## Optimized travel options with a Flexible Mobility on Demand System *FMOD*

Bilge Atasoy, Takuro Ikeda, Moshe Ben-Akiva

October 30, 2014

Shaping the New Future of Paratransit: An International Conference on Demand Responsive Transit





#### **Agenda**

- Motivation and background
- Concept of FMOD
- Modeling framework
- Simulation experiments
- Conclusions and future directions





#### Motivation and background

- Personalized services using smartphone apps are emerging for taxi:
  - Uber, Lyft, SideCar, GoMyWay, etc.



• Why not apply similar technologies to also DRT and fixed route public transportation?

#### Concept of FMOD

- **Real-time** system
- Personalized demand responsive system that gives the traveler an optimized menu
- **Dynamic allocation** of vehicles to services

# Customer request fMOD server allocate choose fleet taxi shared taxi mini-bus



#### Concept of FMOD (cont.)

• Taxi: Flexible route, flexible schedule, private



• Shared-taxi: Flexible route, flexible schedule, shared



• Mini-bus: Fixed route, flexible schedule, shared



#### Concept of FMOD (cont.)

Supply Demand

#### **Request:**

Origin: A, Destination: B

Preferred Departure Time: 8:00 – 8:30 / Preferred Arrival Time: 8:45 – 9:00

#### request

FMOD Server

optimization

#### offer

Offer:

taxi: DT: 8:25/AT: 8:45, \$20 shared-taxi: DT: 8:27/AT: 8:57, \$10

as the 4<sup>th</sup> passenger

mini-bus: DT: 8:14/AT: 8:59, \$5

as the  $6^{th}$  passenger

#### choose

#### **Choice:**

service: shared-taxi

DT: 8:27/AT: 8:57, \$10







#### **Modeling framework**

#### Product

A service on a vehicle departing at a certain time period

#### Feasible product

- A product that satisfies the capacity and scheduling constraints
  - Vehicle capacity
  - Existing schedule
  - Preferred time window
    - Maximum schedule delay

#### Offer

 A list of feasible products presented to the customer (max 1 product for each service)



#### Modeling framework (cont.)

#### Phase1. Feasible product set generation

Set of feasible products to be offered to the customer taking into account:

- Capacity constraints
- Scheduling constraints based on the request



#### Phase 2. Assortment optimization

Optimized list to be offered to the customer from the feasible set

- Maximize operator's profit and/or consumer surplus based on a choice model



#### **Assortment optimization model**

- Optimizes the list to be offered to each customer request among all the feasible products
- Choice model is integrated into the optimization model in order to represent shares of services
- Formulated as a mixed integer linear problem
- Myopic vs dynamic

- Different versions of the model are considered:
  - maximize consumer surplus (logsum)
  - maximize profit
  - maximize profit + consumer surplus: total benefit





## **Simulation experiments Case study**

- Simulation time: 24 hours
- Network
  - Hino city in Tokyo (approx. 9km×8km)
- Supply
  - Fleet size: 60
  - Bus line: actual route
- Demand
  - 5000 requests / day
  - OD: station, hospital etc. (population density)
  - VOT: from \$6/h to \$30/h
- Fare
  - Taxi: \$5 (base) + \$0.5 (per 320m)
  - Shared-taxi: 50% of taxi fare
  - Bus: \$3 (flat)
- Operator Cost
  - \$200 / day / vehicle + \$0.2 per km



(Yellow: Bus line)

#### **Demand**





#### Simulation experiments

**Snapshots** 

Red: Taxi, Green: Shared taxi, Blue: Mini-bus, Yellow: empty



Off-peak (AM 6:00)

Taxi is dominant



Peak (AM 8:00)

Shared taxi / Mini-bus are dominant

## Simulation experiments Comparison of models

T:taxi, S:shared-taxi, B: mini-bus







## Simulation experiments Main findings

- The offer given by FMOD is significantly affected by the objective function.
- Total benefit case compared to profit maximization:
  - Significant increase in consumer surplus without much decrease in profit

• Dynamic allocation of vehicles provides significant improvements over static allocation



#### **Conclusions and future directions**

• FMOD has a potential to increase operator's profit and improve passenger satisfaction

- Ongoing and further research directions include:
  - Field test
  - Estimation of future demand
  - Real life conditions (e.g. traffic)
  - Learning the behavior of customer through repeated visits

#### Thank you for your attention!

batasoy@mit.edu