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ABSTRACT 
 
The very high dimensional space of gene expression measurements obtained by DNA microarrays impedes 
the detection of underlying patterns in gene expression data and the identification of discriminatory genes. 
In this paper we demonstrate the use of projection methods such as Principal Components Analysis (PCA) 
to obtain a direct link between patterns in the genes and patterns in samples.  This feature is useful in the 
initial interactive pattern exploration of gene expression data and data-driven learning of the nature and 
types of samples.  Using oligonucleotide microarray measurements of 40 samples from different normal 
human tissues, we show that distinct patterns are obtained when the genes are projected on a two-
dimensional plane spanned by the loadings of the two major principal components. These patterns define 
the particular genes associated with a sample class (i.e., tissue). When used separately from the other genes, 
these class- (i.e., tissue-) specific genes in turn define distinct tissue patterns in the projection space 
spanned by the scores of the two major principal components. In this study, PCA projection facilitated 
discriminatory gene selection for different tissues and identified tissue-specific gene expression signatures 
for liver, skeletal muscle, and brain samples. Furthermore, it allowed the classification of nine new samples 
belonging to these three types using the linear combination of the expression levels of the tissue-specific 
genes determined from the first set of samples.  The application of the technique to other published data 
sets is also discussed. 
 
Keywords: Projection methods, pattern discovery, gene expression, DNA microarrays, 
principal component analysis 
 
 
 
INTRODUCTION 
 
DNA microarrays are presently used extensively for genome-wide gene expression 
measurements. Large-scale transcriptional studies have catalyzed new discoveries and are 
generating important new insights into the behavior and functioning of cells (Alizadeh, et 
al., 2000, Perou, et al., 1999, Spellman et al., 1998, Hughes et al., 2000). Class discovery 
tools have played a key role in this process.  Class discovery methods are exploratory 
analysis tools used to organize, learn from, and discover patterns in the data.  Of the 
various multivariable techniques available, clustering of genes and samples has been the 
most common tool used for the analysis of microarray data (Alizadeh, et al., 2000, Perou, 
et al., 1999, Spellman et al., 1998, Hughes et al., 2000, Eisen  et al., 1998, Tamayo et al., 
1999).  Before proceeding to cluster, it is often advantageous to visualize the data in 
order to develop an understanding of underlying structure. This initial exploration is 
useful in revealing patterns, and providing clues for further analysis.  
 
Principal Component Analysis (PCA) is a linear projection method that defines a new 
dimensional space that captures the maximum information present in the initial data set 
by minimizing the error between the original data set and the reduced dimensional data 
set. Each principal direction of the projection space, or principal component (PC) is 
defined such as to be orthonormal to all others and to maximize the information in the 
data that has not already been captured by the previous (lower) dimensions. In this way, 
as the number of PCs progressively increases, a larger fraction of the total information 
content is accounted for.  PCA is a linear projection in the sense that the variables of the 
projection space (PCs) are linear combinations of the original variables (i.e., the gene 
expressions). The coefficients of this linear combination are termed loadings and the 
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actual values of the projection of the samples are termed scores.  PCA is obtained from a 
singular value decomposition of the data, and the loadings are the entries in the singular 
vector and are associated with genes. The scores are contained in the matrix obtained 
from a multiplication of the original data matrix with the singular vectors, and are 
associated with samples.  Standard formulas are available for the determination of the 
projection variables, loadings and captured variability (Dillon and Goldstein, 1984), and 
many applications of PCA have been reported in a variety of different contexts (Alter et 
al., 2000, Holter et al., 2000, Rannar  et al., 1998, Kamimura, 1997). 
 
In this paper we use PCA to analyze a set of microarray measurements on normal human 
tissues.  Initial projection onto a lower dimensional space allows for better visualization 
of the entire data set. The loadings are subsequently used to select relevant genes, while 
considering the impact of the removal of irrelevant genes on the patterns observed in the 
projection of the samples.  This is an alternate approach to the problem of selection of 
relevant genes in the analysis of microarray data (Golub et al., 1999), and may be used to 
obtain a subset of genes that best describe the data.  The observation of clear gene-
expression patterns, after the removal of irrelevant genes, points to a high degree of 
structure in the measurements.  Exploration of these gene expression patterns further 
revealed tissue-specific gene expression signatures.  These signatures were further 
supported by the analysis of additional tissue samples that had not been used in the initial 
pattern discovery step.   
 
