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N E U R O S C I E N C E

Brain-like functional specialization emerges 
spontaneously in deep neural networks
Katharina Dobs1,2,3*, Julio Martinez1,2,4, Alexander J. E. Kell5, Nancy Kanwisher1,2

The human brain contains multiple regions with distinct, often highly specialized functions, from recognizing 
faces to understanding language to thinking about what others are thinking. However, it remains unclear why the 
cortex exhibits this high degree of functional specialization in the first place. Here, we consider the case of face 
perception using artificial neural networks to test the hypothesis that functional segregation of face recognition 
in the brain reflects a computational optimization for the broader problem of visual recognition of faces and other 
visual categories. We find that networks trained on object recognition perform poorly on face recognition and 
vice versa and that networks optimized for both tasks spontaneously segregate themselves into separate systems 
for faces and objects. We then show functional segregation to varying degrees for other visual categories, revealing 
a widespread tendency for optimization (without built-in task-specific inductive biases) to lead to functional spe-
cialization in machines and, we conjecture, also brains.

INTRODUCTION
Although controversial for centuries (1), the idea of localization of 
function in the human brain is now supported by overwhelming 
evidence. Many regions of cortex are selectively activated by a spe-
cific perceptual or cognitive task and, when disrupted, produce se-
lective impairment of that same task (2–5). However, it remains 
unknown, and indeed largely unasked, why the brain exhibits this 
high degree of functional specialization. One possibility is that 
functional specialization in the cortex is an accident of evolution, 
which can more easily add modules to solve new problems than re-
design an entire system from scratch. Another possibility is that 
functional specialization allows mental processes to be selectively 
modulated, whether over short time scales (attention) or longer 
ones (development). A third (nonexclusive) possibility is that func-
tional specialization in the brain arises for computational reasons 
(6), with distinct brain regions arising only for tasks that cannot 
be solved with more generic machinery. Here, we test this third 
hypothesis for one of the best-established cases of functional spe-
cialization in the brain: the visual recognition of faces (5, 7, 8).

Recent advances in deep convolutional neural networks (CNNs), 
which now achieve human-level performance on some visual rec-
ognition tasks, allow us to test a prediction of our hypothesis (9–11): 
If face recognition is functionally segregated in the brain because 
more domain-general visual representations simply do not suffice 
for this task, then the same should be true for any computational 
system, including CNNs. Prior work suggests that this may not nec-
essarily be the case: CNNs optimized for generic object recognition 
transfer well to many other tasks (12–15), including fine-grained 
discrimination within a category (13). On the other hand, recent 
studies in other domains have found computational advantages 
of functional specialization in auditory processing (16) and even 
spontaneous functional specialization for some high-level cognitive 

processes (17). Thus, it remains unknown, and not a priori obvious, 
whether the task of face recognition necessarily requires its own 
specialized machinery in any computational system, whether a brain 
or a machine. Here, we address this question by measuring face and 
object recognition performance in CNNs trained to classify faces, 
objects, or both, testing whether high performance on both tasks 
happens only when distinct subsets of the network are allocated to 
each task. Note that in this work, we do not address spatial segrega-
tion of function in particular locations in the brain but the more 
general phenomenon of any functional segregation in which certain 
populations of units are more critical for one task than another, no 
matter where they reside spatially.

We first test object-trained and face-trained networks on both 
face and object recognition. One possible outcome is that CNNs 
trained only on object categorization will suffice for accurate face 
recognition, as they do for fine-grained discriminations within 
some other categories (13). This finding would show that face rec-
ognition need not in principle require a specialized face system, in-
stead favoring other accounts of the segregation observed in primate 
brains. However, we find that networks trained only on objects per-
form poorly on face recognition and much worse than face-trained 
networks, supporting the computational account of why humans 
have specialized face systems. That finding raises a second question 
of what, if anything, must be built into a network for such a special-
ized face system to arise. One possibility, following long-standing 
evidence for innate domain-specific learning mechanisms in ani-
mals, is that face recognition could be learned from experience only 
if scaffolded upon built-in face-specific predispositions (18) [such 
as an innate face template (19)]. However, we find instead that face 
discrimination spontaneously segregates from object recognition in 
networks trained on both tasks despite the lack of built-in face-specific 
inductive biases. This finding raises a third question of whether 
spontaneous task segregation in networks predicts the particular 
functional specializations observed in brains or whether sponta-
neous task decomposition is a more pervasive property in networks. 
We find spontaneous segregation not only for faces but also for oth-
er categories to varying degrees, revealing a general tendency for 
task segregation in networks and opening the door to a wider inves-
tigation of the particular architectures, loss functions, and training 
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diets that determine which tasks will be segregated in networks, 
and, by hypothesis, also brains.

RESULTS
Networks trained only on objects do not perform well 
on face recognition
To test whether object-trained CNNs suffice for face recognition 
and vice versa, we trained two randomly initialized VGG16 net-
works (20), one on face identification (Face CNN; Fig. 1A in red) 
and one on object categorization (Object CNN; Fig. 1A in orange). 
We then asked how well the resulting feature spaces of each net-
work trained on one task would support the other task by decoding 
100 held-out face and object categories based on the image repre-
sentations (i.e., activation patterns) in the penultimate layer (i.e., 
FC2  in Fig. 1A) in each network (Fig. 1B). The top layer of each 
network (FC3) contains the “training class” units and is specific to 
the task during training. Here, we want to extract the “generic” im-
age representations for classes (i.e., identities and object categories) 
that were not part of the training and therefore chose the penulti-
mate layer. As expected, unfamiliar (i.e., untrained) face identities could 
be decoded accurately from the face-trained network (mean decoding 
accuracy of 82.2%), and unfamiliar objects could be decoded from 
the object-trained network (74.1%). However, the object-trained 
network performed significantly worse (29.3%) at face recognition 
than the face-trained network (P = 3.72 × 10−11, two-sided paired 
t test) and vice versa for object recognition (Face CNN, 17.3%; 
P  =  1.82 × 10−11, two-sided paired t test). Thus, representations 
learned for one task do not readily transfer to the other: Each task 
appears to benefit from specialized task-specific representations.

