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ABSTRACT
Machine learning (ML) is gaining popularity as a tool for materials scientists to accelerate computation, automate data analysis, and pre-
dict materials properties. The representation of input material features is critical to the accuracy, interpretability, and generalizability of
data-driven models for scientific research. In this Perspective, we discuss a few central challenges faced by ML practitioners in developing
meaningful representations, including handling the complexity of real-world industry-relevant materials, combining theory and experimen-
tal data sources, and describing scientific phenomena across timescales and length scales. We present several promising directions for future
research: devising representations of varied experimental conditions and observations, the need to find ways to integrate machine learning
into laboratory practices, and making multi-scale informatics toolkits to bridge the gaps between atoms, materials, and devices.
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I. INTRODUCTION
Machine learning (ML) as a tool is here to stay in materi-

als science. Early gains have come from innovative applications
of methods from the computer science literature, such as graph-
based neural networks or computer vision, to inorganic materials
contexts, such as accelerating molecular dynamics, predicting prop-
erties, or automating data analysis.1 As ML and informatics expertise
become increasingly mainstream in materials science and engineer-
ing, future progress in the field may depend on the integration of
scientific domain knowledge into the fundamental building blocks
of ML tools, including representations and model architecture.2

Within materials science, practitioners are concerned with
modeling time and length scales that span many orders of magni-
tude, presenting differing challenges across the atomistic, mesoscale,
and device levels. Moreover, problems where data are scarce3 pose
challenges for applying machine learning in many scientific fields.
When designing, training, and applying a model, the representa-
tion of input features can be just as important as the target and
architecture of the model itself.3,4 Finding the appropriate way to
represent a material of interest is not always straightforward and
remains an active area of research. In this Perspective, informed by a
recent workshop held within a consortium of industry and academic
researchers, we set out to articulate some of the goals and challenges
faced by ML practitioners in materials science and propose paths
forward focused specifically on materials representation.

We identify at least two broad kinds of supervised machine
learning problems in materials science: the forward problem and the
inverse problem. Both critically depend on the choice of materials
representation, as the representation can be both a means and an
end, and a well-chosen representation can simplify demands on the
model architecture.

The forward problem is to efficiently and approximately repro-
duce the results of an experiment (empirical measurements, for
example, optical property measurements in Fig. 1) or simulation
(idealized abstraction, for example, band structure calculations in
Fig. 1) from some knowledge of the material (e.g., structure or
composition). The material representation used as input, depend-
ing on the available data and the task at hand, can take on any form:
ranging from the precise description of the local atomic environ-
ment for an interatomic potential to high-level knowledge, such as
only the composition itself. This act of mapping from knowledge
of the material to a resultant property encompasses the whole of
composition- and structure-based property prediction,5 scaling rela-
tions in heterogeneous catalysis,6 interatomic potentials,7,8 device
lifetime prediction,9 and the part of an “inverse design” loop, which
predicts if a candidate material will be desirable. The inverse prob-
lem is to predict the underlying physical attributes of materials that
are correlated with material characteristics, such as spectroscopic
features.10,11 Here, a computational representation of a material
is simultaneously a means and an end, and the inversion process
can map into more-or-less-physically motivated categories, though
the problem can be made more challenging when the relationship
between the underlying structure and measured output is not 1:1.

Better representations may help to bridge the gap between
benchmarks and routine applications of ML in experimental
contexts.4,12 Furthermore, in improving materials representations,
the end goals are not just more accurate representation but also (1)
transferable ML models and (2) generalizable theories for enhanced

FIG. 1. Examples of common forward and inverse problems in materials science,
with a focus on structure–property relationship modeling. The forward model maps
from knowledge of the material to predictions of consequent properties; the inverse
model maps from observations to conceptions of the material congruent with what
was measured.

understanding of scientific principles (i.e., knowledge extraction).
For (1), presumably all benchmarked models demonstrate accept-
able performance on some initial dataset or task, which means that
the challenge to demonstrate utility comes from applying them to
contexts beyond their initial development. For (2), we note that an
example of a useful abstraction that originates from a materials rep-
resentation is the very notion of periodic atom-containing unit cells
that compose crystals: this idealization of the crystal structure is use-
ful for both conceptualizing individual materials and commencing
analysis [for instance, matching x-ray diffraction (XRD) patterns
with space groups] and therefore enables both understanding and
useful predictions.

