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ABSTRACT: The solid electrolyte interphase (SEI) plays a key ~ Orerando ?ee;;ﬁ iy 60 T mThickness!
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quantitative measurement of SEI growth rates remains s !

challenging due to their nanoscale heterogeneity and environ- m

mental sensitivity. In this work, using operando electrochemical Early SE!

atomic force microscopy, we track the growth of SEI on copper -0nm

: : 0 05 10
in a carbonate electrolyte. From operando measurements of SEI Capacity (1Ah/em?)

thickness and irreversible electrochemical capacity, we directly

visualize the dual growth regimes of the SEI, observing an early-stage primary SEI approximately ten times more
“electrochemically compact” than later-stage secondary SEI, as quantified via the incremental thickness per charge passed.
While primary SEI is responsible for about half of the irreversible capacity lost in a 24 h period, it accounts for only a tenth of
thickness. We also show that nanoscale defects on the copper substrate play a key role in determining the nonuniform growth
morphology of the SEI, thus providing direct evidence that initial SEI growth is not purely transport-limited. Our experiments
reveal that SEI grows by two modes: first reaction-limited nucleation and growth of a dense, passivating primary SEI layer,
governed by ion-coupled electron transfer kinetics; and subsequently by diffusion-limited growth of a porous secondary SEI
layer, once the primary SEI fully passivates the electrode surface.

KEYWORDS: solid electrolyte interphase, operando atomic force microscopy, lithium-ion batteries, ion-coupled electron transfer kinetics,
self-passivating reactions

MAIN TEXT In the absence of a clear mechanistic picture of SEI reaction

Increasing battery lifetime, which translates to enhanced pathways and kinetics, one approach is to fit phenomenological

driving range in electric vehicles and lowered levelized cost
in grid energy storage, is a key challenge to further the
electrification of industry and transportation."” In lithium-ion
batteries, the reduction of the electrolyte at the negative
electrode to form the solid electrolyte interphase (SEI)
represents a key source of battery aging.’ SEI induced
degradation is especially pronounced in next-generation
chemistries which operate below the electrolyte reduction

models to standard electrochemical data and physical
characterization. A common approach is to assume that the
SEI growth rate is limited by the transport of reactants to the
electrochemically active interface, which leads to degradation
capacity scaling with the square root of time at long time
scales.””™"" More complex models consider reaction limi-
tations as well as chemical storage of the SEL*'"'> However,

potential and continuously create new surface area—such as Received:  November 15, 2024
lithium metal and lithium silicon alloys.*”® While the ideal SEI Revised:  February 25, 2025
is straightforward to describe, with high ionic conductivity, Accepted:  February 25, 2025

Published: March 17, 2025

negligible electronic conductivity, slow growth rate, and rapid
self-repair, building a quantitative picture of SEI growth
remains challenging,””
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Figure 1. Schematic and validation of EC-AFM setup for operando imaging of SEI growth. EC-AFM cell design with stainless steel parts
abbreviated SS (a). Schematic of Cu crystal with MgO mask and exposed central area (b). AFM image of the interface between the exposed
Cu region (left) and MgO masked region (right) with 4 gm scale bar (c). Electrochemical data from the operando AFM cell during voltage
sweep and hold. SEI formation current (i.e., reduction) is plotted as positive current here for visual clarity. (d). Height data showing sharp
interface between the Cu and MgO masked regions (e). AFM scans of scratch tests on Cu and MgO surfaces before and after growing SEI
with 500 nm scale bars and associated measurements of scratch depths (f). Scratch tests demonstrate that SEI grows on the Cu substrate but
not the MgO film. Images after scratching show feature broadening or triangular artifacts due to tip damage, which are discussed in Figure

S13.

the large number of proposed electrolyte reduction pathways
and transport mechanisms makes distinguishing the dominant
growth limiting mechanisms challenging.'”'* Determining the
growth mechanism of SEI is key to improving battery
electrolyte chemistry, electrode coatings, and formation
protocols.' "¢