Spontaneous segregation for faces and objects  
in dual-trained networks
But might training a single network to perform both tasks discover 
a common high-performing feature space for faces and objects? To 
address this question, we trained a new network on both face iden-
tity and object categorization (Fig. 1A in gray) (16). Unexpectedly, 
this dual-task network performed nearly as well on each task as the 
network trained on that task alone (Fig. 1C). One interpretation of 
this result is that the network found a common feature space to 
solve both tasks, arguing against the hypothesis that specialization 
of function is required for high task performance. However, anoth-
er possibility is that the network learned to segregate itself into two 
separate systems, one for face recognition and the other for object 
recognition, although nothing was built into the network architec-
ture or training regime to force it to do this.

To test this possibility, we performed a series of lesion experi-
ments on the last convolutional layer (i.e., the final layer of feature 
extraction) of the model (Fig.  2A). First, we identified filters im-
portant for face recognition by measuring how ablating each filter 
(i.e., setting its output to zero) affected the loss for batches of face 
images (Fig. 2A, top) or object images (Fig. 2A, bottom) from the 
training set. We then ranked the filters according to their associated 
loss on each task. [Ranking by the selectivity of their response to 
faces or objects was less informative (fig. S1; for details, see the Sup-
plementary Materials).] Using a greedy procedure, we first selected 
and dropped the highest-ranking group (~1.6%) of filters for each 
task and then selected the next highest-ranking group from the re-
maining filters in a similar fashion but on distinct batches of images. 
We repeated this process until there were no remaining filters left, 
resulting in all filters being ranked for their importance on each task 
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Fig. 1. Distinct face and object representations in singly trained CNNs while a dual-task CNN performs well. (A) Three networks with VGG16 architecture (left) were 
optimized, one on face identity categorization (Face CNN in red), one on object categorization (Object CNN in orange), and one on both tasks simultaneously (dual-task 
CNN in gray). (B) Decoding accuracy of held-out face identities and held-out object categories using activation patterns extracted from the penultimate layer [i.e., FC2 in 
(A)] of the Face CNN and the Object CNN. The Face CNN outperforms the Object CNN in face decoding and vice versa for object decoding. Thus, the representations op-
timized for each task do not naturally support the other. The dashed gray line indicates chance level (1%). Error bars indicate SEM across classification folds. (C) A dual-task 
CNN optimized on both tasks performed and the separate networks (% top 1 accuracy on the test set). Error bars denote 95% confidence interval (CI) bootstrapped across 
classes and stimuli.
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(see Materials and Methods). Next, we tested the task specificity of 
this final ranking by lesioning the filters that most affected the per-
formance of one task (e.g., highest-ranking face filters) while mea-
suring the performance on the independent validation set for the 
face and the object task.

This analysis revealed that lesioning the 20% highest-ranking 
face filters strongly impairs performance on the face task but only 
minimally impairs performance on the object task and vice versa for 
the highest-ranking object filters (Fig. 2B). These findings demon-
strate a double dissociation in the network: Face and object tasks 
rely on distinct features in the last convolutional layer (visualized 
in Fig. 3B). That is, the network spontaneously segregated itself 
into distinct subsystems for face and object recognition despite the 

lack of any task-specific inductive bias that might have encouraged 
this outcome.

Task segregation increases across layers, like the brain
How is this task segregation built up over layers of the network? In 
primate brains, processing of visual categories appears to share an 
initial set of common features in early stages of processing (retina, 
lateral geniculate nucleus, V1, V2, etc.), followed by branching into 
subsequent category-specific pathways (e.g., face, body, scene, etc.). 
Might dual-trained CNNs exhibit a similar organization? To test 
this possibility, we performed the same lesioning analysis in each 
convolutional layer individually (Fig. 3A). To quantify functional seg-
regation, we defined a combined task segregation index. We defined 
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Fig. 2. Lesion experiments in the last convolutional layer reveal spontaneous task segregation. (A) Schematic of lesion experiments for the last convolutional layer 
(see “Conv13” in Fig. 1A) in VGG16. Each filter in the layer was ablated while measuring the loss to batches of face (top) and object (bottom) images. The filters were 
rank-ordered by their corresponding losses to determine those that contribute most to face (red) or object recognition (orange). (B) Normalized performance of face and 
object tasks after lesioning the 20% highest-ranking filters for the face task (top) and the object task (bottom) in the last convolutional layer. Error bars denote 95% CIs 
bootstrapped across classes and stimuli.
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Fig. 3. Spontaneous segregation of face and object tasks in mid-level processing stages. (A) Task segregation, measured as combined index of the differences in 
proportional drops in performance on the face and object task, when the 20% highest-contributing filters are dropped in each convolutional layer. Task segregation in-
creased after the first convolutional layers to a maximum index of 0.75. Shaded area represents 95% CIs bootstrapped across classes and stimuli. (B) Images optimized to 
drive responses in three example filters among the top 10 selected filters for the face (left) and the object (right) task in convolutional layers 5, 9, and 13 (rows). The size 
of the receptive fields increases, and features become more task specific in later layers.
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task selectivity as the proportional drop on a given task (e.g., face task) 
when dropping any given group of filters together minus the propor-
tional drop on the other task (e.g., object task) when the same group of 
filters are dropped, normalized by the sum of the two. We computed 
a face selectivity index and object selectivity index when the top 20% 
face-ranked and the top 20% object-ranked filters were dropped, re-
spectively. The average of these two selectivity indices served as our 
combined task segregation index (see Materials and Methods). This 
segregation index is bounded between −1 and 1, where 1 indicates 
maximum segregation (e.g., lesioning filters would only affect the given 
task but not the other), 0 indicates no segregation (e.g., lesioning would 
affect both tasks equally), and −1 indicates inverse segregation (e.g., 
lesioning filters would only affect the other task but not the given task). 
An index of 1/3 indicates that the decrement in performance of the 
corresponding task is at least twice as large as of the other task.

