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A central issue in motor control is how the central nervous system generates the muscle activity
patterns necessary to achieve a variety of behavioral goals. The many degrees of freedom of the
musculoskeletal apparatus provide great flexibility but make the control problem extremely complex.
Muscle synergies—coherent activations, in space or time, of a group of muscles—have been proposed
as building blocks that could simplify the construction of motor behaviors. To evaluate this hypothesis,
we developed a new method to extract invariant spatiotemporal components from the simultaneous
recordings of the activity of many muscles. We used this technique to analyze the muscle patterns of
intact and unrestrained frogs during kicking, a natural defensive behavior. Here we show that
combinations of three time-varying muscle synergies underlie the variety of muscle patterns required
to kick in different directions, that the recruitment of these synergies is related to movement kinemat-

ics, and that there are similarities among the synergies extracted from different behaviors.

A key question in the study of neural control of limb movement
is how the CNS coordinates the large number of degrees of free-
dom of the musculoskeletal system and overcomes the complex-
ity of limb dynamics to achieve a variety of behavioral goals!. In
many circumstances, the CNS cannot rely on sensory feedback?,
but must use an open-loop control law to generate appropriate
muscle patterns. Implementing such a controller, however, pre-
sents a great computational challenge because it requires map-
ping a potentially infinite number of different goals onto an
infinite set of muscle patterns. An efficient solution might be
achieved by representing all useful muscle patterns as combina-
tions of a small number of generators. This would reduce the
dimensionality of the problem and allow sharing of neural cir-
cuitry across many tasks. Indeed, the idea that the CNS might
simplify the control problem by combining discrete elements is a
long-standing one in motor neurophysiology. Reflexes®, unit burst
generators®, spinal force fields>” and muscle synergies®® have
each been proposed as possible building blocks. The challenge,
however, has been to establish the existence of these conjectured
building blocks and their role in the construction of natural
motor behaviors. Specifically, most of the evidence for discrete
elements derives from experiments with spinalized or decere-
brated preparations. The behavior of these preparations lacks the
complexity and variability typical of an intact animal interact-
ing with an environment to achieve meaningful behavioral goals.

Here we address this limitation directly by examining a natural
behavior of intact, freely moving animals. We characterized the
organization of the controller by identifying features in the motor
output that were invariant across the entire repertoire of move-
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ments of a natural motor behavior. In particular, we investigated
the existence of a small set of muscle synergies!®!! as generators
for the entire set of muscle patterns. We tested a specific model for
the construction of muscle patterns from muscle synergies, and
from our findings, we propose that the fundamental building
blocks are time-varying muscle synergies (coordinated activa-
tions of groups of muscles with specific time-varying profiles).
An individual time-varying muscle synergy can be thought of as
a fixed motor program. Extending this idea, we further propose
that muscle patterns are constructed by combinations of time-
varying synergies that are independently scaled in amplitude and
shifted in time. The simultaneous and independent recruitment
of different synergies provides the flexibility necessary to capture
the variability of the muscle patterns involved in a natural behav-
ior. As it imposes specific spatiotemporal profiles on the genera-
tors and thus explicitly predicts the temporal structure of the
muscle patterns, this model differs from other recently proposed
synergy combination models®*.

To identify a set of time-varying muscle synergies from the
entire set of muscle patterns recorded during defensive kicking,
we developed a new decomposition algorithm!2. Here we show
that a large fraction of the variation in the muscle activity pat-
terns used for kicks in different directions is described by com-
binations of three time-varying muscle synergies. Moreover, the
recruitment of two of these synergies is modulated across differ-
ent kicks, and these modulations reflect systematic changes in
the kick kinematics. These results suggest that a small set of dis-
crete elements underlie the generation of a variety of behaviorally
significant movements.
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Fig. 1. Time-varying synergies model. In this simulated example, two time-varying synergies (a) are scaled in amplitude and shifted in time (b),
and then combined to construct two different patterns (c). (a) The rows in each synergy (W, and W,) represent the activation time courses of
the three muscles (m, to mj3), with the amplitude, shown in color code, normalized within each synergy to the value of the maximum sample.
The profile in the box below each synergy represents the time course of the synergy averaged across muscles. (b) To generate a specific muscle
pattern, every muscle in each synergy is first scaled in amplitude by a non-negative coefficient (c, in the illustration representing the time course
of the three muscles of W) and shifted in time by an onset delay (t,). The three curves in a box represent W, before (dashed traces) and after
(solid traces) scaling and shifting. (c) The elements of the first synergy (magenta shaded area) are then summed together with corresponding ele-
ments of the second synergy (green shaded area) to generate the complete pattern (solid line). In this illustration, the amplitude coefficients (c,
and ¢;) are represented as the height of the rectangles below the muscle patterns, and the onset delays (t; and t,) are represented by the hori-
zontal position of the left edge of the rectangle.

