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Abstract

A computational approach is developed for designing a globally optimal controller which is robust to time-varying nonlinear
perturbations in the plant. This controller design problem is formulated as an optimization with bilinear matrix inequality (BMI)

constraints, and is solved to optimality by a branch and bound algorithm. The algorithm is applied to a reactive ion etcher, and
provides superior performance while providing robustness to nonlinear plant/model mismatch. The algorithm is also applied to a
well known benchmark problem. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In practice, any model is an inaccurate representation
of the true process. Robust control addresses this plant/
model mismatch by de®ning a set of plants of which the
true process is an element. This set is de®ned by an
uncertainty description. Controllers are designed to be
robust to the uncertainty, that is, to achieve a desired
level of performance for any plant in the set.

The most popular method for designing robust con-
trollers is DK-iteration, which involves alternately solving
for the controller K and the appropriate scaling matrix
D. Since DK-iteration is an ad hoc approach applied to
a nonconvex problem, the resulting controller can be
suboptimal. In spite of the fact that DK-iteration is not
guaranteed to converge to a global optimum, it has been
applied to a large number of academic case studies such
as high purity distillation columns, CSTRs, and packed
bed reactors [1,2]. However, recent examples have illu-
strated that DK-iteration can provide conservative
controller designs, even for processes of relatively small
dimension [3].

Having a conservative controller is undesirable, espe-
cially since the cost of obtaining an uncertainty
description can be high. Algorithms to compute a glob-
ally optimal robust controller have been proposed [4,5].
The formulation of Goh et al. [4] requires iterative

solutions of nonconvex feasibility problems, each of
which is solved via branch and bound. Yamada et al. [5]
solve the optimization problem directly but the compu-
tational requirements of their proposed algorithm grows
rapidly as a function of the number of uncertainties.
Here an approach is developed for computing a globally
optimal controller which is robust to time-varying non-
linear perturbations in the plant. The controller design
problem is directly formulated as an optimization with
bilinearmatrix inequality (BMI) constraints. A branch and
bound technique is then used to ®nd a global solution. The
proposed algorithm provides tighter bounds, and a more
direct numerical approach, than previous algorithms.

The next sections provide background on linear and
bilinear matrix inequalities (LMIs and BMIs), robust
control, and the branch and bound global optimization
approach. Then we present LMI upper and lower
bounds for the BMI problem that are used in a branch
and bound algorithm to compute a globally optimal
robust controller. Lastly, the algorithm is applied to an
industrially relevant microelectronics process. To the
authors' knowledge, the corresponding optimization
problem is the largest BMI control problem ever solved.

2. LMIS and BMIS

A Linear Matrix Inequality (LMI) has the form [6]:

F�x� � F0 �
Xm
i�1

xiFi50 �1�
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where x 2 Rm, Fi 2 Rn�n, Rm is the set of all real vec-
tors of length m, and Rn�n is the set of all real n� n
matrices. The symmetric matrices Fi � FT

i , i � 0; 1; . . . ;
m are ®xed and x is the variable. Thus, the symmetric
matrix F�x� is an a�ne function of the elements of x and is
a positive semide®nite matrix, that is zTF�x�z50,
8z 6� 0; z 2 Rn. The LMI [Eq. (1)] is equivalent to n poly-
nomial inequalities because a matrix is positive semi-
de®nite if and only if each leading principal minor of
F�x� is nonnegative. An important property of LMIs is
that the set xjF�x�50f g is convex, that is, the LMI [Eq.
(1)] forms a convex constraint on x.

The form of an LMI is very general; linear inequal-
ities, (convex) quadratic inequalities, matrix norm
inequalities, and various constraints from control the-
ory such as Lyapunov and Riccati inequalities can all be
written as LMIs. Moreover, multiple LMIs can always
be written as a single LMI of larger dimension. LMIs
form convex sets, and optimization problems with LMI
constraints are solvable in polynomial-time with o�-the-
shelf software [7,8].

A bilinear matrix inequality (BMI) is of the form:

F�x; y� � F0 �
Xm
i�1

xiFi �
Xk
j�1

yjGj

�
Xm
i�1

Xk
j�1

xiyjHij50

�2�

where Gj and Hij are symmetric matrices of the same
dimension as Fi, and y 2 Rk.

The bilinear terms make the set x; y j F�x; y�50f g
nonconvex and no o�-the-shelf software exists for solving
optimization problems with BMI constraints. It is
straightforward to prove that BMI optimization problems
are NP-hard, which implies that it is highly unlikely that
there exists a polynomial-time algorithm for solving
these problems. The control problems considered in this
paper are a special form of Eq. (2):

F�x� � F0 �
Xm
i�1

xiFi �
Xm
j�1

yjGj50

xiyi41 8i
�3�

although the results hold for the general form as well
[see Eqs. (15±18)].

