
Pramod et al., Sci. Adv. 11, eadr7429 (2025)     30 May 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 12

N E U R O S C I E N C E

Decoding predicted future states from the  
brain’s “physics engine”
R. T. Pramod1,2*, Elizabeth Mieczkowski1,2,3, Cyn X. Fang1,2,  
Joshua B. Tenenbaum1,2, Nancy Kanwisher1,2

Successful engagement with the physical world requires the ability to predict future events and plan interven-
tions to alter that future. Growing evidence implicates a set of regions in the human parietal and frontal lobes 
[also known as the “physics network” (PN)] in such intuitive physical inferences. However, the central tenet of this 
hypothesis, that PN runs forward simulations to predict future states, remains untested. In this preregistered 
study, we first show that PN abstractly represents whether two objects are in contact with each other, a physical 
scene property critical for prediction (because objects’ fates are intertwined when they are in contact). We then 
show that PN (but not other visual areas) carries abstract information about predicted future contact events (i.e., 
collisions). These findings support the hypothesis that PN contains a generative model of the physical world that 
conducts forward simulations, serving as the brain’s “physics engine.”

INTRODUCTION
To plan even the most mundane action, we must predict future 
states of the world. Catching a ball requires predicting its trajectory, 
placing an object stably on a surface requires predicting whether it 
will fall, and changing lanes in traffic requires predicting where cars 
in the adjacent lane will be in a few seconds. How do we make these 
predictions? All prediction requires prior knowledge about how the 
world works, enabling us to generate likely future states from the 
present estimated state. Here, we focus on the case of predicting 
physical events. Specifically, we test the hypothesis that a set of brain 
regions previously implicated in intuitive physical reasoning spon-
taneously generates predictions of future states when we simply 
view a short video of objects in motion, even without any explicit 
prediction or planning task.

The hypothesized “physics network” (PN) includes a set of bilat-
eral parietal and frontal regions that were first identified in func-
tional magnetic resonance imaging (fMRI) studies as responding 
more strongly when people perform simple physical reasoning tasks 
(which way will the tower fall?) than perceptual judgments on the 
same stimuli (does the tower contain more yellow or blue blocks?) 
(1). PN was subsequently shown to carry information about object 
mass (2) and physical stability (3) that generalized across scenarios, 
and to show an increased response when physical, but not social, 
expectations are violated (4). These results provide initial evidence 
for the physics engine hypothesis—that PN contains a generative 
model of the physical world capable of running forward simula-
tions. However, prior work has not provided explicit evidence that 
predicted future states are represented in PN before they occur. In 
the current study, we use the case of object contact relationships to 
directly probe for future prediction in PN.

Object contact relationships such as containment, support, and 
attachment are critical for dynamic physical scene understanding 
and for predicting what will happen next. When two objects are in 
contact, their fate is intertwined: If a container moves, then so does 

its containee, but the same is not true of an object that is merely oc-
cluded by the container without contacting it (5). Befitting their 
fundamental importance for understanding the physical world, ob-
ject contact relations are privileged in language (e.g., “in” versus “on” 
are included in the closed class of spatial prepositions), adult per-
ception [where contact relations are extracted quickly and arguably 
automatically (6)], and development. Infants as young as 3 months 
expect objects to move with other objects that contain them but not 
with objects that merely occlude them without contact (7). Infants 
are also sensitive to support relationships: Around 6.5 months, they 
understand that more than half of the base of the supported object 
must be in contact with the supporting object, and later at around 
12.5 months, they begin to take into account the supported object’s 
shape or proportional distribution to infer stable support (8). Last, 
infants (6 and 7 months) also look longer if an object moves without 
having been contacted by another moving object (9), again high-
lighting the fundamental role of object contact in intuitive physical 
reasoning. Given their importance for physical prediction, we hy-
pothesized that PN would encode contact relationships between 
objects. We test this hypothesis in experiment 1.

We then use that finding to test a central tenet of the “physics 
engine” hypothesis, that we run forward simulations to predict what 
will happen next (10). If PN is the physical instantiation of a mental 
physics engine, then it should contain information about predicted 
future states before they occur. To test this hypothesis, in experiment 
2, we scan participants while they view contact events (collisions) 
and no-contact events (noncollisions), and we ask whether the neu-
ral distinction between perceived collision/noncollision is also found 
for predicted collision/noncollision (i.e., when participants view vid-
eos in which impending collisions can be predicted but are not ob-
served). Cross-decoding of collision/noncollision from the perceived 
to the predicted case would support the idea that PN represents pre-
dicted future states.

A third question addressed in this work concerns the level of ab-
straction in the representation of contact percepts and predictions. 
A physics engine might be expected to represent abstract object re-
lations such as “contact” independently from the representation of 
the objects involved, perhaps even generalizing to some extent 
across contact types (e.g., support, containment, and attachment). 
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Although such abstractions are not sufficient for precise simulations 
of what will happen next, they are still useful for simplifying the 
computations required for forward simulation. If a potentially mov-
able object is not currently moving and not in contact with other 
moving objects, then the physics engine need not update the state of 
that object [relegating it to a “sleep” state (11)] until the object makes 
a new contact relationship. If a movable object is supported by, con-
tained within, or attached to another moving object, then that con-
tact qualitatively constrains its motion (at least locally) and reduces 
the number of degrees of freedom that must be tracked and updated 
in the dynamic scene. Thus, abstractions can be computationally ef-
ficient and can also serve as bridges for relating prior experiences to 
the current scenario. We test the abstractness of the brain’s represen-
tations of current and predicted contact by testing whether we can 
cross-decode from PN the current or future presence versus absence 
of object contact, across object identities, shapes, configurations, 
and motion trajectories. Of course, more fine-grained representa-
tions of specific object shapes, configurations, and trajectories will 
also be required for the physical simulations that have been posited 
to underlie many aspects of prediction and planning (10, 12). As in 
hierarchical approaches to task and motion planning in robotics 
(13), the brain could use a hierarchy of models for planning, where 
more abstract simulations of dynamics support high-level goal-
based decomposition of a task into subgoals and subtasks—that is, 
an abstract plan to achieve a goal—while more fine-grained simula-
tions are used to predict and generate the precise motions and mo-
tor action sequences needed to implement this plan in a specific task 
setting (see the Discussion section for more).

