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1.  INTRODUCTION

Humans expertly use vision to plan and guide navigation 
through scenes. The past several decades have revealed 
a network of at least three cortical regions that respond 
selectively to visual scene information, including the 
occipital place area (OPA) (Dilks et al., 2013), parahippo-
campal place area (PPA) (Epstein & Kanwisher, 1998), 
and medial place area (MPA; also known as retrosplenial 
complex) (Maguire, 2001; Silson et al., 2016) (Fig. 1). It 
has recently been hypothesized that these regions are 

functionally dissociated, with PPA supporting scene cat-
egorization (e.g., am I in a kitchen or a forest?), MPA sup-
porting memory-guided navigation (e.g., which way 
should I head to find my hotel, six blocks away?), and 
OPA supporting visually guided navigation (e.g., can I 
walk to the left or the right?) (Dilks et al., 2022).

Of the three scene-selective regions, the least is known 
about OPA (Julian et  al., 2012). Nevertheless, growing 
evidence supports the hypothesis that OPA is specialized 
for visually guided navigation (Dilks et al, 2011; Kamps  
et al., 2016a; Persichetti & Dilks, 2016). For example, OPA 
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responds significantly more when participants are asked 
to indicate how they would navigate through a scene than 
when asked to indicate the category of the same scene 
(PPA showed the opposite pattern, responding more to 
the categorization task than the navigation task; MPA 
showed no preference) (Persichetti & Dilks, 2018). Two 
further studies found that OPA (but not PPA or MPA) is 
sensitive to navigational affordances (i.e., how the spatial 
structure of the local environment constrains where one 
can or cannot locomote). For example, patterns of activa-
tion in OPA, in response to static snapshots of novel 
scenes, contain reliable information about the location of 
open doorways that afford navigation to rooms beyond 
the current view (Bonner & Epstein, 2017), and the pres-
ence of spatial boundaries that limit locomotion (Park & 
Park, 2020). OPA is also sensitive to the perceived dis-

tance (Persichetti & Dilks, 2016) and direction (Dilks et al., 
2011) of scene information, suggesting an ego-centric 
frame of reference, which is critical for planning and guid-
ing one’s own movements through space.

Most studies to date (including all studies cited above) 
have relied on static images to study OPA responses. Yet 
in real life, navigation is inherently dynamic: visual scenes 
are seen in motion as the observer moves through them 
(i.e., ego-motion). This ego-motion generates patterns of 
optic flow that can be used to support essential aspects 
of navigation, such as judging the current heading with 
respect to the scene, or time-to-contact for obstacles and 
boundaries in the space (Gibson, 1979). Accordingly, if 
OPA is specialized for visually guided navigation, then the 
full functional profile of OPA may only be revealed during 
dynamic, first-person motion through scenes. Consistent 
with this possibility, five studies suggest that OPA is sen-
sitive to dynamic scene information (but see Kennedy 
et al., 2024). Kamps et al. (2016b), Kamps et al. (2020), 
and Suzuki et al. (2021) showed that OPA responds sig-
nificantly more to dynamic scenes depicting first-person 
perspective motion through scenes than to static images 
taken from these same scene videos (with no such motion 
enhancement found for faces or objects). Similarly, Hacia-
lihafiz et  al. (2015) showed that OPA responds signifi-
cantly more to dynamic scene displays depicting linear 
horizontal motion (e.g., panning across a scene image 
from left to right) than static versions of those same dis-
plays. Finally, Sulpizio et  al. (2020) found that OPA 
responds more to point-light displays depicting ego-
motion-compatible optic flow than random motion. For all 
five studies, responses to motion information in OPA were 
greater than those in PPA or MPA, providing initial evi-
dence for a functional dissociation in the scene network 
based on motion sensitivity. Taken together, these studies 
demonstrate the robustness of OPA’s sensitivity to ego-
motion information, even across the very different stimuli 
used to interrogate ego-motion representation (e.g., 
including minimal point-light stimuli, computer-generated 
virtual scenes, and videos of ego-motion through real 
scenes). However, none of these studies has explored the 
finer grained information that OPA extracts from dynamic 
scenes. It is, therefore, unclear to what extent OPA 
responses to dynamic scenes reflect information pro-
cessing relevant to planning and guiding navigation.

To better understand the nature of dynamic scene rep-
resentations in OPA, we tested whether OPA extracts two 
kinds of navigationally relevant information in dynamic 
scenes: (1) navigational affordances (is there an open 
doorway to the left, right, or both?) and (2) ego-motion 
directions (moving forward or backward, turning left or 
right), as well as the conflict of these two kinds of informa-
tion (e.g., turning toward vs. away from an open doorway) 

Fig. 1.  Regions of interest. Regions of interest (ROIs) 
were functionally defined in individual subjects using 
independent localizer data. For scene-selective regions 
(OPA, PPA, and MPA), an initial region of interest was 
selected manually based on the contrast of scenes 
greater than objects, and then the top 50 voxels (in each 
hemisphere, using the same contrast) were selected 
from this initial, manually defined region as the final ROI. 
For early visual cortex (EVC), an initial region of interest 
was defined using an anatomical mask, and then the 
top 50 voxels responding to all conditions minus fixation 
(in each hemisphere) were selected as the final ROI. For 
visualization purposes here, the masks for each ROI in 
each subject were summed across subjects and binarized, 
revealing the spatial distribution of selected voxels for each 
region. ROIs were defined and analyzed bilaterally, but are 
shown in the right hemisphere only here.
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(Fig. 2). We predicted that OPA represents both naviga-
tional affordances and ego-motion directions, as well as 
their conflict, and that responses to such navigationally 
relevant information would be stronger in OPA than in both 
PPA and MPA, consistent with the hypothesized functional 
dissociations between these regions. An important further 
question concerns the extent to which responses to navi-
gationally relevant information in OPA could reflect low-
level, retinotopic properties of the stimuli that are 
confounded with navigationally relevant information (e.g., 
left turn stimuli will generate greater motion energy in the 
right visual field, compared with the left visual field), rather 
than more abstract, higher-level navigationally relevant 
invariances (Groen et al., 2017). To address this question, 
we also compared responses in OPA with those in early 
visual cortex (EVC). EVC has robust retinotopic spatial 
structure and is highly sensitive to motion energy, but 
unlike OPA, EVC is not thought to support higher-level 
navigational processing, and, therefore, provides a proxy 
for lower-level, retinotopic processing. If OPA represents 
higher-level visual information relevant for navigation, then 
responses to navigationally relevant information in OPA 
will differ from those in EVC. The results confirmed both 
sets of predictions. Note though that the analyses reported 
here include minor deviations from preregistered analysis 
plan. Results from the originally planned analyses are 
described in the Supplemental Materials.

