Lithium plating in graphite electrodes is a side reaction that prevents the fast charging of Li-ion batteries. Understanding its mechanism and onset condition is critical for effective material design, cell engineering, and battery management to realize fast charging. This work revealed the lithium plating mechanism on single graphite particles by combining in situ experiments with theory and simulation.
SUMMARY

Improving safety while increasing the charging rates and extending the lifetime is the grand challenge for lithium-ion batteries. The key challenge is to control lithium plating, a parasitic reaction on graphite anodes that competes with lithium intercalation. Here, we determine the fundamental mechanism for the onset of lithium plating on graphite particles. We perform in situ optical microscopy coupled with electrochemical measurements to resolve the spatial dynamics of lithiation and plating on the surface of a single graphite particle. We observe that the onset of plating is strongly coupled with phase separation in graphite and occurs only on the fully lithiated edges of the particles. The competition between Li insertion and plating is further elucidated by examining the energetics and kinetics of both reactions. Based on the physical insights drawn from the experiments, we propose a phase-field model that predicts the onset of Li plating.

INTRODUCTION

The electrification of transportation is a promising means to reduce the dependence of our societies on fossil fuels. Lithium-ion batteries (LIBs) have become the dominant technology to power electric vehicles (EVs), but there are still many issues hindering their widespread adoption. One major challenge is the risk of thermal runaway, which can cause safety accidents. Another challenge is the long time required to recharge a LIB (at least 40 min for 80% of the total battery capacity). Extreme fast charging (80% capacity within 10 min) still remains elusive due to rapid capacity fading and potential safety hazards. Overcoming both challenges has been linked to controlling the onset of lithium (Li) metal plating, a detrimental side reaction that may occur on graphite anodes during battery operation.

During battery charging, Li ions are extracted from the cathode and transported through the electrolyte toward the anode, where they are reduced (Figure 1A). The desired reaction is Li-ion insertion (or intercalation) into the layered structure of graphite, but Li ions can also be directly reduced to metallic Li under certain conditions, such as high charging rates or low temperatures. Even trace amounts of Li plating can affect the performance, durability, and operational safety of LIBs in several ways: (1) capacity fading occurs due to loss of Li inventory, which results from the deactivation of the plated Li or formation of solid electrolyte interphases (SEI) on the formed Li metal; (2) internal resistance can increase due to pore clogging by plated Li, which hinders ion transport in the porous electrode; and (3) there is an increasing risk of short circuit, and thus thermal runaway, due to the formation of Li metal dendrites. In order to address these problems, it is critical to
establish a quantitative understanding of the Li plating mechanism on graphite to guide material design and battery engineering. Particularly, these questions need to be answered: (1) when Li plating happens in a Li-ion battery? (2) where it happens in the graphite anode?; (3) how it initiates, grows, and causes internal short circuit?; and (4) to what extent can the deposited Li be re-utilized? Among them, the timing of Li plating is especially important because it marks the onset of Li plating and determines the safe operation window of a Li-ion battery.

There exist different hypotheses to determine the onset of Li plating (Table 1; Figures 1B–1D). The most common one is based on equilibrium thermodynamics. 3,4,13 By definition, the plating reaction becomes thermodynamically possible when the voltage of graphite drops below 0 V versus Li/Li+ (Figure 1B). 14,15 This can occur if the intercalation reaction is kinetically difficult, and the resulted large overpotential can exceed the equilibrium voltage of the last phase transformation in Li-graphite phase diagram and bring the voltage of graphite below 0 V Li/Li+. Although this voltage criterion is a necessary condition for Li plating to occur, it is not sufficient as demonstrated in many experiments. For example, experiments have shown that graphite anodes can tolerate large negative voltages (−200 to −400 mV) before any Li plating is observed, 15–18 in which case the onset of plating occurs far from equilibrium.

To account for such non-equilibrium phenomena, the dynamics of the system needs to be considered. Especially, mass transport limitation is known to be an important factor. Since intercalation consumes Li/Li+ from the electrolyte, 2 the salt concentration near the graphite surface can become depleted (c→0) (Figure 1C), whenever the applied current is large compared to the salt diffusion in the electrolyte. The large concentration polarization can drop the potential below 0 V,22 and the complete depletion of ions can trigger metal deposition in the form of dendrite growth, in which tip splitting growth moves the interface forward to chase the concentration profile. 23 This mechanism is termed as diffusion-limited aggregation, which explains the dendrite deposition of zinc, 24, 29 copper, 25 and recently has been confirmed to cause dendritic lithium formation on Li metal substrate under high charging rate. 19 However, it is not clear whether the same scenario applies to graphite. Another possible mechanism is the solid diffusion limitation in graphite. 20 Since Li occupies interstitial sites in the graphite lattice, the surface can become saturated by the inserted ions if solid diffusion is slow compared to intercalation (c→1) (Figure 1D). 26,27 As a result of surface crowding, 28,29 the intercalation rate is drastically reduced, and the applied current can be redirected to the formation of Li metal, leading to Li plating. Indeed, Li metal has been observed to grow preferentially on fully lithiated graphite particles in “unrolled” porous electrodes, 30 albeit without resolving either solid or liquid concentration gradients.

In efforts to identify the mechanism of Li plating on graphite, experiments and modelings have been focusing on porous electrodes. Li plating on a graphite electrode is highly heterogeneous and localized to a certain region. 31,32 Reaction heterogeneity among graphite particles, observed in both the depth direction 30,33 and lateral direction 32 of the porous electrodes, are believed to correlate to the localized Li plating. In depth direction, Li plating typically occurs on the separator side, 30,33 which was attributed to electrolyte transport limitations. 35,36 However, the origin of the lateral heterogeneity of Li plating is still not clear. 37 These electrode-scale studies provide a global view on Li plating events in graphite electrode; however, how Li plating competes with graphite filling in the local environment is not clear. We are not aware of any direct observation of Li plating during phase separation.

1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
4Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
5Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
8Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
9Present address: Department of Chemical Engineering, the University of Utah, UT 84112, USA
10Lead Contact
*Correspondence: bazant@mit.edu

in single graphite particles, which is necessary to elucidate the competition between plating and insertion locally. In addition to these fundamental studies, there is an emerging trend to integrate Li metal into graphite or other carbon materials to construct hybrid anodes to enhance the anode capacity.

Mathematical models have also been developed to predict the onset of Li plating and metal growth, but they have yet to incorporate all the relevant physics. In most cases, Li intercalation and Li plating are described through empirical Butler-Volmer kinetics, in contrast to the emerging quantum description of intercalation based on coupled ion-electron transfer theory, which unifies Marcus theory with non-ideal thermodynamics. Moreover, the solid-state diffusion of intercalated Li ions is usually described by Fick’s Law with concentration-dependent...
diffusivities, neglecting staging phase separation, and more realistic phase-field models of graphite have not yet included a model of Li plating, due to the absence of experimental guidance.

