
NE47_Art14_Fedorenko ARjats.cls June 22, 2024 13:49

Annual Review of Neuroscience

Language in Brains,
Minds, and Machines
Greta Tuckute, Nancy Kanwisher,
and Evelina Fedorenko
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
email: evelina9@mit.edu

Annu. Rev. Neurosci. 2024. 47:277–301

First published as a Review in Advance on
April 26, 2024

The Annual Review of Neuroscience is online at
neuro.annualreviews.org

https://doi.org/10.1146/annurev-neuro-120623-
101142

Copyright © 2024 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

language, artificial language models, natural language processing,
neuroimaging, cognitive neuroscience

Abstract

It has long been argued that only humans could produce and understand lan-
guage. But now, for the first time, artificial language models (LMs) achieve
this feat. Here we survey the new purchase LMs are providing on the ques-
tion of how language is implemented in the brain. We discuss why, a priori,
LMs might be expected to share similarities with the human language sys-
tem.We then summarize evidence that LMs represent linguistic information
similarly enough to humans to enable relatively accurate brain encoding
and decoding during language processing. Finally, we examine which LM
properties—their architecture, task performance, or training—are critical
for capturing human neural responses to language and review studies us-
ing LMs as in silico model organisms for testing hypotheses about language.
These ongoing investigations bring us closer to understanding the repre-
sentations and processes that underlie our ability to comprehend sentences
and express thoughts in language.
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1. THE HUMAN LANGUAGE SYSTEM

1.1. Language as a Distinct Component of the Mind and Brain

Right now, human beings all over the world are translating the thoughts in their minds into se-
quences of sounds that travel from their mouths into a fellow human’s ears, producing thoughts
in their fellow’s mind similar to those that began in their own. This is the everyday miracle of lan-
guage, the engine of cumulative human culture and the signature talent of our species. But what
is language, and how is it computed in the mind and brain? How can something as abstract as the
meaning of a sentence be encoded in the activity of neurons? And what is the relationship between
language and thought? These questions, long pondered by philosophers, are suddenly yielding
to rigorous empirical investigation with an ever-accelerating pace of synergistic discoveries in
cognitive science, neuroscience, and artificial intelligence (AI).

1.1.1. Selectivity of the language system. By language, we refer not to the surface form of
speech or text or sign but the more abstract representations common to all these modalities—the
representations that allow for the mapping between thoughts and word sequences. In the earliest
efforts to identify brain regions engaged in language processing, nineteenth-century neurologists
described patients with deficits in speaking and in understanding language that resulted from
damage to the frontal and temporal lobes. However, many of these cases reflected deficits in the
perception or production of speech rather than language (Luria 1970,Goodglass 1993; for a recent
discussion, see E. Fedorenko, S. Piantadosi & E. Gibson, unpublished manuscript), and heated
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debates have raged ever since on the question of whether any brain regions are specifically engaged
in language per se.

Indeed, when noninvasive neuroimaging methods first became available, many researchers
noted that the brain regions in the temporal and frontal lobes that became active in positron
emission tomography and functional MRI (fMRI) studies when people understand sentences re-
sembled brain regions engaged in other, nonlinguistic tasks (Dehaene et al. 1999,Levitin&Menon
2003, Novick et al. 2005; for reviews, see Fedorenko & Varley 2016, Fedorenko & Blank 2020).
These findings were taken to mean that brain regions engaged in language processing were not
specific for language but instead supported a variety of cognitive functions. However, this rea-
soning suffered from a critical flaw: Because the exact anatomical location of functional regions
varies across individuals, analyses that pool data across individuals in a common anatomical brain
space necessarily blur functional responses and thus underestimate functional specificity (Saxe
et al. 2006).When new methods were developed that functionally identify language regions indi-
vidually in each participant with localizer tasks contrasting responses to sentences versus strings
of nonwords or degraded speech (Fedorenko et al. 2010), it became clear that these regions are
highly specific for language and show little response when people perform mental arithmetic, lis-
ten to music, hold information in working memory, or exert cognitive control (e.g., Fedorenko
et al. 2011, Monti et al. 2012, Amalric et al. 2018, Chen et al. 2023). Other studies tested men-
tal functions even closer to language, including nonverbal semantics (Ivanova et al. 2021), logical
reasoning (Monti et al. 2009), understanding computer code (Ivanova et al. 2020, Liu et al. 2020),
processing nonverbal communicative signals (Deen et al. 2015, Jouravlev et al. 2019), and reason-
ing about others’ minds (Shain et al. 2023), and found that even those do not strongly engage the
language brain areas.

Complementary evidence for the dissociation of language and nonlinguistic cognition, includ-
ing thinking and reasoning, comes from studies of patients with global aphasia due to massive
left-hemisphere strokes (Luria 1970, Goodglass 1993). These patients, who lack virtually all abil-
ity to produce or understand language, are nonetheless able to solve logic and arithmetic problems,
appreciate music, hold information in working memory, and think about what other people are
thinking (Varley et al. 2005, Apperly et al. 2009). Thus, not only are language and thought dis-
sociable in the brain, but many aspects of thought can proceed in the near absence of language.
Taken together, these findings show that the language regions play little role in nonlinguistic tasks,
even those that share similarities with language.

1.1.2. Anatomy and the internal structure of the language system. Anatomically, the brain’s
language system stretches acrossmany square centimeters of cortex and encompasses cortical areas
on the lateral surface of the frontal and temporal lobes (Figure 1). In most individuals, this sys-
tem is lateralized to the left hemisphere, with weaker activations in homotopic right-hemisphere
regions (Figure 1a,b), and the topography is stable within individuals over time (Figure 1c) and
similar across typologically diverse languages (Figure 1d).