This work builds on previous efforts to quantify SEI
thickness and properties. Prior characterization efforts span a
range of chemically, spatially, and temporally resolved
techniques to track SEI growth and evolution.'”~** However,
the air, vacuum, and electron beam sensitivity of the SEI, as
well as its few to tens of nanometer length scales, make
operando characterization challenging.”>** Some techniques,
including electrochemical,”'* X-ray'® and optical measure-
ments”’ are compatible with operando experiments, but are
limited to either indirect or approximate measurements SEI
morphology and thickness. More direct techniques such as
transmission electron microscopy (TEM) or X-ray photo-
electron spectroscopy (XPS) directly quantify SEI thickness
and chemical composition, respectively, but expose the SEI to
high vacuum and change its composition, especially solvent
content.””**> Through these approaches, key chemical
species and likely reaction pathways have been identi-
fied."”***” While these prior works shed light on relationships

between SEI structure and battery performance, how the SEI
evolves over time remains unclear.””*

To develop a quantitative understanding of SEI growth
dynamics, we employ operando electrochemical atomic force
microscopy (EC-AFM) to quantitatively map the evolution of
SEI thickness and morphology. Prior AFM experiments™ ™"
were limited to either measuring topography,” ™" mechanical
indentation depth®”*®*” or the thickness of material removed
upon mechanical scraping,‘w’41 which are proxies or approx-
imations of thickness. In this work, we conduct direct
nanoscale dilatometry of SEI grown on Cu electrodes while
simultaneously controlling cell voltage to promote electrolyte
reduction

Copper is a well-studied model system for understanding the
SEI and has often been used to investigate the reduction of
various electrolyte species, SEI morphology, and the relation-
ship between SEI nanostructures and its lithium ionic
conductivity.'”****** For these experiments, which focused
on quantifying SEI growth, copper had the desirable property
of a smooth, uniform surface and absence of reversible
capacity. This distinguishes it from experimental systems such
as silicon or lithium thin films, which exhibit substantial
electrochemical capacity, convoluting measurements of SEI
current.””** Further, copper is uniform without pronounced
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edge sites such as those present in graphite model systems and
has well-defined surface area unlike porous electrodes.** It is
worth noting that the absence of reversible capacity limits SEI
to growth mechanisms where lithium is sourced from the
electrolyte, sometimes referred to as electrochemically formed
SEL* This is distinct from chemically formed SEI, where
stored lithium ions react with electrolyte species. We
acknowledge that SEI growth on copper lacks reaction
pathways specific to electrochemically active systems such as
lithiated graphite, lithium silicon alloys, and lithium metal. In
particular, copper’s surface energy is higher than lithium
metal’s, and substantially higher than graphite’s, which will
impact adsorption and reaction kinetics."*"*® Nonetheless,
copper substrates is a valuable system for studying SEI growth,
and the comparatively simple set of reactions and current
sources enables key insights into the electrochemical kinetics
underlyin% electrolyte reduction in lithium-ion battery
systems.49" 0

To enable absolute thickness quantification at the nanoscale,
we employ an electrochemically inert MgO mask that serves as
an in situ height reference.”’ MgO was selected as it was one of
the few materials compatible with thin film deposition that
resists reaction with lithium as low as the 0 V versus metallic
lithium,*>>*

Copper current collectors are not only relevant to lithium-
ion batteries; they are also the substrate on which lithium is
plated in lithium—metal batteries. For the latter, SEI on the Cu
plays a key role in templating lithium metal deposition.’”

Our operando EC-AFM measurement directly confirms the
two-layer picture of the SEI and the dual growth regimes. We
show that electrochemical models of early “primary” SEI
growth overestimate its thickness because of its more
“electrochemically compact” structure, as quantified by the
ratio of thickness per charge passed. On the other hand, at long
time scales the thickness of the secondary SEI is larger than
previously reported."” Moreover, we find that compared to
various empirical growth models, the best fit of our data is
achieved by the recently developed quantum theory of ion-
coupled electron transfer (ICET),*® which may find broader
applications in molecular engineering of electrode passivation.
We anticipate that this improved understanding of the SEI’s
initial growth may lead to improvements in lithium-ion battery
electrolytes and formation protocols.

