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The basic hypothesis of producing a range of behaviors using a
small set of motor commands has been proposed in various forms
to explain motor behaviors ranging from basic reflexes to complex
voluntary movements. Yet many fundamental questions regarding
this long-standing hypothesis remain unanswered. Indeed, given
the prominent nonlinearities and high dimensionality inherent in
the control of biological limbs, the basic feasibility of a low-
dimensional controller and an underlying principle for its creation
has remained elusive. We propose a principle for the design of such
a controller, that it endeavors to control the natural dynamics of
the limb, taking into account the nature of the task being per-
formed. Using this principle, we obtained a low-dimensional model
of the hindlimb and a set of muscle synergies to command it. We
demonstrate that this set of synergies was capable of producing
effective control, establishing the viability of this muscle synergy
hypothesis. Finally, by combining the low-dimensional model and
the muscle synergies we were able to build a relatively simple
controller whose overall performance was close to that of the
system’s full-dimensional nonlinear controller. Taken together, the
results of this study establish that a low-dimensional controller is
capable of simplifying control without degrading performance.

low-dimensional | optimal control | muscle pattern | frog |
computational model

Controlling any movement, whether it be a stereotyped reflex or
a sophisticated skill, is highly complex. Fundamentally, every
movement requires the detailed specification of a vast number of
variables, potentially involving many thousands of motor units
distributed throughout the limbs and body. Further, the relationship
between these variables and the intended motion of the body is
nontrivial, dictated by the intricate nonlinear dynamics of the
musculoskeletal system. Elucidating control strategies that can
overcome these complexities is a central issue in the neural control
of movement.

Many investigators have suggested that the central nervous
system (CNS) might have developed strategies to simplify the
control of movement (1-6). According to one common proposal,
the CNS might produce movement through the flexible combina-
tion of “muscle synergies,” with each such synergy specifying a
particular balance of activation across a set of muscles (7-16). By
reducing the number of controlled variables, such a low-
dimensional control strategy would simplify the production of
movement.

Although many experiments have found evidence to suggest that
many behaviors can be produced through combinations of muscle
synergies, several questions concerning this hypothesis remain
unresolved. Foremost among these questions is a proof of the
concept’s viability: can a low-dimensional control scheme based on
muscle synergies reproduce the range of observed behaviors with
negligible loss of efficacy? Given the nonlinearities and high
dimensionality inherent in biological motor control, the answer to
this question is not obvious. Yet, until this question is answered in
the affirmative, the finding that the structure of muscle electro-
myographic data appears to be shared by a small number of
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recurring muscle patterns remains only an enticing observation of
ambiguous functional significance.

In this study, we evaluate the efficacy of using this approach to
control a biologically realistic model of the frog hindlimb. Using
techniques from control theory, we examine a method for designing
a low-dimensional controller that balances the advantages of ex-
ploiting a system’s natural dynamics with the need to accurately
represent the variables relevant for control. The resulting low-
dimensional controller provides an approximation to the natural
dynamics and a set of muscle synergies best suited for controlling it.
We show that this low-dimensional controller and its attendant
muscle synergies are in fact capable of producing movements
without a substantial loss of either efficacy or efficiency; i.e., the
intended movements are achieved successfully and with minimal
effort. Further, we show that not any set of synergies allows for such
effective control: this efficacy results when synergies are chosen to
exploit the dynamic properties of the limb, meaning that they
exploit the movements that the limb produces naturally. Finally, we
present evidence suggesting that the muscle synergies we derive may
indeed resemble muscle synergies that occur in nature. These
results therefore provide direct support for the viability of the
muscle synergy hypothesis, suggesting that the CNS might use such
a strategy to produce movement simply and effectively.

Results

Overview. We first created a low-dimensional dynamical model that
captured the natural dynamics of the frog hindlimb. The examples
of “passive walkers” that locomote with negligible active control
clearly suggest the utility of such a design principle (17, 18). This
work suggests that some limb movements arise “naturally,” and with
little muscular effort. Using a technique of nonlinear system
balancing we found such a low-dimensional model and then used
this model to identify a set of muscle synergies. By design, these
muscle synergies control the limb’s natural dynamics that are most
relevant for a given task. We next analyzed the structure of the
identified muscle synergies and their correspondence with experi-
mentally derived muscle synergies. We performed the same anal-
yses with a set of muscle synergies specified according to an
alternative hypothesis, that muscle synergies span the range of joint
torques. We then used techniques of optimal control to find the
activations of these synergies necessary to produce a range of
movements. The movements and commands produced using these
muscle synergies were compared with those produced when each
muscle could be activated independently or when the alternate set
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of muscle synergies was used. Finally, we combined the low-
dimensional model and muscle synergies to construct a relatively
simple controller and evaluated the performance of this controller
relative to the full-dimensional nonlinear controller.