 
 
RESULTS 
 
The data set used in this study comprised expression measurements of 7070 genes made 
in 40 normal human tissue samples using Affymetrix GeneChips.  The data were 
generated at the Brigham and Women's Hospital  (BWH) in Boston (Hsiao et al., 2001).  
Samples from several human tissues were analyzed, here we use the samples from brain, 
kidney, liver, lung, esophagus, skeletal muscle, breast, stomach, colon, blood, spleen, 
prostate, testes, vulva, proliferative endometrium, myometrium, placenta, cervix and 
ovary. 
 
 
PCA loadings can be used to filter irrelevant genes 
 
The data from the 40 human tissues were first projected using PCA.  PCA may be used 
with or without scaling (mean-centering, or autoscaling, among others).  Here, we did not 
scale the data, and comparisons with mean-centered results are provided in the 
Discussion.  The first and second PCs, account for approximately 70% of the information 
present in the entire data set. The score plot of the 40 samples using the entire gene 
expression set is shown in Fig. 1a.  Also plotted in Fig. 1b are the loadings for each of the 
7070 genes for the first and second PCs.  The loading plot reveals a large number of 
genes clustered around the origin, implying that they only marginally impact the 
projection onto the first and second PC.  
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Figure 1: Gene selection based on the loadings on the principal components. Graphs (a) and (b) show the score plot 
of the samples and the loading plot of the genes, respectively, before any filtering is implemented.  Graphs (c) and (d) 
show the score and loading plots after the filtering. Graph (e) displays quantitatively the decisions that went into the 
choice of the filtering threshold.  It displays the distortion in the observed patterns, as measured through the squared 
difference, and the number of genes retained for analysis as the threshold is varied.  The chosen filter threshold was 
0.001.  Filtering reduces the number of genes from 7070 to 425.  At the same time, the score plot of the samples 
remains largely unchanged, and displays the same initial patterns, signifying a minimal loss of information.  The 
loading plot displays strong linear structures of genes. 
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Since the relative magnitude of the loading is a measure of the importance of the 
corresponding gene in defining the PC, a small magnitude implies that the corresponding 
gene expression does not materially impact that particular PC. On this basis, a filter that 
eliminates genes with loadings below a threshold in all of the first five PCs was 
implemented.  The decisions that went into the choice of the threshold are illustrated in 
Figure 1e.  The threshold was varied over a large range, and at each threshold value, a 
record was maintained of the number of genes retained for analysis and the distortions in 
the score plot due to the elimination of genes. As the threshold value was gradually 
increased, the samples were re-projected using the subset of genes passing the filter.  The 
distortion from the original score plot was measured in terms of the squared difference, 
defined as the sum of the squares of the difference between the 40 original score values 
and the 40 score values produced with the filtered gene set (this is defined 
mathematically in the Methods).  In essence, this squared difference measures the error 
between the original projections and the new sample projections (or the distortion of the 
original pattern) as more and more genes are removed.  When the threshold value 
exceeded 0.001, a large fraction of the genes were filtered out, precipitating large 
distortions in the patterns on the score plot. This criterion eliminated all but 425 genes 
whose loadings in at least one of the first five PCs exceeded the threshold value. A 
projection of the samples using only these 425 genes reveals an almost identical pattern 
on the score plot with the one obtained when all 7070 genes were used (Fig. 1c). This 
suggests that the dramatic reduction from the initial 7070 genes to the 425 finally retained 
resulted in a minimal information loss relevant to the description of the samples in the 
reduced space.  Thus, a PCA framework may be used to evaluate the effect of gene 
removal on expression patterns observed in the reduced dimensional space.  
 
Identification of tissue-specific gene expression patterns. Correspondence between 
score and loading plots. 
 
