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This paper focuses on the representation and generation of unconstrained
aiming movements of a imb by means of a neural network architecture. The
goal is that of producing a time trajectory of a limb from a starting pos-
ture toward a target specified as a sensory stimulus. The velocity profile
along the trajectory is imposed to be bell-shaped as in most movements
performed by biological systems. The generalization capabilities of the net-
work are investigated as well as its internal organization. Two experiments
are performed on the trained network to test its robustness to noise and its
dynamical properties.

Introduction

This paper focuses on the representation and generation of unconstrained
aiming movemenis of a limb by means of a neural network architecture.
Aiming movements are present, in biological systems, at different levels of
complexity, from accurately planned movements to reflexes [1]. The class
of aiming movements addressed in this work is that of unconstrained limb
movements elicited by sensory stimulation. They are meant to mimic, for
example, the wiping movements of spinal frogs (i.e. leg movements which
occur when the frog skin is stimulated by an irritant) or the scratch reflexes
of spinal cats [2,3,4]. Recording of frogs wiping movements {2] shows that
the motor strategy remains basically the same - with minor variations - in
both intact and spinal animals, suggesting that the basic motor programs for
this particular task are generated at the spinal cord level and not explicitly
planned by higher brain structures. On the basis of this observation, we
adopted a non-hierarchical, purely executional neural network to represent
such movements.

The motor task described in this paper is that of generating a trajectory
of a limb from a fixed starting posture toward a target specified in terms
of sensory stimulus. Hence the network performs a sensory-motor transfor-
mation. Movements are assumed to be planar, but there is no theoretical
limitation to the dimensionality the network could deal with. The velocity
profile along the trajectories is imposed to be bell-shaped - as in most move-
ments performed by biological systems; in fact, it has been shown [5,6,7,8]
that the limb’s end-point motion is smooth when the trajectory’s velocity
is bell-shaped. The duration of movements under consideration is assumed
to be constant. As a consequence, when the neural network is asked to
generalize the task, it is required not only to generate the correct trajectory
of the limb, but also to adjust the velocity profiles accordingly.

A major goal of this research is to investigate the generalization capa-
bilities of the network as well as its internal organization. In addition, two
experiments are performed on the trained network to test its robustness to
noise and its dynamical properties.

Architecture

Neural networks have been frequently applied to the robotic and mo-
tor control fields [9,10,11,12,13,14,15,16]). The architecture which we chose
to produce time sequences is called a sequential network and it was pro-
posed by Jordan [17]. Figure 1 shows the basic structure of such network.
This type of network is able to produce sequences of output signals, due to
the recurrent connections from output units to state units. These connec-
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Figure 1. The basic architecture of Jordan’s sequential networks.

tions cause the activation of the state units to change, thereby providing a
time-varying input to the layered network which learns the sequences. The
self-connections to the state units make the next state of the network a
function of the whole past history. The other input to the layered network
derives from the plan units, which are activated by the external stimuli.
The activation of the plan units remains constant within a given sequence,
but varies between sequences to allow different sequences to be learned by
the same network. The network is a dynamical system in which both out-
put functions and state functions change as the weights in the forward path
of the network are modified through learning. The reminder of this sec-
tion shows how the aiming task can be formulated in terms of sequential
networks.

Output units drive a redundant 3-joint limb which moves from the initial
posture to the target. The limb is modeled in terms of 4 pairs of antagonist
muscles: shoulder flexor and extensor, double joint flexor and extensor, el-
bow flexor and extensor, wrist flexor and extensor. Muscles are represented
as springs according to a model that is described in next section. Each
output unit activates a muscle; output units can then be considered as mo-
torneurons. The time sequence generated by the network is hence encoded
in muscle space (not in joint or end-point space).

Plan units contain a representation of the sensory stimulus. It is as-
sumed that the limb workspace and the limb itself can be measured in the
same body-centered reference frame (as in the aiming phase of the wiping
to the back); consequently, the coordinate transformation problem (from
world-centered to body-centered coordinates) is not addressed in this work
! Part of the limb workspace (see figure 2a) was discretized, as shown in
figure 2b, with a 15x15 pixel grid; also figure 2b shows the initial posture of
the limb for all aiming movements. The choice of the grid step, i.e. the res-
olution over the input space, is completely arbitrary, but the same learning
and generalization procedures were repeated for a different grid step (see
next section) with the purpose of understanding how a change in resolution
might affect the performance of the network. The stimulus is encoded as
a narrow gaussian distribution centered on one of the 225 pixels; any pixel

