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Decoding predicted future states from the

brain’s “physics engine”

R.T. Pramod'-%*, Elizabeth Mieczkowski'>?3, Cyn X. Fang”z,

Joshua B. Tenenbaum'?, Nancy Kanwisher'?

Successful engagement with the physical world requires the ability to predict future events and plan interven-
tions to alter that future. Growing evidence implicates a set of regions in the human parietal and frontal lobes
[also known as the “physics network” (PN)] in such intuitive physical inferences. However, the central tenet of this
hypothesis, that PN runs forward simulations to predict future states, remains untested. In this preregistered
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study, we first show that PN abstractly represents whether two objects are in contact with each other, a physical
scene property critical for prediction (because objects’ fates are intertwined when they are in contact). We then
show that PN (but not other visual areas) carries abstract information about predicted future contact events (i.e.,
collisions). These findings support the hypothesis that PN contains a generative model of the physical world that
conducts forward simulations, serving as the brain’s “physics engine.”

INTRODUCTION

To plan even the most mundane action, we must predict future
states of the world. Catching a ball requires predicting its trajectory,
placing an object stably on a surface requires predicting whether it
will fall, and changing lanes in traffic requires predicting where cars
in the adjacent lane will be in a few seconds. How do we make these
predictions? All prediction requires prior knowledge about how the
world works, enabling us to generate likely future states from the
present estimated state. Here, we focus on the case of predicting
physical events. Specifically, we test the hypothesis that a set of brain
regions previously implicated in intuitive physical reasoning spon-
taneously generates predictions of future states when we simply
view a short video of objects in motion, even without any explicit
prediction or planning task.

The hypothesized “physics network” (PN) includes a set of bilat-
eral parietal and frontal regions that were first identified in func-
tional magnetic resonance imaging (fMRI) studies as responding
more strongly when people perform simple physical reasoning tasks
(which way will the tower fall?) than perceptual judgments on the
same stimuli (does the tower contain more yellow or blue blocks?)
(1). PN was subsequently shown to carry information about object
mass (2) and physical stability (3) that generalized across scenarios,
and to show an increased response when physical, but not social,
expectations are violated (4). These results provide initial evidence
for the physics engine hypothesis—that PN contains a generative
model of the physical world capable of running forward simula-
tions. However, prior work has not provided explicit evidence that
predicted future states are represented in PN before they occur. In
the current study, we use the case of object contact relationships to
directly probe for future prediction in PN.

Object contact relationships such as containment, support, and
attachment are critical for dynamic physical scene understanding
and for predicting what will happen next. When two objects are in
contact, their fate is intertwined: If a container moves, then so does
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its containee, but the same is not true of an object that is merely oc-
cluded by the container without contacting it (5). Befitting their
fundamental importance for understanding the physical world, ob-
ject contact relations are privileged in language (e.g., “in” versus “on”
are included in the closed class of spatial prepositions), adult per-
ception [where contact relations are extracted quickly and arguably
automatically (6)], and development. Infants as young as 3 months
expect objects to move with other objects that contain them but not
with objects that merely occlude them without contact (7). Infants
are also sensitive to support relationships: Around 6.5 months, they
understand that more than half of the base of the supported object
must be in contact with the supporting object, and later at around
12.5 months, they begin to take into account the supported object’s
shape or proportional distribution to infer stable support (8). Last,
infants (6 and 7 months) also look longer if an object moves without
having been contacted by another moving object (9), again high-
lighting the fundamental role of object contact in intuitive physical
reasoning. Given their importance for physical prediction, we hy-
pothesized that PN would encode contact relationships between
objects. We test this hypothesis in experiment 1.

We then use that finding to test a central tenet of the “physics
engine” hypothesis, that we run forward simulations to predict what
will happen next (10). If PN is the physical instantiation of a mental
physics engine, then it should contain information about predicted
future states before they occur. To test this hypothesis, in experiment
2, we scan participants while they view contact events (collisions)
and no-contact events (noncollisions), and we ask whether the neu-
ral distinction between perceived collision/noncollision is also found
for predicted collision/noncollision (i.e., when participants view vid-
eos in which impending collisions can be predicted but are not ob-
served). Cross-decoding of collision/noncollision from the perceived
to the predicted case would support the idea that PN represents pre-
dicted future states.

A third question addressed in this work concerns the level of ab-
straction in the representation of contact percepts and predictions.
A physics engine might be expected to represent abstract object re-
lations such as “contact” independently from the representation of
the objects involved, perhaps even generalizing to some extent
across contact types (e.g., support, containment, and attachment).
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Although such abstractions are not sufficient for precise simulations
of what will happen next, they are still useful for simplifying the
computations required for forward simulation. If a potentially mov-
able object is not currently moving and not in contact with other
moving objects, then the physics engine need not update the state of
that object [relegating it to a “sleep” state (11)] until the object makes
a new contact relationship. If a movable object is supported by, con-
tained within, or attached to another moving object, then that con-
tact qualitatively constrains its motion (at least locally) and reduces
the number of degrees of freedom that must be tracked and updated
in the dynamic scene. Thus, abstractions can be computationally ef-
ficient and can also serve as bridges for relating prior experiences to
the current scenario. We test the abstractness of the brain’s represen-
tations of current and predicted contact by testing whether we can
cross-decode from PN the current or future presence versus absence
of object contact, across object identities, shapes, configurations,
and motion trajectories. Of course, more fine-grained representa-
tions of specific object shapes, configurations, and trajectories will
also be required for the physical simulations that have been posited
to underlie many aspects of prediction and planning (10, 12). As in
hierarchical approaches to task and motion planning in robotics
(13), the brain could use a hierarchy of models for planning, where
more abstract simulations of dynamics support high-level goal-
based decomposition of a task into subgoals and subtasks—that is,
an abstract plan to achieve a goal—while more fine-grained simula-
tions are used to predict and generate the precise motions and mo-
tor action sequences needed to implement this plan in a specific task
setting (see the Discussion section for more).

RESULTS

Experiment 1: Scenario-invariant decoding of object contact
relationship in the hypothesized PN

In experiment 1, we used both naturalistic and artificially rendered
videos (Fig. 1; see the Materials and Methods for stimulus design) de-
picting various object relationships to test whether the PN represents

object contact relationships. We hypothesized that any brain region
involved in physical reasoning should represent the presence of object-
object contact because contact constrains how objects move and thus
is critical for prediction. We first identified functional regions of inter-
est (fROIs) in each participant individually, including the PN in the
frontoparietal cortices, the lateral occipital complex (LOC), and the
ventral temporal cortex (VTC) (see Materials and Methods). We then
collected fMRI responses for each voxel in these fROIs to each of the
contact and noncontact relationships across three different scenarios
(natural-create, natural-consequence, and rendered; see Fig. 1). These
responses were used to conduct multivoxel pattern analyses (MVPAs)
to test for the presence of object contact information both in PN and in
other cortical regions.

