L14: 13 Lectures past and 13 to go

Part I: ‘The cell as a well-stirred bioreactor’

topics
- Lambda phage lysis-lysogeny switch
- Synthetic genetic switch
- Switches as memory storage
- Chemotaxis: perfect adaptation or not?
- Synthetic genetic oscillators

main assumption
- well-stirred reactor
- absence of chemical gradients
 (justification: small cells, diffusion mixes)

Switch from Systems Microbiology to Systems Cell Biology

The importance of diffusion and gradients for cellular regulation

Part II: Systems Cell Biology

‘Importance of gradients and diffusion in cellular regulation’

After two lectures on diffusion and reaction-diffusion equations, we will focus during the coming lectures on the following biological systems:

1. Eukaryotic chemotaxis
 Gradient sensing in *Dictyostelium* (aka ‘amoeba’)

2. Computing the middle of a cell
 Pole-to-pole oscillations in *Escherichia coli*

3. Self organization of the cytoskeleton

Prokaryotic versus eukaryotic cells

e.g E. coli, cyanobacteria
~ 10^6 bp, ~ 5000 genes
Prokaryotic versus eukaryotic cells

- **Eukaryotic Cell**
 - Nucleus
 - Chloroplasts
 - Mitochondria
 - Ribosomes

e.g. yeast, amoeba, plants, flies, man & mice ...

~ 10^9 bp, ~ 40000 genes !!

Topic I: Spatial oscillation in *E. coli*

Similar to genetic oscillators, but now we cannot ignore the spatial dimensions

Biological function:

determine the center of the cell, to prepare for proper cell division

gfp-minC
GFP-minD

gfp-minE is localized in a ring
Recent results demonstrate that the min proteins assemble in helices.

Topic II: Gradient sensing

similar to chemotaxis of E. coli, but now we cannot ignore the spatial dimensions

my favorite movie ...

neutrophil chasing a bacterium

Dictyostelium (amoeba)
sensing a gradient of cAMP

uniform step in cAMP

cAMP gradient
Response of Dictyostelium to cAMP

- **Uniform step in cAMP**
- **Cyclic AMP gradient**

Initial distribution $t \sim 3 \text{ s}$

Steady-state distribution $t \to \infty$

Uniform and transient

Polarized and persistent

GFP-PH binds special lipids in membrane: PIP2 and PIP3

Geometry of cell:
- Circular
- Inside cytoplasm: well-stirred
- Inside membrane: diffusion-limited

The molecules in the model:

- Plasma Membrane
- Cytosol
- Endoplasmic Reticulum

- Receptor Regulated Step
- PI
- PI(4,5)P2
- PIPK
- DGK
- DG
- Inositol
- IP3
- CDP,DG
- CDP,DGS
- PA
- PIP
- PIS

Aggregation of a population of amoeba

Biological function:
- Development of a multicellular structure
Topic III: Self-organization of the cytoskeleton
Center finding in an eukaryotic cell: fission yeast
The importance of the cytoskeleton

powerful reporter

PH-GFP
Positive feedback as a mechanisms for spontaneous cell polarization?

Cue-dependent polarization

Random polarization

- Neutrophils/Dictyostelium
- Yeast
- Light
- Fucus zygote
- Sperm
- Xenopus egg

No gradient

Lacking BUD1

No stimulus

Uniform activation

What is the dynamics of this symmetry breaking?

Experimental probe: Gic2p\(_{(1-208)}\)\(^{-}\)GFP (CRIB-GFP)

In the absence of the actin cytoskeleton symmetry breaking still occurs, but Cdc42p activity patch is immobilized.