REsuLTS

Time-varying synergies model

We modeled the generation of muscle patterns as linear combi-
nations of time-varying synergies, that is, time-varying profiles of
muscle activity, that were recruited with variable intensity and
with variable onset time. To illustrate the model, we show a sam-
ple reconstruction of two different patterns that involve three
muscles as combinations of two simulated time-varying syner-
gies (Fig. 1). Each synergy (W, and W, in Fig. 1a) represents the
time course of the activation level for the three muscles (m, to
m;3). To generate specific muscle patterns (Fig. 1c), each syner-
gy is first scaled in amplitude by a non-negative coefficient (c;
and ¢,) and shifted in time by an onset delay (f; and ¢,), and then
the elements corresponding to the same muscle and time sam-
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ple in different synergies are summed together (Methods). Given
one set of synergies, a variety of different patterns can be gener-
ated by choosing different amplitude and delay coefficients.

Synergies in frog kicking
We tested this model on a large set of muscle patterns recorded
simultaneously from 13 hindlimb muscles in four frogs during
kicking. After cutaneous stimulation of the foot, we observed a fast
extension of one limb with the other limbs and the body stationary
and a flexion repositioning the limb in a crouched resting posture.
At the point of maximum extension, the ankle reached different
positions—medial, caudal or lateral to the starting position.

We extracted a single set of time-varying synergies from the
entire set of electromyographic (EMG) patterns from 239 kicks

Number of synergies

Fig. 2. Selection of the number of synergies. (a) Cross-validation procedure. For each number of synergies, the extraction is performed on a ran-
domly selected 80% of the data, and the reconstruction tested on the remaining 20% of the data. Mean and standard deviation of the fraction of total
variation (R?) of five disjoint test sets explained by the synergies extracted from the remaining data is shown. The slope of the curve changes sharply
at three, indicating that four or more synergies capture only a small additional fraction of the total variation in the data explained by three synergies.
(b) Similarities between sets with different numbers of synergies. The nodes on each row of the pyramid represent the synergies extracted from sets
with a number of elements ranging from | to 6. The links between the nodes in two adjacent rows connect synergies that are similar (similarity value
above 0.6, with the value computed as the maximum of the normalized scalar product at different delays; Methods). The degree of similarity is indi-
cated by the thickness and darkness of the link and the value shown close to each link.
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Fig. 3. Three time-varying synergies extracted from the entire kicking
dataset. The first three columns (W, to W3) represent the three
extracted synergies as color-coded (same scale as in Fig. I) activation
time course of |3 muscles over 30 samples (300 ms total duration) nor-
malized to the maximum sample. The three synergies capture different
features of the kicking muscle patterns: W, and W, show an high level
of activation, especially in extensor muscles (in particular the hip exten-
sor Rl and SM for the first synergy and the knee extensor VI and VE for
the second). Mostly flexor muscles (IP, ST, TA, SA, BI) are recruited in
W;. The fourth column indicates the sign (flexion or extension) of the
moment arms around hip, knee and ankle joints of the |3 muscles
included in each synergy (HE: hip extension; HF: hip flexion; KE: knee
extension; KF: knee flexion; AE: ankle extension; AF: ankle flexion).

using a decomposition procedure based on an optimization algo-
rithm!?. Starting from random initial conditions, the algorithm
finds a set of synergies and coefficients that minimize the total
reconstruction error by iterating three different steps (Methods).

We selected the number of synergies according to two cri-
teria. First, we used a cross-validation procedure!® to deter-
mine at which point the model begins to fit statistical
fluctuations more than capturing structure in the data. We
computed the fraction of total variation (R?) explained in 20%
of the data by the synergies extracted from the remaining 80%
of the data as a function of the number of synergies (Fig. 2a).
This curve has a sharp change in slope at three synergies, indi-
cating that sets with four or more synergies explain only a small
additional fraction of total variation in the data captured with
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three synergies. Second, we compared sets with increasing
number of extracted synergies to assess whether adding a syn-
ergy induces changes in the entire set (Fig. 2b). This graph
shows which pairs of synergies had a similarity above 0.6
(Methods). The nodes in the graph are connected by diagonals
made of high-similarity links, indicating that all the synergies
extracted from a set with N synergies are essentially preserved
in the set with N + 1 synergies. This fact ensures that the analy-
sis performed choosing a particular set will be consistent with
the analysis based on larger sets. Therefore, considering the
cross-validation R? curve, we chose three synergies.
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Fig. 4. Synergies extracted from individual animals. (a) Comparison between the three synergies extracted using the data pooled from four frogs
(black trace, same synergies of Fig. 3), with the synergies extracted from individual frogs (red trace, f10, n = 86; blue trace, fl I, n = 33; green trace,
fI5, n = 18; magenta trace, fl7, n = 102). Each synergy extracted from an individual frog is grouped and aligned with the most similar synergy in the
set extracted from the pooled data. (b) Similarities between synergies from pooled and individual frogs. Each one of the four plots shows the similar-
ities between the three synergies extracted from pooled data with the best matching synergies extracted from one frog (open diamonds) and the sim-
ilarities between the best matching pairs of random synergies (filled circles, mean * s.d.) out of two sets generated according to the amplitude

