed matrix

F06PRF (DSYR2) Rank-2 update, real symmetric matrix

F06PSF (DSPR2) Rank-2 update, real symmetric packed matrix

F06SAF (ZGEMV) Matrix-vector product, complex rectangular matrix

F06SBF (ZGEMV) Matrix-vector product, complex rectangular band matrix

F06SCF (ZHEMV) Matrix-vector product, complex Hermitian matrix

F06SDF (ZHEMV) Matrix-vector product, complex Hermitian band matrix

F06SEF (ZHPMV) Matrix-vector product, complex Hermitian packed matrix

F06SFF (ZTRMV) Matrix-vector product, complex triangular matrix

F06SGF (ZTRMV) Matrix-vector product, complex triangular band matrix

F06SHF (ZTPMV) Matrix-vector product, complex triangular packed matrix

F06SJF (ZTRSV) System of equations, complex triangular matrix

F06SKF (ZTBSV) System of equations, complex triangular band matrix
22.5. NAGF.HT

F06SLF (ZTPSV) System of equations, complex triangular packed matrix
F06SMF (ZGERU) Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF (ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF (ZHER) Rank-1 update, complex Hermitian matrix
F06SQF (ZHPR) Rank-1 update, complex Hermitian packed matrix
F06SRF (ZHER2) Rank-2 update, complex Hermitian matrix
F06SSF (ZHPR2) Rank-2 update, complex Hermitian packed matrix
F06YAF (DGEMM) Matrix-matrix product, two real rectangular matrices
F06YCF (DSYMM) Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
F06YFF (DTRMM) Matrix-matrix product, one real triangular matrix, one real rectangular matrix
F06YJF (DTRSM) Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
F06YPF (DSYRK) Rank-k update of a real symmetric matrix
F06YRF (DSYR2K) Rank-2k update of a real symmetric matrix
F06ZAF (ZGEMM) Matrix-matrix product, two complex rectangular matrices
F06ZCF (ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
F06ZFF (ZTRMM) Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
F06ZJF (ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
F06ZPF (ZHERK) Rank-k update of a complex Hermitian matrix
F06ZRJ (ZHER2K) Rank-2k update of a complex Hermitian matrix
F06ZTF (ZSYMM) Matrix-matrix product, one complex symmetric matrix
Linear Equations (LAPACK)

--- nagf.h ---

--- nagf.h ---

F07(3NAG) Foundation Library (12/10/92) F07(3NAG)

F07 -- Linear Equations (LAPACK) Introduction -- F07
Chapter F07
Linear Equations (LAPACK)

1. Scope of the Chapter

This chapter provides four routines concerned with matrix factorization, and the solution of systems of linear equations following the matrix factorizations.

2. Background to the Problems

Background material, together with pointers to the routines in this chapter, are to be found in the F01 and F04 Chapter Introductions.

3. Recommendations on Choice and Use of Routines

The routines in this chapter are derived from the LAPACK project and may also be called using the LAPACK name, which is given in brackets following the F07 name in the following descriptions.
Routine F07ADF (DGETRF) performs an LU factorization of a real m by n matrix A. Following the use of this routine, F07AEF (DGETRS) may be used to solve a system of n non-singular linear equations, with one or more right-hand sides.

Routine F07FDF (DPOTRF) performs the Cholesky factorization of a real symmetric positive-definite matrix A. Following the use of this routine, F07FEF (DPOTRS) may be used to solve a system of symmetric positive-definite linear equations, with one or more right-hand sides.

Computes the LU factorization of a real m by n matrix
1. Purpose

F07ADF (DGETRF) computes the LU factorization of a real m by n matrix.

2. Specification

```plaintext
SUBROUTINE F07ADF (M, N, A, LDA, IPIV, INFO)
ENTRY M, N, A, LDA, IPIV, INFO
INTEGER M, N, LDA, IPIV(*), INFO
DOUBLE PRECISION A(LDA,*)
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine forms the LU factorization of a real m by n matrix A as A=PLU, where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m>n) and U is upper triangular (upper trapezoidal if m<n). Usually A is square (m=n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

4. References

5. Parameters

1: M -- INTEGER
 Input
 On entry: m, the number of rows of the matrix A.
 Constraint: $M \geq 0$.

2: N -- INTEGER
 Input
 On entry: n, the number of columns of the matrix A.
Constraint: \(N \geq 0 \).

3: \(A(LDA,\ast) \) -- DOUBLE PRECISION array
 Input/Output
 Note: the second dimension of the array \(A \) must be at least \(\max(1,N) \).
 On entry: the \(m \) by \(n \) matrix \(A \). On exit: \(A \) is overwritten by the factors \(L \) and \(U \); the unit diagonal elements of \(L \) are not stored.

4: \(LDA \) -- INTEGER
 Input
 On entry: the first dimension of the array \(A \) as declared in the (sub)program from which F07ADF is called.
 Constraint: \(LDA \geq \max(1,M) \).

5: \(IPIV(\ast) \) -- INTEGER array
 Output
 Note: the dimension of the array \(IPIV \) must be at least \(\max(1,\min(M,N)) \).
 On exit: the pivot indices. Row \(i \) of the matrix \(A \) was interchanged with row \(IPIV(i) \) for \(i=1,2,\ldots,\min(m,n) \).

6: \(INFO \) -- INTEGER
 Output
 On exit: \(INFO = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

\(INFO < 0 \)
If \(INFO = -i \), the \(i \)th parameter has an illegal value. An explanatory message is output, and execution of the program is terminated.

\(INFO > 0 \)
If \(INFO = i \), \(u_{ii} \) is exactly zero. The factorization has been completed but the factor \(U \) is exactly singular, and division by zero will occur if it is subsequently used to solve a \(-1 \) system of linear equations or to compute \(A^{-1} \).

7. Accuracy

The computed factors \(L \) and \(U \) are the exact factors of a perturbed matrix \(A+E \), where

\[|E| \leq c(n)(\text{epsilon})P|L||U|, \]

\(c(n) \) is a modest linear function of \(n \), and (epsilon) is the machine precision.
8. Further Comments

The total number of floating-point operations is approximately
\[\frac{2}{3} \times \frac{3}{2} \times \frac{1}{2} \times n \]
- \(n\) if \(m=n\) (the usual case),
- \(n\) (3m-n) if \(m>n\),
- \(m\) (3n-m) if \(m<n\).

A call to this routine with \(m=n\) may be followed by calls to the routines:

- \text{T} \newline
 \text{F07AEF (DGETRS) to solve AX=B or A X=B;}
- \text{F07AGF (DGECON)(*) to estimate the condition number of A;}
- \text{F07AJF (DGETRI)(*) to compute the inverse of A.}

The complex analogue of this routine is \text{F07ARF (ZGETRF)(*).}

9. Example

To compute the LU factorization of the matrix \(A\), where

\[
A = \begin{pmatrix}
1.80 & 2.88 & 2.05 & -0.89 \\
5.25 & -2.95 & -0.95 & -3.80 \\
1.58 & -2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & 0.80
\end{pmatrix}
\]

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

F07AEF (DGETRS) solves a real system of linear equations with multiple right-hand sides, \(AX = B \) or \(A^T X = B \), where \(A \) has been factorized by F07ADF (DGETRF).

2. Specification

```fortran
SUBROUTINE F07AEF (TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ENTRY TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO
INTEGER N, NRHS, LDA, IPIV(*), LDB, INFO
DOUBLE PRECISION A(LDA,*), B(LDB,*)
CHARACTER*1 TRANS
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

To solve a real system of linear equations \(AX = B \) or \(A^T X = B \), this routine must be preceded by a call to F07ADF (DGETRF) which computes the LU factorization of \(A \) as \(A = PLU \). The solution is computed by forward and backward substitution.

If \(TRANS = 'N' \), the solution is computed by solving \(PLY = B \) and then \(UX = Y \).

If \(TRANS = 'T' \) or \('C' \), the solution is computed by solving \(U^T Y = B \) and then \(L P X = Y \).

4. References

5. Parameters

1: TRANS -- CHARACTER*1
On entry: indicates the form of the equations as follows:
 if TRANS = 'N', then AX=B is solved for X;
 T
 if TRANS = 'T' or 'C', then A X=B is solved for X.
Constraint: TRANS = 'N', 'T' or 'C'.

2: N -- INTEGER
On entry: n, the order of the matrix A. Constraint: N >= 0.

3: NRHS -- INTEGER
On entry: r, the number of right-hand sides. Constraint: NRHS >= 0.

4: A(LDA,*) -- DOUBLE PRECISION array
Note: the second dimension of the array A must be at least max(1,N).
On entry: the LU factorization of A, as returned by F07ADF (DGETRF).

5: LDA -- INTEGER
On entry:
 the first dimension of the array A as declared in the
 (sub)program from which F07AEF is called.
Constraint: LDA >= max(1,N).

6: IPIV(*) -- INTEGER array
Note: the dimension of the array IPIV must be at least max(1,N).
On entry: the pivot indices, as returned by F07ADF (DGETRF).

7: B(LDB,*) -- DOUBLE PRECISION array
Input/Output
Note: the second dimension of the array B must be at least max(1,NRHS).
On entry: the n by r right-hand side matrix B. On exit: the n by r solution matrix X.

8: LDB -- INTEGER
On entry:
 the first dimension of the array B as declared in the
 (sub)program from which F07AEF is called.
Constraint: LDB >= max(1,N).
9: INFO -- INTEGER
 On exit: INFO = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

INFO < 0
 If INFO = -i, the ith parameter has an illegal value. An
 explanatory message is output, and execution of the program
 is terminated.

7. Accuracy

For each right-hand side vector b, the computed solution x is the
exact solution of a perturbed system of equations (A+E)x=b, where

| |E| <= c(n)(epsilon)P||L||U| ,

(c(n) is a modest linear function of n, and (epsilon) is the
machine precision.

If x is the true solution, then the computed solution x satisfies
a forward error bound of the form

\[
\|x-x\|_\infty \leq c(n)\text{cond}(A,x)(\epsilon) \|x\|_\infty^{-1}
\]

where \(\text{cond}(A,x) = \|A\|_\infty \|x\|_\infty / \|x\|_\infty\) \(\text{cond}(A) = \|A\|_\infty\|A\|_\infty^{-1}\) (A). Note that \(\text{cond}(A,x)\)
\(\text{cond}(A)\) can be much smaller than \(\text{cond}(A)\), and \(\text{cond}(A)\) can be much larger
(or smaller) than \(\text{cond}(A)\).

Forward and backward error bounds can be computed by calling
F07AHF (DGERFS) (*), and an estimate for \(\text{cond}(A)\) (A) can be
obtained by calling F07AGF (DGECON) (*) with NORM = 'I'.

8. Further Comments
The total number of floating-point operations is approximately \(2n^r\).

This routine may be followed by a call to F07AHF (DGERFS)(*) to refine the solution and return an error estimate.

The complex analogue of this routine is F07ASF (ZGETRS)(*).

9. Example

To solve the system of equations \(AX=B\), where

\[
\begin{pmatrix}
1.80 & 2.88 & 2.05 & -0.89 \\
5.25 & -2.95 & -0.95 & -3.80 \\
1.58 & -2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & 0.80
\end{pmatrix}
\begin{pmatrix}
9.52 \\
24.35 \\
1.58 \\
-1.11
\end{pmatrix} = \begin{pmatrix}
0.77 \\
-6.22
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
9.52 & 18.47 \\
24.35 & 2.25 \\
9.52 & -13.28 \\
24.35 & -6.21
\end{pmatrix}
\]

Here \(A\) is unsymmetric and must first be factorized by F07ADF (DGETRF).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F07FDF (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix.

2. Specification

```fortran
SUBROUTINE F07FDF (UPLO, N, A, LDA, INFO)
ENTRY UPLO, N, A, LDA, INFO
INTEGER N, LDA, INFO
DOUBLE PRECISION A(LDA,*)
CHARACTER*1 UPLO
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine forms the Cholesky factorization of a real symmetric positive-definite matrix A either as $A = U^T U$ if $UPLO = 'U'$ or $A = LL^T$ if $UPLO = 'L'$, where U is an upper triangular matrix and L is lower triangular.

4. References

5. Parameters
CHAPTER 22. NAG LIBRARY ROUTINES

1: UPLO -- CHARACTER*1
 Input
 On entry: indicates whether the upper or lower triangular
 part of A is stored and how A is factorized, as follows:
 if UPLO = 'U', then the upper triangular part of A is
 stored and A is factorized as U^T U, where U is upper
 triangular;
 if UPLO = 'L', then the lower triangular part of A is
 stored and A is factorized as LL^T, where L is lower
 triangular.
 Constraint: UPLO = 'U' or 'L'.

2: N -- INTEGER
 Input
 On entry: n, the order of the matrix A. Constraint: N >= 0.

3: A(LDA,*) -- DOUBLE PRECISION array
 Input/Output
 Note: the second dimension of the array A must be at least
 max(1,N).
 On entry: the n by n symmetric positive-definite matrix A.
 If UPLO = 'U', the upper triangle of A must be stored and
 the elements of the array below the diagonal are not
 referenced; if UPLO = 'L', the lower triangle of A must be
 stored and the elements of the array above the diagonal are
 not referenced. On exit: the upper or lower triangle of A is
 overwritten by the Cholesky factor U or L as specified by
 UPLO.

4: LDA -- INTEGER
 Input
 On entry:
 the first dimension of the array A as declared in the
 (sub)program from which F07FDF is called.
 Constraint: LDA >= max(1,N).

5: INFO -- INTEGER
 Output
 On exit: INFO = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

 INFO < 0
 If INFO = -i, the ith parameter has an illegal value. An
 explanatory message is output, and execution of the program
 is terminated.

 INFO > 0
 If INFO = i, the leading minor of order i is not positive-
 definite and the factorization could not be completed. Hence
 A itself is not positive-definite. This may indicate an
error in forming the matrix A. To factorize a symmetric matrix which is not positive-definite, call F07MDF (DSYTRF)(*) instead.

7. Accuracy

If UPLO = 'U', the computed factor U is the exact factor of a perturbed matrix $A+E$, where

$$|E|\leq c(n)(\text{epsilon})|U||U|,$$

$c(n)$ is a modest linear function of n, and (epsilon) is the machine precision. If UPLO = 'L', a similar statement holds for the computed factor L. It follows that

$$|e_{ij}|\leq c(n)(\text{epsilon})/a_{ii}a_{jj}.$$

8. Further Comments

The total number of floating-point operations is approximately

$$\frac{1}{3} - n^3.$$

A call to this routine may be followed by calls to the routines:

- F07FEF (DPOTRS) to solve $AX=B$;
- F07FGF (DPOCON)(*) to estimate the condition number of A;
- F07FJF (DPOTRI)(*) to compute the inverse of A.

The complex analogue of this routine is F07FRF (ZPOTRF)(*).

9. Example

To compute the Cholesky factorization of the matrix A, where

$$A=\begin{pmatrix}
 4.16 & -3.12 & 0.56 & -0.10 \\
 -3.12 & 5.03 & -0.83 & 1.18 \\
 0.56 & -0.83 & 0.76 & 0.34 \\
 -0.10 & 1.18 & 0.34 & 1.18
\end{pmatrix}.$$

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
CHAPTER 22. NAG LIBRARY ROUTINES

Real symmetric positive-definite system of linear equations

— nagf.ht —

F07FEF (3NAG) Foundation Library (12/10/92) F07FEF (3NAG)

F07 -- Linear Equations (LAPACK)

F07FEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

F07FEF (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides, AX=B, where A has been factorized by F07FDF (DPOTRF).

2. Specification

SUBROUTINE F07FEF (UPLO, N, NRHS, A, LDA, B, LDB, INFO)
ENTRY UPLO, N, NRHS, A, LDA, B, LDB, INFO
INTEGER N, NRHS, LDA, LDB, INFO
DOUBLE PRECISION A(LDA,*), B(LDB,*)
CHARACTER*1 UPLO

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description
To solve a real symmetric positive-definite system of linear equations $AX=B$, this routine must be preceded by a call to F07FDF (DPOTRF) which computes the Cholesky factorization of A. The solution X is computed by forward and backward substitution.

If $UPLO = 'U'$, $A=U^T U$, where U is upper triangular; the solution X is computed by solving $U^T Y=B$ and then $UX=Y$.

If $UPLO = 'L'$, $A=LL^T$, where L is lower triangular; the solution X is computed by solving $LY=B$ and then $L^TX=Y$.

4. References

5. Parameters

1: $UPLO$ -- CHARACTER*1 Input
 On entry: indicates whether the upper or lower triangular part of A is stored and how A is factorized, as follows:
 $$
 \begin{align*}
 &\text{if } UPLO = 'U', \text{ then } A=U^T U \text{ where } U \text{ is upper triangular;} \\
 &\text{if } UPLO = 'L', \text{ then } A=LL^T \text{ where } L \text{ is lower triangular.}
 \end{align*}
 $$
 Constraint: $UPLO = 'U'$ or 'L'.

2: N -- INTEGER Input
 On entry: n, the order of the matrix A. Constraint: $N \geq 0$.

3: $NRHS$ -- INTEGER Input
 On entry: r, the number of right-hand sides. Constraint: $NRHS \geq 0$.

4: $A(LDA,*)$ -- DOUBLE PRECISION array Input
 Note: the second dimension of the array A must be at least $\max(1,N)$.
 On entry: the Cholesky factor of A, as returned by F07FDF (DPOTRF).

5: LDA -- INTEGER Input
 On entry: the first dimension of the array A as declared in the (sub)program from which F07FDF is called.
6: B(LDB,*) -- DOUBLE PRECISION array Input/Output
 Note: the second dimension of the array B must be at least
 max(1, NRHS).
 On entry: the n by r right-hand side matrix B.

7: LDB -- INTEGER Input
 On entry:
 the first dimension of the array B as declared in the
 (sub)program from which F07FEF is called.
 Constraint: LDB >= max(1, N).

8: INFO -- INTEGER Output
 On exit: INFO = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

INFO < 0
 If INFO = -i, the ith parameter has an illegal value. An
 explanatory message is output, and execution of the program
 is terminated.

7. Accuracy

For each right-hand side vector b, the computed solution x is the
exact solution of a perturbed system of equations (A+E)x=b, where

\[|E| \leq c(n)(\epsilon) \|U\| \text{ if } \text{UPLO} = 'U', \]
\[|E| \leq c(n)(\epsilon) \|L\| \text{ if } \text{UPLO} = 'L', \]

where \(c(n) \) is a modest linear function of n, and \(\epsilon \) is the
machine precision.

If \(x \) is the true solution, then the computed solution \(x \) satisfies
a forward bound of the form

\[\|x-x\|_{\infty} \leq c(n) \text{cond}(A,x)(\epsilon) \|x\|_{\infty}^{-1} \]
where \(\text{cond}(A, x) = \frac{|||A||| x|||}{||x||} \leq \infty \infty \)
\[-1 \]
\[\text{cond}(A) = |||A||| A||| \leq (\kappa) (A). \]
Note that \(\text{cond}(A, x) \infty \infty \) can be much smaller than \(\text{cond}(A) \).

Forward and backward error bounds can be computed by calling F07FHF (DPORFS)(*), and an estimate for \((\kappa) (A) \) can be obtained by calling F07FGF (DPOCON)(*).

8. Further Comments

The total number of floating-point operations is approximately
\[2 \]
\[2n r. \]

This routine may be followed by a call to F07FHF (DPORFS)(*), to refine the solution and return an error estimate.

The complex analogue of this routine is F07FSF (ZPOTRS)(*)

9. Example

To compute the Cholesky factorization of the matrix \(A \), where
\[
\begin{pmatrix}
4.16 & -3.12 & 0.56 & -0.10 \\
-3.12 & 5.03 & -0.83 & 1.18 \\
0.56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{pmatrix}
\]

and
\[
\begin{pmatrix}
8.70 & 8.30 \\
-13.35 & 2.13 \\
1.89 & 1.61 \\
-4.14 & 5.00
\end{pmatrix}
\]

Here \(A \) is symmetric positive-definite and must first be factorized by F07FDF (DPOTRF).

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Scope of the Chapter

This chapter is concerned with sorting numeric data. It handles only the simplest types of data structure and it is concerned only with internal sorting -- that is, sorting a set of data which can all be stored within the program.

Users with large files of data or complex data structures to be sorted should use a comprehensive sorting program or package.

2. Background to the Problems

The usefulness of sorting is obvious (perhaps a little too obvious, since sorting can be expensive and is sometimes done when not strictly necessary). Sorting may traditionally be associated with data-processing and non-numerical programming, but it has many uses within the realm of numerical analysis, for example, to arrange eigenvalues in ascending order of absolute value and in the ranking of observations for nonparametric statistics.

The general problem may be defined as follows. We are given \(N \) items of data

\[
R_1, R_2, \ldots, R_N.
\]

Each item \(R_i \) contains a key \(K_i \) which can be ordered relative to any other key according to some specified criterion (for example, ascending numeric value). The problem is to determine a
permutation

\[p(1), p(2), \ldots, p(N) \]

which puts the keys in order:

\[K \leq K \leq \ldots \leq K \]
\[p(1) \quad p(2) \quad p(N) \]

Sometimes we may wish actually to rearrange the items so that their keys are in order; for other purposes we may simply require a table of indices so that the items can be referred to in sorted order; or yet again we may require a table of ranks, that is, the positions of each item in the sorted order.

For example, given the single-character items, to be sorted into alphabetic order:

\[E \quad B \quad A \quad D \quad C \]

the indices of the items in sorted order are

\[3 \quad 2 \quad 5 \quad 4 \quad 1 \]

and the ranks of the items are

\[5 \quad 2 \quad 1 \quad 4 \quad 3 \]

Indices may be converted to ranks, and vice versa, by simply computing the inverse permutation.

The items may consist solely of the key (each item may simply be a number). On the other hand, the items may contain additional information (for example, each item may be an eigenvalue of a matrix and its associated eigenvector, the eigenvalue being the key). In the latter case there may be many distinct items with equal keys, and it may be important to preserve the original order among them (if this is achieved, the sorting is called 'stable').

There are a number of ingenious algorithms for sorting. For a fascinating discussion of them, and of the whole subject, see Knuth [1].

2.1. References

3. Recommendations on Choice and Use of Routines

Four categories of routines are provided:

- routines which rearrange the data into sorted order (M01C-);
- routines which determine the ranks of the data, leaving the data unchanged (M01D-);
- routines which rearrange the data according to pre-determined ranks (M01E-);
- service routines (M01Z-).

Routines are provided for sorting double precision data only.

If the task is simply to rearrange a one-dimensional array of data into sorted order, then M01CAF should be used, since this requires no extra workspace and is faster than any other method.

For many applications it is in fact preferable to separate the task of determining the sorted order (ranking) from the task of rearranging data into a pre-determined order; the latter task may not need to be performed at all. Frequently it may be sufficient to refer to the data in sorted order via an index vector, without rearranging it. Frequently also one set of data (e.g. a column of a matrix) is used for determining a set of ranks, which are then applied to other data (e.g. the remaining columns of the matrix).

To determine the ranks of a set of data, use an M01D- routine. Routines are provided for ranking one-dimensional arrays, and for ranking rows or columns of two-dimensional arrays.

To create an index vector so that data can be referred to in sorted order, first call an M01D- routine to determine the ranks, and then call M01ZAF to convert the vector of ranks into an index vector.

To rearrange data according to pre-determined ranks: use M01EAF if the data is stored in a one-dimensional array; or if the data is stored in a more complicated structure, use an index vector to generate a new copy of the data in the desired order.

Examples of these operations can be found in the routine documents of the relevant routines.

4. Index

Ranking:

- columns of a matrix, double precision numbers M01DJF
Sort vector of double precision numbers

— nagm.ht —

\begin{page}\{manpageXXm01caf\}\{NAG Documentation: m01caf\}
\beginscroll
\begin{verbatim}
M01CAF(3NAG) Foundation Library (12/10/92) M01CAF(3NAG)

rows of a matrix, double precision numbers M01DEF
vector, double precision numbers M01DAF
Rearranging (according to pre-determined ranks):
vector, double precision numbers M01EAF
Service routines:
invert a permutation (ranks to indices or vice versa) M01ZAF
Sorting (i.e., rearranging into sorted order):
vector, double precision numbers M01CAF

\end{verbatim}
\endscroll
\end{page}
M01 -- Sorting

M01CAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for
your implementation to check implementation-dependent details.
The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

M01CAF rearranges a vector of double precision numbers into
ascending or descending order.

2. Specification

SUBROUTINE M01CAF (RV, M1, M2, ORDER, IFAIL)
INTEGER M1, M2, IFAIL
DOUBLE PRECISION RV(M2)
CHARACTER*1 ORDER

3. Description

M01CAF is based on Singleton’s implementation of the ‘median-of-
three’ Quicksort algorithm [2], but with two additional
modifications. First, small subfiles are sorted by an insertion
sort on a separate final pass (Sedgewick [1]). Second, if a
subfile is partitioned into two very unbalanced subfiles, the
larger of them is flagged for special treatment: before it is
partitioned, its end-points are swapped with two random points
within it; this makes the worst case behaviour extremely
unlikely.

4. References

ACM. 21 847--857.

5. Parameters

1: RV(M2) -- DOUBLE PRECISION array Input/Output
On entry: elements M1 to M2 of RV must contain double
precision values to be sorted. On exit: these values are
rearranged into sorted order.

2: M1 -- INTEGER Input
On entry: the index of the first element of RV to be sorted. Constraint: M1 > 0.

3: M2 -- INTEGER Input

On entry: the index of the last element of RV to be sorted. Constraint: M2 >= M1.

4: ORDER -- CHARACTER*1 Input

On entry: if ORDER is 'A', the values will be sorted into ascending (i.e., non-decreasing) order; if ORDER is 'D', into descending order. Constraint: ORDER = 'A' or 'D'.

5: IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry M2 < 1,
 or M1 < 1,
 or M1 > M2.

IFAIL= 2
 On entry ORDER is not 'A' or 'D'.

7. Accuracy

Not applicable.

8. Further Comments

The average time taken by the routine is approximately proportional to n*\log n, where n = M2 - M1 + 1. The worst case time is proportional to n^2 but this is extremely unlikely to occur.
9. Example

The example program reads a list of double precision numbers and sorts them into ascending order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Ranks a vector of double precision numbers

SUBROUTINE M01DAF (RV, M1, M2, ORDER, IRANK, IFAIL)
INTEGER M1, M2, IRANK(M2), IFAIL
DOUBLE PRECISION RV(M2)
CHARACTER*1 ORDER
3. Description

M01DAF uses a variant of list-merging, as described by Knuth [1] pp 165-166. The routine takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to generate ordered lists of length at least 10. The ranking is stable: equal elements preserve their ordering in the input data.

4. References

5. Parameters

1: RV(M2) -- DOUBLE PRECISION array Input
 On entry: elements M1 to M2 of RV must contain double precision values to be ranked.

2: M1 -- INTEGER Input
 On entry: the index of the first element of RV to be ranked.
 Constraint: M1 > 0.

3: M2 -- INTEGER Input
 On entry: the index of the last element of RV to be ranked.
 Constraint: M2 >= M1.

4: ORDER -- CHARACTER*1 Input
 On entry: if ORDER is 'A', the values will be ranked in ascending (i.e., non-decreasing) order; if ORDER is 'D', into descending order. Constraint: ORDER = 'A' or 'D'.

5: IRANK(M2) -- INTEGER array Output
 On exit: elements M1 to M2 of IRANK contain the ranks of the corresponding elements of RV. Note that the ranks are in the range M1 to M2: thus, if RV(i) is the first element in the rank order, IRANK(i) is set to M1.

6: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry M2 < 1,
 or M1 < 1,
 or M1 > M2.

IFAIL = 2
On entry ORDER is not 'A' or 'D'.

7. Accuracy
Not applicable.

8. Further Comments
The average time taken by the routine is approximately proportional to n*logn, where n = M2 - M1 + 1.

9. Example
The example program reads a list of double precision numbers and ranks them in ascending order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Ranks the rows of a matrix of double precision numbers
M01DEF ranks the rows of a matrix of double precision numbers in ascending or descending order.

2. Specification

```fortran
SUBROUTINE M01DEF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)
INTEGER LDM, M1, M2, N1, N2, IRANK(M2), IFAIL
DOUBLE PRECISION RM(LDM,N2)
CHARACTER*1 ORDER
```

3. Description

M01DEF ranks rows M1 to M2 of a matrix, using the data in columns N1 to N2 of those rows. The ordering is determined by first ranking the data in column N1, then ranking any tied rows according to the data in column N1 + 1, and so on up to column N2.

M01DEF uses a variant of list-merging, as described by Knuth [1] pp 165-166. The routine takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to generate ordered lists of length at least 10. The ranking is stable: equal rows preserve their ordering in the input data.

4. References

5. Parameters

1: RM(LDM,N2) -- DOUBLE PRECISION array Input
 On entry: columns N1 to N2 of rows M1 to M2 of RM must contain double precision data to be ranked.
2: LDM -- INTEGER Input
On entry:
the first dimension of the array RM as declared in the
(sub)program from which M01DEF is called.
Constraint: LDM >= M2.

3: M1 -- INTEGER Input
On entry: the index of the first row of RM to be ranked.
Constraint: M1 > 0.

4: M2 -- INTEGER Input
On entry: the index of the last row of RM to be ranked.
Constraint: M2 >= M1.

5: N1 -- INTEGER Input
On entry: the index of the first column of RM to be used.
Constraint: N1 > 0.

6: N2 -- INTEGER Input
On entry: the index of the last column of RM to be used.
Constraint: N2 >= N1.

7: ORDER -- CHARACTER*1 Input
On entry: if ORDER is 'A', the rows will be ranked in
ascending (i.e., non-decreasing) order; if ORDER is 'D',
into descending order. Constraint: ORDER = 'A' or 'D'.

8: IRANK(M2) -- INTEGER array Output
On exit: elements M1 to M2 of IRANK contain the ranks of the
corresponding rows of RM. Note that the ranks are in the
range M1 to M2: thus, if the ith row of RM is the first in
the rank order, IRANK(i) is set to M1.

9: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M2 < 1,
or $N2 < 1$,
or $M1 < 1$,
or $M1 > M2$,
or $N1 < 1$,
or $N1 > N2$,
or $LDM < M2$.

IFAIL = 2
 On entry ORDER is not 'A' or 'D'.

7. Accuracy

Not applicable.

8. Further Comments

The average time taken by the routine is approximately proportional to $n \log n$, where $n = M2 - M1 + 1$.

9. Example

The example program reads a matrix of double precision numbers and ranks the rows in ascending order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
MO1DJF ranks the columns of a matrix of double precision numbers in ascending or descending order.

2. Specification

SUBROUTINE MO1DJF (RM, LDM, M1, M2, N1, N2, ORDER, IRANK, IFAIL)

INTEGER LDM, M1, M2, N1, N2, IRANK(N2), IFAIL

DOUBLE PRECISION RM(LDM,N2)

CHARACTER*1 ORDER

3. Description

MO1DJF ranks columns N1 to N2 of a matrix, using the data in rows M1 to M2 of those columns. The ordering is determined by first ranking the data in row M1, then ranking any tied columns according to the data in row M1 + 1, and so on up to row M2.

MO1DJF uses a variant of list-merging, as described by Knuth [1] pp 165-166. The routine takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to generate ordered lists of length at least 10. The ranking is stable: equal columns preserve their ordering in the input data.

4. References

Addison-Wesley.

5. Parameters

1: RM(LDM,N2) -- DOUBLE PRECISION array
On entry: rows M1 to M2 of columns N1 to N2 of RM must
contain double precision data to be ranked.

2: LDM -- INTEGER Input
 On entry:
 the first dimension of the array RM as declared in the
 (sub)program from which M01DJF is called.
 Constraint: LDM \(\geq \) M2.

3: M1 -- INTEGER Input
 On entry: the index of the first row of RM to be used.
 Constraint: M1 > 0.

4: M2 -- INTEGER Input
 On entry: the index of the last row of RM to be used.
 Constraint: M2 \(\geq \) M1.

5: N1 -- INTEGER Input
 On entry: the index of the first column of RM to be ranked.
 Constraint: N1 > 0.

6: N2 -- INTEGER Input
 On entry: the index of the last column of RM to be ranked.
 Constraint: N2 > N1.

7: ORDER -- CHARACTER*1 Input
 On entry: if ORDER is 'A', the columns will be ranked in
 ascending (i.e., non-decreasing) order; if ORDER is 'D',
 into descending order. Constraint: ORDER = 'A' or 'D'.

8: IRANK(N2) -- INTEGER array Output
 On exit: elements N1 to N2 of IRANK contain the ranks of the
 corresponding columns of RM. Note that the ranks are in the
 range N1 to N2: thus, if the ith column of RM is the first
 in the rank order, IRANK(i) is set to N1.

9: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL= 1
 On entry M2 < 1,
 or N2 < 1,
 or M1 < 1,
 or M1 > M2,
 or N1 < 1,
 or N1 > N2,
 or LDM < M2.

IFAIL= 2
 On entry ORDER is not 'A' or 'D'.

7. Accuracy

Not applicable.

8. Further Comments

The average time taken by the routine is approximately proportional to n*logn, where n = N2 - N1 + 1.

9. Example

The example program reads a matrix of double precision numbers and ranks the columns in ascending order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Rearranges a vector of double precision numbers
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

M01EAF rearranges a vector of double precision numbers into the order specified by a vector of ranks.

2. Specification

```fortran
SUBROUTINE M01EAF (RV, M1, M2, IRANK, IFAIL)
    INTEGER M1, M2, IRANK(M2), IFAIL
    DOUBLE PRECISION RV(M2)
```

3. Description

M01EAF is designed to be used typically in conjunction with the M01D- ranking routines. After one of the M01D- routines has been called to determine a vector of ranks, M01EAF can be called to rearrange a vector of real numbers into the rank order. If the vector of ranks has been generated in some other way, then M01ZBF(*) should be called to check its validity before M01EAF is called.

4. References

None.

5. Parameters

1: RV(M2) -- DOUBLE PRECISION array Input/Output
 On entry: elements M1 to M2 of RV must contain double precision values to be rearranged. On exit: these values are rearranged into rank order. For example, if IRANK(i) = M1, then the initial value of RV(i) is moved to RV(M1).
CHAPTER 22. NAG LIBRARY ROUTINES

2: M1 -- INTEGER
 Input

3: M2 -- INTEGER
 Input
 On entry: M1 and M2 must specify the range of the ranks supplied in IRANK and the elements of RV to be rearranged. Constraint: 0 < M1 <= M2.

4: IRANK(M2) -- INTEGER array
 Input
 On entry: elements M1 to M2 of IRANK must contain a permutation of the integers M1 to M2, which are interpreted as a vector of ranks.

5: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry M2 < 1,
 or M1 < 1,
 or M1 > M2.

IFAIL= 2
 Elements M1 to M2 of IRANK contain a value outside the range M1 to M2.

IFAIL= 3
 Elements M1 to M2 of IRANK contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IRANK do not contain a permutation of the integers M1 to M2. On exit, the contents of RV may be corrupted. To check the validity of IRANK without the risk of corrupting RV, use M01ZBF(*).

7. Accuracy

Not applicable.
8. Further Comments

The average time taken by the routine is approximately proportional to \(n \), where \(n = M_2 - M_1 + 1 \).

9. Example

The example program reads a matrix of double precision numbers and rearranges its rows so that the elements of the \(k \)th column are in ascending order. To do this, the program first calls M01DAF to rank the elements of the \(k \)th column, and then calls M01EAF to rearrange each column into the order specified by the ranks. The value of \(k \) is read from the data-file.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

1. Purpose

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
M01ZAF inverts a permutation, and hence converts a rank vector to an index vector, or vice versa.

2. Specification

SUBROUTINE M01ZAF (IPERM, M1, M2, IFAIL)
INTEGER IPERM(M2), M1, M2, IFAIL

3. Description

There are two common ways of describing a permutation using an integer vector IPERM. The first uses ranks: IPERM(i) holds the position to which the ith data element should be moved in order to sort the data; in other words its rank in the sorted order. The second uses indices: IPERM(i) holds the current position of the data element which would occur in ith position in sorted order. For example, given the values

3.5 5.9 2.9 0.5

to be sorted in ascending order, the ranks would be

3 4 2 1

and the indices would be

4 3 1 2

The M01D- routines generate ranks, and the M01E- routines require ranks to be supplied to specify the re-ordering. However if it is desired simply to refer to the data in sorted order without actually re-ordering them, indices are more convenient than ranks (see the example in Section 9).

M01ZAF can be used to convert ranks to indices, or indices to ranks, as the two permutations are inverses of one another.

4. References

None.

5. Parameters

1: IPERM(M2) -- INTEGER array Input/Output
On entry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to M2. On exit: these elements contain the inverse permutation of the integers M1 to M2.
2: M1 -- INTEGER Input

3: M2 -- INTEGER Input
On entry: M1 and M2 must specify the range of elements used in the array IPERM and the range of values in the permutation, as specified under IPERM. Constraint: 0 < M1 <= M2.

4: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry M2 < 1,
or M1 < 1,
or M1 > M2.

IFAIL= 2
Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL= 3
Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers M1 to M2; on exit these elements are usually corrupted. To check the validity of a permutation without the risk of corrupting it, use M01ZBF(*).

7. Accuracy

Not applicable.

8. Further Comments

None.

9. Example
The example program reads a matrix of double precision numbers and prints its rows in ascending order as ranked by M01DEF. The program first calls M01DEF to rank the rows, and then calls M01ZAF to convert the rank vector to an index vector, which is used to refer to the rows in sorted order.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

22.6 nags.ht

Approximations of Special Functions

— nags.ht —

| nags.ht |

S(3NAG) Foundation Library (12/10/92) S(3NAG)

S -- Approximations of Special Functions Introduction -- S
Chapter S Approximations of Special Functions

1. Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical functions.

2. Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument, and the techniques involved are described in Section 2.1. In addition the chapter contains routines for elliptic integrals (see Section 2.2),
Bessel and Airy functions of a complex argument (see Section 2.3), and exponential of a complex argument.

2.1. Functions of a Single Real Argument

Most of the routines for functions of a single real argument have been based on truncated Chebyshev expansions. This method of approximation was adopted as a compromise between the conflicting requirements of efficiency and ease of implementation on many different machine ranges. For details of the reasons behind this choice and the production and testing procedures followed in constructing this chapter see Schonfelder [7].

Basically if the function to be approximated is \(f(x) \), then for \(x \) is in \([a,b]\) an approximation of the form

\[
\sum_{r=0}^{\infty} c_r T_r(t)
\]

\(\sim \)

\[
f(x) = g(x) \sim \sum_{r=0}^{\infty} c_r T_r(t) \]

is used, (\(\sim \) denotes, according to the usual convention, a summation in which the first term is halved), where \(g(x) \) is some suitable auxiliary function which extracts any singularities, asymptotes and, if possible, zeros of the function in the range in question and \(t = t(x) \) is a mapping of the general range \([a,b]\) to the specific range \([-1,+1]\) required by the Chebyshev polynomials, \(T_r(t) \). For a detailed description of the properties of the Chebyshev polynomials see Clenshaw [5] and Fox and Parker [6].

The essential property of these polynomials for the purposes of function approximation is that \(T_r(t) \) oscillates between \(\pm 1 \) and it takes its extreme values \(n+1 \) times in the interval \([-1,+1]\). Therefore, provided the coefficients \(c_r \) decrease in magnitude sufficiently rapidly the error made by truncating the Chebyshev expansion after \(n \) terms is approximately given by

\[
E(t) \approx C T_n(t) \]

\(\sim \)

\[
E(t) \sim C T_n(t) \]

That is the error oscillates between \(\pm C \) and takes its extreme value \(n+1 \) times in the interval in question. Now this is just the
condition that the approximation be a mini-max representation, one which minimizes the maximum error. By suitable choice of the interval, \([a,b]\), the auxiliary function, \(g(x)\), and the mapping of the independent variable, \(t(x)\), it is almost always possible to obtain a Chebyshev expansion with rapid convergence and hence truncations that provide near mini-max polynomial approximations to the required function. The difference between the true mini-max polynomial and the truncated Chebyshev expansion is seldom sufficiently great to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient, and hence most commonly used, works with the equivalent simple polynomial. The second method, which is used on the few occasions when the first method proves to be unstable, is based directly on the truncated Chebyshev series and uses backward recursion to evaluate the sum. For the first method, a suitably truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine precision) is converted to the equivalent simple polynomial. That is we evaluate the set of coefficients \(b\) such that

\[
y(t) = \sum_{r=0}^{n-1} b_r T_r(t).
\]

The polynomial can then be evaluated by the efficient Horner's method of nested multiplications,

\[
y(t) = (b_0 + t(b_1 + t(\ldots + t(b_{n-1} + tb_n))\ldots)).
\]

This method of evaluation results in efficient routines but for some expansions there is considerable loss of accuracy due to cancellation effects. In these cases the second method is used. It is well known that if

\[
b_n = \sqrt{n}
\]

\[
b_{n-1} = 2tb_n + \sqrt{n-1}
\]

\[
b_{n-2} = 2tb_n - b_{n-1} + \sqrt{n-2}
\]

\[
b_j = 2tb_{j+2} - b_{j+1} + \sqrt{j-3}, \quad j=n-3,n-4,\ldots,0
\]

then
and this is always stable. This method is most efficiently implemented by using three variables cyclically and explicitly constructing the recursion.

That is,

\[
\begin{align*}
(\alpha)_0 &= C \\
(\beta)_0 &= 2t(\alpha)+C \\
(\gamma)_0 &= 2t(\beta)-(\alpha)+C \\
(\alpha)_1 &= 2t(\gamma)-(\beta)+C \\
(\beta)_1 &= 2t(\alpha)-(\gamma)+C \\
&\vdots \\
(\alpha)_n &= 2t(\gamma)-(\beta)+C \quad \text{(say)} \\
(\beta)_n &= 2t(\alpha)-(\gamma)+C \\
y(t) &= t(\beta)-(\alpha)+C
\end{align*}
\]

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear) factors extracting zeros, and the primary compiler-provided functions, \(\sin, \cos, \ln, \exp, \sqrt{\cdot} \), which extract singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth well-behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly convergent.

The mappings of \([a,b]\) to \([-1,+1]\) used, range from simple linear mappings to the case when \(b\) is infinite and considerable improvement in convergence can be obtained by use of a bilinear form of mapping. Another common form of mapping is used when the function is even, that is it involves only even powers in its expansion. In this case an approximation over the whole interval \([-a,a]\) can be provided using a mapping \(t=2(-x)^2-1\). This embodies the evenness property but the expansion in \(t\) involves all powers and hence removes the necessity of working with an expansion with
half its coefficients zero.

For many of the routines an analysis of the error in principle is
given, viz, if \(E \) and \(\nabla \) are the absolute errors in function
and argument and \(\epsilon \) and \(\delta \) are the corresponding
relative errors, then

\[
E^* = |f'(x)| \nabla
\]
\[
E^* = |xf'(x)| \delta
\]
\[
\frac{|xf'(x)|}{|f(x)|} \epsilon = \frac{\epsilon}{\delta}
\]

If we ignore errors that arise in the argument of the function by
propagation of data errors etc and consider only those errors
that result from the fact that a real number is being represented
in the computer in floating-point form with finite precision,
then \(\delta \) is bounded and this bound is independent of the
magnitude of \(x \); e.g. on an 11-digit machine

\[
|\delta| \leq 10^{-11}
\]

(This of course implies that the absolute error \(\nabla = x \delta \)
is also bounded but the bound is now dependent on \(x \)). However
because of this the last two relations above are probably of more
interest. If possible the relative error propagation is
discussed; that is the behaviour of the error amplification
factor \(|xf'(x)/f(x)| \) is described, but in some cases, such as
near zeros of the function which cannot be extracted explicitly,
absolute error in the result is the quantity of significance and
here the factor \(|xf'(x)| \) is described. In general, testing of the
functions has shown that their error behaviour follows fairly
well these theoretical error behaviours. In regions, where the
error amplification factors are less than or of the order of one,
the errors are slightly larger than the above predictions. The
errors are here limited largely by the finite precision of
arithmetic in the machine but \(\epsilon \) is normally no more than
a few times greater than the bound on \(\delta \). In regions where
the amplification factors are large, order of ten or greater, the
theoretical analysis gives a good measure of the accuracy
obtainable.

It should be noted that the definitions and notations used for
the functions in this chapter are all taken from Abramowitz and
Stegun [1]. Users are strongly recommended to consult this book
for details before using the routines in this chapter.
2.2. Approximations to Elliptic Integrals

The functions provided here are symmetrised variants of the classic elliptic integrals. These alternative definitions have been suggested by Carlson (see [2], [3] and [4]) and he also developed the basic algorithms used in this chapter.

The standard integral of the first kind is represented by

\[
\int_{0}^{\infty} \frac{1}{\sqrt{(t+x)(t+y)(t+z)}} \, dt
\]

where \(x, y, z \geq 0\) and at most one may be equal to zero.

The normalisation factor, \(\frac{1}{\sqrt{x}}\), is chosen so as to make

\[
R(x,x,x)=1/\sqrt{x}.
\]

If any two of the variables are equal, \(R\) degenerates into the second function

\[
\int_{0}^{\infty} \frac{1}{\sqrt{t+x(t+y)}} \, dt
\]

where the argument restrictions are now \(x \geq 0\) and \(y \neq 0\).

This function is related to the logarithm or inverse hyperbolic functions if \(0 < y < x\), and to the inverse circular functions if \(0 < x \leq y\).

The integrals of the second kind are defined by

\[
\int_{0}^{\infty} \frac{3}{\sqrt{(t+x)(t+y)(t+z)}} \, dt
\]
with $z>0$, $x\geq 0$ and $y\geq 0$ but only one of x or y may be zero.

The function is a degenerate special case of the integral of the third kind

$$\int_0^\infty \frac{1}{\sqrt{(t+x)(t+y)(t+z)}(t+(\rho))} \, dt$$

with $(\rho) \neq 0$, $x, y, z \geq 0$ with at most one equality holding. Thus $R(x, y, z) = R(x, y, z, z)$. The normalisation of both these functions is chosen so that

$$R(x, x, x) = R(x, x, x, x) = \frac{1}{x \sqrt{x}}$$

The algorithms used for all these functions are based on duplication theorems. These allow a recursion system to be established which constructs a new set of arguments from the old using a combination of arithmetic and geometric means. The value of the function at the original arguments can then be simply related to the value at the new arguments. These recursive reductions are used until the arguments differ from the mean by an amount small enough for a Taylor series about the mean to give sufficient accuracy when retaining terms of order less than six. Each step of the recurrences reduces the difference from the mean by a factor of four, and as the truncation error is of order six, the truncation error goes like $(4096)^{-n}$, where n is the number of iterations.

The above forms can be related to the more traditional canonical forms (see Abramowitz and Stegun [1], 17.2).

If we write $q = \cos(\phi), r = 1 - m \sin(\phi), s = 1 + n \sin(\phi)$, where $0 < (\phi) \leq -\pi$, we have: the elliptic integral of the first kind:

$$\int 2 \sqrt{\sin(\phi)} \, d\phi$$
22.6. NAGS.HT

\[F((\phi)|m) = \int_{0}^{1} (1-t^2)(1-mt^2) \, dt = \sin(\phi) R(q,r,1); \]

the elliptic integral of the second kind:

\[E((\phi)|m) = \int_{0}^{1} (1-t^2)(1-mt^2) \, dt \]

\[= \sin(\phi) R(q,r,1) - m \sin(\phi) R(q,r,1) \]

the elliptic integral of the third kind:

\[(\pi)(n;(\phi)|m) = \int_{0}^{1} (1-t^2)(1-mt^2)(1+nt^2) \, dt \]

\[= \sin(\phi) R(q,r,1) - n \sin(\phi) R(q,r,1,s) \]

Also the complete elliptic integral of the first kind:

\[K(m) = \int_{0}^{\pi/2} (1-m \sin^2(\theta)) \, d\theta = R(0,1-m,1); \]

the complete elliptic integral of the second kind:

\[E(m) = \int_{0}^{\pi/2} (1-m \sin^2(\theta)) \, d\theta = R(0,1-m,1) - m R(0,1-m,1). \]

2.3. Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as described in Section 2.1. The routines for functions of a complex argument, however, use
different methods. These routines relate all functions to the modified Bessel functions \(I_{\nu}(z) \) and \(K_{\nu}(z) \) computed in the right-half complex plane, including their analytic continuations. \(I_{\nu} \) and \(K_{\nu} \) are computed by different methods according to the values of \(z \) and \(\nu \). The methods include power series, asymptotic expansions and Wronskian evaluations. The relations between functions are based on well known formulae (see Abramowitz and Stegun [1]).

2.4. References

3. Recommendations on Choice and Use of Routines

3.1. Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly recommended to look at transforming their analysis directly to one of the Carlson forms, rather than the traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely to simplify the analysis, and these symmetric forms are much more stable to calculate.

The routine S21BAF for R is largely included as an auxiliary to the other routines for elliptic integrals. This integral
essentially calculates elementary functions, e.g.

\[
\begin{align*}
((1+x)2) & \\
\ln(x-1) & = \frac{1}{x}(x-1), x > 0; \\
C(2) & \\
2 & \\
\arcsin(x) & = x, |x| = 1; \\
C & \\
2 & \\
\arcsinh(x) & = x, |x| = 1, \text{etc} \\
C & \\
\end{align*}
\]

In general this method of calculating these elementary functions is not recommended as there are usually much more efficient specific routines available in the Library. However, S21BAF may be used, for example, to compute \(\ln(x)/(x-1)\) when \(x\) is close to 1, without the loss of significant figures that occurs when \(\ln(x)\) and \(x-1\) are computed separately.

3.2. Bessel and Airy Functions

For computing the Bessel functions \(J_n(x)\), \(Y_n(x)\), \(I_n(x)\) and \(K_n(x)\) where \(x\) is real and \((n)= 0\) or 1, special routines are provided, which are much faster than the more general routines that allow a complex argument and arbitrary real \((n)\geq 0\) functions and their derivatives \(A_i(x)\), \(B_i(x)\), \(A'_i(x)\), \(B'_i(x)\) for a real argument which are much faster than the routines for complex arguments.

3.3. Index

Airy function, \(Ai\), real argument S17AGF
Airy function, \(Ai'\), real argument S17AJF
Airy function, \(Ai\) or \(Ai'\), complex argument, optionally scaled S17DGF
Airy function, \(Bi\), real argument S17AHF
Airy function, \(Bi'\), real argument S17AKF
Airy function, \(Bi\) or \(Bi'\), complex argument, optionally scaled S17DHF
Bessel function, \(J_0(x)\), real argument S17AEF
Bessel function, \(J_1(x)\), real argument S17AFF
Bessel function, \(J_n(x)\), complex argument, optionally scaled S17DEF
CHAPTER 22. NAG LIBRARY ROUTINES

scaled
Bessel function, Y, real argument $S17ACF$

Bessel function, Y, real argument $S17ADF$

Bessel function, Y, complex argument, optionally scaled $S17DCF$

scaled
Complement of the Error function $S15ADF$

Cosine Integral $S13ACF$

Elliptic integral, symmetrised, degenerate of 1st kind, R $S21BAF$

Elliptic integral, symmetrised, of 1st kind, R $S21BBF$

Elliptic integral, symmetrised, of 2nd kind, R $S21BCF$

Elliptic integral, symmetrised, of 3rd kind, R $S21BDF$

Erf, real argument $S15AEF$

Erfc, real argument $S15ADF$

Error function $S15AEF$

Exponential, complex $S01EAF$

Exponential Integral $S13AAF$

Fresnel Integral, C $S20ADF$

Fresnel Integral, S $S20ACF$

Gamma function $S14AAF$

Gamma function, incomplete (1) (2) $S14BAF$

Generalized Factorial function $S14AAF$

Hankel function H or H, complex argument, optionally scaled $S17DLF$

optionally scaled
Incomplete Gamma function $S14BAF$

Jacobian elliptic functions, sn, cn, dn $S21CAF$

Kelvin function, bei x $S19ABF$

Kelvin function, ber x $S19ACF$

Kelvin function, kei x $S19ADF$

Kelvin function, ker x $S19ACF$

Logarithm of Gamma function $S14ABF$

Modified Bessel function, I, real argument $S18AEF$

Modified Bessel function, I, real argument $S18AFF$

Modified Bessel function, I, complex argument, optionally scaled $S18DEF$

optionally scaled
Modified Bessel function, K, real argument $S18ACF$

Modified Bessel function, K, real argument $S18ADF$
Modified Bessel function, \(K_\nu \), complex argument, \(S18DCF \)
optionally scaled
Sine integral \(S13ADF \)

S -- Approximations of Special Functions

Chapter S

Approximations of Special Functions

\[z \]

- \(S01EAF \) Complex exponential, \(e^z \)
- \(S13AAF \) Exponential integral \(E(x) \)
- \(S13ACF \) Cosine integral \(\text{Ci}(x) \)
- \(S13ADF \) Sine integral \(\text{Si}(x) \)
- \(S14AAF \) Gamma function
- \(S14ABF \) Log Gamma function
- \(S14BAF \) Incomplete gamma functions \(P(a,x) \) and \(Q(a,x) \)
- \(S15ADF \) Complement of error function \(\text{erfc}(x) \)
- \(S15AEF \) Error function \(\text{erf}(x) \)
- \(S17ACF \) Bessel function \(Y_0(x) \)
- \(S17ADF \) Bessel function \(Y_1(x) \)
- \(S17AEF \) Bessel function \(J_0(x) \)
- \(S17AFF \) Bessel function \(J_1(x) \)
- \(S17AGF \) Airy function \(\text{Ai}(x) \)
- \(S17AHF \) Airy function \(\text{Bi}(x) \)
- \(S17AJF \) Airy function \(\text{Ai}'(x) \)
S17AKF Airy function \(\text{Bi}'(x) \)
S17DCF Bessel functions \(Y_{\nu+a}(z) \), real \(a\geq0 \), complex \(z \),
\((\nu)+a \) \(\nu=0,1,2,... \)
S17DEF Bessel functions \(J_{\nu+a}(z) \), real \(a\geq0 \), complex \(z \),
\((\nu)+a \) \(\nu=0,1,2,... \)
S17DGF Airy functions \(\text{Ai}(z) \) and \(\text{Ai}'(z) \), complex \(z \)
S17DHF Airy functions \(\text{Bi}(z) \) and \(\text{Bi}'(z) \), complex \(z \)
\((j) \)
S17DLF Hankel functions \(H_j^{(\nu+a)}(z) \), \(j=1,2 \), real \(a\geq0 \), complex \(z \),
\((\nu)+a \) \(\nu=0,1,2,... \)
S18ACF Modified Bessel function \(K_0(x) \)
S18ADF Modified Bessel function \(K_1(x) \)
S18AEF Modified Bessel function \(I_0(x) \)
S18AFF Modified Bessel function \(I_1(x) \)
S18DCF Modified Bessel functions \(K_{\nu+a}(z) \), real \(a\geq0 \), complex \(z \),
\((\nu)+a \) \(\nu=0,1,2,... \)
S18DEF Modified Bessel functions \(I_{\nu+a}(z) \), real \(a\geq0 \), complex \(z \),
\((\nu)+a \) \(\nu=0,1,2,... \)
S19AAF Kelvin function \(\text{ber} \ x \)
S19ABF Kelvin function \(\text{bei} \ x \)
S19ACF Kelvin function \(\text{ker} \ x \)
S19ADF Kelvin function \(\text{kei} \ x \)
S20ACF Fresnel integral \(S(x) \)
S20ADF Fresnel integral \(C(x) \)
Exponential function e^z, for complex z
2. Specification