What division of labor exists across the brain regions that make up the language system? Ac-
cording to one classic proposal, distinct regions support language comprehension versus language
production (e.g., Geschwind 1970), based on apparent dissociations in patients with linguistic
deficits. However, these dissociations likely pertain to lower-level speech-perception and speech-
articulation abilities, which are distinct from higher-level comprehension and production abilities
(e.g., see Saussure 1959; for a recent review, see E. Fedorenko, A.A. Ivanova & T.I. Regev, un-
published manuscript). Indeed, fMRI studies that isolate higher-level linguistic components from
lower-level speech components find strongly overlapping responses between sentence compre-
hension and sentence production (Menenti et al. 2011, Hu et al. 2023). Another influential idea
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held that the inferior frontal language area is especially important for, and perhaps selectively
engaged in, processing syntactic structure (e.g., see Hagoort 2005, Grodzinsky & Santi 2008,
Friederici 2012). However, the evidence from patients with syntactic difficulties (so-called agram-
matic aphasia) is complex and heterogeneous (e.g., see Badecker & Caramazza 1985, Berndt 1991)
and does not support a selective role of the inferior frontal language component in syntactic
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Figure 1 (Figure appears on preceding page)

The neuroanatomy of language processing. (a) A probabilistic atlas for the language network based on overlaying activation maps [here
and elsewhere obtained with functional MRI (fMRI)] from n = 806 participants who performed a language localizer task (Lipkin et al.
2022). The atlas is displayed on lateral views (left and right) of the brain; yellow areas indicate higher overlap across individuals. The
language network includes, most prominently, left-lateralized areas in the frontal and left temporal lobe, and this topography is broadly
similar across individuals. Panel a adapted from Lipkin et al. (2022). (b) Sample language activation maps from n = 6 native speakers of
English. The variability in the locations, shapes, and sizes of the language areas shows why it is difficult to make inferences about the
language system in analyses that average activations across individuals in a common space and assume voxel-wise correspondence
(Fedorenko et al. 2010). The color scale reflects the t statistic for the language versus control condition contrast (the same color scale is
used in panels c and d). (c) Sample language activation maps from the left hemisphere of n = 2 native speakers of English each tested
three times, including across the span of ∼15 years (Mahowald & Fedorenko 2016). (d) Sample language activation maps from n = 6
native speakers of six languages across four language families: Hebrew (language family: Afro-Asiatic), Romanian (language family:
Indo-European/Italic), Tagalog (language family: Austroasiatic), Irish (language family: Indo-European/Celtic), Telegu (language
family: Dravidian), and Gujarati (language family: Indo-European/Indo-Iranian). Although language activations vary in their precise
topography, the variability among the speakers of different languages does not exceed the variability observed among the speakers of
the same language (Malik-Moraleda et al. 2022). Panel d adapted from Malik-Moraleda et al. (2022). (e, left) A schematic illustration of
the language regions. The red masks correspond to areas within which most individuals show responses during language processing
(Fedorenko et al. 2010, Lipkin et al. 2022). The schematic shows the average correlations in neural activity fluctuations (measured with
the BOLD signal in fMRI) among the language regions (individually defined) during naturalistic cognition paradigms (data from
Malik-Moraleda et al. 2022; n = 82 speakers of diverse languages tested in their native language). The average within-network
correlation during a story comprehension condition is r = 0.65; pairwise region-to-region correlations are shown in the network
schematic (circles indicate regions; e.g., the average correlation between the PostTemp region and the IFG language functional regions
of interest is r = 0.73). (Right) The topography of the language network identified with a language localizer paradigm (Fedorenko et al.
2010) (yellow and orange) can be recovered from a large amount of naturalistic resting state (no task) data collected in individual
participants by analyzing patterns of voxel cofluctuation (the language network recovered in this way is shown in black outlines), as shown
in n = 3 sample individuals. Right side of panel e adapted with permission from Braga et al. (2020) (CC BY 4.0). ( f ) Schematic of BOLD
response magnitudes to sentences, word lists, nonword lists, and nonlinguistic conditions in the language areas. Structured stimuli, such
as sentences, that convey compositional meanings elicit a stronger response than unstructured ones, such as lists of words, that only
express individual lexical meanings; lists of words, in turn, elicit a stronger response than lists of meaningless nonwords (e.g., Fedorenko
et al. 2010, Pallier et al. 2011, Shain et al. 2024). Diverse nonlinguistic inputs and tasks elicit little or no response in the language areas
in spite of strongly activating other brain areas (e.g., see Monti et al. 2009, 2012; Fedorenko et al. 2011; Ivanova et al. 2020; Chen et al.
2023). Abbreviations: AntTemp, anterior temporal; BOLD, blood-oxygen-level-dependent; IFG, inferior frontal gyrus; IFGorb,
inferior frontal gyrus orbital; LH, left hemisphere; MFG, middle frontal gyrus; PostTemp, posterior temporal; RH, right hemisphere.

processing (Fedorenko et al. 2022). Furthermore, fMRI studies have shown that every language
region is strongly sensitive to syntactic structure building (e.g., see Bautista &Wilson 2016, Blank
et al. 2016, Shain et al. 2022a), arguing against a focal syntactic hub, and every language region
responds at least as strongly to word meaning (Fedorenko et al. 2010, 2020; Shain et al. 2024)
(Figure 1f ). Other divisions of labor within the language network have been proposed in the
past (e.g., see Hickok & Poeppel 2007, Price 2010, Friederici 2012); however, none of the claims
about dissociations among the high-level language regions (cf. those between speech and language
regions) withstand empirical scrutiny. Thus, current evidence does not support areal subdivi-
sions within the cortical language system, in line with strong interregional functional connectivity
during naturalistic cognition (Blank et al. 2014, Braga et al. 2020, Malik-Moraleda et al. 2022)
(Figure 1e). That said, the posterior temporal component may be overall more important for
language function based on evidence from aphasia (e.g., see Luria 1970, Wilson et al. 2023), and
some heterogeneity exists in the form of spatially interdigitated neural populations (e.g., see Jain
et al. 2020, Regev et al. 2023).

