Letter

Scalable and Continuous Water Deionization by Shock Electrodialysis
Sven Schlumpberger, Nancy B. Lu, Matthew Suss, and Martin Z. Bazant

Environ. Sci. Technol. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.estlett.5b00303 • Publication Date (Web): 03 Nov 2015

Downloaded from http://pubs.acs.org on November 12, 2015

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Scalable and Continuous Water Deionization by Shock Electrodialysis

Sven Schlumpberger,† Nancy B. Lu,† Matthew E. Suss,†,¶ and Martin Z. Bazant*†‡

†Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
¶Present Address: Faculty of Mechanical Engineering, Technion Israel Institute of Technology, Technion City, Haifa 3200003, Israel

E-mail: bazant@mit.edu
Phone: (617) 324-2036

Abstract

Rising global demand for potable water is driving innovation in water treatment methods. Shock electrodialysis is a recently proposed technique that exploits deionization shock waves in porous media to purify water. In this letter, we present the first continuous and scalable shock electrodialysis system and demonstrate the separation of sodium, chloride, and other ions from a feed stream. Our prototype continuously removes over 99% (and up to 99.99%) of salt from diverse electrolytes over a range of concentrations (1 mM, 10 mM, and 100 mM). The desalination data collapses with dimensionless current, scaled to charge advection in the feed stream. Enhanced water recovery with increasing current (up to 79%) is a fortuitous discovery, which we at-
tribute to electro-osmotic pumping. The results suggest the feasibility of using shock
electrodialysis for practical water purification applications.

Introduction

Access to potable water is a critical global challenge. It is estimated that over one billion
people currently do not have reliable access to clean and safe water.1 Unfortunately, the
purification of non-potable water is infrastructure-intensive and expensive, as many countries
currently supplement their water supply with seawater desalination by large-scale reverse
osmosis (RO), or in some cases electrodialysis (ED).2,3 Moreover, widespread interest in
purifying wastewater has intensified with the ascent of hydraulic fracturing for shale gas
extraction, which is difficult to treat due to the presence of large amounts of dissolved salts.4–6
For these and other applications, extensive research is underway to develop improved water
treatment methods, and the unique capabilities of electrochemical systems have attracted
renewed attention.7–10

One of the new electrochemical approaches to water purification is shock electrodial-
ysis (SED),11–13 which is based on the emerging science of deionization shocks in porous
media.14–23 The SED process involves flowing feed water through a weakly charged porous
slab with micron-sized pores that is placed between two ion-selective elements, such as
ion-exchange membranes or electrodes. When current is passed through the device, zones
of ion depletion and enrichment are formed in order to maintain electroneutrality near the
ion-selective surfaces. In the classical picture, a diffusion-limited current is reached whenever
the salt concentration approaches zero, but it is well established that overlimiting currents
are possible in bulk electrolytes due to electrokinetic or electrochemical phenomena,10 such
as the Rubinstein-Zaltzman electro-osmotic instabilities24–27 or current induced membrane
discharge.28 Recently, it has been shown that two new mechanisms18 — surface conduction
(electromigration)19,20 and surface convection (electro-osmosis)21,29,30 — are responsible for
over-limiting current when the electrolyte is confined in a microchannel18,23,31 or porous medium,12,32 whose surface charge is opposite to the active ionic species. The transient response to an applied overlimiting current (discovered first in 200915,16) is the propagation of a deionization shock wave through the microchannel or porous medium with a sharp boundary between concentrated and depleted zones.14,17,19,20,33 Stationary deionization shocks were first observed at nanochannel junctions34 and can cause localized seawater desalination within a microchannel.22 For SED in porous media,11,12 the flow of water can also be separated into brine and depleted streams by a physical splitter that is placed within the location of the shock in a pressure-driven cross flow. The basic physics of SED was recently demonstrated in a non-continuous copper electrodeposition cell that was able to reduce the concentration of copper sulfate by five orders of magnitude in two passes12 and perform other separations and disinfection13 through a silica glass frit.

In this letter, we report the first continuous and scalable SED system for arbitrary feed streams. We characterized its voltage response using IV-curves and tested its capability to desalinate NaCl solutions at concentrations of 1 mM, 10 mM, and 100 mM, as well as KCl, KNO\textsubscript{3}, and Na\textsubscript{2}SO\textsubscript{4} solutions at 10 mM. We also made the fortuitous discovery that electro-osmotic (EO) pumping leads to greatly enhanced water recoveries, in contrast to existing theoretical SED models.12,14,15,17–19

\textbf{Materials and Methods}

Following previously introduced concepts,11,12,19 the prototype was designed to be continuous and scalable with a novel cross-flow architecture (Fig. 1(a)) that employs two identical ion-exchange membranes and a porous frit, which acts as a “leaky membrane” of the same polarity. When an overlimiting current is applied to the system, a deionization shock (sharp concentration gradient) propagates away from the cathode-side membrane and bends in the imposed cross flow. The deionized solution in its wake is extracted by splitting the flow.
into two streams at sufficiently high currents (or low flow rates) for the shock to span the
fresh water outlet. This structure could be easily repeated by making a stack of alternating
glass frits and membranes; thereby easily scaling the device. Some pictures of the device are
shown in Fig. 1(b).