```fortran
COMPLEX(KIND(1.0D0)) FUNCTION S01EAF (Z, IFAIL)
INTEGER IFAIL
COMPLEX(KIND(1.0D0)) Z
```

3. Description

\[z \]

This routine evaluates the exponential function \(e^z \), taking care to avoid machine overflow, and giving a warning if the result cannot be computed to more than half precision. The function is evaluated as \(e^z = e^{x+\ln|\cos y|} \cos y + i e^{x+\ln|\sin y|} \sin y \), where \(x \) and \(y \) are the real and imaginary parts respectively of \(z \).

Since \(\cos y \) and \(\sin y \) are less than or equal to 1 in magnitude, it is possible that \(e^z \) may overflow although \(e^{x+\ln|\cos y|} \cos y \) or \(e^{x+\ln|\sin y|} \sin y \) does not. In this case the alternative formula \(\text{sign}(\cos y) e^{x+\ln|\cos y|} \) is used for the real part of the result, and \(\text{sign}(\sin y) e^{x+\ln|\sin y|} \) for the imaginary part. If either part of the result still overflows, a warning is returned through parameter IFAIL.

If \(\text{Im} z \) is too large, precision may be lost in the evaluation of \(\sin y \) and \(\cos y \). Again, a warning is returned through IFAIL.

4. References

None.

5. Parameters

1: Z -- COMPLEX(KIND(1.0D0)) Input
 On entry: the argument \(z \) of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
IFAIL= 1
The real part of the result overflows, and is set to the largest safe number with the correct sign. The imaginary part of the result is meaningful.

IFAIL= 2
The imaginary part of the result overflows, and is set to the largest safe number with the correct sign. The real part of the result is meaningful.

IFAIL= 3
Both real and imaginary parts of the result overflow, and are set to the largest safe number with the correct signs.

IFAIL= 4
The computed result is accurate to less than half precision, due to the size of Im z.

IFAIL= 5
The computed result has no precision, due to the size of Im z, and is set to zero.

7. Accuracy
Accuracy is limited in general only by the accuracy of the Fortran intrinsic functions in the computation of siny, cosy and xe, where x=Re z, y=Im z. As y gets larger, precision will probably be lost due to argument reduction in the evaluation of the sine and cosine functions, until the warning error IFAIL = 4 occurs when y gets larger than \sqrt{1/(\epsilon)} (\epsilon is the machine precision). Note that on some machines, the intrinsic functions SIN and COS will not operate on arguments larger than about \sqrt{1/(\epsilon)}, and so IFAIL can never return as 4.

In the comparatively rare event that the result is computed by x+ln|cosy| and x+ln|siny| the formulae sign(cosy)e and sign(siny)e, a further small loss of accuracy may be expected due to rounding errors in the logarithmic function.

8. Further Comments
None.
9. Example

The example program reads values of the argument \(z \) from a file, evaluates the function at each value of \(z \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Returns the value of the exponential integral \(E(x) \)

--- nags.ht ---

S13AAF(3NAG) Foundation Library (12/10/92) S13AAF(3NAG)

S13 -- Approximations of Special Functions S13AAF
S13AAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S13AAF returns the value of the exponential integral \(E(x) \), via the routine name.

2. Specification

```
DOUBLE PRECISION FUNCTION S13AAF (X, IFAIL)
INTEGER IFAIL
```
3. Description

The routine calculates an approximate value for

\[E(x) = \int_{\infty}^{1/x} e^{-u} \, du, \quad x > 0. \]

For \(0 < x \leq 4\), the approximation is based on the Chebyshev expansion

\[E(x) = y(t) - \ln(x) = \sum_{r=1}^{\infty} a_r T_r(t) - \ln(x), \quad \text{where} \quad t = -x^{-1}. \]

For \(x > 4\),

\[E(x) = \frac{1}{x} e^{-x} \frac{1}{x} \sum_{r=1}^{\infty} a_r T_r(t), \quad \text{where} \quad t = \frac{11.25 - x}{3.25 + x}. \]

In both cases, \(-1 \leq t \leq 1\).

To guard against producing underflows, if \(x > x_{\text{hi}}\) the result is set directly to zero. For the value \(x_{\text{hi}}\) see the Users' Note for your implementation.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION

Input

On entry: the argument \(x\) of the function. Constraint: \(X > 0\).
2: IFAIL -- INTEGER
 Input/Output
 Before entry, IFAIL must be assigned a value. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.

 Unless the routine detects an error (see Section 6), IFAIL
 contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
 The routine has been called with an argument less than or
 equal to zero for which the function is not defined. The
 result returned is zero.

7. Accuracy

If (delta) and (epsilon) are the relative errors in argument and
result respectively, then in principle,

\[\frac{| -x |}{| E (x) |} \approx | \epsilon | \frac{e}{1} \]

so the relative error in the argument is amplified in the result
by at least a factor \(e / E (x) \). The equality should hold if
\((delta) \) is greater than the machine precision \((delta) \) due to
data errors etc but if \((delta) \) is simply a result of round-off
in the machine representation, it is possible that an extra
figure may be lost in internal calculation and round-off.

The behaviour of this amplification factor is shown in Figure 1.

Figure 1
 Please see figure in printed Reference Manual

It should be noted that, for small \(x \), the amplification factor
tends to zero and eventually the error in the result will be
limited by machine precision.

For large \(x \),

\[(\epsilon)^{x} \cdot (delta) = (Delta), \]
the absolute error in the argument.

8. Further Comments

None.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

Returns the value of the cosine integral

--- nags.ht ---

\begin{page}{manpageXXs13acf}{NAG Documentation: s13acf}
\beginscroll
\begin{verbatim}
S13ACF(3NAG) Foundation Library (12/10/92) S13ACF(3NAG)

S13 -- Approximations of Special Functions

S13ACF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S13ACF returns the value of the cosine integral
\[\begin{align*}
 \text{Ci}(x) &= (\gamma) + \ln x + \int_{0}^{\infty} \frac{\cos u - 1}{u} \, du, \quad x > 0 \\
 \quad &= \gamma + \ln x + \lim_{u \to 0} \left(\frac{\cos u - 1}{u} \right), \quad x > 0 \\
\end{align*} \]
via the routine name, where \((\gamma)\) denotes Euler's constant.

2. Specification

\begin{verbatim}
DOUBLE PRECISION FUNCTION S13ACF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
\end{verbatim}

3. Description

The routine calculates an approximate value for \(\text{Ci}(x)\).

For \(0 < x \leq 16\) it is based on the Chebyshev expansion

\[\text{Ci}(x) = \ln x + \sum_{r=0}^{(16)} a_r T_r(t), \quad t = \frac{x}{2(16)} - 1. \]

For \(16 < x < x_i\) where the value of \(x_i\) is given in the Users’ Note for your implementation,

\[\text{Ci}(x) = \left(\frac{f(x) \sin x}{x^2} \right) \left(\frac{g(x) \cos x}{x} \right) \]

where \(f(x) = \sum_{r=0}^{(16)} f_r T_r(t)\) and \(g(x) = \sum_{r=0}^{(16)} g_r T_r(t)\), \(t = \frac{x}{2(16)} - 1\).

For \(x \geq x_i\), \(\text{Ci}(x) = 0\) to within the accuracy possible (see Section 7).

4. References

5. Parameters
1: X -- DOUBLE PRECISION
 Input
 On entry: the argument x of the function. Constraint: X > 0.

2: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
The routine has been called with an argument less than or equal to zero for which the function is not defined. The result returned is zero.

7. Accuracy

If E and (epsilon) are the absolute and relative errors in the result and (delta) is the relative error in the argument then in principle these are related by

\[| (\text{delta})\cos x| \approx |E| \quad \text{and} \quad |(\text{epsilon})| \approx \frac{|(\text{delta})\cos x|}{|\text{Ci}(x)|}.\]

That is accuracy will be limited by machine precision near the origin and near the zeros of \(\cos x\), but near the zeros of \(\text{Ci}(x)\) only absolute accuracy can be maintained.

The behaviour of this amplification is shown in Figure 1.

Figure 1
Please see figure in printed Reference Manual

\[\sin x\]

For large values of \(x\), \(\text{Ci}(x)\)~ ---- therefore

\[x \quad (\text{epsilon}) \cdot (\text{delta})\cot x\] and since (\text{delta}) is limited by the finite precision of the machine it becomes impossible to return results which have any relative accuracy. That is, when \(x \geq 1/(\text{delta})\) we have that \(|\text{Ci}(x)| \leq 1/x^E\) and hence is not significantly different from zero.
Hence \(x \) is chosen such that for values of \(x \geq x^* \), \(C_i(x) \) in principle would have values less than the machine precision and so is essentially zero.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

S13ADF returns the value of the sine integral

\[
\frac{x}{\sin u} \quad \int_{0}^{x} \frac{\sin u}{u} \, du
\]

via the routine name.

2. Specification

```plaintext
DOUBLE PRECISION FUNCTION S13ADF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

The routine calculates an approximate value for Si(x).

For \(|x| \leq 16.0\) it is based on the Chebyshev expansion

\[
\text{Si}(x) = x \sum_{r=0}^{\infty} a_r T_r(t), \quad t = 2(\frac{2x}{16}) - 1.
\]

For \(16 < |x| < x_0\), where \(x_0\) is an implementation dependent number,

\[
\text{Si}(x) = \text{sign}(x) \left\{ \frac{\pi}{2} \cos x \frac{\sin x}{x^2} \right\}^2
\]

\[
\text{Si}(x) = \text{sign}(x) \left\{ \frac{\pi}{2} \cos x \frac{\sin x}{x^2} \right\}^2
\]

where \(f(x) = \sum_{r=0}^{\infty} f_r T_r(t)\) and \(g(x) = \sum_{r=0}^{\infty} g_r T_r(t), \quad t = 2(\frac{2x}{16}) - 1\).

For \(|x| > x_0\), \(\text{Si}(x) = -(\pi) \text{sign} x\) to within machine precision.

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

There are no failure exits from this routine. The parameter IFAIL has been included for consistency with other routines in this chapter.

7. Accuracy

If (delta) and (epsilon) are the relative errors in the argument and result, respectively, then in principle

\[
\frac{|(\text{delta})\sin x|}{|(\epsilon)|} \approx \frac{|(\epsilon)|}{|\text{Si}(x)|}.\]

The equality may hold if (delta) is greater than the machine precision ((delta) due to data errors etc) but if (delta) is simply due to round-off in the machine representation, then since the factor relating (delta) to (epsilon) is always less than one, the accuracy will be limited by machine precision.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
Returns the value of the Gamma function

--- nags.ht ---

S14AAF(3NAG) Foundation Library (12/10/92) S14AAF(3NAG)

S14 -- Approximations of Special Functions S14AAF
 S14AAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

 S14AAF returns the value of the Gamma function \((\Gamma)(x)\), via the routine name.

2. Specification

 \[
 \text{DOUBLE PRECISION FUNCTION S14AAF (X, IFAIL)}
 \]
 \[
 \text{INTEGER IFAIL}
 \]
 \[
 \text{DOUBLE PRECISION X}
 \]

3. Description

 This routine evaluates an approximation to the Gamma function \((\Gamma)(x)\). The routine is based on the Chebyshev expansion:

 \[
 (\Gamma)(1+u) = \sum_{r=0}^{\infty} a_r T_r(t), \text{ where } 0\leq u < 1, \ t=2u-1,
 \]
 \[
 \text{where } a_r \text{ are coefficients.}
 \]
and uses the property \((\Gamma)(1+x)=x(\Gamma)(x)\). If \(x=N+1+u\) where \(N\) is integral and \(0\leq u<1\) then it follows that:

\[
\begin{align*}
\text{for } N>0 & \quad (\Gamma)(x)=(x-1)(x-2)\ldots(x-N)(\Gamma)(1+u), \\
\text{for } N=0 & \quad (\Gamma)(x)=(\Gamma)(1+u), \\
\text{for } N<0 & \quad (\Gamma)(x)=\frac{1}{x(x+1)(x+2)\ldots(x-N-1)} (\Gamma)(1+u)
\end{align*}
\]

There are four possible failures for this routine:

(i) if \(x\) is too large, there is a danger of overflow since \((\Gamma)(x)\) could become too large to be represented in the machine;

(ii) if \(x\) is too large and negative, there is a danger of underflow;

(iii) if \(x\) is equal to a negative integer, \((\Gamma)(x)\) would overflow since it has poles at such points;

(iv) if \(x\) is too near zero, there is again the danger of overflow on some machines. For small \(x\), \((\Gamma)(x)\approx\frac{1}{x}\), and on some machines there exists a range of non-zero but small values of \(x\) for which \(1/x\) is larger than the greatest representable value.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION Input
On entry: the argument \(x\) of the function. Constraint: \(X\) must not be a negative integer.

2: \(IFAIL\) -- INTEGER Input/Output
On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: \(IFAIL = 0\) unless the routine detects an error (see Section 6).
6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
The argument is too large. On soft failure the routine returns the approximate value of \((\Gamma)(x)\) at the nearest valid argument.

IFAIL = 2
The argument is too large and negative. On soft failure the routine returns zero.

IFAIL = 3
The argument is too close to zero. On soft failure the routine returns the approximate value of \((\Gamma)(x)\) at the nearest valid argument.

IFAIL = 4
The argument is a negative integer, at which value \((\Gamma)(x)\) is infinite. On soft failure the routine returns a large positive value.

7. Accuracy

Let \((\delta)\) and \((\epsilon)\) be the relative errors in the argument and the result respectively. If \((\delta)\) is somewhat larger than the machine precision (i.e., is due to data errors etc), then \((\epsilon)\) and \((\delta)\) are approximately related by:

\[
(\epsilon) \approx |x(\Psi)(x)|(\delta)
\]

(provided \((\epsilon)\) is also greater than the representation \((\Gamma)'(x)\) error). Here \((\Psi)(x)\) is the digamma function \((\Gamma)(x)\) is the gamma function.

Figure 1 shows the behaviour of the error amplification factor \(|x(\Psi)(x)|\).

Figure 1
Please see figure in printed Reference Manual

If \((\delta)\) is of the same order as machine precision, then rounding errors could make \((\epsilon)\) slightly larger than the above relation predicts.

There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of \((\Gamma)(x)\) at negative integers.
However relative accuracy is preserved near the pole at $x=0$ right up to the point of failure arising from the danger of overflow.

Also accuracy will necessarily be lost as x becomes large since in this region

$$(\varepsilon)^{-1} = (\delta)x\ln x.$$

However since $(\Gamma)(x)$ increases rapidly with x, the routine must fail due to the danger of overflow before this loss of accuracy is too great. (e.g. for $x=20$, the amplification factor ≈ 60.)

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Returns a value for the logarithm of the Gamma function
S14 -- Approximations of Special Functions
S14ABF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S14ABF returns a value for the logarithm of the Gamma function, \(\ln(\Gamma(x)) \), via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S14ABF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to \(\ln(\Gamma(x)) \). It is based on two Chebyshev expansions.

For \(0 < x \leq x \), \(\ln(\Gamma(x)) = -\ln x \) to within machine accuracy.

For \(x < x \leq 15.0 \), the recursive relation

\[
(\Gamma)(1+x) = x(\Gamma)(x)
\]

is used to reduce the calculation to one involving \((\Gamma)(1+u), 0 \leq u < 1 \) which is evaluated as:

\[
(\Gamma)(1+u) = \sum_{r=0}^{\infty} a_r T(r, t), t = 2u - 1.
\]

Once \((\Gamma)(x) \) has been calculated, the required result is produced by taking the logarithm.

For \(15.0 < x \leq x \),

\[
\ln(\Gamma(x)) = \left(1 - \frac{1}{x} \right) \ln x + \frac{1}{2} \ln(\pi) y(x) / x
\]

where

\[
y(x) = \sum_{r=0}^{\infty} b_r T(r, t), t = 2(-)^r - 1.
\]
r=0

For \(x < x \leq x \) the term \(y(x)/x \) is negligible and so its calculation is omitted.

For \(x > x \) there is a danger of setting overflow so the routine must fail.

For \(x \leq 0.0 \) the function is not defined and the routine fails.

Note: \(x \) is calculated so that if \(x < x \), \((\Gamma)(x) = 1/x \) to small within machine accuracy. \(x \) is calculated so that if \(x > x \),

\[
\ln(\Gamma)(x) = (x - -) \ln x + - \ln 2(\pi)
\]

\[
\frac{1}{2} \frac{1}{2}
\]

to within machine accuracy. \(x \) is calculated so that \(\ln(\Gamma)(x) \) is close to the value returned by X02ALF(*).

4. References

5. Parameters

1: \(X -- DOUBLE PRECISION \) Input
 On entry: the argument \(x \) of the function. Constraint: \(X > 0 \).

2: \(IFAIL -- INTEGER \) Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
X <= 0.0, the function is undefined. On soft failure, the routine returns zero.

IFAIL= 2
X is too large, the function would overflow. On soft failure, the routine returns the value of the function at the largest permissible argument.

7. Accuracy

Let (delta) and (epsilon) be the relative errors in the argument and result respectively, and E be the absolute error in the result.

If (delta) is somewhat larger than the relative machine precision, then

\[
| \frac{x(\Psi)(x)}{\ln(\Gamma(x))} | = | x(\Psi)(x) | (\delta) \quad \text{and} \quad (\epsilon) = | \frac{\ln(\Gamma(x))}{(\Gamma)(x)} | (\delta)
\]

where (\Psi)(x) is the digamma function \frac{1}{(\Gamma)(x)}(\Gamma)'(x). Figure 1 and Figure 2 show the behaviour of these error amplification factors.

Figure 1
Please see figure in printed Reference Manual

Figure 2
Please see figure in printed Reference Manual

These show that relative error can be controlled, since except near x=1 or 2 relative error is attenuated by the function or at least is not greatly amplified.

(1)
For large x, (epsilon) = \frac{1}{\ln x} (\delta) and for small x,
(\ln x)
1
(epsilon) = \frac{1}{\ln x} (\delta).

The function ln(\Gamma)(x) has zeros at x=1 and 2 and hence relative accuracy is not maintainable near those points. However absolute accuracy can still be provided near those zeros as is shown above.

If however, (delta) is of the order of the machine precision,
then rounding errors in the routine’s internal arithmetic may result in errors which are slightly larger than those predicted by the equalities. It should be noted that even in areas where strong attenuation of errors is predicted the relative precision is bounded by the effective machine precision.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Incomplete gamma functions P(a,x) and Q(a,x)

--- nags.ht ---
1. Purpose

S14BAF computes values for the incomplete gamma functions $P(a,x)$ and $Q(a,x)$.

2. Specification

```fortran
SUBROUTINE S14BAF (A, X, TOL, P, Q, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION A, X, TOL, P, Q
```

3. Description

This subroutine evaluates the incomplete gamma functions in the normalised form

\[
P(a,x) = \frac{1}{\Gamma(a)} \int_0^x t^{a-1}e^{-t} dt,
\]

\[
Q(a,x) = \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1}e^{-t} dt.
\]

with $x \geq 0$ and $a > 0$, to a user-specified accuracy. With this normalisation, $P(a,x) + Q(a,x) = 1$.

Several methods are used to evaluate the functions depending on the arguments a and x, the methods including Taylor expansion for $P(a,x)$, Legendre’s continued fraction for $Q(a,x)$, and power series for $Q(a,x)$. When both a and x are large, and $a \approx x$, the uniform asymptotic expansion of Temme [3] is employed for greater efficiency – specifically, this expansion is used when $a \geq 20$ and $0.7a \leq x \leq 1.4a$.

Once either of P or Q is computed, the other is obtained by subtraction from 1. In order to avoid loss of relative precision in this subtraction, the smaller of P and Q is computed first.

This routine is derived from subroutine GAM in Gautschi [2].

4. References

5. Parameters

1: A -- DOUBLE PRECISION
 On entry: the argument a of the functions. Constraint: A > 0.0.

2: X -- DOUBLE PRECISION
 On entry: the argument x of the functions. Constraint: X >= 0.0.

3: TOL -- DOUBLE PRECISION
 On entry: the relative accuracy required by the user in the results. If S14BAF is entered with TOL greater than 1.0 or less than machine precision, then the value of machine precision is used instead.

4: P -- DOUBLE PRECISION

5: Q -- DOUBLE PRECISION
 On exit: the values of the functions P(a,x) and Q(a,x) respectively.

6: IFAIL -- INTEGER
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
 On entry A <= 0.0.

IFAIL= 2
 On entry X < 0.0.

IFAIL= 3
Convergence of the Taylor series or Legendre continued fraction fails within 600 iterations. This error is extremely unlikely to occur; if it does, contact NAG.

7. Accuracy

There are rare occasions when the relative accuracy attained is somewhat less than that specified by parameter TOL. However, the error should never exceed more than one or two decimal places. Note also that there is a limit of 18 decimal places on the achievable accuracy, because constants in the routine are given to this precision.

8. Further Comments

The time taken for a call of S14BAF depends on the precision requested through TOL, and also varies slightly with the input arguments a and x.

9. Example

The example program reads values of the argument a and x from a file, evaluates the function and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
The routine calculates an approximate value for the complement of the error function

\[
erfc x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^2} \, du = 1 - \text{erf}(x).
\]

For \(x \geq 0\), it is based on the Chebyshev expansion

\[
erfc x = e^{y(x)},
\]

where \(y(x) = \sum_{r=0}^{\infty} a_r T_r(t)\) and \(t = (x - 3.75)/(x + 3.75), -1 \leq t \leq +1\).

For \(x \geq x_{\text{hi}}\), where there is a danger of setting underflow, the result is returned as zero.

\[
erfc x = 2 - e^{y(|x|)}.
\]

For \(x < 0\), \(erfc x = 2 - e^{y(|x|)}\).
For $x < x_{\text{hi}} < 0$, the result is returned as 2.0 which is correct to low within machine precision. The values of x and x_{hi} are given in the Users’ Note for your implementation.

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

There are no failure exits from this routine. The parameter IFAIL has been included for consistency with other routines in this chapter.

7. Accuracy

If (δ) and (ε) are relative errors in the argument and result, respectively, then in principle

$$ \left| \frac{2}{-x} \right| \left| \frac{2x\varepsilon}{\sqrt{\pi} \text{erfc} x} \right| = \frac{|(\varepsilon)|}{\sqrt{\pi} \text{erfc} x} $$

That is, the relative error in the argument, x, is amplified by a factor $\frac{2}{-x}$ in the result.
\(\sqrt{\pi} \text{erfc} \ x \)

The behaviour of this factor is shown in Figure 1.

Figure 1

Please see figure in printed Reference Manual

It should be noted that near \(x=0 \) this factor behaves as

\[\sqrt{\pi} \]

and hence the accuracy is largely determined by the machine precision. Also for large negative \(x \), where the factor is

\[\frac{2}{\pi} e^{-x} \]

accuracy is mainly limited by machine precision.

\[\sqrt{\pi} \]

However, for large positive \(x \), the factor becomes \(\sim 2x \) and to an extent relative accuracy is necessarily lost. The absolute accuracy \(E \) is given by

\[\frac{2}{\pi} e^{-x} \]

\[E = \frac{\text{delta}}{\sqrt{\pi}} \]

so absolute accuracy is guaranteed for all \(x \).

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation
Returns the value of the error function erfx

S15A{EF(3NAG) Foundation Library (12/10/92) S15A{EF(3NAG)

S15 -- Approximations of Special Functions
S15AEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S15AEF returns the value of the error function erfx, via the routine name.

2. Specification

```
DOUBLE PRECISION FUNCTION S15AEF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

Evaluates the error function,

\[
\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \frac{x^{2n+1}}{(2n+1)!}
\]
erf \(x = \frac{\int_{-x}^{x} \frac{e^{-t^2}}{\sqrt{\pi}} \, dt}{\sqrt{\pi}} \)

For \(|x| \leq 2\),

\[
\text{erf } x = x > a \sum_{r=0}^{2} \frac{e^{-x^2}}{r!} T(t), \text{ where } t = -x - 1.
\]

For \(2 < |x| < x\),

\[
\text{erf } x = \text{sign}(x) \left\{ \frac{e^{-x^2}}{r!} \sum_{r=0}^{x-3} \frac{x^r}{r!} \right\}, \text{ where } t = -x.
\]

For \(|x| \geq x\),

\[
\text{erf } x = \text{sign}(x).
\]

\(x\) is the value above which \(\text{erf } x \approx \pm 1\) within machine precision.

Its value is given in the Users' Note for your implementation.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION
 \(\text{Input} \quad \text{On entry: the argument } x \text{ of the function.}\)

2: \(IFAIL\) -- INTEGER
 \(\text{Input/Output} \quad \text{On entry: } IFAIL \text{ must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.}\)
 \(\text{On exit: } IFAIL = 0 \text{ unless the routine detects an error (see Section 6).}\)

6. Error Indicators and Warnings

There are no failure exits from this routine. The parameter IFAIL has been included for consistency with other routines in this chapter.
7. Accuracy

On a machine with approximately 11 significant figures the routine agrees with available tables to 10 figures and consistency checking with S15ADF of the relation

\[\text{erf } x + \text{erfc } x = 1.0 \]

shows errors in at worst the 11th figure.

8. Further Comments

None.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17ACF returns the value of the Bessel Function $Y(x)$, via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S17ACF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Bessel Function of the second kind $Y(x)$.

Note: $Y(x)$ is undefined for $x \leq 0$ and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For $0 \leq x < 8$,

$$
Y(x) = -\frac{\ln x}{(\pi)} + \sum_{r=0}^{\infty} \frac{a_r}{(\pi)} T_r(t) + \sum_{r=0}^{8} \frac{b_r}{(\pi)} T_r(t),
$$

where $t = 2(\pi x) - 1$.

For $x > 8$,

$$
Y(x) = \sum_{r=0}^{\infty} \frac{c_r}{\pi^r} T_r(t),
$$

where $t = 2(\pi x) - 1$.

$$
Y(x) = \frac{1}{\pi^2} \sum_{r=0}^{\infty} \left(\frac{x}{\pi} \right)^r \left(\frac{x}{\pi} \right)^{2r} \sum_{r=0}^{8} \frac{d_r}{\pi^r},
$$

where d_r are coefficients for the Chebyshev expansions.
and \(Q(x) = - \int_0^x t^r e^{-t} dt \), with \(r = 2 \) for \(x \) near zero, \(Y(x) \approx \frac{\ln(\sqrt{x} + \gamma)}{\pi(2)} \), where \(\gamma \) denotes Euler's constant. This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision.

For very large \(x \), it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the routine fails. Such arguments contain insufficient information to determine the phase of oscillation of \(Y(x) \); only the amplitude, \(\sqrt{x} \), can be determined and this is returned on soft failure. The range for which this occurs is roughly related to the machine precision: the routine will fail if \(x > \text{~1/machine precision} \) (see the Users' Note for your implementation for details).

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument \(x \) of the function. Constraint: \(X > 0 \).

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
CHAPTER 22. NAG LIBRARY ROUTINES

IFAIL= 1
X is too large. On soft failure the routine returns the amplitude of the Y oscillation, $\sqrt{2/(\pi)x}$.

IFAIL= 2
X ≤ 0.0, Y is undefined. On soft failure the routine returns zero.

7. Accuracy

Let (δ) be the relative error in the argument and E be the absolute error in the result. (Since $Y(x)$ oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If (δ) is somewhat larger than the machine representation error (e.g. if (δ) is due to data errors etc), then E and (δ) are approximately related by

$$E \approx |xY(x)|(\delta)$$

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor $|xY(x)|$.

![Figure 1](Please see figure in printed Reference Manual)

However, if (δ) is of the same order as the machine representation errors, then rounding errors could make E slightly larger than the above relation predicts.

For very small x, the errors are essentially independent of (δ) and the routine should provide relative accuracy bounded by the machine precision.

For very large x, the above relation ceases to apply. In this region, $Y(x) \approx \sqrt{2/(\pi)x} \sin(x-(\pi)/4)$. The amplitude $\sqrt{2/(\pi)x}$ can be calculated with reasonable accuracy for all x, but $\sin(x-(\pi)/4)$ cannot. If $x-(\pi)/4$ is written as $2N(\pi)+(\theta)$,
where \(N \) is an integer and \(0 \leq \theta < 2 \pi \), then \(\sin(x - \frac{\pi}{4}) \) is determined by \(\theta \) only. If \(x > \text{\textasciitilde}(\delta) \), \(\theta \) cannot be determined with any accuracy at all. Thus if \(x \) is greater than, or of the order of the inverse of machine precision, it is impossible to calculate the phase of \(Y_1(x) \) and the routine must fail.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17ADF returns the value of the Bessel Function \(Y(x) \), via the routine name.

2. Specification

\[
\text{DOUBLE PRECISION FUNCTION S17ADF (X, IFAIL)}
\]

\[
\text{INTEGER IFAIL}
\]

\[
\text{DOUBLE PRECISION X}
\]

3. Description

This routine evaluates an approximation to the Bessel Function of the second kind \(Y(x) \).

Note: \(Y(x) \) is undefined for \(x \leq 0 \) and the routine will fail for such arguments.

The routine is based on four Chebyshev expansions:

For \(0 < x \leq 8 \),

\[
Y(x) = -\ln x - > a T(t) - > b T(t), \quad \text{with } t = \frac{\pi}{8} - \frac{x}{8},
\]

\[
T(t) = 2(-)^{-1} T(2(t)),
\]

For \(x > 8 \),

\[
Y(x) = \frac{1}{\pi} \left\{ \frac{\pi x}{4} \sin(x-3\pi) + Q(x) \cos(x-3\pi) \right\}
\]

\[
Q(x) = \frac{1}{4} x \left\{ \begin{array}{c}
\pi \sin(\pi x) \\
4 \end{array} \right\}
\]
where \(P(x) = \sum_{r=0}^{2} c_r T_r(t) \),
\[c_r = \begin{cases} 1 & r = 0, \\ 1 & r = 2 \end{cases} \]
and \(Q(x) = \sum_{r=0}^{x} d_r T_r(t) \), with \(t = 2(\frac{x}{\pi}) - 1 \).

For \(x \) near zero, \(Y(x) \approx -\frac{1}{(\pi)x} \). This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision. For extremely small \(x \), there is a danger of overflow in calculating \(-\frac{1}{(\pi)x} \) and for such arguments the routine will fail.

For very large \(x \), it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the routine fails. Such arguments contain insufficient information to determine the phase of oscillation of \(Y(x) \), only the amplitude, \(\frac{1}{(\pi)x} \), can be determined and this is returned on soft failure. The range for which this occurs is roughly related to machine precision; the routine will fail if \(x \geq 1/\text{machine precision} \) (see the Users’ Note for your implementation for details).

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument \(x \) of the function. Constraint: \(X > 0 \).

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
X is too large. On soft failure the routine returns the
amplitude of the Y oscillation, / 2
1 \ (pi)x

IFAIL = 2
X <= 0.0, Y is undefined. On soft failure the routine
returns zero.

IFAIL = 3
X is too close to zero, there is a danger of overflow. On
soft failure, the routine returns the value of Y (x) at the
smallest valid argument.

7. Accuracy

Let (delta) be the relative error in the argument and E be the
absolute error in the result. (Since Y (x) oscillates about zero,
able error and not relative error is significant, except for
very small x.)

If (delta) is somewhat larger than the machine precision (e.g. if
(delta) is due to data errors etc), then E and (delta) are
approximately related by:

E"=|xY (x)-Y (x)|/(delta)
0 1

(provided E is also within machine bounds). Figure 1 displays the
behaviour of the amplification factor |xY (x)-Y (x)|.
0 1

Figure 1
Please see figure in printed Reference Manual
However, if (δ) is of the same order as machine precision, then rounding errors could make E slightly larger than the above relation predicts.

For very small x, absolute error becomes large, but the relative error in the result is of the same order as (δ).

For very large x, the above relation ceases to apply. In this region, $Y(x) = \frac{2}{x} \sin(x - \frac{3\pi}{4})$. The amplitude $\frac{2}{x}$ can be calculated with reasonable accuracy for all x, but $\sin(x - \frac{3\pi}{4})$ cannot. If $x - \frac{3\pi}{4}$ is written as $2N\pi + (\theta)$ where N is an integer and $0 \leq (\theta) < 2\pi$, then $\sin(x - \frac{3\pi}{4})$ is determined by -1 (\theta)$ only. If $x > (\delta)$, (θ) cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of, the inverse of the machine precision, it is impossible to calculate the phase of $Y(x)$ and the routine must fail.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Returns the value of the Bessel Function $J_0(x)$

— nags.ht —

\begin{verbatim}
S17AEF(3NAG) Foundation Library (12/10/92) S17AEF(3NAG)

S17 -- Approximations of Special Functions
S17AEF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17AEF returns the value of the Bessel Function $J_0(x)$, via the routine name.

2. Specification

 \begin{verbatim}
 DOUBLE PRECISION FUNCTION S17AEF (X, IFAIL)
 INTEGER IFAIL
 DOUBLE PRECISION X
 \end{verbatim}

3. Description

This routine evaluates an approximation to the Bessel Function of the first kind $J_0(x)$.

Note: $J_0(-x)=J_0(x)$, so the approximation need only consider $x\geq0$.

The routine is based on three Chebyshev expansions:

For $0<x\leq8$, \begin{align*}
 J_0(x) = \sum_{r=0}^{2} a_r T_r(t), \quad \text{with } t = 2(\frac{x}{8}) - 1.
\end{align*}
For $x > 8$,

\[
J(x) = \frac{1}{2} \left\{ \begin{array}{l}
\frac{\pi}{x} \{ P(x) \cos(x) - Q(x) \sin(x) \}
\end{array} \right. \]

where $P(x) = \sum_{r=0}^{2} b_r T(r)$,

\[
Q(x) = \sum_{r=0}^{8} c_r T(r),
\]

with $t = 2^{(x-1)} - 1$.

For x near zero, $J(x) \approx 1$. This approximation is used when x is sufficiently small for the result to be correct to machine precision.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the routine fails. Such arguments contain insufficient information to determine the phase of oscillation of $J(x)$; only the amplitude, \[
\frac{1}{\pi|x|}
\]
can be determined and this is returned on soft failure. The range for which this occurs is roughly related to the machine precision; the routine will fail if $|x| > 1 / \text{machine precision}$ (see the Users’ Note for your implementation).

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.
2: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
 X is too large. On soft failure the routine returns the
 / 2
 amplitude of the J oscillation, / --------.
 0 \(\sqrt{\pi|x|}\)

7. Accuracy

Let (delta) be the relative error in the argument and E be the
absolute error in the result. (Since J(x) oscillates about zero,
0
absolute error and not relative error is significant.)

If (delta) is somewhat larger than the machine precision (e.g. if
(delta) is due to data errors etc), then E and (delta) are
approximately related by:

\[E \approx |xJ(x)| \cdot (\text{delta}) \]
\[1 \]

(provided E is also within machine bounds). Figure 1 displays the
behaviour of the amplification factor \(|xJ(x)|\).
\[1 \]

Figure 1
Please see figure in printed Reference Manual

However, if (delta) is of the same order as machine precision,
then rounding errors could make E slightly larger than the above
relation predicts.

For very large x, the above relation ceases to apply. In this

\[/ 2 \ (\text{(pi)}) \]
region, \(J(x) \approx \sqrt{\frac{\cos(x - \frac{\pi}{4})}{\pi|x|}} \). The amplitude
\[
0
\]
\[
\sqrt{\frac{\cos(x - \frac{\pi}{4})}{\pi|x|}}
\]
but \(\cos(x - \frac{\pi}{4}) \) cannot. If \(x - \frac{\pi}{4} \) is written as
\[
2N\pi + \theta
\]
where \(N \) is an integer and \(0 \leq \theta < 2\pi \),
\[
\frac{\frac{x}{4} - \frac{\pi}{4}}{\pi}
\]
then \(\cos(x - \frac{\pi}{4}) \) is determined by \(\theta \) only. If \(x > (\delta) \),
\[
\frac{\frac{x}{4} - \frac{\pi}{4}}{\pi}
\]
(\(\theta \)) cannot be determined with any accuracy at all. Thus if \(x \)
is greater than, or of the order of, the inverse of the machine
precision, it is impossible to calculate the phase of \(J(x) \) and
the routine must fail.

8. Further Comments

For details of the time taken by the routine see the Users’ Note
for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file,
evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.
1. Purpose

S17AFF returns the value of the Bessel Function $J_1(x)$, via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S17AFF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Bessel Function of the first kind $J_1(x)$.

Note: $J_1(-x) = -J_1(x)$, so the approximation need only consider $x \geq 0$.

The routine is based on three Chebyshev expansions:

For $0 < x \leq 8$,

$$
J_1(x) = -\sum_{r=0}^{2} a_r T_r(t), \text{ with } t = 2(\sqrt{x}) - 1.
$$

For $x > 8$,

$$
J_1(x) = \frac{1}{\sqrt{x}} \left\{ \frac{1}{(4^4)} \{ (3\pi) \cos(\pi x) - (3\pi) \sin(\pi x) \} \right\}
$$
22.6. NAGS.HT

\[P(x) = \sum_{r=0}^{2} b_r T(r), \]
\[Q(x) = \sum_{r=0}^{x} c_r T(r), \]
where \(P(x) = \sum_{r=0}^{2} b_r T(r) \),
\(Q(x) = \sum_{r=0}^{x} c_r T(r) \), with \(T(t) = 2(-) - 1 \).

For \(x \) near zero, \(J(x) \approx -x \). This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision.

For very large \(x \), it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the routine fails. Such arguments contain insufficient information to determine the phase of oscillation of \(J(x) \); only the amplitude, can be determined and this is returned on soft failure. The range for which this occurs is roughly related to the machine precision; the routine will fail if \(|x| \approx 1/\text{machine precision} \) (see the Users’ Note for your implementation for details).

4. References

5. Parameters

1: \(X -- \text{DOUBLE PRECISION} \)
 Input
 On entry: the argument \(x \) of the function.

2: \(IFAIL -- \text{INTEGER} \)
 Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL= 1
X is too large. On soft failure the routine returns the

\[\begin{align*}
& & & & \quad / & & & & \quad / & & & & \quad / & & & & \quad 2 \\
& & & & & & / & & & & & & & & \quad \frac{2}{\pi} \\
& & & & & & & & & & \quad \frac{1}{|x|} \\
& & & & & & & & & & \quad \sqrt{\frac{1}{|x|}} \\
& & & & & & & & & & \quad \sqrt{\frac{(3\pi)}{|x|}} \\
\end{align*} \]

7. Accuracy

Let \((\delta)\) be the relative error in the argument and \(E\) be the absolute error in the result. (Since \(J(x)\) oscillates about zero, absolute error and not relative error is significant.)

If \((\delta)\) is somewhat larger than machine precision (e.g. if \((\delta)\) is due to data errors etc), then \(E\) and \((\delta)\) are approximately related by:

\[E \approx |xJ(x) - J(x)| \cdot (\delta) \]

(0 \leq \(E\) \leq machine bounds). Figure 1 displays the behaviour of the amplification factor \(|xJ(x) - J(x)|\).

Figure 1
Please see figure in printed Reference Manual

However, if \((\delta)\) is of the same order as machine precision, then rounding errors could make \(E\) slightly larger than the above relation predicts.

For very large \(x\), the above relation ceases to apply. In this

\[\begin{align*}
& & & & \quad / & & & & \quad / & & & & \quad 2 \\
& & & & & & / & & & & & & & & \quad \frac{3(\pi)}{|x|} \\
& & & & & & & & & & \quad \sqrt{\frac{1}{|x|}} \\
& & & & & & & & & & \quad \sqrt{\frac{(3\pi)}{|x|}} \\
\end{align*} \]

region, \(J(x) \approx \frac{-\sin(x)}{\frac{3(\pi)}{|x|}}\). The amplitude

\[\begin{align*}
& & & & \quad / & & & & \quad / & & & & \quad 4 \\
& & & & & & / & & & & & & & & \quad \frac{4}{\pi} \\
\end{align*} \]

/ 2
/ \quad \text{can be calculated with reasonable accuracy for all } x
\sqrt{\frac{1}{|x|}} \quad (\frac{3(\pi)}{\pi})
(3(\pi))
but \(\cos(x - \frac{\theta}{4}) \) cannot. If \(x - \frac{\theta}{4} \) is written as
\[
\begin{pmatrix}
2N\pi + \theta \\
\frac{3\pi}{4}
\end{pmatrix}
\]
where \(N \) is an integer and \(0 \leq \theta < 2\pi \), then
\[
\begin{pmatrix}
\frac{3\pi}{4} \\
\frac{\pi}{4}
\end{pmatrix}^{-1}
\]
\(\cos(x - \frac{\theta}{4}) \) is determined by \(\theta \) only. If \(x > \delta \),
\[
\begin{pmatrix}
\frac{3\pi}{4} \\
\frac{\pi}{4}
\end{pmatrix}^{-1}
\]
(\(\theta \)) cannot be determined with any accuracy at all. Thus if \(x \)
is greater than, or of the order of, machine precision, it is
impossible to calculate the phase of \(J_1(x) \) and the routine must
fail.

8. Further Comments

For details of the time taken by the routine see the Users’ Note
for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file,
evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.

Returns a value for the Airy function, \(Ai(x) \)

— nags.ht —
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17AGF returns a value for the Airy function, Ai(x), via the routine name.

2. Specification

```plaintext
DOUBLE PRECISION FUNCTION S17AGF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Airy function, Ai(x). It is based on a number of Chebyshev expansions:

For \(x < -5 \),

\[
Ai(x) = \frac{a(t) \sin z - b(t) \cos z}{1/4^{1/3} \pi^{2/3}}
\]

where \(z = -\frac{\pi}{4} - \sqrt{-x} \), and \(a(t) \) and \(b(t) \) are expansions in the variable \(t = -2(\frac{x}{5}) - 1 \).

