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Animal models of the human brain: Successes,

limitations, and alternatives
Nancy Kanwisher

The last three decades of research in human cognitive
neuroscience have given us an initial “parts list” for the human
mind in the form of a set of cortical regions with distinct and
often very specific functions. But current neuroscientific
methods in humans have limited ability to reveal exactly what
these regions represent and compute, the causal role of each
in behavior, and the interactions among regions that produce
real-world cognition. Animal models can help to answer these
questions when homologues exist in other species, like the
face system in macaques. When homologues do not exist in
animals, for example for speech and music perception, and
understanding of language or other people’s thoughts, intra-
cranial recordings in humans play a central role, along with a
new alternative to animal models: artificial neural networks.
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Introduction

How do human thought and experience arise from the
activity of neurons? Although a satisfying mechanistic
account of these inchoate phenomena still eludes us, we
now have a solid foundation upon which to build. Over
the last few decades, cognitive neuroscientists have
revealed the large-scale functional organization of the
human cortex—the key brain structure responsible for
perception and cognition—in considerable detail. Each
of us has the same set of functionally distinct brain re-
gions, some generically engaged across content domains
and others highly specialized for particular mental pro-
cesses, from perceiving faces or music or navigational
affordances to understanding the meaning of a sentence
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or the nuances of another person’s thoughts (Figure 1).
This “parts list” of the human brain constitutes real
progress, but at the same time lays bare a vast space of
open questions about the computations, circuit-level
mechanisms, and causal role of each of these cortical
regions in behavior. To answer those questions, we must
overcome the nontrivial methodological shortcomings of
human cognitive neuroscience by extrapolating from
homologous systems in animals. However, this solution
is less helpful for understanding mental functions not
shared with animals like language and music and
thinking about each other’s thoughts, posing a particular
challenge for understanding how neural circuits produce
these quintessentially human abilities.

A “parts list” of the human cortex

Unlike subcortical structures, where distinct compo-
nents are anatomically differentiated in recognizably
similar ways across humans and other mammals, sub-
divisions of the cortex are hard to discern from physical
anatomy alone. Primary cortical regions have long been
recognized in humans by their distinctive thalamic
input or corticospinal tract output, and postmortem
histology from Brodmann to modern methods [1,2] in-
dicates some cytoarchitectonic differentiation across the
rest of the cortex. But many of these anatomically
defined regions do not have sharp borders, and their
relation to function could until recently be inferred only
imprecisely from the deficits that result in neurological
patients with lesions in their approximate location.

This situation changed abruptly with the advent of
fMRI in the early 1990s. Retinotopic mapping allowed
the identification of V1 and several downstream reti-
notopic regions, as well as visual motion area MT; all
with clear or likely homologues to regions previously
studied in detail with electrophysiology in macaques.
The functional region of interest” (fROI) approach, in
which particular fMRI “localizer” contrasts were used to
identify fROIs in each participant individually, made
possible the study of functionally distinctive cortical
regions that varied between subjects in their exact
anatomical location [3]. The adoption of the same
localizers across labs to identify these regions has made
possible a cumulative research program in which the
existence and functional and anatomical [4] properties
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Figure 1
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Functionally specific cortical regions in the human brain. Colored blobs indicate the approximate location of functionally distinctive cortical regions that
are present in virtually every subject and that have been widely replicated across labs. Bar charts show the response of several of these regions to passive
viewing of five visual categories (faces, places, objects, bodies, and text) presented simultaneously with five auditory task conditions (assessing completions
of short verbal descriptions of false beliefs (FB), false photos (FP), nonwords (NW), quilted speech (QS), and arithmetic). Each bar shows the mean response
across ten participants in held-out data from those used to define each region (FFA: faces > objects; PPA: places > objects, EBA: bodies > objects; rTPJ:
FB > FP; Language Regions: EP & PP > NW; Speech regions: NW > QS; MD: arithmetic > NW). Because visual and auditory conditions were presented
simultaneously (and orthogonalized), bar charts for visual regions have the mean response across all visual conditions subtracted from each auditory
condition, and bar charts for other regions have the mean response across auditory conditions subtracted from each visual condition.

of each of these regions have been widely replicated and
characterized in detail.

