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CNNs reveal the computational implausibility
of the expertise hypothesis

Nancy Kanwisher,1,2 Pranjul Gupta,3 and Katharina Dobs3,4,1,2,5,*

SUMMARY

Face perception has long served as a classic example of domain specificity ofmind
and brain. But an alternative ‘‘expertise’’ hypothesis holds that putatively face-
specific mechanisms are actually domain-general, and can be recruited for
the perception of other objects of expertise (e.g., cars for car experts). Here,
we demonstrate the computational implausibility of this hypothesis: Neural
network models optimized for generic object categorization provide a better
foundation for expert fine-grained discrimination than do models optimized for
face recognition.

INTRODUCTION

Research on face perception has played a central role in cognitive science and neuroscience by providing

some of the strongest evidence for the domain specificity of mind and brain. However, some researchers

have argued that the cognitive and neural mechanisms engaged during face perception are not specific to

faces per se, but play a more general role in the fine-grained discrimination of exemplars of other visual

categories for which the person has extensive perceptual expertise (for example, cars for ‘‘car experts’’1–4).

Both the behavioral5 and neural1 evidence for this alternative ‘‘expertise hypothesis’’5 have proven incon-

sistent at best,6,7 yet the hypothesis lives on in cognitive neuroscience courses and textbooks.8 Here, we

step back to ask whether the hypothesis that the same neural mechanisms are used for face recognition

and discrimination of nonface objects of expertise1 makes sense computationally in the first place.

A vast body of empirical evidence9,10 supports the idea that visual recognition is accomplished by the brain

through a multi layered hierarchy of perceptual analyzers tuned to increasingly specific visual features,

culminating in a neural representation from which linear readout mechanisms can extract the category

of an object present in the image.11 This basic idea is well captured by deep convolutional neural networks

(CNNs), which are now capable of near human-like performance on visual recognition tasks.12 Indeed,

considerable evidence shows that these models account for much of the variance in visual recognition

behavior and in neural responses recorded from the primate object recognition pathway.13,14 Although

CNNs differ from biological brains in many respects, they offer novel ways of testing optimized solutions

to complex real-world computational problems.15 Here, we use these models to test the computational

plausibility of the expertise hypothesis.

RESULTS

An object-trained network outperforms a face-trained network on fine-grained car

discrimination

Specifically, we ask whether perceptual expertise with cars would be expected on computational grounds

to make use of pre-existing neural machinery for face recognition, or more generic machinery engaged in

visual object recognition. We chose cars for this test because they have been widely used in previous work

testing the expertise hypothesis,1,16,17 they generate some of the largest inversion effects seen in nonface

stimuli,18 and they do not have or resemble faces, which has been a concern about some of the prior tests of

the expertise hypothesis.19,20

We trained the same VGG16 architecture on either face recognition (Face CNN) or object recognition (Ob-

ject CNN; Figure 1A; cars were excluded from the training set). We then fed images of cars into each

network, extracted their representations from the penultimate fully connected layer, and measured how

well a linear classifier could decode 100 distinct makes and models of cars based on these image represen-

tations. This analysis allows us to quantitatively test the intuition that the features useful for classifying cars
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will overlap more with those useful for discriminating objects than with those useful for discriminating

faces.19 Indeed, we found that the object-trained network outperformed the face-trained network (Fig-

ure 1A; 31% versus 12%; p<1e-5, two-sided paired t-test across classification folds), suggesting that sys-

tems optimized for object recognition work better (right out of the box) than systems optimized for face

recognition for fine-grained discrimination of cars.

However, perceptual expertise in humans may develop over many years. Expertise for faces will develop

first because newborns are more interested in faces than other objects, and specialized cortical machinery

for face perception is already present within the first year of life.21 Which of the earlier developed systems

would then serve as the best foundation on which car expertise could be constructed? To find out, we fine-

tuned each network for car discrimination. Specifically, for each network, we removed the original classifi-

cation layer, replaced it with a new classification layer with 1,109 car model/make classes, and then

retrained the network on the car dataset by fine-tuning it from a midlevel layer onwards while freezing

the early convolutional layers (up to the third pooling layer). Once performance plateaued we found that

car discrimination performance (% top-1 accuracy) was higher on the network originally optimized for

object recognition than the network originally optimized for face recognition (Figure 1B; 81% versus

74%; p = 0, two-sided bootstrap test). Again, this finding suggests that expertise with cars can be best

accomplished by building on a pre-existing object recognition system, not a pre-existing face recognition

system.