For \(-5 \leq x \leq 0 \),

\[
Ai(x) = f(t) - xg(t),
\]

where \(f \) and \(g \) are expansions in \(t = -2(\frac{x}{5}) - 1 \).

For \(0 < x < 4.5 \),
\(-\frac{3x}{2}\)
\[Ai(x) = e^{y(t)}, \]
where \(y\) is an expansion in \(t = \frac{4x}{9} - 1\).

For \(4.5 \leq x < 9\),
\(-\frac{5x}{2}\)
\[Ai(x) = e^{u(t)}, \]
where \(u\) is an expansion in \(t = \frac{4x}{9} - 3\).

For \(x \geq 9\),
\[-z\]
\[e^{v(t)} \]
\[Ai(x) = \frac{-z}{\sqrt[4]{x}}, \]
where \(z = -\sqrt{x}\) and \(v\) is an expansion in \(t = 2\left(\frac{z}{3}\right) - 1\).

For \(|x| < \text{the machine precision}\), the result is set directly to \(Ai(0)\). This both saves time and guards against underflow in intermediate calculations.

For large negative arguments, it becomes impossible to calculate the phase of the oscillatory function with any precision and so
\[\frac{2}{3} \]
the routine must fail. This occurs if \(x < \left(\frac{3}{2(\epsilon)}\right)\), where \(\epsilon\) is the machine precision.

For large positive arguments, where \(Ai\) decays in an essentially exponential manner, there is a danger of underflow so the routine must fail.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION

Input
On entry: the argument x of the function.

2: IFAIL -- INTEGER
Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
X is too large and positive. On soft failure, the routine returns zero.

IFAIL= 2
X is too large and negative. On soft failure, the routine returns zero.

7. Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure. In the positive region the function is essentially exponential-like and here relative error is appropriate. The absolute error, E, and the relative error, (ϵ), are related in principle to the relative error in the argument, (δ), by

$$
E = |x Ai'(x)|
$$

$$
\epsilon = \frac{|x Ai'(x)|}{|Ai(x)|} \approx \frac{(\delta)}{(x)}
$$

In practice, approximate equality is the best that can be expected. When (δ), (ϵ) or E is of the order of the machine precision, the errors in the result will be somewhat larger.

For small x, errors are strongly damped by the function and hence will be bounded by the machine precision.

For moderate negative x, the error behaviour is oscillatory but the amplitude of the error grows like

$$
mplitude \sim \frac{5}{4} (E)(|x|)\left(\frac{\delta}{(\epsilon)}\right)\left(\frac{1}{\sqrt{\pi}}\right)
$$
However the phase error will be growing roughly like $-\sqrt[3]{|x|}$
and hence all accuracy will be lost for large negative arguments
due to the impossibility of calculating sin and cos to any

$$\frac{2}{3} \frac{1}{3}$$

accuracy if $-\sqrt[3]{|x|} > \frac{1}{3}$.

For large positive arguments, the relative error amplification is considerable:

$$(\text{epsilon}) / 3$$

$$\frac{1}{3} - \sqrt[3]{x}.$$

This means a loss of roughly two decimal places accuracy for
arguments in the region of 20. However very large arguments are
not possible due to the danger of setting underflow and so the
errors are limited in practice.

8. Further Comments
None.

9. Example
The example program reads values of the argument x from a file,
evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.

\end{verbatim}
\endscroll
\end{page}
Returns a value of the Airy function, $Bi(x)$
variable \(t = -2(-)^{-1} \).

For \(-5 \leq x < 0\),

\[
\text{Bi}(x) = \sqrt{3}(f(t) + xg(t)),
\]

where \(f \) and \(g \) are expansions in \(t = -2(-)^{-1} \).

For \(0 < x < 4.5\),

\[
\text{Bi}(x) = e^{\frac{11x}{8}} y(t),
\]

where \(y \) is an expansion in \(t = 4x/9 - 1 \).

For \(4.5 \leq x < 9\),

\[
\text{Bi}(x) = e^{\frac{5x}{2}} v(t),
\]

where \(v \) is an expansion in \(t = 4x/9 - 3 \).

For \(x \geq 9\),

\[
\text{Bi}(x) = \frac{e^{u(t)}}{x^{2/3}},
\]

where \(z = -\sqrt{x} \) and \(u \) is an expansion in \(t = 2(-)^{-1} \).

For \(|x| < \) the machine precision, the result is set directly to \(\text{Bi}(0) \). This both saves time and avoids possible intermediate underflows.

For large negative arguments, it becomes impossible to calculate the phase of the oscillating function with any accuracy so the
routine must fail. This occurs if \(x < \left(\frac{3}{\epsilon} \right) \), where \(\epsilon \) is the machine precision.

For large positive arguments, there is a danger of causing overflow since \(B_i \) grows in an essentially exponential manner, so the routine must fail.

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION
 Input
 On entry: the argument \(x \) of the function.

2: \(IFAIL \) -- INTEGER
 Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL = 1 \)
\(X \) is too large and positive. On soft failure, the routine returns zero.

\(IFAIL = 2 \)
\(X \) is too large and negative. On soft failure, the routine returns zero.

7. Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure. In the positive region the function is essentially exponential-like and here relative error is appropriate. The absolute error, \(E \), and the relative error, \(\epsilon \), are related in principle to the relative error in the argument, \(\delta \), by

\[
| xB'_i(x) |
\]
\[E^\prime = |xBi'(x)| (\delta), \quad (\epsilon) = \frac{|x|}{\left| \frac{Bi(x)}{Bi(x)} \right|} \]

In practice, approximate equality is the best that can be expected. When \((\delta), (\epsilon)\) or \(E\) is of the order of the machine precision, the errors in the result will be somewhat larger.

For small \(x\), errors are strongly damped and hence will be bounded essentially by the machine precision.

For moderate to large negative \(x\), the error behaviour is clearly oscillatory but the amplitude of the error grows like amplitude
\[\left(\frac{E}{\delta} \right) \left| \frac{x}{\pi} \right|^{5/4} \]
\[\left(\frac{E}{\delta} \right)^{2/3} \quad \text{and} \quad \left(\frac{E}{\delta} \right)^{3/3} \]

However the phase error will be growing roughly as \(-\sqrt{|x|}\) and hence all accuracy will be lost for large negative arguments.

This is due to the impossibility of calculating \(\sin\) and \(\cos\) to any accuracy if \(-\sqrt{|x|} > \frac{1}{3} \delta\).

For large positive arguments, the relative error amplification is considerable:

\[\left(\frac{\epsilon}{\delta} \right) \left(\frac{2}{3} \right)^{1} \]

any accuracy if \(-\sqrt{|x|} > \frac{1}{3} \delta\).

For large positive arguments, the relative error amplification is considerable:

\[\left(\frac{\epsilon}{\delta} \right) \left(\frac{2}{3} \right)^{1} \]

This means a loss of roughly two decimal places accuracy for arguments in the region of 20. However very large arguments are not possible due to the danger of causing overflow and errors are therefore limited in practice.

8. Further Comments

For details of the time taken by the routine see the Users’ Note
for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Value of the derivative of the Airy function $Ai(x)$

S17AJF returns a value of the derivative of the Airy function $Ai(x)$, via the routine name.

2. Specification

\[
\begin{align*}
\text{DOUBLE PRECISION FUNCTION S17AJF (X, IFAIL)} \\
\text{INTEGER IFAIL}
\end{align*}
\]
DOUBLE PRECISION X

3. Description

This routine evaluates an approximation to the derivative of the Airy function Ai(x). It is based on a number of Chebyshev expansions.

For \(x \leq -5 \),

\[
Ai'(x) = \sqrt{-x}[a(t) \cos z + \frac{b(t)}{zeta}] \\
\]

\(z = \frac{\pi}{6} + (zeta) \), \(zeta = -\sqrt{-x} \) and \(a(t) \) and \(b(t) \) are expansions in variable \(t = -2(-) -1. \)

For \(-5 < x \leq 0\),

\[
Ai'(x) = \sqrt{x} f(t) - g(t), \\
\]

where \(f \) and \(g \) are expansions in \(t = -2(-) -1. \)

For \(0 < x < 4.5 \),

\[
Ai'(x) = e^{-\frac{11x}{8}} y(t), \\
\]

where \(y(t) \) is an expansion in \(t = 4(-) -1. \)

For \(4.5 < x < 9 \),

\[
Ai'(x) = e^{-\frac{5x}{2}} v(t), \\
\]

where \(v(t) \) is an expansion in \(t = 4(-) -3. \)
For $x \geq 9$,

$$Ai'(x) = \frac{4}{3} \frac{-z}{\sqrt{x}} e^{u(t)},$$

where $z = -\sqrt{x}$ and $u(t)$ is an expansion in $t = 2(-\frac{z}{3})^{-1}$.

For $|x| < \text{the square of the machine precision}$, the result is set directly to $Ai'(0)$. This both saves time and avoids possible intermediate underflows.

For large negative arguments, it becomes impossible to calculate a result for the oscillating function with any accuracy and so the routine must fail. This occurs for $x < -\left(\frac{4}{7} \sqrt{\pi}\right)$, where ϵ is the machine precision.

For large positive arguments, where Ai' decays in an essentially exponential manner, there is a danger of underflow so the routine must fail.

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
22.6. NAGS.HT

IFAIL= 1
X is too large and positive. On soft failure, the routine returns zero.

IFAIL= 2
X is too large and negative. On soft failure, the routine returns zero.

7. Accuracy

For negative arguments the function is oscillatory and hence absolute error is the appropriate measure. In the positive region the function is essentially exponential in character and here relative error is needed. The absolute error, E, and the relative error, (epsilon), are related in principle to the relative error in the argument, (delta), by

\[
| E | \approx \frac{| x \cdot Ai(x) |}{| Ai'(x) |} \cdot (epsilon) = \frac{| (delta) |}{(epsilon) = \frac{| Ai'(x) |}{| Ai(x) |}(delta)}.
\]

In practice, approximate equality is the best that can be expected. When (delta), (epsilon) or E is of the order of the machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will be roughly bounded by the machine precision.

For moderate to large negative x, the error, like the function, is oscillatory; however the amplitude of the error grows like

\[
\frac{7/4}{\pi}
\]

Therefore it becomes impossible to calculate the function with any accuracy if \(| x | > \frac{7/4}{\pi}(delta)\).

For large positive x, the relative error amplification is considerable:
However, very large arguments are not possible due to the danger of underflow. Thus in practice error amplification is limited.

8. Further Comments

None.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17AKF returns a value for the derivative of the Airy function Bi(x), via the routine name.

2. Specification

```plaintext
DOUBLE PRECISION FUNCTION S17AKF (X, IFAIL)
INTEGER   IFAIL
DOUBLE PRECISION   X
```

3. Description

This routine calculates an approximate value for the derivative of the Airy function Bi(x). It is based on a number of Chebyshev expansions.

For $x < -5$,

$$
Bi'(x) = \sqrt{-x} \left[\frac{b(t)}{-a(t) \sin z + \frac{\pi}{2} \cos z} \right],
$$

where $z = -\frac{\sqrt{-x}}{\pi}$, $a(t)$ and $b(t)$ are expansions in the variable $t = -2(\frac{x}{5}) - 1$.

For $-5 \leq x \leq 0$,

$$
Bi'(x) = \sqrt{3(x f(t) + g(t))},
$$

where f and g are expansions in $t = -2(\frac{-1}{x}) - 1$.

For $0 < x < 4.5$,

$$
Bi'(x) = e^{\frac{3x}{2}} y(t),
$$
where \(y(t) \) is an expansion in \(t = \frac{4x}{9} - 1 \).

For \(4.5 \leq x < 9 \),

\[
\frac{21x}{8} \quad Bi'(x) = e^{u(t)},
\]

where \(u(t) \) is an expansion in \(t = \frac{4x}{9} - 3 \).

For \(x \geq 9 \),

\[
\frac{4}{3} \quad Bi'(x) = e^{\sqrt{x} v(t)},
\]

\[
\frac{2}{3} \quad (18)
\]

where \(z = -\sqrt{x} \) and \(v(t) \) is an expansion in \(t = \frac{2}{3}(\frac{z}{\sqrt{\pi}}) - 1 \).

For \(|x| < \text{the square of the machine precision} \), the result is set directly to \(Bi'(0) \). This saves time and avoids possible underflows in calculation.

For large negative arguments, it becomes impossible to calculate a result for the oscillating function with any accuracy so the routine must fail. This occurs for \(x < -\left(\frac{4}{7}\right) (\text{epsilon}) \), where \((\text{epsilon}) \) is the machine precision.

For large positive arguments, where \(Bi' \) grows in an essentially exponential manner, there is a danger of overflow so the routine must fail.

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION
Input
On entry: the argument \(x \) of the function.

2: \(IFAIL \) -- INTEGER
Input/Output
On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential
6. Error Indicators and Warnings

Errors detected by the routine:

IAFAIL= 1
 X is too large and positive. On soft failure the routine returns zero.

IAFAIL= 2
 X is too large and negative. On soft failure the routine returns zero.

7. Accuracy

For negative arguments the function is oscillatory and hence absolute error is appropriate. In the positive region the function has essentially exponential behaviour and hence relative error is needed. The absolute error, E, and the relative error (epsilon), are related in principle to the relative error in the argument (delta), by

\[
E \approx \left| \frac{x
B_i(x)}{\sqrt{\pi}} \right| \text{ and } \epsilon \approx \frac{\left| \frac{x \nB_i(x)}{\sqrt{\pi}} \right|}{\left| \frac{\nB_i'(x)}{\sqrt{\pi}} \right|} \cdot \delta.
\]

In practice, approximate equality is the best that can be expected. When (delta), (epsilon) or E is of the order of the machine precision, the errors in the result will be somewhat larger.

For small x, positive or negative, errors are strongly attenuated by the function and hence will effectively be bounded by the machine precision.

For moderate to large negative x, the error is, like the function, oscillatory. However, the amplitude of the absolute \(\frac{7}{4}\sqrt{|x|}\) error grows like \(\frac{7}{4}\sqrt{|x|}\). Therefore it becomes impossible to

\[\sqrt{(\pi)}\]
calculate the function with any accuracy if \(|x| > \frac{\text{\text{delta}}}{\text{\text{epsilon}}} \).

For large positive \(x \), the relative error amplification is

\[
\frac{\text{\text{epsilon}}}{3} \times \sqrt{\frac{1}{x}}.
\]

However, very large arguments are not possible due to the danger of overflow. Thus in practice the actual amplification that occurs is limited.

8. Further Comments

None.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17DCF returns a sequence of values for the Bessel functions $Y^{(n)}(z)$ for complex z, non-negative (ν) and $n=0,1,\ldots,N-1$, $(\nu)+n$ with an option for exponential scaling.

2. Specification

```fortran
SUBROUTINE S17DCF (FNU, Z, N, SCALE, CY, NZ, CWRK, IFAIL)
INTEGER N, NZ, IFAIL
DOUBLE PRECISION FNU
COMPLEX(KIND(1.0D0)) Z, CY(N), CWRK(N)
CHARACTER*1 SCALE
```

3. Description

This subroutine evaluates a sequence of values for the Bessel function $Y^{(n)}(z)$, where z is complex, $-(\pi) < \arg z \leq (\pi)$, and (ν) is the real, non-negative order. The N-member sequence is generated for orders $(\nu), (\nu)+1,\ldots,(\nu)+N-1$. Optionally, the sequence is scaled by the factor $e^{-|\text{Im } z|}$.

Note: although the routine may not be called with (ν) less than zero, for negative orders the formula

$$Y^{(\nu)}(z) = Y^{(\nu)}(z) \cos((\pi)(\nu)) + J^{(\nu)}(z) \sin((\pi)(\nu))$$

may be used (for the Bessel function $J^{(\nu)}(z)$, see S17DEF).

The routine is derived from the routine CBESY in Amos [2]. It is based on the relation

$$Y^{(\nu)}(z) = \frac{(-1)^n}{\pi^{1/2} \Gamma(\nu + 1/2)} Z^{\nu} e^{-\nu \pi / 2}$$

(1)

and $H^{(1)}(z)$ and $H^{(2)}(z)$ are the Hankel functions of the first and second kinds respectively (see S17DLF).

When N is greater than 1, extra values of $Y^{(\nu)}(z)$ are computed.
using recurrence relations.

For very large $|z|$ or $(\nu)+N-1$, argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller $|z|$ or $(\nu)+N-1$, the computation is performed but results are accurate to less than half of machine precision. If $|z|$ is very small, near the machine underflow threshold, or $(\nu)+N-1$ is too large, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters

1: FNU -- DOUBLE PRECISION
 On entry: the order, (ν), of the first member of the sequence of functions. Constraint: FNU >= 0.0.

2: Z -- COMPLEX(KIND(1.0D0))
 On entry: the argument, z, of the functions. Constraint: Z /= (0.0, 0.0).

3: N -- INTEGER
 On entry: the number, N, of members required in the sequence $Y^{(\nu)}(z), Y^{(\nu)+1}(z), ..., Y^{(\nu)+N-1}(z)$. Constraint: N >= 1.

4: SCALE -- CHARACTER*1
 On entry: the scaling option.
 If SCALE = 'U', the results are returned unscaled.
 If SCALE = 'S', the results are returned scaled by the factor $e^{-|\text{Im}z|}$. Constraint: SCALE = 'U' or 'S'.

5: CY(N) -- COMPLEX(KIND(1.0D0)) array
 On exit: the N required function values: CY(i) contains $Y^{(\nu)+i-1}(z)$, for i=1,2,...,N.
6: NZ -- INTEGER Output
On exit: the number of components of CY that are set to zero
due to underflow. The positions of such components in the
array CY are arbitrary.

7: CWRK(N) -- COMPLEX(KIND(1.0D)) array Workspace

8: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry FNU < 0.0,
or Z = (0.0, 0.0),
or N < 1,
or SCALE /= 'U' or 'S'.

IFAIL= 2
No computation has been performed due to the likelihood of
overflow, because ABS(Z) is less than a machine-dependent
threshold value (given in the Users' Note for your
implementation).

IFAIL= 3
No computation has been performed due to the likelihood of
overflow, because FNU + N - 1 is too large - how large
depends on Z as well as the overflow threshold of the
machine.

IFAIL= 4
The computation has been performed, but the errors due to
argument reduction in elementary functions make it likely
that the results returned by S17DCF are accurate to less
than half of machine precision. This error exit may occur if
either ABS(Z) or FNU + N - 1 is greater than a machine-
dependent threshold value (given in the Users' Note for
your implementation).

IFAIL= 5

No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by S17DCF would be lost. This error exit may occur if either ABS(Z) or FNU + N - 1 is greater than a machine-dependent threshold value (given in the Users’ Note for your implementation).

IFAIL= 6

No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S17DCF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S17DCF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by p=min(t,18). Because of errors in argument reduction when computing elementary functions inside S17DCF, the actual number of correct digits is limited, in general, by p-s, where $s = \max(1,|\log |z||,|\log (\nu)|)$ represents the number of digits lost due to the argument reduction. Thus the larger the values of |z| and (nu), the less the precision in the result. If S17DCF is called with N>1, then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DCF with different base values of (nu) and different N, the computed values may not agree exactly. Empirical tests with modest values of (nu) and z have shown that the discrepancy is limited to the least significant 3-4 digits of precision.

8. Further Comments

The time taken by the routine for a call of S17DCF is approximately proportional to the value of N, plus a constant. In general it is much cheaper to call S17DCF with N greater than 1, rather than to make N separate calls to S17DCF.

Paradoxically, for some values of z and (nu), it is cheaper to call S17DCF with a larger value of N than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is
likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different N, and the costs in each region may differ greatly.

Note that if the function required is $Y(x)$ or $y(x)$, i.e., $(nu)_{0}^{1} = 0.0$ or 1.0, where x is real and positive, and only a single unscaled function value is required, then it may be much cheaper to call S17ACF or S17ADF respectively.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE. The program calls the routine with $N = 2$ to evaluate the function for orders FNU and FNU + 1, and it prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17DEF returns a sequence of values for the Bessel functions $J_{\nu}(z)$ for complex z, non-negative (ν) and $n=0,1,\ldots,N-1$, $(\nu)\n+1$ with an option for exponential scaling.

2. Specification

```
SUBROUTINE S17DEF (FNU, Z, N, SCALE, CY, NZ, IFAIL)
  INTEGER N, NZ, IFAIL
  DOUBLE PRECISION FNU
  COMPLEX(KIND(1.0D0)) Z, CY(N)
  CHARACTER*1 SCALE
```

3. Description

This subroutine evaluates a sequence of values for the Bessel function $J_{\nu}(z)$, where z is complex, $-(\pi) < \text{arg } z \leq (\pi)$, and (ν) is the real, non-negative order. The N-member sequence is generated for orders $(\nu), (\nu)+1,\ldots,(\nu)+N-1$. Optionally, the sequence is scaled by the factor $e^{-|\text{Im } z|}$.

Note: although the routine may not be called with (ν) less than zero, for negative orders the formula $J_{(\nu)}(z)=J_{(\nu)}(-iz)\cos((\pi)(\nu))-Y_{(\nu)}(z)\sin((\pi)(\nu))$ may be used (ν) $(\nu)\n$ (for the Bessel function $Y_{(\nu)}(z)$, see S17DCF).

The routine is derived from the routine CBESJ in Amos [2]. It is based on the relations $J_{(\nu)}(z)=e^{-(\pi)(\nu)i/2}$ $I_{(\nu)}(iz), \text{Im } z\geq 0.0$ (ν) (ν) and $J_{(\nu)}(z)=e^{-(\pi)(\nu)i/2}$ $I_{(\nu)}(iz), \text{Im } z<0.0.$ (ν) (ν)

The Bessel function $I_{(\nu)}(z)$ is computed using a variety of techniques depending on the region under consideration.

When N is greater than 1, extra values of $J_{(\nu)}(z)$ are computed.
(nu)

using recurrence relations.

For very large \(|z|\) or \((\nu)+N-1\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z|\) or \((\nu)+N-1\), the computation is performed but results are accurate to less than half of machine precision. If \(\text{Im } z\) is large, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters

1: FNU -- DOUBLE PRECISION Input
On entry: the order, \((\nu)\), of the first member of the sequence of functions. Constraint: FNU \(\geq 0.0\).

2: Z -- COMPLEX(KIND(1.0D0)) Input
On entry: the argument \(z\) of the functions.

3: N -- INTEGER Input
On entry: the number, \(N\), of members required in the sequence \(J_{(\nu)}(z), J_{(\nu)+1}(z), \ldots, J_{(\nu)+N-1}(z)\). Constraint: \(N \geq 1\).

4: SCALE -- CHARACTER*1 Input
On entry: the scaling option.
If SCALE = 'U', the results are returned unscaled.
If SCALE = 'S', the results are returned scaled by the factor \(e^{-|\text{Im } z|}\).
Constraint: SCALE = 'U' or 'S'.

5: CY(N) -- COMPLEX(KIND(1.0D)) array Output
On exit: the \(N\) required function values: \(CY(i)\) contains \(J_{(\nu)+i-1}(z)\), for \(i=1,2,\ldots,N\).

6: NZ -- INTEGER Output
On exit: the number of components of CY that are set to zero
due to underflow. If NZ > 0, then elements CY(N-NZ+1), CY(N-NZ+2),...,CY(N) are set to zero.

7: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry FNU < 0.0,
 or N < 1,
 or SCALE /= 'U' or 'S'.

IFAIL= 2
 No computation has been performed due to the likelihood of overflow, because Im Z is larger than a machine-dependent threshold value (given in the Users’ Note for your implementation). This error exit can only occur when SCALE = 'U'.

IFAIL= 3
 The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the results returned by S17DEF are accurate to less than half of machine precision. This error exit may occur if either ABS(Z) or FNU + N - 1 is greater than a machine-dependent threshold value (given in the Users’ Note for your implementation).

IFAIL= 4
 No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by S17DEF would be lost. This error exit may occur when either ABS(Z) or FNU + N - 1 is greater than a machine-dependent threshold value (given in the Users’ Note for your implementation).

IFAIL= 5
No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S17DEF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S17DEF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside S17DEF, the actual number of correct digits is limited, in general, by \(p - s \), where \(s = \max(1, |\log_{10}(|z|)|, |\log_{10}(|\nu|)|) \) represents the number of digits lost due to the argument reduction. Thus the larger the values of \(|z|\) and \(|\nu|\), the less the precision in the result. If S17DEF is called with \(N > 1 \), then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DEF with different base values of \(|\nu|\) and different \(N \), the computed values may not agree exactly. Empirical tests with modest values of \(|\nu|\) and \(|z|\) have shown that the discrepancy is limited to the least significant 3-4 digits of precision.

8. Further Comments

The time taken by the routine for a call of S17DEF is approximately proportional to the value of \(N \), plus a constant. In general it is much cheaper to call S17DEF with \(N \) greater than 1, rather than to make \(N \) separate calls to S17DEF.

Paradoxically, for some values of \(|z|\) and \(|\nu|\), it is cheaper to call S17DEF with a larger value of \(N \) than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different \(N \), and the costs in each region may differ greatly.

Note that if the function required is \(J_0(x) \) or \(J_1(x) \), i.e., \(|\nu| = 0.0 \) or \(1.0 \), where \(x \) is real and positive, and only a single unscaled function value is required, then it may be much cheaper to call S17AEF or S17AFF respectively.

9. Example
The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE.

The program calls the routine with $N = 2$ to evaluate the function for orders FNU and FNU + 1, and it prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Value of the Airy function $Ai(z)$ or derivative $Ai'(z)$

— nags.ht —

S17DGF(3NAG) Foundation Library (12/10/92) S17DGF(3NAG)

S17 -- Approximations of Special Functions S17DGF
S17DGF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17DGF returns the value of the Airy function $Ai(z)$ or its derivative $Ai'(z)$ for complex z, with an option for exponential
2. Specification

SUBROUTINE S17DGF (DERIV, Z, SCALE, AI, NZ, IFAIL)
INTEGER NZ, IFAIL
COMPLEX(KIND(1.0D0)) Z, AI
CHARACTER*1 DERIV, SCALE

3. Description

This subroutine returns a value for the Airy function \(\text{Ai}(z) \) or its derivative \(\text{Ai}'(z) \), where \(z \) is complex, \(-\pi < \arg z \leq \pi\).

\[
\text{Ai}(z) = \frac{2z^{\nu}/3}{\pi^{1/3}}
\]

Optionally, the value is scaled by the factor \(e^{2z^{\nu}/3} \).

The routine is derived from the routine CAIRY in Amos [2]. It is based on the relations

\[
\text{Ai}(z) = \frac{\text{K}(w)}{\pi^{1/3}} - \frac{\text{K}(w)}{\pi^{2/3}}
\]

where \(\text{K} \) is the modified Bessel function and \(w = 2z^{\nu}/3 \).

For very large \(|z|\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z|\), the computation is performed but results are accurate to less than half of machine precision. If \(\text{Re } w \) is too large, and the unscaled function is required, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters
CHAPTER 22. NAG LIBRARY ROUTINES

1: DERIV -- CHARACTER*1
 On entry: specifies whether the function or its derivative is required.
 If DERIV = 'F', Ai(z) is returned.
 If DERIV = 'D', Ai'(z) is returned.
 Constraint: DERIV = 'F' or 'D'.

2: Z -- COMPLEX(KIND(1.0D0))
 On entry: the argument z of the function.

3: SCALE -- CHARACTER*1
 On entry: the scaling option.
 If SCALE = 'U', the result is returned unscaled.
 If SCALE = 'S', the result is returned scaled by the factor

\[2z^{\sqrt{3}}/e \]

 . Constraint: SCALE = 'U' or 'S'.

4: AI -- COMPLEX(KIND(1.0D0))
 On exit: the required function or derivative value.

5: NZ -- INTEGER
 On exit: NZ indicates whether or not AI is set to zero due to underflow. This can only occur when SCALE = 'U'.
 If NZ = 0, AI is not set to zero.
 If NZ = 1, AI is set to zero.

6: IFAIL -- INTEGER
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry DERIV $\neq 'F'$ or $'D'$.

or \quad SCALE $\neq 'U'$ or $'S'$.

IVAL$= 2$

No computation has been performed due to the likelihood of

overflow, because Re w is too large, where $w=2Z/\sqrt{3}$ -- how large depends on Z and the overflow threshold of the machine. This error exit can only occur when SCALE $= 'U'$.

IVAL$= 3$

The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the result returned by S17DGF is accurate to less than half of machine precision. This error exit may occur if ABS (Z) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IVAL$= 4$

No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in the result returned by S17DGF would be lost. This error exit may occur if ABS(Z) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IVAL$= 5$

No result is returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S17DGF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S17DGF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by p$=\min(t,18)$. Because of errors in argument reduction when computing elementary functions inside S17DGF, the actual number of correct digits is limited, in general, by p-s, where $s^{'max}(1,\log |z|)$ represents the number of digits lost due to the argument reduction. Thus the larger the value of $|z|$, the less the precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions $Ai(z)$, $Ai'(z)$, $Bi(z)$ and $Bi'(z)$, have
shown errors limited to the least significant 3-4 digits of precision.

8. Further Comments

Note that if the function is required to operate on a real argument only, then it may be much cheaper to call S17AGF or S17AJF.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the parameter DERIV, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE. The program calls the routine and prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Value of the Airy function $Bi(z)$ or derivative $Bi'(z)$
your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S17DHF returns the value of the Airy function Bi(z) or its derivative Bi’(z) for complex z, with an option for exponential scaling.

2. Specification

```
SUBROUTINE S17DHF (DERIV, Z, SCALE, BI, IFAIL)
INTEGER IFAIL
COMPLEX(KIND(1.0D0)) Z, BI
CHARACTER*1 DERIV, SCALE
```

3. Description

This subroutine returns a value for the Airy function Bi(z) or its derivative Bi’(z), where z is complex, -(pi) < argz <= (pi).

\[|\text{Re} \left(2z^\frac{1}{3}/z\right)| \]

Optionally, the value is scaled by the factor \(e^{\frac{2z^\frac{1}{3}}{3}} \).

The routine is derived from the routine CBIRY in Amos [2]. It is based on the relations

\[Bi(z) = \frac{1}{\sqrt{3}} (I_{\frac{1}{3}}(w) + I_{-\frac{1}{3}}(w)), \]

and

\[Bi'(z) = \frac{1}{\sqrt{3}} (I_{\frac{2}{3}}(w) + I_{-\frac{2}{3}}(w)), \]

where \(I_{\nu}(w) \) is the modified Bessel function and \(w = 2z^\frac{1}{3}/3 \).

For very large \(|z|\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z|\), the computation is performed but results are accurate to less than half of machine precision. If \(\text{Re } z \) is too large, and the unscaled function is required, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References
5. Parameters

1: DERIV -- CHARACTER*1 Input
 On entry: specifies whether the function or its derivative
 is required.
 If DERIV = 'F', Bi(z) is returned.
 If DERIV = 'D', Bi'(z) is returned.
 Constraint: DERIV = 'F' or 'D'.

2: Z -- COMPLEX(KIND(1.0D0)) Input
 On entry: the argument z of the function.

3: SCALE -- CHARACTER*1 Input
 On entry: the scaling option.
 If SCALE = 'U', the result is returned unscaled.
 If SCALE = 'S', the result is returned scaled by the

 |Re(2z\sqrt{z/3})|
 factor e
 Constraint: SCALE = 'U' or 'S'.

4: BI -- COMPLEX(KIND(1.0D0)) Output
 On exit: the required function or derivative value.

5: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry DERIV /= 'F' or 'D'.
or
SCALE /= 'U' or 'S'.

IFAIL= 2
No computation has been performed due to the likelihood of overflow, because real(Z) is too large - how large depends on the overflow threshold of the machine. This error exit can only occur when SCALE = 'U'.

IFAIL= 3
The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the result returned by S17DHF is accurate to less than half of machine precision. This error exit may occur if ABS(Z) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 4
No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in the result returned by S17DHF would be lost. This error exit may occur if ABS(Z) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 5
No result is returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S17DHF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S17DHF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by p=min(t,18). Because of errors in argument reduction when computing elementary functions inside S17DHF, the actual number of correct digits is limited, in general, by p-s, where s=max(1,|log_10 |z||) represents the number of digits lost due to the argument reduction. Thus the larger the value of |z|, the less the precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions Ai(z), Ai'(z), Bi(z) and Bi'(z), have shown errors limited to the least significant 3-4 digits of precision.
8. Further Comments

Note that if the function is required to operate on a real argument only, then it may be much cheaper to call S17AHF or S17AKF.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the parameter DERIV, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE. The program calls the routine and prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
1. Purpose

The subroutine S17DLF returns a sequence of values for the Hankel functions

\[H_n^{(1)}(z) \quad \text{or} \quad H_n^{(2)}(z) \]

for complex \(z \), non-negative \(\nu \) and \(\nu + n \)

\(n = 0, 1, \ldots, N-1 \), with an option for exponential scaling.

2. Specification

```fortran
SUBROUTINE S17DLF (M, FNU, Z, N, SCALE, CY, NZ, IFAIL)
    INTEGER M, N, NZ, IFAIL
    DOUBLE PRECISION FNU
    COMPLEX(KIND(1.0D0)) Z, CY(N)
    CHARACTER*1 SCALE
```

3. Description

This subroutine evaluates a sequence of values for the Hankel functions

\[H_n^{(1)}(z) \quad \text{or} \quad H_n^{(2)}(z) \]

where \(z \) is complex, \(-\pi < \arg z \leq \pi\), and \(\nu \) is the real, non-negative order. The \(N \)-member sequence is generated for orders \(\nu, \nu + 1, \ldots, \nu + N-1 \).

Optionally, the sequence is scaled by the factor \(e^{iz\nu} \) if the function is \(H_n^{(1)}(z) \) or by the factor \(e^{iz\nu} \) if the function is \(H_n^{(2)}(z) \).

Note: although the routine may not be called with \(\nu \) less than zero, for negative orders the formulae

\[H_n^{(1)}(z) = e^{iz\nu} \quad \text{and} \quad H_n^{(2)}(z) = e^{iz\nu} \]

may be used.

The routine is derived from the routine CBESH in Amos [2]. It is based on the relation

\[H_n^{(m)}(z) = (-1)^n e^{-i\pi n} K_n^{(m)}(ze^{-i\pi}), \]

where

\[K_n^{(m)}(z) = \begin{cases} \frac{\Gamma(n-m+1)}{2\pi i} & \text{if} \quad m = 1 \\ \frac{\Gamma(n-m+1)}{2\pi} & \text{if} \quad m = 2 \end{cases} \]

and \(\Gamma \) is the gamma function.

Note: the routine may not be called with negative \(\nu \).

The routine is derived from the routine CBESH in Amos [2]. It is based on the relation

\[H_n^{(m)}(z) = (-1)^n e^{-i\pi n} K_n^{(m)}(ze^{-i\pi}), \]

where

\[K_n^{(m)}(z) = \begin{cases} \frac{\Gamma(n-m+1)}{2\pi i} & \text{if} \quad m = 1 \\ \frac{\Gamma(n-m+1)}{2\pi} & \text{if} \quad m = 2 \end{cases} \]

and \(\Gamma \) is the gamma function.

Note: the routine may not be called with negative \(\nu \).
where \(p = i \) if \(m = 1 \) and \(p = -i \) if \(m = 2 \), and the Bessel function \(K_{\nu}(z) \) is computed in the right half-plane only. Continuation of \(K_{\nu}(z) \) to the left half-plane is computed in terms of the Bessel function \(I_{\nu}(z) \). These functions are evaluated using a variety of different techniques, depending on the region under consideration.

When \(N \) is greater than 1, extra values of \(H_{\nu}(z) \) are computed using recurrence relations.

For very large \(|z|\) or \((\nu)+N-1\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z|\) or \((\nu)+N-1\), the computation is performed but results are accurate to less than half of machine precision. If \(|z|\) is very small, near the machine underflow threshold, or \((\nu)+N-1\) is too large, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters

1: \(M \) -- INTEGER \(\text{ Input} \)
 On entry: the kind of functions required.
 (1) If \(M = 1 \), the functions are \(H_{\nu}(z) \).
 (2) If \(M = 2 \), the functions are \(H_{\nu}(z) \).
 Constraint: \(M = 1 \) or \(2 \).

2: \(FNU \) -- DOUBLE PRECISION \(\text{ Input} \)
 On entry: the order, \((\nu)\), of the first member of the sequence of functions. Constraint: \(FNU \geq 0.0 \).
3: Z -- COMPLEX(KIND(1.0D0)) Input
 On entry: the argument z of the functions. Constraint: Z # (0.0, 0.0).

4: N -- INTEGER Input
 On entry: the number, N, of members required in the sequence
 (M) (M) (M)
 (nu) (nu)+1 (nu)+N-1

5: SCALE -- CHARACTER*1 Input
 On entry: the scaling option.
 If SCALE = 'U', the results are returned unscaled.
 If SCALE = 'S', the results are returned scaled by the
 factor e when M = 1, or by the factor e when M =
 -iz iz
 2.
 Constraint: SCALE = 'U' or 'S'.

6: CY(N) -- COMPLEX(KIND(1.0D0)) array Output
 On exit: the N required function values: CY(i) contains
 (M)
 H , for i=1,2,...,N.
 (nu)+i-1

7: NZ -- INTEGER Output
 On exit: the number of components of CY that are set to zero
 due to underflow. If NZ > 0, then if Imz>0.0 and M = 1, or
 Imz<0.0 and M = 2, elements CY(1), CY(2),...,CY(NZ) are set
 to zero. In the complementary half-planes, NZ simply states
 the number of underflows, and not which elements they are.

8: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry $M /= 1$ and $M /= 2$,
or $FNU < 0.0$,
or $Z = (0.0, 0.0)$,
or $N < 1$,
or $SCALE /= 'U$ or 'S'.

$IFAIL= 2$
No computation has been performed due to the likelihood of overflow, because $ABS(Z)$ is less than a machine-dependent threshold value (given in the Users' Note for your implementation).

$IFAIL= 3$
No computation has been performed due to the likelihood of overflow, because $FNU + N - 1$ is too large - how large depends on Z and the overflow threshold of the machine.

$IFAIL= 4$
The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the results returned by S17DLF are accurate to less than half of machine precision. This error exit may occur if either $ABS(Z)$ or $FNU + N - 1$ is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

$IFAIL= 5$
No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by S17DLF would be lost. This error exit may occur when either of $ABS(Z)$ or $FNU + N - 1$ is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

$IFAIL= 6$
No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S17DLF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S17DLF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is
limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside S17DLF, the actual number of correct digits is limited, in general, by \(p - s \), where
\[
s = \max(1, \log |z|, \log (\nu))
\]
represents the number of digits lost due to the argument reduction. Thus the larger the values of \(|z| \) and \((\nu) \), the less the precision in the result. If S17DLF is called with \(N > 1 \), then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S17DLF with different base values of \((\nu) \) and different \(N \), the computed values may not agree exactly. Empirical tests with modest values of \((\nu) \) and \(z \) have shown that the discrepancy is limited to the least significant 3-4 digits of precision.

8. Further Comments

The time taken by the routine for a call of S17DLF is approximately proportional to the value of \(N \), plus a constant. In general it is much cheaper to call S17DLF with \(N \) greater than 1, rather than to make \(N \) separate calls to S17DLF.

Paradoxically, for some values of \(z \) and \((\nu) \), it is cheaper to call S17DLF with a larger value of \(N \) than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different \(N \), and the costs in each region may differ greatly.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the kind of function, \(M \), the second is a value for the order \(FNU \), the third is a complex value for the argument, \(Z \), and the fourth is a value for the parameter SCALE. The program calls the routine with \(N = 2 \) to evaluate the function for orders \(FNU \) and \(FNU + 1 \), and it prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Returns the value of the modified Bessel Function $K_0(x)$
22.6. NAGS.HT

For $0 < x \leq 1$,
\[
K(x) = -\ln x > a \sum_{r=0}^{2} \frac{t^{r+1}}{r!},\quad \text{where } t = 2x - 1;
\]

For $1 < x \leq 2$,
\[
K(x) = e^{-x} > c \sum_{r=0}^{t} \frac{t^{r+1}}{r!},\quad \text{where } t = 2x - 3;
\]

For $2 < x \leq 4$,
\[
K(x) = e^{-x} > d \sum_{r=0}^{t} \frac{t^{r+1}}{r!},\quad \text{where } t = x - 3;
\]

For $x > 4$,
\[
K(x) = \frac{e^{-9+x}}{\sqrt{x}} \sum_{r=0}^{\frac{9-x}{1+x}} \frac{t^{r+1}}{r!}
\]

For x near zero, $K(x) \approx -(\gamma) - \ln(-)$, where (γ) denotes Euler's constant. This approximation is used when x is sufficiently small for the result to be correct to machine precision.

For large x, where there is a danger of underflow due to the smallness of K, the result is set exactly to zero.

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input
On entry: the argument x of the function. Constraint: $X > 0$.

2: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
 X <= 0.0, K is undefined. On soft failure the routine
 returns zero.

7. Accuracy

Let (delta) and (epsilon) be the relative errors in the argument
and result respectively.

If (delta) is somewhat larger than the machine precision (i.e.,
if (delta) is due to data errors etc), then (epsilon) and (delta)
are approximately related by:

\[
\frac{| xK(x) |}{| K(x) |} \approx \frac{1}{| \ln x |} (\text{epsilon}) = \frac{1}{| \ln x |} (\text{delta}).
\]

Figure 1 shows the behaviour of the error amplification factor

\[
\begin{array}{c|c|}
| xK(x) | & 1 \\
\hline
| K(x) | & | \ln x |
\end{array}
\]

However, if (delta) is of the same order as machine precision,
then rounding errors could make (epsilon) slightly larger than
the above relation predicts.

\[
\frac{1}{| \ln x |}
\]

For small x, the amplification factor is approximately

\[
\begin{array}{c|c|}
| 1 | & | \ln x |
\end{array}
\]
which implies strong attenuation of the error, but in general (epsilon) can never be less than the machine precision.

For large x, (epsilon)^-x(delta) and we have strong amplification of the relative error. Eventually K, which is asymptotically

\[K = \frac{-x}{e} \]

given by \(\frac{-x}{\sqrt{x}} \), becomes so small that it cannot be calculated without underflow and hence the routine will return zero. Note that for large x the errors will be dominated by those of the Fortran intrinsic function EXP.

8. Further Comments

For details of the time taken by the routine see the appropriate the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
S18 -- Approximations of Special Functions
S18ADF
S18ADF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S18ADF returns the value of the modified Bessel Function Kₙ(x), via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S18ADF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the modified Bessel Function of the second kind Kₙ(x).

Note: Kₙ(x) is undefined for x<=0 and the routine will fail for such arguments.

The routine is based on five Chebyshev expansions:

For 0<x<=1,

\[K(x) = -x \ln x > a T(r) - x > b T(r) \], where t=2x-1; \]

\[r=0 \]

For 1<x<=2,

\[K(x) = e > c T(t) \], where t=2x-3; \]

\[r=0 \]

For 2<x<=4,
For $x > 4$,

$$
K(x) = \frac{-x}{e^{x}} > e^{T(t)}, \text{ where } t = \frac{9-x}{1+x},
$$

For x near zero, $K(x) \approx -1$. This approximation is used when x is sufficiently small for the result to be correct to machine precision. For very small x on some machines, it is impossible to calculate -1 without overflow and the routine must fail.

For large x, where there is a danger of underflow due to the smallness of K, the result is set exactly to zero.

4. References

5. Parameters

1: X -- DOUBLE PRECISION

On entry: the argument x of the function. Constraint: $X > 0$.

2: IFAIL -- INTEGER

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
X <= 0.0, K is undefined. On soft failure the routine returns zero.

IFAIL= 2
X is too small, there is a danger of overflow. On soft failure the routine returns approximately the largest representable value.

7. Accuracy

Let (delta) and (epsilon) be the relative errors in the argument and result respectively.

If (delta) is somewhat larger than the machine precision (i.e., if (delta) is due to data errors etc), then (epsilon) and (delta) are approximately related by:

\[
\frac{|xK(x) - K(x)|}{|K(x)|} \approx |\delta|.
\]

Figure 1 shows the behaviour of the error amplification factor

\[
\frac{|xK(x) - K(x)|}{|K(x)|} \approx |\delta|.
\]

However if (delta) is of the same order as the machine precision, then rounding errors could make (epsilon) slightly larger than the above relation predicts.

For small x, (epsilon)~=(delta) and there is no amplification of errors.

For large x, (epsilon)~=x(delta) and we have strong amplification of the relative error. Eventually K, which is asymptotically given by \(-x/e\), becomes so small that it cannot be calculated
without underflow and hence the routine will return zero. Note that for large \(x \) the errors will be dominated by those of the Fortran intrinsic function \(\text{EXP} \).

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Returns the value of the modified Bessel Function \(I_0(x) \)

--- nags.ht ---

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
1. Purpose

S18AEF returns the value of the modified Bessel Function $I_0(x)$, via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S18AEF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the modified Bessel Function of the first kind $I_0(x)$.

Note: $I_{-x} = I_x$, so the approximation need only consider $x \geq 0$.

The routine is based on three Chebyshev expansions:

For $0 < x \leq 4$,

$$I_0(x) = e^{-x} \sum_{r=0}^{\infty} a_r T_r(t), \quad t = 2 - \frac{x}{4},$$

For $4 < x \leq 12$,

$$I_0(x) = e^{-x+8} \sum_{r=0}^{\infty} b_r T_r(t), \quad t = \frac{x-8}{4},$$

For $x > 12$,

$$I_0(x) = \frac{e^{-x}}{\sqrt{x}} \sum_{r=0}^{\infty} c_r T_r(t), \quad t = 2 - \frac{x}{2},$$

For small x, $I_0(x) \approx 1$. This approximation is used when x is sufficiently small for the result to be correct to machine precision.
For large x, the routine must fail because of the danger of x
overflow in calculating e.

4. References

Functions. Dover Publications.

5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
 X is too large. On soft failure the routine returns the
 approximate value of $I(x)$ at the nearest valid argument.

