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Abstract 9 

 10 

An intuitive understanding of physical objects and events is critical for successfully interacting 11 

with the world. Does the brain achieve this understanding by running simulations in a mental 12 

physics engine, which represents variables such as force and mass, or by analyzing patterns of 13 

motion without encoding underlying physical quantities? To investigate, we scanned participants 14 

with fMRI while they viewed videos of objects interacting in scenarios indicating their mass. 15 

Decoding analyses in brain regions previously implicated in intuitive physical inference revealed 16 

mass representations that generalized across variations in scenario, material, friction, and motion 17 

energy. These invariant representations were found during tasks without action planning, and 18 

tasks focusing on an orthogonal dimension (object color). Our results support an account of 19 

physical reasoning where abstract physical variables serve as inputs to a forward model of 20 

dynamics, akin to a physics engine, in parietal and frontal cortex. 21 

 22 

 23 

Introduction  24 

 25 

Engaging with the world requires a model of its physical structure and dynamics – how 26 

objects rest on and support each other, how much force would be required to move them, and 27 

how they behave when they fall, roll, or collide. This intuitive understanding of physics develops 28 

early and in a consistent order in childhood; infants can differentiate liquids from solids by 5 29 

months of age
1,2

, infer an object’s weight from its compression of a soft material by 11 months
3
, 30 

and use an object’s center of mass to judge its stability on the edge of a surface by 12 months
4
. 31 

By adulthood, human physical reasoning is fast and rich, and it generalizes across diverse real-32 

world scenarios. Yet little is known about the brain basis of intuitive physics, which could enable 33 

direct tests of computational models by revealing the relevant neural representations and their 34 

invariances and automaticity.  35 
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A key distinction between computational models of intuitive physics is whether they use 36 

model-free pattern recognition (such as deep neural networks)
5
, or causal generative models of 37 

physical object representations and their dynamics
6
. The generative approach models physical 38 

reasoning as approximate probabilistic inference over simulations in a physics engine, an 39 

architecture with two core parts: an object-based representation of a 3D scene (which encodes 40 

many static variables, such as the size and mass of each object), and a model of physical forces 41 

that govern the scene’s dynamics. These models may make use of deep neural networks, but also 42 

contain additional structured information about the world. Unlike the pattern recognition 43 

approach, the generative framework entails extraction of abstract representations of physical 44 

concepts and laws that support generalization, mirroring the human capacity to reason about 45 

novel physical scenarios without training. Within this framework, simulation-based models can 46 

make robust inferences with accuracy comparable to human performance across many areas of 47 

physics, including collisions
7,8

, fluid dynamics
9
, the motion of granular materials

10
, and 48 

predictions about the outcome of applied forces
11,12

.  49 

 A recent fMRI study has implicated specific regions in the parietal and frontal lobes in 50 

intuitive physical inference in humans
13

. These regions responded more strongly during a 51 

physical reasoning task (which direction a tower of blocks will fall) than a difficulty-matched 52 

non-physical discrimination performed on the same stimuli, and more strongly during viewing of 53 

animated shapes depicting physical interactions of inanimate objects than social interactions of 54 

agents
13

. The candidate regions for intuitive physical inference found in this study resemble 55 

regions previously implicated in action planning
14-19

 and tool use
20-24

, consistent with the 56 

importance of physical understanding for these functions
25

. However, crucially, it is unknown 57 

what these regions represent about physical events. A pattern recognition approach to physical 58 
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reasoning might predict that the neural representations in these regions would hold information 59 

about low-level visual features or situation-specific representations of physical variables. In 60 

contrast, if these regions support a generalized engine for physical simulation, we would expect 61 

to find that they hold representations of abstract physical dimensions that generalize across 62 

scenario and other physical dimensions.  63 

To answer this question, we conducted three experiments using fMRI to test the 64 

generalizability and automaticity of neural representations of a key variable underlying physical 65 

reasoning: mass. Mass is not the only physical variable of interest, but it is the most basic scalar 66 

quantity that captures a property of all objects and that governs motion in every physical 67 

interaction, via Newton’s second law. Hence it is a natural first candidate to probe 68 

representationally in neural circuitry putatively instantiating a mental physics engine. 69 

Participants were scanned with fMRI while performing physical inference, prediction, and 70 

orthogonal tasks on visually-presented stimuli. Each scanning session began with two runs of a 71 

previously developed “localizer” task (Fig. 1a) to identify in each subject individually candidate 72 

regions engaged in physical reasoning
13

. We then we applied pattern classification methods to 73 

fMRI data obtained from subjects viewing videos of dynamic objects, to test for invariant 74 

representations of mass in these regions
13

, as predicted if they implement a causal generative 75 

model of the physical world. 76 

 77 

Results 78 

 79 

Experiment 1: mass inference  80 

 81 

We began by asking whether object mass could be decoded from neural activity in 82 

previously-described
13

 candidate physics regions while participants performed a mass inference 83 

task. Six subjects were scanned using fMRI while viewing 3-second movies of real objects 84 
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interacting in various physical scenarios: splashing into a container of water, being blown across 85 

a flat surface by a hairdryer, and falling onto the soft surface of a pillow (Fig. 1b). Three rigid 86 