The findings reviewed so far indicate that the brain’s language system constitutes a distinct
component of the mind and brain that is specific for language processing, separable from other
cognitive systems, and relatively functionally homogeneous across its regions, with every region
supporting computations related to accessing word meanings and combinatorial (syntactic and
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semantic) processing. These considerations suggest that the language system is a natural kind—an
ontologically meaningful grouping of brain areas—that can be studied in relative isolation (Simon
1962). In saying this, we do not mean to suggest that the language system acts alone. No brain
region acts alone. During spoken sentence comprehension, the language system receives input
from speech-processing auditory areas (Overath et al. 2015). And during speaking, the language
system sends input to speech-articulation areas (Guenther 2016). The language system must also
interact with higher-level components of the mind and brain (e.g., to build mental models of
the information coming in through language). But the fact that the language system must interact
extensively with other brain systems does not undercut the selectivity or distinctness of this system
from the rest of the mind and brain (for discussion, see E. Fedorenko, A.A. Ivanova & T.I. Regev,
unpublished manuscript). Thus, we turn next to our core question: What representations and
computations in the brain’s language system allow us to understand the meaning of a sentence or
express a thought in language, and can wemodel these components of human language processing
using artificial language models (LMs)?

1.2. What Do We Want from Models of Language Processing?

Before we delve into the utility of artificial LMs to study the language system and its neural basis,
let us consider what we want from our scientific models of human language processing. On the
one hand, we want the ability to predict behavioral and neural responses to arbitrary stimuli with
high accuracy.On the other hand, we want models that are parsimonious and offer some intuitive-
level understanding. Most past work in language neuroscience has prioritized parsimony over
high predictive accuracy, yielding proposals that coarsely tie cognitive processes (e.g., syntactic
processing or lexical access) to particular brain areas (e.g., see Friederici 2002, Hagoort 2005,
Hickok & Poeppel 2007, Price 2010, Friederici 2012, Fedorenko et al. 2020, Shain et al. 2024).
Such accounts provide intuitive descriptions of what a given brain region may be doing but leave
underspecifiedmuch of the detail in its response to language. In particular,what is the nature of the
representation of a given sentence? And what algorithms are applied to extract meaning from that
sentence?

The field of psycholinguistics has provided traction on these questions, developing sophis-
ticated accounts of linguistic processing based on behavioral experiments and corpus analyses.
However, these accounts have typically not attempted to simultaneously address the processing
of both linguistic meaning and structure, focusing on context-independent lexical access (e.g.,
see Dell 1986, Caramazza 1997, Levelt et al. 1999), word-level semantics (e.g., see Landauer
et al. 1998, Pennington et al. 2014), or meaning-independent syntactic structure building (e.g.,
see Clifton & Frazier 1989, Gibson 1998, Lewis & Vasishth 2005). Moreover, these accounts
have been difficult to link to neural responses given the lack of appropriate neural data (reliable
item-level responses) and the difficulty of deriving quantitative predictions for arbitrary linguistic
stimuli at scale.

What language research has long lacked are models whose inner workings can be described
mathematically rather than only in words and that (i) can build a representation for any arbi-
trary linguistic stimulus [stimulus computability (Yamins & DiCarlo 2016)]; (ii) are data driven,
thus avoiding the theoretical precommitments that have so far been needed to operationalize and
test hypotheses about human language; and (iii) accurately predict behavioral and neural data
from humans. Modern LMs have all of these properties (Section 2) and have thus presented lan-
guage researchers with an exciting opportunity to model human linguistic behavior and neural
responses to language with unprecedented quantitative precision (Section 3), albeit at the expense
of parsimony (Section 5).
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2. LANGUAGE MODELS AS CANDIDATE MODELS OF HUMAN
LANGUAGE PROCESSING

2.1. What Are Language Models and What Kinds of Linguistic Knowledge
Do They Embody?

LMs are suddenly ubiquitous, rendering many professionals nervous about their future employ-
ment, flummoxing professors accustomed to essay-writing assignments, and even convincing
some that computer algorithms might be conscious and deserving of moral consideration. What
are these things? LMs—sometimes also referred to as artificial neural network language models
or large language models—are computer algorithms that are trained to predict the upcoming
(or missing) word conditioned on prior (or surrounding) word context (see the Supplemental
Material, section 1). Early LMs—so-called n-gram models—were based on purely statistical
approaches that estimate which word is likely to come next based on how often that word occurs
in that context in corpora ( Jurafsky &Martin 2008). Then, in the early 2000s, the next-word pre-
diction task was implemented in neural networks, improving performance over earlier approaches
(Bengio et al. 2000). The more recent introduction of the transformer architecture (Vaswani et al.
2017) (Supplemental Figure 1b) marked a revolution in next-word prediction.The transformers’
training process allows for parallelization on modern computing hardware and thus for efficient
use of the abundance of available text data. The key mechanism in transformers, attention, enables
the model to focus on diverse aspects of language that matter for which word may come next via
multiple attention heads (Bahdanau et al. 2015). In this way, LMs appear to learn about diverse
linguistic regularities, ranging from phonological patterns to word forms and meanings and to
syntactic structure (for reviews, see Linzen & Baroni 2021, Pavlick 2022, Mahowald et al. 2023).

2.2. A Priori, Why Might We Expect Language Models to Capture Something
About Human Language Processing?

We start by stating the obvious: LMs are the first systems apart from the human brain that can
generate fluent and coherent text. Indeed, the formal linguistic competence of LMs—knowledge
of linguistic rules and regularities (Mahowald et al. 2023)—has been argued to be on par with that
of humans (Wang et al. 2020, Brown et al. 2020).Of course, LMs’ linguistic prowess in and of itself
does not imply that they represent and process language the way humans do (e.g., see Guest &
Martin 2023), but similar behavioral outputs are arguably a necessary prerequisite for an artificial
model to serve as a candidate model of some biological system.

LMs and humans share several other properties, whichmakes LMs plausible as candidate mod-
els of human language processing (but see the sidebar titled Language Learning and Processing
in Language Models Versus Humans). First, similar to LMs’ core training objective (prediction),
abundant evidence indicates that humans predict upcoming linguistic input during comprehen-
sion, as measured behaviorally (e.g., see Rayner et al. 2006,Demberg&Keller 2008, Smith&Levy
2013, Brothers & Kuperberg 2021; cf. Huettig & Mani 2016) and neurally (e.g., see Henderson
et al. 2016,Willems et al. 2016, Shain et al. 2020, Heilbron et al. 2022; for reviews, see Kuperberg
& Jaeger 2016, Ryskin & Nieuwland 2023).