In this work, we aim to systematically describe the fundamental mechanism of the onset of Li plating on graphite particles by combining experiments with physics-based modeling. Although graphite surface chemistry plays a key role in regulating the plating behavior, the emphasis of this work is to illuminate the physics of phase transformation and reactions of graphite particles and examine the proposed Li plating mechanisms (Figure 1). To achieve this goal, we first use in-operando optical microscopy complemented by electrochemical measurements to concurrently monitor the Li concentration and the voltage of graphite single particles during battery cycling. Optical microscopy exploits the unique colors of different graphite phases and allows us to track the coupled dynamics of Li intercalation, phase separation, and Li plating without the complexity of population dynamics at the electrode scale. Based on our observations, we develop a simple physical picture to elucidate the interplay of Li insertion and plating on graphite particles and further build a phase-field model to predict the onset of Li plating. The fundamental insights gained in this study and the mathematical model can be used to guide the design of advanced materials and electrodes, as well as charging algorithms to achieve extreme fast charging.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Key Parameter</th>
<th>Onset Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamic criterion</td>
<td>voltage of graphite versus Li/Li+</td>
<td>$V_{\text{graphite}} < 0$</td>
<td>Arora et al.</td>
</tr>
<tr>
<td>Diffusion-limited aggregation</td>
<td>Li concentration in electrolyte (c)</td>
<td>$c = 0$ at graphite surface</td>
<td>Bai et al.</td>
</tr>
<tr>
<td>Solid diffusion limitation</td>
<td>Li concentration in graphite (c)</td>
<td>$c = 1$ at graphite surface</td>
<td>Legrand et al.</td>
</tr>
</tbody>
</table>

RESULTS
Experiments
We choose highly oriented pyrolytic graphite (HOPG) as the model system for the study. HOPG is a highly pure and ordered form of synthetic graphite. It is polycrystalline with a very low mosaic spread angle, i.e., the individual graphite crystals are well aligned with each other. We designed a custom electrochemical cell for in-operando optical imaging of single HOPG particles (1 mm \times 1 mm \times 0.1–0.2 mm) during battery cycling (Figure 2). The lithiation and de-lithiation of the HOPG particle was done via a HOPG/electrolyte/Li sandwich. The basal plane and part of the edge plane is visualized and recorded during the experiment using a stereomicroscope and digital camera. We note this work is a fundamental study, and we do not intend to show any performance. Although the graphite particle size (1 mm) is larger than the practical particle sizes, the underlying physics of competing reactions at graphite surfaces and phase changes are the same.

Since the different phases of Li-graphite intercalation compounds have different colors (Figures 2C and 2D), the concentration of Li in the graphite particle in these stages can be inferred from the color. In order to observe the edge surface, the sides of the graphite particles were intentionally treated to expose part of the edge surface. A typical lithiation voltage curve of micron-sized graphite at quasi-equilibrium condition is shown in Figure 2C. Different phases are marked by their corresponding colors. Phase transformation is characterized by a plateau in the voltage curve...
except for 4L - 3L transition. The plated Li has a unique silver metal color. Results of two representative graphite particles are given below, and more results are given in the Supplemental Information. Lithiation

Li intercalation starts at 0.5 V (Figure 3A), predominantly at the edge plane. The inserted Li primarily accumulates near the surface of the edge plane, indicated by the shallow penetration depth of the gold phase (stage 1) into the particle (Figures S1–S5). Phase separation is clearly observed during lithiation, when the local concentration enters the spinodal region for such a phase separating material (Video S1; Supplemental Information). The presence of dark blue phase (stage 3L) and red phase (stage 2) is only transient. Gold phase (stage 1) forms almost immediately after the red phase (stage 2) likely due to a rapid increase of surface concentration. The co-existence of the gold phase (stage 1) and the black phase (stage 1L) is non-equilibrium phase separation. At the concentration of $x = 0.21$ (Figure 3C-6), the equilibrium state is stage 4L to stage 3L transformation (Figure 2C). From the penetration depth of the gold phase, the diffusion coefficient is estimated to be $D = \frac{L^2}{\tau_p} = 0.5(\pm0.34) \times 10^{-6} \text{cm}^2/\text{s}$, consistent with the reported...
value of 0.2 – 10 × 10^{-8} \text{cm}^2/\text{s}.53 Diffusion fails to remove the inserted Li promptly for the millimeter particle at this current, since diffusion time scale

\[\tau_D = \frac{R^2}{D} = \frac{0.5\text{mm}^2}{0.5 \times 10^{-8} \text{cm}^2/\text{s}} = 0.5 \times 10^3 \text{s} \]

is much larger than lithiation time scale \(\tau_I = \frac{\rho \rho' C_s}{\Delta U} \approx 4.8 \times 10^3 \text{s},26 \)

which results in rapid accumulation of Li at the surface. As a result, the gold phase nucleates quickly before the red phase has had much time to propagate into the bulk of the particle.

Li intercalation preferentially occurs at the corner of the particle (Figure 3C) or any protruded debris (Figures S4 and S5), likely due to the higher surface/volume ratio. No Li plating can be observed when the voltage just drops below zero. Instead, we only observe Li plating shortly after the formation of the gold phase, which happens at a much lower voltage (\(V \sim -0.15 \text{ V versus Li/Li}^+ \)). There is a small voltage dip before Li plating starts (Figure 3A) due to the nucleation barrier (surface energy or residual stress of SEI53,54). Once Li plating initiates, the voltage curve stops decreasing and enters a plateau. To compare the rest and de-lithiation behavior of graphite particles at different amounts of plated lithium, the total passed charge during the lithiation is intentionally controlled. The voltage profile of particle B shares a similar trend with that of particle A, but they do not overlap. To explain such variation, the voltage curves of another three graphite particles at different currents are given in Figure S6. In the current range of 5–100 \(\mu \text{A} \), a sharp transition between the voltage slope for Li insertion and the plateau for Li plating can be observed for every particle. Clear nucleation dip can be observed in some cases,
e.g., 10 μA for particle J, but it is not obvious in other cases. Furthermore, the voltage profiles of seven different particles at 50 μA are plotted in Figure S7. The voltage profiles resemble the overall trend but do not overlap. Such discrepancy in voltage curves may arise due to variation in particle size and shape, as well as the different surface roughness introduced in the sample preparation process, (e.g., Figures S4 and S5), because nucleation is very sensitive to surface defects.55,56 This kind of large variation is not common in a commercial graphite electrode, in which the presence of a large quantity of particles, 3.9×10^7/cm^2 for an electrode with 10 mg/cm^2 loading (assuming an average particle size of 3 μm), smooth out the random variations in size, shape, morphology and/or surface among particles. Statistical analysis of the results shows the nucleation barrier falls approximated by (Equation 1)

\[V = -\frac{\mu_s}{e} + \eta_{\text{int}} \]

