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Abstract. The multistochastic (𝑛,𝑘)-Monge–Kantorovich problem on a prod-
uct space

∏︀𝑛
𝑖=1 𝑋𝑖 is an extension of the classical Monge–Kantorovich problem.

This problem is considered on the space of measures with fixed projections onto
𝑋𝑖1 × . . .×𝑋𝑖𝑘 for all 𝑘-tuples {𝑖1, . . . , 𝑖𝑘} ⊂ {1, . . . , 𝑛} for a given 1 ≤ 𝑘 < 𝑛. In
our paper we study well-posedness of the primal and the corresponding dual prob-
lem. Our central result describes a solution 𝜋 to the following important model
case: 𝑛 = 3, 𝑘 = 2, 𝑋𝑖 = [0,1], the cost function 𝑐(𝑥,𝑦,𝑧) = 𝑥𝑦𝑧, and the corre-
sponding two–dimensional projections are Lebesgue measures on [0,1]2. We prove,
in particular, that the mapping (𝑥,𝑦) → 𝑥 ⊕ 𝑦, where ⊕ is the bitwise addition
(xor- or Nim-addition) on [0,1] ∼= Z∞

2 , is the corresponding optimal transporta-
tion. In particular, the support of 𝜋 is the Sierpiński tetrahedron. In addition, we
describe a solution to the corresponding dual problem.

1. Introduction

In this paper we consider a natural modification of the Monge–Kantorovich mass
transportation problem which we call “multistochastic Monge–Kantorovich prob-
lem”. To our best knowledge, this problem has never been studied before.

Assume we are given two probability measures 𝜇, 𝜈 on measurable spaces𝑋, 𝑌 and
a function 𝑐 : 𝑋 × 𝑌 → R. Let us remind the reader that the classical Kantorovich
or transportation problem is a problem of minimization of the functional∫︁

𝑋×𝑌

𝑐(𝑥,𝑦)𝑑𝜋, (1.1)

on the set Π(𝜇,𝜈) of probability measures on 𝑋 × 𝑌 with fixed marginals 𝜇, 𝜈.
An important tool to attack this problem coming from the linear programming

theory is the so-called dual transportation problem: maximize∫︁
𝑓𝑑𝜇 +

∫︁
𝑔𝑑𝜈

on the set of couples of (integrable) functions (𝑓,𝑔) satisfying 𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥,𝑦).
The most classical cost function 𝑐 is given by the distance function, but the qua-

dratic cost function 𝑐(𝑥,𝑦) = |𝑥− 𝑦|2 gains incredible popularity because of impres-
sive number of applications. For the quadratic cost function any standard solution
𝜋 is concentrated on the graph of a mapping 𝑇 . In this case 𝑇 is a solution of the
corresponding Monge problem which asks for a mapping minimizing the functional
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2 NIKITA A. GLADKOV, ALEXANDER V. KOLESNIKOV, AND ALEXANDER P. ZIMIN∫︀
𝑐(𝑥,𝑇 (𝑥))𝑑𝜇 in the class of measure preserving (i.e. pushing forward 𝜇 onto 𝜈)

mappings.
Since its revival at the end of eighties the Monge–Kantorovich theory attracts

growing attention. The reader can find a lot of information on the classical mass
transportation theory in many recent textbooks and survey papers [5], [8], [12], [26],
[29], [30].

Our research is motivated by a number of recent results appeared in several quickly
developping branches of the mass transportation theory. Here is a short outline of
the most important problems and ideas.

1) Multimarginal transportation problem.
The book of Rachev and Rüschendorf [26] contains rich material on the multi-

marginal transportation problem, in particular, a number of functional-analytical
results on duality, probabilistic applications etc. However, until recently only the
two-marginals case was important for the largest part of applications. The books of
Villani [29], [30] deal with the most important but specific two-marginals case.

The revival of interest to the multimarginal Monge–Kantorovich problem is par-
tially motivated by economical applications (matching theory, multi-dimensional
screening), see [12], [8]. We refer to survey paper [25]. Many references on recent
works on multimarginal duality theory for a wide class of cost functions can be found
in [5].

2) Doubly- and multistochastic measures.
According to the classical Birkhoff-von Neumann theorem every bistochastic ma-

trix is a convex combination of permutation matrices. More precisely, the permuta-
tion matrices are exactly the extreme points of the set of bistochastic matrices. The
classical problem of Birkhoff asks for a generalization of this result for the set of
bistochastic (doubly stochastic) measures Π(𝜇,𝜈). This problem has been attacked
by many researches (see [27], [4], [14], [1]), let us in particularly mention the seminal
paper [14], containing a characterization of supports of such measures. Using this
characterization Ahmad, Kim, and McCann obtained in [1] interesting results on
uniqueness of solution to the optimal transportation problem. Exposition of rela-
tions between bistochastic measures, Markov operators, and Markov chains can be
found in [28].

In this paper we deal with (𝑛,𝑘)-stochastic measures, which are probability mea-
sures on a product space

𝑋 = 𝑋1 ×𝑋2 × . . .×𝑋𝑛

with fixed projections 𝜇𝐼 ∈ P(𝑋𝐼) for every 𝑋𝐼 = 𝑋𝑖1 × . . . × 𝑋𝑖𝑘 , where 𝐼 =
{𝑖1, . . . , 𝑖𝑘} is a 𝑘-tuple of indices, 𝑘 < 𝑛. The simplest (and most famous) example
of such measures is given by the set of latin squares which is homeomorphic to (3,2)-
stochastic matrices. It is important to emphasize that for the set of (𝑛,𝑘)-stochastic
matrices (measures) with 𝑛 > 2 there is no analog of the Birkhoff-von Neumann
theorem (see [16], [22], see also [6] for description of extreme points for 𝑘 = 2, 𝑛 = 3
in the discrete case).

3) Monge–Kantorovich problem with linear constraints and Monge–Kantorovich
problem with symmetries.

Apparenty the most famous example of a transportation problem with linear con-
straints is the optimal martingale transportation problem coming from financial
mathematics. This problem is obtained from the classical one by adding an addi-
tional constraint: the measure 𝜋 is assumed to be a martingale (to make the space
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of feasible measures non-empty 𝜇 should stochastically dominate 𝜈). The dual mar-
tingale problem has a natural financial interpretation (see [3]). More information
about martingale transportation the reader can find in [2], [3], [9], [13]. Remark-
ably, a duality theorem for transportation problem with general linear constraints
has been obtained only recently in [31]. This results covers, in particular, the case
of martingale constraints. Another important class of linear constraints are various
symmetric assumptions, in particular, invariance with respect to an action of some
group of linear operators. This type of problem has been studied in [31], [24], [10].
Applications of symmetric problem to infinite-dimensional analysis and links with
ergodic theory can be found in [17], [18]. The Monge–Kantorovich problems with
some convex constraints has been considered in [21], [19], [20].

In this paper we consider the problem of maximization/minimization of the func-
tional ∫︁

𝑋

𝑐(𝑥1, . . . ,𝑥𝑛)𝑑𝜋

on a set of (𝑛,𝑘)-stochastic measures. We call it mutistochastic or (𝑛,𝑘)-stochastic
Kantorovich problem. Clearly, for 𝑘 = 1 one gets the multistochastic Kantorovich
problem with 𝑛-marginals.

The system of projections {𝜇𝐼} can not be arbitrary for 𝑘 > 1, and in fact, it is
a nontrivial question, when the set of (𝑛,𝑘)-stochastic measures is non-empty. This
problem illustrates the main source of difficulties for the multistochastic problem:
the constraints are highly non-independent, unlike the classical Monge–Kantorovich
problem. We stress that existence of feasible measures is just one question among
many others which have trivial solutuions for the classical case, but not for the
multistochastic one. On the other hand, the classical example of latin squares and
its relation with discrete algebraic structures (groups and quasigroups) ensures that
it is an interesting and non-artificial object.

We start with consideration of two basic questions of the mass transportation
theory: duality and cyclical monotonicity. A natural guess that the dual problem
should be the maximization problem

∑︁
𝐼

∫︁
𝑓𝐼(𝑥𝑖1 , . . . , 𝑥𝑖𝑘)𝑑𝜇𝐼 ,

with the constraint
∑︀

𝐼 𝑓𝐼(𝑥𝑖1 , . . . , 𝑥𝑖𝑘) ≤ 𝑐 is verified in Section 3 in a form analo-
gous to the duality theorem considered in [29]. The proof is based on the minimax
principle. In Section 4 we prove an analog of the cyclical monotonicity property. Un-
fortunately, applications of the cyclical nonotonicity are not that as straightforward
as in the classical case. The main difficulty here is that the set of discrete competi-
tors is essentially more complicated that the permutation cycles considered in the
classical transportation theory. We don’t know, whether any solution to a multi-
stochastic problem (for a reasonable choice of the cost function 𝑐) is concentrated
on the graph of a mapping (this is a standard corollary of the cyclical monotonicity
property in the classical case). The uniqueness question is open as well. We were
able, however, to deduce from the cyclical monotonicity property that any solution
is singular to the Lebesgue measure under assumption that the projections have
densities (𝑘 = 2, 𝑛 = 3, 𝑋𝑖 = [0,1]).
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In Sections 5-6 we study our main example: 𝑘 = 2, 𝑛 = 3, 𝑋𝑖 = [0,1], the
two-dimensional projections are assumed to be Lebesque and

𝑐(𝑥,𝑦,𝑧) = 𝑥𝑦𝑧.

Let us consider the maximization problem
∫︀
[0,1]3

𝑥𝑦𝑧 → max. We show that there
exists a solution which is concentrated on the graph of the mapping

(𝑥,𝑦) → 1 − 𝑥⊕ 𝑦,

where ⊕ is the bitwise addition, which is also called xor-addition or Nim-addition.
Similarly, for the minimization problem

∫︀
[0,1]3

𝑥𝑦𝑧 → min the solution 𝜋 is con-
centrated on the graph of the mapping

(𝑥,𝑦) ↦→ 𝑥⊕ 𝑦.

It is known that the bitwise operations can be used to generate fractals (see [11],
[7]). In particular, the graph of this mapping (𝑥,𝑦) ↦→ 𝑥⊕𝑦 is the so-called Sierpiński
tetrahedron.

This is a classical fractal self-similar set of dimension 2. In the book of Mandelbrot
[23] it is briefly described under the name “fractal skewed web” : “Let us project it
along a direction joining the midpoints of either couple of opposite sides. The ini-
tiator tetrahedron projects on a square, to be called initial. Each second-generation
tetrahedron projects on a subsquare, namely 1/4-th initial square, etc. Thus, the
web projects on the initial square. The subsquares’ boundaries overlap.”.

The irregularity of this example is rather unexpected, since it is well-understood
that the standard solutions to the classical Monge–Kantorovich problems are sup-
ported by regular surfaces. On the other hand the close relation of latin squares to
groups makes the appearence of the xor-operation (equivalently, of the group Z∞

2 )
natural. The appearence of the bitwise addition can be also illustrated by the baby
(3,2)-transportation problem on the cube {0,1}3 with 𝑐 = 𝑥𝑦𝑧. All the competitors
with uniform projections are convex combinations of two measures:

{(0,0,0), (0,1,1), (1,1,0), (1, 0,1)},

{(0, 1, 0), (0, 0,1), (1,0,1), (1,1,1)}
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(we identify the point and the Dirac mass with weight 1/4 at the point), defined by
equations

𝑥 + 𝑦 + 𝑧 = 0, 𝑥 + 𝑦 + 𝑧 = 1, 𝑚𝑜𝑑(2).

The first measure minimizes 𝑥𝑦𝑧 and the second measure maximizes. The fact that
essentially the same structure is preserved for the cube [0,1]3 due to the symmetries
of the corresponding continuous problem.

Let us consider again the minimization problem
∫︀
[0,1]3

𝑥𝑦𝑧 → min. We show in
Section 7 that

𝐹 (𝑥,𝑦) =

∫︁ 𝑥

0

∫︁ 𝑦

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡− 1

4

∫︁ 𝑥

0

∫︁ 𝑥

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡− 1

4

∫︁ 𝑦

0

∫︁ 𝑦

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡.

solves the corresponding dual problem∫︁
[0,1]2

𝐹 (𝑥,𝑦)𝑑𝑥𝑑𝑦 +

∫︁
[0,1]2

𝐹 (𝑥,𝑧)𝑑𝑥𝑑𝑧 +

∫︁
[0,1]2

𝐹 (𝑦,𝑧)𝑑𝑦𝑑𝑧 → max,

𝐹 (𝑥,𝑦) + 𝐹 (𝑥,𝑧) + 𝐹 (𝑦,𝑧) ≤ 𝑥𝑦𝑧.

In particular, the corresponding optimal mapping 𝑇 takes the form

(𝑥,𝑦) ↦→ 𝜕2
𝑥𝑦𝐹 (𝑥,𝑦)

and the Sierpiński tetrahedron is the set of zeroes of the nonnegative function

𝑥𝑦𝑧 − 𝐹 (𝑥,𝑦) − 𝐹 (𝑥,𝑧) − 𝐹 (𝑦,𝑧).

In addition, this function is almost everywhere differentiable and homogeneous with
respect to factor 2. The first derivatives of this function are not differentiable, but
have bounded variation.

It is an open question which particular properties of this solution are inherited
by general solutions to the (3,2)-problem. We discuss some related hypotheses in
Section 8.