RESULTS AND DISCUSSION

EC-AFM experiments were performed on polycrystalline Cu
electrodes in a customized electrochemical cell, shown in
Figure la (see the Experimental Details section of the
Supporting Information for more details on the experimental
approach). While immersed in the 1:1 w:w ethylene
carbonate:diethyl carbonate electrolyte with 1 M LiPF salt,
we performed tapping mode AFM scans at the edge between
the exposed Cu and the inert MgO layer (Figure 1c) with the
sharp step making it straightforward to distinguish between the
two regions (Figure le). After imaging the region of interest at
open circuit, the voltage was swept at S mVs™ from the cell
open-circuit voltage (OCV) down to 30 mV vs Li/Li* where it
was held for 24 to 72 h. The typical electrochemical response is
shown in Figure 1d. The voltage sweep limited the maximum
current density to avoid transport limitations within the bulk
electrolyte, and the 30 mV vs Li/Li* voltage hold mimicked the
operating conditions of a fully charged conventional lithium-
ion battery, while avoiding Li metal deposition. EC-AFM

movies were taken at the interface between the exposed Cu
and the inert MgO layer. To balance the frame rate and
mechanical perturbation, we paused for 2 to 8 h between each
10 X 10 pm frames, with each taking 10 min to image.

Before discussing the imaging results, we consider several
possible sources of error. EC-AFM avoids many of the sample
degradation modes inherent to other SEI characterization
techniques, including damage to the sample by washing,
exposure to vacuum, and probe beam. With that said, EC-AFM
also presents its own challenges. We first validate the
electrochemical inertness of the MgO mask, which is critical
to measuring the nanoscale SEI thickness. The MgO surface
was mechanically scratched by the AFM tip with a force of
roughly 500—1000 nN both before and after growing SEI, as
shown in Figure le. For comparison, the same experiment was
conducted on the exposed Cu. Before SEI growth, the Si tip
removed approximately 5 nm of Cu and less than 1 nm of
MgO, consistent with the respective material’s hardness
relative to the tip. For the MgO-masked region, even after
exposure to electrolyte under cathodic voltage conditions for
over 25 h, the scratch depth increased by less than 1 nm,
validating the excellent inertness of MgO against SEI formation
and its suitability as an internal height reference (see Figure
S13 for replicates). For comparison, the scratch depth on Cu
after forming the SEI was approximately 30 nm. This is also
consistent with thicknesses reported in literature and discussed
later in this work.”’

We also performed control experiments to quantify
experimental artifacts including tip-induced damage and
laser-induced growth. We compared surrounding locations to
the actively imaged regions to assess whether the process of
imaging removed substantial amount of SEI. As shown in
Figure 2 and Figure SS5-6, areas scanned at higher resolution
showed the same morphology as the surrounding area,
demonstrating that imaging during SEI growth did not alter
its morphology.

Having demonstrated the robustness of EC-AFM for
quantifying nanoscale SEI growth, we tracked SEI thickness
during the voltage sweep between ~3 V and 30 mV vs Li/ Li*
followed by imaging during the voltage hold at 30 mV vs Li/
Li" for up to 25 h. This process was also validated for
robustness and demonstrated current peaking at 3 yA and
rapidly falling to below 1 uA, with very little noise. While the
areal current density cannot be determined, because of the
presence of pinholes and other imperfections in the MgO mask
the sub 1 pA current can be effectively supported by the
electrolyte without generating substantial variations in salt
concentration, despite the relatively long working to counter
distance of ~5 mm.

