Optimizing the menu of travel options for a Flexible Mobility on Demand System *FMOD*

Bilge Atasoy, Takuro Ikeda, Moshe Ben-Akiva

November 12, 2014

INFORMS Annual Meeting

Agenda

- Motivation and background
- Concept of FMOD
- Modeling framework
- Simulation experiments
- Conclusions and future directions

Motivation and background

- Personalized services using smartphone apps are emerging for taxi:
 - Uber, Lyft, SideCar, GoMyWay, etc.

• Why not apply similar technologies to also DRT and fixed route public transportation?

Concept of FMOD

- **Real-time** transportation system
- **Personalized** demand responsive system that gives the traveler an **optimized menu**
- **Dynamic allocation** of vehicles to services

Customer request fMOD server allocate choose fleet taxi shared taxi mini-bus

Concept of FMOD (cont.)

• Taxi: Flexible route, flexible schedule, private

• Shared-taxi: Flexible route, flexible schedule, shared

• Mini-bus: Fixed route, flexible schedule, shared

Concept of FMOD (cont.)

Supply Demand

Request:

Origin: A, Destination: B

Preferred Departure Time: 8:00 – 8:30 / Preferred Arrival Time: 8:45 – 9:00

request

FMOD Server

optimization

offer

Offer:

taxi: DT: 8:25/AT: 8:45, \$20 shared-taxi: DT: 8:27/AT: 8:57, \$10

as the 4th passenger

mini-bus: DT: 8:14/AT: 8:59, \$5

as the 6^{th} passenger

choose

Choice:

service: shared-taxi

DT: 8:27/AT: 8:57, \$10

Modeling framework

- Product $p_{n,m,l}$
 - A service (m) on a vehicle (n) departing at a certain time period (l)
- Feasible product $p_{n,m,l} \in F$
 - A product that satisfies the capacity and scheduling constraints
 - Vehicle capacity
 - Existing schedule
 - Preferred time window
 - Maximum schedule delay
- Offer
 - A list of feasible products presented to the customer (max 1 product for each service)

Modeling framework (cont.)

Phase1. Feasible product set generation

Set of feasible products to be offered to the customer taking into account:

- Capacity constraints
- Scheduling constraints based on the request

Phase 2. Assortment optimization

Optimized list to be offered to the customer from the feasible set

- Maximize operator's profit and/or consumer surplus based on a choice model

Demand model

- A logit model in order to represent the choice probabilities for the FMOD services and the reject option
- Utility functions are defined by:
 - Price of the service
 - In-vehicle travel time
 - Out-vehicle travel time (for mini-bus)
 - Schedule delay

$$\text{Prob}_{n,m,l}(x) = \frac{x_{n,m,l} \exp(\mu V_{n,m,l})}{\exp(\mu V_{\text{reject}}) + \sum_{n' \in N} \sum_{m' \in M} \sum_{l' \in L} x_{n',m',l'} \exp(\mu V_{n',m',l'})}$$

Assortment optimization model

- Myopic version (current request only)
- Maximize expected profit

$$\max \sum_{n \in N} \sum_{m \in M} \sum_{l \in L} r_{n,m,l} \operatorname{Prob}_{n,m,l}(x)$$

At most one product for each service

s.t.
$$\sum_{n \in N} \sum_{l \in L} x_{n,m,l} \le 1$$

$$\forall m \in M$$

Among the set of feasible products

$$x_{n,m,l} \in \{0,1\}$$

$$\forall p_{n,m,l} \in F$$

Assortment optimization model

- Formulated as a mixed integer linear problem
- Transformation with a new decision variable for choice probability

Myopic vs dynamic

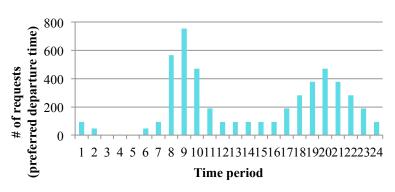
- Different versions of the model are considered:
 - maximize consumer surplus (logsum)
 - maximize profit
 - maximize profit + consumer surplus: total benefit