We found that task segregation was small in early layers and in-
creased with later layers, exceeding 1/3 for the first time at layer Conv6 
(P = 0, bootstrap test) and reaching 0.75 by Conv13 (see Fig. 3A). 
These results indicate that the processing of faces and objects gradually 
diverge at middle stages of processing in the network and become 
highly segregated at later stages, much as we see in the primate brain.

The analyses above indicate that the network has effectively as-
signed some filters to the face task and other filters to the object task. 
But what features are these filters extracting? To find out, we visual-
ized the preferred stimulus for each filter by presenting the network 
with a random noise input and modifying this input so as to maximize 
the activation of filters that ranked high on the face or the object task 
(Fig. 3B). While filters in early layers (e.g., Conv5) showed similar fea-
tures across tasks, filters that were ranked high for the face tasks max-
imally responded to features that appear somewhat like face parts 
(e.g., nose and eyes) in mid-level layers (e.g., Conv9) and that appear 
to represent faces in a more holistic manner in late convolutional layers 
(e.g., Conv13; for more details on the response selectivities of these 
filters, see fig. S4). In contrast, object-specific filters were maximally 
activated by features and patterns that appear more generic, such as 
triangular shapes. These results show the development across the pro-
cessing hierarchy of the distinctive features that each task relies on.

Functional segregation does not arise for random tasks or 
distinct datasets for the same task
So far, we have shown that the double dissociation in primate brains 
between face and object recognition is recapitulated in CNNs optimized 

for both tasks, although we did not build in any specific inductive 
bias to encourage the networks to discover this segregation. However, 
perhaps the spontaneous segregation that we found does not reflect 
task decomposition in any interesting sense but would be found for 
any pairs of tasks, no matter how trivially they differ from each other. 
To test this possibility, we performed a control analysis to test whether 
a similar segregation would be found for random tasks. Here, we 
randomly assigned 50% of the face and 50% of the object classes to 
a random task A and the remaining face and object classes to task B 
(Fig. 4A). We then performed the same lesioning analysis on the 
basis of these random tasks in the last convolutional layer (where we 
found the strongest segregation for face and object tasks). We found 
no evidence of segregation based on these random tasks (Fig. 4B).

The combined task segregation index was 0.01 (not significantly 
different from zero; P = 0.596, bootstrap test), meaning that lesion-
ing filters ranked highly on task A equally affected the performance 
on task A and task B and vice versa. These results indicate that seg-
regation does not develop for arbitrary tasks, but instead, the net-
work learns features that are specific to the face or object task and 
that generalize across classes within, but not outside, each domain.

Could the functional segregation between tasks be explained by 
low-level differences or image collection biases in datasets? If low- 
level differences in tasks drive segregation, then we would expect to 
find segregation starting in early layers of the network, where these 
low-level features are typically processed. However, in the layer- wise 
analysis of segregation above, segregation is minimal in the initial 
stages, only beginning to emerge at mid-level stages, suggesting that 
common low-level features are important for both tasks. Alterna-
tively, each task might rely on distinct features, but impairment of 
these features in early layers might have less effect on performance. 
To distinguish between these two possibilities, we complemented 
this analysis with an analysis of how many of the top 20% ranked 
filters are shared between tasks (i.e., filters that ranked high on both 
tasks) in each layer. We found that the proportion of shared top-
ranked filters across tasks was initially high but strongly decreased 
with progressive layers (fig. S2; for details, see the Supplementary 
Materials), suggesting that the same filters contribute to both tasks 
in earlier layers, but each task relies on a distinct set of features in 
late layers. To further test whether low-level biases in datasets can 
drive segregation, we asked whether segregation can arise for the 
same task performed on two different image datasets. We found 
only a small degree of segregation in this case (fig. S3; for details, see 
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Fig. 4. No segregation for random tasks. (A) Schematic of randomly assigning 50% of the face and 50% of the object classes to new tasks A and B. Each filter in the last 
convolutional layer was ablated while measuring the loss to batches of images belonging to task A or task B. Using a greedy procedure, the filters were rank-ordered by 
their corresponding losses to determine those that contribute most to task A or task B. (B) Normalized performance of tasks A (dark gray) and B (light gray) after lesioning 
the 20% highest-contributing filters for tasks A (left) and B (right) in the last convolutional layer. Performance decrement through lesioning was smaller than for the orig-
inal tasks (Fig. 2B) and affected both tasks equally. Error bars denote 95% CIs bootstrapped across classes and stimuli.
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the Supplementary Materials). Together, these control analyses sug-
gest that the high degree of functional segregation that we found for 
faces and objects is not due to simple dataset biases or low-level 
differences but is instead driven by the distinct mid- to high-level 
visual features required for each task.