7. Accuracy

Let (δ) and (ϵ) be the relative errors in the argument
and result respectively.

If (δ) is somewhat larger than the machine precision (i.e.,
if (δ) is due to data errors etc), then (ϵ) and (δ)
are approximately related by:

$$| \frac{xI(x)}{1} | \leq \frac{| \epsilon |}{| I(x) |}$$

Figure 1 shows the behaviour of the error amplification factor

$$| \frac{xI(x)}{1} |$$
However if \((\Delta)\) is of the same order as machine precision, then rounding errors could make \((\epsilon)\) slightly larger than the above relation predicts.

\[
\frac{2}{x}
\]

For small \(x\) the amplification factor is approximately \(\frac{2}{x}\), which implies strong attenuation of the error, but in general \((\epsilon)\) can never be less than the machine precision.

For large \(x\), \((\epsilon)^x = x(\Delta)\) and we have strong amplification of errors. However the routine must fail for quite moderate values of \(x\), because \(I(x)\) would overflow; hence in practice the loss of accuracy for large \(x\) is not excessive. Note that for large \(x\) the errors will be dominated by those of the Fortran intrinsic function EXP.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument \(x\) from a file, evaluates the function at each value of \(x\) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Returns a value for the modified Bessel Function $I_1(x)$

— nags.ht —

\begin{verbatim}
S18 -- Approximations of Special Functions
S18AFF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S18AFF returns a value for the modified Bessel Function $I_1(x)$ via the routine name.

2. Specification

DOUBLE PRECISION FUNCTION S18AFF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X

3. Description

This routine evaluates an approximation to the modified Bessel Function of the first kind $I_1(x)$.

Note: $I_1(-x) = -I_1(x)$, so the approximation need only consider $x \geq 0$.

The routine is based on three Chebyshev expansions:

For $0 < x \leq 4$,

\[I_1(x) = x^{\frac{1}{2}} \left(\frac{1}{2} \right)^{1/2} a_t T_t(t), \]

where $t = 2 \left(\frac{1}{x} - 1 \right)$,
Chapter 22. NAG Library Routines

For $4 < x \leq 12$,

\[I(x) = e^{x-8} \sum_{r=0}^{4} \frac{x^r}{r!} \]

For $x > 12$,

\[I(x) = \frac{(12)}{e} \sum_{r=0}^{x} \frac{(12)^r}{r!} \]

For small x, $I(x) \approx x$. This approximation is used when x is sufficiently small for the result to be correct to machine precision.

For large x, the routine must fail because $I(x)$ cannot be represented without overflow.

4. References

5. Parameters

1: X -- DOUBLE PRECISION
 Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1
X is too large. On soft failure the routine returns the approximate value of \(I(x) \) at the nearest valid argument.

7. Accuracy

Let \((\delta)\) and \((\epsilon)\) be the relative errors in the argument and result respectively.

If \((\delta)\) is somewhat larger than the machine precision (i.e., if \((\delta)\) is due to data errors etc), then \((\epsilon)\) and \((\delta)\) are approximately related by:

\[
\begin{array}{c|cc|c}
|xI(x) - I(x)| & 0 & 1 & |
delta|
\end{array}
\]

\[\epsilon \approx \frac{|xI(x) - I(x)|}{|I(x)|} \cdot \delta.\]

Figure 1 shows the behaviour of the error amplification factor

\[
\begin{array}{c|cc|c}
|xI(x) - I(x)| & 0 & 1 & |
delta|
\end{array}
\]

However if \((\delta)\) is of the same order as machine precision, then rounding errors could make \((\epsilon)\) slightly larger than the above relation predicts.

For small \(x\), \(\epsilon \approx \delta\) and there is no amplification of errors.

For large \(x\), \(\epsilon \approx x \cdot \delta\) and we have strong amplification of errors. However the routine must fail for quite moderate values of \(x\) because \(I(x)\) would overflow; hence in practice the loss of accuracy for large \(x\) is not excessive. Note that for large \(x\), the errors will be dominated by those of the Fortran intrinsic function \(\exp\).

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.
9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Sequence of values for the modified Bessel $K_{\nu_n}(z)$

```latex
\begin{verbatim}
S18DCF(3NAG)  Foundation Library (12/10/92)  S18DCF(3NAG)

S18 -- Approximations of Special Functions
S18DCF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S18DCF returns a sequence of values for the modified Bessel functions $K_{\nu_n}(z)$ for complex z, non-negative (nu) and $(\nu_n)+n$

$n=0,1,\ldots,N-1$, with an option for exponential scaling.

2. Specification

SUBROUTINE S18DCF (FNU, Z, N, SCALE, CY, NZ, IFAIL)
INTEGER N, NZ, IFAIL
\end{verbatim}
```
DOUBLE PRECISION FNU
COMPLEX(KIND(1.0D0)) Z, CY(N)
CHARACTER*1 SCALE

3. Description

This subroutine evaluates a sequence of values for the modified Bessel function \(K_\nu(z) \), where \(z \) is complex, \(-\pi < \arg z \leq \pi(\nu)\) (\(\nu\)) is the real, non-negative order. The \(N\)-member sequence is generated for orders \(\nu, \nu+1, \ldots, \nu+N-1 \).

Optionally, the sequence is scaled by the factor \(e^{\nu} \).

The routine is derived from the routine CBESK in Amos [2].

Note: although the routine may not be called with \(\nu \) less than zero, for negative orders the formula \(K_\nu(z) = K_{-\nu}(z) \) may be used.

When \(N \) is greater than 1, extra values of \(K_{\nu}(z) \) are computed using recurrence relations.

For very large \(|z|\) or \((\nu+N-1)\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z|\) or \((\nu+N-1)\), the computation is performed but results are accurate to less than half of machine precision. If \(|z|\) is very small, near the machine underflow threshold, or \((\nu+N-1)\) is too large, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters

1: FNU -- DOUBLE PRECISION
On entry: the order, \(\nu \), of the first member of the sequence of functions. Constraint: FNU >= 0.0.

2: Z -- COMPLEX(KIND(1.0D0))
Input
On entry: the argument z of the functions. Constraint: $Z \neq (0.0, 0.0)$.

3: N -- INTEGER Input
On entry: the number, N, of members required in the sequence $K^{(z)}, K^{(z)}+,\ldots, K^{(z)}+(n)+N-1$.

4: $SCALE$ -- CHARACTER*1 Input
On entry: the scaling option.

If $SCALE = 'U'$, the results are returned unscaled.

If $SCALE = 'S'$, the results are returned scaled by the z factor $e^{(n)}$. Constraint: $SCALE = 'U'$ or 'S'.

5: $CY(N)$ -- COMPLEX(KIND(1.D)) array Output
On exit: the N required function values: $CY(i)$ contains $K^{(z)}+i-1$.

6: NZ -- INTEGER Output
On exit: the number of components of CY that are set to zero due to underflow. If $NZ > 0$ and $Rez>=0.0$, elements $CY(1), CY(2),\ldots, CY(NZ)$ are set to zero. If $Rez<0.0$, NZ simply states the number of underflows, and not which elements they are.

7: $IFAIL$ -- INTEGER Input/Output
On entry: $IFAIL$ must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: $IFAIL = 0$ unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry $IFAIL = 0$ or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

$IFAIL= 1$
On entry $FNU < 0.0$,

or $Z = (0.0, 0.0)$,

or $N < 1$,
or SCALE /= 'U' or 'S'.

IFAIL= 2
No computation has been performed due to the likelihood of overflow, because ABS(Z) is less than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 3
No computation has been performed due to the likelihood of overflow, because FNU + N - 1 is too large - how large depends on Z and the overflow threshold of the machine.

IFAIL= 4
The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the results returned by S18DCF are accurate to less than half of machine precision. This error exit may occur if either ABS(Z) or FNU + N - 1 is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 5
No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by S18DCF would be lost. This error exit may occur when either ABS(Z) or FNU + N - 1 is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 6
No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S18DCF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S18DCF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by p=min(t,18). Because of errors in argument reduction when computing elementary functions inside S18DCF, the actual number of correct digits is limited, in general, by p-s, where s=max(1,|log |z||,|log (nu)|) represents the number of digits lost due to the argument reduction. Thus the larger the values of
|z| and (nu), the less the precision in the result. If S18DCF is called with N>1, then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S18DCF with different base values of (nu) and different N, the computed values may not agree exactly. Empirical tests with modest values of (nu) and z have shown that the discrepancy is limited to the least significant 3-4 digits of precision.

8. Further Comments

The time taken by the routine for a call of S18DCF is approximately proportional to the value of N, plus a constant. In general it is much cheaper to call S18DCF with N greater than 1, rather than to make N separate calls to S18DCF.

Paradoxically, for some values of z and (nu), it is cheaper to call S18DCF with a larger value of N than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different N, and the costs in each region may differ greatly.

Note that if the function required is $K(x)$ or $K^1(x)$, i.e.,

$\begin{align*}
\text{for } K(x) & : & (nu) &= 0.0 \\
\text{for } K^1(x) & : & (nu) &= 1.0
\end{align*}$

where x is real and positive, and only a single function value is required, then it may be much cheaper to call S18ACF, S18ADF, S18CCF(*) or S18CDF(*), depending on whether a scaled result is required or not.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE. The program calls the routine with N = 2 to evaluate the function for orders FNU and FNU + 1, and it prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Sequence of values for the modified Bessel $I_{\nu+n}$

--- nags.ht ---
sequence is generated for orders (nu), (nu)+1,...,(nu)+|Rez|.

Optionally, the sequence is scaled by the factor e^{|Rez|}.

The routine is derived from the routine CBESI in Amos [2].

Note: although the routine may not be called with (nu) less than zero, for negative orders the formula

\[I(z) = I(-z) + \frac{2}{(nu)(pi)(nu)} \sin((pi)(nu)) K(z) \]

may be used (for (nu) < 0, nu, pi, nu) the Bessel function K_nu(z), see S18DCF).

When N is greater than 1, extra values of I_nu(z) are computed using recurrence relations.

For very large |z| or ((nu)+N-1), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller |z| or ((nu)+N-1), the computation is performed but results are accurate to less than half of machine precision. If Re(z) is too large and the unscaled function is required, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the routine.

4. References

5. Parameters

1: FNU -- DOUBLE PRECISION
 On entry: the order, (nu), of the first member of the sequence of functions. Constraint: FNU >= 0.0.

2: Z -- COMPLEX(KIND(1.0D0))
 On entry: the argument z of the functions.

3: N -- INTEGER
 On entry: the number, N, of members required in the sequence I_nu(z), I_{(nu)+1}(z),...,I_{(nu)+N-1}(z). Constraint: N >= 1.

4: SCALE -- CHARACTER*1
 Input
On entry: the scaling option.
If \(\text{SCALE} = 'U' \), the results are returned unscaled.

If \(\text{SCALE} = 'S' \), the results are returned scaled by the
\[-|\text{Re}z| \]
factor \(e \).
Constraint: \(\text{SCALE} = 'U' \) or 'S'.

5: CY(N) -- COMPLEX(KIND(1.0D)) array
On exit: the \(N \) required function values: \(CY(i) \) contains
\[I(\nu+i-1)(z) \], for \(i=1,2,\ldots,N \).

6: NZ -- INTEGER
On exit: the number of components of \(CY \) that are set to zero
due to underflow.
If \(NZ > 0 \), then elements \(CY(N-NZ+1), CY(N-NZ+2),\ldots,CY(N) \) are
set to zero.

7: IFAIL -- INTEGER
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.
On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL = 1
On entry FNU < 0.0,
or \(N < 1 \),
or \(\text{SCALE}
eq 'U' \) or 'S'.

IFAIL = 2
No computation has been performed due to the likelihood of
overflow, because \(\text{real}(z) \) is greater than a machine-
dependent threshold value (given in the Users' Note for
your implementation). This error exit can only occur when
\(\text{SCALE} = 'U' \).

IFAIL = 3
The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the results returned by S18DEF are accurate to less than half of machine precision. This error exit may occur when either \(|ABS(Z)| \) or \(FNU + N - 1 \) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 4

No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by S18DEF would be lost. This error exit may occur when either \(|ABS(Z)| \) or \(FNU + N - 1 \) is greater than a machine-dependent threshold value (given in the Users' Note for your implementation).

IFAIL= 5

No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to S18DEF would have caused overflow or underflow.

7. Accuracy

All constants in subroutine S18DEF are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used \(t \), then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside S18DEF, the actual number of correct digits is limited, in general, by \(p - s \), where

\[
s = \max(1, \log_{10} |z|, \log_{10} (nu))
\]

represents the number of digits lost due to the argument reduction. Thus the larger the values of \(|z| \) and \((nu) \), the less the precision in the result. If S18DEF is called with \(N > 1 \), then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to S18DEF with different base values of \((nu) \) and different \(N \), the computed values may not agree exactly. Empirical tests with modest values of \((nu) \) and \(z \) have shown that the discrepancy is limited to the least significant 3-4 digits of precision.

8. Further Comments

The time taken by the routine for a call of S18DEF is approximately proportional to the value of \(N \), plus a constant. In general it is much cheaper to call S18DEF with \(N \) greater than 1,
rather than to make \(N \) separate calls to S18DEF.

Paradoxically, for some values of \(z \) and \((\nu)\), it is cheaper to call S18DEF with a larger value of \(N \) than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different \(N \), and the costs in each region may differ greatly.

Note that if the function required is \(I_0(x) \) or \(I_1(x) \), i.e.,

\[
(nu) = 0.0 \text{ or } 1.0,
\]

where \(x \) is real and positive, and only a single function value is required, then it may be much cheaper to call S18AEF, S18AFF, S18CEF(\#) or S18CFF(\#), depending on whether a scaled result is required or not.

9. Example

The example program prints a caption and then proceeds to read sets of data from the input data stream. The first datum is a value for the order FNU, the second is a complex value for the argument, Z, and the third is a value for the parameter SCALE. The program calls the routine with \(N = 2 \) to evaluate the function for orders FNU and FNU + 1, and it prints the results. The process is repeated until the end of the input data stream is encountered.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\begin{verbatim}
\verbatim
\end{verbatim}

Returns a value for the Kelvin function \(\text{ber} \ x \)

\begin{verbatim}
\verbatim
\end{verbatim}
1. Purpose

S19AAF returns a value for the Kelvin function ber x via the routine name.

2. Specification

```plaintext
DOUBLE PRECISION FUNCTION S19AAF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Kelvin function ber x.

Note: ber(-x)=berx, so the approximation need only consider x>=0.0.

The routine is based on several Chebyshev expansions:

For 0<=x<=5,

\[\text{berx} = \sum_{r=0}^{\infty} a_r T_r(t) \] with \(t = 2 \times (\frac{x}{5}) - 1 \).

For \(x > 5 \),

\[\text{berx} = \frac{e^{x/\sqrt{2}}}{\sqrt{\pi x}} \left[(1 + a(t)\cos(\alpha)) + b(t)\sin(\alpha) \right] \]

where \(a(t) \) and \(b(t) \) are computed from Chebyshev coefficients.
\[\frac{-x/\sqrt{2}}{\sqrt{2\pi}x} \cdot e^{\frac{1}{2}} \left[\begin{array}{c} 1 \\ x \\ x \end{array} \right] \frac{1}{1+c(t)} \sin(\beta) + c(t) \cos(\beta) \]

\[\left[\begin{array}{c} 1 \\ x \\ x \end{array} \right] \frac{1}{1+c(t)} \sin(\beta) + c(t) \cos(\beta) \]

where \(\alpha = \frac{-\pi}{8} \), \(\beta = \frac{-\pi}{8} + \frac{\pi}{2} \)

and \(a(t), b(t), c(t), \) and \(d(t) \) are expansions in the variable \(t = \frac{1}{x} \).

When \(x \) is sufficiently close to zero, the result is set directly to \(0 = 1.0 \).

For large \(x \), there is a danger of the result being totally inaccurate, as the error amplification factor grows in an essentially exponential manner; therefore the routine must fail.

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION Input
 On entry: the argument \(x \) of the function.

2: \(IFAIL \) -- INTEGER Input/Output
 On entry: \(IFAIL \) must be set to \(0, -1 \) or \(1 \). For users not familiar with this parameter (described in the Essential Introduction) the recommended value is \(0 \).

 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

\(IFAIL = 1 \)

On entry \(\text{ABS}(X) \) is too large for an accurate result to be
CHAPTER 22. NAG LIBRARY ROUTINES

7. Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be the absolute error in the result and $(delta)$ be the relative error in the argument. If $(delta)$ is somewhat larger than the machine precision, then we have:

\[
\frac{|x|}{\sqrt{2}} \approx \frac{|\text{ber} x + \text{bei} x|}{1} (delta)
\]

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the absolute error is effectively bounded by the machine precision.

For medium and large x, the error behaviour is oscillatory and

\[
\frac{x}{\sqrt{2}} \approx \frac{x}{2\pi}
\]

its amplitude grows like $\frac{x}{2\pi}$. Therefore it is not possible to calculate the function with any accuracy when

\[
\frac{x}{\sqrt{2}} > \frac{2\pi}{(delta)}
\]

the minimum value of x for which the function overflows.

8. Further Comments

For details of the time taken by the routine see the Users’ Note for your implementation.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Returns a value for the Kelvin function bei x

1. Purpose

S19ABF returns a value for the Kelvin function bei x via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S19ABF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Kelvin function beix.

Note: bei(-x)=beix, so the approximation need only consider x>=0.0.

The routine is based on several Chebyshev expansions:
For $0 \leq x \leq 5$,

\begin{align*}
2 \\
\frac{2}{x} & \quad \text{bei } x < \frac{5}{2} \\
\text{bei } x = \text{a}(t), \text{ with } t = \frac{\pi}{2} - 1; \quad (5) \\
r &= 0 \\
\end{align*}

For $x > 5$,

\begin{align*}
\frac{x}{\sqrt{2}} & \quad \text{bei } x = \frac{x}{\sqrt{2}} \\
e & \quad \left[\begin{array}{c} 1 \\
1 \\
\end{array} \right] \\
\text{bei } x = \frac{x}{\sqrt{2}} \left[\begin{array}{c} (1 + a(t))\sin(\alpha) - b(t)\cos(\alpha) \\
(1 + c(t))\cos(\beta) - d(t)\sin(\beta) \\
\end{array} \right] \\
\sqrt{2\pi x} \\
\end{align*}

\begin{align*}
\frac{x}{\sqrt{2}} & \quad \text{bei } x = \frac{x}{\sqrt{2}} \\
e & \quad \left[\begin{array}{c} 1 \\
1 \\
\end{array} \right] \\
+ \frac{x}{\sqrt{2\pi x}} \\
\sqrt{2\pi x} \\
\end{align*}

where $\alpha = \frac{\pi}{8}$, $\beta = \frac{\pi}{8}$, and $a(t)$, $b(t)$, $c(t)$, and $d(t)$ are expansions in the variable $t = \frac{1}{x}$.

When x is sufficiently close to zero, the result is computed as

\begin{align*}
2 \\
\frac{2}{x} & \quad \text{bei } x = \frac{5}{2} \\
\text{bei } x = 0.0. \quad \text{If this result would underflow, the result returned is} \\
\end{align*}

For large x, there is a danger of the result being totally inaccurate, as the error amplification factor grows in an essentially exponential manner; therefore the routine must fail.

4. References
5. Parameters

1: X -- DOUBLE PRECISION Input
 On entry: the argument x of the function.

2: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
 On entry ABS(X) is too large for an accurate result to be
 returned. On soft failure, the routine returns zero.

7. Accuracy

Since the function is oscillatory, the absolute error rather than
the relative error is important. Let E be the absolute error in
the function, and (delta) be the relative error in the argument.
If (delta) is somewhat larger than the machine precision, then we
have:

\[
| E^* | \approx (-ber x + bei x) |(delta) | \left| \frac{1}{1 + \frac{x}{\sqrt{2}}} \right|
\]

(provided E is within machine bounds).

For small x the error amplification is insignificant and thus the
absolute error is effectively bounded by the machine precision.

For medium and large x, the error behaviour is oscillatory and

\[
| x | x/2 \\
\]

its amplitude grows like \(------e \). Therefore it is

\[
\sqrt{2(pi)}
\]

impossible to calculate the functions with any accuracy when
\[x/\sqrt{2} /2(\pi) \]
\[\sqrt{x/e} > ----- \]
Note that this value of \(x \) is much smaller than \(\delta \).

8. Further Comments

For details of the time taken by the routine see the Users' Note for your implementation.

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\endscroll
\end{page}

Returns a value for the Kelvin function \(\text{ker} \ x \)

--- nags.ht ---

\begin{page}{manpageXXs19acf}{NAG Documentation: s19acf}
\beginscroll
\begin{verbatim}
S19ACF(3NAG) Foundation Library (12/10/92) S19ACF(3NAG)
S19 -- Approximations of Special Functions S19ACF
S19ACF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

S19ACF returns a value for the Kelvin function $\text{ker } x$, via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S19ACF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Kelvin function $\text{ker } x$.

Note: for $x<0$ the function is undefined and at $x=0$ it is infinite so we need only consider $x>0$.

The routine is based on several Chebyshev expansions:

For $0<x\leq 1$,

$$
\text{ker } x = -f(t)\log x + \frac{(\pi)^2}{16} x g(t) + y(t)
$$

where $f(t)$, $g(t)$ and $y(t)$ are expansions in the variable $t=2x-1$;

For $1<x\leq 3$,

$$
\text{ker } x = \exp(-\frac{11}{16}x)q(t)
$$

where $q(t)$ is an expansion in the variable $t=x-2$;

For $x>3$,

$$
\text{ker } x = \frac{-x/\sqrt{2}}{(\pi)^2} \left[(1 \quad 1) \begin{bmatrix} 1 \\ 1 \\ \frac{x}{2} \end{bmatrix} + \begin{bmatrix} 1 \\ -c(t)\cos(\beta) \\ -d(t)\sin(\beta) \end{bmatrix} \right]
$$
\[x \left(\frac{\pi}{8} \right) \]

where \(\beta = \frac{\pi}{\sqrt{2}} \), and \(c(t) \) and \(d(t) \) are expansions in the variable \(t = \frac{1}{\sqrt{2}} \).

When \(x \) is sufficiently close to zero, the result is computed as

\[
\ker x = -\left(\gamma \right) - \log\left(\frac{\pi}{2} \right) + \left(\frac{\pi}{2} - x \right) - \left(\frac{\pi}{8} \right) 16
\]

and when \(x \) is even closer to zero, simply as

\[
\ker x = -\left(\gamma \right) - \log\left(\frac{\pi}{2} \right).
\]

For large \(x \), \(\ker x \) is asymptotically given by

\[
\sqrt{\frac{\pi}{2x}} e
\]

this becomes so small that it cannot be computed without underflow and the routine fails.

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION
 Input
 On entry: the argument \(x \) of the function. Constraint: \(X > 0 \).

2: \(IFAIL \) -- INTEGER
 Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: \(IFAIL = 0 \) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
IFAIL = 1
On entry X is too large, the result underflows. On soft failure, the routine returns zero.

IFAIL = 2
On entry X <= 0, the function is undefined. On soft failure the routine returns zero.

7. Accuracy

Let E be the absolute error in the result, (epsilon) be the relative error in the result and (delta) be the relative error in the argument. If (delta) is somewhat larger than the machine precision, then we have:

\[
| x | \quad |E| = |(ker x + kei x)| (delta),
\]

\[
| 1 1 |
\]

\[
| \sqrt{2} |
\]

\[
| ker x + kei x| \quad | x 1 1 | (epsilon)^2 = |(delta). |
\]

\[
| ker x | \quad \sqrt{2} |
\]

For very small x, the relative error amplification factor is approximately given by \(\frac{1}{|\log x|}\), which implies a strong attenuation of relative error. However, (epsilon) in general cannot be less than the machine precision.

For small x, errors are damped by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory, and hence only the absolute accuracy for the function can be maintained. For this range of x, the amplitude of the absolute error decays like:

\[
/ (\pi) x - x/\sqrt{2}
\]

which implies a strong attenuation of error. Eventually, ker x,
which asymptotically behaves like \[
\frac{\sqrt{\pi}}{\sqrt{2x}} e^{-\frac{x}{2}} \]
becomes so small that it cannot be calculated without causing underflow, and the routine returns zero. Note that for large \(x \) the errors are dominated by those of the Fortran intrinsic function \(\exp \).

8. Further Comments

Underflow may occur for a few values of \(x \) close to the zeros of \(\text{ker} x \), below the limit which causes a failure with \(\text{IFAIL} = 1 \).

9. Example

The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Returns a value for the Kelvin function \(\text{kei} x \)

— nags.ht —

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.
1. Purpose

S19ADF returns a value for the Kelvin function keix via the routine name.

2. Specification

 DOUBLE PRECISION FUNCTION S19ADF (X, IFAIL)
 INTEGER IFAIL
 DOUBLE PRECISION X

3. Description

This routine evaluates an approximation to the Kelvin function keix.

Note: for \(x<0 \) the function is undefined, so we need only consider \(x\geq0 \).

The routine is based on several Chebyshev expansions:

For \(0\leq x\leq1 \),

\[
 keix = -\frac{2}{\pi} x F(t) + \frac{1}{4} G(t) \log x + V(t)
\]

where \(F(t) \), \(G(t) \), and \(V(t) \) are expansions in the variable \(t = 2x - 1 \);

For \(1 < x < 3 \),

\[
 keix = e^{-\frac{9}{8} x} U(t)
\]

where \(U(t) \) is an expansion in the variable \(t = x - 2 \);

For \(x > 3 \),

\[
 keix = \frac{1}{2\pi} e^{-\frac{x}{\sqrt{2}}} \left[(1+\ \text{c}(t)\sin(\beta) + \text{d}(t)\cos(\beta)) \right]
\]

\[
 e^{\text{c}(t)}\sin(\beta) + \text{d}(t)\cos(\beta)
\]

\[
 \sqrt{2x} \left[(x) x \right]
\]

\[
 x (\pi)
\]

\[
 \sqrt{2x} \left[(x) x \right]
\]

\[
 x (\pi)
\]
where \((\text{beta})= \ldots \), and \(c(t)\) and \(d(t)\) are expansions in the variable \(t=\frac{1}{\sqrt{2}}\).

For \(x<0\), the function is undefined, and hence the routine fails and returns zero.

When \(x\) is sufficiently close to zero, the result is computed as

\[
\text{keix} = -\frac{2}{\pi} + \frac{1}{2} - \log(2) - \gamma - \ln(2) + \ln(\sqrt{2})
\]

and when \(x\) is even closer to zero simply as

\[
\text{keix} = -\frac{1}{\sqrt{2}}\pi.
\]

For large \(x\), \(\text{keix}\) is asymptotically given by

\[
\text{keix} = -\frac{\sqrt{x}}{2} e^{-x/2}.
\]

this becomes so small that it cannot be computed without underflow and the routine fails.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION
 Input
 On entry: the argument \(x\) of the function. Constraint: \(X \geq 0\).

2: \(IFAIL\) -- INTEGER
 Input/Output
 On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: \(IFAIL = 0\) unless the routine detects an error (see Section 6).
6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL= 1
On entry X is too large, the result underflows. On soft failure, the routine returns zero.

IFAIL= 2
On entry X < 0, the function is undefined. On soft failure the routine returns zero.

7. Accuracy

Let E be the absolute error in the result, and (delta) be the relative error in the argument. If (delta) is somewhat larger than the machine representation error, then we have:

\[E \approx \frac{1}{\sqrt{2}} \left| \frac{\pi}{2} - \frac{x}{\sqrt{2}} \right| \]

For small x, errors are attenuated by the function and hence are limited by the machine precision.

For medium and large x, the error behaviour, like the function itself, is oscillatory and hence only absolute accuracy of the function can be maintained. For this range of x, the amplitude of

\[\frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{x}{\sqrt{2}} \right) \]

the absolute error decays like

\[\frac{1}{\sqrt{2}} e^{-\frac{x}{\sqrt{2}}} \]

strong attenuation of error. Eventually, keix, which is

\[\frac{1}{\sqrt{2}} e^{-\frac{x}{\sqrt{2}}} \]

asymptotically given by

\[\frac{1}{\sqrt{2}} e^{-\frac{x}{\sqrt{2}}} \]

cannot be calculated without causing underflow and therefore the routine returns zero. Note that for large x, the errors are dominated by those of the Fortran intrinsic function EXP.

8. Further Comments

Underflow may occur for a few values of x close to the zeros of
keix, below the limit which causes a failure with IFAIL = 1.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Returns a value for the Fresnel Integral $S(x)$

--- nags.hl ---

S20ACF returns a value for the Fresnel Integral $S(x)$, via the routine name.

1. Purpose

S20ACF returns a value for the Fresnel Integral $S(x)$, via the routine name.

2. Specification

 DOUBLE PRECISION FUNCTION S20ACF (X, IFAIL)
 INTEGER IFAIL
DOUBLE PRECISION X

3. Description

This routine evaluates an approximation to the Fresnel Integral

\[S(x) = \frac{x}{\sqrt{\pi}} \int_0^x \sin \left(\frac{t^2}{2} \right) dt. \]

Note: \(S(x) = -S(-x) \), so the approximation need only consider \(x \geq 0.0 \).

The routine is based on three Chebyshev expansions:

For \(0 < x \leq 3 \),

\[S(x) = x \sum_{r=0}^{3} a_r T_r(t), \quad \text{with } t = 2(\sqrt{x} - 1); \]

For \(x > 3 \),

\[S(x) = \frac{1}{\sqrt{2\pi}} \left(\frac{x}{2} \right)^{3/2} \cos \left(\frac{3\pi}{2} x \right) - \frac{1}{\sqrt{2\pi}} \left(\frac{x}{2} \right)^{1/2} \sin \left(\frac{3\pi}{2} x \right), \]

where \(f(x) = \sum_{r=0}^{3} b_r T_r(t) \),

\[g(x) = \sum_{r=0}^{3} c_r T_r(t), \quad \text{with } t = 2(\sqrt{x} - 1). \]

For small \(x \), \(S(x) \approx \frac{1}{6} x \). This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision. For very small \(x \), this approximation would underflow; the result is then set exactly to zero.

For large \(x \), \(f(x) \approx \frac{1}{\sqrt{2\pi}} \frac{1}{\left(\frac{x}{2} \right)^{3/2}} \) and \(g(x) \approx \frac{1}{\sqrt{2\pi}} \frac{1}{\left(\frac{x}{2} \right)^{1/2}} \). Therefore for

\[f(x) \approx \frac{1}{\sqrt{2\pi}} \frac{1}{\left(\frac{x}{2} \right)^{3/2}} \quad \text{and} \quad g(x) \approx \frac{1}{\sqrt{2\pi}} \frac{1}{\left(\frac{x}{2} \right)^{1/2}}. \]
moderately large x, when $\frac{1}{(\pi) x}$ is negligible compared with $\frac{1}{2}$, the second term in the approximation for $x>3$ may be dropped. For very large x, when $\frac{1}{(\pi)x}$ becomes negligible, $S(x) \approx -$. However there will be considerable difficulties in calculating $\cos\left(\frac{(\pi) x}{2}\right)$ accurately before this final limiting value can be used. Since $\cos\left(\frac{(\pi) x}{2}\right)$ is periodic, its value is essentially determined by the fractional part of x. If $x = N + (\text{theta})$ where N is an integer and $0 \leq (\text{theta}) < 1$, then $\cos\left(\frac{(\pi) x}{2}\right)$ depends on (theta) and on N modulo 4. By exploiting this fact, it is possible to retain significance in the calculation of $\cos\left(\frac{(\pi) x}{2}\right)$ either all the way to the very large x limit, or at least until the integer part of $\frac{x}{2}$ is equal to the maximum integer allowed on the machine.

4. References

5. Parameters

1: X -- DOUBLE PRECISION
 Input
 On entry: the argument x of the function.

2: $IFAIL$ -- INTEGER
 Input/Output
 On entry: $IFAIL$ must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

 On exit: $IFAIL = 0$ unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
There are no failure exits from this routine. The parameter IFAIL has been included for consistency with other routines in this chapter.

7. Accuracy

Let \((\delta)\) and \((\epsilon)\) be the relative errors in the argument and result respectively.

If \((\delta)\) is somewhat larger than the machine precision (i.e., if \((\delta)\) is due to data errors etc), then \((\epsilon)\) and \((\delta)\) are approximately related by:

\[
\left| \frac{(\pi/2)}{\sin(x/2)} \right| \approx \frac{\epsilon}{\Delta(x)}.
\]

\((\epsilon)\approx|\frac{(\pi/2)}{\sin(x/2)}|\,(\delta)\).

Figure 1 shows the behaviour of the error amplification factor

\[
\left| \frac{(\pi/2)}{\sin(x/2)} \right| \approx \frac{\epsilon}{\Delta(x)}.
\]

However if \((\delta)\) is of the same order as the machine precision, then rounding errors could make \((\epsilon)\) slightly larger than the above relation predicts.

For small \(x\), \((\epsilon)\approx3(\delta)\) and hence there is only moderate amplification of relative error. Of course for very small \(x\) where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of \(x\),

\[
\left| \frac{(\pi/2)}{\sin(x/2)} \right| \approx \frac{\epsilon}{\Delta(x)} \approx \frac{2\pi}{\sin(x/2)}(\delta),
\]

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down
for large values of x (i.e., when $--$ is of the order of the $\frac{2}{x}$ machine precision in this region the relative error in the result $\frac{2}{x}$ is essentially bounded by $\frac{\pi}{x}$).

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

8. Further Comments

None.

9. Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S20ADF returns a value for the Fresnel Integral C(x), via the routine name.

2. Specification