A dual-task CNN relies on generic rather than face-specific features to discriminate cars

In actual brains, however, there may be no built-in pipeline that directs training on face recognition

(through development or evolution or both) to one system and training on object recognition to another.

A more plausible model comes from our recent work in which the same system is trained on both face and

object recognition, with no pre-set pathways dividing the two22 (Figure 2A, left). In that work we found that

the dual-trained network spontaneously segregated itself, to increasing degrees at later convolutional

layers, into one set of filters that play a greater causal role in face recognition, and another set of filters

that play a greater causal role in object recognition. In particular, we showed that some of the filters in

Figure 1. Object-trained CNNs outperform face-trained CNNs on fine-grained car discrimination

(A) We trained deep neural networks with VGG16 architecture on either face identity recognition (Face CNN; red) or

object categorization (excluding cars; Object CNN; yellow) and decoded untrained car model/make categories using

activation patterns extracted from the penultimate fully connected layer of both CNNs. We found that the Object CNN

outperforms the Face CNN in fine-grained car decoding (*p<1e-5, two-sided paired t-test across classification folds).

Error bars denote SEM across classification folds. Dashed line indicates chance level (1%). Car images shown are not

examples of the original stimulus set due to copyright. Images shown are in public domain and available at https://

publicdomainpictures.net.

(B) Performance (% top-1 accuracy on the test set) of the same networks after fine-tuning the CNNs (up to third pooling

layer) to a fine-grained car model/make classification task. The Object CNN again outperformed the Face CNN (*p = 0,

two-sided bootstrap test). Error bars denote 95% confidence intervals (CIs) bootstrapped across classes and stimuli.
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the last convolutional layer of the dual-trained network produced a much greater drop in face recognition

than object recognition performance when ‘‘lesioned’’, and other filters produced the opposite pattern of

deficit when lesioned. This enabled us to now ask:When this dual-trained system is subsequently trained on

car discrimination, which set of filters takes on that role (the face filters or the object filters)?

To answer this question, we took the network jointly trained on both face and object discrimination and fine-

tuned it for car discrimination. We then tested which set of filters produced the greatest drop in car discrim-

ination performance when lesioned (Figure 2A, right). We found that lesioning 20% of filters with the greatest

selective role in object recognition reduced accuracy of the car task more than lesioning 20% of filters with the

greatest role in face recognition (performance drop of 16% versus 6%; Figure 2B; p = 0, two-sided bootstrap

test). Generally, however, the drop in performance was not large in either case. Which filters did the network

recycle to perform the car task? To find out, we identified the 20% of filters that maximally harmed the car task

when lesioned. Among those filters, only 8% overlapped with face filters, whereas 25% overlapped with object

filters and another 9%were recycled from filters that were critical for both face and object tasks (Figure 2C). Of

interest, the majority of the filters (58%) were neither face nor object filters, but recycled from the redundant

filters in the network. This suggests that car expertisemay require its own specialized system, partly recycling a

subset of the object system, but largely independent of the face system.

DISCUSSION

Taken together, these findings indicate that systems optimized more broadly for object recognition serve

as better foundations than systems optimized for face recognition for subsequent acquisition of car

discrimination expertise. Another study conducted independently from ours found similarly that object-

trained networks performed better than face-trained networks when retrained for bird discrimination.23

It would therefore be implausible – though not impossible – for the brain to choose the suboptimal route,

using a face-optimized system as the basis for later-learned perceptual expertise.

Here, we have considered one specific version of the ‘‘expertise’’ hypothesis, that the very same neural

populations are engaged in fine-grained discrimination of faces and of objects of expertise (Note that

Figure 2. A dual-task CNN relies on generic rather than face-specific features to discriminate cars

(A) The VGG16 network trained on both face and object discrimination (i.e., dual-task CNN, left), where some filters in the

last convolutional layer when lesioned produced a greater drop in face recognition than in object categorization (i.e., face

filters, top example) performance and others showed the opposite (i.e., object filters, bottom example).22 We fine-tuned

the same network (up to third pooling layer) to a fine-grained car model/make classification task (right) and performed

lesioning experiments.

