
Bond percolation does not simulate site percolation

Nikita Gladkov∗1 and Aleksandr Zimin†2

1Department of Mathematics, UCLA, Rényi institute
2Department of Mathematics, MIT

April 16, 2024

Abstract

We show that a site percolation is a stronger model than a bond percolation. We use the van den Berg
– Kesten (vdBK) inequality to prove that site percolation on a neighborhood of a vertex of degree 3 cannot
be simulated even approximately by bond percolation, and develop a decision tree technique to prove the
same for a neighborhood of a vertex of degree 2. This technique can be used to obtain inequalities for
connectedness probabilities, including a conjectured inequality of Erik Aas.

1 Introduction

Assume that we have a graph G = (V,E) and run a Bernoulli bond percolation on it with every edge e ∈ E
having its own probability pe of being open independently on other edges. A Bernoulli site percolation, on
the contrary, is a process in which every vertex v ∈ V has a probability of being open. One can ask many
questions about the probabilistic properties of clusters connected via open vertices and edges. There are known
inequalities for the critical probabilities of site and bond percolation on the same infinite graph [GS98].

To motivate our problem, recall Exercise 3.4 in [G18] (see also Exercise 6 in [DC18]): “Show that bond
percolation on a graph G may be reformulated in terms of site percolation on a graph derived suitably from
G.” Here is a formal definition.

Definition 1.1. One says that vertices v and u are connected (belong to the same cluster) in a site/bond per-
colation if there is a path between them passing only through open sites/bonds. In the case of site percolation,
we also require that v and u be open themselves.

We say that a site/bond percolation µ1 on graphG′ = (V ′, E′) simulates a bond/site percolation µ2 on graph
G = (V,E) if there is a function f : V → V ′ such that for all events “v is connected to u” and their boolean
combinations, their probability in µ1 is equal to the probabilities of the events “f(v) is connected to f(u)” in
µ2 and their corresponding boolean combinations.

Remark 1.2. By this definition, the simulation preserves events such as “At least n out ofm vertices v1, . . . , vm
are in the same cluster”, but is not guaranteed to preserve the probability of “There is a path from a to b
avoiding vertex c”.

Then the solution to the exercise is given by the following theorem [F61, FE61].

Theorem 1.3. For every graph G and a bond percolation µb on it there exists a graph G′ with a site percolation
µs which simulates µb.

∗gladkovna@ucla.edu
†azimin@mit.edu

1

ar
X

iv
:2

40
4.

08
87

3v
1

 [
m

at
h.

PR
]

 1
3

A
pr

 2
02

4

Proof. Let G′ be a copy of G with an additional auxiliary vertex in the middle of each edge. Make all original
vertices open with probability 1 and every auxiliary vertex in the middle of each edge e open with probability
pe. This site percolation on G′ is precisely isomorphic to the bond percolation on G.

Similarly, it is natural to ask whether site percolation can be simulated by bond percolation. Fisher [F61]
noted that the other direction can not be true since the argument proving Theorem 1.3 is only invertible for
line graphs. We make his argument precise in Theorem 2.4 proved in Section 2. However, the question becomes
more interesting if we consider approximate simulations.

Definition 1.4. We say that a sequence of site (bond) percolations {µi} on graphs Gi = (Vi, Ei) approximately
simulates a bond (site) percolation ν on graph G = (V,E) if there are functions fi : V → Vi such that
probabilities of the events “fi(v) is connected to fi(u)” in µi and all their Boolean combinations tend to the
probabilities of the corresponding Boolean combinations of the events “v is connected to u” in ν.

The main results of the paper are the following theorems:

Theorem 1.5. One cannot approximately simulate site percolation on the complete bipartite graph K1,3 (claw
graph) by bond percolation.

This is the corollary of Theorem 3.2.

Theorem 1.6. One cannot approximately simulate a site percolation on the path of length 2 by bond percolation.

Similarly, it is the corollary of Theorem 4.6. This proof requires new inequalities concerning connectedness
events in percolation. We use computer search techniques to discover new inequalities, including inequalities (5)
and (6) in Section 5.