Using the MgO as the height reference, we report the
absolute height of the SEI during the voltage sweep, as well as
the change in thickness (Figure 2a). The top image in Figure
2a spans the entirety of the S mV s™' voltage sweep and shows
the onset of SEI growth around 1.25 V. The same data is
represented in the bottom image in Figure 2a where
background subtraction is performed to visualize changes in
the SEI thickness. In addition to the AFM images collected
during the voltage sweep, Figure 2b shows the topography
maps of the SEI, with height referenced to MgO. Two key
features are immediately evident from these images—a
conformal and continuously growing film, as well as submicron
particles that nucleate early during SEI growth.
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Figure 2. Aligned EC-AFM images of SEI growth on Cu during the
voltage sweep (5 mV s™') with raw data (top) and background
subtracted data (bottom). Dashed line denotes 1.25 V, which is the
nominal start point for electrolyte reduction and the scale bar is 2
pm (a). SEI thickness collected at various points during the 30 mV
vs Li/Li* hold, with 2 gm scale bar. Time markings denote the
time between the start of the voltage hold and the start of image
collection (b).

To quantify the EC-AFM movies, we extracted the frame-
averaged SEI thicknesses. Based on the onset of SEI growth as
observed in EC-AFM, we define the time at which 1.25 V is
reached during the voltage sweep as t = 0 (Figure S8). This is
consistent with the previously observed onset of ethylene
carbonate reduction.'”**~° During the first frame (capturing
the voltage sweep), we observed a high growth rate. As such,
the SEI thickness was averaged across subregions spanning 100
mV of voltage sweep, or approximately 0.3 X 2 ym, and plotted
in Figure 3a. In the subsequent frames captured during the
voltage hold, SEI growth was substantially slower, and a single
frame-averaged SEI thickness was extracted and plotted in 3a.
We observe a final SEI thickness between 30 and 50 nm,
consistent with prior measurements via ellipsometry”® and
cryo-TEM.”® Notably, this is too thick a layer to be explained
primarily through electron tunneling, suggesting longer range
transport of reactants either through electron conduction or
diffusion, or from electrolyte transport through the SEL''
Although the small particles observed in the EC-AFM scan
contribute substantially to the roughness, their impact on the
globally averaged thickness is minimal, which will be discussed
later.

To ensure reproducibility, the EC-AFM experiment was
repeated two additional times on different Cu substrates, with

replicates shown in Figure 3a. Despite some variability in
absolute thickness, the self-passivating trend was reproducible,
as was the mixed film/particle morphology. The reproduci-
bility of the growth mechanism was validated by plotting
normalized SEI thicknesses in Figure 3b, showing good
agreement between replicates—normalization was performed
by dividing thickness by average thickness between 4 and 22 h;
see Table SI for full details. The high degree of consistency
between the shape of the three SEI thickness curves highlights
the suitability of this data for modeling, as the same underlying
process regulates all three samples but with moderate variation
in total thickness.

To complement the direct measurement of the nanoscale
SEI growth rate, electrochemical capacity of SEI grown on
identically prepared oxide-free Cu was also measured in pouch
cells with well-defined electrochemically active surface areas.
The SEI formation current was measured under identical
electrochemical conditions as in the EC-AFM experiments and
integrated to generate the capacity vs time plot in Figure 3c.
Next, we plot the frame-averaged SEI thickness against
capacity in Figure 3d, the slope of which directly corresponds
to the thickness of the SEI grown per electron passed. Two
clear regimes emerge: (1) during the voltage ramp and the first
2 h of SEI growth, and (2) during later growth. Strikingly, the
SEI thickness change per unit charge passed differ by
approximately 1 order of magnitude, with the early SEI
much more “electrochemically compact” than later SEI. The
change in the slope is consistent with a crossover from an
initial inorganic SEI layer to a subsequent more organic layer.
These organic SEI components contain fewer lithium atoms
per unit volume than species such as LiF, Li,O or Li,CO; and
will therefore have a higher thickness to capacity ratio.

Next, we quantitatively model the SEI growth kinetics. Since
the measured SEI thickness and total capacity are not linearly
related, as shown in Figure 3d, any model that can
simultaneously capture both trends would need to postulate
the growth of two different SEI components. The two-
component hypothesis is consistent with the experimental
cryogenic transmission electron microscopy measurements of
SEI growth on lithium metal from organic electrolytes, which
revealed two well-formed layers:, a more inorganic, compact
primary SEI layer and a more organic, porous secondary SEI
layer.””°" Additionally, due to the sharp transition at the 2 h
mark, the model should be able to predict a time-dependent
shift between dominant primary and secondary growth.