RESULTS
Experiment 1: Scenario-invariant decoding of object contact 
relationship in the hypothesized PN
In experiment 1, we used both naturalistic and artificially rendered 
videos (Fig. 1; see the Materials and Methods for stimulus design) de-
picting various object relationships to test whether the PN represents 

object contact relationships. We hypothesized that any brain region 
involved in physical reasoning should represent the presence of object-
object contact because contact constrains how objects move and thus 
is critical for prediction. We first identified functional regions of inter-
est (fROIs) in each participant individually, including the PN in the 
frontoparietal cortices, the lateral occipital complex (LOC), and the 
ventral temporal cortex (VTC) (see Materials and Methods). We then 
collected fMRI responses for each voxel in these fROIs to each of the 
contact and noncontact relationships across three different scenarios 
(natural-create, natural-consequence, and rendered; see Fig. 1). These 
responses were used to conduct multivoxel pattern analyses (MVPAs) 
to test for the presence of object contact information both in PN and in 
other cortical regions.
Contact versus noncontact decoding
We used correlation-based MVPA to test whether contact relation-
ships can be distinguished from noncontact relationships, invariant 
to the underlying scenario, within each fROI (Fig. 2A; see the Materi-
als and Methods). We quantified the presence of contact information 
within an fROI using a decoding index: the correlation of the pattern 
of response across voxels within contact relations (contact to contact, 
pooling across the three contact types, and noncontact to noncon-
tact) minus the correlation between contact and noncontact condi-
tions. Higher positive values of this decoding index indicate a 
stronger distinction between contact and noncontact relationships. 
In PN, we found significant contact versus noncontact decoding that 
generalized across naturalistic and rendered scenarios (decoding 
index: mean ± SEM = 0.045 ± 0.01, P = 0.0002 on a two-sided 
Wilcoxon signed-rank test for zero median; Fig. 2B). This decod-
ing index was positive in 13 of the 14 participants. Although contact 
versus noncontact decoding was significant in LOC (decoding index: 
mean ± SEM = 0.022 ± 0.007, P = 0.0085 for a two-sided Wilcoxon 
signed-rank test), it was not so in VTC (mean ± SEM = 0.016 ± 0.007, 
P = 0.24 for a two-sided Wilcoxon signed-rank test in VTC; Fig. 2B). 
To test whether the decoding found in PN was significantly greater than 
other fROIs tested, we conducted an analysis of variance (ANOVA) 
on the decoding indices computed across real-world and rendered 
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Fig. 1. Stimuli used in experiment 1. Frames from example video clips showing the creation (top row) or consequences (bottom two rows) of contact (containment, 
support, or attachment) or noncontact (occlusion) relations between objects. Arrows depict the motion trajectories of the objects.
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scenarios with fROI as the factor. We found a significant effect of 
fROI [F(3) = 4.01, P = 0.0085], indicating that decoding differs 
across fROIs. Post hoc analysis on the ANOVA model revealed that 
contact versus noncontact decoding was significantly stronger in PN 
compared with both VTC and V1 (primary visual cortex) (P = 0.005 
and 0.004, respectively) and marginally significant compared with 
LOC (P = 0.06). Furthermore, the decoding index did not reach sig-
nificance in V1 (decoding index: mean ± SEM = 0.0044 ± 0.0031, 
P = 0.13 on a two-sided Wilcoxon signed-rank test for zero median; 
Fig. 2B), arguing against low-level features as the basis of decoding in 
PN. Thus, PN carries scenario-invariant information that can distin-
guish contact from noncontact relationships.

PN is a broad region spanning both hemispheres of frontoparietal 
cortices. Are the decoding results driven by a specific set of subregions 
within PN? An ANOVA on decoding indices computed across real-
world and rendered scenarios in PN with hemisphere (left and right) 
and lobes (frontal and parietal) as factors revealed neither of the main 
effects nor the interaction of these two factors (P > 0.1). Thus, we do 
not detect subregional differences in decoding performance.

Univariate responses to contact and noncontact conditions. Are the 
MVPA results driven by stronger responses to one condition (e.g., 
contact) over the other (e.g., noncontact)? To answer this question, 
we computed the average activations within each fROI for contact 
and noncontact conditions separately. We found that contact and 
noncontact conditions were not significantly different from each 
other in any of the four fROIs tested (P > 0.1, for a pairwise t test 
on average activations within an fROI to contact and noncontact 
conditions across participants).

Contain versus occlude decoding
Contact decoding was significant not only in PN but also in LOC—a 
region in the ventral visual pathway that is known to represent ob-
ject shape (14). Could the significant contact decoding observed in 
LOC (and hence, PN) be driven by the differences in composite 
shapes formed by the two objects in contact and noncontact rela-
tionships rather than actual contact itself? For instance, the com-
posite formed by the two objects in support and attach relationships 
is taller and wider, respectively, compared with the composite entity 
in the occlude relationship. To reduce the effect of shape on contact 
decoding, we restricted our analysis to only the contain and occlude 
relationships that minimally vary in shape but crucially, for our 
purpose, vary in contact. As before, we used the correlation-based 
MVPA (see Fig. 2A) to derive our decoding measure, but instead of 
all three contact relationships, we used responses only for the con-
tain relationship. Here, too, we found significant contact decoding 
in PN (decoding index: mean ± SEM = 0.026 ± 0.022, P = 0.016 on 
a two-sided Wilcoxon signed-rank test for zero median; Fig. 2C) but 
not in the other fROIs tested. Furthermore, the decoding index was 
significantly higher in PN compared with other fROIs (P < 0.05, 
Wilcoxon rank sum test for equal medians for PN with every other 
fROI tested). Thus, scenario-invariant contact decoding is unlikely 
to be driven by shape-related differences in PN.