2.  METHODS

2.1.  Participants

Sixteen participants (mean age = 29.3 years, range = 20–
45 years; 9 females) were recruited from the MIT commu-

nity. All participants gave written informed consent to 
participate and had normal or corrected-to-normal vision. 
The sample size was preregistered prior to analysis, and 
was selected on the basis of prior fMRI studies testing 
representation of navigational affordances in OPA (Bonner 
& Epstein, 2017; Park & Park, 2020). A power analysis for 
the critical paired-samples t-tests suggested that a sam-
ple size of 16 provided 85% power to detect large effects 
(i.e., d = 0.8; if we assumed the even larger effect sizes 
reported in previous work (e.g., d = 1.02 in Bonner and 
Epstein (2017), power increased to 97%). Recruitment 
and experiment protocols were approved by the Com-
mittee on the Use of Humans as Experimental Subjects 
(COUHES) at the Massachusetts Institute of Technology.

2.2.  Design

We used a region of interest (ROI) approach in which we 
used one set of runs (“Localizer Runs”) to localize ROIs 
based on functional signatures, and a distinct indepen-
dent set of runs (“Experimental Runs”) to investigate 
responses of these regions to the Experimental condi-
tions shown in Figure 2, using both univariate and multi-
variate approaches (for a detailed description of this 
analysis, see Data analysis section below).

Localizer stimuli consisted of 3  s videos of dynamic 
Scenes, Objects, Faces, and Scrambled Objects, as 
described previously in Kamps et al. (2016b) and Kamps 
et al. (2020). Stimuli were presented using a block design 
at 13.7 x 18.1 degrees of visual angle. Each run was 315 s 
long and contained 4 blocks per stimulus category. The 
order of the first set of blocks was pseudorandomized 
across runs (e.g., Faces, Objects, Scenes, Scrambled) 

Fig. 2.  Dynamic movie stimuli. Adult participants viewed 3 s video clips in an event-related design. The still images 
shown here depict the first frame of each movie stimulus. Condition numbers are listed over each stimulus. The direction 
of navigational affordance information (i.e., open doorways) in each scene is organized by row, depicting either two 
affordances (top row), an affordance to the left, but not right (middle row), or an affordance to the right, but not the left 
(bottom row). The direction of ego-motion is organized by column, and further indicated by the yellow arrow over each 
image, depicting either forward (first column), backward (second column), left turn (third column), or right turn (fourth 
column) ego-motion.



4

F.S. Kamps, E.M. Chen, N. Kanwisher et al.	 Imaging Neuroscience, Volume 3, 2025

and the order of the second set of blocks was the palin-
drome of the first (e.g., Scrambled, Scenes, Objects, 
Faces). Each block consisted of 5 2.8 s video clips from a 
single condition, with an ISI of 0.2  s, resulting in 15  s 
blocks. Each run also included five fixation blocks: one at 
the beginning, three evenly spaced throughout the run, 
and one at the end. Participants completed three localizer 
runs, interleaved between every two experimental runs.

Experimental stimuli consisted of 14 conditions (Con-
ditions 1–10 are shown in Figure 2; example stimuli and 
results from conditions 11–14 are shown in Supplemen-
tal Fig. 3). All stimuli were created using Unity software 
and depicted 3 s clips of the first-person experience of 
walking through scenes. Navigational affordances were 
manipulated by including an open doorway to either the 
left side, right side, or both sides. To help control for low-
level visual confounds, the non-doorway side always 
included a distractor object, either a painting (conditions 
1–10) or an inverted doorway (conditions 11–14). Fur-
thermore, the textures applied to the painting and the 
walls through the doorways were counterbalanced, such 
that each texture appeared equally on either side across 
the full stimulus set. Ego-motion was manipulated by 
changing the direction of ego-motion through scene, 
which could either be forward (conditions 1–3, 11–14), 
backward (conditions 4–6), a left turn (conditions 7–8), or 
a right turn (conditions 9–10). To help prevent visual 
adaptation over the course of the experiment, the 14 
experimental conditions were counterbalanced across 8 
room types, which differed from one another based on 
the textures applied to the walls, floor, and ceiling, and to 
a lesser extent, by the size and shape of the doorways 
and corresponding distractor (Fig. 5). Stimuli were pre-
sented at 13.1 x 18.6 DVA in an event-related paradigm. 
Each stimulus was presented for 2.5  s, followed by a 
minimum inter-stimulus interval (ISI) of 3.5 s and a maxi-
mum ISI of 9.5 s, optimized separately for each run using 
OptSeq2. Participants viewed 4 repetitions of each con-
dition per run, and completed 8 experimental runs, yield-
ing 32 total repetitions per condition across the 
experiment. To help ensure participants paid attention 
throughout the experiment, participants performed a 
one-back task, responding via button press whenever 
the exact same video stimulus repeated on back-to-
back trials. Participants were also instructed to lie still, 
keep their eyes open, and try to “pay attention to” and 
“immerse themselves in” the stimuli.

2.3.  Data acquisition

Data were acquired from a 3-Tesla Siemens Magnetom 
Prisma scanner located at the Athinoula A. Martinos 
Imaging Center at MIT, using a 32-channel head coil. Par-

ticipants viewed movie stimuli through a mirror projected 
to a screen behind the scanner. Scout images (3D low-
resolution anatomical scans) were acquired using auto-
align in 128 sagittal slices with 1.6 mm isotropic voxels 
(TA = 0.14; TR = 3.15 ms; FOV = 260 mm). Anatomical 
T1-weighted structural images were acquired in 176 
interleaved sagittal slices with 1.0  mm isotropic voxels 
(MPRAGE; TA = 5:53; TR = 2530.0 ms; FOV = 256 mm; 
GRAPPA parallel imaging, acceleration factor of 2). Func-
tional data were acquired with a gradient-echo EPI 
sequence sensitive to Blood Oxygenation Level Depen-
dent (BOLD) contrast in 2 mm isotropic voxels in 46 inter-
leaved near-axial slices covering the whole brain (EPI 
factor  =  70; TR  =  2  s; TE  =  30.0  ms; flip angle  =  90 
degrees; FOV = 210 mm). For the localizer runs, 158 vol-
umes were acquired per run (TA = 5:16). For the experi-
mental runs, 228 volumes were acquired per run 
(TA = 7:36). Due to experimenter and technical errors, the 
actual number of volumes collected occasionally devi-
ated from these values. In these cases, all timepoints 
were included in the analysis, with only usable trials 
included in the GLM.

2.4.  Preprocessing

Results included in this manuscript come from prepro-
cessing performed using fMRIPrep 21.0.1 (Esteban et al., 
2019, RRID:SCR_016216), which is based on Nipype 
1.6.1 (K. Gorgolewski et al., 2011, RRID:SCR_002502).