Three linear structures can be identified in the loading plot of the 425 genes selected by 
the above analysis, each structure comprising a set of genes arranged along a particular 
angle in Fig. 1d. These linear structures suggest a certain degree of organization in gene 
expression reflected in the linear relationships between the loadings of the first and 
second PCs of the genes clustered in these structures. An obvious question is whether 
there is any correlation among the genes that define these structures. Figure 2 shows the 
results of a systematic exploration of the patterns depicted in Fig. 1d.  Plotted in Fig. 2a 
are the angles defined by the x-axis and the points representing the loadings of the first 
two PC's for the 425 consequential genes identified above. This histogram defines three 
clusters each corresponding to the three structures identified in Fig. 1d.  The first, termed 
structure A, comprises genes with angles between 1.452 - 1.469 radians.  The second, 
structure B, is centered around the second peak with angles between -1.222 and -1.205 
radians, and the third is a set of genes between -0.328 and 0.054 radians, called structure 
C.  The list of genes so selected was further refined to prevent the inclusion of genes that 
may have the same angle but are far removed from the structures in Fig. 1d by clustering 
the genes on the basis of their distance from the origin (the clustering results are 
discussed and provided in the Supplementary Materials).  The final list of selected genes 
is provided in Table 1.   
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Figure 2: Identification of tissue-specific genes and validation using new samples. (a) Histogram of the angles 
between the x-axis and the points defined by the two principal loadings of each gene shown in  Fig. 1d.  Three main 
features, corresponding to the linear structures shown in Fig. 1d can be discerned, and are labeled as A, B and C. (b) 
PCA projection of all samples using the genes in Structure A.  The samples in the initial data set are represented by red 
circles, and the new samples by blue asterixes.  The two liver samples in the initial data set (Li-1, Li-2) and the new 
liver samples (NLi-1, NLi-2, NLi-3) are separated from the other samples, all of which cluster at the origin. (c) 
Projection of all samples using the genes in structure B.  The muscle samples in the initial data set (Mu-1, Mu-2, Mu-3) 
are separated from the other samples along PC1.  All the other tissue samples cluster at the origin.  The new muscle 
samples are also separated when projected using these genes (NMu-1, NMu-2, NMu-3).  (d) Projection of all samples 
using the genes in structure C.  The six brain samples in the initial data set, and the three new brain samples are 
separated from the other samples.   
 
 
 
Although the identity of some genes in the above groups are suggestive of the type of 
tissue they represent (for example, the genes in structure A contain an excess of genes 
related to the liver, such as albumins and apolipoproteins), the nature of each gene group 
is revealed when score plots are constructed using only the genes that are specific to the 
structures of Fig. 1d or 2a.  Thus, using only the 24 genes of structure A to project all the 
samples yields a score plot (Fig. 2b) that dramatically separates the two liver samples in 
the data set from all the remaining tissue samples.  Similarly, projecting the expression 
data of the 19 genes in structure B separates the three skeletal muscle tissue samples from 
the remaining tissues along the first PC (Fig. 2c) and, finally, projection of the samples 
using the 86 genes of structure C separates all six brain samples from the remaining 
tissues (Fig. 2d).   
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Inspection of the genes in structure C revealed two broad classes of genes. One class of 
genes with low expression levels was largely related to ribosomal proteins and function, 
while the other class of genes with larger and more variable expression are primarily 
brain tissue related genes. The loadings of these genes on the second PC support this 
observation, so that genes with high expression levels in the brain samples also had a 
high loading magnitude on the second PC, as shown in Table 1.  This is also true of the 
genes in the other structures.  This fact may be used for class discovery and data-driven 
learning, and is a result of the observed correspondence between the score plot and the 
loading plot.  Given the observed separation of the six brain samples on the second PC in 
Fig. 2d, a learning approach for samples with unidentified characteristics would have 
consisted of the following steps: select a set of genes with high loadings on the dominant 
PC, examine their function, and generate hypotheses as to the nature of the samples.  This 
is a class-discovery approach, in contrast to a classification methodology that relies on a 
priori labeling of the samples (Golub, et al., 1999, Brown et al., 2000).  Here, the 
methodology allows one to probe the nature of the sample, and simultaneously identify 
the genes that contribute to the differentiation of the sample(s) from the others. 
 
The genes that were not part of these structures were also analyzed, by projecting the 
samples using these genes, however, no clustering of samples or any noteworthy 
separation was observed.   
 
 
Table 1: List of genes identified by angle selection.  The genes are sorted by their loadings on the PC 
which separates the specific tissue.  Also provided is the ratio of the mean of the gene expression in the 
specific tissue sample to the mean of the gene expression in all the other tissues.  Genes with large values 
of the ratio tend to have large PC loadings.  In the case of the brain-specific signature, only the top 30 genes 
as ranked by their loads on PC 2 are provided.  A complete list of genes is in Supplementary Materials. 
 