(B) Car discrimination performance of this network drops more when the top 20% of previously identified object filters are

lesioned compared to the top 20% of previously identified face filters (*p = 0, two-sided bootstrap test). Error bars denote

95% CIs bootstrapped across classes and stimuli.

(C) The top-20% of filters that maximally harmed the car task when lesioned were composed mostly of filters that were not

in the top-20% for either face or object recognition (58% of filters) before fine-tuning for cars, but more overlapped with

object (25%) than face (8%) recognition.
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although fMRI cannot straightforwardly determine whether the same, or merely nearby, neural popula-

tions are recruited for different visual categories, results from monkey neurophysiology suggest that

the majority of neurons in face-selective patches are indeed face-selective24). A less stringent version

of the hypothesis merely claims that similar behavioral phenomena may arise for recognition of

faces and objects or expertise, an idea we have supported in a different line of work showing that

networks trained on car discrimination show face-like inversion effects for cars.25 Taken together, these

findings indicate that perceptual expertise may produce similar processing mechanisms for faces

and objects, but those similar mechanisms would not be expected to engage the very same neural

populations.

Limitations of the study

Of course we have not tested all possible CNN models, or training regimes, or domains of expertise,

and it is possible that our results would differ in other conditions. Furthermore, some of our training

choices may not precisely match human experience, such as the number of face categories learned

or the ratio of faces to objects for training of the dual-trained network. In addition, impressive as

CNNs are in accounting for neural and behavioral data, they are not perfect models of visual object

recognition in the brain, as they differ in many respects from biological nervous systems, and it is

possible that very different models might make different predictions. For example, a more symbolic

or structural description model26 could in principle account for the perception of both faces and other

nonface objects of expertise (but see27). However, no such models currently exist that are image-

computable and can account for behavioral performance and neural responses at a level even ap-

proaching current CNNs. A final caveat is that the human visual recognition system need not be

optimal for the recognition of faces and objects because evolution and individual experience optimize

for multiple tasks beyond these and descent with modification can produce history-dependent rather

than optimal solutions.28

More generally, part of the impetus for the expertise hypothesis has been to suggest that if the face system

can take on other categories of expertise, then perhaps its ability to process faces is also learned from

individual experience, rather than built in innately. On this important broader question of whether the

development of the human face system is constrained by innate inductive biases, the current evidence

does not yet deliver a clear answer. However, we note that our dual-task network spontaneously segregates

itself into distinct face and object systems without any face-specific inductive biases, so at least in principle

it is possible for experience alone to create domain-specific systems.22 In addition, empirical evidence

shows that this is clearly true for another nearby cortical region, the visual word form area.29 On the other

hand, empirical challenges that remain to be explained for a purely experiential origin of the face system

include its very early development,21,30 consistent anatomical location, and face-specific activation by

touch and sound in congenitally blind people.31,32 The ultimate answer to this question will inform not

just the existence of domain-specific structure in the human brain, but also its developmental and evolu-

tionary origins.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and resources should be directed to and will be fulfilled by the

lead contact, Katharina Dobs (katharina.dobs@psychol.uni-giessen.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The paper used existing datasets and code to train the computational models. The original datasets and

codes are listed in the key resources table.

d Data and code to generate the plots are available at the Open Science Framework repository for this

project (https://osf.io/qtnzs/). Additional code to fine-tune custom models can be found at the Github

repository: https://github.com/kathadobs/exphypo.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Deep convolutional neural networks

