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Consider a graph G = (V ,E ), where V = {1, 2, . . . ,m}. Percolation is a
random graph obtained from the graph G , where each edge e ∈ E is
independently open (or survives) with probability pe ∈ (0, 1). This gives a
spanning subgraph H ⊆ G with probability∏

e∈H

pe
∏
e ̸∈H

(1− pe).

Percolation on infinite graphs is defined in the same manner.
A cluster is a set of vertices connected via open edges.



Figure: Percolation on Z2 with p = 0.51. Since Z2 is dual to itself, this picture
can also be viewed as the percolation on the dual graph with p = 0.49.

Theorem (Kesten, . . . )
For p ≤ 0.5, with probability 1 there is no infinite cluster in an (edge)
percolation on Z2. For p > 0.5, with probability 1 there is such a cluster.
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Figure: If we generate a maze randomly, what are the chances that the cat
belongs to the same cluster with the sausage, but not the dog?

We will use the notation like P(ad |b|c) meaning the probability, in this
case, that vertices a and d belong to the same cluster, which is different
from the clusters of b and c .
P(CDS), P(CS |D),

P(C |D|S), P(C |SD), P(CD|S).
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The simplest question I am interested in is

Question
What are the possible values of these probabilities for all possible graph
percolations?

The restrictions come in forms of inequalities, the most prominent of
which is the Harris–Kleitman inequality (sometimes called the FKG
inequality).
In particular, it prohibits all 5 probabilities to be equal to 1

5 .



Denote by Hn the n-dimensional discrete hypercube. We say that
measure µ on Hn is a product measure if there exist probability measures
µ1, µ2, . . . , µn on {0, 1}, such that µ coincides with the direct product
µ1 × µ2 × · · · × µn. So, a percolation gives us a measure on Hn, where
n = |E |.
Theorem (Harris–Kleitman inequality)
Let µ be a probability product measure on Hn, and A and B are events
closed upwards. Then

P(A ∩ B) ≥ P(A)P(B).

Corollary
If A is closed upwards and B is closed downwards,

P(A ∩ B) ≤ P(A)P(B).

Corollary

P(CSD) ≥ P(CS)P(DS).

Corollary

P(CSD) ≥ P(CS)P(DS ∪ DC )
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Corollary

P(CSD) ≥ P(CS)P(DS ∪ DC )

or

P(CSD)P(C |S |D) ≥ P(CS |D)P(DS |C ) + P(CS |D)P(DC |S)

Theorem (Gladkov)

P(CSD)P(C |S |D)

≥ P(CS |D)P(DS |C ) + P(CS |D)P(DC |S) + P(DS |C )P(DC |S)



Conjecture (Bunkbed conjecture)
A bunkbed graph Gb consists of two isomorphic graphs G, called the
upper and lower bunks, and some additional edges, called posts; each
post connects a vertex in the upper bunk with the corresponding
isomorphic vertex in the lower bunk. We assign a probability to each
edge, with each edge in the upper bunk assigned the same probability as
the corresponding isomorphic edge in the lower bunk. The probabilities
on the posts are arbitrary. The Bunkbed Conjecture states that in the
percolated subgraph the probability that a vertex x in the upper bunk is
connected to some vertex y in the upper bunk is greater than or equal to
the probability that x is connected to y ′, the isomorphic copy of y in the
lower bunk.



Remark
The conjecture follows from its partial case where all posts have
probability 0 or 1.

Proof.
Indeed, PGb

(xy) and PGb
(xy ′) are polynomials in pe . If e is a post,

PGb
(xy)− PGb

(xy ′) is linear in pe , so we can move it to 0 or 1,
depending on the sign of the coefficient in it.

We call vertices with posts transversal.

Proposition
If there is only one transversal vertex v , the bunkbed conjecture is true.

Proof.
We can rewrite probabilities on Gb in terms of probabilities on G . So,

PGb
(xy) = PG (xy) and PGb

(xy ′) = PG (xv)PG (yv) ≤ PG (xyv) ≤ PG (xy).



Theorem (van den Berg–Haggström–Kahn)

P(a ↔ b and c ↔ d | a ̸↔ d) ≤ P(a ↔ b | a ̸↔ d) · P(c ↔ d | a ̸↔ d);

so, conditionally on a and d are in different clusters, the events a ↔ b
and c ↔ d are negatively correlated.

Theorem (Alternative formulation)

P(ab|cd)P(a|d) ≤ P(ab|d)P(a|cd)

Proof.
We run a Markov chain process with a stable distribution being the
uniform measure on a|d . Then we apply the Harris–Kleitman inequality
to the events ab and cd which turn out to be closed upwards and
downwards in the new coordinates.
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Proposition (Gladkov, Z.)
If there are only two transversal vertices v ,w, the bunkbed conjecture is
true.

Proof.
Add together some Harris–Kleitmans and
van den Berg–Haggström–Kahns.

PGb
(xy)− PGb

(xy ′) =

P(xy |v |w) + P(xy |vw)

+ P((xv ∪ xw) ∩ (yv ∪ yw))− P(xv ∪ xw)P(yv ∪ yw)

+ P(xv |w)P(yw |v)− P(xv |yw)P(v |w)

+ P(xw |v)P(w |yv)− P(xw |yv)P(v |w)

Question
What about 3 transversal vertices?
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Question (Nikita)
Can it be proved that if P(ac|b) ≈ 0, then P(abc) ≈ P(ab)P(bc)?

a b

cd

p1

p2

ε

ε
1− ε



Question (Aleksandr)
Can it be proved that if P(ac|b) ≈ P(ab|c) ≈ P(a|bc) ≈ 0, than P(abc)
or P(a|b|c) is also ≈ 0?