(Equation 1)

in which \(\mu_s \) and \(\eta_{\text{int}} \) are the chemical potential of intercalated Li at the edge surface and the overpotential of the intercalation reaction, respectively. The voltage drops sharply, instead of showing multiple voltage plateaus (cf. Figure 2C) due to the fast accumulation of Li at the edge surface. Such surface saturation impedes further intercalation due to the lattice crowding effect,26 making Li plating kinetically favorable. At this C-rate, close to equilibrium behavior is expected for commercial graphite electrode because the graphite particle size (typically 0.1-10 μm) is much less than the diffusion penetration depth \(L_p = \sqrt{Dt} = \sqrt{0.5(\pm 0.34) \times 10^{-4}\text{cm}^2 \times 15 \times 3,600 \text{s}} = 156.7 \pm 63.8 \text{μm} \). However, this is not the case for the millimeter HOPG particle used in our study. The large particle size renders it difficult for the inserted Li to reach the interior of the HOPG, leading to the accumulation of lithium near the surface, which triggers the phase separation observed in Figure 2. We will further discuss the size effect and the generalizability of the results to the commercial battery electrodes in the discussion. Ion transport in the electrolyte is not rate-limiting because the applied current density \(J_{\text{app}} = 1.25 \text{ mA/cm}^2 \) is much smaller than the diffusion-limited current \(J_{\text{lim}} = \frac{2FCD_0}{(1-c)l} = \frac{2\times 96,485 \text{ C/mol} x 1\text{mol/L} x 3 \times 10^{-4}\text{cm}^2/\text{s}}{0.4 \times 10^{-6}\text{cm}} = 32.1 \text{ mA/cm}^2 \). It influences the lithiation dynamics in the c-direction of the graphite particles to some extent (Figure S9) but does not alter the onset condition of Li plating (Figure S10).

Rest after Lithiation

Two different behaviors are observed during the rest after the particles are lithiated and Li plating occurs (Figure 4, particle A versus B). For a particle with a small amount of plated Li (particle A, ~ 6.5% normalized charge), the plated Li gradually disappears, leaving black floc-like residue (Figures 4D, 7–8, and S11). Meanwhile, the phase separation also disappears due to inward diffusion of Li (Figures 4D, 9–12;
The voltage stays on a plateau close to 0 mV initially (Figure 4A, 7–8 of particle A) but gradually increases due to the shrinking surface concentration after most deposited Li is dissolved ($V = \frac{\Delta G}{\Delta S}$). Not all plated Li disappears during rest, which suggests that some of the deposited Li may have lost electrical connectivity with graphite (known as dead Li) (Figure 4D, 12). If a significant amount of Li is plated (particle B, 31% normalized charge), the metallic deposits do not completely dissolve during rest (Figure 4C), and the voltage remains at approximately 0 mV for the duration of the rest period (Figure 4A, particle B).

The disappearance of the plated Li can be understood by considering the chemical potential difference of the plated Li and the inserted Li in graphite (Figure 4A, inset). As the concentration of inserted Li at the graphite surface decreases due to inward diffusion, its chemical potential μ_d decreases, which creates a driving force between the plated Li and graphite edge surface. As a result, the plated Li dissolves and gives out electrons, and Li$^+$ from the electrolyte gets reduced and inserts into graphite. In other words, the plated Li forms a local short circuit with graphite. In addition to this electrochemical route, the disappearance of the plated Li can also occur through a
direct route in which the plated Li in contact with graphite can enter the graphite lattice. The continuing intercalation reaction is evidenced by the visible propagation of the gold phase into graphite during rest (Figure 4C), consistent with previous observations. In addition to Li intercalation, solvent reduction may also happen to compensate the charge, if the SEI on graphite leaks electrons.

De-lithiation

After the rest, a positive (oxidizing) current is applied to remove the inserted and plated Li. If the amount of plated Li is small, most of the plated Li has already dissolved during the rest stage, except for any dead Li. As a result, the voltage profile resembles the de-lithiation of a normal graphite anode with no Li plating (Figure 4B, particle A), and the color change of the graphite particle is also negligible. If the amount of plated Li is large, it does not completely dissolve during rest. In this case, the de-lithiation voltage profile hovers around 20 mV (Figures 4B, 4–6 of particle B) as the plated Li shrinks and leaves behind a black floc-like residue (Figures 4E, 4–6). Once all electrically connected Li deposits have disappeared, normal graphite de-lithiation occurs and the voltage rises to another plateau at ca. 400 mV (Figures 4B, 7–8 of particle B).

The oxidation of the bulky silver lithium happens at a voltage below 100 mV (Figures 4A and 4B), where de-lithiation of graphite barely occurs. Once most of the bulky silver lithium has been dissolved, a black residue forms and the voltage rises above 100 mV, where de-lithiation of graphite occurs. We hypothesize the black residue is a micron-sized lithium covered by nanometer thick SEI. Bulky lithium metal shows a silver color. The color transforms to black, however, when the particle size reduces into micron regime. This happens because the dissolution of plated Li is intrinsically a corrosion reaction. During the transition of bulky lithium to the stacking of micron-particles of lithium, it loses the shining color. Once all bulk lithium has been transformed into micron-particles, the percolating pathway for electron conduction is significantly impaired since the particles are separated by the surface film, which is highly ionic conducting but poorly electronic conducting. Therefore, the oxidation of these small particles becomes kinetically difficult. They can still be oxidized if large overpotential is applied and mechanical contact is still maintained. The black residue on particle B finally dissolved when the voltage is raised to 600 mV (Figures 4E 7–8), which can be clearly seen in the supplemental video (Video S3). To summarize, the black residue can still be dissolved, despite more kinetically difficult, if their mechanical contact with the graphite is maintained. However, they become real dead lithium once their connection with graphite is cut during the dissolution if the root of the plated lithium gets dissolved first.