Simulation experiments Case study

- Simulation time: 24 hours
- Network
 - Hino city in Tokyo (approx. 9km×8km)
- Supply
 - Fleet size: 60
 - Bus line: actual route
- Demand
 - 5000 requests / day
 - OD: station, hospital etc. (population density)
 - VOT: from \$6/h to \$30/h
- Fare
 - Taxi: \$5 (base) + \$0.5 (per 320m)
 - Shared-taxi: 50% of taxi fare
 - Bus: \$3 (flat)
- Operator Cost
 - \$200 / day / vehicle + \$0.2 per km

(Yellow: Bus line)

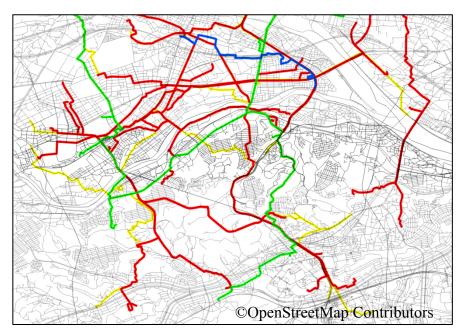
Demand



Simulation experiments

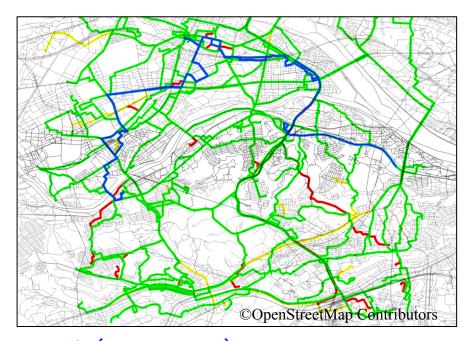
Snapshots

Red: Taxi, Green: Shared taxi, Blue: Mini-bus, Yellow: empty



Off-peak (AM 6:00)

Taxi is dominant

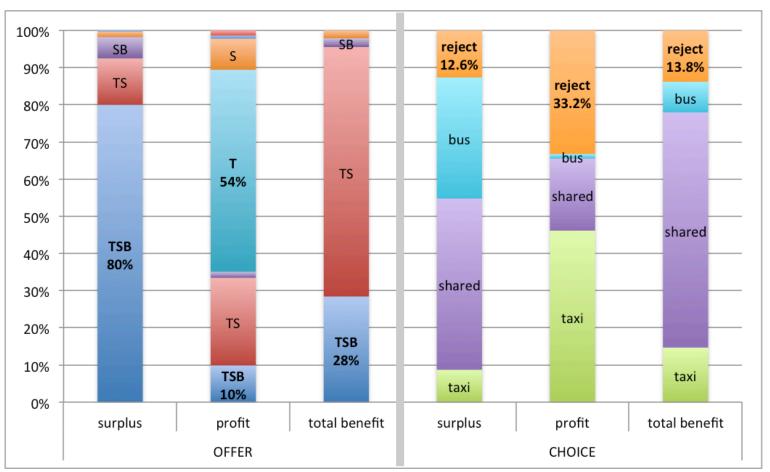


Peak (AM 8:00)

Shared taxi / Mini-bus are dominant

Simulation experiments Comparison of models

T:taxi, S:shared-taxi, B: mini-bus



Simulation experiments Main findings

- The offer given by FMOD is significantly affected by the objective function.
- Total benefit case compared to profit maximization:
 - Significant increase in consumer surplus without much decrease in profit

• Dynamic allocation of vehicles provides significant improvements over static allocation

Conclusions and future directions

• FMOD has a potential to increase operator's profit and improve passenger satisfaction

- Ongoing and further research directions include:
 - Field test
 - Estimation of future demand
 - Real life conditions (e.g. traffic)
 - Learning the behavior of customer through repeated visits