2 Preliminary remarks

Definition 2.1. A full hyperedge Bernoulli percolation is a random model on a hypergraph H = (V,E). Every
hyperedge e has a probability pe of being open. The vertices v and u are said to be connected if there is a path
between them such that each edge in the path is a subset of some open hyperedge.

Let us show that full hyperedge percolation is equal in power to site percolation.

Theorem 2.2. Full hyperedge percolation simulates site percolation and vice versa.

Proof. To simulate full hyperedge percolation by site percolation, for every hyperedge with probability pe we
add one additional vertex with probability pe and connect it to all elements of the hyperedge. All the original
vertices stay open with probability 1.

Conversely, to simulate the site percolation by full hyperedge percolation, we first consider a graph G′ from
the proof of Theorem 1.3. By the construction, vertices of G′ can be original or auxiliary. For each original
vertex v we add a hyperedge ev with probability pv, connecting v and all adjacent auxiliary vertices. It is easy
to see that all connectivity events are preserved by these simulations.

Note that the hypergraph percolation in the sense of [WZ11] is more general than our full hypergraph
percolation and is capable of modeling more phenomena. We may use our reduction

So, simulating site percolation is equivalent to simulating full hyperedge percolation. It is easy to see that
bond percolation cannot simulate exactly even a hyperedge of size 3 with probability 0 < p < 1, thus proving
Fisher’s remark. Indeed, a model of such a hyperedge would be some graph G with bond percolation on it.

Definition 2.3. We denote by v11v12 . . . v1i1 |v21 . . . v2i2 |vn1 . . . vnin the event that the vertices v11, . . . , v1i1
belong to the same cluster, vertices v21, . . . , v2i2 belong to the same cluster, . . . , vertices vn1, . . . , vnin belong
to the same cluster, and, moreover, these clusters are different. By P(v11v12 . . . v1i1 |v21 . . . v2i2 |vn1 . . . vnin) we
denote the probability of this event in the underlying bond percolation. In particular, P(abc) denotes the
probability that a, b and c are in the same cluster and P(a|b|c) is the probability that a, b and c are in 3
different clusters.

2

Theorem 2.4. For all 0 < p < 1, every simple graph G = (V,E) and vertices a, b, c ∈ V one has either
P(abc) < p or P(a|b|c) < 1− p, where P is taken over random subgraphs given by a bond percolation on G.

Proof. Remove all edges in G that have a probability of 0 and contract all edges with a probability of 1. Now,
none of the edges in G is certain.

First, assume that there is a path P from a to b not passing through c. Then there is a nonzero probability
that all edges of P will be open and the remaining edges will be closed, so P(ab|c) > 0, where P(ab|c) is
the probability that a and b are in the same component and c in the other. This contradicts the equation
P(abc) +P(a|b|c) = 1, so every path from a to b should pass through c.

Similarly, every path from a to c should pass through b, but that means that there are no paths from a to
b or c, since any such path will first go to b or c. Thus p = 0, which contradicts the assumptions.

By this theorem, it is impossible to simulate the hyperedge percolation by bond percolation, we consider a
question if it is possible to have an arbitrary good approximation.

Question 2.5. For given k, p ̸∈ {0, 1} and ε > 0, does there exist a graph G = (V,E), containing vertices x1,
. . . , xk and a bond percolation on it with P(x1x2 . . . xk) > p− ε and P(x1|x2| . . . |xk) > 1− p− ε?

In Section 3 we show that approximate simulation is impossible for k ≥ 4 using a lemma due to Hutchcroft
[H21], thus proving Theorem 1.5. Finally, we develop a new technique using decision trees to resolve Question
2.5 for k = 3 (thereby proving Theorem 1.6) in Section 4.

3 Simulating k-hyperedge for k ≥ 4

In [H21], the following theorem is proved using the vdBK inequality, where Ku is the cluster containing vertex
u, and for each finite subset Λ ⊆ V

|Kmax(Λ)| = max{|Kv ∩ Λ| : v ∈ V }

is the maximal number of vertices from Λ belonging to the same cluster.