2.4.1.  Anatomical data preprocessing

One T1-weighted (T1w) image was collected per partici-
pant. The T1-weighted (T1w) image was corrected for 
intensity non-uniformity (INU) with N4BiasFieldCorrection 
(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants 
et  al., 2008, RRID:SCR_004757), and used as T1w-
reference throughout the workflow. The T1w-reference 
was then skull-stripped with a Nipype implementation of 
the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmen-
tation of cerebrospinal fluid (CSF), white matter (WM), 
and gray matter (GM) was performed on the brain-
extracted T1w using fast (FSL 6.0.5.1:57b01774, 
RRID:SCR_002823, Zhang et  al., 2001). Brain surfaces 
were reconstructed using recon-all (FreeSurfer 6.0.1, 
RRID:SCR_001847, Dale et al., 1999), and the brain mask 
estimated previously was refined with a custom variation 
of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray matter of 
Mindboggle (RRID:SCR_002438, Klein et  al., 2017). 
Volume-based spatial normalization to two standard 
spaces (MNI152NLin6Asym, MNI152NLin2009cAsym) 
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was performed through nonlinear registration with ants-
Registration (ANTs 2.3.3), using brain-extracted versions 
of both T1w reference and the T1w template. The follow-
ing templates were selected for spatial normalization: 
FSL\u2019s MNI ICBM 152 nonlinear 6th Generation 
Asymmetric Average Brain Stereotaxic Registration 
Model [Evans et  al. (2012), RRID:SCR_002823; Tem-
plateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear 
Asymmetrical template version 2009c [Fonov et  al. 
(2009), RRID:SCR_008796; TemplateFlow ID: MNI152N-
Lin2009cAsym].

2.4.2.  Functional data preprocessing

For each of the 9–12 BOLD runs per subject (across all 
tasks and sessions), the following preprocessing was 
performed. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of 
fMRIPrep. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corre-
sponding rotation and translation parameters) are esti-
mated before any spatiotemporal filtering using mcflirt 
(FSL 6.0.5.1:57b01774, Jenkinson et  al., 2002). The 
BOLD time series (including slice-timing correction when 
applied) were resampled onto their original, native space 
by applying the transforms to correct for head-motion. 
These resampled BOLD time series will be referred to as 
preprocessed BOLD in original space, or just prepro-
cessed BOLD. The BOLD reference was then co-
registered to the T1w reference using bbregister 
(FreeSurfer) which implements boundary-based registra-
tion (Greve & Fischl, 2009). Co-registration was config-
ured with six degrees of freedom. Several confounding 
time series were calculated based on the preprocessed 
BOLD: frame-wise displacement (FD), DVARS, and three 
region-wise global signals. FD was computed using two 
formulations following Power (absolute sum of relative 
motions, Power et al. (2014)) and Jenkinson (relative root 
mean square displacement between affines, Jenkinson 
et  al. (2002)). FD and DVARS are calculated for each 
functional run, both using their implementations in Nipype 
(following the definitions by Power et  al. (2014)). The 
three global signals are extracted within the CSF, the 
WM, and the whole-brain masks. Additionally, a set of 
physiological regressors were extracted to allow for 
component-based noise correction (CompCor, Behzadi 
et  al., 2007). Principal components are estimated after 
high-pass filtering the preprocessed BOLD time series 
(using a discrete cosine filter with 128 s cutoff) for the two 
CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated 
from the top 2% variable voxels within the brain mask. 
For aCompCor, three probabilistic masks (CSF, WM, and 

combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in 
that instead of eroding the masks by two pixels on BOLD 
space, the aCompCor masks are subtracted a mask of 
pixels that likely contain a volume fraction of GM. This 
mask is obtained by dilating a GM mask extracted from 
the FreeSurfer (2019) aseg segmentation, and it ensures 
components are not extracted from voxels containing a 
minimal fraction of GM. Finally, these masks are resam-
pled into BOLD space and binarized by thresholding at 
0.99 (as in the original implementation). Components are 
also calculated separately within the WM and CSF masks. 
For each CompCor decomposition, the k components 
with the largest singular values are retained, such that the 
retained components\u2019 time series are sufficient to 
explain 50% of variance across the nuisance mask (CSF, 
WM, combined, or temporal). The remaining components 
are dropped from consideration. The head-motion esti-
mates calculated in the correction step were also placed 
within the corresponding confounds file. The confound 
time series derived from head-motion estimates and 
global signals were expanded with the inclusion of tem-
poral derivatives and quadratic terms for each 
(Satterthwaite et  al., 2013). Frames that exceeded a 
threshold of 0.5 mm FD or 1.5 standardized DVARS were 
annotated as motion outliers. The BOLD time series were 
resampled into standard space, generating a prepro-
cessed BOLD run in MNI152NLin6Asym space. First, a 
reference volume and its skull-stripped version were gen-
erated using a custom methodology of fMRIPrep. Auto-
matic removal of motion artifacts using independent 
component analysis (ICA-AROMA, Pruim et  al., 2015) 
was performed on the preprocessed BOLD on MNI space 
time series after removal of non-steady-state volumes 
and spatial smoothing with an isotropic, Gaussian kernel 
of 6 mm FWHM (full-width half-maximum). Correspond-
ing non-aggressively denoised runs were produced after 
such smoothing. Additionally, the aggressive noise 
regressors were collected and placed in the correspond-
ing confounds file. All resamplings can be performed with 
a single interpolation step by composing all the pertinent 
transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and 
co-registrations to anatomical and output spaces). Grid-
ded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos 
interpolation to minimize the smoothing effects of other 
kernels (Lanczos, 1964). Non-gridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 
0.8.1 (Abraham et al., 2014, RRID:SCR_001362), mostly 
within the functional processing workflow. For more 
details of the pipeline, see the section corresponding to 
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workflows in fMRIPrep (2019) documentation. The above 
boilerplate text was automatically generated by fMRIPrep 
with the express intention that users should copy and 
paste this text into their manuscripts unchanged. It is 
released under the CC0 license.

2.5.  Modeling

For run-level analyses, the preprocessed time series 
were assessed with algorithms from the Artifact Removal 
Toolbox (ART) to identify frames within the run that had 
an abnormal amount of motion (0.4 mm of total displace-
ment, or an intensity spike >3 s.d. from the mean). The 
design matrix included boxcars for the experimental con-
ditions convolved with a double-gamma hemodynamic 
response function (HRF), and nuisance regressors repre-
senting frame-wise motion, the anatomical CompCor 
regressors derived from white matter and cerebrospinal 
fluid, as well as impulse regressors for volumes identified 
by ART. A high-pass filter (120  Hz) was applied to the 
design matrix and the smoothed data. The model was 
evaluated using FSL’s FILM program. Subject-level con-
trast maps will be generated using FSL’s FLAME in fixed-
effects mode.

2.6.  Data exclusion

For one participant, two runs were lost due to an experi-
menter error that prevented recovery of event timings, 
resulting in six usable runs. For three participants, 3–5, 
runs were excluded due to excessive motion. For five 
participants, there was one run in which the script froze 
toward the end of the run. These runs were kept, and 
events were modeled up to the point at which the script 
froze. Following these exclusions, participants had either 
three (N = 14), two (N = 1), or one (N = 1) usable localizer 
run, and either eight (N = 12), six (N = 1), or five (N = 3) 
usable experimental runs.