Using the fROI method, a number of category-selective
regions were identified in the ventral visual pathway
that had not been previously described in macaques,
including the fusiform face area, parahippocampal place
area, extrastriate body area, and visual word form area,
responding selectively to faces, places, bodies, and text,
respectively [5]. Although multiple voxel pattern anal-
ysis (MVPA) enables nonpreferred information to be
extracted from fMRI responses in each of these regions,
and weaker selectivities for real-world size, animacy, and
eccentricity overlap with many of these regions [6], the
available causal evidence from neurological patients,
TMS, and intracranial stimulation supports a selective
role of each region in the perception of stimuli from its
preferred category (see Box 1).

Similar methods have identified cortical regions with
selective roles in distinctively human functions
including the perception of speech sounds and music
[7,8]. Further, resolving a centuries-long debate, it is
now clear that brain regions engaged in language
processing are highly selective for language per se,
revealing little or no response when people perform
mental arithmetic, solve logic problems, hold informa-
tion in working memory, listen to music, or exert
cognitive control [9]. Although language-selective re-
gions in the frontal lobe reside near functionally less
specific “multiple demand” regions, the individual-
subject fROI method has shown these regions to be
nonoverlapping at the individual-subject level [9].
Thus, language and thought are distinct in the brain
[10]. In perhaps the most astonishing functionally spe-
cific region of the cortex, Saxe and colleagues have
shown that a region of the temporo-parietal junction is
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Box 1

The most significant critique of the functional specificity of category-
selective regions is the discovery from Haxby [79] and others that it
is possible to decode information about nonpreferred categories
from the response across voxels in these regions (e.g. discrimi-
nating the response to shoes versus cars in the FFA). However, this
nonpreferred information is weak, and Haxby himself noted that
“preferred regions for faces ... are not well suited to object classifi-
cations that do not involve faces ... " [80]. Further, the mere exis-
tence of information about nonfaces in the FFA is unsurprising, as
the projection of different nonface stimuli into face space can be
expected to yield at least partly different representations. Indeed,
ANNSs trained only on face discrimination, which can be thought of as
the Platonic ideal of a face-specific system, can decode non faces
above chance [60,81]. More fundamentally, the fact that scientists
can read out weak nonpreferred information from category-specific
regions does not mean the rest of the brain is reading out this in-
formation. The key question is whether this information plays a
causal role in behavior. Most available evidence from interventions
such as lesions [82], pharmacological [36], or electrical disruption
[42,43] restricted to face-specific regions supports a specific causal
role in face perception (but see Ref. [37]).

selectively engaged when people think about what
another person is thinking [11], not when they think
about a person’s physical characteristics, social practices,
or even their bodily sensations like thirst or hunger
or pain.

Although some have argued against the idea that many
cortical regions are specifically engaged in particular
mental functions [12,13] their critiques have not
engaged with and cannot account for the evidence for
the functional selectivity of these regions from fMRI,
intracranial recordings, and specific deficits after focal
brain damage, TMS, and direct electrical stimulation
(see also [14]). For a more substantive critique of
functional specificity and its counterarguments, see
Box 1.

The power of animal models: the face
system

Thus, fMRI has proven a powerful tool for discovering a
set of functionally distinctive cortical regions we all
share. However, a rich understanding of these regions
requires not just a characterization of their selectivity,
but an of understanding the information represented
and computations conducted in each region, and how
these representations and computations are imple-
mented in actual circuits of neurons. fMRI can take
some initial steps to address these questions using
methods like MVPA to characterize the information
content in each region, and multivariate analyses of EEG
and MEG to detect changes in representational content
over time. But methods in humans provide little ability
to precisely characterize neural representations, watch
them evolve over time to reveal the process of compu-
tation, discover the actual structural connectivity of
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remote cortical regions, chart information flow between
them, or test the causal role of any of these phenomena
in behavior. All of these questions can be answered in
animal models. Face perception provides a parade case
of this synergy between human and animal studies.

The discovery of the fusiform face area (FFA) in humans
was foreshadowed by prior findings of “face cells” in
monkey I'T cortex [15], as well as reports of human pa-
tients with selective deficits in face perception after
damage to the right inferior temporal lobe. Nonetheless,
the ability to identify the FFA in essentially each indi-
vidual using the fROI method described above made
possible a systematic research program of characterizing
the response profile of this region in detail. Early
research showed that the FFA could not be easily
accounted for in terms of a selectivity for low-level visual
features such as curvature, but instead reflected actual
selectivity for faces themselves. This finding supports
the long-standing idea of domain specificity in cognitive
science [16], according to which many mental functions
are computed in cognitive/neural machinery highly
specialized for processing that domain of information.
Further studies showed that activity in the FFA was
correlated with perceptual awareness of faces even when
the stimulus did not change (in binocular rivalry) [17],
activated by just imagining faces with eyes closed [18],
and sensitive to face identity in upright but not inverted
faces (echoing long-standing behavioral findings [19]).
More recent work has shown that the FFA is already
present in five-month-old infants [20,21].