The features outlined above quantitatively match a two-layer
electrochemical growth model (see Supporting Information for
details). The inner layer is modeled as a dense primary SEI
layer governed by nearly irreversible ICET kinetics,> which
self-limits both by surface passivation and by limiting the
availability of electrons.'’ The outer, more porous secondary
SEI layer grows slowly, and is self-limited by solvent
diffusion.'’ This model was selected because it is consistent
with the data, avoided overfitting by using only six free
parameters, and captured the underlying physics of SEI growth
including nucleation, reaction limitation, and transport of
reactant species. Other models of similar complexity were
considered but failed to accurately capture the time dependent
growth rate of the SEI (Figures S9—S10).

ICET kinetics were selected as the underlying model for this
analysis since, as noted above, the SEI formation process
involves lithium-ion motion in the form of desolvation,
electron transfer, as well as bond breaking within solvent
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Figure 5. 2X2 pm high resolution images of SEI grown on Cu at various time points after the end of the voltage sweep with 3D plots for
selected figures to illustrate the changing morphology of the SEI film and particles (a). Height data for particles highlighted with dashed line
in the 0 h image incorporating topography data from high resolution scans and thickness data from large area scans (b). Segmented particles
in red and film in blue, showing consistent frame-to-frame position of particles (c). Averaged heights of the particles, film, and entire SEI
(both film and particles). Heights were calculated by offsetting the average height of the particles or depth of the film by height data from
Figure 3d (d). Ratio of particle height to film thickness, showing rapid initial growth of particles relative to film, and consistent subsequent
growth rate (e). Segmentation was performed by measuring the highest and lowest points within the images and assigning all pixels in the
upper third to the particles and in the lower third to the film; a small fraction of pixels falling into the middle third were ambiguous and not

assigned to either set of images.

molecules. We expect the governing ICET behavior to be
highly asymmetric ICET kinetics because the energy barriers
for bond-breaking ion transfer (~1 eV)*>% are strongly biased
toward reduction and are typically much larger than those for
solvent reorganization and electron transfer (~0.1 eV).5%% Of
the multiple ICET models simulated, the only successful
approach assumes that the primary SEI layer forms with a

surface coverage term 6 = H;/H This term is most

max*
commonly seen in Langmuir monolayers, but can be

generalized to a growth process where initial SEI formation
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on a given site is limiting, but once formed the SEI rapidly
grows to full passivation.”* The self-regulating primary SEI
growth kinetics presented here have strong resemblance to the
Kolmogorov-Johnson-Mehl-Avrami (KJMA) model of nuclea-
tion and growth with vanishing reduction current at both high
and low surface coverage.66

. —en, /k

j, = ko1 — 0) (=T — 1) )

In this eq 1, 7 is the overpotential and k; is the rate constant.
k, is a lumped parameter and encompasses details of local
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Figure 6. 2X2 pm images of Cu surface before any SEI growth (a, c) and corresponding regions with SEI particles after current is applied (b,
d) with arrows to highlight correlation between pit sites on Cu and SEI particles. High resolution 1 X 1 gm scan of pristine Cu surface
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reaction environment including the electronic coupling of SEI
molecules to the metal surface, the effective number of
participating electronic states in the conduction band, and the
solvent reorganization energy.56 Constants e, k, and T have
their usual meanings. The model does not account for
transport limitations within the bulk electrolyte phase, both
because the observed currents in this system are sufficiently
low to render those effects negligible, and because the fitted
value for solvent transport within the SEI is many orders of
magnitude smaller than within bulk electrolyte.”” See the
modeling section of the SI for further discussion of the impact
of transport limitations within the electrolyte.

