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This paper focuses on the representation and generation of unconstrained 
aiming movements of a limb by means of a neural network architecture. The 
goal is that of producing a time trajectory of a limb from a starting pos- 
ture toward a target specified as a sensory stimulus. The velocity profile 
along the trajectory is imposed to be bell-shaped as in most movements 
performed by biological systems. The generalization capabilities of the net- 
work are investigated as well as its internal organization. Two experiments 
are performed on the trained network to test its robustness to noise and its 
dynamical properties. 
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Introduction 

Thie paper focuses on the representation and generation of unconstrained 
aiming mouemenfs of a limb by means of a neural network architecture. 
Aiming movements are present, in biological systems, a t  different levels of 
complexity, from accurately planned movements to reflexes [l]. The class 
of aiming movements addressed in this work is that of unconstrained limb 
movements elicited by sensory stimulation. They are meant to mimic, for 
example, the wiping movements of spinal frogs (i.e. leg movements which 
Occur when the frog skin is stimulated by an irritant) or the scratch reflexes 
of spinal cats [2,3,4]. Recording of frogs wiping movements [2] shows that 
the motor strategy remains basically the same - with minor variations - in 
both intact and spinal animals, suggesting that the basic motor programs for 
thin particular task are generated at the spinal cord level and not explicitly 
planned by higher brain structures. On the basis of this observation, we 
adopted a non-hierarchical, purely executional neural network to represent 
such movements. 

The motor task described in this paper is that of generating a trajectory 
of a limb from a fixed starting posture toward a target specified in terms 
of sensory stimulus. Hence the network performs a sensory-motor transfor- 
mation. Movements are assumed to be planar, but there is no theoretical 
limitation to the dimensionality the network could deal with. The velocity 
profile along the trajectories is imposed to be bell-shaped - as in most move- 
ments performed by biological systems; in fact, it has been shown [5,6,7,8] 
that the limb’s end-point motion is smooth when the trajectory’s velocity 
is bell-shaped. The duration of movements under consideration is assumed 
to be constant. As a consequence, when the neural network is asked to 
generalize the task, it is required not only to generate the correct trajectory 
of the limb, but also to adjust the velocity profiles accordingly. 

A major goal of this research is to investigate the generalization capa- 
bilities of the network as well as its internal organization. In addition, two 
experiments are performed on the trained network to test its robustness to 
noise and its dynamical properties. 

Architecture 

Neural networks have been frequently applied to the robotic and mo- 
tor control fields [9,10,11,12,13,14,15,16]. The architecture which we chose 
to produce time sequences is called a sequential network and it was pro- 
posed by Jordan [17]. Figure 1 shows the basic structure of such network. 
This type of network is able to produce sequences of output signals, due to 
the recurrent connections from output units to state units. These connec- 

Figure 1. The basic architecture of  Jordan’s sequential networks. 

tions cause the activation of the state units to change, thereby providing a 
time-varying input to the layered network which learns the sequences. The 
self-connections to the state units make the next state of the network a 
function of the whole past history. The other input to the layered network 
derives from the plan units, which are activated by the external stimuli. 
The activation of the plan units remains constant within a given sequence, 
but varies between sequences to allow different sequences to be learned by 
the same network. The network is a dynamical system in which both out- 
put functions and state functions change as the weights in the forward path 
of the network are modified through learning. The reminder of this sec- 
tion shows how the aiming task can be formulated in terms of sequential 
networks. 

Output units drive a redundant 3-joint limb which moves from the initial 
posture to the target. The limb is modeled in terms of 4 pairs of antagonist 
muscles: shoulder flexor and extensor, double joint flexor and extensor, el- 
bow flexor and extensor, wrist flexor and extensor. Muscles are represented 
as springs according to a model that is described in next section. Each 
output unit activates a muscle; output units can then be considered as mo- 
torneurons. The time sequence generated by the network is hence encoded 
in muscle space (not in joint or end-point space). 

Plan units contain a representation of the sensory stimulus. It is as- 
sumed that the limb workspace and the limb itself can be measured in the 
same body-centered reference frame (as in the aiming phase of the wiping 
to the back); consequently, the coordinate transformation problem (from 
world-centered to body-centered coordinates) is not addressed in this work 
’. Part of the limb workspace (see figure 2a) was discretized, as shown in 
figure 2b, with a 15x15 pixel grid; also figure 2b shows the initial posture of 
the limb for all aiming movements. The choice of the grid step, i.e. the res- 
olution over the input space, is completely arbitrary, but the same learning 
and generalization procedures were repeated for a different grid step (see 
next section) with the purpose of understanding how a change in resolution 
might affect the performance of the network. The stimulus is encoded as 
a narrow gaussian distribution centered on one of the 225 pixels; any pixel 