The main body of the prototype was made from extruded acrylic sheets (W. W. Grainger)
and GORE® gasket sheets. These materials were cut using a laser cutter to obtain 2” × 2” × 1.5”
overall device dimensions. The electrodes were made of platinum mesh connected to plat-
inum wires (Alfa Aesar). The porous material was a silica glass frit (Adams & Chittenden
Scientific Glass, ultra-fine, pore size 0.9-1.4 µm, BET internal area, \(a_m = 1.75 \text{ m}^2/\text{g} \), mass
density, \(\rho_m = 1.02 \text{ g/cm}^3 \), porosity of 0.31, and dimensions 20×10×2.7 mm), and the mem-
branes were Nafion® (Ion Power, N115, thickness ∼127 microns).

Before assembly, the membranes were treated chemically to remove any impurities and
to activate them. The frit was glued into its acrylic frame using Devcon 2 Ton® Epoxy
from McMaster-Carr before assembly. The gasketing material was used to seal the device
and house the electrode channels (each about 0.8 mm thick during operation) that had been
cut into the gaskets. The electrode channels were open and pressurized during operation
using downstream pressure tubing in order to hold the membranes flat against the frit. The
splitter was also made from teflon gasketing material that was compressed against the end
of the frit using the outlet port plate. (See Supporting Information for more details).

During device operation, flow rates through three syringes were controlled by Harvard
Apparatus syringe pumps. The electrode channels were supplied with electrolyte solution of
the same concentration and composition as the feed to the frit. The flow rates were verified
manually at the device outlets before testing. Current was then applied using a Keithley
Instruments Model 2450 SourceMeter. During desalination tests, the system was allowed to
reach steady state before samples were taken from the outlets for impedance measurements
using a Gamry Reference 3000 Potentiostat to determine their conductivities.
Results and Discussion

The current-voltage relation of the device was obtained by slow linear sweeps in current, since traditional voltage sweeps (cyclic voltammetry) were found to be less stable in the over-limiting regime. Typical polarization curves at a sweep rate of 25 nA/s (125 µA/m^2s) for 10 mM NaCl are shown in Fig. 2. Although the current is sustained by water splitting, the onset voltage for significant current is consistently close to 1 V, which is less than the standard potential for water electrolysis (1.229 V), likely because of the very low partial pressures of oxygen and hydrogen gas, since no gases are fed to the electrode channels. The role of surface transport in over-limiting current is demonstrated by comparing polarization curves for a bare, negatively charged frit (used for desalination experiments) and for a positively charged frit, whose surfaces were treated by layer-by-layer deposition of a charged polymer, poly-diallyldimethylammonium chloride (pDADMAC). Importantly, the two curves diverge above the same current where strong desalination is observed in the bare frit (see below), which is well above the theoretical diffusion-limited current \(j_{\text{lim}} = 2zeD_{\text{eff}}c_0/L \approx 0.18 \, \text{A/m}^2 \) for 10 mM NaCl, where \(D_{\text{eff}} = 4.01 \times 10^{-10} \, \text{m}^2/\text{s} \) and \(L = 4.3 \, \text{mm} \) due to convection. After this divergence, for the bare frit, there is a nearly linear increase in current, as predicted theoretically and observed experimentally in previous experiments on over-limiting current in negatively charged porous media and microfluidic devices. The over-limiting conductivity (slope * thickness of frit) of \(9.79 \times 10^{-3} \, \text{S/m} \) is quantitatively consistent with previous experiments with the same porous silica glass frits and Nafion membranes that attributed this phenomenon to electro-osmotic surface convection. At still higher voltages, a nonlinear increase in current is observed, likely associated with concentration polarization and water splitting in the electrode channels, as in traditional electrodialysis systems. Bubble formation is observed in the effluent of the electrode streams above \(11 \, \text{A/m}^2 \) (\(> 50 j_{\text{lim}} \)), and the voltage becomes unstable and unreliable.