3D shapes of equal volume were used (a rectangular prism, a cone, and a half-sphere), and 87 

movies were filmed for two different colors and two different masses (45g, 90g) of each shape 88 

(36 total movies). Visual cues from the scene could be used to infer the mass of each object, 89 

which was never explicitly stated. After each movie, subjects responded to a text prompt (“Light 90 

or Heavy?”) with a button press indicating their inferred mass (Fig. 1c). Accuracy on this task 91 

was 88% (i.e., percentage of responses matching the ground truth outcome) across 6 subjects. 92 

We first identified the set of parietal and frontal voxels implicated in physical inference in 93 

each subject individually using the localizer task (see Materials and Methods). We then applied 94 

multivariate decoding analyses to fMRI responses in the main experiment to each stimulus of 95 

each voxel in that set. To test for situation-invariant mass decoding, linear SVMs were trained on 96 

the responses to two of the scenarios (e.g., “splash” and “blow”), and tested on the third 97 

(“pillow”). This situation-invariant decoding was significant in the candidate physics system, 98 

with a group mean accuracy of  0.64 (p = .0304, two-sided t-test, t-statistic = 2.9913,  df = 5, 99 

significance threshold = .05 ). Critically, this representation of object mass does not depend on 100 

whether the object is splashing into water, being blown by a hair dryer, or being dropped onto a 101 

pillow. Mean classification accuracies across all 3 scenarios as well as classification accuracies 102 

for each left out scenario individually were greater than 50% in each subject. Further, mass 103 

representations are not confounded with shape or color, as colors and shapes were represented in 104 

equal proportions for both masses in the training and testing data. Decoding could also not be 105 

based on the amount of motion in the videos, as heavy objects caused more motion in two of the 106 

conditions (splash, pillow), but did not move at all in the third (blow; see Materials and 107 
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Methods). Finally, decoding could not be based on specific motor responses, because the 108 

assignment of buttons to responses was switched halfway through the experiment, with equal an 109 

equal number of trials per button-press-to-response assignment represented in training and 110 

testing data. 111 

 112 

 113 
Figure 1 Stimuli and tasks from Experiments 1 and 2. (a) Toppling tower task (adapted from Fischer et al. 201613) 114 
used as a localizer for all experiments. Still frames show an example tower from two different viewpoints during the 115 
360° pan video. Participants were asked in different blocks to determine which side the tower would fall toward (red 116 
versus green), or whether the stimulus contained more blue or yellow blocks. (b) Stills extracted from example mass 117 
inference videos used Experiments 1 and 2 (top is extracted from early in video, bottom from later). Stills from 118 
“splash” and “pillow” videos show a heavy object; stills from the “blow” condition depict a light object. (c) Event-119 
related scanning paradigm in Experiment 1. Each run (4 per subject) presented 36 videos in randomized order (144 120 
total trials with each video presented 4 times), each followed by a 1s response period (“Light or Heavy?”) then a rest 121 
period of variable duration (mean 6s). (d) Experiment 2 used a block design to compare decoding during physics 122 
and color blocks. Each run (6 per subject) consisted of 5 color blocks, 5 physics blocks, and 4 (12s) rest blocks. 6 123 
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videos were shown in each block (360 total trials with each video presented 5 times in a physics block and 5 times in 124 
a color block).  125 
 126 
Experiment 2: mass decoding during color judgment 127 

 128 

Experiment 1 suggests we can decode an abstract, generalizable representation of mass from 129 

candidate physics regions, but two questions remain. First, does mass encoding occur even if not 130 

required by the task? Second, an alternative account of our apparent ability to decode object 131 

mass is that we may be decoding instead a prepared response to the explicit mass task (“Light or 132 

Heavy?”), which is constant across scenarios. Note that our mass decoding could not simply 133 

reflect decoding of a literal motor plan, as the assignment of response meanings to button presses 134 

was switched halfway through the experiment, but the hypothesis remains that in Experiment 1 135 

we were decoding an abstract response code invariant to the specific motor plan it would later be 136 

translated into. To test this hypothesis, as well as the automaticity of the mass representation, we 137 

used a design that interleaves blocks of the mass task and a color task on the same stimuli. This 138 

design enabled us to ask whether a situation-invariant mass representation can also be decoded 139 

from multivoxel activity during blocks where subjects perform the orthogonal color task where 140 

mass was not relevant. Subjects viewed the same stimuli used in Experiment 1, and were 141 

prompted both at the beginning of each block and after each video to respond whether the object 142 

was “Light or Heavy?” or “Red or Orange?” (Fig. 1d). 143 

In six new subjects, we replicated the findings of Experiment 1: mean situation-invariant 144 

decoding accuracy of 0.63 (across scenarios) was significantly above chance (p = .0357, two-145 

sided t-test, t-statistic = 2.853,  df = 5), and decoding was found in 6 out of 6 subjects 146 

individually during the mass task (task accuracy 87%). More importantly, mass decoding was 147 

also significantly above chance (mean = 0.61, p = .0033, two-sided t-test, t-statistic = 5.2576,  df 148 

