7.81 / 8.591 / 9.531
Systems Biology

Recitation
Matlab Crash Course

web.mit.edu/biophysics/sbio/
Today’s objective

Get comfortable playing with Matlab...

- Interacting with Matlab
- Enter Data
- Operations
- Some Commonly Used Functions
- Making Pretty Pictures
- M-Files and Scripts
- For, While, and If
- Solving ODEs
What is Matlab?

• Matlab = Matrix Laboratory
• Problem-solving environment
• Designed for convenient *numerical* computations (e.g. matrix manipulation, differential eqns, stats, and graphics)
• Developed by Cleve Moler in 1970s as a teaching tool
• Now ubiquitous in education and industry
Why Matlab?

• Great tool for simulation and data analysis
• User-friendly interface
• Many easy to use built-in functions and toolboxes
• Easy visualization
• Easy to get help:
 – help function_name
 – lookfor topic
 – www.mathworks.com
How to get Matlab?

Software at MIT

Name: Matlab
Category: Numerical/Math - Matrix Manipulation
Last modified: Mo Jun 1, 2009

Problems or Questions?

Contents

- What is Matlab? Where does it come from?
- Matlab on Athena
- Matlab at MIT
- Documentation, Tutorials, and Other Resources
 - Online Documentation
 - Introductory Guides and Tutorials
 - General Matlab Resources

New (6/1/09): **Matlab 7.8 is now the default**

Matlab is now available for installation on student machines (MIT certificate and student status required)
Useful Resources

• http://www.greenteapress.com/matlab/

Physical Modeling in MATLAB

by Allen B. Downey

Physical Modeling in MATLAB is an introduction to programming in MATLAB and simulation of physical systems.

Download the book in PDF now, or buy the paperback edition from Lulu.com or Amazon.com.

• Google
 - Search for ‘matlab plot’
Interacting with Matlab

```matlab
clear
cd directory_name
pwd
```
Entering Data

Try 'help linspace', or google 'matlab linspace'
400 linearly spaced entries from 0 to 100

obtain the 5th entry of r

the 1st column of B

(row, column)
create a row vector filled with 1’s

create another row vector filled with 0’s

merge the two

try out: eye, rand, randn
Operations

You can also do: log(a), log10(a), exp(a), sum(a), max(a), etc.
Plotting Data / Making Pretty Pictures

```
>> x = 0:.1:2*pi;
>> y = sin(x);
>> plot(x,y);
>> hold on
>> plot(x,cos(x),'r')
>>
```

plot multiple sets of data on the same figure
Try 'help plot', 'help title', 'help legend', and 'help axis' for more info
More About Plotting

t = 0:pi/20:2*pi;
[x,y] = meshgrid(t); % look up meshgrid

subplot(2,2,1) % creates a 2x2 array of plots, and plot in the first subplot
plot(sin(t),cos(t))
axis equal % this is a parametric plot

subplot(2,2,2)
z = sin(x)+cos(y); % z is a matrix
plot(t,z)
axis([0 2*pi -2 2]) % plotting each column of z
 % versus t

subplot(2,2,3)
z = sin(x).*cos(y);
plot(t,z)
axis([0 2*pi -1 1])

subplot(2,2,4)
z = (sin(x).^2)-(cos(y).^2);
plot(t,z);
axis([0 2*pi -1 1])

% for 3-D plotting, try mesh, surf, surfl, waterfall, etc
M-Files and Functions

• Let’s make our own functions
• To start the editor, type ‘edit’
M-Files and Functions

• Local workspace and Scoping
• To make variables global: `global variable_name`

```matlab
function y = myfactorial(x)
% function y = myfactorial(x)
if x==1
    y = 1;
else
    y = x*myfactorial(x-1);
end

% this file should be saved with the same name, i.e. 'myfactorial.m'
```

```matlab
>> myfactorial(5)
ans =
    120
>>
```
For, While, and If

for m = 1:100
 num = 1/(m+1)
end

% find all the powers
% of 2 below 10000
while num < 10000
 num = 2^i;
 v = [v; num];
 i = i+1;
end

i = 6; j = 21;
if i > 5
 k = i;
elseif (i > 1) & (j == 20)
 k = 5*i+j;
else
 k = 1;
end

• And: a & b
• Or: a | b
• Not-equal: a ~= b
• Equal: a == b
Solving ODEs

• A very simple case: \(\frac{dy}{dt} = y(t) \quad 0 \leq t \leq 2 \quad y(0) = 1 \)

function dy = simpleode(t,y)
 dy = y; .Annotation save as simpleode.m

• Type in command line:

 [t y] = ode45(@simpleode, [0, 2], [1]);
 subplot(1,2,1),plot (t,y,'o',t,exp(t),'.'),'
 subplot(1,2,2),plot(t,(y-exp(t))/exp(t))
Solving ODEs

- A system of eqns:

\[
\begin{align*}
\frac{dx}{dt} &= 2x - y + 3(x^2 - y^2) + 2xy \\
\frac{dy}{dt} &= x - 3y - 3(x^2 - y^2) + 3xy
\end{align*}
\]

\[0 \leq t \leq \frac{1}{2}\]

\[y(0) = 3, \quad x(0) = 5\]

```matlab
function xdot = aode(t,y)
    % y(1) = x
    % y(2) = y
    xdot = zeros(2,1);  % initialize the xdot vector
    xdot = [2*y(1)-y(2)+3*(y(1)^2-y(2)^2)+2*y(1)*y(2),
            y(1)-3*y(2)-3*(y(1)^2-y(2)^2)+3*y(1)*y(2)];
    %save as aode.m
```

- Type in command line:

```matlab
[t,y] = ode45(@aode,[0,.5],[3;5]);
subplot(2,1,1),plot(t,y)
subplot(2,1,2),plot(y(:,1),y(:,2))  % plot the phase portrait
```
Solving ODEs

• A second order system:

\[
\ddot{\theta} + \omega^2 \sin \theta = 0 \quad \theta(0) = 1 \\
\dot{\theta}(0) = 0
\]

• First, convert to a system of two first-order equations, by hand.

let \(u_1 = \theta \), then

\[
\begin{bmatrix}
\dot{u}_1 \\
\dot{u}_2
\end{bmatrix} =
\begin{bmatrix}
u_2 \\
-\omega^2 \sin(u_1)
\end{bmatrix}
\]

function udot = pend(t,u,omega)
udot = zeros(2,1)
udot = [u(2); -omega^2*sin(u(1))];
%save as pend.m

• Type in command line:

%omega = 1.56
[t, y] = ode45(@pend,[0 20],[1;0],[],1.56);
subplot(2,1,1),plot(t,y)
subplot(2,1,2),plot(y(:,1),y(:,2)) % plot the phase portrait