
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–2

Supplementary material for ”A generic motif discovery
algorithm for sequential data”
Kyle Jensena, Mark Styczynskia, Isidore Rigoutsosa,b, Gregory
Stephanopoulosa∗

a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139, USA, b IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY
10598, USA

A simple, natural–language example
To demonstrate exactly how the algorithm works, we now provide
a simple, natural–language example along with a description of the
actions Gemoda would take at each step. Suppose we have a set of
three words,

MOTIF

MOTOR

POTION

and we would like to find the motifs that some of these words share
in common. Further, suppose that we are only interested in motifs
that are at least four letters long and for which at least three of the
four letters are “similar” between the windows. In this example,
each word is a sequence, and the parameterL is 4. Thus, there are
7 possible windows that are taken sequentially from the three input
sequences, numbered as shown in figure 1.

If we choose a similarity function based on the identity matrix
with a threshold of three — that is, for two windows to be simi-
lar, at least three letters must be the same — then we find that
only the following pairs of windows are similar:(1, 3), (1, 5), and
(2, 6). Importantly, we note that though window1 is similar to both
windows3 and5, windows3 and5 are not similar to each other.

If, on the other hand, we choose a similarity function based on
a matrix that distinguishes only between vowels and consonants —
that is, any vowel is considered similar to any other vowel, and the
same goes for any consonant — we would see different results for
the same threshold value. In this case, we would find the following
set of similarities:(1, 3), (1, 5), (3, 5), (2, 4), (2, 6), and(4, 6).

Given these similarity matrices for the different similarity func-
tions, we can now cluster the graphs. Using the similarity matrix
from the identity function, a clique–finding algorithm would find
no cliques larger than size2; that is, the only cliques that exist are
the pairs of similar nodes. Since window3 (MOTO) is not similar to
window5 (POTI), they cannot be in the same cluster.

However, if we use the similarity matrix produced by the weaker
vowel/consonant function, we will find exactly two cliques of size
3: {1, 3, 5} and{2, 4, 6}. Though there exist pairs of nodes that are
similar, none of them is a clique because they are not maximal —
that is, each individual pair of nodes that is similar (e.g.,(1, 3)) can

∗to whom correspondence should be addressed

have another node added to its set (5) without violating the pairwise
similarity constraint, so only the larger set is a clique.

We also note that applying a transitive clustering function to the
matrix created by the identity function would give still different
results. In the transitive clustering function, the fact that windows3
and5 are not similar would not prevent them from being in the same
motif; the function finds all disjoint subgraphs and defines them as
the motifs. The motifs for such a case would be{1, 3, 5} and{2, 6},
which we will call motifscL

0 andcL
1 , respectively.

Finally, we perform the convolution step. Using the last set of
motifs described (with transitive clustering and the identity simi-
larity function), we perform the convolution operation on each
ordered pair of motifs; in this case, it means performingcL

0 y cL
1 ,

cL
1 y cL

0 , cL
1 y cL

1 , andcL
0 y cL

0 . For the first operation, we find
the windows immediately after each of the windows incL

0 , which
is the set{2, 4, 6}. The intersection of this set with motifcL

1 is the
convolved motif of lengthL + 1, which is{2, 6}; we can call this
cL+1
0 . In performingcL

1 y cL
0 and cL

1 y cL
1 , we note that no

windows exist “after” windows2 and 6, because their respective
sequences end. In this case, the first set to be intersected is null,
so the intersection is null. The final self–convolution operation also
yields a null set. We now have only one motif for the new round
of convolution,cL+1

0 . PerformingcL+1
0 y cL+1

0 results in a null
set, meaning that there are no more motifs. At this point, we termi-
nate convolution. It is worth noting thatcL

0 is returned as a maximal
motif because window4 cannot be extended, butcL

1 is not because
all of its instances were convolved in one direction.

Thus, we get different sets of motifs for different similarity and
clustering functions. For identity similarity and clique–finding clu-
stering, the final list of motifs is{{MOTIF, POTIO}, {MOTI, MOTO}}.
For identity similarity and transitive clustering, the final list
of motifs is {{MOTIF, POTIO}, {MOTI, MOTO, POTI}}. For
vowel/consonant similarity and either clustering method, the final
list of motifs is{{MOTIF, MOTOR, POTIO}}.

Motif Significance
Each pair of nodes in a similarity graph can be described with two
different quantities:ηi,j , the number of neighboring nodes (inclu-
ding each other) that the two nodes have in common, andχi,j , the
number of consecutive windows starting from each of those nodes
that are connected to each other. For instance, if window1 is similar
to windows1, 10, 25, and36, and window10 is similar to windows
1, 10, 25, and37, then these two nodes have three neighbor nodes in
common andη1,10 = 3. If window 1 is similar to10, 2 is similar to

c© Oxford University Press 2005. 1

Jensen et al

11, and3 is not similar to12, then there are two consecutive similar
windows andχ1,10 = 2.