2.7.  ROI definition

ROIs included three scene-selective regions: the occipi-
tal place area (OPA), parahippocampal place area (PPA), 
and medial place area (MPA), as well as one early visual 
cortex control region (EVC). We first hand defined a con-
tiguous cluster of scene-selective voxels for each scene 
region in each subject based on the contrast of 
scenes > objects. The localizer data were thresholded at 
p  <  10-3, and only voxels surviving this threshold were 
included. OPA, PPA, and MPA were then defined as the 
top 50 voxels within the hand-defined mask in each 
hemisphere. Selected voxels were not required to be 
contiguous. All regions were defined in all participants, 

except for one subject missing OPA, and a second sub-
ject missing both PPA and MPA. For EVC, we used a 
group-constrained, subject-specific (GSS) method 
(Julian et al., 2012) in which we selected the top 50 vox-
els from each hemisphere within a larger anatomical 
search space taken from Wang et  al. (2015). Top EVC 
voxels were ranked and selected based on the contrast 
of all conditions > fixation.

2.8.  Univariate analyses

For univariate analyses, responses of all voxels in each 
ROI were averaged together for each run, and then aver-
aged across runs, yielding the overall response of each 
ROI in each participant to each experimental condition. 
Responses were extracted separately from each hemi-
sphere, and then averaged across hemispheres for all 
analyses, except where hemispheric differences were 
expected based on the visual field (contralateral vs. ipsi-
lateral) of presentation (see Section 3).

2.9.  Multivariate analyses

For multivariate analysis, we used a split-half procedure 
in which the average response from each voxel was cal-
culated across all possible combinations of half of the 
usable runs (thus leaving out a complementary, inde-
pendent half of the runs for each fold of the data). For 
subjects with five usable runs, we analyzed splits of two 
vs. three runs. For each fold, we estimated the similarity 
of voxel-wise patterns of activity between conditions by 
calculating the Euclidean distance between each condi-
tion and every other condition (including itself) in the 
other half of the data. We chose to use Euclidean  
distance as this measure captures information in both 
the spatial pattern and overall strength of activation, 
whereas other measures (e.g., correlation distance) 
capture only the spatial pattern. These estimates were 
averaged across all folds, yielding an overall estimate of 
the condition-wise similarity space for each ROI and 
participant.

3.  RESULTS

3.1.  OPA represents navigational affordances in 
dynamic scenes

3.1.1.  Multivariate analyses

If OPA represents navigational affordances in dynamic 
scenes, then OPA responses should differ depending on 
the location of navigational affordances present in the 
scene. To test this prediction, we analyzed conditions 
depicting ego-motion through scenes with either (i) an 
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open doorway to the left and a painting on the right (con-
ditions 2 and 5), (ii) an open doorway to the right and a 
painting on the left (conditions 3 and 6), or (iii) two open 
doorways (conditions 1 and 4). We explored responses to 
these conditions in a series of multivariate and univariate 
analyses. Conditions with turns (i.e., conditions 7–10) 
were not included in these analyses, since turning 
changes the direction of navigational affordance informa-
tion during the 2.5-s trial.

For multivariate analyses, we predicted more similar 
responses (measured using Euclidean distance) between 
each of the three affordance conditions (door to the left, 
right, or both) and itself (across split halves of the data; 
“within” conditions) than between each affordance con-
dition and the others (also calculated across split halves 
of the data; “between” conditions). Full hypothesis matri-
ces are shown in Figure 3A. Further, we predicted stron-
ger decoding of navigational affordance information in 

OPA than in PPA and MPA. We first tested this prediction 
using all possible pairs of conditions (i.e., the “overall” 
matrix in Fig.  3A). Indeed, paired samples t-tests (one 
tailed) revealed significant navigational affordance 
decoding in OPA (t(14) = 3.42, p = 0.002), a smaller but sig-
nificant effect in PPA (t(14) = 2.15, p = 0.03), and no signif-
icant effect in MPA (t(14) = 1.28, p = 0.11) (Fig. 3B). Directly 
comparing between regions, a 3 (region: OPA, PPA, 
MPA)  x  2 (affordance: within, between) repeated mea-
sures ANOVA revealed a significant region x affordance 
interaction (F(1.22,15.85) = 5.65, p = 0.03), driven by stronger 
responses to affordance information in OPA than in both 
PPA (post hoc 2  x  2 interaction contrast; F(1,13)  =  5.76, 
p = 0.03) and MPA (post hoc 2 x 2 interaction contrast; 
F(1,13) = 6.21, p = 0.03). PPA and MPA did not significantly 
differ (post hoc 2 x 2 interaction contrast; F(1,14) = 1.48, 
p = 0.24). Next, to provide a stronger test of navigational 
affordance representation, we tested for representation 

Fig. 3.  Multivariate analyses of navigational affordance and ego-motion representation. (A) Hypothesis matrices used to 
test navigational affordance and ego-motion representation. If OPA represents navigational affordances (left-most matrix) 
and/or ego-motion (second-from-the-right matrix), then voxel-wise patterns of activity will be more similar (i.e., smaller 
Euclidean distance) between conditions with the same navigational affordance or ego-motion information (yellow cells) 
than conditions with different information (blue cells). Navigational affordance and ego-motion information were tested 
“overall” (solid bars in bar plots, bottom row), as well as generalizing across the other kind of information (empty bars; e.g., 
testing navigational affordance only across conditions that differ in ego-motion, and vice versa for ego-motion information, 
generalizing across navigational affordances). (B) Results of the four multivariate decoding analyses in the occipital place 
area (OPA), parahippocampal place area (PPA), medial place area (MPA), and an early visual cortex (EVC) control region. 
Bar plots indicate the difference score for the “between” conditions minus the “within” conditions; responses greater than 
zero indicate more similar responses (i.e., smaller Euclidean distance) for the “within”- than “between”-condition pairs, and 
thus significant decoding. AU indicates arbitrary units of Euclidean distance in fMRI response space. Error bars represent 
the standard error of the mean. Markers depict data from individual participants. Asterisks indicate p < 0.05, based on 
paired samples t tests comparing between vs. within conditions. Observed neural representational similarity matrices for 
each region are shown in Supplemental Figure 1.
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of navigational affordances generalizing over ego-motion 
information (moving forward vs. moving backward) by 
limiting comparisons to pairs of conditions that differed in 
ego-motion information, thereby minimizing the lower 
level visual similarity of the “within”-condition compari-
sons. Paired samples t-tests (one tailed) again revealed 
significant navigational affordance decoding in OPA 
(t(14) = 3.45, p = 0.002), a smaller but significant effect in 
PPA (t(14) = 2.80, p = 0.007), and no significant effect in 
MPA (t(14) = 0.22, p = 0.42) (Fig. 3B). Directly comparing 
between regions, a 3 (region: OPA, PPA, MPA) x 2 (affor-
dance: within, between) repeated measures ANOVA 
revealed a significant region  x  affordance interaction 
(F(2,26) = 6.67, p < 0.001), driven by stronger responses to 
affordance information in OPA than in both PPA (post hoc 
2 x 2 interaction contrast; F(1,13) = 6.64, p = 0.02) and MPA 
(post hoc 2 x 2 interaction contrast; F(1,13) = 8.21, p = 0.01).

