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The COVID-19 pandemic has renewed interest in assessing how the operation of HVAC systems influ-
ences the risk of airborne disease transmission in buildings. Various processes, such as ventilation and
filtration, have been shown to reduce the probability of disease spread by removing or deactivating
exhaled aerosols that potentially contain infectious material. However, such qualitative recommenda-
tions fail to specify how much of these or other disinfection techniques are needed to achieve acceptable
risk levels in a particular space. An additional complication is that application of these techniques inevi-
tably increases energy costs, the magnitude of which can vary significantly based on local weather.
Moreover, the operational flexibility available to the HVAC system may be inherently limited by equip-
ment capacities and occupant comfort requirements. Given this knowledge gap, we propose a set of
dynamical models that can be used to estimate airborne transmission risk and energy consumption for
building HVAC systems based on controller setpoints and a forecast of weather conditions. By combining
physics-based material balances with phenomenological models of the HVAC control system, it is possi-
ble to predict time-varying airflows and other HVAC variables, which are then used to calculate key met-
rics. Through a variety of examples involving real and simulated commercial buildings, we show that our
models can be used for monitoring purposes by applying them directly to transient building data as oper-
ated, or they may be embedded within a multi-objective optimization framework to evaluate the tradeoff
between infection risk and energy consumption. By combining these applications, building managers can
determine which spaces are in need of infection risk reduction and how to provide that reduction at the
lowest energy cost. The key finding is that both the baseline infection risk and the most energy-efficient
disinfection strategy can vary significantly from space to space and depend sensitively on the weather,
thus underscoring the importance of the quantitative predictions provided by the models.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the recognition that airborne exchange of respiratory
aerosols may be the primary means of transmission for COVID-
19 and other diseases [1–4], it is crucial to understand how HVAC
systems can affect this infection route [5]. In order to reduce the
aerosol concentration and associated infection risk in buildings,
HVAC systems can deliver clean air flow via a combination of
high-efficiency filtration, extra fresh-air ventilation, and other
sources. Unfortunately, each option leads to increased energy
use, and their effect on indoor-air quality can vary significantly
based on outdoor-air conditions. In this paper, we propose a
model-based optimization framework to determine the combina-
tion of clean-air sources that can achieve a given reduction in
infection risk in the most cost-effective manner. The optimization
can recommend a spectrum of possible operational profiles rang-
ing from minimum infection risk to minimum energy, providing
predicted energy consumption and infection risk for each. This
information can empower building managers to make informed
decisions about how to operate their buildings given current cost
and disinfection priorities.

Underpinning the proposed optimization is a set of dynamic
models for zone temperature, humidity, and the expected
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transmission rate, which are parameterized in terms of physical
and usage characteristics of the zone (e.g., floor area, ceiling height,
design occupancy, HVAC equipment sizes) that are representative
of typical commercial buildings. These models can then be used
to predict the effect of various design and operational variables
on energy and infection risk, thus allowing actionable and
informed recommendations to be made. We begin by reviewing
the relevant background for airborne transmission modeling in
buildings along with the associated energy analysis, and then we
present the main goals of this paper.

1.1. Airborne disease transmission

For airborne diseases, the primary transmission route is via
viruses or bacteria that are entrained in aerosolized particles
released into the air by exhalation of an actively infectious individ-
ual [3,4]. These expiratory aerosols are partially dried droplets of
respiratory fluids, such as saliva [6] or airway mucus [7], and they
are composed of aqueous solutions of proteins and salts, along
with potentially infectious microbes. The concentration and size
distribution of the particles covers several orders of magnitude
[8,9], with significant dependence on vocalization volume [2,10]
and respiratory mode [11,12]. The largest of these droplets, pro-
duced primarily by coughs and sneezes [13] can be up to 1 mm
in diameter. However, because they settle rapidly to the ground,
these large droplets generally do not pose a risk for long-range air-
borne transmission [14,15]. By contrast, the smallest droplets are
sized between 0.1 and 10 lm and are produced in high concentra-
tions by standard respiration. Because these particles settle much
more slowly, they tend to remain suspended in the air for long
periods of time that exceed the time scales for turbulent mixing
and air change in an indoor space [4]. Such aerosol particles are
of primary concern for airborne transmission, as they can spread
over long distances due to the air circulation provided by natural
convection and HVAC systems [16–18], thus leading to new infec-
tions if inhaled by susceptible individuals.

Although infectious aerosols can remain airborne for long peri-
ods, their concentration does decay over time due to a variety of
removal mechanisms [4]. For example, the particles naturally
deposit onto surfaces (with a size-dependent rate [19,20]) as
fomites, thus rendering them unlikely to transmit the disease
[21]. In addition, the particles may simply be removed from the
air via outdoor-air ventilation (with particle-laden air exhausted
to the ambient and replaced with a similar volume of outdoor air
free from respiratory particles) or filtration (by which some frac-
tion of the particles become trapped in a filter) [22–24]. In addi-
tion, the infectious material in the particles can become
deactivated, e.g., due to natural decay (the rate of which depends
slightly on temperature and humidity) or deliberate UV irradiation
[25–28]. Thus, these mechanisms result in a gradual decay of the
airborne infectious particle concentration over time. Ultimately,
the concentration of infectious aerosols in the space is determined
by the balance of generation and removal mechanisms. However,
because conditions are often unsteady throughout the course of
the day (e.g., with generation rates varying in accordance with
the occupancy cycle and removal rates determined by the transient
operation of the HVAC system), it is important to account for
dynamic effects when considering infection risk.

Due to the significant likelihood and associated negative conse-
quences of indoor disease transmission, there is growing interest in
mitigating the associated risk by changing the design or operation
of building HVAC systems. Many such strategies are aimed at
reducing the generation rate of infectious particles within the
space and reducing the exposure of susceptible individuals to those
particles. For example, by requiring occupants to wear face masks,
the particle concentrations released by exhaling infectors and
2

received by inhaling susceptibles are reduced in accordance with
the filtration efficiency of the mask [4,29]. Masks also largely elim-
inate the momentum of respiratory flows, such as turbulent
plumes from speech [30] or coughs and sneezes [14], which would
otherwise enhance the risk of short-range airborne transmission
[31] relative to the long-range airborne transmission in a well
mixed space [4]. Furthermore, screening occupants for high tem-
peratures or other symptoms prior to entering a building can sig-
nificantly reduce the expected number of infectors in the space
(and thus also the infectious particle generation rate), although
the effectiveness of this strategy is attenuated for diseases such
as COVID-19 for which asymptomatic spread is prevalent [6,32].
By contrast, other commonly employed measures may have little
to no effect on airborne transmission. For example, the installation
of plexiglass dividers and enforcement of social distancing can
reduce the likelihood of short-range transmission associated with
respiratory jets [4,6,31] or large droplets [14,15], but once the
smaller particles have mixed with the surrounding air, these
strategies no longer provide protection to susceptible occupants.
These observations indicate that focusing on the long-range air-
borne transmission route is a more effective means of reducing
infection rates. Indeed, recent analyses of COVID-19 in schools
found no significant change in transmission rates resulting from
3-foot versus 6-foot social distancing requirements [33] or
whether physical barriers were installed to separate desks, but
reduced transmission was observed from mask usage, increased
ventilation, and improved filtration [34].

Although these findings indicate possible strategies for reducing
airborne transmission, and even which among them are likely to be
most effective, the value of such qualitative guidance is somewhat
limited. Specifically, knowing that a particular action provides rel-
ative reduction in infection risk does not indicate whether it is nec-
essary in an absolute sense. Given the significant diversity of
building operation and occupant behavior, the expected rate of
indoor infection can vary over several orders of magnitude for dif-
ferent buildings or spaces [4]. Thus, in order to guide decision-
making, it is important to provide quantitative guidance for various
strategies.
1.1.1. Modeling framework
Mathematical models to estimate the rate of airborne disease

transmission have been known for over 50 years, with seminal
contributions from Wells [22] and Riley et al. [35]. Within the
Wells-Riley framework, the hypothetical concentration of infec-
tious aerosols is modeled using material balances, from which
the received dose and infection probability of susceptible individ-
uals in the space can be calculated. This basic approach has been
extended in many directions since its original proposal
[38,19,20,23,24,36,37,4,39–41]. In general terms, the key relation-
ships for one susceptible individual can be expressed as follows:

Dose ¼
R
a� Concentration dt

Infection Probability ¼ 1� exp �b� Doseð Þ
� b� Dose

That is, the individual’s received dose (measured in some unit of
amount, e.g., number or mass of virions) is equal to the time inte-
gral of the airborne concentration of infections particles (as mod-
eled by the material balance) multiplied by an exposure rate a
(generally equal to the individual’s breathing rate). That individ-
ual’s probability of infection is then given by an exponential relax-
ation to certainty proportional to the total dose, in which the
proportionality constant b reflects the infectivity or hazard rate
of the dose. FromWells [22], it is common to measure each amount
of infectious particles in units of ‘‘infectious quanta”, where one
‘‘quantum” (abbreviated q) represents the amount of pathogen
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exposure that results in an infection probability of
1� exp �1ð Þ � 0:63. (In these units, the proportionality constant
b thus has a value of 1 q�1.). More generally, infection quanta
may be defined in terms of the mean rate of transmission between
each infected-susceptible pair [4], without regard to the micro-
scopic pathogen concentration.

In order to determine the resulting infectious particle concen-
tration, a common assumption is to assume that the particles are
well-mixed (i.e., spatially uniform in concentration) within the
air. Indeed, the same assumption is commonly made when model-
ing other mass and energy balances within buildings, and it can be
justified both theoretically [4] and empirically via simulation [18]
and experiment. Where the effects are relevant, the well-mixed
models can be corrected to account for short-range respiratory jets
[6,31] or fluctuations in airflow [16], but it is nevertheless a useful
first approximation to assume well mixed indoor air. Another com-
plication is particle-size dependence of various processes, primar-
ily the filtration efficiency and deposition rate, but also infectivity
and decay rate [4]. These effects can be accounted for, but it is com-
mon to include them only via size-averaged variables in existing
models [4,20,42]. Additional non-uniformity can result when a
space is separated into multiple rooms that share the same supply
air stream, but modeling in such cases is straightforward, if the
room dimensions, occupancy, and airflow are known [43].

1.1.2. HVAC mitigation strategies
As alluded to above, the operation of building HVAC systems

can have a significant impact on the airborne concentration of
infectious particles. The primary sources of removal and deactiva-
tion are ventilation, filtration, and UV disinfection. Some past stud-
ies have assessed which HVAC strategies are most effective and
energy-efficient for infection risk reduction [37,40], but findings
can vary significantly based on climate and HVAC system design.
A key focus from ASHRAE [44] and others has been on increasing
ventilation rates. Indeed, increased ventilation does reduce the
effective concentration of infectious particles, and in addition the
associated reduction in indoor CO2 concentration is beneficial for
general health and wellness [45]. However, if the additional venti-
lation is provided only by increasing the outdoor air fraction in the
supply air stream, the supplemental reduction in infectious parti-
cle concentration can be small to negligible if that stream also
passes through a filter with a high MERV rating [44]. Similarly,
switching to a higher-efficiency filter will remove more infectious
particles from the air, but if the volume of air passing through that
filter is low, then absolute benefits may not be significant [37].
Thus, it is important to consider all the disinfection strategies
available and account for how they interact when making deci-
sions. In particular, to provide meaningful reduction in infection
risk, it is often necessary to increase the total airflow provided by
the HVAC system so as to more rapidly dilute and remove infec-
tious particles present in the air.

A key caveat when considering HVAC infection mitigation
strategies is that due to system design, it is often not possible to
directly manipulate the desired variables. For example, a practi-
tioner may want to double the ventilation and total airflow pro-
vided to a zone. However, in constant-volume systems, the
supply flow generally cannot be increased above its design value,
and so the only way to increase total flow is to install standalone
filtration devices that operate on their own dedicated stream of
air. Alternatively, in variable-volume systems, the flow delivered
to a given room is determined by the action of the VAV controller
for the purposes of temperature regulation, and so absolute flow
can only be adjusted indirectly (e.g., by manipulating supply-air
temperatures). Finally, if the system does not have an airside econ-
omizer, it may not be possible to increase ventilation rates above
their minimum values, and even when present, the maximum ven-
3

tilation rate may be further restricted based on weather conditions
and heating/cooling capacities. The main observation is that when
considering HVAC mitigation strategies for airborne infection risk,
it is not sufficient to consider just the fundamental physical vari-
ables, and instead one must step further back to use the setpoints
exposed by the HVAC system and predict their effect on the rele-
vant physical variables.

1.2. Energy consumption

Although HVAC systems can be operated so as to reduce the risk
of airborne transmission of disease, unfortunately the actions
taken will almost always increase energy consumption relative to
baseline operation. Thus, when choosing between two strategies,
it is important to consider which is most energy-efficient. A com-
mon basis to quantify the disinfection efficacy of a given mecha-
nism is its removal rate of infectious particles, which is best
expressed as the equivalent volumetric flow of particle-free air that
would provide the same removal rate. This concept is referred to as
the ‘‘clean air delivery rate” [46] or the ‘‘equivalent outdoor air”
rate [44], and two devices that have the same value are thus equiv-
alent from an infection-risk perspective and can be compared in
terms of energy consumption. However, when combining multiple
clean-air mechanisms in series (e.g., using an air-filter downstream
from the outdoor-air intake), it is important to consider their com-
bined efficacy, as there may be only incremental benefits to clean-
air delivery but a significant change in energy consumption.

Given these associated energy costs and the societal emphasis
on energy efficiency and sustainability, it is important to make
informed decisions about which strategies to apply. This sentiment
has been echoed by the ASHRAE Epidemic Task Force [47], which
has recommended ‘‘select[ing] control options, including stan-
dalone filters and air cleaners, that provide desired exposure
reduction while minimizing associated energy penalties”. In order
to make this determination, it is necessary to estimate the energy
consumption associated with possible courses of action. This
knowledge will enable building managers to make informed design
decisions while adapting operational decisions regularly to account
for changing weather or infection-prevalence conditions.