Second, LMs acquire rich and detailed syntactic knowledge—the component of language that
gives it its generative power and has been emphasized as a human-unique capacity (e.g., see
Berwick & Chomsky 2015). Evidence for the similarity of syntactic knowledge and processing
between humans and LMs (cf. van Schijndel & Linzen 2021, Zhang et al. 2023) comes from a
traditional linguistic methodology of sentence grammaticality/acceptability judgments (e.g., see
Linzen et al. 2016,Marvin & Linzen 2018, Futrell et al. 2019, Gauthier et al. 2020,Hu et al. 2020,
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LANGUAGE LEARNING AND PROCESSING IN LANGUAGE MODELS VERSUS
HUMANS

Although modern LMs can generate human-like language, they fundamentally differ from the human language
system in several respects. First, the amount of training data that LMs are exposed to (billions or trillions of words
in text corpora) far exceeds human language exposure (20–70 million words by age 10) (Gilkerson et al. 2017; for
discussion, see Warstadt & Bowman 2022). Moreover, the type of training data is vastly different: Children learn
language from continuous auditory (speech) or visual (sign) signals in the broader context of physically interacting
with the environment and engaging in social interactions (e.g., Hoff 2006, Yu & Smith 2012). Second, transformer
LMs have equal access to all previous tokens, whereas humans, limited by memory, instead extract the relevant
meaning from linguistic input and quickly discard the exact linguistic sequence (Potter 2012,Christiansen&Chater
2016). Finally, LMs implement language in hardware that differs radically from the biological brain (cf. Kozachkov
et al. 2023). For example, the human brain is subject to wiring length costs, whereas LMs are not subject to such
spatial pressures, and the biological plausibility of backpropagation is a topic of considerable debate (Lillicrap et al.
2020).

Warstadt et al. 2020), as well as a more psycholinguistics-style approach of measuring incremental,
word-by-word processing difficulty as a function of changes in syntactic complexity (Wilcox et al.
2020, 2021).

Third, similar to humans (e.g., Jackendoff 2007), in addition to syntax, LMs acquire sensitivity
to multiple levels of linguistic structure, ranging from sublexical (sound-level and morpholog-
ical) regularities to word forms and meanings and to phrase- and sentence-level structure and
meaning (e.g., Tenney et al. 2019,Wang et al. 2019,Wiedemann et al. 2019, Manning et al. 2020,
Mikhailov et al. 2021). Moreover, these different kinds of regularities, including linguistic struc-
ture and meaning, appear to be intertwined in the LMs’ internal representations (Bölücü & Can
2022). As discussed in Section 1.1, in humans, knowledge and processing of different aspects of
language, including syntax and semantics, are also not spatially segregated: They all draw on the
very same set of brain areas (e.g., see Fedorenko et al. 2010, 2020; Bautista &Wilson 2016; Blank
et al. 2016; Shain et al. 2024), including when measured with high spatial and temporal resolution
intracranial recordings (Fedorenko et al. 2016, Nelson et al. 2017). This lack of spatial segrega-
tion does not undermine strong sensitivity to syntactic structure; it merely suggests that no neural
units (in humans or models) selectively support syntactic structure building, presumably because
how words combine in natural language strongly depends on the properties of particular words, as
all linguistic frameworks now acknowledge. Importantly, the human language system and LMs–
two systems that have emerged independently and under different pressures—seem to have both
converged on a solution for efficient language processing without the need to compartmentalize
syntax and semantics.

Finally, as discussed in Section 1.1, in humans, language does not share machinery with non-
linguistic tasks, including many aspects of knowledge and reasoning (e.g., see Fedorenko et al.
2011), even when the task is presented linguistically (Monti et al. 2012, Amalric et al. 2018, Shain
et al. 2023). Do linguistic and nonlinguistic abilities also dissociate in LMs? Although some LMs
(trained on data other than natural language and on objectives beyond text prediction) are be-
coming increasingly good at solving reasoning tasks (e.g., see Bhargava & Ng 2022, Imani et al.
2023, Yu et al. 2023), the earlier versions of purely text-trained LMs struggle with such tasks. For
instance, small text-trained generative pretrained transformer (GPT) models (such as GPT-2-
sized models) show strong linguistic competence but fail on even two-digit addition/subtraction
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WHAT DOES IT MEAN FOR A LANGUAGE MODEL TO BE SIMILAR TO THE
HUMAN LANGUAGE NETWORK?

In the studies reviewed here, LMs and brains are compared at the level of internal representations (see the
Supplemental Material, section 1). Consequently, any claims about model-brain similarity pertain to represen-
tations, not the algorithms or implementation underlying language. Although algorithms and representations
are tightly linked (Marr 1982), they can still be separated. For instance, the representations from an LM trained
to predict the next word using only the left context can produce representations similar to those from an LM
that predicts a masked word using both left and right context, despite their algorithms being markedly different.
Therefore, based on most current evaluation metrics (cf., e.g., Khosla &Williams 2023), the brain-model similarity
does not entail the similarity of algorithms or implementations.

Despite significant differences between LMs and humans (e.g., see the sidebar titled Language Learning and
Processing in Language Models Versus Humans), LMs are currently the best predictive models of human language
representations at the resolution of data we have access to. Distilling the model properties that lead to model-brain
representational similarity (Section 4) further sets the stage for investigations of algorithmic- and implementation-
level correspondence, including the use of new evaluation metrics and tools from mechanistic interpretability in AI
(Section 6).

(Brown et al. 2020) and on generalizing to examples beyond their training data that are solvable
with simple logic rules (H. Zhang et al. 2022). Hence, near-human language ability does not en-
tail near-human reasoning ability (for further discussion, see Fedorenko&Varley 2016,Mahowald
et al. 2023, Wong et al. 2023).

3. LANGUAGE MODELS CAPTURE HUMAN NEURAL
RESPONSES TO LANGUAGE

The linguistic success of LMs and their broad similarities to the human language system have
made many wonder whether LMs resemble humans at the finer-grained level of the representa-
tions they build as they process linguistic input (see the sidebar titled What Does It Mean for a
Language Model to Be Similar to the Human Language Network?). Multiple methods have been
developed to quantify the representational similarity between LMs and brains, including measur-
ing the ability of LMs to predict the brain activity that will result from a novel linguistic stimulus
(encoding methods) or to decode what stimulus elicited a particular brain activity pattern (see the
Supplemental Material, section 2).