As noted above, it seems better to operate shock electrochemical systems by controlling the current, rather than the voltage. Recent experiments and simulations have shown...
that voltage sweeps tend to overshoot and oscillate around the limiting current plateau. In
steady state, galvanostatic operation also helps to ensure the formation of a stable deion-
ization shock by maintaining over-limiting current. In contrast, potentiostatic
operation leads to variable shock speeds in the over-limiting regime, and unstable cur-
rents at high voltage (from bubble formation and electro-osmotic instabilities in the electrode
channels) could disrupt the shock structure required for stable desalination.

Desalination tests were carried out over a wide range of currents, flow rates, and concen-
trations with several different electrolytes. Figure 3(a) shows a remarkable collapse of all the
data on a single dimensionless curve by plotting the percentage of salt removed $1 - \tilde{c}$, where
$\tilde{c} = c/c_0$ is the ratio of fresh to feed salt concentration, versus the applied current scaled to
the rate of positive charge advection into the device, $\tilde{I} = I/z_+c_+\epsilon Q$, where Q is the inlet
flow rate. The master curve is approximately exponential, $\tilde{c} \approx e^{-\gamma \tilde{I}}$, $\gamma = 0.619$, as shown by
the semilog plot in Fig 3(b). The data collapse with dimensionless current further supports
the benefits of galvanostatic operation noted above.

In dimensionless variables, the desalination performance of SED is thus mainly controlled
by the properties of the porous medium (macroscopic dimensions, surface charge, and mi-
crostructure) and does not explicitly depend on the ion type (subject to minor differences
in ionic mobilities), salt concentration, current, or flow rate. Simple models of SED pre-
dict similar data collapse and improved desalination by increasing the dimensionless ratio
$\tilde{\rho}_s = q_sa_m\rho_m/2\varepsilon_p z_+c_0$ of the surface charge to the feed cation charge per macroscopic vol-
ume. This trend is consistent with the poor performance of a frit with larger pores and
$\sim 5x$ smaller $\tilde{\rho}_s$ (Fig. S6 of Supporting Information), although more experiments are needed
to test the predicted scaling.

Counter-intuitively, the placement of the splitter is not the sole factor that determines the
water recovery (defined as the ratio of flow of desalinated water to total flow of water into the
frit), in contrast to existing theoretical SED models. Since our splitter was placed
midway along the frit’s downstream edge, the recovery was expected to be approximately
50%, with only small variations due to random pore structure or uncertainty in the splitter placement (since it is made of non-rigid gasketing material). However, as the data in Fig. 3(c) shows, the water recovery actually increased from ~45% to 79% with increasing current and decreasing flow rate. We hypothesize that this observation can be explained by an increasingly significant contribution of electroosmotic pumping to the total flow (i.e., the larger the ratio of electroosmotic flow to the applied flow is, the higher the water recovery would be). Porous glass frits have been used as electroosmotic pumps, and it is known that water pumping is towards the cathode at near neutral pH. In our device with impermeable membranes, however, existing models predict that any transverse electro-osmotic pumping would be opposed by pressure-driven back flow, yielding no change in water recovery.

The resolution of this paradox may come from electro-osmotic surface convection behind the shock, which could dissipate the pressure in vortices and redirect the net electro-osmotic flow into the fresh outlet. Such convection has already been implicated as the dominant mechanism for over-limiting conductance in our glass frits and in microchannels with similar vortex sizes. Indeed, the classical model of electro-osmotic pumping without any back pressure predicts velocities at high currents comparable to the applied velocity. To test this hypothesis, we replotted the water recovery data in Fig. 3(d) versus the ratio of the electro-osmotic pumping rate to the applied flow rate, \(\hat{I} = Q_{EO}/Q \), where \(Q_{EO} = \varepsilon \zeta I/(\mu \sigma) \) is an estimate of the electro-osmotic flow, \(\varepsilon \) the permittivity, \(\zeta \) the zeta potential (set to 100 mV), \(\mu \) the viscosity, and \(\sigma \) the conductivity. This leads to a reasonable collapse of the data on a straight line, \(R_w = \alpha + \beta \hat{I} \), \(\alpha = 0.454 \), \(\beta = 0.092 \), consistent with a simple derivation in the supporting information. Statistical analysis gives a reduced \(\chi^2 \) value of 1.22, indicating a good fit of the data. The small dimensionless slope (0.092) suggests that electro-osmotic flow is significantly retarded by back pressure or surface charge regulation in the depleted region. Overall, the results strongly suggest that electro-osmotic pumping leads to increased water recovery, which could be exploited in future system designs.