2. Multistochastic problem. Basic properties.

In this short section we define the main objects of our study and discuss their
basic properties. We are given a finite number of spaces

𝑋1, . . . , 𝑋𝑛,

equipped with 𝜎-algebras
ℬ1, . . . ,ℬ𝑛.

The product space
𝑋 = 𝑋1 × . . .×𝑋𝑛,

is equipped with the standard product of 𝜎-algebras

ℬ = ℬ1 × . . .× ℬ𝑛.

The projection
𝑋 ∋ 𝑥 → (𝑥𝑖1 , . . . , 𝑥𝑖𝑘)

of 𝑋 onto 𝑋𝑖1 × . . . 𝑋𝑖𝑘 , 𝑖𝑗 ∈ {1, . . . , 𝑛} with 𝑖𝑗1 ̸= 𝑖𝑗2 for distinct 𝑗1, 𝑗2, will be
denoted by

Pr𝑋𝑖1
×...×𝑋𝑖𝑘

, Pr𝑖,

where 𝑖 = (𝑖1, . . . , 𝑖𝑘).
Thoroughout the paper the following assumption holds:
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Assumption I. 𝑋𝑖 are Polish spaces and ℬ𝑖 are the corresponding Borel 𝜎-
algebras.

Definition 2.1. (Multistochastic Kantorovich problem)
For every fixed 1 ≤ 𝑘 < 𝑛 let ℐ𝑘 be the set of all ordered 𝑘-tuples of indices

𝑖𝑗 ∈ {1, . . . , 𝑛}, 𝑖1 < 𝑖2 < . . . < 𝑖𝑘−1 < 𝑖𝑘. Assume that for every 𝑘-tuple

𝐼 = (𝑖1, . . . , 𝑖𝑘) ∈ ℐ𝑘

we are given a probability measure 𝜇𝐼 = 𝜇𝑖1,...,𝑖𝑘 on 𝑋𝑖1 × . . . × 𝑋𝑖𝑘 . Denote by 𝒫𝜇

the set of probability measures on 𝑋 satisfying

Pr𝐼𝜇 := Pr𝑋𝑖1
×...×𝑋𝑖𝑘

𝜇 = 𝜇𝐼 .

Finally, assume that we are given a cost function

𝑐 :
𝑛∏︁

𝑖=1

𝑋𝑖 → R+ ∪ {+∞}.

Then we say that 𝑃 ∈ 𝒫𝜇 is a solution to the (𝑛,𝑘)-Kantorovich minimization
problem for 𝑐 and {𝜇𝑖}, 𝐼 ∈ ℐ𝑘, if 𝑃 gives minimum to the functional

𝑃 →
∫︁
𝑋

𝑐 𝑑𝑃

on 𝒫𝜇.
We call the problem “(𝑛,𝑘)-Kantorovich maximization problem” if instead of min-

imum we are looking for maximum of 𝑃 →
∫︀
𝑋
𝑐 𝑑𝑃.

Unlike the standard Kantorovich problem 𝒫𝜇 can be empty. Let us briefly discuss
some sufficient conditions assuring that 𝒫𝜇 is not empty. For the sake of simplicity
we restrict ourselves to the case 𝑛 = 3, 𝑘 = 2, 𝑋𝑖 = [0,1].

A natural necessary assumption for 𝒫𝜇 ̸= ∅ is the following Kolmogorov-type
consistency condition.

Remark 2.2. If the set 𝒫𝜇 is not empty, then

Pr1𝜇1,2 = Pr1𝜇1,3, Pr2𝜇1,2 = Pr2𝜇2,3, Pr3𝜇2,3 = Pr3𝜇1,3. (2.1)

Remark 2.3. One can naively think that (2.1) is a sufficient condition for 𝒫𝜇 ̸= ∅.
But this is not true. Consider the following example: 𝜇1,2 is given by the (normal-
ized) Lebesgue measure on the diagonal {𝑥 = 𝑦}, 𝑥 ∈ [0,1], 𝑦 ∈ [0, 1] and 𝜇1,3 is the
two-dimensional Lebesgue measure on [0, 1]2.

Since the projection of the set {𝑥 = 𝑦}× [0, 1] onto 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑧 ≤ 1 along 𝑦
is a one-to-one mapping, there exist the unique measure on [0, 1]3 with projections
𝜇1,2, 𝜇1,3. Denote this measure by 𝜋.

In this construction 𝜇2,3 was not used, so if 𝜇2,3 ̸= 𝑃𝑟2,3(𝜋), there exist no measure
on 𝐼 with projections 𝜇1,2, 𝜇1,3 and 𝜇2,3. But one can easily find 𝜇2,3 different from
𝑃𝑟2,3(𝜋) such that (2.1) holds.

Remark 2.4. An important example of a non-empty set 𝒫𝜇 is given by the following
system of projections ( for the sake of simplicity 𝑘 = 2):

𝜇𝑖,𝑗 = 𝜇𝑖 × 𝜇𝑗,

where every 𝜇𝑖 is a probability measure on 𝑋𝑖.
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Assumption II. It will be assumed throughout that 𝒫 is non-empty.
The proof of the following result is omitted because it is a simple repetition of the

proof of the corresponding fact for the standard Kantorovich problem (see [5], [29]).

Theorem 2.5. Assume that 𝑐 is a lower semicontinuous function. Then there exists
𝑃 ∈ 𝒫𝜇 giving minimum to the functional 𝑃 →

∫︀
𝑐𝑑𝑃 on 𝒫𝜇.

3. Duality

In this section we prove a duality theorem for the multistochastic problem. It
can be deduced from the following general minimax result (see [29], Theorem 1.9)
in the same way as the duality theorem for the standard Kantorovich problem. The
arguments are essentially the same, we repeat the proof for the reader convenience.
For the sake of simplicity we restrict ourselves to the case of compact spaces.

Theorem 3.1. Let 𝐸 be a normed vector space and 𝐸* be the corresponding topolog-
ically dual space. Consider convex functionals Φ,Ψ on 𝐸 with values in R∪ {+∞}.
Let Φ*,Ψ* be their Legendre transforms. Assume that there exists a point 𝑧 ∈ 𝐸
satisfying Φ(𝑧) < +∞,Ψ(𝑧) < +∞ and Φ is continuous at 𝑧. Then

inf
𝐸

(Φ + Ψ) = max
𝑧∈𝐸*

(−Φ*(−𝑧) − Ψ*(𝑧))

Theorem 3.2. Let 𝑋𝑖 be compact metric spaces and 𝑐 ≥ 0 be a continuous function
on 𝑋. Then

min
𝜋∈𝒫

∫︁
𝑐𝑑𝜋 = sup

∑︁
𝑖∈ℐ𝑘

∫︁
𝑓𝑖(𝑥𝑖1 , . . . , 𝑥𝑖𝑘)𝑑𝜇𝑖,

there the infimum is taken over the 𝑘-tuples 𝑖 = (𝑖1, . . . , 𝑖𝑘) ∈ ℐ𝑘 and the functions
𝑓𝑖1,...,𝑖𝑘 ∈ 𝐿1(𝑋𝑖1 × . . .×𝑋𝑖𝑘 , 𝜇(𝑖1,...,𝑖𝑘)) satisfying∑︁

𝑖∈ℐ𝑘

𝑓𝑖(𝑥𝑖1 , . . . , 𝑥𝑖𝑘) ≤ 𝑐.

Proof. Let 𝐸 be the space of continuous functions on 𝑋. By Radon’s theorem 𝐸*

is the space of finite (signed) measures on 𝑋.
Set:

Φ(𝑢) = 0, if 𝑢 ≥ −𝑐

and Φ(𝑢) = +∞ in the opposite case.
Let 𝜋0 be a probability measure which belongs to 𝒫𝜇. For every function 𝑢 which

has representation 𝑢 =
∑︀

𝑖∈ℐ𝑘 𝑓𝑖 we set

Ψ(𝑢) =

∫︁
𝑢𝑑𝜋0 =

∑︁
𝑖∈ℐ𝑘

∫︁
𝑓𝑖𝑑𝜇𝑖, if 𝑢 =

∑︁
𝑖∈ℐ𝑘

𝑓𝑖,

and Ψ(𝑢) = +∞ in the opposite case. It is easy to check that the functionals satisfy
assumptions of Theorem 3.1.

Clearly

inf
𝑢

(︁
Φ(𝑢) + Ψ(𝑢)

)︁
= − sup∑︀

𝑖∈ℐ𝑘
𝑓𝑖≤𝑐

∑︁
𝑖∈ℐ𝑘

∫︁
𝑓𝑖𝑑𝜇𝑖.

Let us find the Legendre transform of the functionals

Φ*(−𝜋) = sup
𝑢

(︁
−
∫︁

𝑢𝑑𝜋 − Φ(𝑢)
)︁

= sup
𝑢≥−𝑐

(︁
−
∫︁

𝑢𝑑𝜋
)︁

= sup
𝑢≤𝑐

∫︁
𝑢𝑑𝜋.
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It is easy to see that Φ*(−𝜋) =
∫︀
𝑐𝑑𝜋, if 𝜋 is a non-negative measure. If not, then

clearly Φ*(−𝜋) = +∞.
Let us compute Ψ*(𝜋) = sup𝑢

(︁∫︀
𝑢𝑑𝜋 − Ψ(𝑢)

)︁
. Clearly Ψ*(𝜋) = 0, if Pr𝑖𝜋 = 𝜇𝑖

and Ψ*(𝜋) = +∞ in the opposite case. This implies

max
𝑧∈𝐸*

(−Φ*(−𝜋) − Ψ*(𝜋)) = − min
𝑃𝑟𝑖𝜋=𝜇𝑖

∫︁
𝑐𝑑𝜋.

The proof is complete. �

4. Cyclical monotonicity

Starting from this section we work with the following particular case:

𝑛 = 3, 𝑘 = 2,

𝑐(𝑥,𝑦,𝑧) = 𝑥𝑦𝑧.

Here we consider the maximization problem∫︁
[0,1]3

𝑥𝑦𝑧𝑑𝜋 → max, 𝜋 ∈ Π(𝜇12, 𝜇23, 𝜇13).

This problem seems to be the simplest but important and illustrative particular
case of the multistochastic Kantorovich problem. The choice of the cost function is
natural in view of the examples which will be given below. In addition, it is analogous
to the simplest quadratic Kantorovich problem with one-dimensional marginals.
Indeed, the minimization of

∫︀
|𝑥 − 𝑦|2𝑑𝜋 on the set of measures Π(𝜇,𝜈) with fixed

marginals 𝜇,𝜈 is equivalent to maximization of
∫︀
𝑥𝑦𝑑𝜋 on the same set.

In the case of the standard Kantorovich problem with two marginals the well-
known cyclical monotonicity property fully characterizes the solutions. In particular,
if the marginals are one-dimensional, then the solution is concentrated on the graph
of a monotone function. In this section we prove a weak analog of this property for
our special multistochastic problem. Unlike the standard Kantorovich problem with
one-dimensional marginals, the geometric structure of the sets which are cyclically
monotone in our sense is essentially less clear.

To show cyclical monotonicity we follow approach from [2] (Lemma 1.11).
Assume we are given three finite sets

𝑋 = {𝑥1, . . . 𝑥𝑛} ⊂ R, 𝑌 = {𝑦1, . . . 𝑦𝑛} ⊂ R, 𝑍 = {𝑧1, . . . 𝑧𝑛} ⊂ R
of cardinality 𝑛

In what follows we denote by
𝑈(𝑋,𝑌,𝑍)

the set of discrete probability measures on 𝑋×𝑌 ×𝑍 which have uniform projections
onto 𝑋 × 𝑌,𝑋 × 𝑍, 𝑌 × 𝑍. Among of measures from 𝑈(𝑋,𝑌,𝑍) let us consider a
special important subclass of uniform distributions 𝜋𝐺 on the sets of the type

𝐺 = (𝑥,𝑦, 𝑓(𝑥,𝑦)), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑓 : 𝑋 × 𝑌 → 𝑍,

where 𝑓 admits the following property: fix any 𝑧𝑖 ∈ 𝑍, then for every 𝑥𝑗 ∈ 𝑋 there
exists exactly one 𝑦𝑘 ∈ 𝑌 and for every 𝑦𝑙 ∈ 𝑌 there exists exactly one 𝑥𝑚 ∈ 𝑋 such
that

𝑧𝑖 = 𝑓(𝑥𝑖,𝑦𝑘) = 𝑓(𝑥𝑚,𝑦𝑙).

Then the uniform measure 𝜋𝐺 on 𝐺 belongs to 𝑈(𝑋,𝑌,𝑍).
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The set
𝐿(𝑋,𝑌,𝑍)

of such 𝐺 can be identified with 𝑛× 𝑛 latin squares.

Remark 4.1. Let us mention another important difference between the multistochas-
tic and the standard Kantorovich problem. By the classical theorem of Birkhoff every
bistochastic matrix is a convex combination of the permutation matrices. In the mul-
tistochastic case there is no analog of the Birkhoff theorem: not every multistochastic
matrix is a convex combination of matrices with entries (𝑎𝑖𝑗) satisfying 𝑎𝑖𝑗 = 0 or
𝑎𝑖𝑗 = 1. An example is given by

See [22] for explanations and [6] for descriptions of extremal points.