Building on early efforts to relate human brain responses to decontextualized fixed-vector rep-
resentations of wordmeanings (Mitchell et al. 2008, Palatucci et al. 2009, Pereira et al. 2011, Fyshe
et al. 2014, Huth et al. 2016) (see the Supplemental Material, section 3), language researchers
can now use modern LMs to study correspondences between the brain and multifaceted con-
textualized language representations. In particular, LMs provide a way to represent any arbitrary
linguistic stimulus, including, critically, compositional stimuli such as phrases and sentences. Some
studies using recurrent neural network (RNN)LMs showed that internal representations that con-
tain information about prior context better predict brain responses compared to representations
of only the words themselves or the output probabilities of next words (Wehbe et al. 2014, Qian
et al. 2016, Jain & Huth 2018). Transformer LMs (Vaswani et al. 2017) provided further support
for the importance of representing words in context for capturing brain responses during language
processing. Several studies reported greater similarity between transformer LM representations
and those extracted from human brains compared to decontextualized word-embedding models
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in both fMRI (Toneva & Wehbe 2019, Anderson et al. 2021, Schrimpf et al. 2021, Caucheteux &
King 2022, Pasquiou et al. 2022) (Figure 2a) and intracranial recordings (Schrimpf et al. 2021,
Goldstein et al. 2022, Goldstein et al. 2023a).Whereas all of the above studies use encoding mod-
els (see the Supplemental Material, section 2), LMs have also proven useful for decoding stimuli
based on brain activity while participants process sentences (Gauthier & Levy 2019, Abdou et al.
2021, Zou et al. 2022) or stories (Abdou et al. 2021, Tang et al. 2023).

Most studies have focused on modeling brain responses during language understanding, but
some recent studies have shown that LMs can also predict activity during language production,

a   Model architecture b   Model behavior c   Model training
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Figure 2 (Figure appears on preceding page)

Distilling the properties of LMs that are important for capturing human neural responses to language. (a) Model architecture.
(i) Schrimpf et al. (2021) investigated several general architecture classes and showed that causal LMs (transformer LMs that have access
to only the left context when predicting the next word) best predicted human brain responses, followed by masked LMs (transformer
LMs with access to left and right context) and RNNs (recurrence-based LMs), and, finally, distributional semantic models (in which
each sentence is represented as the average of decontextualized distributional semantic word vectors) (see the Supplemental Material,
section 3). (ii) Antonello et al. (2023) showed that brain encoding performance increases as a logarithmic function of the number of
model parameters [for a class of causal LMs (S. Zhang et al. 2022)], with a plateau for models with greater than 30 billion parameters
(the plateau is likely to be partly attributable to the limitations of human brain data). Panel a, i adapted from Schrimpf et al. (2021), and
panel a, ii adapted with permission from Antonello et al. (2023). (b) Model behavior. (i) Caucheteux & King (2022) demonstrated that
models that are better at predicting the next (or missing) word are also better at predicting brain responses (see also Schrimpf et al.
2021). (ii) Kauf et al. (2024) altered the input that is passed to the LM (Radford et al. 2018) and evaluated encoding performance on
brain responses to the original, unaltered input. They showed that when content words were kept (green bars), predictivity remained
high, in strong contrast to manipulations where only function words were kept (yellow bar). Panel b, i,ii adapted with permission from
Caucheteux & King (2022) (CC BY 4.0) and Kauf et al. (2024) (CC BY 4.0), respectively. (c) Model training. (i) Aw & Toneva (2023)
fine-tuned a masked LM on summarization of book chapters and showed improvements in brain encoding performance for several
anatomically defined language regions. (ii) Hosseini et al. (2024) showed that a causal LM trained on a developmentally plausible
amount of data (red star) exhibited similar brain encoding performance as a model trained on 1 billion tokens (light green point) or a fully
trained LM (gray point) (Radford et al. 2018). Panel c, i adapted with permission from Aw & Toneva (2023), and panel c, ii adapted from
Hosseini et al. (2024) (CC BY 4.0). Panels a, i and c, ii were adapted to show raw rather than ceiling-normalized correlations.
Abbreviations: E, embedding; h, hidden state; LM, language model; n.s., nonsignificant; RNN, recurrent neural network.

before articulation begins, by using intracranially recorded brain activity during spontaneous con-
versation (Goldstein et al. 2023b, Zada et al. 2023). These results show that the language system
relies on abstract representations of linguistic structure and meaning, which support both com-
prehension and production and resemble the representations learned by transformer LMs (Zada
et al. 2023). Importantly, LMs are not trained to predict human data or account for human re-
sponses to language; they simply arrive at similar representations of language by virtue of being
trained to predict words in text.

4. HOW CAN WE USE LANGUAGE MODELS TO STUDY LANGUAGE
PROCESSING IN THE HUMAN BRAIN?

To summarize Sections 2 and 3, for the first time in the history of language research, we have
LMs that not only produce and understand language—a feat long argued to only be achievable by
humans (Chomsky 1965)—but also represent linguistic information in a sufficiently similar way
to humans, allowing relatively accurate brain encoding and decoding during language processing
(see the sidebar titled What Does It Mean for a Language Model to Be Similar to the Human
Language Network?). These models can now be systematically probed in order to identify prop-
erties that are critical for model-to-brain alignment (Section 4.1), and they can be used as in silico
model organisms to evaluate hypotheses about language at an unprecedented granularity and scale
(Section 4.2).