Contact versus noncontact decoding

We used correlation-based MVPA to test whether contact relation-
ships can be distinguished from noncontact relationships, invariant
to the underlying scenario, within each fROI (Fig. 2A; see the Materi-
als and Methods). We quantified the presence of contact information
within an fROI using a decoding index: the correlation of the pattern
of response across voxels within contact relations (contact to contact,
pooling across the three contact types, and noncontact to noncon-
tact) minus the correlation between contact and noncontact condi-
tions. Higher positive values of this decoding index indicate a
stronger distinction between contact and noncontact relationships.
In PN, we found significant contact versus noncontact decoding that
generalized across naturalistic and rendered scenarios (decoding
index: mean + SEM = 0.045 + 0.01, P = 0.0002 on a two-sided
Wilcoxon signed-rank test for zero median; Fig. 2B). This decod-
ing index was positive in 13 of the 14 participants. Although contact
versus noncontact decoding was significant in LOC (decoding index:
mean + SEM = 0.022 + 0.007, P = 0.0085 for a two-sided Wilcoxon
signed-rank test), it was not so in VT'C (mean + SEM = 0.016 + 0.007,
P =0.24 for a two-sided Wilcoxon signed-rank test in VTC; Fig. 2B).
To test whether the decoding found in PN was significantly greater than
other fROIs tested, we conducted an analysis of variance (ANOVA)
on the decoding indices computed across real-world and rendered
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Fig. 1. Stimuli used in experiment 1. Frames from example video clips showing the creation (top row) or consequences (bottom two rows) of contact (containment,
support, or attachment) or noncontact (occlusion) relations between objects. Arrows depict the motion trajectories of the objects.
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Fig. 2. Contact decoding in experiment 1. (A) Our scenario-invariant decoding index is calculated for a given fROI as the correlation in the pattern of response within
contact relationships (contact to contact and noncontact to noncontact) minus the correlation between contact relationships (contact to noncontact) when these cor-
relations are computed across scenarios (natural to rendered). (B) Contact information by this measure is significant in LOC and PN, but not in V1 or VTC, and is signifi-
cantly greater in PN than in all three other fROIs. The group parcel for each ROl is shown below on the inflated brain surface of the left hemisphere. (C) When the decoding
index is computed for just the most visually similar pairs (contain versus occlude), contact information remains significant in PN but not in any of the other fROIs. In (B) and

(Q), circles represent individual participants; *P < 0.05 and ***P < 0.0005.

scenarios with fROI as the factor. We found a significant effect of
fROI [F(3) = 4.01, P = 0.0085], indicating that decoding differs
across fROIs. Post hoc analysis on the ANOVA model revealed that
contact versus noncontact decoding was significantly stronger in PN
compared with both VTC and V1 (primary visual cortex) (P = 0.005
and 0.004, respectively) and marginally significant compared with
LOC (P = 0.06). Furthermore, the decoding index did not reach sig-
nificance in V1 (decoding index: mean + SEM = 0.0044 + 0.0031,
P =0.13 on a two-sided Wilcoxon signed-rank test for zero median;
Fig. 2B), arguing against low-level features as the basis of decoding in
PN. Thus, PN carries scenario-invariant information that can distin-
guish contact from noncontact relationships.

PN is a broad region spanning both hemispheres of frontoparietal
cortices. Are the decoding results driven by a specific set of subregions
within PN? An ANOVA on decoding indices computed across real-
world and rendered scenarios in PN with hemisphere (left and right)
and lobes (frontal and parietal) as factors revealed neither of the main
effects nor the interaction of these two factors (P > 0.1). Thus, we do
not detect subregional differences in decoding performance.

Univariate responses to contact and noncontact conditions. Are the
MVPA results driven by stronger responses to one condition (e.g.,
contact) over the other (e.g., noncontact)? To answer this question,
we computed the average activations within each fROI for contact
and noncontact conditions separately. We found that contact and
noncontact conditions were not significantly different from each
other in any of the four fROIs tested (P > 0.1, for a pairwise t test
on average activations within an fROI to contact and noncontact
conditions across participants).

Pramod et al., Sci. Adv. 11, eadr7429 (2025) 30 May 2025

Contain versus occlude decoding

Contact decoding was significant not only in PN but also in LOC—a
region in the ventral visual pathway that is known to represent ob-
ject shape (14). Could the significant contact decoding observed in
LOC (and hence, PN) be driven by the differences in composite
shapes formed by the two objects in contact and noncontact rela-
tionships rather than actual contact itself? For instance, the com-
posite formed by the two objects in support and attach relationships
is taller and wider, respectively, compared with the composite entity
in the occlude relationship. To reduce the effect of shape on contact
decoding, we restricted our analysis to only the contain and occlude
relationships that minimally vary in shape but crucially, for our
purpose, vary in contact. As before, we used the correlation-based
MVPA (see Fig. 2A) to derive our decoding measure, but instead of
all three contact relationships, we used responses only for the con-
tain relationship. Here, too, we found significant contact decoding
in PN (decoding index: mean + SEM = 0.026 + 0.022, P = 0.016 on
a two-sided Wilcoxon signed-rank test for zero median; Fig. 2C) but
not in the other fROIs tested. Furthermore, the decoding index was
significantly higher in PN compared with other fROIs (P < 0.05,
Wilcoxon rank sum test for equal medians for PN with every other
fROI tested). Thus, scenario-invariant contact decoding is unlikely
to be driven by shape-related differences in PN.