Musculoskeletal System. All analyses are based on a physiologically
realistic description of the frog hindlimb, Rana pipiens (see refs. 19
and 20 for details), consisting of the masses and inertias of the
hindlimb skeleton and 13 muscles. The model is a 17-dimensional
nonlinear dynamical system, composed of the activation state of the
13 muscles along with the hip and knee joint angles and velocities,
as summarized in the system’s state equations: dx/dt = f(x,u);y =
Cx, where x is the system’s state (17-dimensional), u is the motor
command (13-dimensional), and y is the system’s output (a 4-di-
mensional vector of the joint angles and velocities). Model details
can be found in the supporting information (SI) Text and ref. 21.

Identifying Low-Dimensional Natural Dynamics of the Hindlimb.
Model-order reduction aims to create simplified descriptions of
dynamical systems. Balanced truncation is one such reduction
procedure, with the goal of identifying a low-dimensional repre-
sentation of a system’s input—output dynamics* (22, 38). System
balancing is based on two properties of dynamical systems. The first
property characterizes how control inputs affect system states and
is summarized by the controllability grammian. The second prop-
erty characterizes how system states affect outputs, summarized by
the observability grammian [grammians are related to but differ
from controllability and observability matrices (23)]. These two
grammians are mathematical descriptions of the amount of energy
in the state variables excited by control inputs (controllability) and
the amount of energy in system outputs excited by the state
variables (observability). Taken together, these properties charac-
terize the input-output dynamics, summarizing how commands
influence system outputs. For nonlinear systems, such as the
musculoskeletal system analyzed here, these grammians can be
estimated empirically by exciting control inputs and system states
and observing the resulting system dynamics (see SI Text and
ref. 22).

We used these two grammians to identify a balanced state
representation,x’ = Tx, where T is the transformation to a balanced
state variable, x'. By using both controllability and observability
grammians in this transformation, the procedure “balances” these
two basic aspects of the system dynamics. In this balanced repre-
sentation, the elements of the state variable are ranked by their
importance in transforming inputs into outputs. The matrix 7 can
then be truncated, resulting in a k-dimensional state variable, z =
Ty x. This low-dimensional state, z, is therefore the representation
that most succinctly captures the limb dynamics relevant for control.

We then estimated the dynamics of the low-dimensional state, z.
We applied pulse commands to each muscle and simulated the
resulting limb trajectories. These trajectories were transformed into
the low-dimensional state variable z and then fit to a dynamical
model of the frog hindlimb: dz/dt = Ay z + By u; y= C z. Limb
trajectories generated by activating each muscle were compared
with estimates produced with the low-dimensional model. The
similarity between these two sets of trajectories was quantified by
the square of the correlation coefficient to obtain the amount of
explained variance (or centered R?). If this model is useful for
specifying control, it should estimate the consequences of motor
commands accurately (i.e., it should be an accurate forward model).
We found that across these output trajectories a 5-dimensional
model predicted the actual trajectories very well (R = 0.99, rms
error of 0.02 rad and 0.12 rad/s). As shown in a later section

*Newman JA, Krishnaprasad PS, Computing balanced realizations for nonlinear systems.
Proceedings of the 14th International Symposium on Mathematical Theory of Networks
and Systems, June 19-23, 2000, Perpignan, France.
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Fig. 1. Muscle synergies identified for the control of natural limb dynamics
and their closest experimental matches. Only those 10 muscles that were both
recorded experimentally and included in the hindlimb model are shown. The
activation strength for each muscle within a synergy is indicated by the bar
height. Each bar in a synergy is normalized by the vector norm of the synergy.
Blue bars are synergies identified by the system-balancing procedures de-
scribed in the text. Red bars are the best-matching experimental synergies.
The 10 muscles are gracilus (GR), semitendinosus (ST), curarlis (CR), gluteus
(GL), tensor facia latae (TFL), iliofibularis (IIf), sartorius (SA), semimembrano-
sus (SM), adductor (ADd), and iliacus internus (lli).

(Assessment of Controller Dimensionality), a low-dimensional con-
troller using 5 synergies performed substantially better than one
with 4 synergies and was only marginally worse than a controller
with 6 dimensions. We therefore present the results obtained by
using a 5-dimensional representation.