4.1. Which Properties of Language Models Enable Them to Capture Human
Responses to Language?

LMs vary along many dimensions (Figure 2), including (i) model architecture, which includes in-
trinsic properties such as the number of layers and parameters; (ii) model behavior, which includes
a model’s performance on natural language processing (NLP) tasks; and (iii) model training,which
includes the training task (objective) and the training data. The importance of many model prop-
erties for capturing human language responses has now been examined, including comparisons
of off-the-shelf LMs (studying LMs in the wild) and tighter comparisons of minimally differing
LMs (controlled experimental investigations).
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4.1.1. Model architecture. All neural networks are defined by their architecture—the arrange-
ment of neuron-like units and the mathematical operations that define the ways in which they are
connected. The architecture shapes what kinds of representations can be learned during train-
ing. One broad distinction pertains to the general architecture class, with two dominant LM
architectures being RNNs and transformers. A few studies have found that transformer LMs
predict brain data better than the RNN LMs (Toneva & Wehbe 2019, Schrimpf et al. 2021)
(Figure 2a), but other studies have reported comparable performance between a particular class of
RNN LMs called long short-term memory models (LSTMs) (Hochreiter & Schmidhuber 1997)
and transformer LMs (Hollenstein et al. 2019, Anderson et al. 2021, Oota et al. 2022a, Pasquiou
et al. 2022), and Abnar et al. (2019) found that LSTM representations align better with human
brain data compared to transformers. However, most past studies have used off-the-shelf mod-
els (cf. Pasquiou et al. 2022), which vary not only in their architecture but also in the amount of
training they receive, with transformers typically being trained on vastly more data.

More generally, based on the evidence so far, no particular architectural property appears crit-
ical for brain alignment: Many instantiations of LM architectures fit brain data well (Schrimpf
et al. 2021, Caucheteux & King 2022, Pasquiou et al. 2022, Antonello et al. 2023; for similar find-
ings in vision and audition, see Conwell et al. 2023, Tuckute et al. 2023). That said, at least for
transformer models, larger models predict brain data better (Schrimpf et al. 2021, Caucheteux
& King 2022, Antonello et al. 2023) (Figure 2a). Some have also begun to develop approaches
that aim to better differentiate high-performing models, for example, through the use of so-called
controversial stimuli, for which different models make distinct predictions (e.g., see Golan et al.
2023, Hosseini et al. 2023). Such approaches may help uncover architectural motifs that critically
modulate model-brain similarity.

4.1.2. Model behavior. One powerful idea is that neural representations (in biological or artifi-
cial systems) are shaped by behavioral demands (e.g.,Khaligh-Razavi&Kriegeskorte 2014,Yamins
et al. 2014, Kell et al. 2018). Indeed, artificial networks that perform better on a target behavior,
be it object recognition (for visual neural networks) or next-word prediction (for LMs), appear
to develop representations that show greater similarity to brains. In the domain of language, a
few studies found that models that are better at next-word prediction also better capture brain
responses (Schrimpf et al. 2021, Caucheteux & King 2022, Hosseini et al. 2024) (Figure 2a). In
contrast, model performance on other linguistic tasks, including judgments about syntactic or se-
mantic sentence properties, did not significantly explain model-to-brain similarity (Schrimpf et al.
2021). These findings led to the claim that the ability of LMs to predict upcoming linguistic input
is a critical factor in explaining human-like representations. However, later work has challenged
this claim. Although evidence for the predictive nature of human language processing abounds
(e.g., see Smith & Levy 2013,Willems et al. 2016, Shain et al. 2020,Heilbron et al. 2022), a corre-
lation between a model’s performance on some task and its similarity to the brain need not imply
that the model and the brain are performing the same task. Antonello & Huth (2024) suggested
that the critical factor may instead be the generalizability of the representations. They approx-
imated how well representations from a given LM transfer to the representations from a large
set of LMs and showed that this metric also positively correlates with model-to-brain similarity
scores. This finding suggests that the next-word prediction objective may simply be a powerful
way to obtain generalizable representations; it remains unknown (a) whether other training objec-
tives can lead to similarly generalizable representations and, if so, (b) whether such representations
would be able to explain human-like representations, or whether something is special about the
next-word prediction objective.

The effect of model behavior on brain predictivity can also be investigated by examining
how the model’s representations change in response to manipulations of the linguistic input. For
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example, how does altering a sentence’s structure or meaning affect the ability of the model repre-
sentations to predict brain responses to the original sentence? This approach allows isolating the
aspects of the representation that critically mediate model-to-brain similarity. Kauf et al. (2024)
performed a series of experiments to systematically perturb a sentence’s structure (e.g., local word
swaps, removal of function words) or meaning (e.g., removal of nouns or verbs, paraphrasing to
retain a close meaning or only the general topic) (Figure 2b). They found that word meanings
were the main contributor to model-to-brain similarity; in contrast, a sentence’s syntactic form
did not carry much brain-relevant information. The limited importance of syntactic features for
model-to-brain similarity aligns with the findings of another input-perturbation investigation:
Caucheteux et al. (2021a) obtained a representation of a syntactic frame by averaging the embed-
dings of ten sentences that share syntactic structure but differ in meaning, and treated the residuals
of the syntactic embedding as semantic representations. They showed that the semantic represen-
tations have overall higher predictive power than the syntactic ones. Future work should investi-
gate the extent to which the detection of structure effects on model-to-brain similarity is limited
by the low temporal resolution of fMRI, the use of materials where word order is not critical for
interpretation, and the ways that encoding of syntactic structure differs between LMs and humans.

4.1.3. Model training. One critical aspect of a model’s training procedure is the amount and
kind of training data. For example, does an LM’s ability to predict brain data critically depend on
being trained on massive amounts of text, far exceeding the amount of data a human is exposed
to (Gilkerson et al. 2017, Warstadt & Bowman 2022) (see the sidebar titled Language Learning
and Processing in Language Models Versus Humans)? Hosseini et al. (2024) showed that this is
not the case: LMs trained on a developmentally plausible amount of data already capture brain
responses well (Figure 2c).However, some training is necessary (Schrimpf et al. 2021,Caucheteux
& King 2022, Pasquiou et al. 2022; for a discussion, see Hosseini et al. 2024). The kinds of data
an LM is trained on can also be manipulated to ask which properties are critical for capturing
brain responses. Pasquiou et al. (2023) trained LMs on two variants of a text corpus: a semantic
version, which retained only the content words, and a syntactic version, which retained only the
morphosyntactic features (e.g., part of speech tags and agreement information). They found that
models trained on these data sets could each predict brain data to some extent, although semantic
features predicted responses across a larger portion of the brain (see also the sidebar titled What
Are We Modeling?).

What about the training task? Most models that have been analyzed for their similarity to the
brain have been trained on predicting the next word (causal LMs) or a missing word (masked

WHAT ARE WE MODELING?