We did experiments on many particles with different amounts of lithium. All our observations fall into two groups: the first group, exemplified by particle A, shows complete lithium dissolution except for the dead lithium and disappearance of the phase separation in graphite particle during rest; whereas the second group, exemplified by particle B, shows the incomplete dissolution of the plated Li and a close to zero voltage during the entire rest. Inhomogeneity of the lithiation and de-lithiation of HOPG particles can be observed in some particles. For example, the non-lithiated region is sandwiched by two lithiated regions in Figures 4C and 4E. This inhomogeneity is likely due to the surface defects on the basal plane, which could be introduced in the sample preparation process. On particle B, there seem to be some line defects on the basal plane. These line defects create Li diffusion pathways on the surface. As a result, Li-rich gold phase forms along the lines, where other regions at the same distance from the reacting surface remain non-lithiated. Such line
defects can be step edges, which are commonly observed on cleaved HOPG basal plane.58,59

In summary, no Li plating can be observed when the voltage just drops below 0 V. Instead, significant Li plating occurs only after the graphite surface is saturated (after gold phase forms), and the onset of Li plating is accompanied by the switching of voltage curve from a decreasing ramp to a plateau. During rest, the plated Li gradually dissolves, and Li\(^+\) ions continue to insert into graphite via a local self-discharge mechanism, relaxing toward the thermodynamically stable state. During this process, some plated Li is electrically disconnected from graphite during the dissolution and becomes inactive (dead Li). The voltage of the graphite will remain close to 0 mV until all active Li is dissolved. During de-lithiation, the dissolution of Li happens first, which is followed by the de-intercalation of graphite.

Physical Picture

To explain the above observations, we draw the competition of Li intercalation with Li plating (Figure 5A), the phase transformation pathway of the HOPG particle (Figure 5B), the energy landscape of the system (Figures 5C and 5D), and the associate kinetics (I-V curve) of both reactions (Figure 5E). SEI growth on graphite is neglected.
since the cell is pre-cycled to form SEI. Its formation on newly deposited Li metal is treated as a pure chemical reaction and neglected for simplicity. Therefore, there are two electrochemical reduction reactions taking place on the edge surface of the graphite particle during battery charging: Li intercalation (I_{int}) and plating (I_{pl}) (Figure 5A). The lithiation of graphite can be broken down into four regimes: open circuit, Li intercalation, Li nucleation, and Li growth.

(1) Open circuit: Before we apply any current, Li^+ and e^- are in equilibrium with inserted Li, denoted as Li_C (Figure 5C). The chemical potential of inserted Li at the graphite surface, μ_s, is much lower than the chemical potential of lithium metal μ_{Li} (V is much higher than 0 V, $V = -\frac{\mu_s}{e}$).

(2) Li intercalation: The system enters the second regime when a reduction current $I<0$ is enforced externally (charging). To drive the reaction, a negative overpotential occurs, raising the energy of Li^+ to $-\frac{\mu_s}{e}$ (Figure 5C). The voltage now includes the overpotential required to drive the reaction ($V = -\frac{\mu_s}{e} + \eta_{\text{int}}$). Since μ_{Li} is much higher than $\mu_s - \eta_{\text{int}}$ (i.e., $V>0$), plating is energetically not favorable (i.e., thermodynamically not possible). Therefore, only intercalation takes place. As more Li insert into graphite, the increasing surface concentration c_s induces a sequential phase transformation at the surface: 1L (gray) - 3L (blue) - 2 (red) - 1 (gold) (Figures 5B and 5C). Meanwhile, μ_s increases and the magnitude of the overpotential increases accordingly because the graphite surface becomes more crowded (Figure 5E). As a result, the energy of the reactants increases, and the voltage decreases.

(3) Li nucleation: When the red or gold phase forms, Li plating may become energetically favorable ($\mu_s - \eta_{\text{int}} > \mu_{\text{Li}}$, $V<0$) (Figures 5B and 5C, 3–4), but Li intercalation is still more favorable ($\mu_s < \mu_{\text{Li}}$). In addition, Li intercalation is kinetically more favorable since it does not need to overcome a nucleation barrier. The tipping point is the saturation of the graphite surface (Figures 5B and 5C, 5). This is because, first, Li plating becomes energetically equally favorable ($\mu_s = \mu_{\text{Li}}$) compared to Li intercalation. Second, Li intercalation becomes kinetically very difficult because there is no more available site in graphite for Li to occupy, whereas Li plating becomes kinetically feasible because the nucleation barrier drops significantly due to the wetting of LiC$_6$ to Li. As a result, the nucleation of Li metal starts, and V reaches its minimum.

(4) Li growth: Once nuclei forms, subsequent Li growth on the nuclei requires a much smaller activation energy than nucleation (Figures 5D, 6). Now the reduction reaction is dominated by the growth of Li metal (Figure 5E), and the intercalation only proceeds in a rate that compensates the inward diffusion of Li in graphite and maintain c_s unchanged. V rises due to the decreased overpotential, which finally reaches a plateau. Once Li plating starts, V is lower than the equilibrium voltage for Li plating (0 V) due to the required overpotential. The voltage reflects the thermodynamics and kinetics of both reactions by $V = -\frac{\mu_s}{e} + \eta_{\text{pl}} = -\frac{\mu_s}{e} + \eta_{\text{int}}$.

Theory

Building on the physical picture, we formulate a mathematical model, which predicts the coupled dynamics of Li-ion intercalation, phase separation in graphite, and Li metal nucleation and growth. Here, we consider the intercalation of Li ions in a particle of volume V (in m3) through reactive boundaries of total surface area, A (in m2). The Li-ion concentration c (in mol/m3) evolves according to mass conservation
where \(j \) is the diffusive flux defined in terms of the gradient of \(\mu \), the diffusional chemical potential, \(D(c) \) is the tracer diffusivity that depends on species concentration, and \(k_B \) and \(T \) are the Boltzmann’s constant and absolute temperature, respectively. Ion intercalation is described by a boundary condition expressing mass conservation on the intercalation surfaces – \(n \cdot j = R \), where \(R(c, \eta_{\text{int}}) \) is the intercalation rate, related to the intercalation current \(i_{\text{int}} = eR \), and depends on the interfacial Li concentration \(c \) and local overpotential \(\eta_{\text{int}} = eV + \mu \).

The thermodynamically consistent modeling framework is based on the free energy functional:

\[
G = \int_V \left(g_h(c) + \frac{1}{2} k c \nabla c^2 \right) \, dV \tag{Equation 3}
\]

where \(g_h \) is the homogeneous free energy and \(k \) describes the interfacial tension between the formed phases. Graphite is known to undergo multiple phase separations with increasing Li concentration. It is well-accepted that the inter- and intra-layer Li-Li interactions in graphite are different. To account for this effect, multi-variable concentration models have been developed. Here, we follow a simpler approach that uses a reduced-order homogeneous free energy that has been shown to quantitatively describe phase separation dynamics in commercial graphite electrodes. The diffusional chemical potential, which controls the flux \(j \) and reaction rate \(R \), is defined as the variational derivative of the free energy with respect to the concentration field, \(\mu = \delta G / \delta c \). The tracer diffusivity \(D(c) \) is obtained by fitting to the results of \(ab \) initio simulations.