We structure this perspective around proposing solutions to
three identified challenges that researchers may encounter while
developing representations of material systems: (A) developing tools
to handle the complexity of real-world materials to enable increasing
data harvesting and greater interpretability; (B) developing unified
representations to combine theory and experimental data sources;
and (C) developing representations that can span timescales and
length scales. We differentiate between representations suitable for
a machine, which we call embeddings (typically vectors of real num-
bers), and those for a human, which we call idealizations (which
follow mathematical and logical structures, such as obeying inter-
nally consistent scientific theories). We note that ML can serve as
both a guide and a tool to enable the creation of embeddings and
idealizations alike.

II. CHALLENGE A: RICHER DESCRIPTION
OF MATERIALS’ COMPLEXITY

Understanding the interaction between four key traits of a
material: structure, process, property, and performance, is a cen-
tral focus of modern materials science research. Models that allow
us to navigate this complexity effectively might make more experi-
mental systems easily accessible to machine learning methodologies
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FIG. 2. We vertically order different input data sources according to how well estab-
lished certain methods of featurization are. Top: Simple idealizations of a materials
system, such as the chemical formula or the crystal structure, serve as inputs
to established featurization tools or frameworks, such as matminer;18 featurizing
structures is practically an entire subfield.15 Middle: Complex idealizations of a
materials system, such as physical properties of the material that are common
across a wider range of systems (such as simple observables about the electronic
structure or some knowledge of the defect distribution), are sometimes incorpo-
rated into featurization of a material, but standard featurization tools are not in
widespread practice yet. Bottom: For systems that have not been well-studied
using machine learning, practitioners must make case-by-case decisions on how
best to represent their data. This includes synthesis protocol, the set of laboratory
conditions that accompanied synthesis, storage, or other miscellaneous measure-
ments. The arrow on the left-hand side represents the development of new tools
that can help make featurization of common experimental measurements a stan-
dard practice that can be re-used across different projects. For example, growing
interest in featurizing spectroscopic data11,19 may make it more commonplace to
featurize spectra for input into machine learning data. For systems such as batter-
ies, where there is a wide variability in the number and kind of measurements that
could be made, the emphasis on the community for developing ontologies that can
be shared across different systems will help make standards for the field.

and therefore unlock new scientific capabilities (see Fig. 2). In
this section, we summarize popular approaches to featurizing data
gathered within specific lengths and timescales, such as materials
composition and crystal structure, as well as tools to handle con-
voluted experimental observations that contain information about
more than one key traits of materials, such as optical properties
or device performance tests. One way to divide the body of recent
work on featurizing materials is between those that focus exclusively
on the chemical composition,13,14 those that include some descrip-
tion of the atomistic structure,15 and those that focus instead on
micro- or macro-scale observable properties of the system, including
images,16 spectra,11 or electrochemical measurements.17

Chemical compositions are a simple starting point to repre-
sent a material as they are easy to featurize14,20 and often known
in experiments. For input into machine learning models, common
approaches include using an element’s fractional prevalence within
a given composition21 or as inputs to featurization14 either inter-
nal to a model or via an associated toolkit, such as matminer.18 We
note that when mapping from a chemical composition to an observ-
able property, the composition implicitly encodes structure (more
or less depending on the property). This constraint is because of the

fact that all measured properties, of course, rely on some underly-
ing atomic arrangement and that composition–property mappings
cannot, in general, be 1:1 without selecting a single structure for
each composition (consider the diverse properties presented by pure
carbon alone in forms22 such as graphite, graphene, or diamond).

For the structural representation, we highlight several exam-
ples. For input into machine-learning-based models, ample work
has been performed on the computational representation of local
atomic structures;23 notably, for use as features in interatomic poten-
tial models, we recommend a thorough review from Musil et al.15 In
these contexts, the completeness of the descriptor and the compu-
tational expense are considerations, which have subsequently given
rise to many innovative ideas, such as moment tensor potentials,24

the atomic cluster expansion,25 or equivariant descriptors.26 For
structural descriptions, there has also been work centered on graph
representations of crystalline materials [e.g., crystal graph convo-
lutional neural networks (CGCNNs)27–29] and their applications in
predicting site-specific properties.30

For atomistic simulations, one typically begins with some prior
knowledge of the atomic structure. While macroscopic observables,
such as bandgap or surface reactivity, can be very sensitive to
individual phases,31 gaining a detailed mechanistic understanding
of the structure–property relationship is challenging because it is
experimentally expensive to fully characterize the local atomic struc-
ture. This means that representations that correlate with material-
property relationships that can sidestep the requirement of full
knowledge of the atomic structure are highly desirable. For instance,
observables that can give clues to materials structure (e.g., the coor-
dination number of a species in a measured phase)32,33 can help yield
conditions that narrow down the space of possible structures.