Definition 4.2. Let Γ ⊂ R3 be a set and 𝜋Γ be the uniform measure on Γ. We
say that Γ′ is the competitor of Γ if 𝜋Γ and 𝜋Γ′ have the same projections onto the
principal hyperplanes

𝑃𝑟𝑥𝑦Γ = 𝑃𝑟𝑥𝑦Γ
′, 𝑃 𝑟𝑦𝑧Γ = 𝑃𝑟𝑦𝑧Γ

′, 𝑃 𝑟𝑥𝑧Γ = 𝑃𝑟𝑥𝑧Γ
′.

Definition 4.3. The set Γ ⊂ R3 is called cyclical monotone if for every natural 𝑛
and 𝐺 ⊂ Γ of cardinality 𝑛 ∫︁

𝑥𝑦𝑧𝑑𝜋𝐺′ ≤
∫︁

𝑥𝑦𝑧𝑑𝜋𝐺

for every competitor of 𝐺.

Theorem 4.4. Let 𝜋 be a solution to a (3,2)-multistochastic Kantorovich maximiza-
tion problem with 𝑐(𝑥,𝑦,𝑧) = 𝑥𝑦𝑧. Then there exists a cyclical monotone set Γ with
𝜋(Γ) = 1.

Proof. For every 𝑛 let

𝑀𝑛 =
{︁
𝐺 ⊂ R3, card(𝐺) = 𝑛, there exists a competitor 𝐺′ such that∫︁
𝑥𝑦𝑧𝑑𝜋𝐺 <

∫︁
𝑥𝑦𝑧𝑑𝜋𝐺′

}︁
⊂ (R3)𝑛.

According to a well-known result of H. Kellerer (see [15]) one of the following two
options holds:

(1)𝑀𝑛 is contained in a set of the type ∪𝑛
𝑖=1R3×. . .×𝑀 𝑖

𝑛×. . .×R3 with 𝜋(𝑀 𝑖
𝑛) = 0.

(2) There exists a measure 𝛾 on 𝑀𝑛 such that 𝛾(𝑀𝑛) > 0 and Pr𝑖(𝛾) ≤ 𝜋 for
every 𝑖.

We will show that (2) is impossible. Thus (1) holds for every 𝑛 and

Γ = ∩𝑛
𝑖=1R2 ∖ ∪𝑛

𝑖=1𝑀
𝑖
𝑛

is the desired set.
Assume that (2) holds for some 𝑛. Without loss of generality let us assume that

𝛾 ≤ 1
𝑛
𝜋. Set 𝛾′ =

∑︀𝑛
𝑖=1 Pr𝑖𝛾. Clearly

𝛾′ =

∫︁
𝜋𝐺𝑑𝛾(𝐺).
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By definition of 𝑀𝑛 for 𝛾-a.e. 𝐺 there exists a competitor 𝐺′ such that and∫︀
𝑥𝑦𝑧𝑑𝜋𝐺 <

∫︀
𝑥𝑦𝑧𝑑𝜋𝐺′ . Moreover, using linear programming algorithms one can

make the correspondence 𝐺 → 𝐺′ measurable. Define

𝛾 =

∫︁
𝜋𝐺′𝑑𝛾(𝐺)

Clearly
∫︀
𝑥𝑦𝑧𝑑𝛾 >

∫︀
𝑥𝑦𝑧𝑑𝛾′ and 𝛾′, 𝛾 have the same projection onto the principal

hyperplanes. Then we set 𝜋′ = 𝜋 − 𝛾′ + 𝛾. The measures 𝜋, 𝜋′ have the same
projections onto the principal hyperplanes and 𝜋′ has a larger total cost. We obtain
a contradiction. �

Example 4.5. The simplest example of a set 𝐺 which belongs to some 𝐿(𝑋,𝑌,𝑍)
is given by the following four-points set with uniform projections on the products of
some two-points sets

𝑋1 = (𝑎1, 𝑏1, 𝑐2), 𝑋2 = (𝑎1, 𝑏2, 𝑐1), 𝑋3 = (𝑎2, 𝑏1, 𝑐1), 𝑋4 = (𝑎2, 𝑏2, 𝑐2).

The set 𝐺 is cyclically monotone for 𝑐 = 𝑥𝑦𝑧 if and only if

(𝑎1 − 𝑎2)(𝑏1 − 𝑏2)(𝑐1 − 𝑐2) ≤ 0.

The well-known and by now classical result of Y. Brenier establishes existence
of the so-called optimal transportation mapping in the classical setting. We don’t
know whether the multistochastic Kantorovich problem admits the same property.
However, applying the cyclical monotonicity property proved in Proposition 4.4 we
are able to show a weak version of the Brenier theorem saying that under natural
assumptions 𝜋 is a singular measure.

Let us denote by 𝜆𝑛 the standard 𝑛-dimensional Lebesgue measure.

Lemma 4.6. Let 𝐴 ⊂ R3 be a Borel set of positive Lebesgue measure. There exist
numbers

𝑥1 < 𝑥2, 𝑦1 < 𝑦2, 𝑧1 < 𝑧2,

such that {𝑥1, 𝑥2} × {𝑦1, 𝑦2} × {𝑧1, 𝑧2} ⊂ 𝐴.

Proof. Without loss of generality let us consider bounded sets. By Fubini’s theorem
one gets that for every 𝜀 > 0 the set 𝐴𝑧 of numbers 𝑧 satisfying

𝜆2(𝐴 ∩ {𝑧 = 𝑧}) > 𝜀

has a non-zero Lebesgue measure. Hence there exists two points 𝑧1, 𝑧2 ∈ 𝐴𝑧, such
that the projections 𝐴 ∩ {𝑧 = 𝑧1}, 𝐴 ∩ {𝑧 = 𝑧2} onto the hyperplane 𝑥𝑦 have an
intersection 𝐵 of a positive measure. Hence 𝐵 × {𝑧1,𝑧2} ⊂ 𝐴. Next we apply the
same arguments to the one-dimensional sections of 𝐵: {𝑦 = 𝑦}∩𝐵. This completes
the proof. �

Corollary 4.7. Every cyclical monotone set Γ ⊂ R3 satisfies 𝜆3(Γ) = 0.

Proof. Assume that 𝜆3(Γ) > 0. Then according to Lemma 4.6 there exist numbers
𝑥1 < 𝑥2, 𝑦1 < 𝑦2, 𝑧1 < 𝑧2, such that {𝑥1, 𝑥2} × {𝑦1, 𝑦2} × {𝑧1, 𝑧2} ⊂ Γ. We get a
contradiction with Example 4.5. �
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5. Main example. Primal problem.

In this section we consider our main example: (3,2)-Kantorovich problem on the
unit three-dimensional cube [0,1]3, where the projections onto principal hyperplanes
are equal to two-dimensional Lebesgue measure 𝜆2. The cost function is given by

𝑐(𝑥,𝑦,𝑧) = 𝑥𝑦𝑧.

The set of measures with such projections will be denoted by 𝒫𝜆. We are looking
for

max
𝑃∈𝒫𝜆

∫︁
𝑥𝑦𝑧 𝑑𝑃. (5.1)

In this concerete example we are able to find an explicit solution. We emphasize
that this is possible because the problem admits many symmetries. We don’t know
whether the problem has an explicit solution even after slight changes, for instance,
in the case when the projections are equal to products 𝜇𝑖 ×𝜇𝑗, where {𝜇𝑖} are fixed
one-dimensional distributions.

We denote by ⊕ the bitwise addition (xor). Given two couples of numbers 𝑥, 𝑦 ∈
[0,1] we consider their diadic decompositions

𝑥 = 0, 𝑥1𝑥2𝑥3 . . ., 𝑦 = 0, 𝑦1𝑦2𝑦3 . . ., 𝑥𝑖, 𝑦𝑖 ∈ {0,1}.

Then the xor operation is defined as follows:

𝑥⊕ 𝑦 = 0, 𝑥1 ⊕ 𝑦1 𝑥2 ⊕ 𝑦2 𝑥3 ⊕ 𝑦3 . . .,

where 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1.

Remark 5.1. The addition is not well-defined for dyadic rational numbers, because
they can be written in two different ways. We agree that every dyadic rational number
less then 1 has a finite numbers of units in its decomposition. The number 𝑥 = 1
will be always decomposed in the following way:

1 = 0, 11111 . . ..

Thus
𝑥⊕ 1 = 1 − 𝑥.

This operation is continuous up to a countable set of dyadic numbers.

Theorem 5.2. The image 𝜋 of two-dimensional Lebesgue measure 𝜆(𝑑𝑥) × 𝜆(𝑑𝑦)
under the mapping

𝑇 : (𝑥,𝑦) → (𝑥,𝑦, 1 − 𝑥⊕ 𝑦)

is a solution to problem (5.1).
If instead of maximizing the total cost function one asks for

min
𝑃∈𝒫𝜆

∫︁
𝑥𝑦𝑧 𝑑𝑃,

then the corresponding mapping 𝑇 is given by

𝑇 : (𝑥,𝑦) → (𝑥,𝑦, 𝑥⊕ 𝑦).

Remark 5.3. We don’t know whether this concrete problem and the problem in gen-
eral setting (for an appropriate cost function) has unique solution. In this example
there exists a corresponding optimal mapping, but we don’t know whether the same
is true for any (3,2)-problem (under appropriate assumptions on the projections).
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Proof. Let us consider the following transformations of [0,1]3

𝑇𝑥𝑦(𝑥,𝑦,𝑧) = (1 − 𝑥,1 − 𝑦,𝑧),

𝑇𝑥𝑧(𝑥,𝑦,𝑧) = (1 − 𝑥,𝑦,1 − 𝑧),

𝑇𝑦𝑧(𝑥,𝑦,𝑧) = (𝑥,1 − 𝑦,1 − 𝑧).

All these transformations push forward arbitrary measure 𝜇 ∈ 𝒫𝜆 onto a measure
from 𝒫𝜆. We define

𝜇𝑥𝑦 = 𝜇 ∘ 𝑇−1
𝑥𝑦 , 𝜇𝑥𝑧 = 𝜇 ∘ 𝑇−1

𝑥𝑧 , 𝜇𝑦𝑧 = 𝜇 ∘ 𝑇−1
𝑦𝑧 .

Next we note that every 𝜇 ∈ 𝒫𝜆 satisfies∫︁
𝑥𝑦𝑧𝑑𝜇𝑥𝑦 =

∫︁
(𝑧 − 𝑥𝑧 − 𝑦𝑧 + 𝑥𝑦𝑧)𝑑𝜇

=

∫︁
𝑥𝑦𝑧𝑑𝜇 +

∫︁ 1

0

𝑧𝑑𝑧 −
∫︁ 1

0

∫︁ 1

0

𝑥𝑧𝑑𝑥𝑑𝑧 −
∫︁ 1

0

∫︁ 1

0

𝑦𝑧𝑑𝑦𝑑𝑧 =

∫︁
𝑥𝑦𝑧𝑑𝜇.

Thus the total cost
∫︀
𝑥𝑦𝑧𝑑𝜇 is invariant with respect to 𝑇 𝑥𝑦 (and with respect to

𝑇 𝑦𝑧, 𝑇 𝑥𝑧). Hence it follows that for every �̃� solving (5.1) the measures �̃�𝑥𝑦, �̃�𝑦𝑧, �̃�𝑥𝑧,
and

𝜋1 =
�̃� + �̃�𝑥𝑦 + �̃�𝑥𝑧 + �̃�𝑦𝑧

4
are solutions to problem (5.1) as well. Note that 𝜋1 is invariant with respect to 𝑇 𝑥𝑦,
𝑇 𝑦𝑧, 𝑇 𝑥𝑧. This follows from the relations

𝑇 𝑥𝑦𝑇 𝑥𝑧 = 𝑇 𝑥𝑧𝑇 𝑥𝑦 = 𝑇 𝑦𝑧, 𝑇 𝑥𝑦𝑇 𝑥𝑦 = Id.

Next we decompose [0,1]3 into sets 𝐼1, 𝐼2. Every 𝐼𝑖, 𝑖 ∈ {1,2} is a union of four
smaller cubes of volume 1/23:

𝐼1 = [0,1]3 ∖ 𝐼2

𝐼2 =
[︁
0,

1

2

]︁3⋃︁(︁[︁1

2
,1
]︁2

×
[︁
0,

1

2

]︁)︁⋃︁(︁[︁
0,

1

2

]︁
×
[︁1

2
,1
]︁2)︁⋃︁(︁[︁1

2
,1
]︁
×
[︁
0,

1

2

]︁
×
[︁1

2
,1
]︁)︁

.