The resulting model (eq 1) accounts for three key factors:
Nucleation kinetics as described above; overpotential depend-
ence, which is necessary since SEI formation is an electro-
chemical rection; and ICET kinetics due to the coupled nature
of electron and ion transfer. By similar arguments, the
secondary SEI layer also grows by asymmetric ICET kinetics,
but without monolayer steric hindrance under the assumption
of its growth plane exterior to the primary layer following eq 2.
Additionally, through the Nernst equation, the overpotentials
depend on the solvent concentration at the reactive interface
between the primary and secondary SEI layers, which may
become limited by solvent diffusion across the porous,
secondary SEI at long times.'” Due to the insulating primary
SEI layer, we expected a weaker electronic coupling leading to
a smaller rate constant for the secondary SEI kinetics relative
to the primary SEI kinetics. This relationship, k,< k;, was
correctly observed in the fitted kinetic parameters, as shown in
Table S2.

jy = kof(eVRT — 1) @)

As shown in Figure 4, our physics-based model accurately
fits the experimental data. Crucially it accurately captures both
SEI thickness and capacity as a function of time, including the
rapid initial SEI capacity growth. Plotted on the parametric
plot in Figure 4c the model shows the same inflection between
early and late SEI growth, a key feature not captured by
alternative models plotted in Figure S9 or S10. In particular,
the surface coverage term in the reaction prefactor is critical in
capturing the two regimes of electrochemical compactness that
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is uniquely observed in our EC-AFM experiments, with other
two-layer model formulations failing to capture this dynamic.
This combination of operando experimental characterization
and rigorous modeling emphasizes that the shift in the height
to capacity ratio is due to the transition between primary-layer
and secondary-layer dominated growth regimes, mediated by
surface coverage effects on the primary SEI interface.

Having modeled the SEI growth rate, we also employ EC-
AFM to understand the nanoscale SEI morphology, specifi-
cally, the presence of particulates in the SEI A series of higher
spatial resolution 2 X 2 ym frames with pixel size of 4 nm are
shown in Figure Sa. Distinct from the homogeneous film, the
height of which is plotted and modeled in Figure 3 and 4, these
images reveal embedded particles, typically several hundred of
nanometers in diameter. Height data from the same line in
each image in Figure Sb clearly shows the distinction between
the rough, but overall flat background and distinct regions with
particle-like morphology. While AFM cannot determine
whether these regions are chemically distinct particles or
arises from more rapid SEI growth kinetics, the high spatial
resolution and operando capabilities allow for tracking of their
growth and evolution. In discussing the growth and of these
structures, the word particle is used for simplicity and brevity.

Particle nucleation occurred within the first 4 h of the
voltage hold at 50 mV, as shown via segmented particle and
film images in Figure Sc. The average height of the particles,
background film, and entirety of the SEI are plotted in Figure
5d. Comparing average particle height to film thickness in
Figure Se reveals a discontinuity between the early growth
behavior where the ratio is nearly 4:1 and a subsequent
convergence to a roughly 2:1 particle to film height ratio. This
discontinuity, which falls between the 0 and 4 h is consistent
with the model of two-regime SEI growth presented earlier in
this work.

Nucleation of SEI early in the electrolyte reduction process,
with no new large particles nucleated after t = 4 h, suggests that
the Cu substrate plays a role in templating SEI growth. Indeed,
the morphology of the SEI and the pristine Cu substrate
(before SEI growth) are correlated, Figure 6. The effect is most
obvious between Figure 6a and 6¢, but can be observed also in
Figure 6b and 6d, where all but one of the SEI particles,
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marked with arrows, correspond to a depression in the pristine
Cu surface. Replicates of this experiment, as shown in Figure
S6 and S7 confirm the correlation between Cu morphology
and SEI particulates.