Functionally segregated networks capture human behavior 
on faces and objects
Our findings of task segregation for faces and objects in dual-trained 
CNNs mirror the functional specialization observed in the human 
visual system. But are the learned feature spaces to perform both 
tasks also similar to the human visual system? Neural responses in 
task-specific areas for face and object processing have previously 
been linked to primate perceptual behavior in these tasks (3, 21, 22). 
Are the learned representational spaces for faces and objects in the 
dual-trained network similar to those revealed in human behavior 
and more so than the separate models optimized for only one task? 
To find out, we ran two behavioral experiments measuring the per-
ceived similarity of pairs of face stimuli and pairs of object stimuli. 
For each task, we correlated the behavioral representational dissim-
ilarity matrices (RDMs) of each participant for the corresponding 
stimuli with the RDMs obtained from each layer of the face-trained 
CNN (red), the object-trained CNN (yellow), and the dual-task 
CNN (gray) (Fig. 5). We found that the face-trained CNN was more 
similar to human face behavior than the object-trained CNN and 
vice versa for object behavior, revealing a double dissociation. Each 
layer of the dual-task trained network matched the behavior and/or 
is better than each of the singly trained networks. These results 
show that the dual-task network captures human behavior in both 
face and object tasks, thereby supporting the conclusion that the 
learned solutions to perform both tasks resemble those in the hu-
man visual system.

Varying functional segregation for other visual categories
Thus, CNNs optimized for both face and object recognition, but 
with no domain-specific inductive biases, recapitulate both the 
double dissociation between face and object processing observed in 
the human brain and the representational spaces for faces and ob-
jects revealed in human behavior. But are faces “special,” or might 
we also see spontaneous segregation of networks for the recognition 
of other categories (e.g., food and cars)? Note that we focus here on 
“natural” categories (i.e., those that frequently occur in the human 
visual diet), as we do not expect to find segregation in the human 

visual system for tasks that are not relevant to humans. One possi-
bility is that only certain tasks are computationally distinct enough 
that they need their own separate processing mechanisms, and it is 
only these tasks that spontaneously segregate themselves in networks. 
Perhaps we could even “predict” which functions will be segregated 
in the cortex from the functions that spontaneously segregate them-
selves in networks. However, another possibility is that networks 
have a default tendency to segregate most natural tasks into distinct 
subnetworks. This might suggest that, in brains too, functional seg-
regation might be expected for most natural tasks that are import-
ant to us (or were important to our evolutionary ancestors). In that 
case, our results would provide an explanation for why functional 
segregation is found in brains, but not for the particular functional 
specificities observed in the brain [e.g., for faces, places, and bodies, 
but not for categories of similar evolutionary and modern-day rele-
vance such as food (23)].

To test whether task segregation is found in networks even for 
natural tasks that have not been found to show segregation in the 
brain, we performed the same lesioning analysis on a dual-task net-
work trained on visual food and object categorization (Fig.  6A). 
While food and objects showed weaker segregation than faces and 
objects in mid-level layers Conv7 to Conv9 [all P  =  0, bootstrap 
tests, false discovery rate (FDR)–corrected for number of layers], 
both networks showed similar degrees of segregation in the last 
convolutional layer (combined segregation index, 0.8 for food and 
objects versus 0.75 for faces and objects; P = 0.184, bootstrap test, 
FDR-corrected; Fig. 6B, green). Thus, spontaneous task segregation 
in networks predicts some specializations that have not been found 
in the brain. One potential explanation is that the “food” system is 
more broadly engaged in some kind of visual analysis that includes 
but is not restricted to food. Consistent with this hypothesis, the top 
20% food filters were less selectively responsive to food (maximal 
response to food images was 66, and top nonfood response was 50) 
than the top face filters were for faces (maximal response to faces 
was 56, and top response to a nonface was 18; fig. S4; see the Supple-
mentary Materials for more details on these selectivities).

Would another task that also requires fine-grained discrimina-
tion such as face recognition, but that relies more on shape features, 
also show functional segregation? To test this idea, we trained a dual- 
task network on object recognition and car model/make discrim-
ination (more fine-grained than most humans can perform). The 
car task showed later segregation than face and food tasks, exceed-
ing a combined segregation index of 1/3 for the first time in layer 

Fig. 5. Dual-trained CNN is most correlated with behavior. Correlations between behavioral RDMs for either face (left, n = 14) or object (right, n = 15) stimuli and layer- 
specific RDMs obtained from activation patterns in the Face CNN (red), the Object CNN (in yellow), and the dual-task CNN (in gray) to the corresponding stimuli. Color- 
shaded areas denote bootstrapped SEM across participants. Gray-shaded horizontal bars indicate estimated noise ceiling based on the variability across participants.
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Conv9 (P  =  0.013, bootstrap test, FDR-corrected; Fig.  6B, blue). 
Moreover, while the degree of segregation in the last convolutional 
layer was still relatively high for objects and cars (maximum com-
bined segregation index, 0.56), it was significantly lower than for 
faces or food from layer Conv3 onward (all P = 0, bootstrap test, 
FDR-corrected for number of layers and networks). Thus, CNNs 
show a widespread tendency to spontaneously segregate natural 
tasks to varying degrees, at least when half of their training is on 
that task, although their precise match to the brain needs to be fur-
ther explored. It may turn out that all functional segregations found 
in the brain will also be found in CNNs, but the opposite may not be 
the case. Further investigation of the necessary conditions for spon-
taneous task segregation in artificial networks might reveal which 
factors determine the particular functional specificities observed in 
the brain (24).