= 5 ), and present in each subject individually, during the color task. This result shows that mass 149 
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is represented even when the task does not require it, and further that the decoding of mass we 150 

observe cannot be explained as an abstract response code. Further evidence against the idea that 151 

the mass representations reflect response codes comes from the fact that color decoding from the 152 

same voxel activity during the color task was at chance in all subjects. Thus the candidate 153 

physics engine does not represent all task-relevant dimensions and may be more specific to 154 

physical variables.  155 

However, the results of Experiment 2 do leave open the possibility that a context effect from 156 

the mass blocks carried over to and created biases on color blocks, contributing to mass decoding 157 

during the color task. This motivated our design of a third experiment to test mass decoding in an 158 

experiment where subjects were never asked about mass.  159 

 160 

Experiment 3: physical prediction in a collision task  161 

 162 

We asked in Experiment 3 whether mass could be decoded from candidate physics brain 163 

regions during a physical prediction task that requires mass knowledge but never explicitly 164 

interrogates it. We created 48 real-world movies. Each 6s video shows an object (made of 165 

aluminum, cardboard, lego, or cork) sliding down a ramp and colliding with a puck (half-ping-166 

pong ball), whose initial location is consistent between videos (Fig. 2b). In the task, subjects 167 

answer (as immediately as possible) whether they predict the sliding object will launch the puck 168 

across a black line, which can lie in 3 different locations. The mass of the object and its 169 

coefficient of friction determine how far it will launch the puck. Importantly, these stimuli were 170 

designed in a way that orthogonalizes mass, friction, and motion in the videos (Fig. 2a), allowing 171 

us to test whether it is possible to decode a generalized representation of mass invariant to 172 

friction and motion. Each of the four different materials was used to make two objects, a 2.5” 173 

cube and a 2.5”x 2.5”x1.25” object with half of the volume of the cube and the same surface area 174 



 8 

in contact with the ramp. Materials were chosen with densities such that same-volume objects 175 

made out of aluminum and cardboard have the same mass (15g for the small volume 30g for the 176 

large volume), and same-volume objects made from lego and cork have the same mass (45g or 177 

90g), while pairs along the other invariance dimension (aluminum and legos, cardboard and 178 

cork) share similar coefficients of friction with the ramp (aluminum: μk = .21, lego: μk = .22; 179 

cardboard: μk = .40, cork: μk = .46) . Accuracy in the prediction task was 71% across 20 subjects.  180 

 181 
 182 
Figure 2 Experiment 3 design. (a) Schematic of stimulus design and ramp scenario. To test the invariance of the 183 
mass representation to other physical dimensions, this design was chosen to unconfound mass from dimensions of 184 
friction, motion, and material (though it was not possible to unconfound these dimensions from each other).  (b) Still 185 
frames from stimulus videos with examples of 3 material types and 3 possible line locations. Rows (1: lego, 2: cork, 186 
3: aluminum) represent individual videos.  187 
 188 
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Experiment 3 replicated once again our finding that mass can be decoded from candidate 189 

physics regions (mean accuracy of 0.60 was significant, p = .0392, two-sided t-test, t-statistic = 190 

2.2152,  df = 19, significance threshold = .05  ). Further, this experiment demonstrates an 191 

important new invariance of these mass representations beyond those already found in 192 

Experiments 1 and 2: the mass decoding in Experiment 3 required generalization across the 193 

friction and material of the object shown (lego to cork for heavy, and cardboard to aluminum for 194 

light), as well as generalization across the amount of motion in the videos (calculated by 195 

measuring the amount of optical flow; see Materials and Methods). To minimize the difference 196 

in eye movements across trials, participants were instructed to fixate on a black cross in the 197 

center of the screen during each video. Eye movements were recorded for 6 subjects, to verify 198 

that subjects were fixating and to ensure that mass decoding was independent of eye movement 199 