3. Robustness

Any process model is only an approximation of the
true process. In robust control, the true plant Ptrue is
covered by a set of plants P̂ which is represented by the
nominal model P and a set of norm bounded perturba-
tions �t�.

P̂ � f�P; �t�� �4�

Ptrue 2 P̂

For robust controller synthesis, the ®nite-dimensional
linear time-invariant controller K is designed to stabilize
all plants within the set (e.g. see Fig. 1). The block diagram
of the uncertain closed loop system is rearranged to give
either of the equivalent block diagrams of Fig. 2. The
purpose is to collect the uncertainties into a single block
diagonal matrix � where each block represents an
uncertainty associated with either a parameter or com-
ponent of the process (e.g. unmodeled dynamics or
nonlinearity). The nominal plant P, which corresponds
to � � 0, is ®nite-dimensional linear time-invariant. The
generalized plant matrix G is determined from the
nominal plant P by the performance and uncertainty
weights (e.g. see Fig. 8), and the location and structure
of the uncertainties. The closed loop transfer function
matrix M�K� is a linear fractional transformation (LFT)
of G and K [1,2]. The plant input w contains the desired
set point, measurement noise, and disturbances. The
output z contains the variables to be controlled.

The set of proper (realizable) controllers that intern-
ally stabilize G is denoted by Ks. The set �� is the set of
block diagonal matrices diag �kf gj�k 2 Crk�rk ;

P
k rk

�
� ng, where Crk�rk is the set of all rk � rk matrices with
complex entries. The set �t� is the set of all time-varying
operators ��t� with the same block diagonal structure
as �� and bounded such that �����t��41, 8t50.

For a ®xed � 2 �t� and a controller K 2 Ks let
Tzw�K;�� denote the closed loop mapping from w to z.
The objective of robust controller design is to solve


� � inf
K2Ks

sup
�2�t

�

k Tzw�K;�� k � �5�

where k�k is the operator 2-norm. The performance
speci®cation is satis®ed for all plants within the uncer-
tainty description if and only if 
� < 1. The optimiza-
tion in Eq. (5) is neither concave nor convex and is
di�cult to solve. For nonlinear time-varying uncer-
tainty, Eq. (5) is equivalent to [3]:


� � inf
K2Ks

inf
D2D

>0


 �6�

such that

Fig. 1. Closed loop uncertain system.
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D 0
0 
I

� �ÿ1=2
M�K� D 0

0 
I

� �1=2�����
�����

�����
�����
1
< 1: �7�

where D is the set of structured scaling matrices
D � diag dkIrkf g j 0 < dk 2 R;

P
k rk � n

� 	
, R is the set

of real numbers, and I is the identity matrix of appro-
priate dimension.

That the optimization over � 2 �t� can be replaced
by an optimization over D 2 D is a well known result
shown by Shamma [9,10]. The optimization over D 2 D
is also a nonconvex optimization, but one for which a
sub-optimal solution can be computed by a technique
known as DK-iteration. It is possible to formulate the
constrained optimization [Eqs. (6) and (7)] as a problem
which is convex in one set of variables (associated with
D) and is convex in another set of variables (associated
with K), but there is no known formulation which is
jointly convex in all of the variables. DK-iteration solves
for K with a ®xed D and then solves for D with a ®xed K,
alternating until the objective function is no longer
decreased. Although DK-iteration is not guaranteed to
converge to a global optimum, it has been applied to a
large number of academic case studies such as high purity
distillation columns, CSTRs, and packed bed reactors
[1,2]. It should be further noted that when D is allowed to
be a function of frequency rather than constant, Eqs. (6)
and (7) form a commonly used upper bound for the case
of linear time-invariant uncertainty �.

Let the state space realization for the generalized
plant G�s� � C�sIÿ A�ÿ1B�D be represented by

G �
A B1 B2

C1 D11 D12

C2 D21 D22

24 35; �8�

where D22 � 0 without loss of generality [11]. Then Eqs.
(6) and (7) maybe written as an optimization with BMI
constraints:


� � inf
�L;R;X;Y�2B
��L1R1 �41


 �9�

where � is the spectral radius and B is the set such that
L, R, X and Y are symmetric matrices,

L � L1 0
0 
I

� �
;R � R1 0

0 
I

� �
;L1;R1 2 D; �10�

and

Q1

AX� XAT XCT
1 B1

C1X ÿL D11

BT
1 DT

11 ÿR

24 35QT
1 < 0; �11�

Q2

YA� ATY YB1 CT
1

BT
1Y ÿR D11

C1 DT
11 ÿL

24 35QT
2 < 0; �12�

X I
I Y

� �
> 0; �13�

where

Q1 �
B2

D12

� �?
0

0 I

24 35;Q2 �
CT

2

DT
21

� �?
0

0 I

24 35: �14�

Here A? is a matrix whose rows form the basis for the
null space of AT. The optimization in Eq. (9) is non-
convex because of the spectral radius constraint.