DISCUSSION
Our goal in this work was to understand why functional specializa-
tion is such a pervasive feature of brain organization and to test the 
hypothesis that specialization in the brain may result from optimi-
zation (over development or evolution or both) for multiple natural 
tasks. This hypothesis predicts that even very different computa-
tional systems, with very different optimization procedures, may 
arrive at a similar solution (11). We tested this prediction in CNNs 
for one of the best-established cases of functional specialization in 
the brain: face recognition. Supporting our hypothesis, we found 
that CNNs trained on object recognition perform poorly on face 
recognition and vice versa and that CNNs trained on both tasks 
spontaneously segregate themselves into distinct subsystems for 
face and object recognition. We further showed that the dual- 
trained network also fits human perceptual behavior better than 
either singly trained network, and last, although spontaneous net-
work segregation is not found for trivially different tasks (such as 
random tasks or the same task performed on two different datasets), 
it is found for other natural tasks including those for which brain 
specializations have not been reported. Together, these findings in-
dicate that spontaneous task segregation is a widespread tendency 
in systems optimized to perform multiple natural tasks, lending 
support for the hypothesis that functional segregation in brains may 
reflect a computational solution given the structure of the tasks that 
brains must solve.

Our findings also have implications for face perception in partic-
ular. Our results show that it is, in principle, not necessary to appeal 
to the social significance or meaning of faces to humans to under-
stand how the face system develops or how it represents faces (25). 
Our networks know nothing about why faces matter to humans; 
faces are just visual patterns to classify, yet the networks “discover” 
the same functional dissociation between faces and objects that has 
long been reported in the human brain, and they discover a similar 
representational space for faces to that revealed in human behavior. 
These findings suggest that these properties of the human face per-
ception system may result more from the computational structure 
of the task itself than from the particular meaning faces have for 
humans. Of course, the networks used in our study could not 
achieve this performance on face recognition without extensive 
training on faces, which may also be true for minds (26, 27) and 
brains [but see (28–30)]. To obtain this experience, networks would 
either need to be fed this information (as they were here), or if 
trained on more naturalistic datasets, they may need some system 
to preferentially select faces for their own training input. For hu-
mans, faces indeed comprise a large percent of the perceptual input 
to human infants and adults (31–33), and this has likely been true 
during much of human evolution. It may be that the only inductive 
bias humans need to develop their face system is the already well- 
established early preference of infants to look at faces (34, 35).

Several limitations of this work should be noted. First, when we 
say a system has been optimized, that does not mean it is optimal. 
We have tested only a tiny subset of the possible architectures, data-
sets, and loss functions, and it remains possible that in some other 
corner of this large space, a neural network could be found that will 
perform as well as the networks tested here and that may find a 
shared representational space for faces and objects. Thus, we cannot 
argue that our results indicate that the human brain must segregate 
face and object processing to attain high performance on both, sim-
ply that under the circumstances that we tested, we found segrega-
tion, resembling what we see in the brain. Second, the present work 
is agnostic on whether specialization in the brain is constructed 
through optimization over development or evolution or both. We 
trained CNNs to ask how they are functionally organized once op-
timized, not to ask how that optimization occurs. How this segrega-
tion arises in humans is bound to be very different from how it 
arises in CNNs trained with backpropagation. Third, this work 
does not address the spatial organization of functionally specialized 

Food-Object CNN
Food task
Object task

Face task
Object task

Face-Object CNN

Car-Object CNN
Car task
Object task

A B

Fig. 6. Spontaneous segregation to varying degrees for food or car recognition. (A) In addition to the dual-task model for face and object tasks (red), we trained 
one dual-task model on food (green) and object categorization and another one on car (blue) and object categorization. (B) Task segregation was measured by lesioning 
the most-contributing filters for faces, food, and cars (respectively) and objects in each convolutional layer. Task segregation was found for all tasks to varying degrees. 
Task segregation for cars and objects increased later, to a lesser degree, than for food or faces and objects. Color-shaded areas denote 95% CIs bootstrapped across 
classes and stimuli.
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systems in the brain, as the units and filters in the networks trained 
here have no analog to location on the cortical sheet. These broader 
questions can be approached in future work using networks that 
explicitly model spatial topography (36, 37) and that are trained in 
a fashion more like human development (38).

Last, while our findings support a computational account of why 
functional specialization is found at all in brains, they do not fully 
predict which mental functions should have specialized machinery 
in human brains. We find functional specialization for fine-grained 
car discrimination in networks but not brains, presumably because 
neither our evolutionary ancestors nor many modern humans per-
form this task. However, we also find functional specialization for 
visual categorization of food in networks, which has not been found 
in brains despite the extensive interest and experience all of us (and 
our ancestors) have with visual discrimination of food. One possi-
bility is that a visual specialization for food does exist in brains but 
at a finer spatial grain than current methods can detect. Another 
possibility is that the particular functional specializations found in 
CNNs might more closely match that found in brains for more 
brain-like architectures, training diets that more closely match hu-
man visual experience (e.g., our visual diet unlikely consists of 50% 
food) or different training regimes such as unsupervised or self- 
supervised loss functions (39–41). A third possibility is that task- 
specific inductive biases need to be included in networks to match 
the particular specializations found in brains. Network optimization 
with and without task-specific inductive biases might help reveal 
which functional specializations rely on inductive biases in the brain 
(18) and which do not.