Furthermore, both contact versus noncontact and contain versus
occlude decoding was robust to the definition of the fROI. We found
significant decoding in PN when restricting our analysis to either
the top 10% or top 100 voxels based on the strength of the localizer
contrast within each fROI (fig. S1).
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Decoding contact type

Our main preregistered analysis described above demonstrates in-
formation about the presence (versus absence) of contact in PN. Does
PN also distinguish one contact type from another? We answered
this question by computing the decoding index (Fig. 2A) for every
pair of contact relationships (contain versus support, contain ver-
sus attach, and support versus attach). This contact-type decoding—
averaged across all three pairs of contact relationships—did not
reach significance in either PN (decoding index: mean + SEM =
0.0086 + 0.013, P = 0.81 on a two-sided Wilcoxon signed-rank test
for zero median; fig. S2) or VIC (decoding index: mean + SEM =
0.0198 + 0.012, P = 0.1 on a two-sided Wilcoxon signed-rank test
for zero median) but was significant in LOC (decoding index:
mean + SEM = 0.025 + 0.0084, P = 0.0023 in a two-sided Wilcoxon
signed-rank test for zero median). This decoding in LOC was not
significantly higher than in PN (P = 0.22, in a two-sided Wilcoxon
signed-rank test). However, we also found significant contact-type
decoding in V1 (decoding index: mean + SEM = 0.015 =+ 0.0068,
P =0.037 on a two-sided Wilcoxon signed-rank test for zero medi-
an), indicating that the decoding effect in LOC could be driven by
differences in low-level visual features (although our blocked design
was neither ideal nor intended for a linear Support Vector Machine
(SVM) decoding analysis, which was not preregistered, we con-
ducted this analysis in response to a reviewer and found similar but
statistically weaker contact-type decoding results). The absence of
information in PN (but its presence in V1 and LOC) about the spe-
cific kind of contact relationship could indicate that PN abstracts
away from both object shape and contact type while maintaining
information only about either the presence or absence of contact.
Although these results could reflect an important representational
difference between LOC and PN, caution is warranted in interpret-
ing these results because contact-type decoding is also significant in
V1, suggesting that decoding in LOC could reflect low-level visual
confounds, and because contact-type decoding was not significantly
greater in LOC than in PN.

Experiment 2: Prediction of future contact in PN

In the second experiment, we sought to test the hypothesis that PN
is engaged in forward simulation. To do this, we constructed new

Predicted

video stimuli in which contact events (i.e., collisions) in two differ-
ent scenarios (roll and throw) were either explicitly shown or not
shown but predicted to happen next (see Fig. 3). We then collected
fMRI responses for each voxel in each fROI to contact and noncon-
tact events across conditions (perceived and predicted) and scenar-
ios (roll and throw). We then used these responses to test whether
representation of a predicted contact event is similar to that of an
actually perceived contact event, as predicted by the hypothesis that
PN is a physics engine that simulates what will happen next.
Decoding of future contact events in PN

Within the “roll” or “throw” scenario. As a first test of our hypothesis
that PN predicts future events, we tested whether predicted contact
versus noncontact events can be decoded from perceived contact
versus noncontact events within a scenario (either roll or throw) in
PN. Specifically, we used a correlation-based MVPA to probe contact
decoding that generalized across perceived and predicted conditions
within either roll or throw scenario (Fig. 4A; see Materials and Meth-
ods). The rationale here is that a brain region involved in forward
simulation should evoke similar patterns of activations for both seen
and predicted events. In PN, we indeed found significant decoding
of contact versus noncontact events across perceived and predicted
conditions (decoding index: mean + SEM = 0.051 + 0.017, P=0.013
on a two-sided Wilcoxon signed-rank test for zero median; Fig. 4B).
In contrast, future contact decoding was not significant in the ventral
visual fROIs (decoding index: mean + SEM = —0.007 + 0.015, P=0.9
for a two-sided Wilcoxon signed-rank test in LOC and mean +
SEM =—0.018 +0.01, P=0.11 for a two-sided Wilcoxon signed-rank
test in VTC; Fig. 4B). The decoding index was also not significant
in V1 (decoding index: mean + SEM = 0.0147 + 0.0136, P = 0.38
on a two-sided Wilcoxon signed-rank test for zero median; Fig. 4B),
indicating that future contact decoding in PN is unlikely due to low-
level visual features. Moreover, the decoding index was significantly
higher in PN than in V1, LOC, and VTC (P < 0.05, Wilcoxon rank
sum test for equal medians for each pairwise comparison of fROIs).
This dependence of decoding on fROI was further supported by an
ANOVA on decoding indices across participants with fROI (V1,
LOC, VTG, and PN) as the factor, which revealed a significant effect
of fROI [F(3) = 6.86, P = 0.0002]. Thus, PN, and not other visual
regions, carries information about future contact versus noncontact

Perceived

Contact

Noncontact

Roll

Throw

Contact Noncontact

T

J

Fig. 3. Stimuli used in experiment 2. Frames from example video clips showing contact versus noncontact events explicitly (perceived), or showing events from which con-
tact or noncontact is predicted to happen next (predicted), for two scenarios, roll and throw. The logic of this experiment is that if PN represents a future predicted contact
event, then we should find that the pattern of response in PN for predicted contact stimuli should resemble the pattern of response when a contact event is actually perceived.
Arrows indicate the motion trajectory of the agent object. Under the predicted condition, the arrowheads indicate the final position of the object before the video cuts off.
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Fig. 4. Contact decoding and prediction in experiment 2. (A) Our scenario-invariant decoding index is calculated for a given fROI as the correlation in the pattern of
response within contact relationships (contact to contact and noncontact to noncontact) minus between contact relationships (contact to noncontact) when these cor-
relations are computed across perceived and predicted conditions. (B) Contact information as measured by the decoding index averaged over both roll and throw sce-
narios is significant in PN, but not in V1, LOC, or VTC, and is significantly greater in PN than in all three other fROIs. (C) Similar schematic as in (A) but the correlations are
now computed across both conditions (predicted and perceived) and scenarios (roll and throw). (D) Contact information is significant only in PN. *P < 0.05.

events with pattern responses like those during perceived contact
versus noncontact events within each scenario. Of course, it is always
possible that the prediction of some other physical state (other than
contact or collision) that we have not tested here may turn out to be
made in LOC and other visual regions.