In addition to the FFA, other face-selective regions have
been found in humans, including the occipital face area
(OFA), which encodes more image-based features of
faces, a face-selective region in the pSTS which is
particularly sensitive to dynamic information in faces
and also responds to human voices, and face-selective
regions have been reported in more anterior temporal
regions and in the frontal lobes [22]. A recent paper
found higher responses to familiar than unfamiliar faces
in the temporal pole and perirhinal cortex [23].

Most excitingly, Tsao, Freiwald, and their collaborators
identified multiple face-selective patches in macaques,
and then went far beyond anything possible in humans.
They recorded from individual neurons in identified
patches and found that nearly all cells in the middle face
patch were selectively responsive to faces [24], they
characterized the progression of representations from
view-specific to mirror-symmetric viewpoint tuning to
fully viewpoint invariant tuning to individual identity
across face patches [25], and they showed the strict
connectivity [26] between face patches but not be-
tween those patches and the intervening cortical tissue.
Further, they precisely described the selectivities of
individual neurons in face patches [27—29], leading to a
characterization of the neural code for face identity [30],
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and they identified the particular face patches [31,32]
and coding schemes [33] that distinguish between
familiar and unfamiliar faces.

Although the face system in general is likely homologous
between macaques and humans, the precise corre-
spondence between face patches is not clear [34], and a
strict one-to-one mapping between regions across spe-
cies may not exist. These questions may be answered in
the future by a large ongoing multisite project that is
attempting to combine functional MRI imaging in vivo
with postmortem single-cell RNA sequencing in
humans and primates to discover whether functionally
specific regions such as the FFA have distinct cell type
signatures, and if so if these are shared across species.
But even if one-to-one homologies are not ultimately
found between species, the general findings from the
face system in macaques are likely to apply to humans,
given the similarities between species in visual

Figure 2

processing behavior [35] and in the location of the face
system across species relative to other functional land-
marks. The work in primates is thus a great gift to those
of us trying to understand the neural basis of face
perception in humans, answering many questions that
are difficult or impossible to answer in humans.

That said, some advantages of human studies remain.
One example concerns causal tests of the role of face
patches in behavior. Studies in macaques have demon-
strated alterations of face perception when face patches
are disrupted electrically, pharmacologically, or opto-
genetically [36—39]. But each of these experiments
shows a reduction in accuracy on a single highly trained
task, a low-dimensional reflection of what is surely a very
high dimensional change in the monkey’s percept. A
clever new method called “perceptography” [40] can
depict the contents of a monkey’s percept induced by a
local perturbation of the IT cortex, but requires
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Intracranial recordings reveal neural mechanisms of uniquely human speech, language, and music processing. a Three electrodes in human
auditory cortex are selectively responsive to speech, music, and song, respectively [8] Top: gamma power over time in response to each of 165 natural
sounds containing foreign speech (light green), English speech (dark green), instrumental music (blue), and vocal music (red). Bottom: gamma power
over time averaged within each sound category. b. Three electrodes in human auditory cortex are selectively responsive to pitch, pitch change, and

expectation in music [50]. c. Responses of individual electrodes during conversation, revealing selective responses during speech perception, speech

planning, and speech production [54]; Timing of onset of speech planning is manipulated by placing the critical word (“soft” or

“eyebrows” in these

examples) in different positions in the question the subject is asked. d. Cortical location of speech planning responses, distinct from cortical loci for speech
perception and production [54]. e. Response of an electrode in human hippocampus that responds selectively to the image or spoken name of Shrek, and
also to a pronoun referring to Shrek, revealing neural correlates of referent retrieval in online sentence comprehension [83].
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thousands of trials per site. In contrast, on the rare oc-
casions when neurosurgeons electrically stimulate face-
specific sites in humans for clinical reasons, these pa-
tients have done something no monkey can, by using
language to share with us rich insights into their
resulting percepts (see also [41]). One patient reported
during stimulation of the FFA that “your face just
metamorphosed ... that was a trip!” [42] and another
reported “your face kind of changes into an anime
character” and for stimulation of the OFA he said, “I
start seeing eyes over here, but if I look over here, I see
eyes over here” [43].