We hypothesize that the nucleation sites for SEI particles are
related to nanoscale defects in the polycrystalline Cu, which
likely derive from polishing-induced surface flaws during the
Cu preparation.”® Similar particle morphology appears in an
experiment where no MgO mask was applied as shown in
Figure S11, demonstrating that the nucleation sites are not
related to the oxide mask. Since the average size of the Cu
grain is much larger than the 2 X 2 ym window (Figure S4), it
is unlikely that the effect is driven by grain boundaries or
variations in the Cu surface crystallographic termination.
Focusing instead on variations on surface curvature, Figure e
shows a high-resolution scan of a pristine Cu surface with the
heatmap in Figure 6f showing the local slopes, measured by
comparing small, 10 X 10 nm, areas to the physical
termination. One possibility is that high slope regions
correspond to high index surface facets, which are linked to
high electrocatalytic activity in some systems.’””" An alternate
hypothesis is that the preferential formation of SEI particles is
driven by localized electric fields. However, this is unlikely
because the radius of curvature of the pits is shallow.

CONCLUSIONS

Our study images, quantifies and models the dynamics of the
SEI growth in its native electrolyte environment. The ultimate
thickness of SEI formed after 24 h ranges from 30 to 50 nm,
substantially thicker than prior ex-situ measurements on
lithium, copper oxide, or graphite electrodes, highlighting the
need for operando measurements when studying highly
sensitive battery systems. Critically, we observe that the
relationship between the SEI thickness and capacity is
nonlinear and is described by a two-layer model that
simultaneously captures both growth trends. This two-layer
model suggests two distinct growth regimes: an initial
formation which in a conventional lithium-ion battery would
account for substantial capacity loss but relatively small
thickness; and a second regime which accounts for a higher
fraction of thickness, but less irreversible capacity.

The thickness and SEI capacity data can only be modeled
accurately and consistently by a physics-based theory of two-
layer growth based on ICET kinetics.”® The theory predicts
that good electrode passivation arises from the rapid growth of
an insulating primary SEI'" with kinetics derived from those of
a Langmuir monolayer, while gradual capacity fade is
controlled by slow solvent diffusion in the porous secondary
SEI layer.'” Molecular engineering of electrode passivation in
other systems may also be guided by our combined theoretical
and experimental framework.

In addition to thickness quantification, we capture the
relationship between defects in the Cu substrate and the
eventual structure of the SEIL In experiments where the Cu
substrate was relatively defect-free, the SEI formed a more
homogeneous film, while Cu with pits, scratches or other
nanosized defects evolves SEI with rougher morphology
consisting of a mix of nanoscale particles embedded in a
background film.

In the future, coupling AFM based electrochemical
dilatometry with chemical characterization, either in- or ex-
situ would enable further insight into origins of the ICET
kinetics that underlay the SEI growth rate, as well as the

specific species formed in the SEI. However, the challenge of
performing chemical characterization of the SEI without
disrupting it by exposure to air, precipitation of salt and
ethylene carbonate, or dissolution of semisoluble layers by
washing requires further technique development to enable
accurately interpretable results.”” In particular, spatially and
chemically resolved techniques such as tip enhanced Raman or
nano-SIMS would enable identification of chemical composi-
tion for film and background particles observed.

METHODS

The preparation of materials and experimental processes are described
here. All experiments performed in a glovebox were conducted in an
inert argon environment with less than 1 ppm oxygen and less than
0.5 ppm water in the atmosphere.

Sample Preparation and Validation. For all AFM experiments
described here, 10 X 10 mm polycrystalline Cu substrates were
purchased from MTI corporation with a single side polished to sub
nanometer roughness. Samples were cleaned with a series of solvents
(deionized water, then acetone, then isopropyl alcohol), marked with
a colored sharpie, and then coated with a Ti adhesion layer and an
insulating MgO film. Finally, samples were sonicated in methanol to
remove the sharpie mask and annealed in a tube furnace to reduce the
coating layer to MgO. See Figure S1 for full details on sample
preparation and validation.

For pouch cell electrochemical measurements, 1 cm? disks punched
from Cu foil from Welcos corporation were sonicated in DI water,
acetone, and IPA and annealed at 800 °C under a reducing
atmosphere of 0.6% hydrogen, balance argon for 1.5 h, before being
transferred to a glovebox in an air free setup.