1.2.1. Filtration and fan power
A key technology for removing infectious particles from a space

is filtration. The overall clean-air delivery rate associated with a fil-
ter is the product of the volumetric flow of air through the filter
multiplied by its filtration efficiency [44]. This observation sug-
gests two different ways to utilize filters, which have different
impacts on operation and energy consumption.

The first way to increase the clean-air delivery provided by a fil-
ter is to increase the amount of air flowing through it. Physically,
this increased flow is provided by increasing fan speed, which thus
requires additional electricity consumption that can be calculated
as the product of volumetric flow and pressure rise divided by
overall fan efficiency. Because the pressure rise and efficiency each
vary with flow, the result is essentially a static nonlinear model in
terms of flow [48]. The simulation package EnergyPlus [49] sup-
ports various mathematical forms for variable-speed fan energy
models, including low-order polynomials and a power law.
Although model accuracy is best when calibrated against actual
operating data, reasonable accuracy can be achieved by scaling
standard models with nameplate design flow and power consump-
tion of the fans [48].

As an alternative to increasing total flow, particle removal rates
can be increased by switching to a filter with higher efficiency. The
MERV rating standard specifies required filtration efficiencies for
three different ranges of particle sizes, and thus for a given particle
size distribution, these values can be used to calculate effective the
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overall filtration efficiency of each MERV rating [44]. Unfortu-
nately, this increase in efficiency restricts the flow of air through
the filter, thus increasing the required pressure difference to pro-
duce the same total flow rate. In general, the higher pressure differ-
ence results in higher energy consumption, although the
magnitude can vary based on the fan control strategy that is
applied [50]. To a reasonable approximation, the increased energy
consumption can be estimated by considering the change in pres-
sure drop associated with the new filter type and appropriately
scaling the baseline energy consumption [37].

1.2.2. Ventilation and coil loads
When supplying additional ventilation, there is a change the

heating or cooling load necessary to maintain indoor air tempera-
ture, which thus results in a change in energy consumption. Past
studies have quantified the extra costs associated with increased
ventilation rates [45,51,52], and a key finding is that there is signif-
icant variation with climate. The impact of day-to-day variation
can perhaps be minimized via the use of an economizer (which will
automatically increase ventilation rates when outdoor conditions
make it energetically favorable), but the commonly employed
rule-based strategies are often insufficient to capture all the avail-
able benefits [53]. In Azimi and Stephens [37], the energy costs of
extra ventilation were explicitly compared to that of higher-
efficiency filtration for various climates and filter types, finding
that filtration is generally the more energy-efficient option overall.
However, results can change seasonally with weather conditions,
and the study did not consider the energy consumption associated
with dehumidification. In general, it is recognized that ventilation
is a costly component of HVAC system operation, and so [54] spec-
ifies minimum ventilation rates that must be provided and allows
technologies like demand-controlled ventilation to further reduce
the amount of ventilation that must be supplied. Energy-recovery
technologies can be applied to reduce the energy impact of venti-
lation [55], but they are not commonly employed in existing
buildings.

The energy costs associated with ventilation ultimately derive
from the fact that the outdoor air may have to be heated or cooled
to bring it to suitable conditions of temperature and humidity for
indoor comfort. Thus, the energy consumption should be modeled
by considering the thermal loads at the appropriate coils. For cool-
ing coils, effectiveness models can capture heat-transfer limita-
tions and thus provide an accurate estimate of energy
consumption [56–58]. However, simplified contact-mixture mod-
els can also be used and have been shown to match experimental
data despite their relative simplicity [59]. For heating coils, the
modeling principles are similar but generally simpler because
there is no associated change in humidity that must be considered
as a latent load. The calculated coil loads can then be converted to
the appropriate energy source (generally electricity or gas) via the
appropriate coefficient of performance or efficiency factor [37].

The key differentiator between ventilation and filtration for the
purposes of reducing airborne transmission is that for a given level
of airflow or particle removal, the energy cost of filtration is essen-
tially constant, whereas the energy cost of ventilation varies signif-
icantly (and can even become negative) based on outdoor-air
conditions. Thus, optimal energy efficiency requires operating
strategies to be adjusted seasonally (or more frequently), perhaps
with filtration preferred in the extreme heating and cooling
months and ventilation used during milder transition seasons.

1.2.3. Other disinfection devices
For completeness, we note that infectious particles can also be

removed or deactivated by auxiliary disinfection devices, including
UV irradiation zones in ducts or standalone filters and air cleaners
that are placed in the space. For UV disinfection, the radiation
4

intensity to achieve a given level of disinfection can be computed
from expected flow rates [28]. However, once the UV lamps have
been installed, their electricity consumption is essentially con-
stant. Thus, for energy analysis, it is only necessary to know the
total rated power of the UV lamps (and of course also whether they
are on or off). For filtration devices, theoretical models have been
developed to estimate and optimize overall particle removal rate
for a given electricity consumption [60], but as before, the main
value relevant for energy analysis is the device’s rated power.
Where variable operation is possible (e.g., for a device that can
operate at different fan speeds or flow rates), it may be necessary
to fit simple models to account for variation, possibly with data
obtained from manufacturer specifications.

1.3. Overview of paper and contributions

Given the importance of managing both indoor infection risk
and HVAC energy consumption [47], the goal of this work is to pre-
sent dynamic models that can be used for monitoring and opti-
mization of both variables in buildings. The models for indoor
temperature, humidity, and hypothetical infectious particle con-
centration are based on mass and energy balances that follow from
standard physics. By contrast, the model of the regulatory control
system is phenomenological so as to match general HVAC system
behavior (including time variation in airflow resulting from varia-
tion in thermal loads) while remaining computationally efficient.
Both sets of models are parameterized in terms of readily available
data, including space dimensions, equipment capacities, weather
conditions, and occupancy profiles. Where values are not specifi-
cally known, they can be substituted with standard values pro-
vided in ASHRAE standards [54,55]. The main contribution is that
the models are coupled, and thus they predict simultaneously
the infection rate, energy consumption, and indoor conditions that
result from commonly available HVAC setpoints and design vari-
ables. Thus, these models can provide actionable guidance that
can be readily applied in real buildings. In particular, they facilitate
Pareto analysis to assess the optimal tradeoff between the two pri-
mary metrics so that both aspects can be considered.

The remainder of this paper is structured as follows. In Section 2,
we present the full set of dynamic models for airborne infection,
thermal dynamics, and the regulatory control system. For brevity,
we present only the models themselves (i.e., equations and
descriptions of variables), but additional detailed discussion is pro-
vided in the appendices. In Section 3, we then discuss how the
models can be used for monitoring and optimization purposes.
These calculations could be used by building managers to evaluate
the infection risk in their buildings as operated and determine how
infection rate could be reduced or energy efficiency can be
improved. We then present examples in Section 4 to illustrate
the insights and operational benefits that can be provided by appli-
cation of the modeling framework. Finally, Section 5 provides con-
clusions and a discussion of future directions.
2. Modeling

In this section, we present various dynamic models that can be
used to estimate and predict infection risk and HVAC energy con-
sumption within an indoor zone. All models are defined in the
standard continuous-time state-space form

dx
dt

¼ f h x;uð Þ; y ¼ hh x;uð Þ

for states x, inputs u, outputs y, and static parameters h. (Note the
distinction between u and h is that values of u vary throughout
the simulation period, whereas values of h are held constant.) Mod-



Table 1
Variables in the infectious particle concentration model.

Symbol Description Unit

States
C airborne concentration of infectious particles q/

m3

Inputs
f AHU supply and return airflow from and to the AHU m3/

s
xa outdoor air intake fraction –
aUV activation fraction for UV disinfection –
aaux;j activation fraction for in-zone disinfection device j –
NI number of infectious individuals in the zone –
NS number of susceptible individuals in the zone –

Outputs
f clean total effective clean-air flow m3/

s
qI total infection quanta generation rate across all infectious

occupants
q/s

qS total infection quanta dose rate received across all
susceptible occupants

q/s

gAHU total effective disinfection efficiency for air passing through
the AHU

–

Performance Metrics
NT expected number of infection transmissions to susceptibles

over the evaluation period
#

Eaux energy consumption associated with UV and auxiliary
disinfection equipment

kJ

Parameters
V volume of air in the zone m3

CI infection quanta net concentration in the exhaled breath of
infectors

q/
m3

knatural infection quanta deactivation rate due to natural processes
(including deposition and decay)

s�1

gfilter AHU filter disinfection fraction –
gUV : AHU UV disinfection fraction at maximum activation –
f max
aux;j

in-zone clean-air rate at maximum activation for device j m3/
s

f breathe;I average breathing rate of infectious individuals in the zone m3/
s

f breathe;S average breathing rate of susceptible individuals in the zone m3/
s

lI attenuation factor for infector generation rate (e.g., due to
masks)

–

lS attenuation factor for susceptible dose rate (e.g., due to
masks)

–

s evaluation time for metrics s
bq hazard rate for transmissions q�1

wUV power consumption of in-duct UV at maximum activation kW
waux;j power consumption of in-zone disinfection device j at

maximum activation
kW
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els are simulated using the standard 4th order explicit Runge–Kutta
method assuming a piecewise-constant hold on u and calculating y
as the average value over the integration interval, which for our pur-
poses is D ¼ 15 min.

Performance metrics are all calculated for each timestep as
functions ‘h y;uð Þ that are then integrated as appropriate over the
simulation interval. In various contexts, they are used as optimiza-
tion objectives or constraints.

2.1. Airborne disease transmission

In order to predict the transmission risk within each zone, we
model the hypothetical concentration N of airborne infectious par-
ticles that would be produced by infectious individuals in the
space. Consistent with the infection probability distribution sug-
gested by the Wells-Riley equation [37], we model this concentra-
tion as ‘‘quanta” per volume (unit q/m3) where one ‘‘quantum”
(unit q) of infectious particles is defined as the average amount
of infectious particles that will lead to infection in a susceptible
person. For brevity, we refer to the concentration of airborne infec-
tious particles as the ‘‘quanta concentration”. From this concentra-
tion, we calculate the hypothetical exposure rate for susceptible
individuals which then produces an estimate of the number of
transmission events during the evaluation period.

With this general approach, the main dynamic model for the
airborne infectious quanta concentration C is as follows:

V dC
dt ¼ qI � f cleanC

f clean ¼ knaturalV þ gAHUf AHU þ
X
j

aaux;jf
max
aux;j

gAHU ¼ 1� 1� xað Þ 1� aUVgUVð Þ 1� gfilterð Þ
qI ¼ 1� lI

� �
NICIf breathe;I

qS ¼ 1� lS

� �
NSCfbreathe;S

ð1Þ

From these variables, we then calculate the primary metrics via

NT ¼
R s
0 bqqS tð Þ dt

Eaux ¼
R s
0 aUVwUV þ

X
j

aaux;jwaux;j dt ð2Þ

where NT is the expected number of transmission events that occur
and Eaux the energy consumption associated with UV and auxiliary
disinfection, both over the time period t 2 0; s½ �. Descriptions and
units of all variables are given in Table 1.

Although similar to other dynamic formulations of the Wells-
Riley equation, the main contribution of this model is that it repre-
sents all infectious-particle removal sources as an effective clean-
air flow f clean. This value gives the volumetric flow of clean (i.e.,
C ¼ 0) air that would displace infectious particles at the same total
rate as the mechanisms being considered. (As mentioned before,
similar concepts have been referred to as ‘‘clean air delivery rate”
[46] and ‘‘equivalent outdoor air” [44], but those terms generally
refer only to a subset of the various removal mechanisms.) The
key benefits of this quantity are that its definition as a volumetric
flow makes it more intuitive for HVAC engineers, and that (in the
cases considered) its value is independent of the underlying infec-
tious particle concentration C, allowing it to be calculated from
readily available building data. In addition, by linearizing the stan-
dard exponential infection probability for each individual, we can
thus aggregate across occupants and estimate the expected num-
ber of transmissions specifically within the specific space being
considered. This space-centric formulation is critical to guide
decision-making, as it allows identification of high-risk spaces
and separate optimization of disinfection strategies tailored to
5

each space. Specific details about the model are discussed in
Appendix A, including the clean-air delivery calculation, the
number-of-transmissions equation, and values for key parameters
and inputs.

2.2. Thermal dynamics and energy consumption

To model the evolution of temperature and humidity within the
zones, we use straightforward (thermal) energy and (water vapor)
mass balances respectively. Although there are some pressure fluc-
tuations in the space, they are generally small enough to allow a
constant-density assumption for air within the zones. Consistent
with the previous infection model, the volume within a zone is
assumed to be well-mixed and thus have uniform temperature
and humidity. Note that throughout this discussion, we use ‘‘hu-
midity” to mean the ‘‘absolute humidity ratio” (commonly denoted
x) unless otherwise specified.

ODE equations for the mass and energy balances are as follows:
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qacaV
dTz
dt ¼ qacaf AHU TAHU � Tzð Þ

þQh þ kaz Ta � Tzð Þ þ Qz

qaV
dxz
dt ¼ qaf AHU xAHU �xzð Þ þwz

ð3Þ

The AHU outlet conditions and loads are calculated from simple
heating and cooling coil models with the following functional form
(and described in more detail in Section B.2):

TAHU;xAHU;Dh
h
AHUDh

c
AHU

� �
¼ AHU Tz;xz; xa; Ta;xa; T

sp
AHU; xbypass

� �
ð4Þ

The electricity consumption of the fan is given by a cubic poly-
nomial (see Section B.3 for more details):

wfan ¼ c1
f AHU
fmax
AHU

þ c2
f AHU
fmax
AHU

 !2

þ c3
f AHU

fmax
AHU

 !3

ð5Þ

Finally, from all of these outputs we the main metrics associ-
ated with energy consumption and thermal comfort in the space:

EHVAC ¼
R s
0 qaf AHU bhDh

h
AHU � bcDh

c
AHU

� �
þ bhQh þwfan dt

�T ¼
R s
0 max Tz � Tmax

z ;0
� �

þmax Tmin
z � Ta;0

� �
dt

�x ¼
R s
0 max xz �xmax

z ;0
� �

þmax xmin
z �xz; 0

� �
dt

ð6Þ

Descriptions and units of all variables in these equations can be
found in Table 2.