What do we do when no animal models
exist?

The progress in understanding the brain basis of face
perception illustrates the power of combining comple-
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humans and monkeys. Similar efforts are ongoing to
understand brain systems that process other domains
that are likely largely shared between humans and ma-
caques such as body perception [44], scene perception
[45], the perception of social interactions [46,47], and
intuitive physical reasoning [47,48]. But how are we to
understand domains of perception and cognition that
are not shared with other animals, such as the percep-
tion of speech or music sounds, or understanding the
meaning of a sentence or the contents of another per-
son’s thoughts? Nonhuman primates lack these abilities,
posing a particular challenge for studying them at the
level of neural populations and circuits.

For brain regions that implement uniquely human
functions, a particularly important source of data for
fine-grained neural understanding comes from rare and

mentary studies of a particular cortical system in precious intracranial recordings from neurosurgery
Figure 3
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Artificial neural networks as computational models of human brain functions. a. CNNs trained on both object classification and face identification
spontaneously segregate themselves into two distinct systems, to an increasing degree in later layers of the network, mirroring the functional organization
of the brain [81]. b. A topographic deep artificial neural network predicts category-selective regions much like those observed in the brain [65]. c. Audio-
trained neural networks, predict voxelwise responses to natural sounds measured with fMRI [70]. d. Large Language models, especially GPT models,

predict voxelwise responses to sentences in the human brain [72].
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patients with implanted electrodes (see Figure 2).
These recordings have already revealed neural popula-
tions specific for speech and music [8], and have begun
to unpack the neural codes underlying each [49—51].
Other intracranial recordings in the language cortex have
revealed glimpses into the computations entailed in
sentence understanding [52,53] and production [54].
These recordings only rarely provide a high density of
electrodes in a cortical region of interest [8,49], as
clinical needs determine their use, and most neurosur-
geons now use depth electrodes that sample the brain
widely but sparsely. Although several new high-density
recording arrays have been developed recently for
humans[55—57], these have only been used for brief
periods during surgery. It would be game-changing for
human cognitive neuroscience if clinically useful high-
density recording devices were developed that could be
safely used for longer periods.

Complementary approaches using ANNs

In an exciting discovery over the last decade, artificial
neural networks (ANNs) trained on natural stimuli
have been found to perform well on humanlike tasks,
meaning that they can serve as computationally explicit
hypotheses of how these problems might be solved in
the brain. Indeed, ANNSs recapitulate many behavioral
and neural phenomena observed in primates, from
visual and auditory psychophysical effects [58—61] to
neural responses [62,63], including the mirror-
symmetric viewpoint tuning of face cells found previ-
ously in a mid-level monkey face patch [64], and even
cortical topography in the primate ventral visual
pathway [65,66]. The spontaneous emergence of these
phenomena in networks not designed to match primate
data (Figure 3, top), but merely optimized for task
performance, points to deep computational reasons
why these phenomena are observed in primates
[67,68]. Further, ANN models are also capturing many
aspects of distinctively human phenomena for which
we do not have good animal models (Figure 3, bottom),
including the perception of pitch [69], neural re-
sponses to speech sounds and music [70,71], and
behavioral and neural responses during language
comprehension [52,72—76].

The ability of ANNs to perform well on human tasks
and to capture many aspects of human behavior and
neural responses means that they can serve as useful
models of the computations performed by the brain.
Although obviously different in their physical imple-
mentation, ANNs have the advantages that they give
complete control over the data the models are trained
on (i.e. for controlled rearing studies), they provide full
information about the response of each unit in the
network to any input, and they enable precise causal
interventions on the networks in any way we wish.
ANNSs thus powerfully complement animal models of

human functions where interspecies homologies exist,
and fill in for the missing animal models of uniquely
human cognition [70—72,77,78].

Conclusions

In sum, human cognitive neuroscience has made sub-
stantial progress sketching the large-scale functional or-
ganization of the cortex in humans. Where homologous
cortical regions exist in animals, they can provide finer-
grained characterizations of neural codes and computa-
tions, and how they change over time. Where animal
models don’t exist, we will have to be smarter, analo-
gizing from systems where we do have good animal
models, making maximal use of rare intracranial data
from humans, and using artificial neural networks as
substitutes for animal models. But what we really need
are better methods in humans that can i) reveal the re-
sponses of large numbers of neurons in multiple cortical
regions with precise time information, ii) discover actual
structural connectivity between cortical regions, and iii)
watch information flow from one brain area to the next.
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