Theorem 3.1 ([H21], Theorem 2.3). Let G = (V,E) be a countable graph and let Λ ⊆ V be finite and
non-empty. Then for Bernoulli bond percolation one has

P(|Kmax(Λ)| ≥ 3kλ) ≤ P(|Kmax(Λ)| ≥ λ)3
k−1+1 (1)

and

P(|Ku ∩ Λ| ≥ 3kλ) ≤ P(|Kmax(Λ)| ≥ λ)3
k−1

P(|Ku ∩ Λ| ≥ λ) (2)

for every λ ≥ 1 (not necessarily integer), integer k ≥ 0 and u ∈ V .

This allows us to prove that one cannot even approximately simulate the 4-hyperedge.

Theorem 3.2. For all 0 < p < 1 there exists an ε > 0 such that for any graph G = (V,E), bond percolation
on it and vertices a, b, c, d ∈ V one has either P(abcd) < p− ε or P(a|b|c|d) < 1− p− ε.

Proof. Assume that such a graph G exists. Let Λ be {a, b, c, d}. Then (1) with λ = 4
3 gives

P(abcd) ≤ P(ab ∪ ac ∪ ad ∪ bc ∪ bd ∪ cd)2.

If the statement of the theorem were false, this would imply

p− ε ≤ (p+ ε)2,

which is false for small ε.

Theorem 3.2 implies Theorem 1.5. Indeed, the 4-hyperedge can be simulated by site percolation on a claw
graph, but not by any bond percolation.

3

4 Simulating 3-hyperedge: human proof

Now we see that it is impossible to even approximately simulate site percolation with bond percolation for the
claw graph, as promised in Theorem 1.5. To prove Theorem 1.6, we need the following lemma.

Definition 4.1. For two configurations C1, C2 ∈ Ω = 2[E] and a set S ⊆ E we denote by C1→S C2 the
configuration which coincides with C1 on S and C2 on its complement S.

Lemma 4.2. Consider two independent Bernoulli bond percolations C1 and C2 having the same distribution
µ on the same graph G. Let a decision tree T select each edge and reveal it in both C1 and C2. Furthermore,
allow on each step, before revealing, to decide if this edge will go to the set S (thus dependent on C1 and C2) or
to its complement S. Then C1→S C2 is independent of C2→S C1 = C1→S̄ C2 and both of them are distributed
as µ.

Example 4.3. If the graph is a path of length 2 from a to b, then the tree T on Figure 1 builds a set S of all
edges with one end in the component of a in C1.

Proof of Lemma 4.2. For finite graphs with |E| = n and for every pair of configurations C3, C4 there is only
one path in any decision tree leading to C1→S(C1,C2)C2 = S3 and C1→S̄(C1,C2)C2 = S4 and the probability of
this path is equal to P(C1)P(C2), which is equal to P(C3)P(C4) since the probability in Bernoulli percolation
is a product of probabilities for individual edges.

Example 4.4. For example, one can take T querying all the edges from the vertices already known to connect
to the vertex a in C1. It will assign all these edges to S and then discover the remaining edges assigning
them to S̄. Then S will be the set of all open and closed edges with at least one edge in the component of a.
Lemma 4.2 claims that rerunning the choice for these edges will result in measure µ and rerunning the choice
for the remaining edges will also result in measure µ.

Remark 4.5. Notice that Markov chain method from [BHK06] is based on the fact that rerunning the choice
for edges in S from Example 4.4 preserves the measure restriction µ|a|b.

In our notation, it means that for A = a|b and any B one has

P(C1 ∈ A and C1 →
S(C1)

C2 ∈ B) = P(A ∩B) (3)

Theorem 4.6. For all 0 < p < 1 there exists an ε > 0 such that for any graph G = (V,E), bond percolation
on it and vertices a, b, c ∈ V one has either P(abc) < p− ε or P(a|b|c) < 1− p− ε.

Proof. We will need multiple sets Si for our purpose. So, we define sets S1, S2 and S3, which are somewhat
complex (See Figure 2).

To build S1, we query all edges connected to c and put them in S. Then we query all not queried edges
connected to a (this is vacuous if a was connected to c) and put them in S̄. Then we query all not queried
edges connected to b and put them in S. Finally, we put the rest of the edges in S̄. If we denote by Comx the
set of vertices connected to x via edges open in C1, we get

S1 =

E ∩

(
Comc × V ∪ Comb × Coma

)
if C1 ∈ a|b|c;

E ∩
(
Comc × V

)
if C1 is in abc, a|bc or ab|c;

E ∩
(
(Comb ∪ Comc)× V

)
if C1 ∈ ac|b.