Across roll and throw scenarios. A skeptic could explain away the
result just described as a consequence of trivial extrapolation—the
agent object continues along the same trajectory under the predicted

Pramod et al., Sci. Adv. 11, eadr7429 (2025) 30 May 2025

condition as it did under the perceived condition. We addressed this
issue by asking whether future contact decoding generalizes from
perceived to predicted conditions not only within a scenario (roll or
throw) but also across scenarios (roll to throw or vice versa) wherein
the agent objects move along different trajectories. As before, we used
a correlation-based MVPA decoding approach (Fig. 4C; see the Materials
and Methods) with a positive decoding index within an fROI indicat-
ing similar voxel pattern activations for contact (or noncontact) events
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across not only predicted to perceived conditions but also roll to throw
scenarios. Supporting our hypothesis, we found significant general-
izable decoding of future contact events only in PN (decoding index:
mean + SEM = 0.032 + 0.01, P = 0.0052 on a two-sided Wilcoxon
signed-rank test for zero median; Fig. 4D) and not in the ventral visual
fROIs (decoding index: mean + SEM = —0.009 + 0.007, P = 0.33 for
a two-sided Wilcoxon signed-rank test in LOC and mean + SEM =
—0.013 + 0.005, P = 0.07 for a two-sided Wilcoxon signed-rank test
in VTGC; Fig. 4D). Cross-scenario decoding of perceived to predicted
contact versus no-contact events was also not found in V1 (decoding
index: mean + SEM = 0.008 + 0.016, P = 0.9 on a two-sided Wilcoxon
signed-rank test for zero median; Fig. 4D), arguing against an account
of our effect in terms of low-level visual confounds. Furthermore, the
decoding index was significantly higher in PN than in V1 and LOC
(P < 0.05, Wilcoxon rank sum test for equal medians) and was only
marginally higher compared with VTC (P = 0.09, Wilcoxon rank
sum test for equal medians). This dependence of decoding on fROI
was further supported by an ANOVA on decoding indices comput-
ed across roll and throw scenarios with fROI (V1, LOC, VTC, and
PN) as a factor, which revealed a significant effect of fROI [F(3) =
3.71, P = 0.0125]. As in experiment 1, an ANOVA on decoding in-
dices across participants with hemisphere (left versus right) and lobe
(frontal versus parietal) as factors found no significant main effects
or interactions (P > 0.1). Furthermore, a searchlight analysis also
revealed decoding primarily in the frontoparietal cortices—regions
highly overlapping with PN (see the “Searchlight analysis” section
in the Supplementary Materials). Thus, our results indicate that PN
carries information about future contact events in an abstract manner
that generalizes across scenarios (which is not mere extrapolation
of motion trajectories), providing further evidence that these brain
regions are involved in predicting future states of the world through
forward simulation.

Decoding contact from noncontact events across roll and throw
scenarios included perceived and predicted conditions with both
leftward and rightward trajectories of objects. We conducted a stron-
ger test of generalization by decoding not only across conditions and
scenarios but also object motion trajectories. That is, we used the
correlation-based MVPA decoding approach as before, computing
pattern correlations for contact (or noncontact) events across per-
ceived and predicted conditions, roll and throw scenarios, and, cru-
cially, across leftward and rightward motion trajectories. Here, too,
we found significant decoding of future contact events generalizable
across conditions, scenarios, and motion direction only in PN (de-
coding index: mean + SEM = 0.033 + 0.02, P = 0.008 on a two-sided
Wilcoxon signed-rank test for zero median; fig. S3) and in neither
the ventral visual fROIs (decoding index: mean + SEM = —0.01 +0.01,
P = 0.54 for a two-sided Wilcoxon signed-rank test in LOC and
mean + SEM = —0.002 =+ 0.007, P = 0.64 for a two-sided Wilcoxon
signed-rank test in VTC) nor V1 (decoding index: mean + SEM =
0.0003 + 0.012, P = 0.52 on a two-sided Wilcoxon signed-rank test
for zero median). The decoding index in PN was significantly higher
than in other fROIs tested (P < 0.05). Thus, the abstract infor-
mation about future contact events in PN generalizes across object
motion direction.

Univariate responses to contact and noncontact events. To test
whether the MVPA results were driven, in part, by univariate differ-
ences between contact and noncontact events, we computed the av-
erage activations within each fROI for contact and noncontact events
separately. We found that contact and noncontact events under both

Pramod et al., Sci. Adv. 11, eadr7429 (2025) 30 May 2025

perceived and predicted conditions were not significantly different
from each other in any fROI tested (all P values > 0.1, for pairwise
t tests on average activations within each fROI to contact and non-
contact events, either under the perceived or predicted condition,
across participants), except in V1 and LOC for the perceived con-
dition (P < 0.05, for a paired ¢ test comparing the average responses
to contact and noncontact events across participants; noncontact >
contact in V1 and contact > noncontact in LOC). Thus, both contact
and noncontact events elicited similar responses in PN.

Contact information in PN using representational

similarity analysis

As a further test of abstract contact decoding, we used representa-
tional similarity analysis (RSA) (15) to compare the overall repre-
sentational structure in various brain regions to an ideal model that
perfectly distinguishes between contact and noncontact events across
scenarios (roll and throw) and conditions (perceived and predicted).
The ideal contact representational dissimilarity matrix (IC-RDM;
see Materials and Methods for details on how it was computed)
showed a significant correlation with fMRI RDM only in PN (aver-
age RDM correlation across participants = 0.023, P < 0.05), and this
correlation was significantly higher than in LOC (P < 0.05 on a
paired ¢ test on RDM correlations across participants). Thus, a rep-
resentational similarity analysis also provides evidence for abstract
contact information in PN.

How much of this abstract contact information can be explained
by visual features alone? To find out, we computed an RDM contain-
ing contact discriminability based on features from a video founda-
tion model RDM (VM-RDM,; see the Materials and Methods for details)
and compared this with RDM computed on fMRI pattern activa-
tions in each fROI (fMRI RDM). We found that VM-RDM was mar-
ginally significantly correlated with fMRI RDM only in PN (average
RDM correlation across participants = 0.012, P = 0.06), indicating
that predicted contact decoding in PN may be at least partially driv-
en by visual perceptual features. However, the correlation between
the fMRI RDM in PN and the IC-RDM remained significant even
after partialling out VM-RDM (average correlation across partici-
pants = 0.022, P < 0.05), indicating that PN represents and predicts
contact information over and above those captured by visual per-
ceptual features.

DISCUSSION

In this study, we used object contact relationships to test whether
the hypothesized PN runs forward simulations to predict what will
happen next, a core tenet of the hypothesis that PN constitutes the
brain’s physics engine. In experiment 1, we showed that PN carries
abstract information about object contact—a critical attribute for
forward simulation. In experiment 2, we showed that PN not only
carries information about perceived contact events (replicating and
generalizing our results from experiment 1) but also shows similar
patterns of response for contact events that are merely predicted but
not seen. In both experiments, our decoding results (i) generalized
across objects and scenarios, (ii) were obtained even though partici-
pants were performing an orthogonal (one-back) task, and (iii) were
weaker or absent in the ventral visual pathway (LOC and VTC). To-
gether, our findings demonstrate that PN encodes abstract object
contact information, and provide the strongest evidence to date that
PN runs forward simulations to predict what will happen next.
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Several lines of evidence indicate that our findings do not simply
reflect visual feature confounds. First, in both experiments, our de-
coding results were not significant in V1. Second, in experiment 2,
our main predicted contact decoding results were computed across
roll and throw scenarios (Fig. 4D), where relative spatial positions
and motion trajectories of objects were unconfounded from contact
and noncontact relationships. Third, we show significant predicted
contact decoding in PN that generalizes across both object trajecto-
ries (leftward versus rightward) and scenarios (roll versus throw).
Thus, our decoding results in PN point to an abstract representation
of object contact, not low-level visual confounds.