3.1.2.  Univariate analyses

In univariate analyses, we tested the prediction that OPA 
will respond more to scene features that afford navigation 

(i.e., open doorways) vs. those that do not (i.e., paintings). 
To test this prediction, we focused on single-door scene 
conditions with either (i) an open doorway to the left and a 
painting on the right (conditions 2 and 5) or (ii) an open 
doorway to the right and a painting to the left (conditions 3 
and 6). Given previous evidence that OPA shows a strong 
contralateral visual field bias (MacEvoy & Epstein, 2007; 
Silson et al., 2015, 2022), we predicted that OPA in each 
hemisphere would respond more to doors than to paint-
ings in the contralateral visual field (i.e., right OPA respond-
ing more to doors in the left than the right visual field, and 
vice versa for left OPA). To maximize statistical power, 
responses to contralateral doors vs. paintings were aver-
aged across hemispheres, and then compared using a 
paired samples t-test (one-tailed). We found stronger 
responses to contralateral doors than paintings in OPA 
(t(14) = 3.84, p < 0.001), but not in PPA (t(14) = 1.73, p = 0.05) 
or MPA (t(14) = 1.57, p = 0.07) (Fig. 4A). Directly comparing 
between regions, a 3 (region: OPA, PPA, MPA) x 2 (affor-
dance: contralateral, ipsilateral) repeated measures ANOVA 
revealed a significant region  x  affordance interaction 
(F(1.13,15.85) = 8.73, p = 0.008), with a stronger contralateral 

Fig. 4.  Univariate analyses of navigational affordance and ego-motion representation. (A) Navigational affordance 
representation was tested based on the visual field (contralateral vs. ipsilateral) in which the doorway was presented. If OPA 
represents navigational affordances, then stronger responses will be observed when the contralateral visual field is presented 
with a doorway vs. a painting. Bar plots indicate the difference in response to doorways minus paintings. (B) Forward vs. 
backward ego-motion information was tested using the whole visual field. If OPA represents ego-motion directions, then 
different responses will be observed for forward vs. backward motion. Bar plots indicate the difference in response to forward 
minus backward motion. (C) Turning direction information (e.g., to the left or right) was also tested based on the visual field 
(contralateral vs. ipsilateral) of presentation. If OPA represents ego-motion turning, then OPA responses will depend on turn 
direction, with stronger responses for turns toward the contralateral than toward the ipsilateral visual field. Bar plots indicate 
the difference in response to contralateral minus ipsilateral turns. For all plots, error bars indicate the standard error of the 
mean, and markers indicate data from individual participants. Asterisks indicate p < 0.05, based on paired samples t tests.
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affordance preference in OPA than in both PPA (post hoc 
2 x 2 interaction contrast; F(1,14)  = 10.10, p = 0.007) and 
MPA (post hoc 2  x  2 interaction contrast; F(1,14)  =  8.40, 
p = 0.01). PPA and MPA did not significantly differ (post 
hoc 2 x 2 interaction contrast; F(1,15) = 0.27, p = 6.13).

3.2.  OPA responses to navigational affordances are 
dissociable from those in EVC

Open doorways potentially have greater motion energy 
than paintings, due to changing visual features seen 
through the doorway as the viewer moves through the 
scene. To better understand the role of low-level, retino-
topic visual properties in driving OPA responses, we next 
compared responses in OPA with those in EVC. For mul-
tivariate analyses, we first tested overall navigational 
affordance decoding, and failed to find a significant effect 
in EVC (t(15) = 1.63, p = 0.06) (Fig. 3B). Directly comparing 
EVC with OPA, a 2 (affordance: within, between)  x  2 
(region: OPA, EVC) repeated measures ANOVA failed to 
reveal a significant affordance x region interaction 
(F(1,14) = 1.10, p = 0.31). We next tested navigational affor-
dance decoding when generalizing across ego-motion 
directions (i.e., forward vs. backward ego-motion), mini-
mizing the influence of low-level visual features. In this 
case, navigational affordance decoding in EVC was again 
not significant (t(15) = 1.62, p = 0.06), and a 2 (affordance: 
within, between) x 2 (region: OPA, EVC) repeated mea-
sures ANOVA failed to reveal a significant affor-
dance  x  region interaction (F(1,14)  =  2.20, p  =  0.16). 

Accordingly, multivariate analyses were inconclusive; 
although significant decoding of navigational affordances 
could not be detected in EVC, the multivariate responses 
in this region did not differ from OPA upon direct compar-
ison. To gain further clarity on this issue, we next per-
formed univariate analyses of responses to contralateral 
doors vs. paintings. In this case, and unlike OPA, greater 
responses to contralateral doors than paintings were not 
detected in EVC (t(15) = -0.10, p = 0.54). A 2 (region: OPA, 
EVC) x 2 (affordance: contralateral, ipsilateral) repeated 
measures ANOVA revealed a significant region  x  affor-
dance interaction (F(1,14) = 7.31, p = 0.02), with stronger 
responses to contralateral affordance information in OPA 
than EVC (Fig. 4A).

The univariate results above provide evidence of a sin-
gle dissociation in responses between OPA and EVC, 
with greater sensitivity to navigational affordances in OPA 
than in EVC. However, stronger evidence that representa-
tions in these regions differ would require testing whether 
the opposite dissociation can also be found; that is, 
whether there is some information represented more 
strongly in EVC than in OPA. To test this possibility, we 
considered room texture information. Subjects viewed 8 
different room types (counterbalanced across the 10 
experimental conditions), which differed based on the 
textures and colors applied to the walls, floors, and ceil-
ing (i.e., lower-level visual features potentially represented 
in EVC; Fig. 5A). If a region is sensitive to lower-level tex-
ture information, then voxel-wise patterns of activity will 
be more similar for stimuli with the same room texture 