distributions of the two corresponding datasets (Methods).
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The R? for the three synergies extracted from the entire dataset
was 0.65. Thus, a large fraction of the total variation of the data
was described by a model that, once the synergies are determined,
has just six parameters (three amplitudes and three timing coef-
ficients) for each kick. In comparison, the reconstruction of the
same dataset with three randomly generated time-varying syn-
ergies (Methods) was much poorer (R? = 0.19 + 0.02).

The three extracted synergies (Fig. 3) include by definition
all 13 muscles and comprise 30 samples, corresponding to
300 ms of electromyogram (EMG) recording. The first two syn-
ergies (W, and W, in Fig. 3) represent short bursts of various,
mainly extensor, muscles. The third synergy (W) describes
instead longer bursts involving mainly flexor muscles. The mus-
cle composition and the temporal structure of these synergies
suggest a functional specificity: the first two synergies appear
to be responsible for the faster extension phase of the kicks and
the third synergy for the flexion phase. Of the two extension
synergies, the first involves mainly hip extensor muscles and
the second mainly knee extensors.

Comparison across animals

The synergies described above were extracted using the data
pooled from four frogs. We next tested whether the same syner-
gies were consistently extracted from individual animals. The
synergies extracted from each individual frog (Fig. 4a, colored
lines) are generally very similar to each other and to the syner-
gies extracted from the pooled data (Fig. 4a, black line, same syn-
ergies as in Fig. 3), with the exception of one frog (green line)
whose synergies were extracted from the smallest of the four data
sets. The degree of similarity between the synergies extracted
from the pooled data and the synergies extracted from the indi-
vidual frogs (open diamonds in Fig. 4b) is much higher than the
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Fig. 5. Reconstruction of kick muscle patterns as combinations of time-
varying synergies. (a) Three different patterns (rectified, filtered and inte-
grated EMGs, i to i, thin line and shaded area) are reconstructed by scaling
in amplitude, shifting in time, and summing together the three synergies
extracted from pooled data (thick line). Scale bar, 100 ms.
(b) The amplitude coefficients (c, to c3) for the three kicks in (a) (I, 3 and
6) and three other kicks are illustrated as the height of three rectangles,
whereas the horizontal position of the rectangles represents the position
in time of the synergies with respect to the extent of the muscle pattern
(gray background). The profiles within each rectangle represent the time-
course of the synergies averaged over the |3 muscles. The three examples
in (@) show how the first two synergies are independently combined to
generate different kicks: the first synergy and not the second is recruited
for a medially directed kick (i and I), involving mainly hip extension; the
second synergy and not the first is recruited for a lateral kick (iii and 6),
obtained with a knee extension; a caudal kick (ii and 3), involving both a
knee and a hip extension, is constructed by a combination of the two syn-
ergies. A systematic modulation of amplitude and timing of the recruitment
of the first two synergies can be seen in the six examples shown in (b).

degree of similarity between randomly generated synergies (filled
circles in Fig. 4b and Methods), confirming the above qualita-
tive observation of highly consistent synergies across animals.

Reconstruction of muscle patterns

In three representative examples, the essential features of the
observed EMG patterns (Fig. 5a, thin line and shaded area) are
well reconstructed by scaling in amplitude and shifting in time
the three time-varying synergies (Fig. 5a, thick line). The first
pattern (left column i), recorded during a medially directed kick
involving hip extension and some knee flexion, is constructed by
combining the first and the third synergy (Fig. 5b, column 1).
The second synergy is not recruited for this kick. In contrast, the
third pattern (Fig. 5a, right column iii), producing a lateral kick
consisting of a knee extension, is constructed by the combina-
tion of the second and third synergies with a minimal contribu-
tion from the first synergy (Fig. 5b, column 6). These two
examples suggest that the first two synergies can be independently
added to the third synergy to generate different patterns. The sec-
ond example (Fig. 5a, middle column ii), a pattern observed in a
caudally directed kick involving hip and knee extension, shows
that the recruitment of the first two synergies is not exclusive,
but they can be activated together (Fig. 5b, column 3).