Identifying Muscle Synergies for Controlling the Limb's Natural Dy-
namics. The above analyses result in a low-dimensional model of the
frog hindlimb that captures the dynamics most relevant for con-
trolling a particular task variable. In this model, the matrix By
characterizes how control variables u (muscle excitations) affect the
low-dimensional state variable z. By therefore defines combinations
of muscle excitations that are most important in exciting the natural
limb dynamics. Because By, has a null space, only a small number of
such muscle combinations will affect the low-dimensional dynam-
ics; any motor commands in the null space will only minimally excite
the natural limb dynamics. A low-dimensional controller therefore
utilizes a lower, k-dimensional control signal, which consists of
combinations of the original high-dimensional control inputs. These
combinations correspond to a set of muscle synergies that, by
design, will be those that best excite the natural dynamics of the limb
(referred to as ND synergies). The choice of these muscle synergies
is further constrained: because muscles cannot push, the muscle
synergies should allow for only nonnegative motor commands. The
set of ND synergies was found by using an iterative optimization
based on these criteria (see Methods).

The identified ND synergies are shown in Fig. 1. In general, these
synergies had a focused action on a particular joint of the limb. For
instance, synergy 3 consists mainly of gracilus (GR) and semimem-
branosus (SM), which are both hip extensors. Similar muscle
combinations can be seen for the other synergies, suggesting that
the system-balancing techniques created a biomechanically reason-
able decomposition of the hindlimb musculature. Note, however,
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that this decomposition was not obvious a priori because most
muscles in the hindlimb span multiple joints, making it difficult to
classify the action of each muscle. Thus, the principle proposed here
was capable of identifying a set of muscle synergies that were
sensibly, but not trivially, related to the biomechanical properties of
the limb.

We compared these ND synergies with muscle synergies found
experimentally across jumping and swimming behaviors in intact
frogs (24). Synergies were combined across behaviors and animals
to create a large set of experimentally observed synergies (45
synergies observed across 4 frogs). Inner products between ND
synergies and experimental synergies were computed to quantify
similarity. An inner product of 0 or 1 indicated two dissimilar
synergies or two identical synergies, respectively. In Fig. 1, the most
similar experimental synergy is presented for each of the ND
synergies, showing a high similarity between the two sets of
synergies. To interpret the magnitude of this similarity, we com-
pared it with the distribution of similarities expected by chance (see
SI Text), expressing the observed similarity in terms of the standard
normal variable, Z. Thus, if Z was 1.0, it would indicate a similarity
that was 1 standard deviation from the expected value. For each of
the comparisons shown in Fig. 1, the Z value was >2 (corresponding
to P < 0.025). However, because of the large number of compar-
isons made here (with 45 experimental synergies), these values were
not significant after a Bonferroni correction.

To evaluate these results further, we performed the same anal-
yses with a set of muscle synergies specified according to an
alternative hypothesis. These alternate synergies were designed to
span the range of joint torques (referred to as JT synergies). Under
this hypothesis, the motivation for a set of muscle synergies is to
ensure that joint torques can be produced in all directions (see
Methods). Such a hypothesis is related to the “feasible force sets”
raised in considerations of muscle actions (25, 26). For each JT
synergy, we found the most similar experimental synergy (see Fig.
S1) and calculated the standard normal variable Z. We then
assessed whether the ND synergies were more similar to experi-
mental synergies than were these JT synergies. The average Z values
for the ND best-matched synergies were significantly larger than
those of the JT best matches (2.3 = 0.2 and 1.8 = 0.4, respectively,
P < 0.05). These results suggest that the principle proposed here for
specifying muscle synergies in terms of the limb’s natural dynamics
might be similar to the coordination strategies used by the CNS to
specify the synergies underlying natural behaviors.

Evaluating Low-Dimensional Control Based on Muscle Synergies. The
primary goal of this study was to evaluate our hypothesis that a
low-dimensional controller based on exploiting natural dynamics
would allow for simple but effective motor control. The muscle
synergies identified in the previous section should be well suited to
this goal. Therefore, our first step was the evaluation of these
synergies for control. We examined the movements produced using
a controller based on ND muscle synergies and compared them
with movements produced by alternate controllers (Fig. 2). For
each controller, we found the commands (either muscle activations
or synergy weights) necessary to produce movement to a target
while minimizing a specified cost (see Methods).