Since every set 𝐼1, 𝐼2 is invariant under 𝑇𝑥𝑦, 𝑇𝑦𝑧, 𝑇𝑥𝑧, the measures

𝜋𝐼1 = (𝜋1)|𝐼1 , 𝜋𝐼2 = (𝜋1)|𝐼2
are invariant as well. Hence the push-forward image

𝜋𝑥
𝐼2

= 𝜋𝐼2 ∘ 𝑇−1
𝑥

of measure 𝜋𝐼2 with respect to 𝑇𝑥 : (𝑥,𝑦,𝑧) ↦→ (1 − 𝑥,𝑦,𝑧) has the same hyperplane
projections as 𝜋𝐼2 . Thus

𝜋𝐼1 + 𝜋𝑥
𝐼2

belongs to 𝒫𝜆.
Let us show that 𝜋𝐼2 = 0. To this end it is sufficient to show that∫︁

𝑥𝑦𝑧𝑑𝜇 <

∫︁
𝑥𝑦𝑧𝑑�̂�,

where �̂� = 𝜇 ∘ (𝑇 𝑥)−1, for every non-zero measure 𝜇, which is invariant with respect
to 𝑇 𝑥𝑦, 𝑇 𝑦𝑧, 𝑇 𝑥𝑧, and sastisfies supp(𝜇) ⊂ I2. Indeed, if we show this, then we get∫︁

𝑥𝑦𝑧𝑑𝜋𝐼1 +

∫︁
𝑥𝑦𝑧𝑑𝜋𝑥

𝐼2
>

∫︁
𝑥𝑦𝑧𝑑𝜋𝐼1 +

∫︁
𝑥𝑦𝑧𝑑𝜋𝐼2 .

The latter implies that measure 𝜋𝐼1 +𝜋𝑥
𝐼2
gives better value to the total cost function.
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Let 𝜈 be the projections of 𝜇 (hence, projections of �̂�) onto 𝑥-axis, and 𝜂𝑥(𝑑𝑦,𝑑𝑧),
𝜂𝑥(𝑑𝑦,𝑑𝑧) are corresponding conditional measures

𝜇 = 𝜈(𝑑𝑥)𝜂𝑥(𝑑𝑦𝑑𝑧),

�̂� = 𝜈(𝑑𝑥)𝜂𝑥(𝑑𝑦𝑑𝑧).

Note that 𝜂 is invariant with respect to 𝑇 𝑦𝑧 and

𝜂𝑥 = 𝜂𝑥 ∘ 𝑇−1
𝑦 = 𝜂𝑥 ∘ 𝑇−1

𝑧 = 𝜂1−𝑥 = 𝜂1−𝑥 ∘ 𝑇−1
𝑧 . (5.2)

Hence∫︁
𝑥𝑦𝑧(𝑑𝜇− 𝑑�̂�) =

∫︁ (︁∫︁
𝑦𝑧(𝑑𝜂𝑥 − 𝑑𝜂𝑥)

)︁
𝑥𝜈(𝑑𝑥)

=

∫︁ 1
2

0

(︁∫︁
𝑦𝑧(𝑑𝜂𝑥 − 𝑑𝜂𝑥)

)︁
𝑥𝜈(𝑑𝑥) +

∫︁ 1

1
2

(︁∫︁
𝑦𝑧(𝑑𝜂𝑥 − 𝑑𝜂𝑥)

)︁
𝑥𝜈(𝑑𝑥)

=

∫︁ 1

1
2

(︁∫︁
𝑦𝑧(𝑑𝜂𝑥 − 𝑑𝜂𝑥)

)︁
(2𝑥− 1)𝜈(𝑑𝑥).

Next, using 𝑇 𝑧𝑦-invariance of 𝜂 and (5.2), one gets∫︁
𝑦𝑧(𝑑𝜂𝑥 − 𝑑𝜂𝑥) =

1

2

(︁∫︁
(𝑦𝑧 + (1 − 𝑧)(1 − 𝑦))(𝑑𝜂𝑥 − 𝑑𝜂𝑥)

)︁
=

1

2

∫︁ (︀
𝑦𝑧 + (1 − 𝑧)(1 − 𝑦) − (1 − 𝑦)𝑧 − 𝑦(1 − 𝑧)

)︀
𝑑𝜂𝑥 =

1

2

∫︁
(2𝑦 − 1)(2𝑧 − 1)𝑑𝜂𝑥.

Finally,

∫︁
𝑥𝑦𝑧(𝑑𝜇− 𝑑�̂�) =

1

2

∫︁ 1

1
2

[︀ ∫︁
(2𝑦 − 1)(2𝑧 − 1)𝑑𝜂𝑥(𝑑𝑧𝑑𝑦)

]︀
(2𝑥− 1)𝜈(𝑑𝑥).

Since the support of 𝜇 lies in 𝐼2, one gets
∫︀
𝑥𝑦𝑧(𝑑𝜇− 𝑑�̂�) < 0.

Thus we get that the support of 𝜋1 belongs to the union of four disjoint cubes
with volume 1/23

𝐽1 = 𝐼1 = 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4.

Hence the restriction of 𝜋1 onto every cube 𝐶𝑖 is a solution of (2.1) for the same cost
function with marginals which are restrictions of Lebesgue measure on projections
of correspoding 𝐶𝑖. Hence the same arguments are applicable to every 𝐶𝑖 and one
gets a solution 𝜋2 supported on a union of 16 cubes of volume 1/43

𝐽2 = ∪4
𝑖=1 ∪4

𝑗=1 𝐶𝑖𝑗.

Reapeating this argument one gets a sequence of decreasing sets 𝐽𝑛 such that each
of them contains support of a measure 𝜋𝑛 which solves (2.1). Clearly, the sequence
{𝜋𝑛} admits a weak limit 𝜋 supported on

𝐽 = ∩∞
𝑛=1𝐽𝑛.

We get immediately that 𝜋 solves the desired problem, moreover 𝐽 is a graph of
𝑇 (𝑥,𝑦) (up to a set which projection on 𝑥𝑦 has zero measure) and 𝜋 is the unique
measure supported on 𝐽 with the desired projections. �
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The following pictures represent the iteration porocedure.

As we already mentioned, 𝐽 is a self-similar fractal of Hausdorff dimension two,
called “Sierpiński tetrahedron”. This is a Kantor-type set which is a limit of itera-
tions of unions of 4𝑛 tetrahedrons. Remarkably, in our proof we get an alternative
construction and obtain 𝐽 as an intersection of collections of cubes.

Remark 5.4. The most trivial example of a fractal solution to the Monge-Kantorovich
problem is apparently the (3,2)-Kantorovich problem with Lebesgue measure projec-
tions and 𝑐 = 1 − 𝑥⊕ 𝑦. Then the solution is again the Sierpiński tetrahedron. But
this due to a special choice of the cost function. Unlike this, our main example deals
with the smooth cost function 𝑐 = 𝑥𝑦𝑧 and the extremality of the presented solution
is highly non-obvious. In addition, we will see in the subsequent sections that a so-
lution to the corresponding dual problem provides a non-trivial representation of the
Sierpiński tetrahedron as a set of zeroes of an a.e. differentiable function.

Less trivial example is given by measures supported on the set

𝑇 = {𝑥 + 𝑦 = 𝑥⊕ 𝑦, 𝑥 ∈ [0,1], 𝑦 ∈ [0,1]}, (5.3)

which is a variant of the Sierpiński triangle (see [7]).
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Note that all 𝑥 ∈ [0,1], 𝑦 ∈ [0,1] satisfy

𝑥 + 𝑦 ≥ 𝑥⊕ 𝑦.

Let 𝜋 be any probability measure on 𝑇 with projections 𝑃𝑟𝑥𝜋 = 𝜇, 𝑃𝑟𝑦𝜋 = 𝜈.
Consider the Monge–Kantorovich problem∫︁

[0,1]2
𝑥⊕ 𝑦 𝑑𝑃 → max, 𝑃 𝑟𝑥𝑃 = 𝜇, 𝑃𝑟𝑦𝜋 = 𝑃. (5.4)

By the Kantorovich duality principle the functions 𝑥, 𝑦 solve the corresponding dual
problem. Hence 𝜋 is a solution to (5.4).

In particular, the self-similar measure 𝜋0 on 𝑇 solves problem (5.4) with marginals
𝜇 = 𝜈, where 𝜇 can be described as the distribution of the series

∑︀∞
𝑖=1

𝜉𝑖
2𝑖
, where the

sequence of i.i.d. Bernoulli random variables {𝜉𝑖} satisfies 𝜉𝑖 = 1 with probability
1/3 and 𝜉𝑖 = 0 with probability 2/3. Another example is the (normalized) Lebesgue
measure on the main diagonal.

6. Main example. Dual problem.

For the problem ∫︁
𝑥𝑦𝑧𝑑𝜋 → min,

where 𝜋 has Lebesgue projections onto principal hyperplane, let us consider the
corresponding dual problem:∫︁

𝐹 (𝑥,𝑦)𝑑𝑥𝑑𝑦 +

∫︁
𝐺(𝑦,𝑧)𝑑𝑥𝑑𝑦 +

∫︁
𝐻(𝑧,𝑥)𝑑𝑥𝑑𝑧 → max, (6.1)

𝐹 (𝑥,𝑦) + 𝐺(𝑦,𝑧) + 𝐻(𝑧,𝑥) ≤ 𝑥𝑦𝑧. (6.2)

It is clear that by symmetries of the problem one can reduce the general problem to
the case

𝐹 = 𝐺 = 𝐻, 𝐹 (𝑥,𝑦) = 𝐹 (𝑦,𝑥).

Let us remind to the reader that by the standard duality arguments any function 𝐹
satisfying (6.2) and

𝐹 (𝑥,𝑦) + 𝐺(𝑦,𝑧) + 𝐻(𝑧,𝑥) = 𝑥𝑦𝑧, 𝑧 = 𝑥⊕ 𝑦

(𝑥,𝑦)-almost everywere is a solution to (6.1).
Discretizing the problem and performing finite-dimensional linear programming

algorithms we were able to guess reccurent relations for the restriction of 𝐹 onto the
set of dyadic rational numbers. Using these relations we prove the desired properties
of our function. Finally, we will give an integral representation for the solution in
the next section.

6.1. Definition and easy properties. Let N0 be the set of all non-negative inte-
gers.

Definition 6.1. Let 𝑓 : N0 × N0 → Z be a function defined as follows. Set:

𝑓(0, 0) = 0, 𝑓(0, 1) = 𝑓(1, 0) = −1, 𝑓(1, 1) = 2.
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In all other points 𝑓 is defined by the following recurrent relations:

𝑓(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

8𝑓(𝑎
2
, 𝑏
2
) if 𝑎 ≡ 0 (mod 2) and 𝑏 ≡ 0 (mod 2),

4
(︀
𝑓(𝑎−1

2
, 𝑏
2
) + 𝑓(𝑎+1

2
, 𝑏
2
)
)︀

+ 3 if 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 0 (mod 2),

4
(︀
𝑓(𝑎

2
, 𝑏−1

2
) + 𝑓(𝑎

2
, 𝑏+1

2
)
)︀

+ 3 if 𝑎 ≡ 0 (mod 2) and 𝑏 ≡ 1 (mod 2),

2
(︀
𝑓(𝑎−1

2
, 𝑏−1

2
) + 𝑓(𝑎−1

2
, 𝑏+1

2
) + 𝑓(𝑎+1

2
, 𝑏−1

2
) + 𝑓(𝑎+1

2
, 𝑏+1

2
)
)︀

+ 2,

if 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 1 (mod 2).

(6.3)

The following properties can be immediately derived from the definition.

𝑓(𝑎, 𝑏) = 𝑓(𝑏, 𝑎). (6.4)

If 𝑎 is odd and 𝑏 is even, then

𝑓(𝑎, 𝑏) =
1

2
(𝑓(𝑎 + 1, 𝑏) + 𝑓(𝑎− 1, 𝑏)) + 3. (6.5)

If 𝑎 is odd and 𝑏 is odd, then

𝑓(𝑎, 𝑏) =
1

2
(𝑓(𝑎 + 1, 𝑏) + 𝑓(𝑎− 1, 𝑏)) − 2. (6.6)

𝑓(𝑎, 𝑏) ≡ 𝑎 + 𝑏 (mod 2). (6.7)

6.2. Continuity. Using the homogeneity relation

𝑓(2𝑎, 2𝑏) = 8𝑓(𝑎, 𝑏)

with factor two one can define 𝑓𝐶(𝑥, 𝑦) for any non-negative binary-rational 𝑥 and
𝑦. Namely, assume that (𝑥, 𝑦) = ( 𝑎

2𝑛
, 𝑏
2𝑛

), then one can set 𝑓𝐶(𝑥, 𝑦) = 8−𝑛𝑓(𝑎, 𝑏). It
is easy to check that 𝑓𝐶 is well-defined. In what follows we extend 𝑓𝐶 to all pairs
of non-negative real numbers by continuity. To this end we need some estimates of
the increments of 𝑓 .

Consider a family of integer segments 𝐼𝑛: 𝐼𝑛 = [0, 2𝑛+1], 𝑛 ≥ 0. Note that for any
𝑎 ∈ 𝐼𝑛 with 𝑛 ≥ 1 the numbers 𝑎

2
for even 𝑎, and 𝑎+1

2
and 𝑎−1

2
for odd 𝑎, belong to

the segment 𝐼𝑛−1.
Set:

𝑁𝑛,𝑚 = max(|𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏)| : 𝑎, (𝑎 + 1) ∈ 𝐼𝑛, 𝑏 ∈ 𝐼𝑚).

Lemma 6.2. There exists universal constant 𝐶, such that 𝑁𝑛,𝑚 ≤ 𝐶(4𝑛 + 4𝑚).