For the most part, this model follows standard thermal model-
ing principles for buildings, with some simplifications to avoid
Table 2
Variables in the thermal dynamics and energy model.

Symbol Description Unit

States
Tz temperature of the air inside the zone �C
xz humidity ratio of the air inside the zone –

Inputs
f AHU supply and return airflow from and to the AHU m3/s
xa ambient air intake fraction –
Qh sensible heating from HVAC heating sources kW
Tsp
AHU

AHU supply temperature setpoint �C
Ta ambient temperature �C
xa ambient humidity ratio –
Qz sensible thermal load on the zone kW
wz latent moisture load on the zone kg/s
Tmax
z maximum comfortable zone temperature �C

Tmin
z

minimum comfortable zone temperature �C

xmax
z maximum comfortable zone humidity –

xmin
z

minimum comfortable zone humidity –

Outputs
TAHU actual supply temperature of AHU �C
xAHU actual supply humidity of the AHU –

Dhh
AHU

enthalpy difference across the AHU heating coil kJ/kg

Dhc
AHU enthalpy difference across the AHU cooling coil kJ/kg

wfan electricity consumption at the fan kW

Performance Metrics
EHVAC total HVAC energy consumption kJ
�T total temperature constraint violation �C.s
�x total humidity constraint violation s

Parameters
qa density of air kg/m3

V volume of air in the zone m3

ca heat capacity of air (at average humidity) kJ/kg.�C
kaz zone/ambient heat transfer coefficient kW/�C
xbypass coil model bypass airflow fraction –
ci fan power curve coefficients kW
f max
AHU

maximum flow in the AHU m3/s
bc energy conversion factor for cooling –
bh energy conversion factor for heating –

6

parameters and inputs that are not readily available in real build-
ings (e.g., accurate solar intensity forecasts or predictions of ther-
mal mass dynamics). We consider both temperature and
humidity to ensure that energy consumption is accurately calcu-
lated and that occupant comfort is thoroughly considered. Key fea-
tures of this model are discussed in more detail in Appendix B.

2.3. Control layer

An important feature of the modeling framework is that we
consider the actions of the regulatory control layer in response to
supplied controller setpoints and the thermal evolution of the
zone. This functionality is critical because two of the inputs to
the infection model (airflow f AHU and outdoor-air fraction xa) that
have a significant impact on clean-air delivery cannot be directly
specified in real buildings and instead are determined as a side
effect of the regulatory control layer’s actions. Although the con-
trollers in each piece of equipment operate according to explicitly
defined control laws, those laws often consist of complicated rule-
based logic that operates on much faster timescales than desired
simulation timestep. Thus, rather than try to replicate the control
laws directly, we instead choose a phenomenological approach in
which we attempt to model the outcomes of the controllers’
actions. For example, rather than trying to model the (heavily mod-
ified) PI control law within the VAV controllers to specify airflow as
a function of setpoint tracking error, we instead assume that the
controller is well-designed and thus maintains temperature set-
points within the space whenever possible. This overall approach
is similar to the simulation strategy used by EnergyPlus [49], and
it simplifies our modeling effort by allowing us to use information
about internal system states and disturbances that would not be
directly available to the controllers.

The main controller output variables are calculated using the
following equations:

f AHU ¼ clip ~f AHU; f
min
vent; f

max
AHU

� �
Qh ¼ clip eQh;0;Q

max
h

� �
xa ¼

xmax
a if Ta 6 Tecon

a

xmin
a else

(

aUV ¼
�aUV if r ¼ 1
0 else

�
aaux;j ¼

�aaux;j if r ¼ 1
0 else

�
ð7Þ

These calculations use the following intermediate variables:

Tsp
AHU ¼ Tsp

AHU

fmin
vent ¼

�f vent if r ¼ 1
0 else

(
xmin
a ¼ f min

vent=f AHU

xmax
a ¼ clip

max Tz�Tsp
AHU

;0ð Þ
max Tz�Ta ;0ð Þ ; xmin

a ; 1
� �

ð8Þ

Note that the clip function is defined as
clip x; a; bð Þ ¼ min max x; að Þ; bð Þ for a 6 b. Variables used in this
model are described in Table 3.

Overall, the main functionality of the controller model is that it
allows prediction of the HVAC control variables that ultimately
determine infection risk and energy consumption in the space. In
an ideal system, we would be able to manipulate (and thus opti-
mize) the airflow f AHU and outdoor-air fraction xa directly, but in
existing HVAC systems, these quantities reflect the response of
the regulatory control system and thus can be adjusted only indi-



Table 3
Variables in the HVAC controller model.

Symbol Description Unit

Inputs
Tz temperature of the air inside the zone �C
xz humidity ratio of the air inside the zone –
Ta ambient temperature �C
xa ambient humidity ratio –
Qz sensible thermal load on the zone kW
Tmax
z maximum comfortable zone temperature �C

Tmin
z

minimum comfortable zone temperature �C

f max
AHU

maximum AHU air flow m3/s

Qmax
h maximum reheat rate kW

r occupancy indicator variable 0;1f g

Outputs
f AHU supply and return airflow from and to the AHU m3/s
xa outdoor air intake fraction –
Qh sensible heating from HVAC heating sources kW
Tsp
AHU

AHU supply temperature setpoint �C

f min
vent

minimum outdoor-air ventilation rate m3/s

aUV activation fraction for in-duct UV disinfection –
aaux;j activation fraction for in-zone disinfection device j –
~f AHU hypothetical value of f AHU that drives Tz to Tmax

z in one
timestep (see Section C.1)

m3/s

eQh hypothetical value of Qh that drives Tz to Tmin
z in one

timestep (see Section C.1)

kW

xmin
a

minimum outdoor-air fraction needed to provide
minimum ventilation

–

xmax
a maximum outdoor-air fraction that can meet supply

temperature setpoint
–

Parameters

Tsp
AHU

default AHU supply temperature setpoint �C

Tecon
a economizer threshold ambient temperature �C

�f vent occupied outdoor-air minimum ventilation rate m3/s
�aUV maximum activation fraction for UV disinfection –
�aaux;j maximum activation fraction for in-zone disinfection

device j
–
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rectly. Using this simple controller model, we thus bridge the gap
between the controller settings we can manipulate and the HVAC
variables required for infection-risk and energy modeling. Specifi-
cally, by coupling to the thermal model from Section 2.2, we can
adjust the static controller parameters h and predict how the HVAC
control system will respond. The resulting metrics can then be
used to optimize for energy consumption or infection risk depend-
ing on our current priorities. Specific controller model components
are discussed in more detail in Appendix C.

3. Monitoring and optimization

The models presented in Section 2 have two primary use cases.
First, where actual measurements (air flows and temperatures) are
available, the models can be used in a monitoring capacity to esti-
mate the clean-air delivery and resulting infection risk within a
space. These calculations can be used to determine whether each
space is or is not being provided adequate disinfection as actually
operated. Second, for spaces with high infection risk or energy con-
sumption, the models can be used for optimization to predict the
effects of changing various design or operational parameters. By
evaluating the tradeoff between infection risk and energy con-
sumption in a space, decision-making can be guided in accordance
with current priorities. We discuss these two use cases in the fol-
lowing sections.

3.1. Monitoring

When used for monitoring purposes, we assume that measure-
ments of temperatures and airflows are available from the building
7

management system (BMS). Thus, we need not use the thermal and
controller models from Sections 2.2 and 2.3, as the relevant output
quantities are already known. We do, however, need to simulate
the airborne infection model from Section 2.1 to assess infection
risk in the space. The two primary outputs of interest are the
expected number of transmissions NT and the total clean-air deliv-
ery rate f clean; the former can be used to quantify the infection risk
in the zone, while the latter indicates to what extent HVAC mea-
sures are reducing that risk. Providing both values is important
to be able to assess whether HVAC measures are providing suffi-
cient mitigation (as indicated by high f clean and low NT ) or whether
non–HVAC operational changes are needed (as indicated by high
NT despite high f clean).

To simulate the infection model, we require values for the air-
flow inputs f AHU and xa, as well as the activation fractions aUV
and aaux;j for the relevant disinfection devices. The numbers of
infectors and susceptibles NS and NI can be chosen from a typical
occupancy profile as discussed in Section A.4. If the evaluation per-
iod begins during unoccupied hours, then the initial condition for
the infection quanta concentration C can be set to zero; otherwise,
a ‘‘warmup” period of roughly 5 h should be simulated to obtain a
more accurate initial condition. From there, the hypothetical infec-
tious particle concentration in the space can be simulated via Eq.
(1), and the expected number of transmissions can be calculated
using Eq. (2).

Where estimates of energy consumption are required, the AHU
and fan models from Eqs. (4) and (5), can be used, since their
inputs are generally all known. In addition to f AHU and xa, these
models also require the zone conditions Tz and xz, the ambient
conditions Ta and xa, and the AHU conditions TAHU and xAHU

(although xAHU can also be estimated from the AHU model Eq.
(4), as its value is often not measured in real buildings). In-zone
heating energy can also be included where Qh is known, although
its value generally cannot be directly measured and must be esti-
mated from other sources (e.g., heating-coil activation commands).
We discuss some additional use cases in the following sections.

3.1.1. Uncertainty quantification
As mentioned in Section 2.1, many of the key infection-model

parameters are related to occupant behavior or disease character-
istics, which means they are somewhat uncertain in value. For the
monitoring procedure described above, we assume mean values of
all parameters to simulate mean values of the key infection met-
rics. However, it may be useful to quantify the uncertainty associ-
ated with the model’s predicted number of infection transmissions
NT .

Fortunately, for many of the key model parameters, uncertainty
quantification is straightforward. First, we note that the infection
quanta concentration ODE in Eq. (1) is linear in the product of
parameters 1� lI

� �
f breathe;ICI . Thus, the (time-varying) value of

the infection quanta concentration C is an affine function of this
group. We know also that if CI ¼ 0, then C � 0, and thus we have
that C is directly proportional to these parameters. Second, the per-
formance metric NT is proportional to the product of parameters
1� lS

� �
f breathe;S that multiply C to determine qS, and thus its value

is directly proportional to them. Combining these two facts, we find
the relationship

NT / 1� lI

� �
1� lS

� �
f breathe;I f breathe;SCI

Thus, in order to obtain distributional information for NT , we
need only run a single simulation of Eq. (1) to find a baseline value
of NT and then sample its distribution by rescaling the baseline
value using samples of the other five parameters.

Unfortunately, the remaining model inputs and parameters are
either time-varying or enter the dynamic model nonlinearly. Thus,



hÞg
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estimating their impact on the distribution of NT requires, e.g.,
Monte Carlo methods that would repeatedly simulate the system.
For example, if the number of susceptible occupants NI has uncer-
tain intra-day variation, then separate simulations should be run
for various samples of the NI sequence. Given space limitations,
we do not go into more detail here, but simply note that the vari-
ance of model predictions can be estimated from the parameter
distributions at the cost of running additional simulations.

3.1.2. Disturbance inferencing
Although the thermal model Eq. (3) is not directly needed for

monitoring purposes, it can nevertheless provide valuable insight
into the operation of the space. Specifically, we note that the model
includes inputs Qz and wz for the internal sensible and moisture
loads in the space. Although reasonable estimates of these values
can be obtained from occupancy profiles and typical energy densi-
ties (e.g., from ASHRAE standards [55]), the character of these dis-
turbances can vary significantly from space to space. Thus, to
better predict the airflow delivered to each space, it is desirable
to have a more accurate forecast of Qz and wz, which ultimately
determine the response of the HVAC system.

To infer the values of these parameters, we note that all other
terms in Eq. (3) are generally known with higher accuracy, either
via direct measurements from the building or based on simple
physical characteristics of the space. In particular, the derivative
terms dTz=dt and dxz=dt can be estimated from data through
appropriate filtering. Thus, we can back-calculate values on a
pointwise basis as

Qz ¼ qacaf AHU TAHU � Tzð Þ
þQh þ kaz Ta � Tzð Þ � qacaV

dTz
dt

wz ¼ qaf AHU xAHU �xzð Þ � qaV
dxz
dt

generally with additional filtering to minimize the impact of mea-
surement noise. Once these disturbance trajectories have been cal-
culated, future values can be predicted through various regression
techniques [61]. These predicted inputs can then be used for opti-
mization purposes as discussed in the next section.

3.2. Optimization

When used for optimization purposes, the dynamic models in
Section 2 serve to predict values of key performance metrics that
would result from certain decision variables. By coupling the HVAC
controller model from Section 2.3 to the thermal model in Sec-
tion 2.2, we can predict the airflow and energy HVAC energy con-
sumption for a space. The predicted airflow values can then be
used as inputs to the infection-risk model from Section 2.1 to esti-
mate infection risk. The key realization is that there is an inherent
tradeoff between energy consumption and infection risk in the
space: almost all HVAC actions that reduce infection risk (by pro-
viding additional clean air to the space) also result in increased
energy consumption. Since there are multiple different mecha-
nisms by which clean air can be provided, the goal of the optimiza-
tion is to identify the most efficient clean-air sources, which can
vary from day to day based on ambient conditions. In addition, it
may be the case that some spaces already provide adequate disin-
fection under standard operation, and thus there is no motivation
to further increase clean-air delivery.In order to address these
needs, we formulate a multiobjective optimization problem using
the dynamic models to predict the necessary decision metrics.
Mathematically, the overall structure of the optimization problem
is as follows:
8

min
h2H

z1; . . . ; zK1

� �
s:t: zmin

k 6 zk 6 zmax
k ; k 2 K1 þ 1; . . . ;K2f g

zk ¼
Ps
t¼0

‘k yt ;ut ; hð Þ; k 2 1; . . . ;K2f g

xtþ1 ¼ f xt ;ut ; hð Þ; t 2 0; . . . ; s� 1f g
yt ¼ h xt ;ut ; hð Þ; t 2 0; . . . ; sf g

x0 given
ut given; t 2 0; . . . ; sf g

ð9Þ

That is, we perform multiobjective optimization over a set of
model parameters h 2 H with each scalar objective function and
constraint zk, calculated from the inputs ut and outputs yt of the
simulation model. Note that in this context, the models f �ð Þ;h �ð Þ,
and ‘k �ð Þ represent the coupled models, i.e., the combination of
infections quanta, thermal, and controller models as mentioned
in the previous paragraph.