‘It was addressed elsewhere, see for example [10,11,16]. 
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Figure 2. (a) The limb workspace. The origin of the coordinates is in the 
shoulder; 91.45 is the sum of the joint lengths. (b) A 15215 pizels grid on a 
part of the workspace shown in figure 2a; the step is 2.5. The limb is in the 
starting posture. The lenghts and proportions of the three joints are those 
of a monkey arm. 

may become the target of the aiming movement. The values of pixels were 
translated into activation of plan units by means of coarse coding [18]. Each 
plan unit has a receptive field over the limb workspace which contains 9 pix- 
els; receptive fields are overlapped. In this way the 15x15 array of pixels is 
represented by means of a 7x7 array of plan units; the activation of each 
plan unit is the sum of the values of the pixels which belong to its receptive 
field. The resulting value is then properly normalized. 

This num- 
ber resulted from a trade-off between two conflicting needs: i) to provide 
enough units so that the network can be able to compute the input/output 
transformation, ii) to keep the number of hidden units as low as possible to 
achieve good generalization (an excess number of hidden units would make 
the network act as a look-up table). A graphic interface built on top of the 
simulation software made it relatively easy to investigate the behavior of 
the hidden layer during the learning phase; we have found experimentally 
that when the number of hidden units is greater than 10 learning is not 
improved and generalization properties are negatively affected. 

All units in the network have continuous activation functions Output 
functions of plan, hidden and output units are of logistic type (sigmoids) 
between a minimum and a maximum value, namely: between -1 and 1 for 
output units and between 0 and 1 for hidden and plan units. This choice was 
dictated by the nature of the problem: in this particular implementation (see 
next section) muscle activations range between negative and positive values 
which were normalized to the interval [-1,1]; the stimulus representation 
ranges between 0 (no stimulus) and a maximum positive value (activation 
of the unit which contains the gaussian peak), normalized to the interval 
[O,l]. The activation function for state units is linear. 

The number of hidden units was empirically fixed to 10 

Training and Generalization 

The network was trained by means of supervised learning (see [19] for 
a review on supervised learning). This class of learning algorithms requires 
providing a set of input - output pattern pairs, in our case {sensory stimulus 
- time trajectory in muscle space}. Computing the sequence of muscle acti- 
vations which corresponds to a trajectory of the limb from the initial to the 
final posture is not straightforward. For this purpose, we used a model which 
represents a redundant motor system in the form of a network of constraints 
expressing the geometrical relations among component elements and their 

steady-state mechanical behavior [20,21]. This model is based on experi- 
mental investigations that stressed the role of muscle mechanical properties 
in motor control, suggesting that a muscle is mechanically analogous to a 
tunable spring [22,23,24,25]. The model makes it possible to compute i) 
the xy coordinates of the l i b  tip given the muscle activations, which is a 
well-posed problem and ii) the muscle activations given the xy coordinates 
of the tip, which is a ill-posed problem. Muscle elastic properties are ex- 
ploited as a natural representation for motor redundancy; the redundancy 
present in ii) is solved by representing the set of muscles as a chain ofspring- 
like elements and by observing that the chain would naturally settle into a 
configuration of minimum potentral energy when perturbed by an external 
force. The minumum potential energy criterion makes the solution to the 
inverse problem unique. The model can then compute a trajectory in mu& 
cle space given the initial and final tip positions; also, it makes it possible 
to specify the velocity profile along the trajectory (bell-shaped in our case). 
The result of the computation is a set of 8dimensional vectors of muscle 
activations, each corresponding to an equilibrium configuration '; such PO- 
sitions are equispaced in time but not in space because of the bell-shaped 
velocity profile. The inverse transformation was used to compute the output 
patterns to train the network, while the direct transformation (from muscle 
activation to tip position) was used during the testing phase. 

The particular algorithm used to train the network is a standard back- 
propagation algorithm which makes use of a momentum term; the learning 
rate was interactively lowered during the training sessions to allow learning 
of coarser and finer movements. All trajectories used during the training 
phase have a duration of six time steps: initial posture, target posture and 
four intermediate postures. 

A major concern of the training phase was how many and which se- 
quences the network must learn to generalize correctly the task. The goal 
was that of achieving a generalization capability such that the error on the 
tip position for each point of the trajectory did not exceed the grid step. 

21t has been proposed [26,27] that ann movements are represented and generated by 
the central nervous system as smooth transitions in posture dong virtual i ra jecfoner  
given s time sequences of cguih'lrium configurations. An equilibrium configuration is 
defined for a given value of muscle activation as that position at which the forces of 
opposing muscles generate equal and opposite torques about the joints. 