A gradual transition from a pattern with only the first and
third synergies to one with only the second and third synergies
can be seen considering additional examples (Fig. 5b). In addition
to a clear modulation of the synergy amplitudes, these examples
also show a modulation of the synergy onset times, shifting from
an onset of the first synergy before the second synergy (columns
1 to 3) to an onset of the second synergy before the first synergy
(columns 5 and 6). Moreover, the consideration of the direction
of these kicks suggests a functional significance for this modula-
tion of the recruitment of the two extension synergies: the kick
direction shifts from medial (hip extension) to caudal (hip and
knee extension) to lateral (knee extension) as we progress from
the first to the last example.

Synergy recruitment and kick kinematics

To investigate the functional role of the two extension synergies,
we studied systematically the relationship between their recruit-
ment and the kick kinematics. We measured the joint angles from
digitized video frames and characterized the kick kinematics with
a vector representing the displacement in the hip—knee plane from
the initial limb position to the end of the extension phase. Both
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Fig. 6. Relationship between kick kinematics and recruitment of two synergies. (a) Relationship between kick kinematics and synergy activation coef-

ficients. The displacement vector in the hip-knee plane from initial position
kicks recorded in four frogs. The coordinates of the arrow’s tail indicate the

to maximum extension is represented as an arrow for each of the 239
amplitude coefficients (c; and ¢;,) of the first two synergies (W, and W,

in Fig. 3) used in the reconstruction of each kick. (b, ¢) Dependence of synergy recruitment on kick direction. The logarithm of the ratio of ¢| over

¢, (b) and the difference of the onset time (c) between the second and the fi

rst synergies (t, — t|) for kicks with ¢, and ¢, above their 10% percentile

(n=191) is averaged (mean * s.e.m.) in ten bins of the angle of kick direction in the hip—knee plane with respect to the pure hip extension direction

(0°; a pure knee extension corresponds to a 90° angle).

the direction and the magnitude of the displacement vectors
depend on the level of activation of the two synergies (Fig. 6a). In
particular, the direction of the displacement vector and hence the
direction of limb movement depends on the relative amount of
the synergy activation coefficients (¢, and c,). To quantify this, we
computed the average of the logarithm of the two activation coef-
ficients over ten bins of the displacement vector direction (Fig. 6b).
Kicks characterized by hip extension with some knee flexion or
knee extension (first five bins in Fig. 6b) have on average ¢; > ¢,
(positive logarithm). When the amount of knee extension is
increased, the ratio shifts (bins six and seven) toward the opposite
balance of synergy activation. Kicks with mainly knee extension
(last three bins) have a much larger ¢, than ¢, (negative logarithm).

We also studied the relationship between kick kinematics and
temporal recruitment of the two extension synergies. As sug-
gested by the examples above (Fig. 5b), we observed a systemat-
ic shift of the difference in the synergy activation delay with
changes in kick direction. The average delay difference over ten
bins of the displacement vector direction shifts from positive (W,
after W) for kicks with large hip extension to negative (W, before
W,) for kicks with large knee extension (Fig. 6¢).

Comparison with other behaviors

We next investigated whether the synergies extracted from kick-
ing are used in the control of other natural behaviors. We com-
pared the three synergies extracted from kicks with the synergies
extracted from three other behaviors. We collected EMGs during
487 jumps, 1,409 swimming cycles and 297 walking cycles in the
same three frogs. Unlike the kicking behavior, we found that jump-
ing, swimming and walking muscle patterns were best described
by four synergies. For each of the six pairs of behaviors, we com-
pared the similarities between the best matching pairs of synergies
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extracted from two different behaviors with the similarities between
the best matching pairs of random synergies (Fig. 7). We generat-
ed random synergies according to the amplitude distribution of
the individual muscles in each behavior (Methods). We first com-
pared the three synergies extracted from kicking (Fig. 3) with the
synergies extracted from jumping, swimming and walking (Fig. 7,
first row of plots). The third synergy extracted from kicking (W5)
has a high similarity with one of the synergies extracted from jump-
ing (0.88) and one of the synergies in walking (0.95). Moreover,
the first synergy in the kicking set (W) has a moderate similarity
with one of the synergies in swimming (0.71). Of the six remaining
comparisons between the synergies extracted from kicking and the
synergies from other behaviors, in four cases, the similarity is high-
er than between random synergies. These comparisons indicate
that there are significant similarities among the synergies extract-
ed from kicking and from different natural behaviors and suggest
that at least one kicking synergy is shared across tasks.