Representation of object relations in the mind and brain

Our evidence for contact representation in PN dovetails with sub-
stantial literature on the primacy of physical object contact relation-
ships in language and in visual scene understanding across the life
span. Infants (~3 to 6 months) are sensitive to containment (7) and
support (16, 17) relationships. Behavioral studies [see (6) for a re-
view] of object relations have shown that adults (i) recognize them
from extremely brief exposures (18), (ii) encode them in a categori-
cal manner over and above equivalent metric changes in the stimuli
(19, 20), and (iii) alter their attentional deployment during visual
search to follow object relations (21). One study (22) found particu-
larly compelling evidence that object relations are coded automati-
cally and abstractly: Participants were asked to identify a target image
(e.g., of a phone inside a basket) among a stream of distractors false
alarmed to images containing the same object relationship, although
the objects were completely different (e.g., a knife sitting inside a cup).
Despite this wealth of behavioral evidence on the importance of ob-
ject relational attributes in perception, very few studies have investi-
gated their neural representation. One fMRI study showed that attending
to categorical spatial relationships (like above/below and behind/in
front of) compared with attending to the identity of objects resulted
in increased activity in the left parietal cortex and bilateral posterior
middle frontal cortex (23). Other fMRI studies have shown that parts
of the ventral visual pathway are sensitive to relative positions of two
objects on the screen (24) and familiar configuration of objects (25).
Another recent fMRI study has shown that large parts of the ventral
visual pathway (including V1 and LOC) and parietal cortices have
information about events involving two objects (26). A few neuro-
psychological studies have also shown that damage to the left infe-
rior parietal and prefrontal cortices can lead to deficits in processing
visual spatial relations and locative prepositions (23, 27). Our results
build upon this work to show that both LOC and PN carry informa-
tion about object contact in a manner that is generalizable across ob-
jects and scenarios and even when the task does not explicitly require it.

Physical prediction

Our most important finding is that PN represents predicted contact
(versus noncontact) similarly to the way it represents perceived con-
tact (versus noncontact). This finding goes beyond showing that PN
is merely engaged during a physical prediction task (as in the case of
the “intuitive physics” localizer), by demonstrating that this network
contains an explicit representation of the content of the prediction,
i.e., of what will happen next. The fact that we see abstract informa-
tion about predicted contact events in PN and not the ventral visual
pathway suggests that the computations carried out in the latter are
unlikely to be the sole neural substrate for generalizable physical
reasoning. Thus, our findings provide the strongest evidence to date
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that PN might contain a generative physical model of the world that
runs forward simulations. These results further invite multiple new
lines of inquiry.

First, if PN is indeed involved in building a generative model of
the world and running forward simulations to predict what will
happen next, then how abstract are the representations in this inter-
nal model of the world? It has been hypothesized that the mental
physics engine intelligently compresses the rich details of the physi-
cal world to a small set of entities and events to efficiently process
information for human perception and generate suitable predictions
for action planning and intervention (11). These approximations
and abstractions can also enable faster predictions through parallel
simulations on a small number of tokens, leading to our ability to
make rapid and automatic physical inferences (18, 28). Work in
robotics has used similarly abstract representations of object rela-
tions for planning (29). Our finding that both perceived and predicted
contact could be decoded across objects and scenarios indicates that
this abstract information is present in PN, as predicted by the game
engine hypothesis.

Note, however, that these abstract representations are not suffi-
cient for a forward simulation, which would require additional pre-
cise representations of specific types of contact, mass, trajectories,
forces, etc. Given the null result in PN for specific contact-type de-
coding, we see at least two possible ways of interpreting our current
results in the context of what different levels of abstraction might
mean for future prediction. One possibility is that the latents of the
physical world are represented in a hierarchical manner where both
abstract and specific information are represented simultaneously,
to be read off for efficient processing depending on task demands.
These hierarchical representations could be present either only
within PN or in PN along with other parts of the brain (like the
ventral visual pathway). Our results seem most consistent with the
latter, where PN has abstract information about contact/noncontact
relationships and LOC has information about the specific contact
types. Another possibility is that representations in PN are mod-
ulated by task demands, and if the specific contact type was neces-
sary for subsequent prediction or downstream planning tasks, then
we would find that information in PN. Our current experiments
do not distinguish between these possibilities. However, future re-
search can test whether and how PN integrates abstract information
with more detailed and quantitative information as needed for rich
forward simulations.

Second, how far into the future are predictions made? Intuition
suggests that we do not make multistage predictions routinely or
automatically, although planning multistep complex routines in the
real world may often require it, such as when planning a bank shot
in pool or when making eggs for breakfast. However, it may be
that in everyday perception and planning we predict in hierarchi-
cal stages: using simulation to predict the state of the world up until
an event boundary [for example, marked by a contact event; see (30)]
and then organizing these local temporal predictions into a higher-
level multistage symbolic routine for action planning.

Third, how automatic are these predictions? A recent study
found that blood oxygen level-dependent (BOLD) responses in
motion-selective areas in the human brain when participants simu-
late a ball’s trajectory are similar to responses when participants actu-
ally perceive the ball’s trajectory (31). However, whereas participants
in that study were actively engaged in a simulation-based task, in
our study, participants were not asked explicitly to predict what
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would happen next. Our participants were simply asked to look at
the stimuli and remember them for a few seconds to perform a one-
back task. Our study provides the first piece of evidence that similar
brain regions are involved in predicting future events even during
an orthogonal task that did not require active simulation. Future
studies can test whether predictions are made even for unattended
stimuli, for multiple objects simultaneously, or in the face of com-
peting task demands.

Fourth, neither fMRI nor electrophysiological recordings in ani-
mals can answer the important question of the causal role of PN in
the representation of object relations and physical prediction. Stud-
ies of neurological patients with damage in these regions will be im-
portant to address this question in the future.