The only case we will actually use is a|b|c. S2 is defined analogously with b and c interchanged.

S2 =

E ∩

(
Comb × V ∪ Comc × Coma

)
if C1 ∈ a|b|c;

E ∩
(
Comb × V

)
if C1 is in abc, a|bc or ac|b;

E ∩
(
(Comb ∪ Comc)× V

)
if C1 ∈ ab|c.

4

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅ C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅

C1 =
a b

C2 =
a b

S = {e1, e2}, S = ∅C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2} C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

C2 =
a b

S = {e1}, S = {e2}

C1 =
a b

? ?

C2 =
a b

? ?

S = {e1, . . .?}, S = {. . .?}

C1 =
a b

?

C2 =
a b

?

S = {e1, e2}, S = ∅

C1 =
a b

?

C2 =
a b

?

S = {e1, e2}, S = ∅

C1 =
a b

?

C2 =
a b

?

S = {e1}, S = {e2}

C1 =
a b

?

C2 =
a b

?

S = {e1}, S = {e2}

Figure 1: T corresponding to the Example 4.3

5

a

b c

a

b c

a

b c

Figure 2: S1, S2 and S3 for the case C1 ∈ a|b|c. Regions surrounding a, b, c
depict Coma, Comb and Comc. Respective sets are in blue and their comple-
ments are in red.

Finally, for S3 we put all edges connected to a in S̄, all not queried edges connected to b or c to S and the
rest of the edges to S̄.

S3 =

E ∩

(
(Comb ∪ Comc)× Coma

)
if C1 ∈ a|b|c;

∅ if C1 ∈ abc;

Something else otherwise.

The key observation is that when C1 ∈ a|b|c and C1→S3 C2 ∈ ab∪ac, one has C1→S1 C2 ∈ ab or C1→S2 C2 ∈
ac. Indeed, there is a path p from a to b or c in C1→S3 C2. There should be the first edge e where p goes to
Comb ∪ Comc. The path segment before e is contained in all of S̄1, S̄2 and S̄3. The edge e itself belongs to
Coma × (Comb ∪Comc) and so to S̄1 or S̄2. Since all internal edges in Comb and Comc belong to S1 and S3,
we get C1→S1 C2 ∈ ab or C1→S2 C2 ∈ ac.

Now, let’s proceed to estimate the probabilities of these events. For C1 ∈ a|b|c we will have C1→S1 C2 ∈ a|c,
so

P(C1 ∈ a|b|c and C1→
S1

C2 ∈ ab) ≤ P(ab|c).

Similarly,
P(C1 ∈ a|b|c and C1→

S2

C2 ∈ ac) ≤ P(ac|b).

To estimate the probability of P (C1 ∈ a|b|c and C1→S3 C2 ∈ (ab ∪ ac)) we make use of the fact that if C1

belongs to a|b ∩ a|c, then S̄3 contains a cut from a to b and c, so C1→S̄3
C2 also belongs to a|b ∩ a|c.

P
(
C1 ∈ a|b|c and C1→

S3

C2 ∈ (ab ∪ ac)
)

≥ P
(
C1 ∈ (a|b ∩ a|c) and C1→

S3

C2 ∈ (ab ∪ ac)
)
−P(a|bc)

= P
(
C1→̄

S3

C2 ∈ (a|b ∩ a|c) and C1→
S3

C2 ∈ (ab ∪ ac)
)
−P(a|bc) = P(a|b ∩ a|c)P(ab ∪ ac)−P(a|bc)

Finally, this allows us to make the conclusion

P(a|b ∩ a|c)P(ab ∪ ac) ≤ P(ab|c) +P(ac|b) +P(a|bc). (4)

If P(abc) ≥ p− ε and P(a|b|c) ≥ 1− p− ε, this implies (p− ε)(1− p− ε) ≤ 2ε, which is false for small ε.