For the first controller, we assumed that each muscle could be
activated independently and that the full-dimensional state was
known (controller 1 in Fig. 2). The movements produced by this
controller represented the best possible performance of the system,
in that all potential control signals could be used. In the second
controller, the ND muscle synergies were used to control the
hindlimb (controller 2 in Fig. 2). This is the simplest version of a
low-dimensional controller: it has accurate, full-dimensional state
information but only affects the limb through low-dimensional
muscle synergies. If this controller is effective, its performance
should be similar to that of the best-case controller.

We found that the performance of the two controllers was very

Berniker et al.
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Fig. 2. lllustration of the different controller designs considered. (Top)
Full-dimensional controller with access to the full state of the system, which
can activate each muscle independently (best-case controller). (Middle) Con-
troller with access to the full state but that activates muscles through syner-
gies. (Bottom) Low-dimensional controller (LDC) with access to a low-
dimensional state variable and that uses muscle synergies, thereby simplifying
control even further.

similar. Fig. 34 shows the trajectories produced by the controller
using ND synergies and those produced by the best-case controller.
As can be seen qualitatively, the trajectories produced by the
controller using ND synergies were very similar to those of the
best-case controller. We quantified this similarity by the amount of
explained variance between the best-case controller’s trajectories
and the ND controller’s trajectories. As can be seen (Fig. 44), the
ND synergies performance was very similar to that of the best-case
controller. We also evaluated this similarity by calculating the rms
error between the trajectories produced by each controller. The rms
errors between the two controllers’ trajectories (joint angles and
joint velocities) averaged across the six movements were 6.8 X 1073
+23x103radand 2.9 X 1072 = 1.0 X 1073 rad/s. The commands
produced by using the ND synergies were also very similar to those
produced by using the best-case controller (see Figs. 3B and 4B; the
average rms error was 2.1 X 1073 = 1.8 X 1073). This similarity
demonstrates that the control strategy using only the ND synergies
results in performance that is close to the best that the system can
perform. These results also demonstrate that a simplified low-
dimensional controller, using only 5 command variables (of the 13
possible), allowed for effective motor control with little degradation
from optimal performance.

We then evaluated whether the efficacy demonstrated with the
controller based on ND synergies would be observed with a
controller based on an alternate set of synergies. This alternate
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for the best-case controller are displayed in each panel (black traces). (A) Optimal limb trajectories for the ND (red) controller (best-case trajectories in black).
(Inset) Hindlimb orientation. (B) Thirteen muscle commands for the ND (red) controller and best-case controller (black). (C) Optimal limb trajectories for the JT
(blue) controller. (D) Thirteen muscle commands for the JT (blue) controller. (E) Optimal limb trajectories for the low-dimensional controller (LDC) (green). (F)

Thirteen muscle commands for the low-dimensional controller (green).

controller had the same restricted controller dimension as the
second controller but was based on JT synergies (controller 3 in Fig.
2). If the principle proposed here for choosing muscle synergies is
a good design principle for low-dimensional control, the ND
synergies should perform better than this alternate set of synergies.

The trajectories produced by using the JT synergy-based con-
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Fig. 4. Comparison of the performance of controllers in relation to the
best-case controller. The amount of explained variance (centered R?) was used
to calculate the similarity of the trajectories (A) and commands (B) for each
controller to those of the best-case controller. Values are averaged across the
six trajectories. Horizontal bars indicate values that are significantly distinct.

7604 | www.pnas.org/cgi/doi/10.1073/pnas.0901512106

A
B

GR I A

sd |

STv ! a

@ |

GL |

TFL ,[ —

ILf I N ILf i

sa | sa |

sm | R SM | ~ R

ADdl ADdr

ADv| ADv |

ILe | ILe I_X

. — ILi | . |

0 1.0 0 1.0 0 1.0
Fig. 3. Performance of the four controllers. For comparison, the optimal limb trajectories and commands (for the movement to target 1, the topmost target)

-
=

troller are displayed in Fig. 3C. In general, these trajectories were
qualitatively similar to those of the best-case and ND controllers.
However, there was a small decrease in performance, as seen in a
few trajectories (e.g., the up-left and down-right movements in Fig.
3C). As shown in Fig. 44, this difference was significant, with the
trajectories produced by the JT controller being less similar to the
best-case controller than those produced by the ND controller (P <
0.005). The degraded performance of the JT controller was even
greater when comparing controller commands. These commands
are shown in Fig. 3D, indicating clearly that the JT controller
commands were very different from those of the best-case control-
ler. The variance explained in the commands using the JT synergies
was lower (P < 0.005) than that explained by the ND synergies (see
Fig. 4B). The averaged rms errors between the best-case and JT
trajectories were 1.8 X 1072 = 8.8 X 1073 rad and 7.5 X 1072 =
3.6 X 1072 rad/s, whereas the averaged rms error in commands was
22X 1072 = 1.5 X 10~2. Comparing these numbers with those of
the ND controller further demonstrates a degraded performance.
Thus, not any set of muscle synergies allows for effective control: the
synergies designed according to the principle proposed here are
especially effective.