By analyzing each node as above, we can accumulate a matrix of
graph statistics,Φ, such that

φi,j = |{(x, y) : ηx,y = i, χx,y = j, 0 ≤ x, y ≤ N}| (1)

(where the vertical bars indicate the cardinality of the set, or the
number of ordered pairs) and

Φi,j =

∞X
a=i

∞X
b=j

φa,b (2)

These statistics can then be used in the following calculation for
prel(q, r), the relative likelihood of an output motif of lengthq and
supportr given the calculated similarity matrix:

prel(q, r) =

N

r

!"
r−2Y
i=0

„
Φi,1

Φi,0

«r−i−1
#„

Φr,q−L+1

Φr,1

«
(3)

In this equation, the combinatorial factor represents the number of
different ways that windows can be sampled in groups ofr, the
cumulative product represents the necessary conditions for the for-
mation of a clique of lengthL, and the last factor represents the
likelihood of extending a clique of supportr to be lengthq. In this
way, the relative likelihood measure attempts to represent the expec-
ted number of motifs of lengthq and supportr that would occur at
random given the calculated similarity matrix. Notably, this signi-
ficance is based solely on the similarity matrixA, and so it can be
used for either categorical or real–valued sequence data clustered
with the clique–finding method.

Inductive proof of exhaustive maximality
When using clique–finding as the clustering function, each elemen-
tary pattern of lengthL is a clique in our similarity graph. That is,
the elementary pattern is a set of windows that are all similar on a
pairwise basis and there is no other window that can be added to the
set.

When the algorithm enters the convolution stage, it starts by con-
volving each lengthL elementary motif with all of the others. An
elementary motif that isnon–maximalcan be convolved with ano-
ther elementary motif to yield a motif at levelL+1 that has the same
cardinality. All such motifs are marked as non–maximal. Those ele-
mentary motifs that remain unmarked cannot be extended on either
side without losing support; since they are cliques we know they
cannot be made greater in cardinality. Thus, all such unmarked cli-
ques of lengthL can be labeled as maximal motifs and saved for
output. In this way, we know that only maximal motifs will be
returned to the user, and all such motifs will be returned.

When the “<” operation is performed on two elementary motifs
of lengthL that are being convolved, it ensures that no identical
motifs of lengthL+1 exist and that no motif of lengthL+1 is a sub-
set of any other. Additionally, since we have exhaustively compared
a complete list of elementary motifs, and all such motifs are cliques
with maximum cardinality, we are certain that all possible compa-
risons between motifs are being made. That is, no unique motifs of
lengthL + 1 could be created that are not subsets of motifs created
by our exhaustive comparison. Finally, it is important to note that
the result of convolving any two cliques will always be a clique. We
know this because we take the set of all instances that can be exten-
ded (so the subgraph is maximal) and because all instances that are
extended were pairwise similar in both windows being convolved
(thus meeting our definition of similarity over multiple windows).

Thus, since Gemoda exhaustively generatesall possiblecliques
of lengthL + 1, and every added motif of lengthL + 1 is maximal
in support, we then know with certainty thatcL+1 is an exhaustive
list of motifs, or cliques, of lengthL + 1. The induction step is
then trivial, as settingL equal toL + 1 at each step gives an exhau-
stive list of cliques just as when we started withcL. This allows
for a continual guarantee of exhaustiveness and maximality in out-
put. The obvious termination condition for the algorithm is when
|ci| = 0. The following pseudocode sketch faithfully encapsulates
the inductive algorithm described above.

begin
n := 0
while |cn| 6= 0 do

for i := 0 to |cn| step1 do
ismaximal:= true
for j := 0 to |cn| step1 do

f := cn
i y cn

j

if |f | 6= 0
if f < cn+1 = false

cn+1 := cn+1 ∪ f
else

choosemaximal(f, cn+1)
fi
if |f | = |cn

i |
ismaximal:= false

fi
fi

od
if ismaximal= true

P := P ∪ cn
i

fi
od
n := n + 1

od
end

2

Gemoda supplement

Fig. 1. A natural language example illustrating the steps that Gemoda takes.
In a), we see the three words, or sequences, being broken into overlap-
ping windows of four letters each. Gemoda would then compare each of
these windows to each other using either of the similarity metrics descri-
bed in the text. In b), we see the resulting similarity matrix and how it
looks when drawn as a graph. In the matrix, two nodes are similar by the
identity metric if there is an “X” at their intersection, while they are simi-
lar by the vowel/consonant metric if there is an “O” at their intersection.
Making each window a vertex and connecting vertices with an edge if the
windows are similar, we obtain the graph on the right. Dotted lines indicate
similarity by the identity metric, while solid lines indicate similarity by the
vowel/consonant metric. In this representation, it is clear what the results of
both clique–finding and commutative clustering methods will be.

3