Owing to the multiple objectives, the goal is not to find just a
single optional point h� but rather the set of non-dominated points

H� ¼ h� 2 H : for all h 2 H there exists k� such that zk� h�ð Þ 6 zk� ðf

also referred to as the ‘‘Pareto set”. All values in this set are efficient
in the sense that it is not possible to improve the value of one objec-
tive function without making a different objective function worse.
The specific values to implement can then be chosen from this set
in accordance with current infection-risk and energy priorities.

The proposed optimization process is illustrated in Fig. 1. As
will be discussed in Section 3.2.3, we choose a finite set of opti-
mization cases specified by the values of their decision variables.
A simulation is run for each optimization case, holding the other
model parameters and inputs constant across all cases. Within
the simulation, the controller and thermal models (from Sections
2.3 and 2.2 respectively) are coupled, with the controller model
determining the HVAC control actions (primarily flow rate and out-
door air fraction) based on the previous zone state (i.e., tempera-
ture and relevant disturbances) and configured setpoints. The
thermal model then evolves based on those control actions, and
the process is repeated until the end of the simulation period. In
parallel, the HVAC control actions are passed to the infection model
so that infection risk and other objectives can be evaluated. Once
the objectives and constraints have been simulated for each opti-
mization case, a Pareto search is performed to characterize the fea-
sibility and optimality of each case. The optimal cases can then be
presented the user to select from in accordance with their current
operating goals. We discuss the decision variables, performance
metrics, and Pareto optimization algorithm in the following
sections.
3.2.1. Decision variables
For the purposes of optimization, we split the decision variables

into two different groups: operational variables that can be
adjusted via setpoints sent to the BMS, and design variables that
would require physical equipment to be installed or replaced.
The key distinction is that operational variables can be reasonably
be adjusted on a daily or faster basis, whereas changes to design
variables would generally be changed only monthly or less fre-
quently. Thus, the frequency of optimization (and the time period
considered in the optimization) will typically depend on the vari-
ables being adjusted. Fig. 1 illustrates the general case in which
the decision variables can affect both the HVAC control setpoints
and the parameters of the infection model, but often only one



Fig. 1. Data flow diagram for optimization process. For each optimization case, the corresponding decision variables are simulated using the proposed models to calculate
values of objective functions and constraints. Results are then post-processed via the Pareto Optimization algorithm to identify whether each case is infeasible, suboptimal, or
optimal.
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group (i.e., operational or design) of variables will be optimized at a
time.

The primary operational variables to optimize are the supply
temperature setpoint Tsp

AHU, the minimum ventilation setpoint
�f vent, economizer threshold temperature Tecon, and the activations
�aUV and �aaux;j for disinfection devices. Note that all of these vari-
ables are parameters of the controller model from Section 2.3.
For simplicity, we assume that the operational variables are all
held constant over the simulation interval (e.g., each day) so as
to keep the optimization space reasonably small. Various exten-
sions are possible that would adjust these variables more fre-
quently (e.g., every hour), but care would be needed to account
for the transient dynamics of the control layer after setpoint
changes, as these effects are not included in the current models.

The primary design variables to optimize are the in-duct filter
type, which implicitly adjusts gfilter and the fan-power coefficients
ci, and the presence of in-zone disinfection devices, which would
add elements j included in the clean-air delivery and disinfection
energy calculations of Eqs. (1) and (2). Of course, which values
are included in the optimization space will need to account for
the physical constraints of the HVAC system (e.g., certain filter
types may not be compatible with the filter rack present in the
duct).

3.2.2. Objective function and constraints
Once the set of decision variables has been chosen, the next step

is to choose the objective functions and constraints to include in
the optimization problem. For our purposes, we are interested in
multiobjective optimization to evaluate the tradeoff between
energy consumption and infection risk in the space. The corre-
sponding performance metrics are the expected number of trans-
missions NT (from Eq. (2)) and the total energy consumption
E ¼ EHVAC þ Eaux (from Eqs. (2) and (6)). The goal of the optimization
is not only to minimize these metrics separately, but also to iden-
tify the Pareto set in the two-dimensional objective space to iden-
tify the efficient set of decision variables.

Although the decision space is already bounded based on the
chosen optimization ranges for the optimization variables, it is also
important to ensure that selected values do not have unintended
consequences for the space. For example, although a given AHU
may physically be able to supply air at a temperature
Tsp
AHU ¼ 65 �C, this value may not provide adequate dehumidifica-

tion of the supply air, which could thus lead to unacceptably high
humidity within the zone. To remove such variables from the deci-
sion space, we thus include the thermal and moisture comfort met-
rics �T and �x from Eq. (6) as explicit constraints in the
optimization problem. Specifically, thresholds are set on both met-
9

rics, and if a particular set of variables leads to either threshold
being violated, then that set of variables is deemed infeasible and
not part of the Pareto set. Note that in extreme circumstances

(e.g., if the comfort bounds Tmin
z ; Tmax

z ;xmin
z , andxmax

z have been cho-
sen too tightly), then there may not be any feasible points left in
the optimization space. Thus, to obtain a solution in such cases,
it may be necessary to iteratively relax the constraint-violation
thresholds until at least one feasible point is identified. However,
for well-designed systems, such infeasibility is not expected to
be an issue.

Both objective functions and constraints are calculated from the
outputs of the simulation models as illustrated in Fig. 1. Each of
these metrics aggregates over the simulation interval to produce
a single scalar value from the time-varying model outputs. These
values are then processed via the Pareto optimization algorithm
as described next.

3.2.3. Pareto optimization algorithm
Although there is a wealth of literature on multiobjective opti-

mization (and optimization in general), we propose in the interest
of usability a fairly simple-minded optimization algorithm for our

problem. Specifically, we choose a finite set of points H
	

 H that

approximates the full space and then identify the Pareto set H
	

�

from just that finite set by simulating the performance metrics
for each point within that set. This choice is appropriate for the fol-
lowing reasons:

� The number of independent decision variables is generally
between 3 and 5, which means a simple grid over the continu-
ous variables will not give a prohibitive number of points.

� Some decision variables (e.g., filter type or on/off choice for
equipment) are implicitly discrete, and thus continuous opti-
mization methods cannot be applied in a straightforward
manner.

� Enumerating the full set of points avoids the need to calculate
gradient information, as optimization can be performed simply
by looking at the simulated metrics for each of the finite set of
points.

For other problems where these properties do not hold, it may
be necessary to use more sophisticated optimization algorithms for
the problem to remain tractable. However, as we will show in the
examples, this strategy is suitable for the current problem.

To build the set ~H, we simply choose a finite set of cases for

each scalar decision variable and take ~H to be their Cartesian prod-
uct. For variables that are discrete, the finite set is already defined,
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while for continuous variables, we choose a minimum and maxi-
mum value along with a handful of values in between. For exam-
ple, suppose our decision variables are the supply temperature
setpoint Tsp

AHU, the minimum ventilation rate �f vent , and whether to
activate UV disinfection �aUV . We would thus define the set

H
	
¼ 13;13:5;14; . . . ;18f g � 0:5;0:6;0:7; . . . ;1:5f g � 0;1f g

i.e., choosing 11 values between 13 �C and 18 �C for Tsp
AHU, 11 values

between 0.5 m3/s and 1.5 m3/s for �f vent , and two values for �aUV cor-
responding to ‘‘on” and ‘‘off” respectively. Thus, to optimize over
this set, we need perform 11� 11� 2 ¼ 242 simulations.

Once the set ~H has been chosen, the overall optimization algo-
rithm is straightforward:

1. Initialize the Pareto-optimal set ~H�, the suboptimal set, ~H�, and
the infeasible set ~H� to the empty set £.

2. For each hi 2 ~H:
2.1 Simulate the model using parameters hi to determine each

zk hið Þ.
2.2 If all bounds zmin

k 6 zk hið Þ 6 zmax
k are satisfied for

k 2 K1 þ 1; . . . ;K2f g, add hi to ~H�. Otherwise, add hi to ~H�.

3. For each hi 2 ~H�:

3.1 For each hi0 2 ~H� n hif g:
3.1.1 If all zk hi0ð Þ 6 zk hið Þ for k 2 1; . . . ;K1f g, remove hi from ~H�

and add to ~H�.
4. Return the Pareto-optimal set ~H�, the suboptimal set ~H�, and

the infeasible set ~H�.

Thus, we require one model simulation for each case in ~H and
K1 comparisons for each pair of cases in ~H. Note that more efficient
algorithms are known [62], but this naive implementation is suffi-
cient for the problem sizes we consider. In terms of Fig. 1, Step 2.1
is the model simulation, Step 2.2 is the feasibility check, and Step
3.1.1 is the feasibility check. The returned sets ~H�; ~H� ~H� (repre-
senting the Pareto-optimal, suboptimal, and infeasible subsets)

are thus disjoint and characterize each case in the original set ~H.
Once the approximate Pareto-optimal set ~H� has been deter-

mined, the only decision left is to choose a specific point to imple-
ment within the system. This selection could be made via
thresholds on the variables, e.g., choosing the solution with the
lowest energy consumption E such that the number of transmis-
sions NT 6 1 if any such points exist, or otherwise choosing the
solution with the lowest NT . The exact selection criteria will
depend on a building manager’s current priorities, but by providing
the full Pareto set, the fundamental tradeoff can be fully evaluated.
Suboptimal and infeasible points can also be explored as desired,
but they generally should not be implemented.

4. Illustrative examples

In this section, we show how the proposed models and opti-
mization framework can be used to generate insights and guide
operational decisions in buildings. We split the examples into
two main categories, the first using data obtained from real build-
ings (during pre-pandemic operation) and the second using data
obtained from building simulations. For both categories, we note
that the associated observations and discussion are intended as
specific for the exact buildings and spaces being illustrated. In par-
ticular, calculated infection rates for a particular example space
should not be interpreted as typical values for all spaces of that
type in other buildings, as specific characteristics can vary signifi-
cantly. Indeed, a key point of the examples is that energy and infec-
10
tion metrics depend on many individual factors, and thus the
quantitative analysis proposed in this paper is necessary to achieve
consistent positive outcomes.

4.1. Real data for a commercial building

To illustrate the potential uses of our proposed modeling and
optimization framework, we start by applying the models to real
building data. For these examples, we will use datasets from two
zones in a real building: (1) an ‘‘Office” zone consisting of 25,000
ft2 of open-plan office floorspace (with some conference rooms
and small offices) served by the same AHU; and (2) a ‘‘Gym” zone
consisting of 5,000 ft2 of floorspace containing a weight room, an
aerobics studio, and locker rooms. Both datasets come from the
same commercial building in the US Midwest, and they cover the
time range from August 2019 through March 2020 (after which
point the building was closed due to the COVID-19 pandemic).
Data was collected at a 1-min frequency and then re-sampled to
15-min intervals for our purposes. The Office zone is nominally
occupied from 6am to 7 pm on weekdays and closed on weekends,
while the Gym zone is occupied from 5 am to 9 pm on weekdays,
7am to 8 pm on Saturdays, and 7 am to 2 pm on Sundays.

As discussed in Section 2.1, calculation of infection risk requires
values of key parameters relating to occupant activity. For the
Office zone, we assume a breathing rate of 0.7 m3/h, while in the
Gym zone, we use a higher breathing rate of 1.6 m3/h. These values
correspond to ‘‘low” and ‘‘moderate” activity respectively for a typ-
ical adult occupant [63]. We note that there is likely to be high
variance in the breathing rate for Gym due to the different activi-
ties (aerobic exercise, weightlifting, calisthenics, resting, etc.), so
our chosen value is best interpreted as a time-averaged mean.
For the exhaled quanta concentrations in the zones, it reasonable
to suspect that Gym occupants have a higher overall exhaled par-
ticle concentration, as they are more likely to be breathing deeply
and through their mouth compared to Office occupants. However,
it is also plausible that actively infectious individuals would be less
likely to exercise if they are feeling symptomatic, and thus we
would expect Gym infectors to have below-average viral load
(and also exhaled quanta concentration). Given this uncertainty
and the absence of definitive data, we use the same mean exhaled
quanta concentration of 20 q/m3 in both spaces, corresponding to
light vocalization [4].

Finally, the models require a time-varying occupancy profile,
which is unfortunately not provided by the dataset. Thus, for both
zones, we use a surrogate profile obtained by rescaling default
schedules from ASHRAE [55] using design occupancy, which is
taken as 5 and 10 occupants per 1000 ft2 respectively [54]. Zone
areas and volumes are taken from floorplan diagrams, and we
assume MERV8 filters with no occupants wearing masks, as is con-
sistent with pre-pandemic operation.