Our findings dovetail with several prior lines of work. A few 
studies have shown performance advantages when branches are 
built into a network, with each branch trained on a different task, 
indicating an advantage of functional specialization (16,  42,  43). 
Other studies have shown that even if each branch is not trained 
separately on a different task, the branches sometimes spontaneous-
ly differentiate themselves (40, 44–46). Separate functional respons-
es can even arise in subsets of a network with no built-in branches 
(47,  48). Most impressively, one study found that the functional 
segregation that arose spontaneously in a network reflected distinct 
causal roles of each subnetwork in performance of different tasks 
(17). Specifically, the authors in that study trained a recurrent neu-
ral network on 20 different cognitive tasks and found that recurrent 
units developed into clusters, such that lesioning units in each clus-
ter produced deficits in different subsets of the 20 tasks. Although 
it uses much simpler networks and tasks, this study mirrors our 
finding of spontaneous segregation of a network into distinct 
components, each causally engaged in a subset of the trained tasks. 
Last, several studies reported functional specialization for class- 
specific features using visualization techniques and lesioning methods 
(49, 50). While it has been proposed that class-specific units harm 
networks’ generalizability (51), our control analysis using random 
tasks suggests that the emerging functional segregation is not class 
but task specific.

Perhaps the most exciting aspect of this work is the fact that we 
can move beyond simply describing the organization of the brain to 
asking normative questions about why the brain is organized the 
way it is. We now not only have strong evidence that face processing 
is segregated from object processing in the brain but also have an 
understanding of why this might be the case: Functional segrega-
tion is a natural consequence of optimization to solve multiple 

tasks. Of course, this insight begs the next question of why might 
optimized solutions for face recognition in brains and machines 
require functional segregation (“the why of the why”). According 
to one hypothesis (6), it is the computational challenge of achieving 
class-specific viewpoint invariance that requires domain-specific 
mechanisms. This idea does not readily explain our findings for 
faces because the face training set that we used contained a nar-
row range of face viewpoints, yet functional segregation resulted 
nonetheless. Another hypothesis is that face recognition is best 
accomplished using a generative model of faces, an inherently 
domain-specific mechanism (52). The good news is that the methods 
developed here enable us to test these hypotheses, as well as myriad 
other ideas about why optimization in brains and machines often 
produces domain specificity, for which domains, and why these.

MATERIALS AND METHODS
Task-optimizing CNNs on face and object recognition
To measure object categorization performance in a network trained 
on object categorization only (Object CNN), we trained a randomly 
initialized VGG16 network (20) on 423 manually sampled catego-
ries of the ILSVRC-2012 database (53). To avoid confounding the 
object task with scene or body categorization, for which segregation 
has also been found in the brain, we removed all categories from the 
original dataset that were scene-like (e.g., boathouse) or animals 
that include lots of bodies (and faces). We then manually chose cat-
egories that were prototypical objects (e.g., trumpet, hammer, and 
coffee cup) from the remaining categories. For each of the 423 se-
lected object categories, we used 1000 images for training and 200 
for validation for a total of 423,000 training and 84,600 validation 
images. We used similar training parameters as suggested in the 
original VGG paper (20): stochastic gradient descent (SGD) with 
momentum with an initial learning rate of 10−3, a weight decay of 
10−4, and momentum of 0.9. We manually reduced the learning rate 
twice to 10−4 and 10−5 when the training loss did not decrease for 
five epochs (i.e., full passes over the training set). To update the 
weights during training, we computed the cross-entropy loss on 
random batches of 128 object images and backpropagated the loss. 
Each image was scaled to a minimum side length (height or width) 
of 256 pixels, normalized to a mean and SD of 0.5, and data aug-
mentation (i.e., 20% grayscaled and randomly cropped to 224 × 224 
pixel) was applied during training. The test images were scaled, nor-
malized, and center-cropped before extracting the classification. 
The resulting classification accuracy on the validation set provides a 
performance measure of a network that is free to learn task-opti-
mized representations at all stages of visual object processing.

We measured face recognition performance achievable by the 
same architecture by training a VGG16 network on face identity 
categorization only (Face CNN). We trained the randomly initial-
ized network on 1714 identities (857 female) from the VGGFace2 
database (54). To allow for better comparison with humans, we 
tried to match the number of identities during training to the mini-
mum number of people typically known by humans (ranging from 
1000 to 10,000) (55). We chose identities with a minimum of 300 
images per identity and balanced female and male identities (857 
each); otherwise, the identities were randomly selected from the 
VGGFace2 database. To match the training set size to the Object 
CNN, we randomly chose 246 images per face identity for training 
and 50 images per category for validation for a total of 421,644 
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training and 85,700 validation images (16). All other learning pa-
rameters were identical to the object network. The resulting classi-
fication accuracy on the validation set served as a measure for 
unconstrained face identity categorization performance.