(see Materials and Methods).  A two-way ANOVA with mass and friction as repeated-200 

measures factors revealed no significant effects at the .05 significance level of mass or friction 201 

on mean eye position (mass: F1,3 = 0.084, P = 0.79; friction: F1,3 = 0.31, P = 0.62) or mean 202 

saccade amplitude (mass: F1,3 = 0.28, P = 0.63; friction:  F1,3 = 0.46, P = 0.55), so it is unlikely 203 

that eye movements could explain our decoding results.  204 

We next tested whether object mass could be decoded from regions beyond candidate 205 

physics fROIs, namely, regions in the ventral visual pathway outside traditional motor and 206 

premotor areas shown to represent object weight during action planning
15

. Following Gallivan et 207 

al., we used a localizer task
25

 based on the contrast of object textures and ensembles versus their 208 

scrambled counterparts, to identify LO and texture-sensitive regions of OTC in 6 participants 209 

completing the ramp task in the same session. Although these subjects showed reliable decoding 210 

of a mass representation invariant to friction, material, and motion in candidate physics regions 211 
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during the physical prediction task (Experiment 3), this invariant decoding did not reach 212 

significance in LO (P = 0.39) or in OTC (P = 0.67) during the same task. While the parietal and 213 

frontal regions previously implicated in intuitive physics are recruited to compute an abstract 214 

representation of mass useful in a generalized model of physics, regions in the ventral stream, 215 

canonically associated with visual pattern recognition, may be recruited to infer object mass tied 216 

to scene- and task-specific cues such as the visual appearance of object material.    217 

Analyses across all experiments 218 

 219 

We used all data (2 runs per subject) from the toppling towers localizer to perform a whole-brain 220 

random-effects group analysis for the physics > color contrast (Fig. 3A). This group analysis 221 

identifies a map of brain regions, primarily premotor and parietal areas, that was first shown in 222 

Fischer et al. (2016)
13 

to be preferentially engaged in physical reasoning, and is now replicated 223 

here in 32 new subjects. We further demonstrate that this candidate physics network encodes an 224 

abstract, generalizable representation of object mass that can be decoded from individual subject 225 

fROIs (see Materials and Methods) in 31 out of 32 subjects (Fig. 3B). 226 
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 227 
Figure 3 Main findings from all participants in all experiments (a) Group random effects map for the physics > 228 
color contrast in the localizer task based on all subjects (n = 32, 2 runs per subject P<0.0001 FDR), replicating the 229 
pattern reported by Fischer et al13. (b) Group parcels and random effects map from all subjects in Fischer et al. 230 
(2016)13. Group parcels for the physics > color contrast computed using one run per subject (n = 12; left-out data 231 
from the other run used for validation); random effects map for the physics > color contrast based on all data (2 runs 232 
per subject). Significant voxels in the group random effects analysis generally fall within the parcels identified in the 233 
parcel-based analysis, but not necessarily vice versa (the random effects map may underestimate the extent of the 234 
cortex engaged by the task due to anatomical variability across subjects). (c) Mean accuracies decoding mass from 235 
candidate physics fROIs in each subject across the three experiments. Decoding analyses were carried out on data 236 
from all parcels. A two-way ANOVA did not reveal a significant effect of L or R hemisphere (p = 0.54) or frontal or 237 
parietal parcel (p= 0.86) on decoding accuracy.  238 
 239 

 240 
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Discussion  242 

 243 

In a network of parietal and frontal brain regions previously implicated in intuitive 244 

physical inference, and replicated here in a larger sample (see Fig. 3), we find robust decoding of 245 

object mass, replicated across three experiments and present numerically in 31 out of 32 246 

participants. Critically, this mass representation is invariant to the scenario revealing the object’s 247 

mass (splashing, falling, and blowing), as well as to object material, friction, and motion energy. 248 

In everyday physical reasoning, humans are able to use visual cues in a single scene to infer 249 

physical properties of an object that can be generalized to predict the object’s dynamics in novel 250 

scenes, plan actions upon the object, and make inferences about similar but unfamiliar objects. 251 

Here we present the first neural evidence of a mass representation underlying physical reasoning 252 

with invariance that supports this kind of flexible, generalizable navigation of the physical world. 253 

Among current computational models, those that best exhibit this capacity for generalization are 254 

structured generative models such as physics engines
6,26

, supporting the hypothesis that the 255 

network of frontal and parietal fROIs we identify implements in some form a causal generative 256 

model of physical objects and their dynamics. 257 

To date, neural representations underlying physical reasoning have only been studied in 258 

action planning tasks. Gallivan et al.
15

 used multivariate decoding methods to find, in multivoxel 259 

activity patterns during action planning, representations of object mass in ventral visual pathway 260 

areas, specifically the lateral occipital complex  (LO), posterior fusiform sulcus (pFs), and 261 

texture-sensitive regions of occipitotemporal cortex (OTC), in addition to motor cortex (M1) and 262 

dorsal premotor cortex (PMd), where mass information for action planning is known to be 263 

represented
14,16-19

. Our work goes beyond prior studies reporting neural decoding of mass in two 264 