Further evidence for sharing of synergies across behaviors
came from comparing the synergies extracted from jumping,
swimming and walking (Fig. 7, second row of plots). A similari-
ty above 0.73 was found for three out of four synergy compar-
isons in jumping versus swimming and in jumping versus
walking. In the case of swimming versus walking, only two out
of four pairs showed a similarity above 0.73. For the remaining
four pairs with a similarity below 0.73, two showed a similarity
higher than between random synergies. Taken together, these
results suggest that a number of muscle synergies are shared in
the control of different natural motor behaviors.

DiscussioN
We have shown that the variety of muscle patterns underlying
the control of a natural behavior in an intact animal can be recon-
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Fig. 7. Comparison among synergies extracted from kicking, jumping, swimming and walking. Each plot shows the values of the similarity (Methods)
between the best matching pairs of synergies in each one of the six pairs of behaviors. The three plots in the first row show the similarities (open dia-
monds) between the three synergies extracted from kicking (W, to W3 of Fig. 3) and three out of the four synergies extracted from jumping, swimming
and walking, and the similarities between the best matching pairs of randomly generated synergies (filled circles, mean * s.d.). The plots on the second
row show the similarities (open diamonds) between the four best matching synergy pairs among jumping, swimming and walking, ordered according to
their degree of similarity, contrasted to the similarities between the best matching pairs of randomly generated synergies (filled circles, mean * s.d.).

structed as combinations of a small number of discrete elements.
These elements, time-varying muscle synergies, capture the
invariant spatio-temporal structure present in the patterns. That
is, they are components shared among different patterns that
each represent a specific activation level and time-course of a
group of muscles. Because of this decomposition, we were able
to describe the differences across the patterns observed during
individual trials of kicking simply as differences in the amplitude
scaling and time delaying of three time-varying synergies. We
found that the level and time of recruitment of two of the three
synergies were systematically modulated in relation to the move-
ment kinematics. In particular, the amount of hip and knee
extension was related to both the amplitude ratio and the tim-
ing difference of the two synergies. Finally, we found similarities
among the three synergies extracted from kicking and the syn-
ergies extracted from three different behaviors.

Our decomposition method is novel because it extracts a
set of time-varying generators that can be independently shift-
ed in time. Other decomposition methods, either linear
(PCA'™, ICA'>16) or with non-negative constraints®!7, can
extract a set of generators only in the spatial domain; that is,
they can only represent synchronous muscle synergies. These
methods can also extract time-varying synergies if samples at
different times are treated as additional spatial dimensions, but
these synergies will all have the same latency and cannot be
shifted in time independently.

nature neuroscience * volume 6 no 3 * march 2003

We have extracted a set of synergies whose combinations
reconstruct the entire set of observed muscle patterns. A small
number of components is sufficient to explain a large fraction of
the variation in the observed data, indicating that the data lie in
a low-dimensional space. This result represents a remarkable sim-
plification in view of the high dimensionality of the space of all
possible time-varying muscle patterns. One potential explana-
tion for this observed low-dimensionality might be the existence
of constraints on the muscle patterns deriving from the specific
movements required by the task. However, we think that it is
unlikely that the observed dimensionality reduction simply aris-
es from task-dependent constraints. First, even for a simple
behavior described by a single parameter (such as kick direction),
the set of muscle patterns capable of generating the entire move-
ment repertoire need not be embedded in a low-dimensional
space. Given the redundancy of the musculoskeletal system, the
same goal can be achieved by different movements, and the same
movement can be generated by different muscle combinations,
for example with different levels of co-contraction around a joint.
Therefore, already the set of muscle patterns associated to a sin-
gle value of the parameter describing the task could have high
dimensionality. Second, in the same way that a curve in space
may lie on a line, on a plane or in a volume, the set of muscle
patterns associated with one task parameter, a one-dimensional
manifold in the space of all possible muscle patterns, may be
embedded in a subspace of any dimension up to the very high
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dimension of the muscle pattern space. Thus, on theoretical
grounds, task-dependent constraints do not ensure low-dimen-
sionality of the muscle patterns per se. Third, if the low dimen-
sionality resulted purely from task-dependent constraints, one
would not expect to see many similarities between synergies
across different tasks. We instead observed many similarities
among the synergies extracted from different behaviors (Fig. 7).
Thus, we believe that the observed low-dimensionality is a dis-
tinctive feature of a controller that is based on the combinations
of a small number of discrete elements.