Furthermore, both contact versus noncontact and contain versus 
occlude decoding was robust to the definition of the fROI. We found 
significant decoding in PN when restricting our analysis to either 
the top 10% or top 100 voxels based on the strength of the localizer 
contrast within each fROI (fig. S1).
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Fig. 2. Contact decoding in experiment 1. (A) Our scenario-invariant decoding index is calculated for a given fROI as the correlation in the pattern of response within 
contact relationships (contact to contact and noncontact to noncontact) minus the correlation between contact relationships (contact to noncontact) when these cor-
relations are computed across scenarios (natural to rendered). (B) Contact information by this measure is significant in LOC and PN, but not in V1 or VTC, and is signifi-
cantly greater in PN than in all three other fROIs. The group parcel for each ROI is shown below on the inflated brain surface of the left hemisphere. (C) When the decoding 
index is computed for just the most visually similar pairs (contain versus occlude), contact information remains significant in PN but not in any of the other fROIs. In (B) and 
(C), circles represent individual participants; *P < 0.05 and ***P < 0.0005.
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Decoding contact type
Our main preregistered analysis described above demonstrates in-
formation about the presence (versus absence) of contact in PN. Does 
PN also distinguish one contact type from another? We answered 
this question by computing the decoding index (Fig. 2A) for every 
pair of contact relationships (contain versus support, contain ver-
sus attach, and support versus attach). This contact-type decoding—
averaged across all three pairs of contact relationships—did not 
reach significance in either PN (decoding index: mean ± SEM = 
0.0086 ± 0.013, P = 0.81 on a two-sided Wilcoxon signed-rank test 
for zero median; fig. S2) or VTC (decoding index: mean ± SEM = 
0.0198 ± 0.012, P = 0.1 on a two-sided Wilcoxon signed-rank test 
for zero median) but was significant in LOC (decoding index: 
mean ± SEM = 0.025 ± 0.0084, P = 0.0023 in a two-sided Wilcoxon 
signed-rank test for zero median). This decoding in LOC was not 
significantly higher than in PN (P = 0.22, in a two-sided Wilcoxon 
signed-rank test). However, we also found significant contact-type 
decoding in V1 (decoding index: mean ± SEM = 0.015 ± 0.0068, 
P = 0.037 on a two-sided Wilcoxon signed-rank test for zero medi-
an), indicating that the decoding effect in LOC could be driven by 
differences in low-level visual features (although our blocked design 
was neither ideal nor intended for a linear Support Vector Machine 
(SVM) decoding analysis, which was not preregistered, we con-
ducted this analysis in response to a reviewer and found similar but 
statistically weaker contact-type decoding results). The absence of 
information in PN (but its presence in V1 and LOC) about the spe-
cific kind of contact relationship could indicate that PN abstracts 
away from both object shape and contact type while maintaining 
information only about either the presence or absence of contact. 
Although these results could reflect an important representational 
difference between LOC and PN, caution is warranted in interpret-
ing these results because contact-type decoding is also significant in 
V1, suggesting that decoding in LOC could reflect low-level visual 
confounds, and because contact-type decoding was not significantly 
greater in LOC than in PN.

Experiment 2: Prediction of future contact in PN
In the second experiment, we sought to test the hypothesis that PN 
is engaged in forward simulation. To do this, we constructed new 

video stimuli in which contact events (i.e., collisions) in two differ-
ent scenarios (roll and throw) were either explicitly shown or not 
shown but predicted to happen next (see Fig. 3). We then collected 
fMRI responses for each voxel in each fROI to contact and noncon-
tact events across conditions (perceived and predicted) and scenar-
ios (roll and throw). We then used these responses to test whether 
representation of a predicted contact event is similar to that of an 
actually perceived contact event, as predicted by the hypothesis that 
PN is a physics engine that simulates what will happen next.
Decoding of future contact events in PN
Within the “roll” or “throw” scenario. As a first test of our hypothesis 
that PN predicts future events, we tested whether predicted contact 
versus noncontact events can be decoded from perceived contact 
versus noncontact events within a scenario (either roll or throw) in 
PN. Specifically, we used a correlation-based MVPA to probe contact 
decoding that generalized across perceived and predicted conditions 
within either roll or throw scenario (Fig. 4A; see Materials and Meth-
ods). The rationale here is that a brain region involved in forward 
simulation should evoke similar patterns of activations for both seen 
and predicted events. In PN, we indeed found significant decoding 
of contact versus noncontact events across perceived and predicted 
conditions (decoding index: mean ± SEM = 0.051 ± 0.017, P = 0.013 
on a two-sided Wilcoxon signed-rank test for zero median; Fig. 4B). 
In contrast, future contact decoding was not significant in the ventral 
visual fROIs (decoding index: mean ± SEM = −0.007 ± 0.015, P = 0.9 
for a two-sided Wilcoxon signed-rank test in LOC and mean ± 
SEM = −0.018 ± 0.01, P = 0.11 for a two-sided Wilcoxon signed-rank 
test in VTC; Fig. 4B). The decoding index was also not significant 
in V1 (decoding index: mean ± SEM = 0.0147 ± 0.0136, P = 0.38 
on a two-sided Wilcoxon signed-rank test for zero median; Fig. 4B), 
indicating that future contact decoding in PN is unlikely due to low-
level visual features. Moreover, the decoding index was significantly 
higher in PN than in V1, LOC, and VTC (P < 0.05, Wilcoxon rank 
sum test for equal medians for each pairwise comparison of fROIs). 
This dependence of decoding on fROI was further supported by an 
ANOVA on decoding indices across participants with fROI (V1, 
LOC, VTC, and PN) as the factor, which revealed a significant effect 
of fROI [F(3) = 6.86, P = 0.0002]. Thus, PN, and not other visual 
regions, carries information about future contact versus noncontact 
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Fig. 3. Stimuli used in experiment 2. Frames from example video clips showing contact versus noncontact events explicitly (perceived), or showing events from which con-
tact or noncontact is predicted to happen next (predicted), for two scenarios, roll and throw. The logic of this experiment is that if PN represents a future predicted contact 
event, then we should find that the pattern of response in PN for predicted contact stimuli should resemble the pattern of response when a contact event is actually perceived. 
Arrows indicate the motion trajectory of the agent object. Under the predicted condition, the arrowheads indicate the final position of the object before the video cuts off.
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events with pattern responses like those during perceived contact 
versus noncontact events within each scenario. Of course, it is always 
possible that the prediction of some other physical state (other than 
contact or collision) that we have not tested here may turn out to be 
made in LOC and other visual regions.

Across roll and throw scenarios. A skeptic could explain away the 
result just described as a consequence of trivial extrapolation—the 
agent object continues along the same trajectory under the predicted 