The above controllers differ only in how they command the
musculature, either activating individual muscles (best-case con-

Berniker et al.
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Fig. 5. Assessment of controller dimensionality. The similarity to the best-
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low-dimensional controller when its dimension was varied between 4 and 6 is
shown. Note that these low-dimensional controllers correspond to controller
4 of Fig. 1, in which both state and control variables are low-dimensional.
Horizontal bars indicate values that are significantly distinct.

troller) or activating muscle synergies (controllers using ND and JT
synergies). Each controller, however, acts with knowledge of the
full-dimensional state of the hindlimb. Controlling this high-
dimensional state still presents significant computational difficul-
ties. We therefore evaluated the efficacy of a fourth controller that
used the ND muscle synergies in combination with the low-
dimensional model of the hindlimb’s natural dynamics, rather than
the full-dimensional hindlimb state (controller 4 in Fig. 2). The
resulting low-dimensional controller is both low-dimensional in
state and command, removing the full-dimensional nonlinear sys-
tem from the control loop and greatly simplifying the control
problem. We compared the performance of this controller with that
of the best-case controller and the two synergy controllers (ND and
JT) described above. Fig. 3E shows that the trajectories produced
by this final low-dimensional controller were qualitatively similar to
those produced by the best-case controller. Furthermore, the
variance explained in the best-case trajectories with this controller
was not different from the ND case (P > 0.05, Fig. 44). The
averaged rms errors from the best-case results were 2.1 X 1072 +
2.9 X 1073 rad and 5.2 X 1072 = 1.9 X 1072 rad/s. However,
inspection of these trajectories indicates small discrepancies. These
discrepancies are not unexpected because the controller only has
access to the approximate limb state. Small approximation errors
will accumulate over time, leading to increased discrepancies by the
end of the movement. However, commands produced by this
controller were very similar to those produced by the best-case
controller (see Fig. 4B), in contrast to the commands produced by
the JT controller. The low-dimensional controller commands were
also very similar to those used by the ND controller. Both in terms
of explained variance and rms errors (2.4 X 1073 = 1.9 X 1073)
these commands were not different from the controller using ND
synergies with full-state information (P > 0.05, compare Fig. 3 B
and F and Fig. 4B).

Assessment of Controller Dimensionality. We also evaluated how the
performance of the low-dimensional controller was affected by
choosing different dimensions. This evaluation was performed by
using the controller with both a low-dimensional state representa-
tion and a low-dimensional set of muscle synergies (controller 4 of
Fig. 1). We found that reducing the number of dimensions from 5
to 4 resulted in a substantial degradation in controller performance
(Fig. 5). In contrast, increasing the number of dimensions from 5 to
6 did not result in a significant increase in controller performance
in terms of trajectories (P > 0.05, Fig. 54), although there was a
slight increase in performance in terms of commands (P < 0.01, Fig.
5B). Thus, a 5-dimensional representation offered the best tradeoff
between simplifying control and maintaining efficacy.

Discussion

The basic hypothesis of using a flexible combination of a small set
of motor commands for control has been proposed to explain
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behaviors ranging from simple reflexes to complex voluntary
movements (e.g., 8, 27, 28). However, the feasibility of such a
low-dimensional controller and an underlying principle for its
creation has remained elusive. In this study we proposed an explicit
principle for this design: that it controls the natural dynamics of the
limb that are relevant for the task being performed. The system-
balancing techniques formalized this principle, allowing us to
simplify the original high-dimensional, nonlinear system to a low-
dimensional linear system and a set of synergies to control it. We
then showed that these synergies were capable of effective control,
establishing the viability of this muscle synergy hypothesis. We also
showed that not any set of synergies allowed for effective control.
Finally, by combining the low-dimensional model and the muscle
synergies we were able to build a relatively simple controller whose
performance was close to that of the best-case controller. The
simplification afforded by this low-dimensional controller was
evident in our analyses: solving the full-dimensional nonlinear
optimal control problem by using Matlab required many hours to
find a solution, whereas the low-dimensional optimal control prob-
lem took only seconds to solve. Taken together, these results
establish that a low-dimensional controller is capable of simplifying
control without degrading performance.