The structure of the extracted synergies and the modulation of
their recruitment across different movements suggest that they
may implement basic biomechanical functions. For example, in
the first synergy (W, in Fig. 3), two hip extensor muscles (RI and
SM) are highly activated, and this synergy is maximally recruited in
kicks involving a hip extension. Each of the extracted synergies,
however, shows a relatively complex spatiotemporal pattern of
muscle activation. For example, an ankle extensor (GA) is recruit-
ed together with the hip extensors in the first synergy, and a delay
is introduced between the activation of two knee extensors (VI and
VE) in the second synergy (W, in Fig. 3). We speculate that the
specific structure of these synergies might arise not only from the
need to implement simple biomechanical functions, but also as
the result of an optimization process aimed at increasing the range
of movements and goals that could be achieved using a limited
number of control elements. In the case of genetically specified
behaviors, this optimization process might have taken place
through evolution. Thus, time-varying synergies might provide
the frog’s motor system not just with a way to control a group of
muscles as a unit, but also with those specific spatiotemporal mus-
cle activations that may work as a basis and allow the control of a
variety of movements by simple combination rules.

The data described here supports the hypothesis that the intact
CNS simplifies the control of a large number of degrees of free-
dom by the combination of discrete elements. This hypothesis
has been put forward in different forms by many investigators,
but the strongest experimental evidence in its favor has come
mainly from observations conducted in reduced preparations.
Since Sherrington’s proposal of reflex chaining'® and Brown’s
idea of reciprocally inhibiting centers!'®, many experimentalists
have used spinalized or decerebrated animals to characterize pat-
tern-generating®>20-2% and force field- generating>®242> systems
that act as building blocks in the construction of movement. The
use of reduced preparations, however, has in many cases made it
difficult to relate these results to the generation of natural behav-
iors of intact animals. On the other hand, the study of intact ani-
mals and humans has been inconclusive with respect to the
existence of discrete building blocks. In many of these studies,
the existence of muscle synergies has been assessed by studying
the amplitude correlations?®?7, cross-correlations?”>2® or tuning
similarities?>*? among muscles involved in different forms of a
motor task. But pairwise correlations may be inconclusive if the
muscles in a pair are shared by two synergies recruited simulta-
neously. Instead, the decomposition method used here, by dis-
tinguishing the contribution of different synergies to the
activation of each muscle, can identify coherent components in
the muscle patterns even when pairwise correlations are masked
by the simultaneous recruitment of several synergies.

The control of limb trajectory depends on both the ampli-
tude and the time of activation of the entire set of limb muscles.
In primates, the recruitment amplitude and timing of several
muscles depend systematically on the direction of reaching move-
ments of the arm?'~33 or the direction of step tracking move-
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ments of the wrist®*. Although these studies suggest the existence
of simple rules for the generation of the commands needed to
control the direction of movements, they also reveal the com-
plexity of the spatiotemporal patterns of muscle activation
beyond a simple ‘triphasic’ pattern. In the frog, our results indi-
cate a comparable relationship between movement kinematics
and synergy recruitment. Specifically, the observation of the sim-
ilarity between the dependence on kinematic variables of mag-
nitude ratio and onset-time difference of two extension synergies
(Fig. 6b and ¢) is analogous to the observation reported in pri-
mates concerning the recruitment of agonist at the shoulder and
elbow during reaching movements in a horizontal plane3>3°,
Thus the time-varying synergies model improves upon previous
accounts based on single or pairs of muscles: not only does it
describe the relationships between muscle recruitment and kine-
matic variables, but it also provides a quantitative framework to
explain the complex relationship between amplitude and timing
of the entire muscle pattern.

Bernstein argued that movements are complex objects in space
and time that adapt their structure to solve an infinite number
of motor problems!. Our results suggest that these complex
objects are constructed by the nervous system as combinations
of time-varying muscle synergies.

METHODS

Electrode implantation. All procedures were approved by the Commit-
tee on Animal Care at MIT. Four adult bullfrogs (Rana catesbeiana) were
studied. After the injection of 1 ml of tricaine (5%, m-aminobenzoic acid
ethyl ester methanesulfonate, MS-222, Sigma) in the dorsal lymph sac,
frogs were kept on ice during the procedure. We implanted bipolar elec-
trodes in the following muscles (using previously established nomencla-
ture3®): rectus internus major (RI), adductor magnus (AD),
semimembranosus (SM), vastus internus (VI), vastus externus (VE), rec-
tus anterior (RA), peroneus (PE), gastrocnemius (GA), ventral head of
semitendinosus (ST), sartorius (SA), biceps (or ilio-fibularis, BI), ilio-
psoas (IP) and tibialis anterior (TA). This set includes the majority of
the muscles in the frog hindlimb. The sign of the most significant
moment arms around hip, knee and ankle flexion-
extension axes for each muscle>”8 is indicated in Fig. 3. The wires were
led subcutaneously to the back and, through a skin incision, connected to
a multi-pin miniature connector using crimp contacts and shrink tub-
ing for insulation. The connector was secured to the skin with tissue glue.