Conclusions and future directions

$$\begin{aligned} \max \sum_{n \in N} \sum_{m \in M} \sum_{l \in L} r_{n,m,l} \ \omega_{n,m,l} \\ + \sum_{m \in M} \sum_{l \in L} \tilde{r}_{m,l} E[Dem_{m,l}|Dem_{m,l} \leq \tilde{z}_{m,l}] \\ \text{s.t.} \ \sum_{n \in N} \sum_{m \in M} \sum_{l \in L} \omega_{n,m,l} = 1 - \omega_{reject} \\ \sum_{n \in N} \sum_{l \in L} \frac{\omega_{n,m,l}}{\exp\left(\mu V_{n,m,l}\right)} \leq \frac{\omega_{reject}}{\exp\left(\mu V_{\text{reject}}\right)} & \forall m \in M \\ \omega_{n,m,l} \leq 0 & \forall p_{n,m,l} \notin F, n \in N, m \in M, l \in L \\ 0 \leq \frac{\omega_{n,m,l}}{\exp\left(\mu V_{n,m,l}\right)} \leq \frac{\omega_{reject}}{\exp\left(\mu V_{\text{reject}}\right)} & \forall n \in N, m \in M, l \in L \\ \tilde{z}_{m,m,l} \geq \omega_{n,m,l} & \forall n \in N, m \in M, l \in L \\ \tilde{z}_{n,m,l} \leq \sum_{n} z_{n,m,l} & \forall n \in N, m \in M, l \in L \\ z_{n,m,l} \leq Cap_{n,m,l} - x_{n,m,l} & \forall n \in N, m \in M, l \in L \\ z_{n,m,l} \geq 0 & \forall n \in N, m \in M, l \in L \\ \tilde{z}_{m,l} \geq 0 & \forall n \in N, m \in M, l \in L \\ \tilde{z}_{m,l} \geq 0 & \forall n \in N, m \in M, l \in L \end{aligned}$$

Thank you for your attention!

batasoy@mit.edu

Feasible product set generation

Insertion of a new schedule

[Schedule Block]
Service type
[Stops]
Location
Arrival Time
Departure time
Boarding passengers
Alighting passengers

SB_1			
	Sha	red	
s_1^1	s_2^1	s_3^1	s_4^1
а	b	С	d
ı	9:15	9:30	9:50
9:00	9:16	9:31	ı
1	2	-	-
-	-	1	2

S	B_2	
empty		
s_1^2	s_2^2	
d	g	
-	14:40	
12:30	-	
-	-	
_	-	

SB_3			
	Mini	i-bus	
s_1^3	s_2^3	s_3^3	s_4^3
g	h	i	j
ı	15:00	15:10	15:20
14:50	15:01	15:11	ı
4,5	6,7	ı	ı
-	4	6	5,7

 SB_5 Mini-bus

[Schedule Block]
Service type
[Stops]
Location
Arrival Time
Departure time
Boarding passengers
Alighting passengers

SB_1				
	Sha	red		
s_1^1	s_2^1	s_3^1	s_4^1	
a	b	С	d	
ı	9:15	9:30	9:50	
9:00	9:16	9:31	1	
1	2	- 1	-	
-		1	2	

S	\boldsymbol{B}_2	SB_3		B_4	
em	npty		taxi		pty
s_1^2	s_2^2	s_1^3	s_2^3	s_1^4	
d	е	е	f	f	
-	13:00	-	13:30	-	1
12:30	-	13:05	-	14:30	
-	-	3	-	-	
-	-	_	3	_	

15:00

15:01

14:50

15:10

15:11

15:20

5,7

Feasible product set generation (cont.)

• Insertion to the existing schedule

[Schedule Block]
Service type
[Stops]
Location
Arrival Time
Departure time
Boarding passengers
Alighting passengers

SB_1			
	Sha	red	
s_1^1	s_2^1	s_3^1	s_4^1
а	b	С	d
ı	9:15	9:30	9:50
9:00	9:16	9:31	ı
1	2	-	-
-	-	1	2

S	B_2	
empty		
s_1^2	s_2^2	
d	g	
-	14:40	
12:30	-	
-	-	
-	-	

SB_3				
	Mini	-bus		
s_1^3	s_2^3	s_3^3	s_{4}^{3}	
g	h	i	j	
ı	15:00	15:10	15:20	
14:50	15:01	15:11	1	
4,5	6,7	-	_	
- 4 6 5,7				

[Schedule Block]
Service type
[Stops]
Location
Arrival Time
Departure time
Boarding passengers
Alighting passengers