Fig. 5.  Multivariate analysis of room texture representation. To determine whether OPA responses are dissociable from 
those in EVC, we tested for information about room textures in each region. (A) Subjects viewed eight different room types 
(counterbalanced across conditions), which differed based on the textures and colors applied to the walls, floors, and 
ceiling. If a region is sensitive to lower-level texture information, then voxel-wise patterns of activity will be more similar 
(Euclidean distance) for stimuli with the same room texture than with different room textures. (B) Bar plots indicate the 
difference score for the same minus the different room type comparisons; responses greater than zero, therefore, indicate 
more similar responses (i.e., smaller Euclidean distance) for the “same” than for “different” pairs, and thus significant 
decoding. Error bars represent the standard error of the mean. Markers indicate data from individual participants. 
Asterisks indicate p < 0.05, based on paired samples t tests.
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than with different room textures. Results from this multi-
variate analysis showed significant decoding in EVC as 
well as all three scene regions (EVC: t(15) = 4.15, p < 0.001; 
OPA: t(14) = 2.90, p = 0.006; PPA: t(14) = 2.34, p = 0.02; 
MPA: t(14) = 1.93, p = 0.04) (Fig. 5B). However, the strength 
of this effect differed between regions, with significantly 
stronger sensitivity to room texture information in EVC 
than in OPA (repeated measures ANOVA, region x room 
type interaction: F(1,14) = 7.49, p = 0.02), as well as in PPA 
(region x room type interaction: F(1,14) = 13.54, p = 0.002) 
and in MPA (region x room type interaction: F(1,14) = 13.12, 
p = 0.003).

3.3.  OPA represents ego-motion in dynamic scenes

3.3.1.  Multivariate analyses

If OPA represents ego-motion through dynamic scenes, 
then OPA responses will differ depending on the direction 
of ego-motion through the scene. To test this prediction, 
we analyzed conditions depicting forward (conditions 
1–3), backward (conditions (4–6), left turn (conditions 7 
and 8), and right turn (conditions 9 and 10) ego-motion. 
As above, we explored responses to these conditions in 
a series of multivariate and univariate analyses.

For multivariate analyses, we predicted more similar 
responses (i.e., smaller Euclidean distances) between 
each of the four ego-motion directions (forward, back-
ward, left, or right) and itself (across split halves of the 
data) than between different pairs of conditions (also cal-
culated across split halves of the data). Full hypothesis 
matrices are shown in Figure 3 (top row). Importantly, to 
minimize visual confounds, between-condition compari-
sons were limited to the most closely matched pairs of 
conditions: left vs. right turn conditions (which were exactly 
the same stimuli, but mirror flipped) and forward vs. back-
ward conditions (which were exactly the same stimuli, but 
temporally reversed). Paired samples t-tests revealed sig-
nificant ego-motion decoding in OPA (t(14) = 2.43, p = 0.01), 
as well as in PPA (t(14) = 2.71, p = 0.008) and in MPA (t(14) = 
2.25, p  =  0.02) (Fig.  3B). Directly comparing between 
regions, a 3 (region: OPA, PPA, MPA)  x  2 (ego-motion 
decoding: within, between) repeated measures ANOVA 
failed to reveal a significant interaction between region and 
ego-motion (F(2,26)  = 1.16, p = 0.33). To provide an even 
stronger test of ego-motion representation, we also tested 
ego-motion representation now generalizing across condi-
tions that differed in navigational affordance information. 
Paired samples t-tests revealed significant ego-motion 
decoding in OPA (t(14) = 1.99, p = 0.03) and PPA (t(14) = 2.41, 
p = 0.02), but not in MPA (t(14) = 1.57, p = 0.07) (Fig. 3B). 
However, directly comparing between regions, a 3 (region: 
OPA, PPA, MPA)  x  2 (ego-motion decoding: within, 

between) repeated measures ANOVA failed to reveal a sig-
nificant interaction between region and ego-motion 
(F(2,26) = 2.18, p = 0.13).

3.3.2.  Univariate analyses

To further explore ego-motion representation, we also 
performed two univariate analyses. Our first analysis 
tested the prediction that OPA would respond differently 
to forward motion (conditions 1–3) vs. backward motion 
(conditions 4–6), tested with a paired-samples t-test 
(two-tailed). Indeed, we found a significantly greater 
response to forward motion than backward motion in 
OPA, as well as in PPA and MPA (all t’s  >  2.52, all 
p’s < 0.03) (Fig. 4B). Direct comparison between regions 
revealed a functional dissociation: a 3 (region: OPA, PPA, 
MPA)  x  2 (ego-motion: forward, backward) repeated 
measures ANOVA revealed a significant region by ego-
motion interaction (F(2,26) = 6.22, p = 0.006), driven by a 
stronger forward ego-motion preference in OPA than in 
both PPA (post hoc 2 x 2 interaction contrast; F(1,13) = 8.92, 
p = 0.01) and MPA (post hoc 2 x 2 interaction contrast; 
F(1,13) = 5.36, p = 0.04). There was no significant difference 
between PPA and MPA (post hoc 2 x 2 interaction con-
trast; F(1,14) = 0.55, p = 0.47)

Our second univariate analysis tested the prediction 
that responses to ego-motion directions differ by the 
visual field of presentation, with stronger responses to 
turns toward the contralateral than toward ipsilateral 
visual field (i.e., right OPA responding more to left turns 
than to right turns, and vice versa for left OPA). Note that 
turns toward the contralateral visual field generate greater 
motion energy in the ipsilateral field. Accordingly, if a 
region responds more to contralateral than to ipsilateral 
turns, it is unlikely that this effect is driven by motion 
energy. To maximize statistical power, responses to con-
tra- and ipsilateral turns were averaged across hemi-
spheres and compared using a paired-samples t-test 
(one-tailed). We found stronger responses to contralat-
eral than to ipsilateral turns in OPA (t(14) = 4.27, p < 0.001), 
as well as in PPA (t(15)  =  4.22, p  <  0.001) and MPA 
(t(15)  =  4.21, p  <  0.001) (Fig.  4C). Directly comparing 
between regions, a 3 (region: OPA, PPA, MPA) x 2 (turn: 
contralateral, ipsilateral) repeated measures ANOVA did 
not reveal a significant region by ego-motion interaction 
(F(2,26) = 2.70, p = 0.09).

3.4.  OPA responses to ego-motion are dissociable 
from those in EVC

We next compared ego-motion representation in OPA 
with that in EVC. For multivariate analyses, we first tested 
overall ego-motion decoding, and found significant 
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sensitivity to ego-motion direction in EVC (t(15)  =  2.94, 
p = 0.005), with no significant difference in the strength of 
ego-motion decoding between OPA and EVC; a 2 (region: 
OPA, EVC) x 2 (ego-motion decoding: within, between) 
repeated measures ANOVA failed to find a significant 
ego-motion by region interaction (F(1,14) = 0.03, p = 0.88) 
(Fig. 3B). Next, we tested ego-motion direction informa-
tion generalizing across navigational affordance informa-
tion, providing a stronger test of ego-motion representation 
over and above low-level visual features. In this analysis, 
decoding of ego-motion direction was no longer signifi-
cant in EVC (t(15) = 0.80, p = 0.22), although direct com-
parison of OPA and EVC using a 2 (region: OPA, EVC) x 2 
(ego-motion decoding: within, between) repeated mea-
sures ANOVA failed to reveal a significant region by ego-
motion interaction (F(1,14) = 2.30, p = 0.15) (Fig. 3B). Finally, 
we performed two univariate analyses.