In particular, it is interesting if min(P(abc),P(a|b|c)) is separated from
1
2 . The biggest minimum we can achieve is 0.29 on the graph in the
Figure below where each red-blue edge has probability 0.32537 and both
blue-blue edges have probability 0.19231. This way we get
P(abc) ≈ P(a|b|c) ≈ 0.29065.



Definition
For two events A,B ⊆ Ω, their disjoint occurrence A□ B is defined as
the event consisting of configurations x whose memberships in A and in
B can be verified on disjoint subsets of indices. Formally, x ∈ A□ B if
there exist subsets I , J ⊆ [n] such that:

▶ I ∩ J = ∅,

▶ for all y that agrees with x on I (in other words,
yi = xi for all i ∈ I ), y is also in A, and

▶ similarly, every z that agrees with x on J is in B.

Theorem (van den Berg–Kesten (vdBK))

P(A□ B) ≤ P(A)P(B)

for every pair of closed upwards events A and B.



Lemma (Hutchcroft)

P(abcd) ≤ P(ab ∪ ac ∪ ad ∪ bc ∪ bd ∪ cd)2.

Proof.
Imagine that a, b, c , d are in one cluster. Then we can take a spanning
tree of this cluster and find two nonintersecting path between a, b, c , d in
it. Finally, we apply the vdBK inequality.

a b

cd

Corollary
min(P(abcd),P(a|b|c |d)) is less than the root of x = (1− x)2 equal to
3−

√
5

2 ≈ 0.38.



Example (Decision tree techniques example)
Suppose I take cards from a shuffled deck one by one, until I get a spade.
Then I take one more card. What are the chances that it is also a spade?

Solution: It is 1
4 , since we can invert the deck after the first spade

without affecting the probability distribution. Under this transformation,
the needed probability turns into a probability that the last card in the
deck is a spade.
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Definition
For two configurations C1,C2 ∈ Ω = 2[E ] and a set S ⊆ E we denote by
C1 →S C2 the configuration which coincides with C1 on S and C2 on its
complement S .

Lemma
Consider two independent bond Bernoulli percolations C1 and C2 having
the same distribution µ on the same graph G. Let a decision tree T
select each edge and reveal it in both C1 and C2. Furthermore, allow on
each step, before revealing, decide if this edge will go to the set S (thus
dependent on C1 and C2) or to its complement S. Then C1 →S C2 is
independent of C1 →S̄ C2 and both of them are distributed as µ.



Consider the following decision trees S1, S2, and S3 queuing the
components of the graphs C1 containing vertices a, b, c in the following
order:

▶ S1: b (taking edges from C1), a (from C2), and c (from C1);

▶ S2 is symmetric to S1 by swapping b and c ;

▶ S3: a (taking edges from C2), b and c (from C1).



The key observation will be that not all possible configurations of
C1 →Sk

C2 = pk and C1→Sk
= pk are possible. For example,

▶ if C1 ∈ a|b|c , then C1 →S3
C2 ∈ a|b ∩ a|c ;

▶ moreover, if in addition C1 →S3 C2 ∈ ab ∪ ac , one has
C1 →S1 C2 ∈ ac or C1 →S2 C2 ∈ ab.



Proposition (Linear programming argument)
Consider the collection of potentials φk(pk , pk) satisfying∑
k

φk(pk , pk) ≥ 0 for all implementable C1→Sk
C2 = pk ,C1→Sk

C2 = pk .

Then, any possible collection of percolation probabilities
µ = (µa|b|c , µa|bc , µb|ac , µc|ab, µabc) satisfies the constraint∑

k,p,p

φk(p, p) · µp · µp ≥ 0.

Remark
If every collection of partitions C1 →Sk

C2 = pk , C1 →Sk
C2 = pk is

implementable, then ∑
k

φk(p, p) ≥ 0 for all p, p,

and the inequality is trivial.



Theorem (Gladkov, Z.)

P(a|b ∩ a|c)P(ab ∪ ac) ≤ P(ab|c) + P(ac |b) + P(a|bc).

Corollary
P(abc) and P(a|b|c) can not be simultaneously greater than
(19− 3

√
37)/2 ≈ 0.376.



Thank you for your attention!



Figure: The critical probability for a site percolation on Z2 is around 0.592, so
big QR-codes are unlikely to have a left to right path via black squares



In 1942, Rosalind Franklin, who then recently graduated in chemistry
from the university of Cambridge, joined the BCURA. She started
research on the density and porosity of coal. During the Second World
War, coal was an important strategic resource. It was used as a source of
energy, but also was the main constituent of gas masks.
Coal is a porous medium. To measure its ’real’ density, one was to sink it
in a liquid or a gas whose molecules are small enough to fill its
microscopic pores. While trying to measure the density of coal using
several gases (helium, methanol, hexane, benzene), and as she found
different values depending on the gas used, Rosalind Franklin showed
that the pores of coal are made of microstructures of various lengths that
act as a microscopic sieve to discriminate the gases.

Figure: Rosalind Franklin



Conjecture (Kozma–Nitzan, 2024)
In a percolation on a graph having vertices a, b, c1, . . . , cn one has

P(ab) ≥ P(ac1 ∪ ac2 ∪ · · · ∪ acn)min
i

P(cib) (1)

Theorem (Kozma–Nitzan)
Conjecture above implies that there is no infinite cluster in percolation on
Zd at a critical probability.

Proposition

P(ab) ≥ P(ac1 ∪ ac2)
( P(ac1|c2)
P(ac1|c2) + P(ac2|c1)

P(c1b)

+
P(ac2|c1)

P(ac1|c2) + P(ac2|c1)
P(c2b)

)

Question
What about 3 ci ’s?
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