Proof. It will be convenient to prove more general inequality𝑁𝑛,𝑚 ≤ 𝐶1(4
𝑛+4𝑚)+𝐶2

applying induction method. At the end we obtain that 𝐶2 can take negative values.
Base of induction for 𝑛 = 𝑚 = 0 can be checked directly: 𝑁0,0 = 15 ≤ 2𝐶1 + 𝐶2.
To prove the step of induction let us estimate |𝑓(𝑎+ 2, 𝑏)− 𝑓(𝑎, 𝑏)|, where 𝑏 ∈ 𝐼𝑚,

𝑎, (𝑎 + 2) ∈ 𝐼𝑛 and 𝑎 is even.
Let 𝑏 be even. Then |𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)| = 8|𝑓(𝑎

2
+ 1, 𝑏

2
) − 𝑓(𝑎

2
, 𝑏
2
)|. If 𝑛 and 𝑚

are both strictly positive, we obtain by induction hypothesis

8

⃒⃒⃒⃒
𝑓

(︂
𝑎

2
+ 1,

𝑏

2

)︂
− 𝑓

(︂
𝑎

2
,
𝑏

2

)︂⃒⃒⃒⃒
≤ 𝑁𝑚−1,𝑛−1.

If only one number (say, 𝑚) is positive, then

8

⃒⃒⃒⃒
𝑓

(︂
𝑎

2
+ 1,

𝑏

2

)︂
− 𝑓

(︂
𝑎

2
,
𝑏

2

)︂⃒⃒⃒⃒
≤ 𝑁𝑚−1,0.
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In any case one gets

8

⃒⃒⃒⃒
𝑓

(︂
𝑎

2
+ 1,

𝑏

2

)︂
− 𝑓

(︂
𝑎

2
,
𝑏

2

)︂⃒⃒⃒⃒
≤ 8

(︂
𝐶1

(︂
4𝑛−1 + 4𝑚−1 +

3

4

)︂
+ 𝐶2

)︂
=

= 2𝐶1(4
𝑛 + 4𝑚) + (6𝐶1 + 8𝐶2). (6.8)

Here we used inequality 4max(𝑛−1,0) + 4max(𝑚−1,0) ≤ 4𝑛−1 + 4𝑚−1 + 3
4
, which holds

provided one of the numbers 𝑛,𝑚 is positive.
Using that 𝑎 + 1 is odd and applying the recurrent relations (6.5) one gets

𝑓(𝑎 + 1, 𝑏) =
1

2
(𝑓(𝑎, 𝑏) + 𝑓(𝑎 + 2, 𝑏)) + 3,

𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎 + 1, 𝑏) =
1

2
(𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)) − 3,

𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏) =
1

2
(𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)) + 3.

These estimates imply that |𝑓(𝑎+ 1, 𝑏)− 𝑓(𝑎, 𝑏)| and |𝑓(𝑎+ 2, 𝑏)− 𝑓(𝑎+ 1, 𝑏)| can
be estimated from above by

1

2
|𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)| + 3 ≤ 𝐶1(4

𝑛 + 4𝑚) + (3𝐶1 + 4𝐶2 + 3) ≤

≤ 𝐶1(4
𝑛 + 4𝑚) + 𝐶2, (6.9)

provided 3𝐶1 + 4𝐶2 + 3 ≤ 𝐶2.
Hence we obtain that for any even 𝑏 ∈ 𝐼𝑚 and for any even 𝑎, (𝑎 + 1) ∈ 𝐼𝑛 the

following inequality holds: |𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏)| ≤ 𝐶1(4
𝑛 + 4𝑚) + 𝐶2.

Let now 𝑏 be odd. We estimate |𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)| for any even 𝑎 satisfying
𝑎, (𝑎 + 2) ∈ 𝐼𝑛 in a similar manner. Using recurrent relations (6.3) we obtain:

𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏) = 4

[︂
𝑓

(︂
𝑎

2
+ 1,

𝑏 + 1

2

)︂
− 𝑓

(︂
𝑎

2
,
𝑏 + 1

2

)︂]︂
+

+ 4

[︂
𝑓

(︂
𝑎

2
+ 1,

𝑏− 1

2

)︂
− 𝑓

(︂
𝑎

2
,
𝑏− 1

2

)︂]︂
+ 6 ≤

≤ 8

[︂
𝐶1

(︂
4𝑛−1 + 4𝑚−1 +

3

4

)︂
+ 𝐶2

]︂
+ 6 = 2𝐶1(4

𝑛 + 4𝑚) + (6𝐶1 + 8𝐶2 + 6).

Next we estimate |𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏)| and |𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎 + 1, 𝑏)|. Since 𝑎 + 1
and 𝑏 are odd, one gets applying (6.6)

𝑓(𝑎 + 1, 𝑏) =
1

2
(𝑓(𝑎, 𝑏) + 𝑓(𝑎 + 2, 𝑏)) − 2,

𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎 + 1, 𝑏) =
1

2
(𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)) + 2,

𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏) =
1

2
(𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)) − 2.

Finally,

|𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏)|, |𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎 + 1, 𝑏)| ≤

≤ 1

2
|𝑓(𝑎 + 2, 𝑏) − 𝑓(𝑎, 𝑏)| + 2 ≤ 𝐶1(4

𝑛 + 4𝑚) + 3𝐶1 + 4𝐶2 + 5 ≤

≤ 𝐶1(4
𝑛 + 4𝑚) + 𝐶2,
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provided that 3𝐶1 + 4𝐶2 + 5 ≤ 𝐶2.
Now we get that for all odd 𝑏 ∈ 𝐼𝑚 and for all 𝑎, (𝑎 + 1) ∈ 𝐼𝑛 one has

|𝑓(𝑎 + 1, 𝑏) − 𝑓(𝑎, 𝑏)| ≤ 𝐶1(4
𝑛 + 4𝑚) + 𝐶2.

This implies 𝑁𝑛,𝑚 ≤ 𝐶1(4
𝑛 + 4𝑚) + 𝐶2, which completes the induction step.

To conclude it is sufficient to find solutions 𝐶1 and 𝐶2 to the following system of
inequalities ⎧⎪⎨⎪⎩

2𝐶1 + 𝐶2 ≥ 15,

3𝐶1 + 4𝐶2 + 3 ≤ 𝐶2,

3𝐶1 + 4𝐶2 + 5 ≤ 𝐶2.

(6.10)

Set: 𝐶1 = 17, 𝐶2 = −19. This completes the proof. �

In what folows we consider the square
𝐼 = [0, 2𝑁+1] × [0, 2𝑁+1].

Assume that dyadic rational numbers 𝑥,∆𝑥, 𝑦,∆𝑦 satisfy (𝑥, 𝑦), (𝑥+∆𝑥, 𝑥+∆𝑦) ∈ 𝐼.

Lemma 6.3. |𝑓𝐶(𝑥 + ∆𝑥, 𝑥 + ∆𝑦) − 𝑓𝐶(𝑥, 𝑦)| ≤ 22𝑁+1𝐶(|∆𝑥| + |∆𝑦|).
Proof. There exist an integer number 𝑀 , such that 2𝑀𝑥, 2𝑀𝑦, 2𝑀∆𝑥, 2𝑀∆𝑦 are
non-negative integers. Then the desired result follows from the line of inequalities

|𝑓𝐶(𝑥 + ∆𝑥, 𝑥 + ∆𝑦) − 𝑓𝐶(𝑥, 𝑦)| =

=
1

8𝑀
|𝑓(2𝑀(𝑥 + ∆𝑥), 2𝑀(𝑦 + ∆𝑦)) − 𝑓(2𝑀𝑥, 2𝑀𝑦)| ≤

≤ 1

8𝑀
2𝑀(|∆𝑥| + |∆𝑦|)𝑁𝑁+𝑀,𝑁+𝑀 ≤

≤ 1

4𝑀
𝐶(4𝑁+𝑀 + 4𝑁+𝑀)(|∆𝑥| + |∆𝑦|) = 22𝑁+1𝐶(|∆𝑥| + |∆𝑦|).

�

This statement immediately implies that for every Cauchy sequence (𝑥𝑖, 𝑦𝑖) the
sequence 𝑓𝐶(𝑥𝑖, 𝑦𝑖) is a Cauchy sequence as well. Thus 𝑓𝐶 can be extended to a
continuous function on the set of non-negative real numbers. In what follows 𝑓𝐶
denotes this extension.

From the properties of 𝑓 and continuity of 𝑓𝐶 we infer the important homogeneity
property:

Proposition 6.4.
𝑓𝐶(2𝑥, 2𝑦) = 8𝑓𝐶(𝑥, 𝑦).

6.3. Solution to the dual problem. In this section we prove our main duality
result. Namely, let us set

𝐹 (𝑎, 𝑏, 𝑐) = 𝑓(𝑎, 𝑏) + 𝑓(𝑏, 𝑐) + 𝑓(𝑐, 𝑎)

and
𝐹𝐶(𝑥, 𝑦, 𝑧) = 𝑓𝐶(𝑥, 𝑦) + 𝑓𝐶(𝑦, 𝑧) + 𝑓𝐶(𝑧, 𝑥).

We show that function 1
8
𝐹𝐶 solves the dual problem. Note that Theorem 3.2 does

not establish existence of a solution to the dual problem. In this concrete example
we construct it explicitly.

The following theorem is the main result of this section.
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Theorem 6.5. Function 𝐹𝐶 satisfies

𝐹𝐶(𝑥,𝑦,𝑧) ≤ 8𝑥𝑦𝑧.

The case of equality 𝐹𝐶(𝑥,𝑦,𝑧) = 8𝑥𝑦𝑧 holds if and only if (𝑥,𝑦,𝑧) belongs to the
closure of the set

𝑥⊕ 𝑦 ⊕ 𝑧 = 0.

In particular, the triple 1
8
𝑓𝐶(𝑥,𝑦), 1

8
𝑓𝐶(𝑥,𝑧), 1

8
𝑓𝐶(𝑦,𝑧) solves problem (6.1).

Proof. See Corollary 6.7 and Proposition 6.11. �

Proposition 6.6. Function 𝐹 (𝑎,𝑏,𝑐) satisfies inequality

𝐹 (𝑎, 𝑏, 𝑐) ≤ 8𝑎𝑏𝑐.

The equality case
𝐹 (𝑎, 𝑏, 𝑐) = 8𝑎𝑏𝑐 (6.11)

can hold only if 𝑎 + 𝑏 + 𝑐 ≡ 0 (mod 2).

In particular, continuity of 𝑓𝐶 implies

Corollary 6.7.
𝐹𝐶(𝑥, 𝑦, 𝑧) ≤ 8𝑥𝑦𝑧.

Proof. Let us prove the claim by induction. Base of induction is easy to check. Note
that 𝐹 (𝑎, 𝑏, 𝑐) = 𝑓(𝑎, 𝑏) + 𝑓(𝑏, 𝑐) + 𝑓(𝑐, 𝑎) ≡ (𝑎 + 𝑏) + (𝑏 + 𝑐) + (𝑐 + 𝑎) ≡ 0 (mod 2)
because of (6.7). The latter implies 𝐹 (𝑎, 𝑏, 𝑐) ≤ 8𝑎𝑏𝑐− 2 provided 𝐹 (𝑎, 𝑏, 𝑐) < 8𝑎𝑏𝑐.

To prove the induction step we consider several cases.
∙ All of 𝑎, 𝑏, 𝑐 are even. From (6.3) we infer 𝐹 (𝑎, 𝑏, 𝑐) = 8𝐹 (𝑎

2
, 𝑏
2
, 𝑐
2
). By

induction hypothesis 𝐹 (𝑎, 𝑏, 𝑐) = 8𝐹 (𝑎
2
, 𝑏
2
, 𝑐
2
) ≤ 8 · 8 · 𝑎

2
· 𝑏
2
· 𝑐
2

= 8𝑎𝑏𝑐.
∙ Assume that one of the numbers 𝑎, 𝑏, 𝑐 (say, 𝑎) is odd and the other are even.
We need to check

𝐹 (𝑎, 𝑏, 𝑐) ≤ 8𝑎𝑏𝑐− 2, (6.12)

because 𝑎 + 𝑏 + 𝑐 ≡ 1 (mod 2). Applying (6.3) one gets

𝐹 (𝑎, 𝑏, 𝑐) = 𝑓(𝑎, 𝑏) + 𝑓(𝑎, 𝑐) + 𝑓(𝑏, 𝑐) =

=

[︂
4

(︂
𝑓

(︂
𝑎− 1

2
,
𝑏

2

)︂
+ 𝑓

(︂
𝑎 + 1

2
,
𝑏

2

)︂)︂
+ 3

]︂
+

+

[︂
4

(︂
𝑓

(︂
𝑎− 1

2
,
𝑐

2

)︂
+ 𝑓

(︂
𝑎 + 1

2
,
𝑐

2

)︂)︂
+ 3

]︂
+ 8𝑓

(︂
𝑏

2
,
𝑐

2

)︂
=

= 4

(︂
𝐹

(︂
𝑎− 1

2
,
𝑏

2
,
𝑐

2

)︂
+ 𝐹

(︂
𝑎 + 1

2
,
𝑏

2
,
𝑐

2

)︂)︂
+ 6.