4.1.1. Data trends and metrics
To begin analysis, we start by examining the daily trends inher-

ent in the datasets. The key BMS measurements used in the
infection-risk model are the outdoor air ventilation (which con-
tributes directly to clean-air delivery) and the total supply air flow
(which provides clean-air via filtration). To illustrate daily and
weekly trends, Fig. 2 shows values of these variables along with
the assumed time-varying occupancy profiles. For the Office zone,
we see that total supply air flow is reasonably constant throughout
the occupied period on a given day, but that the amount of flow
provided does change from week to week, likely corresponding
to seasonal changes. The provided ventilation varies much more
significantly, perhaps due to the action of the economizer, but it
still covers a fairly narrow range. By contrast, we see that there
is much greater variation in the Gym zone, both within a given



Fig. 2. Weekly flow data and occupancy profiles for the real building zones. Plots show 26 overlaid weekly profiles (with time zero corresponding to midnight on Monday).
Shaded regions correspond to unoccupied hours when the HVAC system is deactivated.
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day and from week to week. We almost always see a large spike in
airflow at the beginning of the occupied period, which indicates
that the zone heats up overnight and thus the temperature con-
trollers take aggressive action as soon as they are activated in
the morning. There are also some other flow spikes likely associ-
ated with extra occupancy around lunchtime and at the end of
the workday (but unfortunately the occupancy profile does not
reflect those features). We do see that the ventilation varies much
more significantly, which indicates the presence of measurement
noise in the sensor but could also be caused by operation of the
economizer. Consistent with ASHRAE standards, we see higher
(normalized) airflows in the Gym zone compared to Office. We
note also that in accordance with the operation of the building,
there is zero occupancy in the Office zone on the weekends, but
the Gym zone remains open. Thus, the HVAC system is inactive
in the Office zone but active in the Gym zone during these days.

To assess the infection risk present in these zones, we take the
data from the previous plot and simulate the dynamic infectious-
particle models from Section 2.1 to calculate average clean-air
delivery rate and expected transmissions for each day of operation.
Given the uncertainty in the exhaled quanta concentration, we also
show a shaded confidence interval corresponding to exhaled
quanta concentrations between 5 q/m3 and 80 q/m3 (with the
points assuming the mean value of 20 q/m3). These values are plot-
ted in Fig. 3. From these results, we can make three key observa-
tions. First, we note that infection risk in both zones is lower on
weekends than on weekdays despite similar or significantly lower
clean-air delivery rates. This behavior simply mirrors the occu-
pancy cycles of the respective spaces, with lower weekend occu-
pancy for the Gym and zero weekend occupancy for the Office.
Second, we note that although the clean-air delivery to the Gym
zone is almost always higher than that of the Office zone, the aver-
age infection risk for the zone is nearly 10 times higher than that of
the Office zone. This discrepancy is explained by the occupancy dif-
ferences in the two spaces: in the Gym, there is a higher density of
people who are all breathing at elevated rates. (Indeed, the Gym
has a 2.3 times higher breathing rate and roughly a 1.5 times
11
higher occupant density, which suggests a 2:32 � 1:5 � 7:9 times
higher infection rate, all other effects equal.) Thus, although the
HVAC system removes more of the particles, there is an inherent
higher infection risk compared to the Office zone where occupants
are quietly seated at their desks. Third, we note that clean-air
delivery rate is generally higher in warmer months and lower in
colder months. This behavior is consistent with the fact that supply
air flows are elevated in the cooling season to mitigate additional
heat loads, whereas in the heating season, flows are lower and
may sit at their configured minimum bounds. Under steady-state
conditions, transmission rate is inversely proportional to clean-
air delivery rate, and thus the observed 40% decrease in clean-air
delivery for the Gym zone roughly corresponds to the observed
65% increase in transmissions when comparing the winter months
to the summer months.

Before moving on, we briefly discuss the uncertainty associated
with the two variables. For the clean-air delivery rate, the only
uncertain terms are the passive decay rate for the infectious parti-
cles (due to both deactivation and deposition) and the filtration
efficiency for the in-duct filter. Because both effects exhibit
particle-size dependence, their actual effect will depend slightly
on the specific particle distribution produced by the infector. How-
ever, these values are reasonably well characterized, and their
range of variation is generally small. The remaining terms in the
clean-air calculation are flow measurements taken directly from
the BMS. Although flow sensors can be very noisy, we expect only
minuscule error when averaged over the course of a full operating
day. Thus, we plot the clean-air delivery without an uncertainty
region. By contrast, the infection rate depends linearly on the
exhaled quanta concentration, which is known to vary by up to
three orders of magnitude depending on vocalization level and
mode of respiration, from nasal breathing to speaking and singing
[4]. Accordingly, we have shown an uncertainty range correspond-
ing to a factor of 4 above or below the chosen mean value. A key
takeaway is that, although the baseline infection risk in the Gym
is inherently higher than in the Office, this analysis does not sug-
gest that Gym zones are always highly dangerous or that Office



Fig. 3. Daily average clean-air delivery and expected transmissions for the real building zones. Each point reflects the average value of the metric over a 24-h simulation. For
transmissions, points are calculated assuming a mean exhaled quanta concentration of 20 q/m3, while the shaded region shows the resulting range for exhaled quanta
concentrations between 5 q/m3 and 80 q/m3.
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zones are always a safe haven. Instead, it is necessary to examine
both types of spaces on a case-by-case basis to determine the cor-
rect course of action.

4.1.2. Prediction and optimization
We turn now to showing how these models can be used for the

purposes of prediction and optimization. In this use case, we wish
to predict the operation of the HVAC system one day in advance,
which means we do not have access to flow measurements from
the BMS and must predict them using the controller and zone-
temperature models. Thus, we start by showing example day-
ahead predictions of clean-air delivery using the models from
Section 2.

Important inputs to the thermal models include the internal
heat and moisture disturbances. To predict these values in
advance, we use the following procedure: back-calculate distur-
bances on the prior 7 days of data as discussed in Section 3.1.2, fil-
ter that trajectory by retaining only the most dominant Fourier
modes in the frequency domain, use the first day of that trajectory
as the disturbance for the simulation. This procedure implicitly
assumes that successive weeks follow approximately the same dis-
turbance trajectories. Certainly more sophisticated disturbance-
prediction algorithms are possible, but even this extremely simple
strategy produces adequate results on the test data. In Fig. 4 we
show day-ahead clean-air delivery predictions for each zone under
summer and winter conditions. Even though these predictions are
far from perfect, they nevertheless capture the general daily trends
in airflow and thus produce sufficiently accurate infection-risk pre-
dictions. As a result, the models are suitable for use in
optimization.

To close this example, we present some sample optimization
results using the data just presented. In each of the four cases,
the optimization period covers 24 h of operation (corresponding
to the first day from each case in Fig. 4). The decision variables
are the supply temperature setpoint (sampled at 25 points
between the bounds of 55 �F and 65 �F) and whether or not to acti-
vate 2 ACH of supplemental in-zone filtration (provided by stan-
12
dalone filtration devices) during occupied hours. The two
primary objective functions are energy cost and expected trans-
missions, and the constraints are maintenance of zone temperature
and humidity within comfortable ranges during occupied hours.
Following the optimization strategy presented in Section 3.2, each
case thus runs 50 simulations (corresponding to the different val-
ues of the decision variables) of the dynamicmodels from Section 2,
and then the Pareto search described in Section 3.2.3 is applied to
categorize each solution. These results are shown in Fig. 5. Note
that in both cases, the number of transmissions is determined
using the mean exhaled quanta concentration of 20 q/m3. The
effect of uncertainty in this parameter would be to uniformly scale
the calculated value up or down, which does not affect the opti-
mality characterization of the points.

From the sample optimization results, we see that both decision
variables decrease the airborne transmission rate and generally
increase energy consumption as their values are increased. For
supply temperature setpoint, there are some regions where energy
cost is reduced with increasing supply temperature (which corre-
sponds to conditions where the reduced latent load is larger than
the increased fan power), but they usually cannot be exploited. A
key observation is that in the summer conditions, it is not possible
to increase the supply temperature setpoint all the way to the
established upper bound, as the reduction in de-humidification
at the AHU cooling coil eventually leads to violation of the humid-
ity comfort constraint. By contrast, during winter, the full range of
supply temperature setpoints is available, as the outdoor air does
not need to be de-humidified. In all cases, when choosing a course
of action, only Pareto optimal solutions should be considered, since
feasible but suboptimal solutions consume unnecessary energy to
achieve a given infection rate (or vice versa). Thus, as priority shifts
from energy to infection risk, the general strategy is to increase
supply temperature up to a certain point (which depends on
weather conditions) and then activate the supplemental in-zone
filtration units (while dropping the supply temperature back to
its minimum value) before increasing the supply temperature set-
point once again to achieve maximum clean-air delivery. Overall,



Fig. 4. Day-ahead clean-air delivery predictions using the full dynamic models. Points show values computed from the actual BMS data, while lines show values predicted by
the model. Data for Summer are taken from August 2019, while data for Winter are taken from February 2020.

Fig. 5. Optimization results for the real building zones under two different weather conditions. Disturbance and weather data for each case are taken from the first day of the
corresponding case in Fig. 4.
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we see that even with just these two decision variables being con-
sidered, the range of achievable infection rates (and the most
energy-efficient strategy to achieve them) depends on both space
characteristics and outdoor conditions. Therefore, it is important
to update operational decisions regularly to account for changes
to these variables.

4.2. EnergyPlus simulations

In our second set of examples, we use simulated building data
produced from EnergyPlus [49] using typical meteorological year
(TMY) weather data. Although the EnergyPlus simulated data is
not as realistic as the real data in the previous section (in particular
it is much less noisy and is subject to much more regular distur-
bance profiles), the key benefit is that we can directly compare
the effects of different control actions. Specifically, for a given day’s
weather, we can simulate all candidate sets operational variables
rather than just the default operating policy. We will use this fea-
ture to more thoroughly assess the available control space and the
accuracy of our models.

For this purpose, we consider the first floor of the ‘‘Large Office”
reference building provided by EnergyPlus, which consists of
38,000 ft2 of floorspace served by the same AHU with a design
occupancy of 192 occupants. HVAC equipment in the building is
auto-sized by EnergyPlus using the chosen TMY weather data.
We assume the same occupant breathing rate of 0.7 m3/h and
exhaled quanta concentration of 20 q/m3 as in the previous exam-
ple. Similarly, we assume MERV8 in-duct filters and that occupants
are not wearing masks. For optimization variables, we allow the
minimum ventilation rate to be varied from its default level (cho-
sen by EnergyPlus in accordance with ASHRAE standards) to dou-
ble that value, while we allow the supply temperature setpoint
to be adjusted from its default of 55 �F up to 65 �F.

4.2.1. Metric trends
To begin the simulation analysis, we examine the values of our

two main objective functions and how they vary as the operational
variables are changed. For each of the four extreme points in the
optimization space, we simulate a full year of the building operat-
ing with those variables using EnergyPlus to obtain the required
BMS data. We then use that BMS data with the proposed models
to calculate daily values for energy cost and infection rate. We per-
form this process for both a cold climate (TMY data from Chicago,
IL) and a hot climate (TMY data from Houston, TX). The results of
these simulations are shown in Fig. 6. For the purposes of energy
accounting, we assume cooling is provided via electricity at a
COP of 3, while heating is provided by gas at 90% efficiency. We
use an electricity price of 0.12 $/kW.h and a gas price of 0.80 $/
therm. For brevity, we do not show thermal discomfort, although
all temperature comfort violations are below 4 �F� h/day, and
humidity comfort violations are generally confined to the winter
with indoor conditions being too dry. To illustrate the relative effi-
ciency of the two operational variables for reducing infection risk,
we also plot the cost of extra clean air. This value is calculated as

Extra Clean Air Cost ¼ Energy Cost� Baseline Energy Cost
Clean Air Delivery� Baseline Clean Air Delivery

which gives the per-unit cost of the extra clean air provided relative
to baseline operation. Lower values of this metric indicate a more
efficient source of clean air.

From these results, we see similar behavior as in the previous
real-data examples, but with new trends emerging from the new
optimization variable. First, we note once again that infection rate
is generally higher in the winter months and lower in the summer
months, simply due to variation in the average airflow provided by
the HVAC system. We note that this effect is much more pro-
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nounced in the Cold climate compared to Hot due to the
weather-dependent cooling loads (and resulting airflow differ-
ences). Second, we see that increased ventilation almost always
requires additional energy consumption, and the magnitude is
much higher in particularly hot or cold weather. The explanation
for this effect is that because the building is equipped with an
economizer using an aggressive suitability threshold, the system
will automatically increase ventilation above its minimum value
when energetically favorable. Thus, any additional ventilation that
results from increasing the minimum ventilation setpoint neces-
sarily requires an energy penalty. By contrast, increasing the sup-
ply temperature setpoint can potentially reduce energy
consumption, and so it tends to be much less costly. Finally, we
note that the HVAC system by itself has a somewhat narrow range
to reduce the infection rate. Comparing the maximum and mini-
mum infection rates on each day, we see less than a factor of
two reduction. Thus for spaces with unacceptably high infection
rate, it may be necessary to install standalone-filtration or other
disinfection devices to achieve infection-risk goals.

For the purpose of decreasing infection risk, we see that increas-
ing the supply temperature setpoint is less effective than increas-
ing the ventilation rate in the heating season but more effective
in other seasons. When choosing between the two, we generally
prefer the variable with the lower cost of extra clean air. The bot-
tom plot in Fig. 6 shows that the extra clean air provided by
increasing the supply temperature setpoint costs next to nothing
throughout much of the year, but during the heating season, its
cost can jump to more than $200/ACH. This observation is consis-
tent with the fact that the HVAC systems often operate near
minimum-flow constraints during the heating season due to the
small cooling load, and thus adjusting the supply temperature set-
point has little to no effect on clean-air delivery but a large effect
on energy cost (since extra heating is required to meet the higher
supply temperature). However, adjusting the supply temperature
setpoint in the cooling season can have a significant impact on
clean-air delivery, with only a minor change to energy consump-
tion. By contrast, Fig. 6 shows that doubling the ventilaion rate
yields a more consistent cost between $50/ACH and $100/ACH
for extra clean air throughout the year, which tracks with the
changing weather conditions throughout the year. Overall, this
analysis illustrates that the two operational variables can have
very different effects on energy cost and infection risk throughout
the year, which motivates the proposed optimization approach to
ensure that the most efficient operational variables are selected
based on current weather conditions.