To test whether a generic or a face-specific system would serve as better foundation for learning another

fine-grained task, we trained two randomly initialized deep convolutional neural networks with a VGG16

architecture36 on object categorization (Object CNN) and on face identity categorization (Face CNN).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ImageNet dataset ImageNet: A large-scale

hierarchical image database33
https://www.image-net.org/

challenges/LSVRC/

VGGFace2 dataset VGGFace2: A dataset for

recognising faces across pose and age34
https://www.robots.ox.ac.uk/

�vgg/data/vgg_face2/

CompCars dataset A Large-Scale Car Dataset for

Fine-Grained Categorization

and Verification35

http://mmlab.ie.cuhk.edu.hk/

datasets/comp_cars/index.html

Software and algorithms

Untrained VGG16 VGG16 Model36 https://www.pytorch.org

Pytorch version 3.x Meta AI https://pytorch.org/

Numpy 1.x Community project https://numpy.org/

OpenCV 4.x Intel Corporation, Willow

Garage, Itseez

https://opencv.org/

OSF Center for Open Science https://osf.io/

Scipy 1.x Travis Oliphant, Pearu Peterson,

Eric Jones

https://scipy.org/

sdnn Julio Martinez https://github.com/

martinezjulio/sdnn

Matplotlib 3.x John D. Hunter https://matplotlib.org/

Other

NVIDIA GPUs Nvidia Corporation https://www.nvidia.com/en-us/
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To further test which of the two systems – if both are available simultaneously – would be recycled for

learning a new fine-grained discrimination task, we used a previously developed dual-task network which

had been trained on faces and objects. The details for training this network have been explained

previously.22

METHOD DETAILS

Training task-specific networks

To train the Object CNN, we manually sampled 423 prototypical object categories (e.g., trumpet, hammer,

coffee cup) of the ILSVRC-2012 database33 and used these images for training. In particular, to avoid

including another fine-grained distinction within the object dataset, we removed all categories from the

original dataset that were animals (e.g., ImageNet contains many bird and dog species). Critically, we

further removed all vehicle-related categories. For each of the 423 selected object categories, we used

1000 images for training and 200 for validation, for a total of 423,000 training and 84,600 validation images.

For training, we used stochastic gradient descent (SGD) with momentum with an initial learning rate of

10�3, a weight decay of 10�4 and momentum of 0.9. We manually reduced the learning rate twice to

10�4 and 10�5 when the training loss did not decrease for five epochs (i.e., full passes over the training

set). To update the weights during training, we computed the cross-entropy loss on random batches of

128 object images and backpropagated the loss. Each image was scaled to a minimum side length (height

or width) of 256 pixels, normalized to a mean and SD of 0.5, and data augmentation (i.e., 20% gray-scaled,

randomly cropped to 224 3 224 pixel) was applied during training. The test images were scaled, normal-

ized and center-cropped before extracting the classification.

To train the Face CNN, we used 1,714 identities (857 female) from the VGGFace2 database.34 We chose

identities with a minimum of 300 images per identity and balanced female and male identities (857

each), otherwise the identities were randomly selected from the VGGFace2 database. To match the

training set size to the Object CNN, we randomly chose 246 images per face identity for training, and 50

images per category for validation, for a total of 421,644 training and 85,700 validation images. All other

learning parameters were identical to the Object CNN.

Decoding of fine-grained car discrimination

To test whether the representations optimized for face or generic object categorization would be more

useful for fine-grained discrimination of exemplars of another stimulus category, we decoded exemplars

of car model/make categories from the activations extracted from both networks. We used 100 car

model/make categories (10 each; 1000 images total) from the CompCars dataset.35 We extracted the acti-

vation in the penultimate fully-connected layer of each network (i.e., the last layer before the classification

layer) to the 1000 car images. For activations from each network, we trained and tested a 100-way linear

support vector machine (with L2 regularization) on the corresponding activation patterns using a leave-

one-image-out (i.e., 10-fold) cross-validation scheme.

Fine-tuning task-specific CNNs for car discrimination

In human experience, becoming an expert requires learning over time. To test whether the object- or the

face-trained network will serve as a better foundation to learn another fine-grained discrimination task, we

fine-tuned each network to a car model/make classification task. We used 1,109 classes with 45 images for

training and 5 images for testing per class, for a total of 49,905 training and 5,545 validation images from

the CompCars dataset. To obtain enough images per class, we concatenated images from the same

model/make but of different years into one class. For each network, we removed the original classification

layer (e.g., 1,714 face classes for the Face CNN) and replaced it with a new classification layer with 1,109 car

model/make classes. We then retrained each network on the car dataset by fine-tuning it from a midlevel

layer onwards, while freezing the early convolutional layers (up to the third pooling layer). We decided to

freeze the early convolutional layers since we did not expect expertise to change early visual processing.