Decoding of within- and between-domain visual categories
To test whether representations and computations optimized for one 
task would transfer to the other task, we decoded exemplars of a 
held-out set of face identities and object categories from the activa-
tions extracted from both networks. We used 100 held-out face iden-
tities (50 female; 10 images per identity; 1000 images in total) from 
the VGGFace2 dataset that were not included in the training set. For 
object decoding, we selected 100 categories from the THINGS data-
base (10 images each; 1000 images in total) (56) that were prototypi-
cal object categories and did not overlap with the 423 categories that 
the object CNN was trained on. We extracted the activation in the 
penultimate layer of each network (i.e., the last layer before the clas-
sification layer) to the 1000 face images and the 1000 object images, 
respectively. For each task and activations from each network, we 
trained and tested a 100-way linear support vector machine (with 
L2 regularization) on the corresponding activation patterns using a 
leave-one-image-out (i.e., 10-fold) cross-validation scheme.

Training and testing dual-task networks
To determine whether representations could be learned to simulta-
neously support both tasks, we trained a dual-task CNN on face 
identity and object categorization (see Fig. 1A). We concatenated 
the face identity categories (1714) and the object categories (423) to 
one task classification layer (2137 categories in total) and used ran-
dom batches of face and object images (batch size, 128) during 
training. All other learning parameters and the datasets were iden-
tical to the VGG16 training (see above). To measure the perfor-
mance on the face and the object task, we computed the accuracy on 
the independent validation set separately for the face classes (1714) 
and object (423) classes.

To test whether we would find segregation for other natural tasks, 
we additionally trained two dual-task networks: (i) We trained a 
network on object categorization and food discrimination using the 
Food101 (57) dataset. This dataset contains 101 food categories 
with 1000 images each. We used 900 images per category for train-
ing and 100 for validation for a total of 90,000 training and 10,000 
validation images. To maximize the distinction between the food 
and the object task, we removed all food classes from the object 
dataset (50 of the 243 original classes were food related) before 
training. For the remaining 393 classes, we chose the number of 
training images for each class (231 images per class; 90,783 images 
in total) to match the number of the food images in the training 
dataset. (ii) We trained a network on object recognition and fine-
grained car model/make discrimination using the CompCars data-
set (58). To obtain enough images per class, we concatenated 
images from the same model/make but of different years into one 
class. In this fashion, we ended up with 1109 classes with 45 images 
for training and 5 images for testing per class for a total of 49,905 
training and 5545 validation images. We randomly chose 127 imag-
es from each class of the object dataset (i.e., all 423 classes for 53,271 
images in total; none of these classes were car or vehicle related) to 
match the overall number of training images. Both of these net-
works were again trained with the identical training parameters as 
described for the model trained on faces and objects.

Lesion experiments in dual-task networks
To test whether the dual-task network segregated the processing of 
faces and objects in the hidden convolutional layers, we performed 
lesion experiments (49). First, for each convolutional layer, we 
identified putative task-specific filters by evaluating how much ab-
lating that filter (i.e., setting its output to zero) affected the loss for 
50 batches of face images and for 50 batches of object images, re-
spectively, all taken from the training set. We then ranked the filters 
in each convolutional layer by how much they affected the loss on 
face images (face ranking) and the loss on object images (object 
ranking). Using a greedy procedure, we first selected and dropped 
the highest-ranking group (~1.6%) of filters for each task and then 
selected the next highest-ranking group from the remaining filters 
in a similar fashion but on distinct batches of images (also taken 
from the training set). We repeated this process until there were no 
remaining filters left, resulting in all filters being ranked for the im-
pairment that they produced on each task when lesioned. For each 
layer, we then tested the task specificity of these filters by lesioning 
the top 20% filters that most affected performance according to the 
face or object ranking while measuring the performance on the in-
dependent full validation set for the face and the object task. To 
quantify functional segregation, we defined a combined task segre-
gation index. First, we defined a task specificity (TS) index for a 
group of top 20% ranked filters a based on task A

   TS  a   =   
 d   A  a     −  d   B  a     ─  d   A  a     +  d   B  a    

    

where dAa indicates the proportional drop on a given task A (e.g., 
face task) when dropping the top 20% filters a ranked by the corre-
sponding task A altogether and dBa indicates the proportional drop 
on the other task B (e.g., object task) when the same group a of fil-
ters are dropped. We computed the task specificity index for the top 
20% face-ranked and the top 20% object-ranked filters, respectively. 
The average of these two selectivity indices served as our combined 
task segregation index. This segregation index is bounded between 
−1 and 1, where 1 indicates maximum segregation (e.g., lesioning 
filters would only affect the given task but not the other), 0 indicates 
no segregation (e.g., lesioning would affect both tasks equally), and 
−1 indicates inverse segregation (e.g., lesioning filters would only 
affect the other task but not the given task). An index of 1/3 indicates 
that the decrement in performance of the corresponding task is at 
least twice as large as of the other task.

Visualization of filters
To better understand the nature of the top face- and object-ranked 
filters, we generated images that strongly drove responses of single 
units in the network, optimizing the input image to maximize the 
unit’s responses. We initialized the input image with random noise 
and then used gradient ascent to maximize the units’ responses, 
with an additional L2 regularization over pixel values to encourage 
shrinkage of pixel values toward zero. Each unit visualized was cho-
sen such that the center of its receptive field corresponded to the 
center of the image. This was done after observing that units from 
the same filter yielded similar synthesized images (but with recep-
tive fields that were not centered at the center of the image). A small 
learning rate of 1 × 10−3 worked best for maximizing the loss func-
tion. In addition, periodic (every 10 iterations) blurring and random 
jittering were applied to the pixel values (50) to enhance visualization, 
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presumably by discouraging getting caught in local minima. Note 
that units in filters from later layers have larger receptive field sizes 
than those at earlier layers. The visualizations demonstrate this 
property by optimizing over the receptive field size and leaving 
noise for image pixels on the borders.