A well-chosen representation is itself a tool, as it enables cre-
ativity, structured thinking, and useful predictions. An example of
this in string serialization of molecules is SMILES34,35 vs SELFIES,36

where the latter is purpose-built for traversal of molecule repre-
sentations in a latent space. Another example is periodic density-
functional theory (DFT),37 where the very idealization of a periodic
material as an infinite crystal makes many problems tractable. We
note that the computational formulations of representations, such
as pymatgen’s structure object38 or ASE’s Atoms object,39 are 21st-
century practical advances on an established crystallographic idea in
their own right. Making it efficient for researchers to rapidly gen-
erate, instantiate, and manipulate these structures on a computer
saves thousands of hours of valuable researcher time and enables
new feats of cheminformatic and materials informatic work. This
capability highlights the serious practical benefits that come from
making “human interpretable” idealizations “machine useable.”

A. Moving forward: Representing disordered systems
A common adage holds that “crystals are like people: it is the

defects in them that tend to make them interesting.”40 There is
much interesting work to explore in ML-ready crystal represen-
tation beyond representations of average crystal structures. These
structures are amenable to methods such as DFT but rely on the ide-
alization of perfect order. The space of defective structures requires
serious effort to be able to tractably explore. An idealized single-
phase bulk material cannot necessarily contain information that
would be germane to experiments, such as the processing history,
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if it cannot be captured by defects and disorder in a relatively
small unit cell. This detail proves important for observables such as
electronic conductivity or catalytic activity,41 for which very small
dopant fractions can play a decisive role in altering the function of
a material.42 Zooming into any real-world material on the atomic
scale, it is very likely we would find imperfections in the atom-
istic ordering. The long-range order of inorganic materials contains
countless defects, some by design (e.g., doping in semiconductors),43

some as a key feature of the material (such as when defects play an
entropically stabilizing role in the state),44 and some by accident,
such as thermal strains45 from unexpected temperature changes.

A recent report by Chen et al. demonstrated the machine-
learning learned elemental embeddings in materials graph networks
to model disorder in materials and the use of multi-fidelity graph
neural networks to predict bandgaps.46 While our focus has been
primarily on solid-state systems, we also present a brief case study
on how non-solid state disordered solutions such as polymer elec-
trolytes are amenable to novel descriptors, where the dynamics of
a polymer system are the object of study. Recent work at Toyota
Research Institute47 has found that representations of trajectories in
terms of combined ion clustering and time evolution ion transport
properties as a behavior-based descriptor can accelerate molecular
dynamics (MD) simulations compared to full MD runs, which also
improve the accuracy of predictions compared to other commonly
used descriptors, such as SMILES and molecular graphs.48 A note-
worthy feature of this work is that ML efforts that map polymer
composition to the result of an MD simulation implicitly capture
the full effect of all MD simulation parameters on the outcome. Pre-
diction beyond the set of parameters used to generate the initial
dataset—which had common electrolyte composition, temperature,
and salt concentration—is simply not possible when the representa-
tion is “flattened” into only the identity of the polymer alone. This
limitation calls for the development of representations that describe
the behavior of the material under study (the polymer matrix) rather
than simply the identity of the polymer used in simulation.