condition as it did under the perceived condition. We addressed this 
issue by asking whether future contact decoding generalizes from 
perceived to predicted conditions not only within a scenario (roll or 
throw) but also across scenarios (roll to throw or vice versa) wherein 
the agent objects move along different trajectories. As before, we used 
a correlation-based MVPA decoding approach (Fig. 4C; see the Materials 
and Methods) with a positive decoding index within an fROI indicat-
ing similar voxel pattern activations for contact (or noncontact) events 
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Fig. 4. Contact decoding and prediction in experiment 2. (A) Our scenario-invariant decoding index is calculated for a given fROI as the correlation in the pattern of 
response within contact relationships (contact to contact and noncontact to noncontact) minus between contact relationships (contact to noncontact) when these cor-
relations are computed across perceived and predicted conditions. (B) Contact information as measured by the decoding index averaged over both roll and throw sce-
narios is significant in PN, but not in V1, LOC, or VTC, and is significantly greater in PN than in all three other fROIs. (C) Similar schematic as in (A) but the correlations are 
now computed across both conditions (predicted and perceived) and scenarios (roll and throw). (D) Contact information is significant only in PN. *P < 0.05.
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across not only predicted to perceived conditions but also roll to throw 
scenarios. Supporting our hypothesis, we found significant general-
izable decoding of future contact events only in PN (decoding index: 
mean ± SEM = 0.032 ± 0.01, P = 0.0052 on a two-sided Wilcoxon 
signed-rank test for zero median; Fig. 4D) and not in the ventral visual 
fROIs (decoding index: mean ± SEM = −0.009 ± 0.007, P = 0.33 for 
a two-sided Wilcoxon signed-rank test in LOC and mean ± SEM = 
−0.013 ± 0.005, P = 0.07 for a two-sided Wilcoxon signed-rank test 
in VTC; Fig. 4D). Cross-scenario decoding of perceived to predicted 
contact versus no-contact events was also not found in V1 (decoding 
index: mean ± SEM = 0.008 ± 0.016, P = 0.9 on a two-sided Wilcoxon 
signed-rank test for zero median; Fig. 4D), arguing against an account 
of our effect in terms of low-level visual confounds. Furthermore, the 
decoding index was significantly higher in PN than in V1 and LOC 
(P < 0.05, Wilcoxon rank sum test for equal medians) and was only 
marginally higher compared with VTC (P = 0.09, Wilcoxon rank 
sum test for equal medians). This dependence of decoding on fROI 
was further supported by an ANOVA on decoding indices comput-
ed across roll and throw scenarios with fROI (V1, LOC, VTC, and 
PN) as a factor, which revealed a significant effect of fROI [F(3) = 
3.71, P = 0.0125]. As in experiment 1, an ANOVA on decoding in-
dices across participants with hemisphere (left versus right) and lobe 
(frontal versus parietal) as factors found no significant main effects 
or interactions (P >  0.1). Furthermore, a searchlight analysis also 
revealed decoding primarily in the frontoparietal cortices—regions 
highly overlapping with PN (see the “Searchlight analysis” section 
in the Supplementary Materials). Thus, our results indicate that PN 
carries information about future contact events in an abstract manner 
that generalizes across scenarios (which is not mere extrapolation 
of motion trajectories), providing further evidence that these brain 
regions are involved in predicting future states of the world through 
forward simulation.

Decoding contact from noncontact events across roll and throw 
scenarios included perceived and predicted conditions with both 
leftward and rightward trajectories of objects. We conducted a stron-
ger test of generalization by decoding not only across conditions and 
scenarios but also object motion trajectories. That is, we used the 
correlation-based MVPA decoding approach as before, computing 
pattern correlations for contact (or noncontact) events across per-
ceived and predicted conditions, roll and throw scenarios, and, cru-
cially, across leftward and rightward motion trajectories. Here, too, 
we found significant decoding of future contact events generalizable 
across conditions, scenarios, and motion direction only in PN (de-
coding index: mean ± SEM = 0.033 ± 0.02, P = 0.008 on a two-sided 
Wilcoxon signed-rank test for zero median; fig. S3) and in neither 
the ventral visual fROIs (decoding index: mean ± SEM = −0.01 ± 0.01, 
P  =  0.54 for a two-sided Wilcoxon signed-rank test in LOC and 
mean ± SEM = −0.002 ± 0.007, P = 0.64 for a two-sided Wilcoxon 
signed-rank test in VTC) nor V1 (decoding index: mean ± SEM = 
0.0003 ± 0.012, P = 0.52 on a two-sided Wilcoxon signed-rank test 
for zero median). The decoding index in PN was significantly higher 
than in other fROIs tested (P < 0.05). Thus, the abstract infor-
mation about future contact events in PN generalizes across object 
motion direction.

Univariate responses to contact and noncontact events. To test 
whether the MVPA results were driven, in part, by univariate differ-
ences between contact and noncontact events, we computed the av-
erage activations within each fROI for contact and noncontact events 
separately. We found that contact and noncontact events under both 

perceived and predicted conditions were not significantly different 
from each other in any fROI tested (all P values > 0.1, for pairwise 
t tests on average activations within each fROI to contact and non-
contact events, either under the perceived or predicted condition, 
across participants), except in V1 and LOC for the perceived con-
dition (P < 0.05, for a paired t test comparing the average responses 
to contact and noncontact events across participants; noncontact > 
contact in V1 and contact > noncontact in LOC). Thus, both contact 
and noncontact events elicited similar responses in PN.

Contact information in PN using representational 
similarity analysis
As a further test of abstract contact decoding, we used representa-
tional similarity analysis (RSA) (15) to compare the overall repre-
sentational structure in various brain regions to an ideal model that 
perfectly distinguishes between contact and noncontact events across 
scenarios (roll and throw) and conditions (perceived and predicted). 
The ideal contact representational dissimilarity matrix (IC-RDM; 
see Materials and Methods for details on how it was computed) 
showed a significant correlation with fMRI RDM only in PN (aver-
age RDM correlation across participants = 0.023, P < 0.05), and this 
correlation was significantly higher than in LOC (P < 0.05 on a 
paired t test on RDM correlations across participants). Thus, a rep-
resentational similarity analysis also provides evidence for abstract 
contact information in PN.

How much of this abstract contact information can be explained 
by visual features alone? To find out, we computed an RDM contain-
ing contact discriminability based on features from a video founda-
tion model RDM (VM-RDM; see the Materials and Methods for details) 
and compared this with RDM computed on fMRI pattern activa-
tions in each fROI (fMRI RDM). We found that VM-RDM was mar-
ginally significantly correlated with fMRI RDM only in PN (average 
RDM correlation across participants = 0.012, P = 0.06), indicating 
that predicted contact decoding in PN may be at least partially driv-
en by visual perceptual features. However, the correlation between 
the fMRI RDM in PN and the IC-RDM remained significant even 
after partialling out VM-RDM (average correlation across partici-
pants = 0.022, P < 0.05), indicating that PN represents and predicts 
contact information over and above those captured by visual per-
ceptual features.

DISCUSSION
In this study, we used object contact relationships to test whether 
the hypothesized PN runs forward simulations to predict what will 
happen next, a core tenet of the hypothesis that PN constitutes the 
brain’s physics engine. In experiment 1, we showed that PN carries 
abstract information about object contact—a critical attribute for 
forward simulation. In experiment 2, we showed that PN not only 
carries information about perceived contact events (replicating and 
generalizing our results from experiment 1) but also shows similar 
patterns of response for contact events that are merely predicted but 
not seen. In both experiments, our decoding results (i) generalized 
across objects and scenarios, (ii) were obtained even though partici-
pants were performing an orthogonal (one-back) task, and (iii) were 
weaker or absent in the ventral visual pathway (LOC and VTC). To-
gether, our findings demonstrate that PN encodes abstract object 
contact information, and provide the strongest evidence to date that 
PN runs forward simulations to predict what will happen next.
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Several lines of evidence indicate that our findings do not simply 
reflect visual feature confounds. First, in both experiments, our de-
coding results were not significant in V1. Second, in experiment 2, 
our main predicted contact decoding results were computed across 
roll and throw scenarios (Fig. 4D), where relative spatial positions 
and motion trajectories of objects were unconfounded from contact 
and noncontact relationships. Third, we show significant predicted 
contact decoding in PN that generalizes across both object trajecto-
ries (leftward versus rightward) and scenarios (roll versus throw). 
Thus, our decoding results in PN point to an abstract representation 
of object contact, not low-level visual confounds.