Theorem 1.6 follows from here.
For p = 1

2 , from the equation (4) one can conclude that P(abc) and P(a|b|c) can not be simultaneously
greater than 0.37586. If we denote the maximal possible value of min

(
P(abc),P(a|b|c)

)
for any bond percolation

by α3, we get an estimate α3 < 0.37586, which we improve in the next section. The lower bound α3 > 0.29065
is given in Appendix A.

6

5 Simulating 3-hyperedge: computer-assisted proof

Assume that we have a graph G with designated vertices a, b, c and a bond percolation on it. Let S1, S2 and
S3 be as in the previous section. Bond percolation induces a distribution ρ on J = {a|b|c, a|bc, ac|b, ab|c, abc}.
In the same way, consider all possible 8-tuples

(C1, C2, C1→
S1

C2, C1→
S1

C2, C1→
S2

C2, C1→
S2

C2, C1→
S3

C2, C1→
S3

C2)

and the probability distribution they induce on J8. Some of the elements of J8 are impossible for graph
restrictions. We find these impossible elements by an algorithm1.

Also, by Lemma 4.2, this probability distribution should have the same marginals ρ × ρ when restricted
to pairs (C1, C2), (C1→S1 C2, C1→S1

C2), (C1→S2 C2, C1→S2
C2) and (C1→S3 C2, C1→S3

C2). When we fix
ρ, these restrictions produce a linear program, and one can see if it is feasible for different ρ’s. One of the
emerging restrictions on ρ is

P(a|b ∩ a|c)P(ab ∪ ac) ≤ P(ab|c) +P(ac|b) +P(a|bc)−P(ab|c)2 −P(ac|b)2, (5)

which is obviously better then inequality (4) and leads to an estimate α3 ≤ 0.369. We double-checked
manually that the tuples (J1, J2, . . . , J8) ∈ J8 where dual potentials of the linear program add up to the
negative number are indeed infeasible.

Moreover, surprisingly, it also proves inequality

P(abc)P(a|b|c) ≥ P(ab|c)P(ac|b) +P(ab|c)P(a|bc) +P(ac|b)P(a|bc), (6)

which was first conjectured in an unpublished work of Erik Aas and proved in [G24]. It is stronger than what
Harris–Kleitman inequality can tell about these events. Both of these computer-assisted proofs are available
in the GitHub repository.

6 Further questions

Inequalitites (4) and (5) prove that if all three probabilities P(ab|c), P(ac|b) and P(a|bc) are 0, then one of
P(abc) and P(a|b|c) should be 0. In fact, the stronger statement holds:

Proposition 6.1. If P(ab|c) = 0, then

P(a|b|c)P(abc) = P(ac|b)P(a|bc) and P(abc) = P(ac)P(bc).

Proof. As in the proof of Theorem 2.4, we first delete or contract certain edges. Now all paths from a to b
should pass through c, otherwise, there will be a nonzero probability of one such path being open and the rest
of the edges closed. This means c splits the graph in halves, events ac and bc are determined by different sets
of edges.

However, contrary to the inequalitites (4) and (5), this proof tells nothing when P(ab|c) < ε. So, we pose
two conjectures increasing in strength:

Conjecture 6.2. For any ε > 0 there exists δ > 0 such that if P(ab|c) < δ and P(ac|b) < δ, then P(abc) or
P(a|b|c) is less then ε.

1https://github.com/Kroneckera/bunkbed
We loop through each element (J1, J2, . . . , J8) of J

8. First, we split the vertices of G into “codes” based on which of the vertices a,
b, c it lies together with in each of the configurations (C1, C2, C1→S1 C2, C1→S1

C2, C1→S2 C2, C1→S2
C2, C1→S3 C2, C1→S3

C2).

Then we build “universal” graphs Ḡ1 and Ḡ2, using these codes as vertices, including all edges except for the edges between codes
in different parts of the graph. Finally, we use Ḡ1 and Ḡ2 as C1 and C2, construct the remaining elements of the 8-tuple and use
graph search algorithms to check whether they coincide with (J1, J2, . . . , J8).

7

https://github.com/Kroneckera/bunkbed

Conjecture 6.3. For any ε > 0 there exists δ > 0 such that if P(ab|c) < δ, then

P(abc)−P(ac)P(bc) < ε.