Gene ID Ratio of 

Means 
Loading Gene Description 

Liver Specific Signature  PC 1  
M36803 213.5 0.3293 hemopexin 
J02843 337.8 0.3284 cytochrome P450IIE1 (ethanol-inducible) 
X53595 344.5 0.318 beta-2-glycoprot I (apolipoprot H) 
HG2841-HT2970 197.3 0.3175 Albumin  5 
HG2841-HT2969 161.5 0.3042 Albumin,  3 
M13149 131.5 0.2592 histidine-rich glycoprot 
M10050 291.6 0.2533 liver fatty acid binding prot (FABP) 
X03168 2313.7 0.2242 S-prot 
D14446 148.2 0.2113 HFREP-1 
M16961 161.2 0.2067 alpha-2-HS-glycoprot alpha and beta chain 
X51441 342.2 0.1958 serum amyloid A (SAA) prot , clone pAS3-alpha 
HG1827-HT1856 284.2 0.1956 Cytochrome P450, Subfamily Iic 
L00190 254.4 0.1614 D29832, M21642 and others 
M58600 1225.6 0.1523 heparin cofactor II (HCF2) 
M21642 183.9 0.1265 (dysfunctional) antithrombin III (ATIII) Utah 
M19828 1577.6 0.1064 apolipoprot B-100 (apoB) 
M11567 3034.8 0.1059 angiogenin and three Alu repetitive sequences 
X14690 222.4 0.1045 plasma inter-alpha-trypsin inhibitor heavy chain H(3) 
M21642 128.9 0.096 (dysfunctional) antithrombin III (ATIII) Utah 
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M20786 248.8 0.0929 alpha-2-plasmin inhibitor 
M11321 317.2 0.0881 group-specific component vitamin D-binding prot 
U08006 146.8 0.0855 complement 8 alpha subunit (C8A) 
J03474 132.6 0.0778 transcription factor SP1 
S48983 358.8 0.0771 SAA4=serum amyloid A 
    
Muscle Specific Signature  PC 1  
X00371 545 0.3348 myoglobin 
M33772 1527.7 0.3083 fast skeletal muscle troponin C 
Z20656 2992.5 0.287 cardiac alpha-myosin heavy chain 
M21494 410.4 0.2863 muscle creatine kinase  (CKMM) 
U96094 363.6 0.279 sarcolipin (SLN) 
J04760 701.8 0.2658 slow-twitch skeletal troponin I (TNN1) 
M83308 5723.7 0.2651 mitochondrial cytochrome-c oxidase subunit VIa 

(COX6A) 
X06825 452.3 0.2444 skeletal beta-tropomyosin 
L21715 851.7 0.2257 troponin I fast-twitch isom 
M21665 488.5 0.2184 beta-myosin heavy chain 
M19309 1149.9 0.2099 slow skeletal muscle troponin T , clone H22h 
X90568 3169.9 0.2077 titin prot (clone hh1-hh54) 
S73840 350.5 0.2022 type IIx myosin heavy chain 
M20543 993.2 0.1917 skeletal alpha-actin 
X16504 1016.3 0.168 X51957 and others 
M20642 747.2 0.15 alkali myosin light chain 1 
U35637 386.9 0.1345 nebulin/U35637 
M29458 564.4 0.1056 carbonic anhydrase III 
M86407 759.1 0.0813 alpha actinin 3 (ACTN3) 
    
Brain Specific Signature  PC 2  
S72043 90.4306 0.4026 GIF=growth inhibitory factor 
M13577 686.2963 0.3566 myelin basic prot (MBP) 
S40719 20.5566 0.2755 glial fibrillary acidic prot 
HG1877-HT1917 82.2133 0.1778 Myelin Basic prot 
X99076 49.5985 0.1633 NRGN 
U48437 23.3006 0.1404 amyloid precursor-like prot 1 
J04615 5.9926 0.1292 lupus autoantigen (small nuclear ribonuclepoprot 

snRNP SM-D) 
D21267 184.849 0.1252 highly expressed prot 
L07807 30.2311 0.1162 dynamin 
HG3437-HT3628 27.4526 0.1159 Myelin Proteolipid prot 
L10373 18.2544 0.1123 (clone CCG-B7)  sequence 
M16364 9.3301 0.1071 creatine kinase-B 
M98539 3.7109 0.0912 prostaglandin D2 synthase 
U44839 3.1469 0.089 putative ubiquitin C-terminal hydrolase (UHX1) 
D63851 10.9002 0.0863 unc-18 homolog 
Y09836 16.17 0.0838 unknown prot 
M37457 9.0757 0.0805 Na+,K+ -ATPase catalytic subunit alpha-III isoform 
M25667 27.35 0.0779 neuronal growth prot 43 (GAP-43) 
D78577 6.3676 0.0779 DNA for 14-3-3 prot eta chain 
L20814 68.1413 0.0735 glutamate receptor 2 (HBGR2) 
J04046 6.4909 0.0729 calmodulin 
X04741 137.5351 0.0719 prot  product (PGP) 95 
L37033 6.0028 0.071 FK-506 binding prot homolog (FKBP38) 
M11749 11.5785 0.0669 Thy-1 glycoprot 