For the intercalation rate, we use the theory of coupled ion-electron transfer (CIET) kinetics, which unifies the theory of electron transfer with the non-equilibrium thermodynamics of ion transfer in condensed phases. Using a simple formula for the Marcus-Hush-Chidsey electron transfer rate, the CIET rate can be cast in the form:

\[
i_{\text{int}} = k_{0,\text{int}} (1 - c) \sqrt{\pi \lambda} \left(c_i - \frac{c}{1 + e^{\eta_i}} \right) \text{erfc} \left(\frac{\lambda - \sqrt{1 + \sqrt{\lambda + \eta_i^2}}}{2 \sqrt{\lambda}} \right) \tag{Equation 4}
\]

where \(k_{0,\text{int}} \) is an overall rate constant, \(c_i \) is the normalized electrolyte concentration, \(\eta_i = \eta_{\text{int}} / k_B T + \ln(c_i / c) \) the formal overpotential scaled to the thermal voltage \(k_B T / e \) and \(\lambda = \lambda / k_B T \) is the scaled reorganization energy. At high overpotential, CIET predicts a reaction-limited current, which decreases with the concentration of available vacancies \((1 - c)\) in the intercalation material. In contrast to empirical Butler-Volmer kinetics, this behavior favors the parasitic side reaction of Li plating.

The applied current \(I \) is shared between the plating and intercalation reactions:

\[
I = \int i_{\text{pl}} \, dA_{\text{Li}} + \int i_{\text{int}} \, dA \tag{Equation 5}
\]

where the first integral is over the active surface of the Li metal film and the second over the graphite particle surface. When the surface of the particle is almost fully lithiated \((c_i = 1)\), intercalation becomes difficult due to the surface crowding effects. For the applied current to be sustained, though, the overpotential of the intercalation reaction \(\eta_{\text{int}} \) makes the voltage drop below the nucleation voltage.
and triggers Li metal nucleation on the graphite surface. After the deposition of the first Li metal, the overpotential of Li plating \(\eta_{pl} \) leads to \(I_{pl} dA_{li} = I \).

Despite the experimental observations (Figure 3) showing that Li metal exhibits complicated morphologies of mossy or dendritic growth\(^{19,54,64}\), our goal here is to capture the total amount of deposited Li metal per area of the graphite edge surface in a simple macroscopic model. In particular, we equate the growth rate of deposited metal with the microscopic current density \(I_{pl,m} \) over the curved area \(A_{li} \) of growing and merging nuclei, as well as the mean current density \(I_{pl} \) projected on the underlying planar area \(A_p \) of the graphite surface:

\[
\frac{1}{\Omega} \frac{dV_{li}}{dt} = A_{li} \frac{I_{pl,m}}{e} = A_{p} \frac{I_{pl}}{e}
\]

which is the mass conservation for \(n_{li} = V_{li}/\Omega \), where \(V_{li} \) and \(\Omega \) are the total and molar volumes of Li metal, respectively. For the growth of isolated hemispherical nuclei, we have the scaling, \(A_{li} = A_{nuc}(V_{li}/V_{nuc})^\beta \) with \(\beta = 2/3 \), where \(A_{nuc} = N_{A0,nuc} \) and \(V_{nuc} = NV_{0,nuc} \) are the initial area and volume of \(N \) nuclei. The thermodynamic stability of a nucleus that deposits on an electrically charged substrate is determined by the bulk free energy of transformation, both chemical and electrical, and the surface tension contributions. For a single, isolated, hemispherical electrodeposit, the kinetic critical radius corresponding to the case where the Laplace pressure balances the applied overpotential is given by Ely and García\(^{65}\):

\[
r_{nuc}^* = \frac{2\gamma \Omega}{2F\eta_{pl}}
\]

As the nuclei merge and coarsen, their number will decrease, and the exponent \(\beta \) will also decrease, although typically not reaching the dense-film limit \(\beta = 0 \) (constant area). For an observed plating onset overpotential \(\eta_{pl} \sim 0.15 \text{ V} \) versus Li/\(\text{Li}^+ \) in our experiments (Figure 3A), the kinetic critical radius \(r_{nuc}^* \) is approximately 0.75 nm. \(A_{0,nuc} \) and \(V_{0,nuc} \) for a growing hemisphere at critical radius subsequently can be calculated using \(A_{0,nuc} = 2\pi r_{nuc}^2 \) and \(V_{0,nuc} = (2/3)\pi r_{nuc}^3 \).

For the rates of microscopic and macroscopic Li plating, \(I_{pl,m} \) and \(I_{pl} \), we assume symmetric (\(\alpha = 0.5 \)) Butler-Volmer kinetics\(^{28}\) (neglecting curvature effects on the overpotential\(^{44}\)), which implies the exchange currents are related as \(A_{li}I_{pl,m} = A_{p}I_{pl} \). Direct observation of a single hemispherical growing nucleus of Li metal on gold, under constant voltage, has shown that the microscopic current density decays as \(I_{pl,m} \sim t^{-1/2} \), due to diffusion limitation of Li ions across a rapidly growing layer of SEI on the Li metal exposed to the unstable organic electrolyte.\(^{54}\) Similar passivation of nuclei by SEI should occur for metal growth on graphite, and this effect approximately cancels the initial area growth, \(A_{li}/A_p \sim t^\alpha \), for a constant macroscopic current density, \(V_{li} \sim t \). As such, we assume the macroscopic exchange current \(I_{0,pl} \) is approximately constant.

For Li plating to occur, the voltage of the graphite particle needs to overcome a nucleation barrier \(V_n \). Figure 5. To account for this phenomenon, we modify the overpotential of the Li plating reaction as \(\eta_{pl} = \frac{\mu_{li}}{2} + V - V_n \), which implies that for the plating current \(I_{pl} \) to be non-zero the voltage \(V \) has to overcome the nucleation voltage \(V_n \). The reference chemical potential for our system is \(\mu_{li} \), and thus we set its value equal to zero. After the first nuclei are formed the plating current concentrates on them, and thus there is no additional energy cost to grow the deposited film of Li metal. To achieve that, we postulate \(V_n = V_{0,n} \exp(-V_{li}/2V_{nuc}) \), which vanishes after \(V_{li} \gg V_{nuc} \). The functional form of \(V_{0,n} \) can be expressed by other
mathematical descriptions, although here we use the Gaussian approximation for numerical purposes.