key respects. First, prior studies have provided evidence for representations of mass
14-19 

only 265 
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when participants are performing action planning tasks. In contrast, we show that these 266 

representations are available when subjects are not asked about mass per se, for instance in the 267 

ramp task where mass is relevant to the task but not explicitly reported, and in the color task 268 

where mass is not relevant at all. Second, and more importantly, prior studies have decoded  269 

representations of mass only within a particular stimulus or scenario, whereas our study finds 270 

abstract representations of mass that generalize across scenarios and are invariant to friction, 271 

material, and motion. It is the abstractness and invariance of the mass representations reported 272 

here that suggests they reflect not just another dimension of visual pattern classification, but the 273 

generalizability expected of inputs to a physics engine in the brain.  274 

These invariant representations of mass are found in a network of frontal and parietal 275 

regions (Fig. 3) that we suggest support machinery for a neural physics engine. Similar frontal 276 

and parietal regions have been implicated in thinking about physical concepts presented as 277 

words
27

, supporting the hypothesis that this network represents abstract, generalizable physical 278 

concepts rather than low-level visual features or situation-specific representations of physical 279 

variables. We did not find invariant mass representations in ventral visual pathway areas such as 280 

LOC and OTC (in tasks not requiring action planning), suggesting that LOC may not play a 281 

causal role in computing object weight. This supports previous findings by Buckingham et al. 282 

(2018), which showed that a patient with bilateral lesions including LOC had a preserved ability 283 

to judge object weight
28

. This overarching pattern of results suggests that when ventral visual 284 

areas do represent motor-relevant object properties
15

, it may be a top-down effect driven by the 285 

motor planning process where representations are tied to specific tasks.  286 

It remains unknown how the brain estimates generalizable physical properties of objects 287 

from visual inputs. It could be that feed-forward inference methods, akin to deep-learning based 288 
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recognition models, are integrated with generative models and provide an efficient means of 289 

inference of physical properties that then serve as inputs to physics engines. This account has 290 

been explored computationally and has received behavioral support 
26

, but how such a model 291 

may be instantiated between frontal and parietal regions underlying generalized physical 292 

reasoning and traditional object-driven cortex is an open area of investigation. Our results show 293 

that at the level of prediction and inference, intuitive physics recruits brain regions and 294 

representations outside the ventral stream, the canonical locus of visual pattern recognition. 295 

 Our findings open up numerous avenues for further investigation. Mass is just one of the 296 

properties underlying intuitive physical reasoning. Future investigations can test whether the 297 

same or other brain regions represent other physical dimensions, types of physical forces and 298 

events, and domains outside of rigid body physics (e.g. the viscosity of liquids and the restitution 299 

of materials). How fine-grained is the neural representation of mass? Future work should also 300 

test the relationship between the amount of variance in real world physical properties, and the 301 

fine-grainedness of their neural representations. Do the same neural representations that underlie 302 

physical inference also underlie action planning
14,17-19

?  A model-based account of physics in the 303 

brain could support both physical inference and action planning in the same underlying brain 304 

regions, which may serve as the seat of a neural physics engine. These studies and others can be 305 

expected to shed more light on how the frontal and parietal physics network examined here 306 

implements a causal generative model of objects and their dynamics.  307 

 We have shown evidence that object mass invariant to physical scenario, friction, object 308 

material, and motion, is represented in premotor and parietal brain regions during physical 309 

inference and prediction tasks not requiring action. The invariant representation in areas 310 

traditionally associated with action during a perceptual judgment suggests that these regions 311 
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support the type of representation that would serve as the input to a generalized physics engine, 312 

useful in understanding forces, dynamics, and even planning actions.   313 

 314 

 315 

Materials and Methods  316 

 317 

 318 

Participants   Six subjects (ages 21-26; 3 male, 3 female) participated in Experiment 1, six (ages 319 

21-40; 3 male, 3 female) in Experiment 2 , and twenty (ages 20-32; 9 male, 11 female)  in 320 

Experiment 3. A power analysis was used to calculate the appropriate number of subjects for 321 

each experiment (p0= 0.5, p1= 1, α = .01, desired power = 0.9, one-sided binomial). All 322 

participants were right-handed and had normal or corrected to normal vision. All participants 323 

provided informed consent before participation. The Massachusetts Institute of Technology 324 

Institutional Review Board approved all experimental protocols.  325 

 326 

Experimental Design   In each experiment, participants performed 2 runs of  a 7-minute 327 

“localizer” fMRI task from Fischer et al (2016), in which subjects viewed 6s movies depicting 328 

stacks (“towers”) of yellow, blue, and white blocks created in Blender 2.70 (Blender 329 