Misra et al. 8 



D82343 140.3644 0.0649 AMY 
S82024 47.6237 0.06 SCG10=neuron-specific growth-associated 

prot/stathmin homolog 
D49958 29.5755 0.0571 membrane glycoprot M6 
M65066 15.0292 0.0541 cAMP-dependent prot kinase regulatory subunit RI-

beta 
D87465 9.7149 0.0532 KIAA0275 
X86809 4.3215 0.0524 major astrocytic phosphoprot PEA-15 
 
 
Validation of gene expression patterns using new samples 
 
Additional samples (three each) from liver, muscle, and brain were collected in a 
subsequent experiment, profiled transcriptionally and analyzed by applying the above 
projection methods.  Fig. 2b shows the projections of the gene expression data of the new 
liver samples using the loadings obtained from the projection of the genes in structure A 
(that discriminated the two liver samples from the remaining tissues in the initial data 
set). All three liver samples are clearly separated along the first PC from the non-liver 
tissues in the initial data set, underscoring the tissue-specific nature of these genes, and 
hinting at the construction of a "liver axis" along the first PC.  The genes distinguishing 
liver from non-liver tissues include albumin and those associated with the coagulation 
pathway (e.g. factor IX, antithrombin III and heparin cofactor), complement pathway 
(e.g. C8), lipid process (e.g. apolipoproteins), bile metabolism (e.g. fatty acid binding 
protein 1), xenobiotic metabolism (e.g. cytochrome P450), and iron homeostasis (e.g. 
hemopexin), a result which is to be expected based on the known biology of the liver.  An 
examination of the 24 genes in this structure revealed that 33% of all gene pairs had 
correlation coefficients greater than 0.88 for these five liver samples.  This value of the 
coefficient is significant at the 95% statistical level. Thus, a subset of these genes are 
expressed proportionately to each other in the liver tissue.  For instance, it is known that 
apolipoprot H binds to negatively charged heparin, and the heparin cofactor and 
antithrombin III are serine proteases that inhibit the coagulation pathway (McNally  et 
al., 1994, Vander  et al., 1994).   
 
The loadings of the 19 genes in structure B were similarly used to project the three new 
skeletal muscle samples, and the results are shown in Fig. 2c.  Similar to the liver 
samples, the first PC clearly separates the new skeletal muscle samples, and acts like a 
"muscle axis". The genes include those associated with the cytoskeleton (e.g. actin, α1, 
actinin α3, nebulin), contraction (e.g. tropomyosin, troponin, myosin), glucose 
metabolism (e.g. enolase 3β), CO2 metabolism (e.g. carbonic anhydrase III), and energy 
transduction (e.g. creatine kinase). Particularly, actinin α3 is known to have expression 
limited to skeletal muscle (North et al., 1999), and carbonic anhydrase III is strictly 
present at high levels in skeletal muscle and much lower levels in cardiac and smooth 
muscle (Lloyd et al., 1986). About 74 % of all gene pairs, after discounting ones with the 
same genes, had a correlation coefficient greater than 0.811, the 95% confidence level 
with the given number of samples.  This rather striking degree of linear correlation 
implies that these genes are expressed proportionately in skeletal muscle samples, and 
may be coordinately regulated.  For example, while both actin and myosin provide force 
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for muscle contraction, troponin, a regulatory protein, prevents actin and myosin 
interaction in resting muscle tissue. And, tropomyosin, an actin filament binding protein 
is required for the interaction of actin and troponin.  It is also known that titin maintains 
resting tension in skeletal muscle (Vander  et al., 1994). 
 
Finally, the 86 genes in structure C were used to project the new brain samples, and as 
Figure 2d shows, the new brain samples are clearly separated from the other non-brain 
samples, and fall in the same region as the brain samples of the initial set.  The genes 
include those associated with myelin structure (e.g. myelin basic protein), astrocytic 
differentiation (e.g. glial fibrillary acidic protein), synaptic reorganization (e.g. 
calmodulin, neurogranin, and GAP-43) and neurotransmission (e.g. glutamate receptor). 
Of note, many genes with no known functions are also reported here to be specific for the 
brain samples.   
 