The AFM samples were validated by the following techniques:
Optical microscopy, which showed a clear contrast between the MgO
coated and bare Cu as shown in Figure S2 with a sharp edge; AFM
which showed a pristine Cu surface with ~1 nm RMS roughness and
a flat MgO surface with roughly 1.5 nm RMS roughness as shown in
Figure S4; AFM scraping tests in contact mode which removed less
than S A of material on the MgO surface and roughly S nm on the Cu
in Figure S13; XPS, using air free transfer, which showed no Mg or Ti
contamination on the Cu surface and no carbonate peak in the oxygen
or carbon spectra on the MgO surface as shown in Figure S3. XPS
also validated that there was no Cu(Il) oxide peak on either the
reduced Cu foil or AFM samples. The presence or absence of Cu(I)
oxide could not be determined as the peak overlaps with the Cu auger
peak on the XPS system used, but samples were stored under argon or
vacuum except for transfer between tools or the sonication process to
minimize opportunities for oxide growth.

Electrochemical Measurements. For all experiments, the cells
were assembled in a glovebox using a lithium metal counter electrode,
a Cu working electrode and LP40 electrolyte from Gotion (1:1 w:w
ethylene carbonate:diethyl carbonate with 1 M LiPFq salt). The EC-
AFM cells were specialized operando cells, modified from the Oxford
Instruments, Asylum corporation design. The pouch cells were
assembled in specialized pouch cells using Celgard separators and
pouch cell materials from MTT and sealed under —90 kPa vacuum, see
Figure S12 for details. This total electrochemically active Cu surface
area of the cell was 2 cm* with less than 0.05 cm? of stainless-steel
current collector.

All pouch cell cycling was performed using a Biologic MPG2 in a
temperature chamber at 30 °C, and all EC-AFM cycling was
performed with at VSP300 potentiostat. AFM electrochemistry was
performed inside a Cypher-ES AFM in a glovebox at approximately
35 °C. All voltages throughout this paper are referenced versus
lithium metal, Li/Li*. All electrochemical experiments consisted of a 5
mV/s voltage sweep performed from open circuit voltage, which
ranged from 2.7 to 3.3 V followed by a voltage hold at 30 mV vs Li/
Li* for 24 to 27 h, depending on the specific experiment.

AFM Measurements. The EC-AFM cell was built using parts
from Asylum Research, modified to meet the specific needs of a
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battery electrolyte containing system. The working electrode
consisted of the MgO coated Cu crystal described above. It was
sealed to a machined PEEK part via a Kalrez O-ring with electrical
contact made through the back of the crystal, away from any
electrolyte exposure. The counter electrode was introduced through
the wall of the PEEK cells and sealed with a small plug of Teflon held
in place by a small amount of Devcon S min epoxy. Schematics and a
view of the EC-AFM cell are in Figure S14.

During operando imaging, this cell was filled with 180—200 uL of
LP40 electrolyte and sealed in a hermetic cell of approximately 5 cm?
volume within the AFM. EC-AFM imaging was performed by
immersing an AC160TSA-R3 probe from Oxford Instruments into
the electrochemical cell, mounted to a glass post and held in place by
a small PEEK clip. More than 150 uL of the electrolyte could be
recovered after the course of 24 h suggesting minimal evaporation.
Cantilever oscillation was driven by a 405 nm Asylum BlueDrive laser
with a power of 4.4 mW. Validation tests in Figure S5 show similar
trends between regions scanned frequently and regions only scanned
intermittently, and no sudden increase in growth from continuous
scanning with laser on, but out of an abundance of caution,
experiments were structured to minimize blue laser usage to less than
4 h out of a 24 to 27 h experiment.

Because the electrolyte is quite viscous compared to air or water,
the 4.4 mW laser was only able to generate approximately 3 nm of tip
amplitude. Scans were performed in repulsive mode at roughly 50% of
peak amplitude. This limited scanning to relatively slow linear speeds
of 5—10 um/s but avoided the distortion of heights measured due to
electrostatic interactions.
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