The computational model corresponds to one-dimensional slice of the graphite particles, Figures 3 and 4. For discretizing Equation 2 we use second-order finite volumes. Specific details on the constitutive relations for the non-linear diffusivity, the intercalation rates, the fitting procedure for $i_{0,pl}$, as well as the thermodynamic, transport, and reaction parameters are given in detail in the Supplemental Information. For the intercalation model, we consider $k_{0,int} = 1 \text{ A/m}^2$, and the reorganization energy $\lambda = 5k_B T$, which is estimated from experiments on other intercalation compounds (D.F., T.G., and M.Z.B., unpublished data). Finally, the nucleation barrier for Li plating on graphite is estimated to be $V_{0,n} \sim -0.15 \text{ V versus } \text{Li/Li}^+$, by fitting the Li plating model (nucleation and kinetics) to the simultaneous measurements of video images (concentration profiles) and voltage, while keeping the other parameters (for intercalation and transport) fixed at values determined from previous studies. This approach is especially important for complex heterogeneous processes, such as electrodeposition coupled with intercalation in a phase separating substrate, which is more complicated than traditional electrodeposition processes on impermeable metal electrodes (such as Li on Cu). This value is specific to particle A in Figure 3A due to the particle-by-particle variation in size, shape, morphology and/or surface, but this method can be generalized to any other particle.

Model Validation and Predictions

We test our predictions on Li plating by fitting the Li plating exchange current density $i_{0,pl}$ using the experimental voltage-charge data of the lithiation case of Figure 3. The validation of our fitting is based on the extracted concentration profiles of the intercalated Li ions, as well as the total amount of plated Li on the particle at the end of the experiment, Figure 6A. The fitted value for the macroscopic exchange current (per projected area) for Li plating on the graphite edge plane is $i_{0,pl} = 2.2 \text{ A/m}^2$, which takes into account direct observation of the plating area.

Figure 6B shows our model predictions, where the thick dashed lines (in black) correspond to the experimentally extracted profiles of the intercalated and plated Li. The computational results are shown with the colored areas. Our simulations demonstrate the predictability of the phase-field model for graphite as it can qualitatively capture the observed Li-ion concentration evolution inside the particle. Additionally, Figure 6D demonstrates the fitted and experimentally observed voltage versus charge profiles. Finally, Figure 6E depicts the model predictions of the voltage V and surface concentration c_s under de-lithiation.

The model can predict the onset of Li plating and the correct value of the nucleation voltage. As discussed in Figure 5 based on the experimental observations, Li plating occurs only when the surface of graphite becomes saturated by the inserted Li ions. Figure 6D demonstrates the evolution of the surface concentration as a function of the average Li fraction in the graphite particle. Our calculations show that when the surface concentration c_s becomes 1 the nucleation barrier is exceeded. At this point, the intercalation current I_{int} drops sharply, and the plating current I_{pl} increases significantly and dominates the applied current I.

The most widespread approach to model Li intercalation in graphite combines Butler-Volmer kinetics with Fick’s law for diffusion with concentration-dependent diffusivities. Our experiments, though, showed that phase separation affects the concentration at the reaction boundary of the graphite particle, causing abrupt changes.
once the concentration at the boundary enters the spinodal region. In order to show that traditional diffusion models cannot capture this phenomenon, we perform solid-solution calculations for the same conditions as in Figure 6. It is clear in Figure 6C that the surface concentration of the intercalated Li ions does not increase as fast with the solid-solution model as with the phase separation model. The result of such delay is reflected in the absence of plated Li.

Using classical nucleation theory, we can estimate the initial number of nucleated sites. The surface tension of Li metal with organic electrolytes is around \(\gamma = 0.49 \text{ J/m}^2 \) and results in a critical hemisphere radius of \(r_{\text{nuc}} = 0.75 \text{ nm} \) (\(A_{\text{nuc}} = 2\pi r_{\text{nuc}}^2 \) and \(V_{\text{nuc}} = (2/3)\pi r_{\text{nuc}}^3 \)). For the experimentally observed projected area \(A_p \), we find the initial number of Li metal nuclei to be \(N = 5.7 \times 10^8 \). This value was used in the evaluation of the Li plating model, Equation 6 and in the initial condition for the volume of Li metal \(V_{L_i,0} \).

DISCUSSION

In summary, Li plating on a single graphite particle is triggered when graphite surface saturates \((c_s \rightarrow 1) \) and Li-ion intercalation is blocked. Li plating is thermodynamically possible when \(V < 0 \), but it is not kinetically favored until graphite surface is saturated. This kinetic disadvantage of plating compared to intercalation is due to (1) Li nucleation barrier, captured by our theory, and (2) non-wetting property.
of the Li-poor phase \((\text{Li}_x C_6, x<1)\) to Li metal.\(^{53,60}\) The saturation renders the graphite edge surface wettable to Li metal and meanwhile significantly impedes intercalation, making Li plating kinetically more favorable than intercalation. As a result, Li nucleation occurs, followed by subsequent Li metal growth.

The saturation of graphite surfaces can happen in two scenarios. Under quasi-equilibrium condition (small current, \(\tau_D \ll \tau_I\)), the lithiation of graphite proceeds via an intercalation wave mechanism, and surface saturation occurs only when the particle is fully lithiated. Under diffusion-limitation condition (large current, \(\tau_D \gg \tau_I\)), however, surface saturation can happen before the particle is fully filled, as the shrinking-core phase separation results in the piling up of inserted Li at the surface.\(^ {26}\)

Our analysis shows the solid diffusion limitation mechanism can explain the Li plating observed in our experiments. The effect of electrolyte transport is negligible since the applied current density \(J_{\text{applied}}\) is much smaller than the diffusion limiting current \(J_{\text{lim}}\). In fact, the saturation of graphite surface \((c_s \rightarrow 1)\) always proceeds depletion of Li ions in the electrolyte \((c_l \rightarrow 0)\) for a single particle electrode given the much higher diffusivity of Li ions in the electrolyte. For this reason, diffusion-limited aggregation is not responsible for the observed Li plating on the single graphite particle. However, this argument does not apply for a porous electrode, because the effective diffusivity is significantly compromised by the tortuous pores and reactions within the porous electrode expedite ion depletion, especially on the current collector side.\(^ {35}\) The competition between Li plating and Li intercalation in a porous electrode is beyond the scope of the current work due to heterogeneities in multiple length scales.\(^ {32}\) However, we believe the proposed diffusion-limited aggregation mechanism is not likely to account for Li plating in a porous electrode. In a porous electrode, Li plating is observed on the separator side whereas ion depletion happens on the current collector side,\(^ {33,35}\) which contradicts the prediction of diffusion-limited aggregation mechanism that dendrite growth initiates at zero salt concentration.\(^ {19}\)

The physical picture discussed above also explains the large negative voltage tolerance of single graphite particles without Li plating. Because \(V\) depends on both the surface chemical potential of Li in graphite and the voltage loss of reaction and other kinetic processes (e.g., diffusion and migration), it can be quite negative before graphite surface saturates. For this reason, \(V\) is not a suitable criterion for determining the onset of Li plating. In fact, \(V\) is always negative when graphite surface saturates \((\mu_s = 0 \text{ and } \eta_{\text{int}}<0)\), which makes it only a necessary condition for Li plating. The sufficient condition for Li plating is \(c_s \rightarrow 1\).