The use of projection methods to analyze the effect of these genes on the samples also led 
to the automatic construction of a reduced dimension classifier space for the liver, 
muscle, and brain tissues.  As demonstrated here, new samples may be projected onto this 
space, and the score value used to classify the tissue sample.    
 
 
Application to other data sets 
 
Figure 3 shows the result of the application of the current methodology to the gene 
expression data on lymphoid malignancies (Alizadeh et al., 2000).  Expression phenotype 
of 62 samples of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), 
and chronic lymphotic leukemia (CLL) were measured on 17,856 cDNA clones. A 
simple projection reveals the presence of two clusters, and one intervening group of 
samples.  Querying the nature of these samples reveals an almost perfect segmentation of 
the samples, in a PC space that comprises a mere 35% of the information in the data.  
Implementing the thresholding procedure allows for the identification of 401 
consequential genes, which maintain the patterns in the data, with minimal distortion.  No 
outstanding structures suggest themselves in the loading plot.  The observation of linear 
structures is a unique characteristic of each data set, and will not necessarily occur in all 
cases.  In this particular case, just the thresholding procedure is sufficient to allow for 
segmentation of the samples and identification of consequential genes.   
 
 
 
DISCUSSION 
 
We have demonstrated the utility of PCA as an initial step in the analysis of microarray 
data to extract and examine gene expression patterns. Previous work has applied a similar 
approach (singular value decomposition) to construct linear combinations of gene 
expressions (called "characteristic modes" or "eigengenes") from microarray 
measurements of time-series samples (Alter et al., 2000, Holter et al., 2000).  Here, we 
extend the application of PCA to the analysis of non-time series data, and the data-driven  
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Figure 3: Projection of the Lymphoma samples using the PCA.  The projection already reveals a fairly clear 
separation of the three classes in the data.  The thresholding procedure allows for the identification of 401 genes from 
about 850 cDNA clones which are sufficient to describe the patterns observed.  (a) and (b) are the score and the loading 
plot prior to thresholding and (c) and (d) are the score and loading plot post thresholding.  (e) reveals the effect of 
thresholding on the number of genes retained and the squared difference.  The chosen threshold, 0.002 is the point 
beyond which the squared difference explodes.    
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learning and sample classification problem.  The reason for the broad applicability of the 
PCA lies in its strong, yet flexible, mathematical structure, and the correspondence 
between the score plot and the loading plot.  This latter feature is exploited in the 
interactive methodology presented for the elimination of redundant variables or genes.  
This method is general, and may be applied to any data set.   
 
Our methodology facilitated the identification of strong underlying structures in the data.  
The identification of such structures is uniquely dependent on the data, and is not 
generally guaranteed.  For example, the expression data on leukemia samples (Golub  et 
al., 1999) was similarly analyzed, however, no evident patterns presented themselves, 
though diffuse structures containing some discriminatory information could be observed 
at higher, less informative PCs (data not shown).  This may be due to the fact that the 
PCA attempts to maximize the variation that it captures in the data.  In cases where the 
discriminatory information is not the most important type of variation (perhaps due to the 
presence of a large number of non-discriminatory genes), the above analysis will not 
yield discriminatory patterns between two classes of tissues/sample.  When 
discriminatory genes are preselected by applying a t-test on pre-classified samples, and 
used for projection, clear separations are obtained between AML and ALL classes.   
 
Several genes in the tissue-specific signatures identified here are justifiable with respect 
to known biology regarding the particular tissue.  In the case of the liver and muscle 
samples, co-ordinate expression of some of these genes may also be biologically 
explained.  Elucidation of the function and role of the other genes observed in these 
tissue-specific signatures must await further experiments.  
 
In the current study, the data was not mean-centered.  Mean-centering is geometrically 
equivalent to shifting the origin of the PCA coordinate system to the centroid of the data, 
a procedure which may or may not yield different results.  For the purposes of 
comparison, the data was mean-centered, and then analyzed as described above.  The 
structures for the liver and muscle samples were identified in the first and second PC, 
while the identification of the brain structure required the inclusion of the third PC.  The 
list of genes identified overlapped strongly with the one presented here.  This raises our 
confidence in the significance of the genes identified, but also underscores the fact that 
different processing methods will give rise to a slightly different list of genes, and it may 
be best to adopt several processing methods, and choose a common subset of genes.   
 