First, for univariate analyses of forward vs. backward 
motion responses, we found a preference for forward over 
backward motion in EVC (paired samples t-test, t(15) = 2.70, 
p = 0.02), with no difference in response between OPA 
and EVC (region by ego-motion interaction; F(1,14) = 0.42, 
p = 0.53) (Fig. 4B). Second, for univariate analyses com-
paring contralateral vs. ipsilateral turns, we found no sig-
nificant difference in the response to contra- than to 
ipsilaterally presented turns in EVC (t(15) = 0.55, p = 0.70), 
and a 2 (region: OPA, EVC) x 2 (turn: contralateral, ipsilat-
eral) repeated measures ANOVA revealed a significant 
region x turn interaction (F(1,14) = 10.95, p = 0.005) (Fig. 4C). 
Taken together, these results suggest that OPA represen-
tation of ego-motion may be partially, but not entirely 
explained by low-level, retinotopic visual information. 
Indeed, although EVC responses can discriminate 
between basic ego-motion directions, the full profile of 
OPA responses to ego-motion is not detectable in EVC—
particularly for tests of ego-motion representation that 
minimize the influence of low-level visual features (e.g., 
when generalizing across different navigational affordance 
conditions, or for contralateral vs. ipsilateral turns).

3.5.  Integration of navigational affordances and 
ego-motion

The analyses above suggest that OPA plays a unique role 
in the scene network by representing both navigational 
affordances and ego-motion in dynamic scenes. Does 
OPA integrate these two kinds of navigationally relevant 
information? To begin to address this question, we com-
pared responses with conditions in which navigational 
affordance and ego-motion information are consistent 
(e.g., an open doorway to the left, with a turn toward the 
door; conditions 7 and 10) vs. inconsistent (e.g., an open 
doorway to the left, with a turn away from the door; con-

ditions 8 and 9) (Fig. 6A). Once again, we tested responses 
to these conditions with a series of multivariate and uni-
variate analyses.

For multivariate analyses, we predicted more similar 
responses within consistent and inconsistent conditions 
(across split halves of the data) than between these con-
ditions (also calculated across split halves of the data) 
(Fig.  6B). Paired samples t-tests revealed a significant 
effect in OPA (t(14) = 2.20, p = 0.02) and PPA (t(14) = 2.56, 
p = 0.01), but not in MPA (t(14) = 0.65, p = 0.26). A 3 (region: 
OPA, PPA, MPA) x 2 (decoding: within, between) repeated 
measures ANOVA did not find a significant region x decod-
ing interaction (F(1.26,16.4)  =  1.96, p  =  0.18). Notably, the 
differential response to consistent vs. inconsistent turn-
ing conditions was not likely explained by low-level, ret-
inotopic visual features, since no significant effect was 
found in EVC (paired samples t-test, t(15) = 0.56, p = 0.29), 
although direct comparison between EVC and OPA did 
not reveal a significant region  x  decoding interaction 
(F(1,14) = 0.44, p = 0.52).

To further explore how navigational affordance and 
ego-motion information are integrated, we next tested 
the univariate prediction that OPA would respond differ-
ently to consistent vs. inconsistent turns, particularly 
when this information is presented in the contralateral 
visual field (e.g., for right OPA, a preference for left turns 
toward an open doorway vs. left turns toward a painting). 
Consistent with this prediction, we found greater OPA 
responses to consistent than to inconsistent turns toward 
the contralateral visual field (paired samples t-test, 
t(14) = 4.48, p < 0.001). This effect was not likely explained 
by a simple preference for doors vs. paintings in the con-
tralateral visual field, since no difference in response was 
found for consistent vs. inconsistent ipsilateral turns 
(paired samples t-test, t(14) = 0.05, p = 0.52); if OPA is sim-
ply responding to doorways in the contralateral visual 
field, then OPA would respond significantly more to 
inconsistent, ipsilateral turns (which contain a doorway in 
the contralateral visual field) than to consistent, ipsilateral 
turns (which contain a painting in the contralateral visual 
field). The preference for consistent contralateral turns, 
but not ipsilateral turns, was also observed in PPA and 
MPA (paired samples t-tests; contralateral: both 
t’s(15) > 3.68, both p’s < 0.002; ipsilateral: both t’s(15) = 1.06, 
p = 0.15). To directly compare between regions, we first 
calculated the difference in response to the consistent 
minus the inconsistent condition in each visual field, and 
then submitted these values to a 2 (visual field: contralat-
eral, ipsilateral)  x  3 (region: OPA, PPA, MPA) repeated 
measures ANOVA. This analysis failed to reveal a signifi-
cant interaction between visual field and region 
(F(2,28) = 2.70, p = 0.09). In contrast to the scene regions, 
EVC responded more to inconsistent than to consistent 
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turns in the contralateral visual field (paired samples 
t-test, t(15) = 2.27, p = 0.04), with no significant difference 
in response to inconsistent than to consistent turns in the 
ipsilateral visual field (paired samples t-test, t(15) = 1.88, 
p  =  0.08). In sum, the scene regions, and particularly 
OPA, integrate navigational affordance and ego-motion 
information, responding maximally when they converge.

4.  DISCUSSION

Here we used dynamic movie stimuli to test how naviga-
tionally relevant information is represented in scene-
selective cortex during the first-person visual experience 
of navigating scenes. We found that one scene region, 
the OPA, was sensitive to both navigational affordances 
(i.e., the presence vs. absence of open doorways afford-
ing further navigation) and ego-motion directions (i.e., 
walking forward vs. backward, turning left vs. right). 
Results were less consistent in two other scene regions, 
the PPA and MPA, which showed weaker or no sensitivity 
to navigational affordance information, and relatively 
weaker evidence of ego-motion representation. These 
results support the hypothesis that regions of the cortical 
scene processing system are functionally dissociated, 

with OPA playing a specific role in representing naviga-
tionally relevant information in dynamic visual scenes.

Our results reveal a more detailed functional profile for 
OPA than previously known. Past work has shown that 
OPA is activated more strongly by dynamic than by static 
scenes (Hacialihafiz & Bartels, 2015; Kamps et al., 2016b, 
Kamps et al., 2020; Sulpizio et al., 2020; Suzuki, 2021), 
and shows a preference for dynamic scenes viewed from 
a walking perspective, rather than a crawling or flying 
perspective (Jones et al., 2023; Jung et al., 2024). Here 
we explored the more specific representations in OPA 
during the visual experience of navigating through a 
scene, revealing that OPA represents information about 
both the structure of the space as it constrains possibili-
ties for future navigation (i.e., navigational affordances) 
and the dynamics of ongoing motion through the space 
(i.e., ego-motion), and their interaction. Given that navi-
gational affordance information is particularly useful for 
understanding possibilities for future actions (e.g., which 
way can I walk next?) while ego-motion reveals the cur-
rent trajectory of motion (e.g., how am I currently mov-
ing?), these results suggest that OPA is involved not only 
in navigational planning, but also in online guidance of 
navigation.