4.2.2. Tradeoff curves
Given the trends observed in the previous section, we now look

at the optimization tradeoffs in more detail. For each of the simu-
lation cases, we choose a representative day for each season and
simulate our dynamic models using the appropriate parameters
and weather data. Specifically, we grid over the optimization space
(supply temperature between 55 �F and 65 �F; minimum ventila-
tion rate between 1 and 2 times the default value), simulate one
day of HVAC operation (using the proposed models from Section 2)
for each grid point, and plot the resulting energy consumptions
and infection rates. These results are shown in Figs. 7,. A key obser-
vation is that the shapes of the mapped optimization sets (and thus
the Pareto-optimal points within those sets) vary significantly
based on the weather, and thus optimal operation changes as well.

Before moving on, we highlight some of the key features of
these mappings. First, for the cases that come to a sharp point in
the upper left corner, it is evident that the value of the minimum
ventilation rate becomes nearly degenerate at high values of the
supply temperature setpoint. The explanation for this behavior is
that the higher supply temperatures result in increased total sup-



Fig. 6. Daily metrics calculated from EnergyPlus simulation data. Lines show ten-day rolling averages for non-holiday weekdays. Values of operational variables are the four
extreme points in the optimization set. Extra clean air cost is calculated relative to the baseline operation with both operational variables at their minimum value.

Fig. 7. Example optimization tradeoffs for different seasons and cities. Plots show how the two-dimension optimization range gets mapped onto the to primary objective
functions. Red lines hold ventilation rate constant and vary supply temperature setpoint, while blue lines hold supply temperature constant and vary ventilation rate.
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ply airflow, and so the economizer will naturally increase outdoor-
air flow (to maintain roughly a constant outdoor-air fraction).
Thus, increasing the minimum ventilation rate essentially has no
effect because the economizer is already providing more than that
amount of ventilation. Second, we note that increasing the ventila-
tion rate uniformly leads to an increase in energy use. As observed
in the previous examples, this behavior is due to the aggressive
15
economizer on this building: any time extra ventilation is energet-
ically favorable, it will be supplied automatically by the econo-
mizer; thus, any increased ventilation that results from changing
the minimum setpoint is necessarily at an energy penalty. We note
that the use of energy-recovery ventilation systems could signifi-
cantly reduce this cost [45], but installation of such devices would
be costly and perhaps not worthwhile solely for reducing infection
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risk. Third, we see that increasing the supply temperature setpoint
can decrease energy cost at first but then eventually begins to
increase it. This is generally due to the tradeoff between latent
cooling load (which decreases at higher supply temperatures)
and fan power (which increases at higher flows caused by higher
supply temperatures). Because both of these effects are nonlinear,
their resulting sum can take on the wide variety of shapes observed
in the figure depending on ambient and internal conditions.
Finally, we note that the unique behavior observed in the Cold Cli-
mate Winter case is due to the fact that the system is operating at
minimum-flow conditions. Thus, increasing the supply tempera-
ture setpoint above its minimum bound initially does not change
the flow rate (since it is still at minimum) but requires additional
energy consumption to heat the air to that temperature. Only after
a sufficiently high supply setpoint does airflow rise above its min-
imum bound and we see more typical behavior.

Overall, we see in these example cases that the Pareto-optimal
set generally but not always contains points with the lowest ven-
tilation rate and sometimes points with the highest supply tem-
perature setpoint. Thus, as priorities shift from energy
minimization (e.g., during non-pandemic periods) to infection
reduction (e.g., during a pandemic), the optimal policy is to first
increase supply temperature setpoint and maybe increase the
minimum ventilation rate after that. We note from the relative
flatness of the sets in Fig. 8, that many ambient conditions make
it possible to achieve significant reduction in expected transmis-
sions with only minor increase in energy cost, and thus for a
properly optimized system, energy consumption can remain
nearly constant across pandemic and non-pandemic conditions.
However, for systems with different HVAC configurations, differ-
ent behavior might be optimal, and so it is important to consider
the specifics of each application.
4.2.3. Optimization accuracy
To close the examples, we briefly discuss the accuracy of the

proposed framework with respect to whether the optimized
actions deliver the benefits predicted by the models. For this pur-
pose, we choose representative weeks for each climate and season
(corresponding to the eight cases in Fig. 7) and solve the Pareto
optimization for each weekday. Note that this Pareto search
accounts for thermal comfort constraints, and so on some days,
there may be very few feasible points. From the set of Pareto-
optimal solutions, we choose three representative points: the point
Fig. 8. Example optimization tradeoffs for different seasons and cities. Plots show th
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that minimizes energy cost, the point that minimizes infection
rate, and a point midway between them. For each of those points,
we then run a new EnergyPlus simulation using the corresponding
setpoints to see what the BMS data would be for those setpoints.
We then calculate metrics from that data and compare to the met-
rics predicted by the models in the optimization problem. We also
include values for the default operation of the building with both
decision variables at their lower bounds.

A key challenge with this approach is that due to the simplistic
disturbance forecast used (which essentially just reuses the distur-
bances from one week ago), it is likely that the model predictions
may be systematically off due to week-to-week changes in distur-
bances (primarily due to solar radiation and heat exchange with
the ambient). However, because the model predictions are being
used for optimization, any linear re-scaling does not affect the
location of the optimal solutions. Thus, to avoid the poor distur-
bance forecast influencing accuracy metrics, we re-scale the mod-
el’s predictions to match the actual data using one single scale
factor for the entire week. This procedure will correct for the effect
of the disturbance schedule, but any other model deficiencies will
still appear in the plots. These results are shown in Figs. 9 and 10,
for the Cold and Hot climates respectively.

From these results, we see that after correcting for the poor dis-
turbance forecast, the models accurately predict the resulting met-
rics for each representative solution. Although there are some
cases where accuracy is not satisfactory (in particular, the winter
energy cost in Fig. 9 and the spring clean-air delivery in Fig. 10),
the dynamic models do capture the available operating space for
the chosen representative solutions. We note in particular that
the Balanced solution often achieves noticeable reduction in infec-
tion rate with minimal (if any) impact on energy consumption.
Furthermore, because the scale correction does not affect which
solutions are Pareto-optimal, even the low-quality disturbance
forecast used in this example would be suitable for online opti-
mization. Thus, we see that despite the relative simplicity of the
proposed models, they can nevertheless capture the key behavior
of real buildings and ultimately lead to actionable insights for
building operators.
5. Conclusions and future directions

In this paper, we have presented a modeling and multiobjective
optimization framework to assess the tradeoff between airborne
e same values as in Fig. 7 but with all seasons plotted together for each climate.



Fig. 9. Predicted and actual optimization metrics for the Cold climate. Colors correspond to different representative points on the Pareto surface. Actual values are taken from
EnergyPlus simulations using the optimized decision variables, while predicted values are metrics predicted by the dynamic models (and scaled by the indicated scale
factors).

Fig. 10. Predicted and actual optimization metrics for the Hot climate. Plots are as in Fig. 9.

M.J. Risbeck, M.Z. Bazant, Z. Jiang et al. Energy & Buildings 253 (2021) 111497
disease transmission risk and energy consumption associated with
the operation of building HVAC systems. Using a physics-based
dynamic model for the hypothetical concentration of airborne
infectious particles that would be produced by an infector in the
space, the risk of airborne transmission can be estimated via the
expected exposure of susceptible occupants to those particles. By
accounting for filtration, ventilation, and other infectious-particle
removal sources, this model can be used with real building data
and space parameters to assess the infection risk in buildings as
operated. Furthermore, by coupling to additional models for space
temperature and humidity as well as the action of the HVAC regu-
latory control system, it is possible to predict the airflow that will
be delivered to the space, from which infection risk and energy
consumption can be estimated. This overall model can then be
17
embedded within a model-based optimization routine to deter-
mine Pareto-optimal values for operational setpoints and design
variables. These optimization results thus provide quantitative
guidance to building managers who can then make decisions con-
sistent with their current health and sustainability goals.

To illustrate the insights provided by the proposed framework,
we have shown a series of examples that apply the proposed
methodology to real and simulated building data. Using BMS mea-
surements from a real office space and gym, we show how clean-
air delivery and infection rates can be estimated for each space.
We then show that the proposed models can predict the future
behavior of the HVAC system with sufficient accuracy to be used
for optimization purposes. Finally, we have shown computed Par-
eto sets for the supply temperature setpoint and activation of sup-
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plemental in-zone filtration devices, illustrating that both variables
can reduce infection risk but unfortunately require additional
energy consumption. Using EnergyPlus simulations, we have
shown how infection risk and energy consumption vary through-
out the year for a typical office building for different values of
the supply temperature setpoint and minimum ventilation rate.
We have then presented example Pareto tradeoff curves showing
that increasing the supply temperature setpoint is often the most
energy-efficient way to reduce infection risk, but also that the
associated energy penalties vary significantly with weather condi-
tions. We have closed by validating the proposed models’ predic-
tions for both baseline and optimized operating setpoints.
Together, these examples illustrate that although the proposed
models are relatively simple, they nevertheless capture the key
building trends and can thus be a valuable source of insight for
building operators.

In the future, we hope to extend the proposed framework to
incorporate new indoor-air quality data sources (e.g., CO2 and PM
sensors) to generalize optimization goals. For example, the excess
CO2 concentration from occupants’ respiration can be correlated
with airborne disease transmission risk [38,42,64] and thus pro-
vides a rich additional datastream to calibrate the model and
improve the optimization accuracy. Even when airborne disease
transmission is no longer a major concern, the average CO2 concen-
tration could be optimized instead, with the primary tradeoff being
between the increased energy consumption associated with venti-
lation and the wellness benefits to occupants associated with bet-
ter indoor-air quality [45]. In this context, new design and
operational variables could be introduced (e.g., whether to install
energy-recovery ventilation and whether to activate it on a certain
day) and optimized to account for specific space and climate char-
acteristics. Such functionality would help support a paradigm shift
to combat indoor respiratory infection and improve occupant well-
ness in the aftermath of the COVID-19 pandemic [5]. Overall, we
hope that model-based optimization will increasingly be used as
a tool to guide design and operation of building HVAC systems to
improve health and sustainability.
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Appendix A. Infection model discussion

A.1. Clean-air delivery calculation

To model the time variation in infection quanta concentrations,
we note that infectious particles are released into the air by the
infectious individual and then removed by a variety of mecha-
nisms. To standardize modeling of these effects, we define the con-
cept of ‘‘clean-air delivery” to the space as follows: for a piece of
equipment or physical process j that deactivates or captures infec-
tious particles at a total rate rj (measured in units of q/s) from an
air stream with concentration C (measured in units of q/m3), the
corresponding clean-air delivery rate is defined as
18
f clean;j ¼
rj
C

which thus has units m3/s corresponding to a hypothetical volumet-
ric flow (and can be converted to air-change rates by dividing by the
space volume). We use this definition because for most disinfection
processes, rj is directly proportional to C, and thus f clean;j can be
expressed as a simple fraction of airflow through the device. In
addition, this formulation provides a common basis for comparison
of different disinfection devices: multiple devices providing the
same clean-air delivery rate thus become fungible from an
infection-risk perspective and can be assessed in terms of energy
consumption or other considerations to choose the best among
them.

One complication of this clean-air framework is that for devices
and processes that operate at the particulate level (i.e., deposition
and filtration), the removal rate rj depends on the size distribution
of the particles containing the infectious material [4]. When the
inlet size distribution is known, accounting for size-dependent
effects is straightforward for a single device. However, because
their action leads to changes in the airborne size distribution, it
is not longer possible to fully and exactly describe the clean-air
characteristics of a device without knowing (and accounting for
the inherent recirculation effects on) the size distribution of air-
borne particles. In the interest of simplicity, we assume a constant
steady-state particle size distribution (using the size bins defined
by ASHRAE standards) and calculate removal rates accordingly.
From previous studies for influenza, Azimi and Stephens [37] states
that 20% of viral material is found within E1 particles (diameters
0.3 to 1 l m), 29% within E2 particles (diameters between 1 and
3 l m), and the remaining 51% within E3 particles (diameters
between 3 and 10 lm). Assuming these values hold for the patho-
gens of interest, an effective clean air delivery rate can be calcu-
lated via a weighted average of the removal rates for a
representative particle diameter within each size bin. However,
see discussion in Section A.5 for how this effect could be modeled
more accurately without significant changes to the existing
framework.

Aside from size-dependent effects, the calculation of the clean-
air delivery rate for most processes and devices is straightforward.
For example, airborne particles naturally deposit on the ground at
a given velocity mdeposition due to gravity. Thus, in a room with vol-
ume V and height h, the removal rate of such particles by deposi-
tion is given by

rdeposition ¼ 1
h
mdepositionVC

Similarly, due to natural decay of the viruses (assumed to occur
with a first-order rate constant kdecay), the removal rate due to nat-
ural decay is thus given by

rdecay ¼ kdecayVC

In practice, this decay rate may vary with temperature and
humidity within the space [4], but for simplicity here we assume
it is truly constant. As modeled above, we combine these two
effects as ‘‘natural” disinfection sources in Eq. (1) with

f clean;natural ¼ knaturalV ; knatural ¼ kdecay þ
1
h
mdeposition

Note that they scale with the total volume of the space and
occur independently of any HVAC operational decisions.

For standalone filtration devices, the clean-air calculation is also
straightforward: assuming a total volumetric flow f filter through the
filter, which captures a fraction gfilter of the particles the total
removal rate is given by

rfilter ¼ gfilterf filterC
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and so the clean-air delivery is simply

f clean;filter ¼ gfilterf filter

Effective filtration efficiencies for various filter grades are
known [44], modulo uncertainty in size dependence. Similarly,
for UV devices that kill a given fraction gUV of the microbes passing
through them, the clean air production is

f clean;UV ¼ gUVf filter

If properly designed, UV disinfection tunnels can achieve very
high disinfection rates guv � 1 [28], but the performance of smaller
standalone devices may vary.