3Emrs  were measured, for each tip podion, as the euclidean distance between the 
tip position produced by the network and the expected tip position produced by Musur 
Ivaldi's model. 
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This is equivalent to requiring that the network must behave well a t  the 
resolution imposed by the discretization of the limb workspace. This result 
was achieved after teaching the network 14 sequences; the corresponding 
stimulus positions are shown in figure 3. Figure 4 shows some generalized 
sequences. The tip position is correct along the whole trajectory and the ve- 
locity profile is properly adjusted. In addition, it is worth pointing out that 
the network could produce joint reversals when necessary; moreover, the net 
generated patterns of muscular activation which correspond to equilibrium 
positions of the limb. Two further learning experiments were performed. 
First, the learning procedure was repeated by making use of local coding 

Figure 3. Position of the stimuli for  the 14 sequences which were taught to 
the neiwork. 

instead of coarse coding (1 plan unit for each pixel, 225 plan units). After 
learning the same 14 sequences the network was not able t o  generalize and 
behaved as a look-up table. Second, the learning procedure was repeated 
for a lower resolution on the workspace, obtained by doubling the grid step. 
This led to a 7x7 array of pixels coarse coded by a 3x3 array of plan units. 
In this case the number of sequences to be taught to the network to produce 
errors lower than the grid step decreased from 14 to 8. 

Connections 

The connection matrix was randomly initialized in the range (0.0 - 0.5). 
We could observe that, after learning, the connections were organized into 
inhibitory and excitatory zones. Interesting patterns were found in the con- 
nections from hidden units to output units; Table 1 shows the values of 
such connections. By grouping muscles into flexor-extensor pairs, it can be 
observed that, for every hidden unit, whenever one hidden unit sends an 
excitatory connection to a flexor, the same unit sends an inhibitory con- 
nection t o  the corresponding extensor and viceversa (negative correlation). 
The network has represented in the connectivity pattern the rule of recip- 
rocal inhibition of agonist-antagonist pairs. Inhibition and excitation are 
more marked for shoulder, elbow and double joint muscles than for wrist 
muscles. This result agrees with the experimental data of Georgopoulos 
[l] which show that aiming movements involve wrist joint only in a very 
marginal way. Moreover (see again Table l), it can be observed that 

units #3 and #lo exhibit a total positive conelation between all flex- 
ors and between all extensors; 

all other units exhibit a total positive correlation between 

- shoulder flexor - double joint flexor; 

- shoulder extensor - double joint extensor; 

- elbow flexor - wrist flexor; 

- elbow extensor - wrist extensor; 

except for hidden unit #2 for which shoulder and double joint exhibit 
a negative correlation. 

Figure 4. Generalization capability afler learning 14 trajectories. The top- 
lefl trajecto y contains a generalization of the joint reversal on the shoulder; 
the bottom right trajectory is a particular case of generalization in which the 
stimulus was positioned right on the limb tip; although the network was not 
explicitly taught about the initial posture, it has "understood" how the limb 
is positioned at the beginning of each trajectory. 
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Shoulder FI 

-1 596938 -0 459756 0 238760 0.464764 -1.190529 1 225434 1249900 - 0  822495 0 946107 -1 160787 

Shoulder Er. 

1.597220 0.458936 -0.238326 -0.464758 1.190295 -1.225155 -1.249560 0.822554 -0.946128 1.161238 

Elbow FI. 

2.205403 1.201014 0.990554 -0.725229 1.056587 -0.788169 -1.198095 0.046117 -1.464604 -0.762154 

Elbow E*. 

-4.299550 -0.824471 -2.072892 1.214777 -1.433692 0.294094 1.581221 0.024668 2.398601 0.365059 

Double J. PI. 

-0.822154 1.664527 0.419754 0.069341 -0.511715 0.001101 0.556992 -0.617517 0.068661 -1.571512 

Double J.  Er. 

0.580872 -1.538881 -0.525151 -0.019188 0.490678 -0.050527 -0.561579 0.623930 0.010338 1.459015 

wri.: PI. 

0.260377 0.220753 0.122209 -0.092490 0.12943 -0.155495 -0.1392’10 -0.012050 -0.188933 -0.090522 

W k t  Er. 

-0.260409 -0.220748 -0.122226 0.092426 -0.129474 0.155452 O.ls9244 0.012054 0.188934 0.090537 

Table 1. Hidden to output connections. Each row contains ihe connections from 
all hidden units to one particular hidden unit. 