Projection methods shift the focus of analysis from individual genes to the combined 
quantitative effect of several consequential genes.  Here, due to the strong structures 
observed in the data, such a combination led to the construction of reduced dimension 
classifiers for the liver, muscle and brain tissues.  If the sole objective of the analysis is to 
yield a classifier, then other projection methods, such as Canonical Discriminant Analysis 
(Hwang et al., in preparation) are more appropriate, and rigorous.  If the objective is data 
exploration, the PCA is better applied, since few a priori assumptions, such as sample 
class type, are made.  Overall, due to their data reduction properties and their flexibility 
in dealing with large data sets, projection methods are an important class of tools for the 
analysis of microarray data. 

Misra et al. 12



 
METHODS  
 
Data treatment 
Each array from the BWH data was scaled to a target intensity of 100.  All negative 
expression values were reduced to zero for the purposes of analysis.  For treatment of the 
lymphoma data, refer Alizadeh et al. (2000).  In the Lymphoma data set, genes which 
have missing values for the 62 experiments are removed from the analysis.  This leaves 
us with an initial starting number of 854 cDNA clones.   
 
Principal Components Analysis 
Singular value decomposition is used to calculate the principal components of a data 
matrix (Dillon and Goldstein, 1984).  Any data matrix X with S samples (tissues) on the 
rows and V variables (genes) on the columns may be decomposed as follows:  
 

)()()()(
'

RxvRxRsxRsxv
LTUX =          (1) 

 
where T is a diagonal matrix whose values are the singular values of the matrix X.  The 
singular values of X are the square roots of the nonzero eigenvalues of the square matrix 
X'X as well as XX' (X' being the transpose of X).  The columns of U and L contain the 
eigenvectors of XX' and X'X, respectively.  The maximum number of independent 
dimensions, R is determined by the rank of the matrix X.   
 
The loadings of the genes, or their coefficients in the linear combination which forms the 
principal component, is given by the column vectors of the matrix L.  The magnitude of a 
gene loading is a measure of its importance in defining the principal component.  The 
scores of the samples, or the projections of the samples on the principal components is 
given by: 
 

LXSc =           (2) 
The amount of information in the data that the first r principal components capture may 
be quantified as:  

% information captured by the first r components (out of R total)
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where SVi is the ith singular value.   
 
The filter on the loadings was implemented by dividing each loading by the sum of the 
magnitudes of all the other loadings for that PC, and then rejecting all genes with a 
loading less than the threshold value.  The distortion of patterns in the score plot due to 
the removal of genes in this thresholding procedure was measured by the sum of the 
squares of the difference between the 40 original score values and the 40 score values 
produced with the filtered gene set.  Mathematically, 
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where SD is the squared difference, ys,i,o is the score value of the sth sample on the ith PC 
in the projection using all the 7070 genes, while ys,i,f is the score value of the sth sample 
on the ith PC obtained when a filtered gene set is used.   
 
Gene lists and supplementary materials 
All relevant gene sets and supplementary figures will be posted as web-site supplements 
at the Genome Research site.  
 
 
ACKNOWLEDGEMENTS 
 
We would like to acknowledge the anonymous reviewers for their constructive suggestions for the paper.  
This work was supported by a grant from the Engineering Research Program of the Office of Basic Energy 
Science at the Dept. of Energy, Grant No. DE-FG02-94ER-14487 and DE-FG02-99ER-15015, and NIH 
Grant No. 1-RO1-DK58533-01. 
 
 
 
REFERENCES 
 
1. Alizadeh, A. A., Eisen, M. B., Davis, R. E. , Ma, C., Lossos, I. S., Rosenwald, A.,  

Boldrick, J. G., Sabet, H., Tran, T., Yu, X., et al.  2000. Distinct types of diffuse large 
B-cell lymphoma identified by gene expression profiling. Nature, 403, 503-511. 

2. Alter, O., Brown, P. O., and Botstein, D. 2000. Singular value decomposition for 
genome-wide expression data processing and modeling. Proceedings Of the National 
Academy Of Sciences Of the United States Of America, 97, 10101-10106. 

3. Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., 
Ares, M., and Haussler, D. 2000. Knowledge-based analysis of microarray gene 
expression data by using support vector machines. Proceedings Of the National 
Academy Of Sciences Of the United States Of America, 97, 262-267. 