For devices operating in parallel, their total clean-air delivery is
a simple sum of their individual values. Since all auxiliary in-zone
devices are effectively in parallel, we thus include the summation
term in Eq. (1), noting that the maximum clean-air capacity fmax

aux;j of
a given auxiliary device needs to be scaled by the extent aaux;j to
which it is currently active. Note that for some devices aaux;j may
vary continuously, while for others, it may take only a binary value
indicating whether the device is on or off.

For devices operating directly in series, however, the total
clean-air delivery must account for the fact that the clean-air deliv-
ery for each device must be calculated in terms of the original inlet
concentration rather than that device’s particular inlet concentra-
tion. The canonical example of this configuration is in the AHU:
when air is returned to the AHU, a given fraction xa is vented to
the ambient (and replaced with a corresponding volume of outdoor
air), after which it passes through a filter with disinfection effi-
ciency gfilter and possibly also through a UV kill tunnel that kills a
fraction auvgUV of microbes in the airstream. Taken individually,
the clean-air rates of each device would be given as

f clean;vent ¼ xaf AHU
f clean;filter ¼ gfilterf AHU
f clean;UV ¼ auvgUVf AHU

However, because these devices operate in series, we must
account for the fact that each device processes the outlet of the
previous device. Thus, the inlet concentration to the filter is only
1� xa times its initial value, and thus the filter provides only
1� xað Þgfilter fractional disinfection. The overall clean-air delivery
for the AHU is thus given by

f clean;AHU ¼ gAHUf AHU; gAHU ¼ 1� 1� xað Þ 1� gfilterð Þ 1� auvgUVð Þ

consistent with the definition in Eq. (1). We can see immediately
from the functional form that f clean;AHU 6 f AHU which makes intuitive
sense: the AHU cannot clean more air than passes through it.

A.2. Infection probability and received dose

To estimate the risk of infection in a zone, we calculate a hypo-
thetical number of transmissions during the course of the evalua-
tion time period (commonly on a daily basis) as given by Eq. (2).
Desired limits can be placed on this value to guide operational
and HVAC decisions. The key question then becomes how the
time-varying trajectory of C resulting from the hypothetical infec-
tors leads to infection risk for susceptible occupants in the space.

In the ideal case, infection risk would be calculated on an indi-
vidual basis and then aggregated across the building to determine
overall infection risk. Using the dynamic model Eq. (1) for the air-
borne infectious quanta concentration C in each zone, we can thus
estimate an individual’s received dose throughout the day and ulti-
mately compute that individual’s infection probability assuming a
constant hazard rate (expressed in units of q�1) for new infection.
For a susceptible individual s, we have
19
Ps ¼ 1� exp �
Z s

0
bqqs tð Þ dt

� �
with Ps giving that individual’s infection probability in terms of the
individual’s infectious dose rate qs, which is itself given by

qs ¼ 1� lS

� �
f breathe;SC

We note that at steady-state conditions (i.e., dC=dt ¼ 0), the
model in Eq. (1) gives C ¼ qI=f clean. Substituting these values (and
converting the time-varying integral to a simplemultiplication) gives

Ps ¼ 1� exp �
bq 1� lS

� �
qIsf breathe;S

f clean

� �
which is equivalent to the common steady-state presentation of the
Wells-Riley equation [4,37,40]. However, in variable-volume HVAC
systems, the steady-state assumption is rarely satisfied, as the reg-
ulatory control layer constantly adjusts supply airflow f AHU to main-
tain temperature within the space in response to variation in
weather and occupancy. Thus, the resulting quanta concentration
fluctuates throughout the day and should be modeled as a time-
varying quantity to more accurately represent infection risk.

After each individual’s infection probability has been calculated,
these values can then be aggregated over all building occupants to
find the average number of transmissions given by

NT ¼
X
s

Ps

with distributional information available if needed. This value can
of course be converted to a rate by dividing by the total evaluation
time s. Unfortunately, this person-based approach is not practical
for implementation in real buildings. First, it implicitly requires that
the infection quanta concentration be modeled in every space
within the building, which may not be worthwhile for low-
occupancy or otherwise low-risk zones. Second, even if every space
were modeled, it is generally not possible to track each individual’s
movement throughout the building. Third, since we are interested
in the HVAC operation of the zones, it is more practical to adopt a
zone-based approach in which infection risk is associated with
spaces rather than individuals.

To address these limitations, we take an approach similar to
Bazant and Bush [4] and make a linear approximation as follows:

NT ¼
X
s

1� exp �
R T
0 bqqs tð Þ dt

� �
�
X
s

R T
0 bqqs tð Þ dt

�
R T
0 bq

X
s

qs tð Þ dt

Noting that Eq. (1) has already defined qS ¼
P

sqs tð Þ in the
model, substituting this value gives the equation for NT presented
in Eq. (1). The main benefit of this formulation is that we can now
split the whole-building R on a zone-by-zone basis. Thus, separate
actions can be taken in each zone based on that zone’s contribution
to overall infection risk.

In arriving at this formulation, we have made use of the fact that
1� exp �xð Þ � x for small values of x, which allows us to remove
the nonlinearity and shift the summation inside the integral. We
note also that the linear approximation is conservative, i.e., uni-
formly over-estimating NT , due to concavity of the exponential
function. Assuming that the infection risk is fairly well controlled,
buildings should be operating in the range where this approxima-
tion is highly accurate, at least over the course of one day.
Expressed differently, if we are relying on the nonlinearity of the
infection probability curve as a source of infection risk reduction,
then we have already failed at infection control. Thus, the linear
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approximation is always reasonable when modeling the mitigation
of airborne transmission risk.

A.3. Key parameters

The infection quanta model and infection rate calculation Eqs.
(1) and (2) include a number of key parameters related to infector
and occupant behavior. Specifically, these quantities are the
breathing rates f breathe;I and f breathe;S of infectors and susceptibles,
the mask effectivenesses lI and lS, and finally the infector exhaled
quanta concentration NI . We discuss these parameters in more
detail as follows.

The breathing-rate parameters f breathe are relatively straightfor-
ward to estimate, although their values are somewhat uncertain.
The EPA provides values [63, Table 6-2] for average breathing rates
based on age and activity level. For a 40-year-old individual, these
values range from 0.276 m3/hr for sedentary activity to 2.94 m/hr
for high-intensity activity. For typical office or commercial envi-
ronments, a default value of 0.67 m3/hr is reasonable, but this
value should be adjusted for specific spaces with different activity
levels (e.g., gyms) and possibly also for different age distributions
(e.g., in an elementary school). Note that because we generally
do not know which specific individuals in the space are infectious,
we will almost always assume f breathe;I � f breathe;S. However, the val-
ues can be considered separately in edge cases where distinct sep-
arate values are known.

For the mask effectiveness parameters lI and lS, unfortunately
there is very large uncertainty relating to both mask material and
fit. For example, an N95 mask may have a theoretical filtration effi-
ciency above 99%, but if worn incorrectly (so that a significant
amount of air can escape around the edges of the mask), then its
effective efficiencymaybe significantly lower. Given this variability,
we use a default value of roughly 70% filtration efficiency. As with
the breathing-rate parameters, we generally do not know which
specific individuals are infectious, and so there may not seem to be
clearmotivation tousedifferent values forlI andlS. However,when
aerosols are exhaled by humans, they generally contain a large
amount ofwater thatwill evaporate as the particles come to equilib-
riumwith the humidity in the space. As this evaporation occurs, the
particles shrink in diameter by roughly a factor of 2 at 50% relative
humidity [4]. Thus, we generally expect that lI > lS since the parti-
cles are biggerwhen exhaled through the infector’smask thanwhen
they are inhaled through the susceptibles’ masks. Although this
effect is challenging to quantify, we retain separatelI andlS in case
accurate experimental values are obtained in the future.

Finally, for the infector’s exhaledquanta concentrationCI , wenote
that this value is commonly characterized in conjunction with the
breathing rate f breathe;I as a singleparameterq (denotedqI in our equa-
tions above) giving a quanta generation rate in quanta per time
[37,40]. However, given that COVID-19 is transmitted primarily in
respiratory aerosols, it is suggested by Bazant and Bush [4] that the
valuebedisaggregated as separateCI and f breathe;I aswehavemodeled
it, with CI ranging from 10 q/m3 for quiet breathing, to q/m3 while
speaking, and as high as 1000 q/m3 while singing. This choice of
parameterizationmakes it clear that the dependence of infection risk
(asdeterminedbythe total receivedquantadose) is roughlyquadratic
in the average breathing rate. Of course, the true generation rate of
infectious quanta is complicated by additional factors (e.g., intermit-
tant coughing and variation in viral load due to natural disease pro-
gression), but this parameterization at least captures the
fundamental trends with respect to activity level and vocalization.

A.4. Susceptible and infectious occupants

Two of the most important inputs in Eq. (1) are the numbers of
infectious and susceptible occupants NI and NS. Given that these
20
values cannot be directly measured, we must choose appropriate
values based on typical occupancy profiles and other
considerations.

For the infectors NI , one option is to choose the value based on
the incidence of disease in the general population. Such statistics
are generally available from the CDC and other organizations and
can be multiplied by the design occupancy of a zone. Unfortu-
nately, these values can vary significantly with time and location,
which makes them difficult to incorporate into quantitative analy-
sis. Thus, we instead opt for a conditional approach as follows:
rather than trying to estimate the actual number of infectors NI

in the space, we instead assume that NI ¼ 1 and thus calculate
infection risk conditioned on the fact that one infectious individual
has made it into the space. (Note that to account for the typical
occupancy cycles, we do not assume a constant NI � 1, but rather
set NI ¼ 1 only during occupied hours and leave NI ¼ 0 during
unoccupied hours.) With this assumption, the infection rate NT

from Eq. (2) thus scales linearly in the number of infectors (i.e., 2
infectors in the space will on average cause 2NT infections over
the course of a day, 3 will cause 3NT , etc.). We know from the
mathematics that this approach will overestimate the number of
new infections when the number of infectors is larger (since the
susceptible population is correspondingly reduced), but if the situ-
ation is already that dire, HVAC measures alone will not be suffi-
cient to prevent disease transmission, and the prudent choice is
to simply close the building. The main point is that the NI ¼ 1
assumption decouples our simulations from external conditions
while still providing valuable insight into the inherent risk posed
by each zone. In addition, dividing the number of transmissions
NT by the average number of infectors NI ¼ 1 thus gives an esti-
mate of the reproductive number for the space, i.e., the number of
additional transmissions caused by each infector. To avoid run-
away transmission of disease, buildings should thus be operated
so that R 6 1 (although due to uncertainty in other parameters, a
considerable safety margin is likely warranted).

Finally, for the number of susceptibles NS, the main considera-
tion is to account for possible immunity in some or all building
occupants. The conservative approach is of course to assume no
occupants are immune, and thus NS is simply the time-varying
number of occupants in the space (less the chosen number of infec-
tors NI). Where vaccination rates are known, NS can be further
reduced by the fraction of occupants who are vaccinated, perhaps
attenuating slightly to account for the fact that immunity is not
absolute. For buildings where full time-varying occupancy profiles
are not known, representative profiles are available in ASHRAE
Standard 90.1 [55] that can be scaled by the design occupancy
for each zone. Alternatively, time-varying CO2 measurements can
also be used to estimate occupancy patterns [65–67].
A.5. Size-resolved infection model

As alluded to in Section A.1, the size dependence of many infec-
tious particle removal mechanisms means that the size distribu-
tion of airborne particles will vary over time based on the size-
dependent balance of particle generation (by infectious occupants)
and removal (via clean air delivery). The approach proposed previ-
ously is essentially to assume that the size distribution of infec-
tious particles within the zone is equal to the size distribution as
exhaled by infectious occupants. Unfortunately, this assumption
may not hold if clean-air sources with strongly size-dependent effi-
ciency are used. To more accurately model this effect, the best
modification is to simulate a separate instance of Eq. (1) for a rep-
resentative set of particle diameters. For example, using the
ASHRAE-defined size bins, one would simulate separate models
for CE1; CE2, and CE3 giving the infectious particle concentration
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(still measured in q/m3) only for particles within the E1, E2, and E3
size bins. All model parameters that exhibit size dependence (in-
cluding knatural, f

max
aux;j;gfilter;lI;lS, and CI) can then take on their

appropriate values for particles within that range.
To calculate the expected transmission rate in this size-resolved

model, the only modification is that exposure should now aggre-
gate over the various size bins. Specifically, Eq. (2) should be mod-
ified to calculate

NT ¼
Z s

0
bq

X
e2 E1;E2;E3f g

qe
S tð Þ dt

in which the qe
S tð Þ are the size-resolved exposure rates calculated

from the separate simulations of Eq. (1) for each size bin e. In the
interest of simplicity, we have chosen not to adopt this model for
the results presented in this paper, but its application is relatively
straightforward provided that the number of size bins is kept rea-
sonably small.

Appendix B. Thermal and energy model discussion

B.1. Temperature and humidity models

In addition to the net advective transfer provided by the supply
and return air streams, the temperature model in Eq. (3) considers
conductive heat transfer with the ambient proportional to the tem-
perature difference kaz Ta � Tzð Þ, and all other sources of heat gain
(e.g., plug, lighting, and metabolic loads), are assumed to be
lumped into the Qz input. For simplicity, we do not explicitly
model the temperature dynamics of solid-mass component (as
operating temperatures are relatively constant, and thus
temperature-dependence of this effect can be largely neglected),
and we do not explicitly calculate the effect of solar radiation (as
accurate solar forecasts are often not available). However, these
effects can be added to the model where relevant data is available.
Separate zones within a building are assumed to be physically
thermally isolated, and so no exchange (mass or energy) is mod-
eled. Direct infiltration from the ambient is not considered, while
exfiltration is implicitly included in the return-air stream. For
zones that require heating (e.g., exterior zones in cold climates),
we include the Qh term as a direct addition of heat to remain
agnostic to the heating source. This supplemental heating may be
supplied by reheat coils inside the VAV boxes or by in-zone electric
heaters. In any case, since it operates at the room level, we can
accurately model it as a direct addition of heat.