11t was addressed elsewhere, see for example [10,11,16].
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Figure 2. (a) The limb workspace. The origin of the coordinates is in the
shoulder; 31.45 is the sum of the joint lengths. (b) A 15215 pizels grid on a
part of the workspace shown in figure 2a; the step is 2.5. The limb is in the
starting posture. The lenghts and proportions of the three joints are those

of a monkey arm.

may become the target of the aiming movement. The values of pixels were
translated into activation of plan units by means of coarse coding [18]. Each
plan unit has a receptive field over the limb workspace which contains 9 pix-
els; receptive fields are overlapped. In this way the 15x15 array of pixels is
represented by means of a 7x7 array of plan units; the activation of each
plan unit is the sum of the values of the pixels which belong to its receptive
field. The resulting value is then properly normalized.

The number of hidden uniis was empirically fixed to 10. This num-
ber resulted from a trade-off between two conflicting needs: i) to provide
enough units so that the network can be able to compute the input/output
transformation, ii) to keep the number of hidden units as low as possible to
achieve good generalization (an excess number of hidden units would make
the network act as a look-up table). A graphic interface built on top of the
simulation software made it relatively easy to investigate the behavior of
the hidden layer during the learning phase; we have found experimentally
that when the number of hidden units is greater than 10 learning is not
improved and generalization properties are negatively affected.

All units in the network have continuous activation functions. Output
functions of plan, hidden and output units are of logistic type (sigmoids)
between a minimum and a maximum value, namely: between -1 and 1 for
output units and between 0 and 1 for hidden and plan units. This choice was
dictated by the nature of the problem: in this particular implementation (see
next section) muscle activations range between negative and positive values
which were normalized to the interval [-1,1]; the stimulus representation
ranges between 0 (no stimulus) and a maximum positive value (activation
of the unit which contains the gaussian peak), normalized to the interval
[0,1]. The activation function for state units is linear.

Training and Generalization

The network was trained by means of supervised learning (see [19] for
a review on supervised learning). This class of learning algorithms requires
providing a set of input - output pattern pairs, in our case {sensory stimulus
- time trajectory in muscle space}. Computing the sequence of muscle acti-
vations which corresponds to a trajectory of the limb from the initial to the
final posture is not straightforward. For this purpose, we used a model which
represents a redundant motor system in the form of a network of constraints
expressing the geometrical relations among component elements and their

steady-state mechanical behavior {20,21]. This model is based on experi-
mental investigations that stressed the role of muscle mechanical properties
in motor control, suggesting that a muscle is mechanically analogous to a
tunable spring [22,23,24,25]. The model makes it possible to compute i)
the xy coordinates of the limb tip given the muscle activations, which is a
well-posed problem and ii) the muscle activations given the xy coordinates
of the tip, which is a ill-posed problem. Muscle elastic properties are ex-
ploited as a natural representation for motor redundancy; the redundancy
present in ii) is solved by representing the set of muscles as a chain of spring-
like elements and by observing that the chain would naturally settle into a
configuration of minimum potential energy when perturbed by an external
force. The minumum potential energy criterion makes the solution to the
inverse problem unique. The model can then compute a trajectory in mus-
cle space given the initial and final tip positions; also, it makes it possible
to specify the velocity profile along the trajectory (bell-shaped in our case).
The result of the computation is a set of 8-dimensional vectors of muscle
activations, each corresponding to an equilibrium configuration 2; such po-
sitions are equispaced in time but not in space because of the bell-shaped
velocity profile. The inverse transformation was used to compute the output
patterns to train the network, while the direct transformation (from muscle
activation to tip position) was used during the testing phase.

The particular algorithm used to train the network is a standard back-
propagation algorithm which makes use of a momentum term; the learning
rate was interactively lowered during the training sessions to allow learning
of coarser and finer movements. All trajectories used during the training
phase have a duration of six time steps: initial posture, target posture and
four intermediate postures.

A major concern of the training phase was how many and which se-
quences the network must learn to generalize correctly the task. The goal
was that of achieving a generalization capability such that the error on the
tip position 3 for each point of the trajectory did not exceed the grid step.

21t has been proposed [26,27] that arm movements are represented and generated by
the central nervous system as smooth transitions in posture along virtual trajectories
given as time sequences of equilibrium configurations. An equilibrium configuration is
defined for a given value of muscle activation as that position at which the forces of
opposing muscles generate equal and opposite torques about the joints.