Representation of object relations in the mind and brain
Our evidence for contact representation in PN dovetails with sub-
stantial literature on the primacy of physical object contact relation-
ships in language and in visual scene understanding across the life 
span. Infants (~3 to 6 months) are sensitive to containment (7) and 
support (16, 17) relationships. Behavioral studies [see (6) for a re-
view] of object relations have shown that adults (i) recognize them 
from extremely brief exposures (18), (ii) encode them in a categori-
cal manner over and above equivalent metric changes in the stimuli 
(19, 20), and (iii) alter their attentional deployment during visual 
search to follow object relations (21). One study (22) found particu-
larly compelling evidence that object relations are coded automati-
cally and abstractly: Participants were asked to identify a target image 
(e.g., of a phone inside a basket) among a stream of distractors false 
alarmed to images containing the same object relationship, although 
the objects were completely different (e.g., a knife sitting inside a cup). 
Despite this wealth of behavioral evidence on the importance of ob-
ject relational attributes in perception, very few studies have investi-
gated their neural representation. One fMRI study showed that attending 
to categorical spatial relationships (like above/below and behind/in 
front of) compared with attending to the identity of objects resulted 
in increased activity in the left parietal cortex and bilateral posterior 
middle frontal cortex (23). Other fMRI studies have shown that parts 
of the ventral visual pathway are sensitive to relative positions of two 
objects on the screen (24) and familiar configuration of objects (25). 
Another recent fMRI study has shown that large parts of the ventral 
visual pathway (including V1 and LOC) and parietal cortices have 
information about events involving two objects (26). A few neuro-
psychological studies have also shown that damage to the left infe-
rior parietal and prefrontal cortices can lead to deficits in processing 
visual spatial relations and locative prepositions (23, 27). Our results 
build upon this work to show that both LOC and PN carry informa-
tion about object contact in a manner that is generalizable across ob-
jects and scenarios and even when the task does not explicitly require it.

Physical prediction
Our most important finding is that PN represents predicted contact 
(versus noncontact) similarly to the way it represents perceived con-
tact (versus noncontact). This finding goes beyond showing that PN 
is merely engaged during a physical prediction task (as in the case of 
the “intuitive physics” localizer), by demonstrating that this network 
contains an explicit representation of the content of the prediction, 
i.e., of what will happen next. The fact that we see abstract informa-
tion about predicted contact events in PN and not the ventral visual 
pathway suggests that the computations carried out in the latter are 
unlikely to be the sole neural substrate for generalizable physical 
reasoning. Thus, our findings provide the strongest evidence to date 

that PN might contain a generative physical model of the world that 
runs forward simulations. These results further invite multiple new 
lines of inquiry.

First, if PN is indeed involved in building a generative model of 
the world and running forward simulations to predict what will 
happen next, then how abstract are the representations in this inter-
nal model of the world? It has been hypothesized that the mental 
physics engine intelligently compresses the rich details of the physi-
cal world to a small set of entities and events to efficiently process 
information for human perception and generate suitable predictions 
for action planning and intervention (11). These approximations 
and abstractions can also enable faster predictions through parallel 
simulations on a small number of tokens, leading to our ability to 
make rapid and automatic physical inferences (18, 28). Work in 
robotics has used similarly abstract representations of object rela-
tions for planning (29). Our finding that both perceived and predicted 
contact could be decoded across objects and scenarios indicates that 
this abstract information is present in PN, as predicted by the game 
engine hypothesis.

Note, however, that these abstract representations are not suffi-
cient for a forward simulation, which would require additional pre-
cise representations of specific types of contact, mass, trajectories, 
forces, etc. Given the null result in PN for specific contact-type de-
coding, we see at least two possible ways of interpreting our current 
results in the context of what different levels of abstraction might 
mean for future prediction. One possibility is that the latents of the 
physical world are represented in a hierarchical manner where both 
abstract and specific information are represented simultaneously, 
to be read off for efficient processing depending on task demands. 
These hierarchical representations could be present either only 
within PN or in PN along with other parts of the brain (like the 
ventral visual pathway). Our results seem most consistent with the 
latter, where PN has abstract information about contact/noncontact 
relationships and LOC has information about the specific contact 
types. Another possibility is that representations in PN are mod-
ulated by task demands, and if the specific contact type was neces-
sary for subsequent prediction or downstream planning tasks, then 
we would find that information in PN. Our current experiments 
do not distinguish between these possibilities. However, future re-
search can test whether and how PN integrates abstract information 
with more detailed and quantitative information as needed for rich 
forward simulations.

Second, how far into the future are predictions made? Intuition 
suggests that we do not make multistage predictions routinely or 
automatically, although planning multistep complex routines in the 
real world may often require it, such as when planning a bank shot 
in pool or when making eggs for breakfast. However, it may be 
that in everyday perception and planning we predict in hierarchi-
cal stages: using simulation to predict the state of the world up until 
an event boundary [for example, marked by a contact event; see (30)] 
and then organizing these local temporal predictions into a higher-
level multistage symbolic routine for action planning.

Third, how automatic are these predictions? A recent study 
found that blood oxygen level–dependent (BOLD) responses in 
motion-selective areas in the human brain when participants simu-
late a ball’s trajectory are similar to responses when participants actu-
ally perceive the ball’s trajectory (31). However, whereas participants 
in that study were actively engaged in a simulation-based task, in 
our study, participants were not asked explicitly to predict what 
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would happen next. Our participants were simply asked to look at 
the stimuli and remember them for a few seconds to perform a one-
back task. Our study provides the first piece of evidence that similar 
brain regions are involved in predicting future events even during 
an orthogonal task that did not require active simulation. Future 
studies can test whether predictions are made even for unattended 
stimuli, for multiple objects simultaneously, or in the face of com-
peting task demands.

Fourth, neither fMRI nor electrophysiological recordings in ani-
mals can answer the important question of the causal role of PN in 
the representation of object relations and physical prediction. Stud-
ies of neurological patients with damage in these regions will be im-
portant to address this question in the future.