Some researchers target the language system precisely with functional localizers (e.g., Saxe et al. 2006, Fedorenko
et al. 2010), others use predefined anatomical areas, and yet others examine responses across the whole brain. By
specifically targeting language cortex via functional localization, we can test the degree to which LMs capture
language processing in the brain, unconfounded from the processing of perceptual inputs to the language system
(e.g., Overath et al. 2015), or the downstream cognitive processes that operate on linguistic meaning. Of course,
the representation of meaning in the brain is not restricted to language-specific cortex (e.g., Huth et al. 2016), so
researchers interested in meaning representations more broadly may choose to examine neural activity across the
brain or in brain areas known to represent specific aspects of meaning (e.g., Jain &Huth 2018, Anderson et al. 2021,
Toneva et al. 2022). Whether different components of LM representations capture variance in the core language
areas versus other brain areas remains an important open question.
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LMs), and causal LMs outperform masked LMs at predicting brain data (Schrimpf et al. 2021,
Caucheteux & King 2022; cf. Pasquiou et al. 2022). Some studies have investigated how fine-
tuning affects the LMs’ ability to predict brain responses. In particular, after being trained on
the next-word prediction objective, an LM can be fine-tuned on a specific data set or task, which
forces the model to pay attention to particular task-relevant information. The results have not
been consistent. Gauthier & Levy (2019) fine-tuned a transformer LM on four standard NLP
tasks (e.g., question answering) and found that all four tasks impaired brain decoding relative to
the non-fine-tuned model. In contrast, Oota et al. (2022b) fine-tuned an LM on 10 NLP tasks
and found improvements in brain encoding performance for many of these tasks, which suggests
that the representational features that these tasks emphasize may also be important dimensions in
how humans represent linguistic information. Gauthier & Levy (2019) also fine-tuned an LM on
two custom tasks, which consisted of predicting missing words in a sentence or predicting which
sentence is likely to come next in a corpus where words were shuffled within a sentence or para-
graph, thus selecting against word-order information. Fine-tuning these tasks actually improved
decoding performance, which again suggests a limited importance of syntactic information for
capturing language responses (at least in fMRI sentence-level data), similar to Kauf et al. (2024)
and Caucheteux et al. (2021a). Finally, some studies have found that fine-tuning LMs for deeper
understanding—via training on narrative summarization (Aw & Toneva 2023) or via next-word
prediction on texts similar to the ones that the brain recordings correspond to (Merlin & Toneva
2022)—improves brain encoding performance (Figure 2c).

4.2. Using Encoding Models as In Silico Language Networks

LMs can also be used to simulate and design neuroscience experiments. These applications rely
on accurate encoding models, which are mappings from LM representations to brain responses
(see the Supplemental Material, section 2). Modern LMs’ ability to represent any linguistic
input enables predictions about brain responses to arbitrary new stimuli. Encoding models
can therefore be used as a virtual language network to simulate the language areas’ responses.
Such in silico experiments can be used to (i) validate prior empirical findings and (ii) test new
manipulations, for which no human brain data exist (Wehbe et al. 2018; Jain et al. 2020, 2024;
Ratan Murty et al. 2021). For example, using an LSTM-based encoding model, Jain et al. (2020)
(see also Caucheteux et al. 2021b) were able to recapitulate prior empirical findings of shorter
temporal integration windows in auditory areas and longer ones in the language areas (Lerner
et al. 2011, Blank & Fedorenko 2020).

Encoding models can also be used to identify supernormal stimuli for a particular system
(Barrett 2010), that is, stimuli that elicit the strongest possible response. These predictions can
then be evaluated empirically in a closed-loop design, and the critical stimuli can be analyzed
to better understand the computations that the relevant brain region supports. This approach
has proven successful in systems neuroscience (e.g., Bashivan et al. 2019, Ponce et al. 2019),
and Tuckute et al. (2024) applied a similar strategy to the language network. They first built an
encoding model based on brain responses to 1,000 diverse sentences, then derived predictions
for millions of new sentences, and, finally, collected brain responses in new participants to
the sentences that were predicted to elicit the strongest response (drive sentences). The drive
sentences indeed elicited a very strong response in the language areas, which suggests that an
LM-based encoding model was sufficiently accurate for model-guided experiments in brain areas
implicated in higher-level cognition. The analysis of the drive sentences further revealed that
the language areas respond most strongly to surprising sentences with unusual grammar and/or
meaning. Critically, using model predictions to obtain experimental stimuli effectively expands
the hypothesis space beyond the experimenters’ preconceived notions.

290 Tuckute • Kanwisher • Fedorenko

https://www.annualreviews.org/content/journals/10.1146/annurev-neuro-120623-101142#supplementary_data


NE47_Art14_Fedorenko ARjats.cls June 22, 2024 13:49

5. THE CHALLENGES OF USING LANGUAGE MODELS
TO UNDERSTAND LANGUAGE IN THE BRAIN

5.1. General Methodological Challenges

The use of LMs to understand the human language system faces numerous challenges. One chal-
lenge is that transformer LMs—themost widely used architecture—are incredibly expressive (Yun
et al. 2020), allowing them to find patterns in any sequential input data (text, audio, amino acids,
etc.). Some have described transformers as universal computational engines (Lu et al. 2021). This
power makes it critical to include rigorous controls to ensure that the obtained results are not
due to trivial reasons (e.g., encoding of some low-level sentence features) and reflect what the
experimenter thinks they reflect (for a discussion, see Kauf et al. 2024).

