Technology Panel

- What technical tools are in our disposal for achieving privacy and security

- Privacy: Technology + Policy
 - Without Policy, technology will not be employed
 - Without Technology, policy will not be enforced
Panelists
Cryptography: An Enabler of Secure Computation

Shafi Goldwasser
CSAIL, MIT
The Evolution of Computing
The Evolution of Computing
A Migration of Data
Migration of Computation
A Collection on Data about us

Medical Records
Financial Financial Surveillance photos
Location information
Purchasing history
Browsing history
Social Interactions
Enormous Potential Benefits in Globalization of Knowledge
Benefits

• **Heath:** Sharing Data Sets for research and disease control

• **National Security:** threat prediction, law enforcement

• **Data Analytics:**
 - Traffic re-routing,
 - smart energy usage,
 - economic growth by intelligent consumer targeting
 - risk predictions for financial markets
Enormous Potential Risks: Loss of Control, Misuse of Knowledge
Risks

• **Loss of Control:** Remote Storage & Computation threatens
 - Authenticity.
 - Correctness.
 - Availability.

• **Loss of Privacy:** reveal more data than necessary to extract the benefits
 - Loss of Anonymity
 - Loss of Fairness: profiling, price discrimination
 - Loss of competitive Edge: playing field leveled by common data
Methods Which Don’t Work

- **Classic Encryption**: Can hide information but not process it

- **Classic Anonymizing**: Individual’s data with identifying information removed, is still easy to recognize
Benefit vs. Risk

- **Medical**: Research progress vs. Patient Rights
- **National Security**: Surveillance vs. Liberty
- **Financial**: Risk Analysis vs. Market-Competition
- **Economic Growth**: Consumer Targeting vs. Fair Pricing

Are These Contradictory Constraints?
Benefit vs. Risk

- **Medical**: Research progress vs. Patient Rights
- **National Security**: Surveillance vs. Liberty
- **Financial**: Risk Analysis vs. Market-Competition
- **Economic Growth**: Consumer Targeting vs. Fair Pricing

Can mathematics & technology enable us to have the best of both worlds
Cryptography 80’s – today

• Host of Techniques that enable to perform computations on data without seeing the data

• Extract specific knowledge, revealing nothing extra

• Reconcile some of these seemingly contradictory “Benefits vs. Risks”
N distrustful parties run a protocol to extract information depending on their collective private data.

Formulate this as evaluating a function

\[f(X_1, X_2, ..., X_n) \]

- where \(X_j \) is private input of party \(j \).

So that parties only learn the function output, but nothing else about others inputs
Example 1: Conduct Medical Study on Confidential Medical Data

\[f(B\&W-DNA, MGH-DNA, \text{Pharma}) = \text{develop drug if the green gene is prevalent in the population} \]

N=3
Example 2: Policing While Not Breaking Civil Liberties

\[f(\text{photos}, \text{suspects}) = \text{true} \text{ only if suspect appears in them} \]

\[N=2 \]
Example 3: Financial Stability of our society [AKL11]

\[f(\text{MerrilLynch info, LehmanBros info, Govt}) = \text{will banks become insolvent} \]

\[N=3 \]
Trusted Center Solution?

Goal: Decentralized solution with “same” properties as solution with trusted center
Major Result
[the 80’s]

Any polynomial time function f can be securely evaluated, using the *cryptographic tool box*

Unconditionally, if there is an honest Majority

Assuming oblivious transfer, if no honest majority,
Major Lesson: Store All Data Distributively

• In toy examples, different entities with different goals hold different parts of the data

Not Always the case....

• By design can store data so no single entity has entire data or power
SFE: Theory and Practice

• [80’s] Proof of Concept: Great Theory, for general functions, but impractical
• In recent times [Lindell2013 Survey]: optimized implementations for simple classes but useful functions and relaxed security, achieve impressive practical performance, much more work needed

But:
• Requires Interaction
• Not robust to an “insider” leaking all
Truly Amazing Progress: Computing on Encrypted Data

- Fully Homomorphic Encryption [Gentry2009]
- Functional Encryption [SW05, GVW13, GKPVZ13, GGHRSW13, GGSJ14]

Theory to Practice: Research to be done
From Data to Programs

• Browsing
• Searching
• Social Interactions
• General Programs

Goal: keep which programs you run private?
Promise: Program Obfuscation Methods
Secure Function Evaluation ≠ Privacy

- Given f, SFE shows how to compute $f(data)$ revealing nothing extra on data

But
- $f(data)$ itself may reveal too much
- $f_1(data),...,f_n(data)$ may reveal too much
- $f(data_1,...,data_n)$ can reveal $data_j$, if $\{data_i\}$ is chosen maliciously

Differential Privacy Research: Which classes of functions are safe to compute?
A Combination of Privacy and Secure Computation

• A two-stage process:

 - Decide that the function/algorithm should be computed – an issue of privacy

 - Apply secure computation techniques to compute it securely – security
Security Definition: Simulation Paradigm

Given your own inputs and the output of the computation, can generate “simulated view” of the protocol which is \textit{computationally indistinguishable} from “real view”.

Distribution of REAL Messages Exchanged in the protocol

$\begin{align*}
 &v_1 \\
 &\leftarrow p_1 \\
 &v_2 \\
 &\leftarrow p_k \\
\end{align*}$

SIMULATED Messages Exchanged in the protocol

$\begin{align*}
 &v_1 \\
 &\leftarrow p_1 \\
 &\vdots v_2 \\
 &\leftarrow p_k \\
\end{align*}$
Loss of Privacy is Complex

• Different Entities Collect and Protect Data in an Un-coordinated fashion

• Unforeseen Cross Referencing of information held by different entities on the same individual, causes greater privacy loss

• Aggregate information on many can reveals information on a single individual