One of the triples
(︀
𝑎−1
2
, 𝑏
2
, 𝑐
2

)︀
,
(︀
𝑎+1
2
, 𝑏
2
, 𝑐
2

)︀
admits even sum of elements,

hence satisfies (6.12).
Therefore we can write:

4

(︂
𝐹

(︂
𝑎− 1

2
,
𝑏

2
,
𝑐

2

)︂
+ 𝐹

(︂
𝑎 + 1

2
,
𝑏

2
,
𝑐

2

)︂)︂
+ 6 ≤

4((𝑎− 1)𝑏𝑐 + (𝑎 + 1)𝑏𝑐− 2) + 6 = 8𝑎𝑏𝑐− 2. (6.13)
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∙ Assume that there are exactly two odd numbers among 𝑎, 𝑏, 𝑐. Without
loss of generality they are 𝑎 and 𝑏. Check that 𝐹 (𝑎, 𝑏, 𝑐) ≤ 8𝑎𝑏𝑐, because
𝑎 + 𝑏 + 𝑐 ≡ 0 (mod 2). Applying (6.3) one gets

𝐹 (𝑎, 𝑏, 𝑐) = 𝑓(𝑎, 𝑏) + 𝑓(𝑏, 𝑐) + 𝑓(𝑐, 𝑎) =

=

⎡⎣2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝑓

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2

)︂
+ 2

⎤⎦+

+

⎡⎣4
∑︁

Δ𝑏∈{−1,1}

𝑓

(︂
𝑏 + ∆𝑏

2
,
𝑐

2

)︂
+ 3

⎤⎦+

+

⎡⎣4
∑︁

Δ𝑎∈{−1,1}

𝑓

(︂
𝑎 + ∆𝑎

2
,
𝑐

2

)︂
+ 3

⎤⎦ =

= 2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝐹

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2
,
𝑐

2

)︂
+ 8. (6.14)

Note that triples of the type (𝑎+Δ𝑎
2

, 𝑏+Δ𝑏
2

, 𝑐
2
) there are exactly two with

even sum of elements, so by induction hypothesis for at most two triples
(6.11) holds.

Hence

2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝐹

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2
,
𝑐

2

)︂
+ 8 ≤ 2((2𝑎)(2𝑏)𝑐− 2 · 2) + 8 = 8𝑎𝑏𝑐.

∙ Finally let us assume that all 𝑎, 𝑏, 𝑐 are odd. Thus 𝑎 + 𝑏 + 𝑐 ≡ 1 (mod 2), so
we need to check 𝐹 (𝑎, 𝑏, 𝑐) ≤ 8𝑎𝑏𝑐− 2. Again, (6.3) implies

𝐹 (𝑎, 𝑏, 𝑐) = 𝑓(𝑎, 𝑏) + 𝑓(𝑏, 𝑐) + 𝑓(𝑐, 𝑎) =

=

⎡⎣2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝑓

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2

)︂
+ 2

⎤⎦+

+

⎡⎣2
∑︁

Δ𝑏,Δ𝑐∈{−1,1}

𝑓

(︂
𝑏 + ∆𝑏

2
,
𝑐 + ∆𝑐

2

)︂
+ 2

⎤⎦+

+

⎡⎣2
∑︁

Δ𝑐,Δ𝑎∈{−1,1}

𝑓

(︂
𝑐 + ∆𝑐

2
,
𝑎 + ∆𝑎

2

)︂
+ 2

⎤⎦ =

=
∑︁

Δ𝑎,Δ𝑏,Δ𝑐∈{−1,1}

𝐹

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2
,
𝑐 + ∆𝑐

2

)︂
+ 6.

Counting the equality cases and repeating the arguments from above one
gets∑︁

Δ𝑎,Δ𝑏,Δ𝑐∈{−1,1}

𝐹

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2
,
𝑐 + ∆𝑐

2

)︂
+ 6 ≤

≤ (2𝑎)(2𝑏)(2𝑐) − 2 · 4 + 6 = 8𝑎𝑏𝑐− 2.
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Step of induction is verified in all possible cases.
�

6.4. Some nice identities. Here we prove some other useful identities for 𝑓(𝑎, 𝑏)
and their continious analogues for 𝑓𝐶(𝑥, 𝑦).

Proposition 6.8. Let 0 ≤ 𝑎, 𝑏 ≤ 2𝑛. Then

𝑓(2𝑛 + 𝑎, 2𝑛 + 𝑏) = 2 · 8𝑛 + 6 · 4𝑛(𝑎 + 𝑏) + 𝑓(𝑎, 𝑏).

Proof. Apply induction by 𝑛. The case 𝑛 = 0 is easy to check.
Let 𝑎 and 𝑏 be even. Then

𝑓(2𝑛 + 𝑎, 2𝑛 + 𝑏) = 8𝑓

(︂
2𝑛−1 +

𝑎

2
, 2𝑛−1 +

𝑏

2

)︂
=

= 8

(︂
2 · 8𝑛−1 + 6 · 4𝑛−1𝑎 + 𝑏

2
+ 𝑓

(︂
𝑎

2
,
𝑏

2

)︂)︂
=

= 2 · 8𝑛 + 6 · 4𝑛(𝑎 + 𝑏) + 𝑓(𝑎, 𝑏).

Let exactly one of the numbers 𝑎 or 𝑏 be odd. Without loss of generality assume
that 𝑎 is odd. Then

𝑓(2𝑛 + 𝑎, 2𝑛 + 𝑏) =

= 4

(︂
𝑓

(︂
2𝑛−1 +

𝑎 + 1

2
, 2𝑛−1 +

𝑏

2

)︂
+ 𝑓

(︂
2𝑛−1 + 2𝑛−1 +

𝑎− 1

2
,
𝑏

2

)︂)︂
+ 3 =

= 4

[︂
2 · 8𝑛−1 + 6 · 4𝑛−1𝑎 + 𝑏 + 1

2
+ 𝑓

(︂
𝑎 + 1

2
,
𝑏

2

)︂]︂
+

+ 4

[︂
2 · 8𝑛−1 + 6 · 4𝑛−1𝑎 + 𝑏− 1

2
+ 𝑓

(︂
𝑎− 1

2
,
𝑏

2

)︂]︂
+

+ 4

[︂
𝑓

(︂
𝑎 + 1

2
,
𝑏

2

)︂
+ 𝑓

(︂
𝑎− 1

2
,
𝑏

2

)︂]︂
+ 3 =

= 2 · 8𝑛 + 6 · 4𝑛(𝑎 + 𝑏) + 𝑓(𝑎, 𝑏).

Let both of 𝑎 and 𝑏 be odd. Similarly by the induction hypothesis:

𝑓(2𝑛 + 𝑎, 2𝑛 + 𝑏) = 2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝑓

(︂
2𝑛−1 +

𝑎 + ∆𝑎

2
, 2𝑛−1 +

𝑏 + ∆𝑏

2

)︂
+ 2 =

= 2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

[︂
2 · 8𝑛−1 + 6 · 4𝑛−1𝑎 + 𝑏 + ∆𝑎 + ∆𝑏

2
+ 𝑓

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2

)︂]︂
+ 2 =

= 2 · 8𝑛 + 6 · 4𝑛(𝑎 + 𝑏) + 2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝑓

(︂
𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2

)︂
+ 2 =

= 2 · 8𝑛 + 6 · 4𝑛(𝑎 + 𝑏) + 𝑓(𝑎, 𝑏).

�

Proposition 6.9. For 0 ≤ 𝑎, 𝑏 ≤ 2𝑛 one has

𝑓(2𝑛 + 𝑎, 𝑏) = −8𝑛 − 6 · 4𝑛𝑎 + 4𝑛+1𝑏 + 8 · 2𝑛𝑎𝑏 + 𝑓(𝑎, 𝑏).
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Proof. The proof is similar to the proof of Proposition 6.8. Apply the induction by
𝑛. The base for 𝑛 = 0 can be checked by an easy computation.

Consider 𝑛 ≥ 1. Set 𝑔1(𝑛, 𝑎, 𝑏) = −8𝑛, 𝑔2(𝑛,𝑎,𝑏) = 6 · 4𝑛𝑎, 𝑔3(𝑛,𝑎,𝑏) = 4𝑛+1𝑏,
𝑔4(𝑛,𝑎,𝑏) = 8 · 2𝑛𝑎𝑏. For induction step it is sufficient to check that the following
identities hold:

𝑔𝑖(𝑛, 𝑎, 𝑏) = 8𝑔𝑖

(︂
𝑛− 1,

𝑎

2
,
𝑏

2

)︂
,

𝑔𝑖(𝑛, 𝑎, 𝑏) = 4𝑔𝑖

(︂
𝑛− 1,

𝑎− 1

2
,
𝑏

2

)︂
+ 4𝑔𝑖

(︂
𝑛− 1,

𝑎 + 1

2
,
𝑏

2

)︂
,

𝑔𝑖(𝑛, 𝑎, 𝑏) = 4𝑔𝑖

(︂
𝑛− 1,

𝑎

2
,
𝑏− 1

2

)︂
+ 4𝑔𝑖

(︂
𝑛− 1,

𝑎

2
,
𝑏 + 1

2

)︂
,

𝑔𝑖(𝑛, 𝑎, 𝑏) = 2
∑︁

Δ𝑎,Δ𝑏∈{−1,1}

𝑔𝑖

(︂
𝑛− 1,

𝑎 + ∆𝑎

2
,
𝑏 + ∆𝑏

2

)︂
.

Next we prove the desired identity by considering four different cases: 𝑎 is odd(even),
𝑏 is odd(even) and applying an appropriate identity for all summands in the right
hand side. For any of 8𝑛, 4𝑛𝑎, 4𝑛𝑏 and 2𝑛𝑎𝑏 these properties are obviously true. �

Clearly, the continious analogues of these identities look as follows.

Proposition 6.10. Let 0 ≤ 𝑥, 𝑦 ≤ 1
2
. Then:

𝑓𝐶

(︂
1

2
+ 𝑥,

1

2
+ 𝑦

)︂
=

1

4
+

3

2
(𝑥 + 𝑦) + 𝑓𝐶(𝑥, 𝑦),

𝑓𝐶

(︂
1

2
+ 𝑥, 𝑦

)︂
= −1

8
− 3

2
𝑥 + 𝑦 + 4𝑥𝑦 + 𝑓𝐶(𝑥, 𝑦).

6.5. Case of equality.

Proposition 6.11. The relation 𝑥⊕ 𝑦 ⊕ 𝑧 = 0 implies 𝐹𝐶(𝑥, 𝑦, 𝑧) = 8𝑥𝑦𝑧.

Proof. Assume the opposite and consider the maximum of 8𝑥𝑦𝑧−𝐹𝐶(𝑥, 𝑦, 𝑧) on the
closure 𝑆 of the set of points (𝑥, 𝑦, 𝑧) satisfying 𝑥 ⊕ 𝑦 ⊕ 𝑧 = 0. This maximum 𝐶
exists since the set is compact and 8𝑥𝑦𝑧 − 𝐹𝐶(𝑥, 𝑦, 𝑧) is continuous. It is sufficient
to show that 𝐶 is not strictly positive. Find a point (𝑥0, 𝑦0, 𝑧0) with 𝑧0 = 𝑥0 ⊕ 𝑦0
such that 8𝑥0𝑦0𝑧0 − 𝐹𝐶(𝑥0, 𝑦0, 𝑧0) > 𝐶/2.

The first numbers in the binary representations of 𝑥0,𝑦0,𝑧0 contains either all
zeroes of exactly two units, because 𝑥0 ⊕ 𝑦0 ⊕ 𝑧0 = 0. If they all are zeroes, then
2𝑥0 ⊕ 2𝑦0 ⊕ 2𝑧0 = 0. Thus 8(2𝑥0)(2𝑦0)(2𝑧0) − 𝐹𝐶(2𝑥0, 2𝑦0, 2𝑧0) > 4𝐶 > 𝐶, this
contradicts to the choice of 𝐶. If the numbers contain two units, without loss of
generality assume 𝑥0 = 𝑦0 = 1. Set 𝑥0 = 1

2
+ 𝑥1, 𝑦0 = 1

2
+ 𝑦1. The identities (6.10)

imply
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8𝑥0𝑦0𝑧0 − 𝐹𝐶(𝑥0, 𝑦0, 𝑧0) = 8
(︀
𝑥1 +

1

2

)︀(︀
𝑦1 +

1

2

)︀
𝑧0 − 𝐹𝐶

(︀
𝑥1 +

1

2
, 𝑦1 +

1

2
, 𝑧0

)︀
=

= 8𝑥1𝑦1𝑧0 + 4𝑥1𝑧0 + 4𝑦1𝑧0 + 2𝑧0−

− 𝑓𝐶

(︂
𝑥1 +

1

2
, 𝑦1 +

1

2

)︂
− 𝑓𝐶

(︂
𝑥1 +

1

2
, 𝑧0

)︂
− 𝑓𝐶

(︂
𝑦1 +

1

2
, 𝑧0

)︂
=

= 8𝑥1𝑦1𝑧0 + 4𝑥1𝑧0 + 4𝑦1𝑧0 + 2𝑧0 −
[︂

1

4
+

3

2
(𝑥1 + 𝑦1) + 𝑓𝐶(𝑥1, 𝑦1)

]︂
−

−
[︂
−1

8
− 3

2
𝑥1 + 𝑧0 + 4𝑥1𝑧0 + 𝑓𝐶(𝑥1, 𝑧0)

]︂
−
[︂
−1

8
− 3

2
𝑦1 + 𝑧0 + 4𝑦1𝑧0 + 𝑓𝐶(𝑦1, 𝑧0)

]︂
=

= 8𝑥1𝑦1𝑧0 − 𝐹𝐶(𝑥1, 𝑦1, 𝑧0).