In this paper, LMI upper and lower bounds are
derived that make Eqs. (9)±(13) well suited for the
application of a branch and bound algorithm. Once
Eqs. (9)±(13) has been solved (to within a desired toler-
ance), a globally optimal robust controller is calculated
from Eqs. (6) and (7) by substituting L for D and by
setting 
 equal to the 
� calculated in Eq. (9).

4. Branch and bound

A detailed description of the branch and bound algo-
rithm is provided elsewhere [12]. However, the basic idea
is as follows. First, a valid relaxation ~P of a nonconvex

Fig. 2. Equivalent uncertain systems.
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problem P [see Fig. 3(a)] must be obtained. In order for
the relaxation to be valid, the di�erence between the
optimal objective function values of P and ~P must be a
non-increasing function of the size of the feasible region
over which the relaxation is obtained. Additionally, a
global solution must be attainable for every relaxation
(usually this means that ~P should be convex). The
relaxed problem is solved, providing a lower bound L
for the optimal solution. Using this solution as a start-
ing point a local minimization is performed. This yields
an upper bound U on the global solution. If L is su�-
ciently close to U then the algorithm terminates. If not,
then the domain is subdivided and the procedure is
repeated for each section [see Fig. 3(b)]. If the lower
bound for a region is greater than the current upper
bound then that region may be discarded [see Fig. 3(c)].
Provided that at each iteration the region with the low-
est lower bound is selected for processing, convergence
is guaranteed, as eventually the upper and lower bounds
will be equal to within the speci®ed tolerance [see
Fig. 3(d)] [13].

5. Upper and lower bounds

The art to developing an e�cient branch and bound
algorithm is to derive tight upper and lower bounds
from the objective function over any given part of the
domain. Reducing the ranges of all problem variable as
much as possible is frequently a key to tight objective
function bounding. A lower bound to the performance
problem Eqs. (9)±(13) is

inf
�L;R;X;Y�2B
li4li4�li
rj4rj4�rj

F0�
P

i

P
j
li rjFij50


5 inf
�L;R;X;Y�2B
li4li4 �li
ri4ri4�ri

F0�
P

i

P
j
wijFij50

wij2�wij ; �wij �


 �15�

where the overbar (underbar) indicates the upper
(lower) bound for a variable and

wj � min lirj;
�lirj; li �rj;

�li �rj
� 	 �16�

�wij � max lirj;
�lirj; li �rj;

�li �rj
� 	 �17�

Further, because wij is a bilinear term the following
additional constraints may be included in the lower
bound [Eq. (15)] [14].

wij4rjli � �lirj ÿ rj
�li

wij4lirj � �rjli ÿ li �rj

wij5 �lirj � �rjli ÿ �rj �li

wij5lirj � rjli ÿ lirj

�18�

An LMI upper bound is obtained by ®xing some of the
variables:

inf
�L;R;X;Y�2B
li4li4 �li
rj4rj4�rj

��li rj�41


4 inf
�L;R;X;Y�2B

li�li
ri4rj4�rj
��lirj �41


 �19�

With these polynomial-time computable LMI upper
and lower bounds, the nonconvex optimization Eqs.
(9)±(13) is ideal for the application of the branch and
bound algorithm.

Upper and lower bounds for each of the variables
(the under- and overlined variables in the above equa-
tions) may be computed by solving an LMI of dimen-
sion similar to Eqs. (9)±(13) [15].

6. Mass±spring benchmark problem

Consider a mechanical system of two masses con-
nected by a spring (see Fig. 4) [3,16]. This extensively
studied benchmark is a simple control problem for-
mulated to capture many of the features of more com-
plex aircraft and space structure control problems. It
has been included here in order to compare the accuracy of
the BMI/branch and bound technique with the accuracy
of DK and LR-iteration (a variant of DK-iteration, see
[3]). It is desired to control the positions of the two
masses. There is one actuator (on mass 1) and one sensor
(on mass 2), i.e. the sensor and actuator are non-
collocated. This makes the system much more di�cult
to control than in the collocated case. It is assumed that
the system has negligible damping. All of the para-
meters of the system are known with certainty except
for mass 2. In state space form the system is represented
as [3]:

_x �

_x1

_x2

_x3

_x4

26664
37775 �

0 0 1 0

0 0 0 1

ÿk=m1 k=m1 0 0

k=m2 ÿk=m2 0 0

26664
37775

x1

x2

x3

x4

26664
37775

�

0

0

1=m1

0

26664
37775�u� 0:1d�

�20�

y � x2 � 0:1v �21�

where m1 and m2 are the masses and k is the spring
constant. The positions of the two masses are x1 and x2
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with velocities x3 and x4 respectively. The control input
is u and the process and measurement noises are d and
v.