3Errors were measured, for each tip iti as the 1id distance bet the
tip position produced by the network and the expected tip position produced by Mussa
Ivaldi's model.
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This is equivalent to requiring that the network must behave well at the
resolution imposed by the discretization of the limb workspace. This result
was achieved after teaching the network 14 sequences; the corresponding
stimulus positions are shown in figure 3. Figure 4 shows some generalized
sequences. The tip position is correct along the whole trajectory and the ve-
locity profile is properly adjusted. In addition, it is worth pointing out that
the network could produce joint reversals when necessary; moreover, the net
generated patterns of muscular activation which correspond to equilibrium
positions of the limb. Two further learning experiments were performed.
First, the learning procedure was repeated by making use of local coding

Figure 8. Position of the stimuli for the 14 sequences which were taught o
the network.

instead of coarse coding (1 plan unit for each pixel, 225 plan units). After
learning the same 14 sequences the network was not able to generalize and
behaved as a look-up table. Second, the learning procedure was repeated
for a lower resolution on the workspace, obtained by doubling the grid step.
This led to a 7x7 array of pixels coarse coded by a 3x3 array of plan units.
In this case the number of sequences to be taught to the network to produce
errors lower than the grid step decreased from 14 to 8.

Connections

The connection matrix was randomly initialized in the range {0.0 - 0.5}.
We could observe that, after learning, the connections were organized into
inhibitory and excitatory zones. Interesting patterns were found in the con-
nections from hidden units to output units; Table 1 shows the values of
such connections. By grouping muscles into flexor-extensor pairs, it can be
observed that, for every hidden unit, whenever one hidden unit sends an
excitatory connection to a flexor, the same unit sends an inhibitory con-
nection to the corresponding extensor and vice-versa (negative correlation).
The network has represented in the connectivity pattern the rule of recip-
rocal inhibition of agonist-antagonist pairs. Inhibition and excitation are
more marked for shoulder, elbow and double joint muscles than for wrist
muscles. This result agrees with the experimental data of Georgopoulos
[1] which show that aiming movements involve wrist joint only in a very
marginal way. Moreover (see again Table 1), it can be observed that

o units #3 and #10 exhibit a total positive correlation between all flex-
ors and between all extensors;

o all other units exhibit a total positive correlation between

— shoulder flexor - double joint flexor;

— shoulder extensor - double joint extensor;
— elbow flexor - wrist flexor;

— elbow extensor - wrist extensor;

except for hidden unit #2 for which shoulder and double joint exhibit
a negative correlation.

L1
1
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A

Figure 4. Generalization capability after learning 14 trajectories. The top-
left trajectory contains a generalization of the joint reversal on the shoulder;
the bottom right trajectory is a particular case of generalization in which the
stimulus was positioned right on the limb 1ip; although the network was not
ezplicitly taught about the initial posture, it has "understood” how the limb
is positioned at the beginning of each trajectory.
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Shoulder FI.

—1.596938 -0.459756 0.238360 0.464764 —1.130529 1.225434 1.249900 -0.822495 0.946107 -1.160787
Shoulder Bz,
1.597220 0.458936 -0.238326 —0.464758 1.13029% —1.225185 -1.249560 0.822554 -0.946128 1.161238
Elbow FI.
2.205403 1.201014 0.990554 —0.725229 1.088587 -—0.788169 —1.198095 0.046117 -1.464604 ~0.762154
Ebow Ex.
—4.299550 —0.824471 —2.072892 1.214777 -1.433692 0.294094 1.581221 0.024668 2.398601 0.365059
Double J. FI.
—0.822154 1.664527 0.419754 0.069341 -0.511715 0.004101 0.556992 -0.617517 0.068661 —1.571512
Double J. Es.
0.580872 —1.538881 -0.525181 —0.019188 0.490678 —0.050527 —0.561579 0.623930 0.010338 1.459015
Wrist FI.
0.260377 0.220753 0.122209 —0.092430 0.129453 —0.155435 —0.139240 —0.012050 —0.188938 —0.090522
Wrist Ex.
~0.260409 ~0.220748 —0.122226 0.092426 —-0.129474 0.155452 0.189244 0.012054 0.188934 0.090537

Table 1. Hidden to outpul connections. Each row contains the connections from

all hidden units to one particular hidden unit.