In addition to the fundamental knowledge, the observations on the HOPG particles are also relevant for commercial graphite electrode. In real graphite electrode, the onset of Li plating is a highly localized event, i.e., it initiates from a local spot in the porous graphite electrode and then propagates. Electrode-scale studies have revealed reaction heterogeneity among particles is highly correlated with the likelihood of Li plating,\(^ {30,32–34,37}\) but it remains unclear how Li plating occurs locally. Different hypotheses exist in literature regarding the onset condition of Li plating on graphite (Figure 1). However, no real-time experiment evidence at the particle scale is reported to test them. Our study fills this knowledge gap by focusing on the Li insertion, graphite phase transition, and Li plating dynamics of a single particle, using in situ experiment to monitor the Li concentration in graphite and the voltage.
At first glance, the HOPG particle may seem too big to be representative of graphite particles used in the commercial electrodes. However, the experimental conditions are chosen to reflect the working condition of commercial graphite electrode under fast charge. More specifically, the current density per reaction area of the HOPG particle is in the same range as that of graphite particles in the commercial electrodes. Since graphite has a layered structure and insertion primarily happens at the edge plane, the current density per edge plane area is a better parameter than C-rate to characterize the lithiation dynamics. It appropriately accounts for the reaction rate at the active crystal plane and the resulted anisotropic lithiation dynamics along the ab plane. For a typical HOPG particle operating at 10–100 μA in this study, the current density per edge area is 1.25–12.5 mA/cm², which is representative of the 0.83–15.1 mA/cm² current density on graphite particles in commercial battery under 10 min fast charging (Supplemental Information). In fact, our observation that onset of Li plating is triggered by graphite surface saturation is consistent with a recent discovery of Li plating heterogeneity in a commercial battery.\(^2\)

Since surface saturation triggers the onset of Li plating, its forecast relies on accurate prediction of concentration profile within graphite particles, especially surface concentration. The solid-solution model that use Fickian diffusion tends to underestimate the surface concentration because of the difficulty in maintaining high concentration gradient between two regions due to the high driving force for diffusion,\(^{14,34}\) and thus underestimate the risk of Li plating. Therefore, phase transformation of graphite needs to be taken into account for predicting Li plating,\(^{26,27,36}\) especially when less data are available for the calibration. Moreover, it is also crucial to capture the suppression of the intercalation reaction due to lattice saturation, as predicted by CIET theory.\(^{26,43,45,46}\)

The fitted value, \(i_{0,\text{pl}} = 2.2\ \text{A/m}^2\), is likely the most accurate to date for plating on graphite, since it reflects direct visualization of the active area for metal growth, as well as coupling to observed graphite phase transformations through a previously validated intercalation model with minimal extra fitting. For Li growth on carbon electrodes,\(^{14,40,54}\) the reported literature values for \(i_{0,\text{pl}}\) range from \(10^{-3}\) to \(10^2\ \text{A/m}^2\), which indicate the large uncertainty that exists on the kinetics of Li plating. Indeed, the microscopic physics have complicated effects on the macroscopic electrodeposition kinetics. The (de)solvation effects of Li ions may affect the energy barrier, while the evolving surface energy introduces an additional overpotential that decays with time with decreasing curvature as nuclei grow and merge. The irreversible side reaction of rapid SEI growth on freshly exposed metal tips passivates the surface and decreases the microscopic rate with square-root scaling in the limit of Li-ion transport limitation within the growing SEI layer.\(^{54}\) Including this dependency only, we find \(i_{0,\text{pl,m}} = 7 \times 10^3 \sqrt{t_{\text{nuc}}/t} \ \text{A/m}^2\), where \(t_{\text{nuc}}\) is the time to form a critical nucleus, which is consistent with the microscopic observed rate of hemispherical growth.\(^{54}\) Together with our macroscopic observations, a quantitative picture of the reaction kinetics of Li plating on graphite begins to emerge.

The nucleation barrier to form Li metal should be very large until graphite surface saturates due to dewetting of graphite to Li metal.\(^{53,60}\) This behavior can be described by our phenomenological model by including a concentration dependence on \(V_0\), such that \(V_0 \to -\infty\) for \(c_i \to 0\) and \(V_0 \to -0.15\ \text{V}\) for \(c_i \to 1\). The relatively large value of \(V_0\) may also be consistent with metal nucleation controlled by microscopic fracture and penetration of the pre-existing SEI layer on graphite.\(^{54,64}\)

To estimate the initial total number of Li metal nuclei, we neglect SEI passivation and use classical nucleation theory with the surface tension measured for Li metal...
droplets in organic electrolytes,\(^\text{12,47}\) in contrast to the the values used in most of the literature, based on estimates from aqueous metal plating experiments.\(^\text{44,68}\) Based on the assumption of an initial layer of Li metal nuclei with the experimentally observed plated area \(A_p\), on graphite particles, we estimate the total number of nuclei as \(N = C_24^{310^8}\). However, we should not interpret the result of classical nucleation theory strictly, due to the presence of SEI growth on both the graphite edge plane and the freshly exposed Li metal.

Our findings have direct implications for designing graphite electrodes with low risk of Li plating and capable of fast charging. Li plating occurs when graphite surface saturates and blocks further intercalation. Such saturation can happen much earlier before complete filling if solid diffusion of Li is slow. Therefore, reducing diffusion time inside graphite particles can be effective in enhancing the charging performance. Using the obtained diffusivity in this work \(D = 16.1 \pm 6.3 \, \mu\text{m}^2/\text{s}\), the upper bound of particle size capable of DOE’s 10 min charging goal is \(R_c = \sqrt{D/t} = 6.15 \, \mu\text{m}\), in excellent agreement with previous experiment results in thin electrodes.\(^\text{69}\) It should be noted though, the charging performance deteriorates significantly when the electrode thickness increases,\(^\text{35}\) highlighting the importance of electrolyte transport. The ion depletion and concentration polarization in the depth direction of such thick electrode is well understood.\(^\text{35,70}\) However, how electrolyte transport in the three dimensional structures affect the competition between Li plating and ion intercalation is yet to be elucidated.\(^\text{37}\)