B. Moving forward: Representing processes
The sensitivity of experimental outcomes on processing para-

meters combined with the expense of data acquisition further chal-
lenges the task of evaluating individual materials. Any measurement
of a material represents a “snapshot” of its state at a point in time.
A holistic record of the time-evolution of a given sample measure-
ment requires knowledge of the full chain of events imposed upon
the sample until then: these events could range from individual steps
in the synthesis of the sample, a destructive measurement, or even
simple storage on the shelf, with each event decorated by descrip-
tive parameters (temperature of sintering and time on shelf). One
way to conceptualize this history is via a graph representation, in
which a sample is entirely represented by a variable-length series of
events, which serves to alter its state in some way. This concept is
analogous to the data structure design pattern of event-sourcing, in
which a system’s state is described exclusively as an ordered acyclic
sequence of changes (git being a common example). Computational
tools, such as Aiida49,50 or StructureNL in pymatgen,51 are designed
to make it easy to navigate the full provenance of parameters, which
gave rise to a calculation. For experimental workflows, tools such as
DBGen52 and ESAMP53 are intended to facilitate data assembly with

this level of exhaustive detail.54 This form of detailed bookkeeping
becoming standard practice could represent an advance in and of
itself; more detailed information about the full history of a sample
could make it easier to identify causal factors in, e.g., processing that
could be decisive during later application. However, the routine use
of complete graph-based provenance for experiments and calcula-
tions is not yet mainstream.55 The layer of required overhead when
designing a workflow to systematically record every possible state
change of the sample may be an inhibiting factor, as well as a lack of
common expectation that workflows be documented in exhaustive
detail.

III. CHALLENGE B: UNIFYING REPRESENTATION
FOR THEORY AND DIVERSE EXPERIMENTAL DATA
SOURCES

Describing the complexity of a scientific challenge or the phys-
ical details of a material is complicated by the fact that we are
best equipped to think in terms of idealized and abstract repre-
sentations. We arrive at a central challenge: finding ways to unify
representation across theory and diverse experimental data sources
(see Fig. 3). Tools that allow researchers to naturally integrate infor-
mation about experimental data into a representation might allow
for more economical use of experimental data and acquisition of
more advanced embeddings. Possible directions include combining
different modes of input data sources at varying fidelities,56,57 inte-
gration with theoretical representations or theory-generating data,58

converting theory-generating data into that matches an experiment
or vice versa,59 and principled uncertainty quantification.

Despite differences in the kinds of data from computational
and experimental sources, theorists and experimentalists have come
up with effective schemas to better communicate with each other.
Electron density maps obtained from single-crystal x-ray diffraction
and DFT calculations form an example of a unified representa-
tion scheme.60–62 Typical CIFs (crystallographic information files),
which have standardized file formats, are universally recognized

FIG. 3. Pathways toward closer integration of representations for experimental and
computational materials.

APL Mach. Learn. 1, 020901 (2023); doi: 10.1063/5.0149804 1, 020901-4

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/am

l/article-pdf/doi/10.1063/5.0149804/17964152/020901_1_5.0149804.pdf

https://scitation.org/journal/aml


APL Machine Learning PERSPECTIVE scitation.org/journal/aml

across the scientific community.63 CIF files can represent the out-
put of first-principles structure optimization and refinement against
single-crystal x-ray diffraction.

Obtaining similar agreements in output formats is much more
challenging when it comes to the representation of a material prop-
erty or device performance. For example, Pourbaix diagrams are
widely used as a theoretical guide to deduce thermodynamically
stable phases of an aqueous electrochemical system.64,65 To experi-
mentally detect the degradation of a fuel-cell catalyst,66 for example,
one can measure the concentration of chemical species dissolved in
the solvent via techniques such as inductively coupled plasma mass
spectrometry,67 track the deterioration of activity via electrochemi-
cal cycling tests,68 or monitor the microscopic changes via x-ray scat-
tering tomography in situ.69 These three examples of experiments
would track events of corrosion and serve as an experimentally mea-
sured ground truth to validate a simulated Pourbaix diagram. At the
same time, we expect these three measurements to match the theory
qualitatively rather than quantitatively: the experimental observa-
tions are often a convoluted sum of the property of interests plus the
imperfections across scales such as defects, contamination, and the
environments in which the tests were conducted, and theory itself
has many limitations. In many materials science fields, it remains a
challenge to develop “universal languages”: schemas that effectively
compare or combine information across multiple sources.