```fortran
DOUBLE PRECISION FUNCTION S20ADF (X, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X
```

3. Description

This routine evaluates an approximation to the Fresnel Integral

\[C(x) = \int_0^x \frac{\cos \left(\frac{t}{\pi^2} \right)}{\sqrt{2}} \, dt. \]

Note: \(C(x) = -C(-x) \), so the approximation need only consider \(x \geq 0.0 \).

The routine is based on three Chebyshev expansions:

For \(0 < x \leq 3 \),

\[C(x) = x \sum_{r=0}^{(3)} a_r T_r(t), \text{ with } t = 2\left(\frac{x}{\pi^2} \right) - 1; \]

For \(x > 3 \),

\[C(x) = \frac{1}{\sqrt{2}} \sum_{r=0}^{(3)} b_r T_r(t), \]

where \(f(x) = x \) and \(g(x) = x \).
and \(g(x) = \sum_{r=0}^\infty c_r T(t), \) with \(t=2(-)^r -1. \)

For small \(x \), \(C(x) \approx x \). This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision.

For large \(x \), \(f(x) \approx \frac{1}{\pi} \) and \(g(x) \approx \frac{1}{2\pi} \). Therefore for moderately large \(x \), when \(\frac{1}{\pi} \) is negligible compared with \(\frac{1}{2\pi} \), the second term in the approximation for \(x>3 \) may be dropped. For very large \(x \), when \(\frac{1}{\pi} \) becomes negligible, \(C(x) \approx \frac{1}{\sqrt{2\pi}} \). However there will be considerable difficulties in calculating \(\sin(\frac{(\pi/2)}{\pi}x) \) accurately before this final limiting value can be used. Since \(\sin(\frac{(\pi/2)}{\pi}x) \) is periodic, its value is essentially determined by the fractional part of \(x \). If \(x = N + \theta \), where \(N \) is an integer and \(0 \leq \theta < 1 \), then \(\sin(\frac{(\pi/2)}{\pi}x) \) depends on \(\theta \) and on \(N \) modulo 4. By exploiting this fact, it is possible to retain some significance in the calculation of \(\sin(\frac{(\pi/2)}{\pi}x) \) either all the way to the very large \(x \) limit, or at least until the integer part of \(\frac{x}{2} \) is equal to the maximum integer allowed on the machine.

4. References

5. Parameters
1. \(X \) -- DOUBLE PRECISION
 Input
 On entry: the argument \(x \) of the function.

2. \(IFAIL \) -- INTEGER
 Input/Output
 On entry: \(IFAIL \) must be set to 0, -1 or 1. For users not
 familiar with this parameter (described in the Essential
 Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0 \) unless the routine detects an error (see
 Section 6).

6. Error Indicators and Warnings

There are no failure exits from this routine. The parameter \(IFAIL \)
has been included for consistency with other routines in this
chapter.

7. Accuracy

Let \((\delta) \) and \((\epsilon) \) be the relative errors in the argument
and result respectively.

If \((\delta) \) is somewhat larger than the machine precision (i.e if
(\delta) is due to data errors etc), then \((\epsilon) \) and \((\delta) \)
are approximately related by:

\[
| \frac{(\pi)^2}{x \cos \left(\frac{\pi}{2} x \right)} |
| \frac{(\pi)^2}{C(x)} |
\]

Figure 1 shows the behaviour of the error amplification factor

\[
| \frac{(\pi)^2}{x \cos \left(\frac{\pi}{2} x \right)} |
| \frac{(\pi)^2}{C(x)} |
\]

Figure 1
Please see figure in printed Reference Manual

However if \((\delta) \) is of the same order as the machine precision,
then rounding errors could make \((\epsilon) \) slightly larger than
the above relation predicts.

For small \(x \), \((\epsilon) \approx (\delta) \) and there is no amplification of
relative error.
For moderately large values of \(x \),

\[
\frac{1}{(\pi)^2} |\epsilon| \approx 2x \cos \left(\frac{\delta}{2} x \right)
\]

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of \(x \) (i.e., when \(\frac{\delta}{2} x \) is of the order of the machine precision); in this region the relative error in the result is essentially bounded by \(\frac{\delta}{\pi x} \).

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

8. Further Comments
None.

9. Example
The example program reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
S21 -- Approximations of Special Functions
S21B AF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users’ Note for
your implementation to check implementation-dependent details.
The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

S21B AF returns a value of an elementary integral, which occurs as
a degenerate case of an elliptic integral of the first kind, via
the routine name.

2. Specification

DOUBLE PRECISION FUNCTION S21BAF (X, Y, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X, Y

3. Description

This routine calculates an approximate value for the integral

\[R(x,y) = \int_{-\infty}^{\infty} \frac{1}{t+x(t+y)} \, dt \]

where \(x \geq 0 \) and \(y \neq 0 \).

This function, which is related to the logarithm or inverse
hyperbolic functions for \(y < x \) and to inverse circular functions if
\(x < y \), arises as a degenerate form of the elliptic integral of the
first kind. If \(y < 0 \), the result computed is the Cauchy principal
value of the integral.

The basic algorithm, which is due to Carlson [2] and [3], is to
reduce the arguments recursively towards their mean by the
system:

\[x = x, \]
0

\(y = y \)

0

\((\mu) = (x + 2y)/3,\)

\(S = (y - x)/3(\mu) \)

\((\lambda) = y + 2/y \)

\(x = (x + (\lambda))/4, \)

\(y = (y + (\lambda))/4. \)

The quantity \(|S|\) for \(n = 0, 1, 2, 3, \ldots\) decreases with increasing \(n\), eventually \(|S| \sim 1/4\). For small enough \(S\) the required function value can be approximated by the first few terms of the Taylor series about the mean. That is

\[
R(x, y) = \frac{(1 + \frac{2}{y} + \frac{3}{S} + \frac{4}{3S} + \frac{5}{9S})}{(\mu)}.
\]

The truncation error involved in using this approximation is bounded by \(16|S|/(1 - 2|S|)\) and the recursive process is stopped when \(S\) is small enough for this truncation error to be negligible compared to the machine precision.

Within the domain of definition, the function value is itself representable for all representable values of its arguments. However, for values of the arguments near the extremes the above algorithm must be modified so as to avoid causing underflows or overflows in intermediate steps. In extreme regions arguments are pre-scaled away from the extremes and compensating scaling of the
result is done before returning to the calling program.

4. References

5. Parameters

1: X -- DOUBLE PRECISION Input

2: Y -- DOUBLE PRECISION Input
 On entry: the arguments x and y of the function, respectively. Constraint: X >= 0.0 and Y /= 0.0.

3: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1
 On entry X < 0.0; the function is undefined.

IFAIL = 2
 On entry Y = 0.0; the function is undefined.

On soft failure the routine returns zero.

7. Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be
excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8. Further Comments

Users should consult the Chapter Introduction which shows the relationship of this function to the classical definitions of the elliptic integrals.

9. Example

This example program simply generates a small set of non-extreme arguments which are used with the routine to produce the table of low accuracy results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
not included in the Foundation Library.

1. Purpose

S21BBF returns a value of the symmetrised elliptic integral of
the first kind, via the routine name.

2. Specification

DOUBLE PRECISION FUNCTION S21BBF (X, Y, Z, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X, Y, Z

3. Description

This routine calculates an approximation to the integral

\[
\int_{1}^{\infty} \frac{dt}{F(\gamma, \delta, \eta) / (t+x)(t+y)(t+z)}
\]

where \(x, y, z \geq 0\) and at most one is zero.

The basic algorithm, which is due to Carlson [2] and [3], is to
reduce the arguments recursively towards their mean by the rule:

\[
\begin{align*}
x &= \min(x, y, z), \quad z = \max(x, y, z), \\
y &= \text{remaining third intermediate value argument.}
\end{align*}
\]

(This ordering, which is possible because of the symmetry of the
function, is done for technical reasons related to the avoidance
of overflow and underflow.)

\[
\begin{align*}
\mu &= (x + y + z) / 3 \\
x &= (1-x) / \mu \\
y &= (1-y) / \mu \\
z &= (1-z) / \mu
\end{align*}
\]
(\text{lambda}) = \frac{x + y + z}{n} \\
\text{x} = \frac{(x + (\text{lambda})}{4} \\
\text{y} = \frac{(y + (\text{lambda})}{4} \\
\text{z} = \frac{(z + (\text{lambda})}{4} \\
(\text{epsilon}) = \text{max}(|X|, |Y|, |Z|) \text{ and the function may be approximated adequately by a 5th order power series:}

\begin{align*}
R(x,y,z) &= \frac{E_1}{\mu} \\
&= \frac{1}{(E_1 + E_2 + E_3 + E_4)} \\
&= \frac{1}{(E_1 + E_2 + E_3 + E_4)} \\
&= \frac{1}{(E_1 + E_2 + E_3 + E_4)} \\
&= \frac{1}{(E_1 + E_2 + E_3 + E_4)} \\
&= \frac{1}{(E_1 + E_2 + E_3 + E_4)} \\
\end{align*}

\begin{align*}
E &= X^2 + Y^2 + Z^2 \quad E &= X^2 + Y^2 + Z^2 \\
F &= \frac{1}{\mu} \\
\end{align*}

where \(E = X^2 + Y^2 + Z^2\) and \(E = X^2 + Y^2 + Z^2\).

The truncation error involved in using this approximation is

bounded by \((\text{epsilon}) /4(1-(\text{epsilon})\) and the recursive process

is stopped when this truncation error is negligible compared with

the machine precision.

Within the domain of definition, the function value is itself

representable for all representable values of its arguments.

However, for values of the arguments near the extremes the above

algorithm must be modified so as to avoid causing underflows or

overflows in intermediate steps. In extreme regions arguments are

pre-scaled away from the extremes and compensating scaling of the

result is done before returning to the calling program.

4. References

Duplication. (Preprint) Department of Physics, Iowa State University.

5. Parameters

1: X -- DOUBLE PRECISION Input

2: Y -- DOUBLE PRECISION Input

3: Z -- DOUBLE PRECISION Input
 On entry: the arguments x, y and z of the function.
 Constraint: X, Y, Z >= 0.0 and only one of X, Y and Z may be zero.

4: IFAIL -- INTEGER Input/Output
 On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
 On entry one or more of X, Y and Z is negative; the function is undefined.

IFAIL= 2
 On entry two or more of X, Y and Z are zero; the function is undefined.
 On soft failure, the routine returns zero.

7. Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine
precision.

8. Further Comments

Users should consult the Chapter Introduction which shows the relationship of this function to the classical definitions of the elliptic integrals.

If two arguments are equal, the function reduces to the elementary integral R, computed by S21BAF.

9. Example

This example program simply generates a small set of non-extreme arguments which are used with the routine to produce the table of low accuracy results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Value of the symmetrised elliptic integral of second kind

— nags.ht —

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is
not included in the Foundation Library.

1. Purpose

S21BCF returns a value of the symmetrised elliptic integral of the second kind, via the routine name.

2. Specification

 DOUBLE PRECISION FUNCTION S21BCF (X, Y, Z, IFAIL)
 INTEGER IFAIL
 DOUBLE PRECISION X, Y, Z

3. Description

This routine calculates an approximate value for the integral

\[
R(x,y,z) = - \frac{1}{D} \int_0^\infty \frac{3}{(t+x)(t+y)(t+z)} \, dt
\]

where \(x, y \geq 0 \), at most one of \(x \) and \(y \) is zero, and \(z > 0 \).

The basic algorithm, which is due to Carlson [2] and [3], is to reduce the arguments recursively towards their mean by the rule:

\[
\begin{align*}
x &= x_0 \\
y &= y_0 \\
z &= z_0 \\
\mu &= \frac{x + y + 3z}{5} \\
X &= \frac{1-x}{\mu} \\
Y &= \frac{1-y}{\mu} \\
Z &= \frac{1-z}{\mu}
\end{align*}
\]
\[
\lambda = \frac{x + y + z}{x + y + z}
\]

\[
x_{n+1} = \frac{x + \lambda}{4}
\]

\[
y_{n+1} = \frac{y + \lambda}{4}
\]

\[
z_{n+1} = \frac{z + \lambda}{4}
\]

For \(n \) sufficiently large,

\[
\epsilon_n = \max(|X_n|,|Y_n|,|Z_n|) \sim n^{-4}
\]

and the function may be approximated adequately by a 5th order

\[
R(x,y,z) = \sum_{m=0}^{\infty} \frac{(x + (\lambda))}{(z + (\lambda))}\frac{1}{z^m}
\]

where

\[
\epsilon_n = \frac{6 \cdot 3(\epsilon_n)}{n}
\]

The truncation error in this expansion is bounded by

\[
6 \cdot 3(\epsilon_n) \sim n^{-4}
\]

and the recursive process is terminated when
22.6. NAGS.HT

\[
\frac{3}{(1-\epsilon)}
\]
\[
\text{n}
\]

this quantity is negligible compared with the machine precision.

The routine may fail either because it has been called with arguments outside the domain of definition, or with arguments so extreme that there is an unavoidable danger of setting underflow or overflow.

\[-\frac{3}{2}\]

Note: \(R(x,x,x) = x\), so there exists a region of extreme \(D\) arguments for which the function value is not representable.

4. References

5. Parameters

1: \(X\) -- DOUBLE PRECISION Input

2: \(Y\) -- DOUBLE PRECISION Input

3: \(Z\) -- DOUBLE PRECISION Input
 On entry: the arguments \(x\), \(y\) and \(z\) of the function.
 Constraint: \(X, Y \geq 0.0, Z > 0.0\) and only one of \(X\) and \(Y\) may be zero.

4: \(IFAIL\) -- INTEGER Input/Output
 On entry: \(IFAIL\) must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
 On exit: \(IFAIL = 0\) unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry either X or Y is negative, or both X and Y are zero; the function is undefined.

IFAIL= 2
On entry Z <= 0.0; the function is undefined.

IFAIL= 3
On entry either Z is too close to zero or both X and Y are too close to zero: there is a danger of setting overflow.

IFAIL= 4
On entry at least one of X, Y and Z is too large: there is a danger of setting underflow.

On soft failure the routine returns zero.

7. Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8. Further Comments

Users should consult the Chapter Introduction which shows the relationship of this function to the classical definitions of the elliptic integrals.

9. Example

This example program simply generates a small set of non-extreme arguments which are used with the routine to produce the table of low accuracy results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Value of the symmetrised elliptic integral of third kind

S21BDF(3NAG) Foundation Library (12/10/92) S21BDF(3NAG)

S21 -- Approximations of Special Functions
S21BDF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

S21BDF returns a value of the symmetrised elliptic integral of the third kind, via the routine name.

2. Specification

DOUBLE PRECISION FUNCTION S21BDF (X, Y, Z, R, IFAIL)
INTEGER IFAIL
DOUBLE PRECISION X, Y, Z, R

3. Description

This routine calculates an approximation to the integral

\[\int_{\infty}^{3} \frac{R(t,\rho)}{J(t+x)(t+y)(t+z)} \, dt \]

where \(x, y, z \geq 0 \), \(\rho \neq 0 \) and at most one of \(x, y \) and \(z \) is zero. If \(p < 0 \), the result computed is the Cauchy principal value of the
integral.

The basic algorithm, which is due to Carlson [2] and [3], is to reduce the arguments recursively towards their mean by the rule:

\[
\begin{align*}
 x &= x_0 \\
 y &= y_0 \\
 z &= z_0 \\
 \rho &= \rho_0 \\
 \mu &= (x + y + z + 2\rho)/5 \\
 X &= (1-x)/\mu \\
 Y &= (1-y)/\mu \\
 Z &= (1-z)/\mu \\
 P &= (1-\rho)/\mu \\
 \lambda &= x/y + y/z + z/x \\
 x &= (x + \lambda)/4 \\
 y &= (y + \lambda)/4 \\
 z &= (z + \lambda)/4 \\
 \rho &= (\rho + \lambda)/4 \\
\end{align*}
\]
\[
\alpha = (\rho) (x + y + z) + xyz
\]
\[
\beta = (\rho) (\rho + \lambda)
\]

For \(n \) sufficiently large,
\[
\epsilon_{\max} = \max(|X|,|Y|,|Z|,|P|) \to \frac{1}{n}
\]

and the function may be approximated by a 5th order power series
\[
R(x,y,z,\rho) = 3^{\frac{3}{4}} R(\alpha,\beta)
\]
\[
J^{\frac{1}{2}} C^{m} m
\]
\[
m=0
\]
\[
\frac{-n}{4} \left[3^{2} 1^{3} 3^{2} 2^{3} 4^{3} 2^{3} 3^{5} \right] + \ldots \]
\[
\left[\frac{1}{7 n^{3} 3 n^{2} 11 n^{13} n 13 n} \right]
\]
\[
\left[\frac{1}{(\mu)} \right]
\]
\[
\frac{1}{n}
\]

\[
(m) m m m m
\]

where \(S = \frac{X + Y + Z + 2P}{2m} \).

The truncation error in this expansion is bounded by
\[
3^{\frac{3}{4}} (\epsilon) \to \frac{1}{1 - \epsilon}
\]
and the recursion process is terminated when this quantity is negligible compared with the machine precision. The routine may fail either because it has been called with arguments outside the domain of definition or with arguments so extreme that there is an unavoidable danger of setting underflow or overflow.
Note: \(R(x,x,x,x)=x \), so there exists a region of extreme arguments for which the function value is not representable.

4. References

5. Parameters

1: \(X \) -- DOUBLE PRECISION Input

2: \(Y \) -- DOUBLE PRECISION Input

3: \(Z \) -- DOUBLE PRECISION Input

4: \(R \) -- DOUBLE PRECISION Input

On entry: the arguments \(x, y, z \) and \(\rho \) of the function.
Constraint: \(X, Y, Z \geq 0.0 \), \(R \neq 0.0 \) and at most one of \(X, Y \) and \(Z \) may be zero.

5: IFAIL -- INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry at least one of \(X, Y \) and \(Z \) is negative, or at least two of them are zero; the function is undefined.

IFAIL= 2
On entry \(R = 0.0 \); the function is undefined.
IFAIL= 3
On entry either R is too close to zero, or any two of X, Y and Z are too close to zero; there is a danger of setting overflow.

IFAIL= 4
On entry at least one of X, Y, Z and R is too large; there is a danger of setting underflow.

IFAIL= 5
An error has occurred in a call to S21BAF. Any such occurrence should be reported to NAG.

On soft failure, the routine returns zero.

7. Accuracy

In principle the routine is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8. Further Comments

Users should consult the Chapter Introduction which shows the relationship of this function to the classical definitions of the elliptic integrals.

If the argument R is equal to any of the other arguments, the function reduces to the integral R, computed by S21BCF.

9. Example

This example program simply generates a small set of non-extreme arguments which are used with the routine to produce the table of low accuracy results.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
22.7 nagx.ht

Mathematical Constants

X01(3NAG) Foundation Library (12/10/92) X01(3NAG)

X01 -- Mathematical Constants

Introduction -- X01

Chapter X01
Mathematical Constants

1. Scope of the Chapter

This chapter is concerned with the provision of mathematical constants required by other routines within the Library.

It should be noted that because of the trivial nature of the routines individual routine documents are not provided.

2. Background to the Problems

Some Library routines require mathematical constants to maximum machine precision. These routines call Chapter X01 and thus lessen the number of changes that have to be made between different implementations of the Library.

3. Recommendations on Choice and Use of Routines

Although these routines are primarily intended for use by other routines they may be accessed directly by the user:

Constant Fortran Specification

(pi) DOUBLE PRECISION FUNCTION X01AAF(X)
DOUBLE PRECISION X
(gamma) DOUBLE PRECISION FUNCTION X01ABF(X)
(Euler constant) DOUBLE PRECISION X

The argument X of these routines is a dummy argument.

X01 -- Mathematical Constants
Chapter X01

Mathematical Constants

X01AAF (pi)
X01ABF Euler’s constant, (gamma)

Machine Constants

— nagx.ht —
of a single implementation they are constants.

The parameters are intended for use primarily by other routines in the Library, but users of the Library may sometimes need to refer to them directly.

Each parameter-value is returned by a separate Fortran function. Because of the trivial nature of the functions, individual routine documents are not provided; the necessary details are given in Section 3 of this Introduction.

2. Background to the Problems

2.1. Floating-Point Arithmetic

2.1.1. A model of floating-point arithmetic

In order to characterise the important properties of floating-point arithmetic by means of a small number of parameters, NAG uses a simplified model of floating-point arithmetic. The parameters of the model can be chosen to provide a sufficiently close description of the behaviour of actual implementations of floating-point arithmetic, but not, in general, an exact description; actual implementations vary too much in the details of how numbers are represented or arithmetic operations are performed.

The model is based on that developed by Brown [1], but differs in some respects. The essential features are summarised here.

The model is characterised by four integer parameters and one logical parameter. The four integer parameters are:

- \(b \): the base
- \(p \): the precision (i.e. the number of significant base-\(B\) digits)
- \(e_{\text{min}} \): the minimum exponent
- \(e_{\text{max}} \): the maximum exponent

These parameters define a set of numerical values of the form:

\[
e f^*b
\]

where the exponent \(e \) must lie in the range \([e_{\text{min}}, e_{\text{max}}]\), and the
fraction f (also called the mantissa or significand) lies in the range $[1/b,1)$, and may be written:

$$f=0.f_1 f_2 \ldots f_p$$

Thus f is a p-digit fraction to the base b; the f_i are the base-b digits of the fraction: they are integers in the range 0 to $b-1$, and the leading digit f_1 must not be zero.

The set of values so defined (together with zero) are called model numbers. For example, if $b=10$, $p=5$, $e_{\text{min}}=-99$ and $e_{\text{max}}=+99$, then a typical model number is 0.12345×10^{67}.

The model numbers must obey certain rules for the computed results of the following basic arithmetic operations: addition, subtraction, multiplication, negation, absolute value, and comparisons. The rules depend on the value of the logical parameter \textsc{rounds}.

If \textsc{rounds} is true, then the computed result must be the nearest model number to the exact result (assuming that overflow or underflow does not occur); if the exact result is midway between two model numbers, then it may be rounded either way.

If \textsc{rounds} is false, then: if the exact result is a model number, the computed result must be equal to the exact result; otherwise, the computed result may be either of the adjacent model numbers on either side of the exact result.

For division and square root, this latter rule is further relaxed (regardless of the value of \textsc{rounds}): the computed result may also be one of the next adjacent model numbers on either side of the permitted values just stated.

On some machines, the full set of representable floating-point numbers conforms to the rules of the model with appropriate values of b, p, e_{min}, e_{max} and \textsc{rounds}. For example, for machines with IEEE arithmetic, in double precision:

$$b = 2$$

$$p = 53$$
CHAPTER 22. NAG LIBRARY ROUTINES

\[e = -1021 \]
\[\text{min} \]
\[e = 1024 \text{ and ROUNDS is true.} \]
\[\text{max} \]

For other machines, values of the model parameters must be chosen which define a large subset of the representable numbers; typically it may be necessary to decrease \(p \) by 1 (in which case ROUNDS is always set to false), or to increase \(e \) or decrease \(\text{min} \) \(e \) by a little bit. There are additional rules to ensure that arithmetic operations on those representable numbers which are not model numbers, are consistent with arithmetic on model numbers.

(Note: the model used here differs from that described in Brown [1] in the following respects: square-root is treated, like division, as a weakly supported operator; and the logical parameter ROUNDS has been introduced to take account of machines with good rounding.)

2.1.2. Derived parameters of floating-point arithmetic

Most numerical algorithms require access, not to the basic parameters of the model, but to certain derived values, of which the most important are:

1. \[1-p \]

the machine precision = \((-) \times b \) if ROUNDS is true, \(\epsilon \).

2. \[1-p \]

\[= b \] otherwise (but see Note below).

\[e = -1 \]
\[\text{min} \]

the smallest positive = \(b \)
model number:

\[e \]
\[-p \]
\[\text{max} \]

the largest positive = \((1-b) \times b \)
model number:

Note: this value is increased very slightly in some implementations to ensure that the computed result of \(1+(\epsilon) \) or \(1-(\epsilon) \) differs from 1. For example in IEEE binary single
precision arithmetic the value is set to $2 + 2$. Two additional derived values are used in the NAG Foundation Library. Their definitions depend not only on the properties of the basic arithmetic operations just considered, but also on properties of some of the elementary functions. We define the safe range parameter to be the smallest positive model number z such that for any x in the range $[z, 1/z]$ the following can be computed without undue loss of accuracy, overflow, underflow or other error:

- $-x$
- $1/x$
- $-1/x$
- $\text{SQRT}(x)$
- $\text{LOG}(x)$
- $\text{EXP}(\text{LOG}(x))$
- $y^{\text{LOG}(x)/\text{LOG}(y)}$ for any y

In a similar fashion we define the safe range parameter for complex arithmetic as the smallest positive model number z such that for any x in the range $[z, 1/z]$ the following can be computed without any undue loss of accuracy, overflow, underflow or other error:

- $-w$
- $1/w$
- $-1/w$
- $\text{SQRT}(w)$
- $\text{LOG}(w)$
- $\text{EXP}(\text{LOG}(w))$
- $y^{\text{LOG}(w)/\text{LOG}(y)}$ for any y
- $\text{ABS}(w)$

where w is any of x, ix, $x+ix$, $1/x$, i/x, $1/x+i/x$, and i is the square root of -1.
This parameter was introduced to take account of the quality of complex arithmetic on the machine. On machines with well implemented complex arithmetic, its value will differ from that of the real safe range parameter by a small multiplying factor less than 10. For poorly implemented complex arithmetic this factor may be larger by many orders of magnitude.

2.2. Other Aspects of the Computing Environment

No attempt has been made to characterise comprehensively any other aspects of the computing environment. The other functions in this chapter provide specific information that is occasionally required by routines in the Library.

2.3. References

3. Recommendations on Choice and Use of Routines

3.1. Parameters of Floating-point Arithmetic

DOUBLE PRECISION FUNCTION returns the machine precision i.e.
X02AJF() \((1) \text{ 1-p } \frac{1-p}{(-)^*b} \) if ROUNDS is true or b
\((2) \) otherwise (or a value very slightly larger than this, see Section 2.1.2)

DOUBLE PRECISION FUNCTION returns the smallest positive model
X02ARF() \(e^{-1} \min \) number i.e. b

DOUBLE PRECISION FUNCTION returns the largest positive model
X02ALF() \(e^{-p} \max \) number i.e. \((1-b)^*b\)

DOUBLE PRECISION FUNCTION returns the safe range parameter as
X02AMF() defined in Section 2.1.2

DOUBLE PRECISION FUNCTION returns the safe range parameter for
X02ANF() complex arithmetic as defined in Section 2.1.2

INTEGER FUNCTION X02BHF() returns the model parameter b
INTEGER FUNCTION X02BJF() returns the model parameter p

INTEGER FUNCTION X02BKF() returns the model parameter e_{\text{min}}

INTEGER FUNCTION X02BLF() returns the model parameter e_{\text{max}}

LOGICAL FUNCTION X02DJF() returns the model parameter ROUNDS

3.2. Parameters of Other Aspects of the Computing Environment

DOUBLE PRECISION FUNCTION X02AHF(X) returns the largest positive real argument for which the SIN and COS routines return a result with some meaningful accuracy

INTEGER FUNCTION X02BBF(X) returns the largest positive integer value

INTEGER FUNCTION X02BEF(X) returns the maximum number of decimal digits which can be accurately represented over the whole range of floating-point numbers

The argument X of these routines is a dummy argument.

4. Example Program Text

The example program simply prints the values of all the functions in Chapter X02. Obviously the results will vary from one implementation of the Library to another.
X02ANF Safe range of complex floating-point arithmetic
X02BBF Largest representable integer
X02BEF Maximum number of decimal digits that can be represented
X02BHF Parameter of floating-point arithmetic model, \(b \)
X02BJF Parameter of floating-point arithmetic model, \(p \)
X02BKF Parameter of floating-point arithmetic model, \(e_{\min} \)
X02BLF Parameter of floating-point arithmetic model, \(e_{\max} \)
X02DJF Parameter of floating-point arithmetic model, ROUNDS

Input/Output Utilities

--- nagx.ht ---

X04(3NAG) Foundation Library (12/10/92) X04(3NAG)

1. Scope of the Chapter

This chapter contains utility routines concerned with input and output to or from an external file.
2. Background to the Problems

2.1. Output from NAG Foundation Library Routines

Output from NAG Foundation Library routines to an external file falls into two categories:

(a) Error messages which are always associated with an error exit from a routine, that is, with a non-zero value of IFAIL as specified in Section 6 of the routine document.

(b) Advisory messages which include output of final results, output of intermediate results to monitor the course of a computation, and various warning or informative messages.

Each category of output is written to its own Fortran output unit - the error message unit or the advisory message unit. In practice these may be the same unit number. Default unit numbers are provided for each implementation of the Library (see the Users' Note); they may be changed by users. Output of error messages may be controlled by the setting of IFAIL (see the Essential Introduction). Output of advisory messages may usually be controlled by the setting of some other parameter (e.g. MSGLVL) (or in some routines also by IFAIL). An alternative mechanism for completely suppressing output is to set the relevant unit number < 0.

For further information about error and advisory messages, see Chapter P01.

2.2. Matrix Printing Routines

Routines are provided to allow formatted output of general rectangular or triangular matrices stored in a two-dimensional array (real and complex data types).

All output is directed to the unit number for output of advisory messages, which may be altered by a call to X04ABF.

3. Recommendations on Choice and Use of Routines

Apart from the obvious utility of the matrix printing routines, users of the Library may need to call routines in Chapter X04 for the following purposes:

if the default unit number for error messages (given in the Users’ Note for your implementation) is not satisfactory, it may be changed to a new value NERR by the statement

\[
\text{CALL X04AAF(1,NERR)}
\]
Similarly the unit number for advisory messages may be changed to a new value NADV by the statement

CALL X04ABF(1,NADV)

4. Index

Accessing unit number:
 of advisory message unit X04ABF
 of error message unit X04AAF

Printing matrices:
 general complex matrix X04DAF
 general real matrix X04CAF

Value of the current error message unit number
Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X04AAF returns the value of the current error message unit number, or sets the current error message unit number to a new value.

2. Specification

```
SUBROUTINE X04AAF (IFLAG, NERR)
INTEGER IFLAG, NERR
```

3. Description

This routine enables those library routines which output error messages, to determine the number of the output unit to which the error messages are to be sent; in this case X04AAF is called with IFLAG = 0. X04AAF may also be called with IFLAG = 1 to set the unit number to a specified value. Otherwise a default value (stated in the Users’ Note for your implementation) is returned.

Records written to this output unit by other library routines are at most 80 characters long (including a line-printer carriage control character).

Note that if the unit number is set < 0, no messages will be output.

4. References

None.

5. Parameters

1: IFLAG -- INTEGER Input
 On entry: the action to be taken (see NERR). Constraint:
 IFLAG = 0 or 1.

2: NERR -- INTEGER Input/Output
 On entry:
if IFLAG = 0, NERR need not be set;

if IFLAG = 1, NERR must specify the new error message unit number.

On exit:
if IFLAG = 0, NERR is set to the current error message unit number,

if IFLAG = 1, NERR is unchanged.

Note that Fortran unit numbers must be positive or zero. If NERR is set < 0, output of error messages is totally suppressed.

6. Error Indicators and Warnings

None.

7. Accuracy

Not applicable.

8. Further Comments

The time taken by the routine is negligible.

9. Example

In this example X04AAF is called by the user's main program to make the error message from the routine DUMMY appear on the same unit as the rest of the output (unit 6). Normally a NAG Foundation Library routine with an IFAIL parameter (see Essential Introduction) would take the place of DUMMY.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

Value of the current advisory message unit number
X04ABF -- Input/Output Utilities
X04ABF -- NAG Foundation Library Routine Document
Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X04ABF returns the value of the current advisory message unit number, or sets the current advisory message unit number to a new value.

2. Specification

SUBROUTINE X04ABF (IFLAG, NADV)
INTEGER IFLAG, NADV

3. Description

This routine enables those library routines which output advisory messages, to determine the number of the output unit to which the advisory messages are to be sent; in this case X04ABF is called with IFLAG = 0. X04ABF may also be called with IFLAG = 1 to set the unit number to a specified value. Otherwise a default value (stated in the User's Note for your implementation) is returned.

Records written to this output unit by other library routines are at most 120 characters long (including a line-printer carriage control character), unless those library routines allow users to specify longer records.

Note that if the unit number is set < 0, no messages will be output.

4. References

None.

5. Parameters
CHAPTER 22. NAG LIBRARY Routines

1: IFLAG -- INTEGER
 Input
 On entry: the action to be taken (see NADV). Constraint:
 IFLAG = 0 or 1.

2: NADV -- INTEGER
 Input/Output
 On entry:
 if IFLAG = 0, NADV need not be set;

 if IFLAG = 1, NADV must specify the new advisory
 message unit number.
 On exit:
 if IFLAG = 0, NADV is set to the current advisory
 message unit number;

 if IFLAG = 1, NADV is unchanged.
 Note that Fortran unit numbers must be positive or zero. If
 NADV is set < 0, output of advisory messages is totally
 suppressed.

6. Error Indicators and Warnings

 None.

7. Accuracy

 Not applicable.

8. Further Comments

 The time taken by this routine is negligible.

9. Example

 In this example X04ABF is called by the user's main program to
 make the advisory message from the routine DUMMY appear on the
 same unit as the rest of the output (unit 6). Normally a NAG
 Foundation Library routine with an IFAIL parameter (see Essential
 Introduction) would take the place of DUMMY.

 The example program is not reproduced here. The source code for
 all example programs is distributed with the NAG Foundation
 Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}
Print a real matrix stored in a two-dimensional array

— nagx.ht —

\begin{page}\{manpageXXx04caf\}\{NAG Documentation: x04caf\}
\beginscroll
\begin{verbatim}
X04CAF(3NAG) Foundation Library (12/10/92) X04CAF(3NAG)

X04 -- Input/Output Utilities
X04CAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X04CAF is an easy-to-use routine to print a real matrix stored in a two-dimensional array.

2. Specification

SUBROUTINE X04CAF (MATRIX, DIAG, M, N, A, LDA, TITLE, 1 IFAIL)
INTEGER M, N, LDA, IFAIL
DOUBLE PRECISION A(LDA,*)
CHARACTER*1 MATRIX, DIAG
CHARACTER*(*)(*) TITLE

3. Description

X04CAF prints a real matrix. It is an easy-to-use driver for X04CBF(*). The routine uses default values for the format in which numbers are printed, for labelling the rows and columns, and for output record length.

X04CAF will choose a format code such that numbers will be printed with either an F8.4, F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The F11.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the 1PE13.4 code is chosen.
The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4. References

None.

5. Parameters

1: MATRIX -- CHARACTER*1 Input
 On entry: indicates the part of the matrix to be printed, as follows:

 MATRIX = 'G' (General), the whole of the rectangular matrix.

 MATRIX = 'L' (Lower), the lower triangle of the matrix, or the lower trapezium if the matrix has more rows than columns.

 MATRIX = 'U' (Upper), the upper triangle of the matrix, or the upper trapezium if the matrix has more columns than rows. Constraint: MATRIX must be one of 'G', 'L' or 'U'.

2: DIAG -- CHARACTER*1 Input
 On entry: unless MATRIX = 'G', DIAG must specify whether the diagonal elements of the matrix are to be printed, as follows:

 DIAG = 'B' (Blank), the diagonal elements of the matrix are not referenced and not printed.

 DIAG = 'U' (Unit diagonal), the diagonal elements of the matrix are not referenced, but are assumed all to be unity, and are printed as such.

 DIAG = 'N' (Non-unit diagonal), the diagonal elements of the matrix are referenced and printed.

 If MATRIX = 'G', then DIAG need not be set. Constraint: If MATRIX /= 'G', then DIAG must be one of 'B', 'U' or 'N'.

3: M -- INTEGER Input

4: N -- INTEGER Input
 On entry: the number of rows and columns of the matrix, respectively, to be printed.
If either of M or N is less than 1, X04CAF will exit immediately after printing TITLE; no row or column labels are printed.

5: $A(LDA,*)$ -- DOUBLE PRECISION array Input
Note: the second dimension of the array A must be at least $\max(1,N)$.
On entry: the matrix to be printed. Only the elements that will be referred to, as specified by parameters MATRIX and DIAG, need be set.

6: LDA -- INTEGER Input
On entry:
the first dimension of the array A as declared in the (sub)program from which X04CAF is called.
Constraint: $LDA \geq M$.

7: $TITLE$ -- CHARACTER(*) Input
On entry: a title to be printed above the matrix. If $TITLE = \ ' ', $no title (and no blank line) will be printed.

If $TITLE$ contains more than 80 characters, the contents of TITLE will be wrapped onto more than one line, with the break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: $IFAIL$ -- INTEGER Input/Output
On entry: $IFAIL$ must be set to 0, -1 or 1. For users not familiar with this parameter (described in the Essential Introduction) the recommended value is 0.
On exit: $IFAIL = 0$ unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry $IFAIL = 0$ or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

$IFAIL = 1$
On entry $MATRIX /= 'G', 'L'$ or 'U'.

$IFAIL = 2$
On entry $MATRIX = 'L'$ or 'U', but $DIAG /= 'N', 'U'$ or 'B'.

$IFAIL = 3$
On entry $LDA < M$.
7. Accuracy

Not applicable.

8. Further Comments

A call to X04CAF is equivalent to a call to X04CBF(*) with the following argument values:

\begin{verbatim}
NCOLS = 80
INDENT = 0
LABROW = 'I'
LABCOL = 'I'
FORMAT = ' '
\end{verbatim}

9. Example

This example program calls X04CAF twice, first to print a 3 by 5 rectangular matrix, and then to print a 5 by 5 lower triangular matrix.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

Print a complex matrix stored in a 2D array
X04 -- Input/Output Utilities

X04DAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X04DAF is an easy-to-use routine to print a complex matrix stored in a two-dimensional array.

2. Specification

SUBROUTINE X04DAF (MATRIX, DIAG, M, N, A, LDA, TITLE, IFAIL)
 INTEGER M, N, LDA, IFAIL
 COMPLEX(KIND(1.0D0)) A(LDA,*)
 CHARACTER*1 MATRIX, DIAG
 CHARACTER*(*) TITLE

3. Description

X04DAF prints a complex matrix. It is an easy-to-use driver for X04DBF(*). The routine uses default values for the format in which numbers are printed, for labelling the rows and columns, and for output record length.

X04DAF will choose a format code such that numbers will be printed with either an F8.4, F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The F11.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the 1PE13.4 code is chosen. The chosen code is used to print each complex element of the matrix with the real part above the imaginary part.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the unit defined by X04ABF.

4. References

None.

5. Parameters
1: MATRIX -- CHARACTER*1
 On entry: indicates the part of the matrix to be printed, as follows:

 MATRIX = 'G' (General), the whole of the rectangular matrix.

 MATRIX = 'L' (Lower), the lower triangle of the matrix, or
 the lower trapezium if the matrix has more rows than
 columns.

 MATRIX = 'U' (Upper), the upper triangle of the matrix, or
 the upper trapezium if the matrix has more columns than
 rows. Constraint: MATRIX must be one of 'G', 'L' or 'U'.

2: DIAG -- CHARACTER*1
 On entry: unless MATRIX = 'G', DIAG must specify whether the
 diagonal elements of the matrix are to be printed, as
 follows:

 DIAG = 'B' (Blank), the diagonal elements of the matrix are
 not referenced and not printed.

 DIAG = 'U' (Unit diagonal), the diagonal elements of the
 matrix are not referenced, but are assumed all to be unity,
 and are printed as such.

 DIAG = 'N' (Non-unit diagonal), the diagonal elements of the
 matrix are referenced and printed.

 If MATRIX = 'G', then DIAG need not be set. Constraint: If
 MATRIX /= 'G', then DIAG must be one of 'B', 'U' or 'N'.

3: M -- INTEGER

4: N -- INTEGER
 On entry: the number of rows and columns of the matrix,
 respectively, to be printed.

 If either of M or N is less than 1, X04DAF will exit
 immediately after printing TITLE; no row or column labels
 are printed.

5: A(LDA,*) -- COMPLEX(KIND(1.0D)) array
 Note: the second dimension of the array A must be at least
 max(1,N).
 On entry: the matrix to be printed. Only the elements that
 will be referred to, as specified by parameters MATRIX and
 DIAG, need be set.

6: LDA -- INTEGER
On entry:
the first dimension of the array A as declared in the
(sub)program from which X04DAF is called.
Constraint: LDA >= M.

7: TITLE -- CHARACTER*(*) Input

On entry: a title to be printed above the matrix. If TITLE = '
', no title (and no blank line) will be printed.

If TITLE contains more than 80 characters, the contents of
TITLE will be wrapped onto more than one line, with the
break after 80 characters.

Any trailing blank characters in TITLE are ignored.

8: IFAIL -- INTEGER Input/Output
On entry: IFAIL must be set to 0, -1 or 1. For users not
familiar with this parameter (described in the Essential
Introduction) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see
Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are
output on the current error message unit (as defined by X04AAF).

IFAIL= 1
On entry MATRIX /= 'G', 'L' or 'U'.

IFAIL= 2
On entry MATRIX = 'L' or 'U', but DIAG /= 'N', 'U' or 'B'.

IFAIL= 3
On entry LDA < M.

7. Accuracy

Not applicable.

8. Further Comments

A call to X04DAF is equivalent to a call to X04DBF(*) with the
following argument values:
NCOLS = 80
INDENT = 0
LABROW = 'I'
LABCOL = 'I'
FORMAT = ',
USEFRM = 'A'

9. Example

This example program calls X04DAF twice, first to print a 4 by 3
rectangular matrix, and then to print a 4 by 4 lower triangular
matrix.

The example program is not reproduced here. The source code for
all example programs is distributed with the NAG Foundation
Library software and should be available on-line.

\end{verbatim}
\end{scroll}
\end{page}

Date and Time Utilities

--- nagx.ht ---

\begin{page}{manpageXXx05}{NAG Documentation: x05}
\beginscroll
\begin{verbatim}
X05(3NAG) Foundation Library (12/10/92) X05(3NAG)

X05 -- Date and Time Utilities
Introduction -- X05
Chapter X05
Date and Time Utilities

1. Scope of the Chapter

This chapter provides routines to obtain the current real time,
and the amount of processor time used.
2. Background to the Problems

2.1. Real Time

Routines are provided to obtain the current time in two different formats, and to compare two such times.

2.2. Processor Time

A routine is provided to return the current amount of processor time used. This allows the timing of a particular routine or section of code.

3. Recommendations on Choice and Use of Routines

X05AAF returns the current date/time in integer format.

X05ABF converts from integer to character string date/time.

X05ACF compares two date/time character strings.

X05BAF returns the amount of processor time used.

X05 -- Date and Time Utilities

Chapter X05

Date and Time Utilities

X05AAF Return date and time as an array of integers

X05ABF Convert array of integers representing date and time to character string

X05ACF Compare two character strings representing date and time

X05BAF Return the CPU time
Returns the current date and time

— nagx.ht —

\begin{verbatim}
X05AAF -- NAG Foundation Library Routine Document

Note: Before using this routine, please read the Users' Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X05AAF returns the current date and time.

2. Specification

SUBROUTINE X05AAF (ITIME)
 INTEGER ITIME(7)

3. Description

X05AAF returns the current date and time as a set of seven integers.

4. References

None.

5. Parameters

1: ITIME(7) -- INTEGER array Output
 On exit: the current date and time, as follows:
 ITIME(1) contains the current year.
 ITIME(2) contains the current month, in the range 1--12.
ITIME(3) contains the current day, in the range 1--31.

ITIME(4) contains the current hour, in the range 0--23.

ITIME(5) contains the current minute, in the range 0--59.

ITIME(6) contains the current second, in the range 0--59.

ITIME(7) contains the current millisecond, in the range 0--999.

6. Error Indicators and Warnings

None.

7. Accuracy

The accuracy of this routine depends on the accuracy of the host machine. In particular, on some machines it may not be possible to return a value for the current millisecond, for example. In this case, the value returned will be zero.

8. Further Comments

None.

9. Example

This program prints out the vector ITIME after a call to X05AAF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

From seven-integer format time and date to character string
X05ABF converts from a seven-integer format time and date, as returned by X05AAF, into a character string, returned via the routine name.

2. Specification

CHARACTER*30 FUNCTION X05ABF (ITIME)
INTEGER ITIME(7)

3. Description

X05ABF returns a character string of length 30 which contains the date and time as supplied in argument ITIME. On exit, the character string has the following format:

'DAY XXTH MTH YEAR HR:MN:SC.MIL',

where

- DAY is one of 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat',
- XX is an integer denoting the day of the month,
- TH is one of 'st', 'nd', 'rd', 'th',
- MTH is one of 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec',
- YEAR is the year as a four digit integer,
- HR is the hour,
- MN is the minute,
SC is the second,
MIL is the millisecond.

If on entry the date in ITIME is invalid, the string returned is

4. References
None.

5. Parameters

1: ITIME(7) -- INTEGER array Input
 On entry: a date and time in the format returned by X05AAF, as follows:
 ITIME must contain the year as a positive integer.
 (1)
 ITIME must contain the month, in the range 1-12.
 (2)
 ITIME must contain the day, in the range 1 to p, where
 p = 28, 29, 30 or 31, depending on the month and year.
 ITIME must contain the hour, in the range 0-23.
 (4)
 ITIME must contain the minute, in the range 0-59.
 (5)
 ITIME must contain the second, in the range 0-59.
 (6)
 ITIME must contain the millisecond, in the range 0-999.

6. Error Indicators and Warnings
None.

7. Accuracy
The day name included as part of the character string returned by this routine is calculated assuming that the date is part of the Gregorian calendar. This calendar has been in operation in Europe since October the 15th 1582, and in Great Britain since September the 14th 1752. Entry to this routine with a date earlier than these will therefore not return a day name that is historically
8. Further Comments

Two dates stored in character string format, as returned by this routine, may be compared by X05ACF.

9. Example

This program initialises a time in ITIME, and converts it to character format by a call to X05ABF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.

\end{verbatim}
\endscroll
\end{page}

Compares two date/time character strings

— nagx.ht —

\begin{page}{manpageXXx05acf}{NAG Documentation: x05acf}
\beginscroll
\begin{verbatim}
X05ACF(3NAG) Foundation Library (12/10/92) X05ACF(3NAG)

X05 -- Date and Time Utilities

Note: Before using this routine, please read the Users’ Note for your implementation to check implementation-dependent details. The symbol (*) after a NAG routine name denotes a routine that is not included in the Foundation Library.

1. Purpose

X05ACF compares two date/time character strings, each stored in the format returned by X05ABF.
2. Specification

 INTEGER FUNCTION X05ACF (CTIME1, CTIME2)
 CHARACTER*(*) CTIME1, CTIME2

3. Description

X05ACF compares two date/time character strings, and returns an integer that specifies which one is the earliest. The result is an integer returned through the routine name, with meaning as follows:

X05ACF = -1: the first date/time string is earlier than the second.

X05ACF = 0: the two date/time strings are equivalent.

X05ACF = 1: the first date/time string is later than the second.

4. References

None.

5. Parameters

1: CTIME1 -- CHARACTER*(*) Input

2: CTIME2 -- CHARACTER*(*) Input

On entry: the date/time strings to be compared. These are expected to be in the format returned by X05ABF, although X05ACF will still attempt to interpret the strings if they vary slightly from this format. See Section 8 for further details.

6. Error Indicators and Warnings

None.

7. Accuracy

Not applicable.

8. Further Comments

For flexibility, X05ACF will accept various formats for the two date/time strings CTIME1 and CTIME2.

The strings do not have to be the same length. It is permissible,
for example, to enter with one or both of the strings truncated to a smaller length, in which case missing fields are treated as zero.

Each character string may be of any length, but everything after character 80 is ignored.

Each string may or may not include an alphabetic day name, such as 'Wednesday', at its start. These day names are ignored, and no check is made that the day name corresponds correctly to the rest of the date.

The month name may contain any number of characters provided it uniquely identifies the month, however all characters that are supplied are significant.

Each field in the character string must be separated by one or more spaces.

The case of all alphabetic characters is insignificant.

Any field in a date time string that is indecipherable according to the above rules will be converted to a zero value internally. Thus two strings that are completely indecipherable will compare equal.

According to these rules, all the following date/time strings are equivalent:

'Thursday 10th July 1958 12:43:17.320'

'THU 10th JULY 1958 12:43:17.320'

'10th Jul 1958 12:43:17.320'

9. Example

This program initialises two date/time strings, and compares them by a call to X05ACF.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Amount of processor time used

2. Purpose

X05BAF returns the amount of processor time used since an unspecified previous time, via the routine name.

3. Specification

DOUBLE PRECISION FUNCTION X05BAF ()

4. Description

X05BAF returns the number of seconds of processor time used since some previous time. The previous time is system dependent, but may be, for example, the time the current job or the current program started running.

If the system clock of the host machine is inaccessible for any reason, X05BAF returns the value zero.

5. Parameters
None.

6. Error Indicators and Warnings

None.

7. Accuracy

The accuracy of the value returned depends on the accuracy of the system clock on the host machine.

8. Further Comments

Since the value returned by X05BAF is the amount of processor time since some unspecified earlier time, no significance should be placed on the value other than as a marker to be compared with some later figure returned by X05BAF. The amount of processor time that has elapsed between two calls of X05BAF can be simply calculated as the earlier value subtracted from the later value.

9. Example

This program makes a call to X05BAF, performs some computations, makes another call to X05BAF, and gives the time used by the computations as the difference between the two returned values.

The example program is not reproduced here. The source code for all example programs is distributed with the NAG Foundation Library software and should be available on-line.
Chapter 23

NAG ASP Example Code

23.1 aspex.ht

Asp1 Example Code

— aspex.ht —

\begin{page}{Asp1ExampleCode}{Asp1 Example Code}
\begin{verbatim}
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=DSIN(X)
RETURN
END
\end{verbatim}
\end{page}

Asp10 Example Code

— aspex.ht —

\begin{page}{Asp10ExampleCode}{Asp10 Example Code}
\begin{verbatim}
SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
DOUBLE PRECISION P,Q,DQDL,ELAM,JINT
DOUBLE PRECISION ELAM,P,Q,X,DQDL
INTEGER JINT
\end{verbatim}
\end{page}
P=1.0D0
Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X)
DQDL=1.0D0
RETURN
END

Asp12 Example Code

--- aspex.ht ---

\begin{verbatim}
SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO)
DOUBLE PRECISION ELAM,FINFO(15)
INTEGER MAXIT,IFLAG
IF(MAXIT.EQ.-1)THEN
 PRINT*,”Output from Monit"
ENDIF
PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4)
RETURN
END
\end{verbatim}

Asp19 Example Code

--- aspex.ht ---

\begin{verbatim}
SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC)
DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N)
INTEGER M,N,LJC
INTEGER I,J
DO 25003 I=1,LJC
 DO 25004 J=1,N
\end{verbatim}
23.1. ASPEX.HT

FJACC(I,J)=0.0D0
25004 CONTINUE
25003 CONTINUE

FVECC(1)=(XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/(XC(3)+15.0D0*XC(2))
FVECC(2)=(XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/(XC(3)+7.0D0*XC(2))
FVECC(3)=(XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))
FVECC(4)=(XC(1)-0.26D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/(XC(3)+3.0D0*XC(2))
FVECC(5)=(XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)*XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2))
FVECC(6)=(XC(1)-0.32D0)*XC(3)+(1.6666666666666667D0*XC(1)-0.5333333333333333D0)*XC(2)+1.0D0)/(XC(3)+1.6666666666666667D0*XC(2))
FVECC(7)=(XC(1)-0.35D0)*XC(3)+(1.2857142857142857D0*XC(1)-0.45D0)*XC(2)+1.0D0)/(XC(3)+1.2857142857142857D0*XC(2))
FVECC(8)=(XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+XC(2))
FVECC(9)=(XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2))
FVECC(10)=(XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.6666666666666667D0)/(XC(3)+XC(2))
FVECC(11)=(XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3)+XC(2))
FVECC(12)=(XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3)+XC(2))
FVECC(13)=(XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.333333333333333D0)/(XC(3)+XC(2))
FVECC(14)=(XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+XC(2))
FVECC(15)=(XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3)+XC(2))

FJACC(1,1)=1.0D0
FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)
FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)
FJACC(2,1)=1.0D0
FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)
FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)
FJACC(3,1)=1.0D0
FJACC(3,2)=(-0.1110223024625157D-15*XC(3)-4.333333333333333D0)/(8.666666666666666D0*XC(2)*XC(3)+18.7777777777778D0*XC(2)**2)
FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.7777777777778D0*XC(2)**2)
FJACC(4,1)=1.0D0
FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)
FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)
FJACC(5,1)=1.0D0
FJACC(5,2)=(-0.1110223024625157D-2.2D0)/(XC(3)**2+4.399
&999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)
FJACC(5,3)=(-0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+4.3999999
&999999999D0*XC(2)**2)
FJACC(6,1)=1.0D0
FJACC(6,2)=(-0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999999D0*XC(2)**2)
FJACC(6,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999999D0*XC(2)**2)
FJACC(7,1)=1.0D0
FJACC(7,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/(X
&C(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2)
FJACC(7,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333333333333D0*XC(2)**2)
FJACC(8,1)=1.0D0
FJACC(8,2)=(-0.5551115123125783D-16*XC(2))-1.285714285714286D0)/(X
&C(2)**2+2.571428571428571D0*XC(2)*XC(3)+1.6530612489796D0*XC(2)**2)
FJACC(8,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(2)**2+2.571428
&C(2)*XC(3)+1.6530612489796D0*XC(2)**2)
FJACC(9,1)=1.0D0
FJACC(9,2)=(-1.285714285714286D0)/(XC(2)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(9,3)=(1.285714285714286D0)/(XC(2)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(10,1)=1.0D0
FJACC(10,2)=-1.285714285714286D0/(XC(2)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(10,3)=-1.285714285714286D0/(XC(2)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(11,1)=1.0D0
FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(12,1)=1.0D0
FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(13,1)=1.0D0
FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)
**2)
FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(14,1)=1.0D0
FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(15,1)=1.0D0
FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
RETURN
END
\end{verbatim}
\end{page}
Asp20 Example Code

— aspex.ht —

\begin{verbatim}
SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)
DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH)
INTEGER JTHCOL,N,NROWH,NCOLH
HX(1)=2.0D0*X(1)
HX(2)=2.0D0*X(2)
HX(3)=2.0D0*X(4)+2.0D0*X(3)
HX(4)=2.0D0*X(4)+2.0D0*X(3)
HX(5)=2.0D0*X(5)
HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6))
HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6))
RETURN
END
\end{verbatim}

Asp24 Example Code

— aspex.ht —

\begin{verbatim}
SUBROUTINE FUNCT1(N,XC,FC)
DOUBLE PRECISION FC,XC(N)
INTEGER N
FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*XC(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+(-8.0D0*XC(2)**3*XC(3)))*XC(3)**3+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC(2)+10.0D0*XC(1)**4*XC(1)**2
RETURN
END
\end{verbatim}
Asp27 Example Code

— aspex.ht —

\begin{verbatim}
FUNCTION DOT(FLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
 DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK)
 INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)
 DOT=(W(16)+(-0.50D0*W(15)))*Z(16)+((-0.50D0*W(16))+W(15)+(-0.50D0*W(1
 &4)))*Z(15)+((-0.50D0*W(15))+W(14)+(-0.50D0*W(13)))*Z(14)+((-0.50D0*W(
 &14))+W(13)+(-0.50D0*W(12)))*Z(13)+((-0.50D0*W(12))+W(11)+(-0.50D0*W(1
 &11)))*Z(11)+((-0.50D0*W(11))+W(10)+(-0.50D0*W(10)))*Z(10)+((-0.50D0*W(
 &10))+W(9)+(-0.50D0*W(9)))*Z(9)+((-0.50D0*W(9))+W(8)+(-0.50D0*W(8)))*Z(8)+
& (-0.50D0*W(8)))*Z(7)+((-0.50D0*W(7)))*Z(6)+(-0.50D0*W(5))*Z(5)+(-0.50D0*W(
& 4))*Z(4)+(-0.50D0*W(3))*Z(3)+(-0.50D0*W(2))*Z(2)+1.019463911841327D0*Z
RETURN
END
\end{verbatim}

Asp28 Example Code

— aspex.ht —

\begin{verbatim}
SUBROUTINE IMAGE(FLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
 DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK)
 INTEGER N,LIWORK,IFLAG,LRWORK
 W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.002106973900813502D0*
& 502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554088286531D0*Z(12))+
&(-0.01219194009813166D0*Z(11))+0.00372306473653087D0*Z(10)+(-0.050D0*W(9))+
&(-0.50D0*W(8))+(-0.50D0*W(7)))*Z(8)+((-0.50D0*W(8)))*Z(7)+((-0.50D0*W(7)))*Z(6)+
&(-0.50D0*W(6))*Z(5)+(-0.50D0*W(5))+W(6)+(-0.50D0*W(4))*Z(5)+(-0.50D0*W(5))+W(4)+
&(-0.50D0*W(3))*Z(4)+(-0.50D0*W(4))+W(3)+(-0.50D0*W(2))*Z(3)+(-0.50D0*W(3))+W(
& 2)+(-0.50D0*W(1))*Z(2)+((-0.50D0*W(2))+W(1))*Z(1)
RETURN
END
\end{verbatim}
\(W(2) = 0.0227345011107737D0 \cdot Z(16) + 0.008812321197398072D0 \cdot Z(15) + 0.010491022105195868D0 \cdot Z(14) + (-0.01764072463999744D0 \cdot Z(13)) + (-0.0135713689401222105195866338282D0 \cdot Z(12)) + (-0.0198153238243379D0 \cdot Z(11)) + (-0.006095390688679697D0 \cdot Z(10)) + (-0.041531199556569051D0 \cdot Z(9)) + (-0.2176561076571465D0 \cdot Z(8)) + (-0.1688977368984641D0 \cdot Z(7)) + (-0.3244016606567343D0 \cdot Z(6)) + (-0.322697947D0 \cdot Z(5)) + (-0.9128222941872173D0 \cdot Z(2)) + (-0.2419652703415429D0 \cdot Z(1)) \)

\(W(3) = 0.03371198197190302D0 \cdot Z(16) + 0.02021603150122265D0 \cdot Z(15) + (-0.006670355346897020D0 \cdot Z(14)) + (-0.00303392238968179D0 \cdot Z(13)) + 0.00203395234773579699D0 \cdot Z(12) + 0.00162342196614937D0 \cdot Z(11)) + (-0.01623427735779699D0 \cdot Z(10)) + (-0.00142246959356877D0 \cdot Z(9)) + (-0.00505181779315635D0 \cdot Z(8)) + (-0.006630874514535952D0 \cdot Z(7)) + (-0.12366792061564033D0 \cdot Z(6)) + (-0.3523683853026259D0 \cdot Z(5)) + 0.0092892812574917D0 \cdot Z(4)) + 0.3241503380225639D0 \cdot Z(3)) + (-0.2986582812574917D0 \cdot Z(2)) + (0.005239165960779299D0 \cdot Z(1)) \)

\(W(4) = 0.01415463713600119D0 \cdot Z(16) + 0.0012182273769751869D0 \cdot Z(15) + (-0.00142246959356877D0 \cdot Z(14)) + (-0.01965809746040371D0 \cdot Z(13)) + 0.0548689737339577D0 \cdot Z(12) + (-0.0142246959356877D0 \cdot Z(11)) + (-0.00505181779315635D0 \cdot Z(10)) + (-0.004353074206076491D0 \cdot Z(9)) + (+0.2012230497530726D0 \cdot Z(8)) + (-0.006630874514535952D0 \cdot Z(7)) + (-0.1280829967320053D0 \cdot Z(6)) + (-0.305169742604165D0 \cdot Z(5)) + 0.8600427128450191D0 \cdot Z(4)) + (-0.3241503380225639D0 \cdot Z(3)) + (-0.09033531980693314D0 \cdot Z(2)) + 0.0908920551710911D0 \cdot Z(1)) \)

\(W(5) = 0.04556369767776735D0 \cdot Z(16) + (-0.001822273769751869D0 \cdot Z(15)) + (-0.002312226501941856D0 \cdot Z(14)) + (+0.0294704646070739D0 \cdot Z(13)) + (-0.014165266617977D0 \cdot Z(12)) + (-0.05034242196614937D0 \cdot Z(11)) + (-0.03769663291725935D0 \cdot Z(10)) + (-0.2171103102175198D0 \cdot Z(9)) + (+0.0824949256021352D0 \cdot Z(8)) + (+0.1473995209288945D0 \cdot Z(7)) + (+0.315042193418466D0 \cdot Z(6)) + (+0.591623347824002D0 \cdot Z(5)) + (+0.3852396957363045D0 \cdot Z(4)) + (-0.141718542728274D0 \cdot Z(3)) + (-0.03243945646101143D0 \cdot Z(2)) + 0.31820917706851D0 \cdot Z(1)) \)

\(W(6) = 0.04015147277405744D0 \cdot Z(16) + 0.01328585741341559D0 \cdot Z(15) + 0.0482608205465965D0 \cdot Z(14)) + (+0.0431964116207706D0 \cdot Z(13)) + (+0.04931323139055762D0 \cdot Z(12)) + (+0.03528668617505647D0 \cdot Z(11)) + (+0.22953938396730D0 \cdot Z(10)) + (+0.0737517649315155D0 \cdot Z(9)) + (+0.158931311915616D0 \cdot Z(8)) + (+0.328001910860477D0 \cdot Z(7)) + (+0.952576555482747D0 \cdot Z(6)) + (+0.3158309975786731D0 \cdot Z(5)) + (-0.1846882042225383D0 \cdot Z(4)) + (-0.7037620467000D0 \cdot Z(3)) + (+0.231115694327382D0 \cdot Z(2)) + (+0.04254083491825026D0 \cdot Z(1)) \)

\(W(7) = 0.06069779864023718D0 \cdot Z(16) + 0.6681263884671322D0 \cdot Z(15)) + (-0.02113506088615768D0 \cdot Z(14)) + (+0.083996687458326D0 \cdot Z(13)) + (+0.0329493852369684D0 \cdot Z(12)) + (+0.2276875326327734D0 \cdot Z(11)) + (-0.067356038933017D0 \cdot Z(10)) + (-0.0659813965382218D0 \cdot Z(9)) + (-0.336326295694705D0 \cdot Z(8)) + (+0.9442791158560948D0 \cdot Z(7)) + (-0.319955294940657D0 \cdot Z(6)) + (-0.136246389920727D0 \cdot Z(5)) + (-0.100618517507868D0 \cdot Z(4)) + (+0.2057504515015D0 \cdot Z(3)) + (-0.0206587926982767D0 \cdot Z(2)) + (+0.03160990266745513D0 \cdot Z(1)) \)

\(W(8) = 0.126386868896738D0 \cdot Z(16) + (+0.0256337039476418D0 \cdot Z(15)) + (-0.055817573945564D1 \cdot Z(14)) + (-0.0777893320590685D0 \cdot Z(13)) + (-0.23117338 \)
\begin{verbatim}
&45834199D0*Z(12)+(-0.0603158113427592D0*Z(11))+(0.14805474755869
&52D0*Z(10)+(-0.36640142802243D0*Z(9))+0.9360412840224D0*Z(8)
&(-0.3269452524413048D0*Z(7))+(0.193684186557241D0*Z(6))+0.056
&173845834199D0*Z(5)+0.177789320506969D0*Z(4)+(-0.0418242260544
&359D0*Z(3))+(-0.07256337003947642D0*Z(2))+0.07361311310326199D0*Z
\end{verbatim}
23.1. ASPEX.HT

\verb|
&.002033052310249480D0*Z(5)+(-0.030323922389681790D0*Z(4))+(0.006607305534689702D0*Z(3))+0.020216031501222650D0*Z(2)+0.0337119819719030D0*Z(1)
&020D0*Z(1)
W(15)=(-0.24196527034154290D0*Z(16))+0.91282229418721730D0*Z(15)+(-0.32440166056673430D0*Z(14))+(-0.16889773689846410D0*Z(13))+(-0.053255558663235880D0*Z(12))+0.21765610765714650D0*Z(11)+(-0.04153119955569051D0*Z(10))+(-0.06095390686796970D0*Z(9))+(-0.0198153238243379D0*Z(8))+0.05258891863382822D0*Z(7)+0.00157466157362272D0*Z(6)+(-0.01357136721059950D0*Z(5))+(-0.01764072463997440D0*Z(4))+0.01094012201D160737D0*Z(16)+(-0.28035316510572330D0*Z(15))+(-0.13853435806869220D0*Z(14))+(-0.13853435806869220D0*Z(13))+0.2264766947290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04732368012114625D0*Z(10))+(-0.03586220812223050D0*Z(9))+0.04932374658377151D0*Z(8)+0.003723064736530870D0*Z(7)+(-0.012191940098131660D0*Z(6))+(-0.007005540882865317D0*Z(5))+0.0029574349917690870D0*Z(4))+0.00210697390081502D0*Z(1)
&1D1
RETURN
\end{verbatim}
\end{page}

Asp29 Example Code

— aspex.ht —

\begin{page}{Asp29ExampleCode}{Asp29 Example Code}
\begin{verbatim}
SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)
INTEGER K,NEXTIT,NEVALS,NEVECS,ISTATE
DOUBLE PRECISION D(K),F(K)
CALL FO2FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)
RETURN
\end{verbatim}
\end{page}
Asp30 Example Code

\begin{verbatim}
SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)
 DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK)
 INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE
 DOUBLE PRECISION A(5,5)
 EXTERNAL F06PAF
 A(1,1)=1.0D0
 A(1,2)=0.0D0
 A(1,3)=0.0D0
 A(1,4)=-1.0D0
 A(1,5)=0.0D0
 A(2,1)=0.0D0
 A(2,2)=1.0D0
 A(2,3)=0.0D0
 A(2,4)=0.0D0
 A(2,5)=-1.0D0
 A(3,1)=0.0D0
 A(3,2)=0.0D0
 A(3,3)=1.0D0
 A(3,4)=-1.0D0
 A(3,5)=0.0D0
 A(4,1)=-1.0D0
 A(4,2)=0.0D0
 A(4,3)=-1.0D0
 A(4,4)=4.0D0
 A(4,5)=-1.0D0
 A(5,1)=0.0D0
 A(5,2)=-1.0D0
 A(5,3)=0.0D0
 A(5,4)=-1.0D0
 A(5,5)=4.0D0
 IF(MODE.EQ.1)THEN
 CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)
 ELSEIF(MODE.EQ.2)THEN
 CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)
 ENDIF
 RETURN
END
\end{verbatim}
Asp31 Example Code

--- aspex.ht ---

\begin{page}{Asp31ExampleCode}{Asp31 Example Code}
\begin{verbatim}
SUBROUTINE PEDERV(X,Y,PW)
 DOUBLE PRECISION X,Y(*)
 DOUBLE PRECISION PW(3,3)
 PW(1,1)=-0.03999999999999999D0
 PW(1,2)=10000.0D0*Y(3)
 PW(1,3)=10000.0D0*Y(2)
 PW(2,1)=0.03999999999999999D0
 PW(2,2)=(-10000.0D0*Y(3))+(60000000.0D0*Y(2))
 PW(2,3)=-10000.0D0*Y(2)
 PW(3,1)=0.0D0
 PW(3,2)=60000000.0D0*Y(2)
 PW(3,3)=0.0D0
RETURN
END
\end{verbatim}
\end{page}

Asp33 Example Code

--- aspex.ht ---

\begin{page}{Asp33ExampleCode}{Asp33 Example Code}
\begin{verbatim}
SUBROUTINE REPORT(X,V,JINT)
 DOUBLE PRECISION V(3),X
 INTEGER JINT
RETURN
END
\end{verbatim}
\end{page}

Asp34 Example Code

\begin{verbatim}
SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)
 DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N)
 INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)
 DOUBLE PRECISION W1(3),W2(3),MS(3,3)
 IFLAG=-1
 MS(1,1)=2.0D0
 MS(1,2)=1.0D0
 MS(1,3)=0.0D0
 MS(2,1)=1.0D0
 MS(2,2)=2.0D0
 MS(2,3)=1.0D0
 MS(3,1)=0.0D0
 MS(3,2)=1.0D0
 MS(3,3)=2.0D0
 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)
 IFLAG=-IFLAG
 RETURN
END
\end{verbatim}

Asp35 Example Code

\begin{verbatim}
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
 INTEGER LDFJAC,N,IFLAG
 IF(IFLAG.EQ.1)THEN
 FVEC(1)=(-1.0D0*X(2))+X(1)
 FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2)
 FVEC(3)=3.0D0*X(3)
 ELSEIF(IFLAG.EQ.2)THEN
 FJAC(1,1)=1.0D0
 FJAC(1,2)=-1.0D0
 FJAC(1,3)=0.0D0
 FJAC(2,1)=-1.0D0
 FJAC(2,2)=2.0D0
 FJAC(2,3)=-1.0D0
 FJAC(3,1)=0.0D0
 FJAC(3,2)=1.0D0
 FJAC(3,3)=2.0D0
 ENDIF
END
\end{verbatim}

23.1. ASPEX.HT

\begin{verbatim}
DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)
DOUBLE PRECISION X(NDIM)
INTEGER NDIM
FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0*
&X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0)
RETURN
END
\end{verbatim}

Asp4 Example Code

— aspex.ht —

\begin{verbatim}
DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)
DOUBLE PRECISION X(NDIM)
INTEGER NDIM
FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0*
&X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0)
RETURN
END
\end{verbatim}

Asp41 Example Code

— aspex.ht —

\begin{verbatim}
SUBROUTINE FCN(X,EPS,Y,F,N)
DOUBLE PRECISION EPS,F(N),X,Y(N)
INTEGER N
F(1)=Y(2)
F(2)=Y(3)
\end{verbatim}
F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS)
RETURN
END
SUBROUTINE JACOBF(X,EPS,Y,F,N)
DOUBLE PRECISION EPS,F(N,N),X,Y(N)
INTEGER N
F(1,1)=0.0D0
F(1,2)=1.0D0
F(1,3)=0.0D0
F(2,1)=0.0D0
F(2,2)=0.0D0
F(2,3)=1.0D0
F(3,1)=-1.0D0*Y(3)
F(3,2)=4.0D0*EPS*Y(2)
F(3,3)=-1.0D0*Y(1)
RETURN
END
SUBROUTINE JACEPS(X,EPS,Y,F,N)
DOUBLE PRECISION EPS,F(N),X,Y(N)
INTEGER N
F(1)=0.0D0
F(2)=0.0D0
F(3)=2.0D0*Y(2)**2-2.0D0
RETURN
END
23.1. **ASPEX.HT**