The results of the present work provide useful insights on battery management. Since diffusion can be facilitated by increased temperatures, warming up the battery is known to effectively enhance charging capabilities.\(^\text{71}\) Optimization of the charging protocol can also be useful if the surface saturation can be delayed. Previous studies, though, require the voltage of the battery to be strictly positive during the optimization,\(^\text{72}\) which is a very conservative criterion and may lead to sub-optimal charging protocol. Additionally, our results provide insights for detecting Li plating and fault diagnosis in battery management. The voltage plateau of Li dissolution can be used to signal Li plating during battery relaxation and discharge, but the voltage plateau of Li plating is not likely to be observed during battery charging because of the fixed cutoff voltage. In fact, recent experiment studies have observed the appearance of a short plateau on the rest and discharge voltage curve if Li plating happens in the preceding charging cycle,\(^\text{15,73}\) and non-destructive technique for Li detection was proposed based on the observation.\(^\text{74}\)

The role of solid diffusion limitation on reaction kinetics is general for any insertion material, whenever the rate of insertion overwhelms the diffusion of the inserted ions.\(^\text{26}\) The concentration gradient causes a sharp voltage drop, which leads to low material utilization for potentiostatic operation or parasitic side reactions for galvanostatic operation. The triggering of Li plating, as one such parasitic reaction due to surface saturation, is also likely to happen in other anode materials, such as Si, Sn, Al, anatase, and titanate.

Finally, we want to discuss briefly the strength and limitation of the optical microscopy technique for studying graphite anode. Optical microscopy is a powerful tool for \textit{in situ} experiments due to its high spatial (1 \(\mu\text{m}\)) and temporal (1 s or higher) resolution, but such analysis is limited to the surface due to the opacity of graphite. In this work, basal plane imaging qualitatively shows how the Li intercalation couples with phase separation. Quantitative analysis needs to consider the concentration gradient in the c-direction of graphite lattice, which will be the topic of future research.
Conclusions
In conclusion, motivated by the need of addressing Li plating problem on graphite anode in Li-ion batteries, we examined the competition of Li plating and insertion using a single HOPG particle as the model system and studied the fundamental mechanism of Li plating. Using in situ optical microscopy, we concurrently monitored the dynamics of Li insertion and phase transition of graphite and its voltage and revealed the coupled intra-particle phase transformation and Li plating. We found that Li plating occurs on fully lithiated surfaces along the edge plane, and the onset voltage is much below 0 V versus Li/Li⁺. Such observations were rationalized by examining the energetics and kinetics of the intercalation and plating reactions. Based on the experimental observations, we revealed that solid diffusion limitation leads to the saturation of graphite particle surface, which further triggers Li plating on the edge plane. Based on our mechanistic understanding on Li plating, we developed a Li plating model to predict both its onset and growth and demonstrated the importance of modeling the phase separation to predict the onset of Li plating.

Our findings shed light on the tolerance of graphite to large negative voltage before Li plating occurs and reveal the important physics that governs Li plating phenomena in graphite particles during battery charge. The fundamental insights gained at the particle scale lays the foundation for future work at the porous electrode scale by revealing the local interplay between Li plating and intercalation. It also provides a valuable tool to prevent Li plating on the systems level by enabling precise modeling and prediction of Li plating. The knowledge also shed light on design principle of graphite electrode and algorithm for battery operation optimization to achieve extreme fast charging without compromising battery safety and durability.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact
Further information and requests for resources and materials should be directed to and will be fulfilled by the Lead Contact, Martin Bazant (bazant@mit.edu).

Materials Availability
This study did not generate new unique materials.

Data and code availability
The data supporting the findings of this study are available within the main text and the Supplemental Information. More detailed data and the MATLAB code used for processing/analysis can be made available upon request to the corresponding author.

System preparation and Materials
The HOPG particle was bought from Sigma-Aldrich. The as-received HOPG foil is 10 mm × 10 mm × 2 mm. It was peeled into thinner foil (100–200 µm) with Scotch tape and then cut by a razor blade to small square pieces of approximately 1 mm × 1 mm. A mini tri-layer battery was made by stacking the selected particle, a separator (MTI), and a Li chip (MTI) together, with the particle’s basal plane facing up and its edge plane facing sideways. A copper cantilever was used as the current collector. The mini tri-layer battery was then loaded into the customized electrochemical cell, in which a quartz window is installed above the HOPG particle for in situ optical observation. After this, the electrolyte, 1 M LiPF₆ in EC/DEC = 50/50 (v/v) (Sigma-Aldrich), is injected into the cell with the tube on the side of the cell. During the
experiment, the HOPG particle was used as the working electrode and Li metal as the counter and reference electrodes. All the voltage values were referenced to Li/Li$^+$. The particle was pre-cycled at C/15 between 1.0 and 0 V for one cycle to form SEI. The effect of any subsequent SEI growth on graphite is neglected in this study. During lithiation, a negative current was applied until the voltage drops below zero and reaches a plateau. During de-lithiation, a positive current was applied until the voltage reached 1.0 V. The delivered charge was normalized by the theoretical capacity of the particle. The experiment was conducted at room temperature. The lab was regulated by a central air conditioner and the temperature is set to be 72°F (22.2°C). The customized electrochemical cell was made of PTFE.

Image Processing

Image processing is performed by extracting a small vertical slice (approximately 50 x 500 pixels in dimension) from the top left of the particle of Figure 3. The jagged edge slope of the HOPG particle is removed digitally to prevent erroneous readings from image processing. The final snipped image is contrast-enhanced and then processed using MATLAB Image Processing Toolbox, to convert the observed colors on graphite to a time-dependent concentration map. We use this concentration profile used to compare against the theoretical predictions our model.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule.2020.12.020.

ACKNOWLEDGMENTS

This work was supported by the Toyota Research Institute through D3BATT: Center for Data-Driven Design of Li-Ion Batteries.

AUTHOR CONTRIBUTIONS

T.G. and Y.H. contributed equally to this work. T.G. and M.Z.B. conceived and designed this study. T.G. designed and performed the experiment with Y.H. T.G., T.Z., and D.F. developed the physical picture based on the results. S.D., D.F., T.Z., and M.Z.B. developed the mathematical model. S.D. performed the simulations and fitting to experimental data. T.G., S.D., D.F., and M.Z.B. prepared the manuscript and made the final edits. M.Z.B. is the lead contact of this work.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 9, 2020
Revised: September 3, 2020
Accepted: December 18, 2020
Published: January 22, 2021

REFERENCES

74. Petzl, M., and Danzer, M.A. (2014). Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J. Power Sources 254, 80–87.