

Flexible mobility on demand (FMOD)

Bilge Atasoy*, Takuro Ikeda**, Moshe E. Ben-Akiva*
*MIT, Civil and Environmental Engineering, ** Fujitsu Laboratories Ltd.
Contact: batasoy@mit.edu

- Innovative solutions are needed for sustainability of transportation systems
- → FMOD provides a menu of options to travelers based on their preferences

Phase1. Feasible product set generation

- Set of feasible products to be offered to the customer
- Scheduling and capacity constraints

Phase 2. Assortment optimization

- Optimized list of products to be offered to the customer
- Maximize profit/welfare based on a choice model

Optimization framework for FMOD

- Novelty of FMOD: the list of options is optimized based on a choice model
- An assortment optimization model is developed and formulated as an LP
- → Utility of each option is defined by the price, travel time and schedule delay
- → Simulation experiments are conducted for a city in Tokyo with promising results
- >> FMOD is expected to improve the **convenience** for travelers and **profitability** for transport operators
- Extensions of the system include the integration of real-time network information, future demand for services, learning the behavior of travelers through repeated visits