Foundation). The block towers were constructed to be unstable such that they would topple if 330 

gravity were to take effect. Each tower was positioned in the center of a floor where half of the 331 

floor was colored green, and the other half red. In each movie the tower itself remained 332 

stationary while the camera viewpoint completed one 360° pan, providing a range of vantage 333 

points of the tower. While viewing each movie, subjects were instructed to perform one of two 334 

tasks: imagine how the blocks would fall and report whether more blocks would come to rest on 335 

the red or green side of the floor (physics task), or report whether there are more blue or yellow 336 

blocks in the tower (color task). A physics > color contrast was used to identify candidate 337 
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physics functional ROIs (fROIs) in each subject individually (see below) within which decoding 338 

analyses were subsequently performed.  339 

Each scanning run for this localizer task (2 per subject) consisted of 23 18s blocks: 10 340 

blocks of the physical task, 10 blocks of the color task, and 3 rest blocks, which consisted of a 341 

black screen with a fixation cross. Each nonrest block began with a text cue, displayed for 1s, 342 

which read either “more blue or yellow?” (color task) or “where will it fall?” (physics task). The 343 

text cue was followed by the presentation of a tower movie (6s) and then a black screen during a 344 

2s response period. This sequence was repeated twice within a block, with the same task being 345 

cued for both movie presentations within a block.  346 

In the same scanning session, participants performed 4 to 6 runs of the main experimental 347 

paradigm, which was different for each experiment, as described below. Each scanning session 348 

lasted 2 hours.  349 

 350 

Experiment 1:  mass inference   Subjects viewed 3s video stimuli (Fig. 1) of three different 351 

geometric solids interacting in various visual scenes (splashing into water, falling onto a pillow, 352 

being blown across a flat surface) that indicated their mass. In an event-related design, each run 353 

(4 per subject) presented 36 videos in randomized order, each followed by a 1s response period, 354 

then a rest period of variable duration (mean 6s). During the response period, subjects were 355 

instructed to press a button indicating whether the object they saw was light or heavy. After the 356 

button press, no feedback was given to participants on correctness. In all three experiments, the 357 

assignment of buttons to responses was switched halfway through the experiment, with an equal 358 

number of trials per button-press-to-response assignment represented in training and testing data, 359 

to ensure mass decoding could not be based on specific motor responses. 360 
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Objects were constructed by hand from Learning Resources “View-Thru Geometric 361 

Solids.” Three shapes of equal volume were selected as stimuli: a cone, half-sphere, and 362 

rectangular prism. Two different masses were created for each object: the “light” objects were 363 

left empty (45g), and the “heavy” objects were filled with a mixture of lead pellets and flour 364 

(90g), and painted the same color. The visual appearance of the objects was identical across 365 

masses, only the object’s physical behavior could be used to infer its mass. To create objects of 366 

different colors, Adobe Premiere Pro software (Adobe Systems) was used to color-shift the 367 

object surface from red to orange, for a total of 36 video stimuli. Decoding analyses in 368 

Experiment 1 collapsed across color.  369 

The objects were filmed interacting in three different visual scenarios. Physical 370 

parameters of the scene besides object identity and mass were held constant across videos; i.e., 371 

the height from which objects were dropped (splashing, dropping scenarios), the volume of water 372 

into which they fell (splashing scenario), or the distance from the hairdryer (air source) at which 373 

they were placed (blowing scenario). While the 3D shapes of the objects represented familiar 374 

visual forms, the scenarios were selected as novel domains for mass inference. Subjects did not 375 

interact physically with the objects before the scan.  376 

 377 

Experiment 2:  mass decoding during color judgment   The same stimuli from Experiment 1 378 

were used in Experiment 2. However, in Experiment 2, participants performed a color task in 379 

addition to the mass task on the same objects. The two judgment types were matched for 380 

difficulty using data collected from 50 workers with normal color vision on Amazon Mechanical 381 

Turk. Each worker performed the light/heavy mass task as well as the red/orange color task for 382 

all 36 movies. Mean accuracy on the mass task was 86.2% (±2.4 SD), mean accuracy on the 383 
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color task was 89% (±3.6 SD). During the scanning session, mass and color trials were presented 384 

in blocks of 6 trials each. After each video, participants were asked to press a button indicating 385 

whether the object was “Light or Heavy?” (mass task), or “Red or Orange?” (color task). Each 386 

run (6 per subject) consisted of 5 color blocks, 5 physics blocks, and 4 (12s) rest blocks. 387 

Participants did not receive feedback on accuracy.  388 

 389 

Experiment 3:  physical prediction in a collision task   In Experiment 3, participants viewed 390 

6s videos (Fig. 2) of physical objects sliding down a ramp and colliding with a puck (half ping-391 

pong ball) placed the same distance from the ramp in each video. In an event-related design, each 392 

run (4 per subject) presented 24 of the 48 videos in randomized order (subjects saw every video 393 

twice in total), each followed by a rest period of variable duration (mean 6s). Before the 394 

experiment, subjects were instructed to respond with a button press, as early as they could within 395 

each video, whether they predicted the sliding object would launch the puck across a black line. 396 