Perhaps the most important open question is how exactly we make 
physical predictions. In an energetic ongoing debate, some cognitive 
scientists have argued that physical prediction does not entail rich for-
ward simulation but instead engages a simpler and faster mechanism 
akin to pattern recognition (18, 32–36). The fact that we did not find 
evidence of prediction in the ventral pathway (i.e., LOC and VTC), 
which is most clearly implicated in pattern classification (37, 38), is 
suggestive that the predictive information we find in the dorsal path-
way is based on a different computational strategy. It will be important 
in the future to test neural responses in PN against computational 
models of physical simulation. A study in macaques took a first step 
in this direction and found that neural responses recorded from ma-
caque dorsomedial frontal cortex (DMFC) during a Mental-Pong 
game better match representational dynamics in recurrent neural 
networks (RNNs) that were explicitly trained to approximate simu-
lations of the occluded ball’s intermediate positions, compared with 
RNNs that were trained only to predict the ball’s end point (39, 40). 
Further evidence suggests that video foundation models that lever-
age the temporal structure in naturalistic tasks have latent represen-
tations that better capture neural dynamics in macaque DMFC 
during the Pong task (41). Given that the neural evidence thus far is 
suggestive of both abstraction and precision in forward prediction, 
computational models that aggregate results over multiple timescales 
and levels of abstraction could be required to explain physical pre-
diction in the brain.

Relation of PN to other brain regions and networks
Concerning PN more broadly, it will be important to better under-
stand its relationship to other brain networks involved in action 
planning, tool use, and processing cognitively demanding tasks [i.e., 
the multiple demand (MD) system]. We find that the group-level 
activation maps for physical inference (physics > color task in our 
localizer) overlap with regions previously shown to be engaged dur-
ing visually guided action (42), tool use (43–45), and other broad 
range of cognitive tasks (46, 47). It is plausible that visually guided 
action, tool use, and physical reasoning share the same computa-
tional goals and constraints (48). However, the apparent overlap of 
these regions with the “MD” network also raises the possibility that 
physical inference (and action planning and tool use) could be re-
cruiting general-purpose computational and cognitive machinery. 
However, another possibility is that instead of being a homogeneous 
network, the MD system is further fractionated into systems with 
distinct subregions engaged in physical reasoning, action planning, 
etc. Although preliminary behavioral evidence suggests that mental 
faculties involved in physical reasoning and working memory are 

distinct (49), future studies can explore how this result relates to 
neural representations.

In conclusion, our study not only shows that PN contains ab-
stract information about object contact but also provides the stron-
gest evidence yet that these brain regions are engaged in predicting 
what will happen next. Together, these findings support and enrich 
the hypothesis that these brain regions serve as a physics engine in 
the brain, supporting our ability to understand and predict the world 
around us.

MATERIALS AND METHODS
fMRI data acquisition
All imaging was performed on a Siemens 3T Prisma scanner with a 
32-channel head coil at the Athinoula A. Martinos Imaging Center 
at the Massachusetts Institute of Technology (MIT). For each par-
ticipant, a high-resolution T1-weighted anatomical image [Magne-
tization Prepared RApid Gradient-Echo (MPRAGE): repetition time 
(TR) =  2.53 s, echo time (TE) =  3.57 ms, a  =  9°, field of view 
(FOV) = 256 mm, matrix = 256 × 256, slice thickness = 1 mm, 176 
slices, acceleration factor = 2, 24 reference lines, bandwidth (BW) = 
190 Hz per pixel] was collected in addition to whole-brain func-
tional data using a T2*-weighted echo planar imaging pulse sequence 
(TR = 2 s, TE = 30 ms, a = 90°, FOV = 204 mm, matrix = 102 × 102, 
slice thickness = 2 mm, voxel size = 2 mm by 2 mm in plane, slice 
gap = 0 mm, 66 slices).

fMRI data preprocessing
All basic preprocessing steps and general linear model (GLM) analy-
ses were similar to our previous work (3). In experiment 1, in addition 
to the run-wise and motion nuisance regressors, the GLM included 
regressors for each of the 27 experimental conditions. In experiment 
2, we fit separate GLMs for runs containing perceived and predicted 
conditions (see the corresponding “Stimuli and experimental design” 
section). Specifically, separately for each run type (i.e., perceived or 
predicted), the GLM included individual regressors for all 48 stimuli 
with an additional regressor modeling the BOLD activation during 
the one-back task trials. These 49 regressors were considered in addi-
tion to the standard run-wise and motion nuisance regressors. All 
other analyses were performed in MATLAB 2018b (MathWorks).

fROI definition
All ROIs were localized independently from the main experiment. 
The hypothesized PN was functionally defined using two runs of an 
intuitive physics fMRI localizer task (1). We identified PN in each 
participant individually using the physics task > color task contrast 
of the localizer (uncorrected P < 0.001). We then intersected the 
significance map with group-level parcels created from the localizer 
data in previous studies (2, 3). We analyzed PN as a whole and 
looked for effects in its subregions (frontal and parietal parts) sepa-
rately. LOC was functionally defined using a dynamic face, object, 
scenes, and scrambled objects (dynFOSS) localizer (50). Specifically, 
we identified LOC in each participant individually using the ob-
jects > scrambled objects contrast (uncorrected P < 0.001). We then 
intersected this significance map with masks derived from anatomi-
cal parcellation. We analyzed responses across both hemispheres. 
VTC was also functionally defined by intersecting the significant 
voxels in the all visual > fixation contrast (uncorrected P < 0.001) 
from the dynFOSS localizer and anatomical parcellation from the 
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“Desikan-Killiany” atlas in FreeSurfer. We analyzed responses 
across both hemispheres. The average number of voxels in each of 
these functionally localized ROIs is shown in Table 1. V1 was also 
defined using the dynFOSS localizer. We identified V1 by intersect-
ing anatomically derived parcels (using FreeSurfer labels) with the 
scrambled > objects contrast (uncorrected P < 0.001). We analyzed 
responses across both hemispheres.

We also repeated our main analyses by taking either the top 10% 
or top 100 voxels within each parcel based on the t values of relevant 
contrast (see fig. S1). This analysis controlled for the number of vox-
els in each fROI and participant.