For m1 � k � 1 and m2 � 0:5� wm2
� this gives the

generalized plant (see Fig. 2) [3]

G �

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
ÿ1 1 0 0 0 0:1 0 1
2 ÿ2 0 0 ÿ2wm2

0 0 0

2 ÿ2 0 0 ÿ2wm2
0 0 0

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

0 1 0 0 0 0 0:1 0

2666666666664

3777777777775
�22�

where

w � �d v�T z � �x2 u�T �23�

and wm2
is the weight for the uncertainty block asso-

ciated with m2 and ��t� 2 �ÿ1; 1�, 8t50.
The global optimization algorithm presented earlier

was used to design a controller for this system for vary-
ing levels of uncertainty. Fig. 5 plots the closed loop
performance for the system versus the inverse of the
uncertainty weight wm2

. For this mass spring system the
resulting controller was approximately 50% less con-
servative than the best controller computed with other
standard techniques such as DK- and LR-iteration. The
controller was of order 4.

Fig. 3. The branch and bound algorithm.

Fig. 4. Mass-spring system.
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We would like to point out that the iterative methods
do not always perform so poorly. For a large scale
adhesive coater, the globally optimal controller was
approximately 10% less conservative than controllers
designed via DK-iteration [17].

7. Reactive ion etching

Fig. 6 is a diagram of a generic plasma system [18]. A
radio frequency (rf) voltage source is connected in series
with a capacitor to two electrodes. The electric ®eld
generated causes gas molecules in the reactor to lose
outer shell electrons. These electrons interact with other
molecules causing them to lose electrons or form free
radicals. Thus a reactive mix of ions, electrons, and free
radicals is formed. A potential di�erence called the self
bias voltage (Vbias) will develop between the two elec-
trodes due to the facts that (i) the electrons are more
mobile than the ions, (ii) the electrodes have unequal
surface area, and (iii) the capacitor is too large to follow
the high frequency voltage source. Ions will be accelerated

by this potential di�erence towards the sample to be
etched. The bias voltage is a key parameter in deter-
mining the etch rate since it determines the incident
energy of the ions.

Etching is known to be a highly nonlinear, multi-
variable process that is strongly dependent on reactor
geometry. Attempts to control etch characteristics
usually manipulate the reactor pressure, gas ¯ow rate,
and the power applied to the electrodes. However, due
to many disturbances, complicated reaction dynamics,
and the general lack of detailed fundamental under-
standing of the plasma behavior, it is impossible to
predict etch performance for a system given a set of
inputs. In many cases, it is impossible to even predict
etch performance for the same system on two di�erent
runs. For this reason, feedback control is necessary to
maintain consistent etch quality. The feedback con-
troller must be designed to be robust to the variability in
process behavior as well as the nonlinear nature of the
process. In the robust control approach, the uncertainty
description can rigorously account for possible non-
linearities and inaccurate modeling of process dynamics.

Many of the etch parameters cannot be measured on-
line. Instead, measurements of the plasma characteristics
are made, and with these measurements the controller
attempts to maintain consistent plasma characteristics.
This strategy has been proven in experimental studies to
give good control of the etch characteristics [19,20].

The globally optimal robust controller design proce-
dure outlined in the previous sections was applied to the
reactive ion etching (RIE) process described by Vincent
et al. [20], who modeled the plasma dynamics as a static
input nonlinearityN in series with a linear time-invariant
(LTI) plant PL (see Fig. 7). This nonlinear model was
identi®ed using an iterative least squares algorithm with
data obtained from an experimental system by exciting
it with a pseudo-random binary signal [20]. The identi-
®ed LTI plant for their experimental RIE was

PL �
ÿ1:89eÿ0:5s�sÿ38:2�
�s�5:37��s�:160�

ÿ35:9�sÿ37:8�
s2�6:5s�20:2

0:0239eÿ0:5s�sÿ9:6�
�s�1:05��s�:214�

ÿ0:143�sÿ38:9�
s2�3:28s�4:14

" #
�24�

Vincent et al. [20] selected the controller to have the
form K � N̂ÿ1KL where KL is designed to stabilize the
linear portion of the plant PL and N̂ÿ1 is an approx-
imate inverse of the static nonlinearity N.