Perhaps the most important open question is how exactly we make
physical predictions. In an energetic ongoing debate, some cognitive
scientists have argued that physical prediction does not entail rich for-
ward simulation but instead engages a simpler and faster mechanism
akin to pattern recognition (18, 32-36). The fact that we did not find
evidence of prediction in the ventral pathway (i.e., LOC and VTC),
which is most clearly implicated in pattern classification (37, 38), is
suggestive that the predictive information we find in the dorsal path-
way is based on a different computational strategy. It will be important
in the future to test neural responses in PN against computational
models of physical simulation. A study in macaques took a first step
in this direction and found that neural responses recorded from ma-
caque dorsomedial frontal cortex (DMFC) during a Mental-Pong
game better match representational dynamics in recurrent neural
networks (RNNs) that were explicitly trained to approximate simu-
lations of the occluded ball’s intermediate positions, compared with
RNNs that were trained only to predict the ball’s end point (39, 40).
Further evidence suggests that video foundation models that lever-
age the temporal structure in naturalistic tasks have latent represen-
tations that better capture neural dynamics in macaque DMFC
during the Pong task (41). Given that the neural evidence thus far is
suggestive of both abstraction and precision in forward prediction,
computational models that aggregate results over multiple timescales
and levels of abstraction could be required to explain physical pre-
diction in the brain.

Relation of PN to other brain regions and networks

Concerning PN more broadly, it will be important to better under-
stand its relationship to other brain networks involved in action
planning, tool use, and processing cognitively demanding tasks [i.e.,
the multiple demand (MD) system]. We find that the group-level
activation maps for physical inference (physics > color task in our
localizer) overlap with regions previously shown to be engaged dur-
ing visually guided action (42), tool use (43-45), and other broad
range of cognitive tasks (46, 47). It is plausible that visually guided
action, tool use, and physical reasoning share the same computa-
tional goals and constraints (48). However, the apparent overlap of
these regions with the “MD” network also raises the possibility that
physical inference (and action planning and tool use) could be re-
cruiting general-purpose computational and cognitive machinery.
However, another possibility is that instead of being a homogeneous
network, the MD system is further fractionated into systems with
distinct subregions engaged in physical reasoning, action planning,
etc. Although preliminary behavioral evidence suggests that mental
faculties involved in physical reasoning and working memory are
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distinct (49), future studies can explore how this result relates to
neural representations.

In conclusion, our study not only shows that PN contains ab-
stract information about object contact but also provides the stron-
gest evidence yet that these brain regions are engaged in predicting
what will happen next. Together, these findings support and enrich
the hypothesis that these brain regions serve as a physics engine in
the brain, supporting our ability to understand and predict the world
around us.

MATERIALS AND METHODS

fMRI data acquisition

All imaging was performed on a Siemens 3T Prisma scanner with a
32-channel head coil at the Athinoula A. Martinos Imaging Center
at the Massachusetts Institute of Technology (MIT). For each par-
ticipant, a high-resolution T1-weighted anatomical image [Magne-
tization Prepared RApid Gradient-Echo (MPRAGE): repetition time
(TR) = 2.53 s, echo time (TE) = 3.57 ms, a = 9°, field of view
(FOV) = 256 mm, matrix = 256 X 256, slice thickness = 1 mm, 176
slices, acceleration factor = 2, 24 reference lines, bandwidth (BW) =
190 Hz per pixel] was collected in addition to whole-brain func-
tional data using a T2*-weighted echo planar imaging pulse sequence
(TR=2s, TE=30ms,a=90° FOV = 204 mm, matrix = 102 X 102,
slice thickness = 2 mm, voxel size = 2 mm by 2 mm in plane, slice
gap = 0 mm, 66 slices).

fMRI data preprocessing

All basic preprocessing steps and general linear model (GLM) analy-
ses were similar to our previous work (3). In experiment 1, in addition
to the run-wise and motion nuisance regressors, the GLM included
regressors for each of the 27 experimental conditions. In experiment
2, we fit separate GLMs for runs containing perceived and predicted
conditions (see the corresponding “Stimuli and experimental design”
section). Specifically, separately for each run type (i.e., perceived or
predicted), the GLM included individual regressors for all 48 stimuli
with an additional regressor modeling the BOLD activation during
the one-back task trials. These 49 regressors were considered in addi-
tion to the standard run-wise and motion nuisance regressors. All
other analyses were performed in MATLAB 2018b (MathWorks).

fROI definition

All ROIs were localized independently from the main experiment.
The hypothesized PN was functionally defined using two runs of an
intuitive physics fMRI localizer task (1). We identified PN in each
participant individually using the physics task > color task contrast
of the localizer (uncorrected P < 0.001). We then intersected the
significance map with group-level parcels created from the localizer
data in previous studies (2, 3). We analyzed PN as a whole and
looked for effects in its subregions (frontal and parietal parts) sepa-
rately. LOC was functionally defined using a dynamic face, object,
scenes, and scrambled objects (dynFOSS) localizer (50). Specifically,
we identified LOC in each participant individually using the ob-
jects > scrambled objects contrast (uncorrected P < 0.001). We then
intersected this significance map with masks derived from anatomi-
cal parcellation. We analyzed responses across both hemispheres.
VTC was also functionally defined by intersecting the significant
voxels in the all visual > fixation contrast (uncorrected P < 0.001)
from the dynFOSS localizer and anatomical parcellation from the
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“Desikan-Killiany” atlas in FreeSurfer. We analyzed responses
across both hemispheres. The average number of voxels in each of
these functionally localized ROIs is shown in Table 1. V1 was also
defined using the dynFOSS localizer. We identified V1 by intersect-
ing anatomically derived parcels (using FreeSurfer labels) with the
scrambled > objects contrast (uncorrected P < 0.001). We analyzed
responses across both hemispheres.

We also repeated our main analyses by taking either the top 10%
or top 100 voxels within each parcel based on the ¢ values of relevant
contrast (see fig. S1). This analysis controlled for the number of vox-
els in each fROI and participant.

Contact decoding experiment (experiment 1)

The stimulus design and analysis methods were preregistered (https://
ost.io/ezq3s) before running the full experiment.