A. Moving forward: Combining heterogeneous
data streams

Moving from an observation to a human-comprehensible rep-
resentation requires a congruent idealization—a mental picture that
agrees with the data. Tools that can automatically combine mul-
tiple data streams into a consistent microscopic/microstructural
picture, possibly informed by physics, would massively accelerate
the process of finding both machine-readable and human-readable
representations of data.70

Some models are so closely connected to the underlying physics
that the idealization comes “for free,” while others require more
sophisticated analysis. Combining heterogeneous data sources will
require ways to flexibly and automatically combine data from each
into a representation. For example, a phenomenon such as EXAFS71

is well-understood and can be approximated by an equation where
individual terms in the equation represent physical quantities in
the system [see Eq. (2) of Ref. 72]. This is an example where the
model and material representation are implicitly linked, and fit-
ting a good model itself provides insights. X-ray diffraction patterns
can be used to establish structural phase conditions that a candi-
date idealized structure must satisfy. Some forms of characterization
can be well-approximated by a closed form expression, such as the
EXAFS equation. In these contexts, the act of fitting a model to the
data provides readily interpretable features of the material under
observation. However, when working with data sources that have
nonlinear functional forms such as XANES, the interpretation and
mapping causality back to the underlying source are not straightfor-
ward, and efforts have been made to craft latent spaces that provide
a physical picture for the sake of intermediate representation.73,74

An experimentalist’s physical or chemical intuition can be used to
bridge the gaps among multiple, complementary forms of imaging.
This process itself is complicated by epistemic (lack of knowledge)

and aleatoric (random nature of events) uncertainty, as well as the
fact that the sample itself can change between measurements or as a
result of making a particular measurement.

More flexible, possibly data-driven representations could
enable the combination of multi-modal data sources to inform the
solution of an ideal material.75 Toyota Research Institute’s consor-
tium has furthered efforts to make it easier to record state changes
within materials, which when multiple data sources are available
may make it easier to identify correlations between data sources.53,76

B. Moving forward: Constrained algorithms
and flexible theoretical representations

It is challenging to have one form of representation that can
mediate among different kinds of measurement, especially when the
relationships between the measurements and underlying structures
are not easily determined. Representations that could accommodate
imprecise knowledge of the underlying structure (that are “fuzzy”)
would could make it easier to bridge the gap between experiment
and theory, such as a physically informed latent space. Data-driven
representations of materials that can be rapidly extracted from
experimental observables make this possible. Having a concrete ide-
alization that a particular observation will map to (e.g., an XRD
pattern revealing a crystal’s space group) necessarily constrains the
solution space. This task’s difficulty also depends on the solution
space—such as if it has a discrete or a continuous representation or
if the fitting process is ill-conditioned. Even when looking within
similar systems—molecules—a well-chosen representation of the
structure space can enable flexible design, for example, SMILES34,35

vs SELFIES,36 where the latter by construction always yields a valid
molecule and therefore is a more easily traversable latent space. As
more data become available in the materials science community,
data-driven spaces could become a viable intermediate space for
materials design. For example, Mat2Vec is an example of a space
that was derived from literature-based sources,77 which now sees
common use in models such as CrabNet.78 Furthermore, improved
algorithms might flexibly incorporate constraints from experimental
observables.79

Solution spaces that are designed to be traversable (such as
SELFIES) and that also can admit some uncertainty in the under-
lying structure could have benefits; guesses could be more easily
refined in response to new information such as different modes of
characterization. In addition, “fuzzy” representations might help to
address the issue of noise within experiment and theory. Already,
first-principles calculations, such as DFT, owing to their quantum-
mechanical and atomistic precision, require idealized unit cells.
Forms of representation that describe non-idealized unit cells could
aid the interaction between experimentalists and theorists. For
instance, compositions are in common use for embedding due to
the fact they can represent a material without precise knowledge of
the structure.

C. Moving forward: Improved experimental
data generation, collection, and reporting

There are fundamental tensions with the way that ML meth-
ods are practiced for training models on large datasets—some work
focuses on using available materials databases80 to train on hun-
dreds or thousands of compounds, but it is expensive to do even
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one trial to study one material in great depth experimentally. Cru-
cially, this is contrasted with the high-profile achievements of ML
in the commercial software space, where individual trials (e.g., for
selling ads) are cost-effective and can be performed at scale. Within
fundamental research, one way to rationalize the explosive success
of AI in fields such as image recognition/generation81 and protein
folding82 is the abundance of data available, where the latter is par-
ticularly inspiring due to the Protein Data Bank’s centrality and
importance since 1971. Improving the availability and centrality of
data reporting within the materials science community could enable
the development of data-driven representations and make it easier
to characterize novel materials in light of what has been previously
observed by other groups and, thus, to more easily move between
modalities of characterization (for example, cross-referencing an
XAS measurement made on a particular sample with a database of
experimental measurements made in similar systems to gain more
structural insight). Over the past few years, an increasing number
of open databases of simulated materials structures and properties
have been created within the materials community.83 More recently,
several experimental databases84 and platforms have also become
accessible, ranging from functional materials85 to energy devices.86