If the input nonlinearity N is identi®ed perfectly then
N̂ÿ1 will be an exact inverse of N and there will be an
identity mapping from KL to PL. However, if the iden-
ti®cation is not perfect, then there will still be a non-
linear mapping from KL to PL. Furthermore, it is highly
unlikely that the system is nonlinear only at the process
input. Output nonlinearity is also a probability.

Nonlinearities in the input and output can be rigor-
ously accounted for by the uncertainty description

Fig. 5. Closed loop performance for mass±spring benchmark pro-

blem.

Fig. 6. Generic plasma system.
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shown in Fig. 8. The operators �I and �O can vary
arbitrarily within set bounds as functions of time, and
can achieve an identical input±output mapping for any
possible nonlinearity within the magnitude of the
bounds set by the uncertainty weights WI and WO.

Each uncertainty weight (WI, WO) was chosen to
represent up to 10% steady state error and up to 100%
dynamic error (in the linear case, this would be 100%
error at high frequencies [1,2]). The performance weight
ensures zero steady-state error and closed loop time
constants of 5 and 9 s. Rearranging the block diagram
in Fig. 8 results in the generalized plant matrix (see
Fig. 2)

G �
0 0 0 ÿWI

WOPL 0 0 ÿWOPL

WPPL WP ÿWP ÿWPPL

PL I ÿI PL

2664
3775 �25�

where

WI �WO � 0:1�15s� 1�
1:5s� 1

I2 �26�

WP �
0:5�5s�1�
5s�0:002 0

0 0:5�9s�1�
9s�0:002

" #
�27�

u � �T Prf�T; y � �Vbias CF�T; �28�

w � d; Z �WPy �29�

The ¯uorine concentration in the plasma is CF, the
throttle valve position T controls the input gas ¯owrate,
and Prf is the power of the applied rf voltage.

Given this generalized plant matrix and using a third
order PadeÂ approximation for the time delays, globally
optimal controller parameters were calculated by a
branch and bound algorithm using the derived upper
[Eq. (19)] and lower bounds [Eq. (15)]. It should be
noted that the uncertainty description easily covers any
possible error introduced by the time delay approxima-
tion.

The best achievable performance 
� � 0:9834 is
achieved for L1 � diag�0:1329I2; 0:2623I2�. Since

� < 1, the controller satis®es the robust performance
speci®cations. The controller is calculated from Eqs. (6)
and (7) by substituting L for D and by setting 
 equal to
the 
� calculated in Eq. (9). The controller was of order
48. To the authors' knowledge, this is the largest BMI
control problem ever solved [the G matrix in Eq. (25)
has 48 states].

For brevity, the state space matrices of the controller
are reported elsewhere [21]. We did not try to reduce the
order of the controller because our goal was to design
the best controllerÐnot necessarily the best controller
of a speci®ed order. Designing a robust reduced-order
controller is an even harder nonconvex optimization
[22±24].

Fig. 9 is a Bode plot of the open loop transfer function
PLKL, which has a bandwidth very similar to the linear
quadratic controller designed by Vincent et al. [20]. This
is necessary in order to not magnify measurement noise.
However, the globally optimal controller responds more

Fig. 7. RIE with input nonlinearity.

Fig. 8. RIE with input and output nonlinearities modeled as uncertainty.
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than twice as fast to set point changes while at the same
time providing guaranteed robustness (compare Fig. 10
with Vincent et al.'s [20] Fig. 7).

The robustness of the closed loop system to norm-boun-
ded, nonlinear, time-varying perturbations is illustrated in

Fig. 11. The time-varying operator � has maximum
norm and instantaneously ¯ips sign in the middle of
every ramped set point change for Vbias. This is a di�-
cult perturbation to suppress, yet the controller keeps
the system within the performance bounds.

8. Conclusions

A computational approach that directly addresses
nonlinear time-varying model uncertainties in a globally
optimal manner was applied to a reactive ion etcher and
a mass±spring system. The resulting controller for the
reactive ion etcher was robust to perturbations asso-
ciated with both process inputs and outputs, while pro-
viding substantially improved dynamic response
compared to a linear quadratic controller. For the
mass±spring benchmark problem, the resulting con-
troller was 50% less conservative than controllers
designed via DK-iteration. These results demonstrate
that global optimality is important in designing non-
conservative controllers. Computational results demon-
strate that the algorithm is capable of designing globally
optimal robust controllers for processes of moderate
dimension.
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