Note that 𝑥1 ⊕ 𝑦1 ⊕ 𝑧0 = 0, moreover, the function 8𝑥𝑦𝑧 − 𝐹𝐶(𝑥, 𝑦, 𝑧) takes at the
point (𝑥1, 𝑦1, 𝑧0) the same value 𝐶/2. Note that 𝑥1, 𝑦1, 𝑧0 ≤ 1

2
, but we have already

shown that this is impossible. We got a contradiction. �

7. Integral representation of 𝑓𝐶(𝑎, 𝑏).

The solution to the dual problem in our main example has a simple relation to
the (cumulative) distribution function

𝐼(𝑎, 𝑏) =

∫︁ 𝑎

0

∫︁ 𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥, 𝑎, 𝑏 ∈ R+.

of the measure 𝑥⊕ 𝑦 𝑑𝑥𝑑𝑦. This function admits the following properties:

Property 7.1. Symmetry: 𝐼(𝑎, 𝑏) = 𝐼(𝑏, 𝑎).

Property 7.2. Homogeneity with respect to factor 2: 𝐼(2𝑎, 2𝑏) = 8𝐼(𝑎, 𝑏).

Proof. Note that for almost all 𝑥, 𝑦 and integer number 𝑛 one has 2𝑛𝑥 ⊕ 2𝑛𝑦 =
2𝑛(𝑥⊕ 𝑦). This yields

𝐼(2𝑎, 2𝑏) =

∫︁ 2𝑎

0

∫︁ 2𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

[︂
𝑥 = 2𝑢

𝑦 = 2𝑣

]︂
=

= 4

∫︁ 𝑎

0

∫︁ 𝑏

0

2𝑢⊕ 2𝑣 𝑑𝑣𝑑𝑢 = 8𝐼(𝑎, 𝑏).

�

Property 7.3. For all 0 ≤ 𝑎 ≤ 1

𝐼(𝑎, 1) =
𝑎

2
.

Proof. To this end we need the following lemma:

Lemma 7.4. For every couple 0 ≤ 𝑥, 𝑦 ≤ 1, where neither 𝑥 nor 𝑦 is binary rational,
the following relation holds: 𝑥⊕ 𝑦 + 𝑥⊕ (1 − 𝑦) = 1.

Proof. Note that for 𝑎 = 𝑥⊕𝑦 and 𝑏 = 𝑥⊕ (1−𝑦) the 𝑖-th digits satisfy 𝑎𝑖 = 𝑥𝑖⊕𝑦𝑖,
𝑏𝑖 = 𝑥𝑖 ⊕ 𝑦𝑖. Clearly, 𝑎𝑖 ⊕ 𝑏𝑖 = 0. �
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This can be used for computation of 𝐼(𝑎, 1):

𝐼(𝑎, 1) =

∫︁ 𝑎

0

∫︁ 1

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

=
1

2

∫︁ 𝑎

0

∫︁ 1

0

(𝑥⊕ 𝑦 + 𝑥⊕ (1 − 𝑦)) 𝑑𝑦𝑑𝑥 =
1

2

∫︁ 𝑎

0

∫︁ 1

0

1 𝑑𝑦𝑑𝑥 =
𝑎

2
.

�

Applying homogeneity property one immediately gets

Corollary 7.5. For every 0 ≤ 𝑎 ≤ 1
2𝑛

𝐼

(︂
𝑎,

1

2𝑛

)︂
=

𝑎

22𝑛+1
.

In the following proposition we establish a recurent relation for 𝑓𝐶 :

Proposition 7.6. For all 0 ≤ 𝑎, 𝑏 ≤ 1
2

the following identity holds:

𝐼
(︀1

2
+ 𝑎, 𝑏

)︀
=

1

2
𝑎𝑏 +

1

8
𝑏 + 𝐼(𝑎, 𝑏).

Proof. Represent the integral as a sum of two parts

𝐼

(︂
1

2
+ 𝑎, 𝑏

)︂
=

∫︁ 1
2
+𝑎

0

∫︁ 𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

=

∫︁ 1
2
+𝑎

1
2

∫︁ 𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 +

∫︁ 1
2

0

∫︁ 𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥.

Making the change of variable 𝑥 = 1
2

+ 𝑡 one gets

∫︁ 1
2
+𝑎

1
2

∫︁ 𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

∫︁ 𝑎

0

∫︁ 𝑏

0

(︂
1

2
+ 𝑡

)︂
⊕ 𝑦 𝑑𝑦𝑑𝑡 =

=

∫︁ 𝑎

0

∫︁ 𝑏

0

(︂
𝑡⊕ 𝑦 +

1

2

)︂
𝑑𝑦𝑑𝑡 =

1

2
𝑎𝑏 + 𝐼(𝑎, 𝑏).

Hence

𝐼(𝑎, 𝑏) =
1

2
𝑎𝑏 + 𝐼(𝑎, 𝑏) + 𝐼

(︂
1

2
, 𝑏

)︂
=

1

2
𝑎𝑏 +

1

8
𝑏 + 𝐼(𝑎, 𝑏).

�

Let us prove another similar relation

Proposition 7.7. For every 0 ≤ 𝑎, 𝑏 ≤ 1
2

one has

𝐼
(︀1

2
+ 𝑎,

1

2
+ 𝑏

)︀
=

1

16
+

3

8
𝑎 +

3

8
𝑏 + 𝐼(𝑎, 𝑏).
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Proof. Similarly to the arguments of the previous proposition one obtains

𝐼

(︂
1

2
+ 𝑎,

1

2
+ 𝑏

)︂
=

∫︁ 1
2
+𝑎

0

∫︁ 1
2
+𝑏

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

=

∫︁ 1
2

0

∫︁ 1
2

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 +

∫︁ 1
2
+𝑎

1
2

∫︁ 1
2

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥+

+

∫︁ 1
2

0

∫︁ 1
2
+𝑏

1
2

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 +

∫︁ 1
2
+𝑎

1
2

∫︁ 1
2
+𝑏

1
2

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥.

Clearly ∫︁ 1
2

0

∫︁ 1
2

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 = 𝐼

(︂
1

2
,
1

2

)︂
=

1

16
.

To compute the second integral let us make the variables change 𝑥 = 1
2

+ 𝑡:∫︁ 1
2
+𝑎

1
2

∫︁ 1
2

0

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

∫︁ 𝑎

0

∫︁ 1
2

0

(︂
1

2
+ 𝑡

)︂
⊕ 𝑦 𝑑𝑦𝑑𝑡 =

=

∫︁ 𝑎

0

∫︁ 1
2

0

(︂
1

2
+ 𝑡⊕ 𝑦

)︂
𝑑𝑦𝑑𝑡 =

1

4
𝑎 + 𝐼

(︂
1

2
, 𝑎

)︂
=

=
1

4
𝑎 +

1

8
𝑎 =

3

8
𝑎.

In the same way one gets the following formula for the third integral:∫︁ 1
2

0

∫︁ 1
2
+𝑏

1
2

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =
3

8
𝑏.

To compute the last integral, let us set 𝑥 = 1
2

+ 𝑡, 𝑦 = 1
2

+ 𝑢:∫︁ 1
2
+𝑎

1
2

∫︁ 1
2
+𝑏

1
2

𝑥⊕ 𝑦 𝑑𝑦𝑑𝑥 =

∫︁ 𝑎

0

∫︁ 𝑏

0

(︂
𝑡 +

1

2

)︂
⊕
(︂
𝑢 +

1

2

)︂
𝑑𝑢𝑑𝑡 =

=

∫︁ 𝑎

0

∫︁ 𝑏

0

𝑡⊕ 𝑢 𝑑𝑢𝑑𝑡 = 𝐼(𝑎, 𝑏).

Finally,

𝐼

(︂
1

2
+ 𝑎,

1

2
+ 𝑏

)︂
=

1

16
+

3

8
(𝑎 + 𝑏) + 𝐼(𝑎, 𝑏).

�

It remains to relate 𝑓𝐶 and 𝐼.

Theorem 7.8. For all non-negative 𝑥, 𝑦 ∈ R+ the following relation holds:

𝑓𝐶(𝑥, 𝑦) = 8𝐼(𝑥, 𝑦) − 2𝐼(𝑥, 𝑥) − 2𝐼(𝑦, 𝑦).

Proof. By homogeneity 𝑓𝐶(𝑥, 𝑦) and 𝐼(𝑥, 𝑦) it is sufficent to prove this relation on
[0, 1]2.
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Set 𝑓1(𝑥, 𝑦) = 8𝐼(𝑥, 𝑦) − 2𝐼(𝑥, 𝑥) − 2𝐼(𝑦, 𝑦). We prove that 𝑓1 satifies the same
relation as 𝑓𝐶 (see Proposition 6.10). Indeed, for all, 0 ≤ 𝑥, 𝑦 ≤ 1

2
:

𝑓1

(︂
1

2
+ 𝑥, 𝑦

)︂
= 8𝐼

(︂
1

2
+ 𝑥, 𝑦

)︂
− 2𝐼

(︂
1

2
+ 𝑥,

1

2
+ 𝑥

)︂
− 2𝐼(𝑦, 𝑦) =

= 4𝑥𝑦 + 𝑦 + 8𝐼(𝑥, 𝑦) − 2

(︂
1

16
+

3

8
(𝑥 + 𝑥) + 𝐼(𝑥, 𝑥)

)︂
− 2𝐼(𝑦, 𝑦) =

= −1

8
− 3

2
𝑥 + 𝑦 + 4𝑥𝑦 + 𝑓1(𝑥, 𝑦),

𝑓1

(︂
1

2
+ 𝑥,

1

2
+ 𝑦

)︂
=

= 8𝐼

(︂
1

2
+ 𝑥,

1

2
+ 𝑦

)︂
− 2𝐼

(︂
1

2
+ 𝑥,

1

2
+ 𝑥

)︂
− 2𝐼

(︂
1

2
+ 𝑦,

1

2
+ 𝑦

)︂
=

=
1

2
+ 3𝑥 + 3𝑦 + 8𝐼(𝑥, 𝑦) − 2

(︂
1

16
+

3

8
(𝑥 + 𝑥) + 𝐼(𝑥, 𝑥)

)︂
−

− 2

(︂
1

16
+

3

8
(𝑦 + 𝑦) + 𝐼(𝑦, 𝑦)

)︂
=

1

4
+

3

2
(𝑥 + 𝑦) + 𝑓1(𝑥, 𝑦).

It remains to show that 𝑀 = sup0≤𝑥≤1,0≤𝑦≤1 |𝑓−𝑓1| = 0. Note that the supremum
is attained on

[︀
0, 1

2

]︀2, because 𝑓−𝑓1 is invariant with respect to the shifts 𝑥 → 𝑥+ 1
2
,

𝑦 → 𝑦 + 1
2
. If 𝑀 is larger than zero and attained at some point (𝑥0, 𝑦0), where

0 ≤ 𝑥0, 𝑦0 ≤ 1
2
, then the value of |𝑓 − 𝑓1| at (2𝑥0, 2𝑦0) equals 8𝑀 . We obtained a

contradiction. �

Applying the above result we obtain the following integral representation theorem
for our solution to the dual problem.

Theorem 7.9. The function

𝐹 (𝑥,𝑦) =

∫︁ 𝑥

0

∫︁ 𝑦

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡− 1

4

∫︁ 𝑥

0

∫︁ 𝑥

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡− 1

4

∫︁ 𝑦

0

∫︁ 𝑦

0

𝑠⊕ 𝑡 𝑑𝑠𝑑𝑡

solves the dual problem∫︁
[0,1]2

𝐹 (𝑥,𝑦)𝑑𝑥𝑑𝑦 +

∫︁
[0,1]2

𝐹 (𝑥,𝑧)𝑑𝑥𝑑𝑧 +

∫︁
[0,1]2

𝐹 (𝑦,𝑧)𝑑𝑦𝑑𝑧 → max,

𝐹 (𝑥,𝑦) + 𝐹 (𝑥,𝑧) + 𝐹 (𝑦,𝑧) ≤ 𝑥𝑦𝑧

to the primal (3,2)-Kantorovich problem∫︁
𝑥𝑦𝑧𝑑𝜋 → min, (𝑥,𝑦,𝑧) ∈ [0,1]3,

considered on the space of measure which projections onto principal hyperplanes are
Lebesgue measures on [0,1]2.
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8. Concluding remarks

Numerical experiments visually reveal fractal structure of the solutions to (3,2)-
Kantorovich problem for other cost functions and projections. This happens even
under absence of symmetry, which, in turn, means that the solutions do not posess
dyadic structure. Which properties of our main example are preserved in general
case? Here we discuss several natural hypotheses.

Question 8.1. Consider the (3,2)-Kantorovich problem on the set 𝑋×𝑌 ×𝑍, where

𝑋 = {𝑥0 < 𝑥1 . . . < 𝑥2𝑛−1},
𝑌 = {𝑦0 < 𝑦1 . . . < 𝑦2𝑛−1},
𝑍 = {𝑧0 < 𝑧1 . . . < 𝑧2𝑛−1}.

As usual, 𝑐 = 𝑥𝑦𝑧 and the projections are supposed to be uniform. We want to
maximize

∫︀
𝑥𝑦𝑧𝑑𝜋.

Is it true that unifrom measure concentrated on the points (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) with 𝑖⊕𝑗⊕𝑘 =
0 is optimal?