In each video the line could lie in one of 3 different locations, to discourage memorization of 397 

outcome by object. Each run contained equal numbers of each line position (8 trials). After the 398 

button press, no feedback was given to participants on correctness. To ensure familiarity with the 399 

visual appearance of the objects in the videos and their material properties, subjects were 400 

exposed to the physical objects before the scan.  All objects were placed on a flat surface and 401 

subjects were instructed to “interact” with each for 5 seconds. This instruction was chosen 402 

instead of “lift” or “pick up” to avoid priming attention to mass.  403 

Object materials were selected to orthogonalize mass and friction, object material, and 404 

motion. Coefficients of friction were found by taking of the tangent of the angle of incline at 405 

which the object starts to slide down the ramp at constant speed, after being tapped. Motion in 406 



 19 

the videos was calculated using the Optical Flow package in Matlab 2016. Optical Flow 407 

identifies moving objects and calculates the amount of motion between video frames to 408 

determine the overall amount of motion in x and y dimensions in each video. The most motion 409 

was found in the movies with lego blocks (x= 1.1848 e+04, y = 1.8065e+04), followed by 410 

aluminum (x = 1.0781e+04, y = 1.767e+04), cardboard (x = 9.6789e+03, y = 1.4150e+04), and 411 

cork (x = 9.0324e+03, y = 1.4126e+04).  412 

 413 

Data Acquisition   Imaging was performed at the Athinoula A. Martinos Imaging Center at MIT 414 

on a Siemens 3T MAGNETOM Tim Trio Scanner with a 32-channel head coil. A high-415 

resolution T1-weighted anatomical image (MPRAGE) was also collected for each subject (TR = 416 

2.53 s; TE = 1.64, 3.5, 5.36, and 7.22 ms; α = 7°; FOV = 256 mm; matrix = 256 × 256; slice 417 

thickness = 1 mm; 176 slices; acceleration factor = 3; 32 reference lines). Whole-brain functional 418 

data were collected using a T2*-weighted echo planar imaging pulse sequence (TR = 2 s; TE = 419 

30 ms; flip angle-α = 90°; FOV = 200 mm; matrix = 64 × 64 mm; slice thickness = 3 mm 420 

isotropic; voxel size = 3x3 mm inplane; slice gap = 0.6 mm; 32 slices). 421 

 422 

Eye movement recordings  We recorded eye movements (n = 6) with the EyeLink 1000 Eye-423 

Tracker (SR Research) in the scanner. Eye tracking data were preprocessed with EyeLink Data 424 

Viewer software and analyzed in MATLAB R2016B (The MathWorks). Data were analyzed to 425 

confirm eye movements could not explain mass decoding results. Trials were labeled as light or 426 

heavy and low or high friction according to real-world video identity. For each trial, the entire 427 

duration of the video (6s) was used for analysis. Mean eye position (deviation from center of the 428 

screen) and mean saccade amplitude (averaging over all saccades that occurred in that trial were 429 
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calculated. We then used a two-way ANOVA to analyze the interaction between mass and 430 

friction and mean eye position and saccade amplitude during the fixation condition and found no 431 

significant effects. 432 

 433 

fMRI data preprocessing   Data preprocessing and general linear models were performed using 434 

FsFast tools in the FreeSurfer Software Suite (freesurfer.net). All other analyses were conducted 435 

in MATLAB R2016b (The MathWorks). Preprocessing consisted of 3D motion correction, slice 436 

scan time correction, high-pass filtering via a general linear model with a Fourier basis set 437 

(cutoff of two cycles per run, which also achieved linear trend removal), and spatial smoothing 438 

with a 4-mm FWHM Gaussian kernel. Before spatial smoothing, the functional runs were 439 

individually coregistered to the subject’s T1-weighted anatomical image. All individual analyses 440 

were performed in each subject’s native volume. For group-level analyses, data were 441 

coregistered to standard anatomic coordinates using the Freesurfer FSAverage template. General 442 

linear models included 12 nuisance regressors based on the motion estimates generated from the 443 

3D motion correction: x, y, and z translation; x, y, and z rotation; and the approximated first 444 

derivatives of each of these motion estimates. 445 

 446 

Group Analysis To test whether a systematic network of regions across subjects responded 447 

more strongly to physical judgments than to color judgments in the localizer task, we performed 448 

a surface-based random-effects group analysis across all subjects using Freesurfer. We first 449 

projected the contrast difference maps for each subject onto the cortical surface, and then 450 

transformed them to a common space (the Freesurfer fsaverage template surface). The random-451 
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effects group analysis yielded a network of brain regions (p<0.0001) preferentially engaged in 452 

physical reasoning that replicated the pattern reported by Fischer et al (2016)
13