These observations indicate the presence of a number of synergies between
all hidden units, which is the necessary condition for the network to exhibit
good generalization properties. Furthermore, the network seems to have
represented in the connectivity pattern the main features of the set of pat-
terns which was used as training set. In fact, the sign of muscle activations
in the training sequences was always the same for elbow-wrist flexors and
elbow-wrist extensors and almost always the same for shoulder-double joint
flexors and shoulder-double joint extensors. That ”almost” has been en-
coded by means of a negative correlation at unit #2. Finally, the network
has devoted two hidden units, #3 and #10, to encode the synergies between
all flexors and between all extensors.

Experiments

‘Two experiments were performed on the trained network.

The first experiment aimed at testing the robustness of the system with
respect to the sensory stimulus. The network was trained with stimuli coded
as gaussian distributions centered on the target with a certain standard
deviation dy; the value of the standard deviation was modified during testing
as follows:

dy=dp+0.1%dp

dy=dp+0.2%dy

Both cases correspond to a stimulus which is flatter and more spread over
the workspace. In the first case the average distance in end-point space of
the trajectories from the corresponding trajectories generated by a gaussian
with standard deviation dg is lower than 0.4; in the second case the aver-
age distance is higher (around 0.7), which results in trajectories somewhat
”noisy”, but still acceptable. This experiment showed that the architecture
is reasonably robust to slight changes in the stimulus representation.

The second experiment was concerned with the duration of the trajecto-
ries. Pineda [28] showed that arbitrary networks of logistic units typically
have many point attractors, i.e. these networks naturally exhibit certain
dynamic properties. In our case, the network was instructed, during train-
ing, to produce certain output patterns for six time steps; no instructions
were given on what to do after the 6th time step. We tested the network
for 15 time steps and we observed that in about 80 percent of the cases

(i.e. in about 80 percent of the limb workspace) the limb remains steady
at the final posture corresponding to the location of the sensory stimulus;
in other words, in 80 percent of the cases the final posture of the limb
acts as a point attractor. The portion of workspace in which the limb is
unstable after the 6th time step changes with different learning sessions,
ie. it depends on which solution the network settles into; there were also
cases in which the entire workspace was steady. Interestingly, adding a Tth
time step to the training sequences which repeats the final position made
the whole workspace steady independently of the particular training session.

Conclusions

In this paper a model for limb trajectory formation was presented, based
on a non hierarchical neural network architecture. The task under consid-
eration is that of reaching a target defined in terms of a sensory stimulus,
with a bell-shaped velocity profile. The task is performed at the reflex level;
no planning activity occurs. The network produces trajectories in muscle
space, which are translated into end-point space by means of a model which
takes into account the elastic properties of muscles (21]. The same model
was used to generate the training sequences as described in section 3. The
particular architecture used for producing time trajectories is that proposed
by Jordan [17]. We have shown that the task can be learned and generalized
(in terms of both trajectory and velocity profile) by a three layer sequential
network trained by a standard back-propagation procedure. Moreover, we
found that connections from hidden to output units exhibit a number of
positive and negative correlations which encode the main features of the
training set. The robustness of the model to noise on the input signals was
successfully tested and some attractor dynamics properties were found.

Our model is different from that proposed by Kawato; he has stud-
ied voluntary movements and proposed a hierarchical, structured model for
generating motor commands (torques) from a desired trajectory expressed
in body centered coordinates [9]. Moreover, he has studied the coordinate
transformation problem and proposed an iterative control learning algo-
rithm [10]. Our research deals with a sensory-motor transformation based on
a non-hierarchical layered architecture which translates a sensory stimulus
directly into time-varying patterns of muscular activation which correspond
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to minimum jerk trajectories. We did not face the coordinate transformation
problem as we made the hypothesis that both target and movement are al-
ready expressed in the same body-centered reference frame. We did address
the problem of trajectory formation based on a constant sensory stimulus,
rather than a reference trajectory. Issues related to trajectory formation
were also investigated by Bullock and Grossberg [14] who have presented a
model called VITE which produces arm trajectories from a target position
command (TPC) and 2 GO command which defines the movement’s speed.
Although VITE has nice generalization properties, it is worth pointing out
that trajectories are generalized in joint space, while our model can general-
ize trajectories in muscle space and then in end-point space through Mussa
Ivaldi’s model [21]. Moreover, VITE cannot be easily applied to multi-joint
movements and does not address learning.

The work described in this paper is relevant to the robotics research as
it could suggest some basic principles for designing artificial limbs whose
structure is inspired by natural systems [29]. However, the relevance of
our research to the understanding of the organization of biological motor
systems is an open problem and will be the object of further investigations.
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