Participants

Fourteen participants (ages 22 to 38 years; 8 females) participated in
the fMRI experiment. The sample size was determined on the basis
of a power analysis of contact versus noncontact decoding within
the hypothesized PN in the pilot data (n = 5). The power analysis
was performed using G*Power (www.psychologie hhu.de/arbeits-
gruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower)
with a statistical power (1 — B) of 95% at a significance level () of 0.01
to reach the effect size (d) of 1.23 observed in our pilot data. All partici-
pants had normal or corrected-to-normal vision. Before participating
in the experiment, all participants gave informed consent to the experi-
mental protocol approved by the MIT Committee on the Use of Hu-
mans as Experimental Subjects (no. 0403000096). The study was
conducted in compliance with all the relevant ethical guidelines and
regulations for work with human participants. An additional three
participants were scanned for this experiment, but their data were ex-
cluded from further analyses due to excessive motion in one of the par-
ticipants and failure to independently localize PN in the other two.
Stimuli and experiment design

Each participant completed one 2-hour scan session, which consist-
ed of the following: (i) a high-resolution anatomical scan, (ii) two
runs of the PN localizer (1), (iii) one run of the dynFOSS localizer
(50), and (iv) six to eight runs of the contact decoding experiment.
The contact decoding experiment had four main relationship types:
containment, support, attachment, and occlusion. Each relationship
type wasembedded in three different scenarios (natural-create, natural-
consequence, and rendered) using two different object types (bowl
and mug). Thus, there were 24 unique relationship conditions. We
included three additional single-objects—only conditions (bowl,
mug, and others) as a baseline for object decoding. The natural-
create scenario depicted a hand holding the base object (mug or
bowl), while another hand placed a second object in the scene to
create the relationship. The natural-consequence scenario depicted
a hand moving the base object back and forth (Fig. 1), with the sec-
ond object already in position to reveal the relationship and physical
contingency between the two objects. The rendered scenario revealed

the physical contingency using a ball colliding with the base object.
The natural scenarios were filmed in-house with human actors, where-
as the rendered scenario was created using Blender. Using differ-
ent exemplars of objects and counterbalancing the motion
trajectories of hands and balls from the left and right side of the
frame, we created 768 video clips across all conditions each lasting 3 s.
Each block of the main experiment consisted of four 3-s videos from
1 of the 27 conditions (24 object-object relationship conditions + 3
single-object conditions). Specifically, we randomly chose four video
clips from a subcondition and presented them in a sequence within
the block. The video clips within each block were randomized inde-
pendently for each participant and chosen with replacement across
blocks within a participant. One of the video clips was repeated con-
secutively within each block, and the participants were instructed to
press a button whenever they detected such repetitions (i.e., an or-
thogonal one-back task). Thus, each block lasted for 15.4 s (five 3-s
videos with a 100-ms interstimulus interval). Each run consisted of 28
stimulus blocks (the “others” single-object condition was repeated twice
within a run to equalize the amount of data for base objects and sec-
ondary objects), and 5 fixation blocks (15 s each) interspersed uniform-
ly within the run (one in the beginning and one after every seventh
stimulus block). Throughout the run, the participants were instructed
to maintain fixation on a red dot at the center of the screen to minimize
eye movement confounds. The order of blocks within a run was de-
termined using a Latin square design, which also helped counterbal-
ancing the condition sequence across runs.

Contact decoding

To test whether contact relationships can be distinguished from
noncontact relationships within an fROI, we used a correlation-
based MVPA (51). We computed the response of each voxel with-
in an fROI for contact relationship by averaging its response to
all the contact relationships (containment, support, and attach-
ment) across base objects (bowl and mug) within each scenario
(natural-create, natural-consequence, and rendered) separately.
Similarly, we computed the response of each voxel for the non-
contact relationship by averaging its response to the occlusion
relationship across the base objects within each scenario sepa-
rately. We then computed the within (ry, and r,;) and between
(b1 and rp2) contact-type correlations across the voxels within
the fROI and across the natural-create and rendered scenarios
(Fig. 2). We then normalized the correlation values (using
Fisher z-transform) and computed the difference between the
averaged within and the averaged between contact-type correla-
tions for each fROI in each participant as our decoding index.
A positive value of the decoding index indicates that contact and
noncontact relationships evoke distinctive patterns of activations
within the fROI. In a similar manner, we computed the decoding
index for the pair of natural-consequence and rendered sce-
narios. The plots (Fig. 2 and fig. S1) contain the decoding in-
dices averaged over pairs of natural-consequence and rendered
scenarios.

Table 1. Number of voxels (mean + SEM) within each fROI across participants for experiments 1 and 2.

LOC VTC PN
Experiment1 859.9+1238 9754+1268 9994 +2316
Experiment 2 8784 +170.3 1373.2+ 146 603.4 + 192.5
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Future contact prediction experiment (experiment 2)
The stimulus design and analysis methods were preregistered (https://
ost.io/kr45p/) before running the full experiment.
Participants
Fourteen participants (ages 20 to 35 years; 5 females) participated in the
fMRI experiment. All participants had normal or corrected-to-normal
vision. Before participating in the experiment, all participants gave in-
formed consent to the experimental protocol approved by the MIT
Committee on the Use of Humans as Experimental Subjects (no.
0403000096). The study was conducted in compliance with all the relevant
ethical guidelines and regulations for work with human participants.
Stimuli and experiment design
For this experiment, every participant completed a 2-hour scan that
included the following: (i) a high-resolution anatomical scan, (ii) two
runs of a PN localizer (1), (iii) one run of a dynFOSS localizer (50),
and (iv) eight runs of the future contact prediction experiment—
four each of observed and predicted events. The future contact pre-
diction experiment included 96 stimuli, each being a 1.5-s video clip
containing two objects (an agent object and a patient object) and
varying orthogonally in a 2 X 2 design whether the event type en-
tailed contact or no contact and whether the event was perceived or
predicted. These four critical conditions were each shown with three
further orthogonally crossed dimensions included to test the gener-
ality of the representations: two scenario types (roll or throw), six
background scenes (three indoor and three outdoor scenes), and
two motion trajectories of the agent object (leftward or rightward).
Furthermore, the roll scenario was rendered with a bowl and a cyl-
inder as the agent and patient objects, respectively, under the “per-
ceived” condition and with a mug and a sphere as the agent and
patient objects, respectively, under the “predicted” condition to min-
imize potential low-level visual feature confounds while decoding
events within a scenario. Similarly, the throw scenario was rendered
with a different pair of agent and patient objects—a mug and a cube
for the perceived condition and a bowl and an icosphere for the pre-
dicted condition. The stimulus design is summarized in Table 2,
and example frames from stimuli for each condition and scenario
combination are shown in Fig. 3. Each video was rendered using the
Blender software and clipped to 1.5 s either from the start or from
the middle to show predicted and perceived conditions, respectively.
Each run of the main experiment showed videos from either only
the perceived or predicted condition in an event-related design, and
each run included three repetitions of each of the 48 videos for a
total of 144 stimulus trials. Each trial consisted of 1.5 s of the video
stimuli and a trailing fixation-only period lasting 0.5, 2.5, or 4.5 s.
The trial order and the corresponding fixation-only periods were
chosen according to optseq2 (https://surfer.nmr.mgh.harvard.edu/

optseq/) (52). We included 10 one-back trials randomly interspersed
within each run to ensure that participants were paying attention to
the stimuli. We also included fixation-only blocks each lasting 15 s
in the beginning and end of each run.