Testing segregation in random tasks
To test whether arbitrary tasks would lead to segregation in du-
al-task networks, we created two random tasks, each composed of 
half faces and half objects. To create two sets of face classes, face 
identities were chosen randomly until half of all identities were se-
lected. This procedure resulted in two mutually exclusive but ex-
haustive sets of identities, Faces-1 and Faces-2. The same procedure 
was repeated for object categories, resulting in two mutually exclu-
sive and exhaustive sets of categories, Objects-1 and Objects-2, of 
equal size. To create two random tasks, we assigned the identities in 
Faces-1 and the categories in Objects-1 to Task-A and likewise 
Faces-2 and Objects-2 to Task-B. It follows that Task-A and Task-B 
are also mutually exclusive and of equal size, where each compose 
of half the face identities and object categories.

By removing filters that degrade the performance of Task-A as 
constructed above, we expect to find that Task-B is equally affected 
and vice versa since presumably high-impact features for either task 
are also of high impact for the other. We performed the same greedy 
lesioning analysis on the dual-task network trained on faces and ob-
jects based, as introduced above, but using the two random tasks 
(each composing of half face identities and half object categories). 
The resulting proportional drop in each task and the combined seg-
regation index then served as a baseline for a null specificity mea-
sure in dual-task networks.

Human participants
Behavioral data from 14 participants (7 female; mean age of 25.9; 
SD = 4.33) from a previously published study (59) were used to 
perform the representational similarity analysis on face stimuli. 
As described previously, all participants provided informed written 
consent before the experiment and were compensated financially 
for their time.

Another set of 15 participants (8 female; mean age of 28.9; SD = 8.2) 
were asked to perform the same task on object stimuli. All participants 
provide informed written consent before the experiment and were 
compensated financially for their time. The Massachusetts Institute of 
Technology Committee on the Use of Humans as Experimental Sub-
jects approved both experimental protocols (COUHES no. 1606622600), 
and both experiments were conducted in compliance with all relevant 
ethical regulations for work with human participants.

Stimuli and behavioral representational dissimilarities
To find out whether humans and CNNs trained to recognize faces 
(Face CNN), objects (Object CNN), or both (dual-task CNN) repre-
sent face and object similarity, we performed representational sim-
ilarity analysis. The experimental design to obtain the behavioral data 
has been explained in detail previously (59), so here, we just briefly 
summarize the stimuli and task. To obtain behavioral similarities 
for faces, participants (n = 14) performed a multi-arrangement task 
(60) using 80 grayscale face stimuli. Stimuli consisted of 16 celebrities, 
which varied orthogonally in gender and age, such that half were 
female and half were male and half of them were young (below ~35 years) 
and half were old (above ~60 years). Another set of participants 

(n = 15) performed the same task but using manually selected imag-
es of objects. Stimuli consisted of five grayscale images of each of 
eight prototypical object categories (chair, cheeseburger, dice, fork, 
guitar, headphones, car, and kettle) for a total of 40 images. Partici-
pants performed the multi-arrangement experiment online using the 
meadows platform (www.meadows-research.com) on their own 
computer. During the task, participants were instructed to arrange dif-
ferent subsets of the images based on their perceived similarity 
(“similar images together, dissimilar images apart”) by dragging 
and dropping them in a circle. After the completion of the experiment, 
the pairwise squared on-screen distances between the arranged images 
was computed, thus representing a behavioral RDM. For each partici-
pant, we extracted the lower off-diagonal data from the behavioral RDM 
to obtain a vector of pairwise dissimilarities used for computing the 
correlations. We additionally computed the noise ceiling for the rep-
resentational dissimilarities given the inconsistencies across participants 
using a method described previously. Briefly, we estimated the upper 
bound of the noise ceiling as the mean correlation of each participant’s 
vector of perceived dissimilarities with the group mean (including the 
participant itself). In contrast, the lower bound was computed by taking 
the mean correlation of each participant with all other participants.

Representational similarity analysis between 
humans and CNNs
To obtain representational dissimilarities on faces and objects for the 
singly and dual-trained CNNs, we presented the same stimuli (80 face 
images, 40 object images) as used for the human participants to the 
CNNs. For each CNN, we extracted the activation patterns to each 
image separately for each of the 13 convolutional layers and the three fully 
connected layers and computed the correlation distance (1 − Pearson’s r) 
between each pair of activation patterns. This resulted in one RDM 
per layer for each of the three CNNs. To compute the similarity be-
tween the human RDMs and the RDMs obtained for the CNNs, we 
rank-correlated each participant’s behavioral dissimilarities vector 
with the corresponding CNN dissimilarities vectors. The average 
rank correlation across participants served as similarity measure between 
human participants and CNNs. We further computed the bootstrapped 
confidence intervals (CIs) by bootstrapping the participants and 
computing the correlation with the CNN RDMs 10,000 times and 
computed the 95% CI of the resulting distribution.

Significance testing
We obtained bootstrapped 95% CIs for the accuracy of all networks by 
bootstrapping across classes and images 10,000 times. To obtain 95% 
CIs for the combined segregation indices, we bootstrapped across classes 
and images for the original and lesioned networks and computed the 
combined segregation indices for each bootstrap. Significance of com-
parison between the combined segregations indices and critical values 
(i.e., 0 or 1/3) or between combined segregation indices of different net-
works was obtained by using direct bootstrap tests and FDR correction.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl8913

View/request a protocol for this paper from Bio-protocol.
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