```
AJ(1,1)=1.0D0
AJ(1,2)=0.0D0
AJ(1,3)=0.0D0
AJ(2,1)=0.0D0
AJ(2,2)=1.0D0
AJ(2,3)=0.0D0
AJ(3,1)=0.0D0
AJ(3,2)=0.0D0
AJ(3,3)=0.0D0
BJ(1,1)=0.0D0
BJ(1,2)=0.0D0
BJ(1,3)=0.0D0
BJ(2,1)=0.0D0
BJ(2,2)=0.0D0
BJ(2,3)=0.0D0
BJ(3,1)=0.0D0
BJ(3,2)=1.0D0
BJ(3,3)=0.0D0
RETURN
END
```

```
SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N)
DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N)
INTEGER N
BCEP(1)=0.0D0
BCEP(2)=0.0D0
BCEP(3)=0.0D0
RETURN
END
```

Asp49 Example Code

— aspex.ht —

```
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*)
INTEGER N,IUSER(*),MODE,NSTATE
OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7)
&+(-1.0D0*X(2)*X(6))
OBJGRD(1)=X(7)
OBJGRD(2)=-1.0D0*X(6)
OBJGRD(3)=X(8)+(-1.0D0*X(7))
RETURN
END
```

Asp50 Example Code

--- aspex.h ---

```
SUBROUTINE LSFUN1(M,N,XC,FVECC)
  DOUBLE PRECISION FVECC(M),XC(N)
  INTEGER I,M,N
  FVECC(1)=(XC(1))
  FVECC(2)=(XC(1))
  FVECC(3)=(XC(1))
  FVECC(4)=(XC(1))
  FVECC(5)=(XC(1))
  FVECC(6)=(XC(1))
  FVECC(7)=(XC(1))
  FVECC(8)=(XC(1))
  FVECC(9)=(XC(1))
  FVECC(10)=(XC(1))
  FVECC(11)=(XC(1))
  FVECC(12)=(XC(1))
  FVECC(13)=(XC(1))
  RETURN
END
```

Asp50 Example Code
Asp55 Example Code

--- aspex.ht ---

```fortran
SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, CJAC, NSTATE, IUSER, USER)
DOUBLE PRECISION C(NCNLN), X(N), CJAC(NROWJ, N), USER(*)
INTEGER N, IUSER(*), NEEDC(NCNLN), NROWJ, MODE, NCNLN, NSTATE
IF(NEEDC(1).GT.0)THEN
  C(1)=X(6)**2+X(1)**2
  CJAC(1,1)=2.0D0*X(1)
  CJAC(1,2)=0.0D0
  CJAC(1,3)=0.0D0
  CJAC(1,4)=0.0D0
  CJAC(1,5)=0.0D0
  CJAC(1,6)=2.0D0*X(6)
ENDIF
IF(NEEDC(2).GT.0)THEN
  C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2
  CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1)
  CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1))
  CJAC(2,3)=0.0D0
  CJAC(2,4)=0.0D0
  CJAC(2,5)=0.0D0
  CJAC(2,6)=0.0D0
ENDIF
IF(NEEDC(3).GT.0)THEN
  C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2
  CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1)
  CJAC(3,2)=2.0D0*X(2)
  CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1))
  CJAC(3,4)=0.0D0
  CJAC(3,5)=0.0D0
  CJAC(3,6)=0.0D0
END
```
Asp6 Example Code

— aspex.ht —

```
SUBROUTINE FCN(N,X,FVEC,IFLAG)
  DOUBLE PRECISION X(N),FVEC(N)
  INTEGER N,IFLAG
  FVEC(1)=(-2.0D0*X(2))=(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0
  &0D0
  FVEC(2)=(-2.0D0*X(3))=(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1.
  &0D0
  FVEC(3)=(-2.0D0*X(4))=(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1.
  &0D0
  FVEC(4)=(-2.0D0*X(5))=(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1.
  &0D0
  FVEC(5)=(-2.0D0*X(6))=(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1.
  &0D0
  FVEC(6)=(-2.0D0*X(7))=(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1.
  &0D0
  FVEC(7)=(-2.0D0*X(8))=(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1.
  &0D0
  FVEC(8)=(-2.0D0*X(9))=(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1.
  &0D0
  RETURN
END
```

Asp7 Example Code

— aspex.ht —

```
SUBROUTINE FCN(N,X,FVEC,IFLAG)
  DOUBLE PRECISION X(N),FVEC(N)
  INTEGER N,IFLAG
  FVEC(1)=(-2.0D0*X(2))=(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0
  &0D0
  FVEC(2)=(-2.0D0*X(3))=(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1.
  &0D0
  FVEC(3)=(-2.0D0*X(4))=(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1.
  &0D0
  FVEC(4)=(-2.0D0*X(5))=(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1.
  &0D0
  FVEC(5)=(-2.0D0*X(6))=(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1.
  &0D0
  FVEC(6)=(-2.0D0*X(7))=(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1.
  &0D0
  FVEC(7)=(-2.0D0*X(8))=(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1.
  &0D0
  FVEC(8)=(-2.0D0*X(9))=(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1.
  &0D0
  RETURN
END
```
23.1. ASPEX.HT

\begin{verbatim}
SUBROUTINE FCN(X,Z,F)
DOUBLE PRECISION F(*),X,Z(*)
F(1)=DTAN(Z(3))
F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2)**2))/(Z(2)*DCOS(Z(3)))
F(3)=-0.03199999999999999D0/(X*Z(2)**2)
RETURN
END
\end{verbatim}

Asp73 Example Code

— aspex.ht —

\begin{verbatim}
SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI)
DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI
ALPHA=DSIN(X)
BETA=Y
GAMMA=X*Y
DELTA=DCOS(X)*DSIN(Y)
EPSOLN=Y+X
PHI=X
PSI=Y
RETURN
END
\end{verbatim}

Asp74 Example Code

— aspex.ht —

\begin{verbatim}
\end{verbatim}
SUBROUTINE BNDY(X,Y,A,B,C,IBND)
DOUBLE PRECISION A,B,C,X,Y
INTEGER IBND
IF(IBND.EQ.0)THEN
 A=0.0D0
 B=1.0D0
 C=-1.0D0*DSIN(X)
ELSEIF(IBND.EQ.1)THEN
 A=1.0D0
 B=0.0D0
 C=DSIN(X)*DSIN(Y)
ELSEIF(IBND.EQ.2)THEN
 A=1.0D0
 B=0.0D0
 C=DSIN(X)*DSIN(Y)
ELSEIF(IBND.EQ.3)THEN
 A=0.0D0
 B=1.0D0
 C=-1.0D0*DSIN(Y)
ENDIF
END

Asp77 Example Code

— aspex.ht —

SUBROUTINE FCNF(X,F)
DOUBLE PRECISION X
DOUBLE PRECISION F(2,2)
F(1,1)=0.0D0
F(1,2)=1.0D0
F(2,1)=0.0D0
F(2,2)=-10.0D0
RETURN
END

———
23.1. ASPEX.HT

Asp78 Example Code

— aspex.ht —

```
\begin{verbatim}
SUBROUTINE FCNG(X,G)
  DOUBLE PRECISION G(*),X
  G(1)=0.0D0
  G(2)=0.0D0
END
\end{verbatim}
```

Asp8 Example Code

— aspex.ht —