Every participant was shown four runs each of the perceived and
predicted conditions. We specifically sandwiched the four perceived
condition runs between two runs each of the predicted conditions.
This ensured that not all the predicted condition runs were primed
by the perceived condition runs, while ensuring that not all the per-
ceived condition runs were shown later during the scan session, lead-
ing to potentially weaker/noisier signals due to participant fatigue.
Contact decoding across perceived and predicted conditions
Within scenario. To test for contact decoding that is generalizable
across conditions (perceived versus predicted), we used a correlation-
based MVPA (51). We computed the response of each voxel within an
fROI to contact relationship under the perceived condition (and, say,
the roll event) by averaging its response to all the corresponding
12 videos (see Table 2, left-most cell in the first row). Similarly, we
computed the response of each voxel in the fROI to the noncontact
relationship under the perceived condition (and, again, the roll event)
by averaging its response to all the corresponding 12 videos (Table
2, left-most cell in the second row). We then computed the voxel re-
sponses to contact and noncontact relationships separately under the
predicted condition (also for the roll event) by averaging responses
across the corresponding videos (Table 2, second column cells in the
first and second rows, respectively). We then gathered the pattern of
averaged responses across voxels within the fROI for the four condi-
tions (perceived and predicted events, contact and noncontact rela-
tionships within the roll scenario) and computed the within (r,,; and
rwz) and between (rp; and ) contact-type correlations (Fig. 4A). We
Fisher z-transformed the correlations and computed the difference
between the averaged within and averaged between contact correla-
tions for each fROI in each participant as our decoding index. A
positive value of this index implies that the contact relationship can
be distinguished from the noncontact relationship within the roll
scenario across perceived and predicted conditions. We also com-
puted the decoding index for the throw scenario and averaged the
two decoding indices within an fROI for each participant.

Across scenario. We extended the within-scenario decoding anal-
ysis to measure contact decoding across both conditions (perceived
versus predicted) and scenarios (roll versus throw). We computed
the response of each voxel within an fROI to contact relationship
under the perceived condition (and, say, the roll event) by averaging
its response to all the corresponding 12 videos (see Table 2, left-most
cell in the first row). Similarly, we computed the response of each
voxel in the fROI to the noncontact relationship under the perceived

Table 2. Summary of stimulus design in experiment 2.

Predicted

Perceived
Contact Roll (bowl/cylinder)
(6 background scenes x 2
trajectories = 12 stimuli)
Noncontact Roll (bowl/cylinder)

(6 background scenes x 2
trajectories = 12 stimuli)

Pramod et al., Sci. Adv. 11, eadr7429 (2025) 30 May 2025

Throw (mug/cube)
(6 background scenes x 2
trajectories = 12 stimuli)

Throw (mug/cube)
(6 background scenes x 2
trajectories = 12 stimuli)

Roll (mug/sphere)
(6 background scenes x 2
trajectories = 12 stimuli)

Throw (bowl/icosphere)
(6 background scenes x 2
trajectories = 12 stimuli)

Roll (mug/sphere) (6 back-
ground scenes X 2 trajecto-
ries = 12 stimuli)

Throw (bowl/icosphere)
(6 background scenes x 2
trajectories = 12 stimuli)
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condition (and, again, the roll event) by averaging its response to
all the corresponding 12 videos (Table 2, left-most cell in the sec-
ond row). We then computed the voxel responses to contact and
noncontact relationships separately under the predicted condition
(this time, for the throw event) by averaging responses across the
corresponding videos (Table 2, right-most cells in the first and sec-
ond rows, respectively). We then gathered the pattern of averaged
activations across voxels within the fROI for the four conditions
(perceived roll and predicted throw conditions and contact and
noncontact relationships) and computed the within (r,,; and r,,2) and
between (rp; and r,») contact-type correlations (Fig. 4A). We Fisher
z-transformed the correlations and computed the difference between
the averaged within and the averaged between contact correlations for
each fROI in each participant as our decoding index. A positive value
for this index implies that contact and noncontact relationships evoke
distinctive patterns of activations within the fROI that are generaliza-
ble across both scenarios (roll versus throw) and conditions (predicted
versus observed). We then computed the decoding index for the
observed-throw versus predicted-roll comparison and averaged the
two decoding indices within an fROI in each participant.

Representation similarity analysis

As an additional test of abstract contact decoding and to infer the
contribution of visual features, we used RSA (15) to compare the
overall representational structure in various brain regions to (i) a
visual feature-based representation extracted from a video founda-
tion model and (ii) an ideal model that perfectly distinguishes between
contact and noncontact events across scenarios (roll and throw) and
conditions (perceived and predicted).

Video model RDM

We extracted features for each of the 96 video stimuli (perceived and
predicted conditions in experiment 2) from each layer of a video
foundation model [pfVC1_CTRNN_physion from (41)] trained on
rendered videos in the Physion benchmark (53). For each layer, we
trained a linear SVM classifier (fitclinear function in MATLAB) for
contact versus noncontact decoding on the feature representations
of either the perceived roll or throw scenario and computed the de-
coding accuracy on the held-out perceived and predicted scenarios.
We then computed the average test decoding accuracy in each layer
and chose the model layer that showed the maximum test accuracy.
This maximum averaged test accuracy was slightly higher than chance
(average accuracy = 59.6%, whereas chance accuracy = 50%), indi-
cating that visual features from the model can partially distinguish
between contact and noncontact conditions across perceived and
predicted scenarios. To get VM-RDM, we computed the average
perpendicular distance from the SVM classifier boundary for each
stimulus pair in the test set (54, 55).

Ideal contact RDM

We used ground-truth contact and noncontact labels for all stimuli
(n = 96) under the perceived and predicted conditions of experi-
ment 2 and computed the dissimilarity for each stimulus pair as the
absolute difference between the corresponding labels. That is, pairs
of stimuli differing in contact were given a dissimilarity value of 1
and other stimulus pairs were given a dissimilarity value of 0.

fMRI RDM

For each ROI in a participant, we computed the representational
dissimilarity of the pattern of response across voxels in the fROI for
each of the 96 X 96 stimulus pairs as the correlation distance (1 - 7,
where r is the Pearson correlation between the pattern activations).
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