SB_I							
Shared							
s_1^1	s_2^1	s_3^1	s_4^1	s_{5}^{1}	s_{6}^{1}		
a	b	С	е	d	f		
-	9:15	9:30	9:40	9:50	10:20		
9:00	9:16	9:31	9:41	-	-		
1	2	-	3	-	-		
-	-	1	-	2	3		

SB_2					
empty					
s_1^2	s_2^2				
d	g				
-	14:40				
12:30	-				
-	-				
-	-				

SB_3							
Mini-bus							
s_1^3	s_{2}^{3}	s_3^3	s_4^3				
g	h	i	j				
-	15:00	15:10	15:20				
14:50	15:01	15:11	1				
4,5	6,7	_	-				
-	4	6	5,7				

Transformation of the model

$$\max \sum_{n \in N} \sum_{m \in M} \sum_{l \in L} r_{n,m,l} \, \omega_{n,m,l}$$
s.t.
$$\sum_{n \in N} \sum_{m \in M} \sum_{l \in L} \omega_{n,m,l} = 1 - \omega_{reject}$$

$$\sum_{n \in N} \sum_{l \in L} \frac{\omega_{n,m,l}}{\exp(\mu V_{n,m,l})} \le \frac{\omega_{reject}}{\exp(\mu V_{reject})}$$

$$0 \le \frac{\omega_{n,m,l}}{\exp(\mu V_{n,m,l})} \le \frac{\omega_{reject}}{\exp(\mu V_{reject})}$$

$$\forall m \in M$$

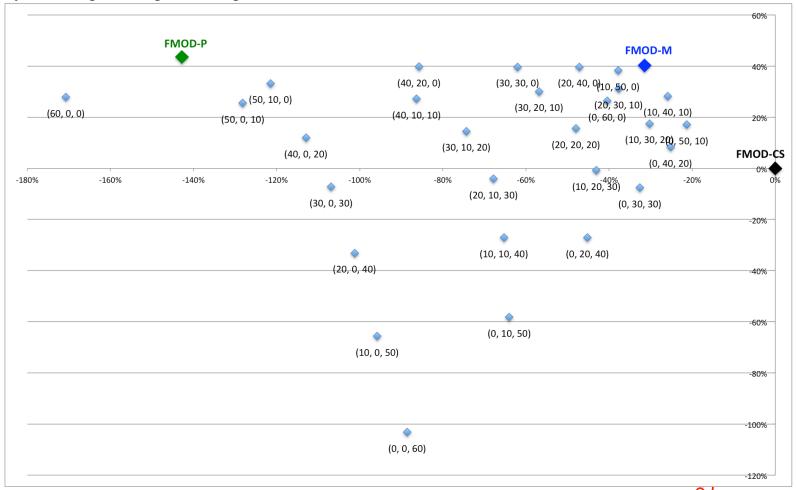
$$\forall p_{n,m,l} \in F$$

Additional simulation results

Added value of dynamic allocation

x-axis: % change in consumer surplus with respect to FMOD-CS

y-axis: % profit in profit compared to FMOD-CS



Dynamic programming

• Dynamic programming Bellman equation:

$$J_c(S_c) = \max_{x \in F_c} \{E[R_c(x)] + E[J_{c+1}(S_{c+1})]\}$$
state

All feasible assortments in stage c under state S_c

where expected profit is:

$$E[R_c(x)] = \sum_{n \in N} \sum_{m \in M} \sum_{l \in L} r_{n,m,l} \operatorname{Prob}_{n,m,l}(x)$$

• For each possible choice of the customer the state will be updated differently for the next customer.

Dynamic programming (cont.)

- The dynamic programming equation can be solved with the reference point being the last customer:
 - Given the feasible set of products we know what we will offer to the last customer: we will offer the best product we have at hand!

$$J_C(S_C) = \max_{x \in F_C} \{ E[R_C(x)] \}$$

Dynamic programming (cont.)

- The recursive function can be demonstrated as below
 - We know what we will decide at the last stage (last customer request)
 - The recursive function will enable to store the best decisions at each state for all possible feasible set of products

```
function MAXPROFIT(c, S_c)

if c==C then

return E[R_C(x)]

else

return E[R_c(x)] + \text{MAXPROFIT}(c+1, S_{c+1})

end if
end function
```