Contact decoding experiment (experiment 1)
The stimulus design and analysis methods were preregistered (https:// 
osf.io/ezq3s) before running the full experiment.
Participants
Fourteen participants (ages 22 to 38 years; 8 females) participated in 
the fMRI experiment. The sample size was determined on the basis 
of a power analysis of contact versus noncontact decoding within 
the hypothesized PN in the pilot data (n = 5). The power analysis 
was performed using G*Power (www.psychologie.hhu.de/arbeits-
gruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower) 
with a statistical power (1 − β) of 95% at a significance level (α) of 0.01 
to reach the effect size (d) of 1.23 observed in our pilot data. All partici-
pants had normal or corrected-to-normal vision. Before participating 
in the experiment, all participants gave informed consent to the experi-
mental protocol approved by the MIT Committee on the Use of Hu-
mans as Experimental Subjects (no. 0403000096). The study was 
conducted in compliance with all the relevant ethical guidelines and 
regulations for work with human participants. An additional three 
participants were scanned for this experiment, but their data were ex-
cluded from further analyses due to excessive motion in one of the par-
ticipants and failure to independently localize PN in the other two.
Stimuli and experiment design
Each participant completed one 2-hour scan session, which consist-
ed of the following: (i) a high-resolution anatomical scan, (ii) two 
runs of the PN localizer (1), (iii) one run of the dynFOSS localizer 
(50), and (iv) six to eight runs of the contact decoding experiment. 
The contact decoding experiment had four main relationship types: 
containment, support, attachment, and occlusion. Each relationship 
type was embedded in three different scenarios (natural-create, natural- 
consequence, and rendered) using two different object types (bowl 
and mug). Thus, there were 24 unique relationship conditions. We 
included three additional single-objects–only conditions (bowl, 
mug, and others) as a baseline for object decoding. The natural-
create scenario depicted a hand holding the base object (mug or 
bowl), while another hand placed a second object in the scene to 
create the relationship. The natural-consequence scenario depicted 
a hand moving the base object back and forth (Fig. 1), with the sec-
ond object already in position to reveal the relationship and physical 
contingency between the two objects. The rendered scenario revealed 

the physical contingency using a ball colliding with the base object. 
The natural scenarios were filmed in-house with human actors, where-
as the rendered scenario was created using Blender. Using differ-
ent exemplars of objects and counterbalancing the motion 
trajectories of hands and balls from the left and right side of the 
frame, we created 768 video clips across all conditions each lasting 3 s.
Each block of the main experiment consisted of four 3-s videos from 
1 of the 27 conditions (24 object-object relationship conditions + 3 
single-object conditions). Specifically, we randomly chose four video 
clips from a subcondition and presented them in a sequence within 
the block. The video clips within each block were randomized inde-
pendently for each participant and chosen with replacement across 
blocks within a participant. One of the video clips was repeated con-
secutively within each block, and the participants were instructed to 
press a button whenever they detected such repetitions (i.e., an or-
thogonal one-back task). Thus, each block lasted for 15.4 s (five 3-s 
videos with a 100-ms interstimulus interval). Each run consisted of 28 
stimulus blocks (the “others” single-object condition was repeated twice 
within a run to equalize the amount of data for base objects and sec-
ondary objects), and 5 fixation blocks (15 s each) interspersed uniform-
ly within the run (one in the beginning and one after every seventh 
stimulus block). Throughout the run, the participants were instructed 
to maintain fixation on a red dot at the center of the screen to minimize 
eye movement confounds. The order of blocks within a run was de-
termined using a Latin square design, which also helped counterbal-
ancing the condition sequence across runs.
Contact decoding
To test whether contact relationships can be distinguished from 
noncontact relationships within an fROI, we used a correlation-
based MVPA (51). We computed the response of each voxel with-
in an fROI for contact relationship by averaging its response to 
all the contact relationships (containment, support, and attach-
ment) across base objects (bowl and mug) within each scenario 
(natural-create, natural-consequence, and rendered) separately. 
Similarly, we computed the response of each voxel for the non-
contact relationship by averaging its response to the occlusion 
relationship across the base objects within each scenario sepa-
rately. We then computed the within (rw1 and rw2) and between 
(rb1 and rb2) contact-type correlations across the voxels within 
the fROI and across the natural-create and rendered scenarios 
(Fig. 2). We then normalized the correlation values (using 
Fisher z-transform) and computed the difference between the 
averaged within and the averaged between contact-type correla-
tions for each fROI in each participant as our decoding index. 
A positive value of the decoding index indicates that contact and 
noncontact relationships evoke distinctive patterns of activations 
within the fROI. In a similar manner, we computed the decoding 
index for the pair of natural-consequence and rendered sce-
narios. The plots (Fig. 2 and fig. S1) contain the decoding in-
dices averaged over pairs of natural-consequence and rendered 
scenarios.

Table 1. Number of voxels (mean ± SEM) within each fROI across participants for experiments 1 and 2. 

LOC VTC PN

Experiment 1  859.9 ± 123.8  975.4 ± 126.8  999.4 ± 231.6
Experiment 2  878.4 ± 170.3  1373.2 ± 146  603.4 ± 192.5
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Future contact prediction experiment (experiment 2)
The stimulus design and analysis methods were preregistered (https:// 
osf.io/kr45p/) before running the full experiment.
Participants
Fourteen participants (ages 20 to 35 years; 5 females) participated in the 
fMRI experiment. All participants had normal or corrected-to-normal 
vision. Before participating in the experiment, all participants gave in-
formed consent to the experimental protocol approved by the MIT 
Committee on the Use of Humans as Experimental Subjects (no. 
0403000096). The study was conducted in compliance with all the relevant 
ethical guidelines and regulations for work with human participants.
Stimuli and experiment design
For this experiment, every participant completed a 2-hour scan that 
included the following: (i) a high-resolution anatomical scan, (ii) two 
runs of a PN localizer (1), (iii) one run of a dynFOSS localizer (50), 
and (iv) eight runs of the future contact prediction experiment—
four each of observed and predicted events. The future contact pre-
diction experiment included 96 stimuli, each being a 1.5-s video clip 
containing two objects (an agent object and a patient object) and 
varying orthogonally in a 2 × 2 design whether the event type en-
tailed contact or no contact and whether the event was perceived or 
predicted. These four critical conditions were each shown with three 
further orthogonally crossed dimensions included to test the gener-
ality of the representations: two scenario types (roll or throw), six 
background scenes (three indoor and three outdoor scenes), and 
two motion trajectories of the agent object (leftward or rightward). 
Furthermore, the roll scenario was rendered with a bowl and a cyl-
inder as the agent and patient objects, respectively, under the “per-
ceived” condition and with a mug and a sphere as the agent and 
patient objects, respectively, under the “predicted” condition to min-
imize potential low-level visual feature confounds while decoding 
events within a scenario. Similarly, the throw scenario was rendered 
with a different pair of agent and patient objects—a mug and a cube 
for the perceived condition and a bowl and an icosphere for the pre-
dicted condition. The stimulus design is summarized in Table 2, 
and example frames from stimuli for each condition and scenario 
combination are shown in Fig. 3. Each video was rendered using the 
Blender software and clipped to 1.5 s either from the start or from 
the middle to show predicted and perceived conditions, respectively.