Question 8.2. Consider the dual (3,2)-Kantorovich problem on the set [0,1]3.∫︁
𝐹 (𝑥,𝑦)𝑑𝜇𝑥𝑦 +

∫︁
𝐺(𝑥,𝑧)𝑑𝜇𝑥𝑧 +

∫︁
𝐻(𝑦,𝑧)𝑑𝜇𝑦𝑧 → max,

𝐹 (𝑥,𝑦) + 𝐺(𝑥,𝑧) + 𝐻(𝑦,𝑧) ≤ 𝑥𝑦𝑧

for some triple of measures 𝜇𝑥𝑦, 𝜇𝑥𝑧, 𝜇𝑦𝑧.
Is it true that 𝐹 satisfies inequality

𝐹 (𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝐹 (𝑥, 𝑦) − 𝐹 (𝑥 + ∆𝑥, 𝑦) − 𝐹 (𝑥, 𝑦 + ∆𝑦) ≥ 0

for every 𝑥, 𝑦,∆𝑥 ≥ 0,∆𝑦 ≥ 0? Equivalently, 𝐹 has the representation

𝐹 (𝑥,𝑦) = 𝑚([0, 𝑥] × [0, 𝑦]) + 𝑓(𝑥) + 𝑔(𝑦)

for some nonnegative measure 𝑚 and some functions 𝑓, 𝑔?

Numerical computations demonstrate that Question 8.2 has a negative answer.
The answer to Question 8.1 is negative in general, but remarkably the answer is
affirmative for 𝑛 = 2.

Example 8.3. Consider the discrete cube 8 × 8 × 8,

𝑋 = 𝑌 = 𝑍 = {0, 𝜀, 2𝜀, 1 − 4𝜀, 1 − 3𝜀, 1 − 2𝜀, 1 − 𝜀, 1}.
For sufficiently small 𝜀, the uniform measure 𝑀 ′, concentrated on the points (𝑥𝑖, 𝑦𝑗, 𝑧𝑘)
with 𝑖 ⊕ 𝑗 ⊕ 𝑘 = 0, 𝑖, 𝑗, 𝑘 ∈ {0,1, . . . , 23 − 1}, is not optimal. Let us say that num-
bers 0, 1, 2 are small. Other numbers are large. Consider the following competitor:
measure 𝑀 ′′ assigns to a point (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) the following value :⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
3
, if all three indexes 𝑖, 𝑗 and 𝑘 are small;

0, if two indexes are small and one is large;
1
5
, if one index is small and two are large;
2
25
, if all three indexes 𝑖, 𝑗 and 𝑘 are large.

Integrals
∫︀
𝑥𝑦𝑧𝑑𝑀 ′ and

∫︀
𝑥𝑦𝑧𝑑𝑀 ′′ are the polynomials in 𝜀. Their free terms are

equal to 12 and 125 × 2
25

= 10 respectively. Thus
∫︀
𝑥𝑦𝑧𝑑𝑀 ′ >

∫︀
𝑥𝑦𝑧𝑑𝑀 ′′ for suffi-

ciently small epsilon.
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Let 𝐼 = [0, 1]3 be the unit cube and 𝜇 be arbitrary measure on 𝐼. We denote by
𝐹𝜇 the distribution function of 𝜇

𝐹𝜇(𝑎, 𝑏, 𝑐) = 𝜇([0, 𝑎] × [0, 𝑏] × [0, 𝑐]).

Lemma 8.4. Let 𝜇 be a measure on 𝐼. Then the following identity holds:∫︁
𝐼

(1 − 𝑥)(1 − 𝑦)(1 − 𝑧)𝑑𝜇 =

∫︁
𝐼

𝐹𝜇(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧.

Proof. Let 𝐼 ′ be the unit cube endowed with the uniform Lebesgue measure 𝜔. One
can consider the product 𝐼 × 𝐼 ′ with the product measure 𝑑𝜇⊗ 𝑑𝜔. Set:

𝐷 = {(𝑝, 𝑞) ∈ 𝐼 × 𝐼 ′ | 𝑝 is not larger than 𝑞 coordinatewise}.
Let us find (𝜇⊗ 𝜔)(𝐷). We apply to this end the Fubini theorem∫︁

𝐷

𝑑𝜇⊗ 𝑑𝜔 =

∫︁
(𝑥,𝑦,𝑧)∈𝐼

∫︁
(𝑥1,𝑦1,𝑧1)∈𝐼′,

(𝑥1,𝑦1,𝑧1)≥(𝑥,𝑦,𝑧)

𝑑𝜔𝑑𝜇 =

∫︁
(𝑥,𝑦,𝑧)∈𝐼

(1 − 𝑥)(1 − 𝑦)(1 − 𝑧)𝑑𝜇.

On the other hand,∫︁
(𝑥,𝑦,𝑧)∈𝐼

=

∫︁
(𝑥,𝑦,𝑧)∈𝐼′

∫︁
(𝑥1,𝑦1,𝑧1)∈𝐼,

(𝑥1,𝑦1,𝑧1)≤(𝑥,𝑦,𝑧)

𝑑𝜇𝑑𝜔 =

∫︁
(𝑥,𝑦,𝑧)∈𝐼

𝐹𝜇(𝑥, 𝑦, 𝑧)𝑑𝜔.

�

Let 𝜇𝑥𝑦, 𝜇𝑦𝑧, 𝜇𝑧𝑥 be projections of 𝜇 onto the corresponding principal hyperplanes.
On can rewrite the integral as follows:

∫︁
𝐼

(1 − 𝑥)(1 − 𝑦)(1 − 𝑧)𝑑𝜇 = 1 −
∫︁
𝐼𝑥𝑦

𝑥𝑦 𝑑𝜇𝑥𝑦 −
∫︁
𝐼𝑦𝑧

𝑦𝑧 𝑑𝜇𝑦𝑧 −
∫︁
𝐼𝑧𝑥

𝑧𝑥 𝑑𝜇𝑧𝑥+

+

∫︁
𝐼𝑥𝑦

𝑥 𝑑𝜇𝑥𝑦 +

∫︁
𝐼𝑦𝑧

𝑦 𝑑𝜇𝑦𝑧 +

∫︁
𝐼𝑧𝑥

𝑧 𝑑𝜇𝑧𝑥 −
∫︁
𝐼

𝑥𝑦𝑧 𝑑𝜇 =

= 𝐶(𝜇𝑥𝑦, 𝜇𝑦𝑧, 𝜇𝑧𝑥) −
∫︁
𝐼

𝑥𝑦𝑧 𝑑𝜇,

where 𝐶(𝜇𝑥𝑦, 𝜇𝑦𝑧, 𝜇𝑧𝑥) only depends on the projections of 𝜇 onto the principal hy-
perplanes.

We want to find a measure 𝜋 which minimizes
∫︀
𝑥𝑦𝑧𝑑𝜋 on the set of all (3, 2)-

stochastic measures on 𝑋 × 𝑌 × 𝑍.
Finally, consider

𝑋 = {𝑥0 < 𝑥1 . . . < 𝑥2𝑛−1},
𝑌 = {𝑦0 < 𝑦1 . . . < 𝑦2𝑛−1},
𝑍 = {𝑧0 < 𝑧1 . . . < 𝑧2𝑛−1}.

Without loss of generality assume that 𝑋 × 𝑌 × 𝑍 ⊂ 𝐼. Let 𝜇⊕ be a measure on 𝐼
which is supported on 𝑋 × 𝑌 × 𝑍 and defined by

𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) =
1

4𝑛
,
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if 𝑖⊕ 𝑗 ⊕ 𝑘 = 0, and
𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) = 0

in the opposite case.

Theorem 8.5. Assume that |𝑋| = |𝑌 | = |𝑍| = 4. Let 𝜇 be arbitrary measure
𝑋 × 𝑌 × 𝑍 with uniform projections on 𝑋 × 𝑌,𝑋 × 𝑍, 𝑌 × 𝑍. Then∫︁

𝑥𝑦𝑧 𝑑𝜇 ≥
∫︁

𝑥𝑦𝑧 𝑑𝜇⊕.

Moreover,
𝐹𝜇⊕ ≥ 𝐹𝜇

at every point.

Proof. Since the projections of 𝜇 and 𝜇⊕ onto the hyperplanes are equal, one has
the following equivalence relation∫︁

𝐼

𝑥𝑦𝑧 𝑑𝜇 ≥
∫︁
𝐼

𝑥𝑦𝑧 𝑑𝜇⊕ ⇔
∫︁
𝐼

𝐹𝜇(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 ≤
∫︁
𝐼

𝐹𝜇⊕(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧.

Let us prove that 𝐹𝜇⊕ ≥ 𝐹𝜇. Since the measures are discrete, it is suficient to
check the desired inequality at the points (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑋 × 𝑌 × 𝑍. Without loss of
generality let 𝑖 ≤ 𝑗 ≤ 𝑘.

If 𝑘 = 3, the distribution function satisfies 𝐹𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧3) = 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧3) =
(𝑖+1)(𝑗+1)

16
. This follows from the fact that 𝜇 and 𝜇⊕ have uniform projections onto

𝑋 × 𝑌 .
Let 𝑖 = 0. Then 𝐹𝜇⊕(𝑥0, 𝑦𝑗, 𝑧𝑘) = 1

16
min(𝑗 + 1, 𝑘 + 1) = 𝑗+1

16
. Indeed, for

𝑖 = 0 measure 𝜇⊕ is concentrated at the points (𝑥0, 𝑦𝑡, 𝑧𝑡), 𝑡 ∈ {0,1,2,3}. Hence
𝐹𝜇⊕(𝑥0, 𝑦𝑗, 𝑧𝑘) = 1

16
#(𝑡 | 0 ≤ 𝑡 ≤ 𝑗, 0 ≤ 𝑡 ≤ 𝑘). On the other hand 𝐹𝜇(𝑥0, 𝑦𝑗, 𝑧𝑘) ≤

𝐹𝜇(𝑥0, 𝑦𝑗, 𝑧3) = 𝑗+1
16

.
It remains to consider the cases when every 𝑖, 𝑗, 𝑘 equals 1 or 2.
Let 𝑘 = 2. Compute 𝐹𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧2). To this end we count all triples (𝑎, 𝑏, 𝑐)

satisfying 0 ≤ 𝑎 ≤ 𝑖, 0 ≤ 𝑏 ≤ 𝑗, 0 ≤ 𝑐 ≤ 2 and 𝑎⊕ 𝑏⊕ 𝑐 = 0. For every couple (𝑎, 𝑏)
there exists the unique 𝑐 having this property except for the case 𝑎 ⊕ 𝑏 = 3. This
happens if and only if {𝑎, 𝑏} = {1, 2}. It is easy to check that amount of couples with
this property is exactly the number of indices 𝑖,𝑗 which takes value 2, i.e. 𝑖 + 𝑗 − 2.
Thus the total amount of such triples (𝑎, 𝑏, 𝑐) equals (𝑖+1)(𝑗+1)− 𝑖−𝑗+2 = 𝑖𝑗+3.
Hence 𝐹𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧2) = 𝑖𝑗+3

16
.

Represent the number 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧2) as follows:

𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧2) =
∑︁

𝑥∈[0,𝑥𝑖]
𝑦∈[0,𝑦𝑗 ]
𝑧∈[0,𝑧2]

𝜇(𝑥, 𝑦, 𝑧) =
∑︁

𝑥∈[0,𝑥𝑖]
𝑦∈[0,𝑦𝑗 ]
𝑧∈[0,𝑧3]

𝜇(𝑥, 𝑦, 𝑧) −
∑︁

𝑥∈[0,𝑥𝑖]
𝑦∈[0,𝑦𝑗 ]

𝜇(𝑥, 𝑦, 𝑧3) =

= 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧3) −
∑︁

𝑥∈[0,𝑥𝑖]
𝑦∈[0,𝑦3]

𝜇(𝑥, 𝑦, 𝑧3) +
∑︁

𝑥∈[0,𝑥𝑖]
𝑦∈[𝑦𝑗+1,𝑦3]

𝜇(𝑥, 𝑦, 𝑧3),

where the sum is taken over the atoms of 𝜇.
We know that 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧3) = (𝑖+1)(𝑗+1)

16
, because the projection of 𝜇 onto 𝑋 × 𝑌

is uniform. Analogously, the same facts about projections onto 𝑋 × 𝑍 and 𝑌 × 𝑍
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imply ∑︁
𝑥∈[0,𝑥𝑖]
𝑦∈[0,𝑦3]

𝜇(𝑥, 𝑦, 𝑧3) =
𝑖 + 1

16
.

∑︁
𝑥∈[0,𝑥𝑖]

𝑦∈[𝑦𝑗+1,𝑦3]

𝜇(𝑥, 𝑦, 𝑧3) ≤
∑︁

𝑥∈[0,𝑥3]
𝑦∈[𝑦𝑗+1,𝑦3]

𝜇(𝑥, 𝑦, 𝑧3) =
3 − 𝑗

16
,

Hence

𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧2) ≤
(𝑖 + 1)(𝑗 + 1)

16
− 𝑖 + 1

16
+

3 − 𝑗

16
=

𝑖𝑗 + 3

16
.

It remains to consider the case 𝑖 = 𝑗 = 𝑘 = 1. One gets immediately 𝐹𝜇⊕(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) =
4
16
, and 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ≤ 𝐹𝜇(𝑥𝑖, 𝑦𝑗, 𝑧3) = (𝑖+1)(𝑗+1)

16
= 4

16
. �
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