These observations indicate the presence of a number of synergies between 
all hidden units, which is the necessary condition for the network to exhibit 
good generalization properties. Furthermore, the network seems to have 
represented in the connectivity pattern the main features of the set of pat- 
terns which was used as training set. In fact, the sign of muscle activations 
in the training sequences was always the same for elbow-wrist flexors and 
elbow-wrist extensora and almost always the same for shoulder-double joint 
flexors and shoulder-double joint extensors. That ”almost” has been en- 
coded by means of a negative correlation a t  unit #2. Finally, the network 
has devoted two hidden units, #3 and #IO, to encode the synergies between 
all flexors and between all extensors. 

Experiments 

Two experiments were performed on the trained network. 
The first experiment aimed a t  testing the robustness of the system with 

respect to the sensory stimulus. The network was trained with stimuli coded 
as gaussian distributions centered on the target with a certain standard 
deviation do; the value of the standard deviation was modified during testing 
as follows: 

dl = do +0.1* do 

d2 = do + 0.2 * d o  

Both cases correspond to a stimulus which is flatter and more spread over 
the workspace. In the first case the average distance in end-point space of 
the trajectories from the corresponding trajectories generated by a gaussian 
with standard deviation do is lower than 0.4; in the second case the aver- 
age distance is higher (around 0.7), which results in trajectories somewhat 
”noisy”, but still acceptable. This experiment showed that the architecture 
is reasonably robust t o  slight changes in the stimulus representation. 

The second experiment was concerned with the duration of the trajecto- 
ries. Pineda [28] showed that arbitrary networks of logistic units typically 
have many point attractors, i.e. these networks naturally exhibit certain 
dynamic properties. In our case, the network was instructed, during train- 
ing, to produce certain output patterns for six time steps; no instructlons 
were given on what to do after the 6th time step We tested the network 
for 15 time steps and we observed that in about 80 percent of the cases 

(i.e. in about 80 percent of the limb workspace) the limb remains steady 
a t  the final posture corresponding to the location of the sensory stimulus; 
in other words, in 80 percent of the cases the final posture of the limb 
acts as a point attractor. The portion of workspace in which the limb is 
unstable after the 6th time step changes with different learning sessions, 
i.e. i t  depends on which solution the network settles into; there were also 
cases in which the entire workspace was steady. Interestingly, adding a 7th 
time step to the training sequences which repeats the final pcsition made 
the whole workspace steady independently of the particular training session 

Conclusions 

In this paper a model for limb trajectory formation was presented, based 
on a non hierarchical neural network architecture. The task under consid- 
eration is that of reaching a target defined in terms of a sensory stimulus, 
with a bell-shaped velocity profile. The task is performed at the reflex level, 
no planning activity occurs. The network produces trajectories In muscle 
space, which are translated into end-point space by means of a model which 
takes into account the elastic properties of muscles [211 The same model 
was used to generate the training sequences as described in section 3 The 
particular architecture used for producing time trajectories is that proposed 
by Jordan [17]. We have shown that the task can be learned and generalized 
(in terms of both trajectory and velocity profile) by a three layer sequential 
network trained by a standard back-propagation procedure Moreover, we 
found that connections from hidden to output units exhibit a number of 
positive and negative correlations which encode the main features of the 
training set. The robustness of the model to noise on the input signals was 
successfully tested and some attractor dynamics properties were found. 

Our model is different from that propcsed by Kawato; he has stud- 
ied voluntary movements and proposed a hierarchical, structured model for 
generating motor commands (torques) from a desired trajectory expressed 
in body centered coordinates [9]. Moreover, he has studied the coordinate 
transformation problem and proposed an iterative control learning algo- 
rithm [IO]. Our research deals with a sensory-motor transformation based on 
a non-hierarchical layered architecture which translates a sensory stlmulus 
directly into time-varying patterns of muscular activation which correspond 
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to minimum jerk trajectories. We did not face the coordinate transformation 
problem as we made the hypothesis that both target and movement are al- 
ready expressed in the same body-centered reference frame. We did address 
the problem of trajectory formation based on a constant sensory stimulus, 
rather than a reference trajectory. Issues related to trajectory formation 
were also investigated by Bullock and Grossberg [14] who have presented a 
model called VITE which produces arm trajectories from a target position 
command (TPC) and a GO command which defines the movement's speed. 
Although VITE has nice generalization properties, it is worth pointing out 
that trajectories are generalized in joint space, while our model can general- 
ize trajectories in muscle space and then in end-point space through Mussa 
Ivaldi's model [21]. Moreover, VITE cannot be easily applied to multi-joint 
movements and does not address learning. 

The work described in this paper is relevant to the robotics research as 
it could suggest some basic principles for designing artificial limbs whose 
structure is inspired by natural systems [29]. However, the relevance of 
our research to the understanding of the organization of biological motor 
systems is an open problem and will be the object of further investigations. 
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