```
\begin{verbatim}
SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD)
  DOUBLE PRECISION Y(N),RESULT(M,N),XSOL
  INTEGER M,N,COUNT
  LOGICAL FORWRD
  DOUBLE PRECISION X02ALF,POINTS(8)
  EXTERNAL X02ALF
  INTEGER I
  POINTS(1)=1.0D0
  POINTS(2)=2.0D0
  POINTS(3)=3.0D0
  POINTS(4)=4.0D0
  POINTS(5)=5.0D0
  POINTS(6)=6.0D0
  POINTS(7)=7.0D0
  POINTS(8)=8.0D0
  COUNT=COUNT+1
  DO 25001 I=1,N
     RESULT(COUNT,I)=Y(I)
  25001 CONTINUE
  IF(COUNT.EQ.M)THEN
     IF(FORWRD)THEN
       XSOL=X02ALF()
     ELSE
```
\begin{verbatim}
SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR)
DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3)
YL(1)=XL
YL(2)=2.0D0
YR(1)=1.0D0
YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM))
RETURN
END
\end{verbatim}

\begin{verbatim}
DOUBLE PRECISION FUNCTION G(X,Y)
DOUBLE PRECISION X,Y(*)
G=X+Y(1)
RETURN
END
\end{verbatim}
Chapter 24

NAG ANNA Expert System

24.1 annaex.ht

Axiom/NAG Expert System

— annaex.ht —

\begin{page}{UXANNA}{Axiom/NAG Expert System}
\centerline{This expert system chooses, and uses, NAG numerical routines.}
\begin{scroll}
\indent{2}
\beginmenu
\menumemolink{Integration}{UXANNAInt}
\begin{vspace}{10}
\menumemolink{Ordinary Differential Equations}{UXANNAOde}
\menumemolink{Partial Differential Equations}{UXANNAPde}
\menumemolink{Optimization}{UXANNAOpt}
\menumemolink{About the Axiom/NAG Expert System}{UXANNATxt}
\unixcommand{(Postscript)}{\texttt{\htbmdir/anna.ps}}
\menumemolink{How to use the NAGLINK}{nagLinkIntroPage}
\menumemolink{Tutorial}{tutorialIntroPage}
\item \menulispdownlink{Interpolation}{ interp1 \\ 3973 }
Welcome to the Integration section of \(\texttt{\htbmdir{}/anna.xbm.tiny} \), the \emph{Axiom/NAG Expert System}. This system chooses, and uses, NAG numerical routines.

Integrating a function over a finite or infinite range.

Integrating a multivariate function over a finite space. The dimensions of the space need to be \(2 \leq n \leq 15 \).

Examples of integration. These examples cover all of the major methods. Parameters can be changed to investigate the effect on the choice of method.
24.1. ANNAEX.HT

Ordinary Differential Equations

⇒ “Ordinary Differential Equations” (LispFunctions) 3.71 on page 952

— annaex.HT —

\begin{page}{UXANNAode}{Ordinary Differential Equations}
Welcome to the Ordinary Differential Equations section of {\tt
\inputbitmap{htbmdir{}/anna.xbm.tiny}}, the
{\em Axiom/NAG Expert System}.
This system chooses, and uses, NAG numerical routines.
\begin{scroll}
\begin{item}
\menulispdownlink{Ordinary Differential Equations}{(|annaOde|)}
Finding a solution to an Initial Value Problem of a set
of Ordinary Differential Equations.
\end{item}
\end{scroll}

\end{page}

Optimization

⇒ “Optimization of a set of observations of a data set” (LispFunctions) 3.71 on page 952

— annaex.HT —

\begin{page}{UXANNAOpt}{Optimization}
Welcome to the Optimization section of {\tt
\inputbitmap{htbmdir{}/anna.xbm.tiny}}, the {\em Axiom/NAG Expert System}.
This system chooses, and uses, NAG numerical routines.
\begin{scroll}
\begin{item}
\menulispdownlink{Examples}{UXANNAodeEx} Examples of ODE problems with various features using both
stiff and non-stiff methods. Parameters can be changed to investigate
the effect on the choice of method.
\end{item}
\end{scroll}

\end{page}
CHAPTER 24. NAG ANNA EXPERT SYSTEM

\item \menulispdownlink{Optimization of a Single Multivariate Function}
{(\textit{annaOpt})} newline
indent{6} Finding the minimum of a function in n variables. newline
indent{6} Linear Programming and Quadratic Programming problems. newline
\blankline
\item \menulispdownlink{Optimization of a set of observations of a data set}
{(\textit{annaOpt2})} newline
indent{6} Least-squares problems. newline
indent{6} Checking the goodness of fit of a least-squares model. newline
\blankline
\item \menulispdownlink{Examples}{UXANNAOptEx} newline
indent{8} Examples of optimization problems with various constraint features. \endmenu
\blankline
\item \menulispdownlink{Examples}{UXANNAOpt2Ex} newline
indent{8} Examples of least squares problems. \endmenu
\end{scroll}

Partial Differential Equations

⇒ “Second Order Elliptic Partial Differential Equation” (LispFunctions) 3.71 on page 952
— annaex.ht —

\begin{page}{UXANNAPde}{Partial Differential Equations}
Welcome to the Partial Differential Equations section of \tt \inputbitmap{\htbmdir{/anna.xbm.tiny}}, the \em Axiom/NAG Expert System. \begin{scroll}
indent{2}
begin{menu}
\menulispdownlink{Second Order Elliptic Partial Differential Equation}
{(\textit{annaPDESolve})}
\end{menu}
\end{scroll}
\end{page}
Discretizing the PDE:

defined on a rectangular region with boundary conditions of the form

and solving the resulting

seven-diagonal finite difference equations using a multigrid technique.

% Example 1: Minimize the function:

% Example 2: Minimize the function:

% Example 3: Minimize the function:

% Example 4: Minimize the function:

% Example 5: Minimize the function:

Select any of these examples and you will be presented with a page which contains active areas for the function and its parameters.

These parameters can be altered by selecting the area and replacing the default parameters by the new values.
Examples Using the Axiom/NAG Expert System

⇒ “Example 1” (LispFunctions) 3.71 on page 952

— annaex.ht —
Select any of these examples and you will be presented with a page which contains active areas for the function and its parameters.

These parameters can be altered by selecting the area and replacing the default parameters by the new values.

Examples Using the Axiom/NAG Expert System

⇒ “Example 1” (LispFunctions) 3.71 on page 952
⇒ “Example 2” (LispFunctions) 3.71 on page 952
⇒ “Example 3” (LispFunctions) 3.71 on page 952
⇒ “Example 4” (LispFunctions) 3.71 on page 952
⇒ “Example 5” (LispFunctions) 3.71 on page 952
⇒ “Example 6” (LispFunctions) 3.71 on page 952
⇒ “Example 7” (LispFunctions) 3.71 on page 952
⇒ “Example 8” (LispFunctions) 3.71 on page 952
⇒ “Example 9” (LispFunctions) 3.71 on page 952
⇒ “Example 10” (LispFunctions) 3.71 on page 952
⇒ “Example 11” (LispFunctions) 3.71 on page 952
⇒ “Example 12” (LispFunctions) 3.71 on page 952

annaex.ht
default parameters by the new values. In this way you can investigate the
effect of the new parameters on the choice of method.
\blankline
\begin{menu}
\item \menulispdownlink{Example 1: newline\newline\centerline{\inputbitmap{htbmdir/int1.xbm}}}{{\(|\text{annaFoo}|\)}}
\blankline
\item \menulispdownlink{Example 2: newline\newline\centerline{\inputbitmap{htbmdir/int2.xbm}}}{{\(|\text{annaBar}|\)}}
\blankline
\item \menulispdownlink{Example 3: newline\newline\centerline{\inputbitmap{htbmdir/int3.xbm}}}{{\(|\text{annaJoe}|\)}}
\blankline
\item \menulispdownlink{Example 4: newline\newline\centerline{\inputbitmap{htbmdir/int4.xbm}}}{{\(|\text{annaSue}|\)}}
\blankline
\item \menulispdownlink{Example 5: newline\newline\centerline{\inputbitmap{htbmdir/int5.xbm}}}{{\(|\text{annaAnn}|\)}}
\blankline
\item \menulispdownlink{Example 6: newline\newline\centerline{\inputbitmap{htbmdir/int6.xbm}}}{{\(|\text{annaBab}|\)}}
\blankline
\item \menulispdownlink{Example 7: newline\newline\centerline{\inputbitmap{htbmdir/int7.xbm}}}{{\(|\text{annaFnar}|\)}}
\blankline
\item \menulispdownlink{Example 8: newline\newline\centerline{\inputbitmap{htbmdir/int8.xbm}}}{{\(|\text{annaDan}|\)}}
\blankline
\item \menulispdownlink{Example 9: newline\newline\centerline{\inputbitmap{htbmdir/int9.xbm}}}{{\(|\text{annaBlah}|\)}}
\blankline
\item \menulispdownlink{Example 10: newline\newline\centerline{\inputbitmap{htbmdir/int10.xbm}}}{{\(|\text{annaTub}|\)}}
\blankline
\item \menulispdownlink{Example 11: newline\newline\centerline{\inputbitmap{htbmdir/int13.xbm}}}{{\(|\text{annaRats}|\)}}
\blankline
\item \menulispdownlink{Example 12: newline\newline\centerline{\inputbitmap{htbmdir/int11.xbm}}}{{\(|\text{annaMInt}|\)}}
\end{menu}
\end{scroll}
\autobutt{MainHelp}
\end{page}
Examples Using the Axiom/NAG Expert System

⇒ “annaOdeDefaultSolve1” (LispFunctions) 3.71 on page 952
⇒ “annaOdeDefaultSolve2” (LispFunctions) 3.71 on page 952

— annaex.ht —

\begin{page}{UXANNAOdeEx}{Examples Using the Axiom/NAG Expert System}
\begin{scroll}
Analyses the function for various attributes, chooses and then uses a suitable ODE solver to provide a solution to the system of \text{n} ODEs $y^{(i)} = f(x,y)$, \text{i} = 1,2,...,\text{n}.
\begin{menu}
\item Example 1:
\begin{itemize}
\item \begin{verbatim}
with initial conditions: \begin{verbatim}
\end{verbatim}
\end{itemize}
\item Example 2:
\begin{itemize}
\item \begin{verbatim}
with initial conditions: \begin{verbatim}
\end{verbatim}
\end{itemize}
\end{menu}
\end{scroll}
\autobutt{MainHelp}
\end{page}
In applied mathematics, electronic and chemical engineering, the
modelling process can produce a number of mathematical problems which
require numerical solutions for which symbolic methods are either not
possible or not obvious. With the plethora of numerical library
routines for the solution of these problems often the numerical
analyst has to answer the question \emph{Which routine to choose?}
Blankline
Some analysis needs to be carried out before the appropriate routine
can be identified i.e. \emph{How stiff is this ODE?} and \emph{Is this
function continuous?} It may well be the case that more than one
routine is applicable to the problem. So the question may become \emph{Which
is likely to be the best?} Such a choice may be critical for
both accuracy and efficiency.
Blankline
An expert system is thus required to make this choice based on the
result of its own analysis of the problem, call the routine and act on
the outcome. This may be to put the answer in a relevant form or
react to an apparent failure of the chosen routine and thus choose and
call an alternative. It should also have sufficient explanation
mechanisms to inform on the choice of routine and the reasons for that
choice.
Blankline
\begin{scroll}
\begin{page}{UXANNAEx}{About the Axiom/NAG Expert System}
\begin{centerline}{\tt\inputbitmap{/htbmdir/anna_logo.xbm}}\rm\end{centerline}

In applied mathematics, electronic and chemical engineering, the
modelling process can produce a number of mathematical problems which
require numerical solutions for which symbolic methods are either not
possible or not obvious. With the plethora of numerical library
routines for the solution of these problems often the numerical
analyst has to answer the question \emph{Which routine to choose?}
Blankline
Some analysis needs to be carried out before the appropriate routine
can be identified i.e. \emph{How stiff is this ODE?} and \emph{Is this
function continuous?} It may well be the case that more than one
routine is applicable to the problem. So the question may become \emph{Which
is likely to be the best?} Such a choice may be critical for
both accuracy and efficiency.
Blankline
An expert system is thus required to make this choice based on the
result of its own analysis of the problem, call the routine and act on
the outcome. This may be to put the answer in a relevant form or
react to an apparent failure of the chosen routine and thus choose and
call an alternative. It should also have sufficient explanation
mechanisms to inform on the choice of routine and the reasons for that
choice.
Blankline
\end{scroll}
\end{page}
Introduction to the Axiom/NAG Expert System

Deciding amongst, and then implementing, several possible approaches to solving a numerical problem can be daunting for a novice user, or tedious for an expert. Different attributes of the problem need to be identified and their possible interactions weighed up before a final decision about which method to use can be made.

The implementation is then largely an automatic, if laborious, process of writing, compiling and linking usually Fortran code. The aim is to build an expert system which will use computer algebra to analyse such features of a problem, inference mechanisms and a knowledge base to choose a numerical method appropriate to the solution of a given problem.

Any interactive system is constrained by the need to provide a reasonable response time for the user. Given the complexity of some of the analysis our system will need to do, it is clear that we should only aim to select a good method, rather than try to identify the best one available. The overall goal is to provide a ‘‘black-box’’ interface to numerical software which allows non-experts access to its full potential. It will also provide explanation mechanisms commensurate with its role as a teaching aid.

Given, say, an integration to perform (which may or may not be able to be handled symbolically), the system should choose and apply an appropriate method, thus mirroring as closely as possible the way that an experienced numerical analyst would think so, for example, given an integration to perform:

\begin{centerline}{\inputbitmap{htbmdir/int1.xbm}}\end{centerline}

the experienced analyst would see that the integral is semi-infinite and transform it by splitting the range and transforming the integral over $[1, \inputbitmap{htbmdir/infty.xbm}]$ into an integral over $[0,1]$ using the transformation $x \rightarrow 1/t$. A different numerical routine might be used over each sub-region and the results added to give the final answer.
It then requires
the translation of the problem into Fortran code which may be extensive.
Even with this simple example, the process is quite involved.
\begin{scroll}
\end{scroll}
\end{page}

Example using the Axiom/NAG Expert System

⇒ “notitle” (UXANNAEx2) 24.1 on page 3989
— annaex.ht —

\begin{page}{UXANNAEx}{Example using the Axiom/NAG Expert System}
\begin{scroll}
{\bf Example 1}: The integral
\centerline{\inputbitmap{htbmdir/hta1.png}}
\newline
is performed as follows:
\blankline
{\spadpaste{ans :=
integrate((exp(-X^3)+exp(-3*X^2))/sqrt(X),0.0..\%plusInfinity)
\bound{ans} }}
\blankline
It creates a composite structure for which the field containing
the result can be expanded as required.\blankline
{\spadpaste{ans . 'result\free{ans}}}
\blankline
{\spadpaste{ans . 'abserr\free{ans}}}
\end{scroll}
\end{page}
This system has performed the analysis described above, done the necessary problem transformation, written any necessary Fortran, called two different numerical routines, and amalgamated their results. This whole process was transparent to the user.
\begin{verbatim}
(3) 2.69960156338737e-08
Type: DoubleFloat
\end{verbatim}

\begin{verbatim}
(1)
[ifail: Integer, intensityFunctions: List(String),
 tol: DoubleFloat, result: Matrix(DoubleFloat),
 y: Matrix(DoubleFloat), method: Result,
 explanations: List(String), x: DoubleFloat]
Type: Result
\end{verbatim}

\begin{verbatim}
(2) 0.018315370486087 - 0.0183153704860871
0.00247869592278824 - 0.00247869592278825
0.000335497710871914 - 0.000335497710871913
Type: Matrix DoubleFloat
\end{verbatim}
\begin{patch}
\begin{paste}
\spadcommand{ans2 . 'result \free{ans2}}
\end{paste}
\end{patch}

\begin{patch}
\begin{paste}
\spadcommand{ans2 . 'y \free{ans2}}
\verbatim
(3) \[4.54002176643708e-05 \ - 4.54002176643708e-05\]
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}
\begin{paste}
\spadcommand{ans3 := optimize((X[1]+10*X[2])**2 + 5*(X[3]-X[4])**2 + (X[2]-2*X[3])**4 + 10*(X[1]-X[4])**4, [3,-1,0,1], [1,-2,\%minusInfinity,1], [3,0,\%plusInfinity,3]) \bound{ans3}}
\verbatim
(1)
[ifail: Integer, bl: Matrix(DoubleFloat),
 bu: Matrix(DoubleFloat), method: Result,
 attributes: List(String), explanations: List(String),
 x: Matrix(DoubleFloat), objf: DoubleFloat]
\end{verbatim}
\end{paste}
\end{patch}

\begin{patch}
\begin{paste}
\spadcommand{ans3 . objf \free{ans3}}
\verbatim
(2) 2.43378751212073
\end{verbatim}
\end{paste}
\end{patch}
\begin{verbatim}
(3)
[1.0 - 0.0852325900999037 0.409303588204477 1.0]
Type: Matrix DoubleFloat
\end{verbatim}

\indentrel{-3}\end{verbatim}\end{patch}

\begin{patch}{UXANNAEx3Patch4}
\begin{paste}{UXANNAEx3Full4}{UXANNAEx3Empty4}
\pastebutton{UXANNAEx3Full4}{\hidepaste}
\tab{5}\spadcommand{ans3 . attributes\free{ans3 }}
\indentrel{3}\begin{verbatim}
(4)
["The object function is non-linear",
 "There are simple bounds on the variables",
 "There are no constraint functions"]
Type: List String
\end{verbatim}
\indentrel{-3}\end{verbatim}\end{patch}

\begin{patch}{UXANNAEx3Empty4}
\begin{paste}{UXANNAEx3Empty4}{UXANNAEx3Patch4}
\pastebutton{UXANNAEx3Empty4}{\showpaste}
\tab{5}\spadcommand{ans3 . attributes\free{ans3 }}
\end{paste}\end{patch}

\begin{patch}{UXANNAAgentPatch1}
\begin{paste}{UXANNAAgentFull1}{UXANNAAgentEmpty1}
\pastebutton{UXANNAAgentFull1}{\hidepaste}
\tab{5}\spadcommand{s := singularitiesOf(tan x,[x],0..12*\%pi)$ESCONT\free{lib3 }}
\indentrel{3}\begin{verbatim}
\end{verbatim}\end{patch}
Example using the Axiom/NAG Expert System

⇒ “notitle” (UXANNAEx3) 24.1 on page 3990
— annaex.ht —

\begin{page}{UXANNAEx2}{Example using the Axiom/NAG Expert System}
\begin{scroll}
\xtc{
\bf Example 2}: The ODE
\centerline{\inputbitmap{htbmdir/ode3.xbm} with
\inputbitmap{htbmdir/y3.xbm}}
\newline
could be solved as follows:
\blankline
\spadpaste{ans2 := solves([Y[2],-1001*Y[2]-1000*Y[1]], 0.0, 10.0,
[1.0,-1.0], [2,4,6,8], 1.0e-4)\bound{ans2} }
\blankline
It creates a composite structure for which the field containing the
result can be expanded as required.
\blankline
\spadpaste{ans2 . 'result\free{ans2}}
Example using the Axiom/NAG Expert System

⇒ “notitle” (UXANNADec) 24.1 on page 3991

Example 3: The function
\begin{equation}
(X[1]+10*X[2])**2 + 5*(X[3]-X[4])**2 +
(X[2]-2*X[3])**4 + 10*(X[1]-X[4])**4
\end{equation}
with simple bounds could be minimized as follows:
\begin{verbatim}
(X[2]-2*X[3])**4 + 10*(X[1]-X[4])**4, [3,-1,0,1], [1,-2,%minusInfinity,1],
[3,0,%plusInfinity,3])\bound{ans3} }
\end{verbatim}
It creates a composite structure for which the field containing the minimum can be expanded as required.
Decision Agents

Some features are either present or absent in a problem. Examples of such binary decisions include \"is a matrix symmetric?\" and \"is a function continuous?\". However, in practice many questions are about the \"degree\" to which a problem exhibits a property: \"how much does a function oscillate?\", or \"how stiff are these differential equations?\"

We have therefore created decision agents of two types, reflecting their property --- \(\text{Binary Agents}\) are Boolean functions returning either true or false and \(\text{Intensity Functions}\) are quantitative and return a range of different values, either numerical or structured types. The framework we are developing is able to deal with both these forms of information.

In any given problem area (for example solving ordinary differential equations, optimization etc.) we have a selection of \(\text{methods}\). These might be to use a particular NAG routine, or they might involve employing a higher-level strategy such as transforming the problem
into an equivalent, but easier to solve, form.

Associated with every method we define a \emph{measure function} which assesses the suitability of that method to a particular problem. Each measure function has access to a range of symbolic \emph{agents} which can answer questions about the various properties of the problem in hand.

\begin{scroll}
\begin{falsepage}
\end{falsepage}
\end{scroll}

\begin{downlink}
Method Domains}{UXANNAMeth}
\end{downlink} \begin{downlink}
Measure Functions}{UXANNAMeas}
\end{downlink} \begin{downlink}
Computational Agents}{UXANNAgent}
\end{downlink}

\begin{falsepage}
\end{falsepage}

Inference Mechanisms

\begin{falsepage}
\end{falsepage}

⇒ “notitle” (UXANNAMeth) 24.1 on page 3993
⇒ “notitle” (UXANNAMeas) 24.1 on page 3994
⇒ “notitle” (UXANNAAgent) 24.1 on page 3995
⇒ “notitle” (UXANNAEx) 24.1 on page 3984

— annaex.ht —

\begin{falsepage}
\end{falsepage}

\begin{downlink}
Inference Mechanisms}{UXANNAInfer}
\end{downlink}

The inference machine will take the problem description as provided by the user and perform an initial analysis to verify its validity. It will consider, in turn, all of the available methods within its knowledge base which might solve that problem. In doing so it analyses the input problem to find out about any attributes that could affect the ability of the methods under consideration to perform effectively.

Some of these measures may use lazy evaluation in the sense that, if a method already assessed is believed to be a good candidate, and if evaluating the current measure will be relatively expensive, then that measure will not be evaluated unless later evidence shows that the selected method is not, in fact, a successful strategy, for example if it has failed.

\begin{falsepage}
\end{falsepage}

\begin{downlink}
Method Domains}{UXANNAMeth}
\end{downlink} \begin{downlink}
Measure Functions}{UXANNAMeas}
\end{downlink}
24.1. ANNAEX.HT

Method Domains

⇒ “notitle” (UXANNAEas) 24.1 on page 3994
⇒ “notitle” (UXANNAAgent) 24.1 on page 3995
⇒ “notitle” (UXANNAEx) 24.1 on page 3984

An Axiom \{\em domain\} has been created for each method or strategy for solving the problem. These method domains each implement two functions with a uniform (method independent) interface. \blankline
\{\bf measure:\} A function which calculates an estimate of suitability of this particular method to the problem if there is a possibility that the method under consideration is more appropriate than one already investigated.

\blankline
If it may be possible to improve on the current favourite method, the function will call computational agents to analyse the problem for specific features and calculate the measure from the results these agents return, using a variation on the Lucks/Gladwell intensity and compatibility model if conflict between attributes, as investigated by these computational agents, may be present.

\blankline
\{\bf implementation:\} A function which may be one of two distinct kinds. The first kind uses the interface to the NAG Library to call a particular routine with the required parameters. Some of the parameters may need to be calculated from the data provided before the external function call.

\blankline
The other kind will apply a ‘‘high level’’ strategy to try to solve the problem e.g. a transformation of an expression from one that is difficult to solve to one which is easier, or a splitting of the problem into several more easily solvable parts. For example, for a solution of the equation above, since the integral is semi-infinite we might wish to transform the range by, say, using the mapping \{\it y \rightarrow 1/x\} on the section \{\it 1 < x < \inputbitmap{htbmdir{/infty.xbm}}\}) and adding the result to the unmapped section \{\it 0 < x < 1\}.
Each measure function will estimate the ability of a particular method to solve a problem. It will consult whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter which would contain the best compatibility value found so far.

However, the interpretation we give to the results of some tests is not always clear-cut. If a set of tests give conflicting advice as to the appropriateness of a particular method, it becomes important to decide not only whether certain properties are present but also their degree. This gives us a basis for estimating the compatibility of each property.

We have taken for our model the system recommended by Lucks and Gladwell which uses a system of measurement of compatibility allowing for interaction and conflict between a number of attributes. All of these processes may not be required if the choice is clear-cut e.g. we have an integral to calculate which has a particular singularity structure for which one particular method has been specifically constructed. However, for more difficult cases a composite picture should be built up to calculate a true measurement.

How the compatibility functions interpret the measurements of various attributes is up to them and may vary between differing methods. It is this area that takes as its basis the judgement of Numerical Analysis 'experts' whether that be from the documentation (which may be deficient in certain respects) or from alternative sources. However, its assessment of the suitability or otherwise of a
24.1. ANNAEX.HT

A particular method is reflected in a single normalised value facilitating the direct comparison of the suitability of a number of possible methods.

\begin{scroll}
Computational Agents are those program segments which investigate the attributes of the input function or functions, such as \texttt{stiffnessAndStabilityOfODEIF} (the \texttt{IF} indicates that it is an \texttt{Intensity Function} i.e. one that returns a normalised real number or a set of normalised real numbers). They are usually functions or programs written completely in the Axiom language and implemented using computer algebra.

Some agents will be common to more than one problem domain whereas others will be specific to a single domain. They also vary greatly in their complexity. It is a fairly simple task to return details about the range of a function since this information will have been included in the problem specification. It is a different order of complexity to return details of its singularity structure.

As an example, here is a call to the computational agent \texttt{singularitiesOf} to obtain the list of singularities of the function \texttt{tan x} which are in the range \texttt{0..12*\pi}:
\begin{spadpaste}
s := singularitiesOf(tan x,[x],0..12*\%pi)$\texttt{ESCONT free{lib3}}$
\end{spadpaste}

\textbf{Computational Agents}

⇒ “notitle” (UXANNAEx) 24.1 on page 3984

— annaex.ht —
Each of these computational agents which may be called by a number of method domains retain their output in a dynamic hash-table, so speeding the process and retaining efficiency.
Chapter 25

ANNA Algebra Code

)co annacat.spad
)co cont.spad
)co d01Package.spad
)co d01agents.spad
)co d01routine.spad
)co d01transform.spad
)co d01weights.spad
)co d02Package.spad
)co d02agents.spad
)co d02routine.spad
)co d03Package.spad
)co d03agents.spad
)co d03routine.spad
)co e04Package.spad
)co e04agents.spad
)co e04routine.spad
)co functions.spad
)co routines.spad
)co tools.spad
Chapter 26

Page hierarchy layout

This is the forest of pages in hyperdoc. Any page at the leftmost margin is a root page. Notice that the roots are disconnected. The only reachable pages are those from the "RootPage" page below. All others exist but cannot be reached.

Indentation implies that a page can be reached by the less indented page.

Pages which have vertical bars or parens around them are lisp calls.

RootPage
 BasicCommand
 Calculus
 |bcDifferentiate|
 |bcIndefiniteIntegrate|
 |bcDefiniteIntegrate|
 |bcLimit|
 |bcSum|
 |bcProduct|
 |bcMatrix|
 |bcExpand|
 |bcDraw|
 |bcSeries|
 |bcSolve|
TopReferencePage
 YouTriedIt
 ugWhatsNewTwoTwoPage
 ugTwoTwoPolynomialsPage
 ugTwoTwoHyperdocPage
 ugTwoTwoNAGLinkPage
 ugTwoTwoCCLPage
FoundationLibraryDocPage
 manpageXXintro
 manpageXXc02
 manpageXXc02aff
manpageXXs17akf
manpageXXs17dcf
manpageXXs17def
manpageXXs17dgf
manpageXXs17dhf
manpageXXs17dlf
manpageXXs18acf
manpageXXs18adf
manpageXXs18aef
manpageXXs18aff
manpageXXs18dcf
manpageXXs18def
manpageXXs19aaf
manpageXXs19abf
manpageXXs19acf
manpageXXs19adf
manpageXXs20acf
manpageXXs20adf
manpageXXs21baf
manpageXXs21bbf
manpageXXs21bcf
manpageXXs21bdf
manpageXXonline
manpageXXkwic
manpageXXsummary
manpageXXconvert
TopicPage
|htTutorialSearch|
NumberPage
 IntegerPage
 IntegerXmpPage
 ugxIntegerPrimesPage
 IntNumberTheoryFnsXmpPage
 IntegerExamplePage
 IntegerExampleProofPage
 IntegerProblemPage
 IntegerProblemProofPage
 IntegerProblemAnswerPage1
 IntegerProblemAnswerPage2
FractionPage
 RationalNumberPage
 FractionXmpPage
DoubleFloatXmpPage
 ugGraphPage
 ugProblemNumericPage
 FloatXmpPage
FloatXmpPage
 ugGraphPage
 ugProblemNumericPage
DoubleFloatXmpPage
CHAPTER 26. PAGE HIERARCHY LAYOUT

HTXLinkPage6
SpadNotConnectedPage
UnknownPage
ErrorPage
ProtectedQuitPage
HTXLinkPage3
HTXLinkPage3
HTXLinkPage4
HTXLinkPage4
HTXLinkPage5
HTXLinkPage5
HTXLinkPage6
HTXLinkPage6
HTXLinkTopPage
HTXAdvTopPage
HTXAdvPage1
HTXAdvPage2
HTXAdvPage2
HTXAdvPage3
HTXAdvPage3
HTXAdvPage4
HTXAdvPage4
HTXAdvPage5
HTXAdvPage5
HTXAdvPage6
HTXAdvPage6
HTXAdvTopPage
HTXTryPage
RefSearchPage
TopicPage
Man0Page
|kSearch|
|oSearch|
|aSearch|
|aokSearch|
|docSearch|
|genSearch|
|detailedSearch|
htsearch
ugSysCmdPage
TopExamplePage
GraphicsExamplePage
AssortedGraphicsExamplePage
ThreeDimensionalGraphicsExamplePage
TwoVariableGraphicsPage
SpaceCurveGraphicsPage
ParametricTubeGraphicsPage
ParametricSurfaceGraphicsPage
ugGraphThreeDBuildPage
OneVariableGraphicsExamplePage
ugxIntegerPrimesPage
FactoredXmpPage
ComplexXmpPage
ugxIntegerNTPage
 IntNumberTheoryFnsXmpPage
IntegerLinearDependenceXmpPage
IntNumberTheoryFnsXmpPage
KernelXmpPage
 BasicOperatorXmpPage
 ExpressionXmpPage
KeyedAccessFileXmpPage
 FileXmpPage
 TextFileXmpPage
 LibraryXmpPage
LexTriangularPkgXmpPage
LazardSetSolvingPackageXmpPage
LibraryXmpPage
 FileXmpPage
 TextFileXmpPage
 KeyedAccessFileXmpPage
LieExponentialsXmpPage
LiePolynomialXmpPage
LinearOrdinaryDifferentialOperatorXmpPage
 ugxLinearOrdinaryDifferentialOperatorSeriesPage
LinearOrdinaryDifferentialOperatorOneXmpPage
 ugxLinearOrdinaryDifferentialOperatorOneRatPage
LinearODEOperatorTwoXmpPage
 ugxLinearODEOperatorTwoConstPage
 ugxLinearODEOperatorTwoMatrixPage
ListXmpPage
 ugxListCreatePage
 ugxListAccessPage
 ugxListChangePage
 ugxListOtherPage
 ugxListDotPage
LyndonWordXmpPage
MagmaXmpPage
MakeFunctionXmpPage
 ugUserMakePage
MappingPackageOneXmpPage
MatrixXmpPage
 ugxMatrixCreatePage
 ugxMatrixOpsPage
 ugIntroTwoDimPage
 ugProblemEigenPage
 ugxFloatHilbertPage
PermanentXmpPage
VectorXmpPage
OneDimensionalArrayXmpPage
TwoDimensionalArrayXmpPage
MultiSetXmpPage
MultivariatePolyXmpPage
PolynomialXmpPage
UnivariatePolyXmpPage
DistributedMultivariatePolyXmpPage
NoneXmpPage
OctonionXmpPage
QuaternionXmpPage
OneDimensionalArrayXmpPage
VectorXmpPage
FlexibleArrayXmpPage
OperatorXmpPage
OrderedVariableListXmpPage
OrderlyDifferentialPolyXmpPage
PartialFractionXmpPage
 FullPartialFracExpansionXmpPage
PermanentXmpPage
PolynomialXmpPage
 DistributedMultivariatePolyXmpPage
MultivariatePolyXmpPage
UnivariatePolyXmpPage
FactoredXmpPage
ugProblemFactorPage
QuaternionXmpPage
RadixExpansionXmpPage
HexExpansionXmpPage
DecimalExpansion
BinaryExpansion
RealClosureXmpPage
RegularTriangularSetXmpPage
RomanNumeralXmpPage
SegmentXmpPage
SegmentBindingXmpPage
SegmentXmpPage
UniversalSegmentXmpPage
SetXmpPage
 ListXmpPage
SingleIntegerXmpPage
 ugTypesDeclare
 ugTypesPkgCallPage
 ugBrowsePage
SparseTableXmpPage
TableXmpPage
 GeneralSparseTableXmpPage
SqMatrixXmpPage
 MatrixXmpPage
 ugTypesWritingModesPage
 ugTypesExposePage
SqFreeRegTriangSetXmpPage
StreamXmpPage
ZeroDimSolvePkgXmpPage
ExampleCoverPage
Menuexdiff
ExDiffBasic
ExDiffSeveralVariables
ExDiffHigherOrder
ExDiffMultipleI
ExDiffMultipleII
ExDiffFormalIntegral
Menuexint
ExIntRationalFunction
ExIntRationalWithRealParameter
ExIntRationalWithComplexParameter
ExIntTwoSimilarIntegrand
ExIntNoSolution
ExIntTrig
ExIntAlgebraicRelation
ExIntAlgebraicRelationExplain
ExIntRadicalOfTranscendental
ExIntNonElementary
Menuexlap
ExLapSimplePole
ExLapTrigTrigh
ExLapDefInt
ExLapExpExp
ExLapSpecial1
ExLapSpecial2
Menuexlimit
ExLimitBasic
ExLimitTwoSided
ExLimitOneSided
ExLimitParameter
ExLimitOneSided
ExLimitTwoSided
ExLimitInfinite
ExLimitRealComplex
ExLimitComplexInfinite
Menuexmatrix
ExMatrixBasicFunction
ExConstructMatrix
ExTraceMatrix
ExDeterminantMatrix
ExInverseMatrix
ExRankMatrix
Menuexpplot2d
ExPlot2DFunctions
ExPlot2DParametric
ExPlot2DPolar
ExPlot2DAAlgebraic
Menuexpplot3d
Asp35ExampleCode
Asp4ExampleCode
Asp41ExampleCode
Asp42ExampleCode
Asp49ExampleCode
Asp50ExampleCode
Asp55ExampleCode
Asp6ExampleCode
Asp7ExampleCode
Asp73ExampleCode
Asp74ExampleCode
Asp77ExampleCode
Asp78ExampleCode
Asp8ExampleCode
Asp80ExampleCode
Asp9ExampleCode

NoMoreHelpPage

hyperdoc
 ViewportPage
 BitMaps
 CPHelp

PrefixEval
InfixEval

helpExposé
ExposureSystem
ExposureDef
ExposureDetails

DomainMapping
 ([dbSpecialDescription|'|Mapping|])
 ([dbSpecialOperations|'|Mapping|])
MappingDescription

DomainRecord
 ([dbSpecialDescription|'|Record|])
 ([dbSpecialOperations|'|Record|])
RecordDescription

CategoryType

DomainUnion
 ([dbSpecialDescription|'|Union|])
 ([dbSpecialOperations|'|Union|])
UnionDescription
UntaggedUnion
UTUnionDescription
ugSysCmdpquitPage
ugSysCmdquitPage
ugSysCmdtracePage
ugSysCmdcompilePage
ugSysCmdbootPage
ugSysCmdlispPage
ugSysCmdltracPage
ugSysCmdundoPage
ugSysCmdhistoryPage
ugSysCmdwhatPage
ugSysCmddisplayPage
ugSysCmdsetPage
ugSysCmdshowPage
ugAppGraphicsPage

ugFimagesOnePage
ugFimagesTwoPage
ugFimagesThreePage
ugFimagesFivePage
ugFimagesSixPage
ugFimagesSevenPage
ugFimagesEightPage
ugFconformalPage
ugFknotPage
ugFtubePage
ugFimagesFivePage
ugFhtriPage
ugFtetraPage
ugFntubePage
ugFscherkPage

GraphicsPage
GraphicsExamplePage
TwoDimensionalGraphicsPage
OneVariableGraphicsPage
ParametricCurveGraphicsPage
PolarGraphicsPage
ImplicitCurveGraphicsPage
ListPointsGraphicsPage
ThreeDimensionalGraphicsPage
TwoVariableGraphicsPage
SpaceCurveGraphicsPage
ParametricTubeGraphicsPage
ParametricSurfaceGraphicsPage
ugGraphThreeDBuildPage
ViewportPage

3DObjectGraphicsPage
BROWSHELP
ugBrowseStartPage
ugBrowseDomainPage
ugBrowseMiscellaneousFeaturesPage

nagm.ht
manpageXXm01
manpageXXm01caf
manpageXXm01daf
manpageXXm01def
manpageXXm01djf
manpageXXm01eaf
manpageXXm01zaf

nagx.ht
manpageXXx01
manpageXXx02
manpageXXx04
manpageXXx04aaf
manpageXXx04abf
manpageXXx04caf
manpageXXx04daf
manpageXXx05
manpageXXx05aaf
manpageXXx05abf
manpageXXx05acf
manpageXXx05baf
Chapter 27

Makefile

__ * __

BOOK=${SPD}/books/bookvol7.1.pamphlet
WORK=${OBJ}/${SYS}/hyper/pages
IN=${SPD}/books

These files are not reachable from RootPage
IGNORE=annaex

PHT= alist array1 array2 btree binary bop bstree card carten \ cclass char clif complex contfrac coverex cycles decimal derham \ dfloat dmp eq eqtbl evalex exdiff exit exit exlap exlimit \ examatrix explot2d explot3d expr exseries exsum farray file float \ fphrase fparfrac fr2 frac fr function gbf graphics grpthry gstrbl \ heap hexadec intheory int kfile kernel laz3mpk lexp lextripk \ lib list lodo1 lodo2 lodo1 lword lma gl magma mappkg1 matrix \ mkfunc mpol mpset none numbers oct odp1 op ovar perman pf poly1 \ poly quot radix reclos regset roman segbind seg set sint smatrix \ segset tbl stream string strtbl symbol table textfile ug01 ug02 \ ug03 ug04 ug06 ug07 ug08 ug10 ug12 ug13 ug15 uniseg \ up vector void wutset xpbwpoly xpoly xpr zdsolve zlindep

PAGELIST= ${PHT} algebra aspex basic bmcat cphelp cexpose gloss \ htxadvpage1 htxadvpage2 htxadvpage3 htxadvpage4 htxadvpage5 \ htxadvpage6 htxadvtabpage htxformatpage1 htxformatpage2 \ htxformatpage3 htxformatpage4 htxformatpage5 htxformatpage6 \ htxformatpage7 htxformatpage8 htxformattoppage htxintropage1 \ htxintropage2 htxintropage3 htxintrotoppage htxlinkpage1 \ htxlinkpage2 htxlinkpage3 htxlinkpage6 htxlinkpage3 htxlinkpage6 \ htxlinkpage4 htxlinkpage5 htxlinktoppage htxtoppage htxtrypage \ hyperdoc link man0 mapping nagaux nagc nagd nage nagf nagm nags

4033
Due to the awesome programming skills of Scott Morrison the htadd program will use the
original source file in literate form to build the ht.db

The patch/paste files are now included directly in bookvol7.1 Add new patch/paste files is
a manual process when editing the book.
for i in `find . -name "*.Z"` ; do gunzip $$i ; done

Index

3DObjectGraphicsPage
 graphics.ht
 pages, 638

algebra.ht
 pages
 AlgebraPage, 131
 NumberTheoryPage, 132

AlgebraicFunctionPage
 function.ht
 pages, 564

AlgebraPage
 algebra.ht
 pages, 131

alist.ht
 pages
 AssociationListXmpPage, 132

annaex.ht
 pages
 UXANNA, 3973
 UXANNAAgent, 3995
 UXANNADec, 3991
 UXANNAEx, 3984
 UXANNAEx2, 3989
 UXANNAEx3, 3990
 UXANNAInfer, 3992
 UXANNAIntEx, 3979
 UXANNAIntro, 3983
 UXANNAMeas, 3994
 UXANNA Meth, 3993
 UXANNA Ode, 3975
 UXANNAOdeEx, 3981
 UXANNAOpt, 3975
 UXANNAOpt2Ex, 3978
 UXANNAOptEx, 3977
 UXANNA Pde, 3976
 UXANNA Txt, 3982

annex.ht
 pages
 UXANNAInt, 3974

array1.ht
 pages
 OneDimensionalArrayXmpPage, 138

array2.ht
 pages
 TwoDimensionalArrayXmpPage, 143

Asp10ExampleCode
 aspex.ht
 pages, 3949

Asp12ExampleCode
 aspex.ht
 pages, 3950

Asp19ExampleCode
 aspex.ht
 pages, 3950

Asp1ExampleCode
 aspex.ht
 pages, 3949

Asp20ExampleCode
 aspex.ht
 pages, 3953

Asp24ExampleCode
 aspex.ht
 pages, 3953

Asp27ExampleCode
 aspex.ht
 pages, 3954

Asp28ExampleCode
 aspex.ht
 pages, 3954

Asp29ExampleCode
 aspex.ht
 pages, 3957

Asp30ExampleCode

4036
INDEX

AssociationListXmpPage
alist.ht
 pages, 132
AssortedGraphicsExamplePage
 graphics.ht
 pages, 603
aug2014
 releases.html
 pages, 4
BalancedBinaryTreeXmpPage
 btree.ht
 pages, 157
basic.ht
 pages
 BasicCommand, 155
 Calculus, 156
BasicCommand
 basic.ht
 pages, 155
BasicOperatorXmpPage
 bop.ht
 pages, 169
bbtree.ht
 pages
 BalancedBinaryTreeXmpPage, 157
 bcDefiniteIntegral Function, 157
 bcDifferentiate Function, 157
 bcDraw Function, 155
 bcExpand Function, 155
 bcIndefiniteIntegral Function, 157
 bcLimit Function, 157
 bcMatrix Function, 155
 bcProduct Function, 157
 bcSeries Function, 155
 bcSolve Function, 155
 bcSum Function, 157
binary.ht
 pages
 BinaryExpansionXmpPage, 163
BinaryExpansionXmpPage
 binary.ht
 pages, 163
BinarySearchTreeXmpPage
 bintree.ht
 pages
 BitMaps
 bmcat.ht
 pages, 168
 bmcat.ht
 pages
 BitMaps, 168
 bop.html
 pages
 BasicOperatorXmpPage, 169
BROWSEhelp
 man0.html
 pages, 963
 btree.html
 BinarySearchTreeXmpPage, 178
c02
 link.html
 pages, 847
c05
 link.html
 pages, 847
c06
 link.html
 pages, 847
Calculus
 basic.html
 pages, 156
CalculusPage
 topics.html
 pages, 1318
card.html
 pages
 CardinalNumberXmpPage, 185
 card.html
 pages, 185
carten.html
 pages
 CartesianTensorXmpPage, 195
 carten.html
 pages, 195
CategoryType
type.html
INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1319</td>
<td>cclass.ht CharacterClassXmpPage, 221</td>
</tr>
<tr>
<td>228</td>
<td>char.ht CharacterXmpPage, 228</td>
</tr>
<tr>
<td>221</td>
<td>CharacterClassXmpPage cclass.ht pages</td>
</tr>
<tr>
<td>228</td>
<td>CharacterXmpPage char.ht pages, 228</td>
</tr>
<tr>
<td>234</td>
<td>clif.ht CliffordAlgebraXmpPage, 234</td>
</tr>
<tr>
<td>254</td>
<td>complex.ht ComplexXmpPage, 254</td>
</tr>
<tr>
<td>221</td>
<td>CycleIndicatorsXmpPage cycles.ht pages, 279</td>
</tr>
<tr>
<td>279</td>
<td>CPHelp cphelp.ht pages</td>
</tr>
<tr>
<td>279</td>
<td>CPHelp CycleIndicatorsXmpPage pages, 279</td>
</tr>
<tr>
<td>279</td>
<td>CPHelp CycleIndicatorsXmpPage cycles.ht pages</td>
</tr>
<tr>
<td>849</td>
<td>d01 link.ht pages</td>
</tr>
<tr>
<td>851</td>
<td>d02 link.ht pages</td>
</tr>
<tr>
<td>852</td>
<td>d03 link.ht pages</td>
</tr>
<tr>
<td>348</td>
<td>decimal.ht DecimalExpansionXmpPage, 348</td>
</tr>
<tr>
<td>348</td>
<td>DecimalExpansionXmpPage decimal.ht pages, 348</td>
</tr>
<tr>
<td>352</td>
<td>derham.ht DeRhamComplexXmpPage, 352</td>
</tr>
<tr>
<td>352</td>
<td>DeRhamComplexXmpPage derham.ht pages, 352</td>
</tr>
<tr>
<td>369</td>
<td>dfloat.ht pages</td>
</tr>
<tr>
<td>375</td>
<td>DistributedMultivariatePolyXmpPage, 375</td>
</tr>
<tr>
<td>375</td>
<td>DistributedMultivariatePolyXmpPage, 375</td>
</tr>
<tr>
<td>4039</td>
<td>DomainMapping</td>
</tr>
<tr>
<td>Document Title</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>mapping.html</td>
<td>964</td>
</tr>
<tr>
<td>DomainRecord</td>
<td>1182</td>
</tr>
<tr>
<td>DomainUnion</td>
<td>1319</td>
</tr>
<tr>
<td>DoubleFloatXmpPage</td>
<td>369</td>
</tr>
<tr>
<td>e01 link.html</td>
<td>853</td>
</tr>
<tr>
<td>e02 link.html</td>
<td>854</td>
</tr>
<tr>
<td>e04 link.html</td>
<td>856</td>
</tr>
<tr>
<td>ElementaryFunctionPage</td>
<td>567</td>
</tr>
<tr>
<td>exht</td>
<td></td>
</tr>
<tr>
<td>EquationXmpPage</td>
<td>380</td>
</tr>
<tr>
<td>EqTableXmpPage</td>
<td>386</td>
</tr>
<tr>
<td>ExConstructMatrix</td>
<td>429</td>
</tr>
<tr>
<td>ExDeterminantMatrix</td>
<td>433</td>
</tr>
<tr>
<td>ExDiffBasic</td>
<td>391</td>
</tr>
<tr>
<td>ExDiffBasic, ExDiffFormalIntegral, ExDiffHigherOrder, ExDiffMultipleI, ExDiffMultipleII, ExDiffSeveralVariables</td>
<td>392</td>
</tr>
<tr>
<td>ExDiffBasic</td>
<td>391</td>
</tr>
<tr>
<td>ExDiffFormalIntegral</td>
<td>396</td>
</tr>
<tr>
<td>ExDiffHigherOrder</td>
<td>393</td>
</tr>
<tr>
<td>ExDiffMultipleI</td>
<td>394</td>
</tr>
<tr>
<td>ExDiffMultipleII</td>
<td>396</td>
</tr>
<tr>
<td>ExDiffSeveralVariables</td>
<td>392</td>
</tr>
<tr>
<td>ExIntAlgebraicRelation</td>
<td>414</td>
</tr>
<tr>
<td>ExIntAlgebraicRelationExplain</td>
<td>415</td>
</tr>
<tr>
<td>ExIntNonElementary</td>
<td>417</td>
</tr>
<tr>
<td>ExIntNoSolution</td>
<td>412</td>
</tr>
<tr>
<td>ExIntRadicalOfTranscendental</td>
<td>416</td>
</tr>
<tr>
<td>ExIntRationalFunction</td>
<td>406</td>
</tr>
</tbody>
</table>
exlimit.ht
pages, 418
ExLimitRealComplex
exlimit.ht
pages, 423
ExLimitTwoSided
exlimit.ht
pages, 420
exmatrix.ht
pages
ExConstructMatrix, 429
ExDeterminantMatrix, 433
ExInverseMatrix, 434
ExMatrixBasicFunction, 426
ExRankMatrix, 435
ExTraceMatrix, 433
ExMatrixBasicFunction
exmatrix.ht
pages, 426
explo2d.ht
pages
ExPlot2DAlgberaic, 451
ExPlot2DFunctions, 449
ExPlot2DParametric, 449
ExPlot2DPolar, 450
ExPlot2DAlgberaic
explo2d.ht
pages, 451
ExPlot2DFunctions
explo2d.ht
pages, 449
ExPlot2DParametric
explo2d.ht
pages, 449
ExPlot2DPolar
explo2d.ht
pages, 450
explo3d.ht
pages
ExPlot3DFunctions, 451
ExPlot3DParametricCurve, 453
ExPlot3DParametricSurface, 452
ExPlot3DFunctions
explo3d.ht
pages, 451
ExPlot3DParametricCurve
explo3d.ht
pages, 453
ExPlot3DParametricSurface
explo3d.ht
pages, 452
expose.ht
pages
ExposureDef, 456
ExposureDetails, 457
ExposureSystem, 455
helpExpose, 454
ExposureDef
expose.ht
pages, 456
ExposureDetails
expose.ht
pages, 457
ExposureSystem
expose.ht
pages, 455
expr.ht
pages
ExpressionXmpPage, 436
ExposureDef
expr.ht
pages, 436
ExRankMatrix
exmatrix.ht
pages, 435
exseries.ht
pages
ExSeriesConvert, 457
ExSeriesFunctions, 461
ExSeriesManipulate, 459
ExSeriesSubstitution, 462
ExSeriesConvert
exseries.ht
pages, 457
ExSeriesFunctions
exseries.ht
pages, 461
ExSeriesManipulate
exseries.ht
pages, 459
ExSeriesSubstitution
exseries.ht
INDEX

ExSumApproximateE
exsum.ht
pages, 466

ExSumClosedForm
exsum.ht
pages, 467

ExSumCubes
exsum.ht
pages, 468

ExSumGeneralFunction
exsum.ht
pages, 471

ExSumInfinite
exsum.ht
pages, 472

ExSumListEntriesI
exsum.ht
pages, 464

ExSumListEntriesII
exsum.ht
pages, 465

ExSumPolynomial
exsum.ht
pages, 470

ExTraceMatrix
exmatrix.ht
pages, 433

f01
link.ht
pages, 857

f02
link.ht
pages, 858

f04

f07
link.ht
pages, 860

FactoredFnsTwoXmpPage
fr2.ht
pages, 539

FactoredXmpPage
fr.ht
pages, 516

farray.ht
pages
FlexibleArrayXmpPage, 472

feb2005
releasenotes.ht
pages, 101

file.ht
pages
FlexibleArrayXmpPage, 480

FileNameXmpPage
fname.ht
pages, 507

files
util.ht, 103

FileXmpPage
file.ht
pages, 480

FlexibleArrayXmpPage
farray.ht
pages, 472

float.ht
pages
FloatXmpPage, 487
ugxFloatConvertPage, 490
ugxFloatHilbertPage, 502
ugxFloatIntroPage, 488
ugxFloatOutputPage, 498

FloatXmpPage
float.ht
pages, 487

fname.ht
pages
FileNameXmpPage, 507

FoundationLibraryDocPage
rootpage.ht
HTXAdvPage6
 htxadvpage6.ht
 pages, 2626
htxadvpage6.ht
 pages
 HTXAdvPage6, 2626
 patch
 HTXAdvPage6xPatch1, 2628
 HTXAdvPage6xPatch1A, 2628
 HTXAdvPage6xPatch2, 2628
 HTXAdvPage6xPatch2A, 2629
 HTXAdvPage6xPatch3, 2629
 HTXAdvPage6xPatch3A, 2629
HTXAdvPage6xPatch1
 htxadvpage6.ht
 patch, 2628
HTXAdvPage6xPatch1A
 htxadvpage6.ht
 patch, 2628
HTXAdvPage6xPatch2
 htxadvpage6.ht
 patch, 2628
HTXAdvPage6xPatch2A
 htxadvpage6.ht
 patch, 2629
HTXAdvPage6xPatch3
 htxadvpage6.ht
 patch, 2629
HTXAdvPage6xPatch3A
 htxadvpage6.ht
 patch, 2629
HTXAdvTopPage
 htxtadvtoppage.ht
 pages, 2630
htxtadvtoppage.ht
 pages
 HTXAdvTopPage, 2630
HTXFormatPage1
 htxformatpage1.ht
 pages, 2631
htxformatpage1.ht
 pages
 HTXFormatPage1, 2631
 patch
 HTXFormatPage1xPatch1, 2632
 HTXFormatPage1xPatch2, 2632
HTXFormatPage1xPatch1
 htxformatpage1.ht
 patch, 2632
HTXFormatPage1xPatch2
 htxformatpage1.ht
 patch, 2632
HTXFormatPage2
 htxformatpage2.ht
 pages, 2633
htxformatpage2.ht
 pages
 HTXFormatPage2, 2633
 patch
 HTXFormatPage2xPatch1, 2634
 HTXFormatPage2xPatch2, 2635
 HTXFormatPage2xPatch2A, 2635
 HTXFormatPage2xPatch3, 2636
 HTXFormatPage2xPatch3A, 2636
 HTXFormatPage2xPatch4, 2637
 HTXFormatPage2xPatch4A, 2637
HTXFormatPage2xPatch1
 htxformatpage2.ht
 patch, 2634
HTXFormatPage2xPatch2
 htxformatpage2.ht
 patch, 2634
HTXFormatPage2xPatch2A
 htxformatpage2.ht
 patch, 2635
HTXFormatPage2xPatch3
 htxformatpage2.ht
 patch, 2636
HTXFormatPage2xPatch3A
 htxformatpage2.ht
 patch, 2636
HTXFormatPage2xPatch4
 htxformatpage2.ht
 patch, 2637
HTXFormatPage2xPatch4A
 htxformatpage2.ht
 patch, 2637
HTXFormatPage3
 htxformatpage3.ht
 pages, 2637
htxformatpage3.ht
 pages
INDEX

htxformatpage6.ht

pages, 2653

HTXFormatPage6, 2653

patch

HTXFormatPage6xPatch1, 2654
HTXFormatPage6xPatch2, 2655

HTXFormatPage6xPatch1

htxformatpage6.ht

patch, 2654

HTXFormatPage6xPatch2

htxformatpage6.ht

patch, 2655

HTXFormatPage7

htxformatpage7.ht

pages, 2655

htxformatpage7.ht

pages

HTXFormatPage7, 2655

patch

HTXFormatPage7xPatch1, 2657
HTXFormatPage7xPatch2, 2658
HTXFormatPage7xPatch2A, 2658
HTXFormatPage7xPatch3, 2658
HTXFormatPage7xPatch3A, 2659

HTXFormatPage7xPatch1

htxformatpage7.ht

patch, 2657

HTXFormatPage7xPatch2

htxformatpage7.ht

patch, 2658

HTXFormatPage7xPatch2A

htxformatpage7.ht

patch, 2658

HTXFormatPage7xPatch3

htxformatpage7.ht

patch, 2658

HTXFormatPage7xPatch3A

htxformatpage7.ht

patch, 2659

HTXFormatPage8

htxformatpage8.ht

pages, 2660

htxformatpage8.ht

pages

HTXFormatPage8, 2660

patch

HTXFormatPage8xPatch1, 2661
HTXFormatPage8xPatch2, 2662
HTXFormatPage8xPatch2A, 2662

HTXFormatPage8xPatch1

htxformatpage8.ht

patch, 2661

HTXFormatPage8xPatch2

htxformatpage8.ht

patch, 2662

HTXFormatPage8xPatch2A

htxformatpage8.ht

patch, 2662

HTXFormatTopPage

htxformattoppage.ht

pages, 2662

htxformattoppage.ht

pages

HTXFormatTopPage, 2662

HTXIntroPage1

htxintropage1.ht