4. Dillon, W. R. and Goldstein, M. 1984. Multivariate Analysis. John Wiley & Sons, 
USA. 

5. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis 
and display of genome-wide expression patterns. Proceedings Of the National 
Academy Of Sciences Of the United States Of America, 95, 14863-14868. 

6. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., 
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and 
Lander, E. S. 1999. Molecular classification of cancer: Class discovery and class 
prediction by gene expression monitoring. Science, 286, 531-537. 

7. Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fedoroff, N. V. 
2000. Fundamental patterns underlying gene expression profiles: Simplicity from 
complexity. Proceedings Of the National Academy Of Sciences Of the United States 
Of America, 97, 8409-8414. 

Misra et al. 14



8. Hsiao, L., Dangond, F., Yoshida, T., Hong, R., Jensen, R.V., Misra, J., Dillon, W., 
Lee, K., Clark, K., Haverty, P., et al. 2001. A compendium of gene expression in 
normal human tissues reveals tissue-selective genes and distinct expression patterns 
of housekeeping genes. Physiological Genomics (in press). 

9. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. 
D., Bennett, H. A., Coffey, E., Dai, H. Y., He, Y. D. D., et al. 2000. Functional 
discovery via a compendium of expression profiles. Cell, 102, 109-126. 

10. Kamimura, R. T. 1997. Application of Multivariate Statistics to Fermentation 
Database Mining. Ph.D. Thesis, Department of Chemical Engineering, Massachusetts 
Institute of Technology. 

11. Lloyd J., McMillan, S., Hopkinson, D., and Edwards, Y.H. 1986. Nucleotide 
sequence and derived amino acid sequence of a cDNA encoding human muscle 
carbonic anhydrase. Gene, 41, 233-239. 

12. McNally, T., Cotterell, S. E., Mackie, I. J., Isenberg, D. A., and Machin, S. J. 1994. 
The Interaction of Beta(2) Glycoprotein-I and Heparin and Its Effect on Beta(2) 
Glycoprotein-I Antiphospholipid Antibody Cofactor Function in Plasma. Thrombosis 
and Haemostasis, 72, 578-581. 

13. North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., Beggs, A. H. 
1999. A common nonsense mutation results in alpha-actinin-3 deficiency in the 
general population. Nature Genetics, 21, 353-354. 

14. Perou, C. M., Jeffrey  S. S., Van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., 
Pergamenschikov, A., Williams, C. F., Zhu, S. X., Lee, J. C. F., Lashkari, D., Shalon, 
D., Brown, P. O., and Botstein, D. 1999. Distinctive gene expression patterns in 
human mammary epithelial cells and breast cancers. Proceedings Of the National 
Academy Of Sciences Of the United States Of America, 96, 9212-9217. 

15. Rannar S., MacGregor, J.F, Wold, S. 1998. Adaptive Batch Monitoring using 
Hierarchical PCA. Chemometrics & Intelligent Laboratory Systems, 41, 73-81. 

16. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., 
Brown, P. O., Botstein, D., and Futcher, B. 1998. Comprehensive identification of 
cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray 
hybridization. Molecular Biology Of the Cell, 9, 3273-3297. 

17. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., 
Lander, E. S., and. Golub, T. R. 1999. Interpreting patterns of gene expression with 
self-organizing maps: Methods and application to hematopoietic differentiation. 
Proceedings Of the National Academy Of Sciences Of the United States Of America, 
96, 2907-2912.  

18. Vander, A. J., Sherman, J. H., and Luciano, D. H. 1994. Human Physiology. 
McGraw-Hill, NY. 

 
 
 
 
 
 
 

Misra et al. 15



SUPPLEMENTARY FIGURES 
 

Supplementary Figure 1: Clustering of the genes identified in structure A to identify genes with the same angle, 
but far removed from the actual structure.  Single linkage clustering with a euclidean distance metric was used 
for clustering the samples.  Of the 34 genes in the structure, the 24 genes in red were the ones chosen for subsequent 
analysis and projections, since they cluster tightly together, while the others are further away. 
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Supplementary Figure 2: Clustering of the genes identified in structure C to identify genes with the same angle, 
but far removed from the actual structure.  Single linkage clustering with a euclidean distance metric was used 
for clustering the samples.  Of the 174 genes in the structure, the 86 genes enclosed by the red circle were the ones 
chosen for subsequent analysis and projections, since they cluster tightly together, while the others are further away. 
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