IV. CHALLENGE C: REPRESENTATIONS ACROSS
SCALES, FROM MATERIAL TO DEVICE

Scientists are well trained to explain physical phenomena
observed using their own eyes by using simpler abstractions as
building blocks. For example, when we imagine zooming into a
working battery, at a centimeter scale, engineers talk about device
architecture and cell design;87 at a nano- to micrometer scale, mate-
rials scientists study degradations using high-resolution microscopy
to identify Li dendrite growth,88 and at an atomic scale, chemists
might investigate new crystal structures for a potential cathode
material and strive to explain its disordered lattices from electronic
structure.89 Over the hundreds of years of development in modern
science, specific languages and models have emerged at each length
scale to describe the structures and mechanisms of materials. Chal-
lenges arise since models that well represent a material’s structure,
chemistry, and function at a specific length scale, when zooming out,
may only describe what happened locally. Most models, whether a
solid sphere model to represent an atom, a SMILES string to repre-
sent a molecule,90 or a crystal graph neural network (e.g., CGCNN)
to represent an inorganic material,28 would have a length scale or
timescale limit within which the model would reasonably represent
the continuous dimensions in reality.

Materials scientists may be posed to address long-standing dif-
ficulties with trying to stitch together representations at different
length scales and/or timescales using data-driven methods. Theo-
retical idealizations on the atomistic level tend to rely on perfect
knowledge of the structure and cannot easily integrate real-world
timescales and length scales. Device-level models and associated
representations come with their own problems depending on the
particulars of a given experiment. We may be able to draw inspi-
ration from the multi-scale modeling community, where common
representations are used to link individual length scales to the next-
larger one, such as coarse-graining atoms or parameterizing indi-
vidual domains of space; as in Fig. 4, machine learning may make
it easier to identify and combine descriptors across length scales. In

recent years, the utilization of ML techniques to extract information
from large and diverse datasets, followed by generating abstract rep-
resentations in the latent space, has garnered substantial attention
in the field of materials science. The generated representations can
be situated in a shared latent space through the integration of data
from various sources, where correlations between individual mea-
surements or calculations are captured by their relative proximity
within the space. We shall note that this approach bears resem-
blance to image-to-text algorithms used in large language models,
which likewise rely on a shared latent space to align textual descrip-
tions and visual representations91—in one recent case, as many as
six modalities.92

Challenges in representations that can span length scales may
originate in the expense of generating datasets, which can be used
to capture long timescale and length scale variations in the behavior
of a material. Traditional representations are physics-based and thus
reflect things we have more easily accessible idealizations of. There
are emerging data-driven embeddings93 for materials and ontologies
for devices,94 which attempt to bridge the gap. Most large datasets
correlate theoretical atomic structure and/or compositions with a
particular property;95 the creation of datasets that describe, e.g., bat-
tery cycling have helped to enable new fields of informatics work.96

Closer experiment–theory connection, and unified representations,
may help to expand the space of available data and targets.

A. Moving forward: Economical models
and benchmarking

Most materials design relies on structure–property relation-
ships that live in the same length scale.97 For example, it is easier
to connect electronic structure in a unit cell to properties such as
the bandgap than to the compound’s ductility. It would be desir-
able to find ways to decorate idealized bulk structures such that there
could be some way to connect defects to the bulk,98 possibly drawing
inspiration from the field of multi-scale modeling. Since defects and
short-range phenomena govern so many important performance
criteria, benchmarking and accounting for these accurately are key
to improving our discovery process.99,100

There is still a need to be able to create accurate and espe-
cially transferable models from small amounts of data, as accurate
materials data (especially experimental data) can be expensive to
generate.101 As the field matures, we expect to see increased use of
constraints in features and models to reduce data hunger and there-
fore increase the scope of applicable problems ML can be applied
to, as well as an increasing awareness of the diversity of data-
economical models beyond artificial neural networks. Additionally,
statisticians have known that simpler models tend to extrapolate
better, and incorporating physical and chemical knowledge into
model structure may help to simplify the form of models, improving
generalizability and efficiency.

One challenge is that it remains unclear how multi- or cross-
scale models should be benchmarked against each other and against
the prior art. By contrast, there is established work that benchmarks
the effectiveness of different models in active discovery against the
goal of acceleration. For example, Rohr et al.102 introduced three
different metrics: active learning metrics that quantify the discov-
ery of any “good” material, enhancement factors that quantify the
improvement of the method introduced (compared to the bench-
mark) at a given budget, and acceleration factors that quantify the
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FIG. 4. The goal of combining features
from multiple length scales into an end-
to-end machine learning framework.

savings in the budget of the method introduced to achieve the
same results as the benchmark. However, when it comes to combin-
ing representations obtained at multiple timescales or length scales
into a single machine learning model to predict materials’ behav-
ior, we have a set of questions to answer prior to conducting a
new experiment/study. They are as follows: (1) What is the bench-
mark that we are comparing against? (2) What value have we added
using our method compared to the benchmark, specifically, how do
we decide which metrics define “success”? (3) How are the mate-
rials properties in the lab or simulation connected to the actual
device performance in our ML model? New benchmarks enabled
by datasets—experimental datasets in particular—would be worthy
targets for the community going forward.

B. Moving forward: Embeddings, proxies,
and mesoscale descriptors

Multiple reports recently have discussed the lack of mesoscale
models bridging the gap between our understanding at an atomic
level to a device level.103 Indeed, many common systems in mate-
rials science lack good physical models to fully explain the com-
plex phenomena, such as interfacial dynamics and microstructural
heterogeneity in batteries.104 Data-driven methods have recently
emerged as a way to overcome this challenge of learning in a domain
without decent physical models.105,106 One example to achieve prop-
agation of scientific laws across length scales is through embeddings.
Learning the embedding of smaller constituents of a large structure
followed by a combination of the embeddings provides a viable way
to represent complex materials. For example, combining the learned
embeddings of organic linkers107 and inorganic nodes23 allows us
to describe hybrid organic–inorganic framework materials, such as
metal-organic frameworks.108

Inside laboratories, low-fidelity proxies are often used when
high-fidelity measurements are expensive.109 One example is the
use of color change as a means of representation instead of pre-
cise bandgap measurements to track perovskite degradation under

elevated temperatures and humidity.110 Another example where tai-
lored representations can help bridge the scale gaps is through
mesoscale descriptors. Yang and Buehler have recently reported
methods correlating the atomic structure with mesoscale crystal
structures using large graph neural networks.98 Through features
extracted from microscopic imaging,16 such as the shape, size,
and orientation of grains in a polycrystalline alloy, one can build
data-driven models to correlate compositions with the microstruc-
tural features under uniform processing conditions and to correlate
microstructural features with bulk materials’ properties being mea-
sured. Here, descriptors that encode microscopic information serve
as an intermediate step in assisting the understanding of compo-
sition (atomic scale) and property (macroscale) relationships. The
field of descriptor engineering is rapidly evolving, benefiting from
advancements in high-performance computing.111 One area of enor-
mous opportunities lies in combining physics and data-driven rep-
resentations for explainable property predictions, which may have
the effect of allowing researchers to discover new empirical laws.112

V. CONCLUSION
In conclusion, toward the goal of improved inverse and for-

ward models, we articulate three central challenges for representa-
tion development for ML in materials science: representations that
support a richer description of materials’ complexity, unifying rep-
resentations for theory and diverse experimental data sources, and
representations that can span multiple timescales and length scales.
We emphasize that a significant benefit would be easier integra-
tion of ML into regular experimental practice, as we should not lose
sight of the fact that machine learning, while an interesting object
of study in its own right, still has tremendous untapped potential in
enabling better materials science and engineering. In this Perspec-
tive, we identify promising directions that have emerged for each of
these challenges and hope that this can serve as an inspiration for
future researchers engaging with these topics.
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VI. METHODS
The authors facilitated a workshop with around 40 researchers

in a joint academic–industrial virtual consortium over two days to
share ideas from the cutting edge of the field and solicit viewpoints
about the future of material representations. We broke participants
into virtual breakout rooms using Zoom and asked them to compile
thoughts on their discussion topics into a series of recommendations
and challenge statements for the field, which informed the drafting
of this Perspective.
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