Data collection and analysis. Kicking, jumping and walking muscle pat-
terns were collected from unrestrained frogs freely moving in a large cage.
Swimming patterns were recorded in a specially designed tank. Kicking
behavior was elicited by gently scratching the skin with a wooden tip or
with fine forceps on a variety of locations on the frog’s foot. EMGs were
band-pass filtered (10 Hz to 1 kHz), amplified (gain 5,000) and digitized
at 1 kHz. Movements were videotaped using a digital video camera
(29.97 frames/s, Sony TRV-9).

For data analysis, we used custom software written in Matlab (Math-
Works, Natick, Massachusetts). Using the video recordings, continuous
EMG traces were parsed into segments associated with individual kicks,
jumps, swimming cycles and walking cycles. EMGs were rectified, low-
pass filtered (20 Hz cut-off using a FIR filter of length 50) and integrat-
ed over 10-ms intervals. The resulting samples were then normalized to
the amplitude of the maximum sample.

Time-varying synergies model. We modeled the generation of muscle
patterns as combinations of time-varying muscle synergies, that is, coor-
dinated activations of a group of muscles with a specific time course for
each muscle. To construct a particular muscle pattern, each synergy can
be independently scaled in amplitude and shifted in time (Fig. 1). If we
represent the activation of a set of D muscles as a time sequence of D
dimensional vectors m(t), we can express it as combinations of N time-
varying synergies {w;(t)},_;
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m(t) :Z ciwl,(t—ti)
i=1 (1)

where ¢; is a non-negative scaling coefficient for the i-th synergy, and t; is
the synergy onset delay. Given a maximum duration for the synergies of
T'nax corresponding to J samples at discrete times T; (j=1,...,J), we can
express the time-varying synergies using a set of N matrices, each made
of D rows and J columns, whose columns {W"j} i-1,...,jare D dimension-
al vectors representing the muscle activation levels for the it synergy at
the j time sample:

T<0
0 J

i
wi(rj): W]- OST]»<TmaX
0 12T

j max

(2)

Since muscle activation is a non-negative quantity, we also constrain the
elements of W' to be non-negative.

Our model does not explicitly incorporate sensory feedback signals
in the generation of muscle patterns. Nonetheless, sensory information
can still affect the motor output by modulating both scaling coefficients
and onset delays.

Decomposition algorithm. We used a more efficient version of our
decomposition algorithm!? to extract a set of N time-varying synergies
which minimizes the total squared reconstruction error on a set of S
observed muscle patterns. This algorithm uses a multiplicative update
rule® for the optimization of non-negative amplitude coefficients and
synergy elements. To perform the matrix multiplications required by this
algorithm, we rewrote equation (1) for the st pattern as

M, =W H, (3)

using the matrix M (with D rows and k; columns) whose columns are
the vectors m(#) from all the samples of the s muscle pattern; the matrix
W (with D rows and N X J columns) whose columns are the vectors W’]
(arranged so that the ith block of adjacent J columns corresponds to the
ith synergy, that is, the matrix W,); and the matrix H, (with N X J rows
and k; columns), which has the function of scaling in amplitude and
shifting in time the N synergies in the st pattern by matrix multiplication.
This matrix is obtained from the amplitude and timing coefficients

H=D ¢, 0,0t
i (4)

using a matrix ©;[ 7] whose product with W shifts the onset of the i
synergy at the time 7; (with 1 —J < j <], J, being the number of samples
of the s muscle pattern) and truncates the synergy if partially shifted
beyond the beginning or the end of the muscle pattern. For each delay
T;, the only non-zero rows in ©;[7;] are those relative to the ith synergy,
and they contain only ones along a diagonal starting at the j + 1 column
and finishing at the column j + J. The element of the p row and gt col-

umn of ©;[ 7] can be expressed using the Kroneker delta as:
[eiT]] pg=0[p-(i-DB qg-]]. (5)

Finally, for the entire set of S observed muscle patterns, we can write
M = WH, where both M and H are obtained by adjoining the columns of
the S matrices relative to each single pattern.

We used an iterative procedure to minimize the total reconstruction
error:

E?2=tr((M-WH)T (M - WH)) (6)
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where #r([)Jis the trace operator summing over the elements on the matrix
diagonal, corresponding to the sum of squared residual for all the elements
of the matrix M. First, we initialize synergies and coefficients to random
positive values in the [0 1] interval. We then iterated the following steps:

For each observed pattern M, given the synergies W and the scaling
coefficients c;, we found the delays 7;; using a nested matching procedure
based on the maximization of the cross-correlation of the synergies with
the data!?.