Indeed, we found no significant difference in car decoding accuracy between the face-trained and the ob-

ject-trained CNN based on representations extracted from the third pooling layer (24% vs. 23%; p > 0.8,

two-sided paired t-test across classification folds). Except for those early layers, all other filters were free

to change during training allowing for plasticity throughout the network. For fine-tuning, we used SGD

with momentum with an initial learning rate of 10�3, a weight decay of 10�4 and momentum of 0.9. To up-

date the weights of the fully-connected layers, we computed the cross-entropy loss on random batches of
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128 object images and backpropagated the loss. The top-1% accuracy on the test set served as perfor-

mance for each of the networks. We obtained bootstrapped 95% confidence intervals (CIs) for the accuracy

of both networks by bootstrapping and computing the accuracy across classes and images 10,000 times.

Training and testing a dual-task network

Humans typically do not become experts of another fine-grained task until at least several years of age, at

which point development of their face and object recognition system is already quite advanced. If both

systems are available simultaneously, which of these two systems would be recycled for learning a new

fine-grained discrimination task? To test this, we used a dual-task network trained on face recognition

and object categorization.22 Importantly, this network spontaneously developed two sets of filters in the

last convolutional layer that were predominantly involved in either face or object recognition, while few fil-

ters were shared between both tasks. Here, we wanted to find out which of these two subsystems would be

recycled when learning a new fine-grained discrimination task. To test this, we first retrained the dual-task

network to the same car model/make discrimination task as used for the face-trained and the object-

trained CNN. We again fine-tuned layers of the dual-task CNN from a midlevel layer onwards (while

freezing the early convolutional layers up to the third pooling layer), using the identical dataset and param-

eters for training. The top-1% accuracy on the test set served as base performance for the car task in this

network. To find out which of the two original subsystems (face or object filters) were taken up by the car

task, we then lesioned the entire set of the previously identified 20% highest-ranked filters (i.e., face or

object filters) in the last convolutional layer of the CNN and computed the % drop in performance on

the car task based on the validation set. We obtained bootstrapped 95% confidence intervals (CIs) for

the % drop in accuracy for both tasks by bootstrapping and computing the drop in accuracy across classes

and images 10,000 times.

To identify which filters were causally involved in the car task, we performed lesioning experiments in the

fine-tuned dual-task network. First, we identified putative car-specific filters in the last convolutional layer

by evaluating howmuch ablating that filter (i.e., setting its output to zero) affected the loss for 50 batches of

car images, all taken from the training set. We then ranked the filters by how much they affected the loss on

car images. Using a greedy procedure, we first selected and dropped the highest-ranking group (�1.6%) of

filters, then selected the next highest-ranking group from the remaining filters in similar fashion but on

novel batches of images (also taken from the training set). We repeated this process until there were no

remaining filters left, resulting in all filters being ranked for the impairment they produced on the car

task when lesioned. For the 20% highest ranked filters (i.e., 102 filters), we then computed the % overlap

of these filters with the 20% highest face- and the 20% highest object-ranked filters. In particular, we

computed the overlap for filters that belonged to the highest-ranked filter of the face task but not the ob-

ject task (face filters), filters that ranked high on the object but not the face task (object filters), and filters

that ranked high on both the face and the object task (shared filters).

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance testing

For SVM decoding accuracies, we computed the mean and SEM across classification folds and used two-

sided paired t-tests across classification folds to test for differences between decoding accuracies. Signif-

icance of comparisons between the top-1% accuracies of different networks was obtained by using direct

bootstrap tests. In particular, for statistical inference of the differences between performances (or drop in

performances), we bootstrapped the classes and images 10,000 times and computed the mean difference

between accuracies (or % drop in accuracies) resulting in an empirical distribution of performance differ-

ences. The minimum number of differences that were smaller or larger than zero divided by the number

of bootstraps defined the p value (i.e., two-sided testing). Primarily, NumPy has been used for data analysis.

The statistical parameters (p values along with required tests) are reported alongside their descriptions in

the main text of the paper.
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