pages, 2663

htxintropage1.ht

pages

HTXIntroPage1, 2663

HTXIntroPage2

htxintropage2.ht

pages, 2664

htxintropage2.ht

pages

HTXIntroPage2, 2664

HTXIntroPage3

htxintropage3.ht

pages, 2666

htxintropage3.ht

pages

HTXIntroPage3, 2666

HTXIntroTopPage

htxintrotoppage.ht

pages, 2668

htxintrotoppage.ht

pages

HTXIntroTopPage, 2668

htxl

link.ht

pages, 844
<table>
<thead>
<tr>
<th>INDEX</th>
<th>4049</th>
</tr>
</thead>
</table>

HTXLinkPage1	htxlinkpage1.ht	pages, 2669
HTXLinkPage1xPatch1	htxlinkpage1.ht	patch, 2671
HTXLinkPage1xPatch1A	htxlinkpage1.ht	patch, 2671
HTXLinkPage2	htxlinkpage2.ht	pages, 2672
HTXLinkPage2xPatch1	htxlinkpage2.ht	patch, 2674
HTXLinkPage2xPatch1A	htxlinkpage2.ht	patch, 2674
HTXLinkPage3	htxlinkpage3.ht	pages, 2675
HTXLinkPage3xPatch1	htxlinkpage3.ht	patch, 2678
HTXLinkPage3xPatch1A	htxlinkpage3.ht	patch, 2679
HTXLinkPage3xPatch1B	htxlinkpage3.ht	patch, 2679
HTXLinkPage3xPatch1C	htxlinkpage3.ht	patch, 2679
HTXLinkPage3xPatch2	htxlinkpage3.ht	patch, 2679
HTXLinkPage3xPatch3	htxlinkpage3.ht	patch, 2680
HTXLinkPage3xPatch3A	htxlinkpage3.ht	patch, 2680
HTXLinkPage4	htxlinkpage4.ht	pages, 2681
HTXLinkPage4xPatch1	htxlinkpage4.ht	patch, 2685
HTXLinkPage4xPatch1A	htxlinkpage4.ht	patch, 2686
HTXLinkPage4xPatch2	htxlinkpage4.ht	patch, 2686
HTXLinkPage4xPatch3	htxlinkpage4.ht	patch, 2687
HTXLinkPage4xPatch3A	htxlinkpage4.ht	patch, 2687
HTXLinkPage4xPatch4	htxlinkpage4.ht	patch, 2688
HTXLinkPage4xPatch4A	htxlinkpage4.ht	patch, 2688
HTXLinkPage4xPatch5	htxlinkpage4.ht	patch, 2689
HTXLinkPage4xPatch5A	htxlinkpage4.ht	patch, 2689
htxlinkpage4.ht
patch, 2686
HTXLinkPage4xPatch3
htxlinkpage4.ht
patch, 2687
HTXLinkPage4xPatch3A
htxlinkpage4.ht
patch, 2687
HTXLinkPage4xPatch4
htxlinkpage4.ht
patch, 2688
HTXLinkPage4xPatch4A
htxlinkpage4.ht
patch, 2688
HTXLinkPage5
htxlinkpage5.ht
pages, 2690
htxlinkpage5.ht
pages
HTXLinkPage5, 2690
patch
HTXLinkPage5xPatch1, 2691
HTXLinkPage5xPatch1A, 2692
HTXLinkPage5xPatch2, 2692
HTXLinkPage5xPatch2A, 2692
HTXLinkPage5xPatch1
htxlinkpage5.ht
patch, 2691
HTXLinkPage5xPatch1A
htxlinkpage5.ht
patch, 2692
HTXLinkPage5xPatch2
htxlinkpage5.ht
patch, 2692
HTXLinkPage5xPatch2A
htxlinkpage5.ht
patch, 2692
HTXLinkPage6
htxlinkpage6.ht
pages, 2693
htxlinkpage6.ht
pages
HTXLinkPage6, 2693
patch
HTXLinkPage6xPatch1, 2695
HTXLinkPage6xPatch1A, 2697
HTXLinkPage6xPatch2, 2697
HTXLinkPage6xPatch2A, 2698
HTXLinkPage6xPatch1
htxlinkpage6.ht
patch, 2695
HTXLinkPage6xPatch1A
htxlinkpage6.ht
patch, 2697
HTXLinkPage6xPatch2
htxlinkpage6.ht
patch, 2697
HTXLinkPage6xPatch2A
htxlinkpage6.ht
patch, 2698
HTXLinkTopPage
htxlinktoppage.ht
pages, 2698
htxlinktoppage.ht
pages
HTXLinkTopPage, 2698
HTXTopPage
htxtoppage.ht
pages, 2699
htxtoppage.ht
pages
HTXTopPage, 2699
HTXTryPage
htxtrypage.ht
pages, 2700
htxtrypage.ht
pages
HTXTryPage, 2700
Hyperdoc
hyperdoc.ht
pages, 2611
hyperdoc.ht
pages
Hyperdoc, 2611
images
INDEX

algebrapage, 131
aug2014, 4
basiccommand, 155
BinaryExpansionXmpPage, 163
calculus, 156
calculuspage, 1318
CardinalNumberXmpPage, 185
ComplexXmpPage, 254
ContinuedFractionXmpPage, 262
DecimalExpansionXmpPage, 348
DoubleFloatXmpPage, 369
equationpage, 1315
examplesexposedpage, 1369
FactoredFnsTwoXmpPage, 539
FactoredXmpPage, 516
feb2005, 101
FloatXmpPage, 487
foundationlibrarydocpage, 125
FractionPage, 1023
functionpage, 560
glossary, 579
graphicspage, 601
HexExpansionXmpPage, 692
htxtoppage, 2699
IntegerExamplePage, 1034
IntegerPage, 1029
IntegerProblemPage, 1037
IntegerXmpPage, 696
IntNumberTheoryFnsXmpPage, 722
jan2009, 73
jan2010, 52
jan2011, 34
jan2012, 19
january2008, 91
july2008, 83
july2009, 60
july2010, 42
july2011, 27
linalgpage, 1316
man0page, 962
mar2009, 68
mar2010, 49
mar2011, 32
mar2012, 17
march2008, 88
may2008, 87
may2009, 62
may2010, 45
may2011, 29
may2012, 14
nov2008, 78
nov2009, 55
nov2010, 36
nov2011, 22
november2007, 97
numberpage, 1021
OctonionXmpPage, 1044
onlineinformation, 3
PartialFractionXmpPage, 1088
polynomialpage, 1095
QuaternionXmpPage, 1134
RadixExpansionXmpPage, 1140
reftoppage, 951
releasenotes, 1
RomanNumeralXmpPage, 1213
rootpage, 117
rootpagelogo, 119
sept2008, 80
sept2009, 58
sept2010, 39
sept2011, 25
SingleIntegerXmpPage, 1237
topexamplepage, 121
topics, 1313
topreferencepage, 123
topsettingspage, 120
ugAvailCLEFPage, 1487
ugIntroNumbersPage, 1513
ugProblemFinitePage, 2235
ugProblemGaloisPage, 2306
ugProblemNumericPage, 2079
ugsysscmddpage, 2538
ugTypesBasicDomainConsPage, 1619
ugTypesBasicPage, 1614
ugTypesConvertPage, 1671
ugxFactoredArithPage, 525
ugxFactoredDecompPage, 518
ugxFactoredExpandPage, 523
ugxFactoredNewPage, 532
ugxFactoredVarPage, 536
ugxIntegerBasicPage, 698
ugxIntegerNTPage, 716
ugxIntegerPrimesPage, 712
usersguidepage, 1470
youtriedit, 1018
ImplicitCurveGraphicsExamplePage
graphics.ht
pages, 616
ImplicitCurveGraphicsPage
graphics.ht
pages, 650
InfixEval
evalex.ht
pages, 390
InfoGroupTheoryPage
grpthry.ht
pages, 685
InfoRepTheoryPage
grpthry.ht
pages, 684
int.ht
pages
IntegerXmpPage, 696
ugxIntegerBasicPage, 698
ugxIntegerNTPage, 716
ugxIntegerPrimesPage, 712
IntegerExamplePage
numbers.ht
pages, 1034
IntegerExampleProofPage
numbers.ht
pages, 1036
IntegerLinearDependenceXmpPage
zlindep.ht
pages, 1463
IntegerPage
numbers.ht
pages, 1029
IntegerProblemAnswerPage1
numbers.ht
pages, 1038
IntegerProblemAnswerPage2
numbers.ht
pages, 1042
IntegerProblemPage
numbers.ht
pages, 1037
IntegerProblemProofPage
numbers.ht
pages, 1038

IntegerXmpPage
int.ht
pages, 696
inttheory.ht
pages
IntNumberTheoryFnsXmpPage, 722
IntNumberTheoryFnsXmpPage
inttheory.ht
pages, 722

jan2009
releasenotes.ht
pages, 73
jan2010
releasenotes.ht
pages, 52
jan2011
releasenotes.ht
pages, 34
jan2012
releasenotes.ht
pages, 19
january2008
releasenotes.ht
pages, 91
july2008
releasenotes.ht
pages, 83
july2009
releasenotes.ht
pages, 60
july2010
releasenotes.ht
pages, 42
july2011
releasenotes.ht
pages, 27
kfile.ht
pages
KeyedAccessFileXmpPage, 734
kernel.ht
pages
KernelXmpPage, 743
<table>
<thead>
<tr>
<th>Module/Package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>KernelXmpPage</td>
<td>743</td>
</tr>
<tr>
<td>KeyedAccessFileXmpPage</td>
<td>734</td>
</tr>
<tr>
<td>LazardSetSolvingPackageXmpPage</td>
<td>752</td>
</tr>
<tr>
<td>LieExponentialsXmpPage</td>
<td>778</td>
</tr>
<tr>
<td>LexTriangularPkgXmpPage</td>
<td>784</td>
</tr>
<tr>
<td>LiePolynomialXmpPage</td>
<td>919</td>
</tr>
<tr>
<td>LinAlgPage</td>
<td>1316</td>
</tr>
<tr>
<td>LinearODEOperatorTwoXmpPage</td>
<td>905</td>
</tr>
<tr>
<td>LinearOrdinaryDifferentialOperatorOneXmpPage</td>
<td>866</td>
</tr>
<tr>
<td>LinearOrdinaryDifferentialOperatorXmpPage</td>
<td>884</td>
</tr>
</tbody>
</table>

link.ht

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>c02</td>
</tr>
<tr>
<td>c05</td>
</tr>
<tr>
<td>c06</td>
</tr>
<tr>
<td>c07</td>
</tr>
<tr>
<td>d01</td>
</tr>
<tr>
<td>d02</td>
</tr>
<tr>
<td>d03</td>
</tr>
<tr>
<td>e01</td>
</tr>
<tr>
<td>e02</td>
</tr>
<tr>
<td>f01</td>
</tr>
<tr>
<td>f02</td>
</tr>
<tr>
<td>f04</td>
</tr>
<tr>
<td>f07</td>
</tr>
<tr>
<td>htxtl</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>LispFunctions</td>
</tr>
<tr>
<td>ListXmpPage</td>
</tr>
<tr>
<td>ListPointsGraphicsExamplePage</td>
</tr>
<tr>
<td>ListPointsGraphicsPage</td>
</tr>
<tr>
<td>ListXmpPage</td>
</tr>
<tr>
<td>ListXmpPage</td>
</tr>
<tr>
<td>ListXmpPage</td>
</tr>
<tr>
<td>LinearOrdinaryDifferentialOperatorXmpPage</td>
</tr>
</tbody>
</table>
ugxLinearOrdinaryDifferentialOperatorSeries nagc.ht
Page, 884 pages, 2849
lodo1.ht
LinearOrdinaryDifferentialOperatorOneXmp Page, 894
ugxLinearOrdinaryDifferentialOperatorOneRatPage, 895
lodo2.ht
LinearODEOperatorTwoXmpPage, 905
ugxLinearODEOperatorTwoConstPage, manpageXXc05nbf
ugxLinearODEOperatorTwoMatrixPage, 911
lpoly.ht
LiePolynomialXmpPage, 919
lword.ht
LyndonWordXmpPage, 932
lword.ht
LyndonWordXmpPage, 932
magma.ht
MagmaXmpPage, 942
magma.ht
pages, 942
MakeFunctionXmpPage
mkfunc.ht
pages, 1006
man0.ht
BROWSEhelp, 963
Man0Page, 962
RefSearchPage, 951
Man0Page
man0.ht
pages, 962
manpageXXc02 nagc.ht
pages, 2845
manpageXXc02aff
nagd.ht
pages, 3132

manpageXXe01
nage.ht
pages, 3142

manpageXXe01baf
nage.ht
pages, 3147

manpageXXe01bef
nage.ht
pages, 3152

manpageXXe01bff
nage.ht
pages, 3155

manpageXXe01bgf
nage.ht
pages, 3158

manpageXXe01bhf
nage.ht
pages, 3161

manpageXXe01daf
nage.ht
pages, 3163

manpageXXe01saf
nage.ht
pages, 3170

manpageXXe01sbf
nage.ht
pages, 3173

manpageXXe01sef
nage.ht
pages, 3176

manpageXXe01sff
nage.ht
pages, 3182

manpageXXe02
nage.ht
pages, 3185

manpageXXe02adf
nage.ht
pages, 3210

manpageXXe02aef
nage.ht
pages, 3216

manpageXXe02agf
nage.ht
pages, 3220

manpageXXe02ahf
nage.ht
pages, 3228

manpageXXe02ajf
nage.ht
pages, 3233

manpageXXe02akf
nage.ht
pages, 3238

manpageXXe02baf
nage.ht
pages, 3243

manpageXXe02bbf
nage.ht
pages, 3250

manpageXXe02bcf
nage.ht
pages, 3254

manpageXXe02bdf
nage.ht
pages, 3259

manpageXXe02bef
nage.ht
pages, 3263

manpageXXe02daf
nage.ht
pages, 3272

manpageXXe02dcf
nage.ht
pages, 3281

manpageXXe02ddf
nage.ht
pages, 3292

manpageXXe02def
nage.ht
pages, 3304

manpageXXe02dff
nage.ht
pages, 3308

manpageXXe02gaf
nage.ht
pages, 3312

manpageXXe02zaf
nage.ht
pages, 3318
INDEX

manpageXXe04
 nage.ht
 pages, 3322
manpageXXe04dgf
 nage.ht
 pages, 3347
manpageXXe04djf
 nage.ht
 pages, 3362
manpageXXe04dkf
 nage.ht
 pages, 3365
manpageXXe04fdf
 nage.ht
 pages, 3367
manpageXXe04gcf
 nage.ht
 pages, 3373
manpageXXe04jaf
 nage.ht
 pages, 3380
manpageXXe04mbf
 nage.ht
 pages, 3386
manpageXXe04maf
 nage.ht
 pages, 3395
manpageXXe04ucf
 nage.ht
 pages, 3415
manpageXXe04udf
 nage.ht
 pages, 3466
manpageXXe04uef
 nage.ht
 pages, 3469
manpageXXe04ycf
 nage.ht
 pages, 3472
manpageXXf
 nage.ht
 pages, 3478
manpageXXf01
 nage.ht
 pages, 3482
manpageXXf01brf
 nage.ht
 pages, 3485
manpageXXf01bsf
 nage.ht
 pages, 3495
manpageXXf01maf
 nage.ht
 pages, 3501
manpageXXf01mcf
 nage.ht
 pages, 3508
manpageXXf01qcf
 nage.ht
 pages, 3513
manpageXXf01qdf
 nage.ht
 pages, 3518
manpageXXf01qef
 nage.ht
 pages, 3523
manpageXXf01rcf
 nage.ht
 pages, 3527
manpageXXf01rdf
 nage.ht
 pages, 3532
manpageXXf01ref
 nage.ht
 pages, 3538
manpageXXf02
 nage.ht
 pages, 3543
manpageXXf02aaf
 nage.ht
 pages, 3549
manpageXXf02abf
 nage.ht
 pages, 3551
manpageXXf02adf
 nage.ht
 pages, 3554
manpageXXf02aef
 nage.ht
 pages, 3557
manpageXXf02aff
 nage.ht
INDEX

nagm.ht
pages, 3737
manpageXXm01daf
nagm.ht
pages, 3740
manpageXXm01def
nagm.ht
pages, 3742
manpageXXm01df
nagm.ht
pages, 3745
manpageXXm01eaf
nagm.ht
pages, 3748
manpageXXm01zaf
nagm.ht
pages, 3751
manpageXXonline
nagaux.ht
pages, 2703
manpageXXs
nags.ht
pages, 3754
manpageXXs01eaf
nags.ht
pages, 3767
manpageXXs13aaf
nags.ht
pages, 3770
manpageXXs13acf
nags.ht
pages, 3773
manpageXXs13adf
nags.ht
pages, 3776
manpageXXs14aaf
nags.ht
pages, 3779
manpageXXs14abf
nags.ht
pages, 3782
manpageXXs14baf
nags.ht
pages, 3786
manpageXXs15adf
nags.ht
pages, 3789
manpageXXs15aef
nags.ht
pages, 3793
manpageXXs17acf
nags.ht
pages, 3795
manpageXXs17adf
nags.ht
pages, 3799
manpageXXs17aef
nags.ht
pages, 3804
manpageXXs17aff
nags.ht
pages, 3807
manpageXXs17agf
nags.ht
pages, 3811
manpageXXs17ahf
nags.ht
pages, 3816
manpageXXs17ajf
nags.ht
pages, 3820
manpageXXs17akf
nags.ht
pages, 3824
manpageXXs17def
nags.ht
pages, 3828
manpageXXs17def
nags.ht
pages, 3833
manpageXXs17dgf
nags.ht
pages, 3838
manpageXXs17dlf
nags.ht
pages, 3842
manpageXXs17dlf
nags.ht
pages, 3846
manpageXXs18acf
nags.ht
pages, 3852
manpageXXs18adf
nags.ht
pages, 3855
manpageXXs18aef
nags.ht
pages, 3859
manpageXXs18aff
nags.ht
pages, 3863
manpageXXs18dcf
nags.ht
pages, 3866
manpageXXs18def
nags.ht
pages, 3871
manpageXXs19aaf
nags.ht
pages, 3875
manpageXXs19abf
nags.ht
pages, 3879
manpageXXs19acf
nags.ht
pages, 3882
manpageXXs19adf
nags.ht
pages, 3886
manpageXXs20acf
nags.ht
pages, 3890
manpageXXs20adf
nags.ht
pages, 3894
manpageXXs21baf
nags.ht
pages, 3898
manpageXXs21bbf
nags.ht
pages, 3902
manpageXXs21bcf
nags.ht
pages, 3906
manpageXXs21bdf
nags.ht
pages, 3911
manpageXXs18adfs18
manpageXXs18aefs18
manpageXXs18affs18
manpageXXs18dcfs18
manpageXXs18dfes18
manpageXXs19aafs19
manpageXXs19abfs19
manpageXXs19acfs19
manpageXXs19adfs19
manpageXXs20acfs20
manpageXXs20adfs20
manpageXXs21bafs21
manpageXXs21bbfs21
manpageXXs21bcfs21
nags.ht
pages, 3855
nags.ht
pages, 3859
nags.ht
pages, 3863
nags.ht
pages, 3866
nags.ht
pages, 3871
nags.ht
pages, 3875
nags.ht
pages, 3879
nags.ht
pages, 3882
nags.ht
pages, 3886
nags.ht
pages, 3890
nags.ht
pages, 3894
nags.ht
pages, 3898
nags.ht
pages, 3902
nags.ht
pages, 3906
nags.ht
pages, 3911
nagaux.ht
pages, 2705
manpageXXXx01
nagx.ht
pages, 3916
manpageXXXx02
nagx.ht
pages, 3917
manpageXXXx04
nagx.ht
pages, 3924
manpageXXXx04aaf
nagx.ht
pages, 3926
manpageXXXx04abf
nagx.ht
pages, 3928
manpageXXXx04caf
nagx.ht
pages, 3931
manpageXXXx04daf
nagx.ht
pages, 3934
manpageXXXx05
nagx.ht
pages, 3938
manpageXXXx05aaf
nagx.ht
pages, 3940
manpageXXXx05abf
nagx.ht
pages, 3941
manpageXXXx05acaf
nagx.ht
pages, 3944
manpageXXXx05baf
nagx.ht
pages, 3947
mapping.ht
pages
DomainMapping, 964
MappingDescription, 965
MappingDescription
mapping.ht
pages, 965
MappingPackageOneXmpPage
<table>
<thead>
<tr>
<th>File Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>mappkg1.htm</td>
<td>965</td>
</tr>
<tr>
<td>mappkg1.htm</td>
<td>pages, 965</td>
</tr>
<tr>
<td>MappingPackageOneXmpPage</td>
<td>965</td>
</tr>
<tr>
<td>mar2009 releasenotes.htm</td>
<td>pages, 67</td>
</tr>
<tr>
<td>mar2010 releasenotes.htm</td>
<td>pages, 49</td>
</tr>
<tr>
<td>mar2011 releasenotes.htm</td>
<td>pages, 32</td>
</tr>
<tr>
<td>mar2012 releasenotes.htm</td>
<td>pages, 17</td>
</tr>
<tr>
<td>march2008 releasenotes.htm</td>
<td>pages, 88</td>
</tr>
<tr>
<td>matrix.htm</td>
<td>pages</td>
</tr>
<tr>
<td>MatrixXmpPage matrix.htm</td>
<td>pages, 984</td>
</tr>
<tr>
<td>ugxMatrixCreatePage, 984</td>
<td></td>
</tr>
<tr>
<td>ugxMatrixOpsPage, 997</td>
<td></td>
</tr>
<tr>
<td>MatrixXmpPage matrix.htm</td>
<td>pages, 984</td>
</tr>
<tr>
<td>May2008 releasenotes.htm</td>
<td>pages, 87</td>
</tr>
<tr>
<td>May2009 releasenotes.htm</td>
<td>pages, 62</td>
</tr>
<tr>
<td>May2010 releasenotes.htm</td>
<td>pages, 45</td>
</tr>
<tr>
<td>May2011 releasenotes.htm</td>
<td>pages, 29</td>
</tr>
<tr>
<td>May2012 releasenotes.htm</td>
<td>pages, 14</td>
</tr>
<tr>
<td>Menuexdiff coverex.htm</td>
<td>pages, 305</td>
</tr>
<tr>
<td>Menuexdiff coverex.htm</td>
<td>pages, 310</td>
</tr>
<tr>
<td>Menuexlap coverex.htm</td>
<td>pages, 317</td>
</tr>
<tr>
<td>Menuexlimit coverex.htm</td>
<td>pages, 320</td>
</tr>
<tr>
<td>Menuexmatrix coverex.htm</td>
<td>pages, 325</td>
</tr>
<tr>
<td>Menuexplot2d coverex.htm</td>
<td>pages, 333</td>
</tr>
<tr>
<td>Menuexplot3d coverex.htm</td>
<td>pages, 335</td>
</tr>
<tr>
<td>Menuexseries coverex.htm</td>
<td>pages, 337</td>
</tr>
<tr>
<td>Menuexsum coverex.htm</td>
<td>pages, 342</td>
</tr>
<tr>
<td>mkfunc.htm</td>
<td>pages</td>
</tr>
<tr>
<td>MakeFunctionXmpPage, 1006</td>
<td></td>
</tr>
<tr>
<td>mpoly.htm</td>
<td>pages</td>
</tr>
<tr>
<td>MultivariatePolyXmpPage, 1011</td>
<td></td>
</tr>
<tr>
<td>mset.htm</td>
<td>pages</td>
</tr>
<tr>
<td>MultiSetXmpPage, 978</td>
<td></td>
</tr>
<tr>
<td>MultiSetXmpPage mset.htm</td>
<td>pages, 978</td>
</tr>
<tr>
<td>MultivariatePolyXmpPage mpoly.htm</td>
<td>pages, 1011</td>
</tr>
<tr>
<td>nagaux.htm</td>
<td>pages</td>
</tr>
<tr>
<td>manpageXXconvert, 2842</td>
<td></td>
</tr>
<tr>
<td>manpageXXintro, 2727</td>
<td></td>
</tr>
<tr>
<td>manpageXXkwic, 2744</td>
<td></td>
</tr>
<tr>
<td>manpageXXonline, 2703</td>
<td></td>
</tr>
</tbody>
</table>
nagTechnicalPage
ug15.ht
pages, 2530
nagx.ht
pages
manpageXXx01, 3916
manpageXXx02, 3917
manpageXXx04, 3924
manpageXXx04aaf, 3926
manpageXXx04abf, 3928
manpageXXx04caf, 3931
manpageXXx04daf, 3934
manpageXXx05, 3938
manpageXXx05aaf, 3940
manpageXXx05abf, 3941
manpageXXx05acf, 3944
manpageXXx05baf, 3947
newuser.ht
pages
NoMoreHelpPage, 1018
You Tried It, 1018
ngac.ht
pages
manpageXXc06gqf, 2925
NoMoreHelpPage
newuser.ht
pages, 1018
none.ht
pages
NoneXmpPage, 1019
NoneXmpPage
none.ht
pages, 1019
nov2008
releasenotes.ht
pages, 78
nov2009
releasenotes.ht
pages, 55
nov2010
releasenotes.ht
pages, 36
nov2011
releasenotes.ht
pages, 22
november2007
releasenotes.ht
pages, 97
NumberPage
numbers.ht
pages, 1021
numbers.ht
pages
FractionPage, 1023
IntegerExamplePage, 1034
IntegerExampleProofPage, 1036
IntegerPage, 1029
IntegerProblemAnswerPage1, 1038
IntegerProblemAnswerPage2, 1042
IntegerProblemPage, 1037
IntegerProblemProofPage, 1038
NumberPage, 1021
RationalNumberPage, 1025
NumberTheoryPage
algebra.ht
pages, 132
oct.ht
pages
OctonionXmpPage, 1044
OctonionXmpPage
oct.ht
pages, 1044
odpol.ht
INDEX

pages

OrderlyDifferentialPolyXmpPage, 1053
OneDimensionalArrayXmpPage
array1.ht
pages, 138
OneVariableGraphicsExamplePage
graphics.ht
pages, 610
OneVariableGraphicsPage
graphics.ht
pages, 643
onlineInformation
releasenotes.ht
pages, 3
op.ht
pages
OperatorXmpPage, 1071
OperatorXmpPage
op.ht
pages, 1071
OrderedVariableListXmpPage
ovar.ht
pages, 1082
OrderlyDifferentialPolyXmpPage
odpol.ht
pages, 1053
ovar.ht
pages
OrderedVariableListXmpPage, 1082
page.ht
pages
SetXmpPage, 1227
TopicPage, 1313
UsersGuidePage, 1470
pages
3DObjectGraphicsPage
graphics.ht, 638
AlgebraicFunctionPage
function.ht, 564
AlgebraPage
algebra.ht, 131
Asp10ExampleCode
aspxeht, 3949
Asp12ExampleCode
aspxeht, 3950
Asp19ExampleCode
aspxeht, 3950
Asp1ExampleCode
aspxeht, 3949
Asp20ExampleCode
aspxeht, 3953
Asp24ExampleCode
aspxeht, 3953
Asp27ExampleCode
aspxeht, 3954
Asp28ExampleCode
aspxeht, 3954
Asp29ExampleCode
aspxeht, 3957
Asp30ExampleCode
aspxeht, 3958
Asp31ExampleCode
aspxeht, 3959
Asp33ExampleCode
aspxeht, 3959
Asp34ExampleCode
aspxeht, 3960
Asp35ExampleCode
aspxeht, 3960
Asp41ExampleCode
aspxeht, 3961
Asp42ExampleCode
aspxeht, 3962
Asp49ExampleCode
aspxeht, 3963
Asp4ExampleCode
aspxeht, 3961
Asp50ExampleCode
aspxeht, 3964
Asp55ExampleCode
aspxeht, 3965
Asp6ExampleCode
aspxeht, 3966
Asp73ExampleCode
aspxeht, 3967
Asp74ExampleCode
aspxeht, 3967
Asp77ExampleCode
aspxeht, 3968
Asp78ExampleCode
aspxeht, 3969
Asp7ExampleCode
aspex.ht, 3966
Asp80ExampleCode
aspex.ht, 3970
Asp8ExampleCode
aspex.ht, 3969
Asp9ExampleCode
aspex.ht, 3970
aspSectionPage
ug15.ht, 2501
AssociationListXmpPage
alist.ht, 132
AssortedGraphicsExamplePage
graphics.ht, 603
aug2014
releasenotes.ht, 4
BalancedBinaryTreeXmpPage
bbtree.ht, 157
BasicCommand
basic.ht, 155
BasicOperatorXmpPage
bop.ht, 169
BinaryExpansionXmpPage
binary.ht, 163
BinarySearchTreeXmpPage
bstree.ht, 178
BitMaps
bmcat.ht, 168
BROWSEhelp
man0.ht, 963
c02
link.ht, 846
c05
link.ht, 847
c06
link.ht, 847
Calculus
basic.ht, 156
CalculusPage
topics.ht, 1318
CardinalNumberXmpPage
card.ht, 185
CartesianTensorXmpPage
carten.ht, 195
CategoryType
type.ht, 1319
CharacterClassXmpPage
cclass.ht, 221
CharacterXmpPage
char.ht, 228
CliffordAlgebraXmpPage
clif.ht, 234
ComplexXmpPage
cmplx.ht, 254
ContinuedFractionXmpPage
confrac.ht, 262
CPHelp
cphelp.ht, 279
CycleIndicatorsXmpPage
cycles.ht, 279
d01
link.ht, 849
d02
link.ht, 851
d03
link.ht, 852
DecimalExpansionXmpPage
decimal.ht, 348
DeRhamComplexXmpPage
derham.ht, 352
DistributedMultivariatePolyXmpPage
dmp.ht, 375
DomainMapping
mapping.ht, 964
DomainRecord
record.ht, 1182
DomainUnion
union.ht, 1319
DoubleFloatXmpPage
dfloat.ht, 369
e01
link.ht, 853
e02
link.ht, 854
e04
link.ht, 856
ElementaryFunctionPage
function.ht, 567
EqTableXmpPage
eqtbl.ht, 386
EquationPage
topics.ht, 1315
INDEX

EquationXmpPage
eq.ht, 380
ErrorPage
util.ht, 115
ExampleCoverPage
coverex.ht, 304
ExamplesExposedPage
xmpexp.ht, 1369
ExConstructMatrix
exmatrix.ht, 429
ExDeterminantMatrix
exmatrix.ht, 433
ExDiffBasic
exdiff.ht, 391
ExDiffFormalIntegral
exdiff.ht, 396
ExDiffHigherOrder
exdiff.ht, 393
ExDiffMultipleI
exdiff.ht, 394
ExDiffMultipleII
exdiff.ht, 396
ExDiffSeveralVariables
exdiff.ht, 392
ExIntAlgebraicRelation
exint.ht, 414
ExIntAlgebraicRelationExplain
exint.ht, 415
ExIntNonElementary
exint.ht, 417
ExIntNoSolution
exint.ht, 412
ExIntRadicalOfTranscendental
exint.ht, 416
ExIntRationalFunction
exint.ht, 406
ExIntRationalWithComplexParameter
exint.ht, 410
ExIntRationalWithRealParameter
exint.ht, 409
ExIntTrig
exint.ht, 413
ExIntTwoSimilarIntegrands
exint.ht, 410
ExInverseMatrix
exmatrix.ht, 434
ExitXmpPage
exit.ht, 398
ExLapDefInt
exlap.ht, 403
ExLapExpExp
exlap.ht, 404
ExLapSimplePole
exlap.ht, 402
ExLapSpecial1
exlap.ht, 405
ExLapSpecial2
exlap.ht, 406
ExLapTrigTrigh
exlap.ht, 402
ExLimitBasic
exlimit ht, 417
ExLimitComplexInfinite
exlimit ht, 424
ExLimitInfinite
exlimit ht, 422
ExLimitOneSided
exlimit ht, 419
ExLimitParameter
exlimit ht, 418
ExLimitRealComplex
exlimit ht, 423
ExLimitTwoSided
exlimit ht, 420
ExMatrixBasicFunction
exmatrix ht, 426
ExPlot2DAlgebraic
explot2d ht, 451
ExPlot2DFunctions
explot2d ht, 449
ExPlot2DParametric
explot2d ht, 449
ExPlot2DPolar
explot2d ht, 450
ExPlot3DFunctions
explot3d ht, 451
ExPlot3DParametricCurve
explot3d ht, 453
ExPlot3DParametricSurface
explot3d ht, 452
ExposureDef
expose ht, 456
INDEX

manpageXXc06fpf
nagc.ht, 2903
manpageXXc06fqf
nagc.ht, 2908
manpageXXc06frf
nagc.ht, 2912
manpageXXc06fuf
nagc.ht, 2916
manpageXXc06gbf
nagc.ht, 2921
manpageXXc06gcf
nagc.ht, 2923
manpageXXc06gqf
nagc.ht, 2925
manpageXXc06gsf
nagc.ht, 2927
manpageXXconvert
nagaux.ht, 2842
manpageXXd01
nagd.ht, 2930
manpageXXd01ajf
nagd.ht, 2943
manpageXXd01akf
nagd.ht, 2949
manpageXXd01alf
nagd.ht, 2955
manpageXXd01amf
nagd.ht, 2961
manpageXXd01anf
nagd.ht, 2967
manpageXXd01apf
nagd.ht, 2973
manpageXXd01aqf
nagd.ht, 2979
manpageXXd01asf
nagd.ht, 2985
manpageXXd01bbf
nagd.ht, 2992
manpageXXd01ecf
nagd.ht, 2998
manpageXXd01gaf
nagd.ht, 3003
manpageXXd01gbf
nagd.ht, 3006
manpageXXd02
nagd.ht, 3011

manpageXXd02bbf
nagd.ht, 3018
manpageXXd02bhf
nagd.ht, 3026
manpageXXd02cjf
nagd.ht, 3034
manpageXXd02ef
nagd.ht, 3043
manpageXXd02gaf
nagd.ht, 3052
manpageXXd02gbf
nagd.ht, 3059
manpageXXd02kef
nagd.ht, 3067
manpageXXd02raf
nagd.ht, 3090
manpageXXd03
nagd.ht, 3104
manpageXXd03edf
nagd.ht, 3111
manpageXXd03ef
nagd.ht, 3119
manpageXXd03faf
nagd.ht, 3132
manpageXXe01
nagd.ht, 3142
manpageXXe01baf
nagd.ht, 3147
manpageXXe01bef
nagd.ht, 3152
manpageXXe01bff
nagd.ht, 3155
manpageXXe01bgf
nagd.ht, 3158
manpageXXe01bhf
nagd.ht, 3161
manpageXXe01daf
nagd.ht, 3163
manpageXXe01saf
nagd.ht, 3170
manpageXXe01sbf
nagd.ht, 3173
manpageXXe01sef
nagd.ht, 3176
manpageXXe01sff
nagd.ht, 3182
manpageXXe02
nage.ht, 3185
manpageXXe02adf
nage.ht, 3210
manpageXXe02aef
nage.ht, 3216
manpageXXe02aef
nage.ht, 3220
manpageXXe02ahf
nage.ht, 3228
manpageXXe02ajf
nage.ht, 3233
manpageXXe02akf
nage.ht, 3238
manpageXXe02baf
nage.ht, 3243
manpageXXe02bbf
nage.ht, 3250
manpageXXe02bcf
nage.ht, 3254
manpageXXe02bdf
nage.ht, 3259
manpageXXe02bef
nage.ht, 3263
manpageXXe02daf
nage.ht, 3272
manpageXXe02dcf
nage.ht, 3281
manpageXXe02ddf
nage.ht, 3292
manpageXXe02def
nage.ht, 3304
manpageXXe02dff
nage.ht, 3308
manpageXXe02gaf
nage.ht, 3312
manpageXXe02zaf
nage.ht, 3318
manpageXXe04
nage.ht, 3322
manpageXXe04dgf
nage.ht, 3347
manpageXXe04dfj
nage.ht, 3362
manpageXXe04dkf
nage.ht, 3365

manpageXXe04fdf
nage.ht, 3367
manpageXXe04gcf
nage.ht, 3373
manpageXXe04jaf
nage.ht, 3380
manpageXXe04mbf
nage.ht, 3386
manpageXXe04naf
nage.ht, 3389
manpageXXe04rcf
nage.ht, 3415
manpageXXe04udf
nage.ht, 3466
manpageXXe04uef
nage.ht, 3469
manpageXXe04ycf
nage.ht, 3472
manpageXXf
nage.ht, 3478
manpageXXf01
nage.ht, 3482
manpageXXf01brf
nage.ht, 3485
manpageXXf01bsf
nage.ht, 3495
manpageXXf01maf
nage.ht, 3501
manpageXXf01mcf
nage.ht, 3508
manpageXXf01qcf
nage.ht, 3513
manpageXXf01qdf
nage.ht, 3518
manpageXXf01qef
nage.ht, 3523
manpageXXf01rcf
nage.ht, 3527
manpageXXf01rdf
nage.ht, 3532
manpageXXf01rcf
nage.ht, 3538
manpageXXf02
nage.ht, 3543
manpageXXf02aaf
nage.ht, 3549
INDEX

StringXmpPage
 string.ht, 1269
SymbolXmpPage
 symbol.ht, 1286
TableXmpPage
 table.ht, 1298
TestHelpPage
 htxlinkpage1.ht, 2672
TextFileXmpPage
 textfile.ht, 1307
ThreeDimensionalGraphicsExamplePage
 graphics.ht, 605
ThreeDimensionalGraphicsPage
 graphics.ht, 628
TopExamplePage
 rootpage.ht, 121
TopicPage
 page.ht, 1313
TopReferencePage
 rootpage.ht, 123
TopSettingsPage
 rootpage.ht, 120
TwoDimensionalArrayXmpPage
 array2.ht, 143
TwoDimensionalGraphicsPage
 graphics.ht, 643
TwoVariableGraphicsPage
 graphics.ht, 629
ugAppGraphicsPage
 ug21.ht, 2589
ugAvailCLEFPage
 ug01.ht, 1487
ugAvailSnoopPage
 ug02.ht, 1703
ugBrowseCapitalizationConventionPage
 ug14.ht, 2490
ugBrowseCrossReferencePage
 ug14.ht, 2478
ugBrowseDescriptionPagePage
 ug14.ht, 2486
ugBrowseDomainButtonsPage
 ug14.ht, 2476
ugBrowseDomainPage
 ug14.ht, 2474
ugBrowseGivingParametersPage
 ug14.ht, 2484
ugBrowseMiscellaneousFeaturesPage
 ug14.ht, 2485
ugBrowsePage
 ug14.ht, 2471
ugBrowseStartPage
 ug14.ht, 2472
ugBrowseViewsOfConstructorsPage
 ug14.ht, 2482
ugBrowseViewsOfOperationsPage
 ug14.ht, 2487
ugCategoriesAndPackagesPage
 ug12.ht, 2422
ugCategoriesAttributesPage
 ug12.ht, 2416
ugCategoriesAxiomsPage
 ug12.ht, 2414
ugCategoriesConditionalsPage
 ug12.ht, 2420
ugCategoriesCorrectnessPage
 ug12.ht, 2415
ugCategoriesDefaultsPage
 ug12.ht, 2412
ugCategoriesDefsPage
 ug12.ht, 2405
ugCategoriesDocPage
 ug12.ht, 2408
ugCategoriesExportsPage
 ug12.ht, 2407
ugCategoriesHierPage
 ug12.ht, 2410
ugCategoriesMembershipPage
 ug12.ht, 2411
ugCategoriesPage
 ug12.ht, 2403
ugCategoriesParametersPage
 ug12.ht, 2419
ugDomainsAddDomainPage
 ug13.ht, 2438
ugDomainsAssertionsPage
 ug13.ht, 2429
ugDomainsBrowsePage
 ug13.ht, 2435
ugDomainsCliffordPage
 ug13.ht, 2443
ugDomainsCreatingPage
 ug13.ht, 2455
INDEX

ugDomainsDatabaseConstructorPage
 ug13.ht, 2450
ugDomainsDatabasePage
 ug13.ht, 2455
ugDomainsDataListsPage
 ug13.ht, 2454
ugDomainsDefaultsPage
 ug13.ht, 2439
ugDomainsDefsPage
 ug13.ht, 2427
ugDomainsDemoPage
 ug13.ht, 2431
ugDomainsExamplesPage
 ug13.ht, 2457
ugDomainsMultipleRepsPage
 ug13.ht, 2437
ugDomainsOriginsPage
 ug13.ht, 2441
ugDomainsPage
 ug13.ht, 2425
ugDomainsPuttingPage
 ug13.ht, 2456
ugDomainsQueryEquationsPage
 ug13.ht, 2452
ugDomainsQueryLanguagePage
 ug13.ht, 2447
ugDomainsRepPage
 ug13.ht, 2436
ugDomainsShortFormsPage
 ug13.ht, 2442
ugDomsinsDatabasePage
 ug13.ht, 2445
ugFantoinePage
 ug21.ht, 2607
ugFconformalPage
 ug21.ht, 2597
ugFdhtriPage
 ug21.ht, 2604
ugFimagesEightPage
 ug21.ht, 2596
ugFimagesFivePage
 ug21.ht, 2592
ugFimagesOnePage
 ug21.ht, 2590
ugFimagesSevenPage
 ug21.ht, 2595
ugFimagesSixPage
 ug21.ht, 2594
ugFimagesThreePage
 ug21.ht, 2591
ugFimagesTwoPage
 ug21.ht, 2591
ugFntubePage
 ug21.ht, 2601
ugFscherkPage
 ug21.ht, 2608
ugFtetraPage
 ug21.ht, 2605
ugFtknotPage
 ug21.ht, 2601
ugGraphClipPage
 ug07.ht, 2061
ugGraphColorPage
 ug07.ht, 1983
ugGraphColorPalettePage
 ug07.ht, 1985
ugGraphCoordPage
 ug07.ht, 2053
ugGraphMakeObjectPage
 ug07.ht, 2038
ugGraphPage
 ug07.ht, 1967
ugGraphThreeDBuildPage
 ug07.ht, 2041
ugGraphThreeDControlPage
 ug07.ht, 2062
ugGraphThreeDopsPage
 ug07.ht, 2068
ugGraphThreeDOptionsPage
 ug07.ht, 2028
ugGraphThreeDPage
 ug07.ht, 2018
ugGraphThreeDParmPage
 ug07.ht, 2022
ugGraphThreeDParPage
 ug07.ht, 2025
ugGraphThreeDPlotPage
 ug07.ht, 2019
ugGraphTwoDappendPage
 ug07.ht, 2015
ugGraphTwoDbuildPage
 ug07.ht, 1995
ugIntroIntegratePage
ug01.ht, 1587
ugIntroLongPage
ug01.ht, 1509
ugIntroMacrosPage
ug01.ht, 1508
ugIntroNumbersPage
ug01.ht, 1513
ugIntroPage
ug01.ht, 1483
ugIntroPreviousPage
ug01.ht, 1492
ugIntroSeriesPage
ug01.ht, 1573
ugIntroSolutionPage
ug01.ht, 1602
ugIntroStartPage
ug01.ht, 1484
ugIntroSysCommandsPage
ug01.ht, 1606
ugIntroTwoDimPage
ug01.ht, 1548
ugIntroTypesPage
ug01.ht, 1494
ugIntroTypoPage
ug01.ht, 1488
ugIntroVariablesPage
ug01.ht, 1566
ugIntroYouPage
ug01.ht, 1553
ugLangAssignPage
ug05.ht, 1745
ugLangBlocksPage
ug05.ht, 1753
ugLangIfPage
ug05.ht, 1761
ugLangItsPage
ug05.ht, 1808
ugLangLoopsBreakMorePage
ug05.ht, 1774
ugLangLoopsBreakPage
ug05.ht, 1770
ugLangLoopsBreakVsPage
ug05.ht, 1773
ugLangLoopsCompIntPage
ug05.ht, 1766
ugLangLoopsForInNMPage
ug05.ht, 1791
ugLangLoopsForInNMSPage
ug05.ht, 1795
ugLangLoopsForInNPage
ug05.ht, 1797
ugLangLoopsForInPage
ug05.ht, 1790
ugLangLoopsForInPredPage
ug05.ht, 1800
ugLangLoopsForInXLPage
ug05.ht, 1798
ugLangLoopsIteratePage
ug05.ht, 1782
ugLangLoopsPage
ug05.ht, 1765
ugLangLoopsParPage
ug05.ht, 1802
ugLangLoopsReturnPage
ug05.ht, 1767
ugLangLoopsWhilePage
ug05.ht, 1784
ugLangStreamsPrimesPage
ug05.ht, 1815
ugLogicalSearchesPage
ug03.ht, 1715
ugPackagesAbstractPage
ug11.ht, 2380
ugPackagesCapsulesPage
ug11.ht, 2381
ugPackagesCompilingPage
ug11.ht, 2392
ugPackagesCondsPage
ug11.ht, 2390
ugPackagesDomsPage
ug13.ht, 2426
ugPackagesHowPage
ug11.ht, 2399
ugPackagesInputFilesPage
ug11.ht, 2382
ugPackagesNamesPage
ug11.ht, 2377
ugPackagesPackagesPage
ug11.ht, 2383
ugPackagesPage
ug11.ht, 2375
ugUserPalPage
ug06.ht, 1944
ugUserPieceBasicPage
ug06.ht, 1862
ugUserPiecePage
ug06.ht, 1861
ugUserPiecePickingPage
ug06.ht, 1869
ugUserPiecePredPage
ug06.ht, 1876
ugUserRecurPage
ug06.ht, 1883
ugUserRulesPage
ug06.ht, 1949
ugUserTrianglePage
ug06.ht, 1939
ugUserUsePage
ug06.ht, 1854
ugWhatsNewDocumentationPage
ug15.ht, 2535
ugWhatsNewHyperDocPage
ug15.ht, 2534
ugWhatsNewImportantPage
ug15.ht, 2494
ugWhatsNewLanguagePage
ug15.ht, 2531
ugWhatsNewLibraryPage
ug15.ht, 2532
ugWhatsNewPage
ug15.ht, 2493
ugWhatsNewTwoTwoPage
ug00.ht, 1473
ugxCliffordComplexPage
crif.ht, 235
ugxCliffordDiracPage
crif.ht, 250
ugxCliffordExteriorPage
crif.ht, 244
ugxCliffordQuaternPage
crif.ht, 239
ugxDefaultsPage
ug07.ht, 2074
ugxFactoredArithPage
fr.ht, 525
ugxFactoredDecompPage
fr.ht, 518
ugxFactoredExpandPage
fr.ht, 523
ugxFactoredNewPage
fr.ht, 532
ugxFactoredVarPage
fr.ht, 536
ugxFloatConvertPage
float.ht, 490
ugxFloatHilbertPage
float.ht, 502
ugxFloatIntroPage
float.ht, 488
ugxFloatOutputPage
float.ht, 498
ugxIntegerBasicPage
int.ht, 698
ugxIntegerNTPage
int.ht, 716
ugxIntegerPrimesPage
int.ht, 712
ugxLinearODE OperatorTwoConstPage
lodo2.ht, 906
ugxLinearODE OperatorTwoMatrixPage
lodo2.ht, 911
ugxLinearOrdinaryDifferentialOperator OneR- atPage
lodo1.ht, 895
ugxLinearOrdinaryDifferentialOperatorSeries- Page
lodo.ht, 884
ugxListAccessPage
list.ht, 869
ugxListChangePage
list.ht, 875
ugxListCreatePage
list.ht, 867
ugxList DotPage
list.ht, 882
ugxList OtherPage
list.ht, 879
ugxMatrixCreatePage
matrix.ht, 984
ugxMatrixOpsPage
matrix.ht, 997
ugxProblemDEQSeriesPage
ug08.ht, 2230
INDEX

uxProblemFiniteConversionPage
 ug08.ht, 2272
uxProblemFiniteCyclicPage
 ug08.ht, 2258
uxProblemFiniteExtensionFinitePage
 ug08.ht, 2246
uxProblemFiniteModulusPage
 ug08.ht, 2249
uxProblemFiniteNormalPage
 ug08.ht, 2264
uxProblemFinitePrimePage
 ug08.ht, 2237
uxProblemFiniteUtilityPage
 ug08.ht, 2280
uxProblemLDEQClosedPage
 ug08.ht, 2212
uxProblemLinSysPage
 ug08.ht, 2131
uxProblemNLDEQClosedPage
 ug08.ht, 2220
uxProblemOnePolPage
 ug08.ht, 2135
uxProblemPolSysPage
 ug08.ht, 2140
uxProblemSeriesArithmeticPage
 ug08.ht, 2175
uxProblemSeriesBernoulliPage
 ug08.ht, 2203
uxProblemSeriesCoefficientsPage
 ug08.ht, 2172
uxProblemSeriesConversionsPage
 ug08.ht, 2186
uxProblemSeriesCreatePage
 ug08.ht, 2166
uxProblemSeriesFormulaPage
 ug08.ht, 2194
uxProblemSeriesFunctionsPage
 ug08.ht, 2178
uxProblemSeriesSubstitutePage
 ug08.ht, 2201
uxProblemSymRootAllPage
 ug08.ht, 2117
uxProblemSymRootOnePage
 ug08.ht, 2113
UnionDescription
 union.ht, 1320

UnivariatePolyXmpPage
 up.ht, 1327
UnivariateSkewPolyXmpPage
 up.ht, 1345
UniversalSegmentXmpPage
 uniseg.ht, 1322
UnknownPage
 util.ht, 114
Unlinked
 util.ht, 115
UntaggedUnion
 union.ht, 1321
UsersGuidePage
 page.ht, 1470
UTUnionDescription
 union.ht, 1322
UXANNA
 annaex.ht, 3973
UXANNAAgent
 annaex.ht, 3995
UXANNADec
 annaex.ht, 3991
UXANNAEx
 annaex.ht, 3984
UXANNAEx2
 annaex.ht, 3989
UXANNAEx3
 annaex.ht, 3990
UXANNAInfer
 annaex.ht, 3992
UXANNAInt
 annaex.ht, 3974
UXANNAIntEx
 annaex.ht, 3979
UXANNAIntro
 annaex.ht, 3983
UXANNAMeas
 annaex.ht, 3994
UXANNA Milit
 annaex.ht, 3993
UXANNAOde
 annaex.ht, 3975
UXANNAOdeEx
 annaex.ht, 3981
UXANNAOpt
 annaex.ht, 3975
<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UXANNAOpt2Ex</td>
<td>annaeex.ht, 3978</td>
<td></td>
</tr>
<tr>
<td>UXANNAOptEx</td>
<td>annaeex.ht, 3977</td>
<td></td>
</tr>
<tr>
<td>UXANNApde</td>
<td>annaeex.ht, 3976</td>
<td></td>
</tr>
<tr>
<td>UXANNApTex</td>
<td>annaeex.ht, 3982</td>
<td></td>
</tr>
<tr>
<td>VectorXmpPage</td>
<td>vector.ht, 1351</td>
<td></td>
</tr>
<tr>
<td>ViewportPage</td>
<td>graphics.ht, 662</td>
<td></td>
</tr>
<tr>
<td>VoidXmpPage</td>
<td>void.ht, 1357</td>
<td></td>
</tr>
<tr>
<td>WuWenTsunTriangularSetXmpPage</td>
<td>wutset.ht, 1360</td>
<td></td>
</tr>
<tr>
<td>XpBWPolynomialXmpPage</td>
<td>xpbwpoly.ht, 1374</td>
<td></td>
</tr>
<tr>
<td>XPolynomialRingXmpPage</td>
<td>xpr.ht, 1402</td>
<td></td>
</tr>
<tr>
<td>XPolynomialXmpPage</td>
<td>xpoly.ht, 1395</td>
<td></td>
</tr>
<tr>
<td>YouTriedIt</td>
<td>newuser.ht, 1018</td>
<td></td>
</tr>
<tr>
<td>ZeroDimSolvePkgXmpPage</td>
<td>zdsolve.ht, 1412</td>
<td></td>
</tr>
<tr>
<td>ParametricCurveGraphicsExamplePage</td>
<td>graphics.ht</td>
<td>pages, 612</td>
</tr>
<tr>
<td>ParametricCurveGraphicsPage</td>
<td>graphics.ht</td>
<td>pages, 616</td>
</tr>
<tr>
<td>ParametricSurfaceGraphicsPage</td>
<td>graphics.ht</td>
<td>pages, 636</td>
</tr>
<tr>
<td>ParametricTubeGraphicsPage</td>
<td>graphics.ht</td>
<td>pages, 633</td>
</tr>
<tr>
<td>PartialFractionXmpPage</td>
<td>pfr.ht</td>
<td>pages, 1088</td>
</tr>
<tr>
<td>patch</td>
<td>HTXAdvPage6xPatch1</td>
<td>htxadvpage6.ht, 2628</td>
</tr>
<tr>
<td></td>
<td>HTXAdvPage6xPatch1A</td>
<td>htxadvpage6.ht, 2628</td>
</tr>
<tr>
<td></td>
<td>HTXAdvPage6xPatch2</td>
<td>htxadvpage6.ht, 2629</td>
</tr>
<tr>
<td></td>
<td>HTXAdvPage6xPatch2A</td>
<td>htxadvpage6.ht, 2629</td>
</tr>
<tr>
<td></td>
<td>HTXAdvPage6xPatch3</td>
<td>htxadvpage6.ht, 2629</td>
</tr>
<tr>
<td></td>
<td>HTXAdvPage6xPatch3A</td>
<td>htxadvpage6.ht, 2629</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage1xPatch1</td>
<td>htxformatpage1.ht, 2632</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage1xPatch2</td>
<td>htxformatpage1.ht, 2632</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch1</td>
<td>htxformatpage2.ht, 2634</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch2</td>
<td>htxformatpage2.ht, 2634</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch2A</td>
<td>htxformatpage2.ht, 2635</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch3</td>
<td>htxformatpage2.ht, 2635</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch3A</td>
<td>htxformatpage2.ht, 2636</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch4</td>
<td>htxformatpage2.ht, 2636</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage2xPatch4A</td>
<td>htxformatpage2.ht, 2637</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage3xPatch1</td>
<td>htxformatpage3.ht, 2637</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage3xPatch2</td>
<td>htxformatpage3.ht, 2637</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage3xPatch4</td>
<td>htxformatpage3.ht, 2641</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch1</td>
<td>htxformatpage4.ht, 2641</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch1A</td>
<td>htxformatpage4.ht, 2644</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch2</td>
<td>htxformatpage4.ht, 2644</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch2A</td>
<td>htxformatpage4.ht, 2645</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch3</td>
<td>htxformatpage4.ht, 2645</td>
</tr>
<tr>
<td></td>
<td>HTXFormatPage4xPatch3A</td>
<td>htxformatpage4.ht, 2646</td>
</tr>
</tbody>
</table>
INDEX

Patch1
 htxadvpage4.ht, 2622
patch
 htxadvpage4.ht, 2622
Patch2
 htxadvpage4.ht, 2623
Patch1
 htxadvpage4.ht
 patch, 2622
patch1
 htxadvpage4.ht
 patch, 2622
Patch2
 htxadvpage4.ht
 patch, 2623
perman.ht
 pages
 PermanentXmpPage, 1085
PermanentXmpPage
 perman.ht
 pages, 1085
pfr.ht
 pages
 PartialFractionXmpPage, 1088
PolarGraphicsExamplePage
 graphics.ht
 pages, 614
PolarGraphicsPage
 graphics.ht
 pages, 648
poly.ht
 pages
 PolynomialBasicPage, 1097
 PolynomialGCDPage, 1108
 PolynomialPage, 1095
 PolynomialRootPage, 1110
 PolynomialSubstitutionPage, 1104
 PolynomialTypesPage, 1096
poly1.ht
 pages
 PolynomialXmpPage, 1110
PolynomialPage
 poly.ht
 pages, 1095
PolynomialRootPage
 poly.ht
 pages, 1110
PolynomialSubstitutionPage
 poly.ht
 pages, 1106
PolynomialTypesPage
 poly.ht
 pages, 1096
PolynomialXmpPage
 poly1.ht
 pages, 1110
PrefixEval
 evalex.ht
 pages, 389
ProtectedQuitPage
 util.ht
 pages, 114
quat.ht
 pages
 QuaternionXmpPage, 1134
QuaternionXmpPage
 quat.ht
 pages, 1134
radix.ht
 pages
 RadixExpansionXmpPage, 1140
RadixExpansionXmpPage
 radix.ht
 pages, 1140
RationalFunctionPage
 function.ht
 pages, 561
RationalNumberPage
 numbers.ht
 pages, 1025
RealClosureXmpPage
 reclos.ht
 pages, 1149
reclos.ht
INDEX

seg.ht
pages, 1218
sept2008
releasenotes.ht
pages, 80
sept2009
releasenotes.ht
pages, 57
sept2010
releasenotes.ht
pages, 38
sept2011
releasenotes.ht
pages, 25
SetXmpPage
page.ht
pages, 1227
SingleIntegerXmpPage
sint.ht
pages, 1237
sint.ht
pages
SingleIntegerXmpPage, 1237
SpaceCurveGraphicsPage
graphics.ht
pages, 631
SpadNotConnectedPage
util.ht
pages, 114
SparseTableXmpPage
stbl.ht
pages, 1259
SqFreeRegTriangSetXmpPage
sregset.ht
pages, 1247
sqmatrix.ht
pages
SqMatrixXmpPage, 1243
SqMatrixXmpPage
sqmatrix.ht
pages, 1243
sregset.ht
pages
SqFreeRegTriangSetXmpPage, 1247
stbl.ht
pages
SparseTableXmpPage, 1259
stream.ht
pages
StreamXmpPage, 1263
StreamXmpPage
stream.ht
pages, 1263
string.ht
pages
StringXmpPage, 1269
StringTableXmpPage
strtbl.ht
pages, 1284
StringXmpPage
string.ht
pages, 1269
strtbl.ht
pages
StringTableXmpPage, 1284
symbol.ht
pages
SymbolXmpPage, 1286
SymbolXmpPage
symbol.ht
pages, 1286
table.ht
pages
TableXmpPage, 1298
TableXmpPage
table.ht
pages, 1298
TestHelpPage
htxlinkpage1.ht
pages, 2672
textfile.ht
pages
TextFileXmpPage, 1307
TextFileXmpPage
textfile.ht
pages, 1307
ThreeDimensionalGraphicsExamplePage
graphics.ht
pages, 605
ThreeDimensionalGraphicsPage
graphics.ht
ugFimagesSevenPage, 2595
ugFimagesSixPage, 2594
ugFimagesThreePage, 2591
ugFimagesTwoPage, 2591
ugFntubePage, 2601
ugFscherkPage, 2608
ugFtetraPage, 2605
ugFknotPage, 2601
ugAppGraphicsPage
ug21.ht
pages, 2589
ugAvailCLEFPAGE
ug01.ht
pages, 1487
ugAvailSnoopPage
ug02.ht
pages, 1703
ugBrowseCapitalizationConventionPage
ug14.ht
pages, 2490
ugBrowseCrossReferencePage
ug14.ht
pages, 2478
ugBrowseDescriptionPage
ug14.ht
pages, 2486
ugBrowseDomainButtonsPage
ug14.ht
pages, 2476
ugBrowseDomainPage
ug14.ht
pages, 2474
ugBrowseGivingParametersPage
ug14.ht
pages, 2484
ugBrowseMiscellaneousFeaturesPage
ug14.ht
pages, 2485
ugBrowsePage
ug14.ht
pages, 2471
ugBrowseStartPage
ug14.ht
pages, 2472
ugBrowseViewsOfConstructorsPage
ug14.ht
pages, 2482
ugBrowseViewsOfOperationsPage
ug14.ht
pages, 2487
ugCategoriesAndPackagesPage
ug12.ht
pages, 2422
ugCategoriesAttributesPage
ug12.ht
pages, 2416
ugCategoriesAxiomsPage
ug12.ht
pages, 2414
ugCategoriesConditionalsPage
ug12.ht
pages, 2420
ugCategoriesCorrectnessPage
ug12.ht
pages, 2415
ugCategoriesDefaultsPage
ug12.ht
pages, 2412
ugCategoriesDefsPage
ug12.ht
pages, 2405
ugCategoriesDocPage
ug12.ht
pages, 2408
ugCategoriesExportsPage
ug12.ht
pages, 2407
ugCategoriesHierPage
ug12.ht
pages, 2410
ugCategoriesMembershipPage
ug12.ht
pages, 2411
ugCategoriesPage
ug12.ht
pages, 2403
ugCategoriesParametersPage
ug12.ht
pages, 2419
ugDomainsAddDomainPage
ug13.ht
pages, 2438
INDEX

ugDomainsAssertionsPage ug13.ht
 pages, 2429
ugDomainsBrowsePage ug13.ht
 pages, 2435
ugDomainsCliffordPage ug13.ht
 pages, 2443
ugDomainsCreatingPage ug13.ht
 pages, 2455
ugDomainsDatabaseConstructorPage ug13.ht
 pages, 2450
ugDomainsDatabasePage ug13.ht
 pages, 2455
ugDomainsDataListsPage ug13.ht
 pages, 2454
ugDomainsDefaultsPage ug13.ht
 pages, 2439
ugDomainsDefsPage ug13.ht
 pages, 2427
ugDomainsDemoPage ug13.ht
 pages, 2431
ugDomainsExamplesPage ug13.ht
 pages, 2457
ugDomainsMultipleRepsPage ug13.ht
 pages, 2437
ugDomainsOriginsPage ug13.ht
 pages, 2441
ugDomainsPage ug13.ht
 pages, 2425
ugDomainsPuttingPage ug13.ht
 pages, 2456
ugDomainsQueryEquationsPage ug13.ht
 pages, 2452
ugDomainsQueryLanguagePage ug13.ht
 pages, 2447
ugDomainsRepPage ug13.ht
 pages, 2436
ugDomainsShortFormsPage ug13.ht
 pages, 2442
ugDomainsDatabasePage ug13.ht
 pages, 2445
ugFantoinePage ug21.ht
 pages, 2607
ugFconformalPage ug21.ht
 pages, 2597
ugFdhtriPage ug21.ht
 pages, 2594
ugFimagesEightPage ug21.ht
 pages, 2590
ugFimagesSevenPage ug21.ht
 pages, 2595
ugFimagesSixPage ug21.ht
 pages, 2594
ugFimagesThreePage ug21.ht
 pages, 2591
ugFimagesTwoPage ug21.ht
 pages, 2591
ugFntubePage ug21.ht
ugSysCmdsetPage ug16.ht pages, 2571
ugSysCmdshowPage ug16.ht pages, 2573
ugSysCmdspoolPage ug16.ht pages, 2574
ugSysCmdsynonymPage ug16.ht pages, 2575
ugSysCmdsystemPage ug16.ht pages, 2576
ugSysCmdtracePage ug16.ht pages, 2578
ugSysCmdundoPage ug16.ht pages, 2584
ugSysCmdwhatPage ug16.ht pages, 2586
ugTwoTwoCCLPage ug00.ht pages, 1476
ugTwoTwoHyperdocPage ug00.ht pages, 1475
ugTwoTwoNAGLinkPage ug00.ht pages, 1476
ugTwoTwoPolynomialsPage ug00.ht pages, 1474
ugTypesAnyNonePage ug02.ht pages, 1668
ugTypesBasicDomainConsPage ug02.ht pages, 1619
ugTypesBasicPage ug02.ht pages, 1614
ugTypesConvertPage ug02.ht
ugTypesDeclarePage ug02.ht pages, 1671
ugTypesExposePage ug02.ht pages, 1641
ugTypesPage ug02.ht pages, 1699
ugTypesPkgCallPage ug02.ht pages, 1613
ugTypesRecordsPage ug02.ht pages, 1686
ugTypesResolvePage ug02.ht pages, 1647
ugTypesSubdomainsPage ug02.ht pages, 1696
ugTypesUnionsPage ug02.ht pages, 1679
ugTypesUnionsWOSelPage ug02.ht pages, 1656
ugTypesUnionsWSelPage ug02.ht pages, 1657
ugTypesWritingAbbrPage ug02.ht pages, 1664
ugTypesWritingModesPage ug02.ht pages, 1638
ugTypesWritingMorePage ug02.ht pages, 1636
ugTypesWritingOnePage ug02.ht pages, 1633
ugTypesWritingPage ug02.ht
ugTypesWritingZeroPage
ug02.ht
pages, 1632
ugUserAnonDeclarePage
ug06.ht
pages, 1927
ugUserAnonExampPage
ug06.ht
pages, 1922
ugUserAnonPage
ug06.ht
pages, 1921
ugUserBlocksPage
ug06.ht
pages, 1898
ugUserCachePage
ug06.ht
pages, 1880
ugUserCompIntPage
ug06.ht
pages, 1858
ugUserDatabasePage
ug06.ht
pages, 1932
ugUserDeclarePage
ug06.ht
pages, 1838
ugUserDecOpersPage
ug06.ht
pages, 1850
ugUserDecUndecPage
ug06.ht
pages, 1846
ugUserDelayPage
ug06.ht
pages, 1851
ugUserFreeLocalPage
ug06.ht
pages, 1906
ugUserFunMacPage
ug06.ht
pages, 1825
ugUserIntroPage
ug06.ht
pages, 1835
ugUserMacrosPage
ug06.ht
pages, 1827
ugUserMakePage
ug06.ht
pages, 1889
ugUserOnePage
ug06.ht
pages, 1841
ugUserPage
ug06.ht
pages, 1823
ugUserPalPage
ug06.ht
pages, 1944
ugUserPieceBasicPage
ug06.ht
pages, 1862
ugUserPiecePage
ug06.ht
pages, 1861
ugUserPiecePickingPage
ug06.ht
pages, 1861
ugUserPiecePredPage
ug06.ht
pages, 1876
ugUserRecurPage
ug06.ht
pages, 1883
ugUserRulesPage
ug06.ht
pages, 1949
ugUserTrianglePage
ug06.ht
pages, 1939
ugUserUsePage
ug06.ht
pages, 1854
ugWhatsNewDocumentationPage
ug15.ht
pages, 2535
ugWhatsNewHyperDocPage
ug15.ht
pages, 2534
ugWhatsNewImportantPage
INDEX

ug15.ht
 pages, 2494
ugWhatsNewLanguagePage
 ug15.ht
 pages, 2531
ugWhatsNewLibraryPage
 ug15.ht
 pages, 2532
ugWhatsNewPage
 ug15.ht
 pages, 2493
ugWhatsNewTwoTwoPage
 ug00.ht
 pages, 1473
ugxCliffordComplexPage
 clif.ht
 pages, 235
ugxCliffordDiracPage
 clif.ht
 pages, 250
ugxCliffordExteriorPage
 clif.ht
 pages, 244
ugxCliffordQuaternPage
 clif.ht
 pages, 239
ugxDefaultsPage
 ug07.ht
 pages, 2074
ugxFactoredArithPage
 fr.ht
 pages, 525
ugxFactoredDecompPage
 fr.ht
 pages, 518
ugxFactoredExpandPage
 fr.ht
 pages, 523
ugxFactoredNewPage
 fr.ht
 pages, 532
ugxFactoredVarPage
 fr.ht
 pages, 536
ugxFloatConvertPage
 float.ht
 pages, 490
ugxFloatHilbertPage
 float.ht
 pages, 502
ugxFloatIntroPage
 float.ht
 pages, 488
ugxFloatOutputPage
 float.ht
 pages, 498
ugxIntegerBasicPage
 int.ht
 pages, 698
ugxIntegerNTPage
 int.ht
 pages, 716
ugxIntegerPrimesPage
 int.ht
 pages, 712
ugxLinearODEOperatorTwoConstPage
 lodo2.ht
 pages, 906
ugxLinearODEOperatorTwoMatrixPage
 lodo2.ht
 pages, 911
ugxLinearOrdinaryDifferentialOperatorOneRatPage
 lodo1.ht
 pages, 895
ugxLinearOrdinaryDifferentialOperatorSeriesPage
 lodo.ht
 pages, 884
ugxListAccessPage
 list.ht
 pages, 869
ugxListChangePage
 list.ht
 pages, 875
ugxListCreatePage
 list.ht
 pages, 867
ugxListDotPage
 list.ht
 pages, 882
ugxListOtherPage
 list.ht
 pages, 879
INDEX

pages, 1345
UniversalSegmentXmpPage
uniseg.ht
 pages, 1322
UnknownPage
util.ht
 pages, 114
Unlinked
util.ht
 pages, 115
UntitledUnion
union.ht
 pages, 1321
up.ht
 pages
 UnivariatePolyXmpPage, 1327
 UnivariateSkewPolyXmpPage, 1345
UsersGuidePage
page.ht
 pages, 1470
util.ht
 pages
 ErrorPage, 115
 ProtectedQuitPage, 114
 SpadNotConnectedPage, 114
 UnknownPage, 114
 Unlinked, 115
util.ht files, 103
UTUnionDescription
union.ht
 pages, 1322
UXANNA
 annaex.ht
 pages, 3973
UXANNAAgent
 annaex.ht
 pages, 3995
UXANNAIdec
 annaex.ht
 pages, 3991
UXANNAEx
 annaex.ht
 pages, 3984
UXANNAEx2
 annaex.ht
 pages, 3989
UXANNAEx3
 annaex.ht
 pages, 3990
UXANNAInfer
 annaex.ht
 pages, 3992
UXANNAInt
 annex.ht
 pages, 3974
UXANNAIntEx
 annaex.ht
 pages, 3979
UXANNAIntro
 annaex.ht
 pages, 3983
UXANNAMeas
 annaex.ht
 pages, 3994
UXANNAInt
 annaex.ht
 pages, 3993
UXANNAOde
 annaex.ht
 pages, 3975
UXANNAOdeEx
 annaex.ht
 pages, 3981
UXANNAOpt
 annaex.ht
 pages, 3975
UXANNAOpt2Ex
 annaex.ht
 pages, 3978
UXANNAOptEx
 annaex.ht
 pages, 3977
UXANNApde
 annaex.ht
 pages, 3976
UXANNAtxt
 annaex.ht
 pages, 3982
vector.ht
 pages
 VectorXmpPage, 1351
INDEX

VectorXmpPage
 vector.ht
 pages, 1351
ViewportPage
 graphics.ht
 pages, 662
void.ht
 pages
 VoidXmpPage, 1357
VoidXmpPage
 void.ht
 pages, 1357
wutset.ht
 pages
 WuWenTsunTriangularSetXmpPage, 1360
WuWenTsunTriangularSetXmpPage
 wutset.ht
 pages, 1360
xmpexp.ht
 pages
 ExamplesExposedPage, 1369
xpbwpoly.ht
 pages
 XPBWPolynomialXmpPage, 1374
XPBWPolynomialXmpPage
 xpbwpoly.ht
 pages, 1374
xpoly.ht
 pages
 XPolynomialXmpPage, 1395
XPolynomialXmpPage
 xpoly.ht
 pages, 1395
xpr.ht
 pages
 XPolynomialRingXmpPage, 1402
XPolynomialRingXmpPage
 xpr.ht
 pages, 1402
YouTriedIt
 newuser.ht
 pages, 1018
zdsolve.ht
 pages
 ZeroDimSolvePkgXmpPage, 1412
ZeroDimSolvePkgXmpPage
 zdsolve.ht
 pages, 1412
zlindep.ht
 pages
 IntegerLinearDependenceXmpPage, 1463