For each pattern, given the synergies and the delays, we updated the
scaling coefficients using

T
tr(M; W;[t,])
Cis s TooT, ’
tr(H;W'W O [t ])
i is (7)
where the denominator and numerator of this expression correspond
respectively to the positive term and the absolute value of the negative
term in the expression for the gradient of E? with respect to c;.
Given the delays and the scaling coefficients, we updated the syner-
gies matrix using

MHT
WoeW——nr,
WHH ®)

where the elements of the denominator and numerator correspond to
the positive terms and the absolute value of the negative terms in the
expression for the gradient of E? with respect to the elements of the
matrix W.

To minimize the probability of finding a local minimum as the solution
of the optimization, we repeated the procedure several times and select-
ed the solution with the highest R%. In general, we found that the differ-
ence in R? in different runs was very small, and the extracted synergies
were very similar.

Cross-validation procedure. We used a cross-validation procedure!? to
select the number of synergies. As this number increases, additional syn-
ergies may start capturing the noise in the specific dataset (over-fitting)
more that the underlying structure of the data. To avoid this problem,
we determined the model order with the best generalization perfor-
mance—the best reconstruction of the data not used to fit the model.
We first randomly partitioned the entire dataset in five sets of approxi-
mately equal size. We then extracted a set of synergies from each one of
the five combinations of four of the five groups. Finally, we evaluated the
reconstruction error (validation error) for those synergies on the remain-
ing group (test set). We repeated this procedure for sets ranging from
one to ten synergies and, for each number, we computed the mean vali-
dation R? over the five validation sets.

Similarity between synergies. We quantified the similarity between two
time-varying synergies using the maximum of their normalized scalar
products over all possible delays. In detail, given two normalized syner-
gies w; and w, (each D rows and J columns), for each possible delay j of
the second synergy, j O [1-],]), we first build a vector vlf of D X J ele-
ments by first translating by j and truncating at the edges each one of the
D rows of wy, and then rearranging in a single column the D rows of w.
We then build a vector v, obtained by rearranging on a single column
the D rows of w,. Finally, we define the similarity S as the maximum of
the scalar products.

§ = max v,T e vy)
JD[I -1J) (9)

Therefore, given this definition, the similarity for non-negative syn-
ergies ranges from 0 to 1.

We compared the synergies in two sets by computing the similarities
between the best matching pairs. We started by selecting the pair with
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the highest similarity, and then the synergies in that pair were removed
from their sets. We then computed the similarities between the remain-
ing synergies and selected the next best matching pair. We repeated this
procedure until all synergies in the smallest set had been matched.

Random synergies. We used random synergies to assess the specificity
of the extracted synergies in reconstructing the observed pattern and to
evaluate the significance of the similarity measure introduced above. We
generated random synergies of the same length than the extracted syn-
ergies by randomly choosing their elements from the observed ampli-
tude distribution of each muscle. We then low-pass filtered the random
synergies (20 Hz cut-off) to generate synergies with a smoothness simi-
lar to the data and the extracted synergies. We fitted the random synergies
to the data by selecting amplitude and timing coefficients with the same
algorithm used for synergy extraction, with the exception of the synergy
update step. We estimated the significance of the similarity between the
best matching pairs of synergies in two different synergy sets by gener-
ating the same number of random synergies as in those sets and by select-
ing the best matching pairs of random synergies with the same procedure
used for the extracted synergies (see above). We computed the mean and
the standard deviation of the similarity between the best matching pairs
of random synergies by repeating the random generation 100 times.

Kick kinematics. We extracted joint kinematics from digitized video
frames. Assuming a planar motion of the limb, we computed the time
sequence of joint angles from markers placed on individual fields
(59.64 Hz). For each kick, we computed a vector in the hip—knee plane
measuring the displacement between the initial hip-knee coordinates
and the coordinates at the maximum extension, that is, at the maximum
distance in the hip-knee plane from the initial position. To quantify the
relationship between recruitment of the first two extracted synergies and
the displacement vector direction, we first removed the kicks with an
activation magnitude for the first (c;) or second (c,) synergy below the
10t percentile of the distribution of each coefficient. We then computed,
for the remaining kicks (1 = 191), the average logarithm of the ratio of ¢;
over ¢, (Fig. 6b) and the average synergy onset delay difference (¢, — 1,
Fig. 6¢) over ten bins with different displacement vector directions. The
bins were defined using the angle between the displacement vector direc-
tion and the direction of a pure hip extension. Each bin included the
kicks between two successive deciles of the angle distribution.
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