Fig. 6.  Testing the conflict of navigational affordance and ego-motion information. (A) Conditions used for conflict 
analyses. Navigational affordance and ego-motion are consistent when turns are taken in the direction of the open doorway 
(top left and bottom right conditions). This information is put in conflict when turns are taken in the opposite direction of 
the doorway (top right and bottom left conditions). (B) Multivariate analyses. If OPA represents the conflict of navigational 
affordance and ego-motion information, then more similar responses will be observed for conditions with the same 
conflict information (consistent–consistent, inconsistent–inconsistent) than the different conflict information (consistent–
inconsistent). Bar plots indicate the difference score for the “between” conditions minus the “within” conditions; responses 
greater than zero, therefore, indicate more similar responses (i.e., smaller Euclidean distance) for the “within”- than for 
“between”-condition pairs, and thus significant decoding. (C) Univariate analyses were conducted with respect to the visual 
field of presentation. If OPA represents the conflict of navigational affordance and ego-motion information, specifically in 
the contralateral visual field, then stronger responses to consistent than to inconsistent turns will be found for contralateral 
turns, but not to ipsilateral turns. Bar plots indicate the difference in response to consistent minus inconsistent turns. For 
all plots, error bars represent the standard error of the mean. Markers indicate data from individual participants. Asterisks 
indicate p < 0.05, based on paired samples t tests.
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Prior work has typically studied (static) scene percep-
tion and ego-motion perception separately, with studies 
of static scene perception focused on the three regions 
tested here (OPA, PPA, and MPA), and studies of ego-
motion focused on a network of regions in dorsal visual 
cortex, parietal cortex, premotor cortex, and the cerebel-
lum (e.g., Di Marco, et al., 2021; Pitzalis et al., 2020; Ruehl 
et  al., 2022; Sulpizio et  al., 2020, 2023; Wall & Smith, 
2008). The current results support the idea that OPA may 
play a relatively unique role at the intersection of these 
two networks (Sulpizio et al., 2020), by representing infor-
mation about navigational affordances—a property of 
static scene geometry—and ego-motion direction—a 
property only defined in dynamic scenes. We speculate 
that the co-localization of these two types of information 
in OPA might support navigation by facilitating compari-
son between planned navigational trajectories and cur-
rently observed progress in following that trajectory. 
Supporting this idea, we found initial evidence that OPA is 
sensitive to the conflict of navigational affordance and 
ego-motion information (e.g., turning toward vs. away 
from an open doorway)—although this effect was not 
specific to OPA, but also found in other scene regions.

Although OPA is sensitive to higher-level information 
relevant to navigation, OPA responses are nevertheless 
constrained by the visual field of presentation. Mirroring 
the broader organization of early visual processing, past 
studies have demonstrated a clear preference in OPA for 
contralateral visual stimulation, particularly in the upper 
visual field (MacEvoy & Epstein, 2007; Silson et al., 2015, 
2022). Silson et al. (2015) further showed that visual field 
biases in OPA (and other scene regions) are stronger when 
mapped with fragments of static scene images, compared 
with simple checkerboard stimuli, suggesting that OPA 
encodes high-level representations of scene stimuli, par-
ticularly in the lower, contralateral visual field. Bonner and 
Epstein (2018) further used computational modeling to 
suggest that navigationally relevant scene information is 
typically present in the lower visual field. Our results build 
on this finding by revealing the more specific scene infor-
mation extracted by OPA in this portion of the visual field, 
namely, navigational affordances and ego-motion. Future 
work will be required to explore how the navigationally rel-
evant information encoded separately in each hemisphere 
is integrated to form a coherent representation across the 
entire visual field, for example, facilitating decision making 
about which paths to follow to the left vs. right.

Notably, OPA is adjacent to, and overlapping with area 
V3A an ego-motion sensitive region, raising the possibility 
that ego-motion responses could be attributable to this 
region instead. The relationship between V3A and OPA is 
not yet well understood. One possibility is that these two 
regions, generally studied separately and localized using 

different contrasts, are actually the same region. Consis-
tent with this idea, area V3A has been shown to respond 
more to scenes than faces and overlaps heavily with OPA 
(Sulpizio et al, 2020). An alternative hypothesis is that these 
regions are functionally distinct, but functional differences 
between these regions are challenging to detect due to 
their proximity, relative to the spatial resolution of fMRI. 
Clearly then, more work is needed to understand whether 
and how visual representations in these regions differ.

While ego-motion representation was found in OPA, 
at least some sensitivity to this information was found in 
all other regions tested, including EVC. Both OPA and 
EVC further showed a preference for forward (vs. back-
ward) ego-motion, suggesting that ego-motion repre-
sentation is biased toward the direction most commonly 
experienced during visually guided navigation, and con-
sistent with prior work showing a preference for forward 
vs. backward radial optic flow in ego-motion sensitive 
brain regions (e.g., Di Marco et al., 2021). Widespread 
representation of ego-motion across the visual cortex is 
perhaps not surprising, given that ego-motion directions 
generate distinct patterns of optic flow across the visual 
field (e.g., a left turn causes higher motion energy in the 
right visual field, and vice versa for a right turn). Never-
theless, some evidence indicates that nature of ego-
motion representation differs between OPA and EVC. 
For example, ego-motion decoding remained significant 
in OPA, but not in EVC, when generalizing across stimuli 
that differed in navigational affordance information (a 
test which minimizes the influence of lower-level motion 
energy in driving decoding performance). Moreover, uni-
variate responses in OPA were greater for turns in the 
contralateral direction (e.g., left OPA responding more to 
right turns than to left turns). If responses in OPA were 
driven only by lower-level motion energy, then greater 
responses should be found for ipsilateral turns, which 
generate greater motion energy in contralateral visual 
field. Based on these results, we speculate that OPA 
encodes relatively higher-level representations of ego-
motion, perhaps reflecting ongoing navigational goals, 
while ego-motion representation in EVC is driven more 
directly by low-level motion energy information (despite 
failing to detect greater EVC responses to ipsilateral 
than to contralateral turns in the current analyses).

5.  CONCLUSION

In sum, we used dynamic visual stimuli to find evidence 
of a functional dissociation in the human cortical scene 
network, with OPA showing stronger and more consistent 
evidence of navigationally relevant information process-
ing in dynamic scenes than PPA or MPA. Moreover, the 
pattern of responses in OPA could not be explained by 
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low-level, retinotopic visual features. These results sup-
port the hypothesis that OPA plays a unique role in the 
cortical scene processing network by representing 
scenes as dynamic, navigable spaces.
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