All desalination methods exhibit a tradeoff between salt removal, water recovery, and
energy efficiency. Plots of total (electrical and hydraulic pumping) energy consumption are shown in Fig. S4 of the supporting information for all the conditions in Fig. 3. In this first SED prototype, the impressive salt removal and water recovery come with significant energy costs, in the range of 10^{-1} to 10^3 kWh/m3 (hydraulic pumping makes up about 0.5 kWh/m3). The energy efficiency (ratio of the thermodynamic limit set by osmotic pressure to the actual total energy consumption) varied between 0.3% and 0.003%. The current efficiency peaks at 57.7% at the onset of strong deionization and decays with increasing current toward an apparent lower limit around 10% (see Fig. S5). This novel behavior, compared to current efficiencies > 80% in electrodialysis, suggests that surface current in the deionized region has a larger transference number for protons than for cations. In future SED systems, the energy efficiency may be dramatically improved by using a stack of frits and membranes (to reduce the fraction of the total voltage lost to electrolysis) and by varying properties of the porous medium, such as surface charge, proton affinity, matrix microporosity (to enhance salt removal and shock formation) and anisotropic macroporosity (to lower hydraulic resistance in the flow direction). As in traditional desalination plants, the overall energy efficiency could also be improved by harvesting lost heat or re-using the brine and electrode streams in related processes.

In summary, we have shown for the first time that a concentration shock can be stable and propagate despite continuous cross-flow through a random porous medium. Thereby, we have demonstrated that SED can be harnessed to continuously and scalably remove 99+% of ions from electrolyte solutions with water recovery up to 79%, biased by a new mechanism of electro-osmotic pumping. Furthermore, this system can be scaled analogously to electrodialysis systems by repeating our unit cell between two electrodes. In the future, the design of the prototype will be altered to give more precise control of the water recovery by electro-osmotic flow and to improve energy efficiency, guided by the scaling laws revealed in Fig. 3. Furthermore, in the future, we will investigate the recycling of the anolyte and catholyte solutions, keeping in mind that the pH of these solutions, when unbuffered, can
deviate significantly during operation. Possible applications include wastewater recycling, ultrapure water production, treatment of produced water from hydraulic fracturing, and water disinfection.13 The enormous gradients in salt concentration and electric field that arise in SED also provide new opportunities for chemical or biological separations.

Acknowledgement

This research was supported by Weatherford International, the MIT Energy Initiative, the SUTD-MIT Fellowship Program, and the USA-Israel Binational Science Foundation (grant 2010199).

Associated Content

The supporting material includes a derivation of the scaling of water recovery with electro-osmotic pumping, more details on materials and methods, and further plots on desalination performance, energy consumption, and current efficiency.

This material is available free of charge via the Internet at http://pubs.acs.org/

Notes

The authors declare no competing financial interest.

References

(39) Vanysek, P. In CRC Handbook of Chemistry and Physics, 96th ed.; Haynes, W. M.,
Figure 1: (a) Diagram of the SED prototype, showing its operating principles. In the presence of chloride ions, oxidation of chloride ions to chlorine gas may take place in addition to oxygen evolution at the anode. (b) Photographs of the SED prototype, both assembled (right) and unassembled (left and center) to show the frit placement and splitter design.
Figure 2: Typical current-voltage relations for the SED prototype measured at a sweep rate of 25 nA/s (125 µA/m²s) for 10 mM NaCl ($j_{ilim} \approx 0.18$ A/m² without convection) with the bare, negatively charged silica glass frit used for desalination (below), as well as a frit whose surfaces are coated with positively charged polymers to show the role of negative surface charging in sustaining over-limiting current.12,32 The over-limiting conductance18 is consistent with electro-osmotic surface convection,12 and unstable voltage associated with water splitting is observed above 11 A/m² ($> 50j_{ilim}$).
Figure 3: Desalination performance of the SED prototype. (a) Data collapse of the percentage of ion removal, $1 - \bar{c}$, where $\bar{c} = c/c_0$ is the ratio of fresh to feed salt concentrations, versus dimensionless current, $\bar{I} = I/(z_+c_+eQ)$, scaled to the rate of positive charge advection into the device. (b) This semilog plot of \bar{c} versus \bar{I} shows excellent data collapse around the red line, $\log \bar{c} = -0.619 * \bar{I}$, especially below 95% salt removal. (c) Data for water recovery R_w versus dimensionless current \bar{I}. As shown in (d), data collapse is quite good by scaling the applied flow rate to an estimate of the transverse electroosmotic flow, $\bar{I} = Q_{EO}/Q = \epsilon\zeta I/(\mu\sigma Q)$. The red line, $R_w = 0.454 + 0.092\bar{I}$, gives a reasonable fit of all the data ($\chi^2_{\text{reduced}} = 1.22$).
Graphical TOC Entry