Remark 6.4. On the contrary, if P(abc)−P(ac)P(bc) < ε then, by inequality (6),

P(ab|c) < ε

P(ac or bc)
.

It would also be interesting to find the exact value for α3. The best boundaries are given in the Appendix A.

7 Acknowledgements

We thank Igor Pak for many helpful comments on the manuscript and Tom Hutchcroft for his thoughtful
review and encouragement. We also thank Dmitry Krachun for fruitful discussions and Gady Kozma for the
question leading to Remark 6.4. Research supported by ERC Advanced Grant GeoScape882971.

References

[BK85] Jacob van den Berg and Harry Kesten. Inequalities with applications to percolation and reliability.
J. Appl. Probab. 22.3 (1985): 556-569.

[BHK06] Jacob van den Berg, Olle Häggström, and Jeff Kahn. Some conditional correlation inequalities for
percolation and related processes. Random Structures & Algorithms 29.4 (2006): 417-435.

[DC18] Hugo Duminil–Copin. Introduction to Bernoulli percolation. Lecture notes available on the webpage
of the author (2018), 5 pp.

[F61] Michael E. Fisher. Critical probabilities for cluster size and percolation problems. J. Mathematical
Phys. 2.4 (1961): 620-627.

[FE61] Michael E. Fisher and John W. Essam. Some cluster size and percolation problems. J. Mathemat-
ical Phys. 2.4 (1961): 609-619.

[G24] Nikita Gladkov. A strong FKG inequality for multiple events, To appear in Bull. Lond. Math. Soc,
(2024), 7 pp.

[GP24] Nikita Gladkov and Igor Pak. Positive dependence for colored percolation, Phys. Rev. E 109
(2024), 9 pp.

[G18] Geoffrey Grimmett. Probability on graphs: random processes on graphs and lattices. Vol. 8. Cam-
bridge University Press, (2018).

[GS98] Geoffrey Grimmett and Alan Stacey. Critical probabilities for site and bond percolation models,
Ann. Probab. 26 (4) (1998), 30 pp.

[H21] Tom Hutchcroft. Power-law bounds for critical long-range percolation below the upper-critical
dimension. Probab. Theory Related Fields 181 (2021): 533-570.

[W21] Adam Zsolt Wagner. Constructions in combinatorics via neural networks, arXiv:2104.14516, 2021,
23 pp.

[WZ11] John C. Wierman and Robert M. Ziff. Self-dual planar hypergraphs and exact bond percolation
thresholds. Electron. J. Combin. 18.1 (2011), 19 pp.

8

http://arxiv.org/abs/2104.14516

A Appendix: optimizing α3

Let us recall that α3 denotes the largest possible value of min
(
P(abc),P(a|b|c)

)
for the bond percolation. Let

us restrict ourselves to the triangle graph with all three probabilities equal to p. Then P(a|b|c) = (1− p)3 and
P(abc) = p3 +3p2(1− p). These numbers coincide for p ≈ 0.3473, and we get α3 ≥ P(abc) = P(a|b|c) ≈ 0.278,
a root of the equation x3 − 24x2 + 3x+ 1 = 0.

Figure 3: Graph for α3.

One can do better by utilizing the graph in Figure 3 where each red-blue edge has probability 0.32537 and
both blue-blue edges have probability 0.19231. This way we get P(abc) ≈ P(a|b|c) ≈ 0.29065.

Our computer search using algorithms from Wagner [W21] wasn’t able to beat this estimate (See the best
min

(
P(abc),P(a|b|c)

)
achieved on each training epoch in Figure 4).

Figure 4: Best min
(
P(abc),P(a|b|c)

)
achieved on each training epoch.

In fact, if P(abc) = P(a|b|c), it seems this probability can only lie in a narrow range from 0.27 to 0.291.
Indeed, in this case inequality (6) gives the lower bound of 2−

√
3 ≈ 0.2679.

9

	Introduction
	Preliminary remarks
	Simulating k-hyperedge for k>=4
	Simulating 3-hyperedge: human proof
	Simulating 3-hyperedge: computer-assisted proof
	Further questions
	Acknowledgements
	Appendix: optimizing 3