As with the temperature model, the humidity model in Eq. (3)
considers advective transfer from the supply air and an internal
generation term (due primarily to occupants). However, since infil-
tration from the ambient is not considered, there is no direct
exchange term between xz and xa. For robustness, the value of
xz could be checked (and clipped appropriately) to ensure that it
does not exceed the saturation point xsat Tzð Þ. However, since such
conditions should only arise during unrealistic operating scenarios
(e.g., if the cooling coil is disabled during hot and humid ambient
conditions), this check can generally be skipped. In the interest of
brevity, we do not consider humidification equipment in the cur-
rent model. Where present and active, it would be added as an
additional generation term in the moisture model for in-zone
equipment or in the AHU coil model for AHU equipment.

B.2. AHU coil model

We assume that the AHU controls its supply air temperature to
setpoint using a heating coil and a cooling coil in sequence. Air
passing through the AHU is thus heated or cooled depending on
21
whether its temperature is below or above the setpoint tempera-
ture Tsp

AHU. The previous Eq. (4) accounts for the action of the appro-
priate coil. In the interest of simplicity, we present these equations
assuming unbounded cooling capacities (which means the setpoint
can always be met), as total loads are implicitly constrained by
bounds on flow. However, extension to directly account for finite
coil capacity is straightforward.

To start, we calculate the AHU inlet conditions by mixing the
outdoor-air and recirculating air streams. A straightforward energy
balance gives

xin ¼ xaxa þ 1� xað Þxz

T in ¼ T xaH Ta;xað Þ þ 1� xað ÞH Tz;xzð Þ; xinð Þ

in whichH T;xð Þ gives the specific enthalpy of an air stream at tem-
perature T and humidity x, while T h;xð Þ gives the temperature of
an air stream at specific enthalpy h and humidity x. From here, if
Tin 6 Tsp

AHU, the air is heated directly to the setpoint with no change
in humidity. Thus, the AHU outlet conditions are Tout ¼ Tsp

AHU and
xout ¼ xin. Alternatively, if T in > Tsp

AHU, the air is cooled as discussed
next.

Because of the possibility of condensation, the cooling coil
requires some additional modeling to determine the outlet humid-
ity. For this purpose, we follow the common ‘‘contact mixture anal-
ogy” (e.g., as in Seem and House [59]). With this formulation, we
assume that a fixed fraction of air (xbypass) bypasses the cooling coil
completely, while the remaining fraction (1� xbypass) equilibrates
with the coil. As before, we assume that the cooling coil meets
the setpoint, which gives Tout ¼ Tsp

AHU. From this value, we can
back-calculate the coil-equilibrating conditions as

Tcoil ¼
Tout � xbypassT in

1� xbypass
xcoil ¼ min xin; xsat Tcoilð Þð Þ

in which xsat Tð Þ gives the saturation humidity at temperature T.
This term is responsible for modeling the dehumidification pro-
vided by the coil, which is often a significant fraction of energy con-
sumption in humid climates. Note that the first equation assumes
linear mixing for the recombination of coil and bypass streams.
We calculate the outlet humidity as

xout ¼ xbypassxin þ 1� xbypass
� �

xcoil

which will always be less than or equal to the inlet humidity xin.
Summarizing the heating and cooling models, we thus have the

following relationships:

Tout ¼ Tsp
AHU

xout ¼
xbypassxin þ 1� xbypass

� �
xcoil if T in > Tsp

AHU

xin else

(
From these conditions, we can thus calculate the thermal loads

on the coils as follows:

Dhcoil ¼ H Tout;xoutð Þ � H T in;xinð Þ � xout �xinð ÞHw Toutð Þ

in which H T;xð Þ is the specific enthalpy of wet air at temperature
as before, and Hw Tð Þ is the specific enthalpy of liquid water. Note
that this expression is written so that it gives the heat gained by
the air stream, with a positive value indicating the stream was
heated and a negative value indicating the stream was cooled. We
can thus split into individual heating and cooling components as

Dhh
coil ¼ max Dhcoil;0ð Þ

Dhc
coil ¼ min Dhcoil;0ð Þ
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The calculated Tout;xout;Dh
h
coil, and Dhc

coil then become the AHU

conditions TAHU;xAHU, Dh
h
AHU, and Dhc

AHU indicated in Eq. (4). As
above, we do not consider humidification equipment, but where
present, it could be accounted for by increasing xAHU up to a given
setpoint.

B.3. Fan power model

The fan power model in Eq. (5) defines electricity consumption
of the fan as a cubic function of airflow f. Physically, the energy
consumed by the fan is given by

wfan ¼ 1
gfan

fDPfan

where gfan is the mechanical efficiency of the fan, and DPfan is the
pressure rise across the fan. The cubic dependence on f comes from
the fact that the pressure rise of the fan is equal to the pressure drop
through the ductwork, which is commonly modeled as proportional

to the square of flow. These considerations suggest that wfan / f 3. In
practice, the mechanical efficiency of the fan will vary over its oper-
ating range, and thus the cubic term alone is not sufficient to match
the actual performance of the fan. By adding the additional linear
and quadratic terms, this variation can be captured. Note that some
sources will suggest adding an additional constant term to better
match experimental behavior. However, we require for our applica-
tion that wfan is zero when f is zero (e.g., during unoccupied hours
when the HVAC system is shut off), and so we do not include this
term to avoid artificial inflation of predicted electricity
consumption.

The most accurate way to determine the coefficients ci in the
fan model is to obtain a dataset of f ;wfanð Þ pairs from the actual
fan and use standard regression. Unfortunately, it is uncommon
to directly measure wfan is real buildings, and so this approach is
not practical. Instead, we define one set of coefficients ~ci to match
a representative AHU fan with efficiency ~gfan and pressure rise

DeP fan. We then rescale the ~ci linearly based on the design values
for gfan and DPfan (which are generally readily available) for the
each AHU we model. This approach gives reasonable accuracy for
a variety of zones and buildings.

A key requirement for the fan model is that it be able to account
for the different electricity consumption associated with different
filter types. In general, higher-efficiency filters require higher pres-
sures to deliver the same airflow. This additional pressure must be
overcome by the fan, which in turn increases electricity consump-
tion. To model this effect, we simply rescale the coefficients to
match the expected fan power at maximum flow fmax. From man-
ufacturer’s data, we know the pressure drop DPfilter associated with
each filter type. We then assume that the design fan pressure rise
DPfan corresponds to a baseline filter type with pressure drop

DeP filter. Combined with the scaling for design pressure drop, we
thus have the model

wfan ¼
~gfan

gfan

DPfan þ DPfilter � DeP filter

DeP fan

~c1
f

fmax þ ~c2
f

fmax

� �2

þ ~c3
f

fmax

� �3
 !

Merging the prefactors with the representative ~ci coefficients
thus gives the specific ci coefficients consistent with Eq. (5).

Appendix C. Controller model discussion

C.1. Zone temperature control

As shown above in Eq. (7) the controller model chooses values

of f AHU and Qh by clipping the hypothetical values ~f AHU and eQh that
would move zone temperature to the respective cooling and heat-
22
ing bounds Tmax
z and Tmin

z . Based on system structure, it is natural to
first calculate f AHU (as it has a nonzero lower bound due to the min-
imum outdoor-air ventilation constraint) assuming Qh ¼ 0 and
then calculate Qh second to provide the necessary supplemental
heating. The key question is how to calculate the hypothetical val-

ues ~f AHU and eQh.
The ideal strategy to calculate the hypothetical variables is to

implicitly solve (the discretization) of the thermal ODE model from
Eq. (3). Forward simulation of this model defines the successor
value of Tz as a function of the current Tz, the chosen f AHU or Qh,
and the values of the remaining model inputs. Thus, we can solve

those equations for the ~f AHU and eQh that drive Tz to Tmax
z and Tmin

z

respectively, i.e., solving

~f AHU satisfies Tmax
z ¼ Tz þ

R D
0

dTz
dt

~f AHU;0; . . .
� �

dt

eQh satisfies Tmin
z ¼ Tz þ

R D
0

dTz
dt f AHU; eQh; . . .
� �

dt

in which the ‘‘. . .” represent the remaining model inputs (which
would not all be known in a real system but are known to the
model). Note that for physical reasons, both variables must be non-
negative, but since that restriction is enforced by clipping after the

fact, we place no sign restrictions on ~f AHU and eQh. From the model

structure, we know that a suitable value eQh always exists and a

suitable ~f AHU exists under standard operating conditions (i.e.,
TAHU < Tz).

Unfortunately, because f AHU enters the ODE in a product with
the state variable Tz, an exact solution to the first equation requires
iterative methods. The use of such algorithms can lead to slow and
inconsistent solution times, and so we would like to avoid them.
Thus, we instead opt for an approximate solution that is non-

iterative. To determine ~f AHU we assume that the
qacaf AHU TAHU � Tzð Þ term in Eq. (3) can be approximated by a con-
stant value Qc over the simulation interval. By removing the
f AHU � Tz nonlinearity, our unknown variable now enters the ODE
linearly and thus can be solved for directly using the exact dis-
cretization of

qacaV
dTz

dt
¼ kaz Ta � Tzð Þ þ Qz þ Qc

with the condition that Tz ¼ Tmax
z after one timestep. With the cor-

responding value eQ c , we thus back-calculate

~f AHU �
eQ c

qaca TAHU � Tzð Þ ð10Þ

In the event that the denominator is zero, we set ~f AHU to 
1
depending on the calculated sign of eQ c . In cases where TAHU and
Tz are constant during the integration interval, this calculation is
exact, and the accuracy deteriorates as TAHU and/or Tz vary within
the interval. By assumption, TAHU will be equal to its setpoint Tsp

AHU,
and so there is little to no approximation error there. Similarly,
during occupied hours, Tz will generally be near the cooling set-

point Tmax
z or heating setpoint Tmin

z depending on the season. How-
ever, during transitions at the beginning of the occupied period, Tz

can change very quickly as the controller tries to restore setpoint,
and so it is generally a good idea to replace Tz with an average
value Tz þ Tmax

z

� �
=2 to avoid overshoot. In any case, as long as the

zone temperature setpoint stays reasonably constant throughout
the occupied period, this calculation is sufficient to accurately
model airflow to the space.

Note that it is in Eq. (10) where the primary impact of the
supply-temperature setpoint Tsp

AHU is considered. Specifically, when
TAHU is higher and thus closer in value to Tz, we see that the
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denominator becomes smaller, and so the delivered airflow ~f AHU

increases. A similar effect would also be possible by decreasing
Tz (via its setpoint Tmax

z ), but due to the potential impact on occu-
pant comfort, we do not directly consider that as a manipulated
variable. In any case, the key observation is that the impact of
TAHU on airflow (and thus also on infectious-particle concentration)
is implicit due to the action of temperature control in the space.

After clipping ~f AHU to find the true f AHU as in Eq. (7), we can thus

determine eQh via the discretization of

qacaV
dTz

dt
¼ qacaf TAHU � Tzð Þ þ kaz Ta � Tzð Þ þ Qz þ Qh

to arrive at Tz ¼ Tmin
z . Here, we can solve for eQ h using the exact lin-

ear formulas as for eQ c above. The resulting value is then clipped to
Qh as in Eq. (7).

C.2. Outdoor air and disinfection device control

The outdoor-air fraction xa is chosen in accordance with stan-
dard economizer logic: if the outdoor air temperature is colder
than the pre-configured threshold Tecon

a (which means that the out-
door air is a free source of cooling), then the controller should use
the maximum outdoor-air fraction xmax

a ; otherwise, if the air is hot-
ter than Tecon

a (which means the air is not a free source of cooling),
then the controller should use the minimum xmin

a . Calculation of
these bounds is described next. The remaining quantities aUV and
aaux;j associated with disinfection devices are simply cycled on
and off in accordance with the occupancy flag r.

The two outdoor-air fraction bounds xmin
a and xmax

a are calculated
as shown in Eq. (8). For xmin

a , its value is simply the minimum frac-
tion of f AHU that will deliver the required minimum outdoor-air

ventilation rate fmin
vent (which cycles between zero and the pre-

configured bound �f vent based on the occupancy flag r). As discussed
in the previous section, we always have that f AHU P fmin

vent, and so we

know that xmin
a ¼ fmin

vent=f AHU will always be between 0 and 1. For
xmax
a , the bound is calculated as the maximum fraction of f AHU that
will keep the temperature of the resulting mixture below the sup-
ply temperature setpoint Tsp

AHU (so as to avoid an unnecessary heat-
ing load). Assuming linear mixing, this condition is exactly satisfied
when

Tsp
AHU ¼ xmax

a Ta þ 1� xmax
a

� �
Tz ) xmax

a ¼ Tz � Tsp
AHU

Tz � Ta

which gives a valid 0 6 xmax
a 6 1 whenever Ta < Tsp

AHU < Tz. However,
because those constraints are not always satisfied (in particular due
to seasonal variation in Ta), we modify the calculation to clip both
temperature differences to zero, i.e.,

xmax
a ¼

max Tz � Tsp
AHU;0

� �
max Tz � Ta;0ð Þ

with the convention that xmax
a ¼ 1 in the singular case Tz ¼ Ta. With

these modifications, the calculation gives xmax
a P 1 whenever

Ta P Tsp
AHU and xmax

a < 1 whenever Ta < Tsp
AHU (i.e., when outdoor con-

ditions are too cold for 100% outdoor air). This value is then clipped
to be between the lower bound xmin

a and the upper bound 1 to give
the calculation in Eq. (8).

Note that the models here assume that a simple (but standard)
outdoor-air economizer is responsible for outdoor-air control.
However, if different equipment is present, these models may have
to be modified. For example, if demand-controlled ventilation sys-
tems are present (which modulate outdoor-air flow to control
indoor CO2 concentration to a given setpoint), then it will be nec-
23
essary to model the CO2 concentration in the space (with an addi-
tional transient mass balance similar to the xz model) and use
logic similar to the f AHU controller model to determine xa. However,
in the interest of simplicity, we do not consider such cases here.
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