.  453 

 454 

fROI Definition  To examine the information represented in candidate brain regions for physical 455 

inference, we defined functional regions of interest (fROIs) in each subject individually by 456 

intersecting subject specific contrast maps with group-level parcels. Following Fischer et al. 457 

(2016)
13

, we used the towers localizer to identify brain regions in each subject that displayed a 458 

stronger response to the physics task than to the color task. These individual subject maps were 459 

then intersected with group-level physics parcels identified in Fischer et al. (2016)
13

 that were 460 

shown to be preferentially engaged in physical reasoning. Specifically, Fischer first identified 11 461 

group-level parcels from the physics > color contrast on toppling tower stimuli (Fig. 3b). Fischer 462 

et al. suggest that the spatial content of the physics task (not present in the color task, as 463 

individual block positions were irrelevant) may have contributed to responses in candidate 464 

physics regions. A second experiment was used to control for task differences, where physical 465 

and social prediction tasks were contrasted on the same set of moving dot stimuli. In this 466 

experiment, subjects watched pairs of moving dots with motion implying social interaction (like 467 

classic Heider and Simmel animations) or physical interaction (like billiard balls). In each video, 468 

one of the dots disappeared and subjects were asked to predict its trajectory. Both conditions 469 

required mental simulation of spatial paths, but one implicitly invoked physical prediction and 470 

the other implicitly invoked social prediction. Only a subset of the parcels showed a significantly 471 

greater response to physical vs. social interactions: P1L and P1R (bilateral parcels in dorsal 472 

premotor cortex and supplementary motor area), P3L and P3R (bilateral parcels in parietal cortex 473 

situated in somatosensory association cortex and the superior parietal lobule, and P4L (the left 474 
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supramarginal gyrus). We found individual subject fROIs by intersecting subject data from the 475 

physics > color contrast with these 5 parcels (in volumetric space for each subject), retaining 476 

only the voxels that fell within the intersection. In this way, fROI locations were allowed to vary 477 

across individuals but required to fall within the same parcel to be labeled as a common ROI 478 

across subjects. Subsequent decoding analyses were performed in individual subject fROIs. 479 

 480 

Decoding analysis  To test the representational content of multivoxel activity from candidate 481 

physics regions, decoding analyses
29,30 

were run on multivoxel activity across voxels in these 482 

fROIs. An SVM was used for classification, restricted to linearly decodable signal under the 483 

assumption that a linear kernel implements a plausible readout mechanism for downstream 484 

neurons
31,32

. In each of 3 experiments we tested the invariance of physical representations by 485 

testing the classifier on data from conditions that differed from those in the data used for training 486 

along a key dimension. Trials were classified for decoding based on actual trial identity (whether 487 

the object was light or heavy). Only the data from the 3s video was included in the decoding 488 

analysis, the 1s response period (Experiments 1 and 2) was not used for decoding. A canonical 489 

HRF response was assumed, with the HRF aligned to the start of the video. To decode mass in 490 

Experiment 1, an SVM was trained on beta values (from all voxels within individually-defined 491 

fROIs) classified as corresponding to either “heavy” or “light” conditions, collapsing across 492 

shape and color. We used two of the three scenario types (splash, blow, pillow) to train the 493 

classifier and tested on the third, left-out scenario, forcing the classifier to generalize across 494 

physical scenarios and iterating over left-out conditions to obtain a mean classification accuracy 495 

for each subject. Correction for multiple comparisons was not performed, given independent data 496 

for each subject and repeated replication in multiple individual subjects. In Experiment 2, the 497 

same procedure was used to decode mass during both mass and color tasks in the interleaved 498 
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block design, thus testing (i) whether Experiment 1 replicates and mass can be decoded during 499 

the mass task, and (ii) whether mass representations can be decoded from candidate physics 500 

regions during an irrelevant (color) task.  501 

We used similar multivariate analyses to test whether we could decode mass from candidate 502 

physics fROIs during the physical prediction task in Experiment 3. Experiment 3 used an event-503 

related design where trials were 6s videos of objects sliding down a ramp. Decoding analyses 504 

were done on data from the entire video, with HRFs aligned to video onset. To test decoding of 505 

mass invariant to friction and motion, we trained an SVM on beta values from two conditions 506 

that differ in the mass dimension but not in friction or size (e.g. light, low friction versus heavy, 507 

low friction), and tested on the left out conditions (e.g. light, high friction versus heavy, high 508 

friction) thus forcing the classifier to generalize across coefficients of friction. This procedure 509 

was iterated over left-out conditions to obtain a mean classification accuracy. This decoding of 510 

mass is also invariant to material, as objects in the training conditions (e.g. aluminum, legos) 511 

have different material composition than objects in the testing conditions (e.g. cardboard, cork).  512 
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