Other challenges are inherent to how LM representations are compared to neural data (see the
Supplemental Material, section 2). For example, LMs can provide representations of linguistic
input with long windows of preceding context, meaning that in a narrative, the model considers
the entire preceding story when generating a representation for each word.Depending on how the
data are divided into train and test splits, contextual representations may inflate model-to-brain
similarity if the representations were derived by taking the full sequence into account (Antonello
et al. 2023, Kauf et al. 2024). Furthermore, most studies that compare LM representations to
brains do not test generalization to held-out participants ( Jain & Huth 2018, Toneva & Wehbe
2019, Jain et al. 2020, Schrimpf et al. 2021, Merlin & Toneva 2022, Oota et al. 2022b, Aw &
Toneva 2023, Hosseini et al. 2024; cf. Toneva et al. 2022, Tang et al. 2023, Tuckute et al. 2024),
which can lead to reliance on participant-specific idiosyncrasies. Such overfitting may not matter
for some medical applications, such as individualized brain computer interfaces (geared toward
the language/semantic system of a particular patient) (e.g., Tang et al. 2023), but it discourages the
discovery of general models of language. Lastly, consensus is currently lacking on how to define
the theoretical maximum similarity between an LM representation and neural recordings, that
is, the noise ceiling. In perceptual domains, noise ceilings are typically estimated using stimulus
repetitions under the assumption that repeated presentations of the same stimulus elicit the same
neural response (e.g., see Allen et al. 2022). However, this assumption may not hold for language
(or other cognitive domains). And from a practical standpoint, it is challenging to even collect
brain responses for multiple repetitions of language stimuli because language processing requires
attentional engagement (e.g., see Cohen et al. 2021), which is harder to sustain over stimulus
repetitions. Consequently, studies vary widely in how they collect language neuroscience data and
how they assess reliability, posing challenges for cross-study comparison.

5.2. Challenges Related to the Increasing Divergence Between Neuroscience
and Engineering Goals

AI and neuroscience share a deeply intertwined history (e.g., see Zador et al. 2023). In recent years,
neuroscientists have benefited from engineering advances in AI, repurposing models developed
by engineers as hypotheses for neural processes in biological brains. For language, the goals of
engineers/computer scientists and neuroscientists were aligned for a long time: The former were
working to create models that understand and produce language, and the latter were seeking such
models to understand human language processing. After formal linguistic competence rose to a
human-like level with the advent of transformer LMs (Brown et al. 2020, Wang et al. 2020), the
goals of the two communities started to diverge.

The primary goal of AI has now shifted toward the development of artificial general intel-
ligence (AGI) models: next-word-prediction-trained models that are subsequently adapted to
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perform diverse downstream tasks, including those outside of the language domain (e.g., solv-
ing math proofs) (Bommasani et al. 2022, Imani et al. 2023). The ability to support a wide range
of tasks leads to models that increasingly differ from the human language system, which is highly
selective for linguistic tasks (Section 1.1). The goal of developing general-purpose models has led
to models that continue to increase in size, guided by scaling laws that predict improvements in
model performance with increased scale (model size and amount of training data and compute)
(Kaplan et al. 2020, cf. McKenzie et al. 2023). Additionally, to support a wider range of tasks,
models are expanding their training data to include nonlinguistic input (e.g., images, computer
code) (Achiam et al. 2023) and incorporating additional objectives such as reinforcement-based
human feedback (Ziegler et al. 2019). In contrast to the larger and more diverse AGI models,
neuroscientists seek models that offer both high predictive power and parsimony (Section 1.1).
Larger models are inherently less parsimonious and do not always provide gains in the predictive
accuracy of behavioral and brain responses. For example, larger models trained on text prediction
are actually worse at predicting human behavioral data, such as reading times (Shain et al. 2022b,
Oh & Schuler 2023, Steuer et al. 2023). They also appear to get worse on some language tasks,
struggling with negation ( Jang et al. 2023, McKenzie et al. 2023) and quantifiers (Gupta 2023,
Michaelov & Bergen 2023) and tending to memorize more (Carlini et al. 2023, McKenzie et al.
2023). The ability to predict brain responses does increase with model size, but this relationship
appears to level off at approximately 30 billion parameters (Antonello et al. 2023). Overall, larger
LMs provide diminishing returns for predictive accuracy, at least for the kinds of data that the
field is currently trying to model (this may change for higher-dimensional data, such as single-unit
recordings). They also pose greater interpretive challenges because they have more parameters,
are trained on larger and more diverse data sets, and are often additionally fine-tuned on other
training objectives.

Larger models developed in engineering contexts present two additional challenges for neu-
roscientists. First, they are often proprietary, providing no access to model internals or even
knowledge about architecture or training (Achiam et al. 2023). And second, because of this lack
of information and/or compute resources, it is not possible for scientists to perform controlled
experimental model comparisons, which often require, for example, retraining a model from
scratch.

In summary, the latest models fromAI appear to be worse accounts of human language process-
ing than some earlier models, and practical limitations prevent neuroscientists from even using
these models in a rigorous (transparent and replicable) way in their investigations.

6. WHAT’S NEXT?

The field of computational cognitive neuroscience is still in its infancy (Naselaris et al. 2018),
especially for language. Nevertheless, the initial successes summarized here lay a promising foun-
dation for future efforts. A core goal of the field is to build increasingly accurate models of the
human language system. One step toward this goal will be to build developmentally plausible
models that learn linguistic computations directly from speech signals and from realistic amounts
and kinds of data (e.g., Beguš 2021, Warstadt et al. 2023). Another step toward this goal will be
the development of LMs that interact with both lower-level mechanisms (e.g., speech perception
mechanisms) and higher-level systems of knowledge and reasoning. Although language is distinct
from both, the human language system must interact with perception, motor control, and cogni-
tion to enable the full array of human abilities. Building such multicomponent models may also
provide critical clues as to how representations get transformed from lower-level perception to
language to downstream reasoning. Finally, another important goal is to develop models that can
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explain implementation/algorithmic-level processes, not only representational similarity (Blank
2023). The growing field of mechanistic interpretability in AI provides an increasing number of
tools to dissect the inner workings of models (e.g., see Wang et al. 2022, Hosseini & Fedorenko
2023,Meng et al. 2023).Neuroscientists can use these tools to formulate hypotheses about imple-
mentation and algorithms that underlie language behavior. These hypothesized mechanisms can
then bemanipulated or ablated, and the effects on both (i) downstream linguistic task performance
and (ii) model-to-brain similarity can be evaluated, allowing for a virtuous cycle of hypothesis
generation and testing.

In conclusion, artificial LMs have provided language researchers with a powerful new tool for
understanding human language processing by providing computationally explicit hypotheses of
how language might work in the brain. Like all methodological approaches, LMs have limitations
and pose numerous challenges. Nonetheless, these models have lifted critical barriers on our path
to understanding the neural, cognitive, and computational architecture of language processing,
providing exciting opportunities to understand the human language system with unprecedented
computational precision.
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