Each run of the main experiment showed videos from either only 
the perceived or predicted condition in an event-related design, and 
each run included three repetitions of each of the 48 videos for a 
total of 144 stimulus trials. Each trial consisted of 1.5 s of the video 
stimuli and a trailing fixation-only period lasting 0.5, 2.5, or 4.5 s. 
The trial order and the corresponding fixation-only periods were 
chosen according to optseq2 (https://surfer.nmr.mgh.harvard.edu/

optseq/) (52). We included 10 one-back trials randomly interspersed 
within each run to ensure that participants were paying attention to 
the stimuli. We also included fixation-only blocks each lasting 15 s 
in the beginning and end of each run.
Every participant was shown four runs each of the perceived and 
predicted conditions. We specifically sandwiched the four perceived 
condition runs between two runs each of the predicted conditions. 
This ensured that not all the predicted condition runs were primed 
by the perceived condition runs, while ensuring that not all the per-
ceived condition runs were shown later during the scan session, lead-
ing to potentially weaker/noisier signals due to participant fatigue.
Contact decoding across perceived and predicted conditions
Within scenario. To test for contact decoding that is generalizable 
across conditions (perceived versus predicted), we used a correlation-
based MVPA (51). We computed the response of each voxel within an 
fROI to contact relationship under the perceived condition (and, say, 
the roll event) by averaging its response to all the corresponding 
12 videos (see Table 2, left-most cell in the first row). Similarly, we 
computed the response of each voxel in the fROI to the noncontact 
relationship under the perceived condition (and, again, the roll event) 
by averaging its response to all the corresponding 12 videos (Table 
2, left-most cell in the second row). We then computed the voxel re-
sponses to contact and noncontact relationships separately under the 
predicted condition (also for the roll event) by averaging responses 
across the corresponding videos (Table 2, second column cells in the 
first and second rows, respectively). We then gathered the pattern of 
averaged responses across voxels within the fROI for the four condi-
tions (perceived and predicted events, contact and noncontact rela-
tionships within the roll scenario) and computed the within (rw1 and 
rw2) and between (rb1 and rb2) contact-type correlations (Fig. 4A). We 
Fisher z-transformed the correlations and computed the difference 
between the averaged within and averaged between contact correla-
tions for each fROI in each participant as our decoding index. A 
positive value of this index implies that the contact relationship can 
be distinguished from the noncontact relationship within the roll 
scenario across perceived and predicted conditions. We also com-
puted the decoding index for the throw scenario and averaged the 
two decoding indices within an fROI for each participant.

Across scenario. We extended the within-scenario decoding anal-
ysis to measure contact decoding across both conditions (perceived 
versus predicted) and scenarios (roll versus throw). We computed 
the response of each voxel within an fROI to contact relationship 
under the perceived condition (and, say, the roll event) by averaging 
its response to all the corresponding 12 videos (see Table 2, left-most 
cell in the first row). Similarly, we computed the response of each 
voxel in the fROI to the noncontact relationship under the perceived 

Table 2. Summary of stimulus design in experiment 2. 

Perceived Predicted

Contact Roll (bowl/cylinder)  
(6 background scenes × 2 
trajectories = 12 stimuli)

Throw (mug/cube)  
(6 background scenes × 2 
trajectories = 12 stimuli)

Roll (mug/sphere)  
(6 background scenes × 2 
trajectories = 12 stimuli)

Throw (bowl/icosphere) 
(6 background scenes × 2 
trajectories = 12 stimuli)

Noncontact Roll (bowl/cylinder)  
(6 background scenes × 2 
trajectories = 12 stimuli)

Throw (mug/cube)  
(6 background scenes × 2 
trajectories = 12 stimuli)

Roll (mug/sphere) (6 back-
ground scenes × 2 trajecto-

ries = 12 stimuli)

Throw (bowl/icosphere) 
(6 background scenes × 2 
trajectories = 12 stimuli)
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condition (and, again, the roll event) by averaging its response to 
all the corresponding 12 videos (Table 2, left-most cell in the sec-
ond row). We then computed the voxel responses to contact and 
noncontact relationships separately under the predicted condition 
(this time, for the throw event) by averaging responses across the 
corresponding videos (Table 2, right-most cells in the first and sec-
ond rows, respectively). We then gathered the pattern of averaged 
activations across voxels within the fROI for the four conditions 
(perceived roll and predicted throw conditions and contact and 
noncontact relationships) and computed the within (rw1 and rw2) and 
between (rb1 and rb2) contact-type correlations (Fig. 4A). We Fisher 
z-transformed the correlations and computed the difference between 
the averaged within and the averaged between contact correlations for 
each fROI in each participant as our decoding index. A positive value 
for this index implies that contact and noncontact relationships evoke 
distinctive patterns of activations within the fROI that are generaliza-
ble across both scenarios (roll versus throw) and conditions (predicted 
versus observed). We then computed the decoding index for the 
observed-throw versus predicted-roll comparison and averaged the 
two decoding indices within an fROI in each participant.

Representation similarity analysis
As an additional test of abstract contact decoding and to infer the 
contribution of visual features, we used RSA (15) to compare the 
overall representational structure in various brain regions to (i) a 
visual feature-based representation extracted from a video founda-
tion model and (ii) an ideal model that perfectly distinguishes between 
contact and noncontact events across scenarios (roll and throw) and 
conditions (perceived and predicted).
Video model RDM
We extracted features for each of the 96 video stimuli (perceived and 
predicted conditions in experiment 2) from each layer of a video 
foundation model [pfVC1_CTRNN_physion from (41)] trained on 
rendered videos in the Physion benchmark (53). For each layer, we 
trained a linear SVM classifier (fitclinear function in MATLAB) for 
contact versus noncontact decoding on the feature representations 
of either the perceived roll or throw scenario and computed the de-
coding accuracy on the held-out perceived and predicted scenarios. 
We then computed the average test decoding accuracy in each layer 
and chose the model layer that showed the maximum test accuracy. 
This maximum averaged test accuracy was slightly higher than chance 
(average accuracy = 59.6%, whereas chance accuracy = 50%), indi-
cating that visual features from the model can partially distinguish 
between contact and noncontact conditions across perceived and 
predicted scenarios. To get VM-RDM, we computed the average 
perpendicular distance from the SVM classifier boundary for each 
stimulus pair in the test set (54, 55).
Ideal contact RDM
We used ground-truth contact and noncontact labels for all stimuli 
(n = 96) under the perceived and predicted conditions of experi-
ment 2 and computed the dissimilarity for each stimulus pair as the 
absolute difference between the corresponding labels. That is, pairs 
of stimuli differing in contact were given a dissimilarity value of 1 
and other stimulus pairs were given a dissimilarity value of 0.
fMRI RDM
For each ROI in a participant, we computed the representational 
dissimilarity of the pattern of response across voxels in the fROI for 
each of the 96 × 96 stimulus pairs as the correlation distance (1 – r, 
where r is the Pearson correlation between the pattern activations).
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