Inspection of the identified synergies showed that they created a
sensible biomechanical decomposition of the musculature, with
synergies focusing their actions on particular joints. We also found
that these synergies were similar to some of those found during
natural behaviors, whereas an alternate set of synergies, designed to
span the space of joint torques, was less similar. This result was
surprising, given the simplifications involved in the creation of any
musculoskeletal model and the difficulty in comparing model and
experimental results. These results suggest that the CNS might use
a similar low-dimensional control strategy for generating
movement.

The low-dimensional controller was developed in the context of
controlling a particular output variable, that of the motion of joint
angles. The system-balancing technique takes into account how
control inputs are transformed into task outputs. The low-
dimensional controller was therefore best suited for control of joint
angle motion. If we had chosen a different output variable, such as
the ankle motion or isometric force, the analyses used here would
have resulted in a different controller and muscle synergies. This
task dependence of muscle synergies is consistent with the finding
of partial overlap between synergies across different behaviors in
the frog (24, 29). We emphasize that this low-dimensional control-
ler will not necessarily be the best for all possible behaviors. The
creation of a low-dimensional state representation necessarily im-
plies that aspects of the system dynamics that are not task-relevant
will be excluded. Some aspects of the original system will therefore
be estimated inaccurately by the low-dimensional representation.
This can be viewed as both a limitation and an advantage. A single
low-dimensional controller will not be adequate for all behaviors.
However, low-dimensional controllers can be designed to simplify
different behaviors independently, exploiting the flexibility of limb
biomechanics to accomplish a range of behaviors effectively.

A related issue is that we compared controllers on a relatively
idealized task: the production of point-to-point movements that
minimized endpoint error and control effort. Such cost functions
are common in motor control, and studies suggest that they are
relevant in the production of movements (e.g., 30). However, the
evaluation performed by the CNS might be whether or not the
particular set of tasks it needs to produce are accomplished
successfully, such as removing a noxious stimulus or escaping from
a predator. For these behaviors, it is not necessarily the case that
animals need to move their limb to arbitrary locations. Moreover,
in such behaviors the accuracy of trajectories is not necessarily
important: as long as the task is accomplished, the movement is
effective (31). It is possible that if we had used a different evaluation
criterion, such as the accomplishment of tasks that are ethologically
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relevant, we might have found different results and potentially
different synergies. It will be interesting to examine whether it is
possible to develop low-dimensional controllers in the context of
more natural behaviors.

Although low-dimensional controllers might arise naturally in
the context of optimal control solutions (32-34), finding such
solutions for high-dimensional, nonlinear systems (like the muscu-
loskeletal system examined here) can be very difficult. In contrast,
the techniques used here can be applied without initially solving the
full optimal control problem. In this context, the CNS might use
low-dimensional representations and muscle synergies to simplify
the solution of high-dimensional optimal control problems. Such an
idea is related to hierarchical controllers that have been proposed
in which the CNS might use abstracted internal models of limb
dynamics to translate task demands into motor commands (35-37).

In summary, the present study provides a concrete principle for
specifying a low-dimensional controller: that it should be focused on
the natural dynamics of the limb that are task-relevant. Given the
prevalence of experimentally observed low-dimensional features in
motor behaviors, this design principle may be useful for obtaining
insights into biological motor control. Furthermore, given the
empirical aspects of the approach described here, this principle may
be useful for the design of artificial strategies for biological motor
control, such as those used to restore movement after injury.

Methods

For the ND and JT synergies, we found a set of nonnegative muscle synergies, W,
such that the commands could be expressed as u(t) = 3; w; ci(t) where each w; is
a column of W and can be interpreted as a muscle synergy. All values of W were
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constrained to be nonnegative, and ci(t) is the nonnegative command for the ith
synergy. The ND synergies were chosen such that the range of possible low-
dimensional limb dynamics could still be effectively excited while allowing for
only nonnegative control inputs, u(t). This W was derived through an iterative
algorithm (see S/ Text). To create the JT synergies, we searched for k muscle
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from those designed to optimize the feasible force set. Each controller was
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solved with the Matlab boundary value problem solver, bvp4c (see S/ Text and Fig.
S2). All statistical analyses were performed at the 0.05 significance level, unless
stated otherwise, with Bonferroni corrections to account for multiple tests. Tests
of multiple means were performed with an ANOVA followed